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Abstract

In the following, we build on previous work done on higher derivative gravity, in

particular Lovelock gravity. The latter is a family of theories in higher space-time

dimensions in which interactions involving higher powers of curvature are introduced,

but the equations of motion remain second order in derivatives. We develop a new

theory involving cubic terms in the curvature. We then show that the equations of

motion for graviton fluctuations remain second order. The curvature cubed term

is shown not to be a topological object, contrary to the belief that dimensionally

extended Euler densities provided the only stable dimensionally continued theories of

gravity (Lovelock gravity). Black hole solutions are studied in this new gravitational

framework.
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Chapter 1

Introduction

At the heart of the modern scientific revolution which occurred over the first half

of the 20th century was the construction of the two main pillars of physics that

we have since consumed ourselves with the task of reconciling: General Relativity

and Quantum Mechanics/Quantum Field Theory. Quantum field theory has given

us a picture of physical interactions on subatomic scales where the electromagnetic,

strong and weak nuclear forces are the central interactions. The description that

arises from quantum field theories of these forces interacting with matter has proved

to be extremely accurate [1]. In spite of all of the successes that quantum field theory

describing nature through the Standard Model has enjoyed, there is one force that

has as yet proven reluctant to fit nicely into this framework, gravity.

This is where the other part of the modern physics revolution comes in to play.

General relativity has thus far provided the best description of gravity that we have

been able to formulate. This theory provides a remarkably accurate description of

physics on astronomical and cosmological scales. However as a quantum field theory,

general relativity has been shown to be non-renormalizable, and so it is beyond our

current paradigm for quantum physics. However, there are tantalizing suggestions

that there will be a full quantum theory of gravity. Some of those clues come in

the area of the general relativity that has captured the attention of researchers and
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lay people alike, the regions of the universe in which gravity is most extreme: black

holes. It was only realized nearly forty years after the inception of general relativity

that the theory gives rise to regions where gravity is so strong that not even light

can escape. Since this realization, a tremendous amount of work has been done on

characterizing black holes as they represent the most exotic and confounding objects

in the theory. A remarkable discovery by Hawking was that black holes appear to

emit thermal radiation from quantum effects [2, 3]. Finding that quantum effects

play an important role near black holes provides some suggestion that we may use

these objects to explore possible theories of quantum gravity. More over the resulting

connection between gravity, quantum physics, and thermodynamics [4] seems to hint

that just as statistical physics provides a quantum description of thermodynamic

processes a quantum theory of gravity will hold a statistical description of black

holes and spacetime.

It is a lofty goal to write down a consistent quantum theory of gravity, and it is

one that is unlikely to be achieved in the near future. That is not to say there has not

been due attention paid to the problem. There have been scores of ideas to try to join

the two wildly successful theories, but there have been precious few that have gained

and sustained some traction. Among the ideas for finding a consistent renormalizable

quantum theory of gravity was that the Einstein-Hilbert action represents an effective

theory of gravity and must be supplemented by interactions involving of higher powers

of curvature. Though the idea of adding terms of higher order in curvature to the

action is one that dates back to the time around the origins of general relativity

[5], serious work on the problem only began in the latter half of the 20th century

[6]. The original attempts to formulate a proper quantum theory of gravity this

way have been shown to be problematic because while the higher curvature theories

may be renormalizable, they suffer a loss of S-Matrix unitarity (see Stelle in [6]).

Considering higher curvature theories outside of the context of fixing the ultraviolet
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divergences of gravity still provides interesting corrections in gravitational theories in

higher spacetime dimensions .

The connection of higher order theories of gravity to string theory has generated

a considerable amount of interest. The past decade in string theory has been dom-

inated by work concerned with an idea put forth in the late 1990’s, the AdS/CFT

correspondence. At the heart of this revolutionary idea is that the physics of a string

theory including gravity on a bulk ten dimensional space whose non-compact di-

rections are AdS5 can be replaced by a description in terms of a strongly coupled

conformal field theory which lives on the conformal boundary the AdS5 space[7, 8].

This correspondence was conjectured based on examining the large N behavior of

closely stacked D3-branes in the near horizon limit. In this regime, low energy ex-

citations are seen to come in two varieties that are depending on an order of limits.

One order yields the strongly coupled field theory states on the D3-branes, while

the other gives the long wavelength gravitational modes in the bulk of the D3-brane

throat. This holographic description of gravity has enormous power in its usefulness

in probing regimes of gauge theories where we previously had a dearth of compu-

tational methods. Furthermore, studying black holes in the bulk AdS gravitational

theory allows us to study conformal field theories at non-zero temperatures [9, 10].

There has been recent work in exploring the implications of considering a bulk

spacetime with higher curvature theory gravity on the dual conformal boundary the-

ory. A particular result coming out of that work has motivated the main thesis project

[11, 12]. It had been shown by Kotvun, Starinets, and Son that in the dual thermal

field theory for a black hole solution in Einstein gravity using the AdS/CFT corre-

spondence that the ratio of shear viscosity, η, to entropy density, s, satisfies η
s

= 1
4π

[13]. Further, they conjectured that this should be a lower bound for η/s of any

physical system. The KSS bound was shown to hold universally for Einstein gravity

coupled to a variety of matter fields. However, it was shown in [11] that for a bulk
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gravitational theory with curvature squared interactions this bound may be violated.

In a string theory context, these calculations are done perturbatively in the coupling

of the new interaction [11, 14, 12]. However, this analysis can be extended to finite

coupling with Gauss-Bonnet gravity, in which the curvature squared term is given

by the Euler density of a four dimensional manifold. In this case, the KSS bound

is (non-perturbatively) corrected by the interaction parameter λ as η
s

= 1
4π

(1 − 4λ).

The bound in Gauss-Bonnet gravity is no longer strictly greater than 1
4π

but it is

always positive as λ < 1
4
. In fact, the authors of [11] argue based on the grounds of

causality that λ < 9
100

. The fact that a consistent higher curvature theory provides a

finite modifications to η/s in the dual thermal field theory has motivated us to ask

whether we can further alter the KSS bound by adding a linear combination of scalar

monomials of three curvature tensors. It is not clear whether such a consistent the-

ory can be constructed with these new interactions can be treated non-perturbatively.

Hence being able to write down a consistent third order theory in five dimensions is

the first step in exploring this problem.

In short, the goal of the thesis is to write down the most general consistent bulk

theory of gravity that includes terms of curvature cubed. What we would like most

to see is that we can do this in five dimensions, specifically AdS5 since these are

related to four-dimensional gauge theories by the AdS/CFT correspondence. Being

able to do so we create a theory of gravity with a term that seems to mimic the

behavior of a topological invariant in six dimensions. However, we ultimately prove

that this is not the case, and hence, we call our new cubic order in curvature the-

ory pseudo-topological gravity. In the five dimensional pseudo-topological theory, we

would hope to find a new class of black hole solutions that exist beyond those found

for Gauss-Bonnet gravity [15, 16, 17]. After finding these black hole solutions, we

will characterize the behavior of the black hole solutions based on their behavior with

respect to the new interaction parameter for the higher order terms. More impor-
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tantly we would like to determine the thermodynamic properties of the solutions,

and we will explore the consequences of having solutions with horizons with different

topologies [9, 18, 19].

In Chapter 2, we will lay out the foundation for the considerations made in the

thesis. We will begin by laying out the basic tools of general relativity that we

will need to understand before moving on to more general cases. We consider the

extensive work that has been done in studying the nature of black holes. After

introducing black holes, we will present work that had been done that exposed their

connection to thermodynamics [20, 3, 22, 21].

Later in Chapter 2, we will present previous work that has been done in consid-

ering Lovelock gravity. We briefly review results coming from the renewed interest

in considering higher curvature gravity that began in the 1980’s in connection with

string theory. Since its development the work done in Lovelock gravity has mainly

focused on the second order theory, Gauss-Bonnet gravity [23, 17, 15]. We will look

at some of the major developments like interesting black hole solutions that have

come from Gauss-Bonnet gravity with a focus on those in AdS [16, 24].

In Chapter 3, we begin to write down a candidate third order action by assembling

all irreducible curvature cubed terms [25, 26]. We discuss a method to determine the

coefficients that would give us a term that we consistently could add to the Einstein-

Gauss-Bonnet action. We first work in five dimensions and then generalize to an

arbitrary dimensional theory. In appendix A, we compare the integrated value of the

cubic order term with the integrated six dimensional Euler density on different ex-

ample six dimensional manifolds to determine if what we have found is a topological

invariant. After writing down the D dimensional action, we compute the field equa-

tions for the pseudo-topological theory. Finding the field equations allows us then to

write down the linearized theory by taking the first variation of these equations. The

goal of writing down the linearized theory is to determine if the equations of motion
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for the graviton contain more than two derivatives. If there are non-vanishing four

derivative terms, then the theory would be pathological [23, 17].

In Chapter 4, we go about the process of finding and characterizing possible black

hole solutions in pseudo-topological gravity. The calculation involves determining

the constraint equation for the metric function for a given ansatz. Solving cubic

polynomial constraint shows that there is a rich space of solutions for the metric

function. The form of the constraint equation allows us to determine the type of

vacua for the theory [17]. Moreover, the constraint equation shows which of the

vacua are stable and allow black hole solutions. After finding the black hole admitting

vacua, we calculate the explicit forms for the metric function by solving the constraint

equation. We then generalize our calculations from planar horizons i.e., ‘black brane’

solutions, to include black holes with curved horizons.

In Chapter 5, we determine the thermodynamic properties of the pseudo-topological

black holes found in Chapter 4. We concern ourselves first with calculating the tem-

perature of the black holes. The next major thermodynamic quantity we examine is

the entropy. There are several different approaches to calculating black hole entropy

[20, 21, 18], but any method used should yield the same result [27]. Lastly, we deter-

mine the free energy of the cubic black holes. We note in an appendix that there are

some difficulties with different approaches to calculating free energy, or energy den-

sity, of black holes in higher derivative gravity due to some asymptotic ambiguities.

In the final chapter we discuss and summarize the work that has been presented in

the main text, and we then provide an outlook for future work to be done.
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Chapter 2

An Introduction to General

Relativity

One of the most important and celebrated developments in physics over the past

century was the formulation of the most successful theory of gravity that we have

yet been able write down, General Relativity. A key feature of general relativity was

that it predicted new phenomena in the universe like cosmic expansion on top of

solving contemporary problems such as the anomalous perihelion shift of Mercury.

Experimental confirmation in a wide range of tests and observations has firmly en-

trenched general relativity as the benchmark for accuracy in theories of gravity. The

vast importance of general relativity is best seen in its philosophical shift from the

previously held Newtonian view of gravity being an abstract force that acts on all

massive bodies to one that views gravity as being intrinsically linked to the distortion

of geometry spacetime by energy and matter. This view of the nature of gravity has

given us a new way to think about the how the universe originated, evolved, and

subsequently became populated with different large scale structures. In this section,

we review the fundamental concepts of general relativity starting with defining ele-

mentary objects used in studying manifolds and ending with a discussion of the basic

concepts in black hole thermodynamics
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2.1 Mathematical Preliminaries

To begin our review of general relativity, we need to define some of the mathematical

machinery behind Einstein’s beautiful geometric equations. Here we will provide a

very brief review of mathematical topics and the notation that will be used throughout

the text. Since general relativity is a theory based on differential geometry, topology

and tensor calculus, we will start with a brief discussion of manifolds. A more detail

discussion can be found in [22], whose notation and conventions we adopt. In a broad

definition, manifolds are topological spaces that in a neighborhood around any point

locally look like R
n. A manifold being a topological space allows it to be endowed

with a metric and so a metric tensor. The metric tensor gab is a symmetric tensor

that allows us to define inner products between vectors living in the tangent space

of the manifold [28]. We can also use the metric tensor to raise and lower indices on

other tensors e.g., Aa = gacAc. The infinitesimal line element for a manifold with

coordinates xa is given by

ds2 = gabdx
adxb. (2.1)

We will use the ‘mostly positive’ (− + + . . .+) signature for the metric [29]. We

will denote the determinant of the metric tensor by g. With the meaning of distance

between points on a manifold being defined by the metric, we would like to have a

notion of how to move vectors, and in general tensors, around on the manifold e.g.,

how to compare vectors at different points. We then need to define a connection on

the manifold and the idea of covariant differentiation. The connection on a manifold

ensures that infinitesimal displacements of a vector along a curve lying in the manifold

transform the vector in way the maintains its tensorial nature. This means that after

displacing the tensor it behaves the same way under coordinate transformations as

it did prior to the transport [22]. Let us then define the operation of covariant

8



differentiation of a tensor by the following

Ab
c;a = ∇aA

b
c = ∂aA

b
c + Γa

dbA
d
c − Γd

caA
b
d, (2.2)

where the terms Γa
lb are the ‘Christoffel symbols’ which are defined as a symmetric,

metric compatible (gab;c = 0) connection given by

Γa
cb =

1

2
gad (∂cgdb + ∂bgdc − ∂dgbc) . (2.3)

Here we must note that the connection does not transform as a tensor under a change

of coordinates. We will see that we can build tensorial objects out of Γ’s and its

derivatives despite its non-tensorial nature. With the Christoffel symbols telling us

how tensors transform moving along a curve in a manifold, we can then ask which

curves provide the ‘straightest’ possible paths. To determine this, we employ the the

geodesic equation in affine parameterization [29]

Aa
;bA

b = 0, (2.4)

or in coordinate form with affine parameter α and the tangent vector to the geodesic

Aa = dxa

dα

d2xa

dα2
+ Γa

bc
dxb

dα

dxc

dα
= 0. (2.5)

These equations will prove useful in studying the paths of light rays in black hole

spacetimes [22]. Moving on, using the definition of the covariant derivative and

Christoffel symbols we can define another fundamental object that plays a crucial

role in describing a manifold. The Riemann curvature tensor is defined by evaluating

the commutator of covariant derivatives acting on a tensor

[∇a,∇b]A
c
d = Rc

eabA
e
d +Re

cbaA
c
e. (2.6)

Eqs. (2.2) and (2.6) allow us to express Ra
bcd in terms of the Christoffel symbols

Ra
bcd = ∂cΓ

a
bd − ∂dΓa

bc + Γa
ecΓ

e
bd + Γa

edΓe
bc. (2.7)
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Now using eq. (2.3) we can see that the Riemann tensor contains two derivatives of

the metric tensor. Rabcd also enjoys a number of useful symmetries and identities

Rabcd = R[ab][cd] = Rcdab, (2.8)

Rabcd +Radbc +Racdb = 0, (2.9)

Rabcd;e +Rabec;d +Rabde;c = 0. (2.10)

Furthermore, we can define other curvature tensors by contracting over the indices

of the Riemann tensor, Ra
bcd

Rab = gcdRcadb, R = gabRab, (2.11)

which are known as the Ricci curvature tensor and Ricci scalar respectively.

2.2 The Einstein-Hilbert Action

Defining the bare essentials allows us to move on to examining the core concepts

of general relativity. The action for general relativity was formulated separately

and nearly simultaneously by Albert Einstein and David Hilbert [22] who were able

to write down an amazingly simple and elegant action principle for gravity. The

Einstein-Hilbert action is given by

I =
1

16πG

∫

M

d4x
√
−gR + Ibdry. (2.12)

Eq. (2.12) did not originally have the boundary term when written in 1915. As ex-

plained below, it was shown that the so-called Gibbons-Hawking boundary term is

required to provide for well defined variational principle [20]. The region of spacetime

over which the integral is taken is an arbitrary, connected, finite volume with bound-

ary ∂M possessing a metric hab induced by the embedding in the spacetime. As in

classical mechanics, we vary the action eq. (2.12) with respect to the dynamical field
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of which it is a functional to obtain the equations of motion for the theory. For gen-

eral relativity, here we vary the action with respect to the inverse metric tensor gab for

simplicity. Were we to vary by the metric gab directly, we would only incur an extra

overall negative sign as δgab = −gacgbdδg
cd. The necessity for the boundary action

comes from the fact that the Lagrangian density contains two derivatives of the met-

ric. In varying
√−gR, we would end up with boundary terms containing habδgab,cn

c

that do not vanish by the boundary conditions, δgab|∂M
= 0 and habδgca,b|∂M

= 0 [22].

Here we have denoted the unit normal vector to the boundary na. The explicit form

of Ibdry is given by

Ibdry =
1

8πG

∮

∂M

d3y ε
√
−εhK̃, (2.13)

where, ε = ±1 depending on whether ∂M is timelike (+) or spacelike (−), h is the

determinant of the induced metric on the boundary ∂M , and K̃ is the regularized

extrinsic curvature, K = nc
;c, of ∂M . While the variational principle does not de-

mand a regularization of K, this is typically introduced in the context of Euclidean

quantum gravity where one wants to evaluate the action as a finite quantity [30].

This regularization of K is necessary in order to remove the divergence of K as we let

∂M → ∞. If we do not fix the divergence of the boundary term, then the gravitation

action eq. (2.12) is infinite [22]. A common choice of regularization, known as back-

ground subtraction, is obtained by subtracting off the value for extrinsic curvature,

K0, found upon embedding ∂M in a flat spacetime. That is, K̃ = K −K0.

Care must be taken in the variation because we are not only varying R. We must

also vary the measure term in the integral
√−g. To compute the variation of

√−g
we employ the formula [29]

δ ln |g| =
1

g
δ|g| = −gabδg

ab. (2.14)

After computing the variation of eq. (2.12) we arrive at the famed vacuum Einstein
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Field Equations

Gab = Rab −
1

2
Rgab = 0. (2.15)

The Einstein tensor Gab has the properties that it is symmetric in its indices Gab =

Gba, divergence free Gab
;b = 0, and contains only up to two derivatives of the metric.

The action given in eq. (2.12) can be generalized by including matter fields and the

cosmological constant term, Λ

I =
1

16πG

∫

d4x
√
−g (R− 2Λ + Lm) , (2.16)

where  Lm is a function of gab and any finite number of matter fields. Varying eq. (2.16)

with respect to the metric gives the field equations

Gab + Λgab = Rab +

(

Λ − 1

2
R

)

gab = 8πGTab, (2.17)

where the stress energy tensor is defined as Tab = 2∂Lm

∂gab − Lmgab. Tab is also be

symmetric by definition and divergence free, which expresses the local conservation

of energy and momentum.

