
Flexible Monitoring
of Storage I/O

by

Tim Benke

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2009

c© Tim Benke 2009

I hereby declare that I am the sole author of this thesis. This is a true copy of the
thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

For any computer system, monitoring its performance is vital to understanding
and fixing problems and performance bottlenecks. In this work we present the
architecture and implementation of a system for monitoring storage devices that
serve virtual machines. In contrast to existing approaches, our system is more
flexible because it employs a query language that can capture both specific and
detailed information on I/O transfers. Therefore our monitoring solution provides
the user with enough statistics to enable him or her to find and solve problems, but
not overwhelm them with too much information. Our system monitors I/O activity
in virtual machines and supports basic distributed query processing. Experiments
show the performance overhead of the prototype implementation to be acceptable
in many realistic settings.

iii

Acknowledgements

I would like to thank my supervisors Professor Martin Karsten and Professor
Kenneth Salem for their patience and great support. I would also like to thank
Oguzhan Ozmen, Umar Farooq, Patrick Kling and Jeff Pound for having an open
ear for my problems. I thank Professor Ashraf Aboulnaga and Professor Johnny W.
Wong for being my thesis readers. I also want to thank the staff of the University
of Waterloo for making this possible.

iv

Dedication

This is dedicated to Maewen.

v

Contents

List of Tables viii

List of Figures ix

1 Introduction 1

2 Background 4

2.1 I/O Monitoring Tools . 4

2.2 Virtual Machine Monitor . 6

2.2.1 Operating System-level Virtualization 7

2.2.2 Hardware Virtualization . 8

2.2.3 Software-assisted Full Virtualization 8

2.2.4 Paravirtualization . 8

2.2.5 Hardware-assisted Full Virtualization 9

2.2.6 Hybrid Virtualization . 9

2.2.7 The Xen VMM . 10

2.2.8 Xen Blocktap . 10

2.3 Data Stream Management System 14

2.3.1 DSMS Query Languages . 15

2.3.2 DSMS Optimization/Plan Generation 15

3 System Design 17

3.1 System Organization . 17

3.2 Data Model . 20

3.2.1 Timestamps . 22

3.2.2 Request ID . 23

vi

3.2.3 Categorical Fields . 23

3.2.4 Other Numerical Fields . 23

3.3 Extending Blocktap . 23

3.4 Extending STREAM . 24

3.5 Monitoring Queries . 24

3.5.1 Query 0: Baseline Query . 25

3.5.2 Query 1: Filter Specific I/O Requests 25

3.5.3 Query 4: Response Times 25

3.5.4 Query 8: Filter Tuples with High Response Time 27

4 Experimental Results 30

4.1 Overview of Experiments . 30

4.2 Experimental Testbed . 30

4.2.1 Virtual Machine Configuration 31

4.2.2 Measurement Tools . 31

4.2.3 Experiment Methodology . 31

4.3 Experiments . 32

4.3.1 Experiment 1: Overhead of Tracing I/O Tuples 33

4.3.2 Experiment 2: Impact of Query Complexity 34

4.3.3 Experiment 3: Parallel Query Execution Scalability 36

4.3.4 Experiment 4: Impact of Offloading on Utilization 37

4.3.5 Experiment 5: Effect of Filtering 39

4.3.6 Experiment 6: Virtual/Physical Machine Scalability 40

5 Conclusions and Future Work 44

5.1 Conclusions . 44

5.2 Future Work . 44

Appendix 46

References 53

vii

List of Tables

3.1 Record Schemata at Various Points in the Monitoring System . . . 21

3.2 Filter STREAM input example . 21

3.3 Query 1 Sample Input . 26

3.4 Query 1 Sample Output . 26

3.5 Query 4 Sample Input . 27

3.6 Query 4 Sample Output . 27

3.7 Query 8 Sample Input . 29

3.8 Query 8 Sample Output . 29

viii

List of Figures

1.1 Problem Setting . 2

2.1 IO Ring . 11

2.2 Blocktap Modes [45] . 13

3.1 I/O Monitoring Architecture . 18

3.2 Guest Domain . 18

3.3 Server Node Domain 0 . 19

3.4 Server and Monitor Node . 20

3.5 Query 1 . 25

3.6 Query 4 . 26

3.7 Query 8 . 28

4.1 Execution of Experiments . 32

4.2 Results of Experiment 1 . 34

4.3 Results of Experiment 2 . 35

4.4 Results of Experiment 3 . 37

4.5 Distributed Configurations . 38

4.6 Results of Experiment 4 . 38

4.7 Configuration with Filter Query . 40

4.8 Filter Query . 40

4.9 Results of Experiment 5 . 41

4.10 Results of Experiment 6 . 42

1 Query 2: Sum of the Size of I/O Requests 46

2 Query 3: Interarrival Times . 47

3 Query 5: Percentage of Sequential Requests 48

ix

4 Query 6: Variance of Request Sizes 49

5 Query 7: Histogram of Starting Sectors 50

6 Query 9: Number of Unresolved Requests 50

7 Query 10: iostat for Xen . 51

8 Query 10M: iostat for Xen on the monitor node 52

x

Chapter 1

Introduction

System monitoring enables the user to find performance bottlenecks, detect failures
or anomalies, tune the system’s performance, automate resource allocation, char-
acterize a workload, and build models of the system. The New Oxford American
Dictionary [34] defines monitoring as:

1. observe[ing] and check[ing] the progress or quality [of a system]
over a period of time

2. keep[ing] [a system] under systematic review

We are focussing on monitoring storage devices, such as disk drives. Computers
transfer data between disks and memory using requests and responses. Requests
tell the disk where data should be written to or read from. Conversely, the disk
signals completion of requests with responses. This work presents a system to
monitor requests and responses and measure performance statistics.

The objective of I/O monitoring is to keep track of I/O statistics for administra-
tors or automated administrative tools. Examples of questions that administrators
might ask are how high the throughput of a particular physical disk is, what the
mean and maximum response time of disk requests is, how many requests are read
or write requests, or how the response times are distributed.

Existing approaches for I/O monitoring can be classified as event-driven or
sampling [27] monitors. The former activate exactly when an I/O-related event
happens while the latter only activate periodically. Relevant events are the issuance
and the completion of requests.

Similarly, Jain classifies the presentation of results in two categories: online
and batch [27]. Online monitors either display the results continuously or at fre-
quent intervals, while batch monitors amass data that another program can analyse
later. Alternatively, the terms off-line or periodic are used for batch, and rolling is
sometimes used to mean online.

1

Another classification of monitors is based on whether a user can customize
what is monitored and displayed for a particular use. Some monitors offer a rigid
set of statistics to the user while customizable monitors enable a user to procure a
theoretically infinite number of statistics.

The approach presented in this thesis is event-driven, online, and customizable.
This is in contrast to existing monitoring solutions which are often sampling-based,
online and rigid. The popular UNIX tool iostat is an example of such a monitor
while approaches that use tracing capabilities in the kernel, such as DTrace [17],
can be classified as event-driven and online monitors. DTrace also offers simple
filter capabilities and is thus customizable, but cannot directly aggregate results
across machines. DTrace is compared to our approach in more detail in Section
2.1.

Another popular method is to trace events in an event-driven batch monitor to
perform analysis later. Then the analysis can in principle compute any statistic
on the data. For some monitoring tasks administrative tools require a real-time
analysis, for instance to raise alarms or control available resources. This renders
batch monitors useless for real-time monitoring.

We apply our approach to the limited problem setting of monitoring I/O to and
from virtual machines hosted on physical nodes in a cluster (See Figure 1.1 for an
overview).

Monitor Node

Server Node

VM VM

*

Server Node

VM VM

*

Server Node

VM VM

*

+

Queries Results +*
Filter
Monitor

Figure 1.1: Problem Setting

The server nodes each host several virtual machines backed by image files lo-
cated on hard disks. I/O requests from and responses to the virtual machines
are monitored by storing the relevant properties of the events. A filter on each
server node discards monitoring data that are irrelevant to the user’s queries. The
remaining data are sent over the network to a dedicated monitoring node.

On the monitoring node incoming streams of data from several nodes are ag-
gregated and statistics for end-users are computed. The end-user issues queries to
the monitor, which evaluates the queries and produces results. The monitor may

2

split user queries into two parts: a filter query to be executed at one or more server
nodes, and a residual query to execute at the monitor node.

The advantage of this architecture is that by using distributed aggregation from
several machines, we are able to centrally monitor groups of computers. The query
interface presents the end-user with a flexible and easy to use access to monitored
data. To implement this distributed architecture, we have had to answer several
questions:

Where and how to measure request properties?

To trace I/O requests we have to use a hook in one of the software layers through
which I/O requests pass. The different layers are the application layer, operating
system layer, and the virtual machine layer. We are taking advantage of existing
hooks in the I/O interface for virtual machines. Using a wrapper, requests are
forwarded to a database on the server node.

We have chosen to trace at the virtual machine level because virtualization plays
an important role in data centres as physical machines are migrated to virtual ma-
chines to save energy and cooling costs. Resources are constrained and monitoring
the performance is essential, e.g., for testing new applications. Virtualization tech-
nology is widely used. The Xen virtualization machine monitor (VMM), which we
are using, already includes hooks for monitoring I/O events.

What statistics to measure?

Rather than producing predefined statistics, we provide customizability by al-
lowing clients to define statistics of interest to them. As described in Section 2.3 we
use a data stream management system (DSMS) [13] to provide this customizability.

To summarize, this work contributes the following:

1. An architecture for distributed, customizable I/O monitoring, and a prototype
implementation of that architecture.

2. Experimental analysis of the overhead associated with monitoring. It turns
out that the overhead of flexible statistics may be high, but by calculating
statistics on a separate monitor node, the performance impact on the server
nodes can be minimized.

3. Experimental analysis of filtering mechanisms at the server nodes. This
demonstrates that the volume of data sent to the monitor node can be reduced
with little impact on the server nodes.

In Chapter 2, background material for this work is given. Chapter 3 explains the
system. Chapter 4 presents the experimental methodology and results. Conclusions
and future work are described in Chapter 5.

3

Chapter 2

Background

2.1 I/O Monitoring Tools

Tools that monitor I/O activity try to store the equivalent of the “header” of I/O
requests and the times at which they are issued, worked on and completed. Which
of these properties are recorded and the granularity at which they are recorded
depend on the specific tool. Currently there are several disk I/O monitoring tools
available for use in production systems.

iostat is a simple UNIX tool for basic disk I/O monitoring. In its Linux
implementation iostat is only about 500 lines of code. It is “monitoring device
loading by observing the time the devices are active in relation to their average
transfer rates” according to its manual page [30]. I/O statistics, such as the time
that a device is active and its transfer rates, are obtained through the kernel’s
pseudo-filesystem procfs.

procfs makes information from the kernel’s internals available to user programs.
Available are counters for issued read and write requests, completed requests, and
small requests merged into large requests. Other counters keep track of time spent
on reading, writing, and performing I/O requests as well as the number of currently
outstanding requests. The values are updated when an I/O event occurs or a
program reads the pseudo-file containing the counters. All of these counters are
available per physical disk and some of the request counters are also available for
individual partitions.

iostat and other simple monitoring tools that compute statistics based on these
counters have an insignificant performance impact because of their limited power.
procfs and iostat do not provide information on individual requests, such as their
location on disk or size. Furthermore, it is not possible to obtain statistics, such as
variances or quantities other than averages.

Generally, the arithmetic mean may often not suffice as a statistic. As an
example consider a workload consisting of 50% very small write requests and 50%
very large write requests. If the throughput of this workload were low it would not

4

be visible in the arithmetic mean of the requests sizes. In this case it would be
useful to look at a histogram of the request sizes to see this imbalance.

Many other tools offer the same limited I/O statistics and some have a more
accessible or usable presentation of these statistics. collecti [21] is one of them. It
shows all of iostat’s statistics and uses the same information available in procfs.
Aside from a command-line interface it can directly convert measured data to a
diagram or csv-file.

If tools do not get information from procfs, they usually instrument the ker-
nel themselves. Some tools like fs usage that is available for Mac OS X can trace
filesystem related system calls and page faults for specific processes [31]. A more
general version called sc usage traces all system calls [32]. For Linux, strace

does the same job. These tracing instruments record which system call was exe-
cuted with what parameters, but not how the kernel fulfills the actual I/O request.
Moreover, the data generated this way may become overwhelming very quickly
and a significant performance penalty may be incurred as the data are collected.
Moreover strace only works on a per-process basis.

A more powerful and flexible tool is SUN’s DTrace [17]. DTrace instruments
the kernel and user programs with so-called probes. In contrast to strace, it can
monitor individual processes or the kernel or a whole system. It provides the user
with a query interface to specify what DTrace should do when a probe is activated.
It can compute or print expressions based on the values collected by the probe when
it is activated. It features a C-like programming language with awk-like predicates
and it has the following built-in aggregation functions: sum, count, maximum,
average, minimum and histograms.

