

Resource Allocation Strategies for

Multiple Job Classes

by

Ye Hu

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 2009

© Ye Hu 2009

ii

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

 Resource management for a data center with multiple job classes is investigated in

this thesis. We focus on strategies for allocating resources to an application mix such that

the service level agreements (SLAs) of individual applications are met. A performance

model with two interactive job classes is used to determine the smallest number of

processor nodes required to meet the SLAs of both classes. For each class, the SLA is

specified by the relationship: Prob 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑡𝑖𝑚𝑒 ≤ 𝑥 ≥ 𝑦. Two allocation strategies

are considered: shared allocation (SA) and dedicated allocation (DA). For the case of

FCFS scheduling, analytic results for response time distribution are used to develop a

heuristic algorithm that determines the allocation strategy (SA or DA) that requires fewer

processor nodes. The effectiveness of this algorithm is evaluated over a range of

operating conditions. The performance of SA with non-FCFS scheduling is also

investigated. Among the scheduling disciplines considered, a new discipline called

probability dependent priority (PDP) is found to have the best performance in terms of

requiring the smallest number of nodes. Furthermore, we extend our heuristic algorithm

for FCFS to three job classes. The effectiveness of this extended algorithm is evaluated.

As to priority scheduling, the performance advantage of PDP is also confirmed for the

case of three job classes.

iv

Acknowledgements

I would like to express my deep and sincere gratitude to my supervisor, Professor Johnny

Wong, whose expert guidance and experience directed me through my Master studies.

This work would not be made possible without his encouragement and precious advice.

His wide knowledge and logical way of thinking have been of great value for me. Thanks

given to Professor Ashraf Aboulnaga and Raouf Boutaba for taking time to be the readers

of this thesis.

 I want to thank my friends and officemates for brining pleasant and enjoyable

moments to me during my study. Finally, I express my sincere thanks to my parents and

family for their understanding, love and support.

v

Contents

List of Tables vii

List of Figures viii

1. Introduction 1

2. Survey of related work 7

2.1 Queueing theory ………………………………………………………….. 7

2.2 Control theory ……………………………………………………………. 8

2.3 Machine learning approach ………………………………………………. 8

2.4 Market-based approach …………………………………………………... 9

2.5 Hybrid approach ………………………………………………………….. 10

3. Performance model 11

4. Allocation strategies for two interactive classes 14

4.1 Analytic results for FCFS ……………………………………………….. 14

4.2 Allocation strategies …………………………………………………….. 15

4.3 DA and SA comparison …………………………………………………. 17

4.4 Heuristic algorithm for two interactive classes ……………………....…. 18

4.4.1 SLA difference ………………………………….………………. 18

4.4.2 Heuristic algorithm ……………………………..……………….. 24

4.5 Performance evaluation……………………….…………………………. 27

4.5.1 Methodology ………………………………………………….… 27

4.5.2 Performance results ………………………….………………….. 29

5. Priority disciplines 31

5.1 Head of the line priority ……………………...…………………………. 31

vi

5.2 Probability dependent priority ………………………………………...… 32

5.3 Performance evaluation …………………………….…………………… 33

6. Allocation strategies for three interactive classes 36

6.1 Allocation strategies …………………………………………………….. 37

6.2 Heuristic algorithm for three interactive classes ………………..………. 38

6.3 Performance evaluation ……………………………………...………….. 42

6.4 Probability dependent priority scheduling ……………………………… 44

7. Conclusion and future work 47

7.1 Conclusion ………………………………...…………………………….. 47

7.2 Future work ……………………………...……………………………… 48

References 50

vii

List of Tables

4.1 Parameter values of arrival rates and SLAs ………………………………… 17

4.2 Two example cases …………….…………………………………………..…… 18

4.3 SLA pairs where D = 22.6 ………………………………….……………….. 21

4.4 SLA pairs where D = 83.5 ………………………………….……………….. 21

4.5 Angle table ……………………………….……….…………………………… 26

4.6 Probability distributions …………………………………….………………… 28

4.7 Probability of correct strategy: Algorithm 2 …………………….…………… 30

5.1 Performance comparison: 2 job classes …………………….………………….. 35

5.2 Performance difference: 2 job classes …….………………………………….. 35

6.1 Performance of the four solutions ………………………..………………….. 41

6.2 Probability of correct strategy: Algorithm 3 ……………………………….. 44

6.3 Performance comparison: 3 job classes …………………….………………….. 46

6.4 Performance difference: 3 job classes …….………………………………….. 46

viii

List of Figures

1.1 Two-level architecture ….……………………………………………………....... 2

3.1 Shared allocation …………………………………………………………....... 12

3.2 Dedicated allocation ………………………………………………………….. 12

4.1 Number of processor nodes required ……………………………………… 19

4.2 Scenario 1 ……………..……………….…………………………………… 22

4.3 Scenario 2 ……………..……………….…………………………………… 22

4.4 Scenario 3 ……………..……………….…………………………………… 23

4.5 Scenario 4 ……………..……………….…………………………………… 23

4.6 Percentage of DA vs. SLA difference …………….……………………… 24

4.7 Heuristic method ………………………………………...………………… 25

4.8 Angle vs. SLA difference ………………….……………………………… 25

6.1 Resource allocation graph structures ……….……...……..…………….. 39

6.2 Solutions to allocation structure 3 ………………...……….…………….. 40

1

Chapter 1

Introduction

To meet the increasing demand for computing resources, the size and complexity of

today’s data center are growing rapidly. At the same time, technologies like server

clusters, grids, and cloud computing are becoming more popular. An immediate question

is how the resources in a data center may be managed in a cost-effective manner. Static

resource allocation based on peak demand is not cost-effective because of poor resource

utilization during off-peak time periods. In contrast, autonomic resource management

could lead to efficient resource usage and fast response in the presence changing

workloads.

Autonomic resource management has received considerable attention in recent years.

Topics investigated include:

 Self-optimization – optimizes the resource allocation and seeks performance

improvement opportunities.

 Self-healing – detects, diagnoses and recovers from failures.

 Self-configuration – re-configures the system according to high-level objectives.

2

 Self-protection – prevents the system from attacks and crashes.

 Power saving – reduces energy usage and cooling cost.

This thesis is concerned with resource allocation strategies that are relevant to autonomic

resource management in achieving self-optimization.

The two-level resource management architecture presented in [1] provides a

framework for our investigation, as shown in Figure 1.1. This architecture has two levels.

At the lower level, there are multiple application environments (AEs). Each AE consists

of a set of computing resources that are shared by one or more applications. At the higher

level, a global arbiter performs resources allocation across AEs.

Global
Arbiter

Local
Manager

Computing
resource

Requests

Application
Environment 1

Application
Environment 2

...

Resource Pool

Local
Manager

Requests

Resource Pool

Computing
resource

Computing
resource

Computing
resource Computing

resource

Computing
resource

Figure 1.1: Two-level architecture

3

Jobs executed at a data centre can broadly be categorized as interactive or batch.

Interactive jobs generally have small processing requirements and require good response

time performance. Batch jobs, on the other hand, are usually long-running and the

performance metrics of interest are throughput and the percentage of jobs that are

completed on time. In this thesis, we only consider the processing of interactive jobs, e.g.,

web-based systems and multi-user online games. Multiple interactive job classes are

considered where each class may have its own workload and service level agreement

(SLA). In our investigation, the SLAs are based on the response time distribution, namely,

Prob 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑡𝑖𝑚𝑒 ≤ 𝑥 ≥ 𝑦 where 𝑥 is a threshold value and 𝑦 is the target

probability. We aim to obtain results that can be used to guide resource allocation

decisions. These results are derived from solutions to a performance model.

In our investigation, computing resources at each AE are modeled by processor

nodes. When the global arbiter makes resource allocation decisions, information on the

number of processor nodes that should be allocated to each AE would be very helpful.

This corresponds to the smallest number of processor nodes required to meet the SLAs of

those applications that are assigned to the AE. In this thesis our focus is on resource

management within an AE.

Jobs processed by an AE are classified according to their workloads and SLAs. One

or more applications may be included in the same class. The smallest number of

processor nodes mentioned above is affected by the resource allocation strategy and job

scheduling discipline within the AE. The resource allocation strategies under

4

consideration are shared allocation (SA) and dedicated allocation (DA). In SA, the

processor nodes are shared by all job classes with no preferential treatment on the basis of

class membership. DA, on the other hand, allocates to each job class a fixed number of

processor nodes; these processors are not available to other classes.

The performance seen by the different job classes is affected by the scheduling

discipline used. The disciplines considered include first-come first-served (FCFS) where

no preferential treatment is given to jobs belonging different classes, and two priority

disciplines where job classes with more demanding SLAs are given higher priority.

In [2], a multi-server queueing model was used to show that SA is superior to DA

with respect to mean response time over all jobs. However, the issue of meeting SLAs

was not included in the investigation. When SLAs are considered, SA may not be the

better strategy under all operating conditions.

