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Abstract

Model checking is an automated technique for the verification of finite-state systems that
is widely used in practice. In model checking, a modiéis verified against a specifica-

tion ¢, exhaustively checking that the tree of all computationg/bfatisfiesp. When
 fails to hold in M, the negative result is accompanied bgaaunterexamptea compu-
tation in M that demonstrates the failure. State of the art model checkers apply Binary
Decision Diagrams (BDDs) as well as satisfiability solvers for this task. However, both
methods suffer from the state explosion problem, which restricts the application of model
checking to only modestly sized systems. The importance of model checking makes it
worthwhile to explore alternative technologies, in the hope of broadening the applicabil-
ity of the technique to a wider class of systems.

Description Logic (DL) is a family of knowledge representation formalisms based on
decidable fragments of first order logic. DL is used mainly for designing ontologies in
information systems. In recent years several DL reasoners have been developed, demon-
strating an impressive capability to cope with very large ontologies.

This work consists of two parts. In the first we harness the growing ability of DL
reasoners to solve model checking problems. We show how DL can serve as a natural
setting for representing and solving a model checking problem, and present a variety
of encodings that translate such problems into consistency queries in DL. Experimental
results, using the Description Logic reasoRaCT++, demonstrate that for some systems
and properties, our method can outperform existing ones.

In the second part we approach a different aspect of model checking. When a speci-
fication fails to hold in a model and a counterexample is presented to the user, the coun-
terexample may itself be complex and difficult to understand. We propose an automatic
technique to find the computation steps and their associated variable values, that are of
particular importance in generating the counterexample. We use the notiansalityto

formally define a set of causes for the failure of the specification on the given counterex-



ample. We give a linear-time algorithm to detect the causes, and we demonstrate how

these causes can be presented to the user as a visual explanation of the failure.
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Chapter 1

Introduction

Hardware and software systems have become an integral component of our everyday lives,
and we use them for larger and larger parts of our routine activities. While today’s world
cannot be imagined without these systems, software and hardware programs are full of
errors, that often make them unreliable. Errors can be very expensive (e.g., the floating-
point division bug of Intel's Pentium processor [Hal95], cost $500,000,000 of damage)
and worse — life threatening (e.g., the Therac-25 accidents [LT93] cost the lives of four
people). The main reason for the unreliability of today’s hardware and software systems
is their growing complexity that makes them extremely difficult to verify. In fact, in the
hardware industry, verification is recognized as the most resource-consuming component
of the design process, taking over 60% of the development time and effort. Finding new
verification methods and developing better verification tools can therefore have a signifi-
cant impact on today’s industry.

Verification of software and hardware systems is traditionally done usstmg the
system is given sequences of legal input behaviors and the outputs are analyzed compared
to some expected results. For large systems, both the generation of test cases and the
analysis of the results are often automated. However, for any large enough system, run-

ning test cases cannot guarantee coverage of all possible behaviors: there are simply too
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many cases (possibly an infinite number of them) to be covered. Thus, when testing is the
only method used for verification, systems are delivered to the market with many possi-
ble cases untested. For many systems however, especially safety-critical ones, this is not
enough, and a higher degree of coverage is required. In order to meet this requirement,
formal verificationmethods have been developed, where mathematical techniques are ap-
plied to perform the verification. When properly applied, formal verification methods can

guarantee correctness of a system with respect to its specification.

Formal verification is generally divided into two main approachesdtaictiveap-
proach and thalgorithmicone. The first is known aBheorem ProvingGM93, BKM95,
KM97], and involves the development of a mathematalof for the correctness of a
given system with respect to its specification. Since developing a proof is a hard task,
and in most cases cannot be done automatically, theorem provers are interactive tools that
allow the user to specify the main steps of a proof, avoiding, as much as possible, the

tedious parts of it.

This work concentrates on the algorithmic approach to formal verification, known
asmodel checking[CE81, QS82], c.f.[CGP00]). Model checking is a fully automated
technique for verifying finite-state systems, that is very effective in the verification of
hardware and software programs. In model checking, a madejiven as a set of state
variablesl” and their next-state relations, is verified against a specificatidfithe spec-
ification holds on the tree of all computationsaf we denote itV = ¢. Wheny fails
to hold in M, the model checker providescaunterexamplCGMZ95]: a computation

of M that demonstrates the failure.

Specifications to be checked are givetamporal logic- a dialect of modal logic with
modalities referring to time. The main temporal logics used in practicéiasar Tem-
poral Logic (LTL) [Pnu77] andComputation Tree Logi¢CTL) [CE81]. Temporal logic
specifications, whether given iifL or in CTL, are divided into two main types [Lam77]:

safetyformulas, stating that “something bad never happens”, l@edessformulas, as-

2



serting that “something good eventually happens”. The violation of a safety formula can
be shown by a finite prefix of a computation path, leading to an erroneous state, while the
violation of a liveness formula can only be shown by an infinite path, or a loop, in the case
of a finite system. Liveness formulas are therefore considered more difficult to verify. In
many cases, a liveness formula is accompaniedfayaess constraintequiring that the

violating loop satisfies some fairness condition.

The main challenge in model checking is called #tate space explosigoroblem,
where the number of states in the model grows exponentially in the number of variables
describing it. Different approaches exist to deal with this problem. They can be roughly
divided intoexplicit state methods, that are mostly applied to software systemspand
plicit state (orsymbolig methods that are better applied to hardware models. In this work

we concentrate on symbolic methods for hardware model checking.

In symbolic model checking the system under verification is represented as sets of
states and transitions, and Boolean functions are used to manipulate those sets. Two main
symbolic methods are used to perform model checking. The first, knov@ymabolic
Model Verifier(SMV) [McM93] is based on Binary Decision Diagrams (BDDs) [Bry86]
for representing the state space as well as for performing the model checking procedure.
The second is known @&ounded Model Checkin®MC) [BCCZ99]. Using this method,
the model description is unfoldédtimes (for a given bound). The unfolded model as
well as thenegationof the specification are then translated into a propositional formula,
and a satisfiability solver is applied to the formula to find a satisfying assignment. Such

an assignment, if found, demonstrates an error in the model.

The introduction of the BDD-based model checking method and later on the satisfia-
bility based ones, have significantly improved the performance and applicability of model
checking, and have brought the field from a completely theoretical one in the early eighties
into a wide-spread practical technique, used in industry [BDEGWO03, Ger01,"A8H
However, the state explosion problem remains the main problem of this field, restricting
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the application of model checking to only modestly sized systems. The importance of
verification in general and model checking in particular, makes it worthwhile to explore
alternative technologies, in the hope of enabling the application of the technique to a
wider class of systems.

In the first part of this thesis we explore the possibility of usidgscription Logic
reasoningto solve model checking problems. Description Logic (DL) ([BC08]) is a
family of knowledge representation formalisms, mainly used for specifying ontologies for
information systems. The basic elements in description logi@ammic conceptgsets
of individuals) andatomic roles(binary relations between individuals). There are many
dialectsof description logic that differ from each other by the constructs they allow for
building new concepts from existing ones. The most commonly used dialect is called
Attributive Language with Complemermtr ALC. Given two concepts; andC,, and a
role R, the DL dialectALC allows the construction of the concepts; (all individuals
that do not belong to the set representedcby C; M C, (the individuals that belong to
bothC; andC,), andVR.C, (the individualsa, such that for alb whereR(a,b) holds,b
belongs tac,). In general, the more expressive a DL dialect is, the more complex it is to
reason about.

Description Logic is used for describing ontologies and reasoning about them. An on-
tology 7 is called aerminology and consists of a set obncept inclusion dependencies
Each inclusion dependency has the fadmC C,, and asserts containment properties of

relevant concepts in an underlying domain, e.g., toatsare included iranimals
COW C ANIMAL ,
and also irthose things that do not eat animals
COW L Veats—ANIMAL.

In this latter casegatsis an example of @ole. The main reasoning service provided by
a DL system is theoncept consistencgervice, that is, for a given terminology and
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conceptC, to determine if there is a non-empty interpretatiorg ofhat also satisfies each
inclusion dependency ifi. We denote concept consistencyZas—; C (note that we use
“ =5 " for consistency in DL to differentiate it fromk” that is used in the model check-
ing world). In recent years several DL reasoners have been introduced, Sea@ Bis+
[THO6], Pellet [SPG'07] andRacer [HMO01], demonstrating growing capability to rea-
son about large ontologies.

We show how Description Logic technology can be used for symbolic model check-
ing. We present a variety of encodings of model checking problems as Description Logic
terminologies over different dialects. In all cases we provide a linear encodingodel
description(or program) and a specification as a DL terminology, and pose a query in
such a way that interpretations correspond to errors in the system. We present several
methods to support bounded model checking of safety properties, that result in a natural
symbolic representation of the sets of states and transitions. Experimental results compar-
ing the different methods are surprising: although the methods are closely related, they

perform significantly different.

We then present an encoding for model checking of liveness formulas in DL. Our main
contribution for this type of formulas is the introduction of an algorithm to support fair-
ness constraints in DL. This algorithm enhances the tableaux algorithm for DL reasoning,
and it is thus of interest to the DL community. On the other hand, it introduces a novel
approach to fair path detection, and thus has the potential of improving model checking

performance for some cases.

The second part of this work tackles a different aspect of model checking: the analy-
sis of a counterexample. When a formula fails to hold in a model, the first step in de-
bugging the problem is to examine the counterexample in order to understand the error it
demonstrates. In many cases, however, the task of understanding the counterexample is

non-trivial, and may require a significant manual effort.

An explanation of a counterexample deals with the questidrat values on the com-
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putation trace cause it to falsify the specification®deal with this problem, we adapt the
formal definition of causality of Halpern and Pearl [HPO1]. We view a counterexample
trace as a matriX/ x N of values, wherel/ is the number of time units (thiength

of the counterexample, and the number of variables appearing in the counterexample.
An entry (i, 7) in the matrix corresponds to the value of variaplat timei. We look

for those entries in the matrix that are causes for the first failure @f 7, according to

the definition of [HPO1]. We show that the complexity of detecting an exact causal set is
NP-complete, based on the complexity result for causality in binary models [ELO1]. We
then present an over-approximation algorithm whose complexity is linear in the size of
the formula and in the length of the counterexample. Our contribution is both theoretical,
in defining the set of causes, and practical, in introducing the explanation algorithm that

is used in practice.

1.1 Related Work

Model checking using DL

The connection between knowledge-based reasoning and model checking has been ex-
plored before. Gottlob et al in [GGV00, GGV02] analyzed the expressive powatof

alog statements, and compared them to known temporal logics. Sahasrabudhe in [Sah04]
performed model checking of telephony feature interactions by using SQL on an explicit
state representation of the model, and compared the results with model checking a similar
explicit state representation using the model checker SMV [McM93]. Both Sahasrabudhe
and Gottlob et al, however, used an explicit representation of the model, as opposed to
the representation of the moddgscriptionthat we propose. This difference is crucial,
since in many cases the Kripke structure for the model is too big to be built, and symbolic
methods must be used.

Our paper [BDTWO06] was the first to suggest the use of Description Logic reasoners
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for model checking. However, the method described in that paper required a synchro-
nization between the progress of different state variables, that resulted in a blow-up in the
number of explored states.

Since the DL dialects we use are fragments of first order logic, our method can be
viewed as performing model checking using deductive methods. The work of Tuomi-
nen [Tuo88, Tuo89] is close to ours in this sense. Tuominen used theorem proving for
the verification of Petri-net systems. He uskterministic propositional dynamic logic
(DPDL) to represent his systems, a logic that is more expressive (and thus more complex
to verify) than the DL dialects that we use.

Finally, Dovier and Quintarelli in [DQO1] were interested in the opposite direction:
they translated a knowledge-base into a Kripke structure, and a query into a temporal
logic formula. They then used a model checker to make inferences about the knowledge-
base.

Counterexample explanation

The problem ofunderstandinga counterexample has attracted a significant amount of
attention in recent years (see for example [C®¥, JRS02, DRS03, BNRO3, Gro04,
GKO04, CGO05, SQLO5, WYIG06, GSB07, SB0O7, SFBDO08] ). These works, however,
concentrated on a different aspectusfderstandingpf a counterexample. Mainly, they
addressed the question of finding the root cause of the failure imtitkeland proposed
automatic ways to extract more information about the model, to ease the debugging pro-
cedure. Naturally, the algorithms proposed in the above mentioned works involve imple-
mentation in a specific tool. For example, the BDD procedure of [JRS02] would not work
for a SAT based model checker like those of [Gro04, BNRO3]. In contrast, the method we
propose is independent of the tool that generated the counterexample, and can be applied
as an external layer to any model checking tool.

There are several works that tie the definition of causality by Halpern and Pearl to
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formal verification. Most closely related to our work is the paper by Chockler et. al
[CHKO08], in which causality and its quantitative measure, responsibility, are viewed as a
refinement of coverage in model checking. In another work, causality and responsibility
are used to improve the refinement techniques of symbolic trajectory evaluation (STE)
[CGYO08].

1.2 Overview of Thesis

In Chapter 2 we give the needed background for the thesis. In Section 2.1 we discuss
topics in model checking: we describe the temporal logics used in the thesis, give the
basic definition of anodeland define an example model and specification that are used
in the rest of the document. We briefly discuss the two main symbolic model check-
ing methods: McMillan’s symbolic model checking using BDDs [McM93], and bounded
model checking [BCCZ99] based on Satisfiability solving. Section 2.2 presents basic
facts about Description Logic [BCMD3]. We describe the syntax and semantics of com-
mon dialects, explain how ontologies are defined in description logic, and use an example
to demonstrate a reasoning service provided by a DL reasoner.

In Chapters 3 and 4 we present our results on model checking using Description Logic.
In Chapter 3 we present the symbolic encoding of a model description, and define the dif-
ferent methods for bounded model checking of safety formulas. We prove the correctness
of our encodings and discuss experimental results. The work described in this chapter
appears in [BDTWO07a, BDTWO07b, BDTWO08, BDTTWO08]. In Chapter 4 we show, for
the same encoding, how liveness formulas can be described. Since fairness cannot be ex-
pressed in the dialects used in this document, we propose a method to implement fairness
checking in DL. This work appears in [BDP19]. Chapter 5 is devoted to explanation
of a counterexample. We define causality in counterexamples, analyze its complexity
and propose an approximation algorithm. The work is based on [BEDT Chapter 6
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Chapter 2

Background

This chapter gives the needed background of model checking and description logic. We
start with model checking in the section below, and discusses Description Logic in Sec-
tion 2.2..

2.1 Model Checking

Model checking ([CE81, QS82], c.f.[CGP00]) is a technique for the formal verification

of hardware and software systems. In model checking, a mbdes verified against

a specificationp. If the specification holds in the model we denotelit = ¢. For

our discussion, the system under verification, orriede] is assumed to have a finite
number of Boolean state variables, that may simultaneously change their values as time
progresses. The mathematical representation of such a model is called a Kripke structure,
and its formal definition is given in Section 2.1.1 below. Synchronous hardware systems
are naturally translated into Kripke structures, as these are indeed composed of variables
that work in parallel, changing their value at a clock’s tick. For asynchronous hardware
designs, as well as for software programs, some sort of abstraction may be needed in order

to adapt them to the model of a Kripke structure.

11



In order to verify a given model we need to specify its desired behavior. In model
checking, specifications are given as temporal logic formulas [Pnu77] — a language that
allows specifying the behavior of the program variables over time. In Section 2.1.2 we
present the two main temporal logics that are used in practice, namely, LTL and CTL, and
discuss different categories of formulas. In Sections 2.1.3 and 2.1.4 we discuss the two

main existing methods for symbolic model checking.

