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Abstract 

 Resource management for a data center with multiple job classes is investigated in 

this thesis. We focus on strategies for allocating resources to an application mix such that 

the service level agreements (SLAs) of individual applications are met. A performance 

model with two interactive job classes is used to determine the smallest number of 

processor nodes required to meet the SLAs of both classes. For each class, the SLA is 

specified by the relationship: Prob  𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑡𝑖𝑚𝑒 ≤ 𝑥 ≥ 𝑦. Two allocation strategies 

are considered: shared allocation (SA) and dedicated allocation (DA). For the case of 

FCFS scheduling, analytic results for response time distribution are used to develop a 

heuristic algorithm that determines the allocation strategy (SA or DA) that requires fewer 

processor nodes. The effectiveness of this algorithm is evaluated over a range of 

operating conditions. The performance of SA with non-FCFS scheduling is also 

investigated. Among the scheduling disciplines considered, a new discipline called 

probability dependent priority (PDP) is found to have the best performance in terms of 

requiring the smallest number of nodes. Furthermore, we extend our heuristic algorithm 

for FCFS to three job classes. The effectiveness of this extended algorithm is evaluated. 

As to priority scheduling, the performance advantage of PDP is also confirmed for the 

case of three job classes. 
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Chapter 1 

 

Introduction 

To meet the increasing demand for computing resources, the size and complexity of 

today’s data center are growing rapidly. At the same time, technologies like server 

clusters, grids, and cloud computing are becoming more popular. An immediate question 

is how the resources in a data center may be managed in a cost-effective manner. Static 

resource allocation based on peak demand is not cost-effective because of poor resource 

utilization during off-peak time periods. In contrast, autonomic resource management 

could lead to efficient resource usage and fast response in the presence changing 

workloads. 

Autonomic resource management has received considerable attention in recent years. 

Topics investigated include: 

 Self-optimization – optimizes the resource allocation and seeks performance 

improvement opportunities. 

 Self-healing – detects, diagnoses and recovers from failures. 

 Self-configuration – re-configures the system according to high-level objectives. 
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 Self-protection – prevents the system from attacks and crashes. 

 Power saving – reduces energy usage and cooling cost. 

This thesis is concerned with resource allocation strategies that are relevant to autonomic 

resource management in achieving self-optimization. 

The two-level resource management architecture presented in [1] provides a 

framework for our investigation, as shown in Figure 1.1. This architecture has two levels. 

At the lower level, there are multiple application environments (AEs). Each AE consists 

of a set of computing resources that are shared by one or more applications. At the higher 

level, a global arbiter performs resources allocation across AEs. 
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Local 
Manager

Computing 
resource

Requests

Application 
Environment 1

Application 
Environment 2

...

Resource Pool

Local 
Manager

Requests

Resource Pool

Computing 
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Computing 
resource

Computing 
resource Computing 

resource

Computing 
resource

 

Figure 1.1: Two-level architecture 
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Jobs executed at a data centre can broadly be categorized as interactive or batch. 

Interactive jobs generally have small processing requirements and require good response 

time performance. Batch jobs, on the other hand, are usually long-running and the 

performance metrics of interest are throughput and the percentage of jobs that are 

completed on time. In this thesis, we only consider the processing of interactive jobs, e.g., 

web-based systems and multi-user online games. Multiple interactive job classes are 

considered where each class may have its own workload and service level agreement 

(SLA). In our investigation, the SLAs are based on the response time distribution, namely, 

Prob  𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑡𝑖𝑚𝑒 ≤ 𝑥 ≥ 𝑦  where 𝑥  is a threshold value and 𝑦  is the target 

probability. We aim to obtain results that can be used to guide resource allocation 

decisions. These results are derived from solutions to a performance model. 

In our investigation, computing resources at each AE are modeled by processor 

nodes. When the global arbiter makes resource allocation decisions, information on the 

number of processor nodes that should be allocated to each AE would be very helpful. 

This corresponds to the smallest number of processor nodes required to meet the SLAs of 

those applications that are assigned to the AE. In this thesis our focus is on resource 

management within an AE. 

Jobs processed by an AE are classified according to their workloads and SLAs. One 

or more applications may be included in the same class. The smallest number of 

processor nodes mentioned above is affected by the resource allocation strategy and job 

scheduling discipline within the AE. The resource allocation strategies under 
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consideration are shared allocation (SA) and dedicated allocation (DA). In SA, the 

processor nodes are shared by all job classes with no preferential treatment on the basis of 

class membership. DA, on the other hand, allocates to each job class a fixed number of 

processor nodes; these processors are not available to other classes. 

The performance seen by the different job classes is affected by the scheduling 

discipline used. The disciplines considered include first-come first-served (FCFS) where 

no preferential treatment is given to jobs belonging different classes, and two priority 

disciplines where job classes with more demanding SLAs are given higher priority. 

In [2], a multi-server queueing model was used to show that SA is superior to DA 

with respect to mean response time over all jobs. However, the issue of meeting SLAs 

was not included in the investigation. When SLAs are considered, SA may not be the 

better strategy under all operating conditions. 

In general, an AE may have a potentially large number of job classes. Results on the 

performance difference between SA and DA for an arbitrary number of classes may be 

difficult to obtain. This is because of the potentially large number of possible allocation 

strategies that need to be evaluated. Additional complexity is introduced when the impact 

of scheduling discipline is included in the investigation. 

To keep the complexity at a modest level, we start with the special case of two 

interactive job classes. Our investigation includes (i) a comparative evaluation of SA and 

DA under FCFS scheduling; (ii) a heuristic algorithm that determines a resource 

allocation strategy (SA or DA) that results in the smallest number of processor nodes 
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required to meet the SLAs of both classes; and (iii) a comparative evaluation of FCFS, 

head-of-the-line priority (HOL) and a new scheduling discipline called probability 

dependent priority (PDP). Our results provide valuable insights into the performance of 

alternative resource allocation strategy and job scheduling disciplines. These results can 

also be used to develop guidelines for resource management when there are more than 

two classes. 

This thesis makes the following contributions: 

1. An important finding that SA is not always the better resource allocation strategy 

compared to DA with respect to response time distribution when SLA is taken into 

consideration. 

2. For FCFS scheduling, a heuristic algorithm that determines a resource allocation 

strategy that results in the smallest number of processor nodes required for the 

case of two job classes, as well as an extension of this algorithm to three job 

classes. 

3. The development of a new scheduling algorithm (called PDP) that is superior in 

performance when compared to FCFS and HOL. 

The remainder of this thesis is organized as follows. Chapter 2 gives a survey of 

existing work on dynamic resource provisioning. Our performance model is described in 

Chapter 3. Chapter 4 presents results on the merits of SA and DA under FCFS. A heuristic 

algorithm to select the preferred resource allocation strategy under FCFS is also 

developed and evaluated. The impact of priority scheduling on performance is 
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investigated in Chapter 5. Chapter 6 extends the results to the case of three job classes. 

Finally, Chapter 7 contains a summary of our findings and a discussion of topics for 

future research. 
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Chapter 2 

 

Survey of related work 

Related work in dynamic resource management can be organized according to the 

approach used in the investigation, including queueing theory, control theory, machine 

learning, market-based approach and hybrid approach. 

 

2.1 Queueing theory 

Queuing theory [3-8] is a well-established and widely used methodology in performance 

evaluation of resource management strategies due to its ability in performance prediction. 

Performance results are often used to guide resource allocation decisions. In [8], the 

authors present utility models based on a system of multiple parallel M/M/1 queues to 

study a Trade3 application, which is a realistic representation of an electronic trading 

platform. The mean response time and throughput from the M/M/1 models are used to 

maximize the total utility. In [3], a multiclass queueing network model is used to compute 

the mean response time. A layered queueing network is used in [4, 5] to study the effect 

of workload and the system parameters on performance. A regression-based 
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approximation of the CPU demand of client transactions is introduced in [6]; the 

approximation is obtained using a network of queues model with each queue representing 

an application tier. 