In general, an AE may have a potentially large number of job classes. Results on the

performance difference between SA and DA for an arbitrary number of classes may be

difficult to obtain. This is because of the potentially large number of possible allocation

strategies that need to be evaluated. Additional complexity is introduced when the impact

of scheduling discipline is included in the investigation.

To keep the complexity at a modest level, we start with the special case of two

interactive job classes. Our investigation includes (i) a comparative evaluation of SA and

DA under FCFS scheduling; (ii) a heuristic algorithm that determines a resource

allocation strategy (SA or DA) that results in the smallest number of processor nodes

5

required to meet the SLAs of both classes; and (iii) a comparative evaluation of FCFS,

head-of-the-line priority (HOL) and a new scheduling discipline called probability

dependent priority (PDP). Our results provide valuable insights into the performance of

alternative resource allocation strategy and job scheduling disciplines. These results can

also be used to develop guidelines for resource management when there are more than

two classes.

This thesis makes the following contributions:

1. An important finding that SA is not always the better resource allocation strategy

compared to DA with respect to response time distribution when SLA is taken into

consideration.

2. For FCFS scheduling, a heuristic algorithm that determines a resource allocation

strategy that results in the smallest number of processor nodes required for the

case of two job classes, as well as an extension of this algorithm to three job

classes.

3. The development of a new scheduling algorithm (called PDP) that is superior in

performance when compared to FCFS and HOL.

The remainder of this thesis is organized as follows. Chapter 2 gives a survey of

existing work on dynamic resource provisioning. Our performance model is described in

Chapter 3. Chapter 4 presents results on the merits of SA and DA under FCFS. A heuristic

algorithm to select the preferred resource allocation strategy under FCFS is also

developed and evaluated. The impact of priority scheduling on performance is

6

investigated in Chapter 5. Chapter 6 extends the results to the case of three job classes.

Finally, Chapter 7 contains a summary of our findings and a discussion of topics for

future research.

7

Chapter 2

Survey of related work

Related work in dynamic resource management can be organized according to the

approach used in the investigation, including queueing theory, control theory, machine

learning, market-based approach and hybrid approach.

2.1 Queueing theory

Queuing theory [3-8] is a well-established and widely used methodology in performance

evaluation of resource management strategies due to its ability in performance prediction.

Performance results are often used to guide resource allocation decisions. In [8], the

authors present utility models based on a system of multiple parallel M/M/1 queues to

study a Trade3 application, which is a realistic representation of an electronic trading

platform. The mean response time and throughput from the M/M/1 models are used to

maximize the total utility. In [3], a multiclass queueing network model is used to compute

the mean response time. A layered queueing network is used in [4, 5] to study the effect

of workload and the system parameters on performance. A regression-based

8

approximation of the CPU demand of client transactions is introduced in [6]; the

approximation is obtained using a network of queues model with each queue representing

an application tier.

Despite its spread use, queueing theory has some limitations. These include the need

to make potentially unrealistic assumptions in order to obtain analytic results and

solutions for complex models may be difficult to obtain.

2.2 Control theory

Control theory [9-12] has been used in the design of dynamic resource management

schemes because of properties such as self-correcting and self-stabilizing. In [9], a system

is developed that can meet application-level quality of service while achieving high

resource utilization. An analytic foundation of control theory for a self-managing system

is described in [10]. In [11], the authors argue that control theory should be used to build

and to configure self-managing systems. The 1000 Island solution architecture is

presented in [12]; this architecture has multiple resource controllers that are based on

control theory and optimization methods.

2.3 Machine learning approach

Machine learning has also been used in autonomic resource management [13-16]. In [13],

an off-line proactive learning approach called K-nearest-neighbours is proposed to

9

dynamically allocate database replicas. A lightweight on-line learning of correlations

between system state and response time is described in [14]. In [15], an active learning

approach is used to build models to predict the completion time of batch jobs. A

combination of off-line reinforcement learning and queueing theory is used to improve

the performance prediction [16].

The effectiveness of learning methods largely depends on the training set which may

not be easy to obtain. Also, a long training period may not be desirable, especially in the

case for on-line learning.

2.4 Market-based approach

Market-based approaches [17-19] allow applications to specify their utility in terms of

quality of service guarantees. There are market agents who know how to transform

quality of service requirements into actual resources and how to trade extra resources

between applications. In [17], the price-directed idea is used to address admission control

and resource allocation problems in integrated-services networks. In another study, a free

market approach is presented where each application can trade its computing resources

with others according to some market policies [18]. In this approach, the marketplace

determines a price for each unit of resource and reallocates resource by moving resources

from sellers to buyers. The authors claim that their approach is able to effectively

provision resources at both stable and unstable states.

10

It has been found that the market-based approach works well when mappings

between resource and quality of service guarantees can be established. However,

determining these mappings is often difficult in practice.

2.5 Hybrid approach

A hybrid approach [20, 21] usually benefits from the good properties of two or more

approaches. For example, queueing theory is useful in performance prediction and

feedback control can provide self-correcting and self-stabilizing behaviours. These two

approaches are combined in [20, 21] to achieve quality of service support in highly

unpredictable environments. In that method, a feedback control loop compares the

measured delay with the desired average and then adjusts the resource allocation in an

incremental manner to ensure that the desired delay is maintained. Another example is the

method that combines queueing theory and statistical learning mentioned in Section 2.3

[16].

11

Chapter 3

Performance model

In our model, the computing resources at each AE are modeled by processor nodes. These

nodes process jobs according to a given scheduling discipline. Multiple interactive job

classes are considered where each job class has its own workload and SLA. For the case

of two job classes, the number of AEs is either 1 or 2 and the corresponding resource

allocation strategies are SA or DA. Our models for SA and DA are shown in Figures 3.1

and 3.2, respectively. For SA, job arrivals from the two classes are combined into a single

stream and served by a pool of 𝑚 processor nodes. For DA, each job class has its own

dedicated pool of processor nodes, and we use 𝑚1 and 𝑚2 to denote to number of

processor nodes allocated to class 1 and class 2, respectively.

We assume that for class 𝑖 (𝑖 = 1,2), the arrival process is Poisson with rate 𝜆𝑖 and

the service time distribution of both classes is exponential with mean 1/𝜇. As mentioned

earlier in the introduction, the SLA is based on the relationship Prob 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑡𝑖𝑚𝑒 ≤

𝑥 ≥ 𝑦. We use 𝑆𝐿𝐴(𝑥, 𝑦) to denote such an SLA.

12

Departures

Class 1
Arrivals

Class 2
Arrivals

Queue ...

Processor
Nodes

Figure 3.1: Shared allocation

Processor
Nodes

Queue ...
Departures

Class 1
Arrivals

Departures
Class 2
Arrivals Queue ...

Figure 3.2: Dedicated allocation

In the remainder of this thesis, a comprehensive evaluation of SA and DA under

FCFS over a range of workloads and SLAs will be performed in order to identify a

strategy (SA or DA) that would result in the smaller number of processor nodes required

13

while meeting the SLAs of both classes; an investigation of the impact of scheduling

disciplines is also included. Extension of our results to the case of three job classes will

be investigated as well.

14

Chapter 4

Allocation strategies for two interactive

classes

In this chapter, the performance of SA and DA is evaluated for the case of two interactive

job classes. Our evaluation is based on the performance models shown in Figure 3.1 and

3.2. The scheduling discipline used for DA is FCFS because each job class is allocated a

dedicated pool of processor nodes. However, for SA, a variety of scheduling disciplines

can be considered to implement priority between job classes. We first investigate SA

under FCFS which is the most common discipline. A comparative evaluation of DA and

SA is presented in this chapter. We next investigate the impact of scheduling on

performance by considering two priority disciplines, namely HOL, and a new discipline

called PDP. Our results will be presented in Chapter 5.

4.1 Analytic results for FCFS

Under DA, the model for each job class can be viewed as an M/M/m model with FCFS

scheduling. The same model is also applicable when FCFS is used for SA. For this model,

15

analytic results for the response time distribution are available in [22]. Let 𝐹 𝑥 be the

cumulative distribution function (CDF) of response time of class 𝑖 , i.e.,

𝐹 𝑥 = Prob 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑡𝑖𝑚𝑒 ≤ 𝑥 , for 𝑖 = 1,2. In [22], it was shown that:

𝐹 𝑥 =

 1 − 𝑒−𝜇𝑥 − 𝑃 0

𝑚𝜌𝑚𝜇𝑒−𝜇𝑥𝑥

𝑚! 𝑚−𝜌
 𝑖𝑓 𝜌 = 𝑚 − 1

 𝑃 0 1 − 𝑒−𝜇𝑥
𝜌𝑛

𝑛 !