2.3 Vacuum Solutions

After writing down the Einstein-Hilbert action and finding the vacuum field equations

by varying with respect to the metric tensor, the problem becomes finding the metrics

that solve Gab = 0. Here we are beginning with the simplest case where we have set

the cosmological constant Λ = 0. Later we will examine solutions with non-vanishing

Λ. However, we will focus our attention to the case where Λ < 0 for reasons that

we will discuss. By including the cosmological constant, we will see that we obtain

metrics that solve eq. (2.17) that have interesting properties. Beyond the simple

vacuum solutions, we will explore the metrics solving the field equations that are

black hole solutions.
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Starting with the simplest case of a metric that solves Gab = 0, we find the trace

eq. (2.15)

Ra
a −

1

2
ga

aR = 0 ⇒ R = 0. (2.18)

Substituting this back into the field equations, this of course implies that Rab = 0.

Manifolds that satisfy this relationship are called Ricci flat. An example of a Ricci

flat solution to the Einstein field equations is a metric familiar from special relativity

representing Minkowski spacetime,

ds2 = ηµνdx
µdxν = −dt2 + dx2 + dy2 + dz2. (2.19)

While important in its own right, eq. (2.19) is a somewhat trivial example of a

solution to the Einstein field equations. A far more interesting case was found by

Schwarzschild shortly after the publication of the Einstein-Hilbert action [31, 29].

The metric for Schwarzschild’s solution is

ds2 = −
(

1 − 2M

r

)

dt2 +
1

1 − 2M
r

dr2 + r2
(

dθ2 + sin θ2dφ2
)

. (2.20)

It is a simple exercise to calculate the Ricci tensor and show that all of its components

are zero i.e., the metric is Ricci flat. Eq. (2.20) does not look flat unless one goes to

the limit of large r (asymptotic flatness) where the metric looks like eq. (2.19) with

spatial directions in spherical polar coordinates. Note we have adopted conventions

where G = 1 = c. Then examining the geodesic equations of particles moving in this

asymptotically flat region, one can explicitly verify that M is the mass of the solution

(as suggested by the notation).

More interesting is the fact that there are values of r for which the metric function

f(r) = 1 − 2M
r

= gtt = g−1
rr becomes problematic: r = 2M and r = 0. Because of the

pathology of the metric at these values for r, not much thought was given to the full

geometry described by these of solutions until 40 years after they were first written

down. A major advance came when it was shown by Kruskal and Szekeres that the
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singularity at r = 2M is the result of a poor choice of coordinates. The pathology of

the metric at r = 2M can be cured by a simple coordinate transformation [22, 29].

To remove this ‘coordinate singularity’, we start by defining the ‘Tortoise coordinate’,

r∗ with

r∗ =

∫

grrdr =

∫

1
(

1 − 2M
r

)dr = r + 2M ln

∣

∣

∣

∣

2M

r
− 1

∣

∣

∣

∣

. (2.21)

which allows us to define coordinates useful in describing incoming (outgoing) light

rays by

u = t− r∗ , v = t+ r∗. (2.22)

In this way, we have mapped the coordinate singularity from r = 2M to u − v = ∞
and transformed eq. (2.20) to

ds2 = −f(r) dudv + r2
(

dθ2 + sin θ2dφ2
)

. (2.23)

This process has not yet entirely cured the coordinate pathology, and in order to do

so, we need to define the Kruskal coordinates U, V

U = −e− u
4M , V = e

v
4M , (2.24)

which then gives the maximally extended Schwarzschild spacetime as

ds2 =

(

−32M3

r
e−

r
2M

)

dUdV + r2
(

dθ2 + sin θ2dφ2
)

. (2.25)

This choice of coordinates gives the Kruskal extension of the Schwarzschild spacetime

which covers the entire manifold.

However, the Kruskal extension does not remove all of the pathologies of the

Schwarzschild solution. The singularity at r = 0 cannot be eliminated by any coor-

dinate transformation and is interpreted as a singularity in the spacetime manifold.

We call r = 0 a curvature singularity because at that point the non-vanishing com-

ponents of the Riemann tensor diverge, whereas at r = 2M they remain finite. More

importantly, scalars constructed from the Riemann tensor will diverge at r = 0 e.g.,

14



RabcdR
abcd = 48M2

r6 . As these scalars are invariant under coordinate transformations,

we can conclude that no choice of coordinates will remove the pathology at r = 0.

Passing into the region r < 2M the metric function, f(r), becomes negative. In

this way the t and r coordinates seem to exchange roles within the bounding surface

r = 2M . The surface r = 2M is indeed special, and we can see this by performing

a different coordinate transformation on the Schwarzschild metric. By making the

substitution u (v) from eq. (2.22) into eq. (2.20), we arrive at the null outgoing

(incoming) Eddington-Finkelstein coordinates respectively [22]. Using the incoming

Eddington-Finkelstein coordinates transforms the metric to

ds2 = −f(r)dv2 + 2dvdr + r2
(

dθ2 + sin2 θdφ2
)

. (2.26)

Calculating the path of radial null geodesics, meaning ds2 = 0 = dθ2 = dφ2, we find

−f(r)dv2 + 2dvdr = 0 ⇒ −f(r)

(

dv

dr

)2

+ 2
dv

dr
= 0, (2.27)

where we have parameterized the curves by r. The above equation gives the radial

null geodesics in the incoming Eddington-Finkelstein coordinates as curves satisfying

dv = 0, (2.28)

dv

dr
=

2

f(r)
. (2.29)

We note that we could have done the above calculation in the ‘outgoing’ coordinates

replacing v with u. In this case, the difference between (2.26) and the outgoing metric

has −2dudr instead of a + sign. The disadvantage of using the outgoing coordinates

is that the description of null geodesics incoming to r = 0 has the same trouble

with r = 2M as the original Schwarzschild metric [32]. Eq. (2.26) suffers the same

pathology for outgoing null geodesics exiting r = 0 through r = 2M , but as we will

explain below, this singular behavior for outgoing null geodesics at r = 2M has a

deep meaning.
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The outgoing light rays originating outside of r = 2M in the (v, r) half-plane have

positive slope and extend out to infinity. Since f(r) < 0 for r < 2M , the ‘outgoing’

light rays follow geodesics with negative slope. This means that the path of the light

ray for r < 2M is bent towards and and will hit r = 0 in some finite amount of

advanced time,v. The slope of the null geodesics for r = 2M is infinite, and this

indicates that light rays originating on the surface r = 2M are trapped on there

for infinite advanced time. The fact that light rays on and inside at r = 2M never

escape beyond that point lends itself the moniker of ‘event horizon’, or just horizon.

We then define what we mean by ‘black hole’ as an object that is surrounded by a

horizon from which light cannot escape to infinity.

There are many more solutions to eq. (2.15) with Λ = 0 that we could explore.

However, the main focus of the thesis will be on a solution where Λ < 0. More

specifically, we will consider the case where Λ = − (D−1)(D−2)
2L2 . The solution to the

vacuum field equations with this value for the cosmological constant gives us a D

dimensional Anti de-Sitter (AdS) spacetime whose metric can be expressed indirectly

using a D + 1 dimensional embedding space with

ds2 = −dx2
0 − dx2

1 +
D−1
∑

i

dx2
i . (2.30)

Now we consider the D-dimensional hyperboloid described by

L2 − x2
0 − x2

1 +

D−1
∑

i

x2
i = 0. (2.31)

This geometry describes a D-dimensional maximally symmetric space with constant

negative curvature. A notable difference from the Minkowski or Schwarzschild metrics

is the signature of eq. (2.30) is (−− + + . . .+). The metric is given by the metric

on the surface (2.31) induced by the embedding geometry (2.30). We can illustrate

this more clearly by changing coordinates x0 = L cosh r cos t, x1 = L cosh r sin t, xi =
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L sinh rΩi where
∑

i Ω2
i = 1 which transforms the metric to

ds2 = L2
(

− cosh2 r dt2 + dr2 + sinh2 r dΩ2
i

)

. (2.32)

Note that we have that the signature is (− + + . . .+) as desired. A property that we

will exploit later is that AdS space is ‘maximally symmetric’. We can thus express

the curvature tensors of a D-dimensional AdS spacetime as [7]

Rabcd = − 1

L2
(gacgbd − gadgbc) , (2.33)

Rab = −(D − 1)

L2
gab, (2.34)

R = −D (D − 1)

L2
. (2.35)

There is a slight problem with eq. (2.32) in that upon making the coordinate trans-

formation, we have 0 ≤ t ≤ 2π which would produce closed timelike curves. However,

we can instead ‘unwrap’ the manifold by simply letting t run from −∞ to ∞. In that

case, eq. (2.32) fives a many-sheeted cover of the hyperboloid and does not have the

problems with causality. The metric describing an AdS spacetime that we will be

interested in most arises in the context of studies of the AdS/CFT correspondence.

The near horizon metric for the D3-brane solution to ten dimensional supergrav-

ity describes a product of a five dimensional AdS space (AdS5) and a compact five

dimensional sphere (S5) which is written: [7]

ds2 =
r2

L2

(

−dt2 + dx2 + dy2 + dz2
)

+
L2

r2
dr2 +R2dΩ2

5. (2.36)

where dΩ2
5 is the line element for S5. See [10] for a detailed description of the rela-

tionship beteween the AdS portion of eq. (2.36) and the metric eq. (2.32). In general,

we will only be interested in the non-compact portion of the metric. So, we will

will neglect the S5 part of the metric and focus on the AdS5 portion. Motivated by

eq. (2.36) being a vacuum solution to general relativity we would like to find if it

admits black hole solutions respecting the same translational symmetries in x, y, and
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z. We begin by postulating an ansatz for such black brane or planar horizon black

hole. [16, 24]

ds2 =
r2

L2

(

−f(r)N(r)2dt2 + dx2 + dy2 + dz2
)

+
L2

r2f(r)
dr2, (2.37)

where we have added the metric function f(r) to eq. (2.36) as well as the function

N(r) to scale the time coordinate. We can solve the equations of motion for (2.37),

but instead we will use a variational approach that will be employed again in the main

thesis for the higher curvature theories. That is, we begin by computing the value

for the action and finding its dependence on r, f(r), and N(r). We then integrate

by parts so that we are left with, up to total derivatives, the following form for the

action

I =
1

16πG5

∫

d5x
3N(r)

L5

[

r4 (1 − f(r))
]′
. (2.38)

where ′ denotes a derivative with respect to r. Varying with respect to N will give a

constraint equation for f(r)

[

r4 (1 − f(r))
]′

= 0, (2.39)

which upon solving gives

f(r) = 1 − ω4

r4
, (2.40)

where ω4 is an arbitrary integration constant. The horizon is given by r = ω which

causes f(r) to vanishing. Varying by δf

N(r)′r4 = 0. (2.41)

We then determine that N(r) = N] is some arbitary constant. We could in principle

set N] to one by simply rescaling the t coordinate If instead of restricting our attention

to five dimensions we had considered an AdSD black brane metric ansatz

ds2 =
r2

L2

(

−N(r)2f(r)dt2 + (dxā)2
)

+
L2

r2f(r)
dr2, (2.42)
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where xā are the planar coordinates. The action and solutions to the constraint

equations are then given by

I =
1

16πGD

∫

dDx
(D − 2)N(r)

LD

[

rD−1 (1 − f(r))
]′
, (2.43)

f(r) = 1 − ωD−1

rD−1
, (2.44)

where we also arrive at the conclusion that N(r) = N] constant. Generalizing

eq (2.37) by considering the case where the horizon in eq. (2.37) is curved

ds2 = −
(

k +
r2

L2
f(r)

)

N(r)2dt2 + r2dΣ2
k +

1

k + r2

L2 f(r)
dr2. (2.45)

One sets k = ±1 corresponding to spherical (hyperbolic) horizons respectively, while

k = 0 recovers the planar black holes. The spatial section dΣk for the different values

of k is given by

k = 1 : dΣ2
1 = dΩ2

D−2, (2.46)

k = 0 : dΣ2
0 =

1

L2
(dxā)2, (2.47)

k = −1 : dΣ2
−1 = dH2

D−2, (2.48)

where dΩ2
D−2 (dH2

D−2) is the metric for a D−2 dimensional unit sphere (hyperboloid).

One finds the solution for the metric function f(r) is precisely the same as before. In

this case, the horizon appears at gtt = 0 ⇒ f(r) = −kL2

r2 [19].

2.4 Black Hole Thermodynamics

In the 1970’s there were several major discoveries relating to the fundamental prop-

erties of black holes as they relate to thermodynamics. These results built on the

following where the four Laws of black hole mechanics , which summarized some of

the general properties of black holes in general relativity [4]

• 0th Law : Surface Gravity κ is constant on the horizon
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• 1st Law : δM = κ
8π
δA + ΩHδJ where ΩH is the angular velocity of the horizon

of a rotating black hole and J is the associated angular momentum.

• 2nd Law : δA ≥ 0

• 3rd Law : In no finite time in the future can a physical process make κ vanish

These four Laws above were realized to have striking similarities to the Laws

governing thermodynamics. These mere similarities then crystalized into a precise

equivalence with the realization by Hawking that through quantum effects an observer

at infinity would see a black hole ‘emitting’ particles with a blackbody spectrum with

temperature T related to the surface gravity by κ = 2πT [3, 2]. Hence, it follows

from the 1st law that the black hole horizon carries an intrinsic entropy given by A
4G

.

The latter had already been alluded to in the work of Jacob Beckenstein [3].

We will begin this section deriving a general expression for black hole temperature,

which we will be able to apply in pseudo-topological gravity. Afterwards, we will

calculate the free energy and entropy of a black hole. To start our considerations, we

first consider the metric eq. (2.37) with the time coordinate analytically continued to

τ = −ıt [33, 34]

ds2 =
r2

L2

(

f(r)N(r)2dτ 2 + dx2 + dy2 + dz2
)

+
L2

r2f(r)
dr2. (2.49)

This Euclidean metric remains a solution of Rab = 0 Drawing from one’s experience

with thermal field theory, we anticipate that the Euclidean time is periodically iden-

tified τ = τ + β with β = 1
T

. Note that we began with a black hole with horizon

where f(r = rh) = 0. The Euclidean metric cannot have a horizon, and so we must

pay special attention to interpretting the geometry at r = rh. By Taylor expanding

the metric function f(r) around the horizon radius rh

f(r) = f(rh) + f ′|rh
(r − rh) + . . . = f ′|rh

(r − rh) + . . . , (2.50)
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but the first term vanishes since f(rh) = 0. The analytically continued AdS black

brane metric near the horizon then becomes to first order

ds2 ≈ r2
h

L2

(

f ′|rh
(r − rh)N(r)2dτ 2 + dx2 + dy2 + dz2

)

+
L2

r2
hf

′|rh
(r − rh)

dr2,

=
r2
h

L2

(

f ′|rh
N(r)2ρ2dτ 2 + dx2 + dy2 + dz2

)

+
4L2

r2
hf

′|rh

dρ2, (2.51)

where ρ2 = r − rh. Focusing on the terms of the metric with factors of f ′ as

ds2 ≈ 4L2

r2
hf

′|rh

(

ρ2

(

r2
hf

′|rh
N(r)

2L2

)2

dτ 2 + dρ2

)

+
r2
h

L2
d~x2. (2.52)

Here we can see that the geometry at r = rh will be smooth with the appropriate

interpretation. The ρ and τ coordinates describe a two-plane in polar coordinates

with radial direction ρ and angular direction θ =
r2
h
f ′|rh

N(r)

2L2 τ . The origin is smooth

if the latter is periodically identified with θ = θ + 2π. Recalling that τ has period

given by β = 1
T

we find

2π =
r2
hf

′|rh
N(r)

2L2
β,

⇒ T =
1

4π

r2
hf

′|rh
N(r)

L2
. (2.53)

Going back to the constraint equation for f(r), eq. (2.40), we can see that differenti-

ating and evaluating at the horizon gives

f ′|rh
=

4ω4

r5
h

=
4

ω
, (2.54)

and so the temperature of the planar black hole is

T =
ωN]

πL2
. (2.55)

The natural choice here is to set N] = 1 so that gtt

gxx
→ −1 asymptotically. With this

choice, T = ω
πL2 .

Now that we have derived the temperature of a black hole described by eq. (2.37),

we will move on to deriving other thermodynamic quantities. First, we will calculate
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the free energy of the black hole, and then derive from that an expression for black

hole entropy using familiar thermodynamic arguments [20, 35]. To calculate the

free energy, we work in the Euclidean framework, and we regard the black hole as a

thermal system. Then using path integral techniques as described in [33], we calculate

the partition function as

Z = e−
F
T =

∫

DgeIE(g) ' eIE(gcl), (2.56)

where in the last step we have approximated the path integral over metrics by the

value of the integrand at the saddle point. That is, we evaluate IE for the Euclidean

black hole solution with temperature T . Thus, we can identify the free energy of the

thermal ensemble, F , with the Euclidean black hole action by

IE [T ] =
F

T
. (2.57)

The IE for the black brane metric is given by

IE = − 1

16πG

∫ ∞

rh

dr

∫ 1

T

0

dtE

∫

d3x
√
gE (R− 2Λ) . (2.58)

Note that in the present case with asymptotically AdS boundary conditions, the

Gibbons-Hawking term, eq (2.13) that normally is the relevant contribution in flat

solutions (Λ = 0) will not contribute here, and so we have dropped it. However, IE

is still divergent for r → ∞ because the bulk contribution no longer vanishes with

Λ 6= 0. To fix this divergence we instead integrate over the radial coordinate up to a

boundary radius r+. We then regularize the Euclidean action by subtracting off the

value given by computing the corresponding action of empty AdS space, I0
E [T ′(T )].

That is, we obtain the background by setting ω = 0 in the metric function f(r). We

must be careful to choose the function, T ′(T ) i.e., the periodicty of τ in the AdS

background, so that the asymptotic geometries of the background and black hole

spacetimes match [11]. This procedure allows us to compute the free energy of a
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black hole as

F [T ] = T
(

IE [T ] − I0
E [T ′(T )]

)

= −V3 ω
4N]

16πGL5
. (2.59)

Expressing the free energy in terms of the temperature

F [T ] = − V3

4G

(πLT )3

N3
]

T

4
. (2.60)

Other than the discovery that black holes were thermal objects, the calculation of

black hole entropy was one of the most interesting results concerning black holes

coming out of the 1970’s. For a stationary, axisymmetric black hole the entropy is

given by S = kBA
4l2p

where kB is Boltzmann’s constant and Planck length lp =
√

G~

c3
.

