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Abstract

The graph model for conflict resolution (GMCR) provides a convenient and

effective means to model and analyze a strategic conflict. Standard practice is to

carry out a stability analysis of a graph model, and then to follow up with a

post-stability analysis, two critical components of which are status quo analysis

and coalition analysis. In stability analysis, an equilibrium is a state that is

stable for all decision makers (DMs) under appropriate stability definitions or

solution concepts. Status quo analysis aims to determine whether a particular

equilibrium is reachable from a status quo (or an initial state) and, if so, how to

reach it. A coalition is any subset of a set of DMs. The coalition stability

analysis within the graph model is focused on the status quo states that are

equilibria and assesses whether states that are stable from individual viewpoints

may be unstable for coalitions. Stability analysis began within a simple

preference structure which includes a relative preference relationship and an

indifference relation. Subsequently, preference uncertainty and strength of

preference were introduced into GMCR but not formally integrated.

In this thesis, two new preference frameworks, hybrid preference and multiple-

level preference, and an integrated algebraic approach are developed for GMCR.

Hybrid preference extends existing preference structures to combine preference

uncertainty and strength of preference into GMCR. A multiple-level preference

framework expands GMCR to handle a more general and flexible structure than

any existing system representing strength of preference. An integrated algebraic

approach reveals a link among traditional stability analysis, status quo analysis,

and coalition stability analysis by using matrix representation of the graph model

for conflict resolution.

To integrate the three existing preference structures into a hybrid system, a

new preference framework is proposed for graph models using a quadruple

relation to express strong or mild preference of one state or scenario over another,
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equal preference, and an uncertain preference. In addition, a multiple-level

preference framework is introduced into the graph model methodology to handle

multiple-level preference information, which lies between relative and cardinal

preferences in information content. The existing structure with strength of

preference takes into account that if a state is stable, it may be either strongly

stable or weakly stable in the context of three levels of strength. However, the

three-level structure is limited in its ability to depict the intensity of relative

preference. In this research, four basic solution concepts consisting of Nash

stability, general metarationality, symmetric metarationality, and sequential

stability, are defined at each level of preference for the graph model with the

extended multiple-level preference. The development of the two new preference

frameworks expands the realm of applicability of the graph model and provides

new insights into strategic conflicts so that more practical and complicated

problems can be analyzed at greater depth.

Because a graph model of a conflict consists of several interrelated graphs, it

is natural to ask whether well-known results of Algebraic Graph Theory can help

analyze a graph model. Analysis of a graph model involves searching paths in a

graph but an important restriction of a graph model is that no DM can move

twice in succession along any path. (If a DM can move consecutively, then this

DM’s graph is effectively transitive. Prohibiting consecutive moves thus allows

for graph models with intransitive graphs, which are sometimes useful in

practice.) Therefore, a graph model must be treated as an edge-weighted, colored

multidigraph in which each arc represents a legal unilateral move and distinct

colors refer to different DMs. The weight of an arc could represent some

preference attribute. Tracing the evolution of a conflict in status quo analysis is

converted to searching all colored paths from a status quo to a particular

outcome in an edge-weighted, colored multidigraph. Generally, an adjacency

matrix can determine a simple digraph and all state-by-state paths between any
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two vertices. However, if a graph model contains multiple arcs between the same

two states controlled by different DMs, the adjacency matrix would be unable to

track all aspects of conflict evolution from the status quo. To bridge the gap, a

conversion function using the matrix representation is designed to transform the

original problem of searching edge-weighted, colored paths in a colored

multidigraph to a standard problem of finding paths in a simple digraph with no

color constraints. As well, several unexpected and useful links among status quo

analysis, stability analysis, and coalition analysis are revealed using the

conversion function.

The key input of stability analysis is the reachable list of a DM, or a coalition, by

a legal move (in one step) or by a legal sequence of unilateral moves, from a status

quo in 2-DM or n-DM (n > 2) models. A weighted reachability matrix for a DM

or a coalition along weighted colored paths is designed to construct the reachable

list using the aforementioned conversion function. The weight of each edge in a

graph model is defined according to the preference structure, for example, simple

preference, preference with uncertainty, or preference with strength. Furthermore,

a graph model and the four basic graph model solution concepts are formulated

explicitly using the weighted reachability matrix for the three preference structures.

The explicit matrix representation for conflict resolution (MRCR) that facilitates

stability calculations in both 2-DM and n-DM (n > 2) models for three existing

preference structures. In addition, the weighted reachability matrix by a coalition

is used to produce matrix representation of coalition stabilities in multiple-decision-

maker conflicts for the three preference frameworks.

Previously, solution concepts in the graph model were traditionally defined

logically, in terms of the underlying graphs and preference relations. When status

quo analysis algorithms were developed, this line of thinking was retained and

pseudo-codes were developed following a similar logical structure. However, as

was noted in the development of the decision support system (DSS) GMCR II,
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the nature of logical representations makes coding difficult. The DSS GMCR II,

is available for basic stability analysis and status quo analysis within simple

preference, but is difficult to modify or adapt to other preference structures.

Compared with existing graphical or logical representation, matrix representation

for conflict resolution (MRCR) is more effective and convenient for computer

implementation and for adapting to new analysis techniques. Moreover, due to

an inherent link between stability analysis and post-stability analysis presented,

the proposed algebraic approach establishes an integrated paradigm of matrix

representation for the graph model for conflict resolution.
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Chapter 1

Introduction

Strategic conflict arises in diverse contexts, including environmental management

and the economic, political, and personal relationships among individuals and

organizations. The problem of how to solve strategic conflict has been

investigated within many disciplines including international relations, psychology,

and law, as well as from mathematical and engineering perspectives [5, 16, 35, 59].

Among the formal methodologies that address strategic conflict, the graph model

for conflict resolution (GMCR) [41] provides a remarkable combination of

simplicity and flexibility. The graph model provides an effective means to model

and analyze stabilities and then encourage follow-up or post-stability

analysis–status quo analysis and coalition analysis. To analyze a strategic conflict

means to investigate the interaction of two or more decision makers (DMs) to

identify possible outcomes.

1.1 Research Motivation

A graph model for a strategic conflict comprises a finite set of DMs, N , a set

of feasible states, S, and, for each DM i ∈ N , a preference relation on S and a

directed graph Gi = {S,Ai}. In each directed graph, S is the vertex set, and each

oriented arc in Ai ⊆ S×S indicates that DM i can make a legal move (in one step)

from the initial state to the terminal state of the arc. Obviously, preferences play

an important role in decision analysis. In the original graph model, only a relative

preference relation � and an indifference relation ∼ are available to represent

a particular DM’s simple preference for one state over another [16]. The graph

1



model has recently been developed in two new directions—preference uncertainty

and preference strength. To enhance GMCR’s applicability, more integrated and

general preference structures need to be developed. Because a graph model of a

conflict consists of several interrelated graphs, it is natural to utilize results of

Algebraic Graph Theory to analyze a graph model.

1.1.1 Motivation for New Preference Structures

Preferences that involve incomplete information have been addressed in a

significant amount of research such as preference with uncertainty and strength

of preference. However, existing structures address preference uncertainty and

preference strength separately, so they cannot model complex strategic conflicts

arising in practical applications. How to expand the realm of applicability of

GMCR and provide more insights into strategic conflicts? In this thesis, a

mechanism that is more general and flexible than existing two frameworks of

preference with uncertainty and strength of preference is introduced into the

paradigm of GMCR to combine together preference uncertainty and preference

strength.

The original graph model uses “simple preference {�,∼}” to represent a DM’s

relative preference between two states. This model is called a two-level preference

structure. Furthermore, a preference framework called “strength of preference”

that includes two new binary relations, “greatly preferred �” and “mildly preferred

>”, expressing a DM’s strong or mild preference for one state over another, with

the indifference relation ∼, is referred to as a three-level preference structure.

As a result of the development of extensive research expressing preference

information by degree of strength, existing preference structures in the graph

model are limited in their ability to depict the intensity of relative preference.

How to handle more specific preference information which lies between relative

and cardinal preferences in terms of information content? How to gain better and

more realistic insights into strategic conflicts? A multiple-level preference ranking

structure is developed to expand earlier 2-level and 3-level structures to an

unlimited number of levels of preference. In addition, this new preference

structure is incorporated into GMCR for studying multi-objective decision

making in conflict situations more realistically.
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1.1.2 Motivation for Novel Algebraic Approach

In the graph model, stability analysis (individual stability analysis) is defined

using logical structures that refer to the underlying graphs and preference

relations [16]. Subsequently, Kilgour et al. [43] developed coalition stability

analysis based on Nash stability but pseudo-code was furnished retaining a

logical structure. However, as was noted in the development of the DSS GMCR

II, the nature of logical representations makes coding difficult. The new

preference structure proposed by Li et al. [46] to represent uncertainty in DMs’

preferences included some extensions of the four stability definitions, and

algorithms were outlined but never developed. Status quo analysis for simple

preference and preference with uncertainty were developed by Li et al. [47, 48],

but only in the form of pseudo-codes following a similar logical structure, which

have never been implemented in a practical decision support system. The work

of [27, 28] integrated strength of preference information into the four basic

solution concepts consisting of Nash stability, general metarationality (GMR),

symmetric metarationality (SMR), and sequential stability (SEQ), but, again,

proved difficult to code and was never integrated into GMCR II. Table 1.1 shows

the current status of available individual stability and coalition stability analyses

and status quo analysis, as well as the development of effective algorithms and

codes to implement these stabilities and status quo analysis, which would be

essential if they are to be applied to practical problems [44].

How to develop a unique representation of conflict resolution that is easy to

code and easy to adapt to new procedures? How to design a comprehensive

decision support system for conflict analysis to include individual stability and

coalition stability analyses and status quo analysis? These are essential

motivations to develop an integrated algebraic approach for the graph model for

conflict resolution. An important restriction of a graph model is that no decision

maker can move twice in succession along any path. Hence, a graph model can

be treated as an edge-weighted, colored multidigraph in which each arc represents

a legal unilateral move and distinct colors refer to different DMs. Moreover, arc

weights can be used to represent some preference attribute. Thus, tracing the

evolution of a conflict in status quo analysis with some preference structure is

converted to searching all colored paths assigned specific weights. Generally, the

adjacency matrix represents a simple digraph and determines all paths between

3



Table 1.1: Current status of the graph model for conflict resolution (extend

from [44])

Preference informationStability and post-stability analysesAlgorithms? In GMCR II ?

Individual stability analysis Yes Yes

Simple preference Status quo analysis Yes Yes

Coalition stability analysis Yes Yes

Individual stability analysis No No

Preference with Status quo analysis Yes No

uncertainty Coalition stability analysis No No

Individual stability No No

Strength of Status quo analysis No No

preference Coalition stability analysis No No

any two vertices, but is not readily extendable to colored multidigraphs. How to

transform the original problem of searching edge-colored paths in a colored

multidigraph to a standard problem of finding paths in a simple digraph?

A conversion function using matrix representation can establish a relationship

between a colored multidigraph and a simple digraph with no color constraints.

Based on the conversion function, an inherent link among status quo analysis,

individual stability analysis, and coalition stability analysis is revealed. Because

edge weights in a graph model are used to represent preference attributes, a

weight matrix can be designed to represent various preference structures.

Therefore, the above analysis provides the possibility of establishing an

integrated paradigm using matrix representation for stability analysis and

post-stability analysis in a graph model. The explicit matrix representation for

conflict resolution (MRCR) is developed to ease the coding of logically-defined

individual and coalition stability definitions and status quo analysis. Another

benefit of matrix representation is that it facilitates modification and extension of

the definitions.
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1.2 Objectives

This research has two key objectives: the first is to propose two new preference

frameworks to enhance the applicability of GMCR; the second is to develop an

integrated algebraic approach for stability analysis, status quo analysis, and

coalition stability analysis for three preference structures, simple preference,

preference with uncertainty, and strength of preference.

The specific goals are presented as follows:

1. To extend the graph model for conflict resolution including hybrid preference:

• Propose a new preference structure for the graph model that can represent

DMs’ preference uncertainty and strength of preference;

• Extend the four basic solution concepts to models with hybrid preference;

• Extend status quo analysis from models with simple preference and

preference with uncertainty to models with hybrid preference.

2. To extend the graph model for conflict resolution to include multiple levels of

preference:

• Propose a new preference framework for the graph model that can represent

multiple levels of preference;

• Propose appropriate results of the four basic stability definitions for graph

models with multiple levels of preference;

• Investigate the relationships among these new stability definitions;

• Employ these new stability definitions to analyze a model for presenting the

significance of multiple levels of preference.

3. To develop an algebraic approach to searching edge-weighted, colored paths in

a weighted colored multidigraph:

• Propose a procedure (the Rule of Priority) to label colored multidigraphs;

• Design a conversion function that transforms the problem of searching edge-

colored paths in a colored multidigraph to the standard problem of finding

paths in a simple digraph;
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• Use the conversion function to find all colored paths between any two vertices

of a colored multidigraph;

• Develop an algorithm for searching edge-weighted, colored paths between

any two vertices in a weighted colored multidigraph;

• Construct a weighted reachability matrix of a coalition by weighted colored

paths to reveal the link among individual stability analysis, status quo

analysis, and coalition stability analysis.

4. To develop matrix representation of solution concepts (MRSC) in multiple-

decision-maker graph models:

• Construct weight matrices to represent preference information for simple

preference, preference with uncertainty, strength of preference, and hybrid

preference;

• Establish the equivalence of weighted reachability matrices for a DM or a

coalition by the weighted colored paths and reachable lists of a DM or a

coalition by various legal unilateral moves;

• Develop explicit matrix representations of the four basic solution concepts for

graph models with simple preference (MRSC), preference with uncertainty

(MRSCU), and strength of preference (MRSCS) based on their weighted

reachable matrices.

5. To propose matrix representation for status quo analysis (MRSQA) to track

the evolution of a conflict:

• Show how to input efficiently the weight matrices that represent simple

preference, preference with uncertainty, and strength of preference;

• Show that weighted edges by 0 or 1 can be used to indicate allowable

unilateral moves;

• Show that the algorithm for searching edge-weighted, colored paths can be

used to trace the evolution of a conflict under some constraints on unilateral

moves.

6. To develop matrix representation of coalition stability analysis (MRCSA):

6



• Extend coalition stabilities to models including preference uncertainty and

strength of preference;

• Construct coalition stability matrices for simple preference, preference with

uncertainty, and strength of preference based on the weighted reachability

matrix of the coalition;

• Develop an explicit algebraic form conflict model that facilitates coalition

stability calculations for the aforementioned three preference structures.

1.3 Outline of the Thesis

The outline of this thesis is presented in Fig. 1.1 to describe the existing research

and the main objectives in this work.

This chapter presents the motivation and objectives of this research. Chapter

2 includes some definitions from Algebraic Graph Theory and a brief overview

of the graph model for conflict resolution including stability analysis, status quo

analysis, and coalition analysis for existing preference structures. In Chapter 3,

two new preference frameworks, hybrid preference and multiple-level preference,

are proposed for a graph model. The four basic solution concepts and status quo

analysis for simple preference are extended to graph models incorporating hybrid

preference of uncertainty and strength. To illustrate this method, a model of the

conflict over proposed bulk water exports from Lake Gisborne in Newfoundland

is extended to hybrid preference. Then the possible resolutions and evolution of

this conflict are calculated using the extended stability and status quo analyses.

In Chapter 4, the graph model for conflict resolution is extended to multiple-level

preference. The redefined solution concepts are then applied to the expanded

Garrison Diversion Unit (GDU) conflict to show how the procedure works.

In Chapter 5, a new algebraic approach to constructing the reduced weighted

edge consecutive matrix is developed for finding all edge-weighted, colored paths

within a weighted colored multidigraph. Then, weight matrices are used to

represent simple preference, preference with uncertainty, strength of preference,

and hybrid preference. Finally, the reduced weighted edge consecutive matrix is

used to obtain weighted reachability matrices that are equivalent to the reachable

lists of a coalition by legal unilateral moves within the four preference

frameworks, simple preference, preference with uncertainty, strength of
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Figure 1.1: Outline of this thesis.
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preference, and hybrid preference. Furthermore, logical stability definitions are

presented using matrix representations for three existing preference structures in

Chapter 6. Following is the proposed algebraic approach that is employed to

solve real applications for status quo analysis and coalition stability analysis in

Chapter 7. Finally, some conclusions and ideas for future work are presented in

Chapter 8.
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Chapter 2

Background and Literature

Review

2.1 Definitions from Algebraic Graph Theory

A graph is a pair (V,E) of sets satisfying E ⊆ V × V . A multidigraph [13]

G = (V,A, ψ) is a set of vertices (nodes) V and a set of oriented edges (arcs) A

with ψ : A → V ×V . If a ∈ A satisfies ψ(a) = (u, v), then we say that a has initial

vertex u and terminal vertex v. A multidigraph may contain a, b ∈ A such that

a 	= b and ψ(a) = ψ(b), in which case a and b are said to be multiple arcs. If there

exists a ∈ A such that ψ(a) = (u, v), then u is said to be adjacent to v and (u, v) is

said to be incident from u and incident to v. Hence, (u, v) is called in-incident to v

and out-incident to u. When G is drawn, it is common to represent the direction

of an edge with an arrowhead. We generally assume loop-free graphs; i.e., for any

a ∈ A, if ψ(a) = (u, v), then u 	= v.

It should be pointed out that a multidigraph with no multiple edges can be

called a simple digraph [13].

Definition 2.1. For a multidigraph G = (V,A, ψ), edge a ∈ A and edge b ∈ A

are consecutive (in the order ab) iff ψ(a) = (u, v) and ψ(b) = (v, s), where

u, v, s ∈ V .

Definition 2.2. For a multidigraph G = (V,A, ψ), the line digraph L(G) =

(A,LA) of G is a simple digraph with vertex set A and edge set LA={d = (a, b) ∈
A × A : a and b are consecutive (in the order ab)}.
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Definition 2.3. For a multidigraph G = (V,A, ψ), a path from vertex u ∈ V to

vertex s ∈ V is a sequence of vertices in G starting with u and ending with s, such

that consecutive vertices are adjacent.

Note that in this thesis a path may contain the same vertex more than once [8].

The length of a path is the number of edges therein.

Important matrices associated with a digraph include the adjacency matrix and

the incidence matrix [24]. Let m = |V | denote the number of vertices and l = |A|
be the number of edges of the directed graph G. Then,

Definition 2.4. For a multidigraph G = (V,A, ψ), the adjacency matrix is the

m × m matrix J with (u, v) entry

J(u, v) =

{
1 if (u, v) ∈ A,

0 otherwise,

where u, v ∈ V .

Definition 2.5. For a multidigraph G = (V,A, ψ), the incidence matrix is the

m × l matrix B with (v, a) entry

B(v, a) =

⎧⎪⎪⎨
⎪⎪⎩

−1 if a = (v, x) for some x ∈ V,

1 if a = (x, v) for some x ∈ V,

0 otherwise,

where v ∈ V and a ∈ A.

According to the signed entries, the incidence matrix can be separated into the

in-incidence matrix and the out-incidence matrix.

Definition 2.6. For a multidigraph G = (V,A, ψ), the in-incidence matrix Bin

and the out-incidence matrix Bout are the m × l matrices with (v, a) entries

Bin(v, a) =

{
1 if a = (x, v) for some x ∈ V,

0 otherwise,

and

Bout(v, a) =

{
1 if a = (v, x) for some x ∈ V,

0 otherwise,

where v ∈ V and a ∈ A.

11



It is obvious that Bin = (B + abs(B))/2 and Bout = (abs(B) − B)/2, where

abs(B) denotes the matrix in which each entry equals the absolute value of the

corresponding entry of B. Definitions 2.2 to 2.6 are adapted from [24].

Definition 2.7. For two m×m matrices M and Q, the Hadamard product for

the two matrices is the m × m matrix H = M ◦ Q with (s, q) entry

H(s, q) = M(s, q) · Q(s, q).

Let “ ∨ ” denote the disjunction operator (“or”) on two matrices. Assuming

that H and G are two m × m matrices, the disjunction operation on matrices H

and G is defined by:

Definition 2.8. For two m × m matrices H and G, disjunction matrix of H

and G is the m × m matrix M = H ∨ G with (u, v) entry

M(u, v) =

{
1 if H(u, v) + G(u, v) 	= 0,

0 otherwise.

Definition 2.9. The sign function, sign(·), maps an m ×m matrix with (u, v)

entry M(u, v) to the m × m matrix

sign[M(u, v)] =

⎧⎪⎪⎨
⎪⎪⎩

1 M(u, v) > 0,

0 M(u, v) = 0,

−1 M(u, v) < 0.

2.2 Graph Model for Conflict Resolution:

Literature Review

To analyze a strategic conflict means to investigate the interaction of two or more

decision makers (DMs) to identify possible outcomes. There are many models

available for strategic conflicts, and many ways to analyze a model, including the

strategic-form game [53], the option form [34], and the closely-related tabular form

[22, 23]. In 1987, the graph model for conflict resolution (GMCR) was proposed

by Kilgour et al. [41] to provide a simple, flexible, structure modeling strategic

conflicts and insightful methods for analyzing the model. One advantage of the

graph model is that it incorporates a range of stability definitions (or solution

concepts) that models human behavior in strategic conflicts. See [44] for a recent

summary of work on the graph model. Compared with the other ways to represent

strategic conflicts, the graph model has several advantages, including its ability to

12



• handle irreversible moves,

• model common moves easily,

• provide a flexible framework for defining, comparing, and characterizing

solution concepts, and

• adapt easily in practice.

This thesis concerns the graph model.

As Fig. 2.1 shows, the graph model provides a methodology for modeling and

analyzing strategic conflicts. The modeling stage includes identification of the

decision makers (DMs), the states, the state transitions controlled by each DM,

and each DM’s relative preferences over the states. A DM may be an individual

or a group, such as an industrial or governmental organization. Usually, a DM

is modeled as having one or more options, each of which may or may not be

selected, and a state is defined as a particular selection of options by all DMs. The

analysis stage includes the determination of whether a state is stable from each

DM’s viewpoint for a range of solution concepts. States that are stable for all DMs

according to a given solution concept are called equilibria. The analysis stage also

includes follow-up analyses such as status quo analysis, coalition stability analysis,

and sensitivity analysis [16].

In a graph model, a stability definition (solution concept) is a procedure for

determining whether a state is stable for a DM, and represents the situation in

which the DM would have no incentive to move away from the state unilaterally.

An equilibrium of a graph model, or a possible resolution of the conflict it

represents, is a state that all DMs find stable under an appropriate stability

definition. To represent various decision styles and contexts, at least seven

solution concepts have been formulated for graph models, including Nash

stability [51, 52], general metarationality (GMR) [34], symmetric metarationality

(SMR) [34], sequential stability (SEQ) [22], limited-move stability

(LS) [16, 40, 78], non-myopic stability (NM) [6, 7, 39], and Stackelberg’s

equilibrium concept [61]. In this thesis, four basic solution concepts consisting of

Nash, GMR, SMR, and SEQ are considered because these definitions can be

employed with both intransitive and transitive preferences. In 1989, Wang et

al. [63] redefined the four basic solution concepts in hypergames. Recently, Zeng

et al. [79] suggested more general solution concepts—policy stability—for the

13
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graph model and Li et al. [46] extended the four basic solution concepts to

models having preference uncertainty. Hamouda et al. [27, 28] proposed new

solution concepts that take strength of preference (strong or mild) into account.

This thesis focuses mainly on the analysis stage: identifying stable states based

on the four basic solution concepts and carrying out status quo analysis and

coalition stability analysis.

2.2.1 Simple Preference, Uncertain Preference, and

Strength of Preference

Obviously, preference information plays an important role in decision analysis.

Each DM has preferences among the possible states that can arise. Ordinal

preferences, ranking states from most to least preferred (ties allowed), or cardinal

preferences using the values of a real-valued preference function on the states are

required by some models. The graph model requires only relative preference

information for each DM, but can of course use cardinal information; moreover, it

can handle both intransitive and transitive preferences. In the original graph

model, simple preference [16] of DM i is coded by a pair of relations {�i,∼i} on

S, where s �i q indicates that DM i prefers s to q and s ∼i q means that DM i is

indifferent between s and q (or equally prefers s and q). Note that, for each i, �i

is assumed irreflexive and asymmetric, and ∼i is assumed reflexive and

symmetric. Also, {�i,∼i} is complete, i.e., for any s, q ∈ S, either s �i q, s ∼i q,

or q �i s. The conventions that s �i q is equivalent to either s �i q or s ∼i q, and

that s ≺i q is equivalent to q �i s, are convenient. This completes the definition

of the graph model as used until around 2000, and represents the structures

encoded in the Decision Support System (DSS) GMCR II [18,19].

Unfortunately, it is often difficult to obtain accurate preference information in

practical cases, so models that allow preference uncertainty can be very useful.

Moreover, as pointed out by [20,21], conflicts among the attributes of alternatives

can cause preference uncertainty. To incorporate preference uncertainty into the

graph model methodology, Li et al. [46] proposed a new preference structure in

which DM i’s preferences are expressed by a triple of relations {�i,∼i, Ui} on S,

where s �i q indicates strict preference, s ∼i q indicates indifference, and sUiq

means DM i may prefer state s to state q, may prefer q to s, or may be indifferent

between s and q. If for any relation R and any states k, s, and q, kRs and sRq
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imply kRq, then R is transitive. For example, strict preference � is transitive

in many graph models, though in some cases it is intransitive. In this research,

transitivity of preferences is not required, and all results hold whether preferences

are transitive or intransitive. For example, the uncertain preference relation, U , is

often intransitive.

Another triplet relation {�i, >i,∼i} on S that expresses strength of preference

(strong or mild preference) was developed by Hamouda et al. [27,28]. For s, q ∈ S,

s �i q denotes DM i strongly prefers s to q, s >i q means DM i mildly prefers s

to q, and s ∼i q indicates that DM i is indifferent between states s and q. Table

2.1 summarizes the three existing types of preferences for DM i.

Table 2.1: Three types of preferences

Expression Properties of preference

Preference type of AsymmetricSymmetricReflexive and Complete

preference symmetric

Simple preference {�i,∼i} �i ∼i {�i,∼i}
Preference with uncertainty {�i,∼i, Ui} �i Ui ∼i {�i,∼i, Ui}

Preference with strength {�i, >i,∼i} �i, >i ∼i {�i, >i,∼i}

Note that {�i, >i,∼i} is complete, i.e., if s, q ∈ S, then exactly one of the following

relations holds: s �i q, q �i s, s >i q, q >i s, and s ∼i q.

The state set S can be divided into a set of subsets based on preference

relative to a fixed state s ∈ S. These subsets are essential components in stability

analysis. The descriptions of these subsets for the three types of preferences are

presented in Table 2.2.

Let s ∈ S and i ∈ N . Based on different structures of preferences, DM i can

identify different subsets of S. The details are presented as follows:

• For simple preference, DM i can identify three subsets of S: Φ+
i (s), Φ=

i (s),

and Φ−
i (s) [16].

• For preference with uncertainty, DM i can identify four subsets of S: Φ+
i (s),

Φ=
i (s), Φ−

i (s), and ΦU
i (s) [46].
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Table 2.2: Subsets of S with respect to three structures of preferences

for DM i [16,27,28,46]

Subsets of S Description

Φ++
i (s) = {q : q �i s} States strongly preferred to state s by DM i

Φ+m
i (s) = {q : q >i s} States mildly preferred to state s by DM i

Φ+
i (s) = {q : q �i s} States preferred to state s by DM i

Φ=
i (s) = {q : q ∼i s} States equally preferred to state s by DM i

Φ−
i (s) = {q : s �i q} States less preferred than state s for DM i

Φ−m
i (s) = {q : s >i q} States mildly less preferred than state s for DM i

Φ−−
i (s) = {q : s �i q} States strongly less preferred to state s by DM i

ΦU
i (s) = {q : q Ui s} States uncertainly preferred to state s by DM i

• For preference with strength, DM i can identify five subsets of S: Φ++
i (s),

Φ+m
i (s), Φ=

i (s), Φ−m
i (s), and Φ−−

i (s) [27,28].

For ease of use, some additional notation is defined by Φ−−,−,=
i (s) = Φ−−

i (s) ∪
Φ−m

i (s) ∪ Φ=
i (s), where ∪ denotes the union operation. Note that in the graph

model with strength of preference, s �i q iff either s >i q or s �i q. Therefore,

the two preference frameworks of preference with uncertainty and preference with

strength expand simple preference.

2.2.2 Reachable Lists for Three Preference Structures

2.2.2.1 Reachable Lists of a DM

Let i ∈ N , s ∈ S, and let m = |S| be the number of the states in S. Notation ∩
denotes the intersection operation. Recall that each arc of Ai ⊆ S × S indicates

that DM i can make a unilateral move (in one step) from the initial state to the

terminal state of the arc. The reachable lists of DM i’s from state s ∈ S for

different preference structures are defined as follows.

• Simple preference [16]:
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(i) Ri(s) = {q ∈ S : (s, q) ∈ Ai} denotes DM i’s reachable list from state s

by a unilateral move (UM);

(ii) R+
i (s) = {q ∈ S : (s, q) ∈ Ai and q �i s} denotes DM i’s reachable list

from state s by a unilateral improvement (UI);

(iii) R=
i (s) = {q ∈ S : (s, q) ∈ Ai and q ∼i s} denotes DM i’s reachable list

from state s by an equally preferred move;

(iv) R−
i (s) = {q ∈ S : (s, q) ∈ Ai and s �i q} denotes DM i’s reachable list

from state s by a unilateral disimprovement.

• Preference with uncertainty [46]:

(i) RU
i (s) = {q ∈ S : (s, q) ∈ Ai and qUis} denotes DM i’s reachable list

from state s by a unilateral uncertain move (UUM);

(ii) R+,U
i (s) = R+

i (s) ∪ RU
i (s) = {q ∈ S : (s, q) ∈ Ai and q �i s or qUis}

denotes DM i’s reachable list from state s by a unilateral improvement or

unilateral uncertain move (UIUUM).

• Strength of preference [27,28]:

(i) R+m
i (s) = {q ∈ S : (s, q) ∈ Ai and q >i s} denotes DM i’s reachable list

from state s by a mild unilateral improvement;

(ii) R++
i (s) = {q ∈ S : (s, q) ∈ Ai and q �i s} denotes DM i’s reachable list

from state s by a strong unilateral improvement;

(iii) R−m
i (s) = {q ∈ S : (s, q) ∈ Ai and s >i q} denotes DM i’s reachable list

from state s by a mild unilateral disimprovement;

(iv) R−−
i (s) = {q ∈ S : (s, q) ∈ Ai and s �i q} denotes DM i’s reachable list

from state s by a strong unilateral disimprovement;

(v) R+,++
i (s) = R+m

i (s)∪R++
i (s) = {q ∈ S : (s, q) ∈ Ai and q >i s or q �i s}

denotes DM i’s reachable list from state s by a mild unilateral move or strong

unilateral move called a weak move (WI).

From the above definitions, these reachable lists from state s by DM i can be

summarized as presented in Table 2.3.

The reachable list from state s, Ri(s), represents DM i′s unilateral moves

(UMs). Ri(s) is partitioned according to the different preference structures as

follows [16,27,28,46]:
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Table 2.3: Unilateral movements for DM i in various preference

structures [16, 27,28,46]

Type of movements Description

R++
i (s) = Ri ∩ Φ++

i (s) All strong unilateral improvements from state s for DM i

R+m
i (s) = Ri ∩ Φ+m

i (s) All mild unilateral improvements from state s for DM i

R+
i (s) = Ri ∩ Φ+

i (s) All unilateral improvements (UIs) from state s for DM i

R=
i (s) = Ri ∩ Φ=

i (s) All equally preferred states reachable from state s by DM i

R−
i (s) = Ri ∩ Φ−

i (s) All unilateral disimprovements from state s for DM i

R−m
i (s) = Ri ∩ Φ−m

i (s) All mild unilateral disimprovements from state s for DM i

R−−
i (s) = Ri ∩ Φ−−

i (s)All strong unilateral disimprovements from state s for DM i

RU
i (s) = Ri ∩ ΦU

i (s) All states reachable by DM i from state s for which

DM i’s preference relative to s is uncertain

• For simple preference, Ri(s) = R+
i (s) ∪ R=

i (s) ∪ R−
i (s).

• For preference with uncertainty, Ri(s) = R+
i (s) ∪ R=

i (s) ∪ R−
i (s) ∪ RU

i (s).

• For preference with strength, Ri(s) = R++
i (s) ∪ R+m

i (s) ∪ R=
i (s) ∪ R−m

i (s) ∪
R−−

i (s).

2.2.2.2 Reachable Lists of a Coalition

Any subset H of DMs in the set N is called a coalition. If |H| > 0, then the

coalition H is non-empty. If |H| > 1, then the coalition H is non-trivial. Below,

a coalition H ⊆ N is assumed to be non-trivial. For a two-DM model, DM i’s

opponent is one DM, j, so DM j’s reachable lists from s are the states reachable

by one step moves. In an n-DM model (n > 2), the opponents of a DM constitute

a group of two or more DMs. Therefore, the definition of a legal sequence of UMs

is given first.

A legal sequence of UMs for a coalition of DMs is a sequence of states linked

by unilateral moves by members of the coalition, in which a DM may move more
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than once, but not twice consecutively. (If a DM can move consecutively, then this

DM’s graph is effectively transitive.)

Let the coalition H ⊆ N satisfy |H| ≥ 2 and let the status quo state be s ∈ S.

We now define RH(s) ⊆ S, the reachable list of coalition H from state s (by a legal

sequence of UMs). The following definitions are taken from [16]:

Definition 2.10. A unilateral move by H is a member of RH(s) ⊆ S, defined

inductively by

(1) if j ∈ H and s1 ∈ Rj(s), then s1 ∈ RH(s) and j ∈ ΩH(s, s1);

(2) if s1 ∈ RH(s), j ∈ H and s2 ∈ Rj(s1), then, provided ΩH(s, s1) 	= {j},
s2 ∈ RH(s) and j ∈ ΩH(s, s2).

Note that this definition is inductive: first, using (1), the states reachable from

s are identified and added to RH(s); then, using (2), all states reachable from

those states are identified and added to RH(s); then the process is repeated until

no further states are added to RH(s) by repeating (2). Because RH(s) ⊆ S, and

S is finite, this limit must be reached in finitely many steps.

To interpret Definition 2.10, note that if s1 ∈ RH(s), then ΩH(s, s1) ⊆ N is the

set of all last DMs in legal sequences from s to s1. (If s1 	∈ RH(s), it is assumed

that ΩH(s, s1) = ∅.) Suppose that ΩH(s, s1) contains only one DM, say j ∈ N .

Then any move from s1 to a subsequent state, say s2, must be made by a member

of H other than j; otherwise DM j would have to move twice in succession. On

the other hand, if |ΩH(s, s1)| ≥ 2, any member of H who has a unilateral move

from s1 to s2 may exercise it. It should be pointed out that it is possible s ∈ RH(s)

according to Definition 2.10, but the trivial case will not be discussed in research.

A legal sequence of UIs for a coalition can be defined similarly, leading to the

list of coalitional UIs, as follows.

Definition 2.11. Let s ∈ S, H ⊆ N, and H 	= ∅. A unilateral improvement by

H is a member of R+
H(s) ⊆ S, defined inductively by

(1) if j ∈ H and s1 ∈ R+
j (s), then s1 ∈ R+

H(s) and j ∈ Ω+
H(s, s1);

(2) if s1 ∈ R+
H(s), j ∈ H and s2 ∈ R+

j (s1), then, provided Ω+
H(s, s1) 	= {j},

s2 ∈ R+
H(s) and j ∈ Ω+

H(s, s2).

Definition 2.11 is identical to Definition 2.10 except that all moves are required

to be UIs, i.e. each move is to a state strictly preferred by the mover to the current

state. Similarly, Ω+
H(s, s1) includes all last movers in a UI by coalition H from state

s to state s1.
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The reachable lists of coalition H from state s by the legal sequences of UMs

and UIs were defined above for simple preference. Li et al. [46] and Hamouda

et al. [28] extended the legal sequences of UMs and UIs and reachable lists of

coalition H to preference including possible uncertainty and strength, respectively.

To extend the definitions of the reachable lists for a coalition to take preference

uncertainty and strength of preference into account, legal sequence of coalitional

UIUUMs and legal sequence of coalitional WIs must be defined first, respectively.

A legal sequence of UIUUMs is a sequence of allowable unilateral improvements or

unilateral uncertain moves by a coalition, with the usual restriction that a member

of the coalition may move more than once, but not twice consecutively. Similarly,

a legal sequence of WIs is a sequence of allowable mild unilateral improvements or

strong unilateral improvements by a coalition, with the same restriction that any

member in the coalition may move more than once, but not twice consecutively.

The following formal definitions for reachable lists of coalition H by the legal

sequence of UIUUMs and by the legal sequence of WIs are respectively taken

from [46] and [28]:

Definition 2.12. Let s ∈ S and H ⊆ N where |H| ≥ 2. A unilateral improvement

or unilateral uncertain move (UIUUM) by H is a member of R+,U
H (s) ⊆ S, defined

inductively by

(1) if j ∈ H and s1 ∈ R+,U
j (s), then s1 ∈ R+,U

H (s) and j ∈ Ω+,U
H (s, s1);

(2) if s1 ∈ R+,U
H (s), j ∈ H and s2 ∈ R+,U

j (s1), then, provided Ω+,U
H (s, s1) 	= {j},

s2 ∈ R+,U
H (s) and j ∈ Ω+,U

H (s, s2).

Definition 2.13. Let s ∈ S and H ⊆ N where |H| ≥ 2. A weak improvement

(WI) by H is a member of R+,++
H (s) ⊆ S, defined inductively by:

(1) if j ∈ H and s1 ∈ R+,++
j (s), then s1 ∈ R+,++

H (s) and j ∈ Ω+,++
H (s, s1);

(2) if s1 ∈ R+,++
H (s), j ∈ H and s2 ∈ R+,++

j (s1), then, provided Ω+,++
H (s, s1) 	= {j},

s2 ∈ R+,++
H (s) and j ∈ Ω+,++

H (s, s2).

Like Definitions 2.10 and 2.11, Definitions 2.12 and 2.13 are inductive

definitions. The roles and interpretations of R+,U
H (s) and Ω+,U

H (s, s1), as well as

R+,++
H (s) and Ω+,++

H (s, s1) are likewise analogous.

Within an n-DM model (n ≥ 2), DM i’s opponents, N\{i}, where \ refers to

“set subtraction”, consist of a group of one or more DMs. In order to analyze

the stability of a state for DM i ∈ N , it is necessary to take into account possible

responses by all other DMs j ∈ N\{i}. The essential inputs of stability analysis are
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reachable lists of coalition N\{i} from state s, RN\{i}(s) and R+
N\{i}(s) for simple

preference, RN\{i}(s) and R+,U
N\{i}(s) for preference with uncertainty, and RN\{i}(s)

and R+,++
N\{i}(s) for preference with strength.

2.2.3 Solution Concepts in the Graph Model for Simple

Preference

The four basic solution concepts, Nash stability, general metarationality (GMR),

symmetric metarationality (SMR), and sequential stability (SEQ) in the graph

model for simple preference are taken from [16]. Let i ∈ N and s ∈ S.

Definition 2.14. State s is Nash stable for DM i iff R+
i (s) = ∅.

State s ∈ S is GMR for DM i iff whenever DM i makes any UI from s, then

its opponent can move to hurt i or sanction i in response.

Definition 2.15. State s is GMR for DM i iff for every s1 ∈ R+
i (s) there exists

at least one s2 ∈ RN\{i}(s1) with s �i s2.

SMR is a more restrictive stability definition than GMR. SMR is similar to

GMR except that DM i expects to have a chance to counterrespond to its

opponent’s response to i’s original move [16].

Definition 2.16. State s is SMR for DM i iff for every s1 ∈ R+
i (s) there exists

at least one s2 ∈ RN\{i}(s1), such that s �i s2 and s �i s3 for any s3 ∈ Ri(s2).

SEQ is similar to GMR, but includes only sanctions that are “credible”. A

credible action is a unilateral improvement.

Definition 2.17. State s is SEQ for DM i iff for every s1 ∈ R+
i (s) there exists at

least one s2 ∈ R+
N\{i}(s1) with s �i s2.

When n = 2, the DM set N reduces to {i, j} in Definitions 2.14 to 2.17. For

example, the reachable list RN\{i}(s1) of N\{i} from s1, reduces to reachable list

Rj(s1) of j from s1.

2.2.4 Solution Concepts in the Graph Model for

Preference with Uncertainty

Based on the extended preference structure (including uncertainty), Li et al. [46]

defined Nash, GMR, SMR, and SEQ stability to capture a DM’s incentives to leave
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the status quo state and sensitivity to sanctions. Four types of stability definitions

were proposed, indexed a, b, c, and d, according to whether the DM would move

to a state of uncertain preference and whether the DM would be sanctioned by

a responding move to a state of uncertain preference, relative to the status quo.

This range of extensions is needed, according to [46], to address the diversity of

possible risk profiles in the face of uncertainty. A DM may be conservative or

aggressive, avoiding or accepting states of uncertain preference, depending on the

level of satisfaction with the current position.

In the definitions indexed a, DM i has an incentive to move to states with

uncertain preferences relative to the status quo, but, when assessing possible

sanctions, will not consider states with uncertain preferences [46]. Let i ∈ N and

|N | = n in the following definitions taken from [46].

Definition 2.18. State s is Nasha stable for DM i iff R+,U
i (s) = ∅.

Definition 2.19. State s is GMRa for DM i iff for every s1 ∈ R+,U
i (s) there exists

at least one s2 ∈ RN\{i}(s1) with s �i s2.

Definition 2.20. State s is SMRa for DM i iff for every s1 ∈ R+,U
i (s) there exists

at least one s2 ∈ RN\{i}(s1), such that s �i s2 and s �i s3 for any s3 ∈ Ri(s2).

Definition 2.21. State s is SEQa for DM i iff for every s1 ∈ R+,U
i (s) there exists

at least one s2 ∈ R+,U
N\{i}(s1) with s �i s2.

For stabilities indexed b, DM i would move only to preferred states from a

status quo and would be sanctioned only by less preferred or equally preferred

states relative to the status quo. Note that the definitions are different from those

discussed in Section 2.2.3 for simple preference, since the current definitions are

utilized to analyze conflict models with preference uncertainty.

Definition 2.22. State s is Nashb for DM i iff R+
i (s) = ∅.

Definition 2.23. State s is GMRb for DM i iff for every s1 ∈ R+
i (s) there exists

at least one s2 ∈ RN\{i}(s1) with s �i s2.

Definition 2.24. State s is SMRb for DM i iff for every s1 ∈ R+
i (s) there exists

at least one s2 ∈ RN\{i}(s1), such that s �i s2 and s �i s3 for any s3 ∈ Ri(s2).

Definition 2.25. State s is SEQb for DM i iff for every s1 ∈ R+
i (s) there exists

at least one s2 ∈ R+,U
N\{i}(s1) with s �i s2.
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For definitions indexed c, DM i would move to preferred states and states having

uncertain preference relative to the starting state. With respect to sanctions, DM

i does not want to end up at states that are less preferred or equally preferred

relative to state s, and states having uncertain preference relative to state s.

Definition 2.26. State s is Nashc for DM i iff R+,U
i (s) = ∅.

Definition 2.27. State s is GMRc for DM i iff for every s1 ∈ R+,U
i (s) there exists

at least one s2 ∈ RN\{i}(s1) with s �i s2 or sUis2.

Definition 2.28. State s is SMRc for DM i iff for every s1 ∈ R+,U
i (s) there exists

at least one s2 ∈ RN\{i}(s1), such that s �i s2 or sUis2 and s �i s3 or sUis3 for

any s3 ∈ Ri(s2).

Definition 2.29. State s is SEQc for DM i iff for every s1 ∈ R+,U
i (s) there exists

at least one s2 ∈ R+,U
N\{i}(s1) with s �i s2 or sUis2.

For the last set of stabilities, indexed by d, a DM is not willing to move to

a state with uncertain preference relative to the status quo, but is deterred by

sanctions to states that have uncertain preference relative to the status quo.

Definition 2.30. State s is Nashd for DM i iff R+
i (s) = ∅.

Definition 2.31. State s is GMRd for DM i iff for every s1 ∈ R+
i (s) there exists

at least one s2 ∈ RN\{i}(s1) with s �i s2 or sUis2.

Definition 2.32. State s is SMRd for DM i iff for every s1 ∈ R+
i (s) there exists

at least one s2 ∈ RN\{i}(s1), such that s �i s2 or sUis2 and s �i s3 or sUis3 for

any s3 ∈ Ri(s2).

Definition 2.33. State s is SEQd for DM i iff for every s1 ∈ R+
i (s) there exists

at least one s2 ∈ R+,U
N\{i}(s1) with s �i s2 or sUis2.

When n = 2, the DM set N reduces to {i, j} in Definitions 2.18 to 2.33. For

example, the reachable list R+,U
N\{i}(s1) of N\{i} from s1 by the legal sequences of

UIUUMs reduces to the reachable list R+,U
j (s1) of j from s1 by one step UIUUMs.

From the solution concepts indexed a, b, c, and d presented above, it can be

seen that a solution concept indexed a represents the stability for the most

aggressive DMs. Firstly, the DM is aggressive in deciding whether to move from

the status quo, being willing to accept the risk associated with moves to states of
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uncertain preference. In addition, when evaluating possible moves, the DM is

deterred only by sanctions to states that are less preferred than the status quo

and does not see states of uncertain preference (relative to the status quo) as

sanctions. For the definitions indexed b, uncertainty in preferences is not

considered by a DM. The definitions indexed c incorporate a mixed attitude

toward the risk associated with states of uncertain preference. Specifically, the

DM is aggressive in deciding whether to move from the status quo, but is

conservative when evaluating possible moves, being deterred by sanctions to

states that are less preferred or have uncertain preference relative to the status

quo. Finally, the definition indexed d represents stability for the most

conservative DMs, who would move only to preferred states from a status quo,

but would be deterred by responses that result in states of uncertain

preference [46].

2.2.5 Solution Concepts in the Graph Model with Strength

of Preference

Hamouda et al. [27] first integrated strength of preference information into the

graph model and extended the four basic solution concepts to handle strength of

preference for 2-DM graph models. Lately, they further extended the four solution

concepts to multiple-decision-maker graph models [28].

Four standard solution concepts are given below in which strength of preference

is not considered in sanctioning. However, the standard stabilities are different

from those defined in [16], though they are presented using the same notation,

because stability definitions for simple preference cannot analyze conflict models

having strength of preference. Let i ∈ N and s ∈ S for next definitions taken

from [28].

