
The Differential Geometry of

Instantons

by

Benjamin Smith

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Mathematics

in

Pure Mathematics

Waterloo, Ontario, Canada, 2009

c© Benjamin Smith 2009



I hereby declare that I am the sole author of this thesis. This is a true copy of the

thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

The instanton solutions to the Yang-Mills equations have a vast range of prac-

tical applications in field theories including gravitation and electro-magnetism.

Solutions to Maxwell’s equations, for example, are abelian gauge instantons on

Minkowski space. Since these discoveries, a generalised theory of instantons has

been emerging for manifolds with special holonomy. Beginning with connections

and curvature on complex vector bundles, this thesis provides some of the essential

background for studying moduli spaces of instantons.

Manifolds with exceptional holonomy are special types of seven and eight di-

mensional manifolds whose holonomy group is contained in G2 and Spin(7), re-

spectively. Focusing on the G2 case, instantons on G2 manifolds are defined to

be solutions to an analogue of the four dimensional anti-self-dual equations. These

connections are known as Donaldson-Thomas connections and a couple of examples

are noted.
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Chapter 1

Introduction

This thesis may be considered as an elementary introduction to the geometry of

vector bundles and special connections that live on them. The background material

on bundles, connections, and curvature has been developed and explored by many

geometers, and some references are Griffiths, Harris, Huybrechts, and Kobayashi

in [8, 11, 15]. One of the reasons for developing such objects is to describe special

connections that appear in theoretical physics. The instantons are a special type

of connection having minimal Yang-Mills energy and have been studied in great

depth on four manifolds by Atiyah, Donaldson and Kronheimer in [1, 5]. More

recently, instantons have been generalized to special classes of 7 manifolds known

as G2 manifolds. Much work in the area of G2 manifolds and connections on them

is attributed to Donaldson, Karigiannis, Joyce, Leung, and Salamon in [5, 17, 14,

19, 24].

Chapter 2 begins with a motivation and definition of vector bundles along with
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a recipe for construction of those which are most commonly prescribed in practise.

Examples of vector bundles include product, tangent, dual, tensor, exterior, quo-

tient, normal and endomorphism bundles. A distinction is made between trivial

and non-trivial vector bundles which is illustrated through classical examples of

real line bundles on S1. Sections of vector bundles are defined and described in

order to generalize vector valued function theory over manifolds. Equivalence be-

tween frames, which are linearly independent sets of sections, and trivializations is

demonstrated resulting in a theorem about trivializability of vector bundles and ex-

istence of nowhere vanishing frame fields. The rest of the chapter briefly introduces

principal bundles and the associated vector bundles attached to them.

Chapter 3 is intended to serve as an intuitive approach to the ideas and mechan-

ics involved in studying connections as differential operators on sections of vector

bundles. The local representation of connections is examined and transformation

laws are provided. Using these ideas, one now has means of describing parallel

sections with respect to a specified connection. With this, the holonomy group of

any connection on a vector bundle is defined by parallel transport of vectors around

loops in the base space. The holonomy is used to classify bundles in terms of the

possible holonomy groups that connections on them admit. The curvature is then

defined as in usual calculus by applying the connection twice and found to be itself

a tensor. In particular, the curvature tensor is a section of End(E)⊗Λ2(M) fitting

nicely into the framework of bundles. The Levi-Civita connection is described as a

historical landmark in Riemannian geometry being one of the preferred connections
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on the tangent bundle of a real Riemannian manifold and explicit calculations on

TS2 are provided. Flat connections and flat vector bundles are completely classified

over a fixed base as the quotient M̃×ρCr where M̃ is the universal covering space of

the base and ρ is a representation of the fundamental group. Next, moduli spaces

are defined as equivalence classes of connections up to gauge symmetry. Explicit

calculations of moduli spaces for vector bundles with U(1) gauge group are shown

to be the quotient of the first de Rham cohomology group with real coefficients

by the first simplicial homology group with integer coefficients. The moduli space

of flat connections on a trivial complex line bundle over a torus is found to be

again a torus. Finally, Maxwell’s electromagnetic field equations are encoded in

the language of connections which solidifies the practicality of this theory.

Chapter 4 introduces an L2 norm on connections known as the Yang-Mills func-

tional and connections that minimize this norm are of interest. Mathematically,

these connections are analogous to geodesics and their defining equations are found

in a similar fashion. The critical values of the Yang-Mills functional are found to be

harmonic connections and the equations describing these are called the Yang-Mills

equations. The Hodge star operator, given in the appendix, is used to decompose

the space of 2-forms on four manifolds revealing two classes of connections satisfying

the Yang-Mills equations known as instantons. The notion of calibrations is intro-

duced to show that the instantons constructed are in fact of minimal Yang-Mills

energy.

The final chapter describes a particular class of seven manifolds analogous to
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Kähler manifolds whose tangent spaces admit the smoothly varying structure of

a two-fold cross product. This structure along with an orientation and Rieman-

nian metric is encoded in a positive three form called a G2-structure. Using this

structure and a slightly varied version of the Hodge star, the 2-forms on M admit

a decomposition similar to the case of four manifolds. This decomposition allows

for the definition of the Donaldson-Thomas connections which are analogous to the

anti-self dual connections and serve as generalized instanton solutions to the Yang-

Mills equations. Lastly, a particular Donaldson-Thomas connection on R7 allowed

only to depend on the first four variables is examined and found to necessarily be

flat. This type of problem poses as a gateway to further study into the theory of

connections on G2-manifolds.
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Chapter 2

Vector bundles

Motivation and definitions

Consider a point mass traveling in a circle of radius 1 whose path is a curve γ in

R2 parameterized by γ(t) = (cos t, sin t) for t ∈ [0, 2π]. The velocity vector field of

this mass at any given point is expressed as the vector valued function v : S1 → R2

defined by

v(t) =
dγ

dt
= (− sin t, cos t).

This is an example of a tangent vector field on the one sphere. In Maxwell’s

theory of electromagnetism and Einstein’s gravitational physics, there are many

“fields” which play an important role. Often, action at a distance is encoded using

“force fields”. To date, the only known naturally occurring fields of this type

are electromagnetic, gravitational and the strong and weak nuclear forces. In the

case of gravitation, the force between a spherically symmetric mass M of radius R

and a point mass m at any fixed time is represented in spherical coordinates by
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F (r, θ, φ) = −GMm
r2

r̂, where the origin has been chosen at the center of M . This

is a vector valued function F : R3 → R3 pointing in the direction of gravitational

pull whose norm encodes the strength of the pull.

From a theoretical perspective, the notion of a vector bundle is intended to

abstract the concept of tangent vector fields on manifolds to arbitrary vector valued

functions that may be of interest.

These are just a few examples to motivate the need for further investigation of

such geometrical spaces and the functions they admit.

Definition 2.0.1. A rank-r vector bundle E over a (smooth) manifold M is a

family of isomorphic r-dimensional vector spaces {Ep ∼= F}p∈M parameterized by

M having its own personal (smooth) manifold structure and satisfying:

(i) π : E → M , called the projection map, is a continuous (smooth) surjection

such that π−1(p) = Ep, for each p ∈M and

(ii) for each p ∈M , there is a neighbourhood U ⊆M of p and a homeomorphism

(diffeomorphism)

ϕU : EU := π−1(U)→ U × F

that is a point-wise linear isomorphism of vector spaces

ϕU |p : Ep = π−1(p) ∼= {p} × F

These homeomorphisms are called the local trivializations of the total space E

having M as a base space. The family {(Uα, ϕα)} is an atlas for E and the vector

spaces F are the fibres.
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Remark 2.0.2. • This definition is intentionally stated for the weaker case of

continuous maps along side the smooth case in order to reveal the flexibility

of such objects. In fact, there is another type of fibre bundle having Lie groups

for fibres rather than vector spaces. These are called principal bundles and

will be discussed briefly in section 2.4.

• Rank-1 vector bundles are known as a line bundles.

• It is inherent from the definition of a smooth vector bundle that the total

space is again a smooth (dimM + dimF )-dimensional manifold.

• With the exception of the first few conceptual examples, fibres will be taken

to be Cr and we will work with smooth vector bundles only.

When passing between neighbourhoods on the base, it is necessary to determine

the change of coordinates in order to obtain correct calculations. These changes

are expressed, like a manifold, by transition functions

ταβ := ϕα ◦ ϕ−1
β : ϕβ(EUα∩Uβ)→ ϕα(EUα∩Uβ) ∈ End(EUα∩Uβ).

These transition functions evaluate pointwise to linear isomorphisms of Cr, so are

equivalently realized as smooth maps

gαβ : Uαβ := Uα ∩ Uβ → GLr(C).

The simplest natural example of a smooth vector bundle over a smooth manifold

M is the trivial bundle E := M × V having base M , fibres V and natural smooth
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projection π onto M . A global trivialization is given by the identity map on E.

For a visual example, consider the infinite cylinder S1 × R embedded as a two-

dimensional sub-manifold of R3.

The next and potentially most important example is known as the tangent

bundle. For a smooth real n-dimensional manifold M, the tangent bundle TM is

defined as

TM :=
⊔
p∈M

TpM

where TpM is the tangent space of M at p spanned by the n(= dimM) vectors

∂
∂xi
|p := ϕ−1

∗ (p, ei) where (ϕ,U) is a coordinate chart for U ⊆ M containing p and

ei is the ith standard basis vector for the tangent space of Rn at p. This is continued

over the entire manifold to yield trivializations

ϕα : TUα → Uα × Rn

by
n∑
i=1

vi
∂

∂xi
|p 7→ (p,~v).

On the overlap Uαβ := Uα ∩ Uβ of the neighbourhoods Uα, Uβ in M with coor-

dinate systems xα, xβ respectively, we have TUαβ given both in terms of ∂
∂xiα

and

∂
∂xiβ

. The transition functions are given by the Jacobian matrix

[
∂xjβ
∂xiβ

]
in the same

fashion as multi-variable calculus. This is shown using the chain rule

∂

∂xiα
=

n∑
j=1

∂xjβ
∂xiα

∂

∂xjβ

or, in familiar notation,

ταβ = ϕα ◦ ϕ−1
β
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maps (p,
∑n

i=1 vi
∂
∂xiβ

) to (p,
∑n

i,j=1
∂xjα
∂xiβ

vi
∂

∂xjα
) which is captured by the Jacobian. The

Jacobian matrix is nowhere singular since it is obtained from a diffeomorphism and

represents an invertible change of coordinates at every point.

As with any topological or algebraic space, we define a bundle morphism between

two vector bundles π1 : E1 →M1 and π2 : E2 →M2 as a continuous map ϕ : E1 →

E2 along with a continuous map f : M1 → M2 between the base spaces satisfying

f ◦ π1 = π2 ◦ ϕ. This type of commutativity is enforced to ensure that ϕ preserves

the fibre structure of the bundles (i.e. in the case where fibres are vector spaces, we

want the point-wise evaluation to be a linear isomorphism). The map ϕ is called a

bundle map covering f . Two bundles E,F over the same base M are isomorphic

if there exists a bundle morphism ϕ : E → F covering the identity map on M that

is invertible.