2.1.1 Kripke Structures

A Kripke structure is a labeled directed graph, defined in the context of Modal Logic. We
describe here a restricted type of Kripke structure that is used to model reactive systems.
We associate a Kripke structure with a finite Bedf Boolean variables. Each node in the
graph is labeled with a subset Bf (the variables that are assigned 1 in the node). Thus
each node in the graph represenstateof the modeled system. Different nodes in the
graph must be labeled with different sets, that is, each state of the system can appear at
most once in the Kripke structure. ThusVifincludesn variables, the Kripke structure

may have at mos2" nodes. An edge from one node to another means that a transition

is possible in the system, from a given state to the next, in one time unit. From each
node there must exist at least one outgoing edge (that is, there are no “dead-ends” in the

system). The mathematical definition of a Kripke structure is given below.

Definition 1 (Kripke Structure) Let V' be a set of Boolean variables. ¥ipke structure
M overV is afour tupleM = (S, I, R, L) where

1. Sis afinite set of states.
2. I C Sis the set of initial states.

3. R C S x Sisthe transition relation that must be total, that is, for every states
there is a state’ € S such thatR(s, ).

12



4. [ . S — 2V is a function that labels each state with the set of variables true in that

State.

We view each state as a truth assignment to the variablésWe view a set of states
as a Boolean function ovéf, characterizing the set. For example, the set of initial states
I is considered as a Boolean function oVvér Thus, if a states belongs to/, we write
s = 1. Similarly, if v; € L(s) we writes = v;, and ifv; € L(s) we write s = —v;. We
say thatw = sg, s1, ... is apathin M if s, = I andVi, 0 < i, (s;, s;41) € R.
Example 2. Figure 2.1 draws the states and transitions of a Kripke structure, called

Simple . The initial state is colored dark, and the label of each state is the value of

the vector(vy, vs, v3).

Figure 2.1: The Kripke structure “Simple model”

Kripke structures are used for modeling the behaviors of real hardware and software

systems. However, in practice the full Kripke structure of a system is usually too big and
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too complex to be explicitly described. Rather, a model is given as a set of Boolean vari-
ablesV = {vy,...,v,}, their initial values and their next-state assignments. Moreover,
for every reasonably-sized system, the Kripke structure is too big to be explicitly built.
Rather, systems are described by giving the behavior of every state variable separately.
We concentrate on hardware, where systems are naturally described in this way by exist-
ing Hardware Description Languages (HDL). In standard HDLs however, the system is
deterministic, and multiple behaviors can only be due to the behavior of the inputs. The
input language oc5MV[McM93] allows a more complex non-deterministic behavior. Our

notation is an abstraction of the input languag&btV.

Definition 3 (Model Description) Let V' = {v, ..., v, } be a set of Boolean variables. A
tuple MD = (Iyp, [{c1,¢}), ..., (ca, c},)]) is @aModel DescriptioroverV wherely, p, ¢;, ¢}

n

are Boolean expressions ovér

The semantics of a model description is a Kripke structuig, = (S, Iy, R, L),
whereS =2V, L(s) = s, [y = {s|s = Iyp}, andR = {(s,5') : V1 <i < n, s = ¢
impliess’ = —wv; ands = ¢; A —¢; impliess’ = v, }.

Intuitively, a pair(c;, ¢;) defines the next-state assignment of variable terms of

the current values ofv,, ..., v, }. Thatis,
0 if C;
next@;) =< 1 if ¢ A —¢;
{0,1} otherwise
where the assignmefi0, 1} indicates that for every possible next-state value of variables

vy, . Vi1,Vis1, -, Uy there must exist a next-state with = 1, and a next-state with

’UZ‘:O.

Example 4. For the modelSimple given in figure 2.1, the next state assignments are

given below.
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0 if v1 Awveo
nextw1) =4 1 if v3 A =(v1 Ave) nextws) ={
{0,1} otherwise

0 ifwv
1 otherwise

0 if —vo

next@s) =
{0,1} otherwise

The full model description is given by
Slmple = ([, [<U1 N Vg, ’U3>, <_|U2, v1 N\ _|U1>, <_|U1, 'U1>])
overV = {Ul, Vo, Ug} with I = =1 A\ g N\ D3,

This example shall be used throughout this document to demonstrate our methods.

2.1.2 Temporal Logic

Temporal Logic is a dialect of Modal Logic. The use of Temporal Logic for the speci-
fication of reactive systems was first suggested by Pnueli in [Pnu77] and has since been
accepted as the major language for the specification of such systems. Several types of tem-
poral logics exist in the literature, with the most commonly used ones hdihgPnu77]
andCTL [CE81]. We describe the logidS'L andCTL below, and then discuss different

types of temporal logic formulas, known safetyandlivenesformulas.

Linear Temporal Logic

Given a finite set AP of atomic propositions, formulad. @l are recursively defined as

follows:

e Every atomic proposition is adrl' L formula.

e If pandy arelLTL formulas then so are:

o oAy eXp e[pUy]

Additional operators are defined as syntactic sugaring of those above:
etrue =-pVp epVip=(pAN) eFp=ItrueUy]

cp—th=2pVi eGp=-F-p o (W] = [pUy] V Gy
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The formal semantics dfTL formulas is defined with respect to an infinite computa-
tion path. A computation path is a sequence of states sy, si, s, ... Wheres; is a truth
assignments to the atomic propositioh®. We sometimes use to denote a finite prefix
of a path. The suffix of a computatiosy, s;1, 5,12, ... is denoted bys’. Given a prefix
p and a pathw, we denotep - w the concatenation of them. We usel= ¢ to indicate
that theLTL formulay holds on the computatiom. The semantics of= is inductively
defined as follows.

e wkEpPIFFsyEp

w E @ IFFw £ ¢

wkEpANYIFFw = g andw = ¢

wkE XelFFuw!' E ¢

w = [pUy] IFF 3k > 0 such thatv® =+ and for all0 < j < k,w’ = ¢

It is common practice to view computations satisfyinglarL formula as infinite
wordsover the alphabet“”, where the letters of the alphabet are the states of the compu-
tation paths [WVS83, VW86, SVW87]. Under this interpretation, one can talk about the
languageaccepted by abhTL formula, referring to the set of words satisfying the formula.
Languages that can be accepted By formulas are omega-regular languages. Such lan-
guages are accepted byighi automata. We give the definition of aiéhi automaton
below.

Definition 5 (Buchi automaton)A Buchi automaton is a 4-tuple, I, J, F') where
e Sis a finite set of states
e /] C Sis aset of initial states
e ) C S x Sisatransition relation

16



e [ C Sis a set of accepting states

An infinite sequence of states is accepted byuahs automaton if and only if it contains

infinitely many accepting states.

In most cases, the verification of amL formulay is done by first building a Bchi
automaton4 that acceptsp [Var96], and then verifying thatl accepts no computation
of the modelM.

Negation Normal Form

For bothLTL andCTL (see below) it is possible to transfer formulas into equivalent ones
in Negation Normal FormNNF), where negations are allowed on atomic propositions
only. For example, theTL formula—G(p — Xg¢), where a temporal operator is negated,
is equivalent td'(p A X—gq), that is INNNF. The transformation is straightforward using

the temporal operations defined above.

Computation Tree Logic

Computation Tree LogidQTL) is a branching time logic. This means that time is viewed

as a tree, where one state may have more than one successive state. To capture this,
branching time logics introduce, on top of the temporal operators uséd fQitwo Path
Quantifiers the A path quantifier stands for “All paths”, and tliepath quantifier stands

for “there exists a path”. I€TL, a path quantifier must immediately precede a temporal
operator. A formula ilNNF form, consisting of thed path quantifier only, is called an

ACTL formula If only the E path quantifier exists it is called &CTL formula. The

formal definition ofCTL is then given as follows:

Definition 6 (Computation Tree Logic)Given a finite set AP of atomic propositions,
formulas ofCTL are recursively defined as follows:

e Every atomic proposition is @TL formula.
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e If p andy areCTL formulas then so are:
o epNY eAXyp eEXp eAlpUi] e E[pUy]

Additional operators are defined as syntactic sugaring of those above:

Vi =(mpAY) o= ="pVi

e AFp = Altrue Uy] e EFyp = Eftrue Uy)

o AGyp = —E[true U—y] o EGp = —Altrue U—y]

o Alp V)] = ~E[~p U] o Elp V] = =A[~p U]

e Alp W] = =E[=p U=p A ~p] @ Elp Wip] = 2 A[=p U=p A —1)]

The intuitive semantics d TL operators are given in Figure 2.2. The formal seman-

® ®
] o o o ] o e o
) ) ® ® 000 O o
EX AX EG @® AG EF
® ®
o o ® o @
o oo ® o (N )
AF @ EU AU

Figure 2.2:CTL Operators

tics of CTL formulas is defined with respect to a Kripke structiwe= (S, I, R, L) over
a set of variable¥ = {vy, ..., v }. The notationV/, s |= ¢, means that the formula is

true in states of the model)M.
o M,sEpiff sEp
o M,s=—piff M,s o
o M, s=pAyiff M,s = pandM,s =
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M, sy = AXp iff for all paths(sg, s1,...), M,s1 Ep

M, sy = EXpiff for some path(so, s1,...), M,s1 E= p

M, sy = AlpUv] iff for all paths (so, s1,...), for somei, M, s; = ¢ and for all
j < i,M, Sj ): 2

M, sy | E[pUv] iff for some path(sy, s1, ...), for somei, M, s; = ¢ and for all
j < i!Mv Sj ): 2

We say that a Kripke structutel = (5, I, R, L) satisfies & TL formulay (M = ¢)
ifforall s; € I, M, s; = .

Polarity of Subformulas

Let o be a temporal logic formula and let be an occurrence of a subformula ¢n
We say that) has apositive polarityin ¢, if ¢/ is under the scope of an even number
of negations. Otherwise, we say thathas anegative polarityin . For example, for

v = °G(p A =Xgq), the subformula) = Xq has a positive polarity, and’ = p has a
negative polarity. Note that ip is given in NNF, only propositions can have a negative

polarity in .

The Common Fragment ofLTL and ACTL

Monika Maidl in [MaiO0] has investigated the relationship betw€dn. andLTL, and
characterized the fragment ACTL that can be expressedlifiiL. This fragment is called
ACTL9, and its inductive definition is given below, where the operatoistands for

“weak until”.
¢ Every atomic proposition is aACTL?! formula.
e If pis a propositiony andy areACTL formulas then so are:
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¢ PN e (pAp)V (mpAY) e AXy
e AlpAp)U(mpAY)] e Al(p A )W (=p A1)

It is interesting to note that most of terL formulas written in practical applications
belong to the common fragment ACTL andLTL [BDFRO5].

Safety and Liveness Formulas

Temporal logic specifications, whether writtenliiL or in CTL, are divided into three
basic categories [Lam77, AS85, AS87, MTOliyenesspropertiessafetyproperties and
formulas that are combinations of the two. Informally, a safety formula states that “some-
thing bad never happens” while a liveness formula asserts that “sometioog will
eventually happen”. A somewhat more formal definition was given by Alford et al. in
(JAAH *85] cf. [Kin94]), defining assafetyformulas whose violation can be shown by

a finite prefix of a computation path, while the violation of a liveness formula must con-
tain an infinite path (a loop, in case of a finite model). For example] ieformula

G(p — Xq) is a safety formula, since, in order to show violation, it is enough to present
a finite prefix of a computation path that leads to a state whbodds, followed by a state
whereq does not hold. The formulé:(req — F(ack)) on the other hand is a liveness
formula, because the violation of it must show a state whegeholds followed by an

infinite path along whicluck never holds.

Fairness

When verifying a liveness formula it is many times the case that the formula should only
be verified on computation paths that é&& according to some notion. The simplest
and most commonly used fairness constraint states that some Boolean conditicst

hold on the path infinitely often. (This constraint can be described by Theformula

GFp, with p being a Boolean expression over the set of variablesWhen the fairness
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constraintfairness p  is given, a legal counterexample for a liveness formula (on a
finite model) should therefore include a loop on which the liveness formula fails, but

where the expressignholds at least on one state in the loop.

Translating Temporal Logic Formulas into Automata

As mentioned earlier, a popular method for model checkingTdnspecificationy, is to
first build a Bichi automatom ., for the negationof ¢ with size exponential in the size
of the formula [Var96, BFHO5]. For formulas in the common fragmerifidf andACTL,
this automaton is of size linear in the size of the formula [MaiO0].
OnceA._, is built, the parallel composition of ., with the model)M, denotedd || M,
is itself a Bichi automaton, and its language can be checked for emptiness (if the set of
computations is not empty, it contains counterexamplesJjoiSince the accepting con-
dition of a Blichi automaton requires visiting a set of states infinitely often, the model
checking ofy amounts to searching for a fair path.in,,||M. For safety formulas, the
Buchi condition is not needed. Rather, the automaton built is used as a non-deterministic
finite automaton (NFA) that has accepting states (accepting error computations) [KV99].
For safety formulas as well, when a formula belongs to the common fragment.end
ACTL, the NFA built for itis linear in the size of the formula [BBDL98, MaiO0, BDFRO5].
Below we sketch the translation of a safety common-fragmentformula ¢ into a
non-deterministic finite automaton that accepts erroneous paths. The translation is done in
two phases. In the first phase we produce, giyea regular expression, that describes
an erroneous computation. The alphabgtof r, contains Boolean expressions over
the propositions appearing in and words accepted by, are sequences of states where
letters fromX,, hold. The full translation is given in [BBDL98]. We give the flavor of
the translation using a few examples. We use the letterindicateTrue (the Boolean
expressionV —p for some propositiop). We usex and- in their usual regular-expression

meaning.
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1. Lety = G(p). We definer, to be(t«) - —p. Note that this regular expression
accepts all computations that include a finite number of states wineesholds
(any state), followed by a state satisfying. That is, counterexamples f6i(p).

2. Letp = G(p — Xgq). Thenr, = (tx) - p - ~¢q. A computation path accepted by
demonstrates a finite sequence of states ending with a state satisfyollgpwed

by a state not satisfying This is a counterexample far.

3. Lety = (p W q). In this case we have, = (p A =q) * - (-p A —¢q). Paths
accepted by, start with a finite number of states whereholds butg does not
hold, followed by a state whepestops holding before arrives. Such a scenario is

a counterexample t@ W ¢).

The second phase of the translation builds a non-deterministic finite automatosc-
cepting the same language as There are many known algorithms to achieve this
[HU79], where the constructed automaton is of size linear in the size of the regular ex-
pression. We give an example of a full translation, from a specification into an automaton,
using the automaton building algorithm of [BFRO4].

Let us consider a specification stating that one cycle after the SJARRT appears,
the signaBUSY should hold untiEND arrives. IfEND never arrivesBUSY should hold
forever. We use to represen$ TART, b for BUSY, ande for END. In LTL, this would be
written as follows.

p=G(s— X(bWe))

Building r,, as described above, we get
ro,=(tx) - s - (bA—e)- (b A —e)

The automatoni ., is given in Figure 2.1.2. The initial state is state 1, and the accepting
state is 4. Note that Figure 2.1.2 can also be seen as a state-machine, since from every

state and for every input it is possible to progress to another state. Let this state-machine
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Figure 2.3: An NFA forG(s — X (b W e))

be calledSM.,. If ¢ holds in the model under verification, then it can never be the case
thatS M, reaches state 4 while:b A —e) holds in the state. Model checkingpfcan now

be carried out by running M/, with the model under verification, verifying the formula:
G-((SM, =4) A (=b A —e)).

2.1.3 Model Checking

The main challenge in model checking is known asdtade space explosigoroblem,
where the number of states in the model grows exponentially in the number of variables
describing it. In this chapter we briefly describe some of the main methods used in prac-
tice to cope with the size problem. We present symbolic model checki@gloformulas
below, and then we sketch the bounded model checking method in Section 2.1.4.