We usually work in units where kB = c = ~ = 1, and so the area formula for black

hole entropy is given by S = A
4G

. Thus, we have that a black hole has entropy roughly

expressed as the area of the horizon in units of l2p [3].

From the standard expression coming from thermodynamics, we have the entropy

of the black hole is given by

S[T ] = − d

dT
F [T ] =

V3

4G

(πLT )3

N3
]

=
V3

4G

ω3

L3
. (2.61)

Hence, we have recovered the expected result noted above, namely S = A
4G

with

A = V3ω3

L3 . Note this result is proportional to
∫

d3x which in principle is infinite. In

the language of the AdS/CFT, this corresponds to the volume in which the dual CFT

lives. So, it is convenient to consider the entropy and (free energy) density

s =
S

∫

d3x
=

ω3

4GL3
, f [T ] = − 1

4G

(πLT )3

N3
]

T

4
. (2.62)

The thermodynamics describing black hole solutions in the bulk AdS space are di-

rectly related by the AdS/CFT correspondence to the same properties of the dual

CFT plasma. Using the above expressions, we can then calculate other useful ther-

modynamic quantities in the dual CFT. We start with the simple relation for the

pressure of a system absent a chemical potential in terms the free energy density

p = −f [T ] =
(πLT )3

4GN3
]

T

4
. (2.63)
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Further, we can calculate the energy density ρ in the CFT, which matches the total

energy density of the black hole spacetime

ρ = −T 2 ∂

∂T

(

f [T ]

T

)

=
3π3L3T 4

16GN3
]

. (2.64)

We can use the known relationships involving the above thermodynamic results to

check the consistency of our approach. Using the traceless property of the stress

tensor, we arrive at an equation relating the energy density and pressure

T a
a = ρ− 3p = 0. (2.65)

The above result is for a four-dimensional CFT and can be generalized to D dimen-

sions by replacing −3p by −(D − 1)p. Using eqs. (2.63) and (2.64), we see that this

consistency check is satisfied for the Euclidean action approach to the thermodynam-

ics of the black branes. Another check on the value of the energy density is given

by substituting the relations ρ = 3p and p = −f [T ] into the expression for energy

density

ρ = f + sT ⇒ ρ =
3

4
sT. (2.66)

Again inserting the values of the quantities above that we have calculated for the black

branes, we find that eq (2.66) is satisfied. These checks will prove to be useful when

dealing with higher curvature theories as we will see below. In particular, eq. (2.66)

provides a relationship that will be used to underscore some of the difficulties in the

computation of energy density of pseudo-topological black holes using the quasilocal

formulation of [36].

2.5 Higher Curvature Gravity

After the theory was written down, it was thought that Einstein gravity may not

be the entire picture. In particular, the pervasive appearance of singularities inside

black holes suggests a more fundamental theory is required for a complete description
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of these systems. One simple idea is to add higher order powers of curvature to the

action, and this may provide the necessary non-trivial corrections to the theory,

as initially proposed in 1919 [5]. Higher curvature gravity sat of the shelf until it

started to garner some consideration again in the middle of the 20th century in the

context of a possible solution to the non-renomalizability of quantum gravity [6].

Further work was done by Lovelock in [37] by showing that adding dimensionally

continued Euler densities for manifolds of dimension 2n to the Lagrangian density

for Einstein gravity yielded a non-trivial extension of the Einstein tensor for D =

2n+ 1. Note that the two dimensional Euler density is the Ricci scalar, which is the

Lagrangian density for the Einstein-Hilbert action for general relativity. We will focus

our attention on second order Lovelock, or Gauss-Bonnet, gravity obtained by adding

four-dimensional Euler density to the Einstein-Hilbert term. Of course, this can only

effect the gravitational field equations in theories where the spacetime dimensiona

is greater than four. Explorations into the presence of these higher curvature terms

received a certain amount of attention in string theory and led to a growth in interest

in the 1980’s [17, 23, 38, 39]. In this section we will review results for Gauss-Bonnet

gravity including black hole solutions, their thermodynamic properties, and briefly

mention work done in exploring the implications of higher curvature gravity using

the AdS/CFT correspondence.

2.5.1 Gauss-Bonnet Gravity

We will begin our consideration of higher curvature theories by examining Gauss-

Bonnet gravity. This theory is built out of the Einstein-Hilbert Lagrangian density

with the addition of the Euler density of a four dimensional manifold X4. However

before we get to Gauss-Bonnet gravity, we must note that X4 is a very special case for

a specific linear combination of curvature squared terms. We will begin by writing

down the most general theory that contains an arbitrary linear combination of scalar
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monomials quadratic in the curvature tensors and then show why we choose only to

discuss X4 among the possible choices [38]. The general second order action is given

by

I =
1

16πG

∫

dDx
√
−g
(

R− 2Λ + α1R
2 + α2RabR

ab + α3RabcdR
abcd
)

. (2.67)

The linearized theory of eq. (2.67) were studied in [23]. Varying the field equations

for (2.67) by gab = g0
ab + hab where the background g0

ab is a solution to the field

equations, the authors found that quadratic terms with arbitrary coefficients give

rise to kinetic terms of the form hab�
2hab in the linearized theory. These terms are

certainly problematic for the initial value problem in general relativity. A quantum

version of theses problems is that the inclusion of these four derivative terms leads

to ghost modes in the graviton propagator with m2 = 1
l2p

. The quantum theory is

found then to be non-unitary [6]. The presence of ghost modes for the graviton in the

theory indicates a sickness in the full non-perturbative theory or alternatively that

the theory described by eq. (2.67) must be incomplete.

In this regard, the Gauss-Bonnet theory proves special amongst the curvature

squared theories. By choosing the coefficients of the quadratic terms to be α1 = α3,

α2 = −4α1, the hab�
2hab terms in the second variation vanish up to total derivatives.

Thus we find that the unique curvature-squared theory that is stable in the non-linear

regime is given by the addition of
√−gX4 to the Einstein-Hilbert term. However,

since X4 is topological in D = 4 and vanishes for D ≤ 3, this theory only provides a

non-trivial extension of Einstein gravity in dimension greater than or equal to five.

The full Gauss-Bonnet action is then

I =
1

16πG

∫

dDx
√
−g
(

R − 2Λ + λ̃
(

R2 − 4RabR
ab +RabcdR

abcd
)

)

. (2.68)

Varying eq. (2.68) by δgab, we find the field equations for Gauss-Bonnet gravity are

given by:

Gab + λ̃G
(2)
ab = 0, (2.69)
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where Gab is the usual Einstein tensor and G
(2)
ab is given by [40]

G
(2)
ab = 2

(

RRab − 2RdcRdacb − 2RadR
d
b +Ra

dcmRbdcm

)

− 1

2
gab

(

R2

−4RdcR
dc +RdcmnR

dcmn
)

. (2.70)

Note that there are no terms involving derivatives of curvature that survive here

e.g., �Rab. Given our interest in exploring higher curvature gravity in the framework

of the AdS/CFT correspondence we should look for black hole solutions using the

metric ansatz in eq. (2.37). Working in five dimensions yields a value for the Λ = − 6
L2 .

Using the variational approach described above with Einstein gravity, we calculate

the action (2.68) and, integrating by parts, we find up to total derivatives

I =
1

16πG

∫

d5x
3N(r)

L5

[

r4
(

1 − f(r) + λf(r)2
)]′

, (2.71)

where we have made the substitution λ̃→ λL2

2
. First finding the equations of motion

for N by varying with respect to f , we see again that N(r) = N] = constant. Varying

by δN(r), we obtain an equation for f(r) which upon integrating once gives

λf(r)2 − f(r) + 1 − ω4

r4
= 0. (2.72)

We can easily solve this quadratic equation with

f(r) =
1

2λ

[

1 ±
(

1 − 4λ

(

1 − ω4

r4

))
1

2

]

. (2.73)

Observe that with the − branch of the solution above, upon taking the limit λ → 0

we find

lim
λ→0

f(r) ≈ 1

2λ

(

1 −
(

1 − 2λ

(

1 − ω4

r4

)

− . . .

))

= 1 − ω4

r4
+ . . . , (2.74)

where the terms in . . . are O(λ) and vanish in the limit. We have recovered the

result for the metric function that we had in Einstein gravity in the limit that the

Gauss-Bonnet interaction vanishes.
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However, the ± sign in eq. (2.73) emphasises a key distinction from Einstein

gravity. Consider the case where ω = 0. We then have a quadratic equation for the

metric function which will now simply be a constant

h(f) = λf 2 − f + 1 = 0. (2.75)

We thus have two distinct vacua corresponding to the solutions

f± =
1

2λ

(

1 ±
√

1 − 4λ
)

. (2.76)

We find that only the − branch has a sensible limit as λ → 0. The + has leading

O( 1
λ
) terms and thus diverges in the limit. The problem becomes how to interpret

these vacua. In [17], the authors found that in solving the field equations for Gauss-

Bonnet gravity the two branches of the solution can be classified by the slope of the

polynomial h(f) = λf 2 − f + 1 as it passes through its roots. This sign determined

the sign of the kinetic term of the graviton in the second variation of the action. That

is for the backgrounds with negative (positive) slope the sign of the kinetic term is

positive (negative). According to present conventions,a negative sign kinetic term

corresponds to a ghost. Hence, the negative slope solutions are stable vacua whereas

solutions with positive slope have ghost graviton. As an example, in fig. (2.1) when

we plot out h(f) = λf 2 − f + 1 for λ = 0.162. We note that no vacua exist λ > 1
4

as f± becomes complex. At the critical point λ = 1
4

the roots coalesce, f± = 2.

Examining fig. (2.1) we find that both roots f± are positive, corresponding to AdS

vacua. The negative branch of in eq. (2.76) is the smaller root with negative slope

and is thus stable. The positive branch of f± is the larger root with positive slope

and has a ghost graviton.

We now look to find which vacua admit black hole solutions by letting ω 6= 0 with

h(f)

h(f) = λf 2 − f + 1 − ω4

r4
= 0. (2.77)
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Figure 2.1: Plot of h(f) with stable vacuum highlighted with green circle, ghosty
vacuum with red circle

Here we see that as r decreases from ∞, the parabola is dragged downward as in

fig. (2.2). At r = ω we see that the root of the stable branch occurs at f = 0. Re-

call,however, that f = 0 corresponds to the event horizon, and so we have determined

that rh = ω. This result is readily seen by examining (2.73) for the − sign

f−(r) =
1

2λ

[

1 −
(

1 − 4λ

(

1 − ω4

r4

))
1

2

]

. (2.78)

Here we can easily see that f(rh = ω) = 0. Hence, we can interpret theses metrics as

black hole solutions for Gauss-Bonnet gravity in AdS5.

If we consider the + of (2.73) instead, we can examine fig. (2.2) and find that

no matter the value of r the root of the positive branch never hits f = 0. Thus as

we have discussed immediately above, the metrics with f+ do not have black hole

solutions. Moreover for the positive branch, we find that solutions with ω4 > 0 have

negative energy.

Now we examine the thermodynamic properties of the above higher curvature
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Figure 2.2: Plot of h(f) for r = ω 6= 0 with stable vacuum with black holes highlighted
with green circle, ghosty vacuum with red circle

black holes [15]. The calculation for temperature that was done for Einstein gravity,

eq. (2.53), remains the same, but the result is modified by the higher curvature terms

by making a standard choice for N2
] = limr→∞ f(r) so that asymptotically gtt

gxx
→ −1

as we saw before:

T =
ωN]

πL2
=

ω

πL2

[

1

2λ

√
1 − 4λ

]

. (2.79)

It was shown in [18] and[19] that by integrating the 1st Law of Black Hole Mechanics

the entropy for Gauss-Bonnet black holes for planar ’black branes’ does not change.

Black holes with curved horizons coming from eq. (2.45) do see correction to their

thermodynamic properties through the higher curvature terms. These qualities ex-

tend beyond Gauss-Bonnet gravity and apply to Lovelock gravity in general [18].

Motivated by considering the 1st Law for higher curvature black holes, Wald in

[21] determined a method to compute the entropy of a black hole in a gravitational

theory with arbitrary higher order curvature terms. The calculation for entropy can

be stated briefly as follows. Let L = L̃ε̄ be the Lagrangian form of a gravitational
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theory. For simplicity, we will consider the case where we have no matter fields. The

entropy of a black hole can then be calculated as

S = −2π

∮

Y abcdε̂abε̂cdε, (2.80)

where,

Y abcd =
∂L̃

∂Rabcd

, (2.81)

and ε̂ab is the binormal to the horizon and ε is the volume form evaluated on the

horizon. If Y = Y abcdε̂abε̂cd is constant on the horizon, the entropy is given simply as

S = −2πY A, (2.82)

where A =
∮

ε̄. As an example which will be relevant later, let us take our metric

to be eq. (2.37). Then since we are dealing with Einstein gravity our Lagrangian is

L̃ = 1
16πG

(R− 2Λ) which when plugged into the steps above yields

Y abcd =
1

16πG

∂R

∂Rabcd
=

1

32πG

(

gacgbd − gadgbc
)

. (2.83)

In an orthonormal frame, we have Y = 4Y trtr = −4Y tr
tr leading to the standard

result of black hole entropy for Einstein gravity:

S = −2πA

(

− 1

8πG

(

gt
tg

r
r − gt

rg
r
t

)

)

=
A

4G
. (2.84)

This agrees with the previous result for entropy obtained in the Euclidean framework

as we had expected [27]. Applying this formalism to Gauss-Bonnet gravity, we find

that in addition to the Einstein contribution:

Y2 = Y abcd
2 ε̂abε̂cd = − 1

4πG

(

R− 2
(

Rt
t +Rr

r

)

+ 2Rtr
tr

)

, (2.85)

where Y abcd
2 = ∂L̃

∂Rabcd
. Integrating this over the horizon gives the value for the entropy

as

S =
A

4G

(

1 + λL2
(

R − 2
(

Rt
t +Rr

r

)

+ 2Rtr
tr

))

. (2.86)
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Calculating eq. (2.86) for the metric eq. (2.37) gives

S =
A

4G
(1 − 6λf(r)) . (2.87)

However, evaluating this on the horizon rh = ω we retrieve the result that S = A
4G

.

Considering the case of black holes with curved horizons, we note that at the horizon

radius rh the metric function f(r) does not vanish. Instead by eq. (2.45), f(rh) =

−kL2

r2
h

, and so the curved horizon entropy formula

Sk =
A

4G

(

1 + 6λk
L2

r2
h

)

. (2.88)

Continuing to explore the thermodynamics of the Gauss-Bonnet black brane, we

can calculate the free energy using the Euclidean action approach presented in the

previous section. Including, the Gauss-Bonnet interaction in eq. (2.58) where we have

again dropped the boundary terms which do not contribute [11]

IE = − 1

16πG

∫ ∞

rh

dr

∫ 1

T

0

dtE

∫

d3x
√
gE

(

R +
12

L2
+
λL2

2

(

R2 − 4RabR
ab +RabcdR

abcd
)

)

.

(2.89)

Calculating eq. (2.89) for the metric ansatz eq. (2.37), we find that

IE[T ] =
1

16πG

V3 ω
4N]

TL5λ

(

r4
+

ω4

(

12λ− 5 + 5
√

1 − 4λ
)

− 4λ+
2λ√

1 − 4λ

)

, (2.90)

where V3 is the volume obtained by integrating over the planar directions. However

as we have discussed previously, the divergence of IE as we take r+ → ∞ necessitates

regularization. Considering the solution for the pure Gauss-Bonnet AdS vacuum by

letting ω = 0 in the metric function f−(r), and then calculating the form of T ′[T ] [11]

T ′ = T









1 −
√

1 − 4λ

1 −
√

1 − 4λ
(

1 − ω4

r4
+

)









1

2

. (2.91)

Now calculating the empty Gauss-Bonnet AdS space Euclidean action

I0
E [T ′(T )] =

1

16πG

V3 ω
4N]

T ′L5λ

(

r4
+

ω4

(

12λ− 5 + 5
√

1 − 4λ
)

)

. (2.92)
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Subtracting IE − I0
E and taking the limit r+ → ∞, we find that F is given by

F [T ] = − 1

16πG

1

L5
V3 ω

4N] = − V3

4G

(πLT )3

N3
]

T

4
. (2.93)

Then calculating the entropy density, s, of the Gauss-Bonnet black brane

s[T ] = − 1

V3

d

dT
F [T ] =

(πLT )3

4GN3
]

=
1

4G

ω3

L3
. (2.94)

We see that the Euclidean action approach directly above matches the result using

Wald’s method [27]. As we had done in the case of the black branes in Einstein gravity,

we check that the above thermodynamic results satisfy the relationships eqs. (2.65)

and (2.66). We first calculate the pressure and energy density as in eqs. (2.63) and

(2.64) and find

p =
1

4G

(πLT )3

N3
]

T

4
, ρ =

3(πL)3T 4

16GN3
]

. (2.95)

We can see from the above expressions that eq. (2.65) is satisfied for the Gauss-

Bonnet black brane solutions. The values above for temperature and entropy density

show that eq. (2.66) is satisfied as well. We note that the contribution of the higher

curvature terms comes from the factors of N].
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Chapter 3

Pseudo-Topological Gravity

Given the rich area of research that Gauss-Bonnet gravity has become both as a

theory of gravity on its own and also in the context of AdS/CFT, it would follow

that we should ask if there is any further correction to the gravitational action,

eqs. (2.16), (2.68), that would be at least third order and remain ghost free. That

is not to say theories of gravity with terms of cubic order in curvature tensors have

been neglected. However, the work done has been mostly in the context of Lovelock

gravity, which are non-trivial at third order only for spacetimes with seven or more

dimensions [39, 41]. What we would like to do is explore whether or not we can

write down a nice, non-trivial third order theory in five dimensions and find black

hole solutions therein. If this is at all possible, it will obviously not be part of the

Lovelock group of theories

In this chapter, our goal is to study gravitational theories with curvature cubed

interactions that will allow us to explore possible black hole solutions. We begin

by writing down the most general irreducible combination of contractions of three

curvature tensors with arbitrary coefficients. We then apply the variational method,

as we had in Gauss-Bonnet gravity, to determine the values of the coefficients. We

find that there does exist a linear combination of the cubic terms that have a non-

trivial contribution to the equations of motion in five dimensions. After writing down
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the action in five dimensions, we generalize the theory to an arbitrary dimensional

spacetime. The surprising result that in six dimensions the cubic order action yields

only boundary terms suggests that it may be a new topological object. However as we

show in Appendix A with explicit examples, this is not the case. We then derive the

field equations for this ‘pseudo-topological’ theory. From the field equations, we write

down the linearized pseudo-topological theory, and we find that it has two-derivative

equations of motion by choosing a certain amount of symmetry of the space time and

using a standard gauge choice. Thus, we see that pseudo-topological gravity is free

from the sicknesses that usually plague higher curvature theories.