DTrace scripts are compiled in user-space and transferred to the DTrace virtual
machine in the kernel. Probes belong to a so-called provider that registers with
the DTrace virtual machine. Examples of providers are io for I/O-related probes
or syscall for system calls. A more fine-grained monitoring is available with the
function boundary testing (fbt) provider; it offers probes for the entry and exit of
every kernel function.

To monitor hard disk I/O, the io provider has access to most of the relevant
information available. DTrace can relate an I/O request to the corresponding file,
process, and device. For each request its file name, path, and offset are available.
The process id and the process’s file and path can be procured as well as the major
and minor number of the used device. More detailed information like the request’s
start and completion time, if it is a read or write request and if it is synchronous
or not, are available, too.

DTrace offers support for simple filtering. It is available for Solaris, Mac OS
X and FreeBSD. An analogous project called SystemTap is under development for
Linux, but not yet in a stable state.

DTrace is not trying to address all of the same issues as our approach is. It is a
low-level source for monitoring data similar to our approach that logs information

5

from the I/O to and from virtual machines. In addition to that it is able to trace
many more different types of events and to perform some filtering on the collected
data. It runs in a virtual machine in the kernel and while our source of information is
the VMM, most filtering and processing is performed on the user-level. In addition
to DTrace’s capabilities, our approach can provide distributed aggregation of I/O
traces from several machines and can also perform potentially more complicated
processing without any concerns of decreasing the operating system performance.
Within our architecture it would be possible to use DTrace as an alternative means
of collecting I/O event information from individual server nodes.

VMware has developed a similar service for monitoring virtual machines called
VProbes [42]. It is part of the current versions of VMware Workstation and VMware
Fusion. Expressions and functions are written in a Lisp-like language, but more
constrained than DTrace. It can record start and finish times of I/O requests as
well as the operation performed and their size and location on the virtual disk.

VProbes shares the essentially same source into I/O transfers as our approach
but not the same privilege level of filtering and processing. The database we are
using runs on the user-level as opposed to VProbes and DTrace that run in the
VMM and the operating system kernel. Moreover expressions in VProbes are even
more limited than in DTrace because of technical limitations of the VMM.

2.2 Virtual Machine Monitor

Virtualization is the abstraction of an operating system from its underlying physical
hardware. A familiar analogy is how operating systems offer abstraction from the
hardware. Without this abstraction each process would have to directly commu-
nicate with the hardware and only one process could run at a time. An operating
system allows processes to share the underlying hardware. In addition, it abstracts
from the given hardware and offers a more general interface to the devices. For
example, each different model of a network interface card uses different chips and
circuits but a driver in the operating system offers one general interface to the op-
erating system that is used to present an even simpler socket interface to the user.
Multiplexing and time-sharing of the hardware are other abilities of the operating
system. The scheduler allocates a share of the processor’s time to each process,
so more than one process can be run on one processor concurrently. When several
processes want to use the same network interface card and send packets over the
network, the operating system multiplexes the packets and allocates each process
a share of the network interface card’s bandwidth.

Similarly, adding virtualization between the hardware and the operating system
allows one to simultaneously run more than one operating system on the virtualized
resources. A virtual machine monitor (VMM), or hypervisor, is the component that
implements this abstraction layer. Some of the reasons for virtualization are the
same as for operating systems, e.g., higher utilization of CPU and devices. In

6

addition, VMMs offer improved performance isolation, and the ability to migrate
virtual machines between VMMs on different machines, which results in higher
availability and security. By using so-called virtual appliances – simple virtual
machines serving a single purpose – failures of user software and operating systems
can be isolated in a virtual machine and do not affect other services on the same
physical machine [14]. By replacing several under-utilized physical machines with
virtual machines managed by a VMM, maintenance costs and power consumption
can be reduced. This is important because according to the US Environmental
Protection Agency the power consumption of data centres is increasing rapidly
[10].

There are several VMMs available. Microsoft [3], Parallels [5], VMware [41],
XenSource [14], Sun [7], IBM [8], and many others have developed virtualization so-
lutions. Notable open-source VMMs are Bochs [1], KVM [39], OpenVZ [4], QEMU
[15], User Mode Linux [22] and Xen [14]. We focus on the VMM Xen, because it
is open-source and it provides software device drivers, which have direct access to
the I/O events. First we give an overview of different approaches to virtualization,
and then we focus on Xen and how it handles disk I/O in particular.

2.2.1 Operating System-level Virtualization

Instead of virtualizing a whole machine, the operating system kernel usually stays
the same but different isolated user-spaces are made available. Each user-space
instance – sometimes called container – appears as an independent machine to the
user. In contrast to this, the OS-level virtualization solution Solaris Zones [38]
offers the ability to host different Solaris kernels and Linux distributions.

Because it is less flexible, this solution only results in a small performance im-
pact. For Linux, OpenVZ provides Operating System-level virtualization. OpenVZ
is the basis for Parallels commercial product Virtuozzo. Another example of OS-
level virtualization is FreeBSD Jails [28]. Both approaches share the property that
the original operating system’s kernel is serving multiple containers. Therefore this
approach is limited to running only one type of operating system. The different
containers can be limited in their access to the hosting operating system. Addi-
tionally some approaches allow the administrator to schedule the resources among
the containers.

Because of the tight coupling between virtual machines and the hosting oper-
ating system, these approaches can often offer high performance. One of the dis-
advantages at least of OpenVZ’s solution is that it offers less performance isolation
between the different operating system instances in comparison to software-assisted
full virtualization and paravirtualization approaches [33].

7

2.2.2 Hardware Virtualization

Before the x86 architecture became successful IBM had already produced virtu-
alization solutions. This had been done on special versions of the S/360 and
S/370 architecture [20]. Unfortunately the x86 architecture is not easily virtu-
alizable. Popek and Goldberg [37] have put forward universal requirements for
what is needed to virtualize any processor architecture. One of the requirements
is that any instruction that changes the configuration of the machine should be
executed in privileged mode, or trap if it is not. Unfortunately the x86 architec-
ture has 17 instructions that do not fulfill this requirement [20]. Several different
virtualization approaches try to solve this problem in different ways. The solutions
include software-assisted full virtualization, hardware-assisted full virtualization,
and paravirtualization. They are described in the following subsections.

2.2.3 Software-assisted Full Virtualization

This technique is also called binary translation or binary rewriting [20]. The se-
quence of instructions until the next jump instruction is scanned for any of the
unsafe instructions in the x86 instruction set. Each such instruction is marked and
emulated when it is reached. After each jump the next sequence of instructions is
scanned and marked if necessary [20].

This scanning and replacement of instructions often makes this approach slower
than other approaches. An advantage of binary rewriting is that the VMM can run
unmodified guest operating systems.

2.2.4 Paravirtualization

The term paravirtualization has been used first in connection with the operating
system Denali [46]. Denali and later Xen [14] use this technique to support virtu-
alization even on the x86 architecture. Unlike Denali, which only hosts single-user
single application operating systems, Xen hosts a general-purpose multi-user oper-
ating system [14].

For paravirtualization, parts of the operating system have to be ported for the
specific VMM. One example is very simple generic drivers that replace device drivers
for specific hardware models. This absolves the VMM from offering complicated
implementation or emulation of these device drivers. Because the paravirtualized
operating systems are aware that they are running in a virtual machine, they can
be specifically optimized for virtualization. The clock, for example, can be han-
dled better, because the kernel can be modified to not continually expect timer
interrupts. This is useful if a virtual machine has to keep track of time even if it
is not always running. In comparison to software-assisted and hardware-assisted
full virtualization, the performance of devices can be much better because those

8

approaches have to emulate devices. In this work we are exclusively using paravir-
tualized guest domains.

2.2.5 Hardware-assisted Full Virtualization

Software-assisted full virtualization and paravirtualization solutions have increased
the interest in x86 virtualization. Thus, AMD and Intel have recently begun to
add virtualization extensions and corrections to x86 processors. Some of the afore-
mentioned virtualization software projects can take advantage of some of these new
processor extensions although their original approach was purely software-assisted
or paravirtual.

With support from these processor extensions, it is possible to support full
virtualization without modifying the operating system or using binary rewriting.
There are many performance advantages of this approach, but one disadvantage
in comparison to paravirtualized machines is the more complicated emulation of
virtual device drivers.

The drivers in a virtualization-unaware operating system have been written
for a specific hardware. Thus this hardware has to be emulated by the VMM. To
accomplish this emulation, any communication from the actual driver that interacts
with the hardware has to be first translated to an intermediate simple interface and
then back to the specific interface the driver in the guest domain expects. Therefore
hardware-assisted solutions can sometimes not achieve the same I/O throughput
as paravirtualized guest domains. Xen can switch from these emulated drivers to
drivers that behave like paravirtual drivers after boot up [20].

An advantage of the new processor extensions is that they offer an additional
higher processor priority level or so-called ring that can be used by a VMM to run
in. An unvirtualized operating system runs in ring 0, which allows it to execute
privileged instructions. When using paravirtualization the VMM has to be able to
perform the privileged instructions and the operating system has to run in a lower
priority ring. When a virtualized operating system has to perform an action that
requires a privileged instruction, it has to perform a so-called “hypercall” [20] to the
hypervisor. With the newer processor extensions an additional processor priority
level is introduced. This lets the hypervisor run at the new priority level and the
unmodified guest operating systems can continue running in its original ring. The
VMM can specify which privileged instructions should be trapped to the VMM.
This absolves the VMM from providing the infrastructure to perform hypercalls.

2.2.6 Hybrid Virtualization

The combination of paravirtualization and hardware-assisted virtualization is called
hybrid virtualization [36]. Besides hardware-assisted full virtualization, the guest
OS uses simple virtual block and network devices and makes use of the knowledge
that it runs in a virtual machine, e.g., when dealing with timer interrupts [36].

9

2.2.7 The Xen VMM

Xen originated from a research project at the University of Cambridge. Because
it uses paravirtualization and leverages device support from the Linux kernel, Xen
can offer high performance and support for many devices. Currently Xen supports
many Unix-like operating systems as a privileged so-called Domain 0. Domain 0
hosts device drivers for the actual hardware and user-space daemons to manage
the virtual machines. With general availability of virtualization-aware processors,
support for hardware-assisted full virtualization has been added to Xen [24].

In the context of I/O, Xen offers several mechanisms to access block devices in
a virtual machine. Virtual storage devices can be implemented using physical disk
partitions or using files stored on the physical disk in Domain 0. File images can
be accessed using a so-called loop device or using an approach called Blocktap .
The loop device can be used to mount a file as a filesystem. Any access to this loop
device is then propagated to the filesystem containing the file.

2.2.8 Xen Blocktap

Blocktap is part of the current version of Xen as one of its user-level applica-
tions (called “tools”). It allows for the implementation of a software layer between
Domain 0’s Linux I/O subsystem and the guest domain’s I/O subsystem, i.e., a
kernel-level or user-level I/O interface [44].

Blocktap uses three mechanisms provided by Xen: Grant Tables, event channels
and XenStore. Grant Tables are used to share memory between domains. Event
channels are used for asynchronous communication. XenStore saves configuration
state and can signal events.

Grant Tables support two operations at 4K-page granularity: mapping and
transferring. They are called tables because domains can write entries describing
the memory they want to share into the their Grant Table. When a page frame is
mapped or transferred from one domain to another it is available in the receiving
domain’s address space. The difference between mapping and transferring is that
when mapping a page it remains in both domains’ address spaces, while a trans-
ferred page is only available in the receiving domain’s address space. Xen transfers
pages to support dynamic memory resizing.

Blocktap uses Grant Tables to share memory between guest domains and par-
avirtualized devices in their respective driver domain. The default driver domain
is Domain 0. The data structure used to coordinate any transfer of data between
the drivers and the guest domains is an I/O ring (See Figure 2.1). Grant Tables
are used to map the pages – between the driver domain and the guest domain – on
which I/O rings are stored.

I/O rings have five components: the buffer itself and start- and end-pointers
for both the producer and consumer. The pointers are advanced when a re-
quest/response is enqueued or completed. When the producer’s start-pointer reaches

10

Response Start Request End

Request StartResponse End

Figure 2.1: IO Ring

the consumer’s end-pointer the ring is full. The pointers correspond to pages that
are transferred between the domains using Grant Tables. I/O block devices use this
version of I/O rings, but some device drivers use two less complicated I/O rings;
one ring solely for requests and one ring solely for responses. For some devices
like e.g., graphics cards, this is necessary because there is no 1:1 relation between
requests and responses.

Event channels are similar to Unix signals and are used for notifications from
the hypervisor to guests or between guests. The main use of events for Blocktap
is as a “paravirtual interrupt request” to signal that data for paravirtual devices is
available.