Despite its spread use, queueing theory has some limitations. These include the need 

to make potentially unrealistic assumptions in order to obtain analytic results and 

solutions for complex models may be difficult to obtain. 

 

2.2 Control theory 

Control theory [9-12] has been used in the design of dynamic resource management 

schemes because of properties such as self-correcting and self-stabilizing. In [9], a system 

is developed that can meet application-level quality of service while achieving high 

resource utilization. An analytic foundation of control theory for a self-managing system 

is described in [10]. In [11], the authors argue that control theory should be used to build 

and to configure self-managing systems. The 1000 Island solution architecture is 

presented in [12]; this architecture has multiple resource controllers that are based on 

control theory and optimization methods. 

 

2.3 Machine learning approach 

Machine learning has also been used in autonomic resource management [13-16]. In [13], 

an off-line proactive learning approach called K-nearest-neighbours is proposed to 
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dynamically allocate database replicas. A lightweight on-line learning of correlations 

between system state and response time is described in [14]. In [15], an active learning 

approach is used to build models to predict the completion time of batch jobs. A 

combination of off-line reinforcement learning and queueing theory is used to improve 

the performance prediction [16]. 

The effectiveness of learning methods largely depends on the training set which may 

not be easy to obtain. Also, a long training period may not be desirable, especially in the 

case for on-line learning. 

 

2.4 Market-based approach 

Market-based approaches [17-19] allow applications to specify their utility in terms of 

quality of service guarantees. There are market agents who know how to transform 

quality of service requirements into actual resources and how to trade extra resources 

between applications. In [17], the price-directed idea is used to address admission control 

and resource allocation problems in integrated-services networks. In another study, a free 

market approach is presented where each application can trade its computing resources 

with others according to some market policies [18]. In this approach, the marketplace 

determines a price for each unit of resource and reallocates resource by moving resources 

from sellers to buyers. The authors claim that their approach is able to effectively 

provision resources at both stable and unstable states. 
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It has been found that the market-based approach works well when mappings 

between resource and quality of service guarantees can be established. However, 

determining these mappings is often difficult in practice. 

 

2.5 Hybrid approach 

A hybrid approach [20, 21] usually benefits from the good properties of two or more 

approaches. For example, queueing theory is useful in performance prediction and 

feedback control can provide self-correcting and self-stabilizing behaviours. These two 

approaches are combined in [20, 21] to achieve quality of service support in highly 

unpredictable environments. In that method, a feedback control loop compares the 

measured delay with the desired average and then adjusts the resource allocation in an 

incremental manner to ensure that the desired delay is maintained. Another example is the 

method that combines queueing theory and statistical learning mentioned in Section 2.3 

[16]. 
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Chapter 3 

 

Performance model 

In our model, the computing resources at each AE are modeled by processor nodes. These 

nodes process jobs according to a given scheduling discipline. Multiple interactive job 

classes are considered where each job class has its own workload and SLA. For the case 

of two job classes, the number of AEs is either 1 or 2 and the corresponding resource 

allocation strategies are SA or DA. Our models for SA and DA are shown in Figures 3.1 

and 3.2, respectively. For SA, job arrivals from the two classes are combined into a single 

stream and served by a pool of 𝑚 processor nodes. For DA, each job class has its own 

dedicated pool of processor nodes, and we use 𝑚1 and 𝑚2 to denote to number of 

processor nodes allocated to class 1 and class 2, respectively. 

We assume that for class 𝑖 (𝑖 = 1,2), the arrival process is Poisson with rate 𝜆𝑖  and 

the service time distribution of both classes is exponential with mean 1/𝜇. As mentioned 

earlier in the introduction, the SLA is based on the relationship Prob 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑡𝑖𝑚𝑒 ≤

𝑥 ≥ 𝑦. We use 𝑆𝐿𝐴(𝑥, 𝑦) to denote such an SLA. 
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Figure 3.1: Shared allocation 
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Figure 3.2: Dedicated allocation 

 

In the remainder of this thesis, a comprehensive evaluation of SA and DA under 

FCFS over a range of workloads and SLAs will be performed in order to identify a 

strategy (SA or DA) that would result in the smaller number of processor nodes required 
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while meeting the SLAs of both classes; an investigation of the impact of scheduling 

disciplines is also included. Extension of our results to the case of three job classes will 

be investigated as well. 
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Chapter 4 

 

Allocation strategies for two interactive 

classes 

In this chapter, the performance of SA and DA is evaluated for the case of two interactive 

job classes. Our evaluation is based on the performance models shown in Figure 3.1 and 

3.2. The scheduling discipline used for DA is FCFS because each job class is allocated a 

dedicated pool of processor nodes. However, for SA, a variety of scheduling disciplines 

can be considered to implement priority between job classes. We first investigate SA 

under FCFS which is the most common discipline. A comparative evaluation of DA and 

SA is presented in this chapter. We next investigate the impact of scheduling on 

performance by considering two priority disciplines, namely HOL, and a new discipline 

called PDP. Our results will be presented in Chapter 5. 

 

4.1 Analytic results for FCFS 

Under DA, the model for each job class can be viewed as an M/M/m model with FCFS 

scheduling. The same model is also applicable when FCFS is used for SA. For this model, 
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analytic results for the response time distribution are available in [22]. Let 𝐹 𝑥  be the 

cumulative distribution function (CDF) of response time of class 𝑖 , i.e., 

𝐹 𝑥 = Prob  𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑡𝑖𝑚𝑒 ≤ 𝑥 , for 𝑖 = 1,2. In [22], it was shown that: 

𝐹 𝑥 =

 
 
 

 
 1 − 𝑒−𝜇𝑥 − 𝑃 0 

𝑚𝜌𝑚𝜇𝑒−𝜇𝑥𝑥

𝑚! 𝑚−𝜌 
                                           𝑖𝑓   𝜌 = 𝑚 − 1

 𝑃 0  1 − 𝑒−𝜇𝑥 
𝜌𝑛

𝑛 !

𝑚−1
𝑛=0                   +                              𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒      

𝑃 0 
𝑚𝜌𝑚

𝑚! 1−𝑚+𝜌 
 

1−𝑒− 𝑚−𝜌 𝜇 𝑥

𝑚−𝜌
− 1 + 𝑒−𝜇𝑥                                               

     (4.1) 

where 𝑃 0 = ( 
𝜌𝑛

𝑛 !
+

𝑚𝜌𝑚

𝑚!(𝑚−𝜌)

𝑚−1
𝑛=0 )−1  is the probability that the system is empty, 

𝜌 = 𝜆 µ  is the traffic intensity, and 𝜆 and 𝜇 are the arrival rate and service rate, 

respectively. Note that 𝑚 > 𝜌, otherwise the system does not have sufficient capacity to 

handle the load. 

 

4.2 Allocation strategies 

Consider first DA. The results in Equation (4.1) can be used to determine 𝑚𝐷1 and 𝑚𝐷2, 

the smallest number of processor nodes required to achieve the SLAs for class 1 and class 

2, respectively. We observe that for an 𝑆𝐿𝐴(𝑥, 𝑦), it is required that 𝑦 < 1 − 𝑒−𝜇𝑥  

because the response time cannot be smaller than the service time. 

An algorithm that determines the smallest number of processor nodes is included in 

Algorithm 1. This algorithm starts with 𝑚 =  𝜌 + 1 and increases 𝑚 until the target 

probability 𝑦  is achieved. Let 𝑆𝐿𝐴𝑖  be the SLA of class  𝑖 , 𝑖 = 1,2 . 𝑚𝐷𝑖  can be 
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obtained by setting the arrival rate to 𝜆𝑖 , the service rate to 𝜇, and 𝑆𝐿𝐴(𝑥, 𝑦) to 𝑆𝐿𝐴𝑖 . 