Definition 2.34. State s is Nash stable for DM i, denoted by s ∈ SNash
i , iff

R+,++
i (s) = ∅.

Definition 2.35. State s is GMR for DM i, denoted by s ∈ SGMR
i , iff for every

s1 ∈ R+,++
i (s) there exists at least one s2 ∈ RN\{i}(s1) such that s2 ∈ Φ−−,−,=

i (s).

Definition 2.36. State s is SMR for DM i, denoted by s ∈ SSMR
i , iff for every

s1 ∈ R+,++
i (s) there exists at least one s2 ∈ RN\{i}(s1), such that s2 ∈ Φ−−,−,=

i (s)

and s3 ∈ Φ−−,−,=
i (s) for any s3 ∈ Ri(s2).
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Definition 2.37. State s is SEQ for DM i, denoted by s ∈ SSEQ
i , iff for every

s1 ∈ R+,++
i (s) there exists at least one s2 ∈ R+,++

N\{i}(s1) such that s2 ∈ Φ−−,−,=
i (s).

With strength of preference introduced into the graph model, stability

definitions can be strong or weak, according to the level of sanctioning. Strong

and weak stabilities only include GMR, SMR, and SEQ because Nash stability

does not involve sanctions.

Definition 2.38. State s is strongly GMR (SGMR) for DM i, denoted by s ∈
SSGMR

i , iff for every s1 ∈ R+,++
i (s) there exists at least one s2 ∈ RN\{i}(s1) such

that s2 ∈ Φ−−
i (s).

Definition 2.39. State s is strongly SMR (SSMR) for DM i, denoted by s ∈
SSSMR

i , iff for every s1 ∈ R+,++
i (s) there exists at least one s2 ∈ RN\{i}(s1), such

that s2 ∈ Φ−−
i (s) and s3 ∈ Φ−−

i (s) for all s3 ∈ Ri(s2).

Definition 2.40. State s is strongly SEQ (SSEQ) for DM i, denoted by s ∈ SSSEQ
i ,

iff for every s1 ∈ R+,++
i (s) there exists at least one s2 ∈ R+,++

N\{i}(s1) such that

s2 ∈ Φ−−
i (s).

Definitions 2.38 to 2.40 are adapted from [28] in which Nash stability is excluded

from SGMR, SSMR, and SSEQ. The definition of weak stability is presented next.

Definition 2.41. Let s ∈ S and i ∈ N . State s is weakly stable for DM i iff s is

stable, but not strongly stable for some stability definition.

Based on the individual stability analysis, DMs can request additional follow

up analyses to generate valuable decision guidance. The follow-up analyses include

status quo analysis, coalition analysis, and sensitivity analyses.

2.2.6 Status Quo Analysis

When a conflict is modeled as a graph model, a point in time must be selected

first; the current (or initial) state of the conflict is then referred to as the status

quo [47]. Two fundamental steps are involved in analyzing a graph model, stability

analysis and post-stability (or follow-up) analysis. When the stability of a state

is assessed at the stability stage, it is not a concern whether this state is actually

achievable from the status quo state. As a follow-up analysis, status quo analysis

is to determine whether a particular equilibrium is reachable from the status quo
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and, if so, how to reach it. Thus, in contrast to stability analysis, which identifies

states that would be stable if attained, status quo analysis provides a dynamic and

forward-looking perspective, identifying states that are attainable, and describing

how to reach them [47,48].

Let i ∈ N and H ⊆ N and let k ≥ 1 be an integer. New notation is required,

as follows:

• SQ denotes the status quo state;

• The state sets, S
(k)
i (s), S

(k,+)
i (s), and S

(k,+U)
i (s), denote the states reachable

from SQ = s in legal sequences of exactly k UMs, UIs, and UIUUMs,

respectively, with last mover DM i;

• The state sets, V
(k)
H (s), V

(k,+)
H (s), and V

(k,+U)
H (s), denote the sets of states

reachable from SQ = s in legal sequences of at most k UMs, UIs, and

UIUUMs by H, respectively; (if H = N , then V
(k)
H (s) = V (k)(s), V

(k,+)
H (s) =

V (k,+)(s), and V
(k,+U)
H (s) = V (k,+U)(s).)

• The arc sets, A
(k)
i (s), A

(k,+)
i (s), and A

(k,+U)
i (s), denote the arcs controlled

by DM i that are final arcs in legal sequences of at most k UMs, UIs, and

UIUUMs, respectively, from SQ = s.

Recall that Ai is DM i’s arc set in a graph model. Let A+
i and A+,U

i denote i’s

UI arc set and UIUUM arc set, respectively. For s ∈ S, let Ai(s), A+
i (s), and

A+,U
i (s) denote the respective subsets of these three arc sets with initial state s.

Therefore, these arc sets are expressed by Ai =
⋃
s∈S

Ai(s), A+
i =

⋃
s∈S

A+
i (s), and

A+,U
i =

⋃
s∈S

A+,U
i (s).

The following algorithm permits all UMs for simple preference:
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Algorithm for status quo analysis in the graph model with legal UMs [47]

1. Let h = 0, S
(0)
i (SQ) = {SQ}, V (0)(SQ) = {SQ}, and A

(0)
i (SQ) = ∅ (for i ∈ N)

2. Let h = h + 1, and for each i ∈ N , update S
(h)
i (SQ) and A

(h)
i (SQ) as:

S
(h)
i (SQ) =

⋃{Ri(s) : s ∈ ⋃
j∈N\i

S
(h−1)
j (SQ)}

A
(h)
i (SQ) =

⎧⎨
⎩

A
(h−1)
i (SQ) if S

(h)
i (SQ) = ∅,

A
(h−1)
i (SQ)

⋃{(s, s′) : s ∈ ⋃
j∈N\i

S
(h−1)
i (SQ) and s′ ∈ Ri(s)} otherwise.

V (h)(SQ) = (
⋃

i∈N

S
(h)
i (SQ))

⋃
V (h−1)(SQ)

3. If
⋃

i∈N

A
(h)
i (SQ) =

⋃
i∈N

A
(h−1)
i (SQ), stop.

Otherwise, go to 2.

Although [47] indicates that the process must stop in a finite number of

iterations, this condition is not explained in detail. If the algorithm stops at step

k, the status quo diagram of permitted UMs in the graph model is given by

(V (k)(SQ),
⋃

i∈N

A
(k)
i (SQ)). Similarly, an algorithm that permits only UIs can be

found in [47].

The following algorithm permits only UIUUMs for preference with uncertainty.

Algorithm for status quo analysis in the graph model with legal UIUUMs [48]

1. Let h = 0, S
(0,+U)
i (SQ) = {SQ}, V (0,+U)(SQ) = {SQ}, and A

(0,+U)
i (SQ) = ∅ (for i ∈ N)

2. Let h = h + 1, and for each i ∈ N , update S
(h,+U)
i (SQ), A

(h,+U)
i (SQ) and V (h,+U)(SQ) as:

S
(h,+U)
i (SQ) =

⋃{R+,U
i (s) : s ∈ ⋃

j∈N\i
S

(h−1,+U)
j (SQ)}

A
(h,+U)
i (SQ) =

⎧⎨
⎩

A
(h−1,+U)
i (SQ) if S

(h,+U)
i (SQ) = ∅,

A
(h−1,+U)
i (SQ)

⋃{(s, s′) : s ∈ ⋃
j∈N\i

S
(h−1,+U)
i (SQ), s′ ∈ R+,U

i (s)} otherwise.

V (h,+U)(SQ) = (
⋃

i∈N

S
(h,+U)
i (SQ))

⋃
V (h−1,+U)(SQ)

3. If
⋃

i∈N

A
(h,+U)
i (SQ) =

⋃
i∈N

A
(h−1,+U)
i (SQ), stop.

Otherwise, go to 2.

Similarly, (V (k,+U)(SQ),
⋃

i∈N

A
(k,+U)
i (SQ)) presents the status quo diagram

permitted UIUUMs in the graph model when the above algorithm stops at

iteration step k. Although the algorithms were developed for status quo analysis

for simple preference and preference with uncertainty but have never been

integrated into GMCR II.
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Using status quo diagrams, significant information about the conflict under

investigation can be obtained. Specifically, if an equilibrium is in the diagram,

the analysis provides a path from the status quo to the reachable equilibrium; if

not, the DMs have no way to control the conflict to the equilibrium. Status quo

analysis can provide guidance for DMs and analysts by identifying how to attain

reachable equilibria from a status quo state [47,48].

2.2.7 Coalition Stability Analysis

Coalition H is a subset of DMs with |H| ≥ 2. For an equilibrium, no DM has the

incentive to move away from it, but a coalition may sometimes be able to move

away from the equilibrium to a better state for all members of the coalition. Hence,

analysts can detect equilibria that are vulnerable to coalition moves in strategic

conflicts [43].

Coalitions and coalition stability have been widely studied in the area of

conflict analysis. For example, inspired by Aumann [3], Kilgour et al. [43]

proposed coalition stability based on Nash stability within the framework of the

GMCR. Then, Inohara and Hipel [36, 37] extended the above Nash coalition

stability to GMR, SMR, and SEQ coalition stabilities. However, to make coding

easier, these extensions were based on a transitive graph that allows the same

DM to move twice in succession, which is inconsistent with the standard

restriction in the graph model. For example, in the work of [36, 37, 43], the

reachable list of a coalition, RH(s), may include states reachable only by

consecutive moves of the same DM. Additionally, these coalition stabilities were

defined logically within a simple preference structure. The Simple preference

structure is often inadequate for modeling the complex strategic conflicts that

arise in practical applications. The following coalition stabilities based on Nash

stability are taken from [43].

Definition 2.42. For s1 ∈ RH(s), s1 is a coalition improvement by H from state

s iff, for every i ∈ H, satisfies s1 �i s.

A coalition improvement s1 by H indicates a threat, or potential threat, to the

stability of state s.

Definition 2.43. State s is unstable for coalition H iff there exists a coalition

improvement by H from s.
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Even if state s is stable for each DM i ∈ N , the instability of s for coalition H

makes s impossible to become a resolution for a conflict.

Definition 2.44. State s ∈ S is stable for coalition H ⊆ N (| H |≥ 2) iff, for

every s1 ∈ RH(s), there exists i ∈ H with s �i s1.

Definition 2.45. State s ∈ S is coalitionally stable iff s is stable for every coalition

H ⊆ N (| H |≥ 2).

Note that if the reachable list RH(s) of H from state s in the above definitions is

adapted to use the definition in Section 2.2.2, then a transitive graph is extended

to a general graph.

2.2.8 The Decision Support System GMCR II

Although the graph model for conflict resolution has many advantages, it is

difficult to apply to real problems without computational assistance, even to

small models. For this purpose, the basic decision support system (DSS) GMCR

I was developed in [42]. However, GMCR I only includes a basic analysis engine,

so that a model must be converted to the GMCR I data format first, which is a

difficult conversion process. The DSS GMCR II [32, 54], including modeling and

analysis procedures, later replaced GMCR I. GMCR II, is written in Visual

C++, a computer implementation of the graph model for conflict resolution, and

is described by [16,18,19].

The DSS GMCR II offers model management and stability analysis and includes

some basic coalition analysis and status quo analysis for simple preference. At

present, GMCR II allows for status quo analysis, but does not implement it fully.

A consistent and effective set of status quo analysis definitions and algorithms was

proposed by [47,48] but has not been included in GMCR II.

Sensitivity analyses in GMCR II are carried out by varying the model input

in the following categories: options, state transitions, preferences, DMs (including

addition and deletion), and solution concepts, including changing individual

stabilities into coalition stabilities. Although sensitivity analyses are a popular

technique in solving engineering problems, in GMCR II, few papers focus on

sensitivity analyses. If a conflict analytical result is very sensitive to variations of

some parameters, the result may not provide useful guidance in real applications,

so sensitivity analysis should be an important research topic in conflict analyses.
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2.3 Degree of Preference

Obviously, preferences play an important role in decision analysis. How to obtain

individual preference information has already been ascertained by extensive

research, such as the Analytic Hierarchy Process (AHP) approach [57] and some

approaches used by modeling preference relations of consumers in

microeconomics [49]. Normally, for the graph model only a relative preference

relation, “� preferred”, and an equal relation, “∼ indifferent” are needed to

represent a particular DM i’s preference for one state with respect to another to

calibrate a specific model [16]. This type of preference is called a two-level

preference in this thesis. Different definitions for strength of preference can be

found in [4, 15]. Dyer and Sarin [15] indicate the relations between strength of

preference and risky behavior. In 2004, Hamouda et al. [27] proposed “strength

of preference” that includes two new binary relations, “� strongly preferred”,

and, “> mildly preferred”, to express DM i’s strong and mild preferences for one

state over another, respectively, as well as an equal relation. This is referred to as

a three-level preference.

However, the 3-level structure is limited in its ability to depict the intensity of

relative preference. For example, in the Analytic Hierarchy Process (AHP) [58],

strength of preference is reflected a scale from 1 to 9. Table 2.4 presents an

interpretation for strength at levels 1, 3, 5, 7, and 9 in the AHP approach and

motivates the extension of the three-level model to a multiple-level model that can

capture a range of degrees. In related, but quite different research, significant effort

has been devoted to representing preference information by degree or strength. For

example, Wang et al. [64] presented a probability method to represent preferences

with certain degrees or strength.

2.4 Summary

After reviewing the background of Graph Theory and the Graph Model for Conflict

Resolution, we know that a graph model of a conflict consists of several interrelated

graphs and preference relations, and three types of preference structures have been

developed and introduced into the graph model for conflict resolution. To enhance

the applicability of GMCR, in Chapters 3 and 4, the three preference frameworks

are extended to a hybrid system in which preference uncertainty and strength
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Table 2.4: Scale of relative preference [58]

Intensity of Definition Description

relative preference

1 Equally important Two events are equally preferred.

3 Moderately important The first event is slightly

preferred to the second.

5 Quite important The first event is much more

preferred than the second.

7 Demonstrably important The first event is very strongly

preferred to the second.

9 Extremely important The first event is extremely

preferable to the second.

of preference are combined together and a system of multiple levels of preference.

Previously, individual and coalition stabilities in the graph model were traditionally

defined logically, in terms of the underlying graphs and preference relations. Status

quo analysis follows a similar logical structure. However, as was noted in the

development of the DSS GMCR II, the nature of logical representations makes

coding difficult. A new algebraic system based on Algebraic Graph Theory to

represent stability analysis and post-stability analysis is proposed in Chapter 5 to

Chapter 7.
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Chapter 3

Hybrid Preference for the Graph

Model for Conflict Resolution

3.1 Combining Preference Uncertainty and

Strength of Preference

A hybrid preference framework is proposed for strategic conflict analysis to

integrate preference strength and preference uncertainty into the paradigm of the

graph model for conflict resolution (GMCR) under multiple decision makers.

This structure offers decision makers a more flexible mechanism for preference

expression, which can include strong or mild relative relationship of one state

over another, an indifference relation, and uncertain preference between two

states.

To date, only three types of preference structures–simple preference,

preference possibly including uncertainty, and preference having strength–have

been integrated into GMCR. To integrate the three existing preference

frameworks into a hybrid system, a new preference framework {�i, >i,∼i, Ui} is

defined using a quadruple relation in a graph model for DM i. The preference

structure {�i, >i,∼i, Ui} is complete, i.e. if s, q ∈ S, then exactly one of the

following relations holds: s �i q, q �i s, s >i q, q >i s, s ∼i q, and sUiq. Note

that notation, Φ+m
i (s), Φ−m

i (s), R+m
i (s), and R−m

i (s), is replaced with Φ+
i (s),

Φ−
i (s), R+

i (s), and R−
i (s), respectively, in this chapter. For hybrid preference,

DM i can identify six subsets of S: Φ++
i (s), Φ+

i (s), Φ=
i (s), ΦU

i (s), Φ−
i (s), and

Φ−−
i (s), and can control six corresponding reachable lists from state s: R++

i (s),
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Figure 3.1: Relations among subsets of S and reachable lists from s.

R+
i (s), R=

i (s), RU
i (s), R−

i (s), and R−−
i (s), where these subsets and reachable lists

from state s are defined in Tables 2.2 and 2.3, respectively. The relationships

among the subsets of state set S and the reachable lists from state s for DM i are

portrayed in Fig. 3.1.

The reachable list from state s for DM i in one step, Ri(s), represents DM i′s

various unilateral moves (UMs) for hybrid preference, so Ri(s) = R++
i (s)∪R+

i (s)∪
R=

i (s)∪RU
i (s)∪R−

i (s)∪R−−
i (s). For ease of use, the notation with respect to UMs

and subsets of the state set S for hybrid preference is presented as follows:

• R+,++,U
i (s) = R+

i (s) ∪ R++
i (s) ∪ RU

i (s) stands for mild unilateral

improvements, strong unilateral improvements, or unilateral uncertain

moves called weak improvements or unilateral uncertain moves (WIUUMs)

from state s for DM i;

• Φ−−,U
i (s) = Φ−−

i (s) ∪ ΦU
i (s); and

• Φ−−,−,=,U
i (s) = Φ−−

i (s) ∪ Φ−
i (s) ∪ Φ=

i (s) ∪ ΦU
i (s).

Note that the assumption of transitivity of preferences is not required, and thus

the results in this research hold for both transitive and intransitive preferences.
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3.2 Stability Analysis in the Graph Model for

Hybrid Preference

To analyze the stability of a state for DM i ∈ N for hybrid preference, it is

necessary to take into account possible responses by all other DMs j ∈ N\{i}.
Therefore, the previous definitions for legal sequences of decisions in the graph

model with preference uncertainty [46] and with preference of strength [28] must

first be extended to take combining preference uncertainty and preference strength

into account.

3.2.1 Reachable Lists of Coalition H

The legal sequences of UMs, UIs, and UIUUMs are defined in Subsection 2.2.2.

For hybrid preference, a legal sequence of WIUUMs for a coalition of DMs is a

sequence of states linked by weak improvements or unilateral uncertain moves by

members of the coalition, in which a DM may move more than once, but not twice

consecutively.

Let H ⊆ N be any subset of DMs. Within hybrid preference, the definition

of the reachable list RH(s) for coalition H by the legal UMs starting at state s is

similar to Definition 2.10 in Subsection 2.2.2. The definition of R+,++
H (s) in hybrid

preference is similar to Definition 2.13. Let coalition H ⊆ N satisfy |H| ≥ 2 and

let the status quo state be s ∈ S. We now define reachable list R+,++,U
H (s) for

coalition H with the explicit hybrid preference.

Definition 3.1. Let R+,++,U
j (s) = R+

j (s) ∪ R++
j (s) ∪ RU

j (s) for any j ∈ H. A

weak improvement or unilateral uncertain move by H is a member of

R+,++,U
H (s) ⊆ S, defined inductively by:

(1) if j ∈ H and s1 ∈ R+,++,U
j (s), then s1 ∈ R+,++,U

H (s) and j ∈ Ω+,++,U
H (s, s1);

(2) if s1 ∈ R+,++,U
H (s), j ∈ H and s2 ∈ R+,++,U

j (s1), then, provided

Ω+,++,U
H (s, s1) 	= {j}, s2 ∈ R+,++,U

H (s) and j ∈ Ω+,++,U
H (s, s2).

Note that this definition is inductive: first, using (1), the states reachable by

a single DM of coalition H in one step WIUUM from s are identified and added

to R+,++,U
H (s); then, using (2), all states reachable from those states are identified

and added to R+,++,U
H (s); then the process is repeated until no further states are

added to R+,++,U
H (s) by repeating (2). Because R+,++,U

H (s) ⊆ S, and S is finite,

this limit must be reached in a finite number of steps.
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To interpret Definition 3.1, note that if s1 ∈ R+,++,U
H (s), then Ω+,++,U

H (s, s1) ⊆
N is the set of all last DMs in legal sequence of WIUUMs from s to s1. (If s1 	∈
R+,++,U

H (s), it is assumed that Ω+,++,U
H (s, s1) = ∅.) Suppose that Ω+,++,U

H (s, s1)

contains only one DM, say j ∈ N . Then any move from s1 to a subsequent state,

say s2, must be made by a member of H other than j; otherwise DM j would

have to move twice in succession. On the other hand, if |Ω+,++,U
H (s, s1)| ≥ 2,

any member of H who has a mild unilateral improvement or strong unilateral

improvement (weak improvement) or unilateral uncertain move from s1 to s2 may

exercise it.

For the simple preference structure, a state s is either stable or unstable [16].

For the framework with strength of preference, if a state s is stable, then it is

either strongly stable or weakly stable based on sanctioning strength [27, 28]. Li

et al. [46] proposed solution concepts with preference uncertainty that are

separately classified into four extensions, indexed a, b, c, and d, according to the

incentives to leave the status quo state and the motivation to avoid states of

uncertain preference relative to the status quo. Since possible uncertainty is

included in DMs’ preferences, a range of extensions of stability definitions is

needed to address DMs’ attitudes with distinct risk profiles in face of uncertainty.

For example, a DM will make a conservative or aggressive decision depended on

the DM’s current status “satisfied” or “unsatisfied” [46].

According to the proposed new preference structure, the hybrid versions of

solution concepts refer to stabilities, strong stabilities, and weak stabilities indexed

a, b, c, and d, respectively. In the following stabilities, strength of preference is not

considered in sanctioning.

3.2.2 Stabilities in the Graph Model for Hybrid Preference

The stability definitions in the graph model for two DM conflicts with hybrid

preference are special cases of the definitions proposed in the next subsection, the

details are not given here.

3.2.2.1 Stabilities, Indexed a, for Hybrid Preference

For stabilities indexed a, DM i is willing to move to states that are mildly preferred

or strongly preferred, as well as states having uncertain preference relative to the

status quo but does not wish to be sanctioned by a strongly less preferred, mildly
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less preferred, or equally preferred state relative to the status quo. The definitions

given below assume that s ∈ S and i ∈ N .

Definition 3.2. State s is Nasha for DM i, denoted by s ∈ SNasha
i , iff

R+,++,U
i (s) = ∅.

Definition 3.3. State s is GMRa for DM i, denoted by s ∈ SGMRa
i , iff for every

s1 ∈ R+,++,U
i (s) there exists at least one s2 ∈ RN\{i}(s1) with s2 ∈ Φ−−,−,=

i (s).

Definition 3.4. State s is SMRa for DM i, denoted by s ∈ SSMRa
i , iff for every

s1 ∈ R+,++,U
i (s) there exists at least one s2 ∈ RN\{i}(s1), such that s2 ∈ Φ−−,−,=

i (s)

and s3 ∈ Φ−−,−,=
i (s) for any s3 ∈ Ri(s2).

Definition 3.5. State s is SEQa for DM i, denoted by s ∈ SSEQa

i , iff for every

s1 ∈ R+,++,U
i (s) there exists at least one s2 ∈ R+,++,U

N\{i} (s1) with s2 ∈ Φ−−,−,=
i (s).

It should be pointed out that the same notation for stabilities indexed a for

preference with uncertainty presented in Subsection 2.2.4 is used for hybrid

preference. However, they have different meaning, since current definitions can

analyze conflict models including hybrid preference. The following definitions are

still presented using the same notation as those including preference uncertainty.

3.2.2.2 Stabilities, Indexed b, for Hybrid Preference

For stabilities indexed b, DM i will move only to mildly or strongly preferred states

from a status quo, but does not want to be sanctioned by a strongly less preferred,

mildly less preferred, or equally preferred state relative to the status quo.

Definition 3.6. State s is Nashb for DM i, denoted by s ∈ SNashb
i , iff R+,++

i (s) =

∅.

Definition 3.7. State s is GMRb for DM i, denoted by s ∈ SGMRb
i , iff for every

s1 ∈ R+,++
i (s) there exists at least one s2 ∈ RN\{i}(s1) with s2 ∈ Φ−−,−,=

i (s).

Definition 3.8. State s is SMRb for DM i, denoted by s ∈ SSMRb
i , iff for every

s1 ∈ R+,++
i (s) there exists at least one s2 ∈ RN\{i}(s1), such that s2 ∈ Φ−−,−,=

i (s)

and s3 ∈ Φ−−,−,=
i (s) for any s3 ∈ Ri(s2).

Definition 3.9. State s is SEQb for DM i, denoted by s ∈ SSEQb
i , iff for every

s1 ∈ R+,++
i (s) there exists at least one s2 ∈ R+,++,U

N\{i} (s1) with s2 ∈ Φ−−,−,=
i (s).
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The above definitions indexed b which exclude uncertainty in preference are

different from those discussed by Hamouda et al. [28], since current definitions

are utilized to analyze conflict models under combining preference uncertainty and

strength of preference.

3.2.2.3 Stabilities, Indexed c, for Hybrid Preference

For definitions indexed c, DM i can move to mildly preferred, strongly preferred

states, as well as states having uncertain preference relative to the starting state.

With respect to sanctioning, DM i does not want to be ended up at states that are

mildly less preferred, strongly less preferred, or equally preferred, as well as states

having uncertain preference relative to state s.

Definition 3.10. State s is Nashc for DM i, denoted by s ∈ SNashc
i , iff

R+,++,U
i (s) = ∅.

Definition 3.11. State s is GMRc for DM i, denoted by s ∈ SGMRc
i , iff for every

s1 ∈ R+,++,U
i (s) there exists at least one s2 ∈ RN\{i}(s1) with s2 ∈ Φ−−,−,=,U

i (s).

Definition 3.12. State s is SMRc for DM i, denoted by s ∈ SSMRc
i , iff for

every s1 ∈ R+,++,U
i (s) there exists at least one s2 ∈ RN\{i}(s1), such that s2 ∈

Φ−−,−,=,U
i (s) and s3 ∈ Φ−−,−,=,U

i (s) for any s3 ∈ Ri(s2).

Definition 3.13. State s is SEQc for DM i, denoted by s ∈ SSEQc

i , iff for every

s1 ∈ R+,++,U
i (s) there exists at least one s2 ∈ R+,++,U

N\{i} (s1) with s2 ∈ Φ−−,−,=,U
i (s).

3.2.2.4 Stabilities, Indexed d, for Hybrid Preference

For the last set of stabilities, indexed d, a DM is not willing to move to a state

with uncertain preference relative to the status quo, but is deterred by sanctions

to states that have uncertain preference relative to the status quo.

Definition 3.14. State s is Nashd for DM i, denoted by s ∈ SNashd
i , iff R+,++

i (s) =

∅.

Definition 3.15. State s is GMRd for DM i, denoted by s ∈ SGMRd
i , iff for every

s1 ∈ R+,++
i (s) there exists at least one s2 ∈ RN\{i}(s1) with s2 ∈ Φ−−,−,=,U

i (s).

Definition 3.16. State s is SMRd for DM i, denoted by s ∈ SSMRd
i , iff for every

s1 ∈ R+,++
i (s) there exists at least one s2 ∈ RN\{i}(s1), such that s2 ∈ Φ−−,−,=,U

i (s)

and s3 ∈ Φ−−,−,=,U
i (s) for any s3 ∈ Ri(s2).
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Definition 3.17. State s is SEQd for DM i, denoted by s ∈ SSEQd
i , iff for every

s1 ∈ R+,++
i (s) there exists at least one s2 ∈ R+,++,U

N\{i} (s1) with s2 ∈ Φ−−,−,=,U
i (s).

When n = 2, the DM set N becomes to {i, j} in Definitions 3.2 to 3.17, and

the reachable lists for H = N \ {i} by legal sequences of UMs and WIUUMs from

s1, RN\{i}(s1) and R+,++,U
N\{i} (s1), degenerate to Rj(s1) and R+,++,U

j (s1), DM j’s

corresponding reachable lists from s1.

If the binary relation � denotes > or � in this research, i.e., s � q iff either

s > q or s � q, then Definitions 3.2 to 3.17 are identical with Definitions 2.18 to

2.33 in Chapter 2 proposed by Li et al. [46]. On the other hand, when each DM

does not consider including uncertain preference in stability analysis, the above

definitions reduce to the standard stability definitions from Definitions 2.34 to

2.37 in Chapter 2 developed by Hamouda et al. [28].

3.2.3 Strong Stabilities under Hybrid Preference for

Multiple Decision Makers

With the hybrid preference framework introduced into the graph model, stable

states can be classified into strongly stable or weakly stable according to strength

of the possible sanctions and indexed a, b, c, or d by a DM’s attitudes toward

the risk associated with uncertain preferences. Strong and weak stabilities include

only GMR, SMR, and SEQ because Nash stability does not involve sanctions.

3.2.3.1 Strong Stabilities, Index a, for Hybrid Preference with

Strength of Preference

Definition 3.18. State s is strongly GMRa (SGMRa) for DM i, denoted by

s ∈ SSGMRa
i , iff for every s1 ∈ R+,++,U

i (s) there exists at least one s2 ∈ RN\{i}(s1)

such that s2 ∈ Φ−−
i (s).

Definition 3.19. State s is strongly SMRa (SSMRa) for DM i, denoted by

s ∈ SSSMRa
i , iff for every s1 ∈ R+,++,U

i (s) there exists at least one s2 ∈ RN\{i}(s1),

such that s2 ∈ Φ−−
i (s) and s3 ∈ Φ−−

i (s) for all s3 ∈ Ri(s2).

Definition 3.20. State s is strongly SEQa (SSEQa) for DM i, denoted by

s ∈ SSSEQa

i , iff for every s1 ∈ R+,++,U
i (s) there exists at least one s2 ∈ R+,++,U

N\{i} (s1)

such that s2 ∈ Φ−−
i (s).
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The above definitions indexed a represent strong stabilities for the most

aggressive DMs. Firstly, DM i is aggressive in deciding whether to move from the

status quo, since the DM considers moving to mildly or strongly preferred states,

as well as states having uncertain preference relative to the status quo. This

means that DM i is willing to accept the risk associated with moves from the

status quo to states of uncertain preferences. In addition, when evaluating

possible moves, DM i is strongly deterred by sanctions to states that are strongly

less preferred relative to status quo state s.

3.2.3.2 Strong Stabilities, Index b, for Hybrid Preference with Strength

of Preference

For the following definitions indexed b, DM i would move only to mildly or

strongly preferred states and be deterred by sanctions to strongly less preferred

states relative to the status quo.

Definition 3.21. State s is strongly GMRb (SGMRb) for DM i, denoted by

s ∈ SSGMRb
i , iff for every s1 ∈ R+,++

i (s) there exists at least one s2 ∈ RN\{i}(s1)

such that s2 ∈ Φ−−
i (s).

Definition 3.22. State s is strongly SMRb (SSMRb) for DM i, denoted by

s ∈ SSSMRb
i , iff for every s1 ∈ R+,++

i (s) there exists at least one s2 ∈ RN\{i}(s1),

such that s2 ∈ Φ−−
i (s) and s3 ∈ Φ−−

i (s) for all s3 ∈ Ri(s2).

Definition 3.23. State s is strongly SEQb (SSEQb) for DM i, denoted by s ∈
SSSEQb

i , iff for every s1 ∈ R+,++
i (s) there exists at least one s2 ∈ R+,++,U

N\{i} (s1) such

that s2 ∈ Φ−−
i (s).

3.2.3.3 Strong Stabilities, Index c, for Hybrid Preference with Strength

of Preference

The definitions indexed c refer to a DM’s mixed attitudes toward the risk associated

with uncertain preferences. Specifically, DM i is aggressive in deciding whether

to move from the status quo, but is conservative when evaluating possible moves,

because DM i is deterred by sanctions to states that are strongly less preferred

and states that have uncertain preference relative to the status quo.
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Definition 3.24. State s is strongly GMRc (SGMRc) for DM i, denoted by

s ∈ SSGMRc
i , iff for every s1 ∈ R+,++,U

i (s) there exists at least one s2 ∈ RN\{i}(s1)

such that s2 ∈ Φ−−,U
i (s).

Definition 3.25. State s is strongly SMRc (SSMRc) for DM i, denoted by

s ∈ SSSMRc
i , iff for every s1 ∈ R+,++,U

i (s) there exists at least one s2 ∈ RN\{i}(s1),

such that s2 ∈ Φ−−,U
i (s) and s3 ∈ Φ−−,U

i (s) for all s3 ∈ Ri(s2).

Definition 3.26. State s is strongly SEQc (SSEQc) for DM i, denoted by s ∈
SSSEQc

i , iff for every s1 ∈ R+,++,U
i (s) there exists at least one s2 ∈ R+,++,U

N\{i} (s1)

such that s2 ∈ Φ−−,U
i (s).

3.2.3.4 Strong Stabilities, Index d, for Hybrid Preferences with

Strength of Preference

Definition 3.27. State s is strongly GMRd (SGMRd) for DM i, denoted by

s ∈ SSGMRd
i , iff for every s1 ∈ R+,++

i (s) there exists at least one s2 ∈ RN\{i}(s1)

such that s2 ∈ Φ−−,U
i (s).

Definition 3.28. State s is strongly SMRd (SSMRd) for DM i, denoted by

s ∈ SSSMRd
i , iff for every s1 ∈ R+,++

i (s) there exists at least one s2 ∈ RN\{i}(s1),

such that s2 ∈ Φ−−,U
i (s) and s3 ∈ Φ−−,U

i (s) for all s3 ∈ Ri(s2).

Definition 3.29. State s is strongly SEQd (SSEQd) for DM i, denoted by

s ∈ SSSEQd
i , iff for every s1 ∈ R+,++

i (s) there exists at least one s2 ∈ R+,++,U
N\{i} (s1)

such that s2 ∈ Φ−−,U
i (s).

The above definitions indexed d indicate that DM i would move only to mildly

or strongly preferred states, but is deterred by sanctions that could move i to

strongly less preferred states and states that have uncertain preference relative to

the status quo. Therefore, definitions indexed d represent strong stabilities for the

most conservative DMs.

When n = 2 and the DM set N reduces to two DMs {i, j}, the reachable

lists of coalition N \ {i} by the legal sequences of UMs and WIUUMs from state

s1, RN\{i}(s1) and R+,++,U
N\{i} (s1), reduce to the reachable lists from s1 by DM j,

Rj(s1) and R+,++,U
j (s1). Thus, Definitions 3.2 to 3.29 reduce to the definitions

presented in [68] for two DM conflicts. Therefore, if one considers neither strength

nor uncertainty in preferences, the above definitions will reduce to Definitions 2.14
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to 2.17 proposed by Fang et al. [16] for simple preference. When DMs’ preferences

do not include uncertainty, Definitions 3.18 to 3.29 reduce to the strong stability

definitions 2.38 to 2.40 defined by Hamouda et al. [28]; when DM i’s preferences do

not include strength, they reduce to Definitions 2.18 to 2.33 for the graph model

with preference uncertainty developed by Li et al. [46].

3.2.4 Weak Stabilities, Index l, for Hybrid Preference with

Strength of Preference

Let l denote one of the four extensions indexed a, b, c, and d, i.e., l = a, b, c, or d.

In the following theorems, the symbol GS denotes a solution concept, GMR, SMR,

or SEQ. Then GSl refers to the GS solution concept indexed l, SGS refers to the

strong solution concept of GS, and WGS refers to the weak solution concept of

GS (defined below). The symbol s ∈ SGSl
i denotes that s ∈ S is stable for DM

i according to stability GS indexed l. Similarly, s ∈ SSGSl
i denotes that s ∈ S is

strongly stable for DM i according to strong stability SGS indexed l. A state is

weakly stable iff it is stable, but not strongly stable. The formal weak stability

concept is defined next.

Definition 3.30. Let s ∈ S and i ∈ N . State s is weakly stable WGSl for DM

i according to stability WGS indexed l, denoted by s ∈ SWGSl
i , iff s ∈ SGSl

i and

s /∈ SSGSl
i .

3.2.5 Interrelationships among Stabilities for Hybrid

Preference

In 1993, Fang et al. [16] determined relationships among Nash, GMR, SMR, and

SEQ for the simple preference structure. Following this research direction, Li et

al. [46] and Hamouda et al. [28] established interrelationships among stability

definitions with preference uncertainty and with strength of preference,

respectively.

The following interrelationships among proposed stabilities for hybrid

preference are similar to those clarified by Fang et al. [16]. Let l = a, b, c, or d.

Then, the inclusion relationships among the four stabilities indexed l for hybrid

preference are shown in Fig. 3.2.
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Figure 3.2: Interrelationships among stabilities indexed l for hybrid

preference.

Under the hybrid preference, the interrelationships of stabilities, strong

stabilities, and weak stabilities are as follows:

Theorem 3.1. Let l = a, b, c, or d and i ∈ N . The interrelationships among

stability GS, strong stability SGS, and weak stability WGS indexed l for DM i are

SWGSl
i = SGSl

i − SSGSl
i .

This result is obvious from Definition 3.30.

Based on definitions 3.2 to 3.29, the interrelationships among the four stabilities

of Nash, GMR, SMR, and SEQ and the three strong stabilities of SGMR, SSMR,

and SSEQ, indexed l for hybrid preference are given next.

Theorem 3.2. Let l = a, b, c, or d and i ∈ N . The interrelationships among the

four stabilities and the three strong stabilities indexed l are

SNashl
i ⊆ SSSMRl

i ⊆ SSMRl
i ⊆ SGMRl

i ,

SNashl
i ⊆ SSSEQl

i ⊆ SSEQl
i ⊆ SGMRl

i ,

and

SNashl
i ⊆ SSGMRl

i ⊆ SGMRl
i .

The proof of Theorem 3.2 easily follows from the above definitions. Note that

there is no necessary inclusion relationship between SSSMRl
i and SSSEQl

i , i.e., it

may or may not be true that SSSMRl
i ⊇ SSSEQl

i , or that SSSMRl
i ⊆ SSSEQl

i .

Theorem 3.3. The interrelationships among Nash stabilities indexed a, b, c, and

d for DM i are

SNasha
i = SNashc

i , SNashb
i = SNashd

i ,
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and

SNasha
i ⊆ SNashb

i .

This result is obvious from the above Nash stability definitions.

Theorem 3.4. Let i ∈ N . The interrelationships among stabilities GS and SGS

indexed a, b, c, and d are

SGSa
i ⊆ SGSb

i ⊆ SGSd
i , SGSa

i ⊆ SGSc
i ⊆ SGSd

i ,

and

SSGSa
i ⊆ SSGSb

i ⊆ SSGSd
i , SSGSa

i ⊆ SSGSc
i ⊆ SSGSd

i .

The interrelationships are shown in Fig. 3.3.

��� ���

������

����
����

����
����

Figure 3.3: Interrelationships for stability GS and strong stability SGS

for all indexes.

The inclusion relations about GS are similar with those regarding SGS, so we

only provide the proofs about SGS. We first prove inclusion relations SSSMRa
i ⊆

SSSMRc
i ⊆ SSSMRd

i .

Proof: If state s ∈ SSSMRa
i , this implies that if R+,++,U

i (s) 	= ∅ and s1 ∈
R+,++,U

i (s), then there exists at least one s2 ∈ RN\{i}(s1), such that s2 ∈ Φ−−
i (s)

and s3 ∈ Φ−−
i (s) for all s3 ∈ Ri(s2). Since Φ−−

i (s) ⊆ Φ−−,U
i (s), then s2 ∈ Φ−−,U

i (s)

and s3 ∈ Φ−−,U
i (s) for all s3 ∈ Ri(s2). Therefore, if state s ∈ SSSMRa

i , then state

s ∈ SSSMRc
i .

If state s ∈ SSSMRc
i , this implies that if s1 ∈ R+,++,U

i (s), then there exists

at least one s2 ∈ RN\{i}(s1), such that s2 ∈ Φ−−,U
i (s) and s3 ∈ Φ−−,U

i (s) for all

s3 ∈ Ri(s2). Since R+,++
i (s) ⊆ R+,++,U

i (s), then s ∈ SSSMRc
i implies that if s1 ∈

R+,++
i (s), then there exists at least one s2 ∈ RN\{i}(s1), such that s2 ∈ Φ−−,U

i (s)

and s3 ∈ Φ−−,U
i (s) for all s3 ∈ Ri(s2). Therefore, SSSMRc

i ⊆ SSSMRd
i .
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The inclusion relations SSSMRa
i ⊆ SSSMRc

i ⊆ SSSMRd
i is proved. Other inclusion

relations about SGMR and SSEQ can be proved, similarly. So

SSGSa
i ⊆ SSGSc

i ⊆ SSGSd
i .

The proof of the inclusion relations

SSGSa
i ⊆ SSGSb

i ⊆ SSGSd
i

can be similarly proved. �

3.3 Computational Stability Analysis and Status

Quo Analysis

In n-DM models, RH(s), the reachable list of coalition H by the legal UMs

starting at s, and R+,++,U
H (s), the reachable list of coalition H by the legal

WIUUMs starting at s, are key inputs to stability analysis in the hybrid

preference framework. Although Li et al. [46] and Hamouda et al. [28] proposed

definitions for related sets R+,U
H and R+,++

H , no algorithms for them have been

developed.

As a follow-up analysis, status quo analysis traces conflict evolution from a

status quo state to any specific outcome. It usually focuses on whether possible

equilibria are reachable from the status quo, and if so, how to reach them. Thus,

status quo analysis provides useful forward-looking insights into a strategic conflict,

helping DMs and analysts to identify how to attain a reachable equilibria from a

status quo state. GMCR II [18, 19] allows for status quo analysis, but does not

implement it. Subsequently, [47, 48] developed status quo analysis definitions and

the corresponding pseudo codes, but did not induce strength of preference. In this

section, the algorithms for the essential inputs of stability analysis and status quo

analysis are developed for hybrid preference.

Let i ∈ N and H ⊆ N and let k ≥ 1 be an integer. With the notation defined

in Section 2.2.6, some new notation for hybrid preference is as follows:

• S
(k,+,++,U)
i (s) stands for states reachable from SQ = s in exactly k legal

WIUUMs by the DMs in H with last mover DM i;

• V
(k,+,++,U)
H (s) denotes states reachable from SQ = s in at most k legal

WIUUMs by H;
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• A
(k,+,++,U)
i (s) indicates arcs with last mover DM i in sequences of at most

k (k > 1) legal WIUUMs by the DMs in H from SQ = s. Let A+,++,U
i (s)

denote the sets of arcs associated with DM i in one step WIUUM from state

s. Therefore, A+,++,U
i =

⋃
s∈S

A+,++,U
i (s).

In the status quo analysis, if a DM moves twice in succession, the DM is deemed

to make illegal moves. The following Theorem 3.5 asserts that if there does not

exist any new appropriate arc in the graph model, then corresponding joint moves

will stop.

Theorem 3.5. For SQ = s and H ⊆ N , the following results hold:

(1) If
⋃
i∈H

A
(k+1)
i (s) =

⋃
i∈H

A
(k)
i (s),

then V
(k+1)
H (s) = V

(k)
H (s) and RH(s) = V

(k)
H (s);

(2) If
⋃
i∈H

A
(k+1,+,++)
i (s) =

⋃
i∈H

A
(k,+,++)
i (s),

then V
(k+1,+,++)
H (s) = V

(k,+,++)
H (s) and R+,++

H (s) = V
(k,+,++)
H (s);

(3) If
⋃
i∈H

A
(k+1,+,++,U)
i (s) =

⋃
i∈H

A
(k,+,++,U)
i (s),

then V
(k+1,+,++,U)
H (s) = V

(k,+,++,U)
H (s) and R+,++,U

H (s) = V
(k,+,++,U)
H (s).

Proof: The proofs of three statements (1), (2), and (3) are similar. We prove

(3) that explicitly shows the hybrid preference structure.

Assume that there exists q ∈ V
(k+1,+,++,U)
H (s)\V (k,+,++,U)

H (s) but⋃
j∈H

A
(k+1,+,++,U)
j (s)=

⋃
j∈H

A
(k,+,++,U)
j (s).

Since V
(k+1,+,++,U)
H (s) = (

⋃
j∈H

S
(k+1,+,++,U)
j (s)) ∪ V

(k,+,++,U)
H (s), then, there

exists i ∈ H, such that q ∈ S
(k+1,+,++,U)
i (s) \ V

(k,+,++,U)
H (s). Hence, there exists

s1 ∈
⋃

j∈H\{i}
S

(k,+,++,U)
j (s) such that q ∈ R+,++,U

i (s1). Clearly, this implies that arc

(s1, q) ∈ A
(k+1,+,++,U)
i (s) \ ⋃

j∈H

A
(k,+,++,U)
j (s) which contradicts with the

hypothesis that
⋃

i∈H

A
(k+1,+,++,U)
i (s) =

⋃
i∈H

A
(k,+,++,U)
i (s). Thus,

V
(k+1,+,++,U)
H (s) = V

(k,+,++,U)
H (s) when

⋃
i∈H

A
(k+1,+,++,U)
i (s) =

⋃
i∈H

A
(k,+,++,U)
i (s). It

is clear that if V
(k+1,+,++,U)
H (s) = V

(k,+,++,U)
H (s), then⋃

i∈H

S
(k+1,+,++,U)
i (s) ⊆ V

(k,+,++,U)
H (s). Consequently, if there are no new arcs in
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⋃
i∈H

A
(k+1,+,++,U)
i (s), then the legal WIUUMs will stop after k legal WIUUMs

from state s. i.e., R+,++,U
H (s) = V

(k,+,++,U)
H (s). (1) and (2) can be similarly

verified. �
Fix H ⊆ N . Let | ⋃

i∈H

Ai|, |
⋃

i∈H

A+,++
i |, and | ⋃

i∈H

A+,++,U
i | respectively denote the

cardinalities of UM arcs, WI arcs, and WIUUM arcs in a directed graph associated

with the DMs in H. Then, the following lemma can be easily derived using Theorem

3.5.

Lemma 3.1. Let δ1, δ2, and δ3 respectively stand for the number of iteration steps

required to construct RH(s), R+,++
H (s), and R+,++,U

H (s) for any s ∈ S. Then

(1) δ1 ≤ | ⋃
i∈H

Ai|;
(2) δ2 ≤ | ⋃

i∈H

A+,++
i |; and

(3) δ3 ≤ | ⋃
i∈H

A+,++,U
i |.

Let l1 = | ⋃
i∈H

Ai|, l2 = | ⋃
i∈H

A+,++
i |, and let l3 = | ⋃

i∈H

A+,++,U
i |. By Theorem 3.5

and Lemma 3.1, the following theorem can be proved.

Theorem 3.6. Let s ∈ S, H ⊆ N, and H 	= ∅. Then the reachable lists of H by

the legal sequences of UMs, WIs, and WIUUMs from state s, RH(s), R+,++
H (s),

and R+,++,U
H (s), can be respectively expressed by

(1) RH(s) = V
(l1)
H (s);

(2) R+,++
H (s) = V

(l2,+,++)
H (s);

(3) R+,++,U
H (s) = V

(l3,+,++,U)
H (s).

