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Abstract 

This thesis presents a multi-stage linear stochastic mixed integer programming (SMIP) model 

for planning power generation in a pool-type day-ahead electricity market. The model 

integrates a reserve demand curve and shares most of the features of a stochastic unit 

commitment (UC) problem, which is known to be NP-hard. We capture the stochastic nature of 

the problem through scenarios, resulting in a large-scale mixed integer programming (MIP) 

problem that is computationally challenging to solve. Given that an independent system 

operator (ISO) has to solve such a problem within a time requirement of an hour or so, in order 

to release operating schedules for the next day real-time market, the problem has to be solved 

efficiently.  For that purpose, we use some approximations to maintain the linearity of the 

model, parsimoniously select a subset of scenarios, and invoke realistic assumptions to keep 

the size of the problem reasonable. Even with these measures, realistic-size SMIP models with 

binary variables in each stage are still hard to solve with exact methods. We, therefore, propose 

a scenario-rolling heuristic to solve the SMIP problem. In each iteration, the heuristic solves a 

subset of the scenarios, and uses part of the obtained solution to solve another group in the 

subsequent iterations until all scenarios are solved. Two numerical examples are provided to 

test the performance of the scenario-rolling heuristic, and to highlight the difference between 

the operative schedules of a deterministic model and the SMIP model. 

Motivated by previous studies on pricing MIP problems and their applications to pricing 

electric power, we investigate pricing issues and compensation schemes using MIP 

formulations in the second part of the thesis. We show that some ideas from the literature can 

be applied to pricing energy/reserves for a relatively realistic model with binary variables, but 
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some are found to be impractical in the real world. We propose two compensation schemes 

based on the SMIP that can be easily implemented in practice. We show that the compensation 

schemes with make-whole payments ensure that generators can have non-negative profits. We 

also prove that under some assumptions, one of the compensation schemes has the interesting 

theoretical property of minimizing the variance of the profit of generators to zero. Theoretical 

and numerical results of these compensation schemes are presented and discussed.  
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Chapter 1 
Introduction 

In this chapter, we introduce some of the relevant concepts, terminologies, and polices in 

electricity markets. We then detail the motivations, objectives, and contributions of the thesis. 

1.1 Relevant Background 

1.1.1 Independent System Operator 

Electric power industries around the world are affected by restructuring. The three components 

of the industry, i.e., generation, transmission, and distribution, that were vertically integrated, are 

operated separately under restructuring. With this, a neutral entity is required to guarantee the 

independent operation of the transmission grid, settle market price and maintain system 

reliability and security. An Independent System Operator (ISO) fills this requirement and serves 

as the market coordinator. It is important that an ISO be independent of all the market 

participants, such as generating companies (GenCos), transmission companies (Transcos), 

distribution companies (DisCos), and retailers. It is the role of the ISO to maintain the system 

security and dispatch power economically. To this end, it has the authority to call on GenCos to 

plan their power generation according to its instruction and to shed the load of customers in order 

to maintain supply-demand balance. The ISO also forecasts electricity demand and runs relevant 

models, e.g., unit commitment (UC) models, to ensure that systems are operating efficiently. In 

addition, the ISO has the authority to establish rules, set transmission tariffs and manage line 

congestion (Shahidehpour et al., 2002). 
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Both MinISOs and MaxISOs are responsible for transmission security, but MaxISOs have a 

broader range of responsibility. A MaxISO can coordinate market participants to ensure system 

reliability and security and can settle market prices. For example, a MaxISO can use data 

received from market participants, such as costs, prices and other variables, to run a UC model 

and obtain commitment states of generators. From this, the MaxISO can devise a power 

generation plan and set relevant prices. PJM (Pennsylvania-New Jersey-Maryland), for example, 

falls into this category of ISO. The ISO in this thesis is assumed to be a MaxISO, and it is in 

charge of system reliability and market settlement. On the other hand, MinISOs are mainly in 

charge of transmission security without any market roles. For example, California ISO is a 

MinISO (Shahidehpour et al., 2002).  

1.1.2 GenCos 

GenCOs own the actual power generating plants, and as such are very important market entities. 

The power generating plants they own may include different types of generating units. A GenCO 

may trade electricity with other market entities directly or sell electricity to an ISO. Buyers can 

then purchase electricity from an ISO to meet their demand, depending on the model of 

electricity market. If there is a scheduled outage, a GenCO needs to report it to the ISO in 

advance for approval. In a restructured electricity market, the objective of a GenCO is to 

maximize its own profit. It does not have to consider system-wide profits or costs since it is not 

integrated with transmission and distribution.  
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1.1.3 Market Models 

There are three basic models within electrical market structures: the PoolCo model, the bilateral 

contract model and the hybrid model (Shahidehpour et al. 2002). In a PoolCo model, an ISO 

receives generation offers and demand bids from electric power generators and buyers. In 

general, the generation offer submitted by a generator is incremental, depending on a ratio of 

price and power quantity. As its power output increases, the price increases accordingly. Buyers 

submit their bids in a similar way, but in an opposite direction, leading to the supply-demand 

curve shown in Figure 1-1. The point where these two curves intersect represents the competitive 

price and competitive power quantity. Based on this information, the ISO will implement an 

economic dispatch to plan power generation efficiently and generate the price signals to both 

sellers and buyers. Ideally, the competitive market price is equal to the highest price submitted 

by a generator in a PoolCo model, assuming that its offer is accepted by the ISO. 

In a bilateral contract model, two parties in the market can trade electricity independent of an 

ISO. Bilateral contracts give traders more flexibility to design their own contract terms but 

trading parties may face high negotiating costs and potential risks, such as default of 

counterparties. 

A hybrid model, as its name suggests, lets market participants choose either a PoolCo model or 

a bilateral contract model depending on which market model they feel best meets their individual 

needs.  
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Figure 1-1 An illustrative example of generation offers and demand bids 

1.1.4 Day-Ahead Electricity Market and Real-Time Market  

Electricity markets can be classified as day-ahead market (DAM) and real-time market (RTM). 

DAM, as its name implies, refers to the market that exists during the 24 hours prior to 

commencement of the RTM; it is used for scheduling the resource for the next day. Both energy 

and ancillary service, e.g., reserves, can be traded in a DAM. In a DAM, an ISO receives day-

ahead (DA) generation offers and demand bids from sellers and buyers, and then evaluates the 

information and plans the operating schedule of accepted generating units and produces a set of 

DA prices that can be a good predictor of spot price. PJM, NYISO (New York ISO), ISONE 

(ISO New England) all operate DAMs (Hunt, 2002). 

In a DAM, generating units not only make power dispatch commitments but also financial 

commitments. Therefore, it can reduce the potential possibility of gaming, e.g., a GenCo could 

intentionally withdraw its capacity with short notice in RTM, and then the ISO would have to 

Competitive 
price 

Price 

Power quantity Competitive 
quantity 

Generation 
offers 

Demand bids 
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call upon expensive alternatives to supply energy. With such gaming in a RTM, the energy price 

would increase, depending on the marginal cost of the expensive generators. Therefore, the 

GenCo that breaks its promise will benefit from the high energy price. However, in a DAM the 

energy price is locked, and the ISO has more alternatives in DAM than in RTM; consequently, 

GenCos lose the incentive of gaming. In addition, a DAM can allow GenCos to update their 

predicted output level and commitment states in advance. In addition, generating units with high 

start-up costs that have to be turned on and turned off every day can benefit from a DAM; it can 

integrate their start-up or shut-down decision into their generation offers (Hunt, 2002). 

An RTM is also called a balancing market; it adjusts the deviation between DAM and RTM if 

load, generation, and transmission in real-time (RT) are different from those in DAM. Any RT 

energy imbalance can be adjusted by automatic generation control, spinning, nonspinning, and 

supplemental reserves that have different response times and are subject to ramping limits. The 

so-called “two-settlement system” operated by PJM and NYISO consists of a DAM and a RTM. 

Figure 1-2 shows an overview of the timeline of the DAM and the RTM run by PJM (PJM 

Manual 11, 2009).  

In this thesis, we only focus on a DAM where buyers and sellers bid for energy only, and 

assume that there are no separate reserve markets where market participants bid for reserves. 

With one model, we calculate both energy prices and reserve prices. 
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Figure 1-2 An overview of PJM scheduling timeline (PJM, 2009) 

1.1.5 Relevant Characteristics in an Electric Power System 

GenCos own various generating units; these generating units use different fuel and have 

different capacities and cost functions. A power generation system may include hydro plants, 

nuclear plants, thermal plants, and wind plants. Depending on the fuel they use, these plants have 

different cost functions. The power generation cost of thermal plants has two parts: fixed costs 

and fuel costs. Fixed costs include the costs that are used to start up or shut down a plant, no-load 
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costs and relevant maintenance costs, labor costs, and so on. No-load costs refer to costs 

associated with maintaining a generating unit online while the generating unit does not have any 

power output. Variable costs are dependent on fuel consumption, which is a nonlinear function 

with respect to the output level of generators. In addition, nuclear plants have high fixed costs, 

since they are highly expensive to start up; however, their generation cost is very low compared 

with thermal units. Therefore, units with high start-up costs and low fuel costs are expected to 

run all the time except for necessary maintenance; they are called base plants. On the contrary, 

some thermal units have high fuel costs, but they are quick-start units and their start-up cost is 

low. These units are identified as peaking units or peakers, that is, they are turned on during peak 

demand hours when other cheap units cannot meet the electricity demand due to unexpected 

demand increase, generator failure or other contingencies.  

1.1.6 Unit Commitment Problems 

Power planning problems can be classified in three categories according to their planning time 

horizon (Ozturk, 2003). A long-term planning problem decides the number, type, and capacity of 

the generating units that GenCos should own in coming years; it is identified as the power 

capacity expansion problem. The second set consists of medium-term problems, running from a 

day to a few weeks. The goal of these problems is to schedule the existing units over the time 

horizon, i.e., when to turn on some of the generating units and when to turn them off. These 

problems are classified as UC problems. In the short term, the decision maker needs to decide 

how much power a generating unit should produce to meet the electricity demand in the RTM; 

the time horizon may extend from seconds to hours. These problems are identified as economic 

dispatch problems.  
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UC problems are used to decide the commitment states of a mix of various generating units 

and estimate their output level over a given time horizon, while the total generation costs of the 

generating units are minimized. In addition, the problem should satisfy relevant constraints, 

particularly some operational constraints. Ramp up/down limit constraints ensure that a generator 

can only increase its output level by its appropriate ramping rates during a certain time period. 

Minimum up/down constraints reflect the physical characteristic of generating units, i.e., once a 

generating unit is turned on or off, it has to stay in that state for a length of time; it cannot be 

started up and shut down again frequently in a short period of time. In addition, power balance 

constraints are very important; they ensure that the power system has adequate energy to satisfy 

the electricity demand (generally referred to as “load” in power engineering) in each time period. 

Reserve requirement constraints require that the system has surplus capacity to respond to 

contingencies, such as load spikes and equipment failures. Reserves considered in UC problems 

usually include spinning reserve and nonspinning reserve. Spinning reserve is defined as the 

extra capacity of generating units that is synchronized to the power system so that it can serve 

load immediately if required. On the other hand, nonspinning reserve refers to the capacity that is 

not connected to the system, but it can be ready to serve load within a certain amount of time, 

e.g., 30 minutes. Since spinning reserve is crucial to accommodate the imbalance of supply and 

demand in RT, it is required that a power system should have surplus supply as spinning reserve. 

The amount of spinning reserve requirement is usually deterministic in all applications of UC 

problems; the requirement is generally greater than or equal to the capacity of the largest 

generating unit in the system or a percentage of peak load, whichever has the greater value. In 

some applications of UC problems, stochastic elements or uncertainties are considered. The 
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uncertainties mainly include load spikes and equipment failures. The resulting problems are 

identified as stochastic UC problems. In these problems commitment states and power output 

level are decided for numerous scenarios in contrast to one single scenario in the deterministic 

version of UC problems. In addition, to prepare for possible contingencies, the schedule of the 

scenario without any contingencies in the stochastic model is expected to differ from the 

schedule in the deterministic model, e.g., some generating units in the stochastic model are 

turned on earlier than in the deterministic model so that they are able to ramp up to higher 

generation levels in time during later time periods when a contingency occurs; or a generating 

unit at a location is turned on(off) in a stochastic model, while the same unit is turned off(on) and 

a different unit is turned on(off) in the corresponding deterministic model. In principle, expected 

cost of energy from reserves should be included. 

As previously mentioned, UC problems are used to determine the commitment states and 

output levels in each time period of various generating units with different capacity and cost 

functions. As a result, a UC problem is a mixed integer programming (MIP) problem with binary 

variables and continuous variables, and it falls into the class of NP-hard problems (Garey and 

Johnson, 1979; Tseng et al., 1999). If we consider contingencies in a power system, the problem 

can easily become a stochastic MIP problem, which is equivalent to a large-scale deterministic 

MIP problem; the solution time may increase exponentially with the number of contingencies. 

Therefore, the computational challenges of UC problems require efficient solution 

methodologies.  

Usually, in the real world, an ISO runs the UC problem first to determine the commitment 

states of acceptable generating units after receiving generation offers and demand bids from 
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GenCos and consumers. Then, it runs the economic dispatch problem in the RTM on a rolling 

time basis with a time window from 5 minutes to 15 minutes, changing the output of generators 

to reflect the deviation of loads in RT. For example, PJM, New England, New York, and Ontario 

Independent Electricity System Operator use a five-minute time window, California employs 10 

minutes, and Electric Reliability Council of Texas uses 15 minutes (Hirst, 2001). 

1.2 Research Motivation, Objectives and Scope 

Reserves, particularly spinning reserves, play important roles in an electricity market because 

they are the resource used to guarantee the secure operation of the power system. The reserve 

requirement is set for ensuring that there is adequate capacity available in the system when there 

are contingencies. There is always a possibility that an ISO has to shed part of the load from 

customers when there is no extra capacity in the system to satisfy the electricity demand. During 

these shortage hours, reserve capacity is too low, and the reserve requirement cannot be satisfied. 

Consequently, the energy price and reserve price should be much higher than during a normal 

day when there is no contingency at all. High energy prices can also warn customers to be aware 

of the potential for an energy shortage, reserve scarcity, and blackouts. Therefore, the impact of 

reserve shortages on energy/reserve prices needs to be investigated. Based on some concepts 

proposed in Midwest ISO (2005), Cramton et al. (2005), and Hogan (2005), as well as a few 

related measures that are employed in some electricity markets, we propose a multi-stage 

stochastic mixed integer programming (SMIP) model incorporating these features into UC 

problems. However, the model in this thesis is for short-term planning. Thus, some issues 

discussed in the literature above are beyond the scope of this thesis, such as energy-only markets, 

installed capacity markets, capacity expansion, missing money problems, etc. 
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As mentioned in section 1.1, a UC problem is known to be NP-hard, and a UC problem with 

uncertainties can be easily extended to a large-scale MIP problem as numerous scenarios are 

considered. The resulting MIP problem is computationally challenging due to its size and the 

existence of discrete variables. However, an ISO has to solve such a complicated problem in a 

DAM, and the problem has to be solved within a time requirement, i.e., in an hour or so, so that 

the operating schedule can be finalized on time prior to the commencement of the RTM. 

Motivated by the computational difficulty, we use linear direct current (DC) power flow to 

approximate the actual alternative current power flow, only choose some major contingencies, 

and employ other assumptions to make the problem as small as possible. Even with these 

measures, realistic-size SMIP models with binary variables in each stage are still hard to  solve 

with exact methods; therefore, we propose an efficient solution methodology to solve the 

underlying SMIP problem within a reasonable time limit. 

In addition, how to price an MIP has been an intriguing problem due to its nonconvexity 

(Gomory and Baumol, 1960). The method of obtaining dual prices of a linear program (LP) 

cannot be applied to procuring commodity prices of an MIP. In a DAM, after an ISO solves the 

power planning problem with binary variables, it faces the same challenge of how to price 

electric power from an MIP. Motivated by some previous studies (O’Neill et al., 2005; Wong 

and Fuller, 2007; Sioshansi et al., 2008), we investigate the pricing issues of an MIP problem and 

propose appropriate compensation schemes.  

The major objectives of this research are: 
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• Develop an SMIP model for a DAM setting that incorporates some features newly 

implemented in industry with a UC problem considering uncertainties. 

• Propose an efficient heuristic methodology to solve the underlying multi-stage SMIP. 

• Investigate the pricing issues of an MIP problem, and propose compensation schemes 

offering a way to reduce the financial risk for generators. 

The focus of this research is mainly on how to solve an SMIP model in a DAM, although it is 

interrelated to an RTM, and its consequent pricing issues of the MIP. Since there are so many 

entities, issues, terms, components, and policies in an electricity market, we have to limit our 

scope to power generation and dispatch in a PoolCo model which involves GenCos and an ISO; 

issues related to transmission and distribution are beyond the scope of this research. 

1.3 Contributions of this Thesis 

The contributions of this thesis can be summarized as follows: 

• We present a linear SMIP model that integrates a reserve demand curve and shares 

most of the features of a stochastic UC problem. The reserve demand curve can impact 

energy prices during shortage hours; from a modeling perspective, with this reserve 

demand curve an ISO does not have to increase energy prices to its cap just because a 

small amount of reserve requirement is not satisfied.  

• We propose a heuristic methodology to solve the underlying multi-stage SMIP 

problem. The proposed heuristic is inexpensive and practical, and the algorithm has 

some flexibility so that an ISO can tailor it according to the size of the problem.  
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• We present a decision tree that only considers the most crucial scenarios over a 24-

hour time horizon. We parsimoniously select a certain number of scenarios to limit the 

size of the model, since it is impossible to select all scenarios. 

• We extend previous work on pricing MIP problems and its application to pricing 

electric power to show that these ideas can be applied to pricing energy/reserves for a 

relatively realistic model with binary variables. Nevertheless, some of the ideas in the 

previous work are proved not valid when they are applied to pricing electricity in 

practice. 

• We propose two compensation schemes based on the SMIP that can be easily 

implemented in practice. We show that these compensation schemes can ensure that 

generators can have non-negative profit. We also prove that one of the compensation 

schemes can return interesting theoretical results; the variance of the profit of 

generators can be minimized to 0. 

1.4 Organization of this Thesis  

The remaining chapters of this thesis are organized in the following manner: 

Chapter 2 provides a brief literature review on relevant models in electricity markets, 

stochastic programming and its solution methods, and electricity pricing. It first reviews 

mathematical models, particularly, stochastic programming models, that have been proposed in 

previous studies. Then it describes the importance of stochastic programming problems and 

introduces the methodologies used to solve stochastic programming problems according to their 
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algorithms and features. Finally, it presents the relevant studies that have been completed on 

pricing of MIP problems and their applications to pricing of energy and reserves.  

Chapter 3 presents a multi-stage linear SMIP model for an ISO to plan power generation 

efficiently in a DAM for the next day, i.e., the time horizon is over 24 hours. It introduces the 

concept of reserve demand curve, shows the relevant assumptions, and then proposes the 

formulation. Constraints and modeling details are discussed.  

Chapter 4 proposes a heuristic method for solving the underlying SMIP. The detailed 

procedure of the algorithm is provided. Then it gives numerical examples to show the 

performance of the heuristic method. Relevant data are provided in this chapter. The overview 

performance of the heuristic method is evaluated. Next, two numerical examples are provided, 

and numerical results from some representatives of scenarios are analyzed and discussed. 

Chapter 5 describes the details of obtaining commodity prices of the SMIP model based on the 

sub-optimal solution generated by the heuristic method in Chapter 4. Numerical results are given 

and discussed. Particularly, results without the reserve demand curve and results with the reserve 

demand curve are compared to show how the reserve demand impacts energy prices during 

shortage hours. In the second part of this section, we propose two compensation schemes on the 

assumption that all the scenarios are known to the ISO. One compensation scheme is an RT 

compensation scheme in which electricity prices are calculated based on the scenario that 

actually happens. The other compensation scheme is a hybrid scheme that uses the price and 

power quantities in the most probable scenario, and its imbalances between other contingency 
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scenarios. Properties of both compensation schemes are described and proved; relevant 

numerical examples are provided.  

Chapter 6 summarizes the thesis, highlights its contributions, and recommends some possible 

future research directions that could be explored. 
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Chapter 2 
Literature Review 

2.1 Introduction 

This chapter presents a literature review of relevant research. It first reviews UC problems, 

optimization models of power generation planning that consider uncertainties, and some 

modeling techniques. Then it gives a brief introduction of stochastic programs and summarizes 

the solution methodologies used to solve stochastic programming problems. Finally it presents 

the previous work on pricing issues of MIP, integer programming (IP), LP problems, and their 

applications to pricing of energy and reserves. 

2.2 UC Problems and Relevant Modeling Techniques 

As previously described in Chapter 1, conventional UC problems are used to determine the 

schedule of generating units and estimate the generating level of each unit over a time horizon. 

Therefore, UC problems are multi-stage MIP problems; binary variables are employed to 

represent on/off of generating units. The objective is to minimize the total operation and 

generation costs that include fuel cost and fixed cost, e.g., start-up cost; constraints may include 

ramp limit constraints, minimum up/down constraints, power balance, and reserve requirement 

constraints. In addition, uncertainties have been considering in UC problems because unexpected 

load spikes and equipment failures can cause blackouts. These problems are identified as 

stochastic UC problems. 
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In these deterministic UC problems, the reserve requirement is usually a hard constraint, i.e., 

the reserve available in the system must be greater than or equal to a pre-set reserve requirement. 

However, some research has been conducted to apply different techniques to modeling the 

amount of reserve available in the system, instead of using a deterministic reserve requirement. 

Bouffard et al. (2005A) provide a multi-period SMIP model to optimize the total expected social 

welfare of a power generating system. The relevant numerical case studies are given in Bouffard 

et al. (2005B). Unlike the majority of approaches taken in research on unit commitment 

problems, which often adopts a fixed operating reserve requirement that is set up arbitrarily, e.g., 

as the largest unit in the system or 10% of historical peak demand, Bouffard et al. (2005A) 

penalize unserved load in the objective function and obtain reserve services as a result of 

optimization. They recognize that a deterministic reserve requirement does not explicitly 

consider RT uncertainties related to unit outages and line failures.  

Wong and Fuller (2007) propose a single period stochastic linear programming model, also 

without an explicit operating reserve requirement. They determine the total capacity made ready 

for each generator as a DA decision, and define the reserve as the extra capacity when 

uncertainties in RT are resolved. This way, generators have to prepare enough capacity in the 

DA stage so that all RT constraints are satisfied in each scenario, allowing for the possibility of 

some load shedding, at a penalty. They additionally propose different compensation schemes for 

electricity markets, including energy-only RT pricing, as well as various DA schemes, to price 

energy and reserves. By avoiding deterministic reserve requirements and determining reserves as 

excess capacity in RT, the results in Bouffard et al. (2005B) and Wong and Fuller (2007) 

explicitly show where and how much reserves are needed in the system when contingencies 
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occur. However, one drawback of the models in Bouffard et al. (2005A) and Wong and Fuller 

(2007) is that it is impossible for a model to cover all possible future scenarios due to 

computational limitations; therefore, a reserve requirement is still needed to prepare for the 

“missing scenarios” – the future states that are left out of the model.  

In this thesis, we propose a model that extends the model in Wong and Fuller (2007) in several 

significant ways.  Instead of a single-period model, we propose a multi-period model, in order to 

represent important features such as ramping limits and start-up costs that depend on down time.  

Unlike Wong and Fuller (2007), the present model includes binary variables for the on/off states 

of generating units to be able to represent unit commitment, start-up costs, and no-load costs.  

Because of the “missing scenarios,” we include target and minimum reserve requirement 

constraints in each scenario, modified by the reserve demand curve (Midwest ISO 2005). These 

constraints allow that the total reserves available in the system are less than the target reserve 

requirement, but more than the minimum reserve requirement. See Chapter 3 for details.  

Although the formulations of UC problems do not have much variety, different modeling 

techniques are used for some of the constraints. Suppose gtq represents generation level of 

generator g in period t and gtω is the commitment state of generator g in period t, and it is a 

binary variable. up
gR , dn

gR , su
gR , sd

gR represent up-ramping limit and down-ramping limit, start-up 

limit (the ramping up limit by which a generating unit is started up), and shut down limit (the 

ramping down limit by which a generating unit is shut down), respectively. gM is the maximum 

generation level of g. Due to the ramping limit, the ramp up/down amount between two 
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consecutive periods must be constrained. In Bouffard (2005A), the time-coupled limitations 

between two periods are modeled as: 

1 ( 1) ( 1)( ) (1 )up su
gt g t g g t g gt g t g gtq q R R Mω ω ω ω− − −≤ + + − + −（ ）                          (2.1) 

1 ( 1) ( 1)( ) (1 )dn sd
gt g t g gt g g t gt g g tq q R R Mω ω ω ω− − −≥ − − − − −（ ）                           (2.2)

 
 

Frangioni and Gentile (2006) provide a different formulation of the same constraint: 

                                       1 (1 )up su
g t gt g gt g gtq q R Rω ω+ ≤ + + −（ ）                                            (2.3) 

                                       1 ( 1) ( 1)(1 )dn sd
gt g t g g t g g tq q R Rω ω+ + +≤ + + −（ ）                                (2.4) 

(2.3) and (2.4) are more compact in contrast with (2.1) and (2.2). In addition, Arroyo and Conejo 

(2004) provide a precise formulation of start-up and shut-down trajectories of thermal plants by 

introducing extra binary variables and constraints. To simplify the model and avoid extra binary 

variables, in this thesis we employ (2.3) and (2.4) when we model ramp up/down limitations 

between two consecutive periods. In contrast, most of the literature assumes, less realistically, 

that these are the same values for the start-up ramping limit and the ramping limit between 

periods, which means that no binary variables are required in the ramping up constraints; for 

example, see Shahidehpour et al. (2002). 

   Minimum up and minimum down constraints are also required in UC problems. As described in 

Chapter 1, a thermal plant has to stay in “on (off)” states for a certain period of time once it has 

been turned on (off). Arroyo and Conejo (2000) give a rigorous formulation of minimum up and 

minimum down constraints by adding extra binary variables as logic controls. In order to reduce 

the number of binary variables, in this thesis we use another formulation of the minimum up and 
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minimum down constraints proposed in Takriti et al. (2000), Nowak and Romisch (2000), and 

Nowak and Schultz (2005): 

( 1)

( 1)

1     1, ..., min{ , 1}                              (2.5)

         1, ..., min{ , 1}                              (2.6)

up
gt g t gk g

dn
g t gt gk g

k t T t T

k t T t T

ω ω ω

ω ω ω

−

−

− ≤ − ∀ = + + −

− ≤ ∀ = + + −
 

Where up
gT and  dn

gT  represent the minimum up time and minimum down time of generator g, 

and T is the last time period in the model. 

   There is another interesting modeling technique to formulate the start-up cost. The start-up cost 

function has been identified as a function of the time that a unit has been turned off. 

Mathematically (Bhattacharya et al., 2001; Shahidehpour et al., 2002),  

                                        
/( ) (1 )

off
g gt Toff

g g gC t eα β −= + −                                                    (2.7) 

Where  

off
gt : time that generator g has been turned off. 

gα : fixed cost of start-up of generator g. 

gβ : cold-start cost of generator g. 

gT
 
: cooling speed of generator g.

 

( )off
gC t : start-up cost function of generator g. 
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As shown in (2.7), the start-up cost function of a thermal unit is an exponential function of the 

time that the unit has been shut down. The longer a thermal unit has been turned off, the more 

expensive it is to start up. The cold start time is the time interval, measured in hours, after which 

a unit has completely cooled off. A start-up has the same start-up cost as cold start time if the unit 

has been turned off longer than its cold start-up time. To simplify the formulation and avoid a 

nonlinear model, Nowak and Romisch (2000) use a step function to approximate the exponential 

cost function in (2.7):  

                                       
( )

1,..., 1
max(0, max ( ))

C
g

g gt g t k
k

C
τ

τ
τ τ

ω ω −
= =

−∑                                           (2.8) 

where gC τ  is the corresponding start-up cost from (2.7) if generator g has been actually turned 

off for τ time periods; C
gτ  is the cold start time. The value of (2.8) satisfies key properties to an 

approximation to (2.7): 

1) if the unit is on at time t, 1gtω =  , and if it was also on in the previous period, 1gtω = , then 

there is no start-up in period t and therefore start-up cost should be 0 in period t, i.e., the 

value of the inner maximand in (2.8) is 0 for  1τ = , and it is less than or equal to 0 for all 

other values of τ ; 

2) if the unit is off at time t, 0gtω = , then there is no start-up at time t, and the start-up cost 

should be 0, i.e., the value of the inner maximand in (2.8) is less than or equal to 0, which 

makes the overall value of (2.8) equal to 0; 
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3) if the unit is on and has started up in period t, 1gtω = , , 1 1g tω − = , and if it has been off for 

exactly 'τ periods and 'τ  is less than C
gτ , then the start-up cost at time t should be 'gC τ , i.e., 

the inner maximand of (2.8) evaluates to 0 for 'τ τ> , and to '( )g g
C Cτ τ

<   for 'τ τ< ; and 

4) if the unit is on and has started up in period t, and it has been off for ' C
gτ τ≥   periods, then 

the start-up cost at time t should be C
gg

C
τ

, i.e., the greatest value of the inner maximand in 

(2.8) is C
gg

C
τ

. 

   Figure 2-1 illustrates how (2.8) approximates the nonlinear start-up cost.  

 

Figure 2-1 Stairwise approximation of nonlinear start-up cost function 

2.3 Stochastic Programming and its Solution Methodologies 

The model we propose in this thesis is a multiple period SMIP model. Therefore, in this section 

we will first briefly introduce stochastic programming, and then focus on the previous research 

Start-up 
cost 

o ff
gt (hours) 1         2          3           4 
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gC t  
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on solution methods to multi-stage stochastic programming with binary variables, particularly on 

relevant stochastic UC problems. 

2.3.1 Stochastic Programming 

In general IP or MIP problems, stochastic issues are ignored, and it is assumed that parameters in 

the models are all known or can be precisely forecasted (Birge and Louveaux, 1997). This 

simplification can avoid the computational difficulties caused by the size of the problems and 

reduce the solution time. However, including randomness in a mathematical program with 

integer variables can generate more realistic results than otherwise, although it may significantly 

complicate the problems; decision makers can benefit from these realistic results obtained by 

considering uncertainties.  

There are different ways to incorporate randomness into the models. One of them, which is 

widely used, is a recourse-based model. In this type of model, a decision can be made once the 

random value in the next stage is observed. Depending on the number of stages, they can be 

classified as two-stage models and multi-stage models. In both types of the models, the objective 

function is to minimize or maximize a nested sequence of conditional expectations, including 

first stage decisions and future decisions. In this thesis, we use an alternate formulation of the 

recourse-based model, namely, expectation-based model. In an expectation-based model, each 

outcome is associated with a weight or a probability in the objective function; this is the discrete 

probability of its occurrence, and the sum of them is equal to 1. Usually, it is impossible to 

include all the scenarios; therefore, only some of the possible scenarios are selected to be 

incorporated into the model. There is one feature in the multi-stage stochastic programming 
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model that differs from its deterministic counterpart. A decision maker has to make decisions 

before moving to the next stage where there may be numerous different scenarios. However, the 

decision maker has to make decisions for the next stage immediately while in the current stage. 

Thus, the decision maker produces multiple branches of decision values for the next stage, one 

set for each possible scenario, from the current decision node. Once the random value of the next 

stage is known, the decision maker can follow one branch of the decision values. The multiple 

branches of decision values for the next stage derive from the same decision value in the 

incumbent stage; in other words, they share the same history up to the incumbent stage. In 

modeling of multi-stage stochastic programming problems, there is a set of constraints that are 

particularly used to ensure that some scenarios share decision values in a certain number of 

stages; the constraints are named nonanticipativity constraints (Birge and Louveaux, 1997). 

Figure 2-2 shows a four-stage decision tree to show how nonanticipativity constraints work. 