A nice result used for recognizing bundle isomorphisms is

Lemma 2.0.3. If h : E1 → E2 is a continuous map between vector bundles over

the same base M covering the identity, then h is an isomorphism of bundles if each

fibre π−1
1 (p) is mapped linear isomorphically to the corresponding fiber π−1

2 (p) in

E2.

See [9] Lemma 1.1 for a proof of this result.

A vector bundle π : E → M is called trivial if it is isomorphic to the product

bundle. For example, this chapter was motivated with the tangent bundle of S1,

which is easily seen to be trivial pending a further result at the end of this chapter.
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There is but one non-trivial real line bundle on S1 known as the Möbius bundle.

This is defined by the equivalence relation M̈ := [0, 2π] × R/ ∼ where (0, λ) ∼

(2π,−λ) for each λ ∈ R. This relation identifies opposite endpoints and represents

a twist in the topological structure.

It should be mentioned that for a vector bundle E over M , their first fun-

damental groups coincide because M is a deformation retract of E. That is,

π1(E) = π1(M).

2.1 Basic results and constructions of bundles

We are now ready to make our very own vector bundles using the following recipe:

Lemma 2.1.1. [Vector Bundle Construction Lemma] Given a smooth manifold M

with open cover {Uα} indexed by a set A along with a (complex) vector space Ep

for each p ∈M each of dimension k, let E :=
⊔
p∈M Ep and π : E →M map Ep to

p. If

• for each α ∈ A, there exists a bijective map Φα : EUα := π−1(Uα)→ Uα × Ck

whose point-wise evaluation is a linear isomorphism of Ep, with {p} × Ck ∼=

Ck, and

• for each α, β ∈ A with Uα ∩ Uβ 6= ∅, there exists a smooth map

gαβ : Uα ∩ Uβ → GLk(C)
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such that the composite map

ταβ := Φα ◦ Φ−1
β : Uα ∩ Uβ × Ck → Uα ∩ Uβ × Ck

evaluates as

ταβ(p, v) = (p, gαβ(p)v).

Then E has a unique smooth manifold structure, making it into a smooth rank-k

vector bundle over M having π as projection and the Φα’s as local trivializations.

The reader is referred to [18] Lemma 5.5. for a proof in the case of real vector

bundles and the generalization to complex vector bundles is identical.

Remark 2.1.2. This result is a bit subtle, and may initially appear to be a jumbled-

up restatement of the definition of a vector bundle. The difference to notice here

is that only the transition functions are required to be smooth. We have reduced

the trivializations to being merely bijective stating nothing explicitly about the

topological structure of E. Also, the projection no longer depends on the topological

structure on the spaces it maps between.

At p ∈ Uαβ the transition functions are written nicely as

ταβ(p, v) = (p, gαβ(p) · v)

where gαβ : Uαβ → GLr(C) is smooth for each α, β. The maps gαβ will be referred

to as the gluing functions. The gluing functions on a vector bundle satisfy a certain

cohomological property called the co-cycle condition:

gαβ ◦ gβα = Ir
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gαβ ◦ gβγ ◦ gγα = Ir,

where Ir is the identity r × r matrix. From the simple observation that gαα = Ir,

these two equations may be reduced to just

gαβ ◦ gβγ = gαγ (2.1.1)

Intuitively, these equations represent the transitivity between change of coordi-

nates on triply overlapping neighbourhoods. For further reading in this direction

see [8] page 34 on Čech cohomology.

As a stronger consequence of Lemma 2.1.1, we find that any family of maps

satisfying the co-cycle condition (2.1.1) defines a vector bundle having these maps

as gluing functions. More precisely,

Theorem 2.1.3. Let M be a smooth manifold with an open cover {Uα}α∈A and

a family of maps G = {gαβ : Uαβ → GLr(C)}α,β∈A. If G satisfies(2.1.1), then it

defines a smooth rank-r vector bundle π : E → M whose gluing functions are the

members of G.

Proof. Define E =
⊔
α∈A(Uα × Ck)/ ∼, given by (p, v) ∼ (p, gαβ(p)v), and a map

π : E → M by π([p, v]) = p sending each fibre Ep = {[p, v] : v ∈ Ck} to p. The

bijective maps required by the construction lemma are basically identity maps given

by

Φα : π−1(Uα)→ Uα × Ck; [p, v] 7→ (p, v)
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and evaluate to a linear isomorphisms on the fibres. On overlapping neighbourhoods

Uα, Uβ, we find

Φα ◦ Φ−1
β (p, v) = (p, gαβ(p)v).

Hence, by Lemma 2.1.1, E is a smooth rank-k vector bundle over M having tran-

sition functions given by the gαβ’s.

The dual bundle is defined using this construction procedure as

E∗ :=
⊔
p∈M

E∗p

with gluing functions g∗αβ inherited through E’s by

(gTαβ)−1 : Uαβ → GLr(C),

where gαβ is the gluing function of E on Uαβ. At first, it seems unclear why

the inverse is necessary. With trivializations ϕα, ϕβ of E, since point-wise these

functions are linear isomorphisms, we are lead to construct trivializations for the

dual bundle as the dual-inverse of the initial ones. That is,

ψα := (ϕ∗α)−1 : E∗Uα → Uα × (Cr)∗

is a nice family of local trivializations for the dual bundle. The transition functions

τ ∗UV : (U ∩ V )× (Cr)∗ → (U ∩ V )× (Cr)∗

are now computed as follows:

τ ∗UV (p, v) := ψU ◦ ψ−1
V (p, v) = (p, ((gUV )∗)−1v)
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where (gUV (x))∗ = ḡUV (x)T is the usual adjoint matrix between complex vector

spaces. These transition functions are smooth and satisfy equation (2.1.1) which

suffices, by Theorem 2.1.3, to say that E∗ is a rank-r vector bundle over M .

This type of proof technique will be standard when constructing new vector

bundles from old. In a similar fashion, we may define the conjugate bundle Ē of E.

The fibres here are given as the componentwise conjugates of the fibres of E and

transition functions by the conjugates of those for E.

Let’s take a look at some classical and practical examples of bundles which are

constructed from others that appear frequently in any geometer’s personal life.

Example 2.1.4 (Standard constructions).

Let E and F be vector bundles over the same base M having r = rank(E), k =

rank(F ) and gluing functions gE, gF respectively.

1. The Whitney sum bundle is the vector bundle constructed by taking the direct

sum of the two fibres at each point of the given bundles. That is,

E ⊕ F :=
⊔
x∈M

Ex ⊕ Fx.

Using Lemma 2.1.1 we find bijective maps Φα := ϕα ⊕ ψα : EUα ⊕ FUα →

Uα × Cr+k, where ϕα, ψα are trivializations of E and F respectively. The

point-wise evaluation Φα,x : Ex⊕Fx → {x}×Cr+k is a linear isomorphism of

vector spaces because both ϕα,x and ψα,x are.
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The gluing functions of such a bundle on overlaps Uαβ are

gαβ(x) =

gEαβ(x) 0

0 gFαβ(x)

 ∈ GLr+k(C).

2. The tensor bundle E ⊗ F :=
⊔
x∈M Ex ⊗ Fx has gluing functions gαβ(x) =

gEαβ(x)⊗ gFαβ(x) ∈ GLr·k(C).

More generally, the (k, l)th tensor bundle τ kl (E) of E is defined as the fibre-

wise (k, l)th tensor power of Ex. That is

τ kl (E) =
⊔
x∈M

E⊗kx ⊗ E∗⊗lx ,

having gluing functions g⊗kαβ ⊗ (g∗αβ)⊗l as expected. The rank of of this bundle

is rank(E)kl.

3. The exterior bundle Λk(M) :=
⊔
x∈M ΛkT ∗M has gluing functions

ταβ = ∧kgαβ : Uαβ → GL(Λk(Cr)),

where

∧kgαβ(p)(e1 ∧ · · · ∧ ek) := ∧ki=1gαβ(p)ei|p.

The entry-wise expansion of this is certainly hideous, but takes almost no

time in the special case of top exterior powers of M (ie, when n = dim(M)).

Indeed, ΛnM has transition functions mapping to GL(∧nCn) = C∗ which
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makes this is a line bundle and the gluing functions are:

n∧
gUV (e1 ∧ · · · ∧ en) =

n∧
i=1

gUV (ei)

=
n∧
i=1

(
n∑
j=1

gjiej)

=

[∑
σ∈Sn

(−1)|σ|
n∏
i=1

giσ(i)

]
∧ni=1 ei

= det(gUV )e1 ∧ · · · ∧ en.

using the relation α ∧ β = −β ∧ α for any α, β ∈ Λ1(M). This line bundle is

known as the determinant bundle of M and is denoted det(M). The co-cycle

conditions for these maps are satisfied since determinants are multiplicative.

The endomorphism bundle is defined as the tensor bundle End(E) := E ⊗ E∗.

A sub-bundle E ′ ⊂ E is an embedded sub-manifold of E which is also a vector

bundle over M having fibres F ′ that are subspaces of the fibres F of E.

Here is an important chain of sub-bundles that should help with the bigger

picture:

Λk(E) ⊂ τ 0
k (E) ⊂ τ lk(E).

It is natural to consider complementary/quotient sub-bundles. The quotient

bundle E/E ′ over M is defined fibre-wise as the quotient of the vector spaces

Ex/E
′
x
∼= F/F ′ for each x ∈M . If {(Uα, ϕα)} is an atlas for E, then an atlas for E ′

is obtained by the restriction ϕ′U := ϕU |E′U : E ′U → U ×F ′ and transition functions
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for E are written

gEαβ(x) =

gαβ(x) ∗

0 hαβ(x)

 ∈ GLl+(k−l)(C)

where g and h are transition functions for E ′ and E/E ′ respectively.

For any embedded sub-manifold M ↪→ N , TM is a subbundle of TN and the

normal bundle is the quotient of tangent bundles

NM := TN/TM.

This bundle has rank n − m where N,M are of dimension n,m respectively. In

particular, when M has codimension 1 in N , the normal bundle is a line bundle.

This is for example the case for surfaces in R3.

For any continuous map f : M → N between manifolds and any vector bundle

π : E → N , define the pullback bundle as

f ∗(E) := {(x, e) ∈M × E : π(e) = f(x)},

with projection map π′ given by (x, e) 7→ x. This results in the following commu-

tative diagram:

f ∗(E)

π′

��

f̃

// E

π

��
M

f // N

,

where π ◦ f̃ = f ◦π′ making f̃ a uniquely defined bundle morphism. Trivializations

of f ∗(E) are inherited through f by

ϕ̃α(x, e) = ϕα(f(x), e).

17



where ϕα are trivializations of E.