Proof: The proofs of equations (1), (2), and (3) can be carried out similarly.

Here, we prove (3) including explicit hybrid preferences. Based on Theorem 3.5,

R+,++,U
H (s) = V

(δ3,+,++,U)
H (s). It is obvious that no new arc is produced by legal

WIUUMs in the graph model after δ3 iteration steps. Since δ3 ≤ l3 by using Lemma

3.1, then V
(l3,+,++,U)
H (s)= V

(δ3,+,++,U)
H (s). Therefore, (3) is proved.

(1) and (2) can be similarly proved. �
The following algorithm presented in Table 3.1 implements constructions of

the state set and arc set, V
(k)
H (s) and A

(k)
i (s), which include all states reachable

by coalition H in at most k legal UMs starting at state s and all arcs with last

mover DM i in sequences of at most k legal UMs from SQ = s for k = 1, 2, · ·
·, δ1. Obviously, Table 3.1 also provides the construction of the reachable list of

H from state s, RH(s), using Theorem 3.6. The arcs, A
(k)
i (s) for k = 1, 2, · ·
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·, δ1, sufficiently track the evolution of a conflict permitting all UMs from state

s. Similarly, the computational implementation of the state set V
(k,+,++,U)
H (s) and

the arc set A
(k,+,++,U)
i (s) can be accomplished by using the following algorithms

described in Table 3.2. Therefore, the algorithms designed in Tables 3.1 and 3.2

operationalize the key inputs of stability analysis, RH(s) and R+,++,U
H (s), and the

evolution paths of status quo analysis for hybrid preference.

If UMs have no strength of preference to be considered, then the state set

R+,++,U
H (s) reduces to R+,U

H (s) defined by Li et al. [46]. If no uncertain preference

is associated with UMs, R+,++,U
H (s) reduces to R+,++

H (s), introduced by Hamouda

et al. [28]. Obviously, the developed results for hybrid preference expand the

existing stability analysis [16,28,46] and status quo analysis [47,48].

3.4 Application: Gisborne Conflict with Hybrid

Preference

Lake Gisborne is located near the south coast of the Canadian Atlantic province

of Newfoundland and Labrador. In June 1995, a local division of the McCurdy

Group of Companies, Canada Wet Incorporated, proposed a project to export

bulk water from Lake Gisborne to foreign markets. On December 5, 1996, this

project was registered with the government of Newfoundland and Labrador. At

the time of registration, no policy existed on bulk water exports. However, this

proposal immediately aroused considerable opposition from a wide variety of lobby

groups. In addition to unpredictable harmful impacts on local environment and

First Nations culture, a critical issue is its potential implication of making water a

tradeable “commodity” that is thus subject to WTO (World Trade Organization)

and NAFTA (North American Free Trade Agreement). Therefore, if the Lake

Gisborne bulk water export project was successfully executed, the water policy in

Canada might have to undergo a significant shift as any firm would be able to follow

the suit. As such, the Federal Government of Canada sided with the opposing

groups by introducing a policy to forbid bulk water export from major drainage

basins in Canada. The mounting pressure eventually forced the government of

Newfoundland and Labrador to introduce a new bill to ban bulk water export

from Newfoundland and Labrador, which effectively terminated the Gisborne water

export project. (See details in [17,46]).
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Table 3.1: The pseudocode for constructing RH(s)

Initialize //initialize the necessary parameters

H : any subset of DMs;

h: the number of H;

m: the number of states;

s : the status quo state;

δ1: the max step we want to calculate;

Ri(s): reachable list from state s by DM i, i = 1, · · · , h;

k = 1

S
(k)
i (s) = Ri(s), i = 1, · · · , h

V
(k)
i (s) = S

(k)
i (s), i = 1, · · · , h

A
(k)
i (s) =

⋃
q∈Ri(s)

(s, q), (s, q) for i = 1, · · · , h

loop 1

k = k + 1

loop 2 i from 1 to h // the last mover is DM i

S ′ =
⋃

j∈H\{i}
S

(k−1)
j (s)

S
(k)
i (s) =

⋃
s′∈S′

Ri(s
′)

V
(k)
i (s) = V

(k−1)
i (s)

⋃
S

(k)
i (s)

A
(k)
i (s) = A

(k−1)
i (s)

⋃{(s1, s2) : s1 ∈
⋃

j∈H\{i}
S

(k−1)
j (s), and s2 ∈ Ri(s1)}

return to loop 2

V
(k)
H (s) =

⋃
i∈H

V
(k)
i (s)

return to loop 1 if
⋃

i∈H

A
(k)
i (s) 	= ⋃

i∈H

A
(k−1)
i (s)

δ1 = k

RH(s) = V
(δ1)
H (s).
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Table 3.2: The pseudocode for constructing R+,++,U
H

Initialize //initialize the necessary parameters

H : any set of DMs;

h: the number of H;

m: the number of states;

s : status quo state;

δ3: the max step we want to calculate;

R+,++,U
i (s): reachable list by a WIUUM from state s by DM i, i = 1, · · · , h;

k = 1

S
(k,+,++,U)
i (s) = R+,++,U

i (s), i = 1, · · · , h

V
(k,+,++,U)
i (s) = S

(k,+,++,U)
i (s), i = 1, · · · , h

A
(k,+,++,U)
i (s) =

⋃
q∈R+,++,U

i (s)

(s, q) for i = 1, · · · , h

loop 1

k = k + 1

loop 2 i from 1 to h // the last mover is DM i

S ′ =
⋃

j∈H\{i}
S

(k−1,+,++,U)
j (s)

S
(k,+,++,U)
i (s) =

⋃
s′∈S′

R+,++,U
i (s′)

V
(k,+,++,U)
i (s) = V

(k−1,+,++,U)
i (s)

⋃
S

(k,+,++,U)
i (s)

A
(k,+,++,U)
i (s) = A

(k−1,+,++,U)
i (s)

⋃
S ′′

S ′′ = {(s1, s2) : s1 ∈
⋃

j∈H\{i}
S

(k−1,+,++,U)
j (s), and s2 ∈ R+,++,U

i (s1)}

return to loop 2

V
(k,+,++,U)
H (s) =

⋃
i∈H

V
(k,+,++,U)
i (s)

return to loop 1 if
⋃

i∈H

A
(k,+,++,U)
i (s) 	= ⋃

i∈H

A
(k−1,+,++,U)
i (s)

δ3 = k

R+,++,U
H (s) = V

(δ3,+,++,U)
H (s).
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Nevertheless, several support groups remain interested in the project, and the

provincial government might restart the project at an appropriate time in the

future due to its urgent need for cash. This prospect introduces uncertainty into

the preferences of the provincial government for the Gisborne conflict model. This

conflict is modeled using three DMs: DM 1, Federal (Fe); DM 2, Provincial

(Pr); and DM 3, Support (Su); and a total of three options, as shown in Table

3.3. The following is a summary of the three DMs and their options [46]:

• Federal government of Canada (Federal): its option is to continue a

Canada-wide accord on the prohibition of bulk water export or not,

• Provincial government of Newfoundland and Labrador (Provincial): its

option is to lift the ban on bulk water export or not, and

• Support groups (Support): its option is to appeal for continuing the

Gisborne project or not.

Table 3.3: Options and feasible states for the Gisborne conflict [46]

Federal

1. Continue N Y N Y N Y N Y

Provincial

2. Lift N N Y Y N N Y Y

Support

3. Appeal N N N N Y Y Y Y

State number s1 s2 s3 s4 s5 s6 s7 s8

In the Lake Gisborne conflict model, the three options together determine 8

possible states as listed in Table 3.3, where a “Y” indicates that an option is

selected by the DM controlling it and an “N” means that the option is not chosen.

The graph model of this conflict is depicted based on the 8 feasible states by Fig.

3.4, in which a label on an arc indicates which DM controls the moves between the

two states connected by the arc.

In this section, the extended stability definitions with hybrid preference are

applied to an extended Lake Gisborne conflict. Li et al. [46] introduced

uncertainty into the preferences of the Provincial Government for the Gisborne

conflict. We extend the graph model to include the hybrid preference of
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Figure 3.4: Graph model for the Gisborne conflict [46].

uncertainty and strength in the Gisborne dispute. The preference information for

this conflict over the feasible states is given in Table 3.4. We assume that state s7

is strongly less preferred to all other states by the Federal Government, the

Support Groups consider state s2 to be strongly less preferred relative to all other

states, and the Provincial Government strongly prefers state s2 to state s6. Note

that DM Provincial only knows that it mildly prefers state s3 to s7, state s4 to

s8, state s1 to s5, and strongly prefers state s2 to s6. This DM is uncertain for

preference relations between other any two states. It is obvious that DM

Provincial’s preference information includes uncertainty and strength.

Additionally, this representation of preference information presented in Table 3.4

implies that the preferred relations, > and �, are transitive. For instance, since

s5 > s3 and s3 � s7, then s5 � s7. However, in general, the preference structure

presented in this research does not require the transitivity of preference relations

and, hence, the developed results can be used to handle intransitive preferences.

The stable states and equilibria under the hybrid preference structure are

summarized in Table 3.5, in which a check mark (
√

) opposited a given state and

an index means that this state is stable for the indicated DM, solution concept

and associated index (a, b, c, or d), “Eq” is an equilibrium for a corresponding

solution concept, and 1, 2, and 3 denote three DMs, Federal, Provincial, and

Support, respectively. In fact, if analysts are not willing to take the risk to

switch the current strategy to another strategy having uncertain preference

relative to the initial strategy, and are conservative when considering sanctions,
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Table 3.4: Certain preferences information for the Gisborne model

(extended from [46])

DMs Certain preferences

Federal s2 > s6 > s4 > s8 > s1 > s5 > s3 � s7

Provincial s3 > s7, s4 > s8, s1 > s5, s2 � s6, only

Support s3 > s4 > s7 > s8 > s5 > s6 > s1 � s2

then they would consider selecting equilibria with index d as resolutions for

decision making. On the other hand, if developers are very aggressive, they

would like to find the stable states under index a. Table 3.6 compares stability

results for preference with uncertainty only and hybrid preference of uncertainty

and strength. State s is a strong equilibrium for some stability if s is strongly

stable for all DMs under the stability. By Table 3.6, we select states s4 and s6 as

better choices for making decision, since s8 is not a strong equilibrium.
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Figure 3.5: The Gisborne conflict evolution from states s1 to s4.

The aim of stability analysis in this research is to find strong equilibria of

a graph model associated with some index according to DM’s attitudes toward

the risk associated with uncertain preferences. Status quo analysis examines the

dynamics of a conflict model and assesses whether predicted equilibria are reachable

from the status quo. Therefore, by taking a status quo analysis into account,

additional insights are revealed about the attainability of any potential resolution.

Fig. 3.5 shows the evolution of the Gisborne conflict by legal WIUUMs from statu

quo state state s1 to the desirable equilibrium s4.
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Table 3.5: Stability results of the Gisborne conflict with hybrid preference

State Nash GMR SMR SEQ SGMR SSMR SSEQ WGMR WSMR WSEQ
1 2 3 Eq 1 2 3 Eq 1 2 3 Eq 1 2 3 Eq 1 2 3 Eq 1 2 3 Eq 1 2 3 Eq 1 2 3 Eq 1 2 3 Eq 1 2 3 Eq

a
b √ √ √ √ √ √ √

s1 c √ √ √ √ √ √

d √ √ √ √ √ √ √

a √ √ √ √ √ √ √

b √ √ √ √ √ √ √ √ √ √ √ √ √ √

s2 c √ √ √ √ √ √ √ √ √ √ √

d √ √ √ √ √ √ √ √ √ √ √ √ √ √

a √ √ √ √ √ √ √

b √ √ √ √ √ √ √ √ √ √ √ √ √ √

s3 c √ √ √ √ √ √ √ √ √ √ √ √ √

d √ √ √ √ √ √ √ √ √ √ √ √ √ √

a √ √ √ √ √ √ √ √ √ √ √ √ √ √

b √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

s4 c √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

d √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

a √ √ √ √ √ √ √

b √ √ √ √ √ √ √ √ √ √ √ √ √ √

s5 c √ √ √ √ √ √ √ √ √ √ √ √ √

d √ √ √ √ √ √ √ √ √ √ √ √ √ √

a √ √ √ √ √ √ √ √ √ √ √ √ √ √

b √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

s6 c √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

d √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

a √ √ √ √ √ √

b √ √ √ √ √ √ √ √ √ √ √ √ √

s7 c √ √ √ √ √ √ √ √ √ √ √ √

d √ √ √ √ √ √ √ √ √ √ √ √ √

a √ √ √ √ √ √ √ √ √ √ √ √ √

b √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

s8 c √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

d √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

54



Table 3.6: The comparison of stability results for two types of preference

structures

Preference structure States Analysis method Analysis result

s4 and s6 see Chapter 2 Equilibria under extensions b and

Preference with d for Nash, GMR, SMR and SEQ

uncertainty s8 see Chapter 2 Equilibrium under extensions b

and d for GMR, SMR and SEQ

s4 and s6 see Chapter 3 Strong equilibria under extensions b

Hybrid and d for Nash, GMR, SMR and SEQ

preference s8 see Chapter 3 Weakly stable under extensions

b and d for SMR and SEQ

3.5 Summary

A hybrid preference framework is developed in this chapter for strategic conflict

analysis to integrate preference strength and preference uncertainty into GMCR for

multiple decision makers [68,70]. The hybrid system is more general than existing

models, which consider preference strength and preference uncertainty separately.

Within the hybrid preference structure, the hybrid versions of four basic stabilities

are defined and algorithms are developed to calculate efficiently the essential inputs

of the stabilities and status quo analysis. The new stability concepts under the

hybrid preference structure can be used to model complex strategic conflicts arising

in practical applications, and can provide new insights for the conflicts.
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Chapter 4

Multiple levels of Preference in

the Graph Model for Conflict

Resolution

A multiple-level preference ranking structure is developed within the paradigm of

the Graph Model for Conflict Resolution to study multi-objective decision

making in conflict situations more realistically. In this structure, a decision

maker may have multiple levels of preference for one state or scenario over

another; for example, if state A is preferred to state B, it may be mildly preferred

at level 1, more strongly preferred at level 2, · · ·, or maximally preferred at level

r, where r > 0 is a fixed parameter. The number of levels, r, is unrestricted in

this system, thereby extending earlier two-level (r = 1) and three-level (r = 2)

structures. Multilevel versions of four stability definitions, Nash stability, general

metarationality, symmetric metarationality, and sequential stability, are defined

for the graph model with this extended preference structure and the relationships

among them are investigated. A specific case study, including multiple decision

makers and multiple levels of preference, is carried out to illustrate how the new

solution concepts can be applied in practice.
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4.1 Multiple Levels of Preference

The simple preference structure {�,∼} [16] and the structure with strength of

preference {�, >,∼} [27, 28] are referred to as two levels of preference and three

levels of preference, respectively. As a result of the development of a significant

amount of research expressing preference information by degree of strength [58,64],

the existing preference structures in the graph model would be unable to depict

the intensity of relative preference. Therefore, it may be worthwhile to extend the

existing two levels of preference and three levels of preference in the graph model

to an unlimited number of levels of preference, which in this thesis are referred to

as degrees of preference.

Table 4.1: Degree of relative preference

Degree of strength Description Notation

d = 0 Equally preferred ∼
d = 1 Moderately preferred >

d = 2 Strongly preferred �
d = 3 Very strongly preferred ≫

· · · · · · · · · · · · · · · · · ·

d = r Preferred at level r

r︷ ︸︸ ︷
> · · · >

A set of new and more general binary relations

d︷ ︸︸ ︷
> · · · > for d = 1, 2, · · ·, r, as

listed in Table 4.1, are proposed in this research to represent DM i’s preference

at each level d. With the introduction of these new binary relations, the three

levels of preference in the graph model are extended from a triplet relations, to

an r + 1-level relations for DM i over the set of states, which is expressed as

{∼i, >i,�i, · · ·,
r�i} on S, where

r�i denotes

r︷ ︸︸ ︷
> · · · >i, i.e., DM i has preference by

degree r for comparing states with respect to preference. For instance, s ≫i q

means that DM i very strongly prefers state s to state q. It is assumed that the

preference relations of each DM i ∈ N have the following properties:

(i)
d�i for d = 1, 2, · · ·, r, is asymmetric;

(ii) ∼i is reflexive and symmetric; and
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(iii) {∼i, >i,�i, · · ·,
r�i} is strongly complete, i.e. if s, q ∈ S, then exactly one

of the following relations holds: s
d�i q, q

d�i s, for d = 1, 2, · · ·, r, or s ∼i q.

Preference information can be either transitive or intransitive. If k
d�i s and s

d�i q

imply k
d�i q, then the preference

d�i is transitive. Otherwise, preferences are

called intransitive. Note that the assumption of transitivity of preferences is not

required in the following definitions so that the results in this research hold for

both transitive and intransitive preferences. When all preferences for a given DM

i are transitive, the preferences are said to be ordinal and, hence, the states in

a conflict can be ordered or ranked from most to least preferred, where ties are

allowed. Sometimes this ranking of states according to preference is referred to as

a “preference ranking”.

For the new preference structure, DM i can identify 2r+1 subsets of S: Φ
+(r)
i (s),

· · ·, Φ
+(1)
i (s), Φ=

i (s), Φ
−(1)
i (s), · · ·, and Φ

−(r)
i (s). Here, Φ

+(d)
i (s) and Φ

−(d)
i (s) for

d = 0, 1, · · ·, r, are defined and described in Table 4.2. The set Ri(s) denotes the

unilateral moves (UMs) of DM i from s ∈ S, and is also called i’s reachable list from

s. It contains all states to which DM i can move, unilaterally and in one step, from

state s. Similarly, the set R+
i (s) = {q ∈ S : q ∈ Ri(s) and q

d�i s for d = 1, 2, ···, r}
contains DM i’s unilateral improvements (UIs) from state s at various levels of

preference. All reachable lists from state s at each level of preference for DM

i are expressed by R
+(r)
i (s), · · ·, R

+(1)
i (s), R

(0)
i (s), R

−(1)
i (s), · · ·, and R

−(r)
i (s).

Let Ri(s) =
r⋃

d=0

(R
−(d)
i (s) ∪ R

+(d)
i (s)) and R+

i (s) =
r⋃

d=1

R
+(d)
i (s), where R

+(d)
i (s)

and R
−(d)
i (s) for d = 0, 1, · · ·, r, are described in Table 4.3. Additionally, the

relations among the subsets of S, Φ
+(d)
i (s) and Φ

−(d)
i (s) for d = 0, 1, · · ·, r, and

the corresponding reachable lists from state s for DM i, R
+(d)
i (s) and R

−(d)
i (s) for

d = 0, 1, · · ·, r, are depicted in Fig. 4.1.

4.2 Multiple Levels of Preference in the Graph

Model for Conflict Resolution

Incorporating this extended multiple levels of preference into the graph model for

conflict resolution results in multilevel versions of the four basic solution concepts,

Nashk, GMRk, SMRk, and SEQk for k = 0, 1, · · ·, r. The stability definitions in

a 2-DM conflict model are presented next.
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Table 4.2: Subsets of S for DM i with respect to multiple levels of

preference

Degree of strength Subsets of S Description

Φ
+(r)
i (s) = {q : q

r︷ ︸︸ ︷
> · · · >i s} States preferred to state

d = r s at level r by DM i

Φ
−(r)
i (s) = {q : s

r︷ ︸︸ ︷
> · · · >i q} States less preferred to state s

at level r by DM i

· · · · · · · · · · · ·
· · · · · ·

Φ
+(3)
i (s) = {q : q ≫i s} States very strongly preferred

d = 3 to state s by DM i

Φ
−(3)
i (s) = {q : s ≫i q} States very strongly less

preferred to state s by DM i

Φ
+(2)
i (s) = {q : q �i s} States strongly preferred

d = 2 to state s by DM i

Φ
−(2)
i (s) = {q : s �i q} States strongly less preferred

to state s by DM i

Φ
+(1)
i (s) = {q : q >i s} States moderately preferred

d = 1 to state s by DM i

Φ
−(1)
i (s) = {q : s >i q} States moderately less preferred

to state s by DM i

d = 0 Φ
(0)
i (s) = Φ=

i (s) = {q : q ∼i s} States equally preferred

to state s by DM i
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Table 4.3: Reachable lists by DM i at some level of preference

Type of movement Description

R
+(d)
i (s) = Ri(s) ∩ Φ

+(d)
i (s) All unilateral improvements of degree

d from state s for DM i

Ri(s)
−(d)(s) = Ri(s) ∩ Φ

−(d)
i (s) All unilateral disimprovements of degree

d from state s for DM i

R
(0)
i (s) = R=

i (s) = Ri(s) ∩ Φ=
i (s) All equally preferred states reachable

from state s by DM i

4.2.1 Stabilities for Multiple Levels of Preference in Two

DM Conflicts

First, in the solution concepts given below, strength of preference is not considered

in sanctioning, so the following solution concepts are called general stabilities. This

idea is analogous to the concept of standard stability proposed by Hamouda et

al. [27]. For all of the definitions given in this section, assume that N = {i, j} and

s ∈ S.

4.2.1.1 General Stabilities for Multiple Levels of Preference

Definition 4.1. State s is general Nash stable (SNash) for DM i, denoted by

s ∈ SGNash
i , iff R+

i (s) = ∅.

Definition 4.2. State s is general GMR (GGMR) for DM i, denoted by s ∈
SGGMR

i , iff for every s1 ∈ R+
i (s) there exists at least one s2 ∈ Rj(s1) with s2 ∈

r⋃
d=0

Φ
−(d)
i (s).

Definition 4.3. State s is general SMR (GSMR) for DM i, denoted by s ∈
SGSMR

i , iff for every s1 ∈ R+
i (s) there exists at least one s2 ∈ Rj(s1) with s2 ∈

r⋃
d=0

Φ
−(d)
i (s) and s3 ∈

r⋃
d=0

Φ
−(d)
i (s) for all s3 ∈ Ri(s2).

Definition 4.4. State s is general SEQ (GSEQ) for DM i, denoted by s ∈
SGSEQ

i , iff for every s1 ∈ R+
i (s) there exists at least one s2 ∈ R+

j (s1) with s2 ∈
r⋃

d=0

Φ
−(d)
i (s).
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Figure 4.1: Relations among subsets of S and reachable lists from s.

Note that, in this research, the meaning of R+
i (s) differs from that of Fang

et al. [16]; there, it denotes all one-level unilateral improvements from s by DM

i, whereas here, it includes all unilateral improvements, no matter how many

levels. For three levels of preference, stabilities are divided into strongly and weakly

stable according to the strength of the possible sanction, i.e., if a particular state

s is general stable, then s is either strongly stable or weakly stable [28]. Within

multiple levels of preference, the general stabilities are constituted by stabilities at

each level of preference.

4.2.1.2 Stabilities at Level k for Multiple Levels of Preference

Firstly, definitions are given in this research for different strengths of Nash stability.

Even though unilateral improvements do not exist under Nash stability, the idea

of strength of stability can still be captured using the level of preference for the

most preferred states to which the DM could unilaterally move. All these states

must be less preferred than the initial state. A special connection is required for

the case when no movements of any type exist for the DM. If DM i has no any

unilateral move at all levels of preference from state s, state s is extremely stable.

We proposed the stability next.
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Definition 4.5. If Ri(s) = ∅, then state s is super stable for DM i at any level

of preference, denoted by s ∈ SSuper
i .

Definition 4.6. State s is Nash stable (Nash0) at level 0 for DM i, denoted by

s ∈ SNash0
i , iff R+

i (s) = ∅ and R
(0)
i (s) 	= ∅.

Definition 4.7. For 1 ≤ k ≤ r, state s is Nash stable (Nashk) at level k for

DM i, denoted by s ∈ SNashk
i , iff R+

i (s) ∪ (
k−1⋃
d=0

R
−(d)
i (s)) = ∅ and R

−(k)
i (s) 	= ∅.

The k-th level Nash stability is depicted in Fig. 4.2. The super stability is

referred to as Nash stability at the highest level.
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Figure 4.2: Nash stability at level k

When multiple-level preference is incorporated into the graph model, GMR,

SMR, and SEQ stabilities at different levels can be distinguished according to the

strength of the sanction. For DM i, if a UI from state s is sanctioned in exactly

k levels below s and all other UIs from state s are sanctioned in at least k levels

below s, then the status quo s is called general metarational at level k. Its formal

definition is given below.

Definition 4.8. State s is general metarational (GMR0) at level 0 for DM i,

denoted by s ∈ SGMR0
i , iff either R+

i (s) = ∅ and R
(0)
i (s) 	= ∅, or R+

i (s) 	= ∅ and for

every s1 ∈ R+
i (s) there exists at least one s2 ∈ Rj(s1) with s2 ∈

r⋃
d=0

Φ
−(d)
i (s) and

there exists at least one s′1 ∈ R+
i (s) and s′2 ∈ Rj(s

′
1) such that s′2 ∈ Φ

(0)
i (s) and

Rj(s
′
1)
⋂

(
r⋃

d=1

Φ
−(d)
i (s)) = ∅.
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Definition 4.9. For 1 ≤ k ≤ r − 1, state s is general metarational (GMRk)

at level k for DM i, denoted by s ∈ SGMRk
i , iff either

k−1⋃
d=0

R
−(d)
i (s) ∪ R+

i (s) = ∅
and R

−(k)
i (s) 	= ∅, or R+

i (s) 	= ∅ and for every s1 ∈ R+
i (s) there exists at least one

s2 ∈ Rj(s1) with s2 ∈
r⋃

d=k

Φ
−(d)
i (s) and there exists at least one s′1 ∈ R+

i (s) and

s′2 ∈ Rj(s
′
1) such that s′2 ∈ Φ

−(k)
i (s) and Rj(s

′
1)
⋂

(
r⋃

d=k+1

Φ
−(d)
i (s)) = ∅.

If all of DM i’s UIs from a state are sanctioned at the highest level r (exactly

r levels below the state), then the state is called general metarational at level r.

Its formal definition is given below.

Definition 4.10. State s is general metarational (GMRr) at level r for DM

i, denoted by s ∈ SGMRr
i , iff either

r−1⋃
d=0

R
−(d)
i (s) ∪ R+

i (s) = ∅ and R
−(r)
i (s) 	= ∅,

or R+
i (s) 	= ∅ and for every s1 ∈ R+

i (s) there exists at least one s2 ∈ Rj(s1) with

s2 ∈ Φ
−(r)
i (s).

For DM i, if a UI from a state is sanctioned at level k below the state and all

other UIs from the particular state are sanctioned at a level of at least k below

the state, and these corresponding sanctions cannot be avoided by any

counterresponse, then the state is called SMR stable at level k. Its formal

definition is given below.

Definition 4.11. State s is symmetric metarational (SMR0) at level 0 for

DM i, denoted by s ∈ SSMR0
i , iff either R+

i (s) = ∅ and R
(0)
i (s) 	= ∅, or R+

i (s) 	= ∅
and for every s1 ∈ R+

i (s) there exists at least one s2 ∈ Rj(s1) with s2 ∈
r⋃

d=0

Φ
−(d)
i (s)

and there exists at least one s′1 ∈ R+
i (s) and s′2 ∈ Rj(s

′
1) such that s′2 ∈ Φ

(0)
i (s) and

Rj(s
′
1)
⋂

(
r⋃

d=1

Φ
−(d)
i (s)) = ∅, as well as s3 ∈

r⋃
d=0

Φ
−(d)
i (s) for any s3 ∈ Ri(s2)∪Ri(s

′
2).

Symmetric metarationality at level k (0 < k ≤ r) for DM i consists of SMRk+

and SMRk− that are defined next.

Definition 4.12. For 1 ≤ k ≤ r − 1, state s is symmetric metarational

(SMRk+) at level k for DM i, denoted by s ∈ S
SMRk+

i , iff either
k−1⋃
d=0

R
−(d)
i (s) ∪

R+
i (s) = ∅ and R

−(k)
i (s) 	= ∅, or R+

i (s) 	= ∅ and for every s1 ∈ R+
i (s) there exists at

least one s2 ∈ Rj(s1) with s2 ∈
r⋃

d=k

Φ
−(d)
i (s) and there exists at least one s′1 ∈ R+

i (s)
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and s′2 ∈ Rj(s
′
1) such that s′2 ∈ Φ

−(k)
i (s) and Rj(s

′
1)
⋂

(
r⋃

d=k+1

Φ
−(d)
i (s)) = ∅, as well

as s3 ∈
r⋃

d=k

Φ
−(d)
i (s) for any s3 ∈ Ri(s2) ∪ Ri(s

′
2).

Stability SMRk− is defined by S
SMRk−
i = SGSMR

i ∩ SGMRk
i − S

SMRk+

i .

Equivalently,

Definition 4.13. For 1 ≤ k ≤ r − 1, state s is symmetric metarational

(SMRk−) at level k for DM i, denoted by s ∈ S
SMRk−
i , iff s ∈ SGMRk

i and

R+
i (s) 	= ∅ and for every s1 ∈ R+

i (s) there exists at least one s2 ∈ Rj(s1) with

s2 ∈
r⋃

d=k

Φ
−(d)
i (s) and s3 ∈

r⋃
d=0

Φ
−(d)
i (s) for all s3 ∈ Ri(s2), as well as there exists

s′1 ∈ R+
i (s) and for every s′2 ∈ Rj(s

′
1) ∩ (

r⋃
d=k

Φ
−(d)
i (s)), Ri(s

′
2) ∩ Φ

(−d)
i (s) 	= ∅ for at

least one d ∈ {0, · · ·, (k − 1)}.

Definition 4.14. State s is symmetric metarational (SMRr+) at level r for

DM i, denoted by s ∈ S
SMRr+

i , iff either
r−1⋃
d=0

R
−(d)
i (s)∪R+

i (s) = ∅ and R
−(r)
i (s) 	= ∅,

or R+
i (s) 	= ∅ and for every s1 ∈ R+

i (s) there exists at least one s2 ∈ Rj(s1) with

s2 ∈ Φ
−(r)
i (s) and s3 ∈ Φ

−(r)
i (s) for any s3 ∈ Ri(s2).

Definition 4.15. State s is symmetric metarational (SMRr−) at level r for

DM i, denoted by s ∈ S
SMRr−
i , iff R+

i (s) 	= ∅ and for every s1 ∈ R+
i (s) there

exists at least one s2 ∈ Rj(s1) with s2 ∈ Φ
−(r)
i (s) and s3 ∈

r⋃
d=0

Φ
−(d)
i (s) for all

s3 ∈ Ri(s2), as well as there exists s′1 ∈ R+
i (s) and for every s′2 ∈ Rj(s1)∩Φ

−(r)
i (s),

Ri(s
′
2) ∩ Φ

(−d)
i (s) 	= ∅ for at least one d ∈ {0, · · ·, (r − 1)}.

Sequential stability at level k is similar to the stability of GMR at the same

level. The only modification is that all DM i’s UIs are subject to credible sanctions

by DM i’s opponent. Its formal definition is given below.

Definition 4.16. State s is sequential stable (SEQ0) at level 0 for DM i,

denoted by s ∈ SSEQ0

i , iff either R+
i (s) = ∅ and R

(0)
i (s) 	= ∅, or R+

i (s) 	= ∅ and for

every s1 ∈ R+
i (s) there exists at least one s2 ∈ R+

j (s1) with s2 ∈
r⋃

d=0

Φ
−(d)
i (s) and

there exists at least one s′1 ∈ R+
i (s) and s′2 ∈ R+

j (s′1) such that s′2 ∈ Φ
(0)
i (s) and

R+
j (s′1)

⋂
(

r⋃
d=1

Φ
−(d)
i (s)) = ∅.
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Definition 4.17. For 1 ≤ k ≤ r − 1, state s is sequentially stable (SEQk) at

level k for DM i, denoted by s ∈ SSEQk
i , iff either

k−1⋃
d=0

R
−(d)
i (s) ∪ R+

i (s) = ∅ and

R
−(k)
i (s) 	= ∅, or R+

i (s) 	= ∅ and for every s1 ∈ R+
i (s) there exists at least one

s2 ∈ R+
j (s1) with s2 ∈

r⋃
d=k

Φ
−(d)
i (s) and there exists at least one s′1 ∈ R+

i (s) and

s′2 ∈ R+
j (s′1) such that s′2 ∈ Φ

−(k)
i (s) and R+

j (s′1)
⋂

(
r⋃

d=k+1

Φ
−(d)
i (s)) = ∅.

Definition 4.18. State s is sequentially stable (SEQr) at level r for DM i,

denoted by s ∈ SSEQr

i , iff either
r−1⋃
d=0

R
−(d)
i (s) ∪ R+

i (s) = ∅ and R
−(r)
i (s) 	= ∅, or

R+
i (s) 	= ∅ and for every s1 ∈ R+

i (s) there exists at least one s2 ∈ R+
j (s1) with

s2 ∈ Φ
−(r)
i (s).

4.2.2 Stabilities for Multiple Levels of Preference in

Multiple DM Conflicts

In an n-DM model, where n ≥ 2, the opponents of a DM can be thought of as a

coalition of one or more DMs. To calculate the stability of a state for DM i ∈ N ,

it is necessary to examine possible responses by all other DMs j ∈ N \ {i}, which

may include sequential responses. To extend the graph model stability definitions

to stability definitions in n-DM models with multiple levels of preference, the

definition of a legal sequence of decisions for three levels of preference [28] must

first be extended to take multiple levels of preference into account.

4.2.2.1 Legal Sequences of Unilateral Moves and Unilateral

Improvements

A legal sequence of UMs in a graph model with multiple levels of preference for

a coalition of DMs is a sequence of states linked by unilateral moves controlled

by members of the coalition, in which a DM may move more than once, but not

twice in succession. (If a DM can move in succession, then this DM’s graph is

effectively transitive. Prohibiting consecutive moves thus allows for graph models

with intransitive graphs, which are sometimes useful in practice.) When H = {i},
a legal sequence of UMs for the coalition H reduces to a unilateral move of DM i.

Let the coalition H ⊆ N satisfy |H| ≥ 2 and let the status quo state be s ∈ S.

We now define RH(s) ⊆ S, the reachable list of coalition H from state s by a
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legal sequence of UMs in a graph model with multiple levels of preference. The

following definitions are adapted from [16,28]:

Definition 4.19. Let s ∈ S, H ⊆ N, and H 	= ∅. Here, Rj(s) =
r⋃

d=0

(R
−(d)
j (s) ∪

R
+(d)
j (s)) for any j ∈ H. A unilateral move by H is a member of RH(s) ⊆ S,

defined inductively by:

(1) if j ∈ H and s1 ∈ Rj(s), then s1 ∈ RH(s) and j ∈ ΩH(s, s1);

(2) if s1 ∈ RH(s), j ∈ H and s2 ∈ Rj(s1), then, provided ΩH(s, s1) 	= {j},
s2 ∈ RH(s) and j ∈ ΩH(s, s2).

Note that Definition 4.19 is analogous to Definition 2.10, but, here, unilateral

moves include the states that are reachable from state s by multiple levels of

preference (may more than three levels) listed in Table 4.3.

In a graph model with multiple levels of preference, a legal sequence of UIs for

coalition H is a sequence of states linked by unilateral improvements including

each-level UIs controlled by members of the coalition H with the usual restriction

that a member of the coalition may move more than once, but not twice

consecutively. The formal definition is given below.

Definition 4.20. Let R+
j (s) =

r⋃
d=1

R
+(d)
j (s) for any j ∈ H. A unilateral

improvement by H is a member of R+
H(s) ⊆ S, defined inductively by:

(1) if j ∈ H and s1 ∈
r⋃

d=1

R
+(d)
j (s), then s1 ∈ R+

H(s) and j ∈ Ω+
H(s)(s, s1);

(2) if s1 ∈ R+
H(s), j ∈ H and s2 ∈

r⋃
d=1

R
+(d)
j (s1), then, provided

Ω+
H(s)(s, s1) 	= {j}, s2 ∈ R+

H(s) and j ∈ Ω+
H(s, s2).

Definition 4.20 is identical to Definition 4.19 except that each move is to a state

strictly preferred with some degree of preference by the mover to the current state.

Similarly, Ω+
H(s, s1) includes all last movers in a legal sequence of UIs by coalition

H from state s to state s1. Specifically, this definition is inductive: first, using

(1), the states reachable by a single DM in H from s by one step UIs in multiple

levels of preference are identified and added to R+
H(s); then, using (2), all states

reachable from those states are identified and added to R+
H(s); then the process

is repeated until no further states are added to R+
H(s) by repeating (2). Because

R+
H(s) ⊆ S, and S is finite, this limit must be reached in finitely many steps.
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4.2.2.2 General Stabilities for Multiple Levels of Preference

Super stability and Nash stability definitions are identical for both the 2-DM and

the n-DM models because these stabilities do not consider the opponents’

responses. Let i ∈ N and s ∈ S for the following Definitions.

Definition 4.21. State s ∈ S is GGMR for DM i, denoted by s ∈ SGGMR
i , iff for

every s1 ∈ R+
i (s) there exists at least one s2 ∈ RN\{i}(s1) with s2 ∈

r⋃
d=0

Φ
−(d)
i (s).

Definition 4.22. State s ∈ S is GSMR for DM i, denoted by s ∈ SGSMR
i , iff for

every s1 ∈ R+
i (s) there exists at least one s2 ∈ RN\{i}(s1) with s2 ∈

r⋃
d=0

Φ
−(d)
i (s)

and s3 ∈
r⋃

d=0

Φ
−(d)
i (s) for all s3 ∈ Ri(s2).

Definition 4.23. State s ∈ S is GSEQ for DM i, denoted by s ∈ SGSEQ
i , iff for

every s1 ∈ R+
i (s) there exists at least one s2 ∈ R+

N\{i}(s1) with s2 ∈
r⋃

d=0

Φ
−(d)
i (s).

4.2.2.3 Stabilities at Level k for Multiple Levels of Preference

Similar to 2-DM conflicts, solution concepts for n-DM conflicts can be defined

as different-level stabilities, according to degrees of preference. Nash stability

definitions in multiple DM conflicts are the same as those in 2-DM cases. Therefore,

only the extended GMR, SMR, and SEQ are defined here. For DM i, if a UI from

state s is sanctioned by the legal sequence of UMs of i’s opponents in exactly k

levels below s and all other UIs from state s are sanctioned in at least k levels below

s, then the status quo s is called general metarational at level k. The process is

portrayed in Fig. 4.3 and the formal definition is given below.

Definition 4.24. State s is GMR0 for DM i, denoted by s ∈ SGMR0
i , iff either

R+
i (s) = ∅ and R

(0)
i (s) 	= ∅, or R+

i (s) 	= ∅ and for every s1 ∈ R+
i (s) there exists at

least one s2 ∈ RN\{i}(s1) with s2 ∈
r⋃

d=0

Φ
−(d)
i (s) and there exists at least one s′1 ∈

R+
i (s) and s′2 ∈ RN\{i}(s′1) such that s′2 ∈ Φ

(0)
i (s) and RN\{i}(s′1)

⋂
(

r⋃
d=1

Φ
−(d)
i (s)) =

∅.

Definition 4.25. For 1 ≤ k ≤ r − 1, state s is GMRk for DM i, denoted by

s ∈ SGMRk
i , iff either

k−1⋃
d=0

R
−(d)
i (s)∪R+

i (s) = ∅ and R
−(k)
i (s) 	= ∅, or R+

i (s) 	= ∅ and

for every s1 ∈ R+
i (s) there exists at least one s2 ∈ RN\{i}(s1) with s2 ∈

r⋃
d=k

Φ
−(d)
i (s)
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and there exists at least one s′1 ∈ R+
i (s) and s′2 ∈ RN\{i}(s′1) such that s′2 ∈ Φ

−(k)
i (s)

and RN\{i}(s′1)
⋂

(
r⋃

d=k+1

Φ
−(d)
i (s)) = ∅.
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Figure 4.3: General metarationality at level k.

If all of DM i’s UIs from a state are sanctioned at exactly r levels below the

state, then the state is called general metarational at level r. Its formal definition

is given below.

Definition 4.26. State s is GMRr for DM i, denoted by s ∈ SGMRr
i , iff either

r−1⋃
d=0

R
−(d)
i (s)∪R+

i (s) = ∅ and R
−(r)
i (s) 	= ∅, or R+

i (s) 	= ∅ and for every s1 ∈ R+
i (s)

there exists at least one s2 ∈ RN\{i}(s1) with s2 ∈ Φ
−(r)
i (s).

For DM i, if a UI from a state is sanctioned by the legal sequence of UMs of

i’s opponents at level k and all other UIs from the particular state are sanctioned

at level at least k, and these corresponding sanctions cannot be avoided by any

counterresponse, then the state is called symmetric metarational at level k. The

stability of SMR at level k is portrayed in Fig. 4.4 and the formal definition is

given below.

Definition 4.27. State s is SMR0 for DM i, denoted by s ∈ SSMR0
i , iff either

R+
i (s) = ∅ and R

(0)
i (s) 	= ∅, or R+

i (s) 	= ∅ and for every s1 ∈ R+
i (s) there exists at

68



least one s2 ∈ RN\{i}(s1) with s2 ∈
r⋃

d=0

Φ
−(d)
i (s) and there exists at least one s′1 ∈

R+
i (s) and s′2 ∈ RN\{i}(s′1) such that s′2 ∈ Φ

(0)
i (s) and RN\{i}(s′1)

⋂
(

r⋃
d=1

Φ
−(d)
i (s)) =

∅, as well as s3 ∈
r⋃

d=0

Φ
−(d)
i (s) for any s3 ∈ Ri(s2) ∪ Ri(s

′
2).
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Figure 4.4: Symmetric metarationality at level k+.

Symmetric metarationality at level k (0 < k ≤ r) for DM i consists of SMRk+

and SMRk− that are defined next.

Definition 4.28. For 1 ≤ k ≤ r − 1, state s is SMRk+ for DM i, denoted by

s ∈ S
SMRk+

i , iff either
k−1⋃
d=0

R
−(d)
i (s) ∪ R+

i (s) = ∅ and R
−(k)
i (s) 	= ∅, or R+

i (s) 	= ∅
and for every s1 ∈ R+

i (s) there exists at least one s2 ∈ RN\{i}(s1) with s2 ∈
r⋃

d=k

Φ
−(d)
i (s) and there exists at least one s′1 ∈ R+

i (s) and s′2 ∈ RN\{i}(s′1) such that

s′2 ∈ Φ
−(k)
i (s) and RN\{i}(s′1)

⋂
(

r⋃
d=k+1

Φ
−(d)
i (s)) = ∅, as well as s3 ∈

r⋃
d=k

Φ
−(d)
i (s) for

any s3 ∈ Ri(s2) ∪ Ri(s
′
2).

Stability SMRk− is defined by S
SMRk−
i = SGSMR

i ∩ SGMRk
i − SSMRk

i .

Equivalently,
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Definition 4.29. For 1 ≤ k ≤ r − 1, state s is SMRk− for DM i, denoted by

s ∈ S
SMRk−
i , iff s ∈ SGMRk

i and R+
i (s) 	= ∅, and for every s1 ∈ R+

i (s) there exists

at least one s2 ∈ RN\{i}(s1) with s2 ∈
r⋃

d=k

Φ
−(d)
i (s) and s3 ∈

r⋃
d=0

Φ
−(d)
i (s) for all

s3 ∈ Ri(s2), as well as there exists s′1 ∈ R+
i (s) and for every s′2 ∈ RN\{i}(s′1) ∩

(
r⋃

d=k

Φ
−(d)
i (s)), Ri(s

′
2) ∩ Φ

(−d)
i (s) 	= ∅ for at least one d ∈ {0, · · ·, (k − 1)}.

Definition 4.30. State s is SMRr+ for DM i, denoted by s ∈ S
SMRr+

i , iff either
r−1⋃
d=0

R
−(d)
i (s)∪R+

i (s) = ∅ and R
−(r)
i (s) 	= ∅, or R+

i (s) 	= ∅ and for every s1 ∈ R+
i (s)

there exists at least one s2 ∈ RN\{i}(s1) with s2 ∈ Φ
−(r)
i (s) and s3 ∈ Φ

−(r)
i (s) for

any s3 ∈ Ri(s2).

Definition 4.31. State s is SMRr− for DM i, denoted by s ∈ S
SMRr−
i , iff R+

i (s) 	=
∅ and for every s1 ∈ R+

i (s) there exists at least one s2 ∈ RN\{i}(s1) with s2 ∈
Φ

−(r)
i (s) and s3 ∈

r⋃
d=0

Φ
−(d)
i (s) for all s3 ∈ Ri(s2), as well as there exists s′1 ∈ R+

i (s)

and for every s′2 ∈ RN\{i}(s1) ∩ Φ
−(r)
i (s), Ri(s

′
2) ∩ Φ

(−d)
i (s) 	= ∅ for at least one

d ∈ {0, · · ·, (r − 1)}.

The only modification between GMRk and SEQk is that all DM i’s UIs are

subject to credible sanctions by the legal sequence of UIs of DM i’s opponents.

Fig. 4.5 depicts sequential stability at level k. Its formal definition is given below.

Definition 4.32. State s is sequentially stable (SEQ0) at level 0 for DM i,

denoted by s ∈ SSEQ0

i , iff either R+
i (s) = ∅ and R

(0)
i (s) 	= ∅, or R+

i (s) 	= ∅ and for

every s1 ∈ R+
i (s) there exists at least one s2 ∈ R+

N\{i}(s1) with s2 ∈
r⋃

d=0

Φ
−(d)
i (s)

and there exists at least one s′1 ∈ R+
i (s) and s′2 ∈ R+

N\{i}(s
′
1) such that s′2 ∈ Φ

(0)
i (s)

and R+
N\{i}(s

′
1)
⋂

(
r⋃

d=1

Φ
−(d)
i (s)) = ∅.

Definition 4.33. For 1 ≤ k ≤ r − 1, state s is sequentially stable (SEQk) at

level k for DM i, denoted by s ∈ SSEQk
i , iff either

k−1⋃
d=0

R
−(d)
i (s) ∪ R+

i (s) = ∅ and

R
−(k)
i (s) 	= ∅, or R+

i (s) 	= ∅ and for every s1 ∈ R+
i (s) there exists at least one

s2 ∈ R+
N\{i}(s1) with s2 ∈

r⋃
d=k

Φ
−(d)
i (s) and there exists at least one s′1 ∈ R+

i (s) and

s′2 ∈ R+
N\{i}(s

′
1) such that s′2 ∈ Φ

−(k)
i (s) and R+

N\{i}(s
′
1)
⋂

(
r⋃

d=k+1

Φ
−(d)
i (s)) = ∅.
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Figure 4.5: Sequential stability at level k.