There are three scenarios in Figure 2-2, but they are not independent of each other. In the first 

three stages, the scenarios share the same decision values, i.e., the decision values of the three 

scenarios in these stages are equal to each other. The nonanticipativity constraints are needed to 

ensure this requirement. This thesis proposes a multi-stage SMIP; therefore, appropriate 

nonanticipativity constraints are required to satisfy the interrelation of decision values in some 

time periods. 
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Figure 2-2  Scenario tree for a four-stage stochastic program 

Nested Benders decomposition method and L-shaped method are usually applied to solve 

multistage recourse-based stochastic LP programs or MIPs with integer variables in the first 

stage. However, there are binary variables in each stage in the SMIP presented in this thesis, and 

in nested Benders method it is controversial to add optimality cuts or feasibility cuts to a master 

problem using the dual variables of MIP subproblems. Therefore, we did not use the recourse-

based formulation. Instead, we employed the expectation-based formulation. This formulation 

has an advantage. If the nonanticipativity constraints are relaxed, the problem can be solved by 

each individual scenario. This feature may facilitate other decomposition methods or provide a 

good lower bound to the optimal solution that can be used to evaluate the quality of any feasible 

solution we can obtain. 

Besides recourse-based models and expectation-based models, there is another way to 

incorporate randomness into a stochastic program: chance-constrained programming. In chance-

constrained programming, some of the constraints are expressed in terms of confidence levels 

about first-stage decisions. This formulation is particularly for problems where costs or profits of 

future decisions are difficult to evaluate (Birge and Louveaux, 1997) and a relevant confidence 

level can be clearly defined.  In the model proposed in this thesis, the costs of future decisions 

t=1 t=2 t=3 t=4 

Scenario 1 

Scenario 2 

Scenario 3 
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can be clearly assessed. Thus, we will not use chance-constrained programming to formulate the 

problem.  

2.3.2 Solution Methods to Solve Stochastic Programming with Integer Variables 

A lot of research has been produced to solve stochastic programming problems with integer 

variables. According to their features and algorithms, these methods can be classified as Benders 

decomposition methods (Benders, 1962), Lagrangian relaxation (LR) based decomposition 

methods, and other methods.  

   Benders decomposition is an efficient algorithm for solving two-stage stochastic programming 

problems with integer variables. Nested Benders decomposition is the classic approach to solve 

multi-stage versions. Nested Benders decomposition algorithm and its implementation of multi-

stage linear programs without integer variables are shown and discussed by Birge (1985) and 

Birge et al. (1996). However, Benders decomposition and Nested Benders decomposition are 

only efficient for stochastic problems where integer variables are associated with the first stage. 

Their drawback is that if there are integer variables in each stage, the algorithms have to deal 

with nonconvex subproblems. On one hand, it is hard to solve a large-scale MIP master problem 

if all the integer variables are given to the master problem. On the other hand, it is intractable to 

generate optimality cuts or feasibility cuts when the subproblem is not convex. Therefore, 

nonconvexity makes the classic Benders decomposition methods inapplicable (Ruszczynski, 

1997). Some extensions that are based on decomposition methods have been produced. Cerisola 

et al. (2009) propose a sophisticated sequential cut method based on generalized Benders 

decomposition to solve multi-stage stochastic programming problems with integer variables in 

each stage. They propose two solution methods and compare these methods with commercial 
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software and a standard LR method using an application of stochastic UC problem. The 

conclusion is that the methods they propose are hard to implement, but they can ensure a feasible 

solution within a reasonable CPU time. Particularly, one of the methods requires a new 

Lagrangian function for each subproblem, which is a challenge for implementation in practice. 

   LR is also a well-known method, and with some enhancement it can be used for solving 

stochastic IPs, particularly working with decomposition methods. Depending on the constraints 

that are relaxed, there are three decomposition methods: scenario decomposition, nodal 

decomposition, and geographical decomposition (Dentcheva and Romisch, 2004). In scenario 

decomposition, the Lagrangian multipliers are associated with nonanticipativity constraints. The 

problem can be decomposed into small subproblems; each contains one single scenario. In nodal 

decomposition, the Lagrangian multipliers are associated with dynamic constraints, i.e., time-

coupling constraints, at each node of the scenario tree. With this relaxation, the problem is 

decomposed by each node with one single time period. Geographical decomposition decomposes 

the whole problem by system components. For example, in a UC problem Lagrangian multipliers 

are associated with the supply-demand balance constraint; the sum of electricity supplied by 

generating units in the system should be greater than or equal to the demand. Through 

geographical decomposition, the problem can be decomposed into a much smaller decision space 

because there is only one system component in each subproblem. The first paper that applies LR 

to solving a scheduling problem in power generation systems is Muckstadt and Koenig (1976), 

although the model is deterministic. In this paper, the problem is solved using a geographical 

decomposition; it is decomposed into single generating unit problems. Then a subgradient 

method (Berksekas, 1999) is used to solve the problem. Numerical results show that the 
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relaxation method can produce a tight lower bound, the technique can solve a large-scale 

problem, and the error tolerance is acceptable. 

Takriti et al. (1996) use geographical decomposition to solve a multi-stage stochastic UC 

problem that considers generator failure and inaccurate load forecast as uncertainties. They 

decompose the whole problem into many single-generator problems, and then they employ 

dynamic programming to solve these subproblems using subgradient method to update the 

Lagrangian multipliers. They provide 3 numerical examples to validate their solution method; 10 

generator outage scenarios, 22 generator outage scenarios, and 16 scenarios with different loads. 

The results indicate that the cost of the electric power system can be reduced significantly by a 

stochastic model. The size of the numerical examples used is relatively small; therefore, the 

method may not be applied to solving a large-scale problem (Ozturk, 2003). 

Scenario decomposition is also an important decomposition method used to solve multi-stage 

stochastic programming models. Rockafellar and Wets (1991) propose a progressive hedging 

algorithm. It is based on ordinary Lagrangian relaxation and overcomes the nonseparability of 

augmented Lagrangian due to cross-multiplication of decision variables in two different 

scenarios in the quadratic penalty term in the objective function. It then solves the relatively 

much smaller subproblems that are single-scenario problems while updating the Lagrangian 

multipliers; the algorithm terminates when the preset stop criteria is satisfied. Nevertheless, this 

algorithm has some limitations. First, there are some implementation issues: it is difficult to 

select proper multipliers, and there is no conclusive theory that can be followed except for some 

empirical results (Mulvey and Valdimirou, 1991). Second, although convergence for convex 

problems can be achieved (Rockafellar and Wets, 1991; Ruszczynski, 1995), when it comes to 
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solving stochastic programs with integer variables, convergence is not guaranteed (Rockafellar 

and Wets, 1991). There are some applications of this algorithm. Mulvey and Vladimirou (1991) 

investigate the performance of the algorithm by applying it to stochastic generalized networks. 

They also show their numerical results on how to set the penalty parameters. Comparisons to 

other existing solution methods are also provided. Other extensions based on a progressive 

hedging algorithm can be found in Helgason and Wallace (1991), Mulvey and Ruszczynski 

(1995), Lokketangen and Woodruff (1996), Caroe and Schultz (1999), and Liu et al. (2003). 

Schultz (2003) summarizes the methods used to solve multi-stage stochastic IPs. He mentions 

that nonanticipativity constraints in a multi-stage model are more complicated than those in a 

two-stage model; therefore the existing subgradient methods are not applicable due to the high 

dimension of the resulting Lagrangian dual. Alonso-Auso et al. (2003) propose a branch-and-fix 

coordination approach. In this approach variables are split across scenarios. The branching nodes 

and branches are coordinated with the nonanticipativity constraints through a branch-and-fix 

scheme so that nonanticipativity constraints are satisfied. The methods presented are suitable for 

multi-stage stochastic pure 0-1 programs and two-stage mixed 0-1 programs.  

Compared with other decomposition methods, nodal decomposition is still an open area 

(Schultz 2003). Some preliminary results can be found in Dentcheva and Romisch (2004), 

Romisch and Schultz (2001).  

In addition to the approaches mentioned above, other methods that have been applied to solve 

stochastic IPs and their applications to power planning problems include: Dantzig-Wolfe 

decomposition method (Singh et al., 2009), column generation (Shiina and Birge, 2004), bundle 

methods (Borghetti et al., 2003; Bacaud et al., 2001), branch-and-price (Lulli and Sen, 2004), LR 
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and dynamic programming (Bard, 1988), and heuristic-based methods (Ahmed and Sahinidis, 

2003; Fan et al., 2002; Zhuang and Galiana, 1988). 

The methods reviewed in this subsection offer some advantages when solving stochastic linear 

programs or stochastic IPs. However, the numerical examples used in some of the papers 

represent small- or medium-scale problems. For example, Takriti et al. (1996) use 10, 16, and 22 

scenarios to test their methods. In addition, most efficient methods proposed only accommodate 

multi-stage stochastic IPs with integer variables in the first stage. Nevertheless, in some practical 

problems, e.g., stochastic UC problems or other power generation planning problems, integer (or 

binary) decision variables are associated with each stage of the model. This feature complicates 

the problem and can significantly increase the solution time. In this thesis, we propose a heuristic 

method to solve the underlying SMIP problem based on a scenario tree. The heuristic will be 

presented later in this thesis. 

2.4 Reserve Demand Curve 

The ISO can have a clear idea about the energy demand curve from customers’ bids. However, 

an ISO has no way of measuring reserve demand as perceived by its customers because the 

reserve requirement depends on RT scheduling and RT contingencies. To make sure that the 

system reliability can be maintained all the time, the ISO usually sets a fixed reserve requirement 

according to the benchmark from the North America Electric Reliability Corporation (NERC). 

Once the reserve requirement cannot be met, the ISO considers load shedding to maintain the 

supply-demand balance and the reserve requirement. The drawback is that the ISO may have to 

shed load just because a small amount of reserve requirement is not satisfied, and energy prices 

soar to the capped price during the shortage hours. Thus, some ISOs in the United States 
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implement an operating reserve demand curve based on reserve shortage. The basic idea is that 

when the reserve capacity is below the system target requirement but above the minimum 

requirement, the energy price and reserve price will increase accordingly. If the reserve capacity 

reduces to or below the minimum reserve requirement, the ISO has to adopt load shedding to 

recover the system reserve capacity level. As a result, the ISO sets up a high penalty cost or a 

capped price for reserve usage. When the reserve demand reaches to the minimum reserve 

requirement, the energy price will increase to its capped price. Then customers have to decide if 

they want to reduce their energy demand or face rotating blackouts. This price is usually set by 

the supply side and is an estimation of how much customers will pay for protecting themselves 

against blackouts. 
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Figure 2-3 Illustrative reserve demand curve (Midwest ISO 2005) 

 

The idea of using a reserve demand curve to implement shortage pricing is illustrated in 

Figure 2-3. In Figure 2-3, suppose that the ISO sets up a target reserve level which is an ideal 

level including all the reserves available in the system. This level accounts for a percentage of 

the energy demand, e.g., 17% of the energy demand. There is a minimum reserve requirement 

equal to 3% of the energy demand, for instance. If, in RT, the reserve level remains above this 

target level, the price for reserves is 0. Accordingly, the energy price is low because there is no 

energy scarcity at all in the system. Nevertheless, the reserve capacity cannot stay at or above 

this ideal level in RT due to unexpected high demand, unit outages and transmission line outages, 
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etc. In case of these contingencies, the reserve capacity level will drop below the target level, say, 

to 80% of the target level (the target level is 17% of energy demand). Then a reserve price is 

applied to the 20% of target level traded for energy; but this price should not be too high because 

there are still plenty of reserves leftover in the system. 80% of the target level is still acceptable 

for the ISO. If there is a major outage occuring in the system, the reserve level in the system 

drops to 5% of the energy demand, which is close to the minimum reserve requirement. A much 

higher reserve price, $500/MWh, is charged to customers for the reserve capacity used to supply 

energy. The energy price in this scenario should also include this shortage price to come up with 

a high energy price. This is because in such a scenario, where reserve is critically short, every 

unit supplying energy or reserve is contributing to system reliability. These generating units are 

equally important. Without any one of them, the system could collapse instantly. If the reserve 

level reaches to the minimum requirement level of 3%, $1000/MWh is charged to warn 

customers that the reserves are in shortage and that the possibility of an intended blackout is very 

high. The high price of $1000/MWh is also used to suggest that customers may consider 

reducing their load to mitigate the reserve shortage. In the worst scenario where the reserve level 

shrinks to the minimum reserve requirement, the reserve price hits the capped price, which is 

supposed to be the maximum price that customers would like to pay to avoid load shedding. If 

this happens, although rare in practice, the ISO has to apply rotating blackouts to reduce the load 

so that the supply-demand balance can be maintained. Load shedding is always the last resort for 

the ISO. But in some extreme situations, without shedding load, the frequency of the electric 

power system cannot be maintained, which can directly result in a system-wide failure. The 

capped price poses one of the challenges in the operating reserve curve. It is hard to estimate 
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how much customers are willing to pay to avoid taking the risk of blackouts. Above this price, 

customers would rather take the consequences of the blackout than pay an even higher price, 

because for them, the cost incurred by a blackout is lower than that price they pay to get more 

reserves, e.g., some extremely expensive imported reserves ISO buys from some external 

systems. Therefore, as a relatively safe and fair benchmark, Midwest ISO (2005) employs the 

value of lost load (VOLL) as the capped price. VOLL estimates the value of lost load from the 

customers based on historical data; it ranges from $2400/MWh to $20000/MWh (Cramton and 

Lien, 2000). Over VOLL, customers will not pay anything for extra reserves; instead, they would 

like the ISO to do the load shedding, usually by means of a rotating blackout. The reserve prices 

are not paid to the reserve capacity leftover in each time period in the RTM. Instead, they are 

paid to the reserve capacity traded for energy in RT. The marginal costs of reserve capacity not 

used to supply energy in RT is nearly 0 because their major costs are all fixed costs including 

start-up costs and no-load costs. Therefore, associated reserve prices are charged to reserves 

transformed into energy in RT. 

With a different definition of the target reserve level, we can draw a similar reserve demand 

curve to Figure 2-3. This curve can be continuously convex, piece-wise linear or like a step-

function. For example, NYISO uses a very simple reserve demand curve with a different setting 

of the target level. The total available 10-minute spinning and nonspinning reserves should be 

able to cover the first contingency in the system which is the largest capacity among all 

generators or the largest contingency. The 30-minute reserves can make at least 50% of the 

second contingency. Their demand curve appears to be a step-function. (Lynch, 2005). Hartshorn 



 

  35

(2001) describes the development of the demand curve for reserves and explains why a demand 

curve is needed. 

In this thesis, we integrate a reserve demand curve into the SMIP model in order to investigate 

the impact of the reserve shortage level in the system on energy/reserve prices. We will focus on 

the impact of the reserve demand curve on energy and reserve prices and on how it can prevent 

an ISO from cutting electricity demand from a modeling perspective. These features and related 

numerical results will be shown in Chapter 4.  

2.5 Electricity Pricing with Nonconvex Models 

Pricing electric power has been a very challenging area. The proposed compensation schemes 

should not only guarantee that there is adequate revenue to cover GenCos’ generation and 

operation costs, but should also minimize the financial risk faced by GenCos. In addition, in UC 

or similar power planning models, there are binary variables to represent the commitment states 

of generating units. Therefore, the resulting UC models are MIPs. While duality theory can be 

applied to price linear programs, it cannot be employed as the method to obtain dual prices for a 

MIP or IP. Gomory and Baumol (1960) discuss the details of pricing IPs and explore the dual 

prices of IPs. Particularly, they explain why the shadow prices (or the dual prices) of an IP can 

be different from the shadow prices of a conventional LP. An illustrative example is given in 

Figure 2-4. The feasible region of an LP maximization problem, i.e., OABCD, is given in Figure 

2-4(a). Suppose that corner C is the optimal solution to the LP; M is the optimal solution of its 

corresponding IP; segment LL’ is the level curve of the optimal LP objective function value. 

Figure 2-4(b) shows that constraint CD moves rightwards if we increase the right hand side of 

constraint CD by one unit. Then the optimal solution to the LP changes from C to C’; the shadow 
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price (or the dual price) is positive. Nevertheless, the optimal solution to the IP is still at M 

because there are no new integers covered by the feasible region in Figure 2-4(b). Therefore, the 

shadow price (or the dual price) of the IP is 0, and we can safely conclude that the dual price of 

an LP can be different from the dual price of its corresponding IP. Thus, unlike with LPs, it is 

very difficult to procure the relevant prices from an MIP. The obstacle exists in the UC problems 

and similar problems in electricity market models containing binary variables. Other theoretical 

discussions can be found in Wolsey (1981, 1998). 

 

 

Figure 2-4 Illustrative examples of shadow price of LP and IP 
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Scarf (1990, 1994) studies the analogy of simplex algorithm for solving LPs and economic 

theory of finding equilibrium prices in competitive markets. The author notes that it is difficult to 

draw similar analogies to IP algorithms and entities with non-convex decisions, e.g., whether to 

start-up a new production process. Scarf (1994) gives a numerical example to show that presence 

of non-convexity causes failures to find competitive prices.  

Some research on pricing MIPs has been conducted. O’Neill et al. (2005) provide a method 

based on an MIP where all the integer decision variables are binary. They first obtain the optimal 

solution to the MIP and then solve the whole problem as an LP after fixing the binary variables 

to their optimal values. To achieve this goal, they relax the integer constraints on the binary 

variables and add a group of new equality constraints, setting the value of binary variables to 

their optimal IP solution. The dual prices corresponding to the equality constraints are viewed as 

additional prices for the commitment of firms. They are used to cover the fixed costs associated 

with the binary variables in the MIP. The relevant dual prices of LP can be procured directly 

because the duality theory can be applied to an LP. By solving each producer’s problem, the 

authors show that the price equilibrium is achieved and each individual producer is satisfied with 

the compensation scheme. The same numerical example used in Scarf (1994) is employed to 

support their theory on the price equilibrium and to show how the method interprets the solution. 

Some studies have investigated and proposed compensation schemes and compensation plans 

for electricity markets based on either LPs or MIPs. Wong and Fuller (2007) propose different 

compensation schemes and reliability-relevant compensation for a single-period stochastic linear 

programming model. The compensation schemes include DA schemes, RT schemes, and hybrid 

schemes that use prices from both DAM and RTM. They show that the variance of profit across 

all the scenarios is 0 for each generating unit in the hybrid compensation schemes, while the 

variance of profits is high in other compensation schemes. It is beneficial to GenCos when their 

profit variance is 0; it can relieve their concerns about the uncertainties of their returns in the 

RTM due to contingencies. In addition, as an LP, the model does not contain any binary 
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variables or integer variables. The property allows the authors to procure energy prices directly 

from the dual variables of power balance constraints; it is valid to apply the duality theory to 

price energy in the model, and the obtained prices are used to calculate the total revenues and the 

profits for the generating units. 

Sioshansi et al. (2007) demonstrate that using branch and bound or LR to solve UC problems 

leads to payoff equity problems, if the problems cannot be solved to complete optimality within 

the required time frame. Furthermore, they show that the magnitude of payoff deviation does not 

positively correlate to the optimality gap of the sub-optimal solution, i.e., the magnitude of 

payoff deviation might not necessarily decrease even if the suboptimal solution is actually very 

close to the optimal solution.  In other words, the payoff deviation could still be significant 

unless the problem is solved to its complete optimality. Therefore, they describe a lump sum 

payment called a make-whole payment to smooth out the payment difference among generators 

and compensate any start-up costs and no-load costs not recovered by inframarginal energy rents, 

if the underlying problem cannot be solved to its complete optimality. If a generating unit has a 

non-negative profit, its make-whole payment is 0; if it has a negative profit, the make-whole 

payment can lift its profit to 0, making this generating unit break even. The make-whole payment 

guarantees that each generating unit can have non-negative profit. To see the theoretical 

discussions about the optimality gap between a feasible solution and the optimal solution of an 

MIP, see Larsson and Patriksson (2006). 

In general, the two-settlement system previously mentioned is applied to pricing electricity. In 

a DAM, an ISO will release the predicted energy price based on the bidding and generation 

offers it receives. The prices will be associated with the power quantities committed by 
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generating units in the DAM. However, an RTM is always different from a DAM due to 

unexpected demand, forced outages and other contingencies for which the ISO has to adjust the 

generation levels of generating units in the RTM. The deviation of the DA generation level and 

the RT generation level of generators in the same period is paid at RT price; the ISO runs the 

economic dispatch model within a time window, e.g., every five minutes, to renew the electricity 

prices and operating schedules contingent on RT conditions. 

In this thesis, we extend the ideas of O’Neill et al. (2005) and the compensation schemes 

based on an LP in Wong and Fuller (2007) to price electricity based on an MIP. Due to the 

nonconvexity and the size of the problem in this thesis, we cannot solve it to its complete 

optimality, although a sub-optimal solution can be obtained using a heuristic. As a result, we 

apply the idea of make-whole payment (Sioshansi et al., 2007) in order to mitigate the payment 

difference due to nonoptimal solution and to guarantee that generators can have non-negative 

profits in each scenario. In this thesis, we propose two compensation schemes, including an RT-

based compensation scheme and a hybrid compensation scheme. In the hybrid compensation 

scheme we use a two-settlement payment mechanism different from the one used in industry; 

with deviations of DA and RT generation paid at the offer price instead of RT prices, we can 

achieve the interesting theoretical result of reducing the profit variance of generators. 

2.6 Summary 

This chapter first gave a brief review of relevant power planning models and their modeling 

techniques. It also provided a survey of previous solution methodologies used to solve stochastic 

programming problems, particularly stochastic IPs. These methodologies were classified 

according to their algorithms and features. While they have some limitations, they offer 
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advantages when solving small- or medium-sized problems. We discussed Benders 

decomposition, Lagrangian Relaxation-based decomposition methods (particularly the scenario 

decomposition and the progressive hedging algorithm), and other methods. The formulation of 

the SMIP model and the solution method used to solve the model are shown in Chapter 3 and 

Chapter 4, respectively. We also discussed the concept of the reserve demand curve and its 

benefits. 

Finally, we investigated the current research on pricing integer programs and its possible 

extensions to pricing electric power based on an MIP. Although the literature in this area is very 

limited, we focus on some recent work on MIP and electricity pricing and will combine and 

extend these ideas to price the MIP model with nonconvexity costs in this thesis. These issues 

will be addressed with numerical examples in Chapter 5. 



 

  41

Chapter 3 
A Stochastic Formulation for a Day-Ahead Electricity Market 

3.1 Introduction 

In this chapter, we will propose a multi-stage SMIP model for planning power generation in a 

DAM. The model considers generator outages and transmission line failures as uncertainties. To 

avoid long computational time due to a large number of scenarios, we only focus on important 

scenarios where contingencies occur from different starting times.   

3.2 Problem Statement and Assumptions 

The model we propose is an SMIP that is run by an ISO to determine the schedule (0/1 binary 

variables) and the generation level of generators based on their bidding information in a DAM. 

Here, we consider a PoolCo electricity market, in which there is no bilateral contract-based 

electricity trading. After receiving generation offers from GenCos that own thermal generating 

units and other types of units, the ISO decides when each accepted generating unit is to be turned 

on or off and estimates its output level for the next day, i.e., the RTM. Therefore, we adopt a 24-

hour time horizon. The generation offers for energy will follow a form of quantity-price pairs on 

an incremental basis. For example, a generation offer of a generating unit with a capacity of 

100MW can be formed by three pairs: ($5.25/MWh, 50MWh), ($10.5/MWh, 40MWh), and 

($20.5/MWh, 10MWh). This suggests that the price offered by this generator is $5.25/MWh 

when the generation level of the generating unit is up to 50MW for a full hour, $10.5 for the next 

40MW, and $20.5 for the last 10MW of its capacity. In addition, as required, the GenCos will 

submit relevant information, such as minimum generation level, start-up costs, no-load costs, and 



 

  42

ramp rates. Uncertainties considered in the model include generator outages and transmission 

line failures. Generation costs, start-up cost, and no-load costs are considered, while shutdown 

costs are not included, since they are less important than others (Bhattacharya, 2001). Constraints 

relevant to operations of thermal units are presented in the model, such as minimum up/down 

constraints, ramping limit constraints, and minimum generation level constraints. Meanwhile, 

fuel constraints and emission constraints are not included to reduce the size of the problem. Due 

to the complexity of a power generation model and an electricity market, one single model 

cannot accommodate all the features and characteristics. Furthermore, some parameter values 

cannot be estimated accurately in an academic environment. Therefore, we make the following 

assumptions to simplify the modeling and to narrow down the scope of the research: 

1) Over the time horizon of the model, no customers can respond to energy prices by varying 

their demand. For this reason, ramping up or down limit for demand is not formulated. 

2) Market participants submit the same generation offers for each generation facility for each 

dispatch period. 

3) The only contingencies that the ISO is concerned about are generating unit and transmission 

line outages; other equipment failures are not considered. 

4) Although demand varies over the time horizon, demand is deterministic within a time period. 

Therefore, the demand is identical in different scenarios at the same time period.  

5) Quick-start units can be synchronized to the system so quickly that they are able to supply 

spinning reserve when offline. 

6) Linear DC approximation is used to replace AC power flows. 
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7) Power loss along the transmission line is not considered. However, the loss can be roughly 

made up by increasing demand in each time period. 

8) More than one element in a system might break down at the same time, e.g., “N-2” 

contingencies; this model can accommodate these contingencies by changing parameters 

gstμ and ijstυ . However, to avoid combinatorial explosions due to the existence of binary 

variables, only “N-1” contingencies are considered, i.e., only one element, either a generating 

unit or a transmission line, breaks down during a single time period.  

9) Generator outages and transmission line failures may occur anytime during the time horizon, 

and they could be completely repaired and resume to function anytime after their failures. 

Although we can generate these scenarios with different repairing time by manipulating 

parameters gstμ and ijstυ , in this thesis, we only select the worst scenarios where a failure 

lasts for long hours in order to reduce the size of the problem. That is, once a unit or 

transmission line is down, it is down until the end of the planning horizon. This is also 

because repairing and restarting a unit or repairing a line can take more time than is covered 

by the model. In addition, for the same purpose of reducing the computational burden, we 

parsimoniously select some of the worst situations in which the outage unit or line is lost for 

a long time before it can work properly again. To make this assumption more clear, we give 

an illustrative example in Figure 3-1. This decision tree has 13 scenarios and 6 time periods 

(hours). In each hour, there are two contingencies. Scenario 1 is the most probable scenario 

with no contingencies. The remaining scenarios have two contingencies that start from 
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different time periods. For example, outages happen only during the last hour in scenarios 2 

and 3, whereas contingencies take place starting from hour 2 in scenarios 12 and 13. 

    

Figure 3-1 Illustration of scenario tree in the model 

3.3 Integration of the Reserve Demand Curve 

As discussed in the previous chapter, the basic idea of the reserve demand curve is that the ISO 

sets up a curve with respect to reserve shortage levels and their associated penalty costs. The 

curves can be continuous convex functions, piece-wise linear functions, or step-functions. For 

example, a step function is used in NYISO (NYISO 2001). In our model, the reserve demand 

curve is a step-function as illustrated in Figure 3-2. If the amount of reserve availability remains 

above the target level in RT, the penalty for reserve shortage is 0, as no further reserve is 

required. Accordingly, the price of energy is low, since there is no energy scarcity in the system. 
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In case of contingencies, the reserve availability may fall below the target level because part of 

the capacity is used to supply energy. If the available reserve level is between 50% and 100% of 

the target level, the amount of reserve shortage is penalized at $100/MW; $300/MW if it is 

between 20% and 50%; $600/MW if the available reserve  drops to some point between 10% and 

20%. The same penalties can be interpreted in terms of the reserve shortage, shown on the right 

side of Figure 3-2. If the reserve level falls below the minimum level, 10%, the penalty of 

reserve shortage rises to the capped energy price (converted from units of $/MWh to reserve 

prices in $/MW by assuming a duration of one hour). In general, the average VOLL is used as 

the capped price for load shedding (Brampton and Lien, 2000). The minimum reserve 

requirement is illustrated as 3% of the energy load. However, depending on some conditions of 

the system, the minimum reserve requirement can be allowed to drop to 0 (Midwest ISO, 2005).  

 
Figure 3-2 Four-step function of reserve demand curve 
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3.4 Stochastic Mixed Integer Programming Model Formulation 

This section provides the formulation and the description of the model, i.e., objective function 

and constraints. In order to improve readability of the complex notation, we have adopted the 

following convention: all subscripts are indices drawn from sets, and all superscripts are 

abbreviations for verbal descriptions. Please refer to the nomenclature list on pages xiii to xv for 

definitions of all symbols. 

     The model is shown below. 
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The objective of problem P is to minimize the total expected generation and operation costs 

including reserve shortage costs, load shedding costs, generation costs, start-up costs and no-load 

costs. Any unserved load is penalized at a high capped price. The reserve shortage is penalized 

with respect to the shortage level, following the four-step function shown in Figure 3-2. No-load 

costs refer to the costs to maintain generating units synchronized to the system, but without 

energy output.  

Constraints (3.2)-(3.3) give the step widths for the step-functions of energy offer and reserve 

demand, respectively. The quantities appearing in the generation offers are actually upper bounds 

for the energy supplied within that offer block. For example, as previously illustrated, in a 
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generation offer, ($5.25/MWh, 50MW), 50MW is the upper bound; any output level below or 

equal to 50MW for one hour is charged at $5.25/MWh. The two groups of constraints are 

identical, except that in (3.2) the right hand sides are associated with the binary variables, 

ensuring that the generation output of generating units may be positive at a time period within a 

scenario only when they are online, i.e., 1gstω = . 

Constraints (3.4) indicate that if a generator supplies power to the system, then it must be 

running at least at its minimum economical level. Although quick-start units can supply energy 

and reserve when they are available, slow-start units can supply energy and spinning reserve 

only when they are online. These restrictions are enforced by (3.5) and (3.6), respectively. In 

(3.5), if a fast-start unit does not break, 1gstμ = , it can supply both energy and reserve. (3.6) 

ensure that for a slow-start unit they can (cannot) delivery energy and prepare spinning reserve 

only when it is online (offline), i.e., 1gstω =  ( 0gstω = ). Constraints (3.7) are upper bounds on the 

reserve. For example, ten-minute spinning reserve supplied by a generator is limited by its ramp 

up rate and ramp up time, e.g., multiplying ramp up rates and ten minutes.  

Constraints (3.8) are power balance constraints at nodes. As mentioned in the assumptions, in 

this model we do not consider power loss along transmission lines; but an estimate of losses can 

be included in the demand. We use a DC approximation to replace the nonlinear AC power flows. 

For the details of the approximation, see Fuller (2005). 

Constraints (3.9) and (3.10) are nonanticipativity constraints. For each scenario s and period t 

constraints (3.9) ensure that the total power generation of a unit is equal to the expected value of 

the total output in all the scenarios to which s is matched in period t. Thus, the power outputs 
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intended to be the same are all equal to the expected value. We use binary parameters, satlk to 

indicate if scenario s shares the same decision scenario a in period t.  (3.10) are similar 

nonanticipativity constraints that enforce reserve decision variables equal to each other at these 

shared time periods. To make the size of the model small, we did not include all the variables in 

the nonanticipativity constraints except the power generation variables and reserve variables. If 

(3.9) and (3.10) hold, other decision variables naturally satisfy their own nonanticipativity 

constraints due to other constraints and cost minimization in the objective function. For example, 

the commitment state variables, gstω  must be constrained by the nonanticipativity if (3.9) is 

satisfied; i.e., if 
1

0
B

E
gbst

b
q

=
>∑ , 1gstω =  because of (3.2). Since the objective function of the model 

is to minimize the total costs,  gstz  must be equal to at least one of the right hand sides of (3.17) 

which are only associated with gstω . Thus, gstz  also satisfy their corresponding nonanticipativity 

constraints. 

The power-carrying capacity limit constraints on any transmission lines are modeled by (3.11). 

System target operating reserve requirements are satisfied through (3.12) (Chao et al., 2005); for 

example, total ten-minute spinning reserve capacity plus its reserve shortage should be greater 

than or equal to ten-minute system operating reserve requirements at any time in any scenario. 

The ten-minute spinning reserve requirement is typically determined by a simple rule, e.g., the 

greater of the largest generator outage or a percentage more than the peak demand. California 

ISO (2003) presents a more complicated measure to calculate the spinning reserve requirement. 

