
Degree Spectra of Unary Relations

on ω and ζ

by

Carolyn Knoll

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Mathematics

in

Pure Mathematics

Waterloo, Ontario, Canada, 2009

c© Carolyn Knoll 2009

I hereby declare that I am the sole author of this thesis. This is a true copy of the

thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

Let X be a unary relation on the domain of (ω,≤). The degree spectrum of X on

(ω,≤), denoted DgSp(ω,≤)(X), is the set of Turing degrees of the image of X in all

computable presentations of (ω,≤). Many results are known about the types of degree

spectra that are possible for relations forming infinite and coinfinite c.e. sets, high c.e.

sets and non-high c.e. sets on the standard copy. We show that if the degree spectrum

of X contains the computable degree then its degree spectrum is precisely the set of

∆2 degrees.

The structure ζ can be viewed as a copy of ω∗ followed by a copy of ω and, for

this reason, the degree spectrum of X on ζ can be largely understood from the work

on (ω,≤). A helpful correspondence between the degree spectra on (ω,≤) and ζ is

presented and the known results for degree spectra on the former structure are extended

to analogous results for the latter.

v

Acknowledgements

I would like to thank my advisor, Professor Barbara Csima, for her countless hours

of reading and her unwavering guidance through this new topic. I would also like to

thank my readers, Professor Ross Willard and Professor John Lawrence, for their many

insights and suggestions.

vii

Dedication

To J. Wearing and S. Knoll for their love and support from across the country, and

to my sister Jenny, for “allowing” me to discuss my studies at the dinner table.

ix

Contents

1 Introduction 1

1.1 Notation and Conventions . 4

2 Degree Spectra on (ω,≤) 5

2.1 Degree Spectra of c.e. Sets . 5

2.2 Degree Spectra Containing 0 . 6

2.3 Degree Spectra of Sets of High c.e. Degree 18

3 Degree Spectra on (ω,≤ζ) 41

References 51

xi

Chapter 1

Introduction

In mathematics we often classify structures up to isomorphism, as for our purposes, they

are identical. In this paper we will examine isomorphic models from the point of view

of computable structure theory. While isomorphic structures can often be identified,

they can exhibit different computability theoretic behaviour. We will explore these

differences by considering the complexity of the same relation on various isomorphic

copies of a given structure. In particular, we will look at the collection of Turing

degrees of images of a unary relation in different computable presentations of (ω,≤)

and (ω,≤ζ), the standard copy of the natural numbers N and the integers Z.

Before we begin, we need to familiarize ourselves with the notion of a computable

structure, relations on the given structure, and what we mean by a computable pre-

sentation of a structure ([4]).

Definition. A structure A is computable if its domain A = |A|, basic relations and

basic functions are uniformly computable.

In this paper we are concerned with particular linear orderings, so for example, a

linear ordering L = (L,≤L) is computable if the universe L and the order relation ≤L
are both computable.

Definition. An isomorphism ϕ from a structure A to a computable structure B is

1

called a computable presentation of A.

We will abuse the above notation and refer to the image of A under ϕ, namely

B, as a computable presentation or a computable copy of A. In the case of a linear

ordering L, a computable copy of L is an isomorphic image where the order relation is

computable. As mentioned above, we will be studying the behaviour of a unary relation

R on a structure A as we range over all computable copies of A.

Definition. Let R be a relation on the domain of a structure A. Let B be a computable

copy of A with ϕ : A ∼= B.

1. We define RB to be the image of R in B (under ϕ).

2. The degree spectrum of R on A, denoted DgSpA(R), is defined to be the set of

(Turing) degrees of RB as we range over all computable presentations B of A.

With these notions in hand, we can begin to explore different properties of degree

spectra. Are there choices of A and R where DgSpA(R) is trivial, is a singleton, has an

upper or lower bound, is upward closed in the (Turing) degrees? (I.e. If a ∈ DgSpA(R)

and b ≥ a then b ∈ DgSpA(R).)

Now we are ready to focus our attention on the degree spectra of relations on our

structures of interest: (N,≤N) and (Z,≤Z). These are of course the natural numbers

and the integers in their standard order. As we are dealing with computable structures

in this paper, we will identify the domain of each structure with ω under a clear coding.

We will denote the natural numbers as (ω,≤), having domain ω under the ≤N-order.

We will denote the integers as (ω,≤ζ), again having domain ω, but under the ≤Z-order.

The two structures, under our coding, are given below:

(ω,≤) 0 1 2 3 4 . . .

(ω,≤ζ) . . . 7 5 3 1 0 2 4 6 8 . . .