Let 𝑚𝐷  be the minimal number of processor nodes required under DA to meet the SLAs 

of both classes. 𝑚𝐷  is given by: 

𝑚𝐷 = 𝑚𝐷1 + 𝑚𝐷2       (4.2) 

 

Algorithm 1: 

Input:  𝜎      // Arrival rate 

   𝜇    //  Service rate 

   𝑆𝐿𝐴(𝑥, 𝑦)    // Service level agreement (SLA) 

Output: 𝑚    // Smallest number of processor nodes required 

       // such that SLA is met 

1: 𝑚 =  𝜎 𝜇  + 1 

2: while (𝐹 𝑥 < 𝑦){ 𝑚 = 𝑚 + 1 } 

3: return 𝑚 

 

Consider next SA. Under FCFS, analytic results for the response time distribution 

can be obtained by extending the results in [23] to the case of multiple processor nodes. 

The resulting CDF is the same as that for the M/M/m – FCFS model with arrival rate 

equals to 𝜆 = 𝜆1 + 𝜆2 . Furthermore, both classes have the same response time 

distribution. Let 𝑚𝑠𝑖  be the number of processor nodes required under SA to meet 𝑆𝐿𝐴𝑖 , 

𝑖 = 1,2. 𝑚𝑠𝑖  can be obtained from Algorithm 1 by setting the arrival rate to 𝜆1 + 𝜆2, 

the service rate to 𝜇, and 𝑆𝐿𝐴(𝑥, 𝑦) to 𝑆𝐿𝐴𝑖 . 𝑚𝑆, the smallest number of processor 

nodes required to meet the SLAs of both classes is then given by: 

𝑚𝑆 = max(𝑚𝑆1 ,𝑚𝑆2)                     (4.3) 
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4.3 DA and SA comparison 

In this section, we use numerical examples to evaluate the performance difference of DA 

and SA under FCFS scheduling. The input parameters considered are shown in Table 4.1, 

where 𝜆𝑖  is the arrival rate of class 𝑖 , and 𝑥𝑖  and 𝑦𝑖  are parameters of 𝑆𝐿𝐴𝑖 , 

representing the response time threshold and target probability, respectively. We restrict 

the values of 𝜆1 and 𝜆2 such that 𝜆1 + 𝜆2 ≤ 𝐾 = 40. We feel that this represents a 

sufficiently wide range of workload. The service rate 𝜇 is set to 1. 

 

𝜆𝑖  0.1, 0.2, … , 40.0 

𝑥𝑖  2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0 

𝑦𝑖  80%, 85%, 90%, 95% 

Table 4.1: Parameter values of arrival rates and SLAs 

 

Our evaluation is based on the total number of processor nodes required to meet the 

SLA of both classes, as given by 𝑚𝐷  and 𝑚𝑆 in Equations (4.2) and (4.3), respectively. 

For each combination of 𝜆𝑖 , 𝑥𝑖  and 𝑦𝑖  (𝑖 = 1,2), SA (or DA) is superior if 𝑚𝑠 < 𝑚𝐷 

(or 𝑚𝐷 < 𝑚𝑆). 

With 7 values for 𝑥𝑖  and 4 values for 𝑦𝑖 , there are 28 possible SLAs for each class. 

However, 3 of them are not used because the condition 𝑦 < 1 − 𝑒−𝜇𝑥  is not met. They 

are 𝑥𝑖  = 2.0 and 𝑦𝑖 = 95%; 𝑥𝑖  = 2.0 and 𝑦𝑖 = 90%; and 𝑥𝑖  = 2.5 and 𝑦𝑖 = 95%. 

Our results show that when both classes have the same SLA, SA always performs 

better than, or has the same performance as, DA. However, when SLA1 and SLA2 are 
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different, neither SA nor DA is superior for all combinations of parameter values. For 

example, the results for two selected cases, shown in Table 4.2, indicate that DA is 

superior for case 1, but SA is superior for case 2. Furthermore, we are not able to come up 

with simple rules to identify the preferred strategy (DA or SA). This is due to the large 

number of combinations of 𝜆𝑖 , 𝑥𝑖  and 𝑦𝑖  (𝑖 = 1,2) that need to be considered. A 

heuristic algorithm to determine the preferred strategy will be presented in the next 

section. 

 

 𝜆1 𝑆𝐿𝐴1 𝜆2 𝑆𝐿𝐴2 𝑚𝐷  𝑚𝑆 

Case 1 0.6 SLA(3, 0.80) 3.0 SLA(5, 0.95) 5 6 

Case 2 0.6 SLA(3, 0.95) 3.6 SLA(5, 0.80) 8 7 

Table 4.2: Two example cases 

 

4.4 Heuristic algorithm for two interactive classes 

In this section, we develop a heuristic algorithm that determines the preferred strategy 

(DA or SA) based on arrival rates and SLAs of the two job classes. Once the strategy is 

known, Algorithm 1 and Equations (4.2) and (4.3) can be used to obtain the number of 

nodes required. 

 

4.4.1 SLA difference 

To develop our heuristic algorithm, we first reduce the number of combinations involving 
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𝑆𝐿𝐴1 and 𝑆𝐿𝐴2 by defining a measure that would characterize their difference. We note 

that for a given SLA, different arrival rates could result in different number of processor 

nodes required (denoted by 𝑚). In Figure 4.1, we plot the value of 𝑚 against the arrival 

rate 𝜆 for two example SLAs. We observe that the value of 𝑚 for 𝑆𝐿𝐴1 is always 

larger than or equal to that for 𝑆𝐿𝐴2. 

 

 

Figure 4.1: Number of processor nodes required 

 

Through extensive testing, the following pattern is observed. Let 𝑚(𝜆, 𝑆𝐿𝐴) be the 

smallest number of processor nodes required for the given 𝜆 and SLA. For any pair of 

SLAs (𝑆𝐿𝐴1 and 𝑆𝐿𝐴2), either 

𝑚(𝜆1, 𝑆𝐿𝐴1) ≥ 𝑚(𝜆2, 𝑆𝐿𝐴2) 

or      𝑚(𝜆1, 𝑆𝐿𝐴1) ≤ 𝑚(𝜆2 , 𝑆𝐿𝐴2) 

for all values of 𝜆under consideration (which is 0 < 𝜆 ≤ 40). This pattern leads us to 
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use a single metric to describe the difference in 𝑚 for a pair of SLAs. 

Let 𝐺 𝑆𝐿𝐴  be the average number of processor nodes required to meet the given 

SLA over the range of arrival rates considered. 𝐺 𝑆𝐿𝐴  is given by: 

𝐺 𝑆𝐿𝐴 =
1

𝐾
 𝑚 𝑥, 𝑆𝐿𝐴 𝑑𝑥
𝐾

0
      (4.4) 

where 𝐾 = 40, the upper limit of the range of 𝜆 under consideration. We define a 

metric called “SLA Difference” between 𝑆𝐿𝐴1 and 𝑆𝐿𝐴2 (denoted by 𝐷) as follows: 

𝐷 = 𝐺 𝑆𝐿𝐴1 − 𝐺(𝑆𝐿𝐴2)      (4.5) 

We now present results that show the impact of 𝐷 on the merits of SA and DA. 

Consider the two scenarios summarized in Table 4.3. The SLA pair for scenario 1 is not 

the same as that for scenario 2, but the SLA differences of the two scenarios are almost 

the same (equal to 22.6). The results for these two scenarios are shown in Figures 4.2 and 

4.3, respectively. For each combination of 𝜆1 and 𝜆2, the corresponding intersection is 

marked red if DA is the better strategy, and green if SA is better than or as good as DA. 