(3.13) represent the minimum reserve requirement. Since the numerical examples presented in 
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this thesis are assumed to be for an isolated system, a minimum reserve requirement other than 0 

is still needed to avoid endangering operative reliability (Midwest ISO, 2005). In practice, 

reserve requirements are set by zones in the area, namely, zonal reserve requirements.  To 

simplify the model we assume that there is one system-wide reserve requirement for the whole 

area. Zonal reserve requirements, however, can be incorporated into the model by modifying 

constraints (3.12) and (3.13), if we can have access to the relevant data. 

Constraints (3.14) guarantee that the amount of load shedding cannot be more than the 

demand. Constraints (3.15) are only applied to must-run units. A must-run unit must supply 

energy unless it is in forced outage, i.e., 0gstμ = . Constraints (3.16) make sure that the UC state 

variables are consistent with the parameters representing the availability of each unit. The use of 

gstμ⎡ ⎤⎢ ⎥  models all output levels of generators, including derated output 0 1gstμ< < . gstμ⎡ ⎤⎢ ⎥  

returns 1 unless 0gstμ = . That is to say, once gstμ is other than 0, gstω  is either 1 or 0; the 

underlying generating unit can still be selected to be online or offline. Constraints (3.17) model 

the downtime-dependent start-up costs (Nowak and Romisch, 2000) as described in Chapter 2. 

Here, we linearize the constraint (2.8) by adding an extra continuous variable, gstz , representing 

the start-up cost. gstz  is greater than or equal to any of the values 

( )
1

( ) 1,..., C
g gt g t k g

k
C

τ

τ ω ω τ τ−
=

− =∑ ， ; it is equivalent that gstz  must be greater than or equal to the 

maximum value of ( )
1

( ) 1,..., C
g gt g t k g

k
C

τ

τ ω ω τ τ−
=

− =∑ ， , and gstz  is non-negative (see (3.22)). 

Because the problem is a minimization problem, at optimality gstz must be equal to the maximum 
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value of ( )
1

( ) 1,..., C
g gt g t k g

k
C

τ

τ ω ω τ τ−
=

− =∑ ， , i.e., ( )
1,..., 1
max ( )

C
g

g gt g t k
k

C
τ

τ
τ τ

ω ω −
= =

−∑ . (3.18) and (3.19) 

are minimum down and minimum up time constraints, respectively (Nowak and Romisch, 2000). 

Constraints (3.20)-(3.21) hold for ramping up and ramping down limits between two consecutive 

time periods (Frangioni and Gentile, 2006). Phase angles are free variables, but in order to ensure 

that | | 1ist jstθ θ− << for system stability, we assume that [- , ]istθ α α∈ where α is set to 0.05. This 

also ensures the validity of the nonlinear real power flow approximation.
 

3.5 Summary 

In Chapter 3, we introduced a SMIP model to schedule electric power for the next day in a day-

ahead electricity market, with allowance for outages. Unlike classic UC problems, we integrated 

a reserve demand curve into the model to show the reserve shortage level in the system; reserve 

shortage is penalized in the objective function according to its level. As a result, the 

energy/reserve prices are impacted by the reserve shortage in the system. In addition, we 

considered many scenarios where there are generator and/or transmission line outages. The 

resulting model is a large-scale stochastic programming model with binary variables in each 

stage, i.e., time period, as the number of scenarios increases. Solving such a large-scale problem 

is challenging particularly when in practice ISOs need to solve the problem in a day-ahead 

market within a time limit. Motivated by the computationally challenging large-scale problem, 

we propose a heuristic methodology to obtain a good sub-optimal solution in the next chapter. 



 

  52

Chapter 4 
A Heuristic Methodology for Solving the SMIP Model 

4.1 Introduction 

The resulting model is a multi-stage SMIP problem that is challenging for commercial solvers. 

As described in Chapter 2, existing classical solution methods have some advantages solving 

stochastic IPs; but, they also have some limitations, such as that integer variables can only be 

associated with the first stage, or that numerical examples provided only have a small number of 

scenarios. The model proposed in this thesis can be easily extended to a large-scale optimization 

model if many scenarios are included; meanwhile, the ISO needs to solve the problem within 

some time requirement so that the DA schedule can be determined prior to the commencement of 

the RTM. Motivated by the need to solve the model within a reasonable time requirement, we 

propose a scenario-rolling heuristic to solve the problem based on the decision tree illustrated in 

Figure 3-1. This heuristic solves a small subproblem containing only some of the contingency 

scenarios at each iteration, and eventually obtains an overall near-optimal solution at the end. 

4.2 Why a Heuristic Methodology 

As previously mentioned in Chapter 2, major existing classical methods have difficulty solving a 

large-scale multi-stage SMIP with binary variables in each stage. Benders decomposition could 

be an option. However, according to the classical Benders algorithm, we have to put all the 

binary variables in the master problem in the underlying SMIP model, leaving the subproblem an 

LP. We have to solve the resulting large IP master problem at each iteration, and if there are 

many iterations, then the computational time could be very long. Solving the master problem is 
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probably not too different from solving the original SMIP model in terms of computational 

difficulty, and it must be solved repeatedly. Meanwhile, the subproblem is still a multi-stage 

stochastic LP; it cannot be easily decomposed into small problems due to the existence of 

nonanticipativity constraints, dynamic constraints (constraints imposed on decision variables in 

two consecutive time periods), and geography-coupling constraints. On the other hand, since the 

model is expected to be solved within a time requirement prior to the commencement of the 

RTM, an algorithm that may take a long time to solve the problem is not desirable. Given all of 

these computational difficulties and the solution time requirement in practice, Benders is not 

selected to solve the problem. As a scenario decomposition method, a progressive hedging 

algorithm is also a possible candidate method. Nevertheless, as previously mentioned, there is no 

guarantee that a multi-stage stochastic program with discrete decision variables converges. 

Besides, it is difficult to decide the penalty coefficient in the objective function. Therefore, a 

progressive hedging algorithm is not adopted here.  

We implemented both Benders decomposition and the progressive hedging algorithm in 

GAMS to evaluate the performance of the two methods given a large-scale numerical example. 

We found that both methods converge very slowly, i.e., after a long time, the stopping criteria 

are far from being satisfied. For the purpose of comparing the exact methods with the method 

proposed in this thesis, we will show the performance of Benders decomposition and progressive 

hedging algorithm at the end of this chapter. 

Given the performance of classical methods, we provide a heuristic method that can return a 

feasible solution within the time requirement but without greatly affecting solution quality.  



 

  54

4.3 Solving the SMIP Problem 

The heuristic is illustrated in Figure 4-1 (refer to Figure 3-1 on page 43). The iterations roll 

forward in time, one or more time periods per iteration, while fixing part of the solution found in 

previous iterations. However, to include some “look ahead” capability, the future of the most 

probable scenario is included in the subproblem at each iteration. 

At each iteration, the heuristic solves a small subproblem including only a subset of the full 

scenario set. At iteration 1 (see Figure 4-1 (a)), only highlighted branches are solved in the first 

subproblem that contains the most probable scenario and the bottom four scenarios. Before the 

next iteration starts, these four outage scenarios are removed from the subset, since solutions to 

these scenarios have been found. The most probable scenario remains in the subset, and the 

solutions obtained in periods 1 and 2 are fixed at the values found in iteration 1. In iteration 2 

(see Figure 4-1(b)), there are four new outage scenarios along with the most probable scenario. 

The scenario subset with these five scenarios is solved given that decisions in the first two 

periods are known. Again, at the end of iteration 2, all four outage scenarios are deleted from the 

subset, and solutions of time periods 3 and 4 in the most probable scenario are fixed. At this step, 

solutions of the most probable scenario in periods 1, 2, 3 and 4, which are known, are transferred 

to and used in iteration 3 (see Figure 4-1 (c)). The same procedure is repeated until all scenarios 

are removed from the decision tree.  

As only a selected set of scenarios are use at each iteration, and the method rolls forward in 

time to a different bundle of scenarios, we call this heuristic a scenario-rolling heuristic. 

To describe the heuristic in general, one can use a concise representation of the decision 

variables in the model. Suppose that ,( , , , , )LS S E R
st ist ist mnst gbst gmst gstx q q q q zθ= include all the 
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continuous decision variables in scenario s during period t, and ( )st gsty ω= include all the binary 

variables in scenario s during period t. Denote an optimal solution of a subproblem by ( *
stx , *

sty ). 

Scenario “0” refers to the most probable scenario. The subset of outage scenarios solved in 

iteration k is defined as kγ , and kSP  is used to denote its relevant subproblem that only contains 

scenarios in kγ and scenario 0. kt is defined as a subset of time periods; it contains time periods 

in the most probable scenario shared by the outage scenarios in kγ , 

e.g. * * * *, } , },0 0{ {t t st stx y x y= ks γ∈ , kt t∈ . ,kSP ,kγ and kt are illustrated in Figure 4-1 (see the legends). 

In Figure 4-1, we solve an equal number of scenarios in each iteration, i.e., five scenarios. 

However, the number of scenarios solved in each iteration can be different, giving the user the 

flexibility to determine the size of subproblems. All kγ  in the numerical examples of this chapter 

contain the same number of contingency scenarios, except the last iteration that contains the 

remaining set of scenarios. 
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Figure 4-1 Small illustrative example for scenario rolling heuristic 

   Suppose that the scenario-rolling heuristic starts from the bottom of the decision tree. 

Step 1: k =1, initialize the outage scenario subset kγ ; 

Step 2: Solve kSP including }{0 kγ∪ and obtain *
stx  and *

sty ; 

Step 3: Fix variables in the most probable scenario: ,
*
0tx ,

*
0ty  , ;k ks t tγ∈ ∈ record outage scenario 

Branches where variables are fixed  

Branches being solved in the current 

iteration 

Branches not being solved in the 

current iteration 

Branches solved in previous iteration(s)

Figure 4-1 (b). Iteration 2 (k=2) 

γ2= {5,6,7,8}, t2={3,4}, 

scenarios in SP2: 0, 5, 6, 7, 8 

Figure 4-1 (a). Iteration 1 (k=1) 

: γ1= {9,10,11,12}, t1={1,2},  

scenarios in SP1: 0, 9, 10, 11, 12 

Figure 4-1 (c). Iteration 3 (k=3) 

γ3= {1,2,3,4}, t3={5,6}, 

scenarios in SP3: 0, 1, 2, 3, 4 
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variables *
stx , *

sty , for , ;ks tγ∀ ∈ ∀  

Step 4: Empty the incumbent kγ , then let k=k+1. 

      Update kγ by introducing a new bundle of unsolved outage scenarios from the scenario tree 

into the subset. 

If kγ = ∅  after update, then go to step 5; 

        Otherwise go to Step 2. 

Step 5: All the scenarios have been solved; a feasible solution to the overall problem is obtained. 

In the next section, we give two numerical examples to show the performance of the heuristic. 

4.4 Numerical Examples 

In this section, we provide two numerical examples to test the performance of the heuristic 

method. The first example is a 6-bus small power system. We consider 70 scenarios including 

generating unit outages and a transmission line outage. The results are analyzed and discussed. 

The second example contains 32 generating units and 20 buses, and we consider 185 scenarios 

including generating outage scenarios only. 

4.4.1 A 6-bus Power System 

4.4.1.1 Data for 6-bus System 

In the first numerical example, we use a small power network that includes 6 buses. The 6-bus 

power network topology is given in Figure 4-2. Tables 4-1 to 4-3 show the data used in this 

example. The system consists of one nuclear plant and five thermal generating units, nine lines, 

and three loads at nodes 2, 3, and 4, respectively. The nuclear plant is the base unit that is 

expected to run all the time unless it breaks down, thus it is the only must-run unit. The nuclear 
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unit has the lowest fuel cost and highest start-up cost; three cyclers are generating units that will 

be turned on and off subject to minimum up/down constraints, depending on need; two peaking 

units or peakers are flexible units with expensive fuel costs and low start-up costs, and their start-

up time is very short. Particularly, peaker 2 has the most expensive fuel cost and the lowest start-

up cost. These units are needed when there is a contingency such as equipment failure or 

unexpected high demand. The generating units are allocated as follows: one base unit with the 

largest capacity at node 5, one cycler and one peaking unit at node 1, and one peaker and two 

cyclers at node 6. Among the two peakers, peak 2 associated at node 6 has the most expensive 

fuel cost and the smallest capacity. The system is scheduled over a 24-hour horizon. Time period 

1 starts from 12:00 am on the delivery day. Each time period lasts one hour. We do not consider 

any GenCos that own groups of these generating units; each generating unit is independent and 

submits its own generation offer.  

 

Figure 4-2 6-bus test system 

 

G  G  G 

1 

2 3 4 

5 6 

1 peaker 

1 cycler  

1 base unit
2 cyclers, 1 peaker 

Load Load Load 
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Table 4-1 6-bus system generating unit data 

Generating Units Base Unit 
at Node 5 

Cycler 1 
at Node6 

Cycler 2 
at Node 6 

Cycler 3 
at Node 1 

Peaker 1 
at Node 1 

Peaker 2 
at Node 6

max
gQ (MW) 400 350 155 100 100 70 

MSL
gQ (MW) 100 20 15 10 10 10 

dn
gT up

gT (Hour) 24 5 3 1 1 1 

dn
gR up

gR (MW) 200 150 75 40 80 60 

su
gR sd

gR (MW) 100 20 15 10 20 10 

C
gτ (hour) N/A 6 10 8 0 0 

C
gg

C τ ($) (N/A) 225 225 225 175 90 

NL
gC ($/hr) 80 80 80 100 100 150 

(5.31,100) (7.94,55) (10.08,140) (17.28,30) (19.20,30) (39.44, 30)

(5.38,100) (8.20, 40) (10.68 ,90) (18.29,30) (20.32,30) (40.56, 20)

(5.53,120) (8.54, 30) (11.09, 70) (19.10,30) (21.22,30) (57.09, 10)
4-pair ( E

gbC , E
gbQ ) 

($/MWh, MW) 
(5.66,80) (9.01,30) (11.72, 50) (19.92,10) (22.13,10) (57.71,10) 

 

Table 4-2 6-bus test system transmission line data 

Node i Node j Bijst ( 1−Ω ) Uij(MW) 

1 2 2.74 150 

1 4 6.87 150 

2 3 2.9 175 

5 2 3.49 200 

5 3 5.4 120 

5 4 8.62 130 

6 3 4.31 200 

6 4 5.46 300 

6 5 5.21 100 

 

 



 

  60

Table 4-3 6-bus test system load data 

Period Node 2 Node 3 Node 4
Total 

demand 

1 71.136  144.723  146.604  362.463  

2 78.660  149.559  160.740  388.959  

3 78.660  152.428  160.740  391.828  

4 114.000  152.000  161.500  427.500  

5 114.000  154.404  166.250  434.654  

6 114.000  160.028  171.000  445.028  

7 114.000  168.245  195.073  477.318  

8 95.057  190.380  254.505  539.942  

9 134.708  237.782  320.325  692.815  

10 168.456  237.910  322.483  728.849  

11 170.157  288.492  319.140  777.789  

12 168.456  285.492  317.978  771.926  

13 157.320  277.396  298.680  733.396  

14 157.320  277.396  311.836  746.552  

15 165.053  291.337  309.110  765.500  

16 163.351  288.338  324.522  776.211  

17 163.351  288.338  310.935  762.624  

18 158.246  279.327  307.592  745.166  

19 144.734  265.700  295.762  706.196  

20 144.734  265.700  298.976  709.411  

21 146.308  268.584  233.073  647.965  

22 136.868  251.256  192.888  581.012  

23 83.904  173.280  175.750  432.934  

24 94.392  154.024  171.456  419.872  

 

 

For the sake of simplicity, only spinning reserves are considered in the 6-bus example. The 

target spinning reserve requirement is set to 400MW, equal to the largest unit capacity. The 

minimum reserve requirement is 25MW. We consider three contingencies in each time period; 
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two are generator outages, and one is a transmission line outage. The two generating units 

selected are the base unit at node 5 and the largest cycler at node 6, as these units have the more 

significant impact on the reliability of the system than other units. The line between nodes 5 and 

2 is chosen as the line outage as it connects the base unit and one of the demand nodes. The most 

probable scenario is given the highest probability. We give a probability of 0.8 to the most 

probable scenario. The other 0.2 probability is evenly divided among the outage scenarios, 

assuming that they have identical probabilities. As to initial states of the generating units, the 

must-run unit and the cyclers at node 6 are in “on” state.  In the real world, the states of 

generating units in period 1 depend on their states the day before, subject to minimum up/down 

constraints. However, in an academic environment, we have no knowledge of their states on the 

preceding day; therefore, we narrow down the time frame to a fixed 24 hours and assume that 

they are online.  

Penalty costs for lost load are set to $10000/MWh. We use a four-step function to represent the 

reserve demand: $1000/MW for the first 100MW reserve loss, $3000/MW for the next 250MW, 

and $6000/MW for the reserve shortage between 250MW and 275MW. The last 25MW will be 

priced at $10000/MW. The function is similar to the one shown in Figure 3-2.   

The decision tree with 70 scenarios for the 6-bus system is shown in Figure 4-3. As shown in 

Figure 4-2, we selected the largest base unit at bus 5 and the largest cycler at bus 6 as generator 

outages because these two largest units have more impact on the reliability of the system than 

other small generating units. We chose the line connecting the supply bus 5 and demand bus 2 as 

the transmission line outage since this line connects the base unit at bus 5, and this outage can 

restrict the output level of the largest unit. These three contingencies occur from time period 2 
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and last for 23 time periods. Therefore, we have 69 contingency scenarios with the assumption 

that a contingency, if it occurs, always remains until the end of the time period 24. Plus the most 

probable scenario, there are a total of 70 scenarios considered in the scenario tree. Scenario 0 

represents the most probable scenario where nothing breaks down from time period 1 to period 

24. In scenario 67, the unit with the second-largest capacity in the system is down from time 

period 2. The largest unit is offline from time period 2 in scenario 68. Scenario 69 represents a 

transmission line outage starting from the second time period. All outages hold until the end of 

time period 24, no matter when they occur. At the beginning of period 1, i.e., “now” in Figure 4-

3, we assume that it is known to the ISO that all the equipment works perfectly without any 

failures in the next one hour. That is why the contingencies occur from time period 2.  

We could incorporate demand scenarios into the scenario tree where actual demand levels 

deviate from the expected demand. However, an astronomical number of demand realizations 

can easily render the problem intractable. For example, assume we only have three demand 

realizations in each time period: a high demand, an expected demand, and a low demand. Then, 

we have a total of 94,143,178,827 scenarios at the end of time period 24. Thus, we did not 

consider demand variations, and assume that the ISO can have accurate forecast of the demand 

for the next 24 hours. 
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Figure 4-3 Scenario tree for 6-bus system 

4.4.1.2 Performance of Heuristic on 6-bus System 

The problem has 300,749 constraints and 92,401 variables including 10,080 binary variables. 

The scenario-rolling heuristic is implemented in GAMS and solved using Cplex 9.1 (see 

Appendix A for the GAMS coding of the numerical example). The program is run on a Sun 

Blade 2500 Workstation with 1.6GHz CPU and 5GB memory. We implemented the heuristic 

with different sizes of outage scenario subsets and compared the quality and efficiency of the 

resulting heuristics. The results are shown in Table 4-4.  
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Table 4-4 Performance of scenario rolling heuristic and Cplex for the 6-bus system  

 

Maximum # of 

Scenarios Solved  

in Each Iteration  

# of 

Iteration Obj. Value 

 Solver  

Time 

 (in sec.) 

Gap with  

Lower Bound 

4 23 1070059.337  34.276 0.080% 

7 12 1069823.495   40.704   0.058% 

10 8 1069823.735 51.625   0.058% 

13 6 1069768.129 60.748     0.053% 

19 4 1069797.568 108.448    0.056% 

25 3 1069782.652 114.497   0.055% 

37 2 1069330.810 215.950    0.012% 

Cplex 1 1069343.264 18000.000 0.014% 

Cplex lower bound N/A 1069198.645   

 

   The rows 2-8 show the results for the scenario-rolling heuristic with different numbers of 

outage scenarios in the subset. Row 9 gives the result when Cplex is used directly to solve the 

problem. In each iteration of the heuristics, we set the time limit to 1000 seconds and the 

optimality gap to 0.01%; as soon as one of the two stop criteria is satisfied, the incumbent 

iteration is terminated. When we use Cplex to solve the problem directly, the time limit is 18000 

seconds and the optimality gap is 0. The columns display the maximum number of scenarios 

solved in each iteration in the heuristic, the number of iterations, the objective function value, 

solver time, and the gaps between heuristic solution, Cplex solution and the Cplex lower bound 

returned by Cplex. 

We can see from Table 4-4 that the scenario-rolling heuristic gives good-quality solutions 

when compared with Cplex. Meanwhile, the heuristic offers a significant advantage in terms of 

computation time. The heuristic with 37 contingency scenarios in each iteration only takes 
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215.950 seconds, representing only 1.120% of the Cplex computation time, and its solution has a 

gap of 0.012% with respect to the Cplex lower bound, which is better than the best solution 

found by Cplex after 18000 seconds. 

The heuristic grouping more scenarios in each iteration is expected to return better solutions 

than those solving fewer scenarios at each iteration. However, due the gap limit at each iteration, 

this is not necessarily true. All the heuristic solver times are very short; although this numerical 

example is not highly realistic, it is an example used to illustrate the performance of the scenario-

rolling heuristic. In the real world, the time requirement for DA schedule is usually at most two 

hours as the RTM begins after DAM closes. A more realistic numerical example than the 6-bus 

system will be shown later in this chapter to further evaluate the performance of the heuristic 

method. 

Next, we will take the 37-scenario heuristic (row 8 in Table 4-4) as an example to analyze the 

results of power output, load shedding and reserve shortage level in some selected scenarios, as it 

returns the minimum objective function value compared with others in Table 4-4. 
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Figure 4-4 Power generation level of generating units in the most probable scenario 

4.4.1.3 Discussion of Heuristic Solution to 6-bus System 

In the most probable scenario (see Figure 4-4), all the generating units are turned on to supply 

power during peak hours during period 8 to period 17, i.e., 8:00AM to 5:00PM. Since the base 

unit is the cheapest, it runs up close to its capacity of 400MW all the time, while its idle capacity 

contributes to meeting reserve requirement. The power gap between its output and the demand is 

made up by the next cheapest available units, the three cyclers. As slow-start units, these 

generating units can provide spinning reserves only when they are online. Therefore, they have 

to be turned on and supply some amount of energy, making up the difference between the 

demand and the generation level of the base unit. During peak hours, both peakers are turned on 

to supply energy to avoid a blackout, although they have more expensive fuel costs than others. 

In the last few time periods the electricity demand is lower than the demand during the peak time 

of the day, and the expensive peakers are turned off; the base unit and the cyclers are in “on” 

states to maintain the supply-demand balance. These quick-start units are just offline to save 
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their capacity for system reserves requirement. See Table 4-5 for the generation level of each 

generating unit in the most probable scenario. 

Table 4-5 Generation plan in the most probable scenario 

Time 
Period 

Base 
Unit 

Cycler 1 Cycler 2 Cycler 3 Peaker 1 Peaker 2 Load 
Shed 

Demand 

1 268.505  68.959  15.000  10.000  0.000  0.000  0.000  362.464  

2 292.131  71.827  15.000  10.000  0.000  0.000  0.000  388.959  

3 259.328  107.500  15.000  10.000  0.000  0.000  0.000  391.828  

4 287.847  114.653  15.000  10.000  0.000  0.000  0.000  427.500  

5 284.626  125.027  15.000  10.000  0.000  0.000  0.000  434.653  

6 262.710  147.318  15.000  20.000  0.000  0.000  0.000  445.028  

7 232.376  200.000  24.942  20.000  0.000  0.000  0.000  477.318  

8 257.308  200.000  42.634  20.000  10.000  10.000  0.000  539.942  

9 370.264  200.000  77.370  20.000  10.000  10.000  0.000  687.634  

10 377.353  200.017  80.000  45.000  10.000  10.000  0.000  722.370  

11 380.034  224.966  80.000  60.000  16.245  10.000  0.000   771.245  

12 387.213  217.787  80.000  60.000  10.447  10.000  0.000   765.447  

13 391.844  200.000  80.000  41.552  10.000  10.000  0.000  733.396  

14 372.770  228.782  80.000  45.000  10.000  10.000  0.000  746.552  

15 374.140  230.860  80.000  54.152  10.000  10.000  0.000 759.152  

16 380.330  224.670  80.000  60.000  14.929  10.000  0.000 769.929  

17 381.858  223.142  80.000  51.342  10.000  10.000  0.000 756.342  

18 387.884  200.000  80.000  60.000  11.196  0.000  0.000  739.079  

19 400.000  201.785  64.411  20.000  10.000  10.000  0.000  706.196  

20 394.970  220.030  64.411  20.000  10.000  0.000  0.000  709.411  

21 361.952  200.000  66.012  20.000  0.000  0.000  0.000  647.965  

22 400.000  156.012  15.000  10.000  0.000  0.000  0.000  581.012  

23 308.063  99.871  15.000  10.000  0.000  0.000  0.000  432.934  

24 375.000  29.872  15.000  0.000  0.000  0.000  0.000  419.871  

 

In Figure 4-5, we show the generation levels of the generating units in a contingency scenario 

where the base unit (the largest unit) is down from time period 9. We can see that all the units are 
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online to supply energy from time period 9 to avoid blackouts as the penalty for load shedding is 

very high. The most expensive quick-start unit, peaker 2, is turned on due to the loss of the base 

unit and peak demand during period 8 to period 20 to avoid load shedding. It is called on only 

when other units cannot ramp up to a higher output level in time because of ramping limits 

during time period 9, when the largest generating unit breaks down. However, peaker 2 is turned 

on in period 8 (before it is known whether a contingency will occur in period 9) and runs at its 

minimum economical operating level, so that it can be ready to ramp up to 70MW in period 9 in 

case there is a contingency such as a breakdown of the base unit. In this scenario, the system 

loses 400MW of capacity in 16 hours that can be used to supply energy and prepare reserves 

when there is no contingency. As a result, there is not enough capacity available to meet the 

target reserve requirements during some of the time periods, while the minimum reserve 

requirement must be satisfied. Table 4-6 provides the generation plan of generating units in this 

scenario. We can see that in time period 9, the generation output of the base unit drops to 0 and 

every other generating unit ramps up subject to the ramping limit or maximum generation level 

limit to meet the demand that is supposed to be satisfied by the base unit. For example, the most 

expensive peaker (peaker 2) ramps up from 10MW to 70MW in time period 9; due to its capacity 

limit, that is the maximum generation level to which it can ramp up. In period 10, peaker 2 ramps 

down to 17.370MW because cheaper generating units can further ramp up to their maximum 

generation level from period 9; it just needs to delivery 17.370MW to satisfy the electricity 

demand. However, in next hour, all the generating units are running at their maximum operating 

level except for peaker 2; it saves a capacity of 25 MW to meet the minimum reserve 

requirement because it is the most expensive unit and the minimum reserve requirement must be 
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satisfied all the time. As a result, the ISO has to shed load by 21.245MWh in period 11 to 

maintain the supply-demand balance when the reserve available in the system is only 25MW, 

barely satisfying the minimum reserve requirement. The numerical results demonstrate and 

interpret how the reserve demand curve works, as shown in Figure 3-2.  
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Figure 4-5 Power generation level of generating units in a contingency scenario (largest unit down 

from time period  9) 

During some time periods, when the largest generating unit breaks down, there is no idle 

capacity; each of the functioning generating unit splits their capacity between supplying energy 

and providing reserve or commits all of its capacity to supplying energy. As the most expensive 

generating unit, peaker 2 supplies the least energy compared with others; most of its capacity is 

used to meet the reserve requirement except during the peak hours, i.e., period 8 to period 20. 

Particularly, it is always used to satisfy the minimum reserve requirement during the shortage 

hours while other committed units are running at their maximum operating level. Peakers 2 is 
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turned off in the last few time periods when the demand is low and other generating units have 

adequate capacity to supply energy.  

Table 4-6 Generation plan in a contingency scenario (largest unit down from time period 9) 

Time 
Period 

Base 
Unit 

Cycler 1 Cycler 2 Cycler 3 Peaker 1 Peaker 2 Load 
Shed 

Demand 

1 268.505  68.959  15.000  10.000  0.000  0.000  0.000  362.464  

2 292.131  71.828  15.000  10.000  0.000  0.000  0.000  388.959  

3 259.328  107.500  15.000  10.000  0.000  0.000  0.000  391.828  

4 287.847  114.653  15.000  10.000  0.000  0.000  0.000  427.500  

5 284.626  125.027  15.000  10.000  0.000  0.000  0.000  434.653  

6 262.710  147.318  15.000  20.000  0.000  0.000  0.000  445.028  

7 232.376  200.000  24.942  20.000  0.000  0.000  0.000  477.318  

8 257.308  200.000  42.634  20.000  10.000  10.000  0.000  539.942  

9 0.000  350.000  117.634 60.000  90.000  70.000  0.000  687.634  

10 0.000  350.000  155.000 100.000  100.000  17.370  0.000  722.370  

11 0.000  350.000  155.000 100.000  100.000  45.000  21.245  771.245  

12 0.000  350.000  155.000 100.000  100.000  45.000  15.447  765.447  

13 0.000  350.000  155.000 100.000  100.000  28.396  0.000  733.396  

14 0.000  350.000  155.000 100.000  100.000  41.552  0.000  746.552  

15 0.000  350.000  155.000 100.000  100.000  45.000  9.152  759.152  

16 0.000  350.000  155.000 100.000  100.000  45.000  19.929  769.929  

17 0.000  350.000  155.000 100.000  100.000  45.000  6.342  756.342  

18 0.000  350.000  155.000 100.000  100.000  34.079  0.000  739.079  

19 0.000  350.000  155.000 100.000  91.196  10.000  0.000  706.196  

20 0.000  350.000  155.000 100.000  94.411  10.000  0.000  709.411  

21 0.000  350.000  155.000 100.000  42.965  0.000  0.000  647.965  

22 0.000  350.000  151.012 60.000  20.000  0.000  0.000  581.012  

23 0.000  272.934  80.000  60.000  20.000  0.000  0.000  432.934  

24 0.000  259.871  80.000  60.000  20.000  0.000  0.000  419.871  
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   In addition, node 2 is a demand node, and it is connected to supply nodes 1 and 5. In this 

scenario, the largest unit at node 5 breaks down. Therefore, the power injected in node 5 is equal 

to the power withdrawn from this node. There are two cyclers at node 6; part of the power output 

from the node goes through node 5 in order to supply demand at node 2. However, there are at 

most 200MW of power that can be delivered due to the power limit on the transmission line 

connecting node 5 and node 6. The 100MW going through node 5 will be used to inject power 

into node 2 and node 4. Nevertheless, the two cyclers cannot solely satisfy the total demand at 

the demand nodes. Therefore, in this scenario, peakers need to be turned on to supply energy. 

Since the peaker at node 1 is connected to both nodes 2 and 4 and is cheaper than the peaker at 

node 6, it runs at a high operating level in most of the time periods. 
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Figure 4-6 Power generation level of generating units in a contingency scenario (second largest unit 

down from time period  9) 
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Another generator outage scenario is shown in Figure 4-6; the second largest generating unit 

is down from time period 9. Table 4-7 shows the generation plan for this scenario. Similar to the 

largest unit outage, as the outage starts, every other generating unit ramps up to a higher 

generation level, making up the loss of the second-largest generating unit. In the first few time 

periods, due to lower demand, both peakers are turned off, since other generating units have 

adequate capacity to meet the electricity demand. There is a small amount of load shedding in a 

couple of time periods. For example, in period 11 there is 3.032MWh unserved load at node 3. 

We observe that the base unit at node 5 is not running at its maximum generation level, but it 

cannot ramp up its output level due to a power limit on the transmission line connecting node 3 

and node 5, which is binding. Meanwhile, other generating units are operating at their maximum 

generation level constrained by their capacity limits. This causes load shedding in this time 

period. For the same reasons, there is unserved load during periods 15 and 16. Peakers are turned 

on in advance in time period 8 so that they can ramp up to a high generation level in case they 

are needed for contingencies during the following hours, e.g., to make up the loss of cycler 2. 