2

These two orderings are of course computable structures since the order relations are

computable, but moreover, the binary adjacency relation S(x, y) in each is computable.

We wish to ask how a given relation on either structure can change as we range over all

computable copies of the structure. In other words, we wish to determine the degree

spectrum of this relation. To get us started on studying degree spectra, we will give

an intuitive approach to determining the degree spectra of a well studied relation: the

adjacency relation, S, on (ω,≤).

The structure (ω,≤) is rigid, (i.e. it has only one order-preserving automorphism)

but the complexity of a relation on (ω,≤) can change when considering its image in a

different computable presentation of (ω,≤). It is not difficult to build a computable

copy of the natural numbers in which the adjacency relation is not computable. From

this remark, we know that DgSp(ω,≤)(S) is non-trivial. It turns out that this relation is

an example in which the degree spectra is bounded above. The reasoning is as follows:

Let L be a computable copy of (ω,≤). Since the order relation ≤L is computable, we

can decide whether x ≤L y for any two elements x and y in the domain of L. If we

compute that x is ≤L-less than y in our ordering, then at that moment we believe that

the pair (x, y) ∈ S. We will believe this until we find a z ∈ ω that lies strictly between

our given points. The instant we see x ≤L z ≤L y, for some z, we will declare with

absolute certainty that (x, y) /∈ S. Thus the complement of S is c.e. by nature. Since

any co-c.e. set is ∅′-computable, DgSp(ω,≤)(S) is bounded above by 0′.

In this communication we will restrict ourselves to unary relations, X, which can be

viewed as subsets of the domain ω. As X ⊆ ω, DgSp(ω,≤)(X) and DgSp(ω,≤ζ)(X) will

contain all Turing degrees of the image of X in each computable copy of (ω,≤) and

(ω,≤ζ), respectively. Again, since we are only dealing with orderings with countable

domains, we will identify the domain of any relevant copy with ω. So we will denote

a copy of (ω,≤) or (ω,≤ζ) as L = (ω,≤L) where ≤L is an binary order relation and

L ∼= (ω,≤), or L ∼= (ω,≤ζ).

Lastly, before we begin, we need a bit of notation, some taken from [2], that we will

be using throughout the paper in our proofs.

3

1.1 Notation and Conventions

.

Let L = (ω,≤L) be a computable copy of (ω,≤) or (ω,≤ζ) under some isomorphism

ϕ.

• L�x denotes the intitial segment of L <L x, and L��x denotes the segment of L

≤L x.

• For each x ∈ ω, let xL = ϕ(x), the image of x in L.

• Let XL = ϕ(X), the image of the set X in L.

• In a stage by stage construction, an application of [s] means that each stage

dependent member of the statement is evaluated at stage s. For example we

write ΓA(x) = X(x)[s] for ΓAs(x) = Xs(x) and 〈L,W, V 〉 [s] for 〈Ls,Ws, Vs〉 .

4

Chapter 2

Degree Spectra on (ω,≤)

In this section we will discuss what is known about the degree spectra of unary relations

on the computable structure (ω,≤). An in depth look at the subject can be found in

a pre-paper entitled “Degree Spectra of Unary Relations on (ω,≤)” by R. Downey, B.

Khoussainov, J. Miller and L. Yu ([2]) and “Order-computable Sets” by D. Hirschfeldt,

R. Miller and S. Podzorov ([3]). The results presented here will provide an overview of

what kinds of degree spectra are possible on this structure.

2.1 Degree Spectra of c.e. Sets

We will begin by discussing unary relations on the structure (ω,≤) that form c.e. sets

on the standard copy. We wish to determine whether the degree spectra of these sets

have a lower bound or indeed contain the computable degree. We can also ask whether

the degree spectrum of such a set X is upward closed in the Turing degrees, or whether

we can determine an upper bound. We begin with a look at a result from [2] exploring

the degree spectrum of an infinite and coinfinite c.e set.

Theorem 2.1 (Downey, Khoussainov, Miller and Yu). Let X be an infinite and

coinfinite c.e. set and let Y be an infinite c.e. set such that X ≤T Y . Then there is a

computable presentation L of (ω,≤) such that XL ≡T Y .

5

The idea of the proof is as follows. Given the sets X and Y , we will construct a

computable copy L of (ω,≤) while using the even numbers of XL to code the set Y .