3.1 Finding a Cubic Order Action

Being inspired by the simplicity of the black hole solutions for Gauss-Bonnet gravity,

found in section 2.5, we would like to see if we can reproduce a similarly nice results

in a curvature cubed theory in five dimensions. Finding that it is indeed possible to

write down a curvature cubed theory in five dimensions, we will go back and check

the linearized equations of motion to verify that these are in fact 2nd order.

Let us begin by listing a basis of the possible six-derivative interactions, which

then appear at the same order as the curvature-cubed terms. Considering the work

don in [42, 25, 26] we see that the basis for our theory is given by the following scalar

combinations:

1. R c d
a b R e f

c d R a b
e f 6. Ra

bRb
cRc

a 11. ∇aRbc ∇aRbc

2. R cd
ab R ef

cd R ab
ef 7. Ra

bRb
aR 12. ∇aRab ∇bR

3. Rabcd R
abc

eR
de 8. R3 13. ∇aR∇aR

4. Rabcd R
abcdR 9. ∇aRbcde∇aRbcde

5. Rabcd R
acRbd 10. ∇a∇cRabcd R

ab

In assembling this list, we have discarded any total derivatives, e.g., ∇a∇a∇b∇cRbc

and we have simplified various expressions using the index symmetries of the Ricci
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and Riemann tensors from eqs. (2.9) and (2.10). In particular, these symmetries

allow us to reduce any other index contraction of three Riemann tensors to some

combination of terms 1 and 2. Further, term 12 can be reduced to term 13, using

∇aRab = 1
2
∇bR. Similarly, using the Bianchi identities, terms 9 and 10 can be shown

to be reducible to other terms and total derivatives as well. Hence, we are left with

a list of 10 independent cubic curvature terms to consider. Combining all of these

terms together in a single expression gives:

√−gZ5 =
√−g

(

c1R
c d

a b R
e f

c d R
a b

e f + c2R
cd

ab R ef
cd R ab

ef + c3 RabcdR
abc

eR
de

+ c4RabcdR
abcdR + c5RabcdR

acRbd + c6R
b

a R
c

b R
a

c + c7R
b

a R
a

b R

+ c8R
3 + c11 ∇aRbc∇aRbc + c13 ∇aR∇aR

)

. (3.1)

Using the discussed method, we must isolate the highest derivative of N and tune the

coefficients present to allow us to integrate by parts. The only part of eq. (3.1) that

will give rise to terms with three derivatives acting on N will be c11 ∇aRbc∇aRbc +

c13 ∇aR∇aR which when calculated give

(N ′′′)2 r9f 3

NL9
(2c11 + 4c13) +

((−4r9f 3N ′

N2L9
(2c13 + c11) +

r7f 2

L9N

(

4c13

(

5r2f ′ + 16rf 2
)

+
c11

2

(

20r2f ′ + 52rf 2
)

))

N ′′ +
(N ′)2 r7f 2

L9N2

(

4c13

(

−12rf − 3r2f ′)+
c11

2
(−36rf

−12r2f ′))+
r7f 2N ′

L9N

(

4c13

(

3r2f ′′ + 12f + 18rf ′)+
c11

2

(

12r2f ′′ + 60rf ′ + 36f
)

)

+
r7f 2

L9

(

c11

(

2r2f ′′′ + 18rf ′′ + 30f ′)+ 4c13
(

12rf ′′ + r2f ′′′ + 30f ′))N ′′′ +

(

r7N ′f 2

L9N2
×

×
(

−4c13
(

5r2f ′ + 16rf
)

+
c11

2

(

−52rf − 20r2f ′)
)

+
r9f 3 (N ′)2

L9N3
(2c11 + 4c13)

+
r5f

L9N

(

c13

(

5r2f + 16rf
)2

+
c11

2

(

196r2f 2 + 130r3ff ′ + 25r4 (f ′)
2
))

)

(N ′′)
2

+

(

r5fN ′

NL9

(

c13f
(

−4r2
(

12rf ′′ + r2f ′′′ + 30f ′)+ 2
(

5r2f ′ + 16rf
) (

3r2f ′′ + 12f

+18rf ′)) +
c11

2

(

486r2ff ′ + 150r3 (f ′)
2

+ 30r4f ′′f ′ + 312rf 2 − 4r4ff ′′′ + 42r3ff ′′
))
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+
r7f 2 (N ′)3

L9N3

(c11

2

(

12r2f ′ + 36rf
)

− 4c13

(

−12rf − 3r2f ′)
)

+
2f (N ′)2

L9N2

(

−2r7fc13×

×
(

3r2f ′′ + 12f + 18fr′
)

+ r5c13

(

−12rf − 3r2f ′) (5r2f ′ + 16rf
)

+
c11r

5

2

(

−12r4ff ′′

30r4 (f ′)
2 − 300r2f 2 − 228r3ff ′

))

+
c11fr

5

2L9

(

150 (f ′)
2
f 2 + 90r3f ′f ′′ + 10r4f ′f ′′′

+510rff ′ + 258r2f ′′ + 26r3ff ′′′)+
2r5c13f

L9

(

5r2f ′ + 16rf
) (

12rf ′′ + r2f ′′′ + 30f ′)
)

×

×N ′′ +
fr5

L9

(c11

2

(

r4 (f ′′′)
2

+ 90r2 (f ′′)
2

+ 18r3f ′′f ′′′ + 450 (f ′)
2

+ 30r2f ′f ′′′ + 360r×

×f ′f ′′) + c13

(

12rf ′′r2f ′′′ + 30f ′)2
)

N +
(N ′)4 r5f

L9N3

(c11

2

(

132r2f 2 + 9r4 (f ′)
2

+ 54r3×

×ff ′) + c13

(

−12rf − 3r2f ′)2
)

+
(N ′)3 r5f

L9

(

2c13

(

−12rf − 3r2f ′) (3r2f ′′ + 12f

+18rf ′) +
c11

2

(

−318r2ff ′ − 120rf 2 − 90r3 (f ′)
2 − 54r3ff ′′ − 18r4f ′′f ′

))

+
N ′r5f

L9
×

×
(

2c13

(

3r2f ′′12f + 18f ′r
) (

12rf ′′ + r2f ′′′ + 30f ′)+
c11

2

(

18fr2f ′′′ + 54r3 (f ′′)
2

+390r2f ′f ′′ + 6r4f ′′f ′′′ + 450ff ′ + 600 (f ′)
2

+ 30r3f ′f ′′′ + 198frf ′′
))

+
r5f (N ′)2

NL9
×

×
(

c13

(

2
(

−12rf − 3r2f ′) (12rf ′′ + r2f ′′′ + 30f ′)+
(

3r2f ′′ + 12f + rf ′)2
)

+
c11

2

(

9r4 (f ′′)
2 − 18r3ff ′′′ + 78rff ′ − 120r2ff ′′ + 186 (f ′)

2
r2 − 6r4f ′f ′′′ + 36r3f ′f ′′

+180f 2
))

. (3.2)

As is obvious from eq. (3.2) tuning c11 and c13 to allow for partial integration with

respect to r would require both to be set to zero. Iterating the process to successively

lower numbers of derivatives on N and integrating by parts so that we arrive at the

following expression with ambiguous coefficients, up to total derivatives, involving

only N(r) and powers of r and derivatives of f :

√−gZ =
−N
4L9

((

8r9 (c11 + 2c13) f
2f (6) +

(

r8 (236c11 + 496c13) f
2 + r9 (56c13 + 28c13) ×

× ff ′)) f (5) +
(

r9 (24c3 + 48c2 + 20c11 + 48c8 + 12c6 + 24c7 + 12c5 + 48c4

+c13) ff
′′ + 8r9 (c11 + 2c13) (f ′)

2
+ r7 (5056c13 + 384c4 + 96c6 + 2264c11

+96c2 + 96c3 + 288c7 + 960c8 + 72c5) f
2 + r8 (72c5 + 288c4 + 120c3
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+1312c13 + 192c2 + 480c8 + 192c7 + 608c11 + 84c6) ff
′) f (4) +

(

r8 (48c4

+12c5 + 48c8 + 24c7 + 16c13 + 12c6 + 8c11 + 24c3 + 48c2) f (f ′′′)
2

+
(

r8×

× (240c8 + 96c7 + 60c3 + 100c11 + 96c2 + 224c13 + 36c5 + 144c4 + 42c6) (f ′)
2

+r7 (1494c5 + 6069c4 + 3054c2 + 4380c7 + 4012c11 + 9776c13 + 12000c8

+1794c6 + 2340c3 + 18c1) ff
′ +
(

r9 (6c5 + 24c2 + 24c4 + 12c7 + 24c8 + 12c3

+6c6) f
′ + r8 (1296c2 + 920c13 + 384c5 + 708c3 + 388c11 + 2016c8 + 1536c4

+414c6 + 888c7) f) f ′′ + r6 (1584c6 + 8140c11 + 36c1 + 1440c2 + 1212c5

+4944c7 + 1488c3 + 5952c4 + 17280c8 + 19712c13) f
2
)

f ′′′ + r9 (−2c5 − 8c8

−2c6 − 4c7 − 8c4 − 4c3 − 8c2) (f ′′)
3

+
(

r8 (42c3 + 84c8 + 21c6 + 84c2 + 42c7

+21c5 + 84c4) f
′ + r7 (10896c8 + 4260c7 + 18c1 + 6384c4 + 1308c11 + 3696c13

+1608c5 + 2700c3 + 4488c2 + 1842c6) f) (f ′′)
2

+
(

r6 (26544c13 + 306c1

+28092c7 + 8790c5 + 84000c8 + 10740c6 + 8916c11 + 17472c2 + 12600c3

+35088c4) ff
′ + r5 (324c1 + 5436c5 + 564c2 + 6960c6 + 82560c8 + 8676c11

+22608c7 + 6069c3 + 24384c4 + 24192c13) f
2 + r7 (264c11 + 252c5 + 1056c4

+720c7 + 300c6 + 624c2 + 1920c8 + 672c13 + 408c3) (f ′)
2
)

f ′′ + r3 (−128c3

−640c4 − 6400c8 − 1280c7 − 256c6 − 48c1 − 256c5 − 64c2) f
3 + r6 (434c3

+1240c4 + 301c5 + 950c7 + 592c2 + 2800c8 + 9c1 + 361c6) (f ′)
3

+ r5 (10122c6

+10236c3 + 558c1 + 10080c13 + 2160c11 + 29040c7 + 12480c2 + 8202c5

+31296c4 + 96000) (f ′)
2

+ r4 (−900c11 + 5904c3 + 24240c7 + 504c1

+23520c4 + 7248c6 + 5748c5 + 91200c8 + 5232c2)) f
2f ′. (3.3)

By the method we used to eliminate the c11 and c13 coefficients i.e., requiring that we

can integrate by parts on N(r), we choose the ci’s to take the following values
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1. c3 = −9
7
c1 − 60

7
c2 5. c7 = −33

14
c1 − 54

7
c2

2. c4 = 3
8
c1 + 3

2
c2 6. c8 = 15

56
c1 + 11

14
c2

3. c5 = 15
7
c1 + 72

7
c2 7. c11 = 0

4. c6 = 64
7
c2 + 18

7
c1 8. c13 = 0

Inserting the values for the coefficients in the above table into eq. (3.3), we find that

that the third order Lagrangian simplifies to

√
−gZ =

12

7

N(r)

L9
(c1 + 2c2)(r

4f 3)′. (3.4)

While it is disheartening to find that we do not have a complete specification of the

coefficients in terms a single parameter, we are free to choose the values of the two

remaining ci’s. Explicitly then, if we choose c1 = 1, c2 = 0, the new curvature-cubed

interaction takes the form

Z5 = R c d
a b R

e f
c d R

a b
e f +

1

56

(

21RabcdR
abcdR− 72RabcdR

abc
eR

de

+120RabcdR
acRbd + 144Ra

bRb
cRc

a − 132R b
aR

a
b R + 15R3

)

, (3.5)

or with c1 = 0, c2 = 1,

Z ′
5 = Rab

cdRcd
efRef

ab +
1

14

(

21RabcdR
abcdR− 120RabcdR

abc
eR

de

+144RabcdR
acRbd + 128Ra

bRb
cRc

a − 108R b
aR

a
b R + 11R3

)

. (3.6)

Note that the six-dimensional Euler density can be inferred by setting c1 = −2c2 in

which case eq. (3.4) vanishes, as it mustif evaluated for the six-dimensional Euler

density. A standard normalization for the six-dimensional Euler density is [37, 26]:

X6 =
1

8
εabcdef ε

ghijklRab
ghRcd

ij Ref
kl

= 4R cd
ab R ef

cd R ab
ef − 8R c d

a b R
e f

c d R
a b

e f − 24RabcdR
abc

eR
de + 3RabcdR

abcdR

+24RabcdR
acRbd + 16R b

aR
c

b R
a

c − 12R b
aR

a
b R +R3, (3.7)

where in the first line, ε is the completely antisymmetric tensor in six dimensions and

hence the second expression only applies for D = 6. However, the first line also makes
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clear that this expression should vanish when evaluated in five (or lower) dimensions.

This normalization corresponds to the choice c2 = 4 and c1 = −8. We also note that

X6 = 4Z ′
5 − 8Z5.

3.2 Generalizing to Higher Dimensions

At this point we can move our attention to what this process yields in dimensions

greater than five, and then use that to obtain an expression for what the values of

these coefficients should be for an arbitrary, D-dimensional spacetime. What we find

is that after fixing the ci’s to allow judicious integration by parts as above we are

consistently left with a form for
√−gZ looking like

√−gZ ∼ N(r)

LD

(

a1c1 + a2c2)(r
D−1f(r)3

)′
,

where a1, a2 are certain numerical coefficients which depend on the dimension of the

spacetime. Further, this result requires the values of the other ci’s to be specified in

terms of c1 and c2 with a form that can schematically be written:

aD + b

cD2 + eD + f
c1 +

a′D + b′

c′D2 + e′D + f ′ c2. (3.8)

For simplicity, we take c1 = 1 and c2 = 0, since we are free to choose them to be

anything we want, and we shall do so from here on out. At this point we are left

with a simple exercise of determining the coefficients in eq. (3.8). Taking for example

c5, we have 5 unknowns in the general formula, and so we calculate the values for

c5 (c1 = 1, c2 = 0) for D = 6 . . . 10. In doing so, we then have a system of equations

completely determining the constants a, b, c, e, f in (3.8) for c5. Repeating for each

of the ci’s gives us that for an arbitrary, D, dimensional space time our new R3 theory

has :
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1. c3(D) = − 3(D−2)
(2D−3)(D−4)

5. c7(D) = − 3(3D−4)
2(2D−3)(D−4)

2. c4(D) = 3(3D−8)
8(2D−3)(D−4)

6.c8(D) = 3D
8(2D−3)(D−4)

3. c5(D) = 3D
(2D−3)(D−4)

7. c11 = 0

4. c6(D) = 6(D−2)
(2D−3)(D−4)

8. c13 = 0

These expressions for the coefficients allow us to write down a general form of ZD

with the choice c1 = 1, c2 = 0:

ZD = R c d
a b R

e f
c d R

a b
e f +

1

(2D − 3)(D − 4)

(

3(3D − 8)

8
RabcdR

abcdR− 3(3D − 2)×

×RabcdR
abc

eR
de + 3DRabcdR

acRbd + 6(D − 2)Ra
bRb

cRc
a − 3(3D − 4)

2
×

×R b
a R

a
b R +

3D

8
R3

)

. (3.9)

It is straight forward to verify that this result reduces to eq. (3.5) for D = 5. In

principle, one can generalize this expression for D > 6 by adding another component

proportional to the six-dimensional Euler character (3.7). This would be equivalent

to leaving c2 arbitrary in the above analysis.

3.3 Field Equations

In this section we take the next logical step after writing down a gravitational action.

We calculate the field equations for pseudo-topological gravity as we had for Einstein

and Gauss-Bonnet gravity. That is we want to vary the action including Einstein,

Gauss-Bonnet, and pseudo-topological terms with respect to the inverse metric tensor

gab. From the field equation, we can determine if the theory contains ghost gravitons

by computing the linearized variation of these equations around a suitable background

and looking at the highest order of derivatives acting on the metric perturbation hab.

We will only see up to four derivatives acting on hab since the terms that would

generate six derivatives have had their coefficients tuned to zero, c11 = c13 = 0.