We observe similar patterns for both scenarios 1 and 2. Let 𝑓𝐷  be the fraction of 

intersections that are red (i.e., DA is better). Our results indicate that for both scenarios, 

𝑓𝐷  is approximately 5.2%. The same observation is made from the results in Figures 4.4 

and 4.5 where we consider two other scenarios that have larger SLA differences (see 

Table 4.4). For these scenarios, SLA difference 𝐷 is 83.45 and the resulting 𝑓𝐷  is 

increased to about 64%. 
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 𝑆𝐿𝐴1 𝑆𝐿𝐴2 𝐷 𝑓𝐷  

Scenario 1 SLA(4.5, 0.85) SLA(2.5, 0.90) 22.58 5.21% 

Scenario 2 SLA(4.0, 0.80) SLA(2.5, 0.90) 22.60 5.21% 

Table 4.3: SLA pairs where 𝐷 = 22.6 

 

 𝑆𝐿𝐴1 𝑆𝐿𝐴2 𝐷 𝑓𝐷  

Scenario 3 SLA(5.0, 0.85) SLA(3.0, 0.95) 83.45 63.98% 

Scenario 4 SLA(4.5, 0.80) SLA(3.0, 0.95) 83.48 64.04% 

Table 4.4: SLA pairs where 𝐷 = 83.5 

 

Through extensive testing, it was found that the same observation is true for other 

scenarios where the SLA differences are close to each other, namely, 

1. The combinations of 𝜆1 and 𝜆2 where DA is better are almost identical. 

2. The values of 𝑓𝐷  are very similar. 

We also observe that 𝑓𝐷  tends to increase with SLA difference. This is illustrated in 

Figure 4.6 where 𝑓𝐷  is plotted against the SLA difference. From the results in Figures 

4.2 to 4.6, we conclude that the SLA difference 𝐷 is potentially useful in our effort to 

develop a heuristic algorithm that determines whether DA or SA is a preferred strategy. 

This issue will be addressed in the next subsection. 
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Figure 4.2: Scenario 1 
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Figure 4.3: Scenario 2 
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Figure 4.4: Scenario 3 
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Figure 4.5: Scenario 4 
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Figure 4.6: Percentage of DA vs. SLA difference 

 

4.4.2 Heuristic algorithm 

Our heuristic algorithm is based on the observation that there are well-defined regions in 

Figures 4.2 to 4.5 (and numerical examples for other values of SLA difference) where DA 

or SA is very likely to be the preferred strategy. These regions are separated 

approximately by a straight line, as illustrated in Figure 4.7. We thus define, for a given 

SLA difference, an angle 𝛼 such that at least 𝑞% of intersections in region 2 indicate 

that DA is the preferred strategy. In our investigation, we use 𝑞 = 90. Using numerical 

examples, a plot of the angle 𝛼 against SLA difference is shown in Figure 4.8. We 

observe that the angle 𝛼 tends to increase with SLA difference. 
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Figure 4.7: Heuristic method 
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In our algorithm, we use an “angle table” which relates the angle 𝛼 to a given SLA 

difference. An example of such a table is shown in Table 4.5 where the SLA difference is 

organized into 5 intervals. An angle 𝛼  is pre-determined for each interval; the 

pre-determined value is the average of the α’s for the SLA differences within the interval. 

 

SLA Difference Angle 𝛼 (degree) 

[0, 30) 0 

[30, 62) 22 

[62, 78) 52 

[78, 82) 69 

[82, 86.1) 77 

Table 4.5: Angle table 

 

Our algorithm is included as Algorithm 2. It operates as follows. We first compute 

𝐺(𝑆𝐿𝐴1) and 𝐺(𝑆𝐿𝐴2) using Equation (4.4). These values are then used to compute the 

SLA difference 𝐷. The angle 𝛼 corresponding to 𝐷 is obtained from the angle table. 

The values of 𝜆1, 𝜆2 and 𝛼, are then used to identify the preferred strategy. Specifically, 

if the intersection (𝜆1, 𝜆2) is below the line defined by the angle 𝛼 (i.e., in region 2 of 

Figure 4.7), DA is the preferred strategy; otherwise SA is the preferred strategy. 
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Algorithm 2: 

Input:  𝜆1, 𝜆2     // Arrival rates 

   𝑆𝐿𝐴1, 𝑆𝐿𝐴2    // SLAs 

Output:  DA or SA  // Allocation Strategy 

1: Compute 𝐺(𝑆𝐿𝐴1) and 𝐺(𝑆𝐿𝐴2) 

2: Compute SLA difference 𝐺(𝑆𝐿𝐴1) − 𝐺(𝑆𝐿𝐴2) 

3: Search angle table to obtain the value of 𝛼 

4: if (tan−1 𝜆2

𝜆1
≤ 𝛼) { return DA } 

5: else { return SA } 

 

4.5 Performance evaluation 

In this section, the heuristic algorithm presented in Section 4.4 is evaluated with respect 

to its ability to come up with a strategy (DA or SA) that results in the smallest number of 

processor nodes required. 

 

4.5.1 Methodology 

Our evaluation is based on the following consideration. Each time the global arbiter 

makes resource allocation decisions, it determines the number of processor nodes 

required by the two job classes, using as input parameters such as 𝜆𝑖 , 𝑥𝑖  and 𝑦𝑖  

(𝑖 = 1, 2). Since these parameters may have different values at different time instants 

when resource allocation decisions are made, our approach is to consider a large number 

𝐿 , of combinations of 𝜆𝑖 , 𝑥𝑖  and 𝑦𝑖  (𝑖 = 1, 2). The performance of the heuristic 
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algorithm for each combination is determined, and the average performance over the 𝐿 

combinations is used for evaluation purposes. 

For each combination, the values of 𝜆𝑖 , 𝑥𝑖  and 𝑦𝑖  (𝑖 = 1, 2) are selected according 

to their respective probability distributions. These values are generated using random 

numbers. The probability distributions used in our evaluation are summarized in Table 

4.6. Note that for 𝜆1 and 𝜆2, three different distribution are considered, representing 

different frequencies of values of 𝜆1 and 𝜆2 seen by the global arbiter at decision points. 

Only one distribution is used for each of the other parameters. The notation used in Table 

4.6 is explained as follows: 

 U (a, b) – uniform between a and b 

 N (20, 𝜎2) – normal with mean 20 and variance 𝜎2 (values ≤ 0 and > 40 are 

excluded) 

 E (𝑡) – exponential with mean 𝑡 (values > 40 are excluded) 

 

Parameter Distribution 

𝜆1, 𝜆2 

U (0, 40) 

N (20, 𝜎2) 

E (𝑡) 

𝑥1, 𝑥2 U (𝑎, 𝑏) 

𝑦1, 𝑦2 U (0.80, 0.95) 

Table 4.6: Probability distributions 
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4.5.2 Performance results 

For our heuristic algorithm, its effectiveness is measured by: 𝑆 = Prob(𝑕𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 

𝑎𝑙𝑔𝑜𝑟𝑖𝑡𝑕𝑚 𝑓𝑖𝑛𝑑𝑠 𝑎 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦). By correct strategy, we mean a strategy that 

results in the smallest number of nodes required to meet the SLAs of both job classes. In 

case both DA and SA lead to the same smallest number, then either strategy can be 

considered a correct strategy. The performance metric 𝑆 is obtained as follows. We 

repeat the steps shown in Procedure 1 𝐿 times (the initial value of the variable 𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡  

is zero). 𝑆  is then given by: 𝑆 = 𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝐿 . Our results for 𝐿 = 10,000  and 6 

different settings of the parameter values are shown in Table 4.7. For all settings, the 

distribution used for 𝑦1 and 𝑦2 is U (0.8, 0.95). 

 

Procedure 1: 

1: Generate values for 𝜆1 and 𝜆2. 

2: if 𝜆1 + 𝜆2 > 40, then goto step 1. 

3: Generate values for 𝑥1, 𝑥2, 𝑦1 and 𝑦2. 

4: Apply Algorithm 2 to obtain an allocation strategy (denoted by 𝑅1). 

5: Compute 𝑚𝐷  and 𝑚𝑆 given by Equation (4.2) and (4.3), respectively. The correct 

strategy (denoted by 𝑅2) is DA if 𝑚𝐷 ≤ 𝑚𝑆 or SA if 𝑚𝑆 ≤ 𝑚𝐷. 