Model Checking of CTL formulas

In [EC80] Emerson and Clarke showed that various branching time properties can be

characterized as fixed points of appropriate monotonic functions. Later in [CE81] they
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introduced the logi€TL, and showed that its operators can be characterized in this way.
To present Clarke and Emerson’s theorem, we need to introduce the notidnnaf a
tional. A functional is denotedy. f wheref is a formula and, is a variable. The variable
y acts as a place holder. When applied to a parametbe functional\y. f yields f with
p substituted foy. For example, ify = \y.(x A y) theny(true) = = A true = x. A fixed
point of a functionaly is anyp such thaty(p) = p. For example ify = \y.(z A y) then
(x Ay) is afixed point ofy sincey(z Ay) =z Az Ay =z Ay.
If v is a monotonic functional, then it hadeast fixed poinas well as ayreatest fixed
point The least and greatest fixed points\gf f are denotedy. f andvy. f respectively.
A functional~ is union-continuous when for any non-decreasing infinite sequence of sets
p1 C pe C ..., we haveU;y(p;) = ~v(U;p;). Similarly, a functionaly is intersection-
continuous when for any non-decreasing infinite sequence opsé€igp, C ..., we have
Niv(p:) = v(Nip;). Tarski [Tar55] showed that if is monotonic and union-continuous,
then the least fixed point of is U;+'( false) (that is, the union of the sequence obtained
by iterating~ with the initial value false). Similarly, ify is monotonic and intersection-
continuous, then the least fixed point-ofs N,y (true).
Clarke and Emerson viewed& L formula f as a set of statefss|s = f}, the states
in which the formula is true. Viewin@ TL formulas this way, we can observe that the
equatiorEFp = pVEXEFp holds for all models. ThuBFp is a fixed point of the functional
v = A\y.p V EXy, and in fact, it is thdeastfixed point ofy. In a similar way, Clarke and
Emerson obtained the following characterizations:

1. EFp = py.(p vV EXy)
2. EGp = vy.(p N EXy)

3. E(qUp) = py.(pV (¢ N EXy))

Since the above functionals are monotonic, and the set of states in our models is finite,

Tarski's theorems apply, and we get an effective procedure for calculating the fixed points.
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For EFp for example, we get:
EFp = U;(\y.(p vV EXy))'(false)

and thus it is enough to iterakeX until a fixed point is found, starting with false. Given a
set of statess, calculatingeX(S) is done by going one step backwards fréito get all
states that can reachin one step through the transition relation.

For this, one needs an efficient way to represent and manipulate sets of states and
relations. McMillan in [McM93] showed how this can be done using Binary Decision
Diagrams (BDDs) [Bry86], that can be seen as a data structure that is especially efficient
for the representation of Boolean functions. McMillan also wrote the first symbolic model
checker called SMV [McM93].

2.1.4 Bounded Model Checking

Given a Kripke structuré/, a formulay, and a bound, bounded model checking (BMC)
tries to refuteM | ¢ by proving the existence of a witness to thegationof ¢, of
lengthk or less. We use the notatiolf* to denote the model/ bounded byk. The

idea of bounded model checking was first proposed in 1999 by Biere, Cimatti, Clarke
and Zhu [BCCZ99]. They suggested to unfold a given model and specifidatiomes,

using auxiliary variables, making them into a propositional formula, and then use a sat-
isfiability solver to find a satisfying assignment. Such an assignment, if found, serves
as a counterexample to. The vast development of SAT solvers in recent years (See
zChaff [MMZ*01] and MiniSAT [ES04] for example), has made this method into the

leading one in the world of hardware model checking.

We describe the translation of a BMC problem into a propositional formula in the next

section.
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Translating a BMC problem into a propositional formula

The BMC method of [BCCZ99] generates a propositional formula that is satisfiable if and
only if M* [~ ¢. We describe this method for invariant formulas, exg= AG(p). For

such formulas, we have that* |~  if and only if there exists a patly = s, ..., s; in

M, such thay < k ands; = —p.

We use the definition of anodel descriptior{Definition 3), given in Section 2.1.1.
Let MD = (Iup,[{c1,¢)), ..., (cn,,)]) De a model description over a set of variables
V ={v,...,v,}, and letp = AG(p) be the formula to be verified, withbeing a Boolean
expression oveV'. In order to unfoldMD until a given bound:, we introduce: sets of
new propositional variableg! = {v{,...,vl}, ... V¥ = {oF, ..., vF}. For readability, the
original set of variable¥”, will now be called/°. According to Definition 3, a paifc;, c})
states that if the conditiorj holds in the current state (in terms of the varialdlé$, then
the value ofv; in any next state must b& while if ¢; does not hold but; does hold,
then the value of; in the next state must be We introducek conditionsc}, ..., ¢¥ and
k conditionscY, ..., ¢’ for each pair;, ¢, wherec! is the conditior; written in terms of
the variabled/’.

For each paifc¢;, ¢;) we introducek propositional formulas:

T = (= ") A (= A d — o)

7 7 [ 7

for 0 < j < k. The propositional formula that represents the unfolded model is composed

of three parts:
e The initial condition/, written in terms of the variabldg®.
e The transition formulag? for 0 < j < k.

e The negation of the specificatio® = —p° vV —p' vV —p? Vv ... V =p¥, wherep' is the
Boolean formulg written in terms of the set of variablés’.
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The model and specification are therefore represented by the propositional formula:

INPAC N\ T

0<j<k,0<i<n

We demonstrate the translation with the example below.
Example 7. We consider again the model given in Figure 2.1.
Slmple model = ([, [<’01 N Vg, U3>, <_|1)2, v1 N _|U1>, <_|’Ul, ’U1>D

overV = {vy,vg,v3} With I = —v; A vg A w3, and letp = AG(v; V v9). We choose

k = 4. To translate the model into a propositional formula for bound 4, we introduce 4
copies of the variables/! = {v{, v3,v3},...,V* = {v, v3,v3}. We first have to write

the initial conditionI in terms of the variableg*:

I =) Avy A=l
Second, we build the propositional formubtacorresponding to the specification:
P = (=0} A=) V (7o A =wp) V(=0 A —03) V(0] A=) V(=g A =)
We now build the formulafij. For the next-state value of in time step 0, we have:
T7 = ((v7 Avg) — —p) A ((=(0) Avg) A —wg) — vy)

T}, T? andT? will be the same a%?, with all the top indexes shifted.

For the next-state value of we get:
Ty = (v — ~wy) A (v A VY A =0y — v)

Note that the right hand side @¥ is equivalent tolrue, thus we gef’y) = (—v§ — —vld).
Similarly, we havely = (—vi — —w3), T? = (—w3 — —w3) andT3 = (—v3 — —wj).

For the last variable; we have:
T3 = (=] — —w3) A (0] — v3)
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andTy,T:,T; are defined in the same way, with the top indexes shifted as above. The

propositional formula for the model, unfolded to depth 4 is then:
Téimple =IANPANTY AT ANTEANTENTY NTY ATy AT AT ATy NTE AT

In order to find a counterexample of lengthor less, we need to find a satisfying
assignment forréimple . SinceTéimple is a propositional formula, a satisfiability
solver can now be applied to it. If no satisfying assignment exists, it means that no bug
can be found until cycle 4.

2.2 Description Logic

Description Logic [BCM 03] is a family of knowledge representation formalisms. It
has evolved from earlier knowledge representations, sucte@srk semanticgQui67,
CQ69], andframes[Min81] in an attempt to overcome ambiguities in the semantics of

those formalisms.

In description logic, the basic elements atemic conceptandatomic roles Atomic
concepts are unary predicate symbols, denoting sets of individuals; atomic roles are binary
predicate symbols, used to express relationships between individuals. Complex descrip-
tions of concepts and roles can be built from simpler ones by wsingtructors Different
dialects of Description Logic are distinguished by the constructors they allow. An impor-
tant feature of description logic is the abilityitder about the described knowledge-base:
to find implicit facts from the explicit information given.

We present the formal syntax and semantics of different description logic dialects
in Section 2.2.1. Section 2.2.2 discusses how knowledge-bases are represented using
terminologies (Thoxes) and world descriptions (Aboxes). Section 2.2.3 then presents the

basic reasoning algorithm using tableau construction.
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2.2.1 Syntax and semantics

The basic description logic dialect that we use in this work is knowA &S (for attribute
languagewith complement In ALC, complex concepts are formed from simpler ones
using the following constructors, wherkis an atomic concept,’ and D are concepts

andR is arole:

A (atomic concept)
T (universal concept)
L (bottom concept)
-C'  (negation)
CnD (intersection)
VR.C' (value restriction)

The union operator is defined @31 D = —~(-C'T1—D), and existential quantification
is defined aslR.C’ = —-VR.~C. The semanticof ALC is defined with respect to a
structureZ = (AZ,.7), whereA? is a non-empty set, and is a function mapping every
atomic concept to a subset off and every role to a subset &f? x AZ. Figure 2.4

presents the semantics 4fZC constructors.

A AT C AT
R RT C AT x AT
T AT
1 0
—C AT\ 7
cnbD ctnD*
VR.C | {x € AT|Vy.(x,y) € RT — y € C*}

Figure 2.4: The semantics gfLC

We review terminologies and reasoning procedures46C in the next sections. In

Section 2.2.4 we define other DL dialects that are used in this document.
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2.2.2 Terminologies and world descriptions

Complex descriptions of concepts and roles are used to describe the classes of objects
of a given domain. The knowledge-base itself is composed of two componetds: a
minology(or ThboxX and aworld description(or AboxX. The terminology gives a list of
axioms that describe relations between concepts in the domain. In the most general case,

terminological axioms have the form of a concept inclusion
CCD,

whereC' and D are concepts written in terms of a given dialect. The semantics of a
conceptinclusion is as expected: an interpretafisatisfies the conceptinclusi6GhC D
if CT C DZ*. Figure 2.5 presents a terminology with concepts about animals and their

eating habits. The second component of a knowledge-base, the Abox, lists assertions

Herbivore LT Veats.—Animal
Omnivore C deats.Animal M Jeats.—Animal
Cow L  Animal M Herbivore

Human C  Animal M (Herbivore LU Omnivore)

Figure 2.5: A Tbox with facts about eating habits

about individual names in a specific domain. These will be of the form
C(a), R(b,c)

wherea, b, ¢ are individual names in the domai@, a concept and? a role. The above
assertions state thatis a member ofC’ andb, c are related byR. When an Abox is
present, an interpretatiahshould also map the individual names: each individusaill

be mapped to an elememt € AZ. Figure 2.6 gives an example of an Abox.
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Cow(DINA)
eats(DINA,GRASS)

Figure 2.6: An Abox

2.2.3 Reasoning

Different inference tasks come to mind when dealing with Description Logic. For exam-

ple, we can consider:
e Subsumption - is one concept more general than anothér:D?
e Consistency - does a given concéphave an interpretation?
e Membership - is the individuala member of a concept in all interpretations?

It turns out that the different inference tasks can all be reduced to the questonsi$-

tency We use |=; C to indicate consistency in DL, to differentiate it from satisfaction

in the model checking world. Thus, the general consistency problem, with respect to a
Thox 7, asks ifT |=; C holds; that is, if there exists an interpretatibrsuch thatC? is
non-empty and such th&t’ C C? holds for everyC; C Cy in 7.

Tableaux algorithms for consistency checking’oWith respect to a terminology,
try to prove the consistency by demonstrating the existence of an interpréfatimm that
C7? is not empty and all the concept inclusionsZirhold. This is done by syntactically
decomposing”, to derive constraints on the structure of such an interpretation. The
construction fails if the constraints includecksh that is, if some individuak: must be
an element of botlD and—D for some concepD. The algorithm is designed in such a
way that it is guaranteed to terminate, and guaranteed to construct an interpretation if one
exists.
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In practice, the algorithm works on a labeled tree, calledrapletion treg, that has a
close correspondence to an interpretatiorffandC. We assume that concepts are given
in negation normal fornfNNF), where negations are allowed only on atomic concepts. A
concept can be transformed into an equivalent one in NNF by pushing negation inwards,
making use of de Morgan'’s laws and the duality between existential and universal restric-
tions [HSTOO]. For a conceyt, we writennf(C') to denote the NNF of, write ~-C' to
denote the NNF of-C', andsub(C') to denote the set of all sub-conceptgdfincluding
C) and their negations. For a TBax we definesub(7’) = | pyeq sub(C) Usub(D).

Definition 8. Let 7 be anALC TBox andC a concept in NNF. Acompletion tredor C'
with respect td7 is a directed grapl= = (V, E, L) where each node € V is labelled
with a setl(z) C sub(7)Usub(C') and each edger, y) € E'is labelled with a role name
L((z,y)) € Ry.

If (z,y) € E, theny is called asuccessoof x andz is called apredecessoof y.
If, in addition, R = L((z,y)), theny is called anRk-successoof = andz is called an
R-predecessoof y. Ancestoris the transitive closure of predecessor, dedcendanis
the transitive closure of successor.

G is said to contain alashif for some A € NC and noder of G, {A, —A} C L(x).

The tableaux algorithm for checking concept consistency wfith respect td/” starts

with the completion tre€& = ({ro}, 0, L) whereL(ry) = {nnf(C)}. G is then expanded

by repeatedly applying the expansion rules given in Figure 2.7, stopping if a clash occurs.
In order to ensure termination we need to restrict the creation of new nodes in the

completion tree. The notion dlockingis used for this purpose.

Definition 9. A nodex is label blockedif it has an ancestoy such thatl(z) C L(y).
In this case, we say thgtblocksz. A node isblockedif either it is label blocked or its

predecessor is blocked.

1We note that for more expressive DL dialects a complegi@phmay be needed.
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C-rule:if1.C1 CE Cy, € 7T, and
2. {=Cy,nnf(Co)} N L(x) =0
then set(z) = L(x) U {C} for someC € {~Cy,nnf(Cs)}

M-rule: if 1. C1 N Cy € L(z), and
2. {Cl, CQ} Z L(CE)
then setl(z) = L(z) U {C1,Ca}

U-rule: if 1. C; U Cy € L(z), and
2.{C1,CoynL(x) =0
then setl(x) = L(z) U {C} for someC € {C1,Cs}
F-rule: if 1. 3R.C € L(x), x is not blocked, and
2. z has noR-successoy with C' € L(y),
then create a new nodewith L((z,y)) = R
andL(y) = {C}

V-rule: if 1. VR.C € L(x), and
2. there is amR-successoy of x such thatC' ¢ L(y)
then setl(y) = L(y) U {C}

Figure 2.7: Tableaux expansion rules 6£C
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When nodes in a branch of the completion tree resemble ancestor nodes, a block is
established to ensure that further applicationsl-otile are not applied to the blocked

nodes (and therefore ensure termination).

Definition 10. A completion tredx is calledcompleteaf no expansion rule can be applied.
G is clash-fredf no node contains a clash.

A tableaux algorithmfor checking concept consistency of atCC conceptC with
respect to a TBo¥ builds a completion tree far'. If a complete and clash-free tree can
be obtained, the algorithm returns “consistent”; otherwise, if it was unable to build such

atree, it returns “unsatisfiable”.

Theorem 11. (decision procedure, [SS91]) The tableaux algorithm always terminates for
a given ALC conceptC and TBox7, and returns “consistent” iffC' is satisfiable with

respect to a TBoyx .