To start we write down the action for the pseudo-topological theory with arbitrary
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coefficients which we will then fix to our values arbitrary dimensions

I =

∫

dDx
√
−g
(

R− 2Λ + λ̃D

(

RabdcR
abdc − 4RabR

ab +R2
)

+ µ̃D

(

c8R
3

+c2R
dc

ab R mn
dc R ab

mn + c1R
d c

a b R
m n

c d R a b
m n + c3RabdcR

abd
mR

cm (3.10)

+c5RabdcR
adRbc + c4RabdcR

abdcR + c6R
b

a R
d

b R
a

d + c7sR
b

a R
a

b R
))

,

where

λ̃D =
λL2

(D − 3)(D − 4)
. (3.11)

and

µ̃D =
24 (2D − 3)µL4

(D − 3)(D − 6)(D − 2)2(3D2 − 15D + 16)
, (3.12)

are the values of the interaction parameters for arbitrary dimension. We do not have

to be concerned about the divergences of µ̃D and λ̃D because they occur when the

interaction terms are topological or total derivatives. In order to obtain the field

equations for eq. (3.11), we calculate the functional derivative with respect to the

metric of this action, where we have used results obtained in [26]:

1√−g
δI

δgab
=

[

Λ gab +Rab −
1

2
Rgab

]

+ λ̃D

[

2
(

RRab − 2RdcRdacb − 2RadR
d
b +R dcm

a Rbdcm

−1

2
gab

(

R2 − 4RdcR
dc +RdcmnR

dcmn
)

]

+ µ̃D [(6c8 + c7 + 2c4)RR;ab

+

(

6c8 + c7 +
1

4
c5

)

R;aR;b − 3c8R
2Rab +

(

−c7 −
1

2
c5

)

(�R)Rab

+
1

2

(

2c7 +
3

2
c6 + c3 + c5

)

(

R;daR
d
b +R;dbR

d
a

)

+ (−c7 − 4c4)R�Rab

+
1

2
(2c7 + c5)R

dc (Rdc;ab +Rdc;ba) +
1

2

(

2c7 +
3

2
c6 + 8c4 + c3

)

R;d

(

Rd
a;b

+Rd
b;a

)

− sRdcRdcRab + (−2c7 − c5 − 8c4 − c3)R;dRab
;d + (2c7 + 2c5

+3c1)R
dc

;aRdc;b + (c5 + 2c3)R
dcRdaRcb + (−2c7 − 4c4)RR

dcRdacb

+
1

2
(−3c6 − 2c3)

(

Rda�R
d
b +Rdb�R

d
a

)

+
1

2
(3c6 + 2c3)R

dc (Rda;bc

+Rdb;ac) +
1

2
(3c6 − 2c5 + 2c3 − 6c1)

(

Rdc
,;aRbd;c +Rdc

;bRad;c

)

+ (−3c6
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−4c3 − 12c2)R
d
a;cRdb

;c +
1

2
(3c6 + 2c5 + 2c3)R

dc (Rm
aRmcdb +Rm

bRmcda)

+ (−2c5 − 2c3)R
dcRab;dc + (−c5 − 3c1) �RdcRdacb +

1

2
(−2c5 − 6c1) ×

×
(

Rdc;m
;aRmcdb +Rdc;m

;bRmcda

)

+
1

2
(−2c5 − 4c3 + 6c1)R

dc;m (Rmcda;b

+Rmcdb;a) +

(

2c5 +
3

2
− 6c2

)

RdcRmn
daRmncb + (−2c5 − 2c3 + 3c1) ×

×RdmRc
mRdacb + (−2c5 − 3c1)RdcR

dcm
aR

c
mnb +

(

−4c4 − c3 +
3

2
c1

)

×

×R;dcRdacb +
1

2

(

2c4 +
1

2
c3 −

3

4
c1

)

Rdcmn (Rdcmn;ab +Rdcmn;ba) + (2c4

+
1

2
c3 +

3

4
c1 + 3c2

)

Rdcmn
;aRdcmn;b + 4c4RRdaR

d
b − 2c4RR

dcm
aRdcmb

−kRabR
dcmnRdcmn +

1

2
(4c3 + 24c2)

(

Rd
a
;cmRdcmb +Rd

b
;cmRdcma

)

+ (−c3

−6c2)R
dcm

a;nRdcmb
;n + (2c3 + c5 + 3c1 + 12c2)R

d
a;cR

c
b;d + (2c3 − 3c1) ×

×RdcR
dcmnRmanb +

(

c3 −
3

2
c1

)

RdcmnRdcqaRmn
q
b + (4c3 − 9c1 + 12c2) ×

×RdmcnRq
dcaRqmnb +

(

−c3 +
3

2

)

Rdcm
nRdcmqR

n
a
q
b + (−2c5 − 2c3) ×

×Rdc;mRdacb;m + (−2c3 + 3c1)R
d
(aR

cmn
|d|R|cmn|b ) + gab

[(

−6c8 −
1

2
c7

)

×

×R�R +

(

−6c8 − c7 −
3

8

)

R;dR
;d +

1

2
cR3 +

(

−c7 −
3

2
c6 +

1

2
c5

)

R;dcR
dc

+ (−2c7 − c5)Rdc�R
dc + (−2c7 − 2c5 − c3)Rdc;mR

dc;m +
1

2
sRRdcR

dc

+

(

−3

2
c6 + 2c5 + c3

)

Rdc;mR
dm;c + (c5 − c6)RdcR

d
mR

cm +

(

3

2
c6 −

1

2
c5

)

×

×RmcRmnR
dmcn + (−c5 − 8c4 − c3)Rdc;mnR

dmcn +

(

−2c4 −
1

4
c3

)

×

×Rdcmn;qR
dcmn;q +

1

2
c4RRdcmnR

dcmn − 4kRdcR
d
mnqR

cmnq +

(

2c4 +
1

4
c3

+
1

2
c2

)

RdcmnR
dcqsRmn

qs +

(

8c4 + c3 +
1

2
c1

)

RdmcnR
d
q
c
sR

mqns

]]

. (3.13)

While the above form is nice to write down, it is more illuminating to consider the

values of the coefficients for an arbitrary dimensional spacetime that was found in
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section (3.2). Using the D dimensional values for the ci’s will allow us to find the

field equations by substituting in whatever the dimension of the spacetime we are

considering is. Swapping out the ci’s (with c1 = 1, c2 = 0) and simplifying the

coefficients gives the field equations expressed as:

1√−g
δI

δgab
=

[

Λ gab +Rab −
1

2
Rgab

]

+ λ̃D

[

2
(

RRab − 2RdcRdacb − 2RadR
d
b +R dcm

a Rbdcm

−1

2
gab

(

R2 − 4RdcR
dc +RdcmnR

dcmn
)

]

+
µ̃D

(2D − 3) (D − 4)
×

×
[(−3 (D − 4)

2

)

R;aR;b −
(

9

8
D

)

R2Rab + (3 (D − 2)) (�R)Rab

+6R�Rab − 3 (D − 2)Rdc (Rdc;ab +Rdc;ba) + (3 (D − 4))R;d

(

Rd
a;b

+Rd
b;a

)

+ 6R;dR
;d

ab + 6
(

D2 − 6D + 8
)

Rdc
;aRdc;b − 3 (D − 4)RdcRdaRcb

+
3 (3D − 4)

2
RdcRdcRab +

(

9D

2

)

RRdcRdacb − 6 (D − 2)
(

Rda�R
d
b

+Rdb�R
d
a

)

+ 6 (D − 2)Rdc (Rda;bc +Rdb;ac) − 6
(

D2 − 6D + 8
)

×

×
(

Rdc
;aRbd;c +Rdc

;bRad;c

)

− 6 (D − 2)Rd
a;cR

;c
db + 3 (3D − 4)Rdc (Rm

a Rmcdb

+Rm
b Rmcda) − 12RdcRab;dc − 6

(

D2 − 5D + 6
)

�RdcRdacb − 6
(

D2

−5D + 6)
(

Rdc;m
aRmcdb +Rdc;m

bRmcda

)

+ 6
(

D2 − 5D + 4
)

Rdc;m (Rmcda;b

+Rmcdb;a) +
3 (2D2 − 7D + 12)

2
RdcRmn

daRmncb + 3
(

2D2 − 11D + 8
)

×

×RdmRc
mRdacb − 3

(

2D2 − 11D + 16
)

RdcR
dmn

a R
c
mnb − 3

(

D2 − 6D

+8)R;dcRdacb −
3

4

(

D2 − 6D + 8
)

Rdcmn (Rdcmn;ab +Rdcmn;ba) +
3

2

(

D2

−5D + 4)Rdcmn
;aRdcmn;b +

(

3 (3D − 8)

2

)

RRdaR
d
b −

(

3 (3D − 8)

4

)

×

×RRdcm
a Rdcmb −

3 (3D − 8)

8
RabR

dcmnRdcmn − 6 (D − 2)
(

Rd ;cm
a Rdcmb

+Rd ;cm
b Rdcma

)

+ 3 (D − 2)Rdcm
a;nR

;n
dcmb + 6

(

D2 − 6D + 8
)

Rd
a;cR

c
b;d

−3
(

2D2 − 9D + 8
)

RdcR
dcmnRmanb −

(

3

2

(

2D2 − 9D + 8
)

)

RdcmnRdcqaR
q

mn b

−
(

3
(

6D2 − 29D + 28
))

RdmcnRq
dcaRqmnb +

(

3

2

(

2D2 − 9D + 8
)

)

×
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×Rdcm
nRdcmqR

n q
a b + gab

[

−3R�R − 3

2
R;dR

;d +
3D

16
R3 − 3 (D − 4)×

×R;dcR
dc + 6 (D − 2)Rdc�R

dc + 6 (D − 3)Rdc;mR
dc;m − 3 (3D − 4)

4
×

×RRdcR
dc − 6 (D − 4)Rdc;mR

dm;c − 3 (D − 4)RdcR
d
mR

cm

−6 (D − 2)Rdc;mnR
dmcn − 3 (D − 3)

2
Rdcmn;qR

dcmn;q +
3 (3D − 8)

16
×

×RRdcmnR
dcmn +

(

3 (5D − 12)

2

)

RdcRmnR
dmcn − 3 (3D − 8)

2
×

×RdcR
d
mnqR

cmnq +

(

3 (D − 3)

2

)

RdcmnR
dcqsRmn

qs +

(

2D2 +D − 24

2

)

×

×RdmcnR
d c
q sR

mqns
]]

. (3.14)

A useful comparison to make is between eq. (3.14) and the field equations for 3rd

order Lovelock gravity where ZD is replaced by X6 by choosing c1 = −2c2, c2 = 4 in

eq. (3.11). The field equations for the variation of X6 with respect to the metric are,

as expected, much simpler than those for ZD:

1√−g
δI

δgab
=

[

Λ gab +Rab −
1

2
Rgab

]

+ λ̃D

[

2
(

RRab − 2RdcRdacb − 2RadR
d
b +R dcm

a Rbdcm

−1

2
gab

(

R2 − 4RdcR
dc +RdcmnR

dcmn
)

]

+ µ̃D

[

−3

4
R2Rab − 6RdcRdaRcb

+3RdcRdcRab + 3RRdcRdacb + 6Rdc (Rm
a Rmcdb +Rm

b Rmcda)

+3RdcRmn
daRmncb − 6RdcR

dmn
a R

c
mnb + 3RRdaR

d
b −

3

2
RRdcm

a Rdcmb

−6RdmRc
mRdacm − 3

4
RabR

dcmnRdcmn − 6RdcR
dcmnRmanb

−3RdcmnRdcqaR
q

mn b + 3
(

Rd
aR

cmn
dRcmnb +Rd

bR
cmn

dRcmna

)

+6RdmcnRq
dcaRqmnb + 3Rdcm

nRdcmqR
n q
a b + gab

(

1

8
R3 − 3

2
RRdcR

dc

+2RdcR
d
mR

cm + 3RdcRmnR
dmcn +

3

8
RRdcmnR

dcmn − 3RdcR
d
mnqR

cmnq

+
1

2
RdcmnR

dcqsRmn
qs − RdmcnR

d c
q sR

mqns

)]

. (3.15)

The simpler form for eq. (3.15) is expected because of the special nature of the

theory based on topological invariants. Eq. (3.15) matches the calculations of the field
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equations for the third order Lovelock gravity by [26, 41]. Here we note that the main

difference between the pseudo-topological and Lovelock theories are that eq. (3.15)

does not contain any derivatives of curvature tensors whereas eq. (3.14) does. The

appearance of ∇R terms in eq. (3.14) indicates that there may be higher derivative

terms that will display a pathology similar to other non-topological theories of gravity.

However in the next section, we will explicitly show that there are situations where

this is not the case.

3.3.1 The Linearized Theory

After having found field equations for the pseudo-topological action by taking the

functional derivative with respect to the metric, we would like to determine if the

second variation of the generic D dimensional cubic theory, obtained by substituting

by gab = g0
ab + hab into eq. (3.14) where g0

ab is a solution to eq. (3.14), contains non-

vanishing terms of O(�2h) due to the presence R�R terms . In contrast, we know

that using the coefficients that give us X6 has at most 2 derivatives of the metric

perturbation, O(�h). However we shall see that in the general case if we make a few

motivated choice of the symmetries of the spacetime and fix the gauge, then there is a

very nice cancelation of the troublesome terms giving us second order field equations

for hab.

The Four Derivative Terms

The easiest way to approach the problem at hand is to focus our attention first on

the terms with the highest number of derivatives acting on hab. Our goal is to elicit

cancelation while trying to keep our consideration as general as possible. That is,

we would like to make as few specifications of the terms and coefficients as possible.

First, we gather all of the four derivative terms manifest in the second variation based

on the ways the six indices of hab;cdef can be contracted:
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1. hab;cdef : (3.16)

3

4

(D − 4) (D − 2)

(2D − 3) (D − 4)

(

2hdc;[nm](ab) + hdn;cm(ab) − hdm;cn(ab) − hcn;dm(ab)

+hcm;dn(ab)

)

Rdcmn

2. �(hab;cd) : None

3. (�hab);cd : (3.17)

3 (D − 2)

(2D − 3) (D − 4)

(

Rdc (�hdc);(ab) − 2Rdc
(

�hd(a

)

; b)c
+

2

D − 2
Rdc (�hab);dc

+2
(

�hd
(a

);cm
R |dcm|b) + gab (�hdc);mnR

dmcn
)

4. h;abcd : (3.18)

3 (D − 2)

(2D − 3) (D − 4)

(

Rdch;dc(ab) − 2Rdch;d(ab)c +
2

(D − 2)
Rdch;abdc + 2h;d cm

(a R |dcm|b)

+gabh;dcmnR
dmcn

)

5. ha
b;cade : (3.19)

3 (D − 2)

(2D − 3) (D − 4)

(

2Rdc
(

hm
d;(a|m|b)c + hm

(a;|dm|b)c − hm
d;cm(ab) − hm

c;dm(ab)

)

− 4

(D − 2)
Rdchm

(a;b)mdc − 2
(

hpd cm
;(a|p| R |dcm|b) + hp ;d cm

(a |p| R |dcm|b)

+gabh
p
(d;c)pmnR

dcmn
))

6. �
2hab : (3.20)

3 (D − 2)

(2D − 3) (D − 4)

(

Rd(a �
2hd

b) + (D − 3) �
2hdcRdacb −

1

2
gabRdc�

2hdc

− R

(D − 2)
�

2hab

)

7. (�h);cd : (3.21)

3 (D − 4)

(2D − 3) (D − 4)

(

(D − 2) (�h);dc Rdacb + gab (�h);dc R
dc
)

8. � (h;bc) : (3.22)

3 (D − 2)

(2D − 3) (D − 4)

( −R
(D − 2)

� (h;ab) + 2Rd(a�

(

h;d
b)

)

+ (D − 3)Rdacb�
(

h;dc
)

−gabRdc�
(

h;dc
))
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9. �
(

ha
b;ca

)

: (3.23)

3 (D − 2)

(2D − 3) (D − 4)

(

2R

(D − 2)
�
(

hd
(a;b)d

)

+Rd(a�
(

hmd
;b)m

)

+Rd(a �

(

hm ;d
b) m

)

+2gabRdc�
(

hn(d;c)
n

)

− 2 (D − 3) �
(

hn(d;c)
n

)

Rdacb

)

10. hab
;abcd : (3.24)

−3 (D − 4)

(2D − 3) (D − 4)

(

(D − 2)hmn dc
;mn Rdacb + gabR

dchmn
;mndc

)

11. �
(

hab
;ab

)

: (3.25)

3 (D − 2)

(2D − 3) (D − 4)

(

Rab −
1

(D − 2)
gabR

)

�
(

hdc
;dc

)

12. �
2h : (3.26)

−3 (D − 2)

(2D − 3) (D − 4)

(

Rab −
1

(D − 2)
gabR

)

�
2h.

Whereupon, we find that using the fact that hab is symmetric and by the vari-

ous symmetries of Rabcd, eq. (2.8), we have the outright cancelation of terms like

Rdcmnhdc;[nm](ab) and gab(�hdc);mnR
dcmn, while the terms Rdcmbh

p ;d cm
a p can eliminated

from consideration among the 4-derivative terms by recasting it as 2-derivatives act-

ing on a sum of products of Rabdc and hab by the definition of the Riemann Tensor

[∇a,∇b]u
c = Rc

dbau
d. After the dust settles there is not as much cancelation as we

would have liked, and we will have to make some further choices to try and deal with

the problematic terms.

At this point, we can fix the gauge by making a familiar choice that hab have vanishing

divergence (hab
;b = 0) and be trace free (h = 0) [29]. As is obvious from the expres-

sions above, there will be a large number of terms killed off by making this choice. The

terms with indices given by the contractions h;abcd, (�h);cd, �(h;cd), hab
;abcd, �(hab

;ab), �
2h

vanish immediately. Furthermore, the contractions ha
b;cade and �(ha

b;ca) vanish up to

terms like ([∇a,∇c]h
a
b);de and �([∇a,∇c]h

a
b). So, in the transverse traceless gauge

we find that we are left with the following 4-derivative terms to reckon with

1.
3 (D − 4) (D − 2)

4 (2D − 3) (D − 4)
Rdcmn

(

hdn;cm(ab) − hdm;cn(ab) − hcn;dm(ab) + hcm;dn(ab)

)

(3.27)
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2.
3 (D − 2)

(2D − 3) (D − 4)

(

Rdc (�hdc);(ab) − 2Rdc
(

�hd(a

)

; b)c
+

2

D − 2
Rdc (�hab);dc (3.28)

+2
(

�hd
(a

);cm
R|dcm|b ) + gab (�hdc);mnR

dmcn
)

3.
3 (D − 2)

(2D − 3) (D − 4)

(

2Rd(a�
2hd

b ) + (D − 3) �
2hdcRdacb −

1

2
gabRdc�

2hdc (3.29)

− R

(D − 2)
�

2hab

)

.

In spite of the number of terms killed off by the choice of gauge, we still have four

derivative terms remaining. A possible choice to make in order to eliminate the

remaining four derivative terms is hinted at by that our work on the previous cal-

culations has been performed in AdS which is a maximally symmetric spacetime.

Furthermore, we can motivate this by the fact that in the section where we are

deciding whether Z is a topological invariant or not we found that on maximally

symmetric manifolds it does indeed look topological while in general deformations

of the space will cause changes in the value of integrating
√−gZ over the manifold.