Peaker 2 is turned off in the last few hours because the demand at that point is lower than that in 

the previous time periods. 
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Table 4-7 Generation plan in a contingency scenario (second-largest unit down from time period 9) 

Time  
Period 

Base 
Unit 

Cycler 1 Cycler 2 Cycler 3 Peaker 1 Peaker 2 Load  
Shed 

Demand 

1 268.505 68.959 15.000 10.000 0.000 0.000 0.000 362.464 

2 292.131 71.828 15.000 10.000 0.000 0.000 0.000 388.959 

3 259.328 107.500 15.000 10.000 0.000 0.000 0.000 391.828 

4 287.847 114.653 15.000 10.000 0.000 0.000 0.000 427.500 

5 284.626 125.027 15.000 10.000 0.000 0.000 0.000 434.653 

6 262.710 147.318 15.000 20.000 0.000 0.000 0.000 445.028 

7 232.376 200.000 24.942 20.000 0.000 0.000 0.000 477.318 

8 257.308 200.000 42.634 20.000 10.000 10.000 0.000 539.942 

9 400.000 0.000 117.634 60.000 90.000 20.000 0.000 687.634 

10 400.000 0.000 155.000 100.000 57.370 10.000 0.000 722.370 

11 343.212 0.000 155.000 100.000 100.000 70.000 3.032 771.244 

12 342.722 0.000 155.000 100.000 100.000 67.725 0.000 765.447 

13 348.280 0.000 155.000 100.000 100.000 30.116 0.000 733.396 

14 355.175 0.000 155.000 100.000 100.000 36.377 0.000 746.552 

15 331.831 0.000 155.000 100.000 100.000 70.000 2.320 759.151 

16 343.686 0.000 155.000 100.000 100.000 70.000 1.242 769.928 

17 334.240 0.000 155.000 100.000 100.000 67.102 0.000 756.342 

18 349.899 0.000 155.000 100.000 100.000 34.180 0.000 739.079 

19 385.117 0.000 155.000 100.000 56.079 10.000 0.000 706.196 

20 380.771 0.000 155.000 100.000 73.640 0.000 0.000 709.411 

21 351.818 0.000 155.000 100.000 41.147 0.000 0.000 647.965 

22 385.241 0.000 115.771 60.000 20.000 0.000 0.000 581.012 

23 272.934 0.000 80.000 60.000 20.000 0.000 0.000 432.934 

24 265.000 0.000 80.000 60.000 14.871 0.000 0.000 419.871 

 

 

   Figure 4-7 shows the generation level of the generating units in a scenario where there is a 

transmission line failure. The line between node 2 and node 5 breaks down. As a result, 200MW 

capacity over this line cannot be utilized. Node 5 is a supply node associated with the base unit 

only, therefore the generation output of the base unit is significantly affected by this contingency; 

its output is expected to be lower than ususal. Thus, the ISO has to determine a different 

generation plan for all the generating units from the schedule in the most probable scenario. 



 

  74

Compared with Figure 4-4 showing the generation plan in the most probable scenario, the 

generation level of the base unit drops in the time period 9 and afterwards because it can only 

deliver energy through other transmission lines connected to node 5. Meanwhile, the three 

cyclers ramp up their output to replace the loss of capacity due to the ramping down of the base 

unit. They are associated with node 6 and node 1, and power capacity limits over the lines 

connecting these nodes are adequate for them to deliver more electricity than in the most 

probable scenario.  
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Figure 4-7 Power generation level of generating units in a contingency scenario (transmission line 

failure connecting node 2 and node 5 from time period  9) 

 

   Table 4-8 gives the generation plan in this scenario. We see that in time period 9, the base unit 

ramps down due to one transmission line loss. Cycler 1 operates at its maximum generation level 

in a few hours in the new schedule, generating more electricity to satisfy the demand, since the 

output of the base unit shrinks due to the line failure. In most time periods, the generation level 
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of the three cyclers is higher than that in the most probable scenario. By rescheduling, the 

demand is still satisfied, and there is no load cut needed. Although there is no direct connection 

between node 6 and node 2, the cyclers can satisfy the demand at node 2 through node 3, as there 

is a connection between node 2 and node 3. 

Table 4-8 Generation plan in a contingency scenario (transmission line failure from time period 9) 

Time 
period Base 

Unit Cycler 1 Cycler 2 Cycler 3 Peaker 1 Peaker 2 Load 
Shed Demand

1 268.504 68.959 15.000 10.000 0.000 0.000 0.000 362.463 
2 292.131 71.827 15.000 10.000 0.000 0.000 0.000 388.958 
3 259.328 107.500 15.000 10.000 0.000 0.000 0.000 391.828 
4 287.847 114.653 15.000 10.000 0.000 0.000 0.000 427.500 
5 284.626 125.027 15.000 10.000 0.000 0.000 0.000 434.653 
6 262.709 147.318 15.000 20.000 0.000 0.000 0.000 445.027 
7 232.376 200.000 24.942 20.000 0.000 0.000 0.000 477.318 
8 257.308 200.000 42.634 20.000 10.000 10.000 0.000 539.942 
9 245.781 350.000 81.853 10.000 0.000 0.000 0.000 687.634 

10 250.762 350.000 94.238 27.370 0.000 0.000 0.000 722.370 
11 177.877 350.000 153.368 60.000 20.000 10.000 0.000 771.245 
12 184.068 350.000 151.379 60.000 20.000 0.000 0.000 765.447 
13 196.258 350.000 145.000 42.138 0.000 0.000 0.000 733.396 
14 201.370 350.000 143.630 51.552 0.000 0.000 0.000 746.552 
15 172.770 350.000 155.000 61.381 20.000 0.000 0.000 759.151 
16 186.183 350.000 153.746 60.000 20.000 0.000 0.000 769.929 
17 180.330 350.000 146.012 60.000 20.000 0.000 0.000 756.342 
18 201.102 350.000 143.898 44.079 0.000 0.000 0.000 739.079 
19 228.338 350.000 116.662 11.196 0.000 0.000 0.000 706.196 
20 229.534 350.000 115.466 14.411 0.000 0.000 0.000 709.411 
21 194.970 350.000 92.995 10.000 0.000 0.000 0.000 647.965 
22 216.896 274.116 90.000 0.000 0.000 0.000 0.000 581.012 
23 293.818 124.116 15.000 0.000 0.000 0.000 0.000 432.934 
24 375.000 29.871 15.000 0.000 0.000 0.000 0.000 419.871 

 

Tables 4-9 to 4-12 present the power flows in the most probable scenario and the other three 

contingency scenarios, respectively. The values in brackets in the first row of each table 
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represent the line capacity between nodes. If the value of the  power flow is negative, it indicates 

that the power flows in the opposite direction. For example, in Table 4-9, power flow from node 

5 to node 6 is -11.28MW in period 6, i.e., the power flows from node 6 to node 5 in the amount 

of 11.283MW.  

Table 4-9 Line flows in the most probable scenario (all in MW) 

Time  
Period 

5 to 6 
(200) 

5 to 2 
(200) 

5 to 3 
(150) 

5 to 4 
(180) 

6 to 3 
(300) 

6 to 4 
(300) 

2 to 3 
(175) 

1 to 2 
(150) 

1 to 4 
(150) 

1 18.201  58.330  89.178  102.796 56.121  46.038  -0.577  12.230 -2.230 
2 20.928  63.596  94.089  113.518 57.784  49.971  -2.315  12.749 -2.749 
3 4.971  61.524  88.928  103.905 66.865  60.605  -3.366  13.771 -3.771 
4 5.354  78.150  94.797  109.545 71.232  63.776  -14.029  21.821 -11.821 
5 1.805  78.152  94.569  110.099 73.987  67.846  -14.153  21.696 -11.696 
6 -11.283  77.077  91.959  104.956 82.730  78.305  -14.662  22.261 -12.261 
7 -31.519  74.576  87.419  101.900 95.847  97.576  -15.021  24.403 -4.403 
8 -33.656  69.418  94.305  127.240 103.112 115.866 -7.037  18.601 11.399 
9 -26.371  95.550  126.484  174.601 122.769 138.231 -11.471  22.506 7.494  

10 -27.625  106.351  129.938  168.707 126.563 135.812 -18.590  37.035 17.965 
11 -33.577  107.783  150.000  155.828 147.499 133.891 -9.007  46.823 29.422 
12 -30.297  108.128  150.000  159.382 144.785 132.705 -9.293  44.556 25.891 
13 -24.458  108.137  148.604  159.561 138.842 126.700 -10.050  39.133 12.419 
14 -36.039  106.560  143.941  158.308 144.700 138.043 -11.244  39.515 15.485 
15 -36.168  106.939  150.000  153.369 149.643 135.049 -8.305  43.460 20.692 
16 -33.029  105.318  149.251  158.791 146.447 135.194 -7.360  44.391 30.538 
17 -32.582  106.979  150.000  157.461 146.676 133.883 -8.338  41.751 19.591 
18 -21.467  103.452  148.824  157.075 136.542 121.990 -6.039  42.669 28.527 
19 -18.747  105.423  144.653  168.671 130.963 126.485 -9.917  29.395 0.605  
20 -22.010  105.120  143.390  168.470 132.654 129.777 -10.344  29.270 0.730  
21 -22.496  104.069  144.078  136.301 133.606 109.910 -9.100  33.139 -13.139 
22 11.953  102.360  148.254  137.434 108.440 74.525  -5.438  29.071 -19.071 
23 15.369  68.643  104.074  119.976 70.353  59.888  -1.147  14.114 -4.114 
24 46.065  77.566  109.877  141.492 49.591  41.346  -5.445  11.382 -11.382 

 

Table 4-9 shows that in the most probable scenario, the constraints (3.11) are not binding 

except for the line connecting node 5 and node 3 in periods 11 and 12. In these two time periods, 

the power flow through this line is 150MW, equal to the line capacity between node 5 and node 
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3.  From Table 4-9, we see that part of the power flowing out of node 5 comes from node 6, 

although the majority of it is injected by the base unit at node 5. For example, in period 11, 

33.577MW from node 6 is delivered to node 5 (a supply node) and injected into the demand 

nodes through node 5. 

Table 4-10 Line flows in the largest unit failure scenario (all in MW) 

Time  
Period 

5 to 6 
(200) 

5 to 2 
(200) 

5 to 3 
(150) 

5 to 4 
(180) 

6 to 3 
(300) 

6 to 4 
 (300) 

2 to 3 
 (175) 

1 to 2 
(150) 

1 to 4 
 (150) 

1 18.201  58.330  89.178  102.796 56.121 46.038  -0.577  12.230  -2.230  
2 20.928  63.596  94.089  113.518 57.784 49.971  -2.315  12.749  -2.749  
3 4.971  61.524  88.928  103.905 66.865 60.605  -3.366  13.771  -3.771  
4 5.354  78.150  94.797  109.545 71.232 63.776  -14.029  21.821  -11.821  
5 1.805  78.152  94.569  110.099 73.987 67.846  -14.153  21.696  -11.696  
6 -11.283  77.077  91.959  104.956 82.730 78.305  -14.662  22.261  -12.261  
7 -31.519  74.576  87.419  101.900 95.847 97.576  -15.021  24.403  -4.403  
8 -33.656  69.418  94.305  127.240 103.112 115.866 -7.037  18.601  11.399  
9 -160.064  54.643  64.566  40.855  183.947 193.623 -10.731  64.153  85.847  

10 -156.821  61.749  68.298  26.774  184.243 181.305 -14.631  85.597  114.403 
11 -162.987  56.897  86.048  20.041  203.511 183.502 -1.067  84.404  115.596 
12 -163.301  58.412  85.192  19.697  203.087 183.613 -2.786  85.332  114.668 
13 -159.267  62.095  84.464  12.708  199.170 174.959 -6.237  88.987  111.013 
14 -163.110  62.275  83.167  17.668  201.313 182.128 -7.084  87.961  112.039 
15 -163.434  59.932  88.188  15.314  205.589 180.977 -2.440  87.181  112.819 
16 -162.639  54.789  85.355  22.494  202.670 184.691 0.312  82.663  117.337 
17 -163.548  60.246  86.975  16.326  204.715 181.737 -3.353  87.128  112.872 
18 -160.560  60.201  84.159  16.199  199.995 178.524 -4.827  87.131  112.869 
19 -153.357  57.185  79.802  16.370  190.559 171.084 -4.661  82.889  108.307 
20 -153.295  56.817  79.693  16.786  190.421 171.284 -4.414  83.504  110.906 
21 -151.427  63.354  83.916  4.157  192.246 161.327 -7.578  75.375  67.589  
22 -151.035  65.813  77.509  7.714  186.808 163.169 -13.061  57.994  22.006  
23 -105.151  38.433  50.630  16.088  127.396 120.387 -4.746  40.725  39.275  
24 -102.263  41.460  44.483  16.320  120.102 117.507 -10.562  42.371  37.629  

 
 

As suggested in Table 4-10, there is no line congestion in the scenario where the base unit 

breaks down in period 9. However, the base unit at node 5 does not inject any power into the 
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system due to its breakdown from period 9. Thus, beginning in period 9, power delivered from 

node 6 to node 5 increases. It indicates that, through the line between node 6 and node 5, units at 

node 6 use the lines connecting node 5 to the demand nodes to deliver energy. For example, in 

period 9, the power flow from node 6 to node 5 is 160.064MW, and the power flows injected at 

node 5 to demand nodes 2, 3, and 4 are is 54.643MW,  64.566MW, and 40.855MW, respectively; 

the sum of  these power flows is exactly 160.064MW. In other words, the 160.064MW injected 

from node 6 goes through node 5 and is split by the three demand nodes. 

Table 4-11 Line flows in the second-largest unit failure scenario (all in MW) 

Time  
Period 

5 to 6 
(200) 

5 to 2 
(200) 

5 to 3 
(150) 

5 to 4 
(180) 

6 to 3 
(300) 

6 to 4 
(300) 

2 to 3 
(175) 

1 to 2 
(150) 

1 to 4 
(150) 

1 18.201  58.330  89.178  102.796 56.121  46.038  -0.577  12.230  -2.230  
2 20.928  63.596  94.089  113.518 57.784  49.971  -2.315  12.749  -2.749  
3 4.971  61.524  88.928  103.905 66.865  60.605  -3.366  13.771  -3.771  
4 5.354  78.150  94.797  109.545 71.232  63.776  -14.029  21.821  -11.821 
5 1.805  78.152  94.569  110.099 73.987  67.846  -14.153  21.696  -11.696 
6 -11.283  77.077  91.959  104.956 82.730  78.305  -14.662  22.261  -12.261 
7 -31.519  74.576  87.419  101.900 95.847  97.576  -15.021  24.403  -4.403  
8 -33.656  69.418  94.305  127.240 103.112 115.866 -7.037  18.601  11.399  
9 24.707  82.216  139.834  153.243 91.169  71.173  6.779  54.090  95.910  

10 14.684  94.787  140.812  149.717 100.241 79.444  -3.142  64.048  93.323  
11 -11.224  89.179  150.000  115.257 129.008 84.768  6.452  80.886  119.114 
12 -10.533  88.452  150.000  114.803 128.436 83.756  7.056  80.581  119.419 
13 1.613  86.103  150.000  110.564 118.388 68.342  9.009  80.225  119.775 
14 0.955  86.758  150.000  117.461 118.932 73.400  8.464  79.026  120.974 
15 -12.787  86.454  150.000  108.164 130.300 81.913  8.717  80.968  119.032 
16 -10.687  86.676  150.000  117.698 128.563 85.750  8.533  78.926  121.074 
17 -11.430  85.920  150.000  109.749 129.178 81.495  9.160  80.308  119.692 
18 1.069  84.321  150.000  114.509 118.838 71.411  10.490  78.329  121.671 
19 13.612  88.234  150.000  133.271 108.462 70.150  7.238  63.739  92.340  
20 16.130  85.727  150.000  128.914 106.379 64.751  9.321  68.329  105.311 
21 10.522  87.839  150.000  103.457 111.018 54.504  7.566  66.035  75.112  
22 26.919  92.368  150.000  115.954 97.453  45.236  3.803  48.303  31.697  
23 20.925  57.247  101.988  92.774  64.091  36.835  7.202  33.858  46.142  
24 18.552  60.384  94.017  92.046  59.692  38.860  0.314  34.322  40.549  
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In Table 4-11, the line between node 5 and node 3 is congested from period 11 to period 22 

because the base unit at node 5 has to increase its output level to make up the loss of the second- 

largest unit in this scenario. During periods 11 and 12, the base unit runs at its maximum 

generation level (see Table 4-7), and a small amount of the power injected at node 5 goes to node 

6.  

Table 4-12 Line flows in the transmission line failure scenario (all in MW) 

Time  
Period 

5 to 6 
(200) 

5 to 2 
(200) 

5 to 3 
(150) 

5 to 4 
(180) 

6 to 3 
(300) 

6 to 4 
(300) 

2 to 3 
(175) 

1 to 2 
(150) 

1 to 4 
(150) 

1 18.201  58.330  89.178  102.796 56.121  46.038  -0.577  12.230  -2.230  
2 20.928  63.596  94.089  113.518 57.784  49.971  -2.315  12.749  -2.749  
3 4.971  61.524  88.928  103.905 66.865  60.605  -3.366  13.771  -3.771  
4 5.354  78.150  94.797  109.545 71.232  63.776  -14.029  21.821  -11.821  
5 1.805  78.152  94.569  110.099 73.987  67.846  -14.153  21.696  -11.696  
6 -11.283  77.077  91.959  104.956 82.730  78.305  -14.662  22.261  -12.261  
7 -31.519  74.576  87.419  101.900 95.847  97.576  -15.021  24.403  -4.403  
8 -33.656  69.418  94.305  127.240 103.112 115.866 -7.037  18.601  11.399  
9 -72.232  0.000  138.013  180.000 169.909 189.712 -70.140  59.386  -49.386  

10 -74.521  0.000  145.283  180.000 177.606 192.111 -84.978  76.998  -49.628  
11 -107.160  0.000  150.000  135.037 208.371 197.836 -69.879  93.734  -13.734  
12 -102.626  0.000  150.000  136.694 204.620 194.133 -69.127  92.849  -12.849  
13 -98.607  0.000  150.000  144.865 201.295 195.098 -73.899  83.421  -41.282  
14 -97.293  0.000  150.000  148.664 200.209 196.127 -72.813  84.507  -32.956  
15 -105.697  0.000  150.000  128.467 207.161 192.142 -65.823  92.881  -11.500  
16 -102.918  0.000  150.000  139.101 204.862 195.965 -66.524  90.544  -10.544  
17 -101.771  0.000  150.000  132.101 203.913 190.328 -65.575  91.494  -11.494  
18 -97.419  0.000  150.000  148.520 200.312 196.167 -70.985  81.175  -37.096  
19 -84.739  0.000  150.000  163.077 189.823 192.100 -74.123  70.611  -59.415  
20 -84.182  0.000  150.000  163.716 189.363 191.921 -73.663  71.072  -56.661  
21 -84.018  0.000  150.000  128.987 189.226 169.751 -70.642  75.665  -65.665  
22 -57.578  0.000  150.000  124.474 167.354 139.184 -66.098  70.770  -70.770  
23 19.434  0.000  128.658  145.727 86.611  71.939  -41.989  41.915  -41.915  
24 61.543  0.000  141.278  172.179 61.849  44.565  -49.104  45.288  -45.288  

 

Table 4-12 presents the power flows on each branch in the transmission line scenario. The 

power flow on the line between node 5 and node 2 is 0 between period 9 and period 24 due to the 
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line failure. Meanwhile, the constraints on line connecting node 5 and node 3 are binding 

between period 9 and period 22, and the line between node 5 and node 4 is congested in periods 

9 and 10. This is because node 5 has to inject more power through other lines than in other 

scenarios since the line connecting it to node 2 does not work from period 9 in this scenario. 

Figure 4-8 shows the relationship between the generation level of the outage unit, the system 

reserve shortage, and the reserve available in the scenario in which the largest generating unit 

breaks down from time period 9. Table 4-13 gives the spinning reserve provided by each 

generating unit and the reserve shortage over the time frame. Since the base unit breaks down in 

time period 9, and other generating units have to ramp up to supply more energy than they do in 

the most probable scenario, these generating units have to use some of their reserve capacity to 

supply energy. Thus, there is a reserve shortage of 312.634MW in this time period. For the same 

reason, there is a series of reserve shortage between time periods 9 and 24.  
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Figure 4-8 Reserve available, reserve shortage, load shed in a scenario (largest unit failure from 

time period  9) 
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Table 4-13 Reserve provided by each generating unit in a scenario (largest unit failure from time 

period  9) 

Time 
period 

Base  
unit Cycler 1 Cycler 2 Cycler 3 Peaker 1 Peaker 2 Reserve 

available 
Reserve 
shortage 

1 131.495  150.000  75.000  40.000  80.000  70.000  546.495  0.000  
2 107.869  150.000  75.000  40.000  80.000  70.000  522.869  0.000  
3 140.672  150.000  75.000  40.000  80.000  70.000  555.672  0.000  
4 112.153  150.000  75.000  40.000  80.000  70.000  527.153  0.000  
5 115.374  150.000  75.000  40.000  80.000  70.000  530.374  0.000  
6 137.290  150.000  75.000  40.000  80.000  70.000  552.290  0.000  
7 167.624  150.000  75.000  40.000  80.000  70.000  582.624  0.000  
8 142.692  150.000  75.000  40.000  80.000  60.000  547.692  0.000  
9 0.000  0.000  37.366  40.000  10.000  0.000  87.366  312.634  
10 0.000  0.000  0.000  0.000  0.000  52.630  52.630  347.370  
11 0.000  0.000  0.000  0.000  0.000  25.000  25.000  375.000  
12 0.000  0.000  0.000  0.000  0.000  25.000  25.000  375.000  
13 0.000  0.000  0.000  0.000  0.000  41.604  41.604  358.396  
14 0.000  0.000  0.000  0.000  0.000  28.448  28.448  371.552  
15 0.000  0.000  0.000  0.000  0.000  25.000  25.000  375.000  
16 0.000  0.000  0.000  0.000  0.000  25.000  25.000  375.000  
17 0.000  0.000  0.000  0.000  0.000  25.000  25.000  375.000  
18 0.000  0.000  0.000  0.000  0.000  35.921  35.921  364.079  
19 0.000  0.000  0.000  0.000  8.804  60.000  68.804  331.196  
20 0.000  0.000  0.000  0.000  5.589  60.000  65.589  334.411  
21 0.000  0.000  0.000  0.000  57.035  70.000  127.035  272.965  
22 0.000  0.000  3.988  40.000  80.000  70.000  193.988  206.012  
23 0.000  77.066  75.000  40.000  80.000  70.000  342.066  57.934  
24 0.000  90.129  75.000  40.000  80.000  70.000  355.129  44.871  

 

 

Figure 4-9 shows a similar comparison in a different scenario, in which the second-largest 

generating unit breaks down from time period 9. Table 4-14 gives the reserve provided by each 

generating unit and the reserve shortage at each time period. The results suggest that there is no 

reserve shortage in time period 9, since the base unit acts as a replacement of cycler 2; it uses all 

of its capacity to supply energy (see Table 4-6), and there is no extra capacity for this generating 
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unit to prepare any reserves. As demand increases from time period 9, other generating units 

have to ramp up to satisfy demand first. For example, cycler 2, cycler 3, and peaker 1 ramp up to 

their maximum operating level from period 11 to period 18; they cannot prepare any reserve 

during this time period. 
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Figure 4-9 Reserve available vs. reserve shortage in a scenario (second-largest unit failure from 

time period  9) 
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Table 4-14 Reserve provided by each generating unit in a scenario (second-largest unit failure from 

time period 9) 

Time 
period 

Base 
unit Cycler 1 Cycler 2 Cycler 3 Peaker 1 Peaker 2 Reserve  

available 
Reserve 
shortage

1 131.496  150.000  75.000  40.000  80.000  70.000  546.496  0.000  

2 107.869  150.000  75.000  40.000  80.000  70.000  522.869  0.000  

3 140.672  150.000  75.000  40.000  80.000  70.000  555.672  0.000  

4 112.153  150.000  75.000  40.000  80.000  70.000  527.153  0.000  

5 115.374  150.000  75.000  40.000  80.000  70.000  530.374  0.000  

6 137.291  150.000  75.000  40.000  80.000  70.000  552.291  0.000  

7 167.624  150.000  75.000  40.000  80.000  70.000  582.624  0.000  

8 142.692  150.000  75.000  40.000  80.000  60.000  547.692  0.000  

9 0.000  0.000  37.366  40.000  10.000  50.000  137.366  262.634 

10 0.000  0.000  0.000  0.000  42.630  60.000  102.630  297.370 

11 56.788  0.000  0.000  0.000  0.000  0.000  56.788  343.212 

12 57.278  0.000  0.000  0.000  0.000  2.275  59.553  340.447 

13 51.720  0.000  0.000  0.000  0.000  39.884  91.604  308.396 

14 44.825  0.000  0.000  0.000  0.000  33.623  78.448  321.552 

15 68.169  0.000  0.000  0.000  0.000  0.000  68.169  331.831 

16 56.314  0.000  0.000  0.000  0.000  0.000  56.314  343.686 

17 65.760  0.000  0.000  0.000  0.000  2.898  68.658  331.342 

18 50.101  0.000  0.000  0.000  0.000  35.820  85.921  314.079 

19 14.883  0.000  0.000  0.000  43.921  60.000  118.804  281.196 

20 19.229  0.000  0.000  0.000  26.360  70.000  115.589  284.411 

21 48.182  0.000  0.000  0.000  58.853  70.000  177.035  222.965 

22 14.759  0.000  39.229  40.000  80.000  70.000  243.988  156.012 

23 127.066  0.000  75.000  40.000  80.000  70.000  392.066  7.934  

24 135.000  0.000  75.000  40.000  80.000  70.000  400.000  0.000  
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Figure 4-10 Reserve available vs. reserve shortage in a scenario (transmission line failure from time 

period 9) 

    

   Figure 4-10 and Table 4-15 show the same information about reserve prepared by the 

generating units and reserve shortage level in the transmission line failure scenario. The results 

demonstrate that there is no need for load shedding and no reserve shortage in each time period. 

In this model, we explicitly consider the line failure in the model; therefore, scheduling decisions 

must prepare for the possibility of the related generating unit being prevented from delivery due 

to a line failure.  
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Table 4-15 Reserve provided by each generating unit in a scenario (transmission line failure from 

time period 9) 

Time 
i d

Base unit Cycler 1 Cycler 2 Cycler 3 Peaker 1 Peaker 2 Reserve 
il bl

Reserve 
h1 131.496  150.000  75.000  40.000  80.000  70.000  546.496  0.000  

2 107.869  150.000  75.000  40.000  80.000  70.000  522.869  0.000  
3 140.672  150.000  75.000  40.000  80.000  70.000  555.672  0.000  
4 112.153  150.000  75.000  40.000  80.000  70.000  527.153  0.000  
5 115.374  150.000  75.000  40.000  80.000  70.000  530.374  0.000  
6 137.291  150.000  75.000  40.000  80.000  70.000  552.291  0.000  
7 167.624  150.000  75.000  40.000  80.000  70.000  582.624  0.000  
8 142.692  150.000  75.000  40.000  80.000  60.000  547.692  0.000  
9 154.219  0.000  73.147  40.000  80.000  70.000  417.366  0.000  

10 149.238  0.000  60.762  40.000  80.000  70.000  400.000  0.000  
11 200.000  0.000  1.632  40.000  80.000  60.000  381.632  18.368  
12 200.000  0.000  3.621  40.000  80.000  70.000  393.621  6.379  
13 200.000  0.000  10.000  40.000  80.000  70.000  400.000  0.000  
14 198.630  0.000  11.370  40.000  80.000  70.000  400.000  0.000  
15 200.000  0.000  0.000  38.619  80.000  70.000  388.619  11.381  
16 200.000  0.000  1.254  40.000  80.000  70.000  391.254  8.746  
17 200.000  0.000  8.988  40.000  80.000  70.000  398.988  1.012  
18 198.898  0.000  11.102  40.000  80.000  70.000  400.000  0.000  
19 171.662  0.000  38.338  40.000  80.000  70.000  400.000  0.000  
20 170.466  0.000  39.534  40.000  80.000  70.000  400.000  0.000  
21 200.000  0.000  62.005  40.000  80.000  70.000  452.005  0.000  
22 183.104  75.884  65.000  0.000  80.000  70.000  473.988  0.000  
23 106.182  150.000  75.000  0.000  80.000  70.000  481.182  0.000  
24 25.000  150.000  75.000  0.000  80.000  70.000  400.000  0.000  
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4.4.1.4 Comparison of Deterministic and Stochastic Models 

 

Table 4-16 Generation plan in the most probable scenario: deterministic model 

Time Base unit Cycler 1 Cycler 2 Cycler 3 Peaker 1 Peaker 2 
1 317.463  20.000  15.000  10.000  0.000  0.000  
2 343.958  20.000  15.000  10.000  0.000  0.000  
3 346.828  20.000  15.000  10.000  0.000  0.000  
4 382.500  20.000  15.000  10.000  0.000  0.000  
5 389.654  20.000  15.000  10.000  0.000  0.000  
6 400.000  20.028  15.000  10.000  0.000  0.000  
7 400.000  52.318  15.000  10.000  0.000  0.000  
8 400.000  114.942  15.000  10.000  0.000  0.000  
9 376.904  215.000  80.000  15.730  0.000  0.000  

10 396.393  215.000  80.000  30.977  0.000  0.000  
11 378.745  232.500  80.000  60.000  20.000  0.000  
12 383.932  221.515  80.000  60.000  20.000  0.000  
13 400.000  215.000  80.000  38.396  0.000  0.000  
14 400.000  215.000  80.000  51.552  0.000  0.000  
15 368.697  230.455  80.000  60.000  20.000  0.000  
16 382.571  227.358  80.000  60.000  20.000  0.000  
17 375.450  220.891  80.000  60.000  20.000  0.000  
18 400.000  215.000  80.000  44.079  0.000  0.000  
19 400.000  215.000  80.000  11.196  0.000  0.000  
20 400.000  215.000  80.000  14.411  0.000  0.000  
21 396.857  215.000  26.108  10.000  0.000  0.000  
22 400.000  156.012  15.000  10.000  0.000  0.000  
23 387.934  20.000  15.000  10.000  0.000  0.000  
24 374.871  20.000  15.000  10.000  0.000  0.000  

 

 

    

 

 

 

 

 



 

  87

 

Table 4-17 Generation plan in the most probable scenario: stochastic model 

Time 
i d

Base unit Cycler 1 Cycler 2 Cycler 3 Peaker 1 Peaker 2 
1 317.463  20.000  15.000  10.000  0.000  0.000  
2 343.959  20.000  15.000  10.000  0.000  0.000  
3 346.827  20.000  15.000  10.000  0.000  0.000  
4 382.500  20.000  15.000  10.000  0.000  0.000  
5 389.653  20.000  15.000  10.000  0.000  0.000  
6 400.000  20.028  15.000  10.000  0.000  0.000  
7 400.000  52.318  15.000  10.000  0.000  0.000  
8 257.308  200.000  42.634  20.000  10.000  10.000  
9 370.264  200.000  77.370  20.000  10.000  10.000  
10 396.393  215.000  80.000  30.977  0.000  0.000  
11 378.745  232.500  80.000  60.000  20.000  0.000  
12 383.932  221.515  80.000  60.000  20.000  0.000  
13 400.000  215.000  80.000  38.396  0.000  0.000  
14 400.000  215.000  80.000  51.552  0.000  0.000  
15 368.697  230.455  80.000  60.000  20.000  0.000  
16 382.571  227.358  80.000  60.000  20.000  0.000  
17 375.450  220.891  80.000  60.000  20.000  0.000  
18 400.000  215.000  80.000  44.079  0.000  0.000  
19 400.000  215.000  80.000  11.196  0.000  0.000  
20 400.000  215.000  80.000  14.411  0.000  0.000  
21 396.857  215.000  26.108  10.000  0.000  0.000  
22 400.000  156.012  15.000  10.000  0.000  0.000  
23 387.934  20.000  15.000  10.000  0.000  0.000  
24 374.871  20.000  15.000  10.000  0.000  0.000  

 