2.2.4 Other Dialects
We present additional DL dialects that are needed for our results in Chapter 3.

e Inverse roles (indicated by the lettg).
If Ris arole, this construct allows us to define the conedpt.C, for any concept
C. Given a structur€ = (AZ,.7), the semantics is defined &sR~.C)* = {z €
AT :Vy.(y,r) € RT — y € CT}.

e Nominals (indicated byD).
This constructor allows the definition of a concept as a set of individgajs:.., s }.

the semantics, given a structufe= (AZ, %), is as expected({s, ..., sy })* =

{(31)17 e (8k>I}'

e Functional roles (indicated h¥).
Allows defining some or all of the roles danctionals If R is functional and
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T = (AT, %) is given, then for any, y1, y» € AT, {(x, 1), (z,y2)} € R* implies
Y1 = Y.
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Chapter 3

Symbolic Model Checking using

Description Logic

We present a variety of encodings for symbolic model checking using Description Logic.
For all of those encodings the ontology constructed describes an error in the system, and
interpretations if found, provide legal paths from the initial state of the model to a buggy
state. Interpretations can thus serve as counterexamples.

In this chapter we give formulations of bounded model checkingwarianceprop-
erties, of the types(p), and in Chapter 4 we discuss unbounded model checkirig- of
evitability propertiesE(p)), wherep is a Boolean expression over the set of state variables
V. As explained in Section 2.1.2, &ll'L properties can be translated into these types of
formula via the construction of aiBhi automaton. Note that tHeTL formulasAG(p)
andAF(p) are equivalent to theTL onesG(p) andF(p) respectively. We sometimes use
the CTL notation, since the description of an erroneous situatidii-tp) or EG(—p)) is
easier inCTL.

The rest of this chapter is organized as follows. In Section 3.1 we show how a model
descriptionMD can be represented as a TB@,p over the Description Logic dialect

ALC. We then prove several lemmas in Section 3.1.1, correlating interpretations satisfy-
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ing 7,,p With sub-models of the Kripke structurd,,;, described by//D. These lemmas

will be used later in this chapter to prove the correctness of our encodings. In Section
3.2 we present various ways of phrasing a bounded model checking problem as a consis-
tency problem in DL. The methods differ from each other in the DL dialects they use as
well as in the encodings themselves. We prove the correctness of our encodings in Sec-
tion 3.3, and in Section 3.4 we sketch an alternative symbolic representation of a model
description, and review the changes needed in all of the previously presented encodings.
Section 3.5 gives experimental results, and Section 3.6 concludes this chapter with a dis-

cussion.

3.1 Modeling A Kripke Structure as a TBox

We start by presenting a natural encoding of a model descrigtibhas a terminology
over ALC. Let MD = (I,[{c1,¢}), .., (cn,c,)]) be a model description for the model
Muyp = (S,1,R, L), overV = {vy,...,v,}, as defined in Section 2.1.1.

For each variable; € V we introduce one primitive concept, whereV; denotes
v; = 1 and-V; denotes; = 0. We introduce one primitive rolR corresponding to the
transition relation of the model. Given a Boolean expresgi@ver the state variables
vy, ..., Un, We denoteD(p) the concepP derived fromp by replacing each; in p with
V;, andV, A, = with M, L, — respectively. For example, jif = (—v; A vg), thenD(p) =
(=Vq M V).

We define the concef8, to represent the set of initial stateS; = D(7). We define
C =D(¢),C =D(c), forall 1 <i <n. The TBox7,,» would consist of the following

concept inclusions, describing the model: for each fair’,) we introduce the inclusions

(-C;1C) C VRV,

Interpretations for7,,p will consist of individuals that correspond to states in the
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systemMD. Note that in our DL translation, if an individualbelongs to a concep; it
means that the variable has the value 1 in the corresponding stat&he first inclusion
ensures that in any interpretation, an individual that belon@s ¢an be related bR only

to individuals that do not belong ¥. Since individuals correspond to states in the model
Myp, this means that when holds in a state, all neighbor states af must have); = 0.
The above inclusions thus restrict the rBl&o agree with the definition ak in the model
description. Note that for a model descriptidfl) overn variables,7,,p will consists of
only 2n concept inclusions.

As an example, consider the Kripke struct@inple presented in Figure 2.1. Its
MD is given asSimple = (I,[(v; A va,v3), (—vg,v1 A —wy), (—vy,v1)]) overV =
{v1,v9,v3} With I = —v; A vy A —w3. We build a TBox TSimpIe for it. We intro-
duce three primitive concept4, V,, V5 and one primitive rol&k. Figure 3.1 below gives
the full TBox.

Note that for simplicity, we omitted the inclusidm—V, MV, 1M =V;) C YRV, (corre-

S C =V M Vo M =Vs
(VinV,) £ VRAV,
(-(VinVe)V3) C VRV,
-V, C VRV,
-V, C VR Vs
vV, C VR.V;3

Figure 3.1: The TBOX simpie

sponding to-C; 11 C, C VRV, for i = 2), since the prefix-—V, 1V, M =V, is equivalent
to L. Similarly, the concept—V; 1V, (corresponding te~C; 1 C;) was replaced by the
equivalentv;.

In the subsection below we prove that interpretation$,gf must correspond to sub-
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models of the Kripke structur&/,,;,. The propositions presented here will be used later

in this chapter to prove the correctness of our encodings.

3.1.1 TBox Interpretations as sub-models oft/

Let MD = (I,[{(c1,¢)), ..., {cn,¢,)]) be a model description for the modéf,,, =
(S,I,R, L), overV = {vy,...,v,}, and let7y, be the TBox built for it as described
above. LetZ = (AZ,-7) be an interpretation fof;p. We define a mappingt : AT — S

that relates individuals from\” to states fron®t.
Definition 12. M(o) = sif Vi, 1 <i < n,o € V} ifand only if s = v;.

Note thatM is a function, since a stateis determined by the value of the variables
v1, ..., U,. The following lemma shows that and M (o) agree also on Boolean expres-

sions ovemwsy, ..., v,.

Lemma 13. Letb be a Boolean expression ovet ..., v,,, andB = D(b) its corresponding
concept. Letr € AZ be an element in the interpretatidn and lets = M(o). Then
o € BZ ifand only if s |= b.

Proof. By induction on the structure of the Boolean expression O

Corollary 14. Let 01,00 € A%, M(0y) = 51, M(03) = sy. If (01,00) € R then
(s1,82) € R.

Before we prove Corollary 14, we note that the other direction does not hold: if
(s1,52) € R in the systemMD it does not necessarily imply thét,0,) € RE. To
see this, note that the concept inclusiongjp, do not enforce any ‘edge’ to exist in an
interpretation; they only assert conditions on edges, if they do exist. Thus, an interpreta-
tion that has no edges at all, would satisfy all concept inclusioris,ef Note also that

the direction stated in the corollary is the only one needed for our proofs.
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Proof of Corollary 14 If (0y,0,) € RZ, then sinceZ is an interpretation fof;,, we

know thatVi, 1 < i < n, (0, € C implieso, € =VZ ando; € C' N =CF implies
o9 € V;). ButsinceC; = D(¢;) andC, = D(c};), we get by Lemma 13, that, 1 <i < n,

(s1 | ¢; impliessy = —v; ands; = ¢, A —¢; implies sy |= v;). By Definition 3 we get
that(sq, s2) € R.

]

Corollary 15. LetZ = (AZ, %) be an interpretation fof,,p, and letoy, o4, ..., 0., be
individuals in AZ, such that(o;,0,.;) € RE. We define a sequence of states =

S0, 81, ---, Sm SUCh thatM (0;) = s;. Thenwz is a path inM,p .
Proof. Follows directly from Corollary 14. ]

Corollary 16. Let w = sq, 51, ..., 5,, be a path inMyp. LetZ, = (AT, .Iv) be a
structure derived fronw: A% = {0y, 04, ..., om }, and-Z» maps the individuals in such a

way thatM(o;) = s; and(o;, 0541) € RF». ThenZ, is an interpretation fof;,p.

Proof. All the inclusions in7,,, have the formC;, C VR—V; or (-C; M C)) C VRV,.
We know that for alli, 1 < i < n, (s;,s:41) € R. Thus, by the definition, for alf,
1 <j<n (s = cjimpliess;y, = —wv; ands; = ¢ A —c; impliess;; = v;). Since
by construction M (o;) = s;, we get by Lemma 13 thatforaJl 1 < j < n, (0; € C
implieso; 1 € ﬁVj’ ando; € C;IﬂﬁCjZ implieso;1 € V;). Thus the pairsd;, o,11) obey
the concept inclusions df,;p. Since these pairs are the only one&fn, the inclusions
hold under the interpretatidh,. O

Note that the TBox built so far describes only the model and does not consider the
specification to be verified. Legal interpretations include for example the empty interpre-

tation, and are not necessarily useful for verification. In order to use DL reasoning for
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model checking we need to add restrictions to the terminology to stand for the specifi-
cation. In all methods described in the sequel, we add concept inclusions or assertions
that describe &dugin the model. Interpretations will therefore be legal sub-models that
demonstrate an erroneous behavior. In the section below we discuss safety properties.

Liveness properties are treated in Chapter 4.

3.2 The Different BMC methods

Letp = AG(p) be the formula to be verified, withbeing a Boolean expression over the
state variables, ..., v,. Recall that in bounded model checking of bounane tries to
refute the satisfaction alG(p) in the given model by presenting a path of lengtor
less, that leads to a state whetg holds. In order to encode this as a DL query, we use
the TBox 7,,p described in Section 3.1, and add two components to it, one describing a
bounded path and the other describing a buggy state7 f.gtbe the TBox representing
both the model and the bounded path, and’lebe a concept representing a bug. Model
checking is then carried out by asking the DL reasoner to determine wigjhe,, C.,.
If the answer is positive, it means that an interpretation is foundfgy such thatC,, is
not empty. Such an interpretation represents a counterexample.

Below we present four encodings of a bounded model checking problem as a consis-
tency query in DL. The methods we describe differ from each other by the way a bounded
path of length% is defined, and by the way the formula is represented. We demonstrate

each method on the exam@anple presented in Figure 2.1.

1. Using ALC
For this method we use the terminolo@y;p built in section 3.1, and add nothing
to encode a bounded path. Rather, we encode the possible existence of a bug at

distancek or less, as one concept inclusion. ket= AG(p), andP = D(p) the
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concept representing We define the concem}J as follows.
1
C,ESM(-PUIR(-PUIR(-PU..3R=P)...)))

with & nestedERs.

As an example, consider the mo&imple , the bound: = 4 and the specification
¢ = AG(—vy V —w3). We buildZgjmple as shown in Section 3.1, and the concept
C, as given below.

C, C SoM((ValVa)UIR ((VaMVs)U3R ((V2MVs)LIAR.(V2MVs) L3R (V2MVs)))) )
Verification will now take place by asking wheth@gjmpje = C..

. Using ALCT.
Recall that the concel8, represents the set of initial states/df. If S; represents
states that can be reached in one step f&mthen the concept inclusio®, C
JR™.Sy must hold (that is, the s&; is a subset of all the states that can re8gby
going one step backwards using the relat®nSimilarly, we denote bys; subsets
of the states reachable insteps from the set of initial states, and introduce the
inclusions

S,CIR.S;
for 0 < ¢ < k. We call this set of concept inclusiofg.
Fory = AG(p), letP = D(p) be the concept representingWe define the concept
C, C-PM(SyUS, U...USy). If C, is consistent with respect to the terminology
Tk, = T U Typ, it means thatp holds in a state with distandeor less from the

initial state. Model checking is thus reduced to the quérf;, =, C2. A positive
answer from the DL reasoner indicates an errab/fiyp.

For the modeSimple , the bound: = 4 and the specificatiop = AG(—vyV—w3).
Figure 3.2 describé§s4imp|e , the TBox representing both the model and bound.
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(ViMVy) C VR -V, S C (=Vy MV, M =Vs)
(=(ViMVy)11Vs) T VRV, S C 3RS
-V, C VR-V, S C RS
-V; L  VR-V; S; C RS
vV, LC VR V; S, C JR™.S;
Figure 3.2: The TBoXg),,,..

For the specificationp = AG(—v, V —w3) we getP = =V, L -V, andC, &
-PM(SyUS; US, US3US,y). Verification is then carried out by asking the query:

Is the concepC’, consistent with respect tﬁéimple ?

3. Using ALCO and Aboxes.
The method described in item (2) above encodes a bounded path with a set of con-
cept inclusions, and thus useserse roles We show how a bounded path, as well
as the formula to be checked can be encoded as a set of ABox assertions. For a
boundk, we introducek + 1 individuals,sg, S1, ..., Sk. The assertiosy(s,) makes
So an initial state, and fob < i < k, the assertion&(s;,s;.1) makes; a state
of distance:; from the initial state. We call this set of assertiodg. In order to
verify the specificationp we usenominals Forp = AG(p) we define the concept
P = D(p) as before, and define the conc€jtC —P 1 {s, ...,s,}. Verification
for this method is done by asking the quet¥ip, Ax) = Co.

For the exampl&imple , with boundk = 4 andy = AG(—we V —w3), we build
the ABox

Ay = {So(S0),R(S0,51),R(S1,52),R(S2,53),R(S3,54)}

and the concept
C) C VaMVs1{s¢,51,55,53,54}
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Verification is done by asking the que{¥simple :Ar) Fa C-

Note that the assertions id;, form a symbolic path of lengthk + 1 through the
model, starting from an initial states. Moreover, this syntactic definition of a path

does not depend on the model described in the Thgx.

. Using ALCF and Aboxes.

This method encodes a bounded path as an ABox as described in item (3) above.
However, we use a special encoding for the formula, that involves enhancing both
the TBox and the ABox. It is based on two known facts. First, thaliGf(p) does

not hold in a model thed’ F'(—p) does. Second, tha F'(p) has a fixpoint repre-
sentation (Clarke and Emerson’s [CE81]):

EF(p) =pV EX(EF(p))

That is, in order forE'F'(p) to hold in a state, eithes should hold in the current
state, or there should exist a next state whefgp) holds. In order to encode this
in DL, we need to enhance both the TBox built in section 3.1 and the ABox de-
scribed in item (3) above.
We first defineR to be afunctional role to ensure that each individual in the in-
terpretation has at most one outgoing edge thrdrgWe then add an assertion to
Ay

—3JRT(Sk)
forcingsy, to be the last state in the interpretation (thasishas no outgoing edges).
We then build the ThoX},,, by adding one concept inclusionig,,. We introduce

a new concepEFnotP , and define it as follows:

EFnotP C —-P U JdR.EFnotP

This inclusion imitates exactly the fixpoint representation of Clarke and Emerson:

we first check whetherP holds in the current state; if it does, then a bug was found
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and we are done. If not, we try to perform the same check on the following states,
that are accessible via the rd*e SinceRis a functional, we have thaR.EFnotP

is the same agR.EFnotP , and it is propagated to the next state—-P does not

hold in the last stateJR.EFnotP is not applicable anymore, and the search stops

afterk steps.

Finally, we add another assertion #,, stating thats,, the initial state, belongs
also to the new conceFnotP :

EFNotP (sy).

Let A, = A,U{EFnotP (s,), 3R T(sx)}, andT},, as defined above. (T}, ,, A})
is consistent, it means thap holds on one of the states of distaricer less from

the initial state.

For the exampl&imple , ¢ = AG(—wy V —w3) andk = 4, we defineR to be a

functional role, and add the following inclusion to Cre%mple :

EFnotP C (V,MV;) U 3JR.EFnotP

We then add two assertions #y:
A, = Ay U {EFnotP (s¢), 3R T(s4)}

Verification is now carried out by asking whethg éimple , Al)) is consistent.
Note that as in the examples above, we expect the DL reasoner to give an “unsatis-
fiable” result (“inconsistent” for the other cases), since the formpudatually holds

in Simple .