2.2 Sections of vector bundles

A section of EU is a smooth map σU : U ⊆M → EU ∼= U×Cr satisfying π◦σ = idU

or equivalently, σ(p) ∈ Ep for each p ∈ U . A frame for EU is a collection of r point-

wise linearly independent sections ~σ = (σ1, . . . , σr). Any section or frame defined

on all of M is called a global section or frame, respectively. Given a local frame

field ~σU , on U , one may represent any section τU on U with respect to ~σU by

τU(p) =
∑r

i=1 τi(p)σi(p) for each p ∈ U . Local sections will be denoted by Γ(EU)

and global sections by Γ(E).

Example 2.2.1.

1. Any smooth function f : M → R is a smooth global section of the trivial

bundle M × R over M .

2. A metric tensor is a symmetric, bilinear section of τ 0
2 (TM) such that, point-

wise over M , it is an inner product on each TxM . The Euclidean metric on

Rn, for example, is expressed locally in this language by

g =
n∑
i=1

dxi ⊗ dxi ∈ τ 0
2 (TM).

Indeed, if X =
∑n

i=1X
i ∂
∂xi
, Y =

∑n
i=1 Y

i ∂
∂xi
∈ TRn are two vector fields,

then

g(X, Y ) =
n∑
i=1

dxi(
n∑
j=1

Xj ∂

∂xj
) · dxi(Y k

n∑
k=1

∂

∂xk
) =

n∑
i=1

X iY i.
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The standard metric for Minkowski space is η = −dt ⊗ dt +
∑3

i=1 dx
i ⊗ dxi,

although this is not positive definite due to the metric’s negative signature.

In general, the positive metrics are the smooth sections of the positive cone of

τ 0
2 (M) meaning, they are smooth and positive definite at every point. These

are commonly known as Riemannian metrics.

3. The differential k-forms on M are sections of Λk(M) :=
∧k(T ∗M), for k ≥ 1,

and Λ0(M) := C∞(M). Locally, these forms are expressed as elements from

a left C∞(M)-module with generating set

{dxi1 ∧ · · · ∧ dxik : 1 ≤ i1 < · · · < ik ≤ dimM}.

Generally, differential forms are used to make measurements such as lengths,

areas and “volumes” on M . As a familiar example, the infinitesimal arc-

length of a curve γ : [0, 1] → M on M at time t is given by the differential

1-form √
g(γ̇, γ̇)dt

where γ̇ is the velocity vector field and ||γ̇||2 = g(γ̇, γ̇) This form may be

integrated along [0, 1] to obtain the total arc-length of γ.

More generally, when computing areas or volumes, the integrand is a differ-

ential form of appropriate degree for the measurement at hand. In particular,

lengths, areas and volumes on three dimensional manifolds are given by 1, 2

and 3-forms, respectively.
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The standard theory of integration on manifolds uses exterior products of

T ∗M and can be found in any of [18, 21, 22].

A generalization of this idea to E-valued k-forms is made by considering the

tensor bundle Λk(E) := E ⊗ Λk(M). This bundle will have sections similar

to the differential k-forms with the C∞(M) coefficients replaced with Γ(E).

Hence, the sections Λ0(E) are defined as Γ(E).

4. The sections of det(M) = Λn(M) are locally equivalent to Γ(E) by the cor-

respondence

σ ↔ σ · dx1 ∧ · · · ∧ dxn

2.3 Frames versus trivializations

A local frame ~σα, induces a local trivialization by

ϕα(
∑

aiσi(x)) := (x, (a1, . . . , ar)).

Conversely, given a local trivialization ϕα : EUα → Uα×Cr, we have a corresponding

local frame defined by

σi(x) := ϕ−1
α (x, ei)

where ei is the ith standard basis vector of Cr.

Now, given a trivialization of our bundle, we may represent any section s of E

locally as a EUα-valued function sα = (f 1, . . . , f r) where

sα(x) =
r∑
i=1

f iϕ−1
α (x, ei),
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and on overlapping neighbourhoods Uαβ, with alternate representation sβ = (g1, . . . , gr)

that must agree so

r∑
i=1

f iϕ−1
α (x, ei) = σα(x) =

r∑
i=1

giϕ−1
β (x, ei) = σβ(x)

which is equivalent to

r∑
i=1

f iei =
r∑
i=1

giϕα ◦ ϕ−1
β (x, ei)

or in matrix notation as

sα = gαβsβ. (2.3.1)

Now, a section is equivalent to a family of smooth vector valued functions {fα :

Uα → Cr} satisfying equation (2.3.1). This leads to a nice result demonstrating the

equivalence between triviality of a vector bundle and the existence of a nowhere

vanishing global frame field on it.

Proposition 2.3.1. A vector bundle π : E →M is trivial if and only if there exists

a nowhere vanishing global frame on E.

Proof. If E = M × V , define global sections as follows: Pick any point p ∈ M

and any basis {v1, . . . , vk} for Ep = {p} × V and the constant sections σi(x) := vi

form a nowhere vanishing global frame field. Conversely, given a global frame field

~σ = (σ1, . . . , σk) for E which never vanishes, a global trivialization is given by

ϕ(e) := (π(e), ~σ(π(e))).

This result may be used to prove that the tangent bundles of S1, S3, and S7 are

trivial. As mentioned earlier, we can prove triviality of TS1 by simply noting that
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the constant tangent vector field (− sin θ, cos θ) is nowhere vanishing. These trivi-

alizations are constructed using the complex, quaternionic and octionion structures

existing on the respective spheres. These are the only spheres which admit such a

trivialization. The non-triviality of TS2 is proven in the section on flat connections.

The reader is directed to any literature on the parallelizability of spheres for the

previous remark such as [9].

The following theorem taken from [21], describes an important algebraic oper-

ator between forms

Theorem 2.3.2. Let ω ∈ Ωk(M) = Γ(Λk(M)), the there exists a unique (k + 1)-

form dω which enjoys all of the following properties:

(i) For local vector fields X0, . . . , Xk ∈ Γ(TU) we have

dω(X0, . . . , Xk) =
k∑
i=0

(−1)iXiω(X0, . . . , X̂i, . . . , Xk)

+
∑
i<j

(−1)i+jω([Xi, Xj], X0 . . . , X̂i, . . . , X̂j, . . . , Xk)

(ii) d(ω ∧ τ) = dω ∧ τ + (−1)deg(ω)ω ∧ dτ

(iii) d(dω) = 0

(iv) For each 0-form f ∈ Ω0(M) = C∞(M), df is the usual differential, given in

local coordinates by

df =
∂f

∂xi
dxi

(v) In the case of a smooth map ψ : M → N between manifolds, d(ψ∗ω) = ψ∗(dω).

22



dw is called the exterior derivative of ω and d is a linear map

d : Ωk(M)→ Ωk+1(M).

2.4 Principal Bundles

Given a Lie group G and a smooth manifold M , a similar object to a vector bundle

is the notion of principal G-bundles which are defined to be smooth manifolds

P covering M with a (smooth) submersion π : P → M and an action of the

group G on P that is free and transitive when restricted to each fibre. One sees

immediately from the requirements of the group action that each fibre is in fact

diffeomorphic to G itself. Local triviality of the bundle is required here meaning

that on certain neighbourhoods of the base, the bundle is diffeomorphic to a product

of the neighbourhood with G.

Some examples of principal bundles are as follows.

Example 2.4.1.

1. Product bundle: P = M ×G.

2. Frame bundle: FM :=
⊔
x∈M,~σ ~σ(x) may be endowed with the structure of a

smooth manifold of dimension n + n2 where the first term count for the base and

the second is the dimension of GLn. The Lie group of the frame bundle is GLn

because it acts freely and transitively on the set of frames (bases) at each x ∈M .
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Bundle maps and isomorphisms are defined in the same fashion as before and

as always, a principal G-bundle over X is said to be trivial if it is equivalent to

the product bundle X × G. In this case, the restriction of the bundle map to the

fibres is not required to be a linear isomorphism, since the fibres are not vector

spaces. Instead the restriction of the bundle map to the fibres must commute with

the G-action.

A simple but important result states that a principle G-bundle P is trivial if and

only if it admits a global section. The proof is similar to Proposition 2.3.1, with the

exception that groups do not have zeros unlike vector spaces and the non-vanishing

does not make sense.

2.5 Associated vector bundles

Given a principal G-bundle over M and a representation ρ : G → GL(Ck), define

the associated vector bundle with respect to ρ by

Eρ = P ×ρ Ck := (P × Ck)/ ∼

where

(p, x) ∼ (q, y) ↔ p = q · g, x = ρ(g−1)y

Example 2.5.1. The associated vector bundle of the kth trivial representation

ek(g) = Ik of any principal G-bundle P over M is the product bundle M × Ck.

Indeed, the equivalence relation now reads (p, v) ∼ (pg, v) for each g ∈ G and

v ∈ Ck. Hence, the fibres will be the entire vector space.
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The projection π̃ : Eek → M is naturally defined by π̃([p, v]) = π(p) ∈ M and

is smooth since π is. The fibres are

π̃−1(x) = π−1(x)×ek V = G×ek V

as described above, and have a nice set of representatives {[e, v] : v ∈ V }.

For transition functions, consider local sections σα, σβ on overlapping neigh-

bourhoods Uα, Uβ ⊆M . Upon evaluation at x ∈M

σα(x) = [pα(x), vα(x)]

and

σβ(x) = [pβ(x), vβ(x)]

where pα, pβ are local sections of P satisfying π(pα(x)) = x and vα, vβ are local

sections of the trivial bundle M × Ck.

By the local triviality of P , there are transition maps gαβ : Uαβ → G such that

pα = pβgαβ meaning on overlaps,

σα = [pα, vα] = [pβgαβ, vα] = [pβ, ρ(g−1
αβ )vα].

This shows that gluing functions are inherited through ek(g
−1
αβ ) and so the associated

vector bundle is indeed a vector bundle.

25





Chapter 3

Connections on bundles

3.1 Connections

With a decent function theory developed for vector bundles, the next step is to

perform rate of change calculations on sections. In an attempt to generalize usual

differential calculus from an algebraic perspective, operators are defined on Γ(E)

to act linearly and satisfy a (generalized) product rule. This approach is motivated

through Sir Gottfried Wilhelm Leibniz’s philosophical teaching that the properties

of an object are reflected by its surroundings. One may recall that “you are who

you hang with” and, conversely,“if you want be like them you’ve got to act like

them”.

It turns out, when defining differentials abstractly in this manner, that there

is an infinite dimensional affine space of possibilities! Even in the trivial bundle

case, where the usual exterior derivative d is a valid “connection”, there are many
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other choices of differential operators on this bundle. Realizing that the exterior

derivative is of this algebraic type on the trivial bundle provides positive indication

that everything has been built according to plan. To this end, the following theory

reduces to regular everyday normal calculus (when applicable).

In single variable calculus, the differential of a section f of the trivial line bundle

R× R over R is

dfp = f ′(p)dx =
df

dx
|x=pdx.