To demonstrate the possible differences in the operating plans determined by a deterministic 

model and a stochastic model, we examine a deterministic model considering only one scenario 

and without any contingencies, and a stochastic model that considers seven scenarios. The 

contingencies built into the stochastic model include base unit and largest cycler outages, and the 

same transmission line outage we discussed; these equipment failures start from period 9 and 

period 10, and, together with the most probable scenario, make up a total of seven scenarios. 
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Table 4-16 and Table 4-17 show the optimal generation plan in the most probable scenario using 

the deterministic model and the stochastic model. The results suggest that the two plans are 

different from each other. In the stochastic model, because the most probable scenario is not 

independent of other contingency scenarios, the ISO has to coordinate the generation plan in the 

most probable scenario with other scenarios to prepare for the coming contingencies. For 

example, in the deterministic model, peaker 1 is turned on at period 11 and period 12, 

respectively, due to high demand, and peaker 2 is turned off all the time. On the other hand, in a 

stochastic setting, peaker 1 is turned on in period 8, earlier than the generation plan of the 

deterministic model, in order to be able to ramp up to its maximum generation level in hour 9 in 

case there is a contingency. For the same reason, the most expensive peaker 2 has to be turned on 

at the same time periods in the stochastic model to prepare for the future contingencies, while it 

is always off in the deterministic model. Table 4-18 and Table 4-19 show the reserve provided in 

the deterministic model and in the stochastic model, respectively. In Table 4-19, since peaker 2 is 

online at periods 8 and 9 and runs at its minimum generation level, 10MW (see Table 4-17)), it 

provides 60MW reserve in contrast with 70MW in Table 4-18. 
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Table 4-18 Reserve provided in the most probable scenario: deterministic model 

Time 
i d

Base 
i

Cycler 1 Cycler 2 Cycler 3 Peaker 1 Peaker 2 Total 
1 100.000  150.000  0.000  0.000  80.000  70.000  400.000  

2 46.000  150.000  75.000  0.000  80.000  70.000  421.000  

3 43.200  150.000  75.000  0.000  80.000  70.000  418.200  

4 25.000  150.000  75.000  0.000  80.000  70.000  400.000  

5 25.000  150.000  75.000  0.000  80.000  70.000  400.000  

6 25.000  150.000  75.000  0.000  80.000  70.000  400.000  

7 25.000  150.000  75.000  0.000  80.000  70.000  400.000  

8 25.000  150.000  75.000  0.000  80.000  70.000  400.000  

9 28.100  106.900  75.000  40.000  80.000  70.000  400.000  

10 6.800  128.200  75.000  40.000  80.000  70.000  400.000  

11 20.000  115.000  75.000  40.000  80.000  70.000  400.000  

12 12.800  122.200  75.000  40.000  80.000  70.000  400.000  

13 0.000  135.000  75.000  40.000  80.000  70.000  400.000  

14 0.000  135.000  75.000  40.000  80.000  70.000  400.000  

15 25.900  109.100  75.000  40.000  80.000  70.000  400.000  

16 15.700  119.300  75.000  40.000  80.000  70.000  400.000  

17 18.100  116.900  75.000  40.000  80.000  70.000  400.000  

18 0.000  135.000  75.000  40.000  80.000  70.000  400.000  

19 0.000  135.000  75.000  40.000  80.000  70.000  400.000  

20 0.000  135.000  75.000  40.000  80.000  70.000  400.000  

21 3.100  131.900  75.000  40.000  80.000  70.000  400.000  

22 25.000  150.000  75.000  0.000  80.000  70.000  400.000  

23 25.000  150.000  75.000  0.000  80.000  70.000  400.000  

24 25.000  150.000  75.000  0.000  80.000  70.000  400.000  
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Table 4-19 Reserve provided in the most probable scenario: stochastic model 

Time  
i d

Base unit Cycler 1 Cycler 2 Cycler 3 Peaker 1 Peaker 2 Total 
1 100.000 150.000 0.000 0.000 80.000 70.000 400.000  
2 46.000 150.000 75.000 0.000 80.000 70.000 421.000  
3 43.200 150.000 75.000 0.000 80.000 70.000 418.200  
4 25.000 150.000 75.000 0.000 80.000 70.000 400.000  
5 25.000 150.000 75.000 0.000 80.000 70.000 400.000  
6 25.000 150.000 75.000 0.000 80.000 70.000 400.000  
7 0.000 150.000 75.000 40.000 80.000 70.000 415.000  
8 142.700 150.000 75.000 40.000 80.000 60.000 547.700  
9 29.700 150.000 75.000 40.000 80.000 60.000 434.700  
10 6.800 128.200 75.000 40.000 80.000 70.000 400.000  
11 20.000 115.000 75.000 40.000 80.000 70.000 400.000  
12 12.800 122.200 75.000 40.000 80.000 70.000 400.000  
13 0.000 135.000 75.000 40.000 80.000 70.000 400.000  
14 0.000 135.000 75.000 40.000 80.000 70.000 400.000  
15 25.900 109.100 75.000 40.000 80.000 70.000 400.000  
16 15.700 119.300 75.000 40.000 80.000 70.000 400.000  
17 18.100 116.900 75.000 40.000 80.000 70.000 400.000  
18 0.000 135.000 75.000 40.000 80.000 70.000 400.000  
19 0.000 135.000 75.000 40.000 80.000 70.000 400.000  
20 0.000 135.000 75.000 40.000 80.000 70.000 400.000  
21 3.100 131.900 75.000 40.000 80.000 70.000 400.000  
22 25.000 150.000 75.000 0.000 80.000 70.000 400.000  
23 25.000 150.000 75.000 0.000 80.000 70.000 400.000  
24 25.000 150.000 75.000 0.000 80.000 70.000 400.000  

 

    

4.4.2 A 20-bus Power System 

In this example, we consider a system with 20 buses and 32 generating units. Part of the data 

used in this example is originally from Reliability Test System Task Force (1999); data obtained 

from the study include the basic topology of the power transmission system and demand in area 

B, heat rate for calculating marginal costs of generating units, and capacity of generating units. 

There are 24 buses in area B of this study; we combine some nodes, so that it has 20 nodes. We 
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make up plausible values for the rest of the data needed for the model in this thesis. Nodes 221, 

222, and 223 are supply nodes, i.e., they are associated with generating units, and there is no load 

at these nodes. Thus, they only inject power to the system and do not withdraw any. On the 

contrary, nodes 203, 204, 205, 206, 208, 209, 214, 219, and 220 are demand nodes; there is load 

at these nodes, and they only withdraw power from the system and do not supply any to the 

system. In addition, some nodes both supply and withdraw power from the system and have 

generating units and load. These nodes are 201, 202, 207, 213, 215, 216, and 218. There are 32 

generating units in the system. The identification of a generating unit is represented by 

“(code)U(capacity)”. For example, “1U20” represents a unit that has a capacity of 20MW. The 

“1” before “U20” is a code used to distinguish identical generating units connected to different 

nodes. The location of the generating unit is shown in Table 4-20. Among these generating units, 

1U20, 2U20, 3U20, and 4U20 are peakers that can start up quickly; their fuel costs are the 

highest. 1U400, 2U400, 1U50, 2U50, 3U50, 4U50, 5U50, and 6U50 are taken as must-run units 

with cheap fuel cost. Other generating units are cyclers that are turned on or off based on need. 

In the original power system 1U50-6U50 are hydro units. To avoid complicating the formulation 

of the model because the hydro units need different constraints from thermal units, we just treat 

them as must-run and quick-start units. 
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Table 4-20 Generating units and their location in the 20-bus system 

Nodes Generating units 
201 1U20, 2U20, 1U76, 2U76 
202 3U20 ,4U20, 3U76, 4U76 
207 1U100, 2U100, 3U100 
213 1U197, 2U197, 3U197 
215 1U12, 2U12, 3U12, 4U12, 5U12, 1U155 
216 2U155 
218 1U400 
221 2U400 
222 1U50, 2U50, 3U50, 4U50, 5U50, 6U50 
223 3U155, 4U155, 1U350 

 

185 scenarios over 24 time periods are considered and no transmission line outages are 

included. In this numerical example, for the purpose of illustration, we only consider generating 

unit outage scenarios. The 8 largest units, i.e., 1U400, 2U400, 1U350, 1U155, 2U155, 3U155, 

1U197, and 1U100, are the possible unit contingencies in the system; their forced outages begin 

at different time periods in different scenarios, following the rule of “N-1” contingency. If there 

is more than 1 identical generating unit at the same location, only one of them is chosen as the 

outage generator. For example, there are two identical units at node 223, namely 3U155 and 

4U155; only 3U155 is selected. Spinning reserve requirement is set to 500MW, slightly higher 

than the largest unit capacity. Load shedding is penalized at $1000/MWh. A four-step penalty 

function is used to charge different reserve shortage levels: $100/MW for the first 100MW, 

$300/MW for every MW between 100MW and 325MW, and $600/MW for the next 125MW. 

The remaining 50MW is the minimum reserve requirement priced at $1000/MW (see Appendix 

B and C for the topology and data used in this example). 

The problem has 3,408,901 constraints and 1,167,721 variables, including 142,080 binary 

variables. We run the scenario-rolling heuristic to solve the problem and compare the results 
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with those obtained by Cplex. We set a uniform time limit on all iterations to compare the results: 

a maximum of 1 hour (3600 seconds) per iteration with an optimality gap of 0.1%, whichever 

condition is reached first. The numerical results are shown in Table 4-21.   

According to Table 4-21, all the heuristic except the 93-scenario satisfy the 0.1% optimality 

gap within 1-hour time limit. The 93-scenario heuristic cannot return a good-quality feasible 

solution within the preset time limit. To have an idea of the performance of the heuristic, we 

relaxed the integer constraints and solved the resulting LP; it turned out that the LP lower bound 

is of very low quality, dropping to less than 500,000 after 10 hours (see row 10 of Table 4-21). 

As an alternative, we relaxed the nonanticipativity constraints, solved each individual scenario as 

a MIP to its optimality, and then summed up the weighted objective function values of all the 

scenarios. The summation is a lower bound of the optimal solution to the original SMIP problem 

designated as “wait-and-see” solution (Birge and Lauveaux, 1997).  The lower bound turns out to 

be much better than the LP lower bound (see row 11). We show the gap between the heuristic 

solution and this lower bound in the last column of Table 4-21. In practice, DA schedules need to 

be prepared within a short period of time, for example, one hour. Taking this requirement into 

account, we can see that most heuristics are able to return feasible solutions within the time 

requirement. We can perform a similar analysis and discussion of the results of the large-scale 

numerical example. However, due to the dimension of the large-scale numerical example, we 

will not do so in this section. Some results are presented in Chapter 5 to help to understand 

pricing results. Also see Appendix D for the generation plans of generating units in a 

representative scenario. 
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Table 4-21 Results for a 20-bus system (scenario-rolling) 

Max. # of contingency scenarios 

solved in each iteration 

# of 

iterations 

Objective. 

Value 

Solver 

Time(sec.) 

Gap with 

LB 

9 23 654209.348 1200.583 0.165% 
17 12 654335.721 1648.571 0.184% 
25  8 654316.316 2093.074 0.181% 
33 6 654111.422 2392.622 0.150% 
49 4 654366.025 2130.827 0.189% 
65 3 654223.441 3090.374 0.167% 
93 2 1071438.765 5073.389 64.046% 

Cplex 1 N/A solution 36,000 - 
LP lower bound(LB)  <500,000 36,000 - 

LB (Relaxing Nonanticipativity)  653133.693   

 

Table 4-22 Results for a 20-bus system (Benders decomposition) 

Iteration 
Objective Function Value 

of Master Problem 
Solver Time (Sec.)

 Objective Function Value 

Subproblem 

Solver Time 

(Sec.) 

1 60715.465     358.234       25154267.946 486.203     
2 N/A 18000 N/A N/A 

 

Table 4-23 Results for a 20-bus system (progressive hedging) 

Iteration 
Objective 

Value 

Solver 

Time(sec.) 
Infeasible NA Constraints (%) 

1 653133.693 1030.734 42.059% 
2 653167.178 3386.202 42.059% 
3 653148.126 2011.453 42.059% 
4 653199.209 2204.432 42.059% 
5 653235.539 2246.930 42.059% 
6 653264.670 1967.818 42.054% 
7 653296.503 2032.718 42.054% 
8 653323.240 2273.929 42.054% 
9 653355.905 2393.562 42.057% 

10 653386.622 2196.899 42.057% 
Total Time N/A 21744.617 N/A 

 

Table 4-22 shows the performance of Benders decomposition. We incorporated all the binary 

variables into the master problem, leaving the subproblem a LP. Due to the size of the master 

problem, Cplex cannot return an optimal solution after five hours in the second iteration. Table 
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4-23 provides the results of progressive hedging algorithm. The results demonstrate that there 

exist a number of infeasible nonanticipativity constraints after we ran the algorithm for more 

than six hours. We cannot easily obtain a feasible solution with this method.  

 

4.5 Summary 

In this chapter, we proposed a heuristic methodology for solving the SMIP model. According to 

the structure of the decision tree, we solved only a subset of the scenarios in each iteration of the 

heuristic. Therefore, the size of the problem we solve in each iteration is much smaller than the 

whole problem. We can solve such a small group of scenarios quickly and use part of the 

solution to solve another group of scenarios in the next iteration until all the scenarios are solved. 

The scenario-rolling algorithm can guarantee a feasible solution to the problem. We then 

provided two numerical examples to show the results of the model and to evaluate the 

performance of the scenario-rolling algorithm that can be used to solve the SMIP problem. The 

results indicated that the scenario-rolling algorithm can obtain a sub-optimal solution within the 

time limit; the gap between the heuristic results and the lower bound is acceptable, given the 

time limit. By performing result analyses in some representative scenarios, we found out that an 

equipment failure, such as a generating unit outage or a transmission line outage, can have a 

significant impact on the generation output level of generating units and the reserve available in 

the system. The results also showed an important difference between the stochastic and the 

deterministic model with regard to the operating schedules of their generating units as 

contingencies are introduced. In the stochastic model, some generating units have to start up 

ahead of time in order to prepare for the future contingencies due to ramp up limit.  
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   In the next chapter, we discuss related pricing and compensation plans based on the SMIP 

model. We begin with how to obtain the dual variables of the SMIP, and then propose 

compensation plans based on these variables. Theoretical results and numerical results of these 

compensation schemes will be presented and discussed.  
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Chapter 5 
Pricing Issues and Compensation Plans 

5.1 Introduction 

As mentioned in Chapter 2, previous research has been conducted in Wong and Fuller (2007), 

O’Neill et al. (2005), and Sioshansi et al. (2007). Wong and Fuller (2007) propose different 

compensation schemes based on a single-stage stochastic linear programming model, including 

DA pricing, RT pricing, and hybrid pricing that has some interesting properties. O’Neill et al. 

(2005) give a methodology to obtain the dual prices from an MIP that fixes binary variables to 

their optimal values, and then solves the resulting LP to procure the dual prices. Sioshansi et al 

(2007) show that generator payoff inequity problems exist because, usually, the UC problems 

cannot be solved to their optimality. They suggest that make-whole payment be imposed to 

eliminate this problem to ensure that generators make non-negative profits, i.e., the make-whole 

payment will bring the profit of a generator to 0 if the profit of a generator is otherwise negative; 

if the profit of a generator is non-negative, the make-whole payment is 0. Some recent work on 

this issue includes Sen and Genc (2008); the authors propose a highly challenging method to 

tackle the problem. 

In this chapter, we extend these ideas to the SMIP in this thesis. We first explore the 

possibilities of applying them to a realistic SMIP that is closer to reality than the models 

proposed in Wong and Fuller (2007). With the method suggested in O’Neill et al. (2005), we 

first obtain the dual prices by solving an LP with fixed binary variables. Then we ignore the 
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additional prices associated with fixed costs, which is suggested in O’Neill et al. (2005). Instead, 

we only use energy revenue and reserve revenue to generate the pricing scheme. However, 

because we use a heuristic method to solve the original MIP, we cannot solve the problem to its 

complete optimality. As a result, we then use make-whole payment to alleviate the payoff 

inequity due to the gap between the feasible solution and the optimal solution. We then propose 

two compensation schemes: one RT compensation scheme and one hybrid scheme. We will 

show that some properties proposed in Wong and Fuller (2007) are still valid. Numerical results 

are based on the 20-bus system (Reliability Task Force, 1999) discussed in Chapter 4. 

5.2 Procurement of Dual Prices of the SMIP Model 

In order to define the prices based on the SMIP model, we must first procure proper dual 

variables for marginal costs of energy and reserves, and possibly for the on/off status of 

generating units (following O’Neill et al., 2005). With the method proposed in O’Neill et al. 

(2005), we first apply the scenario-rolling heuristic to solve the SMIP model, and then we solve 

the corresponding LP model, which includes constraints that fix the continuous variables (which 

replace the binary variables in the SMIP) to their sub-optimal values from the heuristic. Since it 

is an LP model, we can take the dual variables directly from solving it. The dual variables 

associated with the power balance constraints are the energy marginal costs, and the dual 

variables corresponding to the reserve requirement constraints are the marginal costs for reserves. 

For the pricing of binary variables as proposed by O’Neill et al. (2005),  we use the dual 

variables of the constraints which fix the continuous on/off variables to the value of the heuristic. 

The procedure of taking dual prices from the SMIP is shown below. 
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Step 1: Use the scenario-rolling algorithm to solve the SMIP to obtain a sub-optimal solution; 

Step 2: Record the sub-optimal solution of the binary variables; 

Step 3: Modify the original model to an LP by adding a set of equality constraints that fix the 

binary variables to their sub-optimal solution recorded in step 2, namely *= MIP
gst gstω ω , 

where *MIP
gstω is the sub-optimal solution to the original SMIP. 

Step 4: Solve the resulting LP to its complete optimality and record the proper dual variables. 

We first revisit the SMIP model, and then show the corresponding LP problem, designated 

PLP, below. We define ( )α •  as the dual variables of constraints ( )i , where ( )i  corresponds to the 

constraint number in the PLP model. For example, the dual variable of constraint (5.8) is 8
istα . 

8
istα  is actually the marginal expected cost of  energy, including the probability factor, ,sπ as 

discussed in Wong and Fuller (2007), 8(1/ )E
ist s istp π α=  is the actual energy marginal cost at 

node i in scenario s during time period t, and it is interpreted as the prediction of the RT price if 

scenario s actually happens. Similarly, R
mstp  is the actual system-wide reserve marginal cost 

during period t in scenario s for reserve type m. We put these dual variables in the brackets to the 

right of the relevant constraints in the PLP model shown below. We convert the SMIP model to 

an LP by making the following modifications: 

1. Since we will fix the binary variables to their optimal solution in the LP in this thesis, we 

delete redundant constraints (3.15), (3.16), (3.18), and (3.19) in Chapter 3 because these 

constraints only contain binary variables.  
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2. We add new constraints to fix the binary variables to their sub-optimal values, i.e., (5.17). 

3. We relax the binary constraints on the commitment states in constraint (3.22). 

4. To convert the model to its standard format, we change all the less than or equal to 

constraints in the SMIP model to greater than or equal to constraints so that all the dual 

variables of the constraints are non-negative in the LP model.  

The LP used to obtain the dual variables is shown below. 

PLP:min.

int int

1 1 1 1 ( ) 1
   [ ( )]    (5.1)
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11
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5.3 Numerical Example 

Since the large-scale numerical example in Chapter 4 is more realistic, we use it to illustrate 

the dual prices. Tables 5-1, 5-2, 5-3, and 5-4 show the generation plan in a scenario where the 

largest unit at node 221, 2U400, breaks down starting at hour 9. The tables show us that every 

other generating unit ramps up to alleviate the energy loss caused by this equipment failure. The 

peakers 1U20, 2U20, 3U20, and 4U20 are all turned on, subject to their start-up limit.  
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Table 5-1 Generation plan of 20-bus system in a scenario (2U400 down from period 9) 

Generators 
node 201 

Generators at 
node 202 

Generator  
at node 221 

 
Hour 

1U20 2U20 1U76 2U76 3U20 4U20 3U76 4U76 2U400 
1 0.000  0.000  60.800  60.800  0.000  0.000  60.800 60.800  400.000  
2 0.000  0.000  38.000  38.000  0.000  0.000  56.112 60.800  400.000  
3 0.000  0.000  38.000  38.000  0.000  0.000  38.000 38.000  400.000  
4 0.000  0.000  38.000  29.403  0.000  0.000  38.000 38.000  400.000  
5 0.000  0.000  36.349  38.000  0.000  0.000  38.000 38.000  400.000  
6 0.000  0.000  38.000  38.000  0.000  0.000  38.000 38.000  400.000  
7 0.000  0.000  60.800  60.800  0.000  0.000  60.800 60.800  400.000  
8 0.000  0.000  58.414  60.800  0.000  0.000  60.800 60.800  400.000  
9 10.000  10.000  76.000  76.000  10.000 10.000 76.000 76.000  0.000  
10 0.000  0.000  76.000  76.000  0.000  0.000  76.000 76.000  0.000  
11 0.000  0.000  76.000  76.000  0.000  0.000  76.000 76.000  0.000  
12 0.000  0.000  76.000  76.000  0.000  0.000  76.000 76.000  0.000  
13 0.000  0.000  76.000  76.000  0.000  0.000  76.000 76.000  0.000  
14 0.000  0.000  76.000  76.000  0.000  0.000  76.000 76.000  0.000  
15 0.000  0.000  76.000  76.000  0.000  0.000  76.000 76.000  0.000  
16 0.000  0.000  76.000  76.000  0.000  0.000  76.000 76.000  0.000  
17 0.000  0.000  76.000  76.000  0.000  0.000  76.000 76.000  0.000  
18 0.000  0.000  76.000  76.000  0.000  0.000  76.000 76.000  0.000  
19 0.000  0.000  76.000  76.000  0.000  0.000  76.000 76.000  0.000  
20 0.000  0.000  76.000  76.000  0.000  0.000  76.000 76.000  0.000  
21 0.000  0.000  76.000  76.000  0.000  0.000  76.000 76.000  0.000  
22 0.000  0.000  76.000  76.000  0.000  0.000  76.000 76.000  0.000  
23 0.000  0.000  68.480  76.000  0.000  0.000  76.000 76.000  0.000  
24 0.000  0.000  60.800  60.800  0.000  0.000  60.800 60.800  0.000  
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Table 5-2 Generation plan of 20-bus system in a scenario (2U400 down from period 9) Con't 

Generators 
node 207 

Generators at  
node 213 

Generators at 
node 223 Hour 

1U100 2U100 3U100 1U197 2U197 3U197 3U155 4U155 1U350 
1 15.000 15.000 15.000 40.000 40.000 40.000 54.250 72.248  140.000 
2 15.000 15.000 15.000 40.000 40.000 40.000 54.250 54.250  100.000 
3 15.000 15.000 15.000 40.000 40.000 40.000 54.250 43.372  100.000 
4 15.000 15.000 15.000 40.000 40.000 40.000 25.000 25.000  100.000 
5 15.000 15.000 15.000 40.000 40.000 40.000 25.000 25.000  100.000 
6 15.000 15.000 15.000 40.000 40.000 40.000 54.250 51.180  100.000 
7 15.000 15.000 15.000 40.000 40.000 40.000 54.250 80.056  140.000 
8 15.000 19.960 15.000 91.350 88.650 88.650 93.000 98.500  187.500 
9 30.000 30.000 30.000 160.300 157.600 157.600 147.250 152.750  310.000 
10 65.000 65.000 65.000 173.500 167.000 167.000 155.000 155.000  350.000 
11 80.000 86.900 100.000 167.000 197.000 167.000 155.000 155.000  350.000 
12 80.000 100.000 80.000 194.400 197.000 167.000 155.000 155.000  350.000 
13 100.000 80.000 100.000 167.000 167.000 183.100 155.000 155.000  350.000 
14 100.000 80.000 80.000 167.000 197.000 192.000 155.000 155.000  350.000 
15 80.000 100.000 100.000 197.000 167.000 181.600 155.000 155.000  350.000 
16 80.000 80.000 80.000 167.000 167.000 167.000 155.000 155.000  350.000 
17 80.000 80.000 60.200 167.000 167.000 167.000 155.000 155.000  350.000 
18 80.000 53.000 80.000 167.000 167.000 167.000 155.000 155.000  350.000 
19 50.000 46.100 50.000 167.000 167.000 167.000 155.000 155.000  350.000 
20 40.600 50.000 30.000 167.000 167.000 167.000 155.000 155.000  350.000 
21 30.000 50.000 50.000 167.000 167.000 167.000 155.000 155.000  350.000 
22 50.000 50.000 49.100 167.000 167.000 167.000 155.000 155.000  350.000 
23 37.520 15.000 30.000 167.000 157.600 165.900 125.000 155.000  310.000 
24 15.000 0.000 23.120 98.050 88.650 96.950 125.000 125.000  280.000 
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Table 5-3 Generation plan of 20-bus system in a scenario (2U400 down from period 9) Con't 

Generators at  
node 215 

Generators at  
node 216 Hour 

1U12 2U12 3U12 4U12 5U12 1U155 2U155 
1 2.000  2.000  2.000  2.000  2.000  25.000  25.000 

2 2.000  2.000  2.000  2.000  2.000  25.000  25.000 
3 2.000  2.000  2.000  2.000  2.000  25.000  25.000 
4 2.000  2.000  2.000  2.000  2.000  25.000  25.000 
5 0.000  0.000  0.000  0.000  0.000  25.000  25.000 
6 0.000  0.000  0.000  0.000  0.000  25.000  25.000 
7 0.000  0.000  0.000  0.000  0.000  25.000  25.000 
8 0.000  0.000  0.000  0.000  0.000  70.750  70.750 
9 2.000  2.000  2.000  2.000  2.000  125.000  125.000 
10 6.200  6.200  6.200  6.200  6.200  155.000  155.000 
11 10.400  9.600  10.400 9.600  9.600  155.000  155.000 
12 9.600  12.000  12.000 12.000 12.000  155.000  155.000 
13 12.000  9.600  9.600  9.600  9.600  155.000  155.000 
14 12.000  12.000  12.000 12.000 12.000  155.000  155.000 
15 9.600  12.000  9.600  9.600  9.600  155.000  155.000 
16 9.600  9.600  10.200 9.600  10.500  155.000  155.000 
17 9.600  6.000  6.000  9.600  9.600  155.000  155.000 
18 9.600  9.600  9.600  9.600  9.600  155.000  155.000 
19 5.400  6.000  6.000  6.000  6.000  155.000  155.000 
20 2.400  6.000  6.000  6.000  6.000  155.000  155.000 
21 3.800  2.400  2.400  6.000  2.400  155.000  155.000 
22 6.000  2.400  6.000  6.000  6.000  155.000  155.000 
23 2.000  2.000  2.000  2.000  2.000  155.000  155.000 
24 0.000  0.000  0.000  0.000  0.000  132.030  125.000 
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Table 5-4 Generation plan of 20-bus system in a scenario (2U400 down from period 9) Con't 

Generators at  
node 222 

Generators at  
node 218 Hour 

1U50 2U50 3U50 4U50 5U50 6U50 1U400 
1 45.000  50.000  49.302 50.000 50.000 45.000 400.000  

2 45.000  45.000  48.588 50.000 50.000 45.000 400.000  
3 45.000  45.000  45.000 48.378 50.000 45.000 400.000  
4 45.000  45.000  45.000 47.597 50.000 45.000 400.000  
5 45.000  45.000  45.000 50.000 50.000 45.651 400.000  
6 45.000  45.000  45.570 50.000 50.000 45.000 400.000  
7 45.000  46.494  50.000 50.000 50.000 50.000 400.000  
8 45.000  45.000  50.000 50.000 50.000 46.076 400.000  
9 50.000  50.000  50.000 50.000 50.000 50.000 400.000  
10 50.000  50.000  50.000 50.000 50.000 50.000 400.000  
11 50.000  50.000  50.000 50.000 50.000 50.000 400.000  
12 50.000  50.000  50.000 50.000 50.000 50.000 400.000  
13 50.000  50.000  50.000 50.000 50.000 50.000 400.000  
14 50.000  50.000  50.000 50.000 50.000 50.000 400.000  
15 50.000  50.000  50.000 50.000 50.000 50.000 400.000  
16 50.000  50.000  50.000 50.000 50.000 50.000 400.000  
17 50.000  50.000  50.000 50.000 50.000 50.000 400.000  
18 50.000  50.000  50.000 50.000 50.000 50.000 400.000  
19 50.000  50.000  50.000 50.000 50.000 50.000 400.000  
20 50.000  50.000  50.000 50.000 50.000 50.000 400.000  
21 50.000  50.000  50.000 50.000 50.000 50.000 400.000  
22 50.000  50.000  50.000 50.000 50.000 50.000 400.000  
23 50.000  50.000  50.000 50.000 50.000 50.000 400.000  
24 50.000  50.000  50.000 50.000 50.000 50.000 400.000  

 

 

The contingency causes most of the generating units to ramp up to their maximum generation 

level or to a highest generation level they can ramp. As a result, there is reserve shortage during 

some hours when 2U400 breaks down. Figure 5-1 and Table 5-5 show the system-wide reserve 

shortage, system-wide reserve available, and energy price at supply node 223 in each hour in this 

scenario. In Table 5-2, generating units at node 223 ramp up to a higher output in period 9 from 

period 8, subject to their ramp up limits. In hour 10, they all ramp up again and reach their 
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maximum generation level; they cannot provide any reserves at this point. They keep their 

generation level at its maximum level until hour 23, because the demand is low enough for them 

to ramp down and have some reserve capacity available. Figure 5-1 shows that the energy prices 

at node 223 correlate with reserve shortage levels and reserve available in the system. During the 

energy and reserve shortage hours, the energy prices increase accordingly based on the pre-set 

reserve shortage penalty. For example, when the reserve shortage is above 325MWh at hours 12, 

14, and 15, the energy prices in the same time periods soar above $600. In addition, Table 5-5 

indicates that the reserve provided by generating units during period 9 and period 23 is exactly 

500MW, the target reserve requirement, i.e., (5.12) is binding. Table 5-5 provides the reserve 

prices R
mstp corresponding to (5.12) in each time period; it shows that when there are exactly 

500MW of reserve available in the system, e.g., at hour 9 and hour 23, the reserve prices in these 

two hours are positive, $20.049/MW and $19.927/MW, respectively, which suggests that the 

system is about to be short of reserve and the reserve requirement is barely met. Meanwhile, if 

the reserve available is well above the reserve requirement, the reserve price is 0. Moreover, the 

energy price is always higher than the reserve price, even if the reserve price is high during the 

reserve shortage hours. For example, the reserve price is $600/MW during hour 15, and the 

energy price is $622.126/MWh. This indicates that during the times when the system loses the 

largest unit, not only reserve, but also energy is in shortage because a significant proportion of 

the reserve capacity in the system is used to supply energy. It therefore shows that the reserve 

demand curve has significant impact on the energy price, in addition to the reserve price; if the 

target reserve requirement cannot be satisfied, both reserve price and energy price are higher 
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than otherwise. Since there is no load shedding in the scenario, the energy price is always below 

the capped price, $1000/MWh. 
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Figure 5-1 Reserve shortage, reserve available, and energy price at supply node 223 in a scenario 

(2U400 down from period 9) 

At the same time, in the most probable scenario without any contingencies, there is no reserve 

shortage, and the energy price is just based on the generation offer submitted by generating units 

at node 223. In any hour in which the target reserve requirement is barely satisfied, reserve price 

is positive. In this scenario, the minimum reserve requirement is always met (see Figure 5-2 and 

Table 5-6). 
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Table 5-5 Reserve and prices at node 223 in a scenario (2U400 down from period 9) 

Period 1 2 3 4 5 6 7 8 
Reserve  
Shortage 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Reserve 
available 661.498 681.500 691.622 692.403 639.349 639.430 609.306 617.110 

Load shed 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Energy 
Price at 223 10.249 10.044 9.918 9.704 9.704 9.918 10.249 10.087 

Reserve 
Price 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Period 9 10 11 12 13 14 15 16 
Reserve 
Shortage 0.000 202.500 316.500 345.000 316.500 345.000 345.000 259.500 

Reserve 
available 500.000 297.500 183.500 155.000 183.500 155.000 155.000 240.500 

Load shed 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Energy 
Price at 223 31.899 322.126 322.126 622.126 322.126 622.126 622.126 322.126 

Reserve 
Price 

20.049 300.000 300.000 600.000 300.000 600.000 600.000 300.000 

Period 17 18 19 20 21 22 23 24 
Reserve 
Shortage 231.000 231.000 145.500 117.000 117.000 145.500 0.000 0.000 

Reserve 
available 269.000 269.000 354.500 383.000 383.000 354.500 500.000 523.770 

Load shed 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Energy 
Price at 223 321.218 321.218 320.316 120.316 120.316 320.316 31.185 11.257 

Reserve 
Price 

300.000 300.000 300.000 100.000 100.000 300.000 19.927 0.000 
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Figure 5-2 Reserve shortage, reserve available, and energy price at supply node 223 in the most 

probable scenario 

Table 5-6 Reserve and prices at node 223 in the most probable scenario 

Hours 1 2 3 4 5 6 7 8 
Reserve 
Shortage 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Reserve 
available 661.498 681.500 691.622 692.403 639.349 639.430 609.494 559.954

Energy price 10.249 10.044 9.918 9.704 9.704 9.918 10.087 10.842 
Reserve price 0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  
Hours 9  10  11  12  13  14  15  16  
Reserve 
Shortage 0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  

Reserve 
available 500.000  500.000  500.000 500.000 500.000 500.000 500.000  500.000 

Energy price 18.589  19.718  21.218 21.218  21.218  21.218  21.218  20.620 
Reserve price 6.867  7.997  9.960  9.960  9.960  9.960  9.960  8.898  
Hours 17  18  19  20  21  22  23  24  
Reserve 
Shortage 0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  

Reserve 
available 500.000  500.000  500.000 500.000 500.000 500.000 500.000  500.000 

Energy price 19.718  19.718  19.718 19.718  19.718  19.718  13.804  11.093 
Reserve price 7.997  7.997  7.997  7.997  7.997  7.997  2.083  0.959  
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5.4 Results With and Without the Reserve Demand Curve  

In most of the literature we reviewed in Chapter 2, a deterministic reserve requirement is 

imposed; this is a hard constraint that must be satisfied. In this setting, if there is a violation of 

the reserve requirement constraint, the ISO has to shed load to maintain the power supply-

demand balance to ensure that there is adequate capacity in the system to meet the reserve 

requirement. The energy price may soar to the capped price, VOLL.  