Definition 4.34. State s is sequentially stable (SEQr) at level r for DM i,

denoted by s ∈ SSEQr

i , iff either
r−1⋃
d=0

R
−(d)
i (s) ∪ R+

i (s) = ∅ and R
−(r)
i (s) 	= ∅, or

R+
i (s) 	= ∅ and for every s1 ∈ R+

i (s) there exists at least one s2 ∈ R+
N\{i}(s1) with

s2 ∈ Φ
−(r)
i (s).

When n = 2, the DM set N becomes to {i, j} in Definitions 4.24 to 4.34, and

the reachable lists for H = N \ {i} by legal sequences of UMs and UIs from s1,

RN\{i}(s1) and R+
N\{i}(s1), degenerate to Rj(s1) and R+

j (s1), DM j’s corresponding

reachable lists from s1. Obviously, Definitions 4.8 to 4.18 are special cases of

Definition 4.24 to 4.34, so we use the same notation for two DM cases and n-DM

situations.

4.3 Interrelationships among the Solution

Concepts

In 1993, Fang et al. [16] established relationships among the four basic stabilities

of Nash, GMR, SMR, and SEQ for two levels of preference. Then, Hamouda et

al. [27,28] extended these results to a graph model with three levels of preference.
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Figure 4.6: Interrelationships among four stabilities at level k.

The inclusion relations among the multilevel versions of the four solution concepts

are presented as follows.

Theorem 4.1. The interrelationships among the four basic stabilities at level k

are

SNashk
i ⊆ S

SMRk+

i ⊆ SGMRk
i , S

SMRk−
i ⊆ SGMRk

i , and SNashk
i ⊆ SSEQk

i ⊆ SGMRk
i ,

for 0 ≤ k ≤ r.

Proof: When k = 0, the results are obvious. Assume that 0 < k ≤ r. If

s ∈ SNashk
i , then

k−1⋃
d=0

R
−(d)
i (s)∪R+

i (s) = ∅ and R
−(k)
i (s) 	= ∅. This implies that state

s ∈ S
SMRk+

i using Definitions 4.28 and 4.30. Hence, if s ∈ SNashk
i for 0 ≤ k ≤ r,

then s ∈ S
SMRk+

i , which implies SNashk
i ⊆ S

SMRk+

i .

Using Definitions 4.24 to 4.30, if s ∈ S
SMRk+

i , it is obvious that s ∈ SGMRk
i for

0 ≤ k ≤ r. Therefore, inclusion relations SNashk
i ⊆ S

SMRk+

i ⊆ SGMRk
i now follow.

Based on Definitions 4.29 and 4.31, the relation S
SMRk−
i ⊆ SGMRk

i is obvious.

Relations SNashk
i ⊆ SSEQk

i ⊆ SGMRk
i can be similarly verified. �

Let 0 ≤ k ≤ r. The inclusion relationships presented by Theorem 4.1 are

depicted in Fig. 4.6.

Theorem 4.2. Let 0 ≤ h, q ≤ r. When h 	= q, the relationships between stabilities

at h level and at q level are

SNashh
i ∩ S

Nashq

i = ∅, (4.1)

SGMRh
i ∩ S

GMRq

i = ∅, (4.2)
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S
SMRh+

i ∩ S
SMRq+

i = ∅, SSMRh−
i ∩ S

SMRq−
i = ∅, SSMRh+

i ∩ S
SMRh−
i = ∅, and (4.3)

SSEQh
i ∩ S

SEQq

i = ∅. (4.4)

Proof: We first prove equation (4.1). Assume that h > q. If there exists

s ∈ SNashh
i ∩ S

Nashq

i , then s ∈ SNashh
i and s ∈ S

Nashq

i . Therefore,

R+
i (s) ∪ (

h−1⋃
d=0

R
−(d)
i (s)) = ∅ and R

−(h)
i (s) 	= ∅ as s is Nashh stable. Since

h − 1 ≥ q, R
−(q)
i (s) = ∅. This contradicts the hypothesis that s is Nashq stable.

Therefore, (4.1) holds.

Now, equation (4.2) is verified. If s ∈ (SNashh
i ∪ S

Nashq

i ), equation (4.2) is

obvious. Assume that h > q and s 	∈ (SNashh
i ∪ S

Nashq

i ). If there exists s ∈
SGMRh

i ∩ S
GMRq

i , then s ∈ SGMRh
i and s ∈ S

GMRq

i . Since s is GMRq stable,

R+
i (s) 	= ∅ and for every s1 ∈ R+

i (s) there exists at least one s2 ∈ RN\{i}(s1) with

s2 ∈
r⋃

d=q

Φ
−(d)
i (s) and there exists at least one s′1 ∈ R+

i (s) and s′2 ∈ RN\{i}(s′1) such

that s′2 ∈ Φ
−(q)
i (s) and RN\{i}(s′1)

⋂
(

r⋃
d=q+1

Φ
−(d)
i (s)) = ∅. This implies that for all

s′2 ∈ RN\{i}(s′1), s′2 ∈
q⋃

d=0

Φ
−(d)
i (s) i.e., s′2 	∈

r⋃
d=h

Φ
−(d)
i (s) as h > q. This contradicts

with the hypothesis that s is GMRh stable. Therefore, (4.2) follows now.

The proofs of (4.3) and (4.4) can be similarly carried out. �
The interrelationships among general stabilities, super stability, and stabilities

at each level are presented in the following theorem.

Theorem 4.3. The interrelationships among general stabilities, super stability,

and stabilities at each level are

SGNash
i = (SSuper

i ) ∪ (
r⋃

d=0

SNashd
i ), (4.5)

SGGMR
i = (SSuper

i ) ∪ (
r⋃

d=0

SGMRd
i ), (4.6)

SGSMR
i = (SSuper

i ) ∪ (
r⋃

d=0

(S
SMRd+

i ∪ S
SMRd−
i )), and (4.7)

SGSEQ
i = (SSuper

i ) ∪ (
r⋃

d=0

SSEQd
i ). (4.8)

Proof: Equation (4.5) is obvious. Equation (4.6) is verified first. The

inclusion relation SGGMR
i ⊇ (SSuper

i ) ∪ (
r⋃

d=0

SGMRd
i ) is obvious. We will prove that
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the inclusion relation SGGMR
i ⊆ (SSuper

i ) ∪ (
r⋃

d=0

SGMRd
i ) holds. For any

s ∈ SGGMR
i , based on Definition 4.21, if s ∈ (SSuper

i ∪ SGNash
i ), then the above

inclusion relation is true.

Let |R+
i (s)| = l denote the cardinality of R+

i (s). Assume that s 	∈ (SSuper
i ∪

SGNash
i ). Then, for any s ∈ SGGMR

i , R+
i (s) 	= ∅ and for every sk ∈ R+

i (s) (k =

1, · · ·, l), there exists at least one s′k ∈ RN\{i}(sk) with s′k ∈
r⋃

d=0

Φ
−(d)
i (s). Let

Qk = {q : q ∈ RN\{i}(sk) ∩
r⋃

d=0

Φ
−(d)
i (s)}. It is obvious that s′k ∈ Qk. Hence,

Qk 	= ∅. Let z ∈ Qk and be DM i’s least preferred in the state set Qk. Since

z ∈ RN\{i}(sk) ∩ (
r⋃

d=0

Φ
−(d)
i (s)), there exists 0 ≤ rk ≤ r such that z ∈ Φ

−(rk)
i (s) for

k = 1, · · ·, l. Therefore, either rk = r or RN\{i}(sk) ∩ (
r⋃

d=rk+1

Φ
−(d)
i (s)) = ∅. This

process is portrayed in Fig. 4.7.

��

� �����
�� � � �� ��

�
�� �

�	 

�

� � � � ��
� �

� � � � ��
� � � ��

�
� � �


�



��

�

�

�

�

� �� ���
� ���

�
�
�
�
�

� �� ��
� ���

�

Figure 4.7: The legal sequence of UM from state sk.

Let rm = min{rk : k = 1, · · ·, l}. Then, 0 ≤ rm ≤ r. It is easy to follow that if

s ∈ SGGMR
i and R+

i (s) 	= ∅, then s ∈ S
GMRrm
i . In fact, for every sk ∈ R+

i (s), there

exists at least one s′k ∈ RN\{i}(sk) with s′k ∈ Φ
−(rk)
i (s). Since 0 ≤ rm ≤ rk, then

s′k ∈
r⋃

d=rm

Φ
−(d)
i (s), and s′m ∈ RN\{i}(sm) with s′m ∈ Φ

−(rm)
i (s). Based on the rule of

selecting rm, either rm = r so that s ∈ SGMRr
i , or RN\{i}(sm)∩(

r⋃
d=rm+1

Φ
−(d)
i (s)) = ∅

so that s ∈ S
GMRrm
i . From the above discussion, equation (4.6) is proved.

Hence, equations (4.7) and (4.8) can be similarly proved. �
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Let SNash
i , SGMR

i , SSMR
i , and SSEQ

i denote all stable states for Nash, GMR,

SMR, and SEQ, respectively, in the graph model for simple preference [16]. When

r = 1, stabilities having multiple-level preference degenerate to the stabilities

presented in [16], including two levels of preference. Specifically,

Theorem 4.4. For the multiple levels of preference, when r = 1, SSuper
i ∪SNash0

i ∪
SNash1

i = SNash
i , SSuper

i ∪ SGMR0
i ∪ SGMR1

i = SGMR
i , SSuper

i ∪ SSMR0
i ∪ S

SMR1+

i ∪
S

SMR1−
i = SSMR

i , and SSuper
i ∪ SSEQ0

i ∪ SSEQ1

i = SSEQ
i .

Let SSGMR
i , SSSMR

i , and SSSEQ
i denote all strongly stable states for strongly

GMR, SMR , and SEQ, respectively, in the graph model with strength of preference

[27,28]. When r = 2, stabilities having multiple levels of preference degenerate to

the stabilities presented in [27,28]. Specifically,

Theorem 4.5. For the multiple levels of preference, when r = 2, SGMR2
i \SNash2

i =

SSGMR
i , S

SMR2+

i \SNash2
i = SSSMR

i , and SSEQ2

i \SNash2
i = SSSEQ

i .

The stabilities at level 2 in the graph model with three levels of preference

degenerate to the corresponding strong stabilities presented in [27, 28], except for

the states that are Nash stable, because Hamouda et al. [27,28] have not included

Nash stable states into strongly GMR, SMR, and SEQ.

The above two theorems can be easily proved using the corresponding

definitions.

4.4 Application: GDU Conflict

In this section, the four-level versions of stability definitions are applied to the

Garrison Diversion Unit (GDU) conflict to illustrate how the procedure works.

The history of this conflict dates back to the nineteenth century. In order to

irrigate land in the northeastern section of North Dakota, an irrigation project

was proposed by the United States Support (USS) regarding construction of

a crucial canal and holding reservoir to transfer water from the Missouri River

Basin to the Hudson Bay Basin [16]. Because the irrigation runoff finally flow

into the Canadian province of Manitoba via the Red and Souris rivers, which will

cause environmental damage, this proposal immediately aroused the Canadian

Opposition (CDO). In order to resolve this conflict, the International Joint

Commission (IJC) consisting of representatives from the governments of USA
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and Canada plays an important role for taking an unbiased attitude and making

recommendations on this project [16, 28]. This irrigation project for the water

diversion is called the Garrison Diversion Unit (GDU) project. A conflict arose

among US, Canada and IJC for the GDU project (see the book [16] and the

paper [28] for more details).

Table 4.4: Feasible states for the GDU model [28]

USS

1. Proceed Y Y N Y N Y N Y N

2. Modify N N Y N Y N Y N Y

CDO

3. Legal N N N Y Y N N Y Y

IJC

4. Completion N Y Y Y Y N N N N

5. Modification N N N N N Y Y Y Y

State number s1 s2 s3 s4 s5 s6 s7 s8 s9

Fang et al. [16] analyzed the environmental dispute over the GDU project and

established a graph model with two levels of preference for this conflict. Recently,

Hamouda et al. [28] carried out a strategic study of this conflict using an extended

graph model which includes three levels of preference. The graph model for the

GDU conflict is comprised of three DMs: 1. USS, 2. CDO, and 3. IJC; and five

options: 1. Proceed−Proceed with the project regardless of Canada’s concerns; 2.

Modify−Modify the project to reduce impacts on Canada; 3. Legal−Legal action

based on Boundary Waters Treaty; 4. Completion−Recommend completion of

the project as originally planned; and 5. Modification−Recommend modification

of the project to reduce impacts on Canada [28]. A state is defined as a selection

of options for each DM using some principle. In the GDU conflict, five options are

combined to form 25 possible states. Usually, however, not all option combinations

are feasible or logical. After all infeasible states are eliminated, only nine states

are identified as being feasible and listed in Table 4.4 in which a “Y” indicates that

an option is selected by the DM controlling it and an “N” means that the option

is not chosen.

The graph model of the GDU conflict is shown in Fig. 4.8, in which labels on

the arcs indicate each DM who controls the move. All that is required for a graph
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Figure 4.8: The graph model for the GDU conflict [28].

model is knowledge of each DM’s preference ranking of the feasible states. We

extend the graph model introduced in [28] to have four levels of preference in the

GDU conflict. The preference information for this conflict over the feasible states

is given in Table 4.5. We assume that state s8 is very strongly less preferred to

all other states for USS, and the DM, CDO considers states s1, s2, and s6 to be

equally preferred and very strongly less preferred relative to all other states. Note

that this representation of preference information presented in Table 4.5 implies

that the preferred relations, >, �, and ≫ are transitive. For instance, since

s9 > s7 and s7 ≫ s8, then s9 ≫ s8. However, in general, the preference structure

presented in this research does not require the transitivity of preference relations,

and hence can handle intransitive preferences.

Table 4.5: Four levels of preferences for DMs in the GDU conflict

(extended from [28])

DM Preference

USS s2 > s4 > s3 > s5 > s1 > s6 > s9 > s7 ≫ s8

CDO {s3 ∼ s7} > {s5 ∼ s9} > {s4 ∼ s8} ≫ {s1 ∼ s2 ∼ s6}
IJC {s2 ∼ s3 ∼ s4 ∼ s5 ∼ s6 ∼ s7 ∼ s8 ∼ s9} � s1

Formally, stability analysis determines the stability of each state for each DM

according to some solution concept. Here, four-level versions of five stability

definitions of super stability, Nash stability, Nashk, GMRk, SMRk, and

sequential stability, SEQk, for k = 0, 1, 2, 3 are employed to analyze the GDU

conflict. An equilibrium indexed k, which represents a likely resolution to the
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conflict, is a state that is stable for every DM according to some stability

definition at level k. Note that the super stable states are treated as Nash stable

at the highest level when determining an equilibrium in the graph model with

multiple levels of preference. Here, we analyze DM 2’s SMRk stability at state s5

for k = 0, 1, 2, 3 as an example. Since R+
2 (s5) = {s3} and RN\{2}(s3) = {s2} with

s5 ≫2 s2 and s5 >2 s4 for R2(s2) = {s4}, state s5 is stable for SMR3− using

Definition 4.31. Other cases can be analyzed similarly. The stability results for

the GDU conflict are summarized in Table 4.6, in which “
√

” for a given state

under a DM means that this state is stable at a given level for the given DM;

“
√k+

” and “
√k−

” for a given state under a DM means that this state is SMRk+

or SMRk− stable for the given DM; and “
√k” for a state under “Eq” signifies

that this state is an equilibrium for a corresponding solution concept at level k.

Note that U, C, and I displayed in Table 4.6 denote the three DMs, USS, CDO,

and IJC, respectively.

Table 4.7 provides stability results for different structures of preference. When

stabilities are analyzed using two levels of preference, states s4, s7, and s9 are

equilibria [16]; if preference information is provided using three levels of preference,

then states s7 and s9 are equilibria [28]; there is only one equilibrium state s9

for four levels of preference. If state s4 is selected as a resolution for the GDU

conflict, this means that IJC recommends completing the GDU project regardless

of Canada’s concerns, so USS proceeds with this project. It is obvious that this

resolution cannot really resolve this conflict. State s7 means that the USS follows

the IJC recommendation to modify this project, but Canada does not take legal

action based on the Boundary Waters Treaty. The strategy of state s9 is the same

as that of state s7 except that Canada chooses legal procedures. Compared with

states s7 and s9, equilibrium s9 is a more reasonable resolution for resolving this

conflict. Therefore, the multilevel versions of stability analysis provide new insights

and valuable guidance for decision analysts.

Although the example of the GDU conflict shown in Table 4.4 and Fig. 4.8

is a small model with three DMs, five options, and nine feasible states, a graph

model structure can handle any finite number of states and DMs, each of whom

can control any finite number of options [18]. As pointed out by Fang et al. [19], an

available decision support system (DSS) for stability analysis of a graph model with

two levels of preference can work well. Theorem 4.4 reveals the relation of stabilities

between two levels of preference [16] and multiple levels of preference. This theorem
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Table 4.6: Stability results of the GDU conflict for the graph model with
four levels of preference

State
Super

Level(k)
Nash GMR SMR SEQ

U C I Eq U C I Eq U C I Eq U C I Eq U C I Eq

0

1

s1
√ √

2

3
√ √ √ √ √3+ √3+ √ √

0

1
√ √ √1+ √

s2
√

2

3
√ √ √3+ √

0

1
√ √ √1+ √

s3
√

2

3
√ √ √3+ √

0

1
√ √ √1+ √

s4
√

2

3
√ √ √ √ √3+ √3+ √ √

0

1

s5
√

2

3
√ √ √ √3− √3+ √ √

0

1
√ √ √1+ √

s6
√

2

3
√ √ √3+ √

0

1
√ √ √1+ √

s7
√

2

3
√ √ √ √3+ √ √

0

1

s8
√

2

3
√ √ √ √ √3+ √3+ √ √

0

1

s9
√

2

3
√ √ √ √ √ √3 √3+ √3− √3+ √ √ √ √3

Table 4.7: The comparison of stability results for three versions of
preference

Version of preference Equilibria Analysis method

Two levels of preference s4, s7, s9 see [16]

Three levels of preference s4, s9 see [28]

Four levels of preference s9 this paper
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indicates the possibility of developing an effective algorithm to implement the

multilevel versions of the four stabilities within a DSS, which would be essential if

the proposed stability analysis is applied to larger practical problems.

4.5 Summary

In this chapter, a multiple-level preference framework is developed for the graph

model methodology to handle multiple levels of preference, which lie between

relative and cardinal preferences in terms of information content [74]. Multilevel

versions of four solution concepts consisting of Nash, GMR, SMR, and SEQ are

defined in the graph model for multiple levels of preference. Specifically, solution

concepts at level k are defined as Nashk, GMRk, SMRk, and SEQk for

k = 1, · · ·, r, where r is the maximum number of levels of preference between two

states. The proposed stability definitions extend existing definitions based on two

levels and three levels of preference, so that more practical and complicated

problems can be analyzed at greater depth. To date, new stability definitions are

defined by logical representation, so algorithms to implement these new

stabilities are difficult to develop. A new algebraic system to ease the coding of

logically-defined stability definitions is proposed in the following chapters.
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Chapter 5

Novel Algebraic Approach to

Searching Weighted Colored

Paths

An algebraic approach to finding all edge-weighted, colored paths within a

weighted colored multidigraph is developed in this chapter. Generally, an

adjacency matrix can determine a simple digraph and all paths between any two

vertices. However, the adjacency matrix is not readily extendable to the context

of a colored multidigraph. To bridge the gap, a conversion function is proposed

to transform the original problem of searching edge-colored paths in a colored

multidigraph to a standard problem of finding paths in a simple digraph with no

color constraints. To date, for general graph classes, searching for particular

paths, such as Hamilton paths [2, 56], Euler paths, and shortest path routing

between two vertices, can be solved efficiently. Some algorithms to search colored

paths for colored simple graphs are available [1], but there exist very limited

algorithms to search colored paths for colored multidigraph classes.

5.1 Extended Definitions in a Weighted Colored

Multidigraph

A multidigraph G = (V,A, ψ) defined in Section 2.1 is a set of vertices (nodes) V

and a multiset of oriented edges (arcs) A with ψ : A → V ×V . Let m = |V | denote

the number of vertices and l = |A| be the number of edges in a multidigraph G.
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Definition 5.1. A colored multidigraph (V,A,N, ψ, c) is a multidigraph

(V,A, ψ) and a set of colors N , and a function c : A → N such that c(a) ∈ N is

the color of a ∈ A, provided that multiple edges of (V,A, ψ) are assigned different

colors , i.e., if a 	= b, but ψ(a) = ψ(b), then c(a) 	= c(b).

If a ∈ A such that ψ(a) = (u, v) and c(a) = i for i ∈ N , then a can be written

as a = di(u, v). The line digraph of G = (V,A,N, ψ, c), L(G), is a simple digraph

and each vertex in L(G) corresponds to an edge in the multidigraph G. Hence,

coloring edges in G is equivalent to assigning colors to vertices in L(G).

Definition 5.2. For a colored multidigraph G = (V,A,N, ψ, c), the reduced line

digraph Lr(G) = (A,LAr) of G is a simple vertex-colored digraph with vertex set

A and edge set LAr={d = (a, b) ∈ A × A : a and b are consecutive (in the order

ab) and c(a) 	= c(b)}.

Definition 5.3. A weighted colored multidigraph (V,A,N, ψ, c, w) is a colored

multidigraph (V,A,N, ψ, c) together with a map w : A → R
+
0 (the set of non-

negative real numbers).

Thus an arc a ∈ A, a = di(u, v), carries a weight w(a), representing some

attribute of the move from node u to node v along the arc a, which is assigned color

i. A network, for instance, is a multidigraph with weighted edges. Let H ⊆ N be

a subset of the color set N in the following definitions. An edge-weighted, colored

path is defined as follows:

Definition 5.4. Let H ⊆ N . For a weighted colored multidigraph (V,A,N, ψ, c, w),

an edge-weighted, colored path by H from vertex u ∈ V to vertex v ∈ V ,

PA
(W )
H (u, v), is a path from u to v in the multidigraph (V,A, ψ) in which any two

consecutive edges have different colors and each edge a on the path carries a weight

w(a) ≥ 0 and c(a) = i ∈ H.

Definition 5.5. For a weighted colored multidigraph (V,A,N, ψ, c, w), the

shortest colored path between two vertices is the colored path that

minimizes the sum of the weights of its constituent edges.

Definition 5.6. Let H ⊆ N . For a weighted colored multidigraph (V,A,N, ψ, c, w),

the weighted arc set for H denotes A
(W )
H = {a ∈ A : w(a) > 0 and c(a) = i ∈

H.}.
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Note that a colored multidigraph (V,A,N, ψ, c) is a unit weighted colored

multidigraph if w(u, v) = 1 for any a ∈ A such that ψ(a) = (u, v).

Let l = |A| denote the cardinality of A in G. The weight matrix of a weighted

colored multidigraph (V,A,N, ψ, c, w) is defined as follows:

Definition 5.7. For a weighted colored multidigraph (V,A,N, ψ, c, w), let H ⊆ N

and wk denote the weight of arc ak ∈ A. The weight matrix for H is an l × l

diagonal matrix WH with (k, k) entry

WH(k, k) =

{
wk if c(ak) = i ∈ H,

0 otherwise.

It should be pointed out that if H = N , then WN is expressed as W ; if H = {i},
then WH = Wi. A weighted line digraph L(W )(G) = (A,LA,w) is a set of vertices

A together with a set of oriented edges LA, and a map w : A → R
+
0 . In traditional

graph coloring problems, such as vertex coloring and edge coloring, colors are

assigned to vertices or edges such that adjacent vertices or consecutive edges have

different colors, and the number of colors needed is minimized [13]. In this research,

the edge-weighted, colored graph problem is not concerned with coloring edges,

but aims at searching edge-weighted, colored paths in a given weighted colored

multidigraph.

Important matrices associated with a digraph include the adjacency matrix

J and the incidence matrix B [24]. J and B can be extended to the weighted

adjacency and incidence matrices. Let m = |V | denote the cardinality of V in G.

Definition 5.8. Let H ⊆ N . For a weighted colored multidigraph (V,A,N, ψ, c, w),

the weighted adjacency matrix for H is the m × m matrix J
(W )
H with (s, q) entry

J
(W )
H (s, q) =

{
1 if there exists a ∈ A

(W )
H such that ψ(a) = (s, q) for s, q ∈ V,

0 otherwise.

Definition 5.9. For a weighted colored multidigraph (V,A,N, ψ, c, w), wa denotes

the weight of arc a ∈ A. The weighted incidence matrix for H is the m × l

matrix B(WH) with (v, a) entry

B(WH)(v, a) =

⎧⎪⎪⎨
⎪⎪⎩

−wa if a = (v, x) for some x ∈ V and c(a) = i ∈ H,

wa if a = (x, v) for some x ∈ V and c(a) = i ∈ H,

0 otherwise,

where v ∈ V .
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According to the signed entries, the weighted incidence matrix can be separated

into the weighted in-incidence matrix and the weighted out-incidence matrix.

Definition 5.10. For a weighted colored multidigraph (V,A,N, ψ, c, w), let H ⊆ N

and wa denote the weight of arc a ∈ A. The weighted in-incidence matrix

for H and the weighted out-incidence matrix for H are two m× l matrices

B
(WH)
in and B

(WH)
out with (v, a) entries

B
(WH)
in (v, a) =

{
wa if a = (x, v) for some x ∈ V and c(a) = i ∈ H,

0 otherwise,

and

B
(WH)
out (v, a) =

{
wa if a = (v, x) for some x ∈ V and c(a) = i ∈ H,

0 otherwise,

where v ∈ V .

It is obvious that

B
(WH)
in = (B(WH) + abs(B(WH)))/2 and B

(WH)
out = (abs(B(WH)) − B(WH))/2,

where abs(B(WH)) denotes the matrix in which each entry equals the absolute value

of the corresponding entry of B(WH). Let I denote the identity matrix. If WH = I,

then B(WH) = B, B
(WH)
in = Bin, and B

(WH)
out = Bout.

A reachability by the weighted colored paths for H matrix is called a

reachability matrix by H in this research. Its formal definition is given as follows.

Definition 5.11. Let H ⊆ N . For a weighted colored multidigraph

(V,A,N, ψ, c, w), the weighted reachability matrix by H is the m × m matrix

M
(W )
H with (s, q) entry

M
(W )
H (s, q) =

⎧⎪⎪⎨
⎪⎪⎩

1 if q is reachable from vertex s by a weighted

colored path PA
(W )
H (s, q), for s, q ∈ V,

0 otherwise.

Let l
(W )
H = |A(W )

H | denote the number of arcs in A
(W )
H . Since all arcs are distinct

on a path, the length of any path in PA
(W )
H is less than l

(W )
H .

The following result can be obtained by Definition 2.2, on the line digraph

L(G), and Definition 2.4, on the adjacency matrix J .
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For a weighted colored multidigraph G = (V,A,N, ψ, c, w), the adjacency

matrix of the line graph of G is the l × l matrix LJ with (a, b) entry

LJ(a, b) =

{
1 if edges a and b are consecutive in order ab in the graph G,

0 otherwise.

In this research, LJ matrix is called an edge consecutive matrix.

Definition 5.12. For a weighted colored multidigraph G = (V,A,N, ψ, c, w), let

H ⊆ N and wa and wb denote the weights of arcs a, b ∈ A. The weighted edge

consecutive matrix for H is the l × l matrix LJ (WH)with (a, b) entry

LJ (WH)(a, b) =

⎧⎪⎪⎨
⎪⎪⎩

wa · wb if edges a and b are consecutive in order ab

and c(a) = i and c(b) = j for i, j ∈ H,

0 otherwise.

Definition 5.13. For a weighted colored multidigraph G = (V,A,N, ψ, c, w), the

reduced weighted edge consecutive matrix for H is the l× l matrix LJ
(WH)
r

with (a, b) entry

LJ (WH)
r (a, b) =

⎧⎪⎪⎨
⎪⎪⎩

wa · wb if edges a and b are consecutive in order ab and

c(a) = i and c(b) = j such that i, j ∈ H and i 	= j,

0 otherwise.

Let ci denote the cardinality of the arc set in color i. Ici
is defined as a ci × ci

identity matrix with each diagonal entry being set to 1 for i = 1, 2, · · · , n. Let Ii

denote an l × l diagonal matrix for which

Ii =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · · · · 0
...

. . .
...

0 · · · Ici
· · · 0

...
. . .

...

0 · · · · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

For H ⊆ N, H 	= ∅, and IH =
∨

i∈H

Ii, WH = W ◦ IH . (“ ◦ ” denotes the

Hadamard product.)
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5.2 The Proposed Rule of Priority to Label

Colored Arcs

An incidence matrix can represent a multidigraph if all edges are labeled. The

proposed algebraic approach for colored multidigraphs starts with a unique edge-

labeling rule.

A colored multidigraph may contain several arcs with the same initial and

terminal vertices, but each arc in this case must be assigned a different color. To

work with the set of all arcs, we must label them carefully. Assuming that all

colors and nodes are pre-numbered. Therefore, the vertex set V and the color set

N in G = (V,A,N, ψ, c) are numbered as V = {1, 2, · · ·,m} and N = {1, 2, · · ·, n},
respectively. Let ci denote the cardinality of arc set assigned color i, i.e., ci = |Ai|,
where Ai = {x ∈ A : c(x) = i} for each i ∈ N .

To label the arcs in a colored multidigraph G = (V,A,N, ψ, c), set ε0 = 0 and

εi =
i∑

j=1

cj for i ∈ N , and note that l = εn =
n∑

i=1

ci is the cardinality of A in G. The

arcs, a1, a2, . . . , al, will be labeled according to the color order; within each color,

according to the sequence of initial nodes; and within each color and initial node,

according to the sequence of terminal nodes. The ordering, referred to as the Rule

of Priority, has the following properties:

1. If εi−1 < k ≤ εi, then c(ak) = i, i.e., ak has color i;

2. For k < h, if ak and ah both have color i for some i ∈ N , and if ψ(ak) =

(vx, vy) and ψ(ah) = (vz, vw), then x ≤ z and, if x = z, then y < w.

If all arcs in a colored multidigraph have been labeled according to the Rule

of Priority, then the index of an arc uniquely determines its color. Therefore,

Ai = {aεi−1+1, . . . , aεi
}, where Ai denotes the set of arcs with color i.
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Figure 5.1: The colored multidigraph G.
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Example 1. Fig 5.1 shows a colored multidigraph G = (V,A,N, ψ, c). The labels

on the arcs of the graph indicate that the corresponding arcs are colored in red

(R), blue (B), green (G), and pink (P), respectively. Assume that the vertex set

V = {v1, v2, v3, v4, v5, v6}. According to the Rule of Priority, label all edges to

determine the edge-labeled graph.
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Figure 5.2: Labeling edges for the graph G.

First number red 1, blue 2, green 3, and pink 4 so that N = {1, 2, 3, 4}. The

cardinalities of the arc sets A1, A2, A3, and A4 are 2, 2, 2, and 1, respectively. Then,

according to the Rule of Priority, the process to label all colored edges is presented

in Fig. 5.2. Recall that ak = di(u, v) for i ∈ N and ψ(ak) = (u, v). Obviously,

a1 = d1(v1, v2); a2 = d1(v2, v3); a3 = d2(v2, v3); a4 = d2(v3, v6); a5 = d3(v3, v4);

a6 = d3(v4, v5); and a7 = d4(v4, v2). Therefore, the edge labeled graph is expressed

as 〈V, {Ai, i ∈ N}〉, where A1 = {a1, a2}, A2 = {a3, a4}, A3 = {a5, a6}, and

A4 = {a7}.

5.3 New Algebraic Approach

5.3.1 A Conversion Function for Finding Colored Paths

Lemma 5.1. For a weighted colored multidigraph (V,A,N, ψ, c, w), the weighted

incidence matrix B(WH) for H and the incidence matrix B have the following

relation

B(WH) = B · WH = B · (W ◦ IH).

Lemma 5.1 shows a conversion function to transform an original colored
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multidigraph in the color set N to a reduced weighted colored multidigraph in

the color set H ⊆ N .

Now let W be a weight matrix and let L(W )(G) denote the weighted line digraph

of G. The following theorem is obtained based on Definition 5.10, on the weighted

in-incidence and out-incidence matrices B
(W )
in and B

(W )
out , and Definition 5.12, on

the weighted adjacency matrix LJ (W ) of the digraph L(W )(G).

Theorem 5.1. For a weighted colored multidigraph G = (V,A,N, ψ, c, w), W

is the weight matrix, B
(W )
in is the weighted in-incidence matrix, and B

(W )
out is the

weighted out-incidence matrix of the graph G. Then, the weighted edge consecutive

matrix LJ (W ) satisfies LJ (W ) = (B
(W )
in )T · (B(W )

out ).

Proof: Let M = (B
(W )
in )T · (B

(W )
out ). Any (k, h) entry of matrix M can be

expressed as M(k, h) = eT
k ·M · eh = [(B

(W )
in ) · ek]

T · [(B(W )
out ) · eh], where eT

k denotes

the transpose of the kth standard basis vector of the l-dimensional Euclidean space.

The qth nonzero element of the row vector eT
k · (B(W )

in )T is equal to the weight

wk of edge ak = di(s, q) for some s ∈ V . Similarly, the qth nonzero element of the

column vector (B
(W )
out ) · eh is equal to the weight wh of edge ah = dj(q, r) for some

r ∈ V . Hence, M(k, h) = wk · wh 	= 0 iff ak and ah are consecutive from ak to ah

(See Fig. 5.3). Then, by Definition 5.12, B
(W )
in · B(W )

out = LJ (W ).

� �
�����

�
�

Figure 5.3: ak and ah are consecutive in order akah.

�
Obviously, when W is reduced to WH , LJ (WH) = (B

(WH)
in )T · (B(WH)

out ).

Let T1(B
(W )) = (B

(W )
in )T · (B(W )

out ) = LJ (W ) denote a conversion function. The

conversion function, T1(B
(W )), maps the weighted incidence matrix B(W ) to the

weighted edge consecutive matrix LJ (W ) of the graph G. It shows that this

conversion function transforms the original edge-weighted, colored multidigraph

G to a simple vertex-weighted-colored line digraph L(G). When W = I,

LJ = (Bin)T · (Bout). This matrix captures the adjacency relation between pairs

of consecutive edges without considering the color(s) of the consecutive edges.

Another conversion function is thus presented next to transform the original
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problem of searching edge-colored paths in a colored multidigraph to the

standard problem of finding paths in a simple digraph without color constraints.

Recall that ci denotes the cardinality of the arc set in color i and let Eci
denote

a ci × ci matrix with each entry being set to 1 for i = 1, 2, · · · , n. Then, D is

defined as the following block diagonal matrix

D =

⎛
⎜⎜⎜⎜⎜⎝

Ec1 0 · · · 0

0 Ec2 · · · 0
...

...
. . .

...

0 0 · · · Ecn

⎞
⎟⎟⎟⎟⎟⎠ . (5.1)

It is obvious that this matrix D encodes the color scheme in the graph G, where

the dimension of each diagonal block Eci
depends on the number of edges in color

i. More specifically, recall that εi =
i∑

j=1

cj for 1 ≤ i ≤ n. According to the Rule of

Priority for labeling edges, for any ak ∈ A and εi−1 < k ≤ εi, the edge ak has color

i. Hence, for any ak, ah ∈ A, if there exists 1 ≤ i ≤ n such that k, h ∈ (εi−1, εi],

then edges ak and ah have the same color i, and D(k, h) = 1. Also, D(k, h) = 0 iff

edges ak and ah have different colors.

The conversion function can now be obtained in matrix form by the following

theorem.

Theorem 5.2. For the weighted colored multidigraph G = (V,A,N, ψ, c, w), let

El be the l × l matrix with each entry equal to 1. Then the reduced matrix LJ
(W )
r

satisfies LJ
(W )
r = LJ (W ) ◦ (El − D), where “ ◦ ” denotes the Hadamard product.

Proof: Let LJ (W )(k, h) and (El−D)(k, h) denote the (k, h) entries of matrices

LJ (W ) and El − D, respectively. Then, LJ (W )(k, h) · (El − D)(k, h) = wk · wh 	= 0

iff LJ (W )(k, h) = wk ·wh 	= 0 and D(k, h) = 0. Based on the definitions of matrices

LJ (W ) and D, LJ (W )(k, h) 	= 0 iff edges ak and ah are consecutive in order akah.

D(k, h) = 0 iff edges ak and ah have different colors. Obviously, based on the

definition of matrix LJ
(W )
r , LJ

(W )
r = LJ (W ) ◦ (El − D). �

Obviously, when W is reduced to WH , LJ
(WH)
r = LJ (WH) ◦ (El − D) satisfies

that

LJ (WH)
r (a, b) =

⎧⎪⎪⎨
⎪⎪⎩

wa · wb if edges a and b are consecutive in order ab and

c(a) = i and c(b) = j such that i 	= j for i, j ∈ H,

0 otherwise.

(5.2)
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From Theorem 5.2, T2(LJ (W )) = LJ (W ) ◦ (El − D) = LJ
(W )
r . The conversion

function, T2(LJ (W )), maps the weighted adjacency matrix LJ (W ) of the weighted

line digraph L(W )(G) to its reduced matrix LJ
(W )
r . It reveals that this conversion

function T2 converts the simple vertex-weighted, colored line digraph L(W )(G) to

its reduced subgraph L
(W )
r (G), called reduced weighted line digraph, which is a

simple digraph with no color constraints.

Theorems 5.1 and 5.2 together present a conversion function F (B(W )) such that

F (B(W )) = [(B
(W )
in )T · B(W )

out ] ◦ (El − D), (5.3)

where B
(W )
in = (B(W )+abs(B(W )))/2 and B

(W )
out = (abs(B(W ))−B(W ))/2. Therefore,

F (B(W )) transforms a problem of searching weighted colored paths in an edge-

weighted, colored multidigraph to a standard problem of finding paths in a simple

digraph with no color constraints. Note that the incident relations between vertices

and edges of a graph can uniquely characterize the graph. Therefore, the incidence

matrix is treated as the original graph and used for computer implementation.

Example 2. Fig. 5.1 shows a colored multidigraph G = (V,A,N, ψ, c). If G is

associated with a map w : A → R
+
0 , then G = (V,A,N, ψ, c, w) is a weighted

colored multidigraph. Construct conversion functions to determine the vertex

labeled weighted line digraph L(W )(G) and its reduced line digraph L
(W )
r (G).

By Example 1, the colored multidigraph is labeled using the Rule of Priority.

It is easy to obtain incident relations between vertices and edges from the graph.

Thus, matrices B
(W )
in and B

(W )
out are constructed by Definition 5.10 as follows:

B
(W )
in =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0
w1 0 0 0 0 0 w7

0 w2 w3 0 0 0 0
0 0 0 0 w5 0 0
0 0 0 0 0 w6 0
0 0 0 w4 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ ,

and

B
(W )
out =

⎛
⎜⎜⎜⎜⎜⎝

w1 0 0 0 0 0 0
0 w2 w3 0 0 0 0
0 0 0 w4 w5 0 0
0 0 0 0 0 w6 w7

0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ .

From Theorems 5.1 and 5.2, we obtain that
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T1(B
(W )) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 w1w2 w1w3 0 0 0 0
0 0 0 w2w4 w2w5 0 0
0 0 0 w3w4 w3w5 0 0
0 0 0 0 0 0 0
0 0 0 0 0 w5w6 w5w7

0 0 0 0 0 0 0
0 w7w2 w7w3 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and

T2(LJ (W )) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 w1w3 0 0 0 0
0 0 0 w2w4 w2w5 0 0
0 0 0 0 w3w5 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 w5w7

0 0 0 0 0 0 0
0 w7w2 w7w3 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

The weight matrix designed here is convenient, since edge-weighted (0 or 1) can

be used to flexibly control any move between any two vertices in G. For instance, if

w4 = 0, then the original graph will be reduced to a new graph with no edge a4. If

W = I, then the conversion function T1 transforms the edge-labeled multidigraph

G portrayed in Fig. 5.4 (1) to the vertex-labeled line digraph L(G) shown in Fig.

5.4 (2). Then, the reduced line digraph Lr(G) presented in Fig. 5.4 (3) for finding

colored paths is obtained by using the conversion function T2. The conversion

process is illustrated in Fig. 5.4.

5.3.2 Computer Implementation

Many well-known algorithms have been developed to solve the shortest path

problems in digraphs, such as Dijkstra’s algorithm [14] and Johnson’s

algorithm [38]. Some other algorithms are available for searching for all paths in

undirected graphs, such as the algorithm presented by Migliore et al [50].

Although finding path problems in general graph classes has been extensively

investigated, searching colored paths in weighted colored multidigraphs is still a

novel topic.

Let AS = {a ∈ A : B
(W )
out (s, a) 	= 0} and AE = {b ∈ A : B

(W )
in (q, b) 	= 0} for

s, q ∈ V . Here, matrices W , B
(W )
out , and B

(W )
in have been introduced by Definitions

5.7 and 5.10. AS is the set of arcs starting from vertex s and AE is the arc set ending

at vertex q. The matrix LJ
(W )
r provided by Theorem 5.2 is used to search the edge-

weighted, colored paths between any two arcs in a weighted colored multidigraph.

Let PA(W )(a, b) for a, b ∈ A denote the weighted colored paths between two edges
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Figure 5.4: Transformed graphs of G.
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a and b. The weighted colored paths between two vertices s and q for s, q ∈ V are

expressed as PA(W )(s, q). A vertex-by-vertex path between any two vertices in the

graph G can be obtained by tracing arc-by-arc paths between two appropriate arcs

in the line graph L(G). Specifically, the paths between s and q can be expressed

as PA(W )(s, q) = {PA(W )(a, b) : a ∈ AS, b ∈ AE}.
The proposed algebraic method is convenient for computer implementation. A

pseudo code for the proposed algorithm is presented in Table 5.1.

Table 5.1: Pseudo code of the proposed algorithm for finding colored

paths

Step 0: Input the starting arc set AS, the ending arc set AE, and the reduced

weighted edge consecutive matrix LJ
(W )
r .

Step 1: For each arc as ∈ AS and each arc ae ∈ AE, set as as the starting arc

and ae as the ending arc. For each pair of as and ae, repeat the steps from

Step 2 to Step 5.

Step 2: Put as into Path-Recorder as the last arc al(1) of the first path.

Step 3: In Path-Recorder, for each path i, e.g., PA(W )(i), check its last arc al(i).

Obtain all the new arcs starting from al(i) based on matrix LJ
(W )
r .

Case 1: If there is no arc starting from al(i), path PA(W )(i) ends.

Eliminate PA(W )(i) from Path-Recorder;

Case 2: If a new arc has appeared in the path, which means that the path

forms a cycle, do not record the new path. If all the new arcs have

appeared, eliminate PA(W )(i) from Path-Recorder;

Case 3: If the new arc is the end arc ae, add ae to the path PA(W )(i) to form

a new path. Reserve the path into Path-Recorder and set an end-mark

at the end of the path;

Otherwise: Add each new arc to path PA(W )(i), respectively, to form

several new paths.

Reserve these paths into Path-Recorder, and eliminate the original path

PA(W )(i) from Path-Recorder.

Step 4: Repeat Step 3 until all the paths in Path-Recorder have the end-mark at the end.

Step 5: Output Path-Recorder, which records all paths starting from as and ending at ae.

Because the algebraic expressions are explicitly given, the proposed method

facilitates the development of improved algorithms to search colored paths and is

easy to adapt to new path searching problems. For instance, a transportation
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network problem of finding the shortest path with specific constraints can be

solved by using the conversion function F (B(W )) = [(B
(W )
in )T · B(W )

out ] ◦ M , where

B(W ) denotes the original network and matrix M is designed to capture

constraint requirements, to transform the original problem to a general shortest

path searching problem without the constraints.

Note that in this research all arcs are distinct on a path but the restriction

that all nodes be distinct on a path is relaxed. The process that converts an edge-

colored multidigraph to a simple digraph with no color constraints is presented in

Fig. 5.5.

��� ����
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Figure 5.5: The process of finding all colored paths or the shortest colored

path

5.3.3 Constructing Weighted Reachability Matrix using

Weighted Colored Paths

Theorem 5.3. For a weighted colored multidigraph (V,A,N, ψ, c, w), B
(WH)
in and

B
(WH)
out denote the weighted in-incidence and out-incidence matrices for H. The
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weighted adjacency matrix by H is expressed as

J
(W )
H = sign[(B

(WH)
out ) · (B(WH)

in )T ]. (5.4)

From algebraic graph theory [24], Theorem 5.3 can easily follow.

Lemma 5.2. For a weighted colored multidigraph G = (V,A,N, ψ, c, w), let t be

an integer, H ⊆ N , and (LJ
(WH)
r )t(a, b) be the (a, b) entry of matrix (LJ

(WH)
r )t.

Then, (LJ
(WH)
r )t(a, b) denotes the number of weighted colored paths by H in the G

from edge a to edge b with length t for a, b ∈ A. Moreover, if ψ(a) = (u, s) and

ψ(b) = (q, v) for u, s, q, v ∈ V , then, the number of the weighted colored paths by

H from vertex u to vertex v with length t + 1 is at least (LJ
(WH)
r )t(a, b).

Proof: This Lemma is proved using induction on t.

When t = 1, the result is obvious.

Assume that when t = k, the result holds. Then, when t = k + 1,

(LJ
(WH)
r )k+1(a, b) =

l∑
h=1

[(LJ
(WH)
r )k(a, h) · LJ

(WH)
r (h, b)].

By the induction hypothesis, (LJ
(WH)
r )k(a, h) denotes the number of the

weighted colored paths by H from a to h with length k, and LJ
(WH)
r (h, b)

indicates the number of weighted colored paths by H from h to b with length 1.

Thus, (LJ
(WH)
r )k(a, h) · LJ

(WH)
r (h, b) denotes the number of weighted colored

paths by H from a to b through h with length k + 1. Therefore,
l∑

h=1

[(LJ
(WH)
r )k(a, h) · LJ

(WH)
r (h, b)] is the total number of weighted colored paths

by H from a to b with length k + 1. Thus, (LJ
(WH)
r )t(a, b) denotes the number of

weighted colored paths by H in the G from edge a to edge b with length t for

a, b ∈ A.