Similarly, for a real valued function of several variables, or section f of the trivial

real line bundle R× Rn over Rn, the exterior differential evaluates to

dfp =
n∑
i=1

∂f

∂xi
|x=pdx

i.

In both cases, d is a linear map, taking sections to differential 1-forms, which

acts linearly on a specified tangent vector field pointing in the direction desired for

rate of change. This is known as the directional derivative and works well for trivial

bundles.

Given a tangent vector field V ∈ Γ(TM) and a local tangent vector field u =

ui
∂
∂xi

the usual exterior derivative evaluates as

dVp(u) =
n∑
i=1

∂V

∂xi
|pdxi

(
n∑
j=1

uj
∂

∂xj
|p

)
=
∂V

∂xi
|pui(p).

However, these coefficients are no longer well-defined. The problem here lies in

partial derivatives defined in terms of limits as

∂V

∂xi
(x) := lim

∆xi→0

V (x+ ∆xi)− V (x)

∆xi
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where it is not necessarily possible to perform subtraction in the numerator. This

is because V (x+ ∆xi) ∈ Tx+∆xi and V (x) ∈ Tx(M) live in different tangent spaces.

This only fails when the fibres of our bundle are “twisted”, or the bundle is non-

trivial, and hence the fibres are not algebraically comparable. A concept of parallel

transport of vectors from one tangent space to another is needed in order to properly

subtract them.

Once this has been solidified, a generalized notion of parallel transport on ar-

bitrary vector bundles leads to the generalized theory of geodesics and curvature.

All of this and more helps to begin classifying the intrinsic geometry of non-trivial

vector bundles.

For the rest of this section let π : E → M be a rank k vector bundle over a

complex manifold M . The following definition will make use of the fact that Γ(E)

and Ωk(E) := Γ(Λk(E)) are sheaves whose definition can be found in appendix B

of [11].

Definition 3.1.1. A connection on E is a sheaf homomorphism

D : Γ(E)→ Ω1(E)

satisfying the Leibniz rule: D(fσ) = df ⊗ σ + f(Dσ) for each f ∈ C∞(M) and

section σ ∈ Γ(E).

From our previous discussion, this operator maps sections linearly to an E-

valued differential form whose coefficients are sections of E representing the “rate

of change” of the original section in the direction corresponding to the coefficient’s
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index with respect to a frame field. Differential 1-forms are, by design, linear

operators on vector fields. Hence, given a connection on E, the covariant derivative

of σ ∈ Γ(E) in the direction of a vector field X ∈ TM is defined by

DX : Γ(E)→ Γ(E),

where DX(·) := D(·)(X). This is an operator which is linear in X defined on Γ(E)

satisfying the Leibnitz rule (product rule).

Comparing connections with exterior differentiation should, at least locally, re-

veal similarities. In fact, a connection is locally just an affine perturbation of

the exterior derivative. Observe, on a trivialization Eα ∼= Uα × Cr, having frame

field ~σ = (σ1, . . . , σr), then η ∈ Γ(Eα) may be expressed as η =
∑r

i=1 aiσi with

ai ∈ C∞(U) for each i. One finds, a connection D evaluates on basis vectors as

Dσi =
r∑
j=1

σjAji

or in matrix notation

D~σ = ~σA

where A := (Aij) is an r × r matrix of 1-forms called the connection 1-form with

respect to the local frame ~σ. For mathematical accuracy, the connection 1-form is

a section of End(Eα)⊗ Λ1(Uα). Extending this linearly and using the Leibniz rule

one finds,

Dη =
∑
i

(dai ⊗ σi + aiDσi) = dη + Aη.

This means, locally that Dα = d+ Aα.
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The simplest example of a connection is the trivial connection on the product

bundle. This is defined globally by the usual exterior derivative d. Another classical

example known as the Levi-Civita connection will be discussed once the curvature

tensor has been introduced.

It is important to keep in mind, just like in linear algebra, that the connection

form is only a matrix representation of an operator with respect to a predeter-

mined local frame field for Eα. This is analogous to the fact that the set of linear

transformations on Cn is given as the quotient Mn(C)/GLn(C), where GLn acts by

conjugation on Mn, whose orbits represent equivalence classes of similar matrices

(equivalent transformations). For connections, these quotients are called moduli

spaces and turn out to be elegant geometric spaces inheriting many structures from

the base space.

A change of frame, also known as a gauge transformation, between local frames

σ′ and σ for Eα is expressed as σ′ = σg where g : Uα → GLr(C) is a family of

invertible matrices varying smoothly over the neighbourhood Uα. The connection

1-forms are related by

A′ = g−1dg + g−1Ag (3.1.1)

since

σ′A′ = Dσ′ = D(σg)

= σ(dg) + (Dσ)g

= σ′g−1dg + σAg

= σ′(g−1dg + g−1Ag).
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Similarly, on overlapping neighbourhoods Uα, Uβ of M , connection forms Aα, Aβ

are related by equation (3.1.1) with appropriate relabeling gαβ : Uαβ → GLr(C) in

place g.

Remark 3.1.2. Connections give rise to a family of 1-forms defined for each trivial-

ization of a bundle that glue up on overlaps according to equation 3.1.1. Conversely,

a connection is uniquely specified by any such family of 1-forms {Aα}, on an atlas

{(Uα, ϕα)} that glues up properly. This type of construction of connections will

turn out to be useful when proving flat bundles admit flat connections.

Lemma 3.1.3. Let f : M → N be a smooth map between manifolds and D a

connection on some vector bundle E over N. Then the pullback bundle f ∗(E) over

M inherits a connection f ∗(D).

Proof. f ∗(D) is defined locally on f ∗(EUα) by f ∗(d+Aα) := d+ f ∗(Aα) where Aα

is the connection form of D on Uα and f ∗(Aα) is an r× r matrix whose entries are

the entry-wise pull-back of forms contained in Aα.

3.2 Parallel transport and geodesics

For a connection D on E, a section σ ∈ Γ(E) is said to be parallel (with respect to

D), if for every tangent vector X ∈ TpM at p ∈M , we have

DX(σ)(p) = 0.

This says that the “rate of change” of σ in the direction of each tangent vector X

at p is 0.
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For any curve γ : [0, 1]→M , a section σ is called parallel along γ if

Dγ̇(t)σ(γ(t)) = 0 (3.2.1)

for each t ∈ [0, 1]. Locally, this equation is a linear system of differential equations

having a unique solution upon specification of a single initial condition σ(γ(0)) = V0.

The proof of existence and uniqueness of this solution can be found in [18] Chapter

17.

The parallel transport with respect to D of V0 ∈ Ep along γ from p to q is σ(q)

where σ is the unique solution to 3.2.1 having σ(p) = V0. The map

PγD : Ep → Eq;V0 7→ σ(q)

is a linear isomorphism of vector spaces (because equation 3.2.1 is R-linear in σ

and the inverse is given by Pγ
−1

D ) which is uniquely defined for any path γ from p

to q. PγD is called the parallel transport along γ with respect to D.

For a closed curve (loop) γ in M and v ∈ Eγ(0), let A ∈ GLn(C) be such that

Pγv = Av. For most vector bundles this operator will be non-trivial and path

dependent. Moreover, these matrices will always form a group called the holonomy

group of E at γ(0).

3.3 Curvature

This is the next most natural operator after connections.
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Definition 3.3.1. Let D be a connection on E. The curvature tensor FD with

respect to D is given by the bundle morphism

FD := D2 : Ω0(E)→ Ω2(E).

Currently this is an ill-defined operation because connections have yet to be

extended to k-forms. However, since connections are intended to mimic exterior

differentiation, it is natural to extend the domain of connections to Ωk(E) by the

rule

D(σ ⊗ α) := dα⊗ σ + (−1)kα ∧Dσ

for σ ∈ Γ(E), α ∈ Ωk(M).

The curvature of D is C∞(M)-linear because

FD(fσ) = D(df ⊗ σ + f ·Dσ) = −df ∧Dσ + df ∧Dσ + fD2σ = f · FD(σ),

meaning it is a valid tensor, unlike D.

The local representation of FD in terms of the connection form is FD~σ = ~σF

where

F = dA+ A ∧ A. (3.3.1)

Indeed, for any local frame ~σ

FD(~σ) = D2(~σ) = D(~σA) = D~σ ∧ A+ ~σdA = ~σ(A ∧ A+ dA) = ~σF.

Exterior differentiation of equation 3.3.1 reveals the well known Bianchi identity

dF = dA ∧ A− A ∧ dA = [F,A], (3.3.2)
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since

[F,A] = F ∧ A− A ∧ F

= (dA+ A ∧ A) ∧ A− A ∧ (dA+ A ∧ A)

= dA ∧ A− A ∧ dA.

Equivalently this reads dF + [A,F ] = 0. This identity may be viewed in a different

light as follows: Thinking of the curvature F of a connection A as a section of

End(E) ⊗ Λ2(M), there is a natural connection dA induced on the endomorphism

bundle acting on τ ∈ Γ(End(E)) as dAτ = dτ + [A, τ ] because when applied to a

section D(τ(s)) = (Dτ)(s) + τDs so that

(Dτ)(s) = D(τ(s))− τ(D(s))

= (d+ A)τ(s)− τ(d+ A)(s)

= d(τ(s)) + Aτ(s)− τds− τAs

= dτ(s) + τds+ [A, τ ](s)− τds

= (dτ + [A, τ ])(s).

Hence, the Bianchi identity may be expressed as

dAF = 0.

Under local change of gauge, the curvature tensor is transformed by the usual

similarity of matrices under conjugation. That is, if σ′, σ are local frames on EU

with σ′ = σg for some g : U → GLr(C), then

F ′ = g−1Fg
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which is proven in the same fashion as 3.1.1.

The following proposition, taken from [11] (4.3.7) part (iv), describes the cur-

vature of a pull-back bundle.

Proposition 3.3.2. Let f : M → N a smooth map and consider E over N with

connection D. Then the curvature of the pull-back connection on f ∗(E) is

Ff∗(D) = f ∗(FD)

Proof. Looking locally, where D = d+ A, we find

Ff∗(D) = d(f ∗(A)) + f ∗(A) ∧ f ∗(A) = f ∗(dA+ A ∧ A) = f ∗(F )

3.4 Levi-Civita connection

An important and well known example of a connection on the tangent bundle of a

Riemannian manifold is the Levi-Civita (Riemannian) connection. This connection

has two additional geometrically appealing constraints associated to it. Namely,

the Levi-Civita connection, ∇, of a Riemannian manifold (M, g) is a connection on

TM that is

(i) compatible with the Riemannian metric, meaning

∇[g(X, Y )] = g(∇X, Y ) + g(X,∇Y ),

and

36



(ii) torsion free, meaning

T∇(X, Y ) = 0

for all X, Y ∈ Γ(TM), where

T∇(X, Y ) := ∇XY −∇YX − [X, Y ]

is called the torsion tensor.