𝑚−1
𝑛=0 + 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

𝑃 0
𝑚𝜌𝑚

𝑚! 1−𝑚+𝜌

1−𝑒− 𝑚−𝜌 𝜇 𝑥

𝑚−𝜌
− 1 + 𝑒−𝜇𝑥

 (4.1)

where 𝑃 0 = (
𝜌𝑛

𝑛 !
+

𝑚𝜌𝑚

𝑚!(𝑚−𝜌)

𝑚−1
𝑛=0)−1 is the probability that the system is empty,

𝜌 = 𝜆 µ is the traffic intensity, and 𝜆 and 𝜇 are the arrival rate and service rate,

respectively. Note that 𝑚 > 𝜌, otherwise the system does not have sufficient capacity to

handle the load.

4.2 Allocation strategies

Consider first DA. The results in Equation (4.1) can be used to determine 𝑚𝐷1 and 𝑚𝐷2,

the smallest number of processor nodes required to achieve the SLAs for class 1 and class

2, respectively. We observe that for an 𝑆𝐿𝐴(𝑥, 𝑦), it is required that 𝑦 < 1 − 𝑒−𝜇𝑥

because the response time cannot be smaller than the service time.

An algorithm that determines the smallest number of processor nodes is included in

Algorithm 1. This algorithm starts with 𝑚 = 𝜌 + 1 and increases 𝑚 until the target

probability 𝑦 is achieved. Let 𝑆𝐿𝐴𝑖 be the SLA of class 𝑖 , 𝑖 = 1,2 . 𝑚𝐷𝑖 can be

16

obtained by setting the arrival rate to 𝜆𝑖 , the service rate to 𝜇, and 𝑆𝐿𝐴(𝑥, 𝑦) to 𝑆𝐿𝐴𝑖 .

Let 𝑚𝐷 be the minimal number of processor nodes required under DA to meet the SLAs

of both classes. 𝑚𝐷 is given by:

𝑚𝐷 = 𝑚𝐷1 + 𝑚𝐷2 (4.2)

Algorithm 1:

Input: 𝜎 // Arrival rate

 𝜇 // Service rate

 𝑆𝐿𝐴(𝑥, 𝑦) // Service level agreement (SLA)

Output: 𝑚 // Smallest number of processor nodes required

 // such that SLA is met

1: 𝑚 = 𝜎 𝜇 + 1

2: while (𝐹 𝑥 < 𝑦){ 𝑚 = 𝑚 + 1 }

3: return 𝑚

Consider next SA. Under FCFS, analytic results for the response time distribution

can be obtained by extending the results in [23] to the case of multiple processor nodes.

The resulting CDF is the same as that for the M/M/m – FCFS model with arrival rate

equals to 𝜆 = 𝜆1 + 𝜆2 . Furthermore, both classes have the same response time

distribution. Let 𝑚𝑠𝑖 be the number of processor nodes required under SA to meet 𝑆𝐿𝐴𝑖 ,

𝑖 = 1,2. 𝑚𝑠𝑖 can be obtained from Algorithm 1 by setting the arrival rate to 𝜆1 + 𝜆2,

the service rate to 𝜇, and 𝑆𝐿𝐴(𝑥, 𝑦) to 𝑆𝐿𝐴𝑖 . 𝑚𝑆, the smallest number of processor

nodes required to meet the SLAs of both classes is then given by:

𝑚𝑆 = max(𝑚𝑆1 ,𝑚𝑆2) (4.3)

17

4.3 DA and SA comparison

In this section, we use numerical examples to evaluate the performance difference of DA

and SA under FCFS scheduling. The input parameters considered are shown in Table 4.1,

where 𝜆𝑖 is the arrival rate of class 𝑖 , and 𝑥𝑖 and 𝑦𝑖 are parameters of 𝑆𝐿𝐴𝑖 ,

representing the response time threshold and target probability, respectively. We restrict

the values of 𝜆1 and 𝜆2 such that 𝜆1 + 𝜆2 ≤ 𝐾 = 40. We feel that this represents a

sufficiently wide range of workload. The service rate 𝜇 is set to 1.

𝜆𝑖 0.1, 0.2, … , 40.0

𝑥𝑖 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0

𝑦𝑖 80%, 85%, 90%, 95%

Table 4.1: Parameter values of arrival rates and SLAs

Our evaluation is based on the total number of processor nodes required to meet the

SLA of both classes, as given by 𝑚𝐷 and 𝑚𝑆 in Equations (4.2) and (4.3), respectively.

For each combination of 𝜆𝑖 , 𝑥𝑖 and 𝑦𝑖 (𝑖 = 1,2), SA (or DA) is superior if 𝑚𝑠 < 𝑚𝐷

(or 𝑚𝐷 < 𝑚𝑆).

With 7 values for 𝑥𝑖 and 4 values for 𝑦𝑖 , there are 28 possible SLAs for each class.

However, 3 of them are not used because the condition 𝑦 < 1 − 𝑒−𝜇𝑥 is not met. They

are 𝑥𝑖 = 2.0 and 𝑦𝑖 = 95%; 𝑥𝑖 = 2.0 and 𝑦𝑖 = 90%; and 𝑥𝑖 = 2.5 and 𝑦𝑖 = 95%.

Our results show that when both classes have the same SLA, SA always performs

better than, or has the same performance as, DA. However, when SLA1 and SLA2 are

18

different, neither SA nor DA is superior for all combinations of parameter values. For

example, the results for two selected cases, shown in Table 4.2, indicate that DA is

superior for case 1, but SA is superior for case 2. Furthermore, we are not able to come up

with simple rules to identify the preferred strategy (DA or SA). This is due to the large

number of combinations of 𝜆𝑖 , 𝑥𝑖 and 𝑦𝑖 (𝑖 = 1,2) that need to be considered. A

heuristic algorithm to determine the preferred strategy will be presented in the next

section.

 𝜆1 𝑆𝐿𝐴1 𝜆2 𝑆𝐿𝐴2 𝑚𝐷 𝑚𝑆

Case 1 0.6 SLA(3, 0.80) 3.0 SLA(5, 0.95) 5 6

Case 2 0.6 SLA(3, 0.95) 3.6 SLA(5, 0.80) 8 7

Table 4.2: Two example cases

4.4 Heuristic algorithm for two interactive classes

In this section, we develop a heuristic algorithm that determines the preferred strategy

(DA or SA) based on arrival rates and SLAs of the two job classes. Once the strategy is

known, Algorithm 1 and Equations (4.2) and (4.3) can be used to obtain the number of

nodes required.

4.4.1 SLA difference

To develop our heuristic algorithm, we first reduce the number of combinations involving

19

𝑆𝐿𝐴1 and 𝑆𝐿𝐴2 by defining a measure that would characterize their difference. We note

that for a given SLA, different arrival rates could result in different number of processor

nodes required (denoted by 𝑚). In Figure 4.1, we plot the value of 𝑚 against the arrival

rate 𝜆 for two example SLAs. We observe that the value of 𝑚 for 𝑆𝐿𝐴1 is always

larger than or equal to that for 𝑆𝐿𝐴2.

Figure 4.1: Number of processor nodes required

Through extensive testing, the following pattern is observed. Let 𝑚(𝜆, 𝑆𝐿𝐴) be the

smallest number of processor nodes required for the given 𝜆 and SLA. For any pair of

SLAs (𝑆𝐿𝐴1 and 𝑆𝐿𝐴2), either

𝑚(𝜆1, 𝑆𝐿𝐴1) ≥ 𝑚(𝜆2, 𝑆𝐿𝐴2)

or 𝑚(𝜆1, 𝑆𝐿𝐴1) ≤ 𝑚(𝜆2 , 𝑆𝐿𝐴2)

for all values of 𝜆under consideration (which is 0 < 𝜆 ≤ 40). This pattern leads us to

0

2

4

6

8

10

12

14

16

18

20

0 1 2 3 4 5 6 7 8 9 10

m

Arrival Rate

SLA (3, 0.95)

SLA (5, 0.80)

20

use a single metric to describe the difference in 𝑚 for a pair of SLAs.

Let 𝐺 𝑆𝐿𝐴 be the average number of processor nodes required to meet the given

SLA over the range of arrival rates considered. 𝐺 𝑆𝐿𝐴 is given by:

𝐺 𝑆𝐿𝐴 =
1

𝐾
 𝑚 𝑥, 𝑆𝐿𝐴 𝑑𝑥
𝐾

0
 (4.4)

where 𝐾 = 40, the upper limit of the range of 𝜆 under consideration. We define a

metric called “SLA Difference” between 𝑆𝐿𝐴1 and 𝑆𝐿𝐴2 (denoted by 𝐷) as follows:

𝐷 = 𝐺 𝑆𝐿𝐴1 − 𝐺(𝑆𝐿𝐴2) (4.5)

We now present results that show the impact of 𝐷 on the merits of SA and DA.