3.3 Correctness

We relate the satisfaction qf in the model)M,,, to the consistency problems stated in

the previous section. Let/D = (I, [{¢1,c)), ..., {cn, ¢,)]) denote a model description for
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a modelMyp = (S,I,R, L), let M}, be the restriction of\/,;, to distancek from
the initial states, and lep = AG(p) be a safety formula. LeTyp, 7.k, (Tup, Ar),
(74, A},) be the ontologies built for/ D as defined in items (1),(2),(3),(4) respectively
in Section 3.2, and leC;, , C2, C}, be the concepts representipgas described in items
(1),(2),(3) of Section 3.2 (note that for method (4)@pis defined). Theorems 17 and 18
state that our methods are correct.

Theorem 17.1f M¥,, [~ ¢ then all the following hold:
1. Tup Fa C,. 2. Tyip =a C. 3(Tup, Ax) Fa C 4. (Thp, Ay is consistent.

Theorem 18. If one of the following holds:
1. Tup Fa C, 2. T Fau C, 3(Tup, Ax) au C, or 4. (T}, A,) is consistent
thenM¥,, 1~ .

Proof of Theorem 17 Assume that\/},, = ¢. Then there exists a path W%,
w = So, ..., 5j, Wherej < k, such thatsy =1, VI,0 <1 < j,(si-1,5) € R, ands; [~ p.
We build a finite interpretatio = (AZ, ) for 7y;p, based onv. The setA? includes
j + 1 elementsoy, ..., 0;. Each of the primitive conceptg; is interpreted as a s&f,
such thatvl,0 < I < j, o; € V¥ if and only if s; = v;. Note that for this interpretation,
M(o;) = s; (WhereM is as given in definition 12). The interpretati&h of the roleRis
a set of pair§o;, 0,11), 0 < [ < j. By Corollary 16, we know that all concept inclusions
of 7y;p hold under this interpretation. Note further that siagé= p we get by Lemma 13
thato; € AT\ P~

We consider each of the four methods separately.

1. We assigrg € C}D (whereoy is the individual corresponding tg). We need to

show that the inclusion

C,CSM(-PUIR(-PUIR(-PU..3R=P)...)))
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holds under the interpretatiah. This is easy to see: firsgy, € Sy, by the
mapping M and Lemma 13. Second, sinee € A? \ P* and (o, 1,0,) be-
long to Rf, we have thatr;_; € (3R-P)%. For similar considerations, since
(00,01), (01,02), ..., (0;_2,0j_1) all belong toR’, we have that

oo € (GR3IR....IR.=P)Z. We have shown an interpretation where all inclusions of
j
Tup hold, andC}, is not empty, thugyp =y C..

. We interpret each primitive conceft as {o;} for 0 < [ < j. The primitive
conceptsS; 1, ..., Sy are interpreted aB. We assigrno; € C?f. SinceTf, =

Tup U 7Ty, it remains to show that all concept inclusionsBf hold under this
interpretation, and tha@? & =P (SoUS; LI... U Sy).

e Inclusions from7;,: Forl > j, Sf = (), and are thus included in any other set.
In order forS, C 3R".S,_; to hold, for/ < j, we need to show th&’ C
{re AT |Jye Al st.(y,z) e RFE Ay e SE ). IndeedSF = {0}, SF |, =
{0121}, (01_1,01) € RE, and(o;_1, 0;) is the only pair(x,y) € RE such that

x € SF_ . Thus the inclusion holds.

e We need to show theﬁli C -Pr1(SyUS; U...US,) holds under the interpreta-
tionZ. SinceS; = {0;}, we getthat; € (S USFU...USE). Sinces; = —p,
we get by Lemma 13 that; ¢ P%. Thuso; € (=P (SoUS, LU...US;))* as
needed.

. We interpret the individuals, ..., s ; of A, asoy, ..., 0, that already exist im\%.
We assigno; € C2, ando; is the only individual inC". Forsj,,,...,Sx, we
introduce new individualsg; 4, ..., 0. Sinces; = p, we get by Lemma 13 that
O'j ¢ PI

By the construction of, it satisfies botlV,,, and.A,. It remains to be shown that
C) C —Pr1{sy, ...,s} under the interpretatiof. Sinces; is interpreted as; and
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o; ¢ P, we getthat; € (AT \ PY)n{si,...,sZ} as needed.

4. We interpret the individuals,, ..., s ; of A; asoy, ..., 0;, as above. We map at},
0 <1 < j, to belong tcEFnotP . The assertions inl, therefore hold(s?,s7, ) €
Rf, st € EFnotPZ ands? € (AT \ {e € AT : (e, ¢/) € RE}) since there is
no outgoing edge froms?. It remains to be shown that the inclusi&fnotP C
—P U 3R.EFnotP holds under the interpretatioch We know that, o1, ..., 0; €
EFnotP Z, and only them. We have to show that these individuals belong also to the
right hand side of the inclusiom, o1, ..., 0;_; belong there sincé&r;, 0,,1) € R,

o;11 € EFnotP £ for 0 < i < j. Sinceo; ¢ P* it also belongs there.

This concludes the proof of Theorem 17.]

For the proof of Theorem 18, we need to show the opposite direction, that is, that if an
interpretation can be found for one of the ontologies, it meansXigt, [~ ¢. The
following lemma, derived trivially from Lemma 13 and Corollary 15, shows that it is
enough to show, given an interpretation fby;p, that it includes a “bad” sequence of
individuals.

Lemma 19. Let Z = (A%, %) be an interpretation fo¥,,p. Letp = AG(p) be a for-
mula andP = D(p). If there exist individualsr, o1, ..., o; in A%, such that, € S,
(0i,0i41) € REfor0 <i < j, ando; & P* thenM}, , b~ .

Proof. Let sp = M(0y), s1 = M(0y1),..., s; = M(o;). SinceZ is an interpretation of
Tup, we know by Corollary 15, thaty, sy, ..., s; is a path inM},,. Sinces; ¢ P* we
have thats; (£ p by Lemma 13. Thud/¥, ,, i~ ¢. O

Proof of Theorem 18In all the cases, we assume that an interpretafien (AZ, -7)
exists, such that the given ontology holds. We then show, for each case that the axioms and
assertions imply the existence of a series of individualsg,, ..., o; such thatr, € S,

(04,0i41) € REfor0 <i < j, ando; ¢ P%. This is enough by Lemma 19.
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1. We know that the inclusion

CLC S M (-PUIR(-PUIR(-PU..3R-P)...)))

(. J
~~

k

holds under the interpretatiéh and thatC}, is not empty. Let, be an individual
T
in C.*. Theno, € S} and alsory € (-PUIR(-PLIR(-PU..GR-P)..))).

-~

k
If 0o € PZ then there must exist an individual such that(cy, ;) € RE and
7
o1 € ("PU3IR(-PLU3IR(-PL ...3R-P)...))). For similar considerations, there

N J

k—1
must exist a series of individualsz, o3, ..., 0; such thay < k, (0;,0,,1) € RE for

1 <i<j,ando; ¢ PZ. We have found a sequeneg, o, ...,o;suchthatj < k
o; ¢ P%, and by Lemma 19)/%, ,, £~ .

2. LetZ = (A%, -7) be an interpretation showing thaf;,, =, C, is consistent. Since
C, = (A" \B")N(S§US{ U...US]) is not empty inZ, it must be the case that
for somej, 0 < j < k, (A \ P*) N S is not empty. Leis; be an element in
(AT\P*)NS;. Theno, € (A*\ B') and alsar; € S

SinceT};, includes the concept inclusid@ = 3R™.S;_;, andS] is not empty, we
deduce thaS? | is not empty, and thato;_, € ST_,, such that(o;_,,0;) € R".

By similar considerations, there must exist a sequence of elemgntso; € A7,
such that fo) <1 < j, (04, 0141) € RE, 0p € St andoy € PE. ThusM¥, ,, = .

3. LetZ = (A%, T) be an interpretation showing théf,p, Ax.) =4 C, is consistent.
SinceC, C —-P{s,...,s,} is not empty, we know thas? ¢ P” for some
0 <j <k Letog,oy,...,0; be the interpretation dfsy, ...,s,}. By the assertions
in A, we know thatry € S, (04,0,11) € REfor 1 <i < j ando; € P* as needed.

4. LetZ = (A%,7) be an interpretation showing thef},,,, A},) is consistent. Let

09,01, ..., 0%, be the interpretation ofsy, ..., S, }. By the assertions i, we have
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thato, € St and alsar, € EFnotP Z. SinceEFnotP 7 C —-PZU3JR?.EFnotP Z we
know that either, & P? or there exists an elementc AZ such thato,,v) € R,
andy € EFnotP Z. SinceRis a functional roley = o,. For similar considerations,
eithero; € P* or o, € EFnotP Z, and the same applies g, 0 < i < k. Sinceo;,
has no outgoing edge, we get that one@f, o1, ..., o, must belong ta\? \ PZ. Let
this element be ;.

We have found a sequenes, , o1, ..., 0; such thato, € S, (0,0,41) € RE for
1 <i < jando; ¢ P as before, thud/%, , b~ .

This concludes the proof of Theorem 18]
We now turn to investigate a different encoding to a model description as a TBox, that

gives rise to new BMC encodings.

3.4 Alternative Encodings

The methods described in the previous section all used the same encoding for the model,
which we denoted,,p. In this section we present an alternative encoding of a model,
based on the Ramsey-rule [Ram31]. Translated into DL notation, this rule states the

following equivalence:
CC VRDifandonly if IR-.CC D

Note that the roldR used in7,, is actually defined by the restrictions imposed by the
concept inclusions. We can therefore replRd®y a roleR, equivalent to the inverse &

The model description/D will be defined by the following inclusions, denot&g:
JRC, C —V,
JR(-GNC) C V

Note that7,,p is defined ovetdLC. Letyp = AG(p), andP = D(p). The four methods
of section 3.2 can now be adapted to use the TBoX.
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1. We define the conceﬁfﬁ as follows.
C, T —P(So U 3R(Sy L IR(Sy LU ... 3R=Sy)...)))

with £ nesteddRs. Checking whetheffMD =3 le performs a search backwards,
starting from a buggy state (that belongs-#8), and trying to reach an initial state
in k or less steps.

2. Recall that for the second method we used concept inclusions to encode a bounded
path, that needed the inverse roles, thus using the didlé€Z. UsingR, we built
7, where onlyALC is needed:

S C3IRS,
for 0 < ¢ < k. The encoding of the formula now stays the same:
C C-PN(SHUS U...USy)

As we see, for this method the alternative encoding allows us to avoid the use of

inverse roles.

3. As in the original encoding, for a boukdwre introducet + 1 individuals,s,s;
...S%. However, we encode the path and formula differently. We as#&,) to
say thats,, is a buggy state. Far < i < k, the assertion&(s;,s;_;) makes; a
state of distancé — i from the buggy state. We call this set of assertighs We
now want to use nominals to say that the initial state is reachaldlesiaps, going
backwards from the buggy stase: Ci C Sy M{so,...,Sk}. Verification for this
method is done by asking the quef¥ip, Ax) = Ci.

4. Asinsection 3.2, for the fourth method we defii® be afunctional role ensuring

that each individual in the interpretation has at most one outgoing edge thiRough
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We use the same TBox and ABox as in item 3 above, but add to them. We add an
assertion tod,:
_ElR.T(So)

forcings, to be the last state in the interpretation (thasishas no outgoing edges).
We then build the Tboﬁj\’w by adding one concept inclusion1g,,. We introduce

a new concepEFs,, and define it as follows:
EFsy C Sy L IREFs,

We now add another assertion.t, stating that thas,, the buggy state, belongs
also to the new concepiFsy:
EFso(sk).

Like before, we first check wheth&g holds in the current state - that is, if the buggy
state from which we start is already an initial state; if it is, then a bug was found in
an initial state §,) and we are done. If not, we try to perform the same check on the
following states, that are accessible via the RI&inceR s a functional, we have
that IR EFs, is the same agR EFs,, and it is propagated to the next state Sif
does not hold in the last statéR EFs, is not applicable anymore, and the search

stops aftek steps.

Let A, = A, U{EFsy(s)), IR T(s0)}, and7;,, as defined above. ({77, A,)
is consistent, it means thatcan be reached ik or less steps from a buggy state.

3.5 Experimental Results

We conducted our experiments using fr@CT++ description logic reasoner [THOG6].
While other DL reasoners exist, suchReallet [SPG"07] andRacer [HMO01], we found
FaCT++ to be more accessible, being a free, open-source and well documented tool. A

benchmark comparison reported in [GHTO06] suggests Ha&lT++ is also one of the
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leading tools in performance. The tool accepts three input languages. The DIG interface
language [BMCO03] (defined by the Description Logic Implementation Group), the Owl-
DL language and a simple lisp-like input. We worked with the lisp-like input language.
We have experimented with the eight methods described in the previous sections, to com-
pare their performances. We used a model derived from the NuSMV example “dmel-16",
taken from [NuS], parameterized to enable different model sizes, and ran our experiments
on an Intel XEON CPU of 1.8GHz, with a 4GB RAM and Cache size of 512 KB. In table

3.3 below we present run-time results for a model consisting of 85 state variables.

Size| Bound || SAT 1 1* 2 2* 3 | 3 4 | 4
85 | 5 0.02| 0.02 | 1.13 |1.77| 5.3 |0.05|125| 0.18| —
85 | 6 0.03| 0.03 | 1.38 | 287 | 48 | 0.08] — |0.25| —
85 | 7 0.04|| 0.03| 4.3 — 1104 0.18| - | 0.34| —
85 | 8 0.05| 0.04 | 59.31] — |604| 0.6 | — |0.44] —
85 | 9 0.05| 0.05 - - - (261 - |055| -
85 | 10 0.05| 0.05 - — - | 34| - 068 -
85 | 15 0.08| 0.11 — - - - - | 5.85| —
85 | 17 0.09| 0.12 - - — — - | 10 | —
85 | 20 0.12| 59.72, - - - - - - -
85 | 30 0.22 - - — - - - — -
85 | 40 030 - - - - - - - -

Figure 3.3: Run times for BMC, small model

Time is given in seconds, and a result of ‘~ indicates that the run did not terminate
within 1200 seconds. Column 2 gives theundof the BMC run. Column 3 presents
the results of the same model and formula running using a SAT solver. For this, we
used the BMC mode of Cadence-SMV [McM], that invokaghaff [MMZ *01] as a SAT
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solver. The columns titled with a number, each refer to the method with a similar number,
described in Section 3.2. The columns titled with a starred number (1*, 2* etc), refer to
the methods described in Section 3.4 (note that the starred methods are the Ramsey-rule

versions of the non-starred ones). Table 3.4 presents results for a larger model, consisting

Size|Bound | SAT|| 1 | 1*| 2 | 2v | 3 [3*| 4 |4*
425| 5 0.71]0.17| 34 | 32| 58 | 295| - | 32 | -
425| 6 0.72] 0.19| 42 | — | 134 | 39.8 | — | 43.9| -
425 7 0.78| 0.21| 87 | — | 279 | 515 | - | 55.9| -
425| 8 0.80| 0.24|600| — |1275| 63.8| — | 69.4| —
425| 9 088028 — | — | - | 959| - |83.8| -
425| 10 093034 — | — | - |7036| — | 99 | -
425| 15 1.04| 079 - | - | - — | -] 423 -
425| 17 150|115 - | - | - — | -|630] -
425| 20 234|314 - | - | - I A
425| 30 276 — | - | - | - — -] ==
425| 40 | 456 - | - | - | - R A S

Figure 3.4: Run times for BMC, large model

of 425 state variables. The verified formula was an invariant formula that failed on cycle
42. As evident from the table, none of our methods, for the large model as well as for
the small one, were capable of searching more than 20 cycles. Thus in all cases the result
from the DL reasoner was “unsatisfiable” (meaning that no error was found up to the
given bound).