The XenStore offers storage that is shared among all guests. It has a structure
similar to a filesystem, but it is not intended to store large amounts of data. Rather
it is intended to be used to transfer small amounts of information between domains.
Instead of files, Xen stores key-value pairs similar to Windows’ registry. Blocktap
uses the XenStore to store its configuration information and communicate it to
guests in other domains. Using Xenstore it is also possible to implement hotplugging
devices for Linux by monitoring XenStore, which communicates with the Linux
device enumeration mechanisms. XenStore is used for communication between
domains by using watch points on subtrees in the filesystem-like hierarchy.

XenBus is built on top of XenStore and offers a way to list available devices to
an unprivileged domain. Aside from a XenStore entry a XenBus device also uses
shared memory page for the ring buffers and an event channel to signal activity in
the ring asynchronously.

Blocktap is built on top of Xen’s split device drivers [45, 23]. The split device
driver model aims at providing safe isolation of the guest from the hardware and
from faulty drivers. The original driver is split into a back-end driver that accesses
the hardware and a front-end driver in the guest connected using a very simple
interface. Therefore, the front-end driver is also simple and an existing driver can
be used in a special minimal driver domain as the back-end driver.

11

All of these data structures are used in the same way in Blocktap as in the split
device driver: data structures containing metadata about requests are enqueued in
the ring buffer and issued and responses are written to the same buffer. Data is
transferred out-of-band using grant references, which makes fast DMA transfers
possible [20]. Note that because of limited space in the I/O ring, the maximum
request size is 44 KB [20].

Blocktap ’s addition to the split device driver model is an interface to so-called
soft devices, kernel-level or user-level software that can be used to monitor and
filter I/O to existing device drivers or to fully implement device drivers. These
different uses are reflected in three different modes offered by Blocktap , which
have different performance penalties (See Figure 2.2).

1. MODE PASSTHROUGH:

In this mode requests are passed straight to the I/O subsystem in Domain 0.

2. MODE INTERPOSE:

Here, requests are passed to an application in userspace that reads them from
“shared memory rings, exported over a character device that may be mapped
into application memory” [43]. This way requests can be modified in-flight.
Requests are passed back to a back-end ring in the kernel and are served.

3. MODE INTERCEPT FE:

In this mode, the back-end ring is disabled, and the application has control
on the messages and may use common system calls to perform I/O requests.

MODE INTERPOSE is the mode used exclusively in this work. Requests are entirely
handled in the user-level portion of Blocktap in our implementation and it is thus
on the critical path between the front-end and the back-end driver.

Warfield et al. [45] evaluated the performance of Blocktap by copying 4GB
of sequential data to and from disk. The results show that Blocktap ’s modes
MODE INTERPOSE and MODE PASSTHROUGH write throughput is about 85% of na-
tive write throughput. No difference was measured when comparing results in
the two modes with native read throughput. In comparison to a system without
Blocktap MODE PASSTHROUGH causes almost no change in per-request latency, while
MODE INTERPOSE doubles the latency, but still does not exceed one millisecond.

Warfield notes that for performance reasons the Blocktap soft device might
be executed in the back-end driver domain [43]. Installing it in a separate driver
domain causes some overhead because of an additional VM switch but increases
isolation and flexibility because any OS can be used to implement the device driver.
By default Xen 3.1 runs device drivers and Blocktap in Domain 0.

Blocktap offers support for many virtual image file formats and for both asyn-
chronous or synchronous modes. In this thesis, the asynchronous driver for raw
images is used because it offers the best performance.

12

Block Message Switch

device
channel

device
channel

user dev
channel

user dev
channel

Examples of Forwarding Modes in the Block Tap

to back-end
in Device VM

to back-end
in Application

to front-end
in Guest VM

to front-end
in Application

Example A: MODE_PASSTHROUGH

Block Message Switch

device
channel

device
channel

user dev
channel

user dev
channel

to back-end
in Device VM

to back-end
in Application

to front-end
in Guest VM

to front-end
in Application

Example B: MODE_INTERPOSE

Block Message Switch

device
channel

device
channel

user dev
channel

user dev
channel

to back-end
in Application

to front-end
in Guest VM

to front-end
in Application

Example C: MODE_INTERCEPT_FE

Figure 3: Examples of forwarding modes.

bypass the user rings. Passthrough can be used to imple-
ment kernel-level monitoring of block requests, or to im-
plement soft devices in-kernel for improved performance.

MODE INTERPOSE routes all requests and replies across
the user rings. An application must attach to the block tap
interface and pass messages across the two rings, allow-
ing complete monitoring and modification of the request
stream at the application level. This mode can be used
to modify in-flight requests, for instance to build a com-
pressed or encrypted block store.

MODE INTERCEPT FE uses only the front-end rings on
the driver, disabling the back-end altogether. This mode al-
lows the construction of full, application-level soft devices,
using existing OS interfaces (such as memory, or mounted
file systems) as a backing store. This mode can be used to
easily prototype new functionality, or to forward block re-
quests to a block device back-end on another physical host
(after an OS migration, for instance1).

1OS migration is feature that we have recently added to Xen, allowing
a running OS to move from one physical host to another while executing.
One problem which managing migration is that local disks will be left
behind.

3.2 The Application Interface

As shown in Figure 2, the user rings are exported to a char-
acter device, which is mapped by a library allowing access
to the message rings and in-flight requests. Our current
implementation allows chains of plugins to be attached to
handle block requests. We presently have plugins to pro-
vide both copy-on-write and encrypted disks and to allow
direct access to image files and remote GNBD disks.

4 Evaluation

Figure 4 shows an analysis of the impact of soft devices on
block request performance with respect to both throughput
and latency. Tests were performed on a Compaq Proliant
DL360, which is a dual Pentium III 733MHz machine with
72.8GB Ultra3 SCSI disks.

Throughput measurements aimed to test the maximum
achievable read and write speeds to the local disk.
The left graph in Figure 4 shows read and write
throughput moving four gigabytes of sequential data to
and from disk. The three bars in the graph com-
pare the throughput without using the block tap, using
the block tap in MODE PASSTHROUGH, and finally in
MODE INTERPOSE. As shown, our soft device interface
results in a minimal degradation of throughput. We are ca-
pable of achieving 50MB/s read throughput, identical to
that achieved by Xen’s existing split drivers. On writes,
we see about a 15% overhead; we are still investigating the
source of this loss of performance.

Latency measures the per-request overhead of synchronous
requests to disk. Given that disk requests are heavily
batched in general, this is a less meaningful measurement
for normal workloads. However, it does represent a worst-
case overhead and also gives a clearer illustration of the
costs that our implementation imposes. The right graph in
Figure 4 shows mean request times across 100,000 4-byte
synchronous writes. We see a small overhead in passing
requests through the kernel of the virtual device domain
in MODE PASSTHROUGH, reflecting the cost of an addi-
tional VM context switch and request/response copy2 in
each direction. MODE INTERPOSE is considerably more
expensive as it adds two additional context switches and
two message copies, in order to pass messages through a
user-space application. There are additional costs in map-
ping attached data pages to user space. However, even this
overhead has insignificant impact given the length of av-
erage disk seek times. We intend to explore the more de-
manding performance requirements of network devices in
the coming months.

2Note that only the request and response structs (respectively 60 and
7 bytes) are copied on the shared memory rings. Pages of data are refer-
enced and mapped separately.

2005 USENIX Annual Technical Conference USENIX Association 381

Figure 2.2: Blocktap Modes [45]

13

Aside from the split device driver model, Blocktap has the following components
in Domain 0 for devices:

character devices are used to communicate the issuance and completion of re-
quests.

tapdisk is a user-level process, also called a tapdisk driver, that works with at
least one image file.

blktapctrl is a user-level daemon that controls the start and termination of
tapdisk processes.

named pipes are used for communication between the tapdisk processes and the
blktapctrl daemon for driver configuration and startup synchronization.

Meyer et al. [35] have redesigned Blocktap to use small reusable processing
blocks to facilitate the development of soft devices. Instead of forcing the user to
build his or her own user-level software device driver, they provide a set of reusable
processing blocks that can be specified in a declarative language. This approach
is also able to provide simple I/O request filtering, but no specific details of the
power of this language are given.

2.3 Data Stream Management System

Data stream management systems (DSMS) are a specialized type of database for
dealing with streams of data. The problem of monitoring large amounts of data
is well known. Monitoring financial data, e.g. stock market tickers, or detecting
intrusions in a network system by monitoring all incoming network packets are
popular applications of DSMSs [13]. A data stream is a “real-time, continuous, or-
dered (implicitly by arrival time or explicitly by timestamp) sequence of items”[25].
Typically the size of the incoming data items is small, but the high arrival rate of
incoming items poses a challenging problem. Some of the requirements for a DSMS
are listed by Golab et al. [25]: query semantics must allow time- and order-based
operations, and no blocking operators that have to consume the whole input may be
used. A side-effect of dynamic changes is that the database may encounter changes
in the stream’s characteristics, e.g., its rate or burstiness.

Several projects have implemented DSMS prototypes. The most complete projects
available for academic purposes are STREAM [26] and Borealis [9]. Some technology
from the predecessor of Borealis, called Aurora, is used in a commercial product
and is advertised as a monitoring solution for networks and financial stream data
[40]. It is also used in surveillance and military operations. Another university
project called PIPES follows a different idea [16]. Instead of offering a monolithic
DSMS, it implements only a programming library that has to be customized for
a particular use case. There are many other smaller projects: TelegraphCQ [18],

14

which uses a query language similar to that of PostgreSQL, the commercial kdb+
database [29], and others. Further research has been done in StatStream [48] on the
computation of statistics and could potentially be useful for efficient computation
of statistic properties of single streams and pairs of streams. In particular, correla-
tions can be computed very efficiently in StatStream using Fourier transformations
[48].

2.3.1 DSMS Query Languages

Most DSMSs support a query language that is a subset of SQL and extend SQL
with windows. One notable exception is Borealis, which lets a user essentially
specify the exact physical operator plan. This way, query plan generation becomes
much easier and no higher-level language has to be defined.

We are using the DSMS STREAM (STanford sTReam dAta Manager), that sup-
ports queries expressed in CQL (Continuous Query Language) [12]. CQL supports
some basic commands from SQL and introduces a notion of streams in addition
to static relations. STREAM [26] was developed at Stanford University. The project
was officially wound down in 2006.

DSMSs usually keep stream data in memory to improve performance. How-
ever, DSMS are more than in-memory database management systems. Because the
amount of incoming data is unlimited, the data somehow have to be limited to
fit in memory [25]. This is usually achieved by using summaries of data – called
synopses – and by only considering sets of recent tuples. These sets are called
windows and are usually defined by a tuple count limit or by a time interval. Ad-
ditionally, some DSMSs allow the user to specify when an update of an observed
window is produced. Windows in DSMSs are often specified as sliding windows.
Here, all tuples in a recent time interval are included in the window on the stream.
For example a window of 30 seconds includes all tuples that arrived in the last 30
seconds. Similarly one can define a window over the last 30 requests.

Tumbling windows are different in that they never overlap with previous win-
dows. In a 30 second tumbling window, after 30 seconds one window is reported
and after 60 seconds the second window is reported. Every 30 seconds a new non-
overlapping window is reported.

2.3.2 DSMS Optimization/Plan Generation

All DSMSs have the problem in common that the optimization process should be
dynamic, to account for fluctuating incoming streams. In a conventional relational
DBMS, the number of tuples in relations involved in a query might be measured,
indexed, sampled, or estimated before executing the query, while this is impossible
for a stream. Input rates might be measured and estimated but only after the query
has begun execution. Therefore, a query plan should be dynamic and able to react
to increasing or decreasing input rates.

15

STREAM does optimizations to reduce the memory consumption when process-
ing streams [13] but does not perform dynamic optimization of query plans. For
Borealis [11] dynamic query plan optimization can be performed using a plain
load-balancing scheme or a scheme that is based on the correlation between streams
[47]. These schemes aim to evenly balance the load on all machines in contrast to
our goal of reducing the load on the server nodes.

Cheung and Madden [19] have done work in the area of DSMS, that addresses
problems similar to the ones we tackle in our work. They monitor the execution
of user applications by activating certain probes in an application’s code. This
is very similar to DTrace’s and VProbes’ aquisitional framework. The informa-
tion gathered from these probes includes function invocations, variable values and
memory usage. Any such information is forwarded to a DSMS that performs query
processing, in much the same way as we use STREAM to process queries over I/O
event records. For distributing the processing on several servers they have devised
optimizations to reduce the load on the server nodes. Part of the processing of the
DSMS is executed on the server nodes and some is performed on other nodes. They
have considered the trade-off between CPU utilization on the server node and the
network’s bandwidth.

In general it is more favourable to keep the CPU utilization on the server node
as low as possible so as to not interfere with applications that are being monitored,
but when network bandwidth is scarce it might be better to perform more filtering.
We use the same rationale for optimizations in our approach.