Geometrically speaking, the compatibility condition means that ∇ preserves the

inner product of parallely transported vectors in TM and vanishing torsion means

that ∇ is symmetric. Condition (ii) implies ∇ is symmetric, which is not immedi-

ately apparent so justification is provided. Suppose that M has local coordinates

(x1, . . . , xn), and consider the corresponding frames {∂i := ∂
∂xi
}ni=1 and {dxi}ni=1 of

TM and T ∗M respectively. Then,

[∂i, ∂j] = 0

for all i, j so that T∇ = 0 is equivalent to

∇∂i∂j = ∇∂j∂i

for all i, j. If we set

∇∂i∂j =
n∑
k=1

Γkij∂k,

this means that

Γkij = Γkji, (3.4.1)

for all i, j. The Γkij are called the Christofel symbols of the second kind and equation

3.4.1 tells us they are symmetric in i and j.
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Theorem 3.4.1. For any Riemannian manifold (M, g), there exists a unique Levi-

Civita connection ∇. Moreover, ∇ is expressed locally with respect to the coordinate

frame {∂i := ∂
∂xi
}ni=1 as ∇ = d+ A, where A = (Aij) with

Aij =
n∑
k=1

Γikjdxk, (3.4.2)

and the Christoffel symbols are given by

Γkij =
1

2

n∑
l=1

gkl (∂jgli + ∂iglj − ∂lgij) (3.4.3)

Proof. See any text on Differential Geometry and/or General Relativity such as

[7, 18, 22] for this construction.

Example 3.4.2. The Levi-Civita connection of S2. The standard round metric on

S2, which is just the restriction of the Euclidean metric on R3 to the unit sphere,

in spherical coordinates is given locally by

g = dφ2 + sin2(φ)dθ2.

The Christoffel symbols with respect to this frame, computed using equation

3.4.3, are Γφθθ = − cos(φ) sin(φ), Γθφθ = Γθθφ = cot(φ) with all others zero.

So, by equation 3.4.2, the connection form isA =
(

0 − cos(φ) sin(φ)dθ
cot(φ)dθ cot(φ)dφ

)
making

the curvature tensor

F = dA+ A ∧ A =
(

0 sin2(φ)dφ∧dθ
−dφ∧dθ 0

)
Remark 3.4.3. Metric compatibility of connections is often a constraint of concern.

On arbitrary vector bundles E → M , we can have a metric structure analogous
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to the Riemannian metric which is a smoothly varying field of inner products on

the fibres of E. When considering a complex vector bundle, one is concerned

with a Hermitian metric h which is a smoothly varying field of Hermitian inner

products. If such a structure exists on E, the (E, h) is called a Hermitian vector

bundle. A Hermitian connection on a Hermitian vector bundle E is ∇ satisfying

dh(α, β) = h(∇α, β) + h(α,∇β). One can see from these requirements that the

connection form has special restricted values upon such compatibility. Indeed, on a

rank r Hermitian bundle π : E → M , choose a local orthonormal frame σ1, . . . , σr

and any Hermitian connection D satisfies

0 = d < σi, σj > = < Dσi, σj > + < σi, Dσj >

= < Akiσk, σj > + < σi, Akjσk >

= Aji + Āij

This means the Hermitian connections are locally represented by skew-Hermitian

valued 1-forms. In general, the connection forms are Lie algebra valued 1-forms,

where the Lie group is the structure group of the bundle (i.e., the group where the

gluing functions take values).

3.5 Flat bundles, flat connections and some ho-

motopy theory

The purpose here is to examine the types of curvature tensors existing on bundles

over a fixed base space in order to begin a classification of bundles. The simplest

39



bundles to classify are the flat ones. These bundles provide a foundation for working

on these types of problems and involve links to the algebraic topology of the base

space.

The trivial connection is the most natural choice of connection on trivial vector

bundles. This connection satisfies d2 = 0 meaning it has zero curvature. This is

a mathematical way of saying that trivial bundles are “flat”. The question is, for

non-trivial vector bundles, is there a connection D on E whose curvature tensor

vanishes? Such a connection D on E satisfying D2 = 0 is known as a flat connection.

Equation 3.3.1, shows that this is not always the case as shown for the Levi Civita

connection of S2.

In a similar, and soon to be equivalent respect, E is called flat if it admits an

open cover along with local trivializations {(Uα, ϕα)} whose gluing functions are

constant. Such an atlas is called a flat structure for E.

It is proven in [5] (Theorem 2.2.1), that if D is a flat connection on E then

for every point p ∈ M there is an open neighbourhood U of p and a trivialization

ϕU : EU → U × Cr for which the connection form AU = 0. This means that, on

overlapping neighbourhoods, our transition functions are constant because

0 = AU = g−1
UVAV gUV + g−1

UV dgUV = g−1
UV dgUV

meaning dgUV = 0. Hence, a bundle admitting a flat connection also admits a flat

structure. In fact,

Proposition 3.5.1. E is flat if and only if E admits a flat connection.
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Proof. We have already described the converse of this result.

Given that E is flat with flat structure {(Uα, ϕα)}, define connection forms

ωα := 0 for each α. To ensure this is a connection, it suffices to show equation 3.1.1

is satisfied. Since transition functions, hence gluing functions gαβ, are constant on

Uα ∩ Uβ, it follows that

ωα = 0 = g−1
αβ · 0 · gαβ + g−1

αβ · 0 = g−1
αβωβgαβ + g−1

αβdgαβ

as required. This connection is flat since locally for each α

Ωα = dωα + ωα ∧ ωα = 0.

The two notions of flatness may now be used interchangeably. Both interpreta-

tions of flatness here are very differential in nature, meaning they depend heavily

on the differential structure of the bundle. A remarkable fact which serves as a clas-

sification of all flat bundles is a description in terms of representations of the first

fundamental group of the base space. This section is dedicated to developing the

theory required to prove and visualize such a classification theorem linking several

tools from modern mathematics.

The concepts of connection and curvature are very closely related to the parallel

transport of tensor fields on vector bundles. Hence, naturally one encounters the

homotopy theory of paths and loops on M .

Theorem 3.5.2. If D is a flat connection on E, then Pγ1D = Pγ2D for any homotopic

paths γ1, γ2 from p to q in M .
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Proof. Let H : [0, 1]2 → M be a homotopy from γ1 to γ2 and let {(Uα, ϕα)} be

a flat structure for E satisfying that DUα = d for each Uα. Suppose now that

U1,1, . . . , U1,M , U2,1, . . . , UN,M is a good covering for the image of H meaning that

Ui,j ⊃ H([(i−1)/N, i/N ]× [(j−1)/M, j/M ]) for each 1 ≤ i ≤ N ,1 ≤ j ≤M , where

N,M have been chosen large enough so this type of covering is achievable. Without

loss of generality assume p ∈ U11. The parallel transport along any of the U ′i,js is

constant because DUi,j = d. In particular, consider the path γ11 in [0, 1]2 by connect-

ing (with straight lines) the points (0, 0), (0, 1/M), (1/N, 1/M), (1/N, 0) and (1, 0).

Then Pγ1 = PH(γ11) because the points in M where these paths differ are contained

in U11 where parallel transport is constant. Similarly, the path γ12 in [0, 1]2 connect-

ing (0, 0), (0, 2/M), (1/N, 2/M), (1/N, 0) and (1, 0) will satisfy Pγ1 = PH(γ12). This

holds because a vector transported parallely along H(γ12) remain constant within

U11, transitions into U12, is constant within U12, transitions back into U11 and con-

tinues along a path coinciding with γ1. Since transition functions are constant on

U11∩U12, the change of bases experienced upon entering and exiting U12 are inverses

of each other. Iteratively, we construct paths γ1k for 1 ≤ k ≤M in [0, 1]2 beginning

at (0, 0) and connecting points (0, k/M), (1/N, k/M), (1/N, 0), (1, 0) to find that

Pγ1 = PH(γ1k) for each k. We continue to define paths γkl for 1 < k ≤M , 1 ≤ l ≤ N

by connecting (0, 0), (0, 1), ((k−1)/N, 1), ((k−1)/N, l/M), (k/N, l/M), (k/N, 0) and

(1, 0). It follows by the same arguments as above that Pγ1 = PH(γkl) for each k, l.

In particular, since γ2 = H(γNM) we have Pγ1 = Pγ2 as required.
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Corollary 3.5.3. The parallel transport with respect to a flat connection between

distinct points on a simply connected M is path independent.

Proof. Let γ1, γ2 be distinct paths from p to q in M . Then, since M is simply

connected, γ1 is homotopic to γ2 so the above result implies path independence.

Lemma 3.5.4. If D is flat on E, there is a uniquely defined representation

ρ : π(M,x0)→ GLk(C)

of the first fundamental group of M at x0 defined using parallel transport with respect

to D.

Proof. Theorem 3.5.2 implies the representation ρ([γ]) := Pγ is well-defined and

given by a unique matrix A ∈ GLk(C). It remains to see this is a group homomor-

phism.

Certainly, ρ(γ−1) = ρ(γ)−1 as traversing the path backwards would yield an

inverse parallel transport. Finally, ρ(γ1 ◦γ2) = Aγ1◦γ2 = Aγ1 ·Aγ2 = ρ(γ1) ·ρ(γ2), by

the uniqueness of solutions to the ODE’s involved in construction of these matrices.

This makes ρ a well-defined representation of π1(M,x0) induced uniquely by D on

E.

Remark 3.5.5. This is called the holonomy representation of π1(M,x0) with respect

to D. In the case where E is the tangent bundle of M , this is called the monodromy

of M .
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Donaldson and Kronheimer show, in their section on connections and curvature

of [5], that a vector bundle with a flat connection over a hyper-cube is necessarily

trivial. This can be easily abstracted to show that any vector bundle admitting a

flat connection over a simply connected manifold is trivial.

Proposition 3.5.6. If E is flat and M is simply connected, then E is equivalent

to the trivial bundle M × Cr.

Proof. It suffices, by proposition 2.3.1, to find a global frame field for E. Given

a flat structure {(Uα, ϕα)}, Proposition 3.5.1 provides a flat connection D on E

having local 1-forms Aα = 0 on each Uα. A global frame is constructed using

parallel transport of a basis β = {v1, . . . , vr} at an arbitrary fibre Ep of E. This is

globally well-defined since M is simply connected, as we now explain.

Indeed, for p ∈ M and the basis β, path independence from Corollary 3.5.3 is

used to define

σi(x) := Pγvi

for each i = 1, . . . , k where γ is any path from p to x in M .

To see linear independence of these sections, consider locally beginning at p.

For x ∈ Uα containing p, the parallel transport is given by the differential equation

Dγ̇~σ(γ(t)) = 0 with initial conditions σi(p) = σi(γ(0)) = vi for each i. Since each

Aα = 0, d~σ(γ(t)) = 0 on Uα which implies the unique solution ~σ to our differential

equation is constant along γ. This extends to the entire neighbourhood Uα showing

~σα = (σ1
α, . . . , σ

r
α) = (v1, . . . , vr) which is certainly nowhere zero.
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For any point y outside of Uα and any path γ from p to y, the vectors v1, . . . , vk

will experience a non-zero change of basis on the overlapping neighbourhoods cov-

ering γ and remain constant within them, hence remaining linearly independent.