If we replace the reserve demand curve in our model with the fixed reserve requirement, the 

ISO will have to shed load even if there is only a small reserve shortage. On the other hand, the 

ISO does not have to shed load if there is a relatively small shortage with a reserve demand curve. 

We investigate this issue by using a fixed target reserve requirement without allowing any 

reserve shortage to replace the reserve demand curve in the model while maintaining load shed 

variables. We use the same scenario as a representative to illustrate the comparison between the 

two settings. 



 

  111

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time period (hour)

Load shed
(MWh)

Fixed reserve requirement (vertical) Reserve demand curve
 

Figure 5-3 Load shed in a scenario (largest unit failure from time period 9) 
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Figure 5-4 Energy price in a scenario (largest unit failure from time period  9) 

Figure 5-3 compares the load shedding between two settings: with a reserve demand curve and 

without a reserve demand curve. Without a reserve demand curve, ISO has to shed load when 

there is a contingency and the target reserve requirement cannot be met. With the reserve 

demand, ISO can avoid load shedding by allowing the reserve available to be less than the target 
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reserve requirement, and needs to perform load shedding only when there is no adequate 

capacity available in the system to supply energy or when the reserve available barely meets the 

minimum reserve requirement. 

Figure 5-4 demonstrates that with a fixed reserve requirement, the energy prices will move up 

to the capped price during shortage hours. However, the reserve demand curve can mitigate the 

price spikes, and energy prices increase gradually based on the reserve shortage level. In Figure 

5-4, with the fixed reserve requirement, the energy prices rise to the capped price, $1000/Mwh, 

whereas with the reserve demand curve, the energy prices rise to a level a little above the reserve 

shortage prices, i.e., $100, $300, and $600, depending on the reserve shortage levels. Thus, the 

reserve demand curve is important and necessary in stochastic settings; the fixed reserve 

requirement may not always be satisfied when we consider various contingencies.  

5.5 Real Time Compensation Scheme (O’Neill et al. method) 

In this section we propose a proper compensation plan for generating units. O’Neill et al. (2005) 

propose an RT compensation scheme for an MIP model on resource allocation. It includes two 

parts: a payment for resources provided and a commitment ticket. The former is the payment 

covering the generation cost, i.e., the product of the dual prices of the supply-demand balance 

constraints and the amount of reserve provided. The latter part of the payment aims at the fixed 

costs in the model; it is the product of the optimal solution value of the binary variable in the 

original MIP and the dual prices of the equality constraints that fix the binary variables to their 

optimal solution in the corresponding LP. In their paper, O’Neill et al. (2005) mention that the 
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idea can be applied to UC-related problems because these problems have such fixed costs as 

start-up costs and no-load costs.  

If we apply the method developed by O’Neill et al. (2005) to the SMIP in this thesis, we use 

three payments in the compensation plan: revenue for supplying energy, revenue for providing 

reserves, and revenue for committing online to provide energy.  

In this scheme, payment to generators is based on RT information, i.e., the actual scenario that 

happens. ‘*’ represents the optimal solution value in the LP problems, either the primal problem 

or the dual problem. 

Payment to generator g at node i in scenario s during time period t for energy 

delivered: * *E E
ist igstp q , where 

8*
*E ist

ist
s

p
α
π

= , and * *

1

B
E E
igst gbst

b
q q

=
= ∑ , i.e., the total power supplied is equal 

to the sum of power output from each energy offer block. 

Payment to generator g at node i in scenario s during time period t for reserves (type m) 

prepared: * *R R
mst gmstp q , where 

12*
*R mst

mst
s

p
α
π

= . 

As O’Neill et al. (2005) point out in their general model, if the only prices paid are *E
istp  and  

*R
mstp  for the commodities of energy and reserves, then some generators may be very 

disappointed with the optimal generation plan: some generators that are asked to supply energy 

or reserves would have to operate at a loss, because the revenue covers only their operating costs 

and not their fixed start-up costs; other generators that are asked to be in the “off” state may be 

resentful because, at the announced prices, they could have operated at a profit. The solution 

offered by O’Neill et al. (2005), applied to our model, is a third type of payment to generator g at 
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node i in scenario s during time period t for commitment: * *,MIP
igst gstpω ω where 

18*
* igst

igst
s

pω α
π

= . With 

this additional payment, all producers are satisfied. 

By complementary slackness theory *
igstpω  could be negative, 0 or positive since (5.18) is 

equality. Thus, it is possible that the additional price is negative even when 1gstω = , i.e., the 

generating unit is online to supply energy, and there is no limit on the magnitude of the negative 

prices, should they occur. This is a potential problem that generators may disapprove of; their 

revenue can be deducted under this scheme, or part of their revenue from supplying energy and 

providing reserve can be taken back by this additional price that could be negative. It undermines 

the incentive of committing to supply energy during RT. Another possible objection to this 

scheme is that the commitment prices are discriminatory - *
igstpω  is indexed by generator g, and so 

different generators can receive quite different payments for commitment, which could be seen 

as unfair treatment.  

5.6 Real-Time Compensation Scheme with Make-Whole Payment 

Given the potential for flaws in the RT compensation scheme provided by O’Neill et al. (2005), 

we propose a different RT compensation plan in which we replace the controversial additional 

prices *
igstpω  by make-whole payments (Sioshansi et al., 2007), and maintain the energy revenue and 

reserve revenue in the scheme. A make-whole payment is a lump sum paid to a generator that 

would operate at a loss without the payment; the make-whole amount brings the generator’s 

profit up to 0. Thus, the make-whole payment cannot be negative, which avoids one of the 
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problems with the scheme of O’Neill et al. (2005). Some ISOs already use make-whole 

payments in their generator compensation scheme (Sioshansi et al., 2007).  

Sioshansi et al. (2007) discuss another benefit of make-whole payments. Usually, the UC and 

relevant problems of a realistic size cannot be solved to complete optimality, and the gap 

between sub-optimal solutions and actual optimal solutions can cause significant differences in 

terms of operating schedules of generating units. When the sub-optimal operating schedule is 

implemented, profits of generators can, in a rather unfair way, be very different from profits 

under the optimal schedule. With make-whole payment, this inequity is greatly reduced.  

In this thesis, the solution to the SMIP is a sub-optimal solution and brings with it the same 

payoff equity problem. In addition, we consider different contingencies in the model, and there is 

no guarantee that generating units can have non-negative profit in each scenario. Nevertheless, 

non-negative profit is crucial to generating units; it is an incentive to keep them online and 

commit in RT. As a result, we incorporate make-whole payment into the payment plan in 

addition to energy revenue and reserve revenue. 

The make-whole payment, MHgs, for generator g in scenario s (we adopt the acronym MH 

instead of MW to avoid confusion with Megawatts) is expressed by MHgs 

= max{0,  }gs gsCT RV− , where gsCT and gsRV represent the total cost and total energy and reserve 

revenue of a generator, g, in scenario s, respectively. Mathematically, assuming Tint=1,   

                                             * * *

1 1
[( ) ]

T B
E E NL

gs gb gbst gst g gst
t b

CT C q z C ω=
= =

+ +∑ ∑                              (5.20) 

gsRV = * * * *

1 1
( + )

T ME E R R
ist gst mst gmst

t m
p q p q

= =
∑ ∑                                             (5.21) 
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This scheme guarantees that for each generator i the profit in each period is non-negative, 

leading to Theorem 1. 

Theorem 1: Under RT pricing with make-whole payment for each generator g the total value 

of revenue is greater than or equal to the total value of generation and operation costs in each 

scenario, i.e., 

max{0,  }gs gs gs gsRV CT RV CT+ − ≥                                              (5.22) 

Proof: If ,gs gsCT RV≤  then } 0max{0,  gs gsRVCT − = , and thus max }{0,  gs gs gsRV CT RV+ −  

gsCT≥   

Else, if ,gs gsCT RV>  then }max{0,  gs gs gs gsRV RVCT CT− −= , and so  

}max{0,  gs gs gs gsRV RVCT CT+ − = , satisfying (5.22). 

5.7 Hybrid Compensation Scheme 

As briefly mentioned previously in this thesis, a two-settlement system is implemented in 

practice. In a DAM, not only generation commitment but also financial commitment is made. 

The energy quantity committed in a DA market is locked at the DA energy price. The subsequent 

RTM is an adjustment market or a balance market; the deviation of energy quantity delivered in 

RT from the quantity contracted in the DA is paid at the RT price, depending on the RT demand 

and other contingencies. Mathematically, 

                                         ( )DA DA RT RT DAPayoff p q p q q= + −                                        (5.23) 

Where pDA, pRT are the prices in DAM and RTM, and qDA, qRT are energy supplied in DAM, 

RTM, respectively. 
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   The two-settlement system proposed in this thesis differs from (5.23). By modifying the 

mechanism in the two-settlement system (5.23), we can show that the financial risk of generating 

units can be reduced significantly. We also incorporate payments for reserves and make-whole 

payments, in a DA framework, with RT adjustments. 

The compensation scheme in this thesis uses energy and reserve information from both the 

DAM and the RTM. Assuming for the moment that all the possible scenarios in RT are 

represented in the model, we use the price information calculated in the DA as predictors of the 

price in the RTM. There are three components in the compensation plan: most probable scenario 

payment, contingency adjustment, and an adder. In the most probable scenario payment, the ISO 

uses prices and power output from the most probable scenario to generate the payment, plus a 

make-whole payment that ensures that the profit of generating units is non-negative. If a 

contingency occurs and causes the power output of generating units to deviate from their most 

probable operating plan, then the ISO adjusts the compensation by considering the power output 

difference between the contingency scenario and the most probable scenario and paying the 

difference by pay-as-bid obtained from the generation offers of generating units. Furthermore, 

there is a DA adder on top of the most probable payment and contingency adjustment. If a 

generator chooses to be paid according to the hybrid scheme, it will contribute all its capacity to 

the DAM, and its payment will rely entirely on the following DA calculation: 

Each generator g at node i is paid: 

DA payment: 0 0gs gsRV MH+  

Contingency adjustment: 0gs gsCT CT−  
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   DA Adder: 0 0 0[ ] ( )gs gs gs gs gs gsE RV MH CT RV MH CT+ − − + −  

   where 0s represents the most probable scenario with no contingency, and gsMH represents 

make-whole payment, i.e., max{0,  }gs gsCT RV− , and [ ]E •  represents the expected value. 

Under this compensation scheme, each generator is guaranteed to be paid in the DAM, based 

on its performance in the most probable scenario. The adder evaluates the overall performance of 

each generator in all possible scenarios compared with the most probable scenario. It ensures that 

the expected value of profit of each generator, if it chooses this compensation scheme, is the 

same as the expected value of profit in the RT compensation scheme (see Theorem 2). 

Theorem 2: We assume that model P includes all possible scenarios. Under the most probable 

scenario-based hybrid compensation scheme, for each generator g, the expected value of profit is 

equal to the expected profit in the RT compensation scheme. 

Proof: 

0 0 0 0 0 0

    [DA Payment+Contingency Adjustment+ DA Adder ]

[ ( ) [ ] ( ) ]

[ [ ]]

[ ]

gs

gs gs gs gs gsgs gs gs gs gs gs

gs gs gs

gs gs gs

E CT

E RV MH CT CT E RV MH CT RV MH CT CT

E E RV MH CT

E RV MH CT

−

= + + − + + − − + − −

= + −

= + −
 

Theorem 1 and Theorem 2 lead to Theorem 3. 

Theorem 3: We assume that model P includes all possible scenarios. Under the most probable 

scenario-based hybrid compensation scheme, for each generator g, and every scenario s, the total 

profit is greater than or equal to 0.  

Proof: From the first 3 lines of the proof of Theorem 2, we know that the profit in each 
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scenario s is [ ]gs gs gsE RV MH CT+ − , which is the same as the expected value of profit with RT 

compensation. According to Theorem 1, [ ] 0gs gs gsE RV MH CT+ − ≥  

An additional property of this compensation scheme is that the variance of profit for each 

generating unit is 0, as shown in Theorem 4. 

Theorem 4: We assume that model P includes all possible scenarios. Under the most probable 

scenario-based hybrid pricing, the variance of profit for each generating unit is 0. 

Proof:  

0 0 0 0 0 0

0 0 0 0 0 0

2

2

( )
[ ( ) [ ] ( )

  [ ]]

[ ( ) ( ) ]

0

gs gs gs gsgs gs gs gs gs gs

gs gs gs gs

gs gsgs gs gs gs gs gs

Variance Profit
E RV MH CT CT E RV MH CT RV MH CT

CT E RV MH CT

E RV MH CT CT RV MH CT CT

= + + − + + − − + −

− − + −

= + + − − + − −

=

 

   Theorem 4 shows that the profit risk can be reduced to 0 under the hybrid compensation 

scheme while maintaining the expected value of profit of the RT compensation scheme 

(Theorem 2); the adder acts as an insurance used to cancel out the uncertainty of the profit of 

each generating unit. Note that make-whole payment MHgs in the compensation plan can be 

replaced by any other terms, e.g., the commitment revenue used in O’Neill et al. (2005). 

 These properties depend on the assumption that all the possible scenarios can be accurately 

predicted in DA. With this assumption we can safely say that the profit variance can be reduced 

to 0 while maintaining the expected profit. Nevertheless, it is impossible for an ISO to predict all 

the possible scenarios that may happen in RT; even if an ISO can, the resulting problem will be 

computationally intractable due to its size. We suggest that, in a real-world implementation, 
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these results may be approached but not precisely realized and leave the investigation of this for 

future research. In this thesis, we just select some important representatives of the scenarios to 

illustrate the theoretical results, e.g., unit and transmission line failures lasting for many hours. 

All expected values and variances are only computed over the scenarios included in the model. 

Moreover, the expected profits of the hybrid scheme are obtained without considering the 

payments charged by the entity that assumes the risk. Therefore, the expected profit values under 

the hybrid scheme are less than those under the RT scheme after these payments are deducted.  

5.8  Numerical Examples for the Proposed Compensation Schemes 

In this section, we will use the large-scale numerical example to illustrate the properties of the 

compensation plans.  

 We first apply the scenario-rolling heuristic algorithm to obtain the sub-optimal solution to the 

SMIP model. The sub-optimal solution to the binary variable is fixed in PLP, i.e., the 

commitment states of the generating units are known. Then we solve the PLP to its complete 

optimality. Following the steps given in the previous section, we can apply the duality theory to 

PLP and procure the energy prices, reserve prices and make-whole payments. Representative 

results about the compensation schemes are shown in Tables 5-7, 5-8, and 5-9. 

Table 5-7 shows the expected values and standard deviations of profits of RT pricing and the 

hybrid compensation scheme. We can see that the standard deviation of profit of the RT 

compensation scheme is higher than that of the hybrid compensation scheme, i.e., 0. To compare 

the different compensation schemes, we also show the expected profit of each generator under 

the compensation scheme proposed in O’Neill et al. (2005) in Table 5-7. O’Neill et al. (2005), 

instead of using a make-whole payment in the RT payment, use commitment revenue that is 
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represented by * *MIP
igst gstpω ω . The results in Table 5-7 demonstrate that most generators have higher 

expected profits under RT pricing with make-whole payment than under RT pricing with 

commitment revenue. Therefore, we can conclude that for most generators the additional 

commitment revenue is negative; this negative price reduces the profit of generators significantly 

by cutting part of their revenue. The total expected profit of the RT pricing with make-whole 

payment is $1237440.768 greater than the total expected profit of the RT pricing with 

commitment revenue, which is $290805.074. On the other hand, the total standard deviation of 

RT with make-whole payment, $2558571.535, is higher than that of RT pricing with 

commitment revenue, $381703.179.  

Table 5-8 provides the expected values of revenue components under the RT compensation 

schemes and the hybrid compensation scheme for each generator. It shows that under RT pricing, 

the revenue of peaking units 1U20-4U20 mainly comes from preparing reserves, while they 

receive revenue from supplying energy during shortage hours. Base load units 1U400 and 2U400, 

if they choose RT compensation scheme, receive their revenue mainly from supplying energy. 

As expected, their revenue from preparing reserves is the lowest among all the generators. The 

make-whole payment in RT pricing is enforced to guarantee that the generators can at least break 

even in all the scenarios. In addition, we also compare the make-whole payment with the revenue 

from the additional prices proposed in O’Neill et al. (2005) (see columns 4-5). We can see that 

most of the generators have high negative commitment revenues. These negative revenues 

significantly reduce the total revenue received by the generators; this additional price is difficult 

to implement in practice, since generators will not accept a contract that would significantly cut 

their revenue when they commit. Comparatively, make-whole payment is more acceptable. It 
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guarantees that each generator can have non-negative revenue by paying the generator to uplift 

its own profit to 0 if it has a negative profit in a scenario. 

From Table 5-8 we observe that the expected values of make-whole payment for some of the 

cyclers are positive; these positive values indicate that in some scenarios, the make-whole 

payment of these generators must be positive and their profit is 0. The results from the hybrid 

compensation scheme indicate that in the most probable scenario, all the generators make 

positive revenue because there is no contingency in that scenario. Some generators, however, 

receive negative contingency adjustment payments due to outages or rescheduling in some 

scenarios. The expected loss of these generators can be fully covered by the adders. 
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Table 5-7 Expected profit and standard deviation of profit of each generator under different 

schemes 

 Expectation(all in $) Std. Deviation(all in $) 

Generating 

Unit 

RT & Hybrid RT with 

Commitment 

Revenue  

RT with  

Make-whole 
Hybrid 

RT with  

Commitme

nt  
1U20 8052.248 8056.013  15441.390  0.000 15456.766 
2U20 8050.757 8056.041  15436.233  0.000 15456.864 
3U20 8052.338  8056.013  15440.380  0.000 15456.766 
4U20 8051.260  8056.027  15438.750  0.000 15456.828 
1U76 30983.024 2612.819  60411.801  0.000 1681.633  
2U76 30983.054 2565.803  60411.953  0.000 1740.253  
3U76 31511.306 3222.729  60360.050  0.000 1658.813  
4U76 31511.308 3094.863  60360.064  0.000 1716.373  
1U100 35558.429 999.218  77703.907  0.000 3670.351  
2U100 37813.742 1072.722  77405.279  0.000 480.304  
3U100 37815.593 1087.950  77396.607  0.000 513.223  
1U197 44710.012 5582.567  149223.229  0.000 9498.320  
2U197 56452.803 6349.257  155257.783  0.000 2822.893  
3U197 56453.176 6333.285  155292.307  0.000 2792.806  
1U12 3954.272 982.401  9307.260  0.000 238.301  
2U12 3963.111 1036.815  9304.855  0.000 273.230  
3U12 3925.174 958.496  9245.350  0.000 258.027  
4U12 3954.215 963.416  9307.232  0.000 230.085  
5U12 3962.459 980.872  9304.576  0.000 271.694  
1U155 55067.866 2967.547  123855.086  0.000 5420.841  
2U155 56158.034 2952.650  123799.324  0.000 4505.497  
1U400 161918.995 34866.438  261549.462  0.000 10029.701 
2U400 159836.836 33418.788  261650.710  0.000 9994.353  
1U50 22037.011 22189.715  40327.745  0.000 40286.852 
2U50 22037.058 22189.762  40327.826  0.000 40286.933 
3U50 22037.089 22189.793  40327.840  0.000 40286.947 
4U50 22037.012 22189.717  40327.757  0.000 40286.864 
5U50 22037.071 22189.775  40327.859  0.000 40286.966 
6U50 22037.055 22189.759  40327.861  0.000 40286.968 
3U155 58239.532 3490.770  123020.248  0.000 3938.241  
4U155 60179.557 3481.219  123434.343  0.000 2875.826  
1U350 108059.371 6421.834  257246.468  0.000 13543.660 
Total 1237440.768 290805.074  2558571.535 0.000 381703.17
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Table 5-8 Revenue components of RT and hybrid compensation schemes (expected values) 

 RT Compensation scheme (all in $) Hybrid Compensation scheme(all in $) 

Units Energy Reserve  
Make 

-Whole

Commitment 

Revenue 

 

Most 

Probable 

Scenario 

Contin-

gency 

Adjustment  

Adder  

1U20 29.945 8028.321 0.000  3.765  2491.706  6.018  5560.542  
2U20 61.766 7998.018 0.000  5.284  2491.706  9.027  5559.051  
3U20 33.065 8025.291 0.000  3.675  2491.706  6.018  5560.632  
4U20 45.913 8013.17 0.000  4.767  2491.706  7.823  5559.554  
1U76 49710.45 291.957 0.000  -28370.205  28547.952  -103.923  21558.377  
2U76 49483.693 321.244 0.000  -28417.251  28326.284  -79.756  21558.408  
3U76 50774.38 106.707 0.000  -28288.578  29393.348  -35.608  21523.347  
4U76 50764.691 75.973 0.000  -28416.446  29343.284  -25.970  21523.350  
1U100 32142.241 17964.735 44.874 -34535.246  24719.299  -206.793  25618.435  
2U100 35504.535 18234.978 0.000  -36741.020  25286.650  583.366  27869.497  
3U100 34173.742 18962.873 0.000  -36727.642  24626.537  642.909  27867.169  
1U197 75175.844 8891.786 139.012 -39046.316  40084.215  810.769  43253.776  
2U197 86361.12 10588.178 0.000  -50103.546  38773.301  3179.430  54996.567  
3U197 86576.463 10676.976 0.000  -50119.891  39118.659  3137.840  54996.940  
1U12 2173.135 2971.84 0.000  -2971.544  1771.903  59.816  3313.583  
2U12 2149.663 2962.11 0.000  -2925.969  1726.280  76.175  3309.645  
3U12 2118.281 2952.636 0.000  -2966.188  1726.280  73.419  3271.707  
4U12 2155.757 2986.79 0.000  -2990.472  1771.903  57.445  3313.526  
5U12 2151.775 2958.983 0.000  -2981.260  1726.280  75.812  3308.992  
1U155 78815.953 4528.808 32.139 -52074.618  42403.525  -374.546  41341.483  
2U155 80011.216 4564.835 20.218 -53189.341  42166.115  -48.126  42474.105  
1U400 223235.94 0.416 0.000  -127052.556 135808.200 -720.806  88148.971  
2U400 221098.59 8.915 0.000  -126418.048 133561.503 -715.045  88261.053  
1U50 27805.09 352.639 0.000  152.704  13635.623  11.239  14510.867  
2U50 27938.535 210.238 0.000  152.704  13615.755  22.104  14510.915  
3U50 28022.689 185.495 0.000  152.704  13682.923  14.316  14510.944  
4U50 27881.518 277.309 0.000  152.704  13623.800  24.158  14510.869  
5U50 27772.135 298.201 0.000  152.704  13531.244  28.163  14510.929  
6U50 27921.798 224.599 0.000  152.704  13618.676  16.810  14510.911  
3U155 92689.73 629.14 13.722 -54737.895  51783.864  -632.610  42178.483  
4U155 95386.293 675.376 0.000  -56698.338  52122.401  -178.480  44117.749  
1U350 190677.64 5060.052 117.894 -101584.054 113116.805 -1275.240  83949.614  
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We now choose a contingency scenario to present the numerical results of RT pricing and the 

hybrid compensation scheme. In this particular scenario, one of the base load units, 1U350, is 

down from hour 2 to hour 24, i.e., 23 hours out of 24 hours. 

Table 5-9 Revenue components in a contingency scenario: RT and hybrid  

RT Pricing (all in $) Hybrid Pricing (all in $)  

 

Units 
Energy 

Revenue 

Reserve 

Revenue 

Make- 

whole  

Total 

Profit 

Most 

Probable 

Scenario 

Contingency 

Adjustment 
Adder 

Total 

Profit 

1U20 0.000  62730.062  0.000 62730.062 2491.71 0.000 5560.540  8052.246 
2U20 0.000  62730.062  0.000 62730.062 2491.71 0.000 5559.049  8050.755 
3U20 0.000  62730.062  0.000 62730.062 2491.71 0.000 5560.629  8052.335 
4U20 0.000  62730.062  0.000 62730.062 2491.71 0.000 5559.551  8051.257 
1U76 266228.631  0.000  0.000 246422.896 28513.61 682.428 21558.377 30983.024 
2U76 266212.767  0.000 0.000 246422.896 28360.62 888.230 21558.408 30983.054 
3U76 267328.143  0.000  0.000 246880.157 29332.03 1042.597 21523.347 31511.306 
4U76 267141.248  0.000  0.000 246880.157 29393.35 905.766 21523.350 31511.309 
1U100 246729.374  88091.217  0.000 311552.580 24725.59 8488.706 25618.425 35558.419 
2U100 224468.094  108124.172  0.000 311552.570 25893.48 5697.291 27869.488 37813.733 
3U100 216346.719  115711.646  0.000 311552.568 24013.42 5827.684 27867.159 37815.583 
1U197 584217.193  85095.093  0.000 609900.810 38873.36 20783.498  43253.772 44710.008 
2U197 574553.410  94095.093  0.000 609900.807 38962.63 21430.631  54996.563 56452.799 
3U197 598867.025  70995.093  0.000 609900.814 40140.18 22298.881  54996.935 56453.171 
1U12 24264.866  15139.557  0.000 37105.536 1726.28 1167.672 3313.582  3954.270 
2U12 24586.083  14839.557  0.000 37105.536 1771.90 1247.291 3309.643  3963.110 
3U12 24264.866  15139.557  0.000 37105.536 1726.28 1226.073 3271.706  3925.172 
4U12 24294.283  15112.083  0.000 37105.536 1771.90 1169.615 3313.525  3954.214 
5U12 24329.109  15079.557  0.000 37105.536 1726.28 1230.317 3308.991  3962.457 
1U155 530380.105  1095.093  0.000 497763.647 42425.59 5034.410 41341.518 55067.901 
2U155 527959.502  3057.491  0.000 497707.595 42144.05 4827.212 42474.066 56157.994 
1U400 1388188.840  0.000  0.000 1326150.664 135808.20 0.000 88148.971 161918.995 
2U400 1386379.520  0.000  0.000 1324341.344 133561.50 52.456 88261.055 159836.838 
1U50 170652.801  176.429  0.000 164617.683 13631.92 102.068 14510.867 22037.011 
2U50 170832.087  12.737  0.000 164617.683 13586.50 137.530 14510.915 22037.058 
3U50 170812.537  12.737  0.000 164617.683 13621.44 50.812 14510.945 22037.089 
4U50 170907.887  12.737  0.000 164617.685 13604.72 205.284 14510.869 22037.013 
5U50 170888.604  12.737  0.000 164617.684 13650.31 278.555 14510.929 22037.071 
6U50 170851.482  12.737  0.000 164617.684 13613.13 154.003 14510.912 22037.055 
3U155 536706.515  396.236  0.000 499808.889 51783.86 1571.047 42178.484 58239.532 
4U155 537193.937  19.740  0.000 499808.892 52133.66 1344.193 44117.749 60179.557 
1U350 1434.888  0.000  976.648 0.000 113116.81 -86595.513  83949.608 108059.365 
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Table 5-9 gives the revenue components of RT pricing and the hybrid pricing in this scenario. 

Since 1U350 is the only unreliable generator in this scenario, in RT pricing it requires a make-

whole payment of $976.648 to break even. Other generating units receive 0 make-whole 

payment because they are paid adequate energy and reserve revenue to cover their total costs. 

Peaking units 1U20-2U20 receive revenue only from preparing reserve; the magnitude of the 

reserve payment is large due to high reserve prices during the shortage hours. Base load units 

1U400 and 2U400 contribute all their capacity to supplying energy; therefore, their revenue 

completely comes from supplying energy. Other cyclers receive either energy revenue or both 

energy and reserve revenue, depending on the rescheduled generation plan. In hybrid pricing, the 

contingency adjustment payment of 1U350 is negative, -$86595.513. However, as previously 

discussed, most of the loss is covered by the adder in the amount of $83949.608, which is based 

on the overall performance of this generator across all possible scenarios. The profit of 1U350 in 

this scenario is $108059.365, which is a significant improvement over barely breaking even in 

the RT compensation scheme. Most of the other generating units receive a positive contingency 

adjustment, since they are called on by ISO to supply more energy than that they do in the most 

probable scenario to make up the capacity loss due to the outage of 1U350. The calculation of 

the adder is tied to the overall performance of the generators in other scenarios to cover their 

total cost in the scenario. In this particular scenario, the profit of generators with the hybrid plan 

is lower than it would be for the RT compensation plan, except for the outage generator. The 

adder in the hybrid compensation plan acts as a form of insurance. If a generator is not confident 

of its equipment, it may prefer the hybrid plan, which can compensate part of the loss due to a 

contingency. However, the generator has to pay this insurance. Thus, the actual adder paid to the 
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generators should be less than those values shown in Table 5-9 after being deducted by the 

insurance.  