To begin, we will fix enumerations of X and Y , say {Xs}s∈ω and {Yt}t∈ω. At stage −1

we will declare all of the even numbers into our ordering L in their natural ≤N-order,

and enumerate 2x into XL at stage s if and only if x goes into Y at stage s. We then

use the odd numbers to ensure that XL is indeed the isomorphic image of X in L. If at

stage s we see that X(z)[s] 6= XL(zL)[s] for some z ∈ ω, then we insert the least (odd)

number not yet in L in order to fix the discrepancy. We may not immediately fix the

problem by enumerating only one new number, but we will succeed after repeating this

action finitely many times.

A full proof of this result is found in [2] and so is not presented here. The proof

relies on the fact that the set X is infinite and coinfinite which ensures that, in the end,

every number in L settles and L ∼= (ω,≤) as desired. We have Y ≤T XL since x ∈ Y if

and only if 2x ∈ XL. We can compute XL from X and Y and so XL ≤T X ⊕ Y ≡T Y
since X ≤T Y by assumption. Hence we have XL ≡T Y as desired.

Theorem 2.1 shows that if a unary relation X forms an infinite and coinfinite c.e.

set on (ω,≤) then deg(Y) ∈ DgSp(ω,≤)(X) for all c.e. sets Y ≥T X. It follows that

if this set X is computable on the standard copy, not just c.e., then DgSp(ω,≤)(X)

contains all of the c.e. degrees. It is an interesting question to ask whether or not

we get a similar result for an infinite and coinfinite set X that is computable on some

arbitrary computable copy of (ω,≤), not necessarily the standard copy. This result will

be explored in the next section.

2.2 Degree Spectra Containing 0

A set whose degree spectrum contains the computable degree is called order-computable

[3]. We wish to determine whether the degree spectrum of an order-computable set X

contains all c.e. degrees.

Clearly, any finite or cofinite set X is computable on the standard copy, and hence

is order-computable, but the image of X in any computable copy L must again be

6

finite or cofinite. Thus in this case, DgSp(ω,≤)(X) does not contain all c.e. degrees, in

fact DgSp(ω,≤)(X) = {0}. Let us assume that X is an infinite and coinfinite set. It

turns out that if X is order-computable, then DgSp(ω,≤)(X) does indeed contain all

c.e. degrees. Moreover, we can show that DgSp(ω,≤)(X) contains all ∆2 degrees.

By Post’s Theorem, we have that a set A ∈ ∆2 if and only if A ≤T ∅′ [5] and so our

result is as follows:

Theorem 2.2. Let X be a unary relation on (ω,≤) that forms an infinite and coinfinite

set. Suppose that there exists a computable copy L of (ω,≤) such that XL is computable.

Then DgSp(ω,≤)(X) = {d : d ≤ 0 ′}.

Before we prove Theorem 2.2, we need to recall some facts about ∆2 sets, or equiv-

alently, sets that are Turing-below ∅′. We call a function f limit computable if there

exists a uniformly computable sequence of functions fs such that f = lim
s
fs. A set

A is limit computable if its characteristic function χA is limit computable. The Limit

Lemma states that a function f is limit computable if and only if f ≤T ∅′[5]. We

will use this fact to show that if X is order-computable, then the degree of XL in any

computable copy can be at worst ∆2.

First we will show that every isomorphism between two computable copies of (ω,≤)

must be limit computable. We will let one of our copies be the standard copy for

simplicity, but the same reasoning will work for two arbitrary copies. Suppose we

have the standard copy (ω,≤) and any arbitrary computable copy L. Let ϕ be the

isomorphism between the two orderings.

Since the order relation of L, ≤L, is computable we can think of L as being revealed

in a nice way. At stage 0, we set the domain of L equal to 0. At stage 1, we can compute

whether 0 <L 1 or 1 <L 0 and place 1 in L accordingly. In general, at any stage s+ 1,

with L[s] in hand, we can computably decide where s+1 belongs relative to the finitely

many elements of L[s]. We will use this process to show that the isomorphism, ϕ,

between (ω,≤) and L is limit computable.

7

(ω,≤) 0 1 2 3 4 5 6 7 8

L[0] 0

At stage 0 we have |L[0]| = {0} and thus we believe that ϕ(0) = 0. This will be the

case until a number shows up ≤L 0. Suppose at stage 1 we compute that 0 <L 1, and

at stage 2 we determine that 2 <L 0 <L 1.

(ω,≤) 0 1 2 3 4 5 6 7 8

L[1] 0 1

(ω,≤) 0 1 2 3 4 5 6 7 8

L[2] 2 0 1

Since 2 showed up to the left of 0 in L, it now appears that ϕ(0) = 2. We will

believe this is the case until a numbers shows up to the left of 2 in L. Since L ∼= (ω,≤),

eventually numbers will stop appearing to the left of 0 in L. The image of 0 in L at

this stage is the true value of ϕ(0).