The main differences between this work and the approach by Cheung and Mad-
den, called EndoScope [19], is the different application domain, which also results
in a very different optimization goal. EndoScope instruments an application with
probes and thus the focus of optimization is to determine the probes that incur
the least performance impact. In our work only one continuous data source at one
fixed location is considered.

16

Chapter 3

System Design

3.1 System Organization

In this thesis we present a system for monitoring storage I/O activity in virtual
machines. The monitored statistics can be customized using a flexible query lan-
guage. The data stream management system STREAM processes the logged data
on I/O requests by executing the user’s queries. The DSMS is distributed on the
server nodes that host the virtual machines and a central monitoring node.

Figure 3.1 illustrates our architecture. We monitor the storage I/O to and from
virtual machines hosted on server nodes. Each of these server nodes hosts several
virtual machines that are backed by image files on local hard disks. In each of the
server nodes an instance of a DSMS is running in Domain 0. Another DSMS is
running on a central monitoring node that is receiving packets over the network
from the DSMS instances on the server nodes. We call a DSMS instance on a server
node a “filter” DSMS, because this instance mainly filters selected tuples from the
monitored data. Conversely, the DSMS receiving tuples on the monitoring node is
called the “monitor” DSMS. It performs any remaining processing on the tuples.

Inside the server nodes, the filter instances receive the data about I/O requests
from an extension to the normal mechanism that virtualizes disk I/O in Xen. On
top of serving the I/O requests, it logs the properties of requests to a Unix domain
socket, which is read by the filter DSMS.

In order to explain the different components of our system, we look at what
events occur in the virtual machines, the server’s Domain 0, and the monitoring
node. The active components of our system in the virtual machine – or user domain
as opposed to Domain 0 – are described in Figure 3.2. The terms user domain and
Domain 0 are abbreviated to DomU and Dom0. Any workload that performs I/O
operations in the virtual machines can access several underlying virtual disks. In
the example there is a virtual root partition /dev/sda1 and a virtual swap partition.
In the virtual machine’s Linux kernel all of the requests are sent to a frontend driver
(Xen blkfront) and are ultimately performed by a backend (Xen Blocktap) in
Domain 0. The interface in Domain 0’s kernel is called blktap.

17

Monitor Node

Server Node Server Node Server Node

+

Queries Results

+*
Filter DSMS
Monitor DSMS

Disk Disk Disk

Unix domain
socket

UDP socket

** *

VM VM VM VM VMVM

Figure 3.1: I/O Monitoring Architecture

Xen
blktap

Dom0
Kernel

Xen
blkfront

Xen
blkfront

Req/Resp

Req/Resp

Workload

Req/Resp

Req/Resp

Virtual Disk
swap

Virtual Disk
sda1

DomU
KernelDomU Userspace

Req/Resp

Req/Resp

Figure 3.2: Guest Domain

18

Figure 3.3 illustrates the components in Domain 0. The I/O requests and re-
sponses are received in the kernel by the backend driver Blocktap and are forwarded
to a user process that performs the I/O using Linux’s asynchronous I/O (AIO)
framework – this is one of the so-called Blocktap drivers. As blktap is running in
MODE INTERPOSE the user process tapdisk has to serve the requests itself instead
of letting blktap serve them. When requests arrive from the backend driver, they
are immediately logged to a Unix domain socket and responses are logged when
they arrive from the AIO framework.

Unix Domain
Socket Tuplestapdisk

AIO

Dom0 Userspace

Physical
Disk
sda1

Linux
AIO

Req/
Resp

xen
top

Xen
blktap

Dom0
Kernel

asynchronous
request

asynchronous
response

Filter
DSMS

Figure 3.3: Server Node Domain 0

In the filter DSMS, an input operator reads the tuples from the socket and
processes them. The results are sent over a UDP channel to the monitor DSMS on
the monitoring node (See Figure 3.4). After aggregation and additional processing
in the monitor DSMS, the query results are delivered to the user.

When the user issues a query, it is first analyzed by the optimizer, which splits
the query into a filter query and a residual monitor query that are executed by the
two DSMS instances. For the purposes of this work, queries are optimized (split
into filter and residual parts) manually. Xing et al. [47] present an optimizer that
automatically and dynamically transfers operators between nodes. However the
design and implementation of such an optimizer is out of the scope of this thesis.

19

optimizer

monitor
query residual

query

query
results

Monitor node
userspace

Server node
userspace

filter
query

filtered tuples clientFilter
DSMS

Monitor
DSMS

Figure 3.4: Server and Monitor Node

3.2 Data Model

Users can issue queries to the optimizer that use all of the fields mentioned in Table
3.1 (See Table 3.2 for an example of actual data). Each of the different components
– tapdisk, the filter STREAM instance and the monitor STREAM instance – adds
more information to each monitored request. The column “STREAM name” in Table
3.1 shows the abbreviated name of the field as it is used in queries. The “Type”
column specifies the type and possible range of values if applicable. The datatypes
used in the data model are 32-bit signed integers (for numbers) and null-terminated
fixed-size character arrays (for strings).

Each component has access to information collected in previous components
and adds fields to the incoming tuples. The last three columns specify in which
component the fields are available. The column labelled “tapdisk” indicates that
the fields are available in tuples generated by tapdisk. The “Filter DSMS” column
lists the fields available in tuples produced by the Filter DSMS instance and the
“Monitor DSMS” column lists fields available in the Monitor DSMS. Users can
formulate queries with all the fields. An optimizer should then split the query
into a portion that can be performed by the Filter DSMS and a portion that is
performed by the Monitor DSMS.

The example data shown in Table 3.2 contains requests denoted with a ‘Q’ in
the Type column and responses denoted with an ‘R’. From the example one can
see that the request ID and the timestamps increase. The request ID associates
responses with the corresponding requests. In the input operator of the monitor
STREAM another timestamp (Monitor DSMS Timestamp) and the IP address of the
server node (Source Node IP) are added.

20

Field STREAM

name
Type tap-

disk

Filter
DSMS

Monitor
DSMS

Blocktap Timestamp BlktapTS 32-bit int X X X
Record Type Type char[2]:

{Q,R,E,N}
X X X

Read/Write IOOp char[2]:
{r,w}

X X X

Request ID ReqId 32-bit int X X X
Sector on Virtual Disk Sector 32-bit int X X X
Number of Sectors Size 32-bit int X X X
Virtual Machine Name VMName char[15] X X X
Virtual Disk Device VDisk char[10] X X X
Physical Disk Device PDisk char[10] X X X
Filter DSMS Timestamp FtrTS 32-bit int X X
Monitor DSMS Timestamp MtrTS 32-bit int X
Source Node IP IP 32-bit int X

Table 3.1: Record Schemata at Various Points in the Monitoring System

BlktapTS Type IOOp ReqId Sector Size VMName VDisk PDisk FtrTS
21295029 Q w 788 6512 8 muscatvm51 /dev/sda1 /dev/sda3 4025890
21301076 R w 788 6512 8 muscatvm51 /dev/sda1 /dev/sda3 4033818
21301263 Q w 789 6520 88 muscatvm51 /dev/sda1 /dev/sda3 4033842
21301272 Q w 790 6608 88 muscatvm51 /dev/sda1 /dev/sda3 4033847
21301278 Q w 791 6696 16 muscatvm51 /dev/sda1 /dev/sda3 4033852
21308471 R w 789 6520 88 muscatvm51 /dev/sda1 /dev/sda3 4041796
21309371 R w 790 6608 88 muscatvm51 /dev/sda1 /dev/sda3 4041804
21309378 R w 791 6696 16 muscatvm51 /dev/sda1 /dev/sda3 4041809
21309438 Q w 792 6712 8 muscatvm51 /dev/sda1 /dev/sda3 4041814
21315419 R w 792 6712 8 muscatvm51 /dev/sda1 /dev/sda3 4045853

Table 3.2: Filter STREAM input example

21

3.2.1 Timestamps

Timestamps are collected at three logical components of the system:

1. At the tapdisk process, when the request is first queued and when it has
been completed (BlktapTS).

2. In the input operator of the Filter STREAM instance on the server node (FtrTS).

3. In the input operator of the Monitor STREAM instance on the monitor node
(MtrTS).

The BlktapTS records the times when a request is actually queued and com-
pleted. For technical reasons two other timestamps have to be recorded for STREAM.

STREAM internally uses timestamps, e.g., to calculate when a tuple is not con-
tained in a time-based window anymore. STREAM requires tuples to arrive in non-
decreasing timestamp order. Our monitoring system consists of several different
processes running on several physical machines. In this setting it would be difficult
to guarantee perfect synchronization of clocks. Scheduling of different processes and
network congestion can modify the order the requests arrive in the DSMS. This is a
common problem in distributed DSMSs. STREAM does not address this problem and
treats out-of-order timestamps as fatal errors. An acceptable work-around to this
problem would be to ensure synchronized clocks with another technique such as the
network time protocol (NTP) at regular intervals. Then the maximum difference
in the clocks of the different virtual and physical machines could be specified. The
DSMS should then regard tuples arriving at different timestamps within the inter-
val specified by this imprecision as arriving at the same time instant. To accomplish
this with STREAM , one would have to implement a notion of imprecision in all of
STREAM’s operators, but this modification is out of the scope of this work. In our
simple work-around to this general problem, each STREAM instance collects a new
timestamp for a tuple when it is read in STREAM’s input filter. Thus the timestamp
will never decrease.

Originally, timestamps in STREAM are measured in seconds, but disk access times,
seek times and rotational latency are usually on the order of milliseconds. Microsec-
ond granularity has been chosen for this work because it allows us to capture these
I/O related durations.

Timestamps are stored using signed 32-bit integers. Ideally, timestamps would
be recorded as unsigned 64-bit integers but this datatype is not supported by
STREAM. Adding this datatype would have required significant changes to STREAM’s

parser and operators. Instead we use the built-in 32-bit integer type. Due to this
very limited size of timestamps we do not use timestamps relative to the Unix
epoch. When we consider a granularity of microseconds, signed 32-bit integers can
only cover time periods of up to 35 minutes. Therefore the three timestamps refer
to the start of the respective component as a point of reference. For a more realis-
tic scenario the problem of clock synchronization should be addressed and a more

22

flexible datatype for timestamps should be added to STREAM. These changes are out
of the scope of this work.

3.2.2 Request ID

The request ID associates a request with its response. Request IDs are unique with
respect to a particular virtual disk. Together with the IP address of the physical
machine, the name of the virtual machine, and the virtual disk, a request ID is
a globally unique identifier for a response/request pair. With the Type field that
specifies if the tuple is a request or response, all tuples can be uniquely identified.

3.2.3 Categorical Fields

The fields abbreviated as VMName, VirtDisk, PhysDisk record the name of the
virtual machine and paths to the virtual and physical disk devices as seen in the
virtual machine and Domain 0. IP records the IP address of the sending physical
node as a 32-bit integer.

Each I/O event is a request, response or an error. The Type field distinguishes
among these types of events. For requests we use “Q”, for responses “R”. Errors are
simply encoded with an “E” or more specifically if the operation is not supported
with an “N”. If a request is trying to write, its IOOp column contains “w”. If it is
a read request, the IOOp is “r”.

3.2.4 Other Numerical Fields

The “Sector on Virtual Disk” field is simply the sector offset in the image file or
partition and the field “Number of Sectors” records the size of the request measured
in sectors. Requests are always multiples of the page size as this is the unit Xen
deals with, e.g., multiples of 8 as there are 8 sectors in a 4K page. The requests
used by Xen are limited to up to 11 pages, i.e. 88 sectors, but could be merged
again in Domain 0’s kernel [20].

3.3 Extending Blocktap

Blocktap is Xen’s recommended method for using image files to back virtual ma-
chines. It uses the Linux asynchronous I/O framework and has better throughput
than the loop device. We have merely modified its user-level component (tapdisk)
to log issued and completed requests to a pipe or Unix domain socket. Information
about Xen’s configuration is obtained from the XenStore and is used to populate
the Virtual Disk Device, Physical Disk Device and Virtual Machine Name fields in
the tuples generated by Blocktap .

23

3.4 Extending STREAM

STREAM is modified mainly in two areas: input and output operators and operator
scheduling. The last released version of STREAM (0.6.0) features a command line
interface and a Java GUI client. Both assume that input tuples are read from a file
in a CSV-like file format. Each tuple in this file defines a tuple in an input stream.
One has to specify the timestamp at which the tuple can be read by STREAM at
the granularity of seconds. To measure significant numbers for I/O requests this
granularity was changed to microseconds, which allows a maximum of 35 minutes of
experiment runtime (See Section 3.2.1). Instead of using the script input operator,
an input operator for UDP sockets was added.