Obviously, if ψ(a) = (u, s) and ψ(b) = (q, v) for u, s, q, v ∈ V , then, the number

of the weighted colored paths by H from vertex u to vertex v with length t + 1 is

at least (LJ
(WH)
r )t(a, b). �

Note that, in Lemma 5.2, when calculating the length of an edge-by-edge path,

the edges in the path should be treated as vertices. i.e., edge-by-edge paths are

treated as state-by-state paths in the line graph L(G).

Theorem 5.4. Let l
(W )
H denote the number of arcs in A

(W )
H . For a weighted colored

multidigraph (V,A,N, ψ, c, w), the weighted reachability matrix MH by H can be

obtained by

M
(W )
H = sign[(B

(WH)
out ) · (LJ (WH)

r + I)l
(W )
H −1 · (B(WH)

in )T ], (5.5)

where I is the identity matrix.
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Proof: Let L = l
(W )
H and Ct

L−1 =

(
L − 1

t

)
= (L−1)·(L−2)···(L−t)

t!
and

(LJ
(WH)
r )0 = I. Using matrix theory, (LJ

(WH)
r + I)L−1 =

L−1∑
t=0

Ct
L−1 · (LJ

(WH)
r )t.

Let Q = sign[B
(WH)
out · (LJ

(WH)
r + I)L−1 · (B(WH)

in )T ]. Since Ct
L−1 > 0, then

Q = sign[
L−1∑
t=0

Ct
L−1 · B(WH)

out · (LJ (WH)
r )t · (B(WH)

in )T ]

= (B
(WH)
out · I · (B(WH)

in )T ) ∨ [
L−1∨
t=1

(B
(WH)
out · (LJ (WH)

r )t · (B(WH)
in )T )].

Based on Theorem 5.3, Q = J
(W )
H ∨ [

L−1∨
t=1

(B
(WH)
out · (LJ

(WH)
r )t · (B(WH)

in )T )].

Then, Q(s, q) 	= 0 iff J
(W )
H (s, q) 	= 0 or for 1 ≤ t ≤ L − 1, there exist

(LJ
(WH)
r )t(a, b) 	= 0 such that a, b ∈ A

(W )
H , ψ(a) = (s, u), and ψ(b) = (v, q) for

s, q, u, v ∈ V . J
(W )
H (s, q) 	= 0 implies that vertex q is reachable from vertex s by

paths PA
(W )
H (s, q) with length 1. By Lemma 5.2, (LJ

(WH)
r )t(a, b) 	= 0 iff vertex q

is reachable from vertex s by the weighted colored paths PA
(W )
H (s, q) with length

t + 1. Therefore, Q(s, q) 	= 0 iff vertex q is reachable from vertex s by the

weighted colored paths PA
(W )
H (s, q) with length 1 or t + 1 for 0 ≤ t ≤ L − 1.

By Definition 5.11, M
(W )
H (s, q) 	= 0 iff vertex q is reachable from vertex s by

the weighted colored paths PA
(W )
H (s, q) with length k ≤ L. Then M

(W )
H (s, q) 	= 0

implies that Q(s, q) 	= 0. Q(s, q) 	= 0 implies that there exists an edge weighted

colored path PA
(W )
H (s, q) with length 1 ≤ t ≤ L, then M

(W )
H (s, q) 	= 0. Since M

(W )
H

and Q are 0-1 matrices, M
(W )
H = sign[(B

(WH)
out ) · (LJ

(WH)
r + I)L−1 · (B(WH)

in )T ]. �
The algebraic method to search edge-weighted, colored paths in a colored

multidigraph can have many benefits presented as follows.

5.4 Applications

5.4.1 Application 1: Transportation Network

Because of the accelerating globalization trend, a major logistic challenge is to

design a reliable, efficient, and economical system for moving merchandise within

a multi-modal transportation network. Due to diverse geography and weather

conditions, cost and time constraints, as well as other factors, chartered

companies may have to switch their transport mode when passing through a

transfer station. In order to design a competitive transportation system, one

must analyze all possible paths from any initial station to a destination to make
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the best choice. This transportation problem can be conveniently modeled as a

problem of finding colored paths and the shortest colored path in a weighted

colored multidigraph.
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Figure 5.6: A transportation network.

A hypothetical transportation network is shown in Fig. 5.6. The label on each

arc indicates its weight. Three different line styles, encoded in three colors, denote

three transportation modes: Color 1, Airline; Color 2, Highway; and Color 3,

Sea route, respectively. The numbers of airlines, highways, and sea routes are

c1 = 4, c2 = 12, and c3 = 8, respectively. Nine transfer stations are expressed using

vertices v1 to v9 as shown in the graph. According to the Rule of Priority, each

edge is labeled as shown in Fig. 5.6. Charter companies will move merchandise

from a starting station to some destinations. Assume also that this network is

consolidated in such a way that merchandise will have to be switched from one

transportation mode to another at any transfer station. In order to design a

competitive transportation system, one needs to search all possible colored paths

between any two vertices in the transportation network. Using Theorem 5.2, the

reduced weighted edge consecutive matrix LJ
(W )
r is calculated and its nonzero

entries are listed in Table 5.2. Using the algorithm presented in Table 5.1, all

colored paths in the network can be found based on the information in Table 5.2.
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Table 5.2: The nonzero entries of matrix LJr for the transportation

network

Status quo Nonzero entries of the reduced edge consecutive matrix LJr

v1 (a1, a7), (a1, a8), (a1, a18),(a5, a2) , (a5, a19), (a17, a3), (a17, a11), (a17, a12)

v2 (a7, a20), (a18, a13), (a18, a14)

v3 (a2, a10), (a2, a20), (a19, a4), (a19, a15)

v4 (a20, a16)

v5 (a3, a13), (a3, a14), (a3, a22), (a11, a4), (a11, a23), (a21, a1), (a21, a5), (a21, a6)

v6 (a13, a24), (a22, a7), (a22, a8)

v7 (a4, a16), (a4, a24), (a23, a2), (a23, a9)

v8 (a24, a10)

Fig. 5.7 shows that the colored multidigraph is mapped by the conversion

function F (·) designed by equation (5.3) to a simple digraph with no color

constraints. Note that the numbers labeled in circles shown in Fig. 5.7 denote

edge numbers. For the standard digraph, several well-known algorithms, such as

depth-first search algorithm [25] and Dijkstra algorithm [14], are available for

searching the shortest path on the reduced digraph.

For instance, if a firm wants to find the shortest path to move merchandise

from station v1 to station v8. Fig. 5.7 shows that there exist six colored paths

between vertexes v1 and v8 in terms of arcs:

a17 −→ a3 −→ a13

a17 −→ a11 −→ a4

a5 −→ a2 −→ a20

a1 −→ a7 −→ a20

a5 −→ a19 −→ a4

a1 −→ a18 −→ a13

Based on the Rule of Priority and the relation between state-by-state paths

and arc-by-arc paths, PA(W )(s, q) = {PA(W )(a, b) : a ∈ AS, b ∈ AE}, the above

arc-by-arc paths can be easily expressed in terms of nodes as follows:
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Figure 5.7: Graph transformation.

v1 −→ v5 −→ v6 −→ v8,

v1 −→ v5 −→ v7 −→ v8,

v1 −→ v3 −→ v4 −→ v8,

v1 −→ v2 −→ v4 −→ v8,

v1 −→ v3 −→ v7 −→ v8,

v1 −→ v2 −→ v6 −→ v8.

If the following weights are assigned, w1 = 13, w2 = 24, w3 = 10, w4 = 17, w5 =

14, w7 = 26, w11 = 15, w13 = 19, w17 = 20, w18 = 19, w19 = 18, and w20 = 17, then

the shortest colored path between vertices v1 and v8 is the path consisting of edges

a17, a3, and a13, or equivalently in terms of nodes, v1 −→ v5 −→ v6 −→ v8.
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5.4.2 Application 2: Graph Model for Conflict Resolution

This proposed algebraic approach can also be conveniently applied to solve

problems of stability and status quo analyses in the graph model for conflict

resolution. If the state set S is treated as a vertex set and DM i’s oriented arcs

are coded in color i, then a graph model of a conflict is equivalent to a colored

multidigraph with appropriate preference relations. Hence, a graph model can be

conveniently treated as an edge-weighted, colored multidigraph in which each arc

represents a legal unilateral move, distinct colors refer to different DMs, and the

weight along the arc identifies some preference attribute.

As a post-stability analysis in the graph model, status quo analysis examines

whether predicted equilibria (or potential resolutions) are reachable from a status

quo or an initial state by tracing the moves and countermoves among DMs. An

important restriction of a graph model is that no DM can move twice in succession

along any path [16]. Thus, tracing the evolution of a conflict in status quo analysis

is converted to searching all colored paths with some preference structure such

as simple preference [16], uncertain preference [46], or strength of preference [28].

The proposed algebraic approach also highlights a link between status quo analysis

and traditional stability analysis, thereby suggesting the possibility of an integrated

approach to stability and status quo analyses.

5.4.2.1 Weight Matrix for GMCR under Simple Preference

In the original information, the preference of DM i is coded by a pair of relations

{�i,∼i} on S. This preference structure is called simple preference.

Definition 5.7 presents a weight matrix WH for a weighted colored multidigraph

G = (V,A,N, ψ, c, w). In a graph model G = (S,A), let H ⊆ N . By the proposed

Rule of Priority, the oriented arcs in the graph model are labeled according to the

DM order; within each DM, according to the sequence of initial states; and within

each DM and initial state, according to the sequence of terminal states. When an

edge ak = di(u, v) for u, v ∈ S and i ∈ H ⊆ N , then its weight wk can be defined

by

wk =

⎧⎪⎨
⎪⎩

Pw if v �i u and i ∈ H,
Ew if u ∼i v and i ∈ H,
Nw if u �i v and i ∈ H,
0 otherwise.

(5.6)

The weight matrix WH represents preference information of each edge in the graph

model for simple preference. Recall that notation UMs and UIs denote unilateral

movers and unilateral improvements, respectively. Based on the statement (5.6),

the UM weight matrix and the UI weight matrix for H are defined as follows.
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Definition 5.14. For the graph model G = (S,A), let H ⊆ N .

• when Pw = Ew = Nw = 1, the weight matrix WH is called the UM weight

matrix by H, denoted by W
(UM)
H ;

• when Pw = 1 and Ew = Nw = 0, the weight matrix WH is called the UI

weight matrix by H, denoted by W
(UI)
H or W+

H .

Recall that each arc of Ai and A+
i denotes that DM i can make a UM and a

UI (in one step) from the initial state to the terminal state of the arc,

respectively. Therefore, AH =
⋃

i∈H

Ai and A+
H =

⋃
i∈H

A+
i denote the UM and the

UI arcs associated with any DM in H. Based on Definition 5.6, on the weighted

arc set for H, the following result relative to the UM arc set and the UI arc set is

obvious for the graph model with simple preference.

Corollary 5.1. For the graph model G = (S,A), let H ⊆ N .

• If WH = W
(UM)
H , then the arc set A

(W )
H = AH ;

• If WH = W+
H , the arc set A

(W )
H = A+

H .

Note that when H = N , AH and A+
H are denoted by A and A+, respectively.

In a weighted colored multidigraph, the edge-weighted, colored paths by H

between two vertices u and v are described in Definition 5.4 which can represent

conflict evolution by the legal UMs and the legal UIs in a graph model for simple

preference.

Corollary 5.2. For the graph model G = (S,A), let u, v ∈ S and H ⊆ N .

• If WH = W
(UM)
H , the weighted colored paths between states u and v,

PA
(W )
H (u, v), give all paths from u to v where all legal UMs are allowed.

Then PA
(W )
H (u, v) are called legal UM paths from u to v by coalition H,

denoted by PAH(u, v);

• If WH = W+
H , the weighted colored paths between states u and v, PA

(W )
H (u, v),

give all paths from u to v where only legal UIs are allowed. Then PA
(W )
H (u, v)

are called legal UI paths from u to v by coalition H, denoted by PA+
H(u, v).

The weighted colored paths PA
(W )
H can be used to trace conflict evolution of status

quo analysis for simple preference. When u is selected as a status quo and v is an

equilibrium for some stability in a graph model, PAH(u, v) and PA+
H(u, v) trace

conflict evolution to confirm that the equilibrium is in fact reachable from the

status quo and reveal how to reach it.
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Definition 5.15. In the graph model G = (S,A), the legal UM and the legal UI

edge consecutive matrices are two l×l matrices LJ
(UM)
r and LJ+

r with (a, b) entries

LJ (UM)
r (a, b) =

{
1 if edges a and b are consecutive in order ab and

are controlled by difference DMs for a, b ∈ A,
0 otherwise,

LJ+
r (a, b) =

{
1 if edges a and b are consecutive in order ab and

are controlled by difference DMs for a, b ∈ A+,
0 otherwise.

Let LJHr and LJ+
Hr

denote the legal UM and the legal UI edge consecutive

matrices in the graph model (S,AH). Based on Definition 5.13, on the reduced

weighted edge consecutive matrix by H, and Definition 5.15, the following result

is obvious.

Corollary 5.3. For the graph model G = (S,A), let W (UM) and W+ denote the

UM and the UI weight matrices, and W
(UM)
H and W+

H be the UM and the UI weight

matrices for H. Then

LJ (W (UM))
r = LJ (UM)

r = LJr, LJ (W+)
r = LJ+

r ,

and

LJ
(W

(UM)
H )

r = LJHr , LJ
(W+

H )
r = LJ+

Hr
.

As the proposed algorithm presented in Table 5.1 for searching weighted colored

paths in a weighted colored multidigraph, the legal UM and UI edge consecutive

matrices LJHr and LJ+
Hr

are applied to find paths PAH and PA+
H between any

two states for status quo analysis in a graph model. Specific applications for status

quo analysis using the algebraic approach are presented in Chapter 7.

For simple preference, the key inputs of stability analysis, RH(s) and R+
H(s),

are the reachable lists by coalition H from state s ∈ S by the legal UMs and the

legal UIs. Algorithms are complicated to implement the key inputs of stability

analysis [16]. This research provides an algebraic approach to construct RH(s)

and R+
H(s) using the weighted reachability matrix M

(W )
H shown by Definition 5.11.

The details are discussed in Chapter 6.

5.4.2.2 Weight Matrix for GMCR under Preference with Uncertainty

Preference information plays an important role in the decision analysis. To

incorporate preference uncertainty into the graph model methodology, Li et

al. [46] proposed a new preference structure in which DM i’s preferences are
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expressed by a triple of relations {�i,∼i, Ui} on S, where s �i q indicates strict

preference, s ∼i q indicates indifference, and sUiq means DM i may prefer state s

to state q, may prefer q to s, or may be indifferent between s and q.

The weight matrix WH can be employed to represent preference with

uncertainty. When an edge ak = di(u, v) for u, v ∈ S and i ∈ H ⊆ N , then its

weight wk can be defined by

wk =

⎧⎪⎪⎨
⎪⎪⎩

Pw if v �i u and i ∈ H,
Nw if u �i v and i ∈ H,
Ew if u ∼i v and i ∈ H,
Uw if uUiv and i ∈ H,
0 otherwise.

(5.7)

Recall that notation UIUUMs denotes unilateral improvements or unilateral

uncertain moves. Based on the statement (5.7), the UIUUM weight matrix for H

is defined as follows.

Definition 5.16. For the graph model G = (S,A), let H ⊆ N . When Pw = Uw = 1

and Ew = Nw = 0, the weight matrix WH is called the UIUUM weight matrix for

H, denoted by W
(UIUUM)
H or W+,U

H .

Each arc of arc set A+,U
i denotes that DM i can make a UIUUM from the initial

state to the terminal state of the arc. Therefore, A+,U
H =

⋃
i∈H

A+,U
i indicates the

UIUUM arcs associated with any DM in H. By Definition 5.6 for the weighted

arc set A
(W )
H , the UIUUM arc set is obtained for a graph model with preference

uncertainty by the following Corollary.

Corollary 5.4. For the graph model G = (S,A), let H ⊆ N . If WH = W+,U
H ,

then the arc set A
(W )
H = A+,U

H .

Note that when H = N , A+,U
H is expressed by A+,U .

The weighted colored paths PA
(W )
H can be applied to trace conflict evolution

by the legal UIUUMs for the graph model with preference uncertainty.

Corollary 5.5. For the graph model G = (S,A), let u, v ∈ S and H ⊆ N . If WH =

W+,U
H , the weighted colored paths between states u and v, PA

(W )
H (u, v), give all paths

from u to v where only the legal UIUUMs are allowed. Then PA
(W )
H (u, v) are called

the legal UIUUM paths from u to v by coalition H, denoted by PA+,U
H (u, v).

The conflict evolution by the legal UIUUMs can be tracked using the reduced

weighted edge consecutive matrix. The legal UIUUM edge consecutive matrix is

defined first.
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Definition 5.17. In the graph model G = (S,A), the legal UIUUM edge

consecutive matrix is an l × l matrix LJ+,U
r with (a, b) entry

LJ+,U
r (a, b) =

⎧⎨
⎩

1 if edges a and b are consecutive in order ab and
are controlled by difference DMs for a, b ∈ A+,U ,

0 otherwise.

Let LJ+,U
Hr

denote the legal UIUUM edge consecutive matrix for the graph model

(V,AH). Based on Definitions 5.13 and 5.17, the following result is obtained.

Corollary 5.6. For the graph model G = (S,A), let W+,U denote the UIUUM

weight matrix and W+,U
H be the UIUUM weight matrix for H. Then

LJ (W+,U )
r = LJ+,U

r ,

and

LJ
(W+,U

H )
r = LJ+,U

Hr
.

The key input of stability analysis for the graph model with preference

uncertainty is the reachable list R+,U
H (s) of coalition H ⊆ N from state s ∈ S by

the legal UIUUMs. The algebraic approach to searching weighted colored paths

can also be used to construct R+,U
H (s). The details are discussed in Chapter 6.

5.4.2.3 Weight Matrix for GMCR under Strength of Preference

Another triplet relation {�i, >i,∼i} on S that expresses strength of preference

(strong or mild preference) was developed by Hamouda et al. [27,28]. For s, q ∈ S,

s �i q denotes DM i strongly prefers s to q, s >i q means DM i mildly prefers s to

q, and s ∼i q indicates that DM i is indifferent between states s and q. The weight

matrix WH can represent strength of preference. When an edge ak = di(u, v) for

u, v ∈ S and i ∈ H ⊆ N , then its weight wk is defined by

wk =

⎧⎪⎪⎨
⎪⎪⎩

Ps if v �i u and i ∈ H,
Pm if v >i u and i ∈ H,
Ew if u ∼i v and i ∈ H,
Nw if u �i v or u >i v and i ∈ H,
0 otherwise.

(5.8)

Recall that notation WIs denotes strong unilateral improvements or mild

unilateral improvements called weak improvements. Based on the statement

(5.8), the WI weight matrix for H is defined as follows.

Definition 5.18. For the graph model G = (S,A), let H ⊆ N . When Ps = Pm = 1

and Ew = Nw = 0, the weight matrix WH is called the WI weight matrix for H,

denoted for W
(WI)
H or W+,++

H .
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Each arc of the arc set A+,++
i denotes that DM i can make a WI from the initial

state to the terminal state of the arc. Therefore, A+,++
H =

⋃
i∈H

A+,++
i denotes the

WI arcs associated with any DM in H. By Definition 5.6 for the weighted arc set

A
(W )
H , the WI arc set is obtained for a graph model with strength of preference by

the following Corollary.

Corollary 5.7. For the graph model G = (S,A), let H ⊆ N . If WH = W+,++
H ,

then the arc set A
(W )
H = A+,++

H .

Note that when H = N , A+,++
H is expressed by A+,++.

The weighted colored paths PA
(W )
H can be applied to trace conflict evolution

by the legal WIs for the graph model with strength of preference.

Corollary 5.8. For the graph model G = (S,A), let u, v ∈ S and H ⊆ N . If

WH = W+,++
H , the weighted colored paths between states u and v, PA

(W )
H (u, v),

give all paths from u to v where only the legal WIs are allowed. Then PA
(W )
H (u, v)

are called the legal WI paths from u to v by coalition H, denoted by PA+,++
H (u, v).

Definition 5.19. In the graph model G = (S,A), the legal WI edge consecutive

matrix is an l × l matrix LJ+,++
r with (a, b) entry

LJ+,++
r (a, b) =

{
1 if edges a and b are consecutive in order ab and

are controlled by difference DMs for a, b ∈ A+,++,
0 otherwise.

Let LJ+,++
Hr

denote the legal WI edge consecutive matrix for the graph model

(V,AH). Based on Definition 5.13, on the reduced weighted edge consecutive

matrix by H, and Definition 5.19, the following result can be easily obtained.

Corollary 5.9. For the graph model G = (S,A), let W+,++ denote the WI weight

matrix and W+,++
H be the WI weight matrix for H. Then

LJ (W+,++)
r = LJ+,++

r ,

and

LJ
(W+,++

H )
r = LJ+,++

Hr
.

The key input of stability analysis in the graph model with strength of

preference is state set R+,++
H (s), the reachable list of coalition H ⊆ N from state

s ∈ S by the legal WIs. The algebraic approach provides a new method to

construct R+,++
H (s). The details are discussed in Chapter 6.
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5.4.2.4 Weight Matrix for GMCR under Hybrid Preference

A hybrid preference framework is presented in Chapter 3 to combine preference

uncertainty and strength of preference using a quadruple relation {�i, >i,∼i, Ui}
in a graph model for DM i. The weight matrix WH can also represent the combining

preference of uncertainty and strength. When an edge ak = di(u, v) for u, v ∈ S

and i ∈ H ⊆ N , then its weight wk is defined by

wak
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ps if v �i u and i ∈ H,
Pm if v >i u and i ∈ H,
Ew if u ∼i v and i ∈ H,
Uw if uUiv and i ∈ H,
Nw if u �i v or u >i v and i ∈ H,
0 otherwise.

(5.9)

Recall that notation WIUUMs denotes strong unilateral improvements, mild

unilateral improvements, or unilateral uncertain moves. By the statement (5.9),

the WIUUM weight matrix for H is defined as follows.

Definition 5.20. For the graph model G = (S,A), let H ⊆ N . When Ps = Pm =

Uw = 1 and Ew = Nw = 0, the weight matrix WH is called the WIUUM weight

matrix for H, denoted by W
(WIUUM)
H or W+,++,U

H .

Each arc of the arc set A+,++,U
i denotes that DM i can make a WIUUM from

the initial state to the terminal state of the arc. Therefore, A+,++,U
H =

⋃
i∈H

A+,++,U
i

denotes the WI arcs associated with any DM in H. By Definition 5.6 for the

weighted arc set, the WIUUM arc set is obtained for a graph model with hybrid

preference by the following Corollary.

Corollary 5.10. For the graph model G = (S,A), let H ⊆ N . If WH = W+,++,U
H ,

then the arc set A
(W )
H = A+,++,U

H .

Note that when H = N , A+,++,U
H is expressed by A+,++,U .

The weighted colored paths PA
(W )
H can be applied to trace conflict evolution

by the legal WIUUMs for the graph model with strength of preference.

Corollary 5.11. For the graph model G = (S,A), let u, v ∈ S and H ⊆ N . If

WH = W+,++,U
H , the weighted colored paths between states u and v, PA

(W )
H (u, v),

give all paths from u to v where only the legal WIUUMs are allowed. Then

PA
(W )
H (u, v) are called the legal WI paths from u to v by coalition H, denoted by

PA+,++,U
H (u, v).

106



Definition 5.21. In the graph model G = (S,A), the legal WIUUM edge

consecutive matrix is an l × l matrix LJ+,++,U
r with (a, b) entry

LJ+,++,U
r (a, b) =

⎧⎨
⎩

1 if edges a and b are consecutive in order ab and
are controlled by difference DMs for a, b ∈ A+,++,U ,

0 otherwise.

Let LJ+,++,U
Hr

denote the legal WIUUM edge consecutive matrix for the graph

model (V,AH). Based on Definition 5.13, on the reduced weighted edge consecutive

matrix for H, and Definition 5.21, the following result is obtained.

Corollary 5.12. For the graph model G = (S,A), let W+,++,U denote the WIUUM

weight matrix and W+,++,U
H be the WIUUM weight matrix for H ⊆ N . Then

LJ (W+,++,U )
r = LJ+,++,U

r ,

and

LJ
(W+,++,U

H )
r = LJ+,++,U

Hr
.

The key input of stability analysis in the graph model with hybrid preference

is state set R+,++,U
H (s), the reachable list of coalition H ⊆ N from state s ∈ S

by the legal WIUUMs. A logical method is presented in Chapter 3 to construct

R+,++,U
H (s). An algebraic approach to obtain the state set will be addressed in

future research as mentioned in Section 8.2.

5.5 Summary

From the above discussions, we find that although many approaches and algorithms

for coloring vertices and edges have been developed in graph theory and computer

science [9], the edge-weighted, colored graph research here differs from previous

work in that it is not concerned with how to color edges. Instead, the fundamental

problem is to search edge-weighted, colored paths in a given colored multidigraph.

This research is also different from the well-known network analysis problem of

finding paths between two vertices due to the additional color restriction feature

that is not present in these problems. Therefore, it is difficult to use existing

methods or algorithms directly, including genetic algorithms [12], neural networks

[65], and reinforcement learning algorithms [45], to find the shortest colored path.

In this research, an adjacency matrix of an undirected line graph is extended to

a reduced weighted edge consecutive matrix to search all weighted colored paths,

thereby providing new insights into Algebraic Graph Theory [24]. Based on the
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matrix thus designed, a conversion function is proposed to transform a colored

multidigraph to a simple digraph so that the original complex problem of searching

edge-colored paths in a colored multidigraph is converted to a standard problem of

finding paths in a simple digraph with no color constraints [72]. In Chapters 6 and

7, the capability of the developed algebraic approach will further be investigated.
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Chapter 6

Matrix Representation for

Stability Analysis in the Graph

Model

Stability definitions in the graph model are traditionally defined logically, in terms

of the underlying graphs and preference relations. However, as was noted in the

development of the DSS GMCR II, the nature of logical representations makes

coding difficult. The new preference structures proposed by Li et al. [46] , Hamouda

et al. [28] and Xu et al. [70] to represent uncertainty, strength, and combining

uncertainty and strength in DMs’ preferences included some extensions of the four

basic stability definitions, but algorithms have not been developed for the three

structures. Table 1.1 shows the current state of development of effective algorithms

and codes to implement these solution concepts, which would be essential if they

are to be applied to practical problems [44].

In this chapter, matrix expressions are used to capture relative preferences,

reachable lists by a coalition from a status quo by legal sequences of UMs and UIs

for simple preference, legal sequence of UIUUMs for preference with uncertainty,

and legal sequence of WIs for preference with strength. An explicit algebraic form

conflict model is developed to facilitate stability calculations in two-DM and n-DM

(n > 2) models for simple preference, preference with uncertainty, and preference

with strength.

Note that if the state set S is treated as a vertex set and DM i’s oriented arcs

are coded in color i, then a graph model of a conflict is equivalent to a colored

multidigraph with appropriate preference relations. As shown in Chapter 5, the

weight matrix is convenient and flexible to represent preference information in
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the graph model. Therefore, the graph model is converted to a weighted colored

multidigraph. It is natural to use the results of Graph Theory to assist in analyzing

of a graph model. Hence, we will hereafter use the same notation as Chapter 5 to

represent a graph model for conflicts.

6.1 Matrix Representation of Solution Concepts

for Simple Preference

In this section, a graph model and four graph model solution concepts are

formulated explicitly using matrices. More specifically, matrix expressions are

given for relative preferences and the reachable lists of a coalition from a status

quo state by the legal sequences of UMs and UIs in a multiple-decision-maker

model. Then it is shown how to calculate stability under each of the four solution

concepts using the matrix representation.

6.1.1 Matrix Representation of Essential Components for

Stabilities for Simple Preference

Important matrices associated with a digraph include the adjacency matrix and

the incidence matrix [24]. These matrices are extended to the graph model for

conflict resolution. Let i ∈ N and m = |S|. Recall that UMs and UIs represent

unilateral moves and unilateral improvements, respectively.

Definition 6.1. For the graph model G = (S,A), the UM adjacency matrix

Ji and UI adjacency matrix J+
i for DM i are two m × m matrices with (s, q)

entries

Ji(s, q) =

{
1 if (s, q) ∈ Ai,
0 otherwise,

and J+
i (s, q) =

{
1 if (s, q) ∈ A+

i ,
0 otherwise,

where s, q ∈ S and A+
i = {(s, q) ∈ Ai : q �i s}.

The reachable lists by DM i from state s defined in Section 2.2.2, Ri(s) and

R+
i (s), are expressed as Ri(s) = {q : Ji(s, q) = 1} and R+

i (s) = {q : J+
i (s, q) = 1}.

The following result is obtained based on Definition 5.8, on the weighted adjacency

matrix by H, J
(W )
H , Theorem 5.3 for constructing matrix J

(W )
H , and Definition 6.1.
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Corollary 6.1. For the graph model G = (S,A), the UM and the UI adjacency

matrices of DM i can be expressed as

Ji = J
(W (UM))
i = sign[(B

(W
(UM)
i )

out ) · (B(W
(UM)
i )

in )T ]

and

J+
i = J

(W+)
i = sign[(B

(W+
i )

out ) · (B(W+
i )

in )T ].

Recall that RH(s) and R+
H(s) are the reachable lists of coalition H from state

s by the legal sequences of UMs and UIs. Two essential matrices for stability

analysis are defined as follows.

Definition 6.2. Let H ⊆ N . For the graph model G = (S,A), the UM reachability

matrix and the UI reachability matrix of coalition H are two m×m matrices MH

and M+
H with (s, q) entries

MH(s, q) =

{
1 if q ∈ RH(s) for q ∈ S,
0 otherwise,

M+
H (s, q) =

{
1 if q ∈ R+

H(s) for q ∈ S,
0 otherwise.

The following result is obtained based on Definition 5.11, on the weighted

reachability matrix by H, M
(W )
H , Theorem 5.4 for constructing the weighted

reachability matrix and Corollary 5.3 for constructing the legal UM and UI edge

consecutive matrices LJr and LJ+
r , and Definition 6.2.

Corollary 6.2. For the graph model G = (S,A), the UM reachability and the UI

reachability matrices of coalition H can be expressed as

MH = M
(W (UM))
H = sign[(B

(W
(UM)
H )

out ) · (LJHr + I)l1−1 · (B(W
(UM)
H )

in )T ]

and

M+
H = M

(W+)
H = sign[(B

(W+
H )

out ) · (LJ+
Hr

+ I)l2−1 · (B(W+
H )

in )T ],

where l1 = |AH | and l2 = |A+
H |.

Below, several m × m preference matrices, P+
i , P−

i , and P=
i for DM i, are

respectively defined as

P+
i (s, q) =

{
1 if q �i s,
0 otherwise,

P−
i (s, q) =

{
1 if s �i q,
0 otherwise,
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and

P=
i (s, q) =

{
1 if s ∼i q,
0 otherwise,

P−,=
i = P−

i ∨ P=
i .

It follows that

P−,=
i (s, q) =

{
1 − P+

i (s, q) if s 	= q,
0 otherwise.

Based on the definitions of the UM adjacency matrix, Ji, the UI adjacency

matrix, J+
i , and preference matrix, P+

i , for DM i, the relationship among them is

J+
i = Ji ◦ P+

i .

6.1.2 Matrix Representation of Solution Concepts for

Two-DMs under Simple Preference

Matrix representation of Nash stability, GMR, SMR, and SEQ in two-DM conflict

models for simple preference is developed in this chapter. The system, called the

MRSC method, incorporated a set of m×m matrices, MGMR
i , MSMR

i , and MSEQ
i ,

to capture GMR, SMR, and SEQ for DM i ∈ N , where |N | = 2 and m = |S|.
Since the following results are special cases of those developed in the next

subsection, the details are not given here. Let N = {i, j}. Then

Theorem 6.1. State s ∈ S is Nash stable for DM i iff eT
s · J+

i =
−→
0 T . (T denotes

matrix transpose and eT
s is the transpose of the sth standard basis vector of the

m-dimensional Euclidean space.)

A state s ∈ S is general metarational for DM i iff whenever DM i makes any

UI from s, then its opponent can hurt i in response. Define the m × m matrix

MGMR
i

MGMR
i = J+

i · [E − sign
(
Jj · (P−,=

i )T
)
], for j ∈ N\{i}.

Theorem 6.2. State s ∈ S is GMR for DM i iff MGMR
i (s, s) = 0.

Define the m × m matrix MSMR
i = J+

i · [E − sign(G)] in which

G = Jj · [(P−,=
i )T ◦ (E − sign

(
Ji · (P+

i )T
))

], for j ∈ N\{i}.

Theorem 6.3. State s ∈ S is SMR for DM i iff MSMR
i (s, s) = 0.

Define the m×m matrix MSEQ
i = J+

i ·[E−sign
(
J+

j · (P−,=
i )T

)
], for j ∈ N\{i}.

Theorem 6.4. State s ∈ S is SEQ for DM i iff MSEQ
i (s, s) = 0.
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These theorems prove that the proposed matrix representation of solution

concepts are equivalent to the solution concepts for two DM conflicts defined by

Fang et al. [16]. The matrix representation can be extended to models including

more than two DMs, which is the objective of the next subsection.

6.1.3 Matrix Representation of Solution Concepts for n-

DMs under Simple Preference

Equivalent matrix representations of the logical definitions for Nash stability,

GMR, SMR, and SEQ can be determined directly by using the relationship that

has been established between matrix elements and the state set of a graph model,

and by using preference relation matrices among the states.

Let i ∈ N and |N | = n for the following theorems.

Theorem 6.5. State s ∈ S is Nash stable for DM i, denoted by s ∈ SNash
i , iff

〈es, J
+
i e〉 = 0, where <,> denotes the inner product.

Theorem 6.1 and Theorem 6.5 are identical because Nash stability does not

consider opponents’ responses.

It should be pointed out that the following stability matrices for n-DMs use

the same notation as that presented in Subsection 6.1.2 for two-DMs. For general

metarationality, DM i will take into account the opponents’ possible responses,

which are the legal sequence of UMs by members of N\{i}. For i ∈ N , find the

UI adjacency matrix J+
i and the UM reachability matrix MN\{i} using Corollary

6.1 and Corollary 6.2, for which H = N\{i}. Define the m×m matrix MGMR
i by

MGMR
i = J+

i · [E − sign
(
MN\{i} · (P−,=

i )T
)
].

Theorem 6.6. State s ∈ S is GMR for DM i, denoted by s ∈ SGMR
i , iff

MGMR
i (s, s) = 0.

Proof: Since the diagonal element of matrix MGMR
i

MGMR
i (s, s) = 〈(J+

i )T es,
(
E − sign

(
MN−{i} · (P−,=

i )T
))

es〉

=
m∑

s1=1

J+
i (s, s1)[1 − sign

(〈(MN\{i})T es1 , (P
−,=
i )T es〉

)
],

then MGMR
i (s, s) = 0 iff

J+
i (s, s1)[1 − sign

(〈(MN\{i})T es1 , (P
−,=
i )T es〉

)
] = 0,∀s1 ∈ S.
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This implies that MGMR
i (s, s) = 0 iff

(eT
s1

MN\{i}) · (eT
s P−,=

i )T 	= 0,∀s1 ∈ R+
i (s). (6.1)

Statement (6.1) means that, for any s1 ∈ R+
i (s), there exists s2 ∈ S, such that the

m-dimensional row vector, eT
s1
·MN\{i}, with sth

2 element 1 and the m-dimensional

column vector, (P−,=
i )T · es, with sth

2 element 1.

Therefore, MGMR
i (s, s) = 0 iff for any s1 ∈ R+

i (s), there exists at least one

s2 ∈ RN\{i}(s1) with s �i s2. �
For symmetric metarationality, the n-DM model is similar to the two-DM

model. The only modification is that responses come from DM i ’s opponents

instead of from a single DM. Let

G = (P−,=
i )T ◦ [E − sign

(
Ji · (P+

i )T
)
],

then define the m × m matrix MSMR
i by

MSMR
i = J+

i · [E − sign(MN\{i} · G)].

Theorem 6.7. State s ∈ S is SMR for DM i, denoted by s ∈ SSMR
i , iff

MSMR
i (s, s) = 0.

Proof: Since the diagonal element of matrix MSMR
i

MSMR
i (s, s) = 〈(J+

i )T · es,
(
E − sign(MN\{i} · W )

)
es〉

=
m∑

s1=1

J+
i (s, s1)[1 − sign

(〈(MN\{i})T · es1 , G · es〉
)
],

then MSMR
i (s, s) = 0 iff

J+
i (s, s1)[1 − sign

(〈(MN\{i})T · es1 , G · es〉
)
] = 0,∀s1 ∈ S.

This means that MSMR
i (s, s) = 0 iff

(eT
s1
· MN\{i}) · (G · es) 	= 0, ∀s1 ∈ R+

i (s). (6.2)

Let G(s2, s) denote the (s2, s) entry of matrix G. Since

(eT
s1

MN\{i}) · (G · es) =
m∑

s2=1

MN\{i}(s1, s2) · G(s2, s),
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then (6.2) holds iff for any s1 ∈ R+
i (s), there exists s2 ∈ RN\{i}(s1) such that

G(s2, s) 	= 0.

Because G(s2, s) = P−,=
i (s, s2)[1 − sign(

m∑
s3=1

Ji(s2, s3)P
+
i (s, s3))], then

G(s2, s) 	= 0 implies that for s2 ∈ RN\{i}(s1),

P−,=
i (s, s2) 	= 0 (6.3)

and
m∑

s3=1

Ji(s2, s3)P
+
i (s, s3) = 0. (6.4)

(6.3) is equivalent to the statement that, ∀s1 ∈ R+
i (s), ∃s2 ∈ RN\{i}(s1) such that

s �i s2. (6.4) is the same as the statement that, ∀s1 ∈ R+
i (s),∃s2 ∈ RN\{i}(s1)

such that P+
i (s, s3) = 0 for ∀s3 ∈ Ri(s2). Based on the definition of m×m matrix

P+
i , one knows that P+

i (s, s3) = 0 ⇐⇒ s �i s3.

Therefore, we conclude the above discussion that MSMR
i (s, s) = 0 iff for any

s1 ∈ R+
i (s), there exists at least one s2 ∈ RN\{i}(s1) with s �i s2 and s �i s3 for

all s3 ∈ Ri(s2). �
Sequential stability examines the credibility of the sanctions by DM i ’s

opponents. For i ∈ N , find the UI reachability matrix M+
N\{i} using Corollary 6.2.

Define the m × m matrix MSEQ
i by

MSEQ
i = J+

i · [E − sign
(
M+

N\{i} · (P−,=
i )T

)
].

Theorem 6.8. State s ∈ S is SEQ for DM i, denoted by s ∈ SSEQ
i , iff

MSEQ
i (s, s) = 0.

Proof: Since the diagonal element of matrix MSEQ
i

MSEQ
i (s, s) = 〈(J+

i )T · es,
(
E − sign

(
M+

N\{i} · (P−,=
i )T

))
es〉

=
m∑

s1=1

J+
i (s, s1)[1 − sign

(〈(M+
N\{i})

T · es1 , (P
−,=
i )T · es〉

)
],

then MSEQ
i · (s, s) = 0 iff J+

i (s, s1)[1 − sign
(〈(M+

N\{i})
T · es1 , (P

−,=
i )T · es〉

)
] =

0, ∀s1 ∈ S. This implies that MSEQ
i (s, s) = 0 iff

(eT
s1

M+
N\{i}) · (eT

s · P−,=
i )T 	= 0, ∀s1 ∈ R+

i (s). (6.5)

Statement (6.5) means that, for any s1 ∈ R+
i (s), there exists s2 ∈ S, such that the

m-dimensional row vector, eT
s1
·M+

N−{i}, with sth
2 element 1 and the m-dimensional

column vector, (P−,=
i )T · es, with sth

2 element 1.
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Therefore, MSEQ
i (s, s) = 0 iff for any s1 ∈ R+

i (s), there exists at least one

s2 ∈ R+
N\{i}(s1) with s �i s2. �

When n = 2, the DM set N becomes to {i, j} in Theorems 6.5 to 6.8, and

the reachable lists for H = N \ {i} by legal sequences of UMs and UIs from s1,

RN\{i}(s1) and R+
N\{i}(s1), degenerate to Rj(s1) and R+

j (s1), DM j’s corresponding

reachable lists from s1. Thus, Theorems 6.5 to 6.8 are reduced to those Theorems

6.1 to 6.4.

So far, the matrix representation of solution concepts has been established in

multiple decision maker graph models for simple preference. As shown below, the

matrix method for calculating the individual stability and equilibria is also

attractive from a computational point of view. Many researchers are now

attempting to develop faster algorithms for matrix operations. For example, for

the multiplication of two m × m matrices, the standard method requires O(m3)

arithmetic operations, but the Strassen algorithm [62] requires only O(m2.807)

operations. Coppersmith and Winograd’s work [11] shows that the

computational complexity of matrix multiplication was decreased to O(m2.376).

In fact, some researchers believe that an optimal algorithm for multiplying

m × m matrices will reduce the complexity to O(m2) [10]. Therefore, the

proposed matrix method not only is propitious for theoretical analysis, but also

has the potential to deal with large and complicated conflict problems.

6.1.4 Interrelationships among the Solution Concepts

In 1993, Fang et al. [16] established general relationships among Nash stability,

GMR, SMR, and SEQ (See Fig. 6.1) in the following theorem.

GMR

SMR 

SEQ 

Nash 

Figure 6.1: Interrelationships among the four solution concepts [16].

116



Theorem 6.9. Let i ∈ N, | N |= n, and n ≥ 2. Then interrelationships among

the four solution concepts are

SNash
i ⊆ SSMR

i ⊆ SGMR
i (6.6)

and

SNash
i ⊆ SSEQ

i ⊆ SGMR
i . (6.7)

As shown below, the interrelationships among four solution concepts formulated

explicitly using matrices are easy to verify.

Proof: If s ∈ SNash
i , then eT

s · J+
i =

−→
0 T . Let

B = E − sign(MN\{i} · G)

and let G = (P−,=
i )T ◦ [E−sign

(
Ji ·(P+

i )T
)
]. Since MSMR

i (s, s) = (eT
s ·J+

i ) ·(B ·es),

it follows that MSMR
i (s, s) = 0, when eT

s · J+
i =

−→
0 T . Hence, if s ∈ SNash

i , then

s ∈ SSMR
i , which implies SNash

i ⊆ SSMR
i .

Because G = (P−,=
i )T ◦ [E − sign

(
Ji · (P+

i )T
)
], it follows that for ∀s ∈ S,

eT
s · (MN\{i} · (P−,=

i )T
) · es 	= 0,

when eT
s ·(MN\{i}·G)·es 	= 0, this implies that eT

s ·[E−sign
(
MN\{i}·(P−,=

i )T
)
]·es = 0,

if eT
s · [E − sign(MN\{i} · G)] · es = 0. Therefore, if s ∈ SSMR

i , then

MSMR
i (s, s) = (eT

s · J+
i ) · [(E − sign(MN\{i} · G)

) · es] = 0,

which implies that

MGMR
i (s, s) = (eT

s · J+
i ) · [(E − sign

(
MN\{i} · (P−,=

i )T
))

es] = 0.

Hence, SSMR
i ⊆ SGMR

i . Thus, relation (6.6) now follows. Relation (6.7) can be

verified, similarly.

There is no necessary inclusion relation between SSMR
i and SSEQ

i , i. e., it may

or may not be true that SSMR
i ⊇ SSEQ

i , or that SSMR
i ⊆ SSEQ

i . However, we can

take advantage of the algebraic characterization of MRSC to establish some facts

about their interrelationship.

Theorem 6.10. Let i ∈ N, | N |= n, and n ≥ 2. Let G = (P−,=
i )T ◦ [E − sign

(
Ji ·

(P+
i )T

)
]. Then, when (MN\{i} · G)

∨
[M+

N\{i} · (P−,=
i )T ] = sign(MN\{i} · G),

SSMR
i ⊇ SSEQ

i ; and (6.8)

when (MN\{i} · G)
∨

[M+
N\{i} · (P−,=

i )T ] = sign[M+
N\{i} · (P−,=

i )T ],

SSMR
i ⊆ SSEQ

i . (6.9)
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Proof: If s ∈ SSEQ
i , then MSEQ

i (s, s) = 0, which is equivalent to

(eT
s · J+

i ) · [(E − sign
(
M+

N\{i} · (P−,=
i )T

)) · es] = 0,

so that eT
s · J+

i = (eT
s · J+

i ) ◦ [sign
(
M+

N\{i} · (P−,=
i )T

) · es]
T . Since

(MN\{i} · W )
∨

[M+
N\{i} · (P−,=

i )T ] = sign(MN\{i} · G),

it follows that eT
s · J+

i = (eT
s · J+

i ) ◦ [sign(MN\{i} · G) · es]
T , and therefore

(eT
s · J+

i ) · [(E − sign(MN\{i} · G)
) · es] = 0,

which implies that MSMR
i (s, s) = 0. Relation (6.8) now follows. Relation (6.9) can

be proved, similarly. �

6.1.5 Applications for Simple Preference

6.1.5.1 Superpower Nuclear Confrontation

In two-DM conflicts, a simplified model of a superpower nuclear confrontation,

including the “nuclear winter” possibility [16], is used to illustrate how stability

analysis is carried out using MRSC. This conflict is modeled using two DMs and

a total of six options. In the superpower nuclear confrontation conflict, the six

options together determine five feasible states as listed in Table 6.1, where a “Y”

indicates that an option is selected by the DM controlling it and an “N” means that

the option is not chosen. The graph model of the superpower nuclear confrontation

conflict is shown in Fig. 6.2. Note that state W is assumed to trigger a nuclear

winter. Given that the preferences are ordinal for DM 1 and DM 2 [16],

PP �1 CP �1 CC �1 PC �1 W,

and

PP �2 PC �2 CC �2 CP �2 W.

In order to carry out a stability analysis for each of the five states and each of

the two DMs, the MRSC method is used for the superpower nuclear confrontation

model.