By the same reasoning, ϕ will settle on each initial segment after a finite period of

time, and hence we have a computable sequence ϕs such that ϕ = lim
s
ϕs. So ϕ is limit

computable and hence ∅′-computable by the Limit Lemma.

Now we being the proof of Theorem 2.2. Since X is order-computable, there is a

computable copy L for which XL is computable. Let L̃ be an arbitrary computable copy

of (ω,≤). Then we have ϕ : L ∼= L̃ where ϕ ≤T ∅′. Now let x ∈ ω: we wish to determine

whether x ∈ XL̃. From ϕ we can compute the preimage of x in L, ϕ−1(x). Since XL is

computable, we can determine whether or not ϕ−1(x) ∈ XL and x ∈ XL̃ ⇔ ϕ−1(x) ∈
XL. We therefore have XL̃ ≤T ϕ ≤T ∅′ and hence DgSp(ω,≤)(X) ⊆ {d : d ≤ 0′} as

desired. Now it remains to show that we can attain every ∆2 degree by considering the

image of X in an appropriate computable copy of (ω,≤).

Consider the ordering L = (ω,≤L) ∼= (ω,≤) with XL computable, and let Y be any

∆2 set. Since Y is limit computable, there is a uniformly computable sequence of sets

8

{Ys}s∈ω such that Y = lim
s
Ys. We call such a sequence a ∆2-approximating sequence

for Y . Our goal is to build another computable copy L̃ of (ω,≤) with XL̃ ≡T Y .

By assumption, ≤L is a computable relation so we can think of L as being revealed

as previously discussed. Moreover, XL is a computable set and so we can determine

membership in XL as soon as a number appears in L. This time (L, XL) is revealed as

follows: At stage 0, we compute whether 0 ∈ XL or 0 ∈ XL. At stage 1, we compute

whether 0 <L 1 or 1 <L 0, and determine whether or not 1 ∈ XL. In general at stage

s + 1, we can computably decide where s + 1 belongs relative to the finitely many

elements of L[s] and determine whether or not s+ 1 is a member of XL.

While we reveal this ordering L, we also want to build our own ordering L̃ to match.

In other words, we wish to build an isomorphism ϕ : ω → ω that matches each element

in the domain of L with an appropriate element in the domain of our ordering L̃. We

will define ϕ on the elements of |L| in their ω-order (i.e. beginning with 0, 1, ...) ensuring

that, for each member x of the this domain, ϕ(x) ∈ XL̃ ⇔ x ∈ XL.

At each stage, we will insert new numbers into our ordering L̃ to maintain the

partial isomorphism, while using the even numbers to code the set Y . (If x is even,

then we will have x ∈ XL̃ at stage s if and only if x
2
∈ Ys.) We will ensure that the set

of odd numbers in XL̃ is computable by deciding whether or not an odd number is in

XL̃ immediately when it is enumerated into the ordering L̃, and we will ensure that the

even numbers maintain their ω-order in L̃ so that no number ends up with infinitely

many predecessors.

We will first discuss a strategy for building an ordering (L̃, XL̃) isomorphic to

(L, XL) while keeping the even numbers in X L̃; we will later use the even numbers

to code the set Y.

As mentioned above, we will first determine whether or not 0 ∈ XL. Now we wish

to introduce a possible match for 0 in L̃ and the obvious match is, of course, 0. But

if 0 ∈ XL then we wish to match 0 with a number that we can immediately put into

XL̃. For this reason, if 0 ∈ XL, then we enumerate the least odd number, 1, into L̃ as

ϕ(0), and put 1 into XL̃ as desired. Now since we need to ensure that we enumerate all

the even numbers eventually, we need to enumerate them whenever possible. It only

9

makes sense for us to enumerate an even number as a match for some number x in L

if x /∈ XL. Thus if 0 /∈ XL then we will enumerate the least even number, 0, into L̃ as

the match for 0, and leave it out of our set XL̃. Thus we will have ϕ(0) = 0 or 1.

Now that an appropriate match has been determined for 0, we can continue. Since

L ∼= (ω,≤), we know that only finitely many numbers can appear ≤L-below 0. Thus

anytime a new number x appears in L to the left of 0, we will just copy the least

odd number available as its image in L̃, and put the odd number into XL̃ if and only

if x ∈ XL. This strategy will ensure that the segment ≤L-below 0 in L is indeed

isomorphic to the segment ≤L̃-below 0L̃ in L̃. Now we must deal with what happens if

L builds to the right of 0.