In order to measure STREAM’s performance we are comparing the CPU uti-
lization of different CQL queries, but STREAM is using a scheduler that essentially
busy-waits on all the operators. When an operator is scheduled it processes a fixed
number of tuples before returning control to the scheduler. If operators have no
input to process, they simply return immediately to the scheduler, which hands
control to another operator. If STREAM has no tuples to process, it effectively con-
tinuously polls for new tuples. The effect of this is that STREAM always fully utilizes
one processor of the computer. We have changed this by simply adding a sleep call
for the STREAM thread of 100 microseconds in case none of the operators have any
tuples to process. As a result, STREAM will have higher CPU utilization when it has
more tuples to process or more work per tuple, and we can use measurements of
CPU utilization to quantify the costs of monitoring I/O activity. We have imple-
mented this simple approach, but an alternate solution would be to use the poll

system call in the input operator to find out when there is new data to process.

3.5 Monitoring Queries

To demonstrate the capabilities of our monitoring system we list some example
queries. Some of the queries were chosen to show the greater flexibility of our
approach compared with such tools as iostat while others show how different
queries affect the performance differently. A subset of the queries is explained
below. The remaining queries that are used in the experiments are shown in the
Appendix.

The queries are expressed in CQL. The semantics of CQL are described in the
STREAM manual [6], the CQL grammar specification [2] and the technical report on
the design of CQL [12]. For each query we provide a sample of the beginning of the
input to STREAM and the corresponding output according to the query. The input
stream from Blocktap is called IOstream and the names of the different fields
are listed in Table 3.1. Sample input and output were given for a filter STREAM

instance that reads tuples directly from Blocktap . The data presented is from an
experiment as defined in Chapter 4.

24

3.5.1 Query 0: Baseline Query

In all the baseline experiments the filter STREAM instance only forwards tuples with-
out performing any processing on them. As in SQL, this identity filter query is
formulated as:

select * from IOstream;

IOstream specifies the input stream for both Monitor and Filter STREAM instances.
The query output is the same as the input example given in Figure 3.2 on page 21.

3.5.2 Query 1: Filter Specific I/O Requests

Type = "Q" specifies requests

query :

select * from IOstream as IO

where IO.Type = "Q" and IO.VMName = "muscatvm51";

Figure 3.5: Query 1

This simple query (See Figure 3.5) only adds some filtering conditions so that
only I/O requests, from the first virtual machine, called “muscatvm51” are output.
Because there is one response for every request, this query halves the number of
tuples forwarded. The second condition potentially further reduces the output rate.
The first 10 lines of sample input and the corresponding output of the query are
shown in Table 3.3 and Table 3.4.

3.5.3 Query 4: Response Times

In this query we calculate the time between the arrival of a request at the tapdisk

process and the arrival of its response (See Figure 3.6). According to the data
model, a request and a response share the same request ID. By joining requests
and responses from the last 3 seconds on their request ID we can compute the
response time of the requests. A time interval of 3 seconds has been chosen because
any file transfer will be finished after this time period. A user could also supply a
different time interval that is larger than the maximum response time, but smaller
window sizes also require more frequent updates to assess what tuples are included
in the window.

25

BlktapTS Type IOOp ReqId Sector Size VMName VDisk PDisk FtrTS
21184390 Q w 780 599544 8 muscatvm51 /dev/sda1 /dev/sda3 3879860
21194843 R w 780 599544 8 muscatvm51 /dev/sda1 /dev/sda3 3894011
21194999 Q w 781 6464 88 muscatvm51 /dev/sda1 /dev/sda3 3894018
21195008 Q w 782 6552 88 muscatvm51 /dev/sda1 /dev/sda3 3894023
21195015 Q w 783 6640 24 muscatvm51 /dev/sda1 /dev/sda3 3894028
21204824 R w 781 6464 88 muscatvm51 /dev/sda1 /dev/sda3 3899858
21206538 R w 782 6552 88 muscatvm51 /dev/sda1 /dev/sda3 3899865
21206546 R w 783 6640 24 muscatvm51 /dev/sda1 /dev/sda3 3899869
21206612 Q w 784 6664 8 muscatvm51 /dev/sda1 /dev/sda3 3899874
21212584 R w 784 6664 8 muscatvm51 /dev/sda1 /dev/sda3 3907900

Table 3.3: Query 1 Sample Input

BlktapTS Type IOOp ReqId Sector Size VMName VDisk PDisk FtrTS
21184390 Q w 780 599544 8 muscatvm51 /dev/sda1 /dev/sda3 3879860
21194999 Q w 781 6464 88 muscatvm51 /dev/sda1 /dev/sda3 3894018
21195008 Q w 782 6552 88 muscatvm51 /dev/sda1 /dev/sda3 3894023
21195015 Q w 783 6640 24 muscatvm51 /dev/sda1 /dev/sda3 3894028
21206612 Q w 784 6664 8 muscatvm51 /dev/sda1 /dev/sda3 3899874

Table 3.4: Query 1 Sample Output

#- calculate the response time by joining the requests

and responses based on their request id.

#- the window contains the tuples that arrived in the last

3000000 micro-seconds = 3 seconds

#- we assume in this query that only one virtual machine

with one virtual disk is active

query :

select IOresp.BlktapTS - IOreq.BlktapTS

from IOstream [range 3000000 second] as IOreq,

IOstream [range 3000000 second] as IOresp

where IOreq.Type = "Q" and IOresp.Type = "R"

and IOreq.ReqId = IOresp.ReqId;

Figure 3.6: Query 4

26

The output in Table 3.6 is what one would intuitively expect from Table 3.5’s
input. For each arriving response tuple we obtain one new response time. We
have added the corresponding request ID column for each output tuple for better
readability.

BlktapTS Type IOOp ReqId Sector Size VMName VDisk PDisk FtrTS
21128269 Q w 784 599632 8 muscatvm51 /dev/sda1 /dev/sda3 3658847
21142381 R w 784 599632 8 muscatvm51 /dev/sda1 /dev/sda3 3674820
21142535 Q w 785 6456 88 muscatvm51 /dev/sda1 /dev/sda3 3674827
21142544 Q w 786 6544 88 muscatvm51 /dev/sda1 /dev/sda3 3674832
21142550 Q w 787 6632 24 muscatvm51 /dev/sda1 /dev/sda3 3674837
21159268 R w 785 6456 88 muscatvm51 /dev/sda1 /dev/sda3 3690820
21159277 R w 786 6544 88 muscatvm51 /dev/sda1 /dev/sda3 3690827
21159283 R w 787 6632 24 muscatvm51 /dev/sda1 /dev/sda3 3690831
21159360 Q w 788 6656 8 muscatvm51 /dev/sda1 /dev/sda3 3690836
21165320 R w 788 6656 8 muscatvm51 /dev/sda1 /dev/sda3 3698819

Table 3.5: Query 4 Sample Input

RespTime ReqId
14112 784
16733 785
16733 786
16733 787
5960 788

Table 3.6: Query 4 Sample Output

Comments in bold font

3.5.4 Query 8: Filter Tuples with High Response Time

The tuples in the output of this query represent I/O requests that have a higher
than average response time. In general, I/O requests with much higher than aver-
age response time might suggest that there is some inefficiency in how I/O requests
are fulfilled or the virtual machines might be competing for the system’s I/O band-
width. Such events could trigger a reaction by a self-tuning system or be relayed
to an administrator.

This query filters out requests that took 25% longer to be completed than the
current average response time of all responses received so far. The response times
were computed as in Query 4. The average response time is computed in the
subquery DiffAvg and compared to the newest computed response time from Diff2

(See Figure 3.7). We make sure that only the last computed average response time
is considered using a join on the request ID.

27

#- response time as in query 4

#- additionally the request id is recorded

#- we assume in this query that only one virtual machine

with one virtual disk is active

vquery :

select IOreq.ReqId, IOresp.BlktapTS - IOreq.BlktapTS

from IOstream [range 3000000 second] as IOreq,

IOstream [range 3000000 second] as IOresp

where IOreq.Type = "Q" and IOresp.Type = "R"

and IOreq.ReqId = IOresp.ReqId;

vtable : register stream

Diff2(ReqId integer, Value integer);

#- compute the sum of response times and the number of response

to compute an average response time.

#- the most recent request ID is computed with the third

aggregation operator and used in a join in the last subquery.

vquery :

Istream(

select Sum(D2.Value),Count(*),Max(D2.ReqId) from Diff2 as D2);

we have to avoid STREAM’s keywords Sum, Count

in the attribute names of the output

vtable : register stream

DiffAvg(IOSum integer, IOCount integer, ReqId integer);

#- each new individual request’s (Diff2.Value) response time

is compared to the average (DAvg.IOSum/DAvg.IOCount).

#- the join on the request ID ensures that only

the last average is used for comparison.

#- we have to scale the values by 4 and 5 because

casting types is not supported.

query :

select D2.ReqId,DAvg.IOSum/DAvg.IOCount,D2.Value

from Diff2 as D2, DiffAvg as DAvg

where 4*(D2.Value) >= 5*(DAvg.IOSum/DAvg.IOCount)

and D2.ReqId = DAvg.ReqId;

Figure 3.7: Query 8

28

In the sample input of the first 5 tuples (See Table 3.7) two response times are
computed. The subquery Diff2 calculates the response times of when the responses
arrive. Its values are 7,433 and 16,006 microseconds. The second response time is
more than 25% higher than the average response time of 11,719 (See Table 3.8).
We have also indicated the corresponding vales for the first response time as a
comment. In this case the average and current response times are equal and the
response time is not written to the output.

BlktapTS Type IOOp ReqId Sector Size VMName VDisk PDisk FtrTS
18972991 Q r 784 623248 8 muscatvm51 /dev/sda1 /dev/sda3 555850
18980424 R r 784 623248 8 muscatvm51 /dev/sda1 /dev/sda3 569938
21485228 Q w 785 475280 8 muscatvm51 /dev/sda1 /dev/sda3 3067784
21501234 R w 785 475280 8 muscatvm51 /dev/sda1 /dev/sda3 3083784
21501291 Q w 786 407584 8 muscatvm51 /dev/sda1 /dev/sda3 3083794

Table 3.7: Query 8 Sample Input

ReqId AvgRespTime RespTime
784 7433 7433
785 11719 16006

Table 3.8: Query 8 Sample Output

Comments in bold font

29

Chapter 4

Experimental Results

4.1 Overview of Experiments

We have conducted a series of experiments to show how the system performs in
comparison to a baseline and how different circumstances modify these results. In
particular we answer the following questions:

1. What is the overhead of collecting I/O event tuples?

2. How does the overhead vary with the complexity of the query?

3. How does the performance scale with the number of concurrently executed
queries?

4. Can we reduce the performance impact on the server node by offloading pro-
cessing to the monitor node?

5. Does filtering of requests at the server node reduce load on the monitor node?

6. How does the system scale with the number of server nodes and virtual ma-
chines?

4.2 Experimental Testbed

The equipment used for the experiments is an IBM Blade Center. The Blade
Center has a Model H chassis containing 28 blades, model number LS-21. From
these we used four of the blades, with up to three as the server node and one as the
monitoring node. The blades used have two AMD dual-core 2212 HE CPUs at 2.0
GHz, 10GB of RAM, and a single 67GB 10000 RPM internal hard disk. The disk’s
vendor is Fujitsu and the model used is a MBB2073RC. The virtual machines are
backed by image files on this local hard disk. The nodes are connected over an
internal network with 1Gb of bandwidth.

30

The operating system installed on the machines is OpenSuSE 10.3 with the dis-
tribution package of Xen, which is in version 3.1. The source code of the user-level
processes providing Blocktap functionality is modified for some of the experiments.
In all experiments the Linux kernel version 2.6.22 is used. The experiment driver
node is another computer that only executes a script that starts and stops compo-
nents and evaluates their output.

4.2.1 Virtual Machine Configuration

In our experiments we use paravirtualized guest domains. The guest domains run
debian 4.0 Linux in a very minimal version. The guest domains use the same
Linux kernel 2.6.22 with Xen modifications as Domain 0. Each virtual machine has
one ext3 filesystem backed by an image file as root partition of size 4.8GB. The
root partition uses the Blocktap backend driver. No swap partition is used in the
experiments. The root partition image is stored on a 19GB ext3 partition on the
internal hard disk. Each of the virtual machines uses a fixed 256MB of the server
node’s 10GB of RAM. Domain 0 uses all of the remaining RAM not used by guest
domains.

Each virtual machine is assigned a different processor core. Use of a prede-
termined core for each virtual machine guarantees that we are not liable to any
unfairness in CPU scheduling, that could slow down one virtual machine in favour
of another.

4.2.2 Measurement Tools

In the experiments xentop is used to measure CPU utilization in Domain 0 and
in the guest domains. Version 3.1 of xentop is patched to flush its output to disk
when terminated.

xentop reports one utilization value and does not differentiate between system
or user time and scales all results to the number of virtual cpus allocated to a
virtual machine. For a virtual machine with four virtual CPUs, xentop reports a
number from 0 to 400. With four virtual CPUs of which one is fully utilized, xentop
reports 100% utilization. In the experiments each guest domain and Domain 0 are
assigned one VCPU. Thus the maximum utilization for measurements is 100%.