It is clear that ~σ is a globally defined frame field trivializing E.

Using this result provides a very broad class of flat bundles.

Lemma 3.5.7. Let ρ be the holonomy, M̃ the universal covering space of M and

Eρ := M̃ ×ρ Ck (3.5.1)

with the equivalence relation (x, v) ∼ρ (γ(x), ρ(γ)v) for each [γ] ∈ π1. Then Eρ is

a flat bundle on M .

Proof. A flat connection dρ is inherited on Eρ descending from the trivial connection

d on M̃ ×Cr as follows: Let σ ∈ Γ(Eρ). Then, using the notation from section 2.4,

σ = [σ̃] for some section σ̃ of M̃ ×Ck such that if, locally, σ̃(x) = (x, v(x)) for some

vector-valued function v, then

σ̃(γ(x)) = (γ(x), ρ(γ)v(x)).

The exterior derivative applied to such sections will thus evaluate as

dσ̃(γ(x)) = (γ(x), ρ(γ)dv(x)),

which descends to an Eρ-valued 1-form on M . Defining

dρ(σ) := [d(σ̃)]

gives a connection on Eρ. Since d2
ρ(σ) = [d2(σ̃)] = 0, we find dρ is flat implying

that Eρ is flat.
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The previous lemma has provided a class of flat bundles so large, that it is in

fact all of them, as the following theorem demonstrates.

Theorem 3.5.8. E is flat if and only if E = Eρ for some representation ρ of

π1(M,x0).

Proof. The previous lemma provides the “only if” direction of this result. Given E

with flat D, consider the smooth projection p : M̃ → M and the pullback bundle

p∗(E) over M̃ . Proposition 3.3.2 provides p∗(E) with a flat connection D̃ := p∗(D)

and since M̃ is simply connected, Proposition 3.5.6 implies the existence of a bundle

isomorphism ψ : M̃ × Ck ∼= p∗(E). This gives the commutative diagram:

M̃ × Cr

π̃

%%KKKKKKKKKK

ψ // p∗(E)

��

p̃ // E

π

��
M̃

p // M

where π ◦ p̃ ◦ψ = p ◦ π̃. Now, for an element ex = (x, v) ∈ E we find the pre-image

under p̃ ◦ ψ to be

(p̃ ◦ ψ)−1(ex) = {(γ(x), ρ(γ)v) : γ ∈ π1(M)}

making this into a fibration over E which is invariant under the free transitive

action of π1(M) ∼= π1(E). In fact, M̃ × Cr is a π1(E)-principal bundle over E so

that M̃ × Ck is the universal covering space of E. Hence,

E ∼= (M̃ × Ck)/π1(E) = (M̃ ×ρ Cr) = Eρ

as required.
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Remark 3.5.9. If ρ is reducible, one finds Eρ as the Whitney sum of lower rank

bundles corresponding to the decomposition of ρ. Thus, for any theoretical

purposes the only ones of concern are irreducible ones.

3.6 Moduli Spaces of connections

Generally speaking, a moduli space is a geometric space whose points consist of

equivalence classes. For example, the class of all linear transformations on a vector

space is represented as the quotient space of Mn/GLk where GLk acts on Mn by

conjugation to represent change of basis. In the case of vector bundles, one is

concerned with the moduli space of all connections on a fixed vector bundle E up

to gauge symmetry.

In this section, for simplicity E is a trivial complex line bundle over a smooth

manifold M . The space of connections is parameterized by

Ω1(End(E)) = C⊗ Ω1(M)

However, when working with Hermitian metric compatible connections, Ω1(End(E))

refers to skew-Hermitian valued 1-forms. In the case of a complex line bundle, these

are iR-valued 1-forms.

Since we are working on a complex line bundle, we can find local trivializations

whose transition functions take values in U(1) as follows: A local frame consisting

of a nowhere vanishing section can be normalized by the metric to be U(1)-valued.

If this is performed on all frames, then the transition maps between U(1)-valued
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sections must again be U(1)-valued. This means gauge transformations may be

expressed locally as g : U → U(1) = S1. This simplifies to be g(p) = eiχ(p) where

χ : U → R is a smooth function (if Uα is simply connected). Under this change of

gauge, the connection forms transform as

A′ = e−iχAeiχ + e−iχdeiχ = A+ idχ.

This means that the space of connections A(E) is, up to local gauge equivalence,

in correspondence with iR-valued one forms Ω1(M) modulo the exact one forms

dΩ0(M). That is,

A(E) = Ω1(M)/dΩ0(M).

A special sub-class of these connections are those which are flat. These are

found locally by the differential equation 3.3.1. Indeed,

0 = F = dA+ A ∧ A = dA

where A ∧ A = 0 because rank(E) = 1. So, the flat connections up to gauge

equivalence are

F(E) = Z1(M)/dΩ0(M).

This is the first deRham cohomology group of M denoted H1
dR(M,R).

Considering equivalence up to bundle automorphism allows for further reduction

of the space of connections via global gauge symmetry. Since E is trivial, the bundle

automorphisms are simply ϕ = 1M × ψ where ψ : M → U(1) = S1 is a smoothly

varying map of fibre automorphisms. The homotopy classes of maps from M to S1
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can be identified with H1(M,Z). Thus, the moduli spaces of connections and flat

connections on the trivial complex line bundle E are

MA(E) = A(E)/H1(M,Z)

and

MF(E) = H1
dR(M)/H1(M,Z) = H1(M,R)/H1(M,Z)

respectively, where the second equality is is a result of deRham’s isomorphism

theorem, discussed in [8].

Example 3.6.1. The moduli space of all flat connections on the trivial complex

line bundle over the 2-torus is again a 2-torus. Indeed, from the calculations above

MF(T×C) = H1(T,R)/H1(T,Z) = R2/Z2 = T.

See Allan Hatcher’s book [10] for details on (co)homology computations.

Remark 3.6.2. This observation is one of the ingredients of mirror symmetry: where

the moduli space is of the same type as the base.

3.7 Harmonic forms

A differential k-form α is harmonic if it is both closed and co-closed (i.e. dα = d∗α =

0 where d∗ is the formal adjoint from appendix C). These forms are interesting

because they are minima for a natural metric on Ωk(M) defined using a common

“averaging” technique and the Hodge star from appendix C by

< α, β >:=

∫
M

α ∧ ∗β,
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with the property that < dα, β >=< α, d∗β >. This metric allows for an L2-norm

on the exterior forms given as usual by ||φ||2 =< φ, φ >.

Proposition 3.7.1. The class [α] ∈ Hk
dR(M) has a unique representative β =

α + da, for some a ∈ Ωk−1M , where β is harmonic and of minimal norm within

[α].

Proof. By the Hodge Theorem, there exists a unique representative γ ∈ [α] which

minimizes || · || within [α]. The critical points of S(φ) := ||φ||2 are found by the

variation

L(ε) := S(γ + εda) =

∫
M

(γ + εda) ∧ ∗(γ + εda)

=

∫
M

γ ∧ ∗γ + ε

∫
M

γ ∧ da+ ε

∫
M

da ∧ ∗γ + ε2
∫
M

da ∧ ∗da

= ||γ||2 + ε < γ, da > +ε < da, γ > +ε2 < da, da >

= ||γ||2 + 2ε < γ, da > +ε2 < da, da > .

Hence,

0 =
d

dε
L(ε)|ε=0 = 2 < γ, da >= 2 < d∗γ, a >,

and this holds for every a ∈ Ωk−1M , implying that d∗γ must vanish. Knowing

already that γ is closed as a member of the cohomology class [α] means that γ is

harmonic.

A second interesting point about harmonic forms is they yield the source free

solutions to Maxwell’s equations which is the topic of the next section. The leads
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us to believe that harmonic forms are natural solutions to systems exhibiting only

the forces of nature.

3.8 Application to electromagnetisim

A fundamental fact in the theory of electricity and magnetism is that a time varying

magnetic field gives rise to the presence of an electrical field. A set of four differential

equations in Minkowski space E1,3 = (R4, η), where η = −dt2 + dx2 + dy2 + dz2,

governing these fields is given by:

1. curlE − ∂B
∂t

= 0 (Farady’s law of induction);

2. divB = 0 (Gauss’ magnetic law);

3. divE = ρ (Gauss’ law);

4. curlB − ∂E
∂t

= j (Ampère’s current law),

where E,B are the electric and magnetic fields determined by ρ, the electric charge

density, and j = (jx, jy, jz) the electric current density of space.

These equations are classically known as Maxwell’s equations, although it was

Oliver Heaviside who first expressed them in this manner. It turns out that these
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electromagnetic fields may be encoded as self dual connections on the trivial com-

plex line bundle E1,3 × C. Indeed, consider the 2-form

F = dt ∧ (E · d~r) +B · dS

where

E · d~r =< (E1, E2, E3), (dx, dy, dz) >

and

B · dS =< (B1, B2, B3), (dydz, dzdx, dxdy) >

whose exterior derivative is

dF = dt ∧
(
∂B

∂t
− curl E

)
· dS + div B · dV.

The vanishing of dF is exactly the result of equations (1) and (2) (called the ho-

mogeneous parts of Maxwell’s equations).

Now, the second pair of equations appear to be dual to the first with a non-

homogeneous twist. Using the Hodge star defined in Appendix C, one finds

∗F = dt ∧B · d~r + E · dS

and that equations (3) and (4) are satisfied precisely when d ∗ F = −J with J =

dt ∧ (−j · dS) + ρ · dV .

Therefore, Maxwell’s equations, when expressed in this fashion, become

(1) dF = 0 (2) d ∗ F = −J. (3.8.1)
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Since F is closed in Ω2(E1,3), the Poincaré Lemma implies it is locally exact,

meaning that F = dA for some A ∈ Ω1(M). Now, Maxwell’s equations have been

encoded as a connection on a complex line bundle over E1,3 with curvature F = dA.

Interestingly enough and not surprisingly, one finds that the curvature of the

connections satisfying the source-free equations 3.8.1 (i.e. where J = 0), are pre-

cisely the harmonic 2-forms H2(E1,3) and hence minimize the L2 norm defined on

2-forms.

Remark 3.8.1. This functional is analogous to the one used for geodesics, where the

domain is now the moduli space of connections instead of paths between points.

The notion of length here is intended to represent a total energy which is observed

in nature to be minimal.
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Chapter 4

Yang-Mills Functional

Consider a connection form A on a vector bundle E over an orientable Riemannian

manifold (M, g) of dimension n. Write dA = d+A for the connection corresponding

to such a form. As in the case of differential forms on M , there is a natural L2

metric defined on Ωk(End(E)) by

< α, β >:= −
∫
M

Tr (α ∧ ∗β).