6: if 𝑅1 is the same as 𝑅2, then 𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 ++. 

 

The results in Table 4.7 show that our heuristic algorithm has at least a 96% 

probability of finding a correct strategy for all the cases considered. These results indicate 

that the heuristic algorithm is effective in determining a correct strategy. 
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𝜆1, 𝜆2 𝑥1, 𝑥2 𝑆 

U (0, 40) U (2, 5) 0.973 

U (0, 40) U (2, 10) 0.979 

N (20, 5) U (2, 5) 0.961 

N (20, 10) U (2, 5) 0.966 

E (10) U (2, 5) 0.982 

E (20) U (2, 5) 0.984 

Table 4.7: Probability of correct strategy: Algorithm 2 
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Chapter 5 

 

Priority disciplines 

In this chapter, we consider scenarios where the queueing discipline is not restricted to 

FCFS. Obvious choices are disciplines that give priority to the job class that has a more 

demanding SLA, e.g., a smaller response time threshold 𝑥  and/or a larger target 

probability 𝑦. Such disciplines are only applicable under SA. Two priority disciplines are 

considered: head of the line priority (HOL) [22] and a new discipline called probability 

dependent priority (PDP). The performance difference of HOL, PDP and FCFS is 

evaluated based on the number of processor nodes required to meet the SLAs of both job 

classes. 

 

5.1 Head of the line priority 

Under head of the line priority (HOL), jobs belong to different priority classes. The job 

class with the larger 𝐺(𝑆𝐿𝐴) value has higher priority. Whenever a processor node 

becomes available, jobs in the higher priority class are considered first. If the queue of the 

higher priority class is empty, then jobs in the lower priority class are considered. Within 
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the same class, jobs are served in FCFS order. 

 

5.2 Probability dependent priority 

Probability dependent priority (PDP) is a new queueing discipline designed to maximize 

the probability of meeting a given response time goal. This should have a positive effect 

in terms of minimizing the number of processor nodes required to meet the SLAs of both 

classes. Let 𝜏𝑖  be the measured frequency that response time ≤ the threshold 𝑥𝑖 . The 

following two counters are used in PDP (both are zero initially): 

 𝑡𝑜𝑡𝑎𝑙𝑖 – number of class 𝑖 jobs completed so far 

 𝑚𝑒𝑡𝑖  – number of completed class 𝑖 jobs that has response time ≤ 𝑥𝑖 

Each time a class 𝑖 job completes service, 𝑡𝑜𝑡𝑎𝑙𝑖 is incremented by one; if this job has 

response time ≤ 𝑥𝑖 , 𝑚𝑒𝑡𝑖  is also incremented by one. 𝜏𝑖  is then given by: 𝜏𝑖 =

𝑚𝑒𝑡𝑖 𝑡𝑜𝑡𝑎𝑙𝑖 . The priority of class 𝑖, defined in Equation (5.1) below, is updated. 

𝑃𝑖 =  𝑦𝑖 − 𝜏𝑖                   𝑖 = 1,2     (5.1) 

In PDP, the job class with the larger 𝑃𝑖  has higher priority. Whenever a processor 

node becomes available, jobs in the higher priority class are considered first. If the queue 

of the higher priority class is empty, then jobs in the lower priority class are considered. 

Within the same class, jobs are served in FCFS order. In case both classes have the same 

priority value, then the next job class to receive service is selected at random. 

 Note that with PDP, the job class that is meeting the SLA with the smaller margin is 
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given higher priority. Note also that the priority of a job class may change over time 

because 𝜏𝑖  is updated each time a class 𝑖 job completes service. 

 

5.3 Performance evaluation 

In this section, the performance difference of the two priority scheduling disciplines 

(HOL and PDP) and FCFS is investigated. For FCFS, results are provided by the heuristic 

algorithm in Section 4.4. As to HOL and PDP, analytic results for the response time 

distribution are difficult to obtain, so simulation is used. In order to get reliable steady 

state results, we perform 100 experiments with selected parameters and determine a 

length of simulation run using the criterion that with 10 replications, the width of the 95% 

confidence interval of the mean number of jobs in system is within ± 5% of the sample 

mean. Our results show that the above criterion is met with a length of run of 20,000 time 

units. 

Let 𝑚𝐹, 𝑚𝐻  and 𝑚𝑃  be the smallest number of processor nodes required by FCFS, 

HOL and PDP, respectively, such that the SLAs of both classes are met. We say that 

 FCFS is a top discipline if 𝑚𝐹 ≤ 𝑚𝐻  and 𝑚𝐹 ≤ 𝑚𝑃; 

 HOL is a top discipline if 𝑚𝐻 ≤ 𝑚𝐹 and 𝑚𝐻 ≤ 𝑚𝑃 ; and 

 PDP is a top discipline if 𝑚𝑃 ≤ 𝑚𝐹 and 𝑚𝑃 ≤ 𝑚𝐻 . 

The methodology presented in Section 4.5.1 is used in our evaluation. The performance 

metrics are 𝑞𝐹, 𝑞𝐻  and 𝑞𝑃 , the fraction of times that FCFS, HOL, and PDP are a top 
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discipline, respectively, among the 𝐿 combinations of parameter values considered. The 

steps shown in Procedure 2 are repeated 𝐿 times (the initial values of the variable 𝑛𝐹, 

𝑛𝐻 and 𝑛𝑃 are zero). 𝑞𝐹, 𝑞𝐻  and 𝑞𝑃  are then given by 𝑞𝐹 = 𝑛𝐹 𝐿 , 𝑞𝐻 = 𝑛𝐻 𝐿 , and 

𝑞𝑃 = 𝑛𝑃 𝐿 , respectively. 

 

Procedure 2: 

1: Generate values for 𝜆1 and 𝜆2. 

2: if 𝜆1 + 𝜆2 > 40, then goto step 1. 

3: Generate values for 𝑥1, 𝑥2, 𝑦1 and 𝑦2. 

4: Apply Algorithm 2 to obtain a correct strategy for FCFS and use Equation (4.2) and 

(4.3) to determine 𝑚𝐹. 

5: Obtain 𝑚𝐻  and 𝑚𝑃  by simulation. 

6: if 𝑚𝐹 ≤ 𝑚𝐻 and 𝑚𝐹 ≤ 𝑚𝑃, then 𝑛𝐹 + +. 

7: if 𝑚𝐻 ≤ 𝑚𝐹 and 𝑚𝐻 ≤ 𝑚𝑃 , then 𝑛𝐻 + +. 

8: if 𝑚𝑃 ≤ 𝑚𝐹 and 𝑚𝑃 ≤ 𝑚𝐻 , then 𝑛𝑃 + +. 

9: if 𝑚𝑃 < 𝑚𝐹 and 𝑚𝑃 < 𝑚𝐻 , then 𝑛 + +, 𝑠𝐹+= 𝑚𝐹 −𝑚𝑃 , 𝑠𝐻+= 𝑚𝐻 −𝑚𝑃. 

 

Our results for 𝐿 = 10,000 and 6 different settings of the probability distributions 

are shown in Table 5.1. These results show that PDP is superior to HOL and FCFS in 

terms of the fraction of time that it is a top discipline. Specifically, PDP is a top discipline 

over 97% of the time, compared to less than 30% for HOL and less than 2% for FCFS. 