4.2.3 Experiment Methodology

Figure 4.1 illustrates how the experiments are set up. The experiment driver run-
ning on the experiment node runs the experiments in five steps:

1. The monitor DSMS instance is started, if the experiment requires it.

31

2. The filter DSMS instance is started.

3. xentop is started in Domain 0 on the server node and on the monitor node,
if required.

4. The virtual machine(s) are started on the server node(s).

5. The workload is started in the virtual machine(s) using SSH.

When the experiment finishes the components are stopped in the reverse order and
their output is collected.

DomU Dom0

Userspace

Start/Stop
DomU

Start/Stop
xentop

Start/Stop
Monitor STREAM

Start & Wait for
Workload

Experiment
driver node

Monitor
node

Start/Stop
Filter STREAM

or reader

Server
node

Exp.
Driver

123

5
4

Figure 4.1: Execution of Experiments

4.3 Experiments

The test workload used in all of the experiments is a program that copies a large file.
The test workload is allowed to run for 60 seconds, at which point the execution is
interrupted and the number of bytes copied is recorded. This has been implemented
by modifying the source code of GNU’s cp to accept an additional parameter that

32

specifies a “timeout” value when the copy process should be interrupted. For the
experiments the test workload is executed in one or several virtual machines.

STREAM by default writes a query’s result to an output file. In all of the exper-
iments in this section query results are written to a file on another NFS partition.
This does not interfere with the I/O workload on the local disk on the server node.
The query results are written in binary format. On the monitoring node the output
is also written to an NFS partition.

For each configuration of the system or CQL query the steps described in Section
4.2.3 have been repeated 15 times and the reported results are averages over the 15
runs. Confidence intervals for a significance level of 95% are displayed. For some
experiments they might not be visible because of the size of the figures.

For each run the reported utilization is the arithmetic mean of measurements
over 5 second intervals. For each interval the used measurement tools compute
utilization as averages over the given time period. The measurements from the
first three intervals and the last interval are discarded. This effectively discards the
measured utilization in the first 15 seconds and the last 5 seconds of the experiment,
in order to focus on the performance of the system when it has started up and is
under load.

4.3.1 Experiment 1: Overhead of Tracing I/O Tuples

In order to determine the overhead of tracing I/O events in Blocktap and read-
ing them into STREAM we have conducted an experiment comparing three different
configurations of our system:

B0: No tracing of I/O events Blocktap is serving the virtual machine I/O re-
quests but the requests are not traced.

B1: I/O events are traced and read A modified version of Blocktap logs meta-
data for each request to a Unix domain socket. The fields in each of these
tuples are defined in the data model in Section 3.2. Tuples are read in block-
ing mode from the socket by a simple application in Domain 0 and discarded.
Tuples are neither stored nor processed.

Q0: I/O events are read by STREAM Instead of a simple reader, the filter STREAM
instance reads the tuples from the Unix domain socket and executes Query
0. This query neither filters any tuples nor processes their fields. The query
results are written to a file on a different NFS partition in binary format.

Figure 4.2 shows average Domain 0 CPU utilization under each of these con-
figurations. A comparison of the utilizations for configurations B0 and B1 shows
that tracing to and reading from the Unix domain socket increases average CPU
utilization in Domain 0 by only 3% and is therefore not expensive. Replacing the

33

B0 B1 Q0
Queries

0

5

10

15

20

D
o
m

a
in

 0
 C

P
U

 U
ti

liz
a
ti

o
n
 (

x
e
n
to

p
)

Figure 4.2: Results of Experiment 1

simple reader with a STREAM instance incurs an increase in CPU utilization of 1.32%
from 15.08% (B1) to 16.41% (Q0) in Domain 0. The amount of work done does not
depend on which configuration is used. No statistically significant difference in the
number of bytes copied in the virtual machine has been observed when comparing
the different configurations. Overall logging I/O requests in Blocktap and reading
the corresponding tuples in STREAM does add overhead, but the additional overhead
is not too great, and in particular it is much less than the overhead incurred in
Domain 0 to support I/O in the guest VM.

4.3.2 Experiment 2: Impact of Query Complexity

In this experiment we evaluate the impact of a query’s complexity on STREAM’s

performance. The configuration is the same as in configuration Q0; the workload
is performed in a single virtual machine and a filter STREAM instance reads the
monitored data from a Unix domain socket and writes to a file on another partition.
Instead of Query 0, the more complicated Queries 1 to 10 are executed by a filter
STREAM instance. No monitor STREAM instance is used. We are measuring the
CPU utilization in Domain 0 to show that STREAM’s performance depends on the
numbers of operators, joins, and tuples that have to be processed for a particular
query. The different queries are presented in Section 3.5 and in the Appendix.

The differences in CPU utilization compared to the baseline query Q0 range
from -0.03% for Query 1 to +3.53% for Query 10 (See Figure 4.3). The complexity
of a query does not modify the amount of work done. There is no statistically

34

Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
Queries

0

10

20

D
o
m

a
in

 0
 C

P
U

 U
ti

liz
a
ti

o
n
 (

x
e
n
to

p
)

Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
Queries

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

In
cr

e
a
se

 i
n
 D

o
m

0
 C

P
U

 U
ti

liz
a
ti

o
n
 f

ro
m

 Q
0
 (

x
e
n
to

p
)

Figure 4.3: Results of Experiment 2

35

significant difference in the number of bytes copied in the virtual machine among
the different queries. In Query 1 an additional filter selects only 50% of the input
tuples and therefore offsets the processing costs for this selection with lower costs
to output tuples. The most expensive queries, Query 9 and 10, make use of group
by statements in connection with time-based windows. The time-based windows
frequently have to remove outdated tuples from the input. The resulting relation is
then processed by the group by statement. Especially Query 10, with three queries
with independent output files and with three group by statements for several fields,
emphasizes the performance impact of this sequence of operators. Query 8, which
extends Query 4 with an additional Istream operator and a join of two streams,
increases the utilization notably. The most expensive queries Query 8, 9, and 10
compute statistics that involve both requests and responses. However Query 5
selects only requests and still has a considerable performance impact because of
the use of small tuple-based windows that have to be updated frequently.

Queries 1, 2, 6, and 7, which only perform simple filtering and do not have small
time- or tuple based windows in conjunction with group by statements or joins,
have little performance impact. We conclude that arbitrary queries should not be
executed on the server node. Instead only simple queries with low overhead should
be run on the server node. Filter queries that only select portions of the input
stream without further processing are good candidates for this. More complicated
queries with more processing costs should be offloaded to the monitor node instead.

4.3.3 Experiment 3: Parallel Query Execution Scalability

In practice many users might simultaneously issue queries to the monitoring system
to analyze I/O activity. The purpose of this experiment is to show how the num-
ber of simultaneously executed queries modifies the performance of STREAM. The
setup of the experiment is as follows. The performance of STREAM is evaluated by
measuring the CPU utilization in Domain 0. One filter STREAM instance executes
Query 5 or Query 9 multiple times. Each query reads from the same input stream
and writes to a different output file. STREAM sets a limit on how many operators,
synopses, and outputs are used. Therefore the queries can be executed at most 8
times in parallel. In this experiment the query was executed 1, 2, 4, and 8 times in
parallel. We denote the last configuration by Q5x8 for Query 5.

Queries 5 and 9 cause an overhead of approximately 1.43% and 2% CPU utiliza-
tion relative to Query 0 when executed a single time. This difference in utilization to
Query 0 increases almost linearly with the number of parallel executions of queries 5
and 9 (See Figure 4.4). The overhead of STREAM for the three queries does not scale
linearly with the number of parallel executions because all queries use one single
input stream. Thus all input tuples have to be read exactly once from the socket
regardless of the number of parallel query executions. The high overhead observed
in this experiment shows that no large number of queries should be executed on the
server node. Instead the processing should then be offloaded to the monitor node.

36

1 2 4 8
Number of Queries

15.0

17.5

20.0

22.5

25.0

27.5

30.0

32.5

35.0

37.5

40.0

D
o
m

a
in

 0
 C

P
U

 U
ti

liz
a
ti

o
n
 (

x
e
n
to

p
)

Q0
Q5
Q9

Figure 4.4: Results of Experiment 3

4.3.4 Experiment 4: Impact of Offloading on Utilization

This experiment shows the effect on utilization of offloading query processing from
the server node to the monitoring node. A filter instance of STREAM runs on the
server node and a monitor STREAM instance runs on the monitor node. The query
results of the filter STREAM instance are written to a UDP socket instead of a file in
this experiment. The monitor STREAM instance reads the tuples from the socket and
performs all of the processing for Query 5x8 instead of the filter STREAM instance.
We measure the CPU utilization in Domain 0 on the server node and on the monitor
node to show that we can offload the load on the server node to the monitor node.

The filter STREAM instance does not process the input tuples but instead for-
wards all of them to the monitoring node. The corresponding CQL query is Query
0 and the configurations is therefore denoted by Q0Q5x8. We also compare the
performance of this query to the baseline configuration Q0Q0 to show what the cost
for sending and receiving tuples over a UDP connection is. Figure 4.5 illustrates
the configuration Q0 and the new configuration Q0Q5x8.

In Figure 4.6 the measured utilizations in Domain 0 on both the server node
and the monitor node for the configurations with and without offloading are shown.
The utilization on the server node for Configuration Q0Q0 increased slightly relative
to Configuration Q0. Thus, sending the tuples over the UDP connection instead of
writing them to a file incurs only a small performance increase. A CPU utilization

37

VM *

Query 0

Server Node

Configuration Q0

VM * +
Query 0

Monitor NodeServer Node

Query 5
x8

Configuration Q0Q5x8

+*
Filter STREAM
Monitor STREAM

File

File

Figure 4.5: Distributed Configurations

Q0 Q0Q0 Q5x8 Q0Q5x8
Queries

0

5

10

15

20

25

30

35

40

D
o
m

a
in

 0
 C

P
U

 U
ti

liz
a
ti

o
n
 (

x
e
n
to

p
)

Server Node
Monitor Node

Figure 4.6: Results of Experiment 4

38

of 4.07% was measured on the monitoring node for Configuration Q0Q0.

As expected the performance of the offloaded Query Q5x8 on the server node
does not differ from the baseline performance Q0Q0. The utilization on the mon-
itoring node for Query Q5x8 is approximately 16.5%. This is exactly the same
overhead STREAM causes on the server node. It is computed by subtracting the per-
formance impact of Blocktap of 12% from the CPU utilization of 28% for Query
Q5x8. The CPU utilization of Configuration Q0Q0 on the monitor node matches
STREAM’s overhead for Query 0 on the server node.

The chart also contains the utilizations on the server node for the queries that do
not employ offloading. The measurements show that offloading to the monitoring
node does not greatly increase the sum of utilizations in server and monitor node.
Thus the overall overhead of offloading is small. Additionally offloading has the
advantage of decreasing the load on the server node and is therefore a viable option
if the CPU resources on the server node are scarce.

4.3.5 Experiment 5: Effect of Filtering

In this experiment the query processing is split between the filter STREAM instance
on the server node and the monitor STREAM instance on the monitor node. Instead
of simply forwarding all tuples as in Experiment 4, the filter STREAM filters some
of the tuples using a simple condition before forwarding the remaining tuples to
the monitor node. The purpose of this experiment is to show that simple filter
queries do not incur a significant performance impact on the server node, while
they simultaneously reduce the load on the monitor node and the network. If
tuples can be filtered at the server node they do not contribute to the network
traffic and do not have to be read and processed at the monitor node. To evaluate
this effect we measure the CPU utilization on the server node and on the monitor
node as well as the amount of network traffic over the course of the query execution.
We compare the measurements to the measurements for the configuration that uses
offloading but no filtering.

This experiment is based on Query 5, which has been split into two parts. The
first part, the filter query (F), is shown in Figure 4.8 and is executed by the server
node. The second part, denoted by Q5’ consists of the remainder of Q5, which is
shown in the Appendix. Q5’ is executed 8 times in parallel at the monitor node.
This configuration, denoted QFQ5’x8, is illustrated in Figure 4.7.

Figure 4.9 shows that filtering reduces the CPU utilization on both the server
node and the monitor node. On the server node the utilization drops by 1.2%
because fewer tuples have to be sent over the network. The CPU utilization also
drops by a small amount (1.8%) on the monitor node, because fewer tuples have to
be read from the UDP socket and the filter for requests is not executed.