Consider the two scenarios summarized in Table 4.3. The SLA pair for scenario 1 is not

the same as that for scenario 2, but the SLA differences of the two scenarios are almost

the same (equal to 22.6). The results for these two scenarios are shown in Figures 4.2 and

4.3, respectively. For each combination of 𝜆1 and 𝜆2, the corresponding intersection is

marked red if DA is the better strategy, and green if SA is better than or as good as DA.

We observe similar patterns for both scenarios 1 and 2. Let 𝑓𝐷 be the fraction of

intersections that are red (i.e., DA is better). Our results indicate that for both scenarios,

𝑓𝐷 is approximately 5.2%. The same observation is made from the results in Figures 4.4

and 4.5 where we consider two other scenarios that have larger SLA differences (see

Table 4.4). For these scenarios, SLA difference 𝐷 is 83.45 and the resulting 𝑓𝐷 is

increased to about 64%.

21

 𝑆𝐿𝐴1 𝑆𝐿𝐴2 𝐷 𝑓𝐷

Scenario 1 SLA(4.5, 0.85) SLA(2.5, 0.90) 22.58 5.21%

Scenario 2 SLA(4.0, 0.80) SLA(2.5, 0.90) 22.60 5.21%

Table 4.3: SLA pairs where 𝐷 = 22.6

 𝑆𝐿𝐴1 𝑆𝐿𝐴2 𝐷 𝑓𝐷

Scenario 3 SLA(5.0, 0.85) SLA(3.0, 0.95) 83.45 63.98%

Scenario 4 SLA(4.5, 0.80) SLA(3.0, 0.95) 83.48 64.04%

Table 4.4: SLA pairs where 𝐷 = 83.5

Through extensive testing, it was found that the same observation is true for other

scenarios where the SLA differences are close to each other, namely,

1. The combinations of 𝜆1 and 𝜆2 where DA is better are almost identical.

2. The values of 𝑓𝐷 are very similar.

We also observe that 𝑓𝐷 tends to increase with SLA difference. This is illustrated in

Figure 4.6 where 𝑓𝐷 is plotted against the SLA difference. From the results in Figures

4.2 to 4.6, we conclude that the SLA difference 𝐷 is potentially useful in our effort to

develop a heuristic algorithm that determines whether DA or SA is a preferred strategy.

This issue will be addressed in the next subsection.

22

1

2

40

40

0.1 0.2 ...

0.1

0.2

.

.

.

Figure 4.2: Scenario 1

1

2

40

40

0.1 0.2 ...

0.1

0.2

.

.

.

Figure 4.3: Scenario 2

23

1

2

40

40

0.1 0.2 ...

0.1

0.2

.

.

.

Figure 4.4: Scenario 3

1

2

40

40

0.1 0.2 ...

0.1

0.2

.

.

.

Figure 4.5: Scenario 4

24

Figure 4.6: Percentage of DA vs. SLA difference

4.4.2 Heuristic algorithm

Our heuristic algorithm is based on the observation that there are well-defined regions in

Figures 4.2 to 4.5 (and numerical examples for other values of SLA difference) where DA

or SA is very likely to be the preferred strategy. These regions are separated

approximately by a straight line, as illustrated in Figure 4.7. We thus define, for a given

SLA difference, an angle 𝛼 such that at least 𝑞% of intersections in region 2 indicate

that DA is the preferred strategy. In our investigation, we use 𝑞 = 90. Using numerical

examples, a plot of the angle 𝛼 against SLA difference is shown in Figure 4.8. We

observe that the angle 𝛼 tends to increase with SLA difference.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

10 20 30 40 50 60 70 80

fD

SLA Difference

25

1

2

40

40

0.1 0.2 ...

0.1

0.2

.

.

.



Region 1: SA

Region 2: DA

Figure 4.7: Heuristic method

Figure 4.8: Angle vs. SLA difference

0

10

20

30

40

50

60

70

80

90

10 20 30 40 50 60 70 80 90

α

SLA Difference

26

In our algorithm, we use an “angle table” which relates the angle 𝛼 to a given SLA

difference. An example of such a table is shown in Table 4.5 where the SLA difference is

organized into 5 intervals. An angle 𝛼 is pre-determined for each interval; the

pre-determined value is the average of the α’s for the SLA differences within the interval.

SLA Difference Angle 𝛼 (degree)

[0, 30) 0

[30, 62) 22

[62, 78) 52

[78, 82) 69

[82, 86.1) 77

Table 4.5: Angle table

Our algorithm is included as Algorithm 2. It operates as follows. We first compute

𝐺(𝑆𝐿𝐴1) and 𝐺(𝑆𝐿𝐴2) using Equation (4.4). These values are then used to compute the

SLA difference 𝐷. The angle 𝛼 corresponding to 𝐷 is obtained from the angle table.

The values of 𝜆1, 𝜆2 and 𝛼, are then used to identify the preferred strategy. Specifically,

if the intersection (𝜆1, 𝜆2) is below the line defined by the angle 𝛼 (i.e., in region 2 of

Figure 4.7), DA is the preferred strategy; otherwise SA is the preferred strategy.

27

Algorithm 2:

Input: 𝜆1, 𝜆2 // Arrival rates

 𝑆𝐿𝐴1, 𝑆𝐿𝐴2 // SLAs

Output: DA or SA // Allocation Strategy

1: Compute 𝐺(𝑆𝐿𝐴1) and 𝐺(𝑆𝐿𝐴2)

2: Compute SLA difference 𝐺(𝑆𝐿𝐴1) − 𝐺(𝑆𝐿𝐴2)

3: Search angle table to obtain the value of 𝛼

4: if (tan−1 𝜆2

𝜆1
≤ 𝛼) { return DA }

5: else { return SA }

4.5 Performance evaluation

In this section, the heuristic algorithm presented in Section 4.4 is evaluated with respect

to its ability to come up with a strategy (DA or SA) that results in the smallest number of

processor nodes required.

4.5.1 Methodology

Our evaluation is based on the following consideration. Each time the global arbiter

makes resource allocation decisions, it determines the number of processor nodes

required by the two job classes, using as input parameters such as 𝜆𝑖 , 𝑥𝑖 and 𝑦𝑖

(𝑖 = 1, 2). Since these parameters may have different values at different time instants

when resource allocation decisions are made, our approach is to consider a large number

𝐿 , of combinations of 𝜆𝑖 , 𝑥𝑖 and 𝑦𝑖 (𝑖 = 1, 2). The performance of the heuristic

28

algorithm for each combination is determined, and the average performance over the 𝐿

combinations is used for evaluation purposes.

For each combination, the values of 𝜆𝑖 , 𝑥𝑖 and 𝑦𝑖 (𝑖 = 1, 2) are selected according

to their respective probability distributions. These values are generated using random

numbers. The probability distributions used in our evaluation are summarized in Table

4.6. Note that for 𝜆1 and 𝜆2, three different distribution are considered, representing

different frequencies of values of 𝜆1 and 𝜆2 seen by the global arbiter at decision points.

Only one distribution is used for each of the other parameters. The notation used in Table

4.6 is explained as follows:

 U (a, b) – uniform between a and b

 N (20, 𝜎2) – normal with mean 20 and variance 𝜎2 (values ≤ 0 and > 40 are

excluded)

 E (𝑡) – exponential with mean 𝑡 (values > 40 are excluded)

Parameter Distribution

𝜆1, 𝜆2

U (0, 40)

N (20, 𝜎2)

E (𝑡)

𝑥1, 𝑥2 U (𝑎, 𝑏)

𝑦1, 𝑦2 U (0.80, 0.95)

Table 4.6: Probability distributions

29

4.5.2 Performance results

For our heuristic algorithm, its effectiveness is measured by: 𝑆 = Prob(𝑕𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐

𝑎𝑙𝑔𝑜𝑟𝑖𝑡𝑕𝑚 𝑓𝑖𝑛𝑑𝑠 𝑎 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦). By correct strategy, we mean a strategy that

results in the smallest number of nodes required to meet the SLAs of both job classes. In

case both DA and SA lead to the same smallest number, then either strategy can be

considered a correct strategy. The performance metric 𝑆 is obtained as follows. We

repeat the steps shown in Procedure 1 𝐿 times (the initial value of the variable 𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡

is zero). 𝑆 is then given by: 𝑆 = 𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝐿 . Our results for 𝐿 = 10,000 and 6

different settings of the parameter values are shown in Table 4.7. For all settings, the

distribution used for 𝑦1 and 𝑦2 is U (0.8, 0.95).

Procedure 1:

1: Generate values for 𝜆1 and 𝜆2.

2: if 𝜆1 + 𝜆2 > 40, then goto step 1.

3: Generate values for 𝑥1, 𝑥2, 𝑦1 and 𝑦2.

4: Apply Algorithm 2 to obtain an allocation strategy (denoted by 𝑅1).