 To further characterize the advantage of PDP, we compute the average difference in 

number of processor nodes required between PDP and the other disciplines among those 

combinations of 𝜆𝑖 , 𝑥𝑖  and 𝑦𝑖  (𝑖 = 1,2) where PDP is the top discipline (i.e., 𝑚𝑃 < 𝑚𝐹 

and 𝑚𝑃 < 𝑚𝐻). This is done by step 9 in Procedure 2 where 𝑠𝐹 and 𝑠𝐻  are used to 

accumulate the difference between PDP and FCFS and between PDP and HOL, 
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respectively; and 𝑛 is used to keep track of the number of combinations where PDP is 

the top discipline (𝑛, 𝑠𝐹 and 𝑠𝐻  are initially 0). The average differences are then given 

by Δ𝐹 = 𝑠𝐹 𝑛  and Δ𝐻 = 𝑠𝐻 𝑛 , respectively. Results for Δ𝐹 and Δ𝐻 for the 6 settings 

of the probability distributions are shown in Table 5.2. These results show that the 

reduction in number of processor nodes required is consistent across probability 

distributions, with an average of 1.41 compared to FCFS and 0.45 compared to HOL. 

 

𝜆1, 𝜆2 𝑥1, 𝑥2 𝑞𝐹 𝑞𝐻  𝑞𝑃  

U (0, 40) U (2, 5) 1.6% 25.5% 98.3% 

U (0, 40) U (2, 10) 0.9% 29.4% 97.1% 

N (20, 5) U (2, 5) 1.3% 24.8% 98.5% 

N (20, 10) U (2, 5) 1.1% 23.1% 98.8% 

E (10) U (2, 5) 1.4% 27.5% 98.4% 

E (20) U (2, 5) 1.5% 24.6% 98.0% 

Table 5.1: Performance comparison: 2 job classes 

 

𝜆1, 𝜆2 𝑥1, 𝑥2 Δ𝐹 Δ𝐻 

U (0, 40) U (2, 5) 1.41 1.29 

U (0, 40) U (2, 10) 1.36 1.16 

N (20, 5) U (2, 5) 1.49 1.29 

N (20, 10) U (2, 5) 1.43 1.26 

E (10) U (2, 5) 1.33 1.12 

E (20) U (2, 5) 1.36 1.17 

Table 5.2: Performance difference: 2 job classes 
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Chapter 6 

 

Allocation strategies for three 

interactive classes 

In Chapter 4, we investigated resource allocation strategies for two interactive job classes. 

For the case of FCFS scheduling, there are two allocation strategies: DA and SA. When 

there are 𝑁 > 2 job classes, the number of allocation strategies increases quickly with 

𝑁, and the problem of determining the preferred strategy becomes quite complicated. 

This can be illustrated by examining an example scenario of three job classes. 

When there are three job classes, the number of AEs could be 1, 2, or 3. With one AE, 

the allocation strategy is SA, i.e., all three classes share a pool of processor nodes. For the 

case of 2 AEs, we have a mixed scenario where two of the job classes are in the same AE 

(under SA) while the remaining job class has its own allocation (under DA). There are 3 

allocation strategies depending on which of the two classes are in the same AE. Finally, 

when there are 3 AEs, the allocation strategy is DA, i.e., each job class has its own 

dedicated resources. Thus, there are five possible allocation strategies. Furthermore, the 

number of combinations of arrival rates and SLAs that need to be considered is larger 
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when compared with that of two job classes. 

Based on the above discussions, we see that the problem becomes more complex 

when 𝑁 > 3 job classes. In this chapter, we consider the case of 𝑁 = 3 and develop a 

heuristic algorithm for resource allocation. This would provide further insight into the 

performance of different allocation strategies with a modest increase in complexity. The 

approach used is similar to that used in Chapter 4, namely, we analyze the performance of 

different allocation strategies using numerical examples and use the results to come up 

with a heuristic algorithm that determines the preferred strategy for given values of 

arrival rates and SLAs of the three job classes. 

 

6.1 Allocation strategies 

In this section, we define the five resource allocation strategies and the notation that will 

be used in subsequent discussions. Let 𝜆𝑖  and 𝑆𝐿𝐴𝑖  be the arrival rate and SLA of class 

𝑖, (𝑖 = 1, 2 and 3). The five strategies are: 

 DA - each job class is in a separate AE. Let 𝑚𝐷𝑖  be the number of nodes needed 

for class 𝑖 to meet its SLA (𝑖 = 1, 2 and 3). 𝑚𝐷𝑖  can be obtained by using 

Algorithm 1 with the arrival rate set to 𝜆𝑖 , the service rate to 𝜇 and 𝑆𝐿𝐴(𝑥, 𝑦) 

to 𝑆𝐿𝐴𝑖 . 𝑚𝐷 , the smallest number of nodes required under DA is given by: 

𝑚𝐷 = 𝑚𝐷1 + 𝑚𝐷2 + 𝑚𝐷3       (6.1) 

 SA - all three job classes are in the same AE. We use 𝑚𝑆 to denote the smallest 
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number of processors required under SA. The value of 𝑚𝑆 is affected by the 

choice of scheduling discipline. 

 Mixed – two of the three classes, say classes 𝑗 and 𝑘, are in the same AE and the 

remaining class, say class 𝑙, is in a separate AE. There are three mixed strategies, 

one for each of the three combinations of values of 𝑗, 𝑘 and 𝑙. Let 𝑚𝑆𝑗𝑘
 be the 

smallest number of nodes required to meet 𝑆𝐿𝐴𝑗  and 𝑆𝐿𝐴𝑘  under SA, and 𝑚𝐷𝑙
 

be the smallest number of nodes required to meet 𝑆𝐿𝐴𝑙  under DA. 𝑚𝐷𝑙
 can be 

obtained by using Algorithm 1 with the arrival rate set to 𝜆𝑙 , the service rate to 𝜇 

and 𝑆𝐿𝐴(𝑥, 𝑦)  to 𝑆𝐿𝐴𝑙 . The value of 𝑚𝑆𝑗𝑘
 is affected by the choice of 

scheduling discipline under SA. The smallest number of nodes required to meet 

all SLAs, denoted by 𝑚𝑆𝑗𝑘 𝐷𝑙
, is then given by: 

𝑚𝑆𝑗𝑘 𝐷𝑙
= 𝑚𝑆𝑗𝑘

+ 𝑚𝐷𝑙
                (6.2) 

 

6.2 Heuristic algorithm for three interactive classes 

In this section, we develop a heuristic algorithm for case of FCFS scheduling. We first 

determine the value of 𝑚𝑆 under SA. Let 𝑚𝑆𝑖  be the smallest number of nodes required 

to meet 𝑆𝐿𝐴𝑖  (𝑖 = 1, 2 and 3). 𝑚𝑆𝑖  can be obtained by using Algorithm 1 with the 

arrival rate set to 𝜆1 + 𝜆2 + 𝜆3, the service rate to 𝜇 and 𝑆𝐿𝐴(𝑥, 𝑦) to 𝑆𝐿𝐴𝑖 . 𝑚𝑆 is 

then given by: 

𝑚𝑆 = max(𝑚𝑆1 ,𝑚𝑆2 ,𝑚𝑆3)                     (6.3) 
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A similar result can be derived for 𝑚𝑆𝑗𝑘
 under mixed strategy. Let 𝑚𝑆𝑗  and 𝑚𝑆𝑘  be the 

smallest number of nodes required to meet 𝑆𝐿𝐴𝑗  and 𝑆𝐿𝐴𝑘 , respectively, under SA. 

𝑚𝑆𝑗  is obtained by using Algorithm 1 with the arrival rate set to 𝜆𝑗 + 𝜆𝑘 , the service rate 

to 𝜇 and 𝑆𝐿𝐴(𝑥, 𝑦) to 𝑆𝐿𝐴𝑗 ; similarly for 𝑚𝑆𝑘 . 𝑚𝑆𝑗𝑘
 is then given by: 

𝑚𝑆𝑗𝑘
= max(𝑚𝑆𝑗 ,𝑚𝑆𝑘)       (6.4) 

Consider now the development of our heuristic algorithm. Suppose each of the three 

job classes is represented by a vertex in a graph, denoted by 𝑐1, 𝑐2 and 𝑐3, respectively. 

We apply Algorithm 2 to each pair of job classes. Two vertexes are connected if and only 

if Algorithm 2 recommends SA for the two corresponding job classes. Figure 6.1 

demonstrates four possible graph structures after applying Algorithm 2. 