Figure 4.9 also shows the bandwidth usage between the server and the moni-
toring node over the course of the complete experiment for the offloading and the

39

+*
Filter STREAM
Monitor STREAM

VM * +
Filter Query

Monitor NodeServer Node

Query 5'
x8

Configuration QFQ5'x8

File

Figure 4.7: Configuration with Filter Query

select * from IOstream where IOstream.Type = "Q";

Figure 4.8: Filter Query

filtering configuration. The bandwidth usage has been computed by measuring how
many tuples have been sent over the network and multiplying this by the size of
each sent tuple. As the filter selects only the requests and not their responses it is
not surprising that half of the bandwidth is saved using filtering.

In general the benefits of filtering will depend on the selectivity of the filter
query. Other simple filters could for example select only read/write requests or I/O
transfers for a particular virtual machine or virtual disk.

4.3.6 Experiment 6: Virtual/Physical Machine Scalability

In this experiment we examine how the monitor STREAM’s performance scales with
the number of virtual and physical machines. In a more realistic setting the ability
to monitor multiple machines in a cluster is very important. In our setup the
number of physical machines scales from one to three, each hosting up to three
virtual machines. Thus the experiment workload is performed in up to nine virtual
machine. The configuration of the virtual machines is identical. When one up to
three virtual machines are used, they are all hosted on the first server node. The
fourth up to the sixth virtual machine are hosted on the second node and in the
experiment with seven or more virtual machines all three server nodes are used.

The filter STREAM instances on each server node simply forward all tuples from all
virtual machines by performing Query 0. We compare the CPU utilization incurred

40

Q0Q5x8 QFQ5'x8
Queries

0

10

20

30

40

D
o
m

a
in

 0
 C

P
U

 U
ti

liz
a
ti

o
n
 (

x
e
n
to

p
)

Server Node
Monitor Node

Q0Q5x8 QFQ5'x8
Queries

0

2000

4000

6000

8000

10000

12000

K
B

 S
e
n
t

o
v
e
r

N
e
tw

o
rk

Figure 4.9: Results of Experiment 5

41

by performing Query 10 or Query 0 on the monitor node. The monitor STREAM

instance performs a slightly modified version of Query 10 denoted by Q10M. Query
10 computes statistics similar to iostat’s for each virtual disk. For execution on
the monitor node the query has to be modified to differentiate between the virtual
machines hosted on different server nodes. Therefore the field IP is added in the
group by statement and the select clause. See Figure 8 in the Appendix for the
exact CQL formulation.

1 2 3 4 5 6 7 8 9
Number of Virtual Machines

0

5

10

15

20

25

30

M
o
n
it

o
r

N
o
d
e
 C

P
U

 U
ti

liz
a
ti

o
n
 (

x
e
n
to

p
)

Q0Q0
Q0Q10M

Figure 4.10: Results of Experiment 6

Figure 4.10 shows that when only one virtual machine is used, an average uti-
lization of roughly 10% is measured for the Q10M monitoring query. As the number
of virtual machines is increased to two and three, the CPU utilization decreases.
This happens because the virtual machines on the first server node interfere with
each other when performing their I/O workload and thus decrease the overall I/O
throughput. With four virtual machines the second server nodes hosts a single
virtual machine and the CPU utilization increases again by nearly 10%. The same
decrease of utilization can be observed when the number of virtual machines is
scaled up to six virtual machines. As the third physical node has a lower I/O
capacity than the first two physical node, the CPU utilization only increases by
about 7% when seven virtual machines are used. When scaling to the maximum of
nine virtual machines the overall I/O throughput drops slightly again. The same

42

scaling behaviour can be observed when Query 0 is executed on the monitor node
instead of Query 10M.

We conclude that the performance of the monitoring system scales linearly with
the number of input tuples. The number of virtual machines does not affect the
performance negatively. When the workload is I/O-bound an increasing number of
virtual machines interfere more and more and therefore the input rate to STREAM

decreases.

43

Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this work we have contributed the following:

1. We designed a distributed, customizable I/O monitoring architecture. To
create a prototype implementation we have modified two existing pieces of
software: Blocktap and STREAM. A facility for logging of I/O request metadata
to Unix domain sockets has been added to Blocktap. For STREAM, input and
output operators for UDP have been introduced. Example queries show that
the architecture can be used for more flexible and detailed analysis of I/O
transfers.

2. We have performed experiments involving Blocktap and STREAM to analyze
the overhead of the prototype. For that, STREAM’s scheduler has been mod-
ified to avoid busy-looping to make CPU utilization measurements possible.
The results show that I/O monitoring can potentially cause significant over-
head, but that by offloading query processing to a separate monitor node, the
performance impact on the server nodes can be minimized.

3. Additionally we have analyzed how simple filtering at the server nodes and
performing residual queries at the monitoring node can reduce the load on
the monitoring node and the volume of data sent over the network. Filtering
does not require a significant amount of CPU resources.

5.2 Future Work

As a next step we would like to implement more data sources for I/O requests. In
the course of the thesis we have determined that DTrace could probably be used
as an input source. Its current capabilities could thus be extended for distributed

44

and hopefully more flexible queries. With its probes in the Solaris kernel very
fine-grained analysis of I/O requests could be performed.

Another interesting project would be to improve the support for distribution
in our system. A very interesting modification of STREAM would be support for
differing schemata. Currently both DSMS instances share the same schema and
no complicated queries that change the schema can be supported. A facility for
changing schemata would dramatically decrease the amount of data sent over the
network in some cases. We also would like to try to port our input sources to other
DSMSs with more support for distribution. For example Borealis would be one
candidate. It already has some notion of load-balancing and is perhaps able to
support a more automated query optimization for our optimization goal.

Another goal is the design of an automated resource allocation mechanism using
queries that signal poor performance. Currently Xen does not support fine-grained
scheduling of I/O resources, but we would like to build a basic mechanism for
this. Another approach to a self-tuning system could be to assign I/O intensive
workloads to less utilized virtual machines. With the current system it might also
be possible to devise a mechanism that analyzes a virtual machine workload and
automatically optimizes the storage configuration for this workload.

Some minor technical goals would be to improve the fault-tolerance and auton-
omy of the system by introducing special control and error tuples to signal problems
to the STREAM instances.

45

Appendix

In this appendix the actual CQL code is shown for the remaining queries, that have
not been explained in Section 3.5 due to space constraints. Comments have been
added to explain the goal and the technical details of each query. The first line of
each listing states the desired result of the query. The input for each query is the
stream IOstream with all the fields available to a filter DSMS instance (See the
data model in Table 3.1 on page 21).

#- compute the sum of all I/O transfers

#- produces new output for every new response tuple

must select either responses or requests

as both contain the request size

query : Istream (

select Sum(IO.Size) from IOstream as IO where IO.Type = "R"

);

Figure 1: Query 2: Sum of the Size of I/O Requests

46

#- compute the interarrival time between requests

#- produces new output for every new request tuple

#- we assume in this query that only one virtual machine

with one virtual disk is active

select only requests

vquery :

select * from IOstream as IO where IO.Type = "Q";

vtable :

register stream

IOstreamq (BlktapTS integer, Type char(2), IOOp char(2),

ReqId integer, Sector integer, Size integer,

VMName char(15), VDisk char(10), PDisk char(10),

FtrTS integer);

a window on the 2 most recent requests allows to

to compute the interarrival time between them

vquery :

select Max(IOQ.BlktapTS), Min(IOQ.BlktapTS)

from IOstreamq [rows 2] as IOQ

vtable :

register stream Diff1(IOMax integer, IOMin integer);

we need an additional subquery here because STREAM

does not allow mixing of aggregations and arithmetic

operations

query :

select D.IOMax - D.IOMin from Diff1 as D

where D.IOMax - D.IOMin > 0;

Figure 2: Query 3: Interarrival Times

47

#- computes the percentage of sequential requests

#- produces a new updated count for every request tuple,

after the first sequential request has arrived

#- we assume in this query that only one virtual machine

with one virtual disk is active

select only requests

vquery :

select * from IOstream as IO where IO.Type = "Q";

vtable : register stream

IOstreamq (BlktapTS integer, Type char(2), IOOp char(2),

ReqId integer, Sector integer, Size integer,

VMName char(15), VDisk char(10), PDisk char(10),

FtrTS integer);

#- calculate the seek distance from the 1st to the 2nd request,

i.e. the difference betwen the sector where the 1st request

finishes and 2nd request begins.

#- we need a window of the two most recent tuples and establish

their order based on their request ID.

vquery :

Istream(

select IOreq2.Sector - (IOreq1.Sector + IOreq1.Size)

from IOstreamq [rows 2] as IOreq1, IOstreamq [rows 1] as IOreq2

where IOreq1.ReqId + 1 = IOreq2.ReqId);

vtable : register stream DiskHeadMove(HeadMove integer);

count all requests

vquery :

select Count(*) from IOstreamq;

vtable : register stream CountRequest(Counter integer);

count the sequential requests:

requests where the head would have to move 0 sectors

vquery :

select Count(*) from DiskHeadMove as DHM where DHM.HeadMove = 0;

vtable : register stream CountSequntialReq(Counter integer);

scale the count to a percentage from 1 to 100

query :

select 100*CSR.Counter/CR.Counter

from CountSequntialReq as CSR, CountRequest as CR;

Figure 3: Query 5: Percentage of Sequential Requests

48

#- computes the variance of request sizes

#- produces new output for every new response tuple

select only requests

vquery :

select * from IOstream as IO where IO.Type = "Q";

vtable :

register stream

IOstreamq (BlktapTS integer, Type char(2), IOOp char(2),

ReqId integer, Sector integer, Size integer,

VMName char(15), VDisk char(10), PDisk char(10),

FtrTS integer);

arithmetic expressions cannnot be mixed with aggregation

vquery :

select IOQ.Size*IOQ.Size from IOstreamq as IOQ;

vtable :

register stream IOSizeSquared(IOSquare integer);

vquery :

select Count(*),Avg(ISS.IOSquare) from IOSizeSquared as ISS;

vtable :

register stream AvgSquaredIOS(Counter integer, SizeAvg float);

vquery :

select Count(*),Avg(IOQ.Size) from IOstreamq as IOQ;

vtable :

register stream AvgIOS(Counter integer, SizeAvg float);

#- computes the variance as the difference between the

average and the squared average

#- the join on the count ensures that only the most

recent averages are compared. otherwise one new tuple

would first trigger a new squared average and then

a new average.

query :

select ASIOS.SizeAvg - (AIOS.SizeAvg*AIOS.SizeAvg)

from AvgSquaredIOS [rows 1] as ASIOS, AvgIOS [rows 1] as AIOS

where ASIOS.Counter = AIOS.Counter;

Figure 4: Query 6: Variance of Request Sizes

49

#- counts for each request size how often it has appeared

in the last minute.

#- produces new output for every new request tuple or when

a tuple is older than one minute.

#- we assume in this query that only one virtual disk is active

query :

select IO.Sector,Count(*)

from IOstream [range 60000000 second] as IO

where IO.Type = "Q" group by IO.Sector;

Figure 5: Query 7: Histogram of Starting Sectors

#- compute the current queue size, by counting the number of

unresolved requests.

#- produces new output for every new tuple or when a tuple is

deleted from the sliding window.

#- we assume in this query that only one virtual machine

with one virtual disk is active

vquery :

select Count(*)

from IOstream [range 3000000 second] as IO group by ReqId;

vtable :

register stream UnresolvedReq1(Counter integer);

for request/response pairs with a count of 1

only the request has been received by STREAM yet.

query :

select Count(*) from UnresolvedReq1 as U where U.Counter = 1;

Figure 6: Query 9: Number of Unresolved Requests

50

#- compute some of iostat’s statistics for each virtual disk over a

sliding window of the last 3 seconds.

#- 3 queries are performed parallely and written to 3 seperate files

#- new statistics are computed for the first 2 queries when new

request tuples arrive. The third query computes new response

times, when a new response tuple arrives. Results are also

updated when a tuple is older than 3 seconds.

number of requests and average/count/sum of request sizes

for each virtual disk over the last 3 seconds.

query :

select IO.VMName,IO.VDisk,Avg(IO.Size),Count(*),Sum(IO.Size)

from IOstream [range 3000000 second] as IO where IO.Type = "Q"

group by IO.VMName,IO.VDisk;

statistics are computed seperately for read and write requests

query :

select IO.VMName,IO.VDisk,IO.IOOp,Avg(IO.Size),Count(*),Sum(IO.Size)

from IOstream [range 3000000 second] as IO where IO.Type = "Q"

group by IO.VMName,IO.VDisk,IO.IOOp;

response times grouped by the virtual disk over

the last 3 seconds.

vquery :

select IOresp.VMName,IOresp.VDisk,IOresp.BlktapTS - IOreq.BlktapTS

from IOstream [range 3000000 second] as IOreq,

IOstream [range 3000000 second] as IOresp

where IOreq.Type = "Q" and IOresp.Type = "R"

and IOreq.ReqId = IOresp.ReqId and IOreq.VMName = IOresp.VMName

and IOreq.VDisk = IOresp.VDisk;

vtable : register stream

ResponseTimes(VMName char(15), VDisk char(10), Time integer);

query : select RT.VMName, RT.VDisk, Avg(RT.Time)

from ResponseTimes as RT group by RT.VMName, RT.VDisk;

Figure 7: Query 10: iostat for Xen

51

#- compute some of iostat’s statistics for each virtual disk over a

sliding window of the last 3 seconds.