5: Compute 𝑚𝐷 and 𝑚𝑆 given by Equation (4.2) and (4.3), respectively. The correct

strategy (denoted by 𝑅2) is DA if 𝑚𝐷 ≤ 𝑚𝑆 or SA if 𝑚𝑆 ≤ 𝑚𝐷.

6: if 𝑅1 is the same as 𝑅2, then 𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 ++.

The results in Table 4.7 show that our heuristic algorithm has at least a 96%

probability of finding a correct strategy for all the cases considered. These results indicate

that the heuristic algorithm is effective in determining a correct strategy.

30

𝜆1, 𝜆2 𝑥1, 𝑥2 𝑆

U (0, 40) U (2, 5) 0.973

U (0, 40) U (2, 10) 0.979

N (20, 5) U (2, 5) 0.961

N (20, 10) U (2, 5) 0.966

E (10) U (2, 5) 0.982

E (20) U (2, 5) 0.984

Table 4.7: Probability of correct strategy: Algorithm 2

31

Chapter 5

Priority disciplines

In this chapter, we consider scenarios where the queueing discipline is not restricted to

FCFS. Obvious choices are disciplines that give priority to the job class that has a more

demanding SLA, e.g., a smaller response time threshold 𝑥 and/or a larger target

probability 𝑦. Such disciplines are only applicable under SA. Two priority disciplines are

considered: head of the line priority (HOL) [22] and a new discipline called probability

dependent priority (PDP). The performance difference of HOL, PDP and FCFS is

evaluated based on the number of processor nodes required to meet the SLAs of both job

classes.

5.1 Head of the line priority

Under head of the line priority (HOL), jobs belong to different priority classes. The job

class with the larger 𝐺(𝑆𝐿𝐴) value has higher priority. Whenever a processor node

becomes available, jobs in the higher priority class are considered first. If the queue of the

higher priority class is empty, then jobs in the lower priority class are considered. Within

32

the same class, jobs are served in FCFS order.

5.2 Probability dependent priority

Probability dependent priority (PDP) is a new queueing discipline designed to maximize

the probability of meeting a given response time goal. This should have a positive effect

in terms of minimizing the number of processor nodes required to meet the SLAs of both

classes. Let 𝜏𝑖 be the measured frequency that response time ≤ the threshold 𝑥𝑖 . The

following two counters are used in PDP (both are zero initially):

 𝑡𝑜𝑡𝑎𝑙𝑖 – number of class 𝑖 jobs completed so far

 𝑚𝑒𝑡𝑖 – number of completed class 𝑖 jobs that has response time ≤ 𝑥𝑖

Each time a class 𝑖 job completes service, 𝑡𝑜𝑡𝑎𝑙𝑖 is incremented by one; if this job has

response time ≤ 𝑥𝑖 , 𝑚𝑒𝑡𝑖 is also incremented by one. 𝜏𝑖 is then given by: 𝜏𝑖 =

𝑚𝑒𝑡𝑖 𝑡𝑜𝑡𝑎𝑙𝑖 . The priority of class 𝑖, defined in Equation (5.1) below, is updated.

𝑃𝑖 = 𝑦𝑖 − 𝜏𝑖 𝑖 = 1,2 (5.1)

In PDP, the job class with the larger 𝑃𝑖 has higher priority. Whenever a processor

node becomes available, jobs in the higher priority class are considered first. If the queue

of the higher priority class is empty, then jobs in the lower priority class are considered.

Within the same class, jobs are served in FCFS order. In case both classes have the same

priority value, then the next job class to receive service is selected at random.

 Note that with PDP, the job class that is meeting the SLA with the smaller margin is

33

given higher priority. Note also that the priority of a job class may change over time

because 𝜏𝑖 is updated each time a class 𝑖 job completes service.

5.3 Performance evaluation

In this section, the performance difference of the two priority scheduling disciplines

(HOL and PDP) and FCFS is investigated. For FCFS, results are provided by the heuristic

algorithm in Section 4.4. As to HOL and PDP, analytic results for the response time

distribution are difficult to obtain, so simulation is used. In order to get reliable steady

state results, we perform 100 experiments with selected parameters and determine a

length of simulation run using the criterion that with 10 replications, the width of the 95%

confidence interval of the mean number of jobs in system is within ± 5% of the sample

mean. Our results show that the above criterion is met with a length of run of 20,000 time

units.

Let 𝑚𝐹, 𝑚𝐻 and 𝑚𝑃 be the smallest number of processor nodes required by FCFS,

HOL and PDP, respectively, such that the SLAs of both classes are met. We say that

 FCFS is a top discipline if 𝑚𝐹 ≤ 𝑚𝐻 and 𝑚𝐹 ≤ 𝑚𝑃;

 HOL is a top discipline if 𝑚𝐻 ≤ 𝑚𝐹 and 𝑚𝐻 ≤ 𝑚𝑃 ; and

 PDP is a top discipline if 𝑚𝑃 ≤ 𝑚𝐹 and 𝑚𝑃 ≤ 𝑚𝐻 .

The methodology presented in Section 4.5.1 is used in our evaluation. The performance

metrics are 𝑞𝐹, 𝑞𝐻 and 𝑞𝑃 , the fraction of times that FCFS, HOL, and PDP are a top

34

discipline, respectively, among the 𝐿 combinations of parameter values considered. The

steps shown in Procedure 2 are repeated 𝐿 times (the initial values of the variable 𝑛𝐹,

𝑛𝐻 and 𝑛𝑃 are zero). 𝑞𝐹, 𝑞𝐻 and 𝑞𝑃 are then given by 𝑞𝐹 = 𝑛𝐹 𝐿 , 𝑞𝐻 = 𝑛𝐻 𝐿 , and

𝑞𝑃 = 𝑛𝑃 𝐿 , respectively.

Procedure 2:

1: Generate values for 𝜆1 and 𝜆2.

2: if 𝜆1 + 𝜆2 > 40, then goto step 1.

3: Generate values for 𝑥1, 𝑥2, 𝑦1 and 𝑦2.

4: Apply Algorithm 2 to obtain a correct strategy for FCFS and use Equation (4.2) and

(4.3) to determine 𝑚𝐹.

5: Obtain 𝑚𝐻 and 𝑚𝑃 by simulation.

6: if 𝑚𝐹 ≤ 𝑚𝐻 and 𝑚𝐹 ≤ 𝑚𝑃, then 𝑛𝐹 + +.

7: if 𝑚𝐻 ≤ 𝑚𝐹 and 𝑚𝐻 ≤ 𝑚𝑃 , then 𝑛𝐻 + +.

8: if 𝑚𝑃 ≤ 𝑚𝐹 and 𝑚𝑃 ≤ 𝑚𝐻 , then 𝑛𝑃 + +.

9: if 𝑚𝑃 < 𝑚𝐹 and 𝑚𝑃 < 𝑚𝐻 , then 𝑛 + +, 𝑠𝐹+= 𝑚𝐹 −𝑚𝑃 , 𝑠𝐻+= 𝑚𝐻 −𝑚𝑃.

Our results for 𝐿 = 10,000 and 6 different settings of the probability distributions

are shown in Table 5.1. These results show that PDP is superior to HOL and FCFS in

terms of the fraction of time that it is a top discipline. Specifically, PDP is a top discipline

over 97% of the time, compared to less than 30% for HOL and less than 2% for FCFS.

 To further characterize the advantage of PDP, we compute the average difference in

number of processor nodes required between PDP and the other disciplines among those

combinations of 𝜆𝑖 , 𝑥𝑖 and 𝑦𝑖 (𝑖 = 1,2) where PDP is the top discipline (i.e., 𝑚𝑃 < 𝑚𝐹

and 𝑚𝑃 < 𝑚𝐻). This is done by step 9 in Procedure 2 where 𝑠𝐹 and 𝑠𝐻 are used to

accumulate the difference between PDP and FCFS and between PDP and HOL,

35

respectively; and 𝑛 is used to keep track of the number of combinations where PDP is

the top discipline (𝑛, 𝑠𝐹 and 𝑠𝐻 are initially 0). The average differences are then given

by Δ𝐹 = 𝑠𝐹 𝑛 and Δ𝐻 = 𝑠𝐻 𝑛 , respectively. Results for Δ𝐹 and Δ𝐻 for the 6 settings

of the probability distributions are shown in Table 5.2. These results show that the

reduction in number of processor nodes required is consistent across probability

distributions, with an average of 1.41 compared to FCFS and 0.45 compared to HOL.