If a number x appears in L to the right of 0, then we will match x with an even or

an odd number depending on its membership in XL. If x ∈ XL then we will enumerate

the least odd number not yet enumerated into L̃ as ϕ(x) and put ϕ(x) into XL̃. If

x /∈ XL then we have been given an opportunity to enumerate an even number as the

image. We will enumerate the next even number into our ordering as ϕ(x), keeping it

out of our set XL̃.

Now we will give a more general outline of the method: When a number x appears

in L with XL(x) = 1, then we define ϕ(x) to be the least odd number not yet in L̃

and put ϕ(x) into XL̃. Let s0 be the first stage when a number x appears in L with

XL(x) = 0. At stage s0 we will place the first even number, 0, in L̃ as ϕ(x). Now,

let n be the largest even number in L̃[s] at any stage s > s0, and let m = ϕ−1(n), the

preimage of n in L. If a number x appears ≤L-below m at stage s, then we copy an

odd number as ϕ(x) and put ϕ(x) into XL̃[s+ 1] if and only if x ∈ XL. If x appears to

the right of m in L, then we insert an odd number as a match if x ∈ XL and an even

number if x /∈ XL. Since X is infinite and coinfinite by assumption, XL is as well, so

there are infinitely many bit alternations in XL. For this reason, we will always be able

to find larger numbers both in and out of XL and hence we will eventually enumerate

all of ω into the domain of L̃.

This strategy will certainly build (L̃, XL̃) ∼= (L, XL), so now we must modify our

method and use the even numbers to code our set Y and ensure that XL̃ ≡T Y . In

the end, we wish to have 2y ∈ XL̃ if and only if y ∈ Y. If Y was c.e. then any time

10

a new element y appeared in Y [s] − Y [s − 1] we would enumerate 2y into XL̃ and be

done with that coding. Since we are only asking that Y be ∆2, the set Y can remove

y at a later stage, leaving us no choice but to change our minds about the membership

of 2y in XL̃. We will choose the ∆2-approximating sequence, {Ys}s∈ω, for Y such that

Ys ⊆ {1, 2, ..., s − 1} and Ys+1 differs from Ys by at most one number. Using this

sequence we will ensure that, at each stage s of our construction, 2y ∈ XL̃[s] if and

only if y ∈ Ys. We will now examine how coding Y will affect the construction of our

isomorphism ϕ.

Let s be the first stage where Ys 6= ∅ and say {y0} = Ys − Ys−1. To code Y , we will

put 2y0 into our set XL̃ as desired. Note that by our discussion above, 2y0 must be in

X L̃ at stage s, since all even numbers start out of XL̃ until Y exerts its power. Since

we must change our minds about the membership of 2y0, we have now damaged the

partial isomorphism that we had been building as described in the previous paragraphs.

In particular, we have 2y0 ∈ XL̃[s] while ϕ−1(2y0) /∈ XL[s].

Let us consider a particular example of L. As L reveals itself, we will build L̃ to

match, following our method. In the example, we will use boxes to indicate membership

in the sets XL and XL̃.

Stage 0 : L 0 0

L̃ −→ 0

Stage 1 : L 0 1 0 1

L̃ 0 −→ 0 2

Stage 2 : L 0 2 1 0 2 1

L̃ 0 2 −→ 0 1 2

11

We can follow our matching scheme until the first number appears in Y . Suppose

that Y enumerates 1 as its first member at stage 5.

Stage 3 : L 0 2 1 3 0 2 1 3

L̃ 0 1 2 −→ 0 1 2 4

Stage 4 : L 4 0 2 1 3 4 0 2 1 3

L̃ 0 1 2 4 −→ 3 0 1 2 4

Stage 5 : L 4 0 2 1 3 4 0 2 1 3

L̃ 3 0 1 2 4 −→ 3 0 1 2 4

Since 1 ∈ Y5− Y4, we must put 2 into XL̃ at stage 5. It is now clear that our choice

for ϕ(1) is no longer valid and hence we must change our isomorphism, but we wish to

maintain as much of the isomorphism as we can. Do do so, we can insert a new odd

number into L̃ as a new match for 1, leaving the odd number out of XL̃ since 1 /∈ XL.

In our example, suppose we insert the next odd number, 5, as follows:

Stage 5 : L 4 0 2 1 3 4 0 2 1 3

L̃ 3 0 1 2 4 3 0 1 5 2 4

This will leave the values of ϕ(n) intact for all n <L 1. While 1 now has an

appropriate match in L̃, it is clear that we have not absorbed the problem completely.