#- 3 queries are performed parallely and written to 3 seperate files

#- new statistics are computed for the first 2 queries when new

request tuples arrive. The third query computes new response

times, when a new response tuple arrives. Results are also

updated when a tuple is older than 3 seconds.

number of requests and average/count/sum of request sizes

for each virtual disk over the last 3 seconds.

query :

select IO.IP,IO.VMName,IO.VDisk,Avg(IO.Size),Count(*),Sum(IO.Size)

from IOstream [range 3000000 second] as IO where IO.Type = "Q"

group by IO.IP,IO.VMName,IO.VDisk;

statistics are computed seperately for read and write requests

query :

select

IO.IP,IO.VMName,IO.VDisk,IO.IOOp,Avg(IO.Size),Count(*),Sum(IO.Size)

from IOstream [range 3000000 second] as IO where IO.Type = "Q"

group by IO.IP,IO.VMName,IO.VDisk,IO.IOOp;

response times grouped by the virtual disk

over the last 3 seconds.

vquery :

select

IOrsp.IP,IOrsp.VMName,IOrsp.VDisk,IOrsp.BlktapTS - IOreq.BlktapTS

from IOstream [range 3000000 second] as IOreq,

IOstream [range 3000000 second] as IOrsp

where IOreq.Type = "Q" and IOrsp.Type = "R"

and IOreq.ReqId = IOrsp.ReqId

and IOreq.IP = IOrsp.IP

and IOreq.VMName = IOrsp.VMName

and IOreq.VDisk = IOrsp.VDisk;

vtable : register stream ResponseTimes

(IP integer, VMName char(15), VDisk char(10), Time integer);

query : select RT.IP, RT.VMName, RT.VDisk, Avg(RT.Time)

from ResponseTimes as RT group by RT.IP,RT.VMName, RT.VDisk;

Figure 8: Query 10M: iostat for Xen on the monitor node

52

References

[1] Bochs project website. http://bochs.sourceforge.net/. Accessed on Jan
29, 2009. 7

[2] CQL specification. http://infolab.stanford.edu/stream/code/

cql-spec.txt. Accessed on Mar 5, 2009. 24

[3] Hyper-v website. http://www.microsoft.com/windowsserver2008/en/us/

hyperv.aspx. Accessed on Jan 29, 2009. 7

[4] OpenVZ website. http://www.openvz.org. Accessed on Jan 29, 2009. 7

[5] Parallels website. http://www.parallels.com/. Accessed on Jan 29, 2009. 7

[6] STREAM manual. http://www-db.stanford.edu/stream/code/user.pdf.
Accessed on Mar 5, 2009. 24

[7] VirtualBox website. http://www.virtualbox.org/. Accessed on Jan 29,
2009. 7

[8] Website on IBM virtualization solutions. http://www.ibm.com/systems/

virtualization/. Accessed on Jan 29, 2009. 7

[9] Daniel J. Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur Çetintemel, Mitch
Cherniack, Jeong-Hyon Hwang, Wolfgang Lindner, Anurag Maskey, Alex
Rasin, Esther Ryvkina, Nesime Tatbul, Ying Xing, and Stanley B. Zdonik.
The Design of the Borealis Stream Processing Engine. In Conference on In-
novative Data Systems Research (CIDR), pages 277–289, 2005. 14

[10] U.S. Environmental Protection Agency. Report to congress on server and data
center energy efficiency. Public Law 109-431, August 2007. 7

[11] Yanif Ahmad, Bradley Berg, Ugur Çetintemel, Mark Humphrey, Jeong-Hyon
Hwang, Anjali Jhingran, Anurag Maskey, Olga Papaemmanouil, Alex Rasin,
Nesime Tatbul, Wenjuan Xing, Ying Xing, and Stanley B. Zdonik. Distributed
operation in the Borealis stream processing engine. In ACM Special Interest
Group on Management of Data (SIGMOD) Conference, pages 882–884, 2005.
16

53

http://bochs.sourceforge.net/
http://infolab.stanford.edu/stream/code/cql-spec.txt
http://infolab.stanford.edu/stream/code/cql-spec.txt
http://www.microsoft.com/windowsserver2008/en/us/hyperv.aspx
http://www.microsoft.com/windowsserver2008/en/us/hyperv.aspx
http://www.openvz.org
http://www.parallels.com/
http://www-db.stanford.edu/stream/code/user.pdf
http://www.virtualbox.org/
http://www.ibm.com/systems/virtualization/
http://www.ibm.com/systems/virtualization/

[12] Arvind Arasu, Shivnath Babu, and Jennifer Widom. The CQL continu-
ous query language: semantic foundations and query execution. Very Large
Databases (VLDB) Journal, 15(2):121–142, 2006. 15, 24

[13] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer
Widom. Models and issues in data stream systems. In Symposium on Principles
of Database Systems (PODS), pages 1–16, 2002. 3, 14, 16

[14] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Timothy L. Harris,
Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of
virtualization. In ACM Symposium on Operating Systems Principles (SOSP),
pages 164–177, 2003. 7, 8

[15] Fabrice Bellard. QEMU, a fast and portable dynamic translator. In USENIX
Annual Technical Conference, pages 41–46, 2005. 7

[16] Michael Cammert, Christoph Heinz, Jürgen Krämer, Alexander Markowetz,
and Bernhard Seeger. PIPES: A multi-threaded publish-subscribe architecture
for continuous queries over streaming data. Technical Report 50, Philipps-
University Marburg, 2003. 14

[17] Bryan Cantrill, Michael W. Shapiro, and Adam H. Leventhal. Dynamic instru-
mentation of production systems. In USENIX Annual Technical Conference,
pages 15–28, 2004. 2, 5

[18] Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J. Franklin,
Joseph M. Hellerstein, Wei Hong, Sailesh Krishnamurthy, Samuel Madden,
Vijayshankar Raman, Frederick Reiss, and Mehul A. Shah. TelegraphCQ:
Continuous dataflow processing for an uncertain world. In Conference on
Innovative Data Systems Research (CIDR), 2003. 14

[19] Alvin Cheung and Samuel Madden. Performance profiling with EndoScope,
an acquisitional software monitoring framework. Proceedings of the VLDB
Endowment (PVLDB), 1(1):42–53, 2008. 16

[20] David Chisnall. The Definitive Guide to the Xen Hypervisor. Prentice Hall,
2007. 8, 9, 12, 23

[21] collecti website. http://collecti.sourceforge.net. Accessed on Sep 1,
2008. 5

[22] Jeff Dike. A user-mode port of the Linux kernel. In 4th Annual Linux Showcase
& Conference, November 2000. 7

[23] Keir Fraser, Steven Hand, Rolf Neugebauer, Ian Pratt, Andrew Warfield, and
Mark Williamson. Safe hardware access with the Xen virtual machine monitor.
In Workshop on Operating System and Architectural Support for the on demand
IT InfraStructure (OASIS), 2004. 11

54

http://collecti.sourceforge.net

[24] Juan Garcia and David E. Williams. Virtualization with Xen. Syngress, May
2007. 10

[25] Lukasz Golab and M. Tamer Özsu. Issues in data stream management. Special
Interest Group on the Management of Data (SIGMOD) Record, 32(2):5–14,
2003. 14, 15

[26] The STREAM Group. STREAM: The Stanford Stream Data Manager. Tech-
nical Report 2003-21, Stanford InfoLab, 2003. 14, 15

[27] Raj Jain. The Art of Computer Systems Performance Analysis. John Wiley
& Sons, Inc, 2nd edition, April 1991. 1

[28] Poul-Henning Kamp and Robert N. M. Watson. Jails: Confining the omnipo-
tent root. May 2000. 7

[29] KDB+ website. http://kx.com/products/database.php. Accessed on Sep
1, 2008. 15

[30] Linux iostat Manpage, November 2005. Part of sysstat version 6.0.2. 4

[31] Mac OS X fs usage Manpage, November 2002. 5

[32] Mac OS X sc usage Manpage, October 2002. 5

[33] Jeanna Neefe Matthews, Wenjin Hu, Madhujith Hapuarachchi, Todd Deshane,
Demetrios Dimatos, Gary Hamilton, Michael McCabe, and James Owens.
Quantifying the performance isolation properties of virtualization systems. In
Experimental Computer Science, page 6, 2007. 7

[34] Erin McKean, editor. The New Oxford American Dictionary. Oxford Univer-
sity Press, USA, 2nd edition, May 2005. 1

[35] Dutch T. Meyer, Brendan Cully, Jake Wires, Norman C. Hutchinson, and An-
drew Warfield. Block Mason. In Workshop on I/O Virtualization (WIOV’08),
December 2008. 14

[36] Jun Nakajima and Asit K. Mallick. Hybrid Virtualization - Enhanced Virtu-
alization for Linux. In Linux Symposium, June 2007. 9

[37] Gerald J. Popek and Robert P. Goldberg. Formal requirements for virtualizable
third generation architectures. Communications of the ACM, 17(7):412–421,
1974. 8

[38] Daniel Price and Andrew Tucker. Solaris Zones: Operating System Support
for Consolidating Commercial Workloads. In Large Installation System Ad-
ministration Conference, pages 241–254, 2004. 7

[39] Qumranet. KVM – Kernel-based Virtualiztion Machine. 2006. 7

55

http://kx.com/products/database.php

[40] StreamBase website. http://www.streambase.com/. Accessed on Jan 29,
2009. 14

[41] VMware. Understanding Full Virtualization, Paravirtualization, and Hardware
Assist. 2007. 7

[42] VMware. VProbes Programming Reference, August 2008. http://www.

vmware.com/products/beta/ws/vprobes_reference.pdf. 6

[43] Andrew Warfield. Virtual Devices for Virtual Machines. PhD thesis, University
of Cambridge, February 2006. 12

[44] Andrew Warfield and Julian Chesterfield. blktap readme, June 2006. http:

//lxr.xensource.com/lxr/source/tools/blktap/README. 10

[45] Andrew Warfield, Steven Hand, Keir Fraser, and Tim Deegan. Facilitating the
development of soft devices. In USENIX Annual Technical Conference, pages
379–382, 2005. ix, 11, 12, 13

[46] Andrew Whitaker, Marianne Shaw, and Steven D. Gribble. Denali: a scal-
able isolation kernel. In ACM Special Interest Group on Operating Systems
(SIGOPS) Conference, pages 10–15, 2002. 8

[47] Ying Xing, Stanley B. Zdonik, and Jeong-Hyon Hwang. Dynamic load distri-
bution in the Borealis stream processor. In International Conference on Data
Engineering (ICDE), pages 7910–802, 2005. 16, 19

[48] Yunyue Zhu and Dennis Shasha. StatStream: Statistical monitoring of thou-
sands of data streams in real time. In International Conference on Very Large
Data Bases (VLDB), pages 358–369, 2002. 15

56

http://www.streambase.com/
http://www.vmware.com/products/beta/ws/vprobes_reference.pdf
http://www.vmware.com/products/beta/ws/vprobes_reference.pdf
http://lxr.xensource.com/lxr/source/tools/blktap/README
http://lxr.xensource.com/lxr/source/tools/blktap/README

	List of Tables
	List of Figures
	Introduction
	Background
	I/O Monitoring Tools
	Virtual Machine Monitor
	Operating System-level Virtualization
	Hardware Virtualization
	Software-assisted Full Virtualization
	Paravirtualization
	Hardware-assisted Full Virtualization
	Hybrid Virtualization
	The Xen VMM
	Xen Blocktap

	Data Stream Management System
	DSMS Query Languages
	DSMS Optimization/Plan Generation

	System Design
	System Organization
	Data Model
	Timestamps
	Request ID
	Categorical Fields
	Other Numerical Fields

	Extending Blocktap
	Extending STREAM
	Monitoring Queries
	Query 0: Baseline Query
	Query 1: Filter Specific I/O Requests
	Query 4: Response Times
	Query 8: Filter Tuples with High Response Time

	Experimental Results
	Overview of Experiments
	Experimental Testbed
	Virtual Machine Configuration
	Measurement Tools
	Experiment Methodology

	Experiments
	Experiment 1: Overhead of Tracing I/O Tuples
	Experiment 2: Impact of Query Complexity
	Experiment 3: Parallel Query Execution Scalability
	Experiment 4: Impact of Offloading on Utilization
	Experiment 5: Effect of Filtering
	Experiment 6: Virtual/Physical Machine Scalability

	Conclusions and Future Work
	Conclusions
	Future Work

	Appendix
	References