The satisfiability solver we usedChaff, outperformed all of our encodings as can be
seen in the tables. While some of these methods, especially number 1, performed well for

lower bounds, they all seem to be very sensitive to the depth of the search, and explode
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once the bound passes 20.

In all methods, except for number 2, the Ramsey-rule version performed much worse
than the original one. In the context of model checking this is not surprising, saae
wardstraversal of the transition relation is known to be more difficult than forward tra-
versal. The exception of Method 2 can be explained by the fact that the original method
in this case required backward traversal as well.

It is interesting to note the significant differences between the various DL encodings
themselves. While the gap between forward and backward encodings is expected due to
the nature of the model checking problem, the difference in performance between forward
encodings seems to be related to internal DL algorithms. In Chapter 6 we suggest possible

future directions to investigate this phenomena.

3.6 Discussion

Itis interesting to compare a typical DL application to the model checking application pre-
sented above. The GALEN ontology [RN94] for example, contains close to 25,000 con-
cepts and around 500 concept inclusions, yet queries are resolved in a matter of minutes.
In contrast, the examples we use contain only a few hundred concepts and a similar num-
ber of concept inclusions, but for big enougthe run does not terminate. The difference,

it seems, stems from the different “shape” of the problems. A typical DL application is
usually “shallow” in the sense that relations through roles are applied only once, while
the model checking application involves concepts that are defined using repeated relations
through one role.

The complexity of consistency checking with respect to a general terminology is
known to be EXP-time complete in all dialects used in this chapter [Sch91, DMOO,
Tob01]. The complexity of model checking is known to be PSPACE-complete [SC85,
CES86]. At first sight then, it may look as if we try to solve a simple task with a complex
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algorithm. This is not the case however, for two main reasons.

First, we note that the complexity result for model checking is measured with respect
to the full Kripke structure (thenode) rather than thenodel descriptionwhile consis-
tency checking complexity is given in terms of the terminology size. For our encoding,
the size of the terminology is linear in the size of the model description. The Kripke struc-
ture is in many cases exponentially larger than the description of it, and the main idea of
symbolic model checking is to avoid, when possible, the need to build the full Kripke
structure.

Second, it is important to note that while consistency checking is EXP-time complete
in general, the complexity is in NP for all the bounded model checking methods presented
above. To see this, let = |M D| andk the bound. The size of the model description
is O(n + k). If an interpretation is given, (a ‘witness’ for the consistency query), it is of
sizeO(n x k) (k nodes, each of them of sizg(n), assigning values to the primitive
concepts). Verifying that the given interpretation indeed satisfies all concept inclusions
will again amount ta)(n x k) calculations. We conclude that, as known, complexity is

not a good measurement to assess model checking methods.
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Chapter 4

Liveness and Fairness Modeling using

Description Logic

In the previous chapter we explored several methods to encode a bounded model checking
problem of invariance formulas in DL. We now turn to consitieenesdormulas, given
asAF(p) with p being a Boolean expression. Such formulas statepthaist hold at least
once on every path. For a model descriptid®, we use the same encoding as described
in Section 3.1, and here as well, we encode in our terminology a descriptiobunfgy
path, and use the DL reasoner to find a counterexample for us. In the liveness case, a
buggy path would be one on whighnever holds. We thus look for a representation of
the formulaEG(—p). As discussed in Section 2.1.2, liveness formulas are rarely verified
without some fairness constraints. In fact, for the main model checking methdd_of
a liveness formula is translated into @dhi automaton [Var96], and model checking is
reduced to finding a “fair” loop.

In Section 4.1 below we give an encoding ¥ (p) formulas over4LC, and prove
its correctness. Section 4.2 deals with fairness encoding. We show that fairness cannot
be expressed iMLC or other dialects discussed in this document, and demonstrate that

for our needs, fairness can be implemented on top of a tableau reasoning algorithm. In
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Section 4.3 we present experimental results, and Section 4.4 concludes this chapter with

a discussion.

4.1 The Encoding

As before, we use the fix-point representatiorl @i formulas, as defined by Clarke and
Emerson in [CE81] (see Section 2.1.3). Th6(—p) is represented as follows:

EG(—p) = —p A EX(EG(—p)) (4.1)

We use this equation for our translation into DL. LléD = (I, [(c1,c)), ..., (cn, c,)]) e
a model description for the modél,,, = (5,1, R, L) overV = {vy,...,v,}, and let
Tup be the terminology built for it as described in Section 3.1. ket AF(p) be the
formula to be verified, withp being a Boolean expression over the variables ., v,,, and
letP = D(p).
We introduce a new concept calle®GnotP, and add the following concept inclusion

to 7yp:

EGnotP C -P 1 dREGnotP (4.2)

Note that the expressiafR.C can be seen as taking one step throRgland thus corre-
sponds, in a sense, to tRA L expressiorEX(C).

Let 7,5, be the terminology we get by adding Equation (4.2¥1g,. We define the
conceptC, C S, MEGnNotP. In order to verifyp, we now check whethet,, is consistent
with respect to our terminologyZ;,, Fu C, ?

A positive answer from the DL reasoning tool will be accompanied by an interpretation
for 7,5, in which C, is not empty. This interpretation can serve an a witnedsGep),

or as a counterexample £ (p). The following proposition states our result formally.
Proposition 20. My = ¢ if and only if 7, Fu C,.
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Proof. (=). Assume thai\/,,p [~ ¢. SinceM,p is a finite kripke structure, this means
there exists a loop, that is, a sequence of states, ... ,s,, such thatsy = 1, s; |~ p for
0<i<m,(s;si+1) € Rfor0 <i < m, ands,, = s; for some0 < j < m. We use
this sequence to build an interpretation= (AZ, %) for 7,5,,. We definem individuals
00,01, ...,0m—1 IN AT, that correspond t@g, 51, ... sm_1. We mapo; € EGnotP?
for 0 < i < m. We then map each; to the primitive concept¥Z according tos; as
expectedo; € VZ if and only if s; = v;. Note that since, = I we get by Lemma 13
thato, € SZ, and alsar; ¢ P* for 0 < i < m, sinces; [~ p. We defing(o;,0,,1) € R
for0 <i < m — 1, and also(o,,_1,0;) € RE. Finally, we mapo, € EGnotP%. We
need to show that all inclusion iy, hold under this interpretation. By Corollary 16, we

know that all inclusions fronT,,p hold.

e For the inclusiorEGnotP C —P 1 JREGnNotP, note that by the construction of
Z, all individualso; belong toEGnotPZ. We know also that; ¢ PZ. Since each

individual has an outgoing edge that is als&i@notP the inclusion holds.

e TheinclusionC, C S,MEGnNotP holds, sincer, the only individual inC,, belongs
also toS} N EGnotP~.

(<=). Assume thatf;;, =4 C,. Then there exists an interpretation ff,, such that
Cf, is not empty. SincedLC enjoys theinite model propertyBCM*03], there must exist
a finite interpretatiorf = (A*,-7) for 7;, such thaiCl is not empty. Thus there exists
an individualo, € SI N EGnotP?.

Sinces, € EGnotPZ andEGnotP* C (AT \ PP)N{e € AT : J(e,e') e REst.e €
EGnotPZ} we know thato, ¢ P%, and there must exist; € EGnotPZ such that
(00,01) € RE. For similar considerations, there exists a sequence of individgals,, oo, ...,
such thatr; € EGnotPZ, o; ¢ PZ, and(o;,0:41) € R for all i. SinceZ is finite there
must existm, j such thatr,,, = o;. We show thatM,;, [~ ¢ by presenting an infinite

sequence of states (a loop) iy, that do not satisfy. We map each; to a states; as
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usual:o; € VZ if and only if s; = v,. By Lemma 135, (£ p, sinceo; ¢ PZ. Also, by
Corollary 14¥0 < i < m, (s, s;41) € R and(s,,, s;) € R.
]

4.1.1 Other Attempts

We consider two related attempts that can be tempting to be tried.

e It is interesting to try the Ramsey-rule method for encoding a model description
(Section 3.4). Recall that using this method, we encode aRdlat goes back-
wards, equivalent to the inverse of the r&le~or the BMC methods of Section 3.4,
we used this method to go backwards from a buggy state, trying to reach an initial
state within the given bound. In our case however, there is no buggy state, as a
failure can be demonstrated only by a buggy loop. Suppose that equation 4.2 is

changed a bit, to ude:
EGnotP C —-P 1 3REGnotP

Figure 4.1 demonstrates the difference between the cone&pistP andEGnotP.
The left hand side of the figure descriB&notP: individuals in which—p holds,

0
Figure 4.1: Forward vs. backward role modeling

and in all the other individuals reachable throlgjh—p holds also. The right hand
side describeEGnotP: individuals that when going backwards througfthat is,
forward throughR) can visit only individuals with-p. For model checkind\F(p),
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we check the consistency & M EGnotP, that is check whether one of the ini-
tial states belong t&GnotP. If that is the case it means that a loop with is
reachable from the initial state. We note &gt 1 EGnotP would not, in general,

give us the correct answer. Only if the individual in the intersection is part of the
loop. Otherwise the answer would be wrong. Thus we can get a “false negative”
if S, 1 EGnotP is found to be inconsistent, although a state might exist in the left
“tail”, that is not included inEGnotP. We can also get a “false positive”, if the
intersection is not empty because it includes an individual from the right tail, which

actually does not lead to a legal loop.

e It is tempting to try and use the same reasoning to verify a formuta AG(p):
instead of the concept inclusion in (4.2), add the conégpp and the following

concept inclusion:

AGpC PMVYRAGp (4.3)

DefineCy; C Sy M AGp Let 75/, be the terminology we get by replacing Equation
(4.2) with Equation (4.3) irf;;,. Note that checkind};/, =4 C; does not give

us what we want. To see this, recall t1i}], =, C, asks whethethere existan
interpretationZ, that satisfies all concept inclusionsTr;;,, and for whichC, is

not empty. Such interpretation does not necessarily include all possible transitions
in the given modelM,,p. In fact, an interpretation that satisfies inclusion (4.2)
would be enough for inclusion (4.3) as well. Thig;, =4 C, verifiesEG(p) and
notAG(p).

The encoding we have presented so far does not account for fairness constraints. This
is the topic of the next section.
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4.2 Modeling Fairness

In Section 2.1.2 we explained that fairness constraints are an important component in
model checking of liveness formulas. The constréaniness p  asserts that the live-
ness formula should be verified only on infinite paths on wipitiolds infinitely often. In

order to encode fairness, we need to expex&ntuality- that some event can be reached
within a finite number of steps. Providing a general encoding for this (as done for a
bounded path in Section 3.2), is not possible in the DL dialects that were considered so
far (subsets ofALCZOF). To see this, recall thal LCZOF corresponds to a fragment

of first order logic. Eventuality, needed for fairness, is equivalem¢aachability, which
cannot be expressed in first order logic (c.f. [MR04)).

More expressive dialects have been defined in the DL literature that can deal with our
problem. In [GL97], De Giacomo and Lenzerini propose the embeddinguafaculus
operator to DL, introducing the dialegtd£C Q. In a joint work with Calvanese [CGL99]
they later expand this dialect to support inverse roles as well as roles with arbitrary arity,
introducing the dialecDLR,,. While they provide an algorithm to decide consistency
problems written in these dialects (using tree automata), those algorithms were never
implemented in any existing DL reasoning tool [TWO08].

We observe that while fairness cannot be expressedddZOF, it can be easily
implemented. In order to find an interpretation for our encoding of liveness properties
over ALC (Section 4.1), the mechanism blocking[HS99] comes into play (see Sec-
tion 2.2.3): an interpretation is found when a new ngde the expansion is a subset of
a previous node (in this case we say thatis blocked byz)!. Such an interpretation
demonstrates a loop, or, translated into the model checking world, an infinite sequence of
states. In order to support, for example, the fairness consteainess p  we need to
make sure that at least one of the nodes in the loop has (or can possibly raite)l hat

is, we allowz to blocky only if p appears in some node on the path froto 3 .

10ther blocking conditions may apply for more expressive DL dialects.
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Below we show how fairness can be achieved in tableau based DL reasoning. We
assume that the formula to be verified is of the fakR{false ) (or EG(true )), meaning

that model checking is reduced to finding a fair cycle.

4.2.1 Realizing Fairness in Tableaux Reasoning

We propose a modification to the tableaux procedure to support fairness. Our procedure
is both terminating and sound: if a fair cycle is found, it is a correct one. However, the
procedure is not complete, that is, there are cases were a fair cycle exits but our procedure
fails to find it. We show that by an iterative application of the algorithm, completeness
can also be achieved. In the remainder of this section we discuss the theoretical and

implementation considerations for realizing fairness in DL reasoning.

As discussed before, fairness constraints in model checking are Boolean expressions
that should be satisfied at least once in a given loop in order for it to be a legal coun-
terexample. The algorithm we present deals with one fairness constraint; if more than
one constraint should be considered, a repeated application of the algorithm would be

required.

In tableaux reasoning, an interpretation is represented by a completion tree (see Sec-
tion 2.2.3), and cycles are represented by blocked nodes. If aynsd#ocked by a node
xo then there exists a path of nodesz; . . ., x,, v in the completion tree, such that each
edge(zg, z1),. .., (s, y) is labeled withR. (note that in the terminologies that we deal

with there exists only one rol). Such a blocking path represents a loop.

In order to implement reasoning with fairness, we need to reject those completion trees
that correspond to unfair computations. L&t be a fairness constraint. A completion
tree G is unfair with respect toF'C' if there exists a loopy, . .., x,,y such thatF'C' ¢

L(x;) forall 0 < i < n. Otherwise, we say th& is fair with respect ta#’C'.
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Modifying Tableaux to Support Fairness

Our approach to implementing fairness is to build a complete and clash-free completion
tree and, if it is unfair, to attempt to make it fair by adding the fairness constraint to the
label of some node involved in a cycle. To accomplish this, the tableaux algorithm is
extended with the new rule illustrated in Figure 4.2. We set the new rule to have a lower

priority than all existing rules.

fairness-rule: if 1. y is a node blocked by, (let (zo, ..., z,,y) be the cycle)
2. FC is a fairness constraint such that for every < i < n, FC ¢ L(x;)
then setl(x;) = L(z;) U{FC} forsomei: 0 <i<n

Figure 4.2: Expansion rule for fairness

The tableaux algorithm is enhanced in such a way that a node is not consitteriesd
until a fairness constraint appears in the label of one of its nodes. Note that after applying
the fairness-rule the completion tree must be updated: a clash may now exist that did

not exist before, and labels of nodes may need to change.

Theorem 21. The tableaux algorithm witlfairness-rule terminates and is sound (if a

complete clash-free fair completion tree 10ris found therC' is consistent).

Proof. The algorithm is clearly sound: if a cycle is found whété€’ holds on one of the
nodes then a fair cycle exists. To prove termination, we assume, without loss of generality,
that the completion tree is a single path. After a first applicatioficafness-rule to a

given blocking loop, there are three cases to consider:

1. Itis possible to compute a complete clash-free fair completion tree without a need

for a second application ¢fairness-rule.
2. A clash occurs before a second application of thi@ness-rule, or
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3. A subsequent application ¢tiirness-rule is required.