 

Structure 1 Structure 2 Structure 3 Structure 4

C1 C1 C1 C1

C2 C2 C2 C2C3 C3 C3 C3

 

Figure 6.1: Resource allocation graph structures 

 

The next question is how to translate these structures to allocation strategies. This is 

straightforward for structure 1, 2 and 4. Structures 1 and 4 correspond to DA and SA, 

respectively. Structure 2 is translated to a mixed strategy with SA for classes 1 and 2 and 

DA for class 3. However, the allocation strategy corresponding to structure 3 is not 
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unique because class 1 cannot be in two different AEs at the same time. For this structure, 

there are four possible solutions, as depicted in Figure 6.2: 

1. Add an edge from 𝑐2 to 𝑐3, resulting in SA. 

2. Remove the edge with small SLA difference, resulting in a mixed strategy with 

class 1 and class 2 in the same AE. 

3. Remove the edge with large SLA difference, resulting in a mixed strategy with 

class 1 and class 3 in the same AE. 

4. Randomly choose one of the above with equal probability. 

 

C1

C2 C3

C1

C2 C3

C1

C2 C3

Structure 3

C1

C2 C3

Add an edge Remove an 
edge with 
small SLA 
difference

Remove an 
edge with 
large SLA 
difference

Large SLA 
difference

Small SLA 
difference

?
Randomly 

select

Figure 6.2: Solutions to allocation structure 3 

 

We use the methodology presented in Section 4.5.1 to evaluate the merits of the four 

solutions mentioned above. For each solution, we determine the average number of 
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processor nodes allocated (denoted by 𝑀𝑎𝑣𝑔,𝑗  for solution 𝑗, 𝑗 = 1, 2, 3 and 4). 𝑀𝑎𝑣𝑔 ,𝑗  

is obtained by repeating the steps shown in Procedure 3 𝐿 times (𝐿 = 10,000). Note that 

step 7 is reached when a graph with structure 3 (as shown in Figure 6.1) is found. The 

initial value of the variable 𝑚𝑡𝑜𝑡𝑎𝑙 ,𝑗  is zero, 𝑗 = 1, 2, 3 and 4. 𝑀𝑎𝑣𝑔,𝑗  is then given by: 

𝑀𝑎𝑣𝑔 ,𝑗 = 𝑚𝑡𝑜𝑡𝑎𝑙 ,𝑗 𝐿 . 

 

Procedure 3: 

1: Generate values for 𝜆1, 𝜆2 and 𝜆3. 

2: if 𝜆1 + 𝜆2 + 𝜆3 > 40, then goto step 1. 

3: Generate values for 𝑥1, 𝑥2, 𝑥3, 𝑦1, 𝑦2 and 𝑦3. 

4: Run Algorithm 2 for each pair of classes. 

5: Create resource allocation graph 𝑇. 

6: if 𝑇 is translated to a unique resource allocation strategy, then goto step 1. 

7: Compute smallest number of nodes required for each of the four solutions (𝑚𝑗  is the 

smallest for solution 𝑗, 𝑗 = 1, 2, 3 and 4). 

8: 𝑚𝑡𝑜𝑡𝑎𝑙 ,1+= 𝑚1, 𝑚𝑡𝑜𝑡𝑎𝑙 ,2+= 𝑚2, 𝑚𝑡𝑜𝑡𝑎𝑙 ,3+= 𝑚3 , and 𝑚𝑡𝑜𝑡𝑎𝑙 ,4+= 𝑚4. 

 

The results are shown in Table 6.1. We observe that solution 3 has the smallest 

average number of nodes among the four solutions. This is consistent with our 

observation in Chapter 4 where a larger SLA difference means it is more likely to choose 

DA (see Figure 4.6). 

 

Solutions 𝑀𝑎𝑣𝑔 ,𝑗  

1. Add an edge 39.01 

2. Remove an edge with small SLA difference 38.20 

3. Remove an edge with large SLA difference 38.09 

4. Randomly select 38.46 

Table 6.1: Performance of the four solutions 
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We now describe our heuristic algorithm. It is shown in Algorithm 3 below. 

Algorithm 2 is first applied to each pair of job classes to create a resource allocation 

graph 𝑇. If 𝑇 does not translate to a unique allocation strategy, remove the edge with the 

larger SLA difference. Algorithm 3 then returns the resource allocation strategy according 

to T. 

 

Algorithm 3: 

Input:  𝜆1, 𝜆2 and 𝜆3      // Arrival rates 

   𝑆𝐿𝐴1, 𝑆𝐿𝐴2 and 𝑆𝐿𝐴3    // SLAs 

Output:  DA, SA or Mixed   // Allocation Strategy 

1: run Algorithm 2 for each pair of classes 

2: create resource allocation graph 𝑇 

3: if (𝑇 does not translate to a unique strategy) 

4:  remove an edge with large SLA difference 

5: return resource allocation strategy according to 𝑇 

 

6.3 Performance evaluation 

In this section, the heuristic algorithm presented in Section 6.2 is evaluated with respect 

to its ability to come up with a strategy that leads to the smallest number of processor 

nodes required. 

 Similar to our evaluation for two classes, the effectiveness of this algorithm is 

measured by 𝑆 = Prob(𝑕𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 𝑎𝑙𝑔𝑜𝑟𝑖𝑡𝑕𝑚 𝑓𝑖𝑛𝑑𝑠 𝑎 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦). By correct 

strategy, we mean a strategy that results in the smallest number of nodes required to meet 

the SLAs of all three job classes, among all five possible strategies. In case two or more 
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allocation strategies lead to the same smallest number, then any of these strategies can be 

considered as a correct strategy. The performance metric 𝑆 is obtained as follows. We 

repeat the steps shown in Procedure 4 𝐿 times (the initial value of the variable 𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡  

is zero). 𝑆 is then given by: 𝑆 = 𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝐿 . 

 

Procedure 4: 

1: Generate values for 𝜆1, 𝜆2 and 𝜆3. 

2: if 𝜆1 + 𝜆2 + 𝜆3 > 40, then goto step 1. 

3: Generate values for 𝑥1, 𝑥2, 𝑥3, 𝑦1 , 𝑦2 and 𝑦3. 

4: Apply Algorithm 3 to obtain an allocation strategy and its corresponding number of 

processor nodes (denoted by 𝑚). 

5: Compute 𝑚𝐷  and 𝑚𝑆  given by Equation (6.1) and (6.3), respectively. And 

determine 𝑚𝑆12𝐷3
, 𝑚𝑆13𝐷2

 and 𝑚𝑆23𝐷1
 using Equation (6.2). 

6: if 𝑚 = min(𝑚𝐷 ,𝑚𝑆 ,𝑚𝑆12𝐷3
, 𝑚𝑆13𝐷2

,𝑚𝑆23𝐷1
), then 𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 ++. 

 

Our results for 𝐿 = 10,000 and 6 different setting of the probability distributions 

are shown in Table 6.2. For all settings, the distribution used for 𝑦1, 𝑦2, and 𝑦3 is U 

(0.8, 0.95). The results in Table 6.2 show that our heuristic algorithm has at least a 93% 

probability of finding a correct strategy over all the cases under consideration. These 

results indicate that the heuristic algorithm is effective in determining a correct strategy 

for three job classes. 
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𝜆1, 𝜆2, 𝜆3 𝑥1, 𝑥2, 𝑥3 𝑆 

U (0, 40) U (2, 5) 0.961 

U (0, 40) U (2, 10) 0.978 

N (20, 5) U (2, 5) 0.931 

N (20, 10) U (2, 5) 0.936 

E (10) U (2, 5) 0.973 

E (20) U (2, 5) 0.962 

Table 6.2: Probability of correct strategy: Algorithm 3 

 

6.4 Probability dependent priority scheduling 

In this section, we consider the use of non-FCFS scheduling disciplines where two or 

more job classes are in the same AE and compare the performance of such disciplines to 

FCFS. Two non-FCFS disciplines, HOL and PDP, were investigated in Chapter 5 for the 

case of two job classes. The results showed that PDP is superior. So we will consider PDP 

only when we extend our investigation to the case of three classes. 