Table 5-10 Sensitivity analysis of expected profit and standard deviation of profit (low contingency 

probability) 

 Expectation(all in $) Std. Deviation(all in $) 

Generating 

Unit 

RT & Hybrid RT with 

Commitment 

Revenue  

RT with  

Make-whole 
Hybrid 

RT with  

Commitment 

Revenue 
1U20 4788.304  4788.741  5230.935  0.000 5236.658  
2U20 4788.304  4788.741  5231.149  0.000 5236.652  
3U20 4788.189  4788.743  5228.905  0.000 5236.670  
4U20 4788.209  4788.741  5230.542  0.000 5236.652  
1U76 18217.487  0.155  20440.698  0.000 4.023  
2U76 18217.485  0.154  20440.698  0.000 4.023  
3U76 18777.314  0.170  20412.450  0.000 4.003  
4U76 18777.313  0.170  20412.450  0.000 4.003  
1U100 21391.833  489.194  26210.206  0.000 729.637  
2U100 21473.015  496.481  26200.242  0.000 215.297  
3U100 21473.273  496.165  26195.281  0.000 259.268  
1U197 12289.490  10069.613 52678.559  0.000 1939.660  
2U197 12718.468  10090.771 53639.951  0.000 873.940  
3U197 12714.826  10095.766 53647.689  0.000 886.013  
1U12 870.655  1048.442  2905.859  0.000 141.062  
2U12 2039.363  1041.990  2812.168  0.000 142.277  
3U12 902.927  1049.202  3193.911  0.000 113.865  
4U12 903.647  969.315  3194.429  0.000 113.357  
5U12 907.804  963.633  2984.330  0.000 139.137  
1U155 31459.666  364.685  41549.491  0.000 1182.090  
2U155 31403.536  378.689  41555.444  0.000 1184.584  
1U400 117195.117  0.127  86975.797  0.000 0.012  
2U400 114963.768  0.066  86045.265  0.000 0.006  
1U50 13329.121  13516.562 13709.343  0.000 13695.099  
2U50 13329.124  13516.564 13709.343  0.000 13695.099  
3U50 13329.121  13516.562 13709.343  0.000 13695.099  
4U50 13329.121  13516.561 13709.343  0.000 13695.099  
5U50 13329.121  13516.561 13709.343  0.000 13695.099  
6U50 13329.123  13516.563 13709.343  0.000 13695.099  
3U155 33785.688  33.168  41544.061  0.000 1011.755  
4U155 33997.732  33.204  41798.891  0.000 13.451  
1U350 62862.398  132.515  85843.746  0.000 4803.413  
Total 706470.542  138008.014 863859.205 0.000 116882.102 
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Table 5-11 Sensitivity analysis of revenue components of RT and hybrid compensation schemes 

(low contingency probability) 

 RT Compensation scheme (all in $) Hybrid Compensation scheme(all in $) 

Units Energy Reserve  
Make 

-Whole

Commitment 

Revenue 

 

Most 

Probable 

Scenario 

Contin-

gency 

Adjustment  

Adder  

1U20 3.909  4785.107  0.000 0.437  4329.384 0.712  458.920  
2U20 3.909  4785.107  0.000 0.437  4329.384 0.712  458.920  
3U20 4.967  4784.129  0.000 0.554  4329.384 0.907  458.805  
4U20 4.290  4784.760  0.000 0.532  4329.384 0.842  458.825  
1U76 37252.377  15.153  0.000 -18217.331 35486.099 -6.801  1788.231  
2U76 37163.998  32.809  0.000 -18217.331 35413.806 -5.232  1788.231  
3U76 38167.686  11.085  0.000 -18777.144 36398.154 -3.933  1784.549  
4U76 38118.043  11.222  0.000 -18777.144 36348.090 -3.375  1784.549  
1U100 22041.995  14808.734  0.916 -20901.723 34626.249 7.856  2217.539  
2U100 20828.300  15341.563  0.000 -20976.534 33819.452 51.684  2298.726  
3U100 21280.598  15096.780  0.000 -20977.108 34028.958 49.437  2298.982  
1U197 43435.847  6967.132  3.246 -2216.631  45859.661 156.176  4390.385  
2U197 42947.727  7019.019  0.000 -2627.697  44896.477 250.904  4819.363  
3U197 44127.226  7016.030  0.000 -2619.060  46107.419 220.114  4815.721  
1U12 750.258  1256.255  0.334 178.122  1756.913 4.979  244.957  
2U12 943.265  2231.392  0.299 -997.074  2946.912 4.378  223.666  
3U12 773.606  1266.857  0.194 146.469  1756.913 6.516  277.228  
4U12 773.569  1267.825  0.176 65.844  1756.913 6.708  277.949  
5U12 735.103  1251.299  0.264 56.094  1726.280 6.049  254.337  
1U155 53344.717  6433.850  1.471 -31093.509 56322.354 6.659  3451.024  
2U155 53053.141  6437.960  1.475 -31023.372 56033.285 5.966  3453.323  
1U400 179155.47 0.074  0.000 -117194.990 172617.520 -77.752  6615.773  
2U400 176861.06 9.291  0.000 -114963.703 170363.779 -77.056  6583.625  
1U50 18752.916  658.651  0.000 187.440  18200.463 2.321  1208.783  
2U50 19495.038  53.797  0.000 187.440  18341.393 -1.342  1208.783  
3U50 18775.595  638.329  0.000 187.440  18202.980 2.160  1208.783  
4U50 18745.827  631.887  0.000 187.440  18166.202 2.728  1208.783  
5U50 18803.959  583.520  0.000 187.440  18175.827 2.868  1208.783  
6U50 18929.253  561.539  0.000 187.440  18281.104 0.903  1208.783  
3U155 69841.313  61.983  1.233 -33751.287 66519.313 -64.252  3449.466  
4U155 69957.412  83.768  0.000 -33964.528 66389.772 -10.105  3661.510  
1U350 146813.97 5204.540  6.272 -62723.611 145612.131 -123.551  6536.195  
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Table 5-12 Sensitivity analysis of revenue components in a contingency scenario: RT and hybrid 

(low contingency probability) 

RT Pricing (all in $) Hybrid Pricing (all in $)  

 

Units 
Energy 

Revenue 

Reserve 

Revenue 

Make- 

whole  

Total 

Profit 

Most 

Probable 

Scenario 

Contingency 

Adjustment 
Adder 

Total 

Profit 

1U20 0.000 62730.064 0.000  62730.064 4329.384 0.000 458.92 4788.304
2U20 0.000 62730.064 0.000  62730.064 4329.384 0.000 458.92 4788.304
3U20 0.000 62730.064 0.000  62730.064 4329.384 0.000 458.805 4788.189
4U20 0.000 62730.064 0.000  62730.064 4329.384 0.000 458.825 4788.209
1U76 265931.551 184.514 0.000  246422.903 35486.099 636.318 1788.231 18217.487
2U76 266212.773 0.000 0.000  246422.904 35413.806 805.316 1788.231 18217.485
3U76 267232.202 0.000 0.000  246880.172 36398.154 946.641 1784.549 18777.314
4U76 267237.219 0.000 0.000  246880.171 36348.09 1001.723 1784.549 18777.313
1U100 235246.425 98253.224 0.000  311552.585 34626.249 6495.109 2217.539 21391.833
2U100 238991.59 94814.179 0.000  311552.587 33819.452 7608.019 2298.726 21473.015
3U100 227994.52 105182.179 0.000  311552.584 34028.958 6769.447 2298.982 21473.273
1U197 574063.327 94095.096 0.000  609900.82 45859.661 20297.046 4390.385 12289.49
2U197 576937.154 91875.096 0.000  609900.821 44896.477 21914.057 4819.363 12718.468
3U197 586955.276 82545.096 0.000  609900.824 46107.419 21391.234 4815.721 12714.826
1U12 25231.244 14239.558 0.000  37105.538 1756.913 1234.05 244.957 870.655
2U12 25102.212 14359.558 0.000  37105.537 2946.912 1225.018 223.666 2039.363
3U12 25102.212 14359.558 0.000  37105.537 1756.913 1225.018 277.228 902.927
4U12 25680.404 13819.558 0.000  37105.538 1756.913 1263.21 277.949 903.647
5U12 25616.705 13879.558 0.000  37105.538 1726.280 1317.912 254.337 907.804
1U155 530380.112 1095.096 0.000  497763.657 56322.354 5397.839 3451.024 31459.666
2U155 528289.938 2866.059 0.000  497707.606 56033.285 5365.319 3453.323 31403.536
1U400 1388188.88 0.000 0.000  1326150.704 172617.520 0 6615.773 117195.117
2U400 1386379.56 0.000 0.000  1324341.384 170363.779 54.54 6583.625 114963.768
1U50 170641.156 176.429 0.000  164617.683 18200.463 119.777 1208.783 13329.121
2U50 170931.117 12.737 0.000  164617.686 18341.393 105.115 1208.783 13329.124
3U50 170736.609 12.737 0.000  164617.682 18202.980 49.022 1208.783 13329.121
4U50 170908.798 12.737 0.000  164617.685 18166.202 257.985 1208.783 13329.121
5U50 170778.758 12.737 0.000  164617.683 18175.827 118.323 1208.783 13329.121
6U50 170948.965 12.737 0.000  164617.686 18281.104 183.251 1208.783 13329.123
3U155 537384.316 19.742 0.000  499808.904 66519.313 1412.064 3449.466 33785.688
4U155 536482.815 403.158 0.000  499808.901 66389.772 1023.522 3661.510 33997.732
1U350 1434.888 0.000 976.648 0.000 145612.131 -86874.392 6536.195 62862.398

 

Tables 5-10 to 5-12 present the sensitivity analysis of the results in Tables 5-7 to 5-9 when the 

probability of the most probable scenario is set to 0.98, and the contingency scenarios split the 

remaining probability of 0.2 evenly. We notice that the adders based on the new probabilities are 
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much smaller than these in Tables 5-8 and 5-9. These indicate that if the probability that some 

equipment failure may occur in the next day is small, the adder as a form of insurance reduce 

accordingly.  

5.9 Summary 

In this chapter, we first applied the method proposed by O'Neill et al. (2005) to obtain the dual 

prices of the model: we used the scenario-rolling algorithm to obtain a feasible solution, then 

fixed the binary variables to their sub-optimal values and solved the resulting linear program to 

procure the dual prices. Then we gave a numerical example to show energy and reserve prices 

with this methodology. We also compared the load shed and the energy prices between two 

settings, with the reserve demand curve and without reserve demand curve, highlighting the 

difference between the results of the two models. The reserve demand curve can alleviate price 

spikes by allowing reserve shortages, while without the reserve demand curve the energy jumps 

to the pre-set cap price, even if there is only a small amount of reserve shortage. 

We then proposed two compensation schemes: a RT compensation scheme and a hybrid 

compensation scheme. The RT compensation scheme uses the estimated RT prices in each 

scenario calculated in DA with the assumption that all the possible scenarios can be accurately 

predicted. We investigated the commitment revenue suggested by O’Neill et al. (2005) and 

found out that generating units have to pay back a proportion of their revenue because the dual 

prices associated with fixed commitment state constraints can be negative, and the magnitude is 

large. This drawback of the scheme cannot be accepted by generators in practice.  We also 

proposed a RT compensation scheme with a lump sum make-whole payment that guarantees 
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non-negative profit for each generator in each scenario. Its variance is high, since the output 

level of generating units varies significantly in different scenarios. Therefore, generators have to 

bear a high financial risk due to various contingencies. The hybrid compensation scheme relies 

on the price and generation information in the most probable scenario and financially 

compensates the power output deviation between the most probable scenario and other 

contingency scenarios. It has the same expected profit as the RT compensation scheme does. 

With the assumption that all the possible scenarios can be predicted and included in the model, 

the hybrid compensation scheme reduces the variance of profit of each generator to 0, reducing 

the financial risk of generators. Although not all of the scenarios can be predicted in the real 

world, the variance of profit is 0 in the scenarios considered in the model, no matter how many 

scenarios are considered in the model. The expected value of profit for each generating unit will, 

however, change accordingly.  

The adder in the hybrid compensation plan works as a form of insurance. If a generator agrees 

to choose the hybrid compensation plan, it has to pay its insurance because it cannot be secured 

by the adder for free. The involved contract and other potential financial issues will make for 

interesting future research. 
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Chapter 6 

 

Conclusions and Future Research 

Reliable power generation is crucial to an electricity market. Incorporating possible uncertainties 

in RT in a DAM can help an ISO to better prepare for unexpected contingencies during the next 

day. This thesis presents a multi-stage SMIP model for determining unit commitment and 

allocation of the units to energy and reserves for a pool type of DA electricity market. It is 

challenging to solve a multi-stage SMIP model within a time requirement. Therefore, we propose 

a scenario-rolling heuristic to obtain a good sub-optimal solution to the large-scale SMIP 

problem. Given the sub-optimal solution, we extend the ideas in previous research to price the 

SMIP so that we can propose compensation plans for generating units with energy and reserve 

prices.  

This thesis makes the following contributions: 

• It incorporates a reserve demand curve into an SMIP model to associate the energy price   

with the reserve shortage level in the system. The model allows a reserve shortage while 

using a fixed reserve requirement in each scenario. From the perspective of modeling, an 

ISO does not have to shed load when a small amount of reserve requirement cannot be 

met. 

• To avoid combinatorial explosion, we parsimoniously select a representative number of 

scenarios instead of incorporating all of them. 
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• We propose a scenario-rolling heuristic to solve the SMIP model within a short time 

period based on a scenario tree. The heuristic can generate good quality feasible solutions 

within reasonable time requirements. 

• The numerical results show a difference between the operating schedules of the 

deterministic and stochastic models. Compared with the operating schedule determined 

by the deterministic model, some of the generating units need to be started up earlier in 

the operating schedule in anticipation of future forced equipment failures. 

• We extend previous research on pricing commodity models with or without 

nonconvexities, by applying the ideas (O’Neill et al., 2005; Sioshansi et al., 2008; Wong 

and Fuller, 2007) to pricing energy and reserve based on the SMIP. Particularly, we 

conduct numerical tests to investigate the validity of additional prices associated with 

binary variables proposed in O’Neill et al. (2005). This proposal is shown to be 

impractical, and we advocate make-whole payments instead. 

• We propose two compensation plans. Based on the assumption that all the possible 

scenarios can be accurately predicted by an ISO, we prove that one of the proposed plans 

has the desirable property of reducing the profit variance to 0. 

6.1 Conclusions 

The following conclusions are drawn from the results of this thesis: 

• The proposed scenario-rolling heuristic method can solve large-scale numerical examples 

within the time requirement. Depending on the structure of the scenario trees, the 

heuristic can be used to solve large-scale multi-stage stochastic programs if a quick 
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solution with good quality is required. The scenarios solved in each iteration can be 

selected intentionally according to the need of users. 

• If contingencies are considered during the process of power generation planning, some 

generating units have to follow a different schedule from that determined by a 

deterministic model. For example, some generating units have to be started up early to 

prepare for future outages in the system. As a result, the allocation of energy and reserve 

changes accordingly. 

• If we consider contingencies in the real world, we believe that a fixed reserve 

requirement is still needed. This conclusion differs from Galiana et al. (2005) and Wong 

and Fuller (2007). 

• By providing numerical examples, we show that the reserve demand curve can mitigate 

the energy price spike. From the modeling perspective, allowance for reserve shortage 

can prevent an ISO from shedding load just because a small part of the reserve 

requirement is not met. 

• We demonstrate that the additional price associated with binary variables in O’Neill et al. 

(2005) is impractical when pricing electricity in the real world. It can easily cause 

inequities and disagreement among generators. 

• Assuming that an ISO can accurately predict RT scenarios, the profit variance of 

generating units can, in theory, be reduced to 0 under the compensation plan proposed in 

this thesis. In practice, because the ISO can only include a few of the major contingencies 

in scenarios of our model, we interpret this result to mean that profit variance can be 
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reduced considerably, but not necessarily to 0. In future research, we will investigate the 

profit variance of generating units when more scenarios than a few of the important 

scenarios are included. 

6.2 Future Research 

The model and the solution methods presented in this thesis contain some limitations. To go 

beyond these limitations, we suggest the following future research: 

• When the size of the problem increases as more scenarios are incorporated, or the 

scenario tree branches out further than the one presented in this thesis, the scenario-

rolling heuristic method may need to work with other existing solution methods to 

improve the quality of the solution. We also need an algorithm to provide a good lower 

bound to evaluate the quality of the solution. 

• We may consider sources of contingencies other than equipment failure. For example, 

load fluctuation is another important cause for contingencies. To limit the size of a multi-

stage stochastic programming problem considering load uncertainties and equipment 

failure simultaneously, sampling and simulation techniques may be required. For 

example, the Monte-Carlo method may be needed to evaluate the quality of the solution 

(Mak et al., 1999). 

• Since we already include the minimum reserve requirement and the target reserve 

requirement, we may move forward in the next step to consider responsive demand. 

When the energy prices and the reserve prices in the system tend to increase due to 
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contingencies, customers may consider ramping down their demand to avoid possible 

blackouts, especially for commercial customers with RT meters.  

• To make the model more realistic, the next step in research may include other features of 

power system operation, such as emission constraints, fuel constraints, power loss along 

the lines, etc. 

• As we introduce more scenarios in the model, we can further test the property of the 

hybrid compensation scheme to investigate the issues of expected profit and profit 

variance.  

• We may investigate the contract issues relevant to the adder in the hybrid compensation 

plan or other forms of insurance that can cover the loss of generators due to contingencies.  
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Appendices 

Appendix A 
GAMS Codes of the Scenario-Rolling Method 

* no overlap between time period when the algorithm moves forward 

$TITLE  no overlap roll time period forward algorithm, version 1.00 

$ontext 

version: xx 

 

date: Oct. 16 2008 

 

author of this version: Jzhang 

 

characteristics: ? 

 

new in this version: 

 

problem1: no improvement from Cplex from a feasible starting solution 

 

note1: 73 scenarios, 6 units and 9 lines, 3 contingencies in each time period including two unit 
outages and one line outage 

 

note2: linkscenario, 1 stands for link on, 0 stands for no link 

 

note 3: 

        12 block: iter: 2, inner: 12, time block: 12 

        8 block: iter: 5, inner: 4, time block: 8 

        6 block: iter: 7, inner: 3, time block: 6 

        4 block: iter: 11, inner: 2, time block: 4 
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        2 block: iter: 23, inner: 1, time block: 2 

 

$offtext 

$eolcom # 

$inlinecom { } 

$offsymxref 

set tao time generator has been turned off 
/0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24/; 

 

set iter iterations /iter1*iter1/; 

set inneriter inner iteration /23/; 

scalar timeblock/23/; 

Set i   buses  /201,223,218,202,203,204/; 

set alls n-1 scenarios /1*73/; 

set s(alls)   dynamic set; 

set sdummy(alls) dynamic set; 

set bs shortage blocks /1,2,3,4/; 

set allt time periods /1*24/; 

 

 

set b blocks of offers and bids /1*4/; 

alias (alls,a); 

alias (i,j); 

alias (allt,t); 

alias (allt,k); 

scalar tcplexsolve/0/; 

scalar tsolve/0/; 

scalar big/1.0E9/; 

scalar small/0.0000001/; 

 

scalar sheddingcost/10000/; 
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scalar demandper/0.95/; 

 

scalar Qrequire/400/; 

Scalar MinRreq/25/; 

sets 

    isupply(i) /218,201,223/ 

    idemand(i) /202,203,204/ 

    g generating units /1U400,U350,U155,1U20,2U20,U197/ 

 

 

   gs(g) slow units /U350,2U20,1U400,U155/ 

   gf(g) fast units /U197,1U20/ 

    gr(g) units must run /1U400/ 

 

    igall(isupply,g) / 

       201.(1U20,2U20) 

       223.(U155,U197,U350) 

       218.(1U400) 

       /; 

 

; 

 

Parameter CS(bs)     reserve shortage capped price  / 

 

1 1000 

2 3000 

3 6000 

4 10000 

 /; 
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Table BB(i,j)    negative of susceptance 

                 201     223     218     202     203     204 

         201                                   2.74               6.87 

         223                       5.21                4.31    5.46 

         218                                  3.49     5.40    8.62 

         202                                     2.90 

         203 

         204                                                      ; 

 

Table U(i,j)    line capacity 

                 201     223     218     202     203     204 

         201                                  150                 150 

         223                         200                300     300 

         218                                   200     150     180 

         202                                              175 

         203 

         204                                                      ; 

 

 

Scalar Tmax the max time period considered /24/; 

Parameter mu(isupply,g,alls,allt)  generator scenarios / 

$ondelim 

$include MuLarge.csv 

$offdelim 
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/; 

 

Parameter link(alls,a,t)  nonanticitivity  / 

$ondelim 

$include LinkScenarioNew.csv 

$offdelim 

/; 

 

Parameter vi(i,j,alls,allt) line outages   / 

$ondelim 

$include ViLarge.csv 

$offdelim 

/; 

Parameters Cgen(isupply,g,b,allt)        generators' offer price / 

$ondelim 

$include GenOfferPriceLarge197.csv 

$offdelim 

/; 

Cgen('201','2U20',b,allt)=0.9*Cgen('201','2U20',b,allt); 

Cgen('223','U350',b,allt)=0.8*Cgen('223','U350',b,allt); 

Parameters Demand(idemand,allt)      demand at demand bus in s during t/ 

$ondelim 

$include DemandLarge.csv 

$offdelim 

/; 

Demand(idemand,allt)$(ord(allt)>=9 and ord(allt)<=12)=1.04* Demand(idemand,allt); 

 

Demand(idemand,allt)$(ord(allt)>=15 and ord(allt)<=18)=1.04* Demand(idemand,allt); 

 

Parameter GenQuant(isupply,g,b)       quantities offered by generators / 
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$ondelim 

$include GenQuantLarge197.csv 

$offdelim 

/; 

 

 

Parameter Pi(alls)   probability of scenario s / 

$ondelim 

$include ScnProbSPi80.csv 

$offdelim 

/; 

 

Parameter ShortQuant(allt,bs)    uppbound of shortage in blocks / 

$ondelim 

$include ShortQuantLarge.csv 

$offdelim 

/; 

 

Parameter GenMax(isupply,g)    generator max energy and reserve capacity bid / 

 

201.1U20        100 

201.2U20        100 

218.1U400       400 

223.U155        155 

223.U197        70 

223.U350        350 

/; 

 

Parameter MinDnT(isupply,g)    generator min down time  / 

201.1U20   1 
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201.2U20   2 

218.1U400  0 

223.U155   3 

223.U197   0 

223.U350   5 

* change from 3 to 1 for 1u20 and 2u20, change from 3 to current value for u155 and from 5 to 
current value for U350 

/; 

Parameter MinUpT(isupply,g)    generator min up time  / 

201.1U20   1 

201.2U20   2 

218.1U400  0 

223.U155   3 

223.U197   0 

223.U350   5 

/; 

 

 

Parameter ColdStartT(isupply,g)    cold start time    / 

201.1U20   7 

201.2U20   7 

218.1U400  23 

223.U155   11 

223.U197   0 

223.U350   10 

/; 

 

Parameter RampUpLimit(isupply,g)    ramp up rate*10 minutes    / 

201.1U20   80 

201.2U20   40 

218.1U400  200 
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223.U155   75 

223.U197   70 

223.U350   150 

/; 

 

Parameter RampDnLimit(isupply,g)    rampdown rate*10 minutes    / 

201.1U20   80 

201.2U20   40 

218.1U400  200 

223.U155   75 

223.U197   70 

223.U350   150 

/; 

 

Parameter MSL(isupply,g)    Min stable level   / 

201.1U20   10 

201.2U20   10 

218.1U400  100 

223.U155   15 

223.U197   10 

223.U350   20 

/; 

Parameter SDR(isupply,g)    shut down ramp limit   / 

201.1U20   20 

201.2U20   10 

218.1U400  100 

223.U155   15 

223.U197   10 

223.U350   20 

/; 
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Parameter SUR(isupply,g)    start up ramp limit   / 

201.1U20   20 

201.2U20   10 

218.1U400  100 

223.U155   15 

223.U197   10 

223.U350   20 

/; 

 

Parameter CNoLoad(isupply,g)    No-load costs   / 

201.1U20   100 

201.2U20   100 

218.1U400  80 

223.U155   80 

223.U197   80 

223.U350   80 

/; 

 

Parameter StartUpC(isupply,g,tao)       start-up costs / 

$ondelim 

$include StartUpCost197.csv 

$offdelim 

/; 

Parameter isoqe(isupply,g,b,alls,t); 

isoqe(isupply,g,b,alls,t)=0; 

Parameter isow(isupply,g,alls,t); 

isow(isupply,g,alls,t)=0; 

Parameter isoz(isupply,g,alls,t); 

isoz(isupply,g,alls,t)=0; 

Parameter shedding(idemand,alls,t); 



 

  146

shedding(idemand,alls,t)=0; 

Parameter resshortage(alls,t,bs); 

resshortage(alls,t,bs)=0; 

Parameter isototalqe(isupply,g,alls,t); 

isototalqe(isupply,g,alls,t)=0; 

parameter isoqr(isupply,g,alls,t); 

isoqr(isupply,g,alls,t)=0; 

 

parameter isoqsb(alls,t,bs); 

isoqsb(alls,t,bs)=0; 

Variables 

         GenCost              expected gen cost($) 

         lsGenCost              with load shedding($) 

         GenCosttotal            total gen costs 

         GenCosttotalcplex       total gen costs starting from a good starting point 

         scencost(a)             cost of each scenario 

         theta(i,alls,allt)      theta at bus i (voltage angle in radians) 

         shortcost               cost of shortage 

         energycost              costs related to energy 

         loadshedding            load loss cost 

         startupcost             startup cost in total 

         noloadcost              no-load cost in total 

 

         qeij(i,j,alls,allt)      power on line ij; 

 

Positive variables 

         qe(isupply,g,b,alls,allt)        output supplied by generators from block b in s during t(MW) 

         totalqe(isupply,g,alls,allt)     total output supplied by generator in s during t(MW) 

         qr(isupply,g,alls,allt)            reserve capacity available at igall in s during t for type m(MW) 

          qs(alls,allt)                           reserve shortage in s during t for type m(MW) 
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          z(isupply,g,alls,allt)              linearized variables 

          qsb(alls,allt,bs)                     reserve shortage in different blocks(MW) 

          demandvar(idemand,alls,allt)      demand changes 

          supplygap(idemand,alls,t)            lost load; 

 

Binary variables 

         w(isupply,g,alls,allt)         binary variables to represent the committment state of 
generators; 

 

Equations 

         costls                                                     cost with load shedding 

         offerquantub(isupply,g,b,alls,allt)           upper bound of energy quantity in each block in 
each offer 

         shortagequantub(alls,allt,bs)                 upper bound of shortage in each block 

         MSLconstraint(isupply,g,alls,allt)            min stable level constraint 

         sreserve(isupply,gf,alls,allt)                    spinning reserve supplied by online generators  

         sreserve1(isupply,gs,alls,allt)                 spinning reserve from slow units 

         powerflows01(isupply,alls,allt)               supply node balance 01 without line outage 

         lspowerflowd(idemand,alls,allt)              with load shedding 

         scenariolink(isupply,g,alls,allt)                link between each scenario over time period t 

         powerlimit(i,j,alls,allt)                              power limit over transmission lines without outage 

         reserverequirement(alls,allt)                   system reserve requirement 

minreserve(alls,allt)                                 minimum reserve requirement 

         rampupbetween(isupply,g,alls,allt)         ramp up limit between time periods 

         rampdnbetween(isupply,g,alls,allt)         ramp down limit between time periods 

         mindntime(isupply,g,alls,allt,k)                min down time 

         minuptime(isupply,g,alls,allt,k)                min up time 

         logic(isupply,g,alls,allt)                            committment state vs generator outages 

         linearized(isupply,g,alls,allt,tao)              linearized constraints 

         u400mustrun(isupply,gr,alls,allt)             u400must run 

         reservelimit01(isupply,gs,alls,allt)           reserve limit for slow units 
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         reservelimit02(isupply,gf,alls,allt)            reserve limit for fast units 

         initial(i,g,alls,allt)                                      initial states of slow units 

         gapub1(isupply,g,idemand,alls,t)             upper bound of supply gap; 

 

 

 

 

costls..     GenCost 

=e= sheddingcost*sum(idemand, sum(s, sum(t, Pi(s)*(supplygap(idemand,s,t))))) 

                       +sum(t,sum(s,Pi(s)*sum(bs,CS(bs)*qsb(s,t,bs)))) 

                       +sum(t,sum(s,Pi(s)*sum(isupply, sum(g$igall(isupply,g),sum(b, 
Cgen(isupply,g,b,t)*qe(isupply,g,b,s,t)))))) 

                       +sum(t,sum(s,Pi(s)*sum((isupply,g)$igall(isupply,g),z(isupply,g,s,t)))) 

+sum(t,sum(s,Pi(s)*sum((isupply,g)$igall(isupply,g),CNoLoad(isupply,g)*w(isupply,g,s,t)))) 

                       -sum(t, sum(s,Pi(s)*sum((isupply,g)$igall(isupply,g),0.0001*qr(isupply,g,s,t)))); 

 

offerquantub(isupply,g,b,s,t)$igall(isupply,g)..        qe(isupply,g,b,s,t)=l= 
GenQuant(isupply,g,b)*w(isupply,g,s,t); 

shortagequantub(s,t,bs)..                              qsb(s,t,bs) =l= ShortQuant(t,bs); 

MSLconstraint(isupply,g,s,t)$igall(isupply,g).. 

MSL(isupply,g)*w(isupply,g,s,t)=l=sum(b,qe(isupply,g,b,s,t)); 

sreserve(isupply,gf,s,t)$(GenMax(isupply,gf)>0).. 

sum(b,qe(isupply,gf,b,s,t))+qr(isupply,gf,s,t)=l=GenMax(isupply,gf)*mu(isupply,gf,s,t); 

sreserve1(isupply,gs,s,t)$(GenMax(isupply,gs)>0)..    
sum(b,qe(isupply,gs,b,s,t))+qr(isupply,gs,s,t)=l=GenMax(isupply,gs)*w(isupply,gs,s,t); 

powerflows01(isupply,s,t)..          sum(g$(GenMax(isupply,g)>0), 

sum(b,qe(isupply,g,b,s,t)))=e= sum(j$((U(isupply,j)>0 or 
U(j,isupply)>0)),(vi(isupply,j,s,t)+vi(j,isupply,s,t))*(BB(isupply,j)+BB(j,isupply))*(theta(isup
ply,s,t)-theta(j,s,t)))*1000; 

lspowerflowd(idemand,s,t)..         
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-Demand(idemand,t)*demandper +supplygap(idemand,s,t)=e= sum(j$((U(idemand,j)>0 
or U(j,idemand)>0)),(vi(idemand,j,s,t)+vi(j,idemand,s,t))*(BB(idemand,j) 
+BB(j,idemand))*(theta(idemand,s,t)-theta(j,s,t)))*1000; 

gapub1(isupply,g,idemand,s,t)$(mu(isupply,g,s,t)=1)..       

supplygap(idemand,s,t)=l= demandper*Demand(idemand,t); 

scenariolink(isupply,g,s,t)$(igall(isupply,g) and mu(isupply,g,s,t)=1)..     
sum(sdummy,link(s,sdummy,t)*Pi(sdummy)*sum(b,qe(isupply,g,b,sdummy,t)))-
sum(sdummy,link(s,sdummy,t)*Pi(sdummy))*sum(b,qe(isupply,g,b,s,t))=e=0; 

powerlimit(i,j,s,t)$(U(i,j)>0 or U(j,i)>0)..    