This is usually given by < α, β >=
∫
M

Tr (ᾱT ∧ ∗β), but considering unitary con-

nections ĀT = −A. This metric has the property that < dAα, β >=< α, d∗Aβ >,

where d∗A = (−1)nk−n−1 ∗ dA∗ is the formal adjoint of dA computed as follows: Let
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α ∈ Ωk−1(M), β ∈ Ωk(M) then by Stokes’ theorem

0 =

∫
M

dA(α ∧ ∗β)

=

∫
M

dAα ∧ ∗β + (−1)k−1

∫
M

α ∧ dA ∗ β

= < dAα, β > +(−1)k−1+(n−k+1)(n−(n−k+1))

∫
M

α ∧ ∗ ∗ dA ∗ β

= < dAα, β > +(−1)nk−k
2+k+k−n+k−2 < α, ∗dA ∗ β >

= < dAα, β > +(−1)nk−n−2 < α, ∗dA ∗ β > .

This is similar to the computation of d∗ in Appendix C.

The Yang-Mills functional is defined on Ω1(End(E)) by

YM(A) :=
1

2
||FA||2 = −1

2

∫
M

Tr (FA ∧ ∗FA). (4.0.1)

The critical values of YM are the solutions to the Yang-Mills equations ex-

pressed most simply by

(1) dAFA = 0,

(2) dA ∗ FA = 0.

Equation (1) is the Bianchi Identity which is vacuously true. Equation (2) is

found using a similar variation as in 3.7.1, where

FA+εa = d(A+ εa) + (A+ εa) ∧ (A+ εa)

= dA+ A ∧ A+ ε(da+ a ∧ A+ A ∧ a) + ε2a ∧ a

= FA + εdA(a) + ε2a ∧ a,
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so that

< FA+εa, FA+εa >=< FA, FA > +2ε < FA, dA(a) > +O(ε2).

Now, the critical points of YM are found by

0 =
d

dε
YM(A+ εa)|ε=0 = 2 < FA, dA(a) >= 2 < d∗A(FA), a > .

Since this equation holds for any a ∈ Ω1(End(E)), this forces d∗A(FA) = 0. This is

equivalent to equation (2) by applying the Hodge star to both sides of the equation.

So the critical points of the Yang-Mills functional are the connections with harmonic

curvature with respect to the operation dA. A connection satisfying the Yang-Mills

equations is called a Yang-Mills connection.

Example 4.0.2. 1. The flat connections are always Yang-Mills.

2. When M is an orientable 4-dimensional Riemannian manifold, there is an

orthogonal decomposition of Λ2(M) into eigen-spaces of the Hodge-star oper-

ator ∗. Luckily, in this setting ∗ becomes a linear idempotent operator upon

restriction to Λ2. This leads to a decomposition of the curvature tensors.

Indeed, sections of 2-forms are locally expressed as smooth combinations of

{dxij|0 ≤ i < j ≤ 3} where dxij := dxi ∧ dxj. Upon restriction to Λ2, ∗

satisfies

∗|Λ2 : Λ2(M)→ Λ4−2(M) = Λ2(M)

and

∗2 = (−1)2(4−2)1 = 1.
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This implies * has eigenvalues ±1, with eigen-spaces

Λ2
±(M) = {dx01 ± dx23, dx02 ± dx31, dx03 ± dx12},

and gives the decomposition

Λ2(M) = Λ2
+(M)⊕ Λ2

−(M).

These pieces are known as self dual (SD) and anti-self dual (ASD) 2-forms,

respectively.

From the perspective of connections and curvature, a connection D on E over

M is (anti-)self dual if its curvature lies in one of the End(E)⊗ Λ2
±(M).

The self-dual and anti-self dual connections are Yang-Mills since ∗FA = ±FA

so that equation (2) reduces to (1) which always holds. These solutions are

called the instantons.

3. Suppose there exists a closed (n-4)-form ϕ on M and ∗FA = FA ∧ϕ, then FA

is Yang-Mills. This holds because

dA ∗ FA = dA(FA ∧ ϕ) = dAFA ∧ ϕ+ (−1)2FA ∧ dϕ = 0.

The next chapter is dedicated to discussing special 7-manifolds on which such

a form exists. These connections will be called generalized instantons.

With critical values of YM shown to be solutions of d∗AFA = 0, it remains

to show that, in important cases (such as the examples above), they are in fact

minima. In order to do this, the notion of calibrations must be introduced.
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Using a fixed form Φ ∈ Ωn−4(M), one may define a quadratic form qΦ :

Ω2(M)→ C∞(M) by qΦ(φ) := ∗(φ ∧ φ ∧ Φ).

Note that qΦ extends naturally to Λ2(End(E)) by composing with the trace

operator. For example qΦ(FA) = Tr (FA ∧ FA) ∧ Φ.

A Yang-Mills calibrating form is defined to be a closed Φ ∈ Ωn−4(M) satisfying

qΦ(φ) ≤ |φ|2 for each φ ∈ Λ2(M) where |φ|2 = ∗(φ ∧ ∗φ). Given a Yang-Mills

calibrating form Φ, a connection A on a vector bundle E over M is called Φ-

calibrated if qΦ(FA) = |FA|2.

The following result, extracted from [19] implies the above examples in fact

minimize YM .

Lemma 4.0.3. If A is a Φ-calibrated connection on E and A′ is any other connec-

tion then

YM(A′) ≥ YM(A)

Moreover, if YM(A′) = YM(A) then A′ is also Φ-calibrated.

Proof. Referring to Lemma 4.4.6 from [11], if P̃ is any homogeneous polynomial

of degree k, then P̃ (FA′) = P̃ (FA) + dα. Tr (F 2
A) is a homogeneous polynomial of

degree 2, so we get that Tr (F 2
A′) = Tr (F 2

A) + dα. Now,

YM(A′) =

∫
M

|FA′ |2dx1···n ≥
∫
M

Tr (F 2
A′) ∧ Φ
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by the calibration property of Φ. Using the above identity, this evaluates to

∫
M

Tr (F 2
A) ∧ Φ +

∫
M

dα ∧ Φ =

∫
M

Tr (F 2
A) ∧ Φ +

∫
M

d(α ∧ Φ)︸ ︷︷ ︸
=0

+

∫
M

α ∧ dΦ︸︷︷︸
=0

=

∫
M

Tr (F 2
A) ∧ Φ

where the first vanishing term is due to Stokes’ Theorem and the second because

Φ is closed. Finally, since A is calibrated, this is equivalent to

∫
M

|FA|2dx1···n = YM(A)

as claimed.

Example 4.0.4.

1. The flat connections are precisely the 0-calibrated connections. This holds

because 0 ∈ Λn−4(M) is closed, q0 = 0 ≤ |φ|2 and certainly |FA|2 = 0 implies

FA = 0.

2. The ASD connections on a four manifold are the 1-calibrated connections.

Indeed, 1 is closed in Λ0(E) = Λ4−4(E) and q1(φ) = φ ∧ φ/volM ≤ |φ|2 is

proven using the decomposition of two forms as follows:

|φ|2 =< φ+ + φ−, φ+ + φ− >=< φ+, φ+ > + < φ−, φ− >= |φ+|2 + |φ−|2

and

φ ∧ φ = (φ+ + φ−) ∧ (∗φ+ − ∗φ−) = (|φ+|2 − |φ−|2)volM ,
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which certainly satisfies the above inequality upon division by the volume

form.

Now, the 1-calibrated connections satisfy Tr (FA ∧ FA) = −Tr (FA ∧ ∗FA)

forcing ∗FA = −FA, meaning A is ASD.

Similarly, the SD connections are -1-calibrated.

3. Donaldson-Thomas connections on G2 manifolds which will be introduced in

the next chapter. They are ϕ-calibrated connections where ϕ will be defined

in equation B.0.1. This is shown using a decomposition of 2-forms similar to

example 2.
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Chapter 5

Higher-Dimensional

generalizations

An interesting class of connection over orientable Riemannian 7-manifolds, (M7, g,vol),

are those which preserve an octonion cross product structure described in appendix

A. These manifolds are known as G2-manifolds and admit the exact structure

necessary for generalized solutions to the Yang-Mills equations. Moreover, these

connections may be defined on arbitrary vector bundles where the base is a G2-

manifold.
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5.1 G2-structures and manifolds with G2 holon-

omy

Essentially, a G2-structure on a smooth 7-manifold M is a differential 3-form ϕ

expressed locally by equation B.0.1, encoding the octonionic cross product described

in appendix A on the tangent bundle TM . More precisely,

Definition 5.1.1. M has a G2-structure if there exists a smooth metric g, orienta-

tion vol, cross product × and 3-form ϕ ∈ Λ3(M) such that ϕ(u, v, w) = g(u×v, w)

and, for every p ∈M , we have

(TpM, gp,×p, ϕp) ∼= (R7, g0,×0, ϕ0).

This is analogous to the almost complex structure J which exists on almost

complex manifolds. It is not true that an almost complex structure always exists

on even dimensional manifolds, for example Steenrod showed in 1951 that S4 does

not admit an almost complex structure.

From here it is natural to consider manifolds which admit G2-structures that

are parallel with respect to a special connection on M .

Lemma 5.1.2. A G2-structure on M exists if and only if M is orientable and spin.

In other words, the existence of a G2-structure on M is equivalent to the vanishing

of the first two Steifel-Whitney classes of TM .

Remark 5.1.3. The first Stiefel-Whitney class ω1(TM) ∈ H1(M,Z2) determines the

orientability and the second Stiefel-Whitney class determines the existence of a spin
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structure on M . See [23] for complete exposition on these Z2 cohomology classes

associated to real vector bundles.

This is analogous to the almost complex structure for even dimensional man-

ifolds in the sense that one constructs a tensor J ∈ Γ(T ∗M ⊗ TM) in the case

of complex and ϕ ∈ Γ(Λ3
+(M)) for G2. One further defines an almost complex

manifold to be complex if the Nijenhuis tensor NJ vanishes. Further, a complex

manifold M is Kähler if and only if the almost complex structure J is parallel with

respect to the Levi-Civita connection on M .

Definition 5.1.4. Let (M,ϕ) be manifold with G2-structure. Then M is a G2-

manifold if ϕ is parallel with respect to the Levi-Civita connection ∇ϕ correspond-

ing to the metric gϕ.

Having a parallel G2-structure means the holonomy of M is contained within

G2. Some of the few known examples of G2-manifolds are X × S1, where X is a

Calabi-Yau 3-fold (i.e., a 3-dimensional complex manifold with holonomy contained

in SU(3)) or Y ×T3 with Y a K3 surface (i.e., a simply connected, compact, com-

plex surface with trivial canonical bundle). These product manifolds are examples

of reducible G2-manifolds because their holonomy is properly contained in G2. Ex-

amples of irreducible G2-manifolds (i.e., having holonomy exactly equal to G2) are

few and far between. The first complete non-compact examples were constructed

by Bryant and Salamon in [4]. These are Λ2
−(CP 2),Λ2

−(S4) and S3 × R4. The

first compact examples were constructed by Joyce in [12, 13] and are summarized

into four steps in section 11.3 of [14]. The construction is based on the Kummer
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construction for Calabi-Yau metrics on K3 surfaces.