With three job classes, PDP can be used in the SA strategy where all three job classes 

are in the same AE, or in the AE that has two job classes in any of three mixed strategies. 

As in Chapter 5, simulation is used to obtain performance results since analytic results for 

response time distribution of PDP are difficult to obtain. All four strategies where PDP 

can be used (SA and three mixed strategies) are simulated and the best result among these 

four strategies is used in the comparison. For FCFS, results provided by the heuristic 

algorithm in Section 6.1 are used. 

Let 𝑚𝐹 and 𝑚𝑃  be the smallest number of processor nodes required by FCFS and 

PDP, respectively, such that the SLAs of all three classes are met. We say that 
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 FCFS is a top discipline if 𝑚𝐹 ≤ 𝑚𝑃 ; and 

 PDP is a top discipline if 𝑚𝑃 ≤ 𝑚𝐹. 

In our evaluation, the methodology presented in Section 4.5.1 is used. The steps shown in 

Procedure 5 are repeated 𝐿 times (the initial values of the variable 𝑛𝐹 and 𝑛𝑃 are zero). 

Our performance metrics are 𝑞𝐹 and 𝑞𝑃 , the fraction of times that FCFS and PDP are a 

top discipline, respectively, among the 𝐿 combinations of parameter values considered. 

𝑞𝐹 and 𝑞𝑃  are given by: 𝑞𝐹 = 𝑛𝐹 𝐿  and 𝑞𝑃 = 𝑛𝑃 𝐿 . 

 

Procedure 5: 

1: Generate values for 𝜆1, 𝜆2 and 𝜆3. 

2: if 𝜆1 + 𝜆2 + 𝜆3 > 40, then goto step 1. 

3: Generate values for 𝑥1, 𝑥2, 𝑥3, 𝑦1 , 𝑦2 and 𝑦3. 

4: Apply Algorithm 3 to obtain a correct strategy for FCFS and determine 𝑚𝐹, the 

number of processor nodes required for this strategy. 

5: Obtain 𝑚𝑃  by simulation. 

6: if 𝑚𝐹 ≤ 𝑚𝑃, then 𝑛𝐹 + +. 

7: if 𝑚𝑃 ≤ 𝑚𝐹, then 𝑛𝑃 + +. 

8: if 𝑚𝑃 < 𝑚𝐹, then 𝑛 + +, 𝑠𝐹+= 𝑚𝐹 −𝑚𝑃 . 

 

Our results for 𝐿 = 10,000 and 6 different settings of the probability distributions 

are shown in Table 6.3. These results again show that PDP is superior to FCFS in terms of 

the fraction of time that it is a top discipline. Our results also indicate that among the four 

strategies where PDP is used, SA with PDP in one AE always has the best performance. 

To further characterize the advantage of PDP, we compute, among those 

combinations of 𝜆𝑖 , 𝑥𝑖  and 𝑦𝑖  (𝑖 = 1, 2 and 3) where PDP is the top discipline (i.e., 
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𝑚𝑃 < 𝑚𝐹), the average difference between PDP and FCFS. This is done by step 8 in 

Procedure 5 where 𝑠𝐹 is used to accumulate the difference between PDP and FCFS; and 

𝑛 is used to keep track of the number of combinations where PDP is the top discipline (𝑛 

and 𝑠𝐹 are initially 0). The average differences are then given by Δ𝐹 = 𝑠𝐹 𝑛 . Results 

for Δ𝐹 for the 6 settings of the probability distributions are shown in Table 6.4. These 

results show that performance advantage of PDP for three job classes is more significant 

than that of the two classes (see results for two classes in Table 5.2). 

 

𝜆1 , 𝜆2 , 𝜆3 𝑥1, 𝑥2, 𝑥3 𝑞𝐹 𝑞𝑃  

U (0, 40) U (2, 5) 1.1% 99.7% 

U (0, 40) U (2, 10) 0.4% 100% 

N (20, 5) U (2, 5) 0.9% 99.7% 

N (20, 10) U (2, 5) 0.7% 99.8% 

E (10) U (2, 5) 0.3% 99.9% 

E (20) U (2, 5) 0.9% 99.9% 

Table 6.3: Performance comparison: 3 job classes 

 

𝜆1, 𝜆2, 𝜆3 𝑥1, 𝑥2, 𝑥3 Δ𝐹 

U (0, 40) U (2, 5) 1.82 

U (0, 40) U (2, 10) 1.67 

N (20, 5) U (2, 5) 1.88 

N (20, 10) U (2, 5) 1.85 

E (10) U (2, 5) 1.90 

E (20) U (2, 5) 1.86 

Table 6.4: Performance difference: 3 job classes 
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Chapter 7 

 

Conclusion and future work 

7.1 Conclusion 

In this thesis, we investigate strategies for allocating processor nodes to a number of job 

classes such that the SLA of each class is met. Our focus is on interactive jobs where the 

SLA is based on response time distribution. For the case of two job classes, we have 

investigated two allocation strategies under FCFS scheduling; these strategies are shared 

allocation (SA) and dedicated allocation (DA), respectively. A heuristic algorithm which 

determines an allocation strategy (SA or DA) that results in the smallest number of 

processor nodes is developed. The performance of this algorithm is evaluated over a 

range of operating conditions and the results indicate that it is able to find a correct 

allocation strategy in at least 96% of the cases evaluated. 

The performance of SA with non-FCFS scheduling is also investigated. We consider 

two priority disciplines: head of the line priority (HOL) and a new discipline called 

probability dependent priority (PDP). Simulation results show that PDP is more effective 

than HOL and FCFS in terms of the number of processor nodes required to meet the 
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SLAs of the two job classes. 

Furthermore, we extend our heuristic algorithm for FCFS scheduling to the case of 

three job classes. The performance of this algorithm is also evaluated over a range of 

operating conditions and the results show that it is able to determine a correct strategy in 

over 93% of all cases considered. The performance of PDP for three job classes is 

evaluated by simulation and the results confirm that PDP is again superior to FCFS. Its 

advantage over FCFS is more significant when compared to the case of two classes. 

Our contributions are summarized as below. 

1. For FCFS scheduling, we have obtained results which show that SA is not always 

the better resource allocation strategy compared to DA with respect to response 

time distribution when SLA is taken into consideration. 

2. We have developed and evaluated a heuristic algorithm for FCFS scheduling that 

determines a resource allocation strategy that results in the smallest number of 

processor nodes required for the case of two job classes, as well as an extension of 

this algorithm to three job classes. 

3. We have developed a novel scheduling algorithm (called PDP) that is superior in 

performance when compared to FCFS and HOL. 

 

7.2 Future Work 

Directions for future work include the following. 
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1. Resource provisioning for more than three job classes. In general, it is very complex 

to find an optimal resource allocation strategy where each AE may have a potentially 

large number of applications. The general optimization problem is NP hard [1]. 

Developing of heuristic algorithms for more than three job classes is a future research 

problem. The insights gained from our investigation may provide useful guidelines 

for such algorithms. 

2. Performance of scheduling disciplines for more than three job classes. We have 

already shown that PDP used with SA is an advantageous allocation strategy for two 

or three job classes when compared to other strategies. The question of whether PDP 

used with SA will have superior performance in general should be investigated. There 

is also the potential for developing scheduling disciplines other than PDP that have 

good performance in terms of requiring small number of processor nodes. 

3. Interactive and batch applications. Dynamic resource provisioning for an AE with 

multiple interactive and batch applications is a challenging task. This is because batch 

jobs have very different resource requirements and performance goals from 

interactive jobs. An effective resource allocation strategy that benefits both interactive 

and batch applications would be an important contribution to dynamic resource 

provisioning. 
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