In particular, 3 is now unhappy sitting above a number in XL̃. It is clear that inserting

one new number will not rectify the problem so we now will try a more sophisticated

approach. We will now return to the general case, and to reflect the fact that we will be

making alterations to our partial isomorphism as we go, we will denote the isomorphism

we have at stage s as ϕs. Also, we will denote the segment {l : l ≥L x} of L as L≥x

and the segment {l : l >L x} as L>x.

Let us suppose that y0 is enumerated into Y at stage s. Then we put 2y0 into XL̃[s]

as required. Let z = ϕ−1
s (2y0). We will maintain the partial isomorphism ϕs on the

segment L�z and speed up the enumeration of L until we can “absorb” the segment

12

L̃≥2y0 into L≥z. L̃≥2y0 is a finite segment with a certain configuration of 0’s and 1’s,

depending on membership in XL̃. To match this configuration in L, we must speed up

the enumeration of L until we can embed our configuration into L≥z. (For example,

a sequence of 101 appearing in L̃ can be embedded into any configuration of the form

...101..., ...1001..., etc.) Since XL is infinite and coinfinite and each number in L has

finitely many predecessors, eventually we must see a desired configuration. Going back

to our example:

L 4 0 2 | 1 3

L̃ 3 0 1 | 2 4

Let us suppose that after speeding up the enumeration of L we get the following con-

figuration in L:

L 4 0 5 2 | 6 1 3 7 8

L̃ 3 0 1 | 2 4

It is now possible to embed L̃>1 into L>2. In this case, an (order-preserving) embedding

β is given by: β(2) = 7, β(4) = 8. We will now define the new isomorphism ϕs on the

larger domain of L ensuring that if n = β(m) for some m, then ϕs(n) = m. In our

case, we must have ϕs(7) = 2 and ϕs(8) = 4. We make ϕs a bijection by appropriately

inserting new even and odd numbers into L̃.

L 4 0 5 2 | 6 1 3 7 8

L̃ 3 0 5 1 | 7 9 11 2 4

By the end of stage s, we will have an order-preserving bijection, ϕs, defined between

L[s] and L̃[s], and we will have x ∈ XL[s]⇔ ϕs(x) ∈ XL̃.

We treat the case where Y removes a number at stage s (eg. {y0} = Ys−1 − Ys), in

a similar manner. If this occurs, then our coding strategy tells us to remove 2y0 from

XL̃ at stage s. This will of course damage the isomorphism we had built by the end of

stage s − 1 since, in particular, 2y0 /∈ XL̃[s] while z = ϕ−1
s−1(2y0) ∈ XL[s]. Again, we

will consider the finite sequence appearing in L̃≥2y0 and speed up the enumeration of

L in order to embed this configuration into L by the end of stage s.

13

Since XL has infinitely many bit alternations, we will be able to absorb any finite

sequence we find in L̃ be redefining ϕ on finitely many values. At the end of each stage,

we will indeed have a proper isomorphism between the finite orderings as desired.

Moreover, we will argue that in the limit we will have a true isomorphim ϕ = lim
s
ϕs

between L and L̃. We will do so by ensuring that we change the isomorphism only

finitely often on each value of the domain and range.

Construction

Fix a ∆2-approximation of Y with lim
s
Ys = Y such that Ys ⊆ {1, 2, ..., s − 1} and

Ys+1 differs from Ys by at most one number. At stage 0, determine whether or not

0 ∈ XL, choose the appropriate value for ϕ0(0) as described above and enumerate

ϕ0(0) into L̃.

At stage s + 1 :

Step 1: Suppose that one of Ys+1 − Ys or Ys − Ys+1 is non-empty. If y ∈ Ys+1 − Ys
then put 2y into XL̃[s+ 1]. If y ∈ Ys − Ys+1 then put 2y into X L̃[s+ 1].

Step 2: If we acted in Step 1, then our partial isomporphism ϕs is no longer valid

on the segment ≥L ϕ−1
s (2y) in L. In particular, XL(ϕ−1

s (2y))[s + 1] 6= XL̃(2y)[s + 1].

We wish to preserve as much of ϕs as possible so we will build ϕs+1 such that ϕs+1

agrees with ϕs on the initial segment of L, L�ϕ−1
s (2y). We will build ϕs+1 as follows:

Let ϕs+1(n) = ϕs(n) for all n <L ϕ
−1
s (2y). Speed up the enumeration of L until we

have an (order-preserving) embedding, call it β, of L̃>2y into L>ϕ−1
s (2y). Extend β to

a bijective mapping ϕs+1 by inserting numbers into L̃ as needed, working from left to

right. If z = β(x) for some x ∈ L̃ then let ϕs+1(z) = x. If z has no match in L̃ (i.e. z is

not in the image of our chosen embedding β) then we need to introduce a new even or

odd number as ϕs+1(z). If the largest even number in L̃ is matched to a number ≤L-

above z, then insert the largest odd number not yet in L̃ as ϕs+1(z) and put ϕs+1(z)

into XL̃ if and only if z ∈ XL. If the largest even number is matched to a number

14

≤L-below z then insert an odd number as ϕs+1(z) if z ∈ XL and an even number as

ϕs+1(z) if z /∈ XL. Note that, by the end of Step 2, we have ϕs+1 : L[s+ 1] ∼= L̃[s+ 1].