For a maximally symmetric spacetime we have a very simple form for the curvature

tensors [7]

Rabcd = − 1

L̃2
(gacgbd − gadgbc), (3.30)

Rab = −D − 1

L̃2
gab, (3.31)

R = −D(D − 1)

L̃2
. (3.32)

Here we note that we are using L̃ to denote the AdS length scale. The distinction

in notation is that while we would ordinarily use L to denote the AdS length, in

our metric ansatz eq. (2.37) and eq. (2.45) L is not the AdS length scale. Rather as

one takes the limit r → ∞ we would see that L√
f∞

is the true AdS length. It is a

subtle distinction, but it is one that would cause confusions and errors in any further

calculations if we were not careful. Using the expressions for the curvature tensors,

eqs. (3.30)- (3.32), in the remaining four derivative terms while keeping mind the

49



gauge constraints already imposed

1. − 3 (D − 2)

4 (2D − 3)

(

1

L2

(

gdmgcn − gdngcm
)

)

(hdn;cm − hdm;cn + hcm;dn − hcn;dm);(ab)

= − 3 (D − 2)

(2D − 3) L̃2

(

hmc
;cm − �h

)

;(ab)

= 0 (3.33)

2. − 3 (D − 2)

(2D − 3) (D − 4) L̃2

(

(D − 1) (�h);(ab) − 2 (D − 1) ( �hc
(a ); b)c +

2 (D − 1)

(D − 2)
�

2hab

+2
(

�hd
a

);cm
(gdmgcb − gdbgcm) +

(

�hd
b

);cm
(gdmgca − gdagcm) − gab

(

�hdc
)

;dc

)

= − 3 (D − 2)

(2D − 3) (D − 4) L̃2

(

2 (D − 1)

(D − 2)
�

2hab − 2�
2hab

)

= − 6

(2D − 4) (D − 4) L̃2
�

2hab (3.34)

3. − 3 (D − 2)

(2D − 3) (D − 4) L̃2

(

2 (D − 1) �
2hab − (D − 3) �

2hab −
(D − 1)

2
gab�

2h

−D (D − 1)

(D − 2)
�

2hab

)

= − 3 (D − 2)

(2D − 3) (D − 4) L̃2

(

(D + 1) − D (D − 1)

(D − 2)

)

�
2hab

=
6

(2D − 3) (D − 4) L̃2
�

2hab, (3.35)

where the second term in 2. generates lower derivative by commuting the derivatives

terms in order to get it into the form of a divergence, which vanishes by gauge

constraints. Thus, we have found that by imposing the transverse traceless gauge

conditions in a maximally symmetric spacetime, in our case AdSD, there are no terms

with four derivatives acting on hab. We do not find any three or one derivative terms

because we have made the choice of being in a maximally symmetric spacetime, which

implies that Rabcd is proportional to the metric. For a metric compatible connection,

the covariant derivative of the metric vanishes gab;c = 0. By explicit calculation, one

can show that all of the odd number of derivatives acting on hab occur with factors of

a derivative acting on a curvature tensor. This shows that the theory is more stable

than expected because the graviton equation of motion is only second order, and thus
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pseudo-topological gravity may have a well-posed initial value problem. However, we

have only computed this for perturbing around the vacuum spacetime, and work must

be done to show that the black hole spacetimes are similarly to metric perturbations.

Lower Derivative Terms

Now that we have shown the linearized equations of motion do not contain any three

or four derivative terms, we can now move on to collecting and simplifying the two

and zero derivative terms. Of course, we have to keep track of the two derivative terms

generated by commuting the covariant derivatives in the four derivative terms above.

Similarly, the two derivative terms of the form hc
(a;b)c can be turned into divergences,

vanishing by the gauge constraints, and will generate hab terms. After collecting and

simplifying everything, we are left with the pseudo-topological contribution to the

linearized equations of motion being

α

L̃4
�hab −

β

L̃6
hab, (3.36)

where it remains to be seen what the form of α and β are.
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Chapter 4

Black Holes in Pseudo-Topological

Gravity

We have thus far constructed a new theory of gravity that includes interactions up

to cubic order in the curvature and have written an action for the theory in arbi-

trary dimensions. Furthermore, we have seen that the theory is stable, in that it

does not contain a ghost graviton, at least for maximally symmetric spacetimes in

the transverse traceless gauge. Our original inspiration for this construction was that

the black hole metric ansatz eq. (2.37) yield a particular form when evaluated in the

action. In this chapter, we complete the study of the black holes in this new theory.

We begin by finding black hole solutions with the original ansatz eq. (2.37) for black

holes with horizon topology R
3 [7, 16]. We see that by solving a cubic polynomial

equation for the metric function of the ansatz we find a rich phase space of the the-

ory’s interaction parameters populated by different vacua, some of which admit black

holes and others that are not even stable. We finish this chapter by considering the

possibility of finding black hole solutions with curved horizons, focussing on spherical

or hyperbolic geometries, and where the vacua that admit them are located in the

phase space. In considering the curved horizon black holes, we have to determine

where the horizon is and if the solutions allow for negative mass black holes.
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4.1 Planar Black Holes

In order to find black hole solutions, we recall that we have evaluated
∫ √−gZ5 with

the metric ansatz eq. (2.37). Hence, we need only to add it to the contribution already

calculated for the five dimensional AdS-Gauss-Bonnet action, eq. (2.68):

I =
1

16πG5

∫

d5x
√−g

[

12

L2
+R +

λL2

2
X4 +

7µL4

4
Z5

]

, (4.1)

=
1

16πG5

∫

d5x
3N(r)

L5

[

r4(1 − f + λf 2 + µf 3)
]′
,

where, G5 is the five dimensional gravitational constant, X4 is the Gauss-Bonnet

term, R is the Ricci Scalar, the prime denotes a derivative with respect to r, and µ is

the interaction parameter for the pseudo-topological term. Following what was done

for the same situation in Gauss-Bonnet gravity, the next step is to find and solve

the constraint equations obtained by varying with respect to f(r) and N(r). Solving

these equations will help us explore the problem of finding possible bounds on the µ

and λ that give physically relevant non-perturbative solutions for pseudo-topological

gravity. Beginning with the equation of motion due to variation with respect to f we

find:

δf : N ′
(

3µf 2 + 2λf − 1
)

= 0, (4.2)

⇒ N ′ = 0 or 3µf 2 + 2λf − 1 = 0. (4.3)

From this we arrive at N ′ = 0 ⇒ N = constant. By choosing the value of N

appropriately, we can set the speed of light to unity at the boundary i.e., N = 1√
f∞

as we had seen for solutions of this type in Gauss-Bonnet gravity. Moving on to

the constraint equation for f(r) from varying eq. (4.1) with respect to N , we find

that similar to the constraint equation for Gauss-Bonnet gravity we have to solve a
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polynomial equation for f

δN : [r4(1 − f + λf 2 + µf 3)]′ = 0,

⇒ r4(1 − f + λf 2 + µf 3) = ω4,

⇒ f 3 +
λ

µ
f 2 − 1

µ
f +

1

µ
(1 − ω4

r4
) = 0. (4.4)

Hence we are now left with a cubic equation to solve for f(r). In order for us to

do so, we first make the substitution f = x− λ
3µ

which enables us to write eq. (4.4)

as:

x3 + 3(
−3µ− λ2

9µ2
)x+ 2(

2λ3 + 9λµ+ 27µ2(1 − ω4

r4 )

54µ3
) = 0. (4.5)

Simplifying this expression by defining

p =
−3µ− λ2

9µ2
, q =

2λ3 + 9µλ+ 27µ2(1 − ω4

r4 )

54µ3
. (4.6)

We then arrive at a depressed form for the equation:

x3 + 3px + 2q = 0. (4.7)

The most prudent method will be to compartmentalize our approach to three cases

based on the sign of the discriminant of the depressed cubic, D = q2 + p3, with the

following results:

1. q2 + p3 > 0 ⇒ 1 real root, and 2 complex roots conjugate to one another

2. q2 + p3 < 0 ⇒ 3 unequal real roots

3. q2 + p3 = 0 ⇒ 3 real roots, at least 2 of which must be equal

In this way, we can characterize the space of solutions to eq. (4.7) by the behavior

of its discriminant in the different regions of the µ − λ plane shown in fig. (4.1).
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Proceeding with the requirement that p 6= 0 (we will explore the case later on), we

define

α = (−q +
√

q2 + p3)
1

3 ,

β = (−q −
√

q2 + p3)
1

3 ,

which then, by Cardano’s Formula, allows us to write the roots of eq. (4.7) in the

simple forms

x1 = α+ β, (4.8)

x2 = −1

2
(α + β) + ı

√
3

2
(α− β), (4.9)

x3 = −1

2
(α + β) − ı

√
3

2
(α− β). (4.10)

First, let us take the simple case of q2 + p3 = 0, which then implies:

µ =
2

27
− λ

3
± 2

27

√
1 − 9 λ+ 27 λ2 − 27 λ3. (4.11)

Eq. (4.11) generates the two uppermost curves in the µ-λ plane shown in fig. (4.1).

The zero value for the discriminant gives us that α = β = (−q)
1

3 , and the roots take

the form:

f1 = − (8λ3+36λµ+108µ2(1−ω4

r4 ))
1
3 +λ

3µ
, (4.12)

f2 =
(8λ3+36λµ+108µ2(1−ω4

r4 ))
1
3 −2λ

6µ
, (4.13)

where f2 is the degenerate root.

Moving on, we next consider the case q2 +p3 < 0 which yields 3 unequal real roots

and puts in the region of the phase diagram ’sandwiched’ between the two D = 0

lines generated by the positive and negative branches. Since we no longer have a

vanishing discriminant, we cannot write a simple expression for α and β. However, if
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we make the substitution that B = −(q2 + p3) > 0 then we can recast the expression

for the roots into a more workable form.

f1 = (q + ı
√
B)

1

3 + (q − ı
√
B)

1

3 − λ

3µ
,

f2 = −1

2
((q + ı

√
B)

1

3 + (q − ı
√
B)

1

3 ) − λ

3µ
+
ı
√

3

2
((q + ı

√
B)

1

3 − (q − ı
√
B)

1

3 ),

f3 = −1

2
((q + ı

√
B)

1

3 + (q − ı
√
B)

1

3 ) − λ

3µ
− ı

√
3

2
((q + ı

√
B)

1

3 − (q − ı
√
B)

1

3 ).

In general, we know that finding the roots of a cubic equation will require taking

the cube root of a complex number, and now we must. We can recast the complex root

as (−q± i
√
B)

1

3 as |−q± i
√
B| 13e θ+2kπ

3 where |−q± i
√
B| = (−p) 3

2 and tan θ = ∓
√

B
q

.

The solutions to the cubic equation are then:

f1 = 2
√
−p cos

θ

3
− λ

3µ
,

f2 = −
√
−p cos

θ

3
− λ

3µ
−
√

3
√
−p sin

θ

3
,

f3 = −
√
−p cos

θ

3
− λ

3µ
+
√

3
√
−p sin

θ

3
.

Where, cos θ = −q(−p)−3

2 and sin θ =
√
B(−p)−3

2 . Since we have only an algebraic

expression for cos θ, sin θ, and tan θ, it is difficult to find an explicit expression for

the above solutions containing a trigonometric function of θ
3
.

Now that we have characterized the solutions based on the behavior of the dis-

criminant, we note that there is special case of eq. (4.5) we wish to consider. First,

we recognize that eq. (4.5) can be turned into a perfect cubic equation by setting

p = 0, which requires µ = −λ2

3
. This generates the lowermost curve in fig. (4.1).

With this constraint on µ, we can eliminate µ from the expression for q and find a

solution depending only on the parameter λ:
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q =
2λ3 + 9λ(−λ2

3
) + 27(−λ2

3
)2(1 − ω4

r4 )

54(−λ2

3
)3

,

=
−λ3 + 3λ4(1 − ω4

r4 )

−2λ6
=

1

2λ3
[1 − 3λ(1 − ω4

r4
)].

Furthermore if we go back and insert this relationship into eq. (4.5), we have:

0 = x3 + 2q,

⇒ x = −1

λ
[1 − 3λ(1 − ω4

r4
)]

1

3 .

Recalling that x = f + λ
3µ

and that µ = −λ2

3
, the above equation becomes:

f(r) =
1

λ

(

1 − [1 − 3λ(1 − ω4

r4
)]

1

3

)

. (4.14)

Whereupon taking the limit of the interaction parameter λ→ 0 we see the following

behavior of f :

f(r)λ→0 ≈ 1

λ

(

1 − (1 − 1

3
(3λ(1 − ω4

r4
)) + . . .)

)

,

⇒ f(r)λ→0 ≈ 1 − ω4

r4
− . . . , (4.15)

where the terms contained in the ellipses are of order λ. Thus, upon turning off λ

which controls the higher derivative terms in the action (seeing as µ is now expressed

in terms of a power of λ), we arrive at the original solution of Einstein’s equations of

motion for f(r) in the case of the planar black hole solution for AdS5.

Examining fig. (4.1) more closely, the curves generated by eq. (4.11) in the µ− λ

plane give us a clear picture of where we are in the phase space of the parameters

of the theory when we talk about the sign of the discriminant. The region that is

outside the region bounded by the positive and negative branch lines is the part of

the diagram where D > 0. In between the two branches is a region of D < 0. Note

that the three curves meet at (λ, µ) = (1/3,−1/27), as shown in fig. (4.2). It is at
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Figure 4.1: Diagram of the behavior of D in µ− λ plane. Where D < 0 is contained
in the region between the red and blue curves generated by the positive and negative
branches of eq. (4.11) respectively. D lies outside these red and blue curves. The
green curve is generated by the case where p = 0.

this point that we see the two D = 0 curves become complex while the lower curve

continues on to −∞. Following the positive branch of the D = 0 curves down to

the point of coincidence we will see that it provides a boundary between regions of

the phase space in which the theory has vacua containing black holes (to the left

of the curve) and AdS vacua that do not support black holes (right of the curve).

Beyond the point of coincidence the boundary is given by the lower parabola whose

significance will be discussed momentarily.

As an aside we make the following interesting note that the positive branch of

eq. (4.11) crosses the λ-axis at λ = 1
4

and extends to λ = 1
3
. The λ–axis (µ = 0)

corresponds to the Gauss-Bonnet theory. Recall that in this case, λ = 1
4

was seen to

be a pathological point. For λ > 1
4
, the graviton was a ghost and there were no black

holes [15, 11]

At this point we should pause to discuss how we are to decide if any of the
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Figure 4.2: A closer examination of the two nearly coinciding roots (negative and
p=0 branches). The two places of intersection for the lines are at λ = 0, µ = 0 and
λ = 1

3
, µ = − 1

27
. However, aside from those two points, the negative branch is always

above the p = 0 branch. After the λ = 1
3

point of coincidence, the negative branch
ceases to be real, while the p = 0 branch continues to −∞.

solutions to the equations of motion, eq. (4.4), indeed describe black holes. One way

to go about doing so would be to follow the arguments made by Boulware and Desser

[17] in their exploration of the stability of curvature squared theories as we had seen

in section 2.2. We have indications that we may be able to extend their work from

Gauss-Bonnet to Pseudo-Topological gravity, but this relationship that the slope of

the polynomial equation of motion, eq. (4.4), determines the sign of the kinetic term

for the graviton equation of motion is not concretely established at present. However,

we will proceed with the reasoning with the noted caveat in mind. That is, we will

say that for a positive slope the graviton is regarded as a ghost, and if the slope

is negative, the branch of the theory is stable. To start, let us first look at the

polynomial of the vacuum solutions where ω = 0

h(f) = µf 3 + λf 2 − f + 1, (4.16)

59



Figure 4.3: Graph of h(f) for µ = −0.1, λ = −1, and ω = 0. The stable (negative
slope) vacua are indicated by a green circle and ghosty, unstable (positive slope)
vacua by a red circle

h′(f) = 3µf 2 + 2λf − 1. (4.17)

By looking at the value of eq. (4.17) for the values of parameters in the different

regions of fig. (4.1), we find the following:

[region] µ, λ (+/−) D (+/−) (#, T ype) Stable Vacua (#, T ype) Ghosty Vacua
[a] (+,+) + None (1,dS)
[b] (+,−) + None (1,dS)
[c] (+,−) − (1,AdS) (1,dS), (1,AdS)
[d] (−,+) + (1,AdS) None
[e] (−,+) − (2,AdS) (1,AdS)
[f ] (−,−) + (1,AdS) None
[g] (−,−) − (1,AdS) (2,dS)

Now that we have characterized the vacua of the theory, in order to decide which

vacua do or do not contain black holes we consider the polynomial eq. (4.16) with

the change that ω 6= 0

h(f) = µf 3 + λf 2 − f + 1 − ω4

r4
. (4.18)
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Figure 4.4: Graph of h(f) for µ = −0.1, λ = −1, and r = ω = 1. The right most
zero is interpreted as a vacuum containing black holes as it intersects the f -axis at
f = 0 when r = ω.

The vacua containing black holes will be determined as one decreases r from infinity.

In doing, the ω4

r4 contribution makes the constant term smaller and smaller dragging

the graph of eq. (4.18) downward. From the idea that there is a black hole with a

horizon when the metric function vanishes f = 0, we only need to find which root of

eq. (4.18) hits f = 0 as r decreases. (For example see fig. (4.3) and fig. (4.4))

µ, λ (+/−) D (+/−) (#, T ype) Black Hole (#, T ype) Non-Black Hole [stable/ghost]
[a] (+,+) + None (1,dS)[ghost]
[b] (+,−) + None (1,dS)[ghost]
[c] (+,−) − (1,AdS) (1,dS)[ghost],(1,AdS)[stable]
[d] (−,+) + (1,AdS) None
[e] (−,+) − (1,AdS) (1,AdS)[ghost], (1, AdS)[stable]
[f ] (−,−) + (1,AdS) None
[g] (−,−) − (1,AdS) (1,dS)[stable], (1,dS)[ghost]

Graphing the roots we see that in the different regions we can see which solutions

to eq. (4.4) correspond to which vacua in the tables above. In the region D < 0, µ < 0,
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fig. (4.6), we find that that both f2 and f3 are negative and f1 is the lone positive

root. In the region of D < 0, µ > 0, fig. (4.5), f2 is negative and f1 and f3 are positive

with f3 being the smallest of the positive roots. Lastly, we have the situation where

D > 0 which leaves us in the region outside of the area swept out by the D = 0

curves generated by the p 6= 0 solutions. In this case we do not have to take the

cube root of a complex number and are left with the general solutions in terms of

α and β which can easily be expanded out to show their dependence on λ, µ, and

r. Plotting the solutions in the region µ < 0, we find that the only real solution is

given by f1 = α + β − λ
3µ

. In the region where λ < 0, f1 does not give a black hole

solution, but it does give a non-ghosty AdS vacuum. On the other hand when λ < 0,

D > 0, and µ > −λ2

3
, f1 gives an AdS vacuum with black holes, fig. (4.7). Continuing

through to the region inside the lowermost curve, we see that f1 is the only real root

corresponding to an AdS vacuum admitting black holes, while the other two roots

are again residing in the complex plane, fig. (4.8).