Let the five states, PP, PC, CP, CC, and W, be numbered from 1 to 5,

respectively. From the graph model, we have

J1 =

⎛
⎜⎜⎜⎝

0 0 1 0 1
0 0 0 1 1
1 0 0 0 1
0 1 0 0 1
0 0 0 0 0

⎞
⎟⎟⎟⎠ , J2 =

⎛
⎜⎜⎜⎝

0 1 0 0 1
1 0 0 0 1
0 0 0 1 1
0 0 1 0 1
0 0 0 0 0

⎞
⎟⎟⎟⎠ ,
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Table 6.1: Options and feasible states for the superpower nuclear

confrontation conflict [16]
DM 1

1. Peace (labeled P ) Y Y N N N
2. Conventional attack (labeled C) N N Y Y N
3. Full nuclear attack (labeled W) N N N N Y

DM 2
1. Peace (labeled P ) Y N Y N N
2. Conventional attack (labeled C) N Y N Y N
3. Full nuclear attack (labeled W) N N N N Y

States PP PC CP CC W

PP

CP CC

W

CCCP

PP PCPC

W

(a) Graph model for DM 1 (b) Graph model for DM 2

Figure 6.2: The graph model of the superpower nuclear confrontation

conflict [16].

P+
1 =

⎛
⎜⎜⎜⎝

0 0 0 0 0
1 0 1 1 0
1 0 0 0 0
1 0 1 0 0
1 1 1 1 0

⎞
⎟⎟⎟⎠ , P+

2 =

⎛
⎜⎜⎜⎝

0 0 0 0 0
1 0 0 0 0
1 1 0 1 0
1 1 0 0 0
1 1 1 1 0

⎞
⎟⎟⎟⎠ .

Then

J+
i = Ji ◦ P+

i , for i = 1, 2,

and

P−,=
i = E − I − P+

i , for i = 1, 2,

where I is a 5 × 5 identity matrix. Next, we can calculate the stabilities of Nash,

GMR, SMR, and SEQ, respectively, for the superpower nuclear confrontation

conflict, using MRSC for two-DM cases introduced by Theorems 6.1 to 6.4. The

stability results using MRSC are provided in Table 6.2 in which “
√

” denotes that
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this state is stable for DM 1 or DM 2 under the appropriate stability definitions,

and “Eq” means an equilibrium that is stable for the two DMs. States PP, CC,

and W are equilibria for four basic solution concepts.

Table 6.2: Stability results of the superpower nuclear confrontation
State Number Nash GMR SMR SEQ

DM 1DM 2EqDM 1DM 2EqDM 1DM 2EqDM 1DM 2Eq

PP
√ √ √ √ √ √ √ √ √ √ √ √

PC
√ √ √ √ √ √

CP
√ √ √ √ √ √

CC
√ √ √ √ √ √ √ √ √ √ √ √

W
√ √ √ √ √ √ √ √ √ √ √ √

6.1.5.2 Rafferty-Alameda Dams Conflict

The Rafferty-Alameda dam, in the Souris River basin in southern Saskatchewan,

was planned for flood control, recreation and cooling the Shand generating

plant [55]. The province of Saskatchewan wanted to finish the project

promptly, seeking a license from the Environment Minister of the Federal

government. An environment group, the Canadian Wildlife Federation,

quickly petitioned against the license and argued that the provincial government

had not respected regulations. The federal court sided with the environment

group and ordered the suspension of the license, but later the license was reissued

by a new federal environment minister. The environment group petitioned again,

and this time the federal court ordered the suspension of the license and the

creation of a review panel to reevaluate the project. However, construction of

the dam continued during the review period, and the federal and provincial

governments even reached an agreement that the project would continue while

ten million dollars are set aside to alleviate any future environmental impacts. As

the province had hoped, the project moved ahead at full speed, and the review

panel resigned in protest. (See Hipel et al. [29] for details.)

This conflict is modeled using four DMs: DM 1, Federal (F); DM 2,

Saskatchewan (S); DM 3, Groups (G); and DM 4, Panel (P), each having

some options. The following is a summary of the four DMs and their options [29]:

• Federal Court (Federal): its options are to create a federal government

review panel (Court Order) or to lift the license (Lift),
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• Province of Saskatchewan (Saskatchewan): its option is to go ahead at full

speed (Full speed),

• Environmental Group (Group): its option is to threaten court action to halt

the project (Court action), and

• Federal Environmental Review Panel (Panel): its option is to resign

(Resign).

The five options are combined to form 32 possible states in this conflict. Only a

part of the combinations of the options create feasible states listed in Table 6.3,

where a “Y” indicates that an option is selected by the DM controlling it, an ”N”

means that the option is not chosen, and a dash “ − ”, means that the entry may

be “Y” or may be “N”. The graph model of the Rafferty-Alameda dams conflict is

shown in Fig. 6.3 (1), where the labels on the arcs identify the DMs who control

the relevant moves. If DM i’s oriented arcs are coded in color i, then, according

to the Rule of Priority presented in Subsection 5.2, Fig. 6.3 (1) is converted to an

edge labeled multidigraph as shown in Fig. 6.3 (2).

Table 6.3: Feasible states for the Rafferty-Alameda dams Model [29]
Federal

1. Court Order - N Y N Y N Y N Y N
2. Lift - N N N N N N N N Y

Saskatchewan
3. Full speed N Y Y Y Y Y Y Y Y -

Groups
4. Court action - N N Y Y N N Y Y -

Panel
5. Resign - N N N N Y Y Y Y -

State number s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

Unilateral moves and preference information over the states are given in Table

6.4, where Ri(s), defined in Chapter 2, is DM i′s reachable list from state s, and pi

denotes DM i′s preference function. For this function, DM i prefers a state with a

greater function value than a low one. For example, the Federal Government most

prefers state s1 and least prefers state s10. We calculate the stabilities of Nash,

GMR, SMR, and SEQ for the conflict with four DMs, using the proposed MRSC

method.
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Figure 6.3: The graph model of the Rafferty-Alameda dams conflict.

Let N = {1, 2, 3, 4} denote the set of four DMs. We use the Rafferty-Alameda

dams model as an example to show the procedures to carry out matrix

representation of the four solution concepts in the graph model.

• Construct preference matrices, P+
i , and P−,=

i , for i = 1, 2, 3, 4, using

information provided by Table 6.4;

• Calculate the UM weight matrix and the UI weight matrix of coalition H

based on Definition 5.14, preference information presented in Table 6.4, and
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Table 6.4: Unilateral moves and preference functions for the Rafferty-

Alameda dams model [29]
State Number Federal Saskatchewan Groups Panel

R1 p1 R2 p2 R3 p3 R4 p4

s1 10 s2 1 9 10
s2 s3,s10 7 10 s4 1 s6 1
s3 s2,s10 9 6 s5 3 s7 3
s4 s5,s10 6 9 s2 5 s8 2
s5 s4,s10 8 5 s3 7 s9 4
s6 s7,s10 3 8 s8 2 6
s7 s6,s10 5 4 s9 4 8
s8 s9,s10 2 7 s6 6 7
s9 s8,s10 4 3 s7 8 9
s10 1 2 10 5

statement (5.6), i.e., if ak = di(u, v), then

wk =

⎧⎪⎨
⎪⎩

Pw if v �i u and i ∈ H,
Ew if u ∼i v and i ∈ H,
Nw if u �i v and i ∈ H,
0 otherwise.

Table 6.5 shows the process how to calculate matrices W
(UM)
H and W+

H for

H = N\{1};

Table 6.5: Weights of edges by N\{1} for Rafferty-Alameda dams conflict

Arc number a17 a18 a19 a20 a21 a22 a23 a24 a25 a26 a27 a28 a29

WN\{1} Pw Pw Pw Nw Nw Pw Pw Nw Nw Pw Pw Pw Pw

W
(UM)
N\{1} 1 1 1 1 1 1 1 1 1 1 1 1 1

W+
N\{1} 1 1 1 0 0 1 1 0 0 1 1 1 1

• Construct weighted in-incidence matrix B
(WH)
in and out-incidence matrix

B
(WH)
out for coalition H, based on the graph model Fig. 6.3, Definition 5.10,

and Lemma 5.1;

• Calculate DM i’s UM adjacency matrix and UI adjacency matrix

Ji = J
(W (UM))
i = sign[(B

(W
(UM)
i )

out ) · (B(W
(UM)
i )

in )T ]
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and

J+
i = J

(W+)
i = sign[(B

(W+
i )

out ) · (B(W+
i )

in )T ]

for i = 1, 2, 3, 4, by Corollary 6.1;

• Calculate the UM reachability matrix and the UI reachability matrix by H

MH = M
(W (UM))
H = sign[(B

(W
(UM)
H )

out ) · (LJHr + I)l1−1 · (B(W
(UM)
H )

in )T ]

and

M+
H = M

(W+)
H = sign[(B

(W+
H )

out ) · (LJ+
Hr

+ I)l2−1 · (B(W+
H )

in )T ]

using Corollary 5.3, Corollary 6.2, and Theorem 5.2 for l1 = |AH | and l2 =

|A+
H |, where

LJHr = [(B
(W

(UM)
H )

in )T · (B(W
(UM)
H )

out )] ◦ (El − D)

and

LJ+
Hr

= [(B
(W+

H )
in )T · (B(W+

H )
out )] ◦ (El − D);

• Analyze the stabilities of Nash, GMR, SMR, and SEQ by Theorems 6.5 to

6.8 for the Rafferty-Alameda dams conflict.

In n-DM models, the UM and the UI reachability matrices of coalition H are

important components in MRSC. We have shown the construction of the

reachability matrices by a coalition. Next, we analyze the reachability matrices

by H presented in Table 6.6.

Let us use an example to analyze the UM reachability matrix by H, MH , and

the UI reachability matrix by H, M+
H . Using Table 6.6 with H = N\{1}, we have

eT
4 · MH = (0, 1, 0, 0, 0, 1, 0, 1, 0, 0).

This means that the set of states, RH(s4) = {s2, s6, s8}, can be reached by any

legal UM sequence, by DMs in H = {2, 3, 4}, from the status quo s = s4. Similarly,

eT
4 · M+

H = (0, 0, 0, 0, 0, 0, 0, 1, 0, 0),
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which denotes that R+
H(s4) = {s8} can be reached using the legal UI sequences, by

H = {2, 3, 4}, from status quo s = s4. It is obvious that if RH(s) and R+
H(s) are

written as 0-1 row vectors, respectively, then

RH(s) = eT
s · MH , R+

H(s) = eT
s · M+

H .

After determining all reachable matrices MN\{i} and M+
N\{i} for i = 1, 2, 3, 4,

stability results of the Rafferty-Alameda dams conflict can be obtained using

Theorems 6.5 to 6.8. The stable states and equilibria under the four solution

concepts are summarized in Table 6.7, in which “
√

” for a given state means that

this state is stable for a DM, F, S, G, or P; and “Eq” is an equilibrium for a

appropriate solution concept. Additionally, Table 6.7 indicates that states s9 and

s10 are equilibria for the four basic solution concepts, so they are called ideal

equilibria and are better choices for decision analysis.

6.2 Matrix Representation of Solution Concepts

for Preference with Uncertainty

Explicit matrix representations of solution concepts in a graph model of a multiple-

decision-maker conflict with preference uncertainty are developed in this section.

In a graph model, the relative preferences of each DM over the available states are

crucial in determining which states are stable according to any stability definition

(solution concept). Unfortunately, it is often difficult to obtain accurate preference

information in practical cases, so models that allow preference uncertainty can be

very useful. In this work, stability definitions are extended to apply to graph

models with this feature. The extension is easiest to implement using the matrix

representation of a conflict model, which was developed to ease the coding of

logically-defined stability definitions. Another benefit of matrix representation is

that it facilitates modification and extension of the definitions.

6.2.1 Matrix Representation of Essential Components for

Stabilities under Uncertain Preference

Recall that notation UUMs denotes unilateral uncertain moves and UIUUMs

means unilateral improvements or unilateral uncertain moves.
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Table 6.6: UM and UI reachability matrices by H = N\{i} for the

Rafferty-Alameda dams conflict

Matrix State s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 Matrix State s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

MN\{1} s1 0 1 0 1 0 1 0 1 0 0 M+
N\{1} s1 0 1 0 1 0 1 0 1 0 0

s2 0 0 0 1 0 1 0 1 0 0 s2 0 0 0 1 0 1 0 1 0 0
s3 0 0 0 0 1 0 1 0 1 0 s3 0 0 0 0 1 0 1 0 1 0
s4 0 1 0 0 0 1 0 1 0 0 s4 0 0 0 0 0 0 0 1 0 0
s5 0 0 1 0 0 0 1 0 1 0 s5 0 0 0 0 0 0 0 0 1 0
s6 0 0 0 0 0 0 0 1 0 0 s6 0 0 0 0 0 0 0 1 0 0
s7 0 0 0 0 0 0 0 0 1 0 s7 0 0 0 0 0 0 0 0 1 0
s8 0 0 0 0 0 1 0 0 0 0 s8 0 0 0 0 0 0 0 0 0 0
s9 0 0 0 0 0 0 1 0 0 0 s9 0 0 0 0 0 0 0 0 0 0
s10 0 0 0 0 0 0 0 0 0 0 s10 0 0 0 0 0 0 0 0 0 0

MN\{2} s1 0 0 0 0 0 0 0 0 0 0 M+
N\{2} s1 0 0 0 0 0 0 0 0 0 0

s2 0 1 1 1 1 1 1 1 1 1 s2 0 0 1 1 1 1 1 1 1 0
s3 0 1 1 1 1 1 1 1 1 1 s3 0 0 0 0 1 0 1 0 1 0
s4 0 1 1 1 1 1 1 1 1 1 s4 0 0 0 0 1 0 0 1 1 0
s5 0 1 1 1 1 1 1 1 1 1 s5 0 0 0 0 0 0 0 0 1 0
s6 0 0 0 0 0 1 1 1 1 1 s6 0 0 0 0 0 0 1 1 1 0
s7 0 0 0 0 0 1 1 1 1 1 s7 0 0 0 0 0 0 0 0 1 0
s8 0 0 0 0 0 1 1 1 1 1 s8 0 0 0 0 0 0 0 0 1 0
s9 0 0 0 0 0 1 1 1 1 1 s9 0 0 0 0 0 0 0 0 0 0
s10 0 0 0 0 0 0 0 0 0 0 s10 0 0 0 0 0 0 0 0 0 0

MN\{3} s1 0 1 1 0 0 1 1 0 0 1 M+
N\{3} s1 0 1 1 0 0 1 1 0 0 0

s2 0 0 1 0 0 1 1 0 0 1 s2 0 0 1 0 0 1 1 0 0 0
s3 0 1 0 0 0 1 1 0 0 1 s3 0 0 0 0 0 0 1 0 0 0
s4 0 0 0 0 1 0 0 1 1 1 s4 0 0 0 0 1 0 0 1 1 0
s5 0 0 0 1 0 0 0 1 1 1 s5 0 0 0 0 0 0 0 0 1 0
s6 0 0 0 0 0 0 1 0 0 1 s6 0 0 0 0 0 0 1 0 0 0
s7 0 0 0 0 0 1 0 0 0 1 s7 0 0 0 0 0 0 0 0 0 0
s8 0 0 0 0 0 0 0 0 1 1 s8 0 0 0 0 0 0 0 0 1 0
s9 0 0 0 0 0 0 0 1 0 1 s9 0 0 0 0 0 0 0 0 0 0
s10 0 0 0 0 0 0 0 0 0 0 s10 0 0 0 0 0 0 0 0 0 0

MN\{4} s1 0 1 1 1 1 0 0 0 0 1 M+
N\{4} s1 0 1 1 1 1 0 0 0 0 0

s2 0 1 1 1 1 0 0 0 0 1 s2 0 0 1 1 1 0 0 0 0 0
s3 0 1 1 1 1 0 0 0 0 1 s3 0 0 0 0 1 0 0 0 0 0
s4 0 1 1 1 1 0 0 0 0 1 s4 0 0 0 0 1 0 0 0 0 0
s5 0 1 1 1 1 0 0 0 0 1 s5 0 0 0 0 0 0 0 0 0 0
s6 0 0 0 0 0 1 1 1 1 1 s6 0 0 0 0 0 0 1 1 1 0
s7 0 0 0 0 0 1 1 1 1 1 s7 0 0 0 0 0 0 0 0 1 0
s8 0 0 0 0 0 1 1 1 1 1 s8 0 0 0 0 0 0 0 0 1 0
s9 0 0 0 0 0 1 1 1 1 1 s9 0 0 0 0 0 0 0 0 0 0
s10 0 0 0 0 0 0 0 0 0 0 s10 0 0 0 0 0 0 0 0 0 0
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Table 6.7: Stability results of the Rafferty-Alameda dams conflict
State Number Nash GMR SMR SEQ

F S G P Eq F S G P Eq F S G P Eq F S G P Eq
s1

√ √ √ √ √ √ √ √ √ √ √ √
s2

√ √ √ √ √ √ √
s3

√ √ √ √ √ √ √ √
s4

√ √ √ √ √ √ √ √ √ √ √
s5

√ √ √ √ √ √ √ √ √ √ √ √
s6

√ √ √ √ √ √ √ √
s7

√ √ √ √ √ √ √ √ √ √ √ √
s8

√ √ √ √ √ √ √ √ √ √ √ √
s9

√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √
s10

√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

Definition 6.3. For the graph model G = (S,A), the UUM adjacency matrix

J
(U)
i for DM i is an m × m matrix with (s, q) entry

J
(U)
i (s, q) =

{
1 if (s, q) ∈ AU

i ,
0 otherwise,

where s, q ∈ S and AU
i = {(s, q) ∈ Ai : sUiq}.

Note that J+,U
i = J+

i ∨ JU
i . Then, J+,U

i is called UIUUM adjacency matrix

for DM i. Recall that DM i’s reachable list R+,U
i (s) from state s by a UIUUM is

expressed as R+,U
i (s) = {q : J+,U

i (s, q) = 1}. From Theorem 5.3 and Definition

6.3, the following result is obtained.

Corollary 6.3. For the graph model G = (S,A), the UIUUM adjacency matrix of

DM i can be expressed as

J+,U
i = J

(W (UIUUM))
i = sign[(B

(W+,U
i )

out ) · (B(W+,U
i )

in )T ].

Recall that R+,U
H (s) denotes the reachable list of H from state s by the legal

sequence of UIUUMs.

Definition 6.4. For the graph model G = (S,A), the UIUUM reachability matrix

of coalition H ⊆ N is an m × m matrix M+,U
H with (s, q) entry

M+,U
H (s, q) =

{
1 if q ∈ R+,U

H (s) for q ∈ S,
0 otherwise.

From Theorem 5.4, Corollary 5.6, and Definition 6.4, the following result is

obvious.
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Corollary 6.4. For the graph model G = (S,A), the UIUUM reachability matrix

of coalition H ⊆ N can be expressed by

M+,U
H = M

(W+,U )
H = sign[(B

(W+,U
H )

out ) · (LJ+,U
Hr

+ I)l3−1 · (B(W+,U
H )

in )T ],

where l3 = |A+,U
H |.

The preference matrices P+
i , P−

i , and P=
i , for DM i are defined in Subsection

6.1.1. Matrices PU
i and P+,U

i are defined next.

PU
i (s, q) =

{
1 if sUiq,
0 otherwise,

and P+,U
i = P+

i ∨ PU
i .

Then matrices P−,=
i , P+,U

i , and P−,=,U
i respectively denote

P−,=
i = P−

i ∨ P=
i , P+,U

i (s, q) = E − I − P−,=
i , and P−,=,U

i (s, q) = E − I − P+
i .

Consequently, the relations among the UM adjacency matrix, UI adjacency

matrix, UIUUM adjacency matrix, and preference matrices including uncertainty,

are established as follows:

J+
i = Ji ◦ P+

i , and J+,U
i = Ji ◦ P+,U

i .

Based on the extended preference structure (including uncertainty), Li et al. [46]

defined Nash stability, GMR, SMR, and SEQ to capture a DM’s incentives to leave

the status quo state and sensitivity to sanctions. Four types of stability definition

were proposed, indexed a, b, c, and d, according to whether the DM would move

to a state of uncertain preference and whether the DM would be sanctioned by a

responding move to a state of uncertain preference, relative to the status quo. This

range of extensions is needed, according to [46], to address the diversity of possible

risk profiles in face of uncertainty. A DM may be conservative or aggressive,

avoiding or accepting states of uncertain preference, depending on the level of

satisfaction with the current position.

Like all previous stability definitions in the graph model, the four extensions

were defined logically, in terms of the underlying graphs. Thus, as has been

observed previously, procedures to identify stable states based on these

definitions are difficult to code because of the nature of the logical

representations. To overcome this limitation, the four stability definitions in

multiple-decision-maker graph models with preference uncertainty are formulated

explicitly in terms of matrices in the next section.
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6.2.2 Matrix Representation of Solution Concepts for

Two-DMs with Preference Uncertainty

Matrix representation of the four extensions of Nash, GMR, SMR, and SEQ

stability definitions with preference uncertainty (MRSCU) in 2-DM conflict

models is developed in this section. The system, called the MRSCU method,

incorporated a set of m × m stability matrices, MGMRl
i , MSMRl

i , and MSEQl
i , for

l ∈ Q = {a, b, c, d}, to capture GMRl , SMRl, and SEQl stability for DM i ∈ N ,

where |N | = 2, m = |S|, and DMs’ preferences may include uncertainty. Theses

stability matrices for two-DM models with preference uncertainty are

summarized in Table 6.8.

Since the following four theorems are special cases of the theorems developed in

the next subsection, the details are not given here. However, we note the following

theorems, proven in [66]. Let N = {i, j} and l ∈ Q. Then

Theorem 6.11. State s ∈ S is Nasha or Nashc stable for DM i iff es ·J+,U
i ·e = 0;

and state s ∈ S is Nashb or Nashd stable for DM i iff es · J+
i · e = 0.

Theorem 6.12. State s ∈ S is GMRl for DM i iff MGMRl
i (s, s) = 0, l ∈ Q.

Theorem 6.13. State s ∈ S is SMRl for DM i iff MSMRl
i (s, s) = 0, l ∈ Q.

Theorem 6.14. State s ∈ S is SEQl for DM i iff MSEQl
i (s, s) = 0, l ∈ Q.

These theorems prove that the proposed matrix representation of solution

concepts are equivalent to the solution concepts for two DM conflicts defined by

Li et al. [46]. The matrix representation can be extended to models including

more than two DMs, which is the objective of the next subsection.

6.2.3 Matrix Representation of Solution Concepts for n-

DMs with Preference Uncertainty

In an n-DM model, where n > 2, the opponents of a DM can be thought of as a

coalition of two or more DMs. To calculate the stability of a state for DM i ∈ N ,

it is necessary to examine possible responses by all other DMs j ∈ N\{i}, which

may include sequential responses. To extend the graph model stability definitions

to stability definitions in n-DM models with preference uncertainty, the definitions

of a legal sequence of decisions [16] must first be extended to take preference

uncertainty into account [46].
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Table 6.8: The construction of stability matrices for two-DMs with

preference uncertainty

Preference Sets of definitions Stability matrices

MNasha
i = J+,U

i

MGMRa
i = J+,U

i · [E − sign
(
Jj · (P−,=

i )T
)
]

a MSMRa
i = J+,U

i · [E − sign(Jj · G)], with

G = (P−,=
i )T ◦ [E − sign

(
Ji · (P+,U

i )T
)
]

MSEQa

i = J+,U
i · [E − sign

(
J+,U

j · (P−,=
i )T

)
]

MNashb
i = J+

i

MGMRb
i = J+

i · [E − sign
(
Jj · (P−,=

i )T
)
]

b MSMRb
i = J+

i · [E − sign(Jj · G)], with

Including G = (P−,=
i )T ◦ [E − sign

(
Ji · (P+

i )T
)
]

uncertainty MSEQb
i = J+

i · [E − sign
(
J+,U

j · (P−,=
i )T

)
]

MNashc
i = J+,U

i

c MGMRc
i = J+,U

i · [E − sign
(
Jj · (P−,=,U

i )T
)
]

MSMRc
i = J+,U

i · [E − sign(Jj · G)], with

G = (P−,=,U
i )T ◦ [E − sign

(
Ji · (P+

i )T
)
]

MSEQc

i = J+,U
i · [E − sign

(
J+,U

j · (P−,=,U
i )T

)
]

MNashd
i = J+

i

MGMRd
i = J+

i · [E − sign
(
Jj · (P−,=,U

i )T
)
]

d MSMRd
i = J+

i · [E − sign(Jj · G)], with

G = (P−,=,U
i )T ◦ [E − sign

(
Ji · (P+

i )T
)
]

MSEQd
i = J+

i · [E − sign
(
J+,U

j · (P−,=,U
i )T

)
]

130



The definitions of Nash stability, GMR, SMR, and SEQ in the graph model

for multiple-decision-maker conflict models with preference uncertainty are

described in [46]. They retain most features of the stability definitions in the

2-DM case, except that DM i’s opponents are a subset of N , N\{i}, instead of a

single opponent, j. It is obvious that in the n-DM case, the algebraic

characterizations of stabilities are similar to those presented in Section 6.2.2.

Consequently, matrix representation of solution concepts with preference

uncertainty for 2-DM cases is easy to extend to that for n-DM situations.

6.2.3.1 Matrix Representation of Stabilities, Index a, for Preference

with Uncertainty

In the definitions indexed a, DM i has an incentive to move to states with uncertain

preferences relative to the status quo, but, when assessing possible sanctions, will

not consider states with uncertain preferences [46]. Let i ∈ N and |N | = n in the

following theorems.

Theorem 6.15. State s ∈ S is Nasha stable for DM i iff es · J+,U
i · e = 0.

Theorem 6.15 implies that Nash stability definitions are identical for both 2-

DM and n-DM models with preference uncertainty because Nash stability does not

consider opponents’ responses.

For GMR, DM i considers the opponents’ responses, which are reachable states

RN\{i} of coalition H = N\{i} by the legal UM sequences. First, we find matrix

MN\{i} using Corollary 6.2 with H = N\{i}. Define the m × m GMRa stability

matrix by

MGMRa
i = J+,U

i · [E − sign
(
MN\{i} · (P−,=

i )T
)
].

Then the following theorem provides a matrix method to calculate GMRa stability.

Theorem 6.16. State s ∈ S is GMRa for DM i, denoted by s ∈ SGMRa
i , iff

MGMRa
i (s, s) = 0.

Proof: Since the diagonal entry of matrix MGMRa
i

MGMRa
i (s, s) = (eT

s · J+,U
i ) · [(E − sign

(
MN\{i} · (P−,=

i )T
)) · es]

=
m∑

s1=1

J+,U
i (s, s1)[1 − sign

(
(eT

s1
· MN\{i}) · (eT

s · P−,=
i )T

)
],
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then MGMRa
i (s, s) = 0 iff J+,U

i (s, s1)[1 − sign
(
(eT

s1
· MN\{i}) · (eT

s · P−,=
i )T

)
] = 0

for any s1 ∈ S. This implies that MGMRa
i (s, s) = 0 iff

(eT
s1
· MN\{i}) · (eT

s · P−,=
i )T 	= 0 for any s1 ∈ R+,U

i (s). (6.10)

By statement (6.10), for any s1 ∈ R+,U
i (s), there exists s2 ∈ S, such that the

m-dimensional row vector, eT
s1
· MN\{i}, has sth

2 element 1 and the m-dimensional

column vector, (P−,=
i )T · es, has sth

2 element 1.

Therefore, MGMRa
i (s, s) = 0 iff for any s1 ∈ R+,U

i (s), there exists at least one

s2 ∈ RN\{i}(s1) with s �i s2. �
Symmetric metarationality in the n-DM model is similar to in the 2-DM model.

The only modification is that responses from DM i ’s opponents instead of a single

DM. Let D = (P−,=
i )T ◦ [E − sign

(
Ji · (P+,U

i )T
)
], then define the m × m SMRa

stability matrix by

MSMRa
i = J+,U

i · [E − sign(MN\{i} · D)].

Thus, the following theorem provides a matrix method to calculate SMRa stability.

Theorem 6.17. State s ∈ S is SMRa for DM i, denoted by s ∈ SSMRa
i , iff

MSMRa
i (s, s) = 0.

Proof: Let G = MN\{i} · D. Since the diagonal element of matrix MSMRa
i

MSMRa
i (s, s) = (eT

s · J+,U
i ) · [(E − sign(G)) · es]

=
m∑

s1=1

J+,U
i (s, s1)[1 − sign (G(s1, s))]

with

G(s1, s) =
m∑

s2=1

MN\{i}(s1, s2) · P−,=
i (s, s2)[1− sign

(
m∑

s3=1

(
Ji(s2, s3)P

+,U
i (s, s3)

))
],

thus, MSMRa
i (s, s) = 0 holds iff G(s1, s) 	= 0 for any s1 ∈ R+,U

i (s), which is

equivalent to the statement that, for any s1 ∈ R+,U
i (s) there exists s2 ∈ RN\{i}(s1)

such that

P−,=
i (s, s2) 	= 0, and

m∑
s3=1

(
Ji(s2, s3)P

+,U
i (s, s3)

)
= 0. (6.11)
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Obviously, for any s1 ∈ R+,U
i (s) there exists s2 ∈ RN\{i}(s1) such that statement

(6.11) holds iff for every s1 ∈ R+,U
i (s) there exists s2 ∈ RN\{i}(s1) such that s �i s2

and s �i s3 for all s3 ∈ Ri(s2). �
SEQ is similar to GMR, but includes only those sanctions that are “credible”

(unilaterally improved) or uncertain moves, i.e., SEQ examines the credibility and

uncertainty of the sanctions by DM i ’s opponents. First, we find matrix M+,U
N\{i}

using Corollary 6.4. Define the m × m SEQa stability matrix MSEQa

i by

MSEQa

i = J+,U
i · [E − sign

(
M+,U

N\{i} · (P−,=
i )T

)
].

Thus the following theorem provides a matrix method to calculate SEQa stability.

Theorem 6.18. State s ∈ S is SEQa for DM i, denoted by s ∈ SSEQa

i , iff

MSEQa

i (s, s) = 0.

Proof: Since the diagonal element of matrix MSEQa

i

MSEQa

i (s, s) = (eT
s · J+,U

i ) · [
(
E − sign

(
M+,U

N\{i} · (P−,=
i )T

))
· es]

=
m∑

s1=1

J+,U
i (s, s1)[1 − sign

(
(eT

s1
· M+,U

N\{i}) · (eT
s · P−,=

i )T
)
],

then MSEQa

i (s, s) = 0 iff J+,U
i (s, s1)[1 − sign

(
(eT

s1
· M+,U

N\{i}) · (eT
s · P−,=

i )T
)
] = 0

for any s1 ∈ S. This implies that MSEQa

i (s, s) = 0 iff

(eT
s1
· M+,U

N\{i}) · (eT
s · P−,=

i )T 	= 0 for any s1 ∈ R+,U
i (s). (6.12)

By statement (6.12), for any s1 ∈ R+,U
i (s), there exists s2 ∈ S such that the

m-dimensional row vector, eT
s1
· M+,U

N\{i}, has sth
2 element 1 and the m-dimensional

column vector, (P−,=
i )T · es, has sth

2 element 1.

Therefore, MSEQa

i (s, s) = 0 iff for any s1 ∈ R+,U
i (s), there exists at least one

s2 ∈ R+,U
N\{i}(s1) with s �i s2. �

Nahsa stability means that the focal DM has no unilateral improvements or

unilateral uncertain moves (UIUUMs). GMRa denotes that the UIUUMs of the

focal DM are sanctioned by subsequent unilateral moves by the opponents of the

focal DM. SMRs is similar to GMRa, but the focal DM considers not only the

responses from his opponents but also his own counterresponses. SEQa indicts that

UIUUMs of the focal DM are sanctioned by subsequent unilateral improvements

or unilateral uncertain moves by the opponents of the focal DM.
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6.2.3.2 Matrix Representation of Stabilities, Index b, for Preference

with Uncertainty

For the next set of definitions indexed b, DM i considers leaving a state or

assessing sanctions, excluding uncertain preferences [46]. However, the definitions

are different from those for simple preference [16], since the current definitions

are utilized to analyze conflict models including preference uncertainty. The

following theorems can be similarly verified as the above theorems.

Theorem 6.19. State s ∈ S is Nashb stable for DM i iff es · J+
i · e = 0.

Define the m × m stability matrix MGMRb
i by

MGMRb
i = J+

i · [E − sign
(
MN\{i} · (P−,=

i )T
)
].

Theorem 6.20. State s ∈ S is GMRb for DM i iff MGMRb
i (s, s) = 0.

Define the m × m stability matrix MSMRb
i = J+

i · [E − sign(G)], with

G = MN\{i} · [(P−,=
i )T ◦

(
E − sign

(
Ji · (P+,U

i )T
))

].

Theorem 6.21. State s ∈ S is SMRb for DM i iff MSMRb
i (s, s) = 0.

Define the m × m stability matrix MSEQb
i by

MSEQb
i = J+

i · [E − sign
(
M+,U

N\{i} · (P−,=
i )T

)
].

Theorem 6.22. State s ∈ S is SEQb for DM i iff MSEQb
i (s, s) = 0.

6.2.3.3 Matrix Representation of Stabilities, Index c, for Preference

with Uncertainty

For the extended definitions indexed c, DM i considers moving from a status quo

state or evaluating sanctions including uncertain preferences.

Theorem 6.23. State s ∈ S is Nashc stable for DM i iff es · J+,U
i · e = 0.

Define the m × m stability matrix MGMRc
i by

MGMRc
i = J+,U

i · [E − sign
(
MN\{i} · (P−,=,U

i )T
)
].

Theorem 6.24. State s ∈ S is GMRc for DM i iff MGMRc
i (s, s) = 0.
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Define the m × m stability matrix MSMRc
i by

MSMRc
i = J+,U

i · [E − sign(MN\{i} · D)],

in which

D = (P−,=,U
i )T ◦ [E − sign

(
Ji · (P+

i )T
)
].

Theorem 6.25. State s ∈ S is SMRc for DM i iff MSMRc
i (s, s) = 0.

Define the m × m stability matrix MSEQc

i by

MSEQc

i = J+,U
i · [E − sign

(
M+,U

N\{i} · (P−,=,U
i )T

)
].

Theorem 6.26. State s ∈ S is SEQc for DM i iff MSEQc

i (s, s) = 0.

6.2.3.4 Matrix Representation of Stabilities, Index d, for Preference

with Uncertainty

For the last definitions, indexed d, a DM is not motivated to leave the status quo

to move to states with uncertain preference, but will consider moving to states

with uncertain preference to be a sanction.

Theorem 6.27. State s ∈ S is Nashd stable for DM i iff es · J+
i · e = 0.

Define the m × m stability matrix

MGMRd
i = J+

i · [E − sign
(
MN\{i} · (P−,=,U

i )T
)
].

Theorem 6.28. State s ∈ S is GMRd for DM i iff MGMRd
i (s, s) = 0.

Define the m × m stability matrix MSMRd
i = J+

i · [E − sign(MN\{i} · D)], in

which D = (P−,=,U
i )T ◦ [E − sign

(
Ji · (P+

i )T
)
].

Theorem 6.29. State s ∈ S is SMRd for DM i iff MSMRd
i (s, s) = 0.

Define the m×m stability matrix MSEQd
i = J+

i ·[E−sign
(
M+,U

N\{i} · (P−,=,U
i )T

)
].

Theorem 6.30. State s ∈ S is SEQd for DM i iff MSEQd
i (s, s) = 0.

When n = 2, the DM set N becomes to {i, j} and Theorems 6.15 to 6.30 are

reduced to Theorems 6.11 to 6.14.

From the matrix representation of solution concepts indexed a, b, c, and d

presented above, it can be seen that a solution concept indexed a represents the

135



stability for the most aggressive DMs. Firstly, the DM is aggressive in deciding

whether to move from the status quo, being willing to accept the risk associated

with moves to states of uncertain preference. In addition, when evaluating

possible moves, the DM is deterred only by sanctions to states that are less

preferred than the status quo and does not see states of uncertain preference

(relative to the status quo) as sanctions. For the definitions indexed b,

uncertainty in preferences is not considered by a DM. The definitions indexed c

incorporate a mixed attitude toward the risk associated with states of uncertain

preference. Specifically, the DM is aggressive in deciding whether to move from

the status quo, but is conservative when evaluating possible moves, being

deterred by sanctions to states that are less preferred or have uncertain

preference relative to the status quo. Finally, the definition indexed d represents

stability for the most conservative DMs, who would move only to preferred states

from a status quo, but would be deterred by responses that result in states of

uncertain preference.

6.2.4 Applications including Preference Uncertainty

6.2.4.1 Sustainable Development Game

Table 6.9: Options and feasible states for the sustainable development

conflict [31]
E: environmentalists

1. Proactive (labeled P ) Y Y N Y
2. Reactive (labeled R) N N Y Y

D: developers
3. Sustainable development (labeled S) Y N Y N
4. Unsustainable development (labeled U) N Y N Y

State number s1 s2 s3 s4

A two-DM conflict model with preference uncertainty is used to illustrate how

stability analysis is carried out by MRSCU. Hipel [31] developed a model for a

conflict over sustainable development game that was also studied by Li et al.

[46]. Specifically, the conflict consists of two DMs: environmental agencies

(DM 1: E) and developers (DM 2: D); and a total of four options: DM 1

controls the two options of being proactive (labeled P) and being reactive (labeled

R) in monitoring developers’ activities and their impacts on the environment,
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and DM 2 has the two options of practicing sustainable development (labeled

S) and practicing unsustainable development (labeled U) for properly treating the

environment. These options are combined to form four feasible states: s1: PS, s2:

PU, s3: RS, and s4: RU. The four feasible states are listed in Table 6.9, where

a “Y” indicates that an option is selected by the DM controlling it and an “N”

means that the option is not chosen [31,46].
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Figure 6.4: Graph model for the sustainable development conflict [46].

The graph model of the conflict is shown in Fig. 6.4. DM 1’s preference

information is provided by the cardinal preference function: P1 = (4, 2, 3, 1), but

DM 2’s preference includes uncertainty by s1U2s2, s1U2s4, s2U2s3, s3U2s4, s3 �2 s1,

and s4 �2 s2.

The UM adjacency matrices for DM 1 and DM 2 are

J1 =

⎛
⎜⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎠ and J2 =

⎛
⎜⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎠ .

Preference matrices for the DM 1 and DM 2 are

P+
1 =

⎛
⎜⎝

0 0 0 0
1 0 1 0
1 0 0 0
1 1 1 0

⎞
⎟⎠ , P−,=

1 =

⎛
⎜⎝

0 1 1 1
0 0 0 1
0 1 0 1
0 0 0 0

⎞
⎟⎠ ,

P+
2 =

⎛
⎜⎝

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

⎞
⎟⎠ , and P+,U

2 =

⎛
⎜⎝

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

⎞
⎟⎠ .
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Additionally, PU
1 is a zero matrix, P+,U

2 = P+
2 ∨ PU

2 , P−,=
2 = E − I − P+,U

2 ,

P−,=,U
2 = P−,=

2 ∨ PU
2 .

Hence, we can calculate the extended stabilities of Nash, GMR, SMR, and SEQ

using Theorems 6.11 to 6.14 for the sustainable development conflict including

preference uncertainty.

Table 6.10: Stability results of the sustainable development game with

uncertain preference
State Nash GMR SMR SEQ

1 2 Eq 1 2 Eq 1 2 Eq 1 2 Eq
s1

√ √ √ √
s2

√ √ √ √
a s3

√ √ √
s4

s1
√ √ √ √ √ √ √ √ √ √ √ √

s2
√ √ √ √ √ √ √ √ √ √ √ √

b s3
√ √ √ √ √ √ √ √ √ √

s4
√ √ √ √

s1
√ √ √ √ √ √

s2
√ √ √ √ √ √

c s3
√ √ √ √ √ √ √ √ √

s4
√ √ √

s1
√ √ √ √ √ √ √ √ √ √ √ √

s2
√ √ √ √ √ √ √ √ √ √ √ √

d s3
√ √ √ √ √ √ √ √ √ √

s4
√ √ √ √

Table 6.10 provides the stability results for the the sustainable development

game calculated by MRSCU method for two-DM situations. They are precisely

the same as the results presented in [46]. Obviously, states s1 and s2 are equilibria

for the four stabilities indexed b and indexed d in the sustainable development

conflict.

6.2.4.2 Lake Gisborne Conflict

The background of the Lake Gisborne conflict is described in Section 3.4. This

conflict is modeled using three DMs: DM 1, Federal (Fe); DM 2, Provincial

(Pr); and DM 3, Support (Su). The graph model of the Lake Gisborne conflict

is shown in Fig. 6.5 (1), where the labels on the arcs identify the DMs who control

the relevant moves. If DM i’s oriented arcs are coded in color i, then, according

to the Rule of Priority introduced in Section 5.2, Fig. 6.5 (1) is converted to an

edge labeled multidigraph as shown in Fig. 6.5 (2).
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Figure 6.5: Graph model for the Gisborne conflict.

Since several groups support the project, the economics-oriented provincial

government might consider supporting the project for the urgent need for cash.

However, the environment-oriented provincial government might oppose this

project because of the devastating consequences to the environment. The two

different attitudes of the provincial government result in uncertainty in

preferences for the Gisborne conflict model. The details can be found in [46].

Preference information over the states are given in Table 6.11, where �
represents the strict preference and is transitive. As shown in Table 6.11, DM

Federal’s and DM Support’s preference information is modeled to be known

completely without any uncertainty, but DM Provincial’s preference includes

uncertainty. What is known is that it prefers state s3 to state s7, state s4 to state
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Table 6.11: Preference information for the Gisborne conflict [46]

Colors DMs Certain preferences

Red Federal s2 � s6 � s4 � s8 � s1 � s5 � s3 � s7

Blue Provincial s3 � s7, s4 � s8, s1 � s5, s2 � s6, only

Green Support s3 � s4 � s7 � s8 � s5 � s6 � s1 � s2

s8, state s1 to state s5, and state s2 to state s6, but the relative preference across

these four groups is uncertain.

Let N = {1, 2, 3} denote the set of three DMs. We use the Gisborne conflict

as an example to show the procedures using the MRSCU method.

• Construct preference matrices, P+
i , P+,U

i , and P−,=
i , for i = 1, 2, 3, using

information provided by Table 6.11, as well as P−,=,U = E − I − P+
i ;

• Calculate the UM weight matrix and the UIUUM weight matrix of coalition

H based on Definition 5.16, preference information presented in Table 6.11,

and statement (5.7), i.e., if ak = di(u, v), then

wk =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Pw if v �i u and i ∈ H,
Nw if u �i v and i ∈ H,
Ew if u ∼i v and i ∈ H,
Uw if uUiv and i ∈ H,
0 otherwise.

Table 6.12 shows the process how to calculate matrices W
(UM)
H and W

(+,U)
H

for H = N\{1};

• Construct weighted in-incidence matrix B
(WH)
in and out-incidence matrix

B
(WH)
out for coalition H, based on the graph model and Definition 5.9;

• Calculate DM i’s UM adjacency matrix and UIUUM adjacency matrix,

Ji = J
(W (UM))
i = sign[(B

(W
(UM)
i )

out ) · (B(W
(UM)
i )

in )T ]

and

J+,U
i = J

(W+,U )
i = sign[(B

(W+,U
i )

out ) · (B(W+,U
i )

in )T ]
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Table 6.12: Weight matrices for H = N\{1} for the Gisborne conflict

Arc numbera1 a2 a3 a4 a5 a6 a7 a8 a9 a10a11a12a13a14a15a16a17a18a19a20a21a22a23a24

W PwNwPwNwPwNwPwNwUwUwUwUwUwUwUwUwPwPwNwNwNwNwPwPw

W
(UM)
H 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

W+,U
H 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1

for i = 1, 2, 3, by Corollary 6.3;

• Calculate the UM reachability matrix and the UIUUM reachability matrix

by H,

MH = M
(W (UM))
H = sign[(B

(W
(UM)
H )

out ) · (LJHr + I)l1−1 · (B(W
(UM)
H )

in )T ]

and

M+,U
H = M

(W+,U )
H = sign[(B

(W+,U
H )

out ) · (LJ+,U
Hr

+ I)l3−1 · (B(W+,U
H )

in )T ],

using Corollary 5.6, Corollary 6.4, and Theorem 5.2 for l3 = |A+,U
H |, where

LJHr = LJ
(W

(UM)
H )

r = [(B
(W

(UM)
H )

in )T · (B(W
(UM)
H )

out )] ◦ (El − D)

and

LJ+,U
Hr

= LJ
(W+,U

H )
r = [(B

(W+,U
H )

in )T · (B(W+,U
H )

out )] ◦ (El − D);

• Analyze the stabilities of Nash, GMR, SMR, and SEQ by Theorems 6.15 to

6.30 for the Gisborne conflict.

Let the state set S = {s1, s2, s3, s4, s5, s6, s7, s8}. Tables 6.13 and 6.14 show

the results for the construction of the reachability matrices by H = N\{i} for

i = 1, 2, 3. It is clear that if RH(s) and R+,U
H (s) are written as 0-1 row vectors,

then

RH(s) = eT
s · MH , and R+,U

H (s) = eT
s · M+,U

H for any s ∈ S.
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For example, using Table 6.14, we have eT
2 · M+,U

N\{1} = (0, 1, 0, 1, 0, 1, 0, 1), which

indicates that the reachable list of N\{1} by the legal UIUUMs from state s2,

R+,U
N\{1}(s2) = {s2, s4, s6, s8}, i.e., states s2, s4, s6, and s8 can be reached by any

legal UIUUM sequences, by the coalition consisting of DM Provincial and DM

Support, from the status quo s = s2. Consequently, the reachability matrices of

coalition H provides an algebraic method for constructing the reachable lists of H

by the legal UM and legal UIUUM sequences, RH(s) and R+,U
H (s) for all s ∈ S.