Both cases (1) and (2) lead to termination. Case (3) implies that the addition’dd

a label inside the cycle breaks the blocking condition and leads to a new cycle. The al-
gorithm therefore proceeds by addiad”' inside the next loop. Again, there are three
possible outcomes, with two resulting in termination. In the worst case, there is a se-
guence of case (3) for which addidy_' forces unblocking the last node and moving the
blocking loop forward. However, after a finite number of occurrences of case (3), there
must eventually be two nodes labeled Bg' for which the labels are the same (since the
TBox is finite). One of these nodes will then block the other, and the fair loop must then
be established. O

Note that while our algorithm is sound, completeness is not guaranteed. That is, there
can be cases where a concept is satisfiable with respect to a fairness cohstrduat the
tableaux procedure fails to find an interpretation. To see how this happens, let us consider

the example shown in Figure 4.3, that presents two completion trees for the c@hcept

Figure 4.3: Two completion trees fag

with respect to the TBog; = {CC —B, T C IR T}.
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Obviously7; |4 C, since there exists a complete and clash-free completionGree
for it as illustrated in the left-hand side of Figure 4.3. QGnthe nodey is blocked by
xo. If we add the fairness constraiftC' = B, the fairness-rule will try to addB to the
only possible nodeg, resulting in a clash. Our tableau algorithm will therefore return an
“unsatisfiable” result.

A clash-free fair completion tree fd&€ does exist, however, as shown &Y in Fig-
ure 4.3. In order to find it though, we need to allow for a longer blocking cycle. In the

definition below, we introduce the notion afblocking.

Definition 22. Letn be a non-negative integer. A noglés n-blockedby the noder, with
blocking loopzxy, .. ., z,, y if y is blocked byz, andn < m, that is, there are at least
nodes in the blocking loop.

Figure 4.3 gives examples for 0-blocking according to Definition 22 (the completion
treeG), as well as 1-blocking@’).

Note that replacing the original tableaux blocking wittblocking in the (fair) tableaux
algorithm would clearly preserve both termination and soundness. Basedblocking,
we can now propose a tableaux algorithm that would guarantee completeness, for loop
lengths less than or equal o

Algorithm 23. Given a concept, a TBox7, a fairness conditiod’C' and a non-negative
integern, check the unfair consistency Gfwith respect ta/” using the regular tableaux
procedure. If it is unsatisfiable, return “unsatisfiable”. Then0fet k£ < n, run the fair
tableaux algorithm wittk-blocking. Return “satisfiable” if a fair loop is found for some

k:; otherwise return “unsatisfiable”. O]

Theorem 24. Algorithm 23 is a sound and complete decision procedure for the fair sat-
isfaction ofC with respect td/” and F'C', with loops up to length.

Proof. Termination and soundness are a simple consequence of Theorem 21. Complete-

ness follows from the fact that no fair blocking loops for any possible length not exceeding
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n were found. O

Note that for a Kripke structur@/ and a liveness specificatignthere exists: such
that if M [~ ¢, then M contains a fair cycle with length not exceedingsince M is
finite). Thus, it is possible to build the TBAX using the technique from Section 4.1 and
run the procedure suggested in Algorithm 23 to determine if a fair cycle exists.

4.3 Experimental Evaluation

The modified tableaux reasoning procedure described above was implemented by Dmitry
Tsarkov on top oFaCT++ [THO6], a state-of-the-art description logic reasoner. In order

to run real examples, we wrote a translator from the AIGER [Bie07] format, that builds a
terminology as described in Section 4.1. Liveness formulas were translated in the AIGER
models into Bichi automata (see section 2.1.2), and the fairness constraints were passed
to FaCT++ using a new construct in the interface language.

The models we acquired were originally written in & [BHSV96] input lan-
guage, and were translated into AIGER using different tools. We present results running
three sets of benchmarks with fairness constraints. The “amba” benchmark encodes an
Advanced High Performance Bus. The “vsa’ benchmarks encode a simple architecture
for a microprocessor. In each of the vsa benchmarks, the number indicates the datawidth
of the microprocessor. The “Vending” example is part of W8 distribution.

Figure 4.4 summarizes our results. Times reported are in seconds and a time of -’
indicates that the run did not finish in the allotted time of 1 hour.

It is evident from Figure 4.4 that our approach is efficacious in certain scenarios. For
the “amba” benchmark, our system could not finish in the given time, wHi& was
easily able to handle it in a fraction of a second. However, the “vsaR” benchmarks proved

simple for our reasoner whiMIS was unable to finish in the given time.

69



Benchmark Result Size (vars) FaCT++ VIS
vsaR - 6 Fail 170 10.8s -
vsaR - 8 Fail 204 14.4s -
vending Pass 64 — 1.1s
amba2 - G3 Pass 63 — 0.7s
amba3 - G3 Pass 77 — 17.7s

Figure 4.4: Run times for the fairness verification tasks

4.4 Discussion

Our method can be seen as “bounded” fair cycle detection, where at each iteration we look
for loops of length not shorter than a given boundn this aspect it resembles bounded
model checking of liveness properties using satisfiability solving. The search algorithm
is different however. While our method dynamically searched for a fair loop, in the SAT
case a CNF formula is statically created prior to the SAT run, encoding all possible loops
up to a given length.

Our method works better when a fair cycle does exist in the model. Note that when a
fair cycle does not exist, the boumdon the length of the longest loop is an inadequate
over-approximation of the real limit. Our algorithm would thus continue iterating longer
than needed before it would reach the conclusion that a fair cycle does not exist. This
can be also observed in the results presented in the previous section: when a formula is
satisfied (no fair cycle exists), our method performs much worse\Wha&nbut becomes
useful when a bad cycle does exist in the model.
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Chapter 5

Counterexample Explanation

An important feature of model checking tools is their ability to provide, when the specifi-
cation does not hold in a model caunterexampl§CGMZ95]: a trace that demonstrates
the failure of the specification in the model. This allows the user to analyze the failure,
understand its source(s), and fix the specification or model accordingly. In many cases,
however, the task of understanding the counterexample is challenging, and may require a
significant manual effort.

An explanation of a counterexample deals with the questigrat values on the trace
cause it to falsify the specificatiorhus, we face the problem ofusality The philoso-
phy literature, going back to Hume [Hum39], has long been struggling with the problem
of what it means for one event to cause another. We relate the formal definition of causal-
ity of Halpern and Pearl [HPO1] to explanations of counterexamples. The definition of
causality used in [HPO1], like other definitions of causality in the philosophy literature,
is based orrounterfactual dependenc&vent A is said to be a&auseof eventB if, had
A not happened (this is the counterfactual condition, sih@id in fact happen) the®
would not have happened. Unfortunately, this definition does not capture all the subtleties
involved with causality. The following story, presented by Hall in [Hal02], demonstrates

some of the difficulties in this definition. Suppose that Suzy and Billy both pick up rocks
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and throw them at a bottle. Suzy’s rock gets there first, shattering the bottle. Since both
throws are perfectly accurate, Billy’s would have shattered the bottle had it not been pre-
empted by Suzy’s throw. Thus, according to the counterfactual condition, Suzy’s throw
is not a cause for shattering the bottle (because if Suzy wouldn’t have thrown her rock,
the bottle would have been shattered by Billy’s throw). Halpern and Pearl deal with this
subtlety by, roughly speaking, takingto be a cause aB if B counterfactually depends
on A under some contingency. For example, Suzy’s throw is a cause of the bottle shat-
tering because the bottle shattering counterfactually depends on Suzy’s throw, under the
contingency that Billy doesn’t throw.

We adapt the causality definition of Halpern and Pearl from [HPO1] to the analysis of
a counterexample tragewith respect to a temporal logic formula We view a trace as a
matrix of values, where an ent(y, i) corresponds to the value of variablat time;j. We
look for those entries in the matrix that are causes for the first failugeoofr, according
to the definition in [HPO1]. To demonstrate our approach, let us consider the following
example.
Example: A transaction begins whe®TARTIs asserted, and ends whENDis asserted.
Some unbounded number of time units later, the si§T@TUSVALID is asserted. Our
specification requires that a new transaction must not begin befo @A USVALID

of the previous transaction has arrived. This specification can be written in LTL as
G(START — (-ENDU (ENDA X[-STARTU STATUSVALID)))).

A counterexample for this specification may look like the computation pathown
in Fig. 5.1.

In this example, the failure of the specification on the trace is not trivially evident. Our
explanations, displayed a®tsattract the user’s attention to the relevant places, to help
in identifying the failure. Note that each dois acauseof the failure ofy on the trace:
switching the value of would, under some contingency on the other values, change the

value ofp on . For example, if we switch the value 8fTARTIn state 15 from 1 to O,

72



‘ 4 g In 20

Figure 5.1: A counterexample with explanations

© would not fail on the given trace anymore (in this case, no contingency on the other
values is needed). Thus the matrix entry of the vari&il@RTat time 15 is indicated as
a cause.

We show that the complexity of detecting an exact causal set is NP-complete, based
on the complexity result for causality in binary models ( [ELO1]). We then present an
over-approximation algorithm whose complexity is linear in the size of the formula and

in the length of the trace.

5.1 Defining Causality in Counterexamples

A counterexampleo anLTL formula ¢ in a Kripke structurek’ is a computation path
T = sg, $1,... Such thatr [~ ¢. For a states; and a variable), the labeling function.
of K maps the paiKs;,v) to {0,1} in a natural way:L(({s;,v)) = 1if s; = v, and0
otherwise. For a paifs, v) in m, we denote by(s, v) the pair that is derived frongs, v)
by switching the labeling of in s. Let 7 be a pathg a state intr andv a variable in the
labeling function. We denote!**) the path derived fromr by switching the labeling of
v in s on7. This definition can be extended for a set of pairswe denoteA the set
{(3,v)|(s,v) € A}. The pathr is then derived fromr by switching the value of in s
for all pairs(s,v) € A.

One of the ways to define causality is to use the definitioariicality: eventA is
critical for eventB if, had A not occurred,B would not occur. Event’ is then defined

to be acauseof eventB if C' can be maderitical for B by, possibly, changing some
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conditions. Adapting this definition to causality in counterexamples, we want to say that
the value of variable in states is critical for the failure ofp on if, after switching this
value,, does not fail onr any longer.

Before we formally define causes in counterexamples we need to deal with one sub-
tlety: the value ofp on finite paths. While computation paths are infinite, it is often
possible to determine that [~  after afinite prefix of the path. Thus, a counterexam-
ple produced by a model checker may demonstrate a finite execution path. We use the
notationr[0..k] |5 ¢ to denote “finitely models”, and[0..k| 4 for “finitely falsifies”.

These are defined as follows.

Definition 25 (Evaluation on finite paths)Let 7[0..k] be a finite path ang an LTL

formula. We say that:

1. The value ofpistrue in 7[0..k] (7[0..k] |5 ) iff for all infinite computations, we
haver[0..k] - p = ¢

2. The value ofp is falsein 7[0..k| (7[0..k] | ) iff for all infinite computationsg, we
haver|[0..k] - p [~ ¢;

3. The value ofp in 7 is unknown (7[0..k] 7 ¢) iff there exist two infinite computa-
tions p; andp, such thatr[0..k] - p; = ¢ andx[0..k] - p2 P~ .

Before we define criticality and causality in counterexamples, we note that only part
of the values in a counterexample can be relevant for the explanation. We thus need the
definition below.

Definition 26 (Bottom value) For a Kripke structurdS = (S,I, R, L), a pathr in K,
and a formulap, a pair(s, v) is said to have &dottom valudor ¢ in 7, if L((s,v)) =0
andv has gpositivepolarity in, or L((s,v)) = 1 andv has anegativepolarity in ¢.

Note that a variable may appear in different polarities in a formualn such a case,

we say thats, v) has a bottom value for every state
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Let ¢ be anLTL formula that fails on an infinite path = sq, s1, ..., and letk be the
smallest index such that0..k] Fs . If ¢ does not fail on any finite prefix of, we take
k = oo (thenr|0..00] naturally stands forr, and we haver |~ ¢).

In the definitions of criticality and causality given below, we assumeftligthe smallest
index such that[0..k] H .

Definition 27 (Criticality in counterexample tracesh pair (s, v) is critical for the failure
of ¢ on[0..k] if 7[0..k] Hs, but eitherr®)[0..k] F ¢ or 752[0..k] ? .

That is, switching the value afin s changes the value ¢f on 7[0..k] (to eithertrue
or unknown). As a simple example, consider the formyla= Gp, onm = sy, s1, S,
labeledp - p - —p. Then,r[0..2] sy, and(ss, p) is critical for this failure, since switching

the value ofp in states; changes the value qf to unknown.

Definition 28 (Causality in counterexample trace) pair (s, v) is acauseof the failure
of ¢ on[0..k] if there exists a setl of bottom-valuegpairs, such that the following hold:

o (s,v) € A,
o TA[0..K] @, k is the smallest such index, and
e (s,v) is critical for the failure ofp on74[0..k].

A pair (s,v) is defined to be a&ausefor the failure ofy on 7, if it can be made
critical for this failure by switching the values of some bottom-valued pairs. Note that
according to this definition, only bottom-valued pairs can be causes. The restriction of
allowed changes to bottom-valued pairs is important, since other changes of values may
introduce new failures that did not exist on the original counterexample, and thus can lead
to “spurious causes” - pairs that are not causes of the original failure, but can be made
critical if new failures are introduced. Consider, for example, the formula G(req —

Xack) and the trace; pictured in Figure 5.2. It is clear that the valueref; in s, is not
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a cause for the failure af, since this request is acknowledged. If we allow changes of
any pairs, it is easy to see that, req) is a cause for the failure af, because changing
the value ofreq in s, and ofack in s; makes it critical.

Note that a tracer may demonstrate more than one failuresfas we demonstrate
in the examples below. We believe that the first failure is the most interesting one for the
user. Also, focusing on one failure naturally reduces the set of causes, and thus makes it
easier for the user to understand the explanation.

Examples:

1. Considerp; = Gp and a pathr; = s, s1, s2, 53, (s4)“ labeled agp) - (p) - (—p) -
(—p) - (p)“. The shortest prefix af on which, fails is7;[0..2]. (s2, p) is critical
for the failure ofp on 7[0..2], because changing its value franto 1 changes the
value ofp on 7[0..2] from false to unknown. Also, there are no bottom-valued

pairs in7[0..2], thus there are no other causes, which indeed meets our intuition.

2. Considerp; = Fp and a pathr, = (s0)“ = (—p)“. The formulap, fails in 7, yet
it does not fail on any finite prefix of,. Note that changing the value of aty, p)
for i > 0 results in the satisfaction of on 7, thus all pairs{(s;,p) : i € N} are

critical and hence are causes for the failurebn .

3. The following example demonstrates the difference between criticality and causal-
ity. Considerp_G(a A b A c¢) and a tracers = sg, s1, so, . . . labeled ag)* (see
Figure 5.2). The formulas fails ons,, however, changing the value of any signal in
one state does not change the valuepfThere exists, however, a sétof bottom-
valued pairs whose change makes the valugiof, critical: A = {(s¢, b), (s¢, ) }.

Similarly, (sq, b) and(so, c) are also causes.
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Figure 5.2: Counterexample traces.

5.2 Complexity of computing causality in counterexam-

ples

The complexity of computing causes for counterexamples follows from the complexity of

computing causality in binary causal models defined in [HPO1].

Lemma 29. Computing the set of causes for falsification of a linear-time temporal speci-

fication on a single trace is NP-complete.

Proof. The proof of NP-hardness is based the reduction from computing causality in bi-
nary causal models to computing causality in counterexamples. The problem of comput-
ing causality in binary causal models is NP-complete [ELO1]. The reduction from binary
causal models to Boolean circuits and from Boolean circuits to model-checking, shown in
[CHKO08], is based on the automata-theoretic approach to branching-time model checking
([KVWO0Q]), and proves that computing causality in model checking of branching time
specifications is NP-complete. On a single trace linear-time and branching temporal log-
ics coincide, and computing the causes for satisfaction is easily reducible to computing
the causes for falsification.
The proof of membership in NP is straightforward: given a patand a formula
v that is falsified onr, the number of pairgs, v) is |¢| - |7

; for a pair (s, v), we can
non-deterministically choose a sétof bottom-valued pairs; checking whether changing
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L on S makes(s, v) critical for the falsification ofp requires model-checking on the

modifiedr twice, and thus can be done in linear time. ]

5.3 An over-approximation algorithm

The counterexamples we work with have a finite number of states. When representing an
infinite path, the counterexample will contain a loop indication, i.e., an indication that the
last state in the counterexample is equal to one of the earlier states.