Step 3: Finally, we will ensure that 2s and 2s+1 have been placed in the L̃-ordering

by the end of stage s + 1. If this occured in Step 2, then we are done. If not, we will

speed up the enumeration of L as in Step 2 until we find an appropriate place to insert

2s and 2s+ 1 into L̃.

End Construction

Verification

It is not hard to see that L̃ is indeed a computable ordering. To compute whether

a ≤L̃ b we run the construction until we see the first stage s where both a and b are

in L̃[s]. Such a stage must occur since the domain of L̃ is all of ω. At stage s we can

determine whether or not a ≤L̃[s] b. By our construction, the position of a relative to b

in L̃ will not change once they appear together in L̃[s], and hence a ≤L̃ b if and only if

a ≤L̃[s] b.

Now it remains to show that L̃ ∼= (ω,≤) and (ω,≤L̃, XL̃) ∼= (ω,≤L, XL) with

XL̃ ≡T Y .

Lemma 2.2.1. The isomorphism changes finitely often on each element of its domain

and range.

Proof. First we will consider the domain L. Let x ∈ L and let t be a stage where

Lt��x = L��x. I.e. A stage when L has finished enumerating numbers ≤L-below x. Such

a stage must exist since L ∼= (ω,≤). Let n be the largest even number ≤L̃-below ϕt(x)

in L̃ at stage t. We now claim that every even number that is ≤L̃-less than ϕs(x), at

any stage s > t, is less than or equal to n.

The only way that the value of ϕ(x) changes is if coding an even number, call it k,

below ϕt(x) destroys our isomorphism somewhere in L̃��ϕt(x). Suppose this occurs at

stage s > t. We will then speed up the enumeration of L to find an embedding β to

absorb this induced problem. We claim that ϕs+1(x) ≤L̃ ϕs(x). We will first illustrate

15

this with an example. Suppose that we have the following isomorphism at stage s− 1

and that 0 enters Y at stage s:

Stage s : L 2 6 0 3 | 1 4 5 7

L̃ 3 9 1 5 | 0 2 7 4

Let us assume that L is done enumerating below 7 at stage s. Then we must have

β(0) ≥L 5 for our embedding β to be order preserving and so our extending ismo-

morphism ϕs+1 must satisfy ϕs+1(5) ≤L̃ 0. Since ϕs+1 preserves order, we must have

ϕs+1(7) ≤L̃ 2 < ϕs(7).

In general, since L can no longer enumerate below x we must have β(k) > ϕ−1
s (k)

and thus β(ϕs(x)) > x. By how we extend β in the construction, we have ϕs+1(x) >

ϕs(x) as desired. By this claim, we know that the set of even numbers lying ≤L̃-below

ϕt′(x) at any stage t′ > t are in the set {0, 2, ..., n}.

Let t′ > t be a the stage when Yt′��n2 = Y ��n
2
, then after stage t′, Y will not change

the membership of any even number lying to the left of ϕt′(x) in the ordering L̃. Hence,

by our construction, the value of ϕ(x) will remain unchanged after stage t′.

Now we will consider the elements in the range of ϕ. Suppose that x ∈ L̃. We will

consider the case where x is even and odd separately. Suppose that x is even. Let t be

a stage where Yt��x2 = Y ��x
2
. Since, by construction, all even numbers appear in L̃ in

their natural order, we know that no even number ≤L̃ x can be enumerated into XL̃

after stage t. By the end of stage t we will have built a partial isomorphism between

L[t] and L̃[t], and we know that Y cannot destroy the matching between the initial

segments L��ϕ−1
t (x) and L̃��x after stage t. Thus ϕ−1

t′ (x) = ϕ−1
t (x) for all t′ ≥ t.

Now suppose that x is odd. Let t0 be the first stage where an even number, say

z + 2, appears ≤L̃-above x in L̃. We thus have z ≤L̃ x ≤L̃ z + 2, and by construction,

no other even number can appear ≤L̃-below z + 2 after stage t0. Let t1 > t0 be a stage

when Yt1��
z
2

= Y �� z
2
. By our construction, Y cannot change the membership of any

even number lying ≤L̃-below x after stage t1 and thus ϕ−1
t1 (x) is the true preimage of

x in L. Hence the isomorphism changes finitely often on each element in the range,

L̃.