Table 6.13: UM reachability matrices by N\{i} for i = 1, 2, 3 for the

Gisborne conflict
Matrix MN\{1} MN\{2} MN\{3}
State s1 s2 s3 s4 s5 s6 s7 s8 s1 s2 s3 s4 s5 s6 s7 s8 s1 s2 s3 s4 s5 s6 s7 s8

s1 1 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 1 1 1 1 0 0 0 0

s2 0 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 1 1 1 1 0 0 0 0

s3 1 0 1 0 1 0 1 0 0 0 1 1 0 0 1 1 1 1 1 1 0 0 0 0

s4 0 1 0 1 0 1 0 1 0 0 1 1 0 0 1 1 1 1 1 1 0 0 0 0

s5 1 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 0 0 0 0 1 1 1 1

s6 0 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 0 0 0 0 1 1 1 1

s7 1 0 1 0 1 0 1 0 0 0 1 1 0 0 1 1 0 0 0 0 1 1 1 1

s8 0 1 0 1 0 1 0 1 0 0 1 1 0 0 1 1 0 0 0 0 1 1 1 1

Table 6.14: UIUUM reachability matrices by N\{i} for i = 1, 2, 3 for the

Gisborne model
Matrix M+,U

N\{1} M+,U
N\{2} M+,U

N\{3}
State s1 s2 s3 s4 s5 s6 s7 s8 s1 s2 s3 s4 s5 s6 s7 s8 s1 s2 s3 s4 s5 s6 s7 s8

s1 1 0 1 0 1 0 1 0 0 1 0 0 1 1 0 0 0 1 1 1 0 0 0 0

s2 0 1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0

s3 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 1 1 0 1 0 0 0 0

s4 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

s5 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1

s6 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

s7 1 0 1 0 1 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 1 1 0 1

s8 0 1 0 1 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0

Next, Theorems 6.15 to 6.30 are used to calculate the stabilities of the Gisborne

conflict. The stable states and equilibria under four distinct sets of definitions

(indexed a, b, c, and d) and four solution concepts, Nash, GMR, SMR and SEQ,
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are summarized in Table 6.15, in which “
√

” for a given state means that this state

is stable for a DM−Fe, Pr, or Su; and “Eq” is an equilibrium for a corresponding

solution concept. Additionally, Table 6.15 indicates that states s4 and s6 are

equilibria for the four solution concepts indexed by b and d. The stability results

confirm the calculations of [46]. If the provincial government is economics-oriented

and has complete preference information:

s3 � s7 � s4 � s8 � s1 � s5 � s2 � s6,

then the likely resolution is state s4 by using DSS GMCR II [18, 19]. For an

environment-oriented provincial government, with preferences

s2 � s6 � s1 � s5 � s4 � s8 � s3 � s7,

then state s6 is the likely resolution. From Table 3.3, we can analyze the two likely

resolutions. If the attitude of the provincial government is economics-oriented, then

the provincial government will lift the ban on bulk water export. On the other

hand, if the provincial government is strongly influenced by the federal government,

then it will not lift the ban.

6.3 Matrix Representation of Solution Concepts
for Strength of Preference

In this section, an algebraic approach is developed to calculate stabilities in

two-DM and n-DM graph models with strength of preference [76, 77]. The

original graph model uses “simple preference” to represent a DM’s relative

preference between two states. This preference structure includes only a relative

preference relation and an indifference relation. Basic stability definitions, and

algorithms to calculate them, assume simple preference. Due to difficulties in

coding the algorithms, mainly because of their logical formulation, led to the

development of matrix representations of preference and explicit matrix

algorithms to calculate stability. Here, the algebraic approach is extended to

representation of a strength-of-preference graph models, which feature multiple

levels of preference, and stability analysis for such models.
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Table 6.15: Stability results of the Gisborne model

State Nash GMR SMR SEQ
Fe Pr Su Eq Fe Pr Su Eq Fe Pr Su Eq Fe Pr Su Eq

a
b

√ √ √ √
s1 c

√ √ √
d

√ √ √ √
a

√ √ √ √
b

√ √ √ √ √ √ √ √
s2 c

√ √ √ √ √ √
d

√ √ √ √ √ √ √ √
a

√ √ √ √
b

√ √ √ √ √ √ √ √
s3 c

√ √ √ √ √ √ √
d

√ √ √ √ √ √ √ √
a

√ √ √ √ √ √ √ √
b

√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √
s4 c

√ √ √ √ √ √ √ √ √ √ √ √ √ √
d

√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √
a

√ √ √ √
b

√ √ √ √ √ √ √ √
s5 c

√ √ √ √ √ √ √
d

√ √ √ √ √ √ √ √
a

√ √ √ √ √ √ √ √
b

√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √
s6 c

√ √ √ √ √ √ √ √ √ √ √ √ √ √
d

√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √
a

√ √ √
b

√ √ √ √ √ √ √
s7 c

√ √ √ √ √ √
d

√ √ √ √ √ √ √
a

√ √ √ √ √ √ √
b

√ √ √ √ √ √ √ √ √ √ √ √ √ √
s8 c

√ √ √ √ √ √ √ √ √ √ √
d

√ √ √ √ √ √ √ √ √ √ √ √ √ √
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6.3.1 Matrix Representation of Essential Components for

Stabilities with Strength of Preference

Recall that WIs denotes strong improvements or mild improvements called weak

improvements.

Definition 6.5. For the graph model G = (S,A), the WI adjacency matrix

for DM i is an m × m matrix J+,++
i with (s, q) entry

J+,++
i (s, q) =

{
1 if (s, q) ∈ A+,++

i ,
0 otherwise,

where s, q ∈ S and A+,++
i = {(s, q) ∈ Ai : q >i s or q �i s}.

DM i’s reachable list R+,++
i (s) from state s by a WI can be expressed as

R+,++
i (s) = {q : J+,++

i (s, q) = 1}. From Theorem 5.3 and Definition 6.5, the

following result is obvious.

Corollary 6.5. For the graph model G = (S,A), the WI adjacency matrix of DM

i satisfies that

J+,++
i = J

(W (WI))
i = sign[(B

(W+,++
i )

out ) · (B(W+,++
i )

in )T ].

Recall that R+,++
H (s) denotes the reachable list of coalition H from state s by

the legal sequence of WIs.

Definition 6.6. Let H ⊆ N . For the graph model G = (S,A), the WI reachability

matrix by H is an m × m matrix M+,++
H with (s, q) entry

M+,++
H (s, q) =

{
1 if q ∈ R+,++

H (s) for q ∈ S,
0 otherwise.

The WI reachability matrix by H can be obtained from the following corollary

based on Theorem 5.4, Corollary 5.9, and Definition 6.6.

Corollary 6.6. For the graph model G = (S,A), the WI reachable matrix by

coalition H satisfies that

M+,++
H = M

(W (WI))
H = sign[(B

(W+,++
H )

out ) · (LJ+,++
Hr

+ I)l4−1 · (B(W+,++
H )

in )T ],

where l4 = |A+,++
H |.
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To carry out stability analysis, a set of matrices corresponding to strength of

preference is constructed next. Below, several matrices representing strength of

preference for DM i are defined.

P++
i (s, q) =

{
1 if q �i s,
0 otherwise,

and

P−−
i (s, q) =

{
1 if s �i q,
0 otherwise.

Therefore, (P++
i )T = P−−

i , where T denotes the transpose of a matrix.

P−−,−,=
i (s, q) =

{
1 if q ∈ Φ−−,−,=

i (s),
0 otherwise,

and

P+,++
i (s, q) =

{
1 if q �i s or q >i s,
0 otherwise.

It follows that P−−,−,=
i (s, q) = 1 − P+,++

i (s, q) for s, q ∈ S and s 	= q.

Based on the above definitions, for DM i, the UM matrix Ji, the WI matrix

J+,++
i , and the preference matrix P+,++

i have the relationship among them:

J+,++
i = Ji ◦ P+,++

i .

6.3.2 Matrix Representation of Solution Concepts for

Two-DMs with Strength of Preference

Stability definitions in the graph model are traditionally defined logically, in terms

of the underlying graphs and preference relations. However, as was noted in the

development of the DSS GMCR II, the nature of logical representations makes

coding difficult. The work of [27,28] integrated strength of preference information

into these four solution concepts but, again, proved difficult to code and was never

integrated into GMCR II.

Matrix representation of stabilities of Nash, GMR, SMR, and SEQ with

strength of preference in two-DM conflicts is developed in this section. The

system, called the MRSCS method, incorporated a set of m × m stability

matrices, MGMR
i , MSMR

i , and MSEQ
i , as well as strong stability matrices,

MSGMR
i , MSSMR

i , and MSSEQ
i , to capture GMR, SMR, and SEQ stabilities, as

well as strong GMR, strong SMR, and strong SEQ stabilities for DM i ∈ N ,

where |N | = 2, m = |S|, and DMs’ preferences may include strength.
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Table 6.16: The construction of stability matrices for two-DM models
with strength of preference

Types of Stability matrices

stabilities

MNash
i = J+,++

i

MGMR
i = J+,++

i · [E − sign
(
Jj · (P−−,−,=

i )T
)
]

Stabilities MSMR
i = J+,++

i · [E − sign(Jj · G)], with

G = (P−−,−,=
i )T ◦ [E − sign

(
Ji · (P+,++

i )T
)
]

MSEQ
i = J+,++

i · [E − sign
(
J+,++

j · (P−−,−,=
i )T

)
]

MSGMR
i = J+,++

i · [E − sign
(
Jj · (P−−

i )T
)
]

Strong MSSMR
i = J+,++

i · [E − sign(Jj · G)], with

stabilities G = (P++
i ) ◦ [E − sign

(
Ji · (E − P++

i )
)
]

MSSEQ
i = J+,++

i · [E − sign
(
J+,++

j · (P−−
i )T

)
]

Let N = {i, j}. The stability matrices used by Theorems 6.31 to 6.37 are

summarized in Table 6.16, which are utilized to calculate the extended stabilities

of Nash, GMR, SMR, and SEQ, as well as the strong stabilities of SGMR, SSMR,

and SSEQ, in two-DM conflicts for strength of preference, respectively.

It should be pointed out that the stability matrices for strength of preference

use the same notation as the stability matrices for simple preference.

6.3.2.1 Matrix Representation of Stabilities

Theorem 6.31. State s is Nash stable for DM i iff es · J+,++
i · e = 0, where e

denote the m-dimensional column vector with each element being set to 1.

Theorem 6.32. State s is GMR for DM i iff MGMR
i (s, s) = 0.

Theorem 6.33. State s is SMR for DM i iff MSMR
i (s, s) = 0.

Theorem 6.34. State s is SEQ for DM i iff MSEQ
i (s, s) = 0.

These theorems prove that the proposed matrix representation of solution

concepts are equivalent to the standard solution concepts for two DM conflicts

defined by Hamouda et al. [27].

6.3.2.2 Matrix Representation of Strong Stabilities

Theorem 6.35. State s ∈ S is strong GMR (SGMR) for DM i iff MSGMR
i (s, s) =

0.
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Theorem 6.36. State s ∈ S is strongly SMR (SSMR) for DM i iff MSSMR
i (s, s) =

0.

Theorem 6.37. State s ∈ S is strongly SEQ (SSEQ) for DM i iff MSSEQ
i (s, s) =

0.

Since the seven theorems are special cases of the theorems for n-DM models

developed in the next subsection, the details are not given here. These theorems

prove that the proposed matrix representation of solution concepts are equivalent

to logical representation of the strong stabilities for two DM conflicts [27]. The

matrix representation can be extended to models including more than two DMs,

which is the objective of the next subsection.

6.3.3 Matrix Representation of Solution Concepts for n-
DMs with Strength of Preference

In an n-DM model, where n > 2, the opponents of a DM can be thought of as a

coalition of two or more DMs. To calculate the stability of a state for DM i ∈ N ,

it is necessary to examine possible responses by all other DMs j ∈ N\{i}, which

may include responses by the legal sequences of UMs and WIs.

6.3.3.1 Matrix Representation of Stabilities

Four solution concepts are given below in which strength of preference is not

considered in sanctioning. However, they are different from stabilities defined by

Fang et al. [16], because the following stabilities can analyze conflict models

having strength of preference. Let i ∈ N and s ∈ S for next theorems. A

coalition is any subset H in DM set N . Let i ∈ N and |N | = n.

Theorem 6.38. State s ∈ S is Nash stable for DM i, denoted by s ∈ SNash
i , iff

〈es, J
+,++
i e〉 = 0, where <,> denotes the inner product.

Theorem 6.38 implies that Nash stability definitions are identical for both

two-DM and n-DM models because Nash stability does not consider opponents’

responses.

Define the m × m matrix MGMR
i by

MGMR
i = J+,++

i · [E − sign
(
MN\{i} · (P−−,−,=

i )T
)
].

Theorem 6.39. State s is GMR for DM i iff MGMR
i (s, s) = 0.

Define the m × m matrix MSMR
i by MSMR

i = J+,++
i · [E − sign(G)], with

G = MN\{i} · [(P−−,−,=
i )T ◦ (E − sign

(
Ji · (P+,++

i )T
))

].
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Theorem 6.40. State s is SMR for DM i iff MSMR
i (s, s) = 0.

Define the m × m matrix MSEQ
i by

MSEQ
i = J+,++

i · [E − sign
(
M+,++

N\{i} · (P−−,−,=
i )T

)
].

Theorem 6.41. State s is SEQ for DM i iff MSEQ
i (s, s) = 0.

The proofs of these theorems are similar to those for Theorems 6.5 to 6.8.

Theorems 6.38 to 6.41 prove that the proposed matrix representation of solution

concepts are equivalent to the standard stabilities for n-DM conflicts [28].

6.3.3.2 Matrix Representation of Strong Stabilities

With strength of preference introduced into the graph model, stability definitions

can be strong or weak, according to the level of sanctioning. Strong and weak

stabilities only include GMR, SMR, and SEQ because Nash stability does not

involve sanctions. Let i ∈ N and |N | = n in this subsection. First, find matrix

J+,++
i by Corollary 6.5 and matrix MH using Corollary 6.2, for which H = N\{i}.

Define the m × m strong stability matrix MSGMR
i for DM i by

MSGMR
i = J+,++

i · [E − sign
(
MN\{i} · (P−−

i )T
)
]

.

Theorem 6.42. State s ∈ S is strong GMR (SGMR) for DM i, denoted by s ∈
SSGMR

i , iff MSGMR
i (s, s) = 0.

Proof: Since MSGMR
i (s, s) = (eT

s · J+,++
i ) · [(E − sign

(
MN\{i} · (P−−

i )T
)) · es]

=
m∑

s1=1

J+,++
i (s, s1)[1 − sign

(
(eT

s1
· MN\{i}) · (eT

s · P−−
i )T

)
],

then

MSGMR
i (s, s) = 0 ⇔ J+,++

i (s, s1)[1−sign
(
(eT

s1
· MN\{i}) · (eT

s · P−−
i )T

)
] = 0,∀s1 ∈ S.

This implies that MSSGM
i (s, s) = 0 iff

(eT
s1
· MN\{i}) · (eT

s · P−−
i )T 	= 0, ∀s1 ∈ R+,++

i (s). (6.13)

By (6.13), for any s1 ∈ R+,++
i (s), there exists s2 ∈ S such that the m-dimensional

row vector, eT
s1
· MN\{i}, has sth

2 element 1 and the m-dimensional column vector,

(P−−
i )T · es, has sth

2 element 1.
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Therefore, MSGMR
i (s, s) = 0 iff for any s1 ∈ R+,++

i (s), there exists at least one

s2 ∈ RN\{i}(s1) with s �i s2. �
For strong SMR, the n-DM model is similar to the two-DM model. The only

modification is that responses come from DM i ’s opponents instead of from a single

DM. If D = (P++
i ) ◦ [E − sign

(
Ji · (E − P++

i )
)
], then define the m × m strong

stability matrix MSSMR
i for DM i by

MSSMR
i = J+,++

i · [E − sign(MN\{i} · D)].

Theorem 6.43. State s ∈ S is strongly SMR (SSMR) for DM i, denoted by
s ∈ SSSMR

i , iff MSSMR
i (s, s) = 0.

Proof: Let G = MN\{i}·D. Since MSSMR
i (s, s) = (eT

s ·J+,++
i )·[(E−sign(G))·es]

=
m∑

s1=1

J+,++
i (s, s1)[1 − sign(G(s1, s))]

then MSSMR
i (s, s) = 0 iff J+,++

i (s, s1)[1− sign(G(s1, s))] = 0, for any s1 ∈ S. This

means that MSSMR
i (s, s) = 0 iff

(eT
s1
· MN\{i}) · (D · es) 	= 0,∀s1 ∈ R+,++

i (s). (6.14)

Since (eT
s1
·MN\{i}) · (D · es) =

m∑
s2=1

MN\{i}(s1, s2) ·D(s2, s), then (6.14) holds iff for

any s1 ∈ R+,++
i (s), there exists s2 ∈ RN\{i}(s1) such that D(s2, s) 	= 0.

Because D(s2, s) = P++
i (s2, s) · [1 − sign(

m∑
s3=1

Ji(s2, s3)(1 − P++
i (s3, s))],

D(s2, s) 	= 0 implies that for s2 ∈ RN\{i}(s1),

P++
i (s2, s) 	= 0 (6.15)

and
m∑

s3=1

Ji(s2, s3)(1 − P++
i (s3, s)) = 0. (6.16)

(6.15) is equivalent to the statement that, ∀s1 ∈ R+,++
i (s),∃s2 ∈ RN\{i}(s1) such

that s �i s2. (6.16) is the same as the statement that, ∀s1 ∈ R+,++
i (s),∃s2 ∈

RN\{i}(s1) such that P++
i (s3, s) 	= 0 for ∀s3 ∈ Ri(s2). Based on the definition of

m × m matrix P++
i , one knows that P++

i (s3, s) 	= 0 ⇔ s �i s3.

Therefore, we conclude the above discussion that MSMR
i (s, s) = 0 iff for any

s1 ∈ R+,++
i (s), there exists at least one s2 ∈ RN\{i}(s1) with s �i s2 and s �i s3

for all s3 ∈ Ri(s2). �
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Strongly sequential stability examines the credibility of the sanctions by DM i ’s

opponents. First, find matrix M+,++
N\{i} using Corollary 6.6 for H = N\{i}. Define

the m × m strong stability matrix MSSEQ
i for DM i by

MSSEQ
i = J+,++

i · [E − sign
(
M+,++

N\{i} · (P−−
i )T

)
].

Theorem 6.44. State s ∈ S is strongly SEQ (SSEQ) for DM i, denoted by s ∈
SSSEQ

i , iff MSSEQ
i (s, s) = 0.

Proof: Since MSSEQ
i (s, s) = (eT

s · J+,++
i ) · [

(
E − sign

(
M+,++

N\{i} · (P−−
i )T

))
· es]

=
m∑

s1=1

J+,++
i (s, s1)[1 − sign

(
(eT

s1
· M+,++

N\{i} · (eT
s · P−−

i )T
)
],

then

MSSEQ
i (s, s) = 0 ⇔ J+,++

i (s, s1)[1−sign
(
(eT

s1
· M+,++

N\{i}) · (eT
s · P−−

i )T
)
] = 0,∀s1 ∈ S.

This implies that MSSEQ
i (s, s) = 0 iff

(eT
s1
· M+,++

N\{i}) · (eT
s · P−−

i )T 	= 0, ∀s1 ∈ R+,++
i (s). (6.17)

By (6.17), for any s1 ∈ R+,++
i (s), there exists s2 ∈ S such that the m-dimensional

row vector, eT
s1
· M+,++

N\{i}, has sth
2 element 1 and the m-dimensional column vector,

(P−−
i )T · es, has sth

2 element 1.

Therefore, MSSEQ
i (s, s) = 0 iff for any s1 ∈ R+,++

i (s), there exists at least one

s2 ∈ R+,++
N\{i}(s1) with s �i s2. �

In the n = 2 cases, Theorems 6.42 to 6.44 are reduced to those Theorems 6.35

to 6.37, so we use the same notation for two-DM and n-DM cases.

6.3.4 Weak Stabilities for Strength of Preference

Recall that GS denotes a solution concept, GMR, SMR, or SEQ. Then SGS refers

to the strong solution concept of GS, and WGS refers to the weak solution concept

of GS (defined below). The symbol s ∈ SGS
i denotes that s ∈ S is stable for DM

i according to stability GS. Similarly, s ∈ SSGS
i denotes that s ∈ S is strongly

stable for DM i according to strong stability SGS. A state is weakly stable iff it is

stable, but not strongly stable. The formal weak stability concept is defined next.

Definition 6.7. State s is weakly stable WGS for DM i according to stability GS,
denoted by s ∈ SWGS

i , iff s ∈ SGS
i and s /∈ SSGS

i .
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6.3.5 Applications including Strength of Preference

6.3.5.1 Sustainable Development Conflict

The description of the sustainable development conflict is presented in Subsection

6.2.4. The graph model for each DM in this conflict is depicted in Fig. 6.4, where

vertices designate states and arcs represent movement between states. The letter

on a given arc indicates which DM controls the movement while the arrowhead

shows the direction of movement. The preference information for each DM is:

DM 1: s1 >1 s3 �1 s2 ∼1 s4;

DM 2: s3 >2 s1 �2 s4 ∼2 s2.

DM 1 and DM 2’s preference information includes strength. From the graph model,

the UM adjacency matrices for each DM are constructed by

J1 =

⎛
⎜⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎠ and J2 =

⎛
⎜⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎠ .

The preference matrices for the DMs 1 and 2 are given by

P++
1 =

⎛
⎜⎝

0 0 0 0
1 0 1 0
0 0 0 0
1 0 1 0

⎞
⎟⎠ , P+,++

1 =

⎛
⎜⎝

0 0 0 0
1 0 1 0
1 0 0 0
1 0 1 0

⎞
⎟⎠

,

P++
2 =

⎛
⎜⎝

0 0 1 0
0 0 1 0
0 0 0 0
0 0 1 0

⎞
⎟⎠ , and P+,++

2 =

⎛
⎜⎝

0 0 0 0
1 0 1 1
0 0 0 0
1 0 1 0

⎞
⎟⎠ .

Therefore, J+,++
i = Ji ◦ P+,++

i P−−,−,=
i = E − I − P+,++

i , P−−
i = (P++

i )T for
i = 1, 2.

The stability matrices used by Theorems 6.31 to 6.37 are included in Table 6.16,

which are employed to calculate the extended stabilities of Nash, GMR, SMR, and

SEQ, as well as the strong stabilities of SGMR, SSMR, and SSEQ for two-DM

conflicts, respectively.

The stable states and equilibria for the sustainable development conflict are

summarized in Table 6.17, in which “
√

” for a given state means that this state is

stable for DM 1 or DM 2 and “Eq” is an equilibrium for an appropriate solution

concept.

The results provided by Table 6.17 shows that state s1 is strong equilibrium for

the four basic stabilities. State s3 is strongly stable for GMR and SMR. Hence, s1

and s3 are better choices for decision makers.
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Table 6.17: Stability results of the sustainable development conflict with

strength of preference

State Nash GMR SMR SEQ SGMR SSMR SSEQ WGMR WSMR WSEQ

1 2 Eq 1 2 Eq 1 2 Eq 1 2 Eq 1 2 Eq 1 2 Eq 1 2 Eq 1 2 Eq 1 2 Eq 1 2 Eq

s1
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

s2
√ √ √ √ √ √ √

s3
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √

s4
√ √ √ √ √ √ √

6.3.5.2 Garrison Diversion Unit (GDU) Conflict

In this section, the proposed MRSCS method is employed to the Garrison

Diversion Unit (GDU) conflict to illustrate how the procedure works. The history

and background of this conflict are introduced in Section 4.3. The details of the

GDU conflict are described in the book [16]. Recall that the irrigation initiative

for the diversion called the Garrison Diversion Unit project concerns three DMs,

the United States Support (USS), the Canadian Opposition (CDO), and

the International Joint Commission (IJC). The graph model of the GDU

conflict is shown in Fig. 6.6 (1), where the labels on the arcs identify the DMs

who control the relevant moves. If DM i’s oriented arcs are coded in color i, then,

according to the Rule of Priority introduced in Section 5.2, Fig. 6.6 (1) is

converted to an edge labeled multidigraph as shown in Fig. 6.6 (2).

Table 6.18: Preferences for DMs in the GDU conflict [28]

DM Preference

USS s2 > s4 > s3 > s5 > s1 > s6 > s9 > s7 � s8

CDO {s3 ∼ s7} > {s5 ∼ s9} > {s4 ∼ s8} � {s1 ∼ s2 ∼ s6}
IJC {s2 ∼ s3 ∼ s4 ∼ s5 ∼ s6 ∼ s7 ∼ s8 ∼ s9} � s1

The graph model introduced by Hamouda et al. [28] to have strength of

preference in the GDU conflict is used in this section. The preference information

for this conflict over the feasible states is given in Table 6.18 in which s8 is

strongly less preferred to all other states for USS, the DM, CDO considers states

s1, s2, and state s6 to be equally preferred and strongly less preferred relative to

all other states, and s1 is strongly less preferred to all other equally preferred
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Figure 6.6: The labeled graph model for the GDU conflict.

states for IJC. Note that this representation of preference information presented

in Table 6.18 implies that the preferred relations, > and � are transitive. For

instance, since s9 > s7 and s7 � s8, then s9 � s8. However, in general, the

preference structure presented in this research does not require the transitivity of

preference, and hence can handle intransitive preferences.

The GDU conflict is used as an example to show the matrix representation of

solution concepts with strength of preference obtained by carrying out the following

steps. Let N = {1, 2, 3} denote the set of the three DMs in the GDU conflict, i ∈ N ,

and H = N\{i}.

• Construct preference matrices, P++
i and P+,++

i , for i = 1, 2, 3, using

information provided by Table 6.18, then P−−
i = (P++

i )T and

P−−,−,=
i = E − I − P+,++

i ;
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• Calculate the UM weight matrix and the WI weight matrix of coalition H

based on Definition 5.18, preference information presented in Table 6.18,

and statement (5.8). Table 6.19 shows the process how to calculate matrices

W
(UM)
H and W

(WI)
H for H = N\{1};

Table 6.19: Weight matrix of coalition H = N\{1} by the legal UM and

WI sequences for the GDU conflict

Arc number a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18

Weight matrix W Nw Pm Nw Pm Nw Pm Ps Nw Ps Nw Nw Pm Ps Nw Nw Pm Ps Ps

Weight matrix WH 0 0 0 0 0 0 0 0 Ps Nw Nw Pm Ps Nw Nw Pm Ps Ps

W
(UM)
H 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

W
(WI)
H = W+,++

H 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 1

• Construct weighted in-incidence matrix B
(WH)
in and out-incidence matrix

B
(WH)
out for coalition H, based on the graph model and Definition 5.9;

• Calculate the UM adjacency matrix Ji = sign[(B
(W

(UM)
i )

out ) · (B(W
(UM)
i )

in )T ] and

the WI adjacency matrix J+,++
i = sign[(B

(W+,++
i )

out ) · (B
(W+,++

i )
in )T ] for

i = 1, 2, 3, by Corollary 6.5 and Theorem 5.3;

• Calculate DM i’s UM reachability matrix of coalition H

MH = sign[(B
(W

(UM)
H )

out ) · (LJHr + I)l1−1 · (B(W
(UM)
H )

in )T ]

and WI reachability matrix of coalition H

M+,++
H = sign[(B

(W+,++
H )

out ) · (LJ+,++
Hr

+ I)l4−1 · (B(W+,++
H )

in )T ],

using Corollaries 5.9, 6.2, and 6.6, and Theorem 5.2 for l1 = |AH | and l4 =

|A+,++
H |, where

LJHr = LJ
(W

(UM)
H )

r = [(B
(W

(UM)
H )

in )T · (B(W
(UM)
H )

out )] ◦ (El − D)

and

LJ+,++
Hr

= LJ
(W+,++

H )
r = [(B

(W+,++
H )

in )T · (B(W+,++
H )

out )] ◦ (El − D);
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• Analyze the stabilities of Nash, GMR, SMR, and SEQ, as well as the strong

stabilities, SGMR, SSMR, and SSEQ, by Theorems 6.38 to 6.44 for the GDU

conflict using the stability matrices summarized in Table 6.20.

Table 6.20: Stability matrices for n-DM conflicts with strength of

preference
Types of Stability matrices

stabilities

MNash
i = J+,++

i

Standard MGMR
i = J+,++

i · [E − sign
(
MN\{i} · (P−−,−,=

i )T
)
]

stabilities MSMR
i = J+,++

i · [E − sign(MN\{i} · G)], with

G = (P−−,−,=
i )T ◦ [E − sign

(
Ji · (P+,++

i )T
)
]

MSEQ
i = J+,++

i · [E − sign
(
M+,++

N\{i} · (P−−,−,=
i )T

)
]

Strong MSGMR
i = J+,++

i · [E − sign
(
MN\{i} · (P−−

i )T
)
]

stabilities MSSMR
i = J+,++

i · [E − sign(MN\{i} · D)], with

D = (P++
i ) ◦ [E − sign

(
Ji · (E − P++

i )
)
]

MSSEQ
i = J+,++

i · [E − sign
(
M+,++

N\{i} · (P−−
i )T

)
]

The stability results for the GDU conflict with strength of preference are

summarized in Table 6.21, in which “
√

” for a given state under a DM means

that this state is stable at a given level for the given DM; Note that U, C, and I

displayed in Table 6.21 denote the three DMs, USS, CDO, and IJC, respectively.

Obviously, state s4 is an equilibrium for Nash stability, and is strong GMR,

strong SMR, and strong SEQ. State s9 is a strong equilibrium for GMR and

SEQ.

6.4 Summary

An integrated algebraic method is developed to represent several graph model

stability definitions for various preference structures using explicit matrix

formulations instead of graphical or logical representations. Matrix

representations of solution concepts for simple preference (MRSC) [67, 69], for

preference with uncertainty (MRSCU) [66, 73], and for preference with strength

(MRSCS) [76,77] are provided for the four basic graph model stability definitions.

These explicit algebraic formulations allow algorithms to assess rapidly the
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Table 6.21: Stability results of the GDU conflict with strength of

preference

State Nash GMR SMR SEQ SGMR SSMR SSEQ WGMR WSMR WSEQ
U C I Eq U C I Eq U C I Eq U C I Eq U C I Eq U C I Eq U C I Eq U C I Eq U C I Eq U C I Eq

s1
√ √ √ √ √ √ √ √ √ √ √ √ √ √

s2
√ √ √ √ √ √ √ √ √ √ √ √ √ √

s3
√ √ √ √ √ √ √ √ √ √ √ √ √ √

s4
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

s5
√ √ √ √ √ √ √ √ √ √ √ √ √

s6
√ √ √ √ √ √ √ √ √ √ √ √ √ √

s7
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

s8
√ √ √ √ √ √ √ √ √ √ √ √ √ √

s9
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

stabilities of states, and to be applied to large and complicated conflict models.

Because of the nature of these explicit expressions, the matrix representations

discussed here can be adapted to new solution concepts and contexts.
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Chapter 7

Matrix Representations for Status

Quo Analysis and Coalition

Analysis

The analysis system of GMCR consists of stability analysis and post-stability

analysis including status quo analysis and coalition analysis in a graph model.

Although pseudo-codes for status quo analysis [47, 48] and basic coalition

stability analysis [43] have been developed, they are not yet implemented into a

decision support system for use in practical applications. An innovative matrix

system to represent various preference structures and calculate corresponding

stabilities in a graph model has been presented in Chapter 6. The matrix

representation effectively converts the stability analysis from a logical structure

to an algebraic system. Due to the difficulty in integrating status quo analysis

and coalition stability analysis into the DSS GMCR II and the ease of

implementing the matrix representation of stability analysis, it is natural to

exploit the matrix approach to perform status quo analysis and coalition analysis.

7.1 Matrix Representation for Status Quo

Analysis

It is well-known that matrices can efficiently describe adjacency of vertices, and

incidence of arcs and vertices in a graph, thereby permitting tracking of paths
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between any two vertices [24]. Matrices possess useful algebraic properties that

can be exploited to produce improved algorithms for solving graph problems. For

instance, extensive research has been conducted to design effective algorithms and

efficient search procedures by using relationships between matrices and paths [26,

33,60].

In a graph model of a conflict, status quo analysis is a form of follow-up analysis

designed to trace the evolution of the conflict from a status quo state to any stable

state. A legal path in the graph model has the usual restriction that any DM

may move more than once, but not twice consecutively. Moreover, Chapter 5

has shown that edge weights can be used to represent preference attributes. The

fundamental problem of status quo analysis is thus equivalent to search all weighted

colored paths from a given initial state to a desirable state within an edge-weighted,

colored multidigraph.

The traditional use of adjacency matrix to search paths is applicable in a simple

digraph. The proposed method based on the adjacency matrix will be presented

in Subsection 7.1.1 to show its advantages in tracking conflict evolution. However,

this method is based on searching state-by-state paths. If a graph model contains

two or more arcs between the same two states controlled by different DMs, the

adjacency matrix is unable to track all aspects of conflict evolution from a status

quo state. An incidence matrix can represent multidigraphs if all edges are labeled.

The proposed algebraic approach to searching for the colored paths in a colored

multidigraph presented in Chapter 5 starts with a unique edge-labeling rule and

then devises a conversion function based on the incidence matrix to transform

the colored multidigraph to a simple digraph. The proposed algebraic approach

to searching for edge-weighted, colored paths can have many applications, one of

which is a main theme of this section.

7.1.1 Status Quo Analysis: Adjacency Matrix

In this subsection, matrix representation is developed for conducting status quo

analysis in the graph model for conflict resolution. We now demonstrate how to

find matrices to trace conflict evolution by the legal sequences of UMs or UIs from

a status quo with the last mover DM i. First, define two m×m matrices M
(t)
i and

M
(t,+)
i with their (s, q) entries as follows:

Definition 7.1. In the graph model G = (S,A), let H ⊆ N . For i ∈ H and
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t = 1, 2, 3, · · · ,

M
(t)
i (s, q) =

{
1 if q ∈ S is reachable by H from s ∈ S in exactly t legal

UMs with last mover i,
0 otherwise,

and

M
(t,+)
i (s, q) =

{
1 if q ∈ S is reachable by H from s ∈ S in exactly t legal

UIs with last mover i,
0 otherwise.

Based on Definition 7.1, we have

Lemma 7.1. In the graph model G = (S,A), let H ⊆ N . Then the two m × m

matrices M
(t)
i and M

(t,+)
i can be expressed inductively by

M
(1)
i (s, q) = Ji(s, q) and, for t = 2, 3, . . . ,M

(t)
i = sign[(

∨
j∈H\{i}

M
(t−1)
j ) · Ji], (7.1)

and

M
(1,+)
i (s, q) = J+

i (s, q) and, for t = 2, 3, . . . ,M
(t,+)
i = sign[(

∨
j∈H\{i}

M
(t−1,+)
j ) · J+

i ].

(7.2)

Proof : The verifications of (7.1) and (7.2) are similar. Now we verify the

statement (7.2). For t = 2, the definition of matrix multiplication shows that

G(s, q), the (s, q) entry of the matrix G = (
∨

j∈H\{i}
J+

j ) · J+
i , is nonzero iff state q

is reachable from state s by H in exactly two UIs, with last mover DM i. The

condition j ∈ H\{i} implies that DM i does not make two moves consecutively.

Hence, G(s, q) 	= 0 iff state q is reachable by H from state s in exactly two legal

UIs. Then

sign[(
∨

j∈H\{i}
J+

j ) · J+
i ] = sign[(

∨
j∈H\{i}

M
(1,+)
j ) · J+

i ] = M
(2,+)
i .

Now suppose that t > 2. Since

M
(t−1,+)
j (s, q) =

{
1 if q ∈ S is reachable by H from s ∈ S in exactly t − 1 legal

UIs with last mover j,
0 otherwise,

the definition of matrix multiplication implies that the (s, q) entry of matrix

B = sign[(
∨

j∈H\{i}
M

(t−1,+)
j ) · J+

i ]
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indicates

B(s, q) =

{
1 if q ∈ S is reachable by H from s ∈ S in exactly t legal

UIs with last mover i,
0 otherwise,

which confirms (7.2). �
Next we define two status quo matrices MSQ(t)

i and MSQ(t,+)

i to trace conflict

evolution from a status quo to any equilibrium by the legal sequences of UMs and

UIs as follows:

Definition 7.2. In the graph model G = (S,A), let H ⊆ N . For i ∈ H and

t = 1, 2, 3, · · · , the UM status quo matrix and the UI status quo matrix are two

m × m matrices with (s, q) entries

MSQ(t)

i (s, q) =

{
1 if q ∈ S is reachable by H from s ∈ S in at most t legal UMs

with last mover DM i,
0 otherwise,

MSQ(t,+)

i (s, q) =

{
1 if q ∈ S is reachable by H from s ∈ S in at most t legal UIs

with last mover DM i,
0 otherwise.

Specifically, MSQ(t)

i (s, q) = 1 and MSQ(t,+)

i (s, q) = 1 denote that state q is

reachable from status quo state s in at most t legal UMs and legal UIs by H,

respectively, with last mover i. Based on Definitions 7.1 and 7.2, Theorem 7.1 can

be derived.

Theorem 7.1. In the graph model G = (S,A), let H ⊆ N , i ∈ H and k ≥ 1 be

an integer. Then status quo matrices MSQ(k)

i and MSQ(k,+)

i satisfy that

MSQ(k)

i =
k∨

t=1

M
(t)
i , (7.3)

MSQ(k,+)

i =
k∨

t=1

M
(t,+)
i . (7.4)

Proof : The proofs of (7.3) and (7.4) are similar. We prove equation (7.4). Let

MSQ(k,+)

i (s, q) denote the (s, q) entry of the matrix MSQ(k,+)

i . Based on Definition

7.2, MSQ(k,+)

i (s, q) = 1 iff q is reachable by H from SQ = s in at most k legal UIs,

with last mover i ∈ H.

Let (
k∨

t=1

M
(t,+)
i )(s, q) denote the (s, q) entry of the matrix

k∨
t=1

M
(t,+)
i . By

Definition 7.1, (
k∨

t=1

M
(t,+)
i )(s, q) = 1 iff there exists 1 ≤ t ≤ k, such that
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M
(t,+)
i (s, q) = 1. i.e., q is reachable by H from SQ = s in exactly t legal UIs, with

last mover i. It implies that q is reachable from SQ = s in at most k legal UIs,

with last mover i. Consequently, (
k∨

t=1

M
(t,+)
i )(s, q) = 1 iff MSQ(k,+)

i (s, q) = 1. Since

MSQ(k,+)

i and
k∨

t=1

M
(t,+)
i are m × m 0-1 matrices, it follows that

MSQ(k,+)

i =
k∨

t=1

M
(t,+)
i . �

Any nonzero entry (s, q) of the two status quo matrices MSQ(t)

i and MSQ(t,+)

i

shows that the desired outcome state q is reachable from the status quo state s in

at most t legal UMs and t legal UIs, respectively, with last mover i.

7.1.2 Application: Status Quo Analysis using

State-by-State Approach to the Elmira Conflict

In this subsection, the proposed matrix approach to status quo analysis is applied

to the Elmira conflict to illustrate how the procedure works. As a small

agricultural town renowned for its annual maple syrup festival, Elmira is located

in southwestern Ontario, Canada. In 1989, the Ontario Ministry of

Environment (MoE) detected that the underground aquifer supplying water

for Elmira was polluted by N-nitroso demethylamine (NDMA). A local pesticide

and rubber manufacturer, Uniroyal Chemical Ltd. (UR), was identified,

since the prime suspect as NDMA is a by-product of its production line. Hence, a

Control Order was issued by MoE, requiring that UR take expensive measures to

remedy the contamination. UR immediately appealed to repeal this control

order. The Local Government (LG) consisting of the Regional Municipality of

Waterloo and the Township of Woolwich, sided with MoE and sought legal

advice from independent consultants on its role to resolve this conflict

(see [29,43] for more details).

Hipel et al. [29] established a graph model for this conflict, comprised of three

DMs: 1.MoE, 2.UR, and 3.LG; and five options: 1.Modify−Modify the

Control Order to make it more acceptable to UR; 2.Delay−Lengthen the appeal

process; 3. Accept−Accept the current Control Order; 4.Abandon−Abandon

its Elmira operation; and 5.Insist−Insist that the original Control Order be

applied. Although there exist 32 mathematically possible states, given the five

options in this model, many of them are infeasible for a variety of reasons and
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Table 7.1: Options and feasible states for the Elmira model [29, 43]
MoE

1. Modify N Y N Y N Y N Y −
UR

2. Delay Y Y N N Y Y N N −
3. Accept N N Y Y N N Y Y −
4. Abandon N N N N N N N N Y

LG
5. Insist N N N N Y Y Y Y −

State number s1 s2 s3 s4 s5 s6 s7 s8 s9

�� �� �� ��

� �� �� ��

��

Figure 7.1: A graph model for the Elmira conflict [29,43].

only 9 states are identified as being feasible and listed in Table 7.1 (where a “Y”

indicates that an option is selected by the DM controlling it, an “N” means that

the option is not chosen, and a dash “−” denotes that the entry may be “Y” or

“N”). The graph model of the Elmira conflict is shown in Fig. 7.1, in which

labels on the arcs indicate the DM who controls the move; and preference

information over the states is given in Table 7.2.

Let N = {1, 2, 3} be the set of three DMs (1=MoE, 2=UR, and 3=LG). To

carry out status quo analysis for the Elmira model by using the proposed matrix

approach, the following steps are needed:

• Construct matrices Ji and P+
i for i = 1, 2, 3, using information provided by

Fig. 7.1 and Table 7.2;
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Table 7.2: Preferences for DMs in the Elmira conflict [29]

DM Preference
MoE s7 � s3 � s4 � s8 � s5 � s1 � s2 � s6 � s9

UR s1 � s4 � s8 � s5 �s9 �s3 � s7 � s2 � s6

LG s7 � s3 � s5 � s1 � s8 � s6 � s4 � s2 � s9

• Calculate the UI adjacency matrices J+
i = Ji ◦ P+

i for i = 1, 2, 3,;

• Determine the matrices M
(t)
i and M

(t,+)
i for i = 1, 2, 3, using inductive

formulations provided by Lemma 7.1; and

• Calculate the status quo analysis matrices MSQ(k)

i and MSQ(k,+)

i for i = 1, 2, 3,

using Theorem 7.1.

Status quo analysis is mainly concerned with the attainability of predicted

equilibria. Therefore, stability analysis is usually conducted first. Traditionally,

stability analysis is performed by using the DSS GMCR II. Here, to demonstrate

the effectiveness of the matrix approach, stability analyses are carried out by

using the matrix method developed in Section 6.1 for four basic solution concepts

consisting of Nash stability, general metarationality (GMR), symmetric

metarationality (SMR), and sequential stability (SEQ). The results are

summarized in Table 7.3, in which “
√

” for a given state under a DM means that

this state is stable for a given DM; and “
√

” for a state under Eq signifies that

this state is an equilibrium for a corresponding solution concept. It is trivial to

verify that the stability results for the four solution concepts are identical to the

findings generated by GMCR II. Table 7.3 identifies three states s5, s8, and s9 as

ideal equilibria because they are stable for all DMs and for the four solution

concepts.

Matrix manipulations generate the status quo analysis matrices given in Table

7.4 (with all UMs) and Table 7.5 (with UIs only). As the status quo state is s1,

we can assess the attainability of any state from the status quo by examining its

corresponding entry in the first row for each DM, where a value of 1 indicates

that the associated state is reachable from s1 and a value of 0 means that the

corresponding state is not reachable. Given the three matrices in Table 7.4, it

is obvious that the three ideal equilibria, s5, s8, and s9, are all attainable. For

instance, MSQ(3)

MoE (1, 8) = 1, MSQ(3)

UR (1, 8) = 1, and MSQ(3)

LG (1, 8) = 1 demonstrate
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Table 7.3: Stability results of the Elmira conflict
State Number Nash GMR SMR SEQ

MoE UR LG Eq MoE UR LG Eq MoE UR LG Eq MoE UR LG Eq

s1
√ √ √ √ √ √ √ √ √ √ √ √

s2
√ √ √ √ √ √ √

s3
√ √ √ √ √ √ √

s4
√ √ √ √ √ √ √ √ √ √ √ √

s5
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

s6
√ √ √ √ √ √ √ √

s7
√ √ √ √ √ √ √ √

s8
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

s9
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

that the ideal equilibrium state s8 is reachable from s1 in at most three UMs with

the last mover being any of the three DMs, MoE, UR or LG. On the other hand,

as the only non-zero (1, 5) entry of the three matrices is MSQ(3)

LG (1, 5), equilibrium

s5 can be reached from the status quo in at most three UMs with LG being the

unique last mover. Similarly, the ideal equilibrium s9 is reachable from s1 in at

most three UMs with a unique last mover UR.

When only UIs are allowed as shown in Table 7.5, only the ideal equilibrium

s5 can be reached from state s1 in at most three UIs with last mover LG, because

the unique non-zero entry in the first row of the three matrices is MSQ(3,+)

LG (1, 5).

If a different state is selected as the status quo state, one can conveniently

examine the elements of the corresponding row in the relevant status quo analysis

matrices to evaluate the attainability of any state that is of interest.

By using the proposed inductive formulations in Theorem 7.1, the status quo

analysis result can also be presented in a tableau form as shown in Table 7.6 in

which number 1, 2, or 3 denotes DM 1, DM 2, or DM 3, as well as Ω(k) and

Ω(k,+) are the set of all last DMs in at most k legal sequences of UMs and UIs

from some status quo, respectively. Note that in Table 7.6, state s1 (
√

) and state

s2 (
√

) are sequentially selected as the status quo by the legal sequence of UMs

and UIs, respectively. It is easy to verify the equivalence of these results here and

those given by Li et al. [47], except for the difference in recording the last mover

information. This table offers a wealth of information, such as the specific DM(s)

as the last mover(s) and the shortest path(s) to reach a state. For example, the
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Table 7.4: UM status quo matrices for the Elmira conflict

Matrix MSQ(3)

MoE MSQ(3)

UR MSQ(3)

LG

State s1 s2 s3 s4 s5 s6 s7 s8 s9 s1 s2 s3 s4 s5 s6 s7 s8 s9 s1 s2 s3 s4 s5 s6 s7 s8 s9

s1 0 1 0 1 0 1 0 1 0 0 0 1 1 0 0 1 1 1 0 1 1 0 1 1 1 1 0

s2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 1 0 1 0

s3 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 0

s4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0

s5 0 1 0 1 0 1 0 1 0 0 0 1 1 0 0 1 1 1 1 1 1 1 0 1 1 0 0

s6 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 0 0 0 1 0

s7 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 1 0

s8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0

s9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

shortest path to the ideal equilibrium s8 from s1 requires three legal UMs with any

of the three DMs being the last mover.

By taking status quo analysis into account, additional insights are revealed

about the attainability of any potential resolution and, if attainable, the dynamics

of conflict evolution from the status quo state is demonstrated. The results offered

by Table 7.6 are identical to those provided by Li et al. [47].

The novel matrix approach to status quo analysis designed here is convenient

for computer implementation and easy to employ, as is illustrated by an application

to a real-world conflict case: the Elmira conflict. However, the proposed approach

is based on the adjacency matrix to search state-by-state paths. If a graph model

contains multiple arcs between the same two states controlled by different DMs,

the state-by-state paths will not be able to track all aspects of the evolution of

a conflict from the status quo state, and an expanded model will be needed to

allow for searching arc-by-arc paths. The algebraic approach to searching the edge-

weighted, colored paths is developed in Chapter 5. The wide realm of applicabilities

is illustrated by a set of real-world conflict cases, which is the objective of the next

subsection.