𝜆1, 𝜆2 𝑥1, 𝑥2 𝑞𝐹 𝑞𝐻 𝑞𝑃

U (0, 40) U (2, 5) 1.6% 25.5% 98.3%

U (0, 40) U (2, 10) 0.9% 29.4% 97.1%

N (20, 5) U (2, 5) 1.3% 24.8% 98.5%

N (20, 10) U (2, 5) 1.1% 23.1% 98.8%

E (10) U (2, 5) 1.4% 27.5% 98.4%

E (20) U (2, 5) 1.5% 24.6% 98.0%

Table 5.1: Performance comparison: 2 job classes

𝜆1, 𝜆2 𝑥1, 𝑥2 Δ𝐹 Δ𝐻

U (0, 40) U (2, 5) 1.41 1.29

U (0, 40) U (2, 10) 1.36 1.16

N (20, 5) U (2, 5) 1.49 1.29

N (20, 10) U (2, 5) 1.43 1.26

E (10) U (2, 5) 1.33 1.12

E (20) U (2, 5) 1.36 1.17

Table 5.2: Performance difference: 2 job classes

36

Chapter 6

Allocation strategies for three

interactive classes

In Chapter 4, we investigated resource allocation strategies for two interactive job classes.

For the case of FCFS scheduling, there are two allocation strategies: DA and SA. When

there are 𝑁 > 2 job classes, the number of allocation strategies increases quickly with

𝑁, and the problem of determining the preferred strategy becomes quite complicated.

This can be illustrated by examining an example scenario of three job classes.

When there are three job classes, the number of AEs could be 1, 2, or 3. With one AE,

the allocation strategy is SA, i.e., all three classes share a pool of processor nodes. For the

case of 2 AEs, we have a mixed scenario where two of the job classes are in the same AE

(under SA) while the remaining job class has its own allocation (under DA). There are 3

allocation strategies depending on which of the two classes are in the same AE. Finally,

when there are 3 AEs, the allocation strategy is DA, i.e., each job class has its own

dedicated resources. Thus, there are five possible allocation strategies. Furthermore, the

number of combinations of arrival rates and SLAs that need to be considered is larger

37

when compared with that of two job classes.

Based on the above discussions, we see that the problem becomes more complex

when 𝑁 > 3 job classes. In this chapter, we consider the case of 𝑁 = 3 and develop a

heuristic algorithm for resource allocation. This would provide further insight into the

performance of different allocation strategies with a modest increase in complexity. The

approach used is similar to that used in Chapter 4, namely, we analyze the performance of

different allocation strategies using numerical examples and use the results to come up

with a heuristic algorithm that determines the preferred strategy for given values of

arrival rates and SLAs of the three job classes.

6.1 Allocation strategies

In this section, we define the five resource allocation strategies and the notation that will

be used in subsequent discussions. Let 𝜆𝑖 and 𝑆𝐿𝐴𝑖 be the arrival rate and SLA of class

𝑖, (𝑖 = 1, 2 and 3). The five strategies are:

 DA - each job class is in a separate AE. Let 𝑚𝐷𝑖 be the number of nodes needed

for class 𝑖 to meet its SLA (𝑖 = 1, 2 and 3). 𝑚𝐷𝑖 can be obtained by using

Algorithm 1 with the arrival rate set to 𝜆𝑖 , the service rate to 𝜇 and 𝑆𝐿𝐴(𝑥, 𝑦)

to 𝑆𝐿𝐴𝑖 . 𝑚𝐷 , the smallest number of nodes required under DA is given by:

𝑚𝐷 = 𝑚𝐷1 + 𝑚𝐷2 + 𝑚𝐷3 (6.1)

 SA - all three job classes are in the same AE. We use 𝑚𝑆 to denote the smallest

38

number of processors required under SA. The value of 𝑚𝑆 is affected by the

choice of scheduling discipline.

 Mixed – two of the three classes, say classes 𝑗 and 𝑘, are in the same AE and the

remaining class, say class 𝑙, is in a separate AE. There are three mixed strategies,

one for each of the three combinations of values of 𝑗, 𝑘 and 𝑙. Let 𝑚𝑆𝑗𝑘
 be the

smallest number of nodes required to meet 𝑆𝐿𝐴𝑗 and 𝑆𝐿𝐴𝑘 under SA, and 𝑚𝐷𝑙

be the smallest number of nodes required to meet 𝑆𝐿𝐴𝑙 under DA. 𝑚𝐷𝑙
 can be

obtained by using Algorithm 1 with the arrival rate set to 𝜆𝑙 , the service rate to 𝜇

and 𝑆𝐿𝐴(𝑥, 𝑦) to 𝑆𝐿𝐴𝑙 . The value of 𝑚𝑆𝑗𝑘
 is affected by the choice of

scheduling discipline under SA. The smallest number of nodes required to meet

all SLAs, denoted by 𝑚𝑆𝑗𝑘 𝐷𝑙
, is then given by:

𝑚𝑆𝑗𝑘 𝐷𝑙
= 𝑚𝑆𝑗𝑘

+ 𝑚𝐷𝑙
 (6.2)

6.2 Heuristic algorithm for three interactive classes

In this section, we develop a heuristic algorithm for case of FCFS scheduling. We first

determine the value of 𝑚𝑆 under SA. Let 𝑚𝑆𝑖 be the smallest number of nodes required

to meet 𝑆𝐿𝐴𝑖 (𝑖 = 1, 2 and 3). 𝑚𝑆𝑖 can be obtained by using Algorithm 1 with the

arrival rate set to 𝜆1 + 𝜆2 + 𝜆3, the service rate to 𝜇 and 𝑆𝐿𝐴(𝑥, 𝑦) to 𝑆𝐿𝐴𝑖 . 𝑚𝑆 is

then given by:

𝑚𝑆 = max(𝑚𝑆1 ,𝑚𝑆2 ,𝑚𝑆3) (6.3)

39

A similar result can be derived for 𝑚𝑆𝑗𝑘
 under mixed strategy. Let 𝑚𝑆𝑗 and 𝑚𝑆𝑘 be the

smallest number of nodes required to meet 𝑆𝐿𝐴𝑗 and 𝑆𝐿𝐴𝑘 , respectively, under SA.

𝑚𝑆𝑗 is obtained by using Algorithm 1 with the arrival rate set to 𝜆𝑗 + 𝜆𝑘 , the service rate

to 𝜇 and 𝑆𝐿𝐴(𝑥, 𝑦) to 𝑆𝐿𝐴𝑗 ; similarly for 𝑚𝑆𝑘 . 𝑚𝑆𝑗𝑘
 is then given by:

𝑚𝑆𝑗𝑘
= max(𝑚𝑆𝑗 ,𝑚𝑆𝑘) (6.4)

Consider now the development of our heuristic algorithm. Suppose each of the three

job classes is represented by a vertex in a graph, denoted by 𝑐1, 𝑐2 and 𝑐3, respectively.

We apply Algorithm 2 to each pair of job classes. Two vertexes are connected if and only

if Algorithm 2 recommends SA for the two corresponding job classes. Figure 6.1

demonstrates four possible graph structures after applying Algorithm 2.

Structure 1 Structure 2 Structure 3 Structure 4

C1 C1 C1 C1

C2 C2 C2 C2C3 C3 C3 C3

Figure 6.1: Resource allocation graph structures

The next question is how to translate these structures to allocation strategies. This is

straightforward for structure 1, 2 and 4. Structures 1 and 4 correspond to DA and SA,

respectively. Structure 2 is translated to a mixed strategy with SA for classes 1 and 2 and

DA for class 3. However, the allocation strategy corresponding to structure 3 is not

40

unique because class 1 cannot be in two different AEs at the same time. For this structure,

there are four possible solutions, as depicted in Figure 6.2:

1. Add an edge from 𝑐2 to 𝑐3, resulting in SA.

2. Remove the edge with small SLA difference, resulting in a mixed strategy with

class 1 and class 2 in the same AE.

3. Remove the edge with large SLA difference, resulting in a mixed strategy with

class 1 and class 3 in the same AE.

4. Randomly choose one of the above with equal probability.

C1

C2 C3

C1

C2 C3

C1

C2 C3

Structure 3

C1

C2 C3

Add an edge Remove an
edge with
small SLA
difference

Remove an
edge with
large SLA
difference

Large SLA
difference

Small SLA
difference

?
Randomly

select

Figure 6.2: Solutions to allocation structure 3

We use the methodology presented in Section 4.5.1 to evaluate the merits of the four

solutions mentioned above. For each solution, we determine the average number of

41

processor nodes allocated (denoted by 𝑀𝑎𝑣𝑔,𝑗 for solution 𝑗, 𝑗 = 1, 2, 3 and 4). 𝑀𝑎𝑣𝑔 ,𝑗

is obtained by repeating the steps shown in Procedure 3 𝐿 times (𝐿 = 10,000). Note that

step 7 is reached when a graph with structure 3 (as shown in Figure 6.1) is found. The

initial value of the variable 𝑚𝑡𝑜𝑡𝑎𝑙 ,𝑗 is zero, 𝑗 = 1, 2, 3 and 4. 𝑀𝑎𝑣𝑔,𝑗 is then given by:

𝑀𝑎𝑣𝑔 ,𝑗 = 𝑚𝑡𝑜𝑡𝑎𝑙 ,𝑗 𝐿 .

Procedure 3:

1: Generate values for 𝜆1, 𝜆2 and 𝜆3.