(vi(i,j,s,t)+vi(j,i,s,t))*(BB(i,j)+BB(j,i))*(theta(i,s,t)-theta(j,s,t))*1000=l=(U(i,j)+U(j,i)); 

reserverequirement(s,t)..                                            

sum((isupply,gs)$(GenMax(isupply,gs)>0), qr(isupply,gs,s,t))+ 
sum((isupply,gf)$(GenMax(isupply,gf)>0), qr(isupply,gf,s,t))+sum(bs,qsb(s,t,bs)) 
=g=Qrequire; 

minreserve(s,t)..           

sum((isupply,gs)$(GenMax(isupply,gs)>0), qr(isupply,gs,s,t))+ 
sum((isupply,gf)$(GenMax(isupply,gf)>0), qr(isupply,gf,s,t))=g= MinRreq; 

rampdnbetween(isupply,g,s,t)$(igall(isupply,g) and ord(t) ge 2 and mu(isupply,g,s,t)=1)..       
sum(b,qe(isupply,g,b,s,t-1))-sum(b,qe(isupply,g,b,s,t)) =l= 
RampDnLimit(isupply,g)*w(isupply,g,s,t)+SDR(isupply,g)*(1-w(isupply,g,s,t)); 

rampupbetween(isupply,g,s,t)$(igall(isupply,g) and ord(t) ge 2 and mu(isupply,g,s,t)=1)..       
sum(b,qe(isupply,g,b,s,t))-sum(b,qe(isupply,g,b,s,t-1)) =l= 
RampUpLimit(isupply,g)*w(isupply,g,s,t-1)+SUR(isupply,g)*(1-w(isupply,g,s,t-1)); 

mindntime(isupply,g,s,t,k)$(not gr(g) and (MinDnT(isupply,g) ge 2) and  (mu(isupply,g,s,k)>0) 
and (ord(t) ge 1) and igall(isupply,g) and (ord(k) ge ord(t)+1) and (ord(k) le Tmax) and (ord(k) le 
ord(t)+MinDnT(isupply,g)-1))..           

w(isupply,g,s,t-1)-w(isupply,g,s,t)=l=1-w(isupply,g,s,k); 

minuptime(isupply,g,s,t,k)$(not gr(g) and (MinUpT(isupply,g) ge 2) and (mu(isupply,g,s,k)>0) 
and igall(isupply,g) and (ord(t) ge 1) and (ord(k) ge ord(t)+1) and (ord(k) le Tmax) and (ord(k) le 
ord(t)+MinUpT(isupply,g)-1))..         

w(isupply,g,s,t)-w(isupply,g,s,t-1)=l=w(isupply,g,s,k); 

logic(isupply,g,s,t)$igall(isupply,g)..                                 w(isupply,g,s,t)=l=mu(isupply,g,s,t); 

u400mustrun(isupply,gr,s,t)$igall(isupply,gr)..              w(isupply,gr,s,t)=e=mu(isupply,gr,s,t); 
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linearized(isupply,g,s,t,tao)$(igall(isupply,g) and ord(tao) le ColdStartT(isupply,g))..              
z(isupply,g,s,t)=g= StartUpC(isupply,g,tao)*(w(isupply,g,s,t)-sum(k$(ord(k) le 
ColdStartT(isupply,g) and ord(k) lt ord(t)), w(isupply,g,s,t-ord(k)))); 

reservelimit01(isupply,gs,s,t)$igall(isupply,gs)..          

qr(isupply,gs,s,t)=l= RampUpLimit(isupply,gs); 

reservelimit02(isupply,gf,s,t)$igall(isupply,gf)..          

qr(isupply,gf,s,t)=l= RampUpLimit(isupply,gf); 

initial(isupply,gs,s,t)$(igall(isupply,gs) and not igall('201','2U20') and ord(t)=1 and 
mu(isupply,gs,s,t)=1)..             

w(isupply,gs,s,t)=e=1; 

 

Model multimodel/all/; 

 

option iterlim = 50000000; 

OPTION RESLIM = 18000; 

option limrow = 0; 

option limcol = 0; 

option solprint = off; 

option sysout = off; 

option mip=cplex; 

 

if(timeblock=2, 

   multimodel.optcr=0.0001; 

elseif(timeblock=1), 

   multimodel.optcr=0.0001; 

elseif(timeblock=3), 

   multimodel.optcr=0.0001; 

elseif(timeblock=4), 

   multimodel.optcr=0.0001; 

elseif(timeblock=6), 

   multimodel.optcr=0.0001; 
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elseif(timeblock=8), 

   multimodel.optcr=0.0001; 

elseif(timeblock=12), 

   multimodel.optcr=0.0001; 

elseif(timeblock=23), 

   multimodel.optcr=0.000; 

); 

scalar  contingencies/3/; 

scalar upperscen/70/; 

scalar lowerscen/0/; 

lowerscen=upperscen-timeblock*contingencies+1; 

if(lowerscen<0, 

   lowerscen=1; 

  ); 

scalar lowertime/0/; 

lowertime=timeblock; 

scalar scenblock/0/; 

scenblock=contingencies*timeblock; 

scalar  backtime/0/; 

backtime=timeblock-1; 

theta.lo(i,alls,allt) = -0.05; 

theta.up(i,alls,allt) =  0.05; 

scalar  eachscen/1/; 

scalar  basetime/1/; 

scalar uppertime/24/; 

scalar  backupperscen/0/; 

scalar  backlowerscen/2/; 

file fcpx Cplex Option file / cplex1.opt /; 

multimodel.optfile = 1; 
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*****solve the scenario problems including base scenario and first N-worst bundles of scenarios 

scalar counter/0/; 

*****solve the MIP problems using scenario rolling heuristic algorithm 

loop(iter, 

          counter=counter+1; 

 

          s(alls)$((ord(alls)>=lowerscen) and (ord(alls)<=upperscen))=yes; 

           s('1')=yes; 

          sdummy(alls)$((ord(alls)>=lowerscen) and (ord(alls)<=upperscen))=yes; 

          if((counter gt 1), 

          qe.fx(isupply,g,b,s,t)$(link('1',s,t)=1 and basetime<=ord(t) and ord(t)<=(lowertime-
timeblock) and mu(isupply,g,s,t)=0)= isoqe(isupply,g,b,'1',t); 

          w.fx(isupply,g,s,t)$( link('1',s,t)=1 and basetime<=ord(t) and ord(t)<=(lowertime-timeblock) 
and mu(isupply,g,s,t)=0)=isow(isupply,g,'1',t); 

          qr.fx(isupply,g,s,t)$( link('1',s,t)=1 and basetime<=ord(t) and ord(t)<=(lowertime-timeblock) 
and mu(isupply,g,s,t)=0)=isoqr(isupply,g,'1',t); 

          z.fx(isupply,g,s,t)$( link('1',s,t)=1 and basetime<=ord(t) and ord(t)<=(lowertime-timeblock) 
and mu(isupply,g,s,t)=0)=isoz(isupply,g,'1',t); 

          qsb.fx(s,t,bs)$( link('1',s,t)=1 and basetime<=ord(t) and ord(t)<=(lowertime-
timeblock))=isoqsb('1',t,bs); 

          ); 

           Solve multimodel using mip minimizing GenCost; 

           display multimodel.modelstat; 

           tsolve=tsolve+multimodel.resusd; 

           display tsolve; 

           if((multimodel.modelstat ne 8 and multimodel.modelstat ne 1), 

 

               s(alls)$((ord(alls)>=lowerscen) and (ord(alls)<=upperscen) or (ord(alls)=1) )=no; 

               sdummy(alls)$((ord(alls)>=lowerscen) and (ord(alls)<=upperscen) or (ord(alls)=1))=no; 

             abort "we come across an infeasible solution"; 
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           elseif((multimodel.modelstat = 8 or multimodel.modelstat = 1) and (upperscen-lowerscen) 
>=(scenblock-1) and (scenblock <>2)), 

                 qe.fx(isupply,g,b,'1',t)$(basetime<=ord(t) and ord(t)<=lowertime)=qe.l(isupply,g,b,'1',t); 

                 totalqe.fx(isupply,g,'1',t)$(basetime<=ord(t) and 
ord(t)<=lowertime)=sum(b,qe.l(isupply,g,b,'1',t)); 

                 isoqe(isupply,g,b,'1',t)$(basetime<=ord(t) and 
ord(t)<=lowertime)=qe.l(isupply,g,b,'1',t); 

                 w.fx(isupply,g,'1',t)$( basetime<=ord(t) and ord(t)<=lowertime)=w.l(isupply,g,'1',t); 

                 isow(isupply,g,'1',t)=w.l(isupply,g,'1',t); 

                 qr.fx(isupply,g,'1',t)$(basetime<=ord(t) and ord(t)<=lowertime)=qr.l(isupply,g,'1',t); 

                 z.fx(isupply,g,'1',t)$(basetime<=ord(t) and ord(t)<=lowertime)=z.l(isupply,g,'1',t); 

                 qsb.fx('1',t,bs)$(basetime<=ord(t) and ord(t)<=lowertime)=qsb.l('1',t,bs); 

                 isoqr(isupply,g,'1',t)$(basetime<=ord(t) and ord(t)<=lowertime)=qr.l(isupply,g,'1',t); 

                 isoz(isupply,g,'1',t)$(basetime<=ord(t) and ord(t)<=lowertime)=z.l(isupply,g,'1',t); 

                 isoqsb('1',t,bs)$(basetime<=ord(t) and ord(t)<=lowertime)=qsb.l('1',t,bs); 

 

                 s(alls)$((ord(alls)>=lowerscen) and (ord(alls)<=upperscen))=no; 

                 sdummy(alls)$((ord(alls)>=lowerscen) and (ord(alls)<=upperscen))=no; 

                 ); 

                   lowertime=lowertime+timeblock; 

                   scenblock=contingencies*timeblock; 

 

                    upperscen=max(1,lowerscen-1); 

                    lowerscen=max(1,lowerscen-scenblock); 

 

 ); 

 

* 
____________________________________________________________________________
__________________________________________ 

 

*output files 
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file lsnolap73_e generator energy quantities /lsnolap73_e.txt/; 

put lsnolap73_e; 

lsnolap73_e.pc=5; 

 

loop(isupply, 

put 'Report for supply buses ' , isupply.tl 

put @25 '------------------------------------ Time Period ----------------------------------------' /; 

put @10; 

loop(t, put t.tl); 

    put /; 

        loop(g$igall(isupply,g), 

              put g.tl; 

              put /; 

            loop(alls, 

                put alls.tl; 

                 loop(allt, 

                      put sum(b,qe.l(isupply,g,b,alls,allt)):10:3); 

put /; 

))); 

 

file lsnolap73_r generator re quantities /lsnolap73_r.txt/; 

put lsnolap73_r; 

lsnolap73_r.pc=5; 

loop(isupply, 

put 'Report for supply buses ' , isupply.tl 

put @25 '------------------------------------ Time Period ----------------------------------------' /; 

put @10; 

loop(t, put t.tl); 

    put /; 

loop(g$igall(isupply,g), 
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      put g.tl; 

      put /; 

  loop(alls, 

    put alls.tl; 

        loop(allt, 

             put qr.l(isupply,g,alls,allt):10:3); 

put /; 

))); 

 

file lsnolap73_w generator comm states /lsnolap73_w.txt/; 

put lsnolap73_w; 

lsnolap73_w.nd=0; 

lsnolap73_w.pc=5; 

loop(isupply, 

     loop(g$(igall(isupply,g)), 

          loop((alls,allt), 

               put isupply.tl g.tl alls.tl allt.tl w.l(isupply,g,alls,allt); 

               put /; 

 

               ); 

          ); 

     ); 

 

file lsnolap73short generator re shortage /lsnolap73short.txt/; 

put lsnolap73short; 

lsnolap73short.pc=5; 

lsnolap73short.nd=3; 

lsnolap73short.nr=1; 

loop(t, put t.tl); 

    put /; 
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            loop(alls, 

                put alls.tl ; 

                 loop(allt, 

                      put sum(bs,qsb.l(alls,allt,bs)) :10:3 

                      ); 

                      put /; 

              ); 

 

file lsnolap73powergap generator load shedding /lsnolap73powergap.txt/; 

put lsnolap73powergap; 

lsnolap73powergap.pc=5; 

lsnolap73powergap.nd=3; 

lsnolap73powergap.nr=1; 

loop(t, put t.tl:5); 

    put /; 

        loop(alls, 

             put alls.tl; 

                loop(allt, 

                      put sum(idemand,supplygap.l(idemand,alls,allt)):10:3 

                      ); 

                      put /; 

 

              ); 

 

 

file lsnolap73scencost cost in each scenario /lsnolap73scencost.txt/; 

put lsnolap73scencost; 

lsnolap73scencost.pc=5; 

loop(alls, 

      put alls.tl; 
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      scencost.l(alls)= sheddingcost*sum(idemand, sum(a$(ord(a)=ord(alls)), sum(t, 
Pi(a)*(supplygap.l(idemand,a,t)))))+sum(allt,sum(a$(ord(a)=ord(alls)),Pi(a)*sum(bs,CS(bs)*qsb.l
(a,allt,bs))))+sum(allt,sum(a$(ord(a)=ord(alls)),Pi(a)*sum((isupply,g)$igall(isupply,g),z.l(isupply,g
,a,allt)+sum(b, 
Cgen(isupply,g,b,allt)*qe.l(isupply,g,b,a,allt))+CNoLoad(isupply,g)*w.l(isupply,g,a,allt)))); 

      put scencost.l(alls); 

      put /; 

     ); 

 

display tsolve; 

s(alls)=yes; 

sdummy(alls)=yes; 

parameter GenCost01; 

 

GenCosttotal.l= sheddingcost*sum(idemand, sum(alls, sum(t, 
Pi(alls)*(supplygap.l(idemand,alls,t))))) 

                  +sum(allt,sum(alls,Pi(alls)*sum(bs,CS(bs)*qsb.l(alls,allt,bs)))) 

                  +sum(allt,sum(alls,Pi(alls)*sum((isupply,g)$igall(isupply,g),z.l(isupply,g,alls,allt) 

                  +sum(b, Cgen(isupply,g,b,allt)*qe.l(isupply,g,b,alls,allt)) 

                  +CNoLoad(isupply,g)*w.l(isupply,g,alls,allt)))); 

Pi(alls)$(ord(alls)=1)=1; 

GenCost01= sheddingcost*sum(idemand, sum(alls$(ord(alls)=1), sum(t, 
Pi(alls)*(supplygap.l(idemand,alls,t))))) 

                  +sum(allt,sum(alls$(ord(alls)=1),Pi(alls)*sum(bs,CS(bs)*qsb.l(alls,allt,bs)))) 

                  
+sum(allt,sum(alls$(ord(alls)=1),Pi(alls)*sum((isupply,g)$igall(isupply,g),z.l(isupply,g,alls,allt) 

                  +sum(b, Cgen(isupply,g,b,allt)*qe.l(isupply,g,b,alls,allt)) 

                  +CNoLoad(isupply,g)*w.l(isupply,g,alls,allt)))); 

 

display GenCosttotal.l, GenCost01; 

 

loadshedding.l=sheddingcost*sum(idemand, sum(s, sum(t, Pi(s)*(supplygap.l(idemand,s,t))))); 
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 isplay loadshedding.l; 

shortcost.l=sum(allt,sum(alls,Pi(alls)*sum(bs,CS(bs)*qsb.l(alls,allt,bs)))); 

 display shortcost.l; 

energycost.l=sum(allt,sum(alls,Pi(alls)*sum((isupply,g)$igall(isupply,g),sum(b, 
Cgen(isupply,g,b,allt)*qe.l(isupply,g,b,alls,allt))))); 

 

display energycost.l; 

 startupcost.l=sum(allt,sum(alls,Pi(alls)*sum((isupply,g)$igall(isupply,g),z.l(isupply,g,alls,allt)))); 

display startupcost.l; 

 

noloadcost.l=sum(allt,sum(alls,Pi(alls)*sum((isupply,g)$igall(isupply,g),CNoLoad(isupply,g)*w.l(i
supply,g,alls,allt)))); 

display noloadcost.l; 

sdummy(alls)=no; 
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Appendix B The Topology of the Power System in the Large-Scale Example 

(Area B, Reliability Test System Task Force, 1999) 
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Appendix C Data in the Large-Scale Example 

Table C-1 Generator data 

Node Unit 
Max.  
Output 
(MW) 

Min. 
Output 
(MW) 

Min  
Down  
Time 
(Hour) 

Min. 
Up 
Time 
(Hour)

Cold 
Start-
up 
(Hour)

Ramp 
Up/Down 
Limit 
(MW) 

Start 
Up/Down 
Limit 
(MW) 

Spinning 
reserve 
limit 
(MW) 

201 1U20 20 10 1 1 0 7 10 30 
201 2U20 20 10 1 1 0 7 10 30 
201 1U76 76 10 4 8 8 26.6 10 20 
201 2U76 76 10 4 8 8 26.6 10 20 
202 3U20 20 10 1 1 0 7 10 30 
202 4U20 20 10 1 1 0 7 10 30 
202 3U76 76 10 4 8 8 26.6 10 20 
202 4U76 76 10 4 8 8 26.6 10 20 
207 1U100 100 15 8 8 8 35 15 70 
207 2U100 100 15 8 8 8 35 15 70 
207 3U100 100 15 8 8 8 35 15 70 
213 1U197 197 40 10 12 7 68.95 40 30 
213 2U197 197 40 10 12 7 68.95 40 30 
213 3U197 197 40 10 12 7 68.95 40 30 
215 1U12 12 2 2 4 4 4.2 2 10 
215 2U12 12 2 2 4 4 4.2 2 10 
215 3U12 12 2 2 4 4 4.2 2 10 
215 4U12 12 2 2 4 4 4.2 2 10 
215 5U12 12 2 2 4 4 4.2 2 10 
215 1U155 155 25 8 8 8 54.25 25 30 
216 2U155 155 25 8 8 8 54.25 25 30 
218 1U400 400 80 48 48 48 140 200 200 
221 2U400 400 80 48 48 48 140 200 200 
222 1U50 50 45 0 0 0 17.5 0 10 
222 2U50 50 45 0 0 0 17.5 0 10 
222 3U50 50 45 0 0 0 17.5 0 10 
222 4U50 50 45 0 0 0 17.5 0 10 
222 5U50 50 45 0 0 0 17.5 0 10 
222 6U50 50 45 0 0 0 17.5 0 10 
223 3U155 155 25 8 8 8 54.25 25 30 
223 4U155 155 25 8 8 8 54.25 25 30 
223 1U350 350 100 12 12 12 122.5 100 40 
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Table C-2 Generation offers of generating units 

Generation offer 
Unit Price($/MWh)          Quantity (MW) 

29.577 15.800 
30.417 0.200 
42.816 3.800 

1U20 – 
4U20 

43.281 0.200 
9.9180 15.200 
10.249 22.800 
10.680 22.800 

1U76-
4U76 

11.257 15.200 
19.200 25.000 
20.316 25.000 
21.218 30.000 

1U100-
3U100 

22.126 20.000 
19.200 68.950 
20.316 49.250 
21.218 39.400 

1U197-
3U197 

22.126 39.400 
19.200 2.400 
20.316 3.600 
21.218 3.600 

1U12-
5U12 

22.126 2.400 
9.918 54.250 
10.249 38.750 
10.68 31.000 

1U155-
3U155 

11.257 31.000 
5.309 100.000 
5.379 100.000 
5.526 120.000 

1U400-
2U400 

5.663 80.000 
5.309 45.000 
5.379 2.000 
5.526 2.000 

1U50-
6U50 

5.663 1.000 
10.082 140.000 
10.675 87.500 
11.093 52.500 

1U350 

11.722 70.000 
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Table C-3 Other relevant costs 

Unit cold start time (Hour) cold start cost ($) No Load Cost ($/Hour) 
1U20-4U20 0 15 300 
1U76-4U76 12 720 100 

1U100-3U100 8 1380 80 
1U197-3U197 13 1400 40 
1U12-5U12 7 130 20 

1U155-3U155 12 680 250 
1U400-2U400 0 N/A 400 

1U350 10 5300 1000 
 

Table C-4 Line data 

Node Node Susceptance (S) Line Capacity (MW) 
201 202 21.692  175 
201 203 17.544  175 
201 205 43.478  175 
202 204 29.412  175 
202 206 19.231  175 
203 209 31.250  175 
204 209 35.714  175 
205 209 41.667  175 
206 209 0.407  175 
207 208 58.824  175 
208 209 22.222  175 
209 213 10.000  400 
209 214 11.364  400 
209 223 4.926  500 
213 223 5.495  500 
214 216 12.195  500 
215 216 27.778  500 
215 221 9.709  500 
215 203 9.174  500 
216 217 18.182  500 
216 219 20.408  500 
217 218 33.333  500 
217 222 4.525  500 
218 221 18.182  500 
219 220 12.048  500 
220 223 21.739  500 
221 222 7.042  500 
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Table C-5 Demand data 

Node 

Period  
201 202 203 204 205 206 207 208 

1 69.12  62.08 115.20 47.36 45.44 87.04  80.00  109.44  

2 64.80  58.20 108.00 44.40 42.60 81.60  75.00  102.60  

3 62.64  56.26 104.40 42.92 41.18 78.88  72.50  99.18  

4 60.48  54.32 100.80 41.44 39.76 76.16  70.00  95.76  

5 60.48  54.32 100.80 41.44 39.76 76.16  70.00  95.76  

6 62.64  56.26 104.40 42.92 41.18 78.88  72.50  99.18  

7 69.12  62.08 115.20 47.36 45.44 87.04  80.00  109.44  

8 82.08  73.72 136.80 56.24 53.96 103.36 95.00  129.96  

9 93.96  84.39 156.60 64.38 61.77 118.32 108.75 148.77  

10 102.60  92.15 171.00 70.30 67.45 129.20 118.75 162.45  

11 106.92  96.03 178.20 73.26 70.29 134.64 123.75 169.29  

12 108.00  97.00 180.00 74.00 71.00 136.00 125.00 171.00  

13 106.92  96.03 178.20 73.26 70.29 134.64 123.75 169.29  

14 108.00  97.00 180.00 74.00 71.00 136.00 125.00 171.00  

15 108.00  97.00 180.00 74.00 71.00 136.00 125.00 171.00  

16 104.76  94.09 174.60 71.78 68.87 131.92 121.25 165.87  

17 103.68  93.12 172.80 71.04 68.16 130.56 120.00 164.16  

18 103.68  93.12 172.80 71.04 68.16 130.56 120.00 164.16  

19 100.44  90.21 167.40 68.82 66.03 126.48 116.25 159.03  

20 99.36  89.24 165.60 68.08 65.32 125.12 115.00 157.32  

21 99.36  89.24 165.60 68.08 65.32 125.12 115.00 157.32  

22 100.44  90.21 167.40 68.82 66.03 126.48 116.25 159.03  

23 93.96  84.39 156.60 64.38 61.77 118.32 108.75 148.77  

24 77.76  69.84 129.60 53.28 51.12 97.92  90.00  123.12  
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Table C-5 Demand data (Con’t) 
Node 

Period  
209 213 214 215 216 218 219 220 

1 236.80  169.60 124.16 202.88 64.00 213.12 115.84 81.92  

2 222.00  159.00 116.40 190.20 60.00 199.80 108.60 76.80  

3 214.60  153.70 112.52 183.86 58.00 193.14 104.98 74.24  

4 207.20  148.40 108.64 177.52 56.00 186.48 101.36 71.68  

5 207.20  148.40 108.64 177.52 56.00 186.48 101.36 71.68  

6 214.60  153.70 112.52 183.86 58.00 193.14 104.98 74.24  

7 236.80  169.60 124.16 202.88 64.00 213.12 115.84 81.92  

8 281.20  201.40 147.44 240.92 76.00 253.08 137.56 97.28  

9 321.90  230.55 168.78 275.79 87.00 289.71 157.47 111.36  

10 351.50  251.75 184.30 301.15 95.00 316.35 171.95 121.60  

11 366.30  262.35 192.06 313.83 99.00 329.67 179.19 126.72  

12 370.00  265.00 194.00 317.00 100.00 333.00 181.00 128.00  

13 366.30  262.35 192.06 313.83 99.00 329.67 179.19 126.72  

14 370.00  265.00 194.00 317.00 100.00 333.00 181.00 128.00  

15 370.00  265.00 194.00 317.00 100.00 333.00 181.00 128.00  

16 358.90  257.05 188.18 307.49 97.00 323.01 175.57 124.16  

17 355.20  254.40 186.24 304.32 96.00 319.68 173.76 122.88  

18 355.20  254.40 186.24 304.32 96.00 319.68 173.76 122.88  

19 344.10  246.45 180.42 294.81 93.00 309.69 168.33 119.04  

20 340.40  243.80 178.48 291.64 92.00 306.36 166.52 117.76  

21 340.40  243.80 178.48 291.64 92.00 306.36 166.52 117.76  

22 344.10  246.45 180.42 294.81 93.00 309.69 168.33 119.04  

23 321.90  230.55 168.78 275.79 87.00 289.71 157.47 111.36  

24 266.40  190.80 139.68 228.24 72.00 239.76 130.32 92.16  
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Appendix D Data in the Large-Scale Example 

 

Table D-1 Generation plan of generating units in a scenario (1U350 is down from period 9) 

Generators at node 201 
 Generators at node 202 Generator  

at node 221 
 

Hour 
1U20 2U20 1U76 2U76 3U20 4U20 3U76 4U76 2U400 

1 0.000  0.000  60.800  60.800  0.000  0.000  60.800 60.800  400.000  
2 0.000  0.000  38.000  38.000  0.000  0.000  60.800 56.112  400.000  
3 0.000  0.000  38.000  38.000  0.000  0.000  38.000 38.000  400.000  
4 0.000  0.000  38.000  29.403  0.000  0.000  38.000 38.000  400.000  
5 0.000  0.000  38.000  36.349  0.000  0.000  38.000 38.000  400.000  
6 0.000  0.000  38.000  38.000  0.000  0.000  38.000 38.000  400.000  
7 0.000  0.000  56.000  55.508  0.000  0.000  60.800 60.800  400.000  
8 0.000  0.000  76.000  76.000  0.000  0.000  76.000 76.000  400.000  
9 0.000  0.000  76.000  76.000  0.000  0.000  76.000 76.000  400.000  
10 0.000  0.000  76.000  76.000  0.000  0.000  76.000 76.000  400.000  
11 0.000  0.000  76.000  76.000  0.000  0.000  76.000 76.000  400.000  
12 0.000  0.000  76.000  76.000  0.000  0.000  76.000 76.000  400.000  
13 0.000  0.000  76.000  76.000  0.000  0.000  76.000 76.000  400.000  
14 0.000  0.000  76.000  76.000  0.000  0.000  76.000 76.000  400.000  
15 0.000  0.000  76.000  76.000  0.000  0.000  76.000 76.000  400.000  
16 0.000  0.000  76.000  76.000  0.000  0.000  76.000 76.000  400.000  
17 0.000  0.000  76.000  76.000  0.000  0.000  76.000 76.000  400.000  
18 0.000  0.000  76.000  76.000  0.000  0.000  76.000 76.000  400.000  
19 0.000  0.000  76.000  76.000  0.000  0.000  76.000 76.000  400.000  
20 0.000  0.000  76.000  76.000  0.000  0.000  76.000 76.000  400.000  
21 0.000  0.000  76.000  76.000  0.000  0.000  76.000 76.000  400.000  
22 0.000  0.000  76.000  76.000  0.000  0.000  76.000 76.000  400.000  
23 0.000  0.000  76.000  76.000  0.000  0.000  76.000 76.000  400.000  
24 0.000  0.000  76.000  76.000  0.000  0.000  76.000 76.000  400.000  
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Table D-1 Generation plan of generating units in a scenario (1U350 is down from period 9) 
(Con’t) 

 

Generators 
node 207 

Generators at  
node 213 

Generators at 
node 223 Hour 

1U100 2U100 3U100 1U197 2U197 3U197 3U155 4U155 1U350 
1 15.000  15.000  15.000  40.000 40.000  40.000  54.250 72.248  140.000 
2 15.000  15.000  15.000  40.000 40.000  40.000  54.250 54.250  100.000 
3 15.000  15.000  15.000  40.000 40.000  40.000  54.250 43.372  100.000 
4 15.000  15.000  15.000  40.000 40.000  40.000  25.000 25.000  100.000 
5 15.000  15.000  15.000  40.000 40.000  40.000  25.000 25.000  100.000 
6 15.000  15.000  15.000  40.000 40.000  40.000  51.180 54.250  100.000 
7 15.000  15.000  15.000  40.000 40.000  40.000  69.750 75.900  140.000 
8 15.000  15.000  19.960  49.250 45.150  49.250  100.750 108.504  227.500 
9 44.960  50.000  50.000  118.200 114.100 118.200  155.000 155.000  0.000  
10 52.500  50.000  50.000  167.000 167.000 167.000  155.000 155.000  0.000  
11 80.000  80.000  80.000  167.000 167.000 175.500  155.000 155.000  0.000  
12 80.000  87.000  80.000  167.000 197.000 167.000  155.000 155.000  0.000  
13 80.000  80.000  80.000  167.000 167.000 175.500  155.000 155.000  0.000  
14 80.000  87.000  80.000  167.000 197.000 167.000  155.000 155.000  0.000  
15 85.000  80.000  80.000  169.000 197.000 167.000  155.000 155.000  0.000  
16 50.000  79.500  80.000  167.000 167.000 167.000  155.000 155.000  0.000  
17 80.000  50.000  50.000  167.000 167.000 167.000  155.000 155.000  0.000  
18 65.000  50.000  66.000  167.000 167.000 167.000  155.000 155.000  0.000  
19 30.000  50.000  35.810  167.000 167.000 167.000  155.000 155.000  0.000  
20 37.320  30.000  30.000  167.000 167.000 167.000  155.000 155.000  0.000  
21 37.320  30.000  30.000  167.000 167.000 167.000  155.000 155.000  0.000  
22 30.000  35.810  50.000  167.000 167.000 167.000  155.000 155.000  0.000  
23 30.000  30.000  30.000  137.900 137.900 149.700  145.000 155.000  0.000  
24 15.000  15.000  15.000  68.950 68.950  80.750  125.000 130.461  0.000  
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Table D-1 Generation plan of generating units in a scenario (1U350 is down from period 9) 
(Con’t) 

 

Generators at  
node 215 

Generators at  
node 216 Hour 

1U12 2U12 3U12 4U12 5U12 1U155 2U155 
1 2.000  2.000  2.000  2.000  2.000  25.000  25.000  
2 2.000  2.000  2.000  2.000  2.000  25.000  25.000  
3 2.000  2.000  2.000  2.000  2.000  25.000  25.000  
4 2.000  2.000  2.000  2.000  2.000  25.000  25.000  
5 0.000  0.000  0.000  0.000  0.000  25.000  25.000  
6 0.000  0.000  0.000  0.000  0.000  25.000  25.000  
7 0.000  0.000  0.000  0.000  0.000  25.000  25.000  
8 0.000  0.000  0.000  0.000  0.000  79.250  72.290  
9 2.000  2.000  2.000  2.000  2.000  133.500  126.540  
10 6.000  6.000  6.000  6.000  6.000  155.000  155.000  
11 9.600  9.600  9.600  9.600  9.600  155.000  155.000  
12 9.600  9.600  9.600  9.600  9.600  155.000  155.000  
13 9.600  9.600  9.600  9.600  9.600  155.000  155.000  
14 9.600  9.600  9.600  9.600  9.600  155.000  155.000  
15 9.600  9.600  9.600  9.600  9.600  155.000  155.000  
16 6.000  6.000  6.000  6.000  6.000  155.000  155.000  
17 6.000  6.000  7.000  6.000  6.000  155.000  155.000  
18 6.000  6.000  6.000  6.000  6.000  155.000  155.000  
19 2.000  2.000  2.000  2.000  2.000  155.000  155.000  
20 2.000  2.000  2.000  2.000  2.000  155.000  145.188  
21 2.000  2.000  2.000  2.000  2.000  155.000  145.188  
22 2.000  2.000  2.000  2.000  2.000  155.000  155.000  
23 2.000  2.000  2.000  2.000  2.000  125.000  125.000  
24 0.000  0.000  0.000  0.000  0.000  70.750  70.750  
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Table D-1 Generation plan of generating units in a scenario (1U350 is down from period 9) 
(Con’t) 

Generators at  
node 222 

Generators at  
node 218 Hour 

1U50 2U50 3U50 4U50 5U50 6U50 1U400 
1 50.000  50.000  45.000 49.302 50.000  45.000  400.000  
2 48.588  45.000  45.000 50.000 45.000  50.000  400.000  
3 45.000  45.000  48.378 45.000 45.000  50.000  400.000  
4 45.000  45.000  45.000 50.000 47.597  45.000  400.000  
5 50.000  50.000  45.000 45.000 45.651  45.000  400.000  
6 45.000  50.000  45.000 45.000 45.570  50.000  400.000  
7 50.000  50.000  45.000 50.000 45.242  50.000  400.000  
8 50.000  45.000  45.000 45.000 50.000  45.096  400.000  
9 50.000  50.000  50.000 50.000 50.000  50.000  400.000  
10 50.000  50.000  50.000 50.000 50.000  50.000  400.000  
11 50.000  50.000  50.000 50.000 50.000  50.000  400.000  
12 50.000  50.000  50.000 50.000 50.000  50.000  400.000  
13 50.000  50.000  50.000 50.000 50.000  50.000  400.000  
14 50.000  50.000  50.000 50.000 50.000  50.000  400.000  
15 50.000  50.000  50.000 50.000 50.000  50.000  400.000  
16 50.000  50.000  50.000 50.000 50.000  50.000  400.000  
17 50.000  50.000  50.000 50.000 50.000  50.000  400.000  
18 50.000  50.000  50.000 50.000 50.000  50.000  400.000  
19 49.690  50.000  50.000 50.000 50.000  50.000  400.000  
20 49.492  50.000  50.000 50.000 50.000  50.000  400.000  
21 49.492  50.000  50.000 50.000 50.000  50.000  400.000  
22 49.690  50.000  50.000 50.000 50.000  50.000  400.000  
23 50.000  50.000  50.000 50.000 50.000  50.000  400.000  
24 45.000  50.000  47.389 50.000 50.000  45.000  400.000  
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