An important result taken from [14] (Proposition 11.1.3) regarding the paral-

lelizability of a G2-structure on M is

Proposition 5.1.5. Let ϕ be a G2 structure on M . Then ∇ϕϕ = 0 if an only if ϕ

satisfies both dϕ = 0 and d∗ϕ = 0.

5.2 Donaldson-Thomas connections

Having this parallel positive three form ϕ is the key to define the proper con-

nections necessary to discuss solutions to the Yang-Mills functional. This parallel

G2-structure may now be wedged with the usual Hodge star to construct a diago-

nalizable operator on Λ2(M) as follows:

∗ϕ := ∗(· ∧ ϕ) : Λ2(M)→ Λ5(M)→ Λ2(M)

by ∗ϕ(α) := ∗(α ∧ ϕ) where ∗ is the usual Hodge-star.

The 21 × 21 matrix representing ∗ϕ is found to have eigen values 2 and -1

with eigen spaces of dimension 7 and 14 respectively. Thus, the 2-forms on any

G2-manifold decompose as

Λ2(M) = Λ2
14 ⊕ Λ2

7,

where Λ2
7 is locally spanned by

{dx12 − dx47 − dx56, dx46 − dx13 − dx57, dx37 − dx15 − dx26,

dx16 − dx25 − dx34, dx24 − dx17 − dx35, dx23 + dx45 + dx67, dx14 − dx27 − dx36}
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and Λ2
14 by

{dx47 + dx12, dx47 − dx56, dx13 + dx46, dx13 − dx57, dx15 + dx37,

dx15 − dx26, dx25 + dx16, dx25 − dx34, dx17 + dx24, dx17 − dx35,

dx23 − dx45, dx23 − dx67, dx14 − dx27, dx14 − dx36}.

Definition 5.2.1. Let E be a vector bundle over a G2 manifold (M,ϕ). A connec-

tion A on E is a Donaldson-Thomas connection if its curvature tensor lies entirely

within End(E)⊗ Λ2
14.

It will be important to keep in mind

Lemma 5.2.2. A connection A on a vector bundle E over a G2-manifold is Donaldson-

Thomas if and only if ∗FA = −FA ∧ ϕ.

Proof. FA ∈ End(E)⊗ Λ2
14(M) if and only if ∗(FA ∧ ϕ) = −FA. This is equivalent

to ∗FA = −FA ∧ ϕ by applying ∗ to both sides and multiplying by -1.

The statement, from example 4.0.4, that Donaldson-Thomas connections are

−ϕ-calibrated is now simple to see since

q−ϕ(φ ∧ φ) = (φ7 + φ14) ∧ (−φ7 ∧ ϕ− φ14 ∧ ϕ)

= (φ7 + φ14) ∧ (−2 ∗ φ7 + ∗φ14)

= |φ14|2 − 2|φ7|2 ≤ |φ14|2 + |φ7|2 = |φ|2.

Thus, a −ϕ-calibrated connection must satisfy Tr (FA ∧ FA) ∧ ϕ = −Tr (FA ∧

∗FA) forcing ∗FA = −FA ∧ ϕ. Equivalently, A is a Donaldson-Thomas connection.
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Few explicit examples of Donaldson-Thomas connections are known but here

are a few.

Example 5.2.3.

1. Flat connections are trivially Donaldson-Thomas.

2. The Levi-Civita connection on a G2 manifold is Donaldson-Thomas. The

result of Theorem 3.1.7 from [14] states the Riemannian curvature (i.e. the

curvature of the Levi-Civita connection) lies in Sym2(Lie(hol(M))). When

M is a G2-manifold, the Lie algebra of G2 is Λ2
14(M). Hence, the Riemannian

curvature lies in Sym2(Λ2
14(M)) ⊆ End(TM)⊗ Λ2

14(M), implying our claim.

This is computed explicitly in Corollary 4.7 of [16].

3. An interesting problem is: do Donaldson-Thomas connections on R7 = R4 ×

R3 which only depend on the first four variables reduce to instantons on R4?

A connection of this type may be expressed as A =
∑4

i=1A
idxi +

∑7
i=5 A

idxi

where each Ai is a function of x1, x2, x3, x4 subject to the constraint FA∧ϕ =

∗FA. It is straight forward but tedious to extract the 21 coefficients of this

equation using

FA = dA+ A ∧ A

=
∑

1≤i<j≤4

(
∂Ai

∂xj
− ∂Aj

∂xi

)
dxij +

7∑
j=5

4∑
i=1

∂Aj

∂xi
dxij +

∑
1≤i<j≤7

[Ai, Aj]dxij.

In the case A5 = A6 = A7 = 0, this reduces to

FA =
∑

1≤i<j≤4

(
∂Ai

∂xj
− ∂Aj

∂xi
+ [Ai, Aj]

)
dxij
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and our constraints reveal the six independent equations

∂Ai

∂xj
− ∂Aj

∂xi
+ [Ai, Aj] = 0

for each 1 ≤ i < j ≤ 4 implying the connection must be flat. This means

that the only instantons when pulled back to connections on R7 that are

Donaldson-Thomas are the flat ones. Further investigation when the last

three terms are non-zero should lead to higher dimensional reduction for the

N = 4 instanton equations.
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Appendix A

Cross products in R7

Using the standard inner product g =< ·, · > and orientation dxn = dx1∧· · ·∧dxn,

one may construct a 2-fold cross product ×, that ’plays nicely’ with the multi-

plicative structure of the octonions. Beginning in the same fashion as R3 by the

constraints that

× : R7 × R7 → R7

be an alternating, bilinear map satisfying

g(u× v, u) = g(u× v, v) = 0

and

|u× v|2 + g(u, v)2 = |u|2|v|2.

It is simple to check that two vectors a, b ∈ Im(O) satisfy

a · b = −g(a, b) · 1 + a× b
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meaning the cross product is precisely the imaginary component of the product a ·b

as octonions. This is analogous to the cross product on R3 induced through the

multiplicative structure of the quaternions.
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Appendix B

G2 the group

Consider the action of GL7(R) on Λ3(R7) and define G2 as the stabilizer of the

element

ϕ0 = dx123 + dx145 + dx167 + dx246 − dx257 − dx347 − dx356 (B.0.1)

where dxijk := dxi ∧ dxj ∧ dxk.

This form, when examined explicitly evaluates as ϕ0(a, b, c) = g(a× b, c) where

g is an inner product and × is the 2-fold cross product on R7 defined in A.

One may recover the metric gψ and volume form dV ∈ Λ7(R7) by

−6gψ(X, Y )dV := (Xyψ) ∧ (Y yψ) ∧ ψ. (B.0.2)

Also, the cross product is recovered by

(x× y)[ = yyxyϕ

where the flat represents the metric dual tangent vector.
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This shows that gψ is defined non-linearly in terms of our ϕ0 with entries

[gϕ0 ]ij =
1

62/9

Bij

det(B)1/9

where

Bij :=

(
(
∂

∂xi
yϕ) ∧ (

∂

∂xj
yϕ) ∧ ϕ

)
(
∂

∂x1
, . . . ,

∂

∂x7
).

For computational details of this fact, see [16].

Proposition B.0.4. G2 is a compact, connected, simply connected, 14 dimensional,

simple real Lie subgroup of SO(7).

Proof. This is just a rough sketch of some of the ideas involved in working with G2.

A complete in depth proof of this result is found in [2].

Since gϕ0 and dV are expressed as a function of ϕ0 using equation B.0.2, it

follows that G2 fixes the metric and orientation. This means G2 is a real subgroup

of SO(7). For proper inclusion, it suffices to mention that G2 fixes the cross product

as well which is not true of all members of SO(7).

To see dim(G2) = 14 is a constructive argument similar to that of the orthogonal

group. Indeed, if A ∈ G2 then the first column a1 is is only required to be unit

length and hence a member of S6. To choose a2 the only new requirement is that a2

be unit length and orthogonal to a1 meaning a2 ∈ S5. Now, a3 = a1× a2 to ensure

preservation of ×. a4 is now chosen from the unit length vectors in the orthogonal

compliment of a1, a2, a3 meaning freedom of choice from S3. Finally, the last three

vectors are uniquely determined as the cross products a5 = a1×a4, a6 = a2×a4, a7 =

a3×a4 hence the dimension of G2 is dimS6 +dimS5 +dimS3 = 6+5+3 = 14.
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Appendix C

Hodge star on orientable

manifolds

On any orientable Riemannian manifold M , there is a nice linear operator defined

on Λ(M). Using the natural metric induced on Λk(M), the Hodge star

∗ : Λk(E)→ Λn−k(E)

is defined uniquely by the requirement that

ω ∧ ∗τ =< ω, τ > dV

for all ω, τ ∈ ΛkM , where dV =
√
|g|dx1···n is the volume form of M and < ·, · >

on ΛkM is the natural induced metric described in [21].

Lemma C.0.5. [Fundamental properties of *] For α, β ∈ Λk(M)

(i) ∗1 = dV and ∗dV = 1
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(ii) < α, β >=< ∗α, ∗β >

(iii) ∗2 = (−1)k(n−k) on Λk(M)

(iv) α ∧ ∗β = β ∧ ∗α

Proof.

(i) ∗1 ∈ Λn(M) which means ∗1 = f · dV for some f ∈ Γ(E). Then,

f · dV = 1 ∧ ∗1 =< 1, 1 > dV = dV ⇒ f ≡ 1.

Similarly, ∗dV = 1.

(ii) By linearity of ∗, it suffices to prove for basis vectors dxi1...ik where 1 ≤

i1 < · · · < ik ≤ n. Now, < dxi1...ik , dxj1...jk >= δi1,...,ik,j1,...,jk and simi-

larly < ∗dxi1...ik , ∗dxj1...jk >=< dxi
′
1...i
′
n−k , dxj

′
1...j

′
n−k >= δi′1...i′n−k,j′1...j′n−k where

{i′1, . . . , i′n−k} = {1, . . . , n}\{i1, . . . , ik}. It is simple to see that these evalua-

tions are equivalent since i1, . . . , ik = j1, . . . , jk if and only if their compliments

are equal.

(iii) For each ω, τ ∈ ΛkM we have

∗ω ∧ ∗ ∗ τ = < ∗ω, ∗τ > dV

= < ω, τ > dV

= < τ, ω > dV

= τ ∧ ∗ω

= (−1)k(n−k) ∗ ω ∧ τ
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Where the last equality comes from k(n − k) transpositions in swapping a

k-form with an n− k form. Thus, ∗2 = (−1)k(n−k).

(iv) because < α, β >=< β, α >

The formal adjoint of d is defined and calculated in chapter 14 of [21] to be

d∗ = (−1)nk+n+1 ∗ d∗ on Λk(M) by simple properties of metric and the above

lemma.
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