7.1.3 Status Quo Analysis: Edge Consecutive Matrix

Usually, the status quo, or initial state, is specified when a graph model is

developed—the conflict is viewed as starting from the status quo and then
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Table 7.5: UI status quo matrices for the Elmira conflict

Matrix MSQ(3,+)

MoE MSQ(3,+)

UR MSQ(3,+)

LG

State s1 s2 s3 s4 s5 s6 s7 s8 s9 s1 s2 s3 s4 s5 s6 s7 s8 s9 s1 s2 s3 s4 s5 s6 s7 s8 s9

s1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

s2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 1 0 1 0

s3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0

s4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

s5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

s6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0

s7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

s8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

s9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

passing from state to state, according to moves and countermoves controlled by

individual DMs, until it stops, eventually, at some equilibrium. A graph model

may have many equilibria; some equilibria may be reachable from the status quo

by multiple paths, while others may not be reachable at all. Status quo analysis

aims to determine whether a particular equilibrium is reachable from the status

quo and, if so, how to reach it [47]. The proposed algebraic approach uses the

results of Graph Theory to assist in analyzing a graph model and conflict

evolution in the graph model by carrying out the following steps:

• The state set S is treated as a vertex set V and DM i’s oriented arcs

Ai ⊆ A are coded in color i ∈ N , then a graph model (S,A) of a conflict is

equivalent to a colored multidigraph (V,A,N, ψ, c) with appropriate

preference relations, where ψ and c are two functions with ψ : A → V × V

such that ψ(a) = (u, v) for a ∈ A and u, v ∈ V , and c : A → N such that

c(a) ∈ N is the color of a ∈ A;

• By the proposed Rule of Priority, the oriented arcs in the colored

multidigraph are labeled according to the color order; within each color,

according to the sequence of initial nodes; and within each color and initial

node, according to the sequence of terminal nodes;

• The incidence matrix B can represent the colored multidigraph after all edges

are labeled;
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Table 7.6: The results of status quo analysis for the Elmira conflict

State Ω(0) Ω(1) Ω(2) Ω(3) Ω(4) State Ω(0,+) Ω(1,+) Ω(2,+) Ω(3,+) Ω(4,+)

s1

√
s2

√

s2 1 1 1,3 1,3 s4 2 2 2 2

s3 2 2 2,3 2,3 s6 3 3 3 3

s5 3 3 3 3 s9 2 2,3 2,3 2,3

s9 2 2 2 2 s8 2 2 2

s4 1,2 1,2 1,2 s1

s6 1,3 1,3 1,3 s3

s7 2,3 2,3 2,3 s5

s8 1,2,3 1,2,3 s7

• Based on preference structures such as simple preference, preference with

uncertainty, and strength of preference, weight matrix W is designed to

represent preference information for some preference framework (details

presented in equations (5.6), (5.7), and (5.8));

• A graph model is thus conveniently treated as an edge-weighted, colored

multidigraph (V,A,N, ψ, c, w) in which each arc represents a legal unilateral

move, distinct colors refer to different DMs, and the weight along the arc

identifies some preference attribute;

• Tracing the evolution of a conflict in status quo analysis is converted to

searching all weighted colored paths between a status quo and a possible

equilibrium for some preference structure;

• Let the weighted incidence matrix B(W ) represent an original edge-weighted,

colored multidigraph (V,A,N, ψ, c, w). Then the conversion function

F (B(W )) = [(B
(W )
in )T · B(W )

out ] ◦ (El − D)

transforms the problem of searching edge-weighted, colored paths in a

weighted colored multidigraph to a standard problem of finding paths in a

simple digraph with no color constraints;

• Using existing algorithms or the proposed algorithm presented in Table 5.1,

the paths between any two edges can be found in a simple digraph;
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Figure 7.2: The weighted colored graph for the Elmira conflict.

• If AS and AE are the two sets of arcs starting from vertex s and arcs ending

at vertex q with

AS = {a ∈ A : B
(W )
out (s, a) 	= 0} and AE = {b ∈ A : B

(W )
in (q, b) 	= 0},

then paths between any two vertices, PA(W )(s, q) for s, q ∈ V , can be

obtained by the paths between two appropriate arcs by

PA(W )(s, q) = {PA(W )(a, b) : a ∈ AS, b ∈ AE}.

7.1.3.1 Application: Status Quo Analysis of the Elmira Conflict for

Simple Preference

The background of the Elmira conflict is introduced in Subsection 7.1.2. If the

state set S = {s1, s2, · · ·, s9} is treated as a vertex set V = {v1, v2, · · ·, v9} and DM

i’s oriented arcs are coded in colors blue, red, and black for i = 1, 2, 3, respectively,

then the graph model of the Elmira conflict shown in Fig. 7.1 with preference

information is equivalent to a weighted colored multidigraph presented in Fig.

7.2, in which wk(u, v) denotes the weight of arc ak = (u, v). Although no DM

is explicitly shown in the labeled graph, the index number of an arc uniquely

determines the DM who controls it when all arcs have been numbered according to

the Rule of Priority. Recall that ci denotes the cardinality of arc set assigned color
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i, i.e., ci = |Ai|, where Ai = {x ∈ A : c(x) = i} for each i ∈ N . Specifically, based

on the number of arcs in i’s graph Gi for i = 1, 2, 3, c1 = |A1| = 4, c2 = |A2| = 12,

and c3 = |A3| = 8 provided by Fig. 7.1 for the graph model of the Elmira conflict,

arcs a1 to a4 are controlled by DM 1 or MoE, arcs a5 to a16 by DM 2 or UR, and

arcs a17 to a24 by DM 3 or LG. The weight of each arc in Fig. 7.2 is assigned based

on preference information

s7 �1 s3 �1 s4 �1 s8 �1 s5 �1 s1 �1 s2 �1 s6 �1 s9;

s1 �2 s4 �2 s8 �2 s5 �2 s9 �2 s3 �2 s7 �2 s2 �2 s6;

s7 �3 s3 �3 s5 �3 s1 �3 s8 �3 s6 �3 s4 �3 s2 �3 s9.

Therefore, the diagonal weight matrix, the UM weight matrix, and the UI weight

matrix of the Elmira conflict are constructed in Table 7.7.

Table 7.7: UM and UI weight matrices for the Elmira conflict

Arc number a1 a2 a3 a4 a5 a6 a7 a8 a9 a10a11a12a13a14a15a16a17a18a19a20a21a22a23a24

W NwNwNwNwNwNwPwPwPwNwNwNwPwPwPwNwPwPwPwPwNwNwNwNw

W (UM) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

W+ 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 0 1 1 1 1 0 0 0 0

Let

F (B(W (UM))) = [(B
(W (UM))
in )T · (B(W (UM))

out )] ◦ (El − D)

denote a conversion function. It transforms the labeled multidigraph by node-by-

node to the reduced weighted line digraph by arc-by-arc that is a simple digraph

with no color constraints to find all evolution of the Elmira conflict by allowing

all UMs. The conversion process is depicted in Fig. 7.3 in which each hexagon

denotes an arc. Status quo analysis is mainly concerned with the attainability of

predicted equilibria. Therefore, stability analysis is usually conducted first. Table

7.3 provides states s5, s8, and s9 are likely resolutions for the Elmira conflict. The

three ideal equilibria are reachable from status quo s = s1 by the legal UM paths

PA(s1, s) for s = s5, s8, and s9. (See details in Subsection 5.4.1).
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Figure 7.3: Conversion graph for finding evolutionary UM paths for the

Elmira conflict.
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Figure 7.4: Graph conversion for finding evolutionary UI paths for the

Elmira conflict.

Let B =⇒ B(W+), then the labeled graph is converted to the reduced colored

multidigraph Fig. 7.4(1) including UI arcs only. Let

F (B(W+)) = [(B
(W+)
in )T · (B(W+)

out )] ◦ (El − D).

The conversion function transforms the original problem of searching the legal UI

paths in an edge-colored graph with no repeated colors to the standard problem

finding the UI paths on a graph with no color constraints (See Fig. 7.4(2)). For

example, if status quo is selected as s2, then Fig. 7.5(a) shows the UI conflict

evolution by arc-by-arc from s2 for the Elmira conflict. Note that the single arc

a8 does not appear in Fig. 7.5(a) though it is a UI arc and states are denoted by

their indexes to make figures clear. Fig. 7.5(b) depicts all possible UI paths from

state s2 by state-by-state and includes the paths of length 1. Obviously, the ideal

equilibrium state s5 cannot be reachable by UIs from status quo state s2.
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Figure 7.5: Evolutionary paths by UIs with status quo state s2.

7.1.3.2 Application: Status Quo Analysis of the Gisborne Conflict for

Preference with Uncertainty

In this subsection, the proposed matrix method is applied to a case study — status

quo analysis of the Gisborne conflict including preference uncertainty. The history

and background of the Gisborne conflict is introduced in Subsection 3.4. The edge

labeled multidigraph is portrayed in Fig. 7.6 (1) equivalent to the graph model

shown in Fig. 6.5. The weight of each arc in Fig. 7.6 (1) is assigned based on

preference information

s2 �1 s6 �1 s4 �1 s8 �1 s1 �1 s5 �1 s3 �1 s7;

s3 �2 s7, s4 �2 s8, s1 �2 s5, s2 �2 s6, only;

s3 �3 s4 �3 s7 �3 s8 �3 s5 �3 s6 �3 s1 �3 s2.

Therefore, the diagonal weight matrix, the diagonal UM weight matrix, the

diagonal UI weight matrix, and the diagonal UIUUM weight matrix of the

Gisborne conflict are constructed in Table 7.8.

Based on the extended preference structure with uncertainty, Li et al. [46]

redefine Nash stability, general metarationality, symmetric metarationality, and

sequential stability for graph models with preference uncertainty. According to

whether uncertain preferences are deemed as sufficient incentives to motivate the

focal DM leaving the current state and credible sanctions to deter the focal DM
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Table 7.8: UM, UI, and UIUUM Weight matrices for the Gisborne

conflict

Arc numbera1 a2 a3 a4 a5 a6 a7 a8 a9 a10a11a12a13a14a15a16a17a18a19a20a21a22a23a24

W PwNwPwNwPwNwPwNwUwUwUwUwUwUwUwUwPwPwNwNwNwNwPwPw

W (UM) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

W+ 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1

W+,U 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1

from doing so, the aforesaid four types of stability are redefined in four different

manners and indexed a, b, c, and d. These four extensions are conceived to depict

DMs with distinct risk profiles in face of uncertainty. Li et al. [46] identify states s4,

s6 and s8 as equilibria under extension b and d for the Gisborne conflict using logical

stability definitions and the proposed algebraic approach presented in Subsection

6.2.4.2 obtain the same results by matrix representation of stabilities. Note that

for the stability definitions under extensions b and d, the focal DM is conservative

in deciding whether to move away from the current state, since it would only move

to preferred states (UIs). For details, one can refer to Subsection 6.2.4.

In parallel to extensions b and d that predict the three equilibria s4, s6, and s8,

we examine the evolution paths PA+ (allowing UIs only) from a status quo to the

three equilibria. Based on the UI weight matrix W+ constructed in Table 7.8, let

F (B(W+)) = [(B
(W+)
in )T · (B(W+)

out )] ◦ (El − D)

denote a conversion function that transforms the labeled multidigraph Fig. 7.6 (1)

to the reduced line digraph Fig. 7.6 (2) including UI arcs only that is a simple

digraph with no color constraints. Therefore, finding colored UI paths in Fig. 7.6

(1) is equivalent to searching paths in Fig. 7.6 (2) without constraints. If the

status quo is s1, it is obvious that the equilibria s4 and s8 can not be reached by

legal UIs and the equilibrium s6 is the only equilibrium that is attainable from

the status quo. Specifically, the evolutionary paths PA+(s1, s6) can be described

below:

a1 −→ a18 ⇐⇒ s1 −→ s2 −→ s6,

a17 −→ a5 ⇐⇒ s1 −→ s5 −→ s6.
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Figure 7.6: The conversion graphs for finding the evolutionary UI paths

for the Gisborne conflict.

However, if UIUUMs are allowed, equilibrium s8 is attainable from the status

quo s1. The UIUUM weight matrix W+,U is defined in Table 7.8. Using conversion

matrix B(W+,U ), the labeled graph in Fig. 7.6 (1) is reduced to Fig. 7.7 (1) that

illustrates the evolution of the graph model for the Gisborne conflict with allowing

UIUUMs only. By the conversion function F (·), the colored multidigraph in Fig.

7.7 (1) is transformed to the reduced line digraph in Fig. 7.7 (2). Searching colored

paths PA+,U(s1, s8) in Fig. 7.7 (1) is equivalent to finding paths PA+,U(a1, a14),

PA+,U(a1, a7), PA+,U(a9, a14), PA+,U(a9, a7), PA+,U(a17, a14), and PA+,U(a17, a7)

in Fig. 7.7 (2). Therefore, the evolution of the Gisborne conflict by the legal

UIUUMs from status quo state s1 to equilibrium s8 is illustrated as follows:

a1 −→ a18 −→ a14,

a9 −→ a3 −→ a12 −→ a18 −→ a14,
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a17 −→ a5 −→ a14,

a17 −→ a13 −→ a23 −→ a3 −→ a12 −→ a18 −→ a14,

a17 −→ a13 −→ a23 −→ a11 −→ a1 −→ a18 −→ a14,

a17 −→ a13 −→ a7.
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Figure 7.7: The conversion graphs for finding the evolutionary UIUUM

paths for the Gisborne conflict.

After transforming a colored multidigraph to a simple digraph under conversion

functions, existing algorithms such as those reported in [50] and [65] can be used

to find all paths or search for the shortest path.

7.1.3.3 Application: Status Quo Analysis of the GDU Conflict for

Strength of Preference

As post-stability analysis, the status quo analysis aims at assessing whether

predicted equilibria are reachable from the status quo or any other initial state.
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Hence, after the stability analysis for the GDU conflict is carried out in the graph

model with strength of preference in Subsection 6.3.5, status quo analysis as a

post-stability analysis is discussed in this subsection. The history and

background of the GDU conflict are introduced in Subsections 4.4 and 6.3.5. The

graph model for the GDU conflict Fig. 4.8 is equivalent to the labeled graph Fig.

7.8 (1). Based on preference information
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Figure 7.8: Transformation of the graph model for the GDU conflict.

s2 >1 s4 >1 s3 >1 s5 >1 s1 >1 s6 >1 s9 >1 s7 �1 s8,

{s3 ∼2 s7} >2 {s5 ∼2 s9} >2 {s4 ∼2 s8} �2 {s1 ∼2 s2 ∼2 s6},
{s2 ∼3 s3 ∼3 s4 ∼3 s5 ∼3 s6 ∼3 s7 ∼3 s8 ∼3 s9} �3 s1,

the l× l diagonal weight matrix, the UM weight matrix, and the WI weight matrix

are constructed in Table 7.9.

By taking status quo analysis into account, additional insights are revealed

about the attainability of any potential resolution. Table 6.21 indicates that state
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Table 7.9: Weight matrix, UM weight matrix, and WI weight matrix for

the GDU conflict

Arc number a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18

Weight matrix W Nw Pm Nw Pm Nw Pm Ps Nw Ps Nw Nw Pm Ps Nw Nw Pm Ps Ps

UM weight matrix W (UM) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

WI weight matrix W+,++ 0 1 0 1 0 1 1 0 1 0 0 1 1 0 0 1 1 1

s4 is a strong equilibrium for Nash stability, GMR, SMR, and SEQ. State s9 is a

strong equilibrium for GMR and SEQ. When state s1 is selected as a statu quo,

all possible UM evolutionary paths of the GDU conflict from s1 to the equilibrium

s4 are obtained using the following steps:

• Using the UM weight matrix provided by Table 7.9, construct the conversion

function

F (B(W (UM))) = [(B
(W (UM))
in )T · (B(W (UM))

out )] ◦ (El − D);

• This conversion function transforms the labeled multidigraph Fig. 7.8 (1) to

the reduced line digraph Fig. 7.8 (2) including all UM arcs that is a simple

digraph with no color constraints;

• Searching the colored paths PA(s1, s4) between two vertices s1 and s4 in Fig.

7.8 (1) is equivalent to finding all paths PA(a, b) for a ∈ AS, b ∈ AE in Fig.

7.8 (2), where AS and AE are the two sets of arcs starting from vertex s1

and arcs ending at vertex s4;

• AS = {a17, a18} and AE = {a4, a9};

• Finding the legal UM paths PA(a17, a4), PA(a17, a9), PA(a18, a4), and

PA(a18, a9) in the simple digraph Fig. 7.8 (2);

• PA(a17, a4) : a17 → a1 → a10 → a4; PA(a17, a9) : a17 → a9;

• Find paths between two vertices, s1 and s4, using the paths between

corresponding two arcs:

a17 → a1 → a10 → a4 ⇔ s1 → s2 → s3 → s5 → s4,

a17 → a9 ⇔ s1 → s2 → s4.
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If a conversion function is designed by F (B) = B · W+,++, then the original

graph Fig. 7.8 (1) is reduced to the graph shown in Fig. 7.9 including WIs

only. The dynamics of the GDU conflict evolution from the status quo state s1

to the desirable equilibrium state s9 by the legal WIs is portrayed in Fig. 7.10.

Specifically, the evolution path PA+,++(s1, s9) of the GDU conflict from state s1

to state s9 is

s1 → s6 → s8 → s9.

Status quo analysis for the multiple levels of preference will be carried out in future

research that is listed in Subsection 8.2.
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Figure 7.9: The reduced graph allowing WIs only for the GDU conflict.

7.2 Matrix Representations for Coalition

Stability Analysis

Any subset H of DMs in the set N is called a coalition. If |H| > 0, then the

coalition H is non-empty. If |H| > 1, then the coalition H is non-trivial. If

H = {i} is trivial, the DM i’s reachable lists from a state s ∈ S by various moves

for appropriate preference structures are as follows [16,27,46]:

• Ri(s): DM i’s reachable list from state s by unilateral moves (UMs) in one

step;

• R+
i (s): DM i’s reachable list from state s by unilateral improvements (UIs)

in one step;
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Figure 7.10: The GDU conflict evolution from the status quo s1 to state

s9.

• R+,U
i (s): DM i’s reachable list from state s by unilateral improvements or

unilateral uncertain moves (UIUUMs) in one step;

• R+,++
i (s): DM i’s reachable list from state s by mild unilateral improvements

or strong unilateral improvements (WIs) in one step.

If |H| > 1 is non-trivial, the reachable lists of coalition H from state s ∈ S by

various moves for appropriate preference structures are as follows [16,28,46]:

• RH(s): the reachable list of coalition H from state s by the legal UMs;

• R+
H(s): the reachable list of coalition H from state s by the legal UIs;

• R+,U
H (s): the reachable list of coalition H from state s by the legal UIUUMs;

• R+,++
H (s): the reachable list of coalition H from state s by the legal WIs.

Therefore, for |H| > 0, the reachable lists of coalition H from state s are the sets

of states attainable by adding states that are one-step moves from state s by some

DM in H or adding states that are group moves from status quo state s by some

or all DMs in H. Note that the DMs in H do not cooperate. They are assumed

to move in some order according to the usual restriction for the legal moves that

no decision maker can move twice in succession along any path.

A state that is not an equilibrium has no long-term stability because there

is at least one individual DM who has the incentive to move away to upset the
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temporarily stable state [43]. Therefore, a non-equilibrium state is not expected

to persist in any case, including coalition stability. The following discussions of

coalition stability are focused on the status quo states that are equilibria. The

coalition stability analysis within the graph model assesses whether states that

are stable from individual viewpoints may be unstable for coalitions. Therefore,

coalition analysis provides valuable guidance for decision analysts.

To date, coalition analysis is based on Nash stability [43], GMR, SMR, and

SEQ [36, 37] for simple preference. However, to make coding easier, these

stabilities are based on a transitive graph that allows the same DM to move twice

in succession, which is inconsistent with the standard restriction in the graph

model. The condition of a transitive graph for coalition analysis is relaxed and

coalition stabilities based on Nash stability are extended to models including

preference uncertainty and strength of preference, which are the objectives of the

next subsection. Additionally, the existing coalition stabilities are given in terms

of logical representations, which make coding and calculation difficult. To

implement coalition analysis in an algebraic system, matrix representation of

coalition stability analysis (MRCSA) is developed next.

7.2.1 Extension of Coalition Stability in the Graph Model

The original coalition analysis uses simple preference. To enhance GMCR

applicability, the graph model has recently been developed in two new

directions—preference uncertainty and preference strength. Therefore, coalition

stability analysis is expanded to models including preference uncertainty and

strength of preference in this research.

7.2.1.1 Coalition Stability in the Graph Model with Preference

Uncertainty

A DM may be conservative or aggressive, avoiding or accepting states of

uncertain preference, depending on the level of satisfaction with the current

position. Coalition stability is extended to consider conservative coalition

stability and aggressive coalition stability for the graph model with preference

uncertainty.

Definition 7.3. For s1 ∈ RH(s), s1 is a coalition improvement (CI) by H

from state s iff, for every i ∈ H, s1 �i s.
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Although this definition has not concerned uncertain preference, it is different from

Definition 2.42 of a coalition improvement by H for simple preference, because

Definition 2.42 cannot be employed to analyze models with uncertain preference.

Definition 7.4. For s1 ∈ RH(s), s1 is a coalition improvement or uncertain

move (CIUM) by H from state s iff, for every i ∈ H, s1 �i s or s1Uis.

A coalition improvement or uncertain move s1 by H is a threat, or potential threat,

to the stability of state s. A coalition improvement or uncertain move for H from

state s is a state s1 that is reachable by H from s and preferred or having uncertain

preference relative to s by every DM in H.

Definition 7.5. State s is unstable for coalition H iff there exists a coalition

improvement or uncertain move by H from s.

Note that even if s is stable for each DM i ∈ N , the instability of state s for a

coalition H makes it unlikely to survive as a resolution. We now define some forms

of stability for coalitions in a graph model including preference uncertainty.

Definition 7.6. Let H ⊆ N . State s ∈ S is conservatively stable for

coalition H iff, for every s1 ∈ RH(s), there exists i ∈ H with s �i s1 or sUis1.

Coalition H is said to be conservative in deciding whether to move from the status

quo, because the coalition H is not willing to accept the risk associated with moves

from the status quo to states of uncertain preference.

Definition 7.7. Let H ⊆ N . State s ∈ S is conservatively coalitionally

stable iff s is conservatively stable for every coalition H.

Similarly, coalition H may be aggressive when considering whether to move

from a status quo, in that the coalition is deterred only by states that are strictly

less preferred than the status quo.

Definition 7.8. Let H ⊆ N . State s ∈ S is aggressively stable for coalition

H iff, for every s1 ∈ RH(s), there exists i ∈ H with s �i s1.

Although Definition 7.8 excludes uncertainty in preferences when the focal DM

considers incentives to leave a state, they are different from Definitions 2.44 since

stability Definitions 2.44 cannot analyze conflicts including uncertain preferences.
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Definition 7.9. State s ∈ S is aggressively coalitionally stable iff s is

aggressively stable for every coalition H ⊆ N .

When coalition H is trivial with H = {i}, Definition 7.6 is reduced to the

following stability definition.

Definition 7.10. State s ∈ S is conservatively stable for DM i iff for every

s1 ∈ Ri(s), s �i s1 or sUis1.

Obviously, Definition 7.10 is equivalent to Nashb and Nashd stabilities. Let us

recall Nashb and Nashd stabilities.

Definition 7.11. State s ∈ S is Nashb stable or Nashd stable for DM i iff

R+
i (s) = ∅.

When coalition H = {i}, Definition 7.8 is reduced to the following stability

definition.

Definition 7.12. State s ∈ S is aggressively stable for DM i iff for every

s1 ∈ Ri(s), s �i s1.

Definition 7.12 is equivalent to Nasha and Nashc stabilities. Recall them as

follows.

Definition 7.13. State s ∈ S is Nasha stable or Nashc stable for DM i iff

R+,U
i (s) = ∅.

7.2.1.2 Coalition Stability in the Graph Model with Strength of

Preference

Definition 7.14. For s1 ∈ RH(s), s1 is a coalition strong or mild

improvement by H from state s iff, for every i ∈ H, s1 �i s or s1 >i s.

Definition 7.15. State s is unstable for coalition H iff there exists a coalition

strong or mild improvement by H from s.

It should be pointed out even if s is an equilibrium for DM set N , it is possible s

is unstable for a coalition H ⊆ N . If so, s cannot be selected as a resolution for a

conflict.

Definition 7.16. Let H ⊆ N . State s ∈ S is stable for coalition H iff, for

every s1 ∈ RH(s), there exists i ∈ H with s ≥i s1 or s �i s1.
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Note that if H = {i} is trivial, then the stability for coalition H = {i} is identical

with Nash stability for DM i in the graph model with strength of preference. Recall

that Nash stability for strength of preference.

Definition 7.17. State s ∈ S is Nash stable for DM i ∈ N iff R+,++
H (s) = ∅.

Definition 7.18. State s ∈ S is coalitionally stable iff s is stable for every coalition

H ⊆ N .

7.2.2 Matrix Representation of Coalition Stabilities

The explicit algebraic expressions are advantageous for calculating potential

resolutions and tracking conflict evolution. It is natural to exploit the matrix

approach to perform coalition stability analysis for simple preference, preference

with uncertainty, and strength of preference.

7.2.2.1 Matrix Representation of Coalition Stabilities for Simple

Preference

Recall that E is the m × m matrix with each entry equal to 1 and eT
s denotes the

transpose of the sth standard basis vector of the m-dimensional Euclidean space.

Let MH denote the UM reachability matrix by H ⊆ N and find it using Corollary

6.2. The preference matrix P−,=
i denotes the m × m matrix with (s, q) entry

P−,=
i (s, q) =

{
1 if s �i q or s ∼i q,
0 otherwise.

Define the m × m coalition stability matrix by

MC
H = MH · [E − (P−,=

H )T ], where P−,=
H =

∨
i∈H

P−,=
i .

Theorem 7.2. Let H ⊆ N and | H |≥ 2. State s ∈ S is stable for coalition H iff

eT
s · MC

H · es = 0.

Proof: Since

eT
s · MC

H · es = (eT
s · MH) · [(E − (P−,=

H )T
) · es]

=
m∑

s1=1

MH(s, s1)[1 − P−,=
H (s, s1)],
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then eT
s · MC

H · es = 0 iff P−,=
H (s, s1) = 1 for any s1 ∈ RH(s). Clearly,

P−,=
H (s, s1) = (

∨
i∈H

P−,=
i )(s, s1) = 1

iff there exists i ∈ H such that P−,=
i (s, s1) = 1, i.e., s �i s1. Consequently, the

proof of the theorem follows by Definition 2.44. �

Theorem 7.3. State s ∈ S is coalitionally stable iff
∑

∀H⊆N,|H|≥2

eT
s · MC

H · es = 0.

Proof: Since
∑

∀H⊆N,|H|≥2

eT
s · MC

H · es = 0 iff for any H ⊆ N with | H |≥ 2,

eT
s · MC

H · es = 0. By Theorem 7.2, eT
s · MC

H · es = 0 iff s ∈ S is stable for coalition

H. Consequently,
∑

H⊆N,|H|≥2

eT
s · MC

H · es = 0 iff s ∈ S is stable for any coalition

H ⊆ N with | H |≥ 2. The proof is completed by Definition 2.45. �
Theorems 7.2 and 7.3 prove the proposed matrix representation of coalition

stability analysis (MRCSA) equivalent to logical representations of coalition

stabilities (see Subsection 2.2.7) proposed by Kilgour et al. [43]. The matrix

representation can be extended to models including uncertain preference, which

is the objective of the next subsection.

7.2.2.2 Matrix Representation of Coalition Stabilities for Preference

with Uncertainty

Let P−,=,U
i denote the m × m preference matrix with (s, q) entry

P−,=,U
i (s, q) =

{
1 if s �i q, s ∼i q or sUiq,
0 otherwise.

Define the m × m conservative coalition stability matrix by

MCUc
H = MH · [E − (P−,=,U

H )T ], where P−,=,U
H =

∨
i∈H

P−,=,U
i .

Theorem 7.4. Let H ⊆ N and | H |≥ 2. State s ∈ S is conservatively stable for

coalition H iff eT
s · MCUc

H · es = 0.

The proof of this theorem is similar to that for Theorem 7.2.

Let P−,=
i denote the m × m preference matrix with (s, q) entry

P−,=
i (s, q) =

{
1 if s �i q or s ∼i q,
0 otherwise.

Define the m × m aggressive coalition stability matrix by

MCUa
H = MH · [E − (P−,=

H )T ], where P−,=
H =

∨
i∈H

P−,=
i .
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Theorem 7.5. Let H ⊆ N and | H |≥ 2. State s ∈ S is aggressively stable for

coalition H iff eT
s · MCUa

H · es = 0.

The proof of this theorem is similar to that for Theorem 7.2.

Theorems 7.4 and 7.5 prove the proposed matrix representation of coalition

stability analysis (MRCSA) for preference with uncertainty equivalent to logical

representations of coalition stabilities proposed by Definitions 7.6 and 7.8. The

matrix representation can also be extended to models including strength of

preference, which is the objective of the next subsection.

7.2.2.3 Matrix Representation of Coalition Stabilities for Preference

with Strength

Let P+,++
i denote the m × m preference matrix with (s, q) entry

P+,++
i (s, q) =

{
1 if q >i s or q �i s,
0 otherwise.

Define the m × m coalition stability matrix in the graph model with strength of

preference by

MCS
H = MH · (P+,++

H )T , where E − P+,++
H =

∨
i∈H

(E − P+,++
i ).

Theorem 7.6. Let H ⊆ N and | H |≥ 2. State s ∈ S is stable for coalition H in

the graph model with strength of preference iff eT
s · MCS

H · es = 0.

The proof of this theorem is similar to that for Theorem 7.2. Based on Theorem

7.6, the following result can be easily obtained.

Theorem 7.7. State s ∈ S is coalitionally stable in the graph model with strength

of preference iff
∑

∀H⊆N,|H|≥2

eT
s · MCS

H · es = 0.

Theorems 7.6 and 7.7 prove the proposed matrix representation of coalition

stability analysis (MRCSA) for strength of preference equivalent to the logical

representations of coalition stabilities proposed by Definitions 7.16 and 7.18. The

novel matrix approach to coalition stability analysis designed here is convenient

for computer implementation and easy to employ, as is illustrated by the following

applications to real-world conflict cases.
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7.2.3 Applications

7.2.3.1 Coalition Stability Analysis for the Elmira Conflict including

Simple Preference

The proposed algebraic method in this thesis has been employed to carry out

stability analysis and status quo analysis for the Elmira conflict (see Subsections

7.1.2 and 7.1.3.1). Stability results presented in Table 7.3 indicates that states s5,

s8 and s9 are ideal equilibria for the Elmira conflict because they are stable for all

DMs and the four basic solution concepts.

However, the story of the Elmira conflict does not end here. If DMs cooperate

to make some agreements, resolution selections for the Elmira conflict will be

impacted due to the cooperations among three DMs. For example, if MoE and

UR form a coalition, then the coalition prefers state s8 to state s5, though neither

MoE nor UR can make unilateral move from state s5 to state s8. In fact, state

s8 ∈ RH(s5), s8 �1 s5, and s8 �2 s5. Therefore, s8 is a coalition improvement for

coalition H = {MoE,UR} from state s5. Coalition stability matrices provided by

Table 7.10 using Theorem 7.2 demonstrate that the individual ideal equilibrium

s5 is unstable for the coalition H = {MoE,UR} = {1, 2}, because the diagonal

element at entry (5, 5) of the coalition stability matrix MC
H is nonzero, i.e.,

MC
H (5, 5) = eT

5 · MC
H · e5 	= 0. Therefore, under communication and cooperation,

the individual ideal equilibrium state s5 is vulnerable to coalition moves and the

instability of state s5 for the coalition H makes it unlikely to survive as a

resolution for the Elmira conflict. Since MC
N\{i}(8, 8) = MC

N\{i}(9, 9) = 0, for

i = 1, 2, 3, then states s8 and s9 are not only highly stable individually but also

coalitionally stable.

7.2.3.2 Coalition Stability Analysis for the Gisborne Conflict with

Preference Uncertainty

The history and background of the Gisborne conflict is introduced in Subsection

3.4. This conflict is modeled using three DMs: DM 1, Federal (Fe); DM 2,

Provincial (Pr); and DM 3, Support (Su). The Federal Government of Canada

sided with the opposing groups by introducing a policy to forbid bulk water export

from major drainage basins in Canada. The provincial government might restart

the project at an appropriate time in the future due to its urgent need for cash and

several support groups remain interested in the project [46]. Stability analysis and
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Table 7.10: Coalition stability matrices for H = N\{i} for the Elmira

conflict

Matrix MC
N\{1} MC

N\{2} MC
N\{3}

State s1 s2 s3 s4 s5 s6 s7 s8 s9 s1 s2 s3 s4 s5 s6 s7 s8 s9 s1 s2 s3 s4 s5 s6 s7 s8 s9

s1 0 1 1 0 1 1 1 0 1 1 1 0 0 1 1 0 0 1 0 1 1 1 1 1 0 1 1

s2 0 1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 1 0 1 0 1 1 1 0 1 1

s3 0 1 0 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 0 1 1

s4 0 1 0 0 0 1 0 1 1 0 1 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1

s5 1 1 1 1 0 1 1 1 1 1 1 0 0 0 1 0 0 1 0 1 0 0 1 1 1 1 1

s6 0 1 0 1 0 1 0 1 1 0 1 0 0 0 0 0 0 1 0 1 0 0 1 1 0 1 1

s7 0 1 1 0 0 1 0 0 1 1 1 1 1 1 1 0 1 1 0 1 0 0 1 1 0 1 1

s8 0 1 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1

s9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

status quo analysis for the Gisborne conflict have been performed in Subsections

6.2.4.2 and 7.1.3.2 using the proposed algebraic method. Using the results provided

by Table 6.15, states s4 and s6 are equilibria for the four basic solution concepts

indexed b and d, so s4 and s6 are likely resolutions for the Gisborne conflict with

preference uncertainty.

If the provincial government prefers the suggestion of the support group, then

is called an economics-oriented provincial government, which implies that

Provincial and Support cooperate to form a coalition H = {Pr, Su}. The

graph model of the Gisborne conflict shows that neither Provincial nor

Support can make a unilateral move from state s6 to state s4, but s4 ∈ RH(s6).

We first use the logical coalition stability presented by Definition 7.8 to analyze

the coalition stabilities of states s4 and s6. Since s4U2s6 and s4 �3 s6, state s4 is

a coalition improvement or uncertain move from s6 for H. Hence, s6 is unstable

for the aggressive stability of coalition H = {Pr, Su}. Similarly, we can analyze

the aggressive stability of coalition H = {Pr, Su} for state s4.

Using the proposed matrix representation for coalition stability analysis, the

conservative and aggressive stability matrices of coalition H = N\{i} for

i = 1, 2, 3, for the Gisborne conflict are presented in Table 7.11 and Table 7.12.

Using the information provided by Table 7.11, states s4 and s6 are conservatively

stable for the three coalitions, because conservative stability matrices of the

coalitions have entries (4, 4) and (6, 6) zeros, i.e., MCUc
N\{i}(4, 4) = MCUc

N\{i}(6, 6) = 0
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for i = 1, 2, 3. Therefore, states s4 and s6 are conservatively coalitionally stable.

However, from Table 7.12, the aggressive stability matrix of coalition

H = {Pr, Su} has (4, 4) entry 0, i.e., MCUa
N\{1}(4, 4) = 0, but MCUa

N\{1}(6, 6) 	= 0.

This means that s4 is a resolution for the Gisborne conflict when the provincial

government is economics-oriented. Similarly, since MCUa
N\{3}(4, 4) 	= 0, but

MCUa
N\{3}(6, 6) = 0, state s6 is a resolution for the Gisborne conflict when the

provincial government is environment-oriented to accept the federal government’s

suggestion. From the above discussions, we find that the selection of the conflict

resolution depends on the provincial government’s attitude. If the support group

convinces the provincial government of the urgent need for cash, state s4 is

selected as a resolution for resolving the Gisborne conflict. It means that the

economics-oriented provincial government will lift the ban on bulk water export.

On the other hand, for the environment-oriented provincial government, the

resolution for the Gisborne conflict is selected as state s6, which means that the

provincial government will not lift the ban.

Table 7.11: Conservative stability matrices of coalition H = N\{i} for

i = 1, 2, 3 for the Gisborne model

Matrix MCUc
N\{1} MCUc

N\{2} MCUc
N\{3}

State s1 s2 s3 s4 s5 s6 s7 s8 s1 s2 s3 s4 s5 s6 s7 s8 s1 s2 s3 s4 s5 s6 s7 s8

s1 1 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 0 1 1 1 0 1 1 1

s2 0 1 0 1 0 1 0 1 1 0 0 0 1 1 0 0 1 0 1 1 1 0 1 1

s3 1 0 0 0 1 0 1 0 1 0 0 1 1 0 1 1 1 1 0 1 1 1 0 1

s4 0 1 0 0 0 1 0 1 1 0 1 0 1 0 1 1 1 1 1 0 1 1 1 0

s5 1 0 1 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 1 1

s6 0 1 0 1 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 1 0 1 1

s7 1 0 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 0 0 0 1 1 0 1

s8 0 1 0 1 0 1 0 1 1 0 1 1 1 0 1 1 0 0 0 0 1 1 1 0

7.3 Summary

In the original graph model, stability analysis and status quo analysis are carried

out within a well-designed logical structure [16,47,48]. Nonetheless, the nature of

the logical representations makes coding difficult and reduces adaptability. The

algorithms for status quo analysis in the graph model for simple preference and
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Table 7.12: Aggressive stability matrices of coalition H = N\{i} for i =

1, 2, 3 for the Gisborne model

Matrix MCUa
N\{1} MCUa

N\{2} MCUa
N\{3}

State s1 s2 s3 s4 s5 s6 s7 s8 s1 s2 s3 s4 s5 s6 s7 s8 s1 s2 s3 s4 s5 s6 s7 s8

s1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 1 1 1 1 1 1 1 1

s2 1 1 0 1 1 1 1 1 1 0 0 0 1 1 0 0 1 0 1 1 1 0 1 1

s3 1 1 0 0 1 1 1 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1

s4 1 1 0 0 1 1 0 1 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1

s5 1 1 1 1 1 1 1 1 1 1 0 0 0 1 0 0 1 0 1 1 1 1 1 1

s6 1 1 0 1 1 1 1 1 1 1 0 0 1 0 0 0 1 0 1 0 1 0 1 1

s7 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 1 1

s8 1 1 0 1 1 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 1 1

preference with uncertainty [47, 48], as well as coalition stability analysis in the

graph model for simple preference [43] have been outlined, but were never

integrated into GMCR II. Strength of preference was introduced into the graph

model for stability analysis [27, 28], but was never integrated into status quo

analysis.

To overcome these challenges and keep consistency with matrix

representations of stability analysis, the proposed algebraic approach is employed

with status quo analysis [71, 75, 80] and coalition analysis in this chapter.

Additionally, the algebraic approach also reveals a relationship between stability

analysis and post-stability analysis. This algebraic method facilitates the

development of improved algorithms to incorporate status quo analysis and

coalition stability analysis into a DSS.
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Chapter 8

Conclusions and Future Work

8.1 Summary of Contributions

To enhance the applicability for the graph model for conflict resolution, GMCR

has been developed in this thesis in two new directions—hybrid preference and

multiple levels of preference. The hybrid preference framework is proposed to

integrate preference strength and preference uncertainty into the paradigm of

GMCR for multiple decision makers. This structure offers decision makers a

more flexible mechanism for preference expression, which can include not only

strong or mild preference of one state or scenario over another and equal

preference, but also uncertain preference between two states. The preference

framework is more general than existing models, which consider preference

strength and preference uncertainty separately. The new stability concepts for

hybrid preference expand the realm of applicability of GMCR and provide new

insights for strategic conflicts. Particular advantages along this direction of

research described in Chapter 3 are as follows:

• A new hybrid preference system combining strength and uncertainty for

preferences, {�, >,∼, U}, is proposed in Section 3.1 to include simple

preference {�,∼}, preference with uncertainty {�,∼, U}, and strength of

preference {�, >,∼} as special cases. Therefore, the new structure can be

used to model complex strategic conflicts arising in practical applications.

• Four solution concepts, Nash, GMR, SMR, and SEQ, are expanded in

Section 3.2 to take into account a wide range of preference frameworks.

The redefined solution concepts handle hybrid preference and provide new
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insights for conflict studies.

• The algorithms are developed in Section 3.3 to accommodate the essential

inputs of stability and status quo analyses efficiently. Specifically, the

algorithms to find the reachable lists R+,++
H (s) and R+,++,U

H (s) for coalition

H from any status quo s by legal sequences of WIs and WIUUMs are

developed. All aspects of conflict evolution from a status quo are tracked,

whether states changes occur by WIs or WIUUMs.

A multiple-level preference framework is developed and incorporated into

GMCR. In this structure, a decision maker may have multiple levels of preference

for one state over another; for example, if state s is preferred to state q, it may

be mildly preferred at level 1 or preferred at level r for any positive parameter r.

The multiple levels of preference relax the limitation of the current strength of

the preference which can only handle two or three levels to an unrestricted

degree. Then the extended definitions include extra degrees of stability, thereby

improving practicability and gaining better insights into strategic conflicts.

Specifically,

• A new multiple-level preference framework is devised in Section 4.1 to expand

two-level preference {�,∼} and three-level preference {�, >,∼} to a more

general multiple-level preference {>,�, · · ·,
d︷ ︸︸ ︷

> · · · >,∼} for d = 1, 2, · · ·, r,
where the number of levels, r, is unrestricted.

• Four solution concepts are extended in Section 4.2 to handle multiple levels

of preference. Specifically, solution concepts at each level k are defined as

Nashk, GMRk, SMRk, and SEQk for k = 1, · · ·, r, where r is the maximum

number of levels of preference between two states.

Another contribution is to use Algebraic Graph Theory to analyze a graph

model. In this thesis, a graph model is treated as an edge-weighted, colored

multidigraph in which each arc represents a legal unilateral move, distinct colors

refer to different decision-makers, and the weight along the arc identifies some

preference attribute. An important restriction of a graph model is that no

decision maker can move twice in succession along any path. An algebraic

approach to finding all edge-weighted, colored paths within a weighted colored

multidigraph is developed in Chapter 5. The algebraic approach relieves the
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restriction imposed by the current graph model methodology on the behaviors of

the decision maker and establishes an integrated paradigm for stability analysis

and post-stability analysis, such as status quo analysis and coalition stability

analysis, by revealing the inherent links not only between status quo analysis and

the traditional stability analysis, but also among different preference structures

for GMCR. It is obvious that this algebraic structure is flexible and can be easily

modified to handle large-scale graph models. Specifically

• A reduced weighted edge consecutive matrix LJ
(W )
r is designed in Subsection

5.3.1 as a conversion function to transform a weighted colored multidigraph

to a simple digraph with no color constraints.

• This conversion function is used to transform the original problem of

searching edge-weighted, colored paths in a weighted colored multidigraph

to a standard problem of finding paths in a simple digraph.

• Using this conversion function, the weighted reachability matrix is developed

to bridge the gap between status quo analysis and stability analysis.

• Utilizing the weight matrix to integrate all of the graph model preference

structures.

Useful links between matrix theory and GMCR are revealed in this thesis.

Previous stability definitions in the graph model were defined logically, in terms

of the underlying graphs and preference relations. Thus, as has been observed

previously, procedures to identify stable states based on these definitions are

difficult to code because of the nature of the logical representations. To overcome

this limitation, stability definitions in multiple-decision-maker graph models for

simple preference, preference with uncertainty, and strength of preference are

formulated explicitly in terms of matrices in Chapter 6. Specifically,

• Matrix representation of four basic solution concepts (MRSC) for simple

preference is developed and its potentially wide realm of applicability is

illustrated by two case studies: the Superpower Nuclear Confrontation

conflict and the Rafferty-Alameda dams conflict.

• The MRSC method is expanded to models with preference uncertainty

(MRSCU) for multiple decision makers and the two case studies of
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Sustainable Development game and the Lake Gisborne conflict are used to

show the applicability of this proposed matrix method.

• Strength of preference is proposed into the algebraic system to address

matrix representation of four basic solution concepts for strength of

preference (MRSCS). The developed MRSCS method is carried out using

two case studies: the Sustainable Development conflict and the Garrison

Diversion Unit (GDU) conflict.

The proposed matrix method is used for follow-up analyses such as status quo

analysis and coalition stability analysis in a graph model, as presented in Chapter

7. Specifically,

• Matrix representation of status quo analysis (MRSQA) by tracking state-by-

state conflict evolution for simple preference is developed and its applicability

is illustrated by the Elmira conflict, in Subsection 7.1.2.

• Matrix representations of status quo analysis are addressed by tracking

arc-by-arc conflict evolution for simple preference, preference with

uncertainty, and strength of preference. The applications of these methods

are illustrated by the Elmira conflict for simple preference, the Gisborne

conflict for preference with uncertainty, and the GDU conflict for strength

of preference, in Subsection 7.1.3.

• Coalition stability analysis based on Nash stability for simple preference is

expanded to models including preference with uncertainty and strength of

preference, in Subsection 7.2.1.

• Matrix representations of coalition stability analysis (MRCSA) are explored

for simple preference, preference with uncertainty, and strength of

preference in Subsection 7.2.2 and their potentials are revealed using two

case studies: the Elmira conflict for simple preference and the Gisborne

conflict for preference with uncertainty, in Subsection 7.2.3.

8.2 Future Work

To expand the realm of applicability of the algebraic approach, a conversion

function will be designed for searching more general paths. To apply the
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proposed matrix methods to large conflict models, a decision support system

MRCRDSS for carrying out individual stability analysis, status quo analysis, and

coalition stability analysis would be very useful. The system based on algebraic

characterization of MRCR can facilitate the development of a software package

for conflict analysis. The following steps will be completed in the future.

• Inohara and Hipel’s work [36,37] for coalition stabilities of Nash, GMR, SMR,

and SEQ will be improved and expanded to generalized metarationalities in

the graph model for conflict resolution;

• Matrix representations of solution concepts for hybrid preference and for

multiple levels of preference will be explored;

• Matrix representations of status quo analysis for hybrid preference and for

multiple levels of preference will be developed;

• A computer implementation of MRSC, MRSQA, and MRCSA in the graph

model with various preference structures will be completed; and

• An integrated decision support system MRCR-DSS with the algebraic

characterization will be developed to achieve the objectives presented in

Fig. 8.1.
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