2: if 𝜆1 + 𝜆2 + 𝜆3 > 40, then goto step 1.

3: Generate values for 𝑥1, 𝑥2, 𝑥3, 𝑦1, 𝑦2 and 𝑦3.

4: Run Algorithm 2 for each pair of classes.

5: Create resource allocation graph 𝑇.

6: if 𝑇 is translated to a unique resource allocation strategy, then goto step 1.

7: Compute smallest number of nodes required for each of the four solutions (𝑚𝑗 is the

smallest for solution 𝑗, 𝑗 = 1, 2, 3 and 4).

8: 𝑚𝑡𝑜𝑡𝑎𝑙 ,1+= 𝑚1, 𝑚𝑡𝑜𝑡𝑎𝑙 ,2+= 𝑚2, 𝑚𝑡𝑜𝑡𝑎𝑙 ,3+= 𝑚3 , and 𝑚𝑡𝑜𝑡𝑎𝑙 ,4+= 𝑚4.

The results are shown in Table 6.1. We observe that solution 3 has the smallest

average number of nodes among the four solutions. This is consistent with our

observation in Chapter 4 where a larger SLA difference means it is more likely to choose

DA (see Figure 4.6).

Solutions 𝑀𝑎𝑣𝑔 ,𝑗

1. Add an edge 39.01

2. Remove an edge with small SLA difference 38.20

3. Remove an edge with large SLA difference 38.09

4. Randomly select 38.46

Table 6.1: Performance of the four solutions

42

We now describe our heuristic algorithm. It is shown in Algorithm 3 below.

Algorithm 2 is first applied to each pair of job classes to create a resource allocation

graph 𝑇. If 𝑇 does not translate to a unique allocation strategy, remove the edge with the

larger SLA difference. Algorithm 3 then returns the resource allocation strategy according

to T.

Algorithm 3:

Input: 𝜆1, 𝜆2 and 𝜆3 // Arrival rates

 𝑆𝐿𝐴1, 𝑆𝐿𝐴2 and 𝑆𝐿𝐴3 // SLAs

Output: DA, SA or Mixed // Allocation Strategy

1: run Algorithm 2 for each pair of classes

2: create resource allocation graph 𝑇

3: if (𝑇 does not translate to a unique strategy)

4: remove an edge with large SLA difference

5: return resource allocation strategy according to 𝑇

6.3 Performance evaluation

In this section, the heuristic algorithm presented in Section 6.2 is evaluated with respect

to its ability to come up with a strategy that leads to the smallest number of processor

nodes required.

 Similar to our evaluation for two classes, the effectiveness of this algorithm is

measured by 𝑆 = Prob(𝑕𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 𝑎𝑙𝑔𝑜𝑟𝑖𝑡𝑕𝑚 𝑓𝑖𝑛𝑑𝑠 𝑎 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦). By correct

strategy, we mean a strategy that results in the smallest number of nodes required to meet

the SLAs of all three job classes, among all five possible strategies. In case two or more

43

allocation strategies lead to the same smallest number, then any of these strategies can be

considered as a correct strategy. The performance metric 𝑆 is obtained as follows. We

repeat the steps shown in Procedure 4 𝐿 times (the initial value of the variable 𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡

is zero). 𝑆 is then given by: 𝑆 = 𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝐿 .

Procedure 4:

1: Generate values for 𝜆1, 𝜆2 and 𝜆3.

2: if 𝜆1 + 𝜆2 + 𝜆3 > 40, then goto step 1.

3: Generate values for 𝑥1, 𝑥2, 𝑥3, 𝑦1 , 𝑦2 and 𝑦3.

4: Apply Algorithm 3 to obtain an allocation strategy and its corresponding number of

processor nodes (denoted by 𝑚).

5: Compute 𝑚𝐷 and 𝑚𝑆 given by Equation (6.1) and (6.3), respectively. And

determine 𝑚𝑆12𝐷3
, 𝑚𝑆13𝐷2

 and 𝑚𝑆23𝐷1
 using Equation (6.2).

6: if 𝑚 = min(𝑚𝐷 ,𝑚𝑆 ,𝑚𝑆12𝐷3
, 𝑚𝑆13𝐷2

,𝑚𝑆23𝐷1
), then 𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 ++.

Our results for 𝐿 = 10,000 and 6 different setting of the probability distributions

are shown in Table 6.2. For all settings, the distribution used for 𝑦1, 𝑦2, and 𝑦3 is U

(0.8, 0.95). The results in Table 6.2 show that our heuristic algorithm has at least a 93%

probability of finding a correct strategy over all the cases under consideration. These

results indicate that the heuristic algorithm is effective in determining a correct strategy

for three job classes.

44

𝜆1, 𝜆2, 𝜆3 𝑥1, 𝑥2, 𝑥3 𝑆

U (0, 40) U (2, 5) 0.961

U (0, 40) U (2, 10) 0.978

N (20, 5) U (2, 5) 0.931

N (20, 10) U (2, 5) 0.936

E (10) U (2, 5) 0.973

E (20) U (2, 5) 0.962

Table 6.2: Probability of correct strategy: Algorithm 3

6.4 Probability dependent priority scheduling

In this section, we consider the use of non-FCFS scheduling disciplines where two or

more job classes are in the same AE and compare the performance of such disciplines to

FCFS. Two non-FCFS disciplines, HOL and PDP, were investigated in Chapter 5 for the

case of two job classes. The results showed that PDP is superior. So we will consider PDP

only when we extend our investigation to the case of three classes.

With three job classes, PDP can be used in the SA strategy where all three job classes

are in the same AE, or in the AE that has two job classes in any of three mixed strategies.

As in Chapter 5, simulation is used to obtain performance results since analytic results for

response time distribution of PDP are difficult to obtain. All four strategies where PDP

can be used (SA and three mixed strategies) are simulated and the best result among these

four strategies is used in the comparison. For FCFS, results provided by the heuristic

algorithm in Section 6.1 are used.

Let 𝑚𝐹 and 𝑚𝑃 be the smallest number of processor nodes required by FCFS and

PDP, respectively, such that the SLAs of all three classes are met. We say that

45

 FCFS is a top discipline if 𝑚𝐹 ≤ 𝑚𝑃 ; and

 PDP is a top discipline if 𝑚𝑃 ≤ 𝑚𝐹.

In our evaluation, the methodology presented in Section 4.5.1 is used. The steps shown in

Procedure 5 are repeated 𝐿 times (the initial values of the variable 𝑛𝐹 and 𝑛𝑃 are zero).

Our performance metrics are 𝑞𝐹 and 𝑞𝑃 , the fraction of times that FCFS and PDP are a

top discipline, respectively, among the 𝐿 combinations of parameter values considered.

𝑞𝐹 and 𝑞𝑃 are given by: 𝑞𝐹 = 𝑛𝐹 𝐿 and 𝑞𝑃 = 𝑛𝑃 𝐿 .

Procedure 5:

1: Generate values for 𝜆1, 𝜆2 and 𝜆3.

2: if 𝜆1 + 𝜆2 + 𝜆3 > 40, then goto step 1.

3: Generate values for 𝑥1, 𝑥2, 𝑥3, 𝑦1 , 𝑦2 and 𝑦3.

4: Apply Algorithm 3 to obtain a correct strategy for FCFS and determine 𝑚𝐹, the

number of processor nodes required for this strategy.

5: Obtain 𝑚𝑃 by simulation.

6: if 𝑚𝐹 ≤ 𝑚𝑃, then 𝑛𝐹 + +.

7: if 𝑚𝑃 ≤ 𝑚𝐹, then 𝑛𝑃 + +.

8: if 𝑚𝑃 < 𝑚𝐹, then 𝑛 + +, 𝑠𝐹+= 𝑚𝐹 −𝑚𝑃 .

Our results for 𝐿 = 10,000 and 6 different settings of the probability distributions

are shown in Table 6.3. These results again show that PDP is superior to FCFS in terms of

the fraction of time that it is a top discipline. Our results also indicate that among the four

strategies where PDP is used, SA with PDP in one AE always has the best performance.

To further characterize the advantage of PDP, we compute, among those

combinations of 𝜆𝑖 , 𝑥𝑖 and 𝑦𝑖 (𝑖 = 1, 2 and 3) where PDP is the top discipline (i.e.,

46

𝑚𝑃 < 𝑚𝐹), the average difference between PDP and FCFS. This is done by step 8 in

Procedure 5 where 𝑠𝐹 is used to accumulate the difference between PDP and FCFS; and

𝑛 is used to keep track of the number of combinations where PDP is the top discipline (𝑛

and 𝑠𝐹 are initially 0). The average differences are then given by Δ𝐹 = 𝑠𝐹 𝑛 . Results

for Δ𝐹 for the 6 settings of the probability distributions are shown in Table 6.4. These

results show that performance advantage of PDP for three job classes is more significant

than that of the two classes (see results for two classes in Table 5.2).