Let ¢ be a formula, given in negation normal form, and#A@..k] = so, s1, ..., s be
a non-empty counterexample for it, consisting of a finite number of states and a possible
loop indication. We assume that the counterexample contains a loop only if it is necessary
for demonstrating the failure. In other wordsi..k| F ¢ then we assume tha{0..x]
has no loop indication.

We denote byr[i..k] the suffix of 7[0..k| that starts ak;. The procedure”’ below
producesC([i..k], ), the approximation of the set of causes for the failure of a sub-
formulat on the suffix ofr[0..£] that starts withs;. We invoke the procedur@ with the
argumentg|0..k], ») to produce the set of causes for the failuresain 7 [0..k].

During the computation of'(7[i..k], ¢), we use the auxiliary functional, that eval-
uates sub-formulas @f on the given path. It returrisif the sub-formula fails on the path
and 1 otherwise. The computationfl is done in parallel with the computation of the
causality set, and relies on recursively computed causality sets for sub-formuyla®tod

value ofval is computed as follows:
e val(r[i..k], true) =1
e val(r[i..k], false) =0

e Forany formulap & {true, false}, val(rn[i..k], o) = 1iff C(x[i..k],) =10
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Algorithm 30 (Causality Set) An approximated causality sétfor [i..k] andy is com-
puted as follows

o C(rli..k],true) = C(x[i..k], false) = ()

{(si,p)} ifpés

1) otherwise

o C(nli..k],~p) = { ;<si,p>} if pe L(s;)

otherwise

C(rmli+ 1..k],p) ifi<k

0 otherwise

C
C(r[i..k], o) U C(rli..k],v) if val(n[i..k], ») = 0 andval(n[i..k],1) = 0
0

C

otherwise
) ((W[i..k], Gy) =
C(mli..k], o) if val(r[i..k], ) =0
C(rli + 1..k], Gy) if val(r]i..k], ) = 1 andi < k andval(7[i..k], XGp) = 0
0 otherwise
. Cali. ) [ U ) =
C(n[i..k],v) U C(nli..k], o) if val(wli..k], v) = 0 andval(n[i..k], ) =
C(rli..k], ) if val(wli..k], ¢) = 1 andval(r[i..k], ) =
C(rli..k], ) U C(xli + 1..k], [ U]) if val(n[i..k], ¢) = 1 andval(w[i..k], ) =
andi < k andval(n[i..k], X[p Uv¢]) =0
0 otherwise
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The procedure above recursively computes a set of causes for the given feromula
the suffix of a counterexampleli..k|. At the proposition levelp is considered a cause
in the current state if and only if it has a bottom-value in the state. At every level of the
recursion, a sub-formula is considered relevant (that is, its exploration can produce causes
for falsification of the whole specification) if it has a valuefalse at the current state.

We explain in detail the recursive computation for thetil operator, since it is the
most difficult to follow.

When examining the computation path..k], the subformula; = [ U ] will be
explored only in the case thathas a value ofalseon r[i..k]. There could be one of the

three reasons for this:

1. The value ofp onri..k] is false, and the value of) on r[i..k] is false, in which

case the causality set will be the union of the causality setg ord forq.

2. The value ofp on~[i..k] istrue orunknown , and the value of on~li..k] is false
and: = k . In this case we know that the Until formula does not fail on any finite
prefix of the counterexample (and therefore it must have a loop). The causality set

is the set for), since the reason for the failure is the fact thatever holds.

3. The value ofp on[i..k] is true or unknown, the value ofy on~[i..k] is false and
the value ofX[o U ¢] onli..k] is false Here the Until formula has not failed yet,
but we know that it will. We thus take as causality sets the sepfdo show that it
has continuously failed to hold so far, and the se®Xdp U ).

Lemma 31. The complexity of Algorithm 30 is linear ik and in|p|.

Proof. The complexity follows from the fact that each subformulaf ¢ is evaluated at

most once at each statgof the counterexample. O

Theorem 32. The set of pairs produced by Algorithm 30 for a formylan a pathr is
an over-approximation of the set of causes¢gawn 7 according to Definition 28.
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For the proof of Theorem 32, we consider an evaluation graply fmn a given path
m. An LTL formulay, given in Negation Normal Form, can be decomposed according to
the following two rules (that appear, for example, in [Wol85, MP85]):

o V1 Uty = (2 V (1 AX(11 Uty)))
o G = A X(G)

Given a finite prefix of an execution pattj0..k], we can build a labeled AND-OR
evaluation graph fop on 7[0..k]. Each node will be labeled with a state and a formula
that should be evaluated in the state. Internal nodes are labeled also by an operator, AND
or OR, that indicates how the evaluations of the children nodes are combined. The root of
the graph will be labeled withsg, ¢). A leaf noden labeled(s;, ¢) is expanded according

to its label:

o If v = 94 A 1y, we construct two new nodes, and label them withv,) and
(si,12). The noden is then labeled also with AND.

e Forp =1 V1, the same as item (1) with the labelobeing OR.
e If ¢ = X4, we add a child node and label(i; 1, ).

e Finally, if o = Gv or ¢ = 1, Uy, we expand the formula according to the

expansion rules given above.

For a pathr of lengthk, the graph is expanded according to the above given rules, until

all leaf nodes are labeled with one of the following:
e (sk11,p) wWith p being any formula, or

e (s;,1) wherei < k and/ is a literal (a variable or its negation).
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Figure 5.3: An evaluation graph farU (b U ¢)

Figure 5.3 demonstrates the AND-OR evaluation graph for the formUl&b U c), on a
two-state path. To evaluate the formula, we now consider the givenmpatt]: every
proposition gets a valudr(ie or false) as indicated inr, and the evaluation is performed
bottom-up, starting from the leaves. Note that in general a leaf’s value may be unknown,
if it depends on values from the statg, ;, that are not given imr[0..k]. However, in our
circumstances this would not affect the evaluatiogpan = sincer|0..k| is a counterex-
ample, and therefore evaluates tdalseon it. Figure 5.4 presents the evaluation graph
of a U (b U ¢), with the values added for[0..1] = a - ). We use the evaluation graph to
prove Theorem 32.

Proof of Theorem 32For a formulay and a pathr[0..k], we examine the evaluation
graph as described above. Singdails onw, the value of the root ifalse We look

at evaluation paths in the graph, that start from a leaf and go backward all the way to
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Figure 5.4: Evaluationaf U (b U ¢) onx[0..1] = a - ()
the root. Ife visits onlyfalselabeled nodes, we call itfailure path. The claim below is
needed for the rest of the proof.

Claim 33. Let [ be a literal inp ands; a state inr[0..k]. We denotey, the variable
corresponding té (that is,l = —v; orl = v;). Then the following holds.

1. Lete be afailure path in the evaluation graph ap on 7[0..k], such that its leaf
is labeled with(s;, ). If [ evaluates tdalsein s;, then the pairs;, v;) is a cause
according to Algorithm 30.

2. Ifapair(s;, v;) is a cause according to Definition 28, then there must exatae

path ¢ on which(s;, ) appears in the leaf label, anévaluates tdalsein s;.

By item (2) of Claim 33, if(s;, v;) is a cause according to Definition 28, thegets
a bottom-value on a leaf of a failure path. But by item (1) of the claim, in this case
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(s;,u;) is also a cause according to Algorithm 30. Thus the algorithm produces an over-

approximation of the causal set according to Definition 28. H

Proof of Claim 33. 1. A close examination of Algorithm 30 shows that a p@air, v;)
gets into the causality setdf assumes a bottom-value ¢n It will be passed on to
the next level of the recursion as long as the sub-formulauthia¢longs to keeps
gettingfalse This is the same as visiting oniglselabeled nodes on the way to the

root.

2. Suppose the paifs;, v;) can be maderitical. That means that after switching
some bottom values still fails on 7[0..k], but switching(s;, v;) now changes the
value ofy on7[0..k]. Note that(s;, ) must be located on a failure path; otherwise
switching its value cannot change the valuepof

0

We note that not all bottom-valued leaves that have a failure path to the root are causes
(otherwise Algorithm 30 would always give accurate results). In our experience though,
Algorithm 30 gives accurate results for the majority of real-life examples. As an example
of a formula on which Algorithm 30 does not give an accurate result, congider
aU (bUc) and atracer = s, s1, sq, . . . labeled as - (0)~ (see Figure 5.2). The formula
o fails on, and~[0..1] is the shortest prefix on which it fails. What is the set of causes
for failure of ¢ on7[0..1]? The pair(sy, a) is not a cause, since it is not bottom-valued.
Checking all possible changes of sets of bottom-valued pairs showsésthal is not a
cause. On the other hantk;,a) and(s;,b) are causes because changing the value of
a in s; from 0 to 1 makesy unknown on 7[0..1], and similarly for(s;,b). The pairs
(s0,c) and(sy, c) are causes because changing the valueifithers, or s; from 0 to
1 changes the value a@f to true on x[0..1]. The values of signals is, are not causes
because the first failure gf happens irs;. The causes are represented graphically as red

dots in Figure 5.2. By examining the algorithm, we can see that andr it outputs the
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set of pairs that contains, in addition to the exact set of causes, thespair.

5.4 Discussion

The definition of an explanation for a counterexample reflects two major decisions. First,
we chose to detect a set of causes for the tempdieshyfailure only (that is, the smallest

k such thatr[0..k] H ). We believe that this is the most beneficial for the user; in many
cases, other failures demonstrated by the computation path are a consequence of the first
one. For example, in the design of a hardware model, it is common to hage@n

signal, that is never supposed to rise, however, once rises, it stays in this position forever.
For the formulaG—error, only the first state wererror=1 is interesting, since the rest are

a consequence of the first.

Another decision made when choosing the definition is that for the first failure, we try
to find all values that have any influence on the failure. That is where the definition of
causality rather thareriticality, comes into play. We believe that our explanations, at this
stage, should furnish the user with all she needs to debug the error. Choosing to provide
acritical set as an explanation, would make this set minimal, such that switching any of
the values would make the formula pass in the computation path.

Such a set can be detected by translating the counterexample path and the formula into
a CNF formula via a BMC translation. This CNF formula would be unsatisfiable, and the
unsat core [LS04, MLAO5] provided by the satisfiability solver would be a minimal set
that demonstrate the failure. We think, however, that this is not good enough for the user.
For example, let our formula b8 (p A ¢), on a single-state tradke Thenp andq are each
an unsat core, and therefore only one of them will be provided. If the user is to debug the
problem, however, she must be aware of the failure of bahdg.
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Chapter 6

Conclusion and Future Directions

We have approached two different aspects of model checking. In Chapters 3 and 4 we ex-
amined different ways to use Description Logic reasoning for symbolic model checking.
In Chapter 5 we proposed a method to analyze a counterexample. Below we summarize

each of the chapters and discuss future research directions.

Bounded model checking of safety formulas using DL

We have presented several methods to perform bounded model checking of safety proper-
ties using Description Logic reasoning. All of these methods have the nice property that
the encoding of the problem as a DL ontology is of constant size in terms of the original
problem, and once set, the model checking task is performed by the DL reasoning tool,
with no intervention. This is in contrast to BDD-based model checking tools that need to
custom-build the model checking algorithm using BDDs. For bounded model checking,
a given model descriptiof D and a bound: are represented in DL with an ontology of
size|M D| + k, as opposed tpV D| x k when translatingl/ D to a propositional formula

in order to use a satisfiability solver. Our method can thus be viewed as a natural setting
for a symbolic representation of bounded model checking problems, avoiding the need to
unfold the model as done for SAT based BMC.
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The methods described in Chapter 3 used the DL reasoner as a black box, and no
attempt has been made to tune the DL algorithms to better work for the task of model
checking. In the future it would be interesting to examine the internal DL algorithms in
light of our application. First, the results of Section 3.5 demonstrate that different encod-
ings of the same problem vary dramatically in performance. If this is found to be inherent
in the DL algorithms, it would be natural to search for easily detectable conditions, where
one encoding can be automatically translated into another, that is easier to reason about.
This could improve the reasoning performance for some applications, as demonstrated by
our results. Second, at least one of our encodings (the one 4€1GY, seems to perform
very well as long as the bound is small enough. It is interesting to understand what causes
the blow-up for larger bounds. If this problem can be overcome, it would enable the use
of DL for model checking, and potentially improve the performance of DL reasoning in
general.

Finally, when a concept is found to be consistent with respect to a given terminology,
the DL reasoner is capable of providing a satisfying interpretation. Since the existence
of an interpretation, in our setting, indicates a bug in the model, the interpretation should
be translated into a readable counterexample. Note that the interpretation can possibly be
only partial, since the tableaux reasoning algorithm may not depend on all concepts of the
terminology. For such cases, some mechanism should be developed, to derive the lacking

information.

Liveness and fairness using DL

We have approached model checking of liveness formulas using DL reasoning, and showed
that a formula of the typ@&Fp can be easily encoded ovaliLC when no fairness con-
straints are involved. When fairness constraints are required, encoding in common di-
alects of DL is not possible. We showed however, that the tableaux reasoning procedure

can be modified to support fairness in bounded model checking. In order to achieve un-

88



bounded model checking, the algorithm should be iterated with increasing bounds. This
makes our method less efficient when no fair cycle exists (the formula holds in the model)
or when the fair loop is long. The experiments we have presented, comparing our method
to the model checke¥IS, support the observation that our approach would be more ben-
eficial when a fair loop does exist in the model (i.e. a bug is found). More experiments
should be performed, however, to understand the extent to which our method can be ben-
eficial.

Model checking of liveness properties is considered more difficult than model check-
ing of safety ones, and special attention has been devoted to this type of formula in the lit-
erature, both using BDD-based methods [BGS00, RBS00, BGS06], and using SAT-based
techniques [AS04, GGAO5]. It has been recognized, however, that no single method can
outperform others on all models [BDEGWO03, Nev08]. State of the art model checkers in-
voke multiple algorithms for each model checking problem, presenting the user with the
result of the first method to terminate. Our method, if found beneficial for a significant
range of models, could fit nicely in such a platform, speeding up verification time for part

of the models.

Counterexample explanation

We have shown how the causality definition of Halpern and Pearl [HP01] can be adapted
to the task of explaining a counterexample. Since the causality algorithm is applied to
a single counterexample, ignoring the model from which it was extracted, no size issues
are involved, and the execution time is negligible. An important advantage of our method
is the fact that it is independent of the tool that produced the counterexample. When
more than one model checking “engine” is invoked to verify a formula, as described
in [ BDEGWO03, Nev08], the independence of the causality algorithm is especially impor-
tant. We note that our approach, though demonstrated hetd fospecifications, can

work in the same manner f&CTL formulas, since on a single computation pafhl
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andACTL formulas coincide.

In the future, it would be interesting to extend our method to other linear temporal log-
ics used in practice, such as PSL [Acc03]. While our definition should hold for this logic
as well, the approximation algorithm should be extended without increasing its complex-
ity. Since the algorithm we provided produces an over-approximation of the causality set,
it is interesting to see if the language for which it provides the exact causality set could be
characterized. Finally, the approach we have presented defines and (approximately) de-
tects a set of causes for thest failure of a formula on a trace. While we believe that this

information is the most beneficial for the user, other definitions can also be considered.
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