Figure 4.5: The graph of the solutions f1 (blue line,ghosty AdS vacuum), f2 (green
line, ghosty dS vacuum), and f3 (red line, AdS vacuum with black holes). D < 0,
µ > 0, specifically λ = −0.5, µ = 0.1, and setting the ω = 1 for convenience.
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Figure 4.6: The graph of f1 (blue) (AdS vacuum with black holes), f2 (green) (dS
vacuum without black holes), and f3 (red) (ghosty dS vacuum) for λ = −0.8, µ =
−0.1, and again ω = 1.

Figure 4.7: The graph of f1 (blue) (AdS vacuum without black holes), f2 (green)
(AdS vacuum with black holes), and f3 (red) (ghosty AdS vacuum) for λ = 0.2,
µ = −0.0075, and ω = 1
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Figure 4.8: Graph of f1 in the regions where D > 0 and p > 0. The case where
λ < 0 (red) we see an AdS vacuum with black holes, λ > 0 we find an AdS vacuum
without black holes. The upper graph corresponds to the region where D > 0 and
p < 0 where no black hole solutions exist. The other two roots in both cases are
again complex.
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4.2 Curved Horizons

Generalizing our discussion beyond considering only the planar horizons, we consider

the metric ansatz to allow for the possibility of adding curvature to the horizon as

in eq. (2.45). The analysis from the previous section follows through to our current,

more general, case in that the equations of motion now yields

µf 3 + λf 2 − f + 1 − ω4

r4
= 0.

So, we see that finding the roots follows exactly the same process as with the planar

black hole, and one would arrive at the same solutions for f as previously found.

The difference between planar and curved horizons is that the usual horizon equation

gtt = 0 now becomes f = −kL2

r2 , which gives the horizon radius as the solution to the

cubic equation in r2:

r6 + k2L4λ+ kL2r4 − ω4r2 − µL6k = 0, (4.19)

which upon solving we find that the only real root is

r2
k =

1

6

(

36kL6λ− 36kL2ω4 + 108µL6k − 8kL6 + 12
(

12λ3L12k2 − 36λ2L8k2ω4

3λ2L12k2 + 36λL4k2ω8 + 6λL8k2ω4 − 12ω12 − 3ω8k2L4 + 54k4L12ωµ

−54k2L8ω4µ+ 81µ2L12k2 − 12µL12k4
)

1

2

)
1

3

+ 2

(

−λL4k2 + ω4 +
1

3
k2L4

)

×

×
(

36kL6λ− 36kL2ω4 + 108µL6k − 8kL6 + 12
(

λ3L12k2 − 36λ2L8k2ω4

−3λ2L12k2 + 26λL4k2ω8 + 6λL8k2ω4 − 12ω12 − 3ω8k2L4 + 54k4L12λµ

−54k2L8ω4µ+ 81µ2L12k2 − 12µL12k4
)

1

2

)− 1

3 − kL2

3
. (4.20)

Note that eq. (4.20) is the square of the horizon radius for k = ±1. However, we

note that substituting k = 0 in eq. (4.20) yields zero. Although, the horizon radius

for k = 0 is obvious from eq. (4.19), r = ω. Exploring eq. (4.20) in the different

regions of fig. (4.1), we find that for k = 1 the horizon radius is positive and real in
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the regions of D < 0 from the tables in the previous section, and for D > 0µ > 0

for all λ, and for k = −1 the horizon radius is real and positive in the regions D < 0

excluding [e] and for D > 0, µ < 0.

Alternative to the above calculation, we could have also noticed that at the horizon

1
r4 = f2

L4 for k = ±1. That is, we are ignoring the k = 0 case for the moment. Inserting

the relationship back into the constraint yields a slightly modified cubic equation

µf 3 +

(

λ− ω4

L4

)

f 2 − f + 1 = 0. (4.21)

Solving this gives several roots, but testing each in the various regions of fig. (4.1)

shows that the only real root is

f0 =
1

6µL4

(

−36µL12λ+ 36µL8ω4 − 108µ2L12 − 8λ3L12 + 24λ2L8ω4

−24λL4ω8 + 8ω12 + 12
√

3
(

−L12λ2 + 18µL12λ + 2λL8ω4 − 4µL12

+12λL4ω8
)

1

2 µL6
)

1

3

+
2

3µL4

(

3µL8 + λ2L8 − 2λL4ω4 + ω8
)

×

×
(

−36µL12λ+ 36µL8ω4 − 108µ2L12 − 8λ3L12 + 24λ2L8ω4

−24λL4ω8 + 8ω12 + 12
√

3
(

−L12λ2 + 18µL12λ + 2λL8ω4 − 4µL12

+12λL4ω8
) 1

2 µL6
)− 1

3 − λL4 − ω4

3µL4
. (4.22)

To make sure that f0 has the ‘correct’ sign, we substitute it back into the original

equation for the horizon i.e., , r2
k = −kL2

f0
. Noting that we should expect a real

value for the horizon radius, r2 > 0, we investigate the λ − µ plane to determine

where − k
f0
> 0 for k = ±1. We find that − 1

f0
> 0 (spherical horizon) is satisfied

for D < 0, µ < 0, λ < 0. For hyperbolic horizon geometry, 1
f0
> 0 is satisfied for

D < 0, µ > 0.

Since we now do not have a simple relation relating the horizon radius to the mass

function of the black hole, ω4 = r4
h > 0, as we had in the planar case, we might ask

if the black hole solutions found allow for a negative mass. To do so, we go back to
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eq. (4.4), evaluate at f = −kL2

r2 and rearrange:

−µkL
6

r2
+ kL2r2 + r4 + λk2L4 = ω4. (4.23)

Finding the minimum of the left hand side will provide a lower bound for the mass

parameter ω. Differentiating and setting to zero, we find a cubic equation in ρ = r2:

ρ3 +
kL2

2
ρ2 + µ

kL6

2
= 0. (4.24)

Solving for ρ (for k = ±1 as the solution for k = 0 is obvious) and testing the type

of extremum each solution, we find the minimum is given by

ρ0 =
1

6

(

(

−54kL6µ− kL6 + 6
√

3k2L12µ (27µ+ 1)
)

2

3

+ k2L4 − kL2
(

−54kL6µ− kL6(4.25)

+6
√

3k2L12µ (27µ+ 1)
) 1

3

)

(

−54kL6µ− kL6 + 6
√

3k2L12µ (27µ+ 1)
)− 1

3

which when inserted back into eq. (4.23) gives the lower bound on mass for the black

holes with curved horizons in terms of µ, λ and k as

ω4 ≥ − 1

72k2L16µ

(

(

−54kL6µ− kL6 + 6
(

3k2L12µ (27µ+ 1)
)

1

2

)
1

3 ((−54kL6µ− kL6

+6
(

3k2L12µ (27µ+ 1)
)

1

2

)
1

3

+ kL2

)

(

27kL6µ (1 + 36µ) + (1 + 108µ)
(

3k2L12µ×

× (27µ+ 1))
1

2

)(

1944kL10µ2 − 18kL10µ− 216k2L4µ
√

3k2L12µ (27µ+ 1)

−24λk2L4
(

3k2L12µ (27µ+ 1)
)

1

2 − 18kL6µ
(

−54kL6µ− kL6 + 6
(

3k2L12µ×

× (27µ+ 1))
1

2

)2/3

+ 6k2L4
(

3k2L12µ (27µ+ 1)
)

1

2 − kL6
(

−54kL6µ− kL6

+6
(

3k2L12µ (27µ+ 1)
)

1

2

)2/3

+ 216λkL10µ+ 4λkL10 + 2
(

3k2L12µ (27µ+ 1)
)

1

2 ×

×
(

−54 kL6µ− kL6 + 6
(

3k2L12µ (27µ+ 1)
)

1

2

)2/3

− kL10 + 36µk2L8 ×

×
(

−54kL6µ− kL6 + 6
(

3k2L12µ (27µ+ 1)
) 1

2

)
1

3

+ k2L8
(

−54kL6µ− kL6

+6
(

3k2L12µ (27µ+ 1)
)

1

2

)
1

3 − 216µλk2L8
(

−54kL6µ− kL6 + 6
(

3k2L12µ×

× (27µ+ 1))
1

2

)
1

3 − 4kL2
(

3k2L12µ (27µ+ 1)
)

1

2
(

−54kL6µ− kL6 + 6
(

3k2L12µ×
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× (27µ+ 1))
1

2

)
1

3 − 4λk2L8
(

−54kL6µ− kL6 + 6
(

3k2L12µ (27µ+ 1)
)

1

2

)
1

3

+4λkL6
(

−54kL6µ− kL6. + 6
(

3k2L12µ (27µ+ 1)
)

1

2

)2/3

+ 24λkL2
(

3k2L12µ×

× (27µ+ 1))
1

2

(

−54kL6µ− kL6 + 6
(

3k2L12µ (27µ+ 1)
)

1

2

)
1

3

))

. (4.26)

Plotting the right hand side of eq. (4.26) in the different regions indicates for

which black hole solutions negative mass is not forbidden and which strictly have

positive mass. Interestingly the only areas in fig. (4.9) that allow ω4 < 0 are where

D < 0 while D > 0 restricts ω > 0 with the boundary between the two areas given by

the same curves as in fig. (4.1). However, we emphasize that the regions restricting

ω > 0 do not coincide with the regions in which we found real, positive radii for

spherical and hyperbolic horizons. That is easily seen if we recall that r2
k = −kL2

f0
> 0

only in the region D > 0, and this also restricted the types of horizon geometry with

µ < 0 giving spherical horizons and µ > 0 yielding a hyperbolic black hole.

As a caution, we note that the analysis here is preliminary, and while the results

may indicate that a horizon is possible, we have by no means guaranteed it to exist.

We can illustrate this by a simple example. Suppose we look ate fig. (4.9) in the

region where λ > 0 and −λ2

3
< µ < 0. The analysis of the bound on ω4 seems

to indicate that there are black hole solutions with ω4 > 0. We consider the cubic

polynomial eq. (4.18) first in the limit of r → ∞ and find that f0 is the non-ghost

AdS vacuum in the region (eq. (4.10)). If we then decrease r, we begin dragging the

plot down and eventually we could hit the extrema located at fcrit. However if we

reach fcrit, then the space becomes singular. Hence if a horizon (fh) forms, it must

form for 0 < fcrit < fh < f0 in order not to have a naked singularity. The equation

determining the spherical horizon demands that r2 = −L2

fh
> 0 and so fh < 0. So,

we may find solutions of eq. (4.21) for large ω4 > 0 where fh < 0, but they will

no correspond to black hole solutions. Thus, the present analysis does not entirely

characterize the black holes with curved horizons in pseudo-topological gravity.
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Figure 4.9: Region plot of curved horizon black hole solutions indicating either strictly
positive or allowing negative masses. The regions colored blue and orange correspond
to k = 1 black holes solutions admitting strictly positive or possibly negative masses,
respectively. The yellow and purple correspond to k = 1 horizon black hole solutions
forbidding and allowing negative mass, respectively.

While we have specifically done the calculations in five dimensions, we could just

as easily generalize the results above to an arbitrary, D-dimensional case as we had

with the results in Gauss-Bonnet gravity. The calculation follows just as the above

with the action

I =
1

16πGD

∫

dDx
√−g

[

(D − 1)(D − 2)

L2
+R +

λL2

(D − 3)(D − 4)
X4 (4.27)

− 8(2D − 3)

(D − 6)(D − 3)(3D2 − 15D + 16)
µL4

(

R c d
a b R

e f
c d R

a b
e f

+
1

(2D − 3)(D − 4)

(

3(3D − 8)

8
RabcdR

abcdR− 3(3D − 2)RabcdR
abc

eR
de

+3DRabcdR
acRbd + 6(D − 2)Ra

bRb
cRc

a − 3(3D − 4)

2
R b

a R
a

b R +
3D

8
R3

))]
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Figure 4.10: h(f) plotted for D > 0, −λ2

3
< µ < 0 where f0 given in eq. (4.22) is the

stable AdS vacuum. The red disk indicates the location of fcrit, which is the point
where the space becomes singular.

=
1

16πGD

∫

dDx
(D − 2)N (r)

LD

[

rD−1
(

1 − f + λf 2 + µf 3
)]′

.

The difference from the black hole solutions that were found in the five-dimensional

case is that ω4

r4 → ωD−1

rD−1 as we had expected from the Gauss-Bonnet case. As noted

above, this applies for D > 6, but in those dimensions, one already has a cubic

order theory in Lovelock gravity. Hence black holes in our higher dimensional theory,

eq (4.28), would essentially be the same as those already found [41, 43].
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Chapter 5

Thermodynamics of

Pseudo-Topological Black Holes

In the previous chapter, we found black hole solutions to the pseudo-topological the-

ory that we have constructed. After having characterized the black holes based on

the values of the interaction parameters, we now explore their thermodynamics. The

calculations in this chapter will be done primarily for the five-dimensional black brane

solutions using the metric ansatz eq. (2.37), where we note any possible generaliza-

tions. Following the calculations done Chapter 2, we use the formula derived for black

hole temperature, eq. (2.55), and apply it to the pseudo-topological black branes. We

then use the Euclidean action approach to calculate the free energy and then entropy

of the black branes. Using the thermodynamic relations eqs. (2.63) and (2.64) we

then are able to calculate pressure and energy density. In considering Gauss-Bonnet

gravity, we had also used Wald’s approach to calculating entropy and shown that the

result matched the Euclidean action formulation, and we will do the same for the

pseudo-topological theory.
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5.1 Temperature

Following the logic discussed in Section 2.4, we can use the result obtained by analyti-

cally continuing the metric eq. (2.37) to Euclidean signature τ = −ıt and periodically

identifying τ . Interpreting the period of τ as inverse temperature, we find that the

temperature of the black brane can be expressed as (noting to keep track of the

N(r)2 = 1/f∞ term):

TH =
1

4π

ω2f ′
r=ω

L2
√
f∞

. (5.1)

However, we can evaluate this simply by referring back to the constraint equation

that determined f and recalling at r = ω, f vanishes. Then a simple calculation

yields f ′|ω = 4
ω

, giving:

TH =
ω

πL2
√
f∞

. (5.2)

Now, calculating the temperature for the various black holes yields, with [x] indicating

the region in which the solution describes a black hole as listed in the table on page

57:

[g] THf1
=

√
3ω

L2π






−λ
µ

+ 2

√

λ2 + 3µ

µ2
cos







1

3
arccos






−2λ3 + 9µλ+ 27µ2

2µ3
(

λ2+3µ
µ2

)3/2



















− 1

2

[e] THf2
=

√
3ω

L2π






−λ
µ
− 2

√

λ2 + 3µ

µ2
cos







1

3
arccos







2λ3 + 9µλ+ 27µ2

2µ3
(

λ2+3µ
µ2

)3/2



















− 1

2

[c] THf3
=

√
3ω

L2π






−λ
µ
−
√

λ2 + 3µ

µ2
cos







1

3
arccos






−2λ3 + 9µλ+ 27µ2

2µ3
(

λ2+3µ
µ2

)3/2













+
√

3

√

λ2 + 3µ

µ2
sin







1

3
arccos






−2λ3 + 9µλ+ 27µ2

2µ3
(

λ2+3µ
µ2

)3/2



















− 1

2
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[f ] THD>0
=

√
6ω

L2π









22/3















−2λ3 − 9µλ+ 3µ2
(√

3µ
√

4λ3−λ2+18µλ+µ(27µ−4)
µ4 − 9

)

µ3







1

3

−







2λ3 + 9µλ+ 3µ2
(√

3
√

4λ3−λ2+18µλ+µ(27µ−4)
µ4 µ+ 9

)

µ3







1

3









− 2λ

µ









− 1

2

THp=0
=

ω

L2π

(

1 − 3
√

1 − 3λ

λ

)− 1

2

,

which is much messier than one would hope. However, this aesthetic difficulty is just

resulting from the 1√
f∞

normalizing the temperature to the proper units. The plots

of the temperature versus µ, λ (with ω and L set to 1), shows that the temperature

of each black hole is positive in its respective valid region.
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0.0

0.1

0.2

Μ
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0.0

0.5

Λ
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0.25
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TH

Figure 5.1: Temperature plots of all black hole solutions together. Looking along the
edges of the plots, the temperature decreases to a small positive value but does not
extend to zero. The discontinuities along certain lines are due to the fact that we
have plotted all of the temperatures together, while each solution is only valid in a
certain region of the µ−λ plane. So, we see sharp edges where a solution approaches
its boundary of validity.
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5.2 Energy Density

In this section, we calculate the entropy and energy densities of the pseudo-topological

black holes by finding the free energy with the Euclidean action approach and follow-

ing standard thermodynamic arguments. That is, we follow the arguments in section

2.4 to arrive at the correspondence:

e−
1

T
F [T ] ' e−IE , (5.3)

where IE is the Euclidean action for the black hole solution. Regarding the black

hole as a thermal system at temperature T , we express IE as

IE [T ] = − 1

16πG

∫ R

ω

dr

∫ 1/T

0

dtE

∫

d3x
√
gE

(

R− 2Λ +
λL2

2
χ4 +

7µ

4
Z5

)

. (5.4)

Calculating the integrand and using that N is a constant (which we choose to be

1√
f∞

), we find that eq. (5.4) reduces to:

IE[T ] = − V3

16πG

1

TL5
√
f∞

[

r4
(

3 − 5f(r) + 15
(

λf(r)2 − µf(r)3
))

+ r5 (−1 + 6λf(r)

−9µf(r)2
)

f ′(r)
]R

ω
. (5.5)

Evaluating this can be simplified by using the constraint and and the asymptotic

expansion of f(r):

f ∼ f∞ − ω4

r4

1

(1 − 2λf∞ − 3µf 2
∞)

+ . . . . (5.6)

Keeping only the divergent and finite terms in the limit R → ∞, eq. (5.5) reduces to:

IE[T ] = − V3

16πG

ω4

TL5
√
f∞

[

R4

ω4

(

10f∞ − 30µf 3
∞ − 12

)

− (5f∞ − 15µf 3
∞ − 6)

f∞ (1 − 2λf∞ − 3µf 2
∞)

+ 1

]

.