𝜆1 , 𝜆2 , 𝜆3 𝑥1, 𝑥2, 𝑥3 𝑞𝐹 𝑞𝑃

U (0, 40) U (2, 5) 1.1% 99.7%

U (0, 40) U (2, 10) 0.4% 100%

N (20, 5) U (2, 5) 0.9% 99.7%

N (20, 10) U (2, 5) 0.7% 99.8%

E (10) U (2, 5) 0.3% 99.9%

E (20) U (2, 5) 0.9% 99.9%

Table 6.3: Performance comparison: 3 job classes

𝜆1, 𝜆2, 𝜆3 𝑥1, 𝑥2, 𝑥3 Δ𝐹

U (0, 40) U (2, 5) 1.82

U (0, 40) U (2, 10) 1.67

N (20, 5) U (2, 5) 1.88

N (20, 10) U (2, 5) 1.85

E (10) U (2, 5) 1.90

E (20) U (2, 5) 1.86

Table 6.4: Performance difference: 3 job classes

47

Chapter 7

Conclusion and future work

7.1 Conclusion

In this thesis, we investigate strategies for allocating processor nodes to a number of job

classes such that the SLA of each class is met. Our focus is on interactive jobs where the

SLA is based on response time distribution. For the case of two job classes, we have

investigated two allocation strategies under FCFS scheduling; these strategies are shared

allocation (SA) and dedicated allocation (DA), respectively. A heuristic algorithm which

determines an allocation strategy (SA or DA) that results in the smallest number of

processor nodes is developed. The performance of this algorithm is evaluated over a

range of operating conditions and the results indicate that it is able to find a correct

allocation strategy in at least 96% of the cases evaluated.

The performance of SA with non-FCFS scheduling is also investigated. We consider

two priority disciplines: head of the line priority (HOL) and a new discipline called

probability dependent priority (PDP). Simulation results show that PDP is more effective

than HOL and FCFS in terms of the number of processor nodes required to meet the

48

SLAs of the two job classes.

Furthermore, we extend our heuristic algorithm for FCFS scheduling to the case of

three job classes. The performance of this algorithm is also evaluated over a range of

operating conditions and the results show that it is able to determine a correct strategy in

over 93% of all cases considered. The performance of PDP for three job classes is

evaluated by simulation and the results confirm that PDP is again superior to FCFS. Its

advantage over FCFS is more significant when compared to the case of two classes.

Our contributions are summarized as below.

1. For FCFS scheduling, we have obtained results which show that SA is not always

the better resource allocation strategy compared to DA with respect to response

time distribution when SLA is taken into consideration.

2. We have developed and evaluated a heuristic algorithm for FCFS scheduling that

determines a resource allocation strategy that results in the smallest number of

processor nodes required for the case of two job classes, as well as an extension of

this algorithm to three job classes.

3. We have developed a novel scheduling algorithm (called PDP) that is superior in

performance when compared to FCFS and HOL.

7.2 Future Work

Directions for future work include the following.

49

1. Resource provisioning for more than three job classes. In general, it is very complex

to find an optimal resource allocation strategy where each AE may have a potentially

large number of applications. The general optimization problem is NP hard [1].

Developing of heuristic algorithms for more than three job classes is a future research

problem. The insights gained from our investigation may provide useful guidelines

for such algorithms.

2. Performance of scheduling disciplines for more than three job classes. We have

already shown that PDP used with SA is an advantageous allocation strategy for two

or three job classes when compared to other strategies. The question of whether PDP

used with SA will have superior performance in general should be investigated. There

is also the potential for developing scheduling disciplines other than PDP that have

good performance in terms of requiring small number of processor nodes.

3. Interactive and batch applications. Dynamic resource provisioning for an AE with

multiple interactive and batch applications is a challenging task. This is because batch

jobs have very different resource requirements and performance goals from

interactive jobs. An effective resource allocation strategy that benefits both interactive

and batch applications would be an important contribution to dynamic resource

provisioning.

50

References

[1]. W. E. Walsh, G. Tesauro, J. O. Kephart, and R. Das. Utility functions in

autonomic systems. In Proceedings of the 1st International Conference on Autonomic

Computing, 2004.

[2]. L. Kleinrock. Queuing Systems Volume 2: Computer Applications.

Wiley-Inerscience, New York, 1976

[3]. M. N. Bennani, and D. A. Menasce. Resource allocation for autonomic data centers

using analytic performance models. In Proceedings of the 2nd International

Conference on Autonomic Computing, 2005.

[4]. M. Woodside, T. Zheng, and M. Litoiu. Service system resource management based

on a tracked layered performance model. In Proceedings of the 3rd International

Conference on Autonomic Computing, 2006.

[5]. T. Zheng, J. Yang, M. Woodside, M. Litoiu, and G. Iszlai, Tracking time-varying

parameters in software systems with extended kalman filters. In Proceedings of

CASCON, 2005.

[6]. Q. Zhang, L. Cherkasova, and E. Smirni, A regression-based analytic model for

dynamic resource provisioning of multi-tier applications. In Proceedings of the 4th

International Conference on Autonomic Computing, 2007.

[7]. X. Wang, D. Lan, G. Wang, X. Fang, M. Ye, Y. Chen, and Q. Wang, Appliance-based

autonomic provisioning framework for virtualized outsourcing data center. In

Proceedings of the 4th International Conference on Autonomic Computing, 2007.

[8]. G. Tesauro, R. Das, W. E. Walsh, and J. O. Kephart. Utility-function-driven resource

allocation in autonomic systems. In Proceedings of the 2nd International Conference

on Autonomic Computing, 2005.

51

[9]. P. Padala, X. Zhu, M. Uysal, Z. Wang, S. Singhal, A. Merchant, K. Salem, and K.

Shin. Adaptive control of virtualized resources in utility computing environments. In

Proceedings of the European Conference on Computer Systems, 2007.

[10]. Y. Diao, J.L. Hellerstein, S. Parekh, R. Griffith, G.E. Kaiser, and D. Phung. A

control theory foundation for self-managing computing systems. IEEE journal on

selected areas in communications, 23(12):2213-2222, 2005.

[11]. C. Karamanolis, M. Karlsson, and X. Zhu. Designing controllable computer

systems. In Proceedings of the USENIX Workshop on Hot Topics in Operating

Systems, 2005.

[12]. X. Zhu, D. Young, B. J. Watson, Z. Wang, J. Rolia, S. Singhal, B. McKee, C. Hyser,

D.Gmach, R. Gardner, T. Christian and L. Cherkasova. 1000 Islands: Integrated

capacity and workload management for the next generation data center. In

Proceedings of the 5th International Conference on Autonomic Computing, 2008.

[13]. J. Chen, G. Soundararajan, and C. Amza. Autonomic provisioning of backend

databases in dynamic content web servers. In Proceedings of the 3rd International

Conference on Autonomic Computing, 2006.

[14]. S. Ghanbari, G. Soundararajan, J. Chen, and C. Amza. Adaptive learning of metric

correlations for temperature-aware database provisioning. In Proceedings of the 4th

International Conference on Autonomic Computing, 2007.

[15]. P. Shivam, S. Babu, and J. Chase. Learning application models for utility resource

planning. In Proceedings of the 3rd International Conference on Autonomic

Computing, 2006.

[16]. G. Tesauro, N. K. Jong, R. Das, and M. N. Bennani. A hybrid reinforcement

learning approach to autonomic resource allocation. IEEE Internet Computing,

11(1):22-30, 2007.

[17]. P. Thomas, D. Teneketzis, and J. K. MacKie-Mason. A market-based approach to

optimal resource allocation in integrated-services connection-oriented networks.

Operations Research, 50(4), 2004.

[18]. K. Coleman, J. Norris, G. Candea, and A. Fox. OnCall: Defeating spikes with a

free-market server cluster. In Proceedings of the 1st International Conference on

Autonomic Computing, 2004.

52

[19]. S. Lalis, C. Nikolaou, D. Papadakis, and M. Marazakis. Market-driven service

allocation in a QoS-capable environment. In First International Conference on

Information and Computation Economies, 1998.

[20]. Y. Lu, T. Abdelzaher, C. Lu, L. sha, and X. Liu, Feedback control with

queuing-theoretic prediction for relative delay guarantees in web servers,

Real-Time and Embedded Technology and Applications Symposium, Toronto,

2003.

[21]. L. Sha, X. Liu, Y. Lu, and T. Abdelzaher, Queuing model based network server

performance control. Real-Time Systems Symposium, 81-89, 2002.

[22]. M. Kwok. Performance Analysis of Distributed Virtual Environments. Phd Thesis,

University of Waterloo, 2006

[23]. J.W. Wong and S.S. Lam. "Queueing Network Models of Packet-Switching

Networks, Part I: Open Networks", Performance Evaluation, 1982, 9-21