(5.7)

Regulating this by subtracting off the value of eq. (5.4) for pure AdS (obtained by

taking ω = 0 in eq. (2.37)):

I0
E [T ′] = − V3

16πG

1

T ′L5
√
f∞

[

R4
(

10f∞ − 30µf 3
∞ − 12

)]

, (5.8)
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where T ′ is chosen so that the asymptotic geometries of the pure and black hole AdS

spaces match:

1

T ′ =
1

T

√

f(R)√
f∞

∼ 1

T

(

1 − ω4

2R4f∞ (1 − 2λf∞ − 3µf 2
∞)

)

. (5.9)

The free energy is then expressed as:

F [T ] = T
(

IE[T ] − I0
E [T ]

)

= − V3ω
4

16πGL5
√
f∞

= −V3T

16G

(

πLT
√

f∞

)3

. (5.10)

The entropy given by the familiar relationship, and then dividing by the volume gives

the entropy density as:

s[T ] = − 1

V3

d

dT
F [T ] =

1

4G

ω3

L3
. (5.11)

Recalling eq. (5.2), we can use the thermodynamic relation for a system at tempera-

ture T in absence of chemical potential, ρ = 3
4
Ts[T ] to express the energy density of

the pseudo-topological black holes as:

ρ =
3ω4

16πGL5
√
f∞

. (5.12)

5.3 Noether Charge Approach to Entropy Density

In this section we will follow the prescription developed by Wald and Iyer [21] to

compute the entropy density of our new black holes in cubic gravity. We should note

that this computation should match that done by the Euclidean action approach

computed in the previous section. [27]. Using the method discussed in Section 2.4
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and applying it to pseudo-topological gravity:

Y abcd
3 =

1

16πG

[

3

2
c8R

2
(

gacgbd − gadgbc
)

+ c4

(

2RabcdR +
1

2
RmnpqR

mnpq
(

gacgbd − gadgbc
)

)

+
c7

2

(

R n
mR

m
n

(

gacgbd − gadgbc
)

+R
(

gacRbd + gbdRac − gadRbc − gbcRad
))

+
3

4
c6

(

gacRdmR b
m + gbdRcmR a

m − gbcRdmR a
m − gadRcmR b

m

)

+
c5
2

(

RacRbd

−RadRbc +
(

gacRb d
m nR

mn + gbdRa c
m nR

mn − gadRb c
m nR

mn − gbcRa d
m nR

mn
))

+c3

(

Rabc
mR

md − Rabd
mR

mc +
1

4

(

gacR b
mnp R

mnpd + gbdR a
mnp R

mnpc

−gadR b
mnp R

mnpc − gbcR a
mnp R

mnpd
))

+ 3c2R
abmnR cd

mn +
3c1

2
Ra c

m nR
bmdn

]

,

which leads to,

Y3 = − 1

4πG

[

3

2
c8R

2 + c4

(

2Rtr
tr +

1

2
RmnpqR

mnpq

)

+
3

4
c6

(

RrmRmr +RtmRtm

)

+
c7

2
×

×
(

R n
mR

m
n +R

(

Rr
r +Rt

t

))

+
c5
2

(

Rt
tR

r
r − Rt

rR
r
t + (Rr

mrnR
mn

+Rt
mtnR

mn
))

+ c3

(

Rtr
tmR

m
r − Rtr

rmR
m

t +
1

4

(

R r
mnp R

mnp
r +R t

mnp R
mnp

t

)

)

+3c2R
trmnRmntr +

3c1

2
Rt

mtnR
rm n

r

]

,

and thus the entropy of a black hole in pseudo-topological gravity is given by the

following:

S =
A

4G

(

1 + 2λL2
(

R− 2
(

Rt
t +Rr

r

)

+ 2Rtr
tr

)

+ 2µL4

[

3

2
c8R

2 + c4
(

2Rtr
tr (5.13)

+
1

2
RmnpqR

mnpq

)

+
3

4
c6

(

RrmRmr +RtmRtm

)

+
c7

2
(R n

mR
m

n +R (Rr
r

+Rt
t

))

+
c5
2

(

Rt
tR

r
r − Rt

rR
r
t +
(

Rr
mrnR

mn +Rt
mtnR

mn
))

+ c3 ×

×
(

Rtr
tmR

m
r −Rtr

rmR
m

t +
1

4

(

R r
mnp R

mnp
r +R t

mnp R
mnp

t

)

)

+3c2R
trmnRmntr +

3c1

2

(

Rt
mtnR

rm n
r −Rt

mrnR
rm n

t

)

])

.

Evaluating this for the metric ansatz that we have set out with recalling N is constant

S =
A

4G

(

1 − 6λf(r) + 9µf(r)2
)

. (5.14)
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Evaluating at the horizon yields the familiar result, S = A
4G

, which holds regardless of

the curvature of the horizon. The entropy density is then given by s = ω3

4GL3 . For the

case of pseudo-topological black holes with curved horizons, we find that the entropy

is given by

Sk =
A

4G

(

1 + 6λk
L2

r2
h

+ 9µk2L
4

r4
h

)

. (5.15)
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Chapter 6

Discussion and Outlook

In the previous sections, we have seen a variety of unexpected results. We began by

considering the most general form for a gravitational interaction built out of curva-

ture cubed terms. From that point, we have been able to apply a variational method

to constrain the coefficients to produce a theory that has some of the nice proper-

ties of higher curvature gravity theories built out of topological invariants. However,

it is shown in Appendix A that Z6 is not a true topological quantity. Moreover

having found that there are no problematic, three or four derivative, terms in the

linearized theory was an important step in showing that pseudo-topological gravity

did not suffer from some of the pathologies that plague other non-Lovelock higher

curvature theories [23, 17]. We thus found that the equations of motion are second

order in derivatives of the metric perturbation given that we restrict the calculation

to highly symmetric spaces. As known from classical field theory, having equations

of motion contain two time derivatives of the dynamical field indicates that given

sufficient initial data there is a unique solution depending continuously on the initial

values. So, we have indications that the initial value problem for pseudo-topological

gravity is well posed, but a complete proof of this has not been formulated [29].

Solving the equations of motion obtained by the variational approach, we determined

the behavior of the solutions by their location in the phase space of the interaction
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parameters. What we found was a rich landscape of vacua with some of the stable

spacetimes admitting interesting black hole solutions. In these cases, we determined

the thermodynamics of the pseudo-topological black holes, and we found that the

same formulae for temperature, entropy and energy densities of the black brane so-

lutions as in Gauss-Bonnet and Einstein gravity. The pseudo-topological interaction

effected the values of the energy density and temperature of the black branes by

the presence of the factor of 1√
f∞

. The same could not be said for the black holes

with curved horizons, but that was to be expected as Gauss-Bonnet interaction was

already shown to non-trivially modify their thermodynamic properties [18].

With the pseudo-topological gravitational theory written down, the next phase

of research will focus on its dual description in the boundary CFT. As we had been

motivated by the results in [11, 12], we would like to find out if this new interaction

provides some further modification to the KSS bound. As the authors in [11] had

found, the possibility of causality violation the dual CFT could provide bounds on the

values of the parameters λ and µ giving physically relevant theories. We could also

return to the gravity side and explore what are the consequences of adding electric

charge or rotation to the pseudo-topological black holes. In such a case, we could

determine if such solutions have multiple horizons. More interestingly, we could look

for and explore the behavior of extremal solutions. Pushing further, we could ask if

we can construct pseudo-topological black holes other properties like NUT charge. I

feel that beyond the theory we have presented in the main thesis, we should question

if it is possible to write down an arbitrary order pseudo-topological theory of gravity

in five dimensions. That is, can we determine the behavior of the coefficients for

an arbitrary order interaction that will give two-derivative field equations? We have

seen some very interesting results so far, but as we can see, there are still many more

questions to answer on the subject of pseudo-topological gravity.

79



A. New Topological Object in Six Dimensions?

As we have been motivated by Gauss-Bonnet, and in general Lovelock, gravity, we

should make a point about the case of Z6. As Z6 does not contribute to the equations

of motion in six dimensions eq. (3.14), one might ask if this expression is itself related

to new a topological invariant in six dimensions. However, we will show that with

an explicit example, this is not the case. Taking the new curvature cubed out of the

AdS-black brane setting in which we were exploring in order to examine its generic

properties in D = 6 to determine whether or not it is a topological term.

As a simple test, we evaluate
∫

Z6 on some simple six-dimensional geometries.

First so we can take a six-sphere with a particular deformation, and ask if the
∫

Z6

depends on this deformation parameter. Let us consider the following deformed six-

sphere metric:

ds2 = R2
(

dθ2 + sin2(θ)
(

1 + a sin2(θ)
)n (

dφ2
1 + sin2(φ1)

(

dφ2
2 + sin2(φ2)×

×
(

dφ2
3 + sin2(φ3)

(

dφ2
4 + sin2(φ4) dψ

2
)))))

, (1)

where R is the radius of the six-sphere, n = 1 or 2, and θ, φi, i = 1 . . . 4 range

from 0 to π and ψ takes values over 0 to 2π. As a check, we can evaluate the six

dimensional Euler character, eq. (3.7), of over this deformed sphere to show that

the known topological invariant does not depend on the smooth deformation of the

manifold. Following suit,
∫

Z6 can also be evaluated with the following results

∫

S6

√
g X6 = 768π3, (2)

∫

S6

√
g Z6 = 544

3
π3, (3)

where we have normalized the Euler density as in eq. (3.7). Hence we find that
∫

Z6

is also independent of the deformation parameter. This is by no means a conclusive

result, but it is suggestive that Z6 may be topological.
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However, we should make sure that the lack of dependence on the deformation

parameter for Z6 integrated over S6 is not just a property of the combination of

curvature cubed terms in a very symmetric space. Let us then consider the same cal-

culation on a manifold with much less symmetry by taking the the following deformed

S2 × S4 metric:

ds2 = L2
(

dφ2
2 + sin2(φ2)

(

1 + b sin2(φ2)
)2 (

dφ2
3 + sin2(φ3)

(

dφ2
4 + sin2(φ4) dψ

2
))

)

+R2
(

dθ2 + sin2(θ)
(

1 + a sin2(θ)
)2
dφ2

1

)

, (4)

where R (L) is the radius of the two(four)-sphere, and θ, φi, i = 2 . . . 4 range from

0 to π and φ1, ψ take values over 0 to 2π. We again evaluate the six dimensional

Euler density (3.7) as a check of our calculations, and then calculate the value of Z6

integrated over this manifold.

∫

S2×S4

√
g X6 = 1536π3, (5)

∫

S2×S4

√
g Z6 = − 8

15
π3
(

−89280
√
b
√
b+ 1R2 − 2392 b9/2

√
b+ 1L2 − 3464L2b7/2

√
b+ 1

+655380R2tanh−1

( √
b√

b+ 1

)

b2 − 447156 b5/2
√
b+ 1R2 − 1920 ×

×
√
b
√
b+ 1L2 − 6120 b3/2

√
b+ 1L2 − 576L2b13/2

√
b+ 1 − 1512 b11/2 ×

×
√
b+ 1R2 − 73638 b9/2

√
b+ 1R2 − 1968 b11/2

√
b+ 1L2 + 555255R2 ×

×b3tanh−1

( √
b√

b+ 1

)

+ 38880R2b5tanh−1

( √
b√

b+ 1

)

− 324240 ×

×b3/2
√
b+ 1R2 + 5040 tanh−1

( √
b√

b+ 1

)

L2b3 + 89280R2 ×

×tanh−1

( √
b√

b+ 1

)

+ 1920 tanh−1

( √
b√

b+ 1

)

L2 + 233280R2 ×

×b4tanh−1

( √
b√

b+ 1

)

− 283071 b7/2
√
b+ 1R2 + 383760R2 ×
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×tanh−1

( √
b√

b+ 1

)

b+ 1080 tanh−1

( √
b√

b+ 1

)

L2b4 + 1296 b13/2 ×

×
√
b+ 1R2 + 8760 tanh−1

( √
b√

b+ 1

)

L2b2 + 6720 tanh−1

( √
b√

b+ 1

)

×

× L2b− 6664 b5/2
√
b+ 1L2

)

b−3/2 (b+ 1)−5/2 L−2, (6)

where for simplicity we have evaluated the integral of Z6 with the S2 deformation

parameter a = 0. Even with R = L, there is still a dependence on the S4 deformation,

b. We thus conclude the new action Z6 does not produce a topological term in

six dimensions. Its mimicry of a topological term, especially on very symmetric

manifolds, leads to our choice of name for the theory of gravity that we construct

using
√−gZ, Pseudo-Topological Gravity.
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B. Quasilocal Formulation of Black Hole Thermo-

dynamics

Here we attempt to calculate the energy density of the pseudo-topological AdS black

holes by finding the boundary stress energy tensor via the quasilocal formulation of

Brown and York [36] and presented in the setting of the AdS/CFT correspondence in

[44]. In the quasilocal approach, we consider a region M in the spacetime manifold

with boundary ∂M foliated by spacelike hypersurfaces Σ whose boundaries B foliate

∂M . For our purposes, the boundary ∂M is timelike hypersurface at constant radius

R. We denote spacetime coordinates by u, v . . ., Σ coordinates by i, j, . . ., and ∂M

coordinates by a, b, . . .. Considering the gravitational (and matter) action in M

I =
1

16πG

∫

dDx
√
−g (R − 2Λ)+

1

8πG

∫

dD−1y
√
hK− 1

8πG

∫

dD−1z
√
−γΘ+Imatter,

(7)

where hij (γab) is the induced metric on M (∂M), yi (za) are the coordinates, and Kij

(Θab) is the extrinsic curvature tensor. The quasilocal stress tensor τab is defined as

the functional derivative of the action evaluated for the classical solution Icl = I(gcl)

with respect to the γab

τab =
2√−γ

δIcl
δγab

, (8)

where γ = det(γab). Denoting the normal to ∂M by na, we observe the relationship

Daτ
ab = −T nb = −T uvnaγ

a
u where T uv is the familiar matter stress energy tensor.

Calculating τab for eq. (7) [44]

τab =
1

8πG
(Θab − γabΘ). (9)

As discussed in section 2.2, the boundary terms in eq. (7) must be regulated, and the

method used to do so is by subtracting the value for the boundary actions obtained

by embedding M in some background spacetime. The boundary stress tensor, τab,

will see contributions, τab
0 , from the background term. We then define the regulated
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boundary stress tensor to be:

τ̂ab = τab − τ 0
ab. (10)

In the context of the AdS/CFT correspondence, the total energy of the bulk AdS

spacetime should match the total energy measured in the dual CFT. To find this

we note that, in the limit of taking ∂M to spatial infinity, R → ∞, the geometry

of ∂M is equivalent to the background geometry of the CFT up to a conformal

transformation. Taking this into account, the expectation value of the dual CFT is

related to the regulated boundary stress tensor τ̂ab by [44]

√
−hhab〈Tbc〉 = lim

R→∞

√
−γ γab τ̂bc. (11)

The energy density of the AdS space is then found by calculating 〈Ttt〉.

Now, we apply this method to the five dimensional pseudo-topological black branes

in section 4.1 with metric eq. (2.37). The hypersurface at R, ∂M , then has metric

components given by

γtt = − R2

L2f∞
f(R), γāb̄ =

R2

L2
δāb̄, (12)

where xā are the planar coordinates and δab is the metric for R
p where p = D − 2.

We have also taken N2
] = 1

f∞
. The normal vector to ∂M is given by

na =
R

L

√

f(R)δa
r. (13)

We then find that the extrinsic curvature is given by

Θtt =
R
√

f(R)

2L3f∞

(

2Rf(R) +R2f ′(R)
)

, Θāb̄ = −R
2
√

f(R)

L3
δāb̄.

Computing the tt component of the boundary stress tensor yields

τtt = − pR2

8πGL3

f(R)
3

2

f∞
. (14)
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To regulate τab, we use as our background empty AdS space with metric given by

ds2
0 =

r2

L2

(

−f(R)

f∞
dt2 + (dxā)2

)

+
L2

r2f∞
dr2. (15)

We calculate the regulated boundary stress tensor, and extracting the tt component

gives:

(τ̂tt) =
3f(R)R2

8πG5L3
√
f∞

(

√

f∞ −
√

f(R)
)

, (16)

where in the regions where the f ’s corresponded to valid black hole solutions, the

corresponding τ̂tt’s are positive. In order to now calculate 〈Ttt〉, we define hab by

hab = lim
R→∞

L2

R2
γab. (17)

We then find after routine calculation that the 〈Ttt〉 is given by:

〈Ttt〉 =
3ω4

16πG5L5
√
f∞

1

(1 − 2λf∞ − 3µf 2
∞)
. (18)

where we have used the asymptotic expansions of f , eq. (5.6), to simplify the calcu-

lation. However, we not here that the result is different from eq. (5.12).

As with the Euclidean approach to black hole thermodynamics in section 5, we

should have the satisfaction of the thermodynamic relationship given by eq. (5.12).

In this case, we have ρ = 〈Ttt〉 and s being the entropy density as seen in the dual

CFT given by

s =
ω3

4GL3
. (19)

Evaluating for the values of 〈Ttt〉, s, and T already calculated, we find that the right

hand side of eq. (5.12) and eq. (18) only agree if

√

f∞ = 1 − 2λf∞ − 3µf 2
∞.

We should issue a warning about the discrepancy between the Euclidean and

quasilocal approaches. We are confident in the results given in section 5 because of

the satisfaction of the thermodynamic consistency check, eq. (5.12). The problem in
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the quasilocal formulation appears to be due to the simple prescription eq. (11) in the

presence of higher curvature terms. That is, the problem is not due to the pseudo-

topological interaction. We can see this by letting µ→ 0 in the above analysis. The

consistency relation would only be satisfied when
√
f∞ = 1 − 2λf∞. It is not clear

how to resolve this issue at this time, and it may be revisited in later work.
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