16

Lemma 2.2.2. Every element in the domain of L̃ has finitely many predecessors

Proof. By Lemma 2.2.1, there is a stage s where the true preimage of x in L has been

determined. Let z = ϕ−1
s (x), then x = zL̃. Our number x will gain a predecessor after

stage s if and only if a number appears ≤L-below z in L. Since L ∼= (ω,≤), this can

occur only finitely often, and hence x has finitely many predecessors in L̃.

Lemma 2.2.3. XL̃ ≡T Y .

Proof. We have XL̃ = lim
s
XL̃[s], and by our construction, y ∈ Y ⇔ 2y ∈ XL̃ and

therefore Y ≤T XL̃.

Now let x ∈ ω. If x is odd, then we can compute whether or not x ∈ XL̃ by

waiting for the stage s where x is enumerated into the ordering L̃. At this stage, we

will either put x into XL̃[s] or declare x ∈ X L̃ and, by our construction, this will remain

unchanged. If x is even, then x ∈ XL̃ ⇔ x
2
∈ Y . So XL̃ ≤T Y , and hence XL̃ ≡T Y as

desired.

By Lemma 2.2.1 and 2.2.2 we have that (ω,≤L̃, XL̃) ∼= (ω,≤L, XL) via the isomor-

pism ϕ = lim
s
ϕs. By Lemma 2.2.3, we have deg(XL̃) = deg(Y) as desired.

We have shown that we can construct a computable copy L̃ of (ω,≤) where XL̃ has

any given ∆2 degree. Hence, if the degree spectra of an infinite and coinfinite set X

contains the computable degree, then DgSp(ω,≤)(X) contains all ∆2 degrees. Theorem

2.2 gives us a nice description of the degree spectrum of order-computable sets. The

next question one can ask is what kinds of sets have this property.

Suppose that X is a unary relation on (ω,≤) that forms a c.e. set on the standard

copy. In [3] the authors study the question of determining what conditions on a set X

will ensure that the degree spectrum of X contains the computable degree. A result

from [3] shows that if the degree of a c.e. set X is low (ie. deg(X)′ = 0′), then we indeed

have 0 ∈ DgSp(ω,≤)(X). This proof is outlined in [3] and relies on a characterization of

low c.e. sets. It turns out that it is possible to do better. It is not necessary for the set

X to have low degree, it is actually enough that the c.e. set X not be of high degree.

I.e. X ′ <T ∅′′.

17

Theorem 2.3 (Downey, Khoussainov, Miller and Yu). Let X be a unary re-

lation on (ω,≤). If X forms a c.e. set whose Turing degree is not high, then 0

∈ DgSp(ω,≤)(X).

The proof of this theorem is presented in full in [2] and uses Martin’s Characteri-

zation of high degrees.

2.3 Degree Spectra of Sets of High c.e. Degree

Now we will move on to a result from [2] showing that Theorem 2.3 is as good as we

can do for producing categories of order-computable sets. It turns out that each high

c.e. degree contains a set that is not order-computable.

Theorem 2.4 (Downey, Khoussainov, Miller and Yu). Let d be a high c.e. Turing

degree. Then there exists a c.e unary relation X on (ω,≤) such that deg(X) = d and

X is not order computable.

This result is presented in [2], although a full construction and verification was not

provided. We will provide it here.

To prove this theorem we will fix a c.e. set A in our given high c.e. degree and

build a set X, Turing-equivalent to A, that is not order computable. In other words

we must construct X ⊂ ω such that if L is a computable copy of (ω,≤), then XL is

not computable. First we need to produce an effective list of all possible countable

computable linear orderings, and to do so, we will use the fact that every such ordering

is a subordering of the rational numbers. We will drop the word “countable” from now

on since, in this paper, we are only concerned with countable domains. We will show

that each c.e set produces a computable linear ordering, and in turn, each such ordering

can be represented as a c.e. set.

Let q0, q1, q2,... be an effective list of the rational numbers. Let L be a c.e. set with

enumeration {Ls}s∈ω. We define our linear ordering L = (A,≤L) as follows: Suppose

that L enumerates i ∈ ω at stage s+ 1 and let Ls = {i1, ..., ik}. We put the least n ∈ ω

18

that is not yet in L into L and declare n ≤L ij if and only if qi ≤Q qij for j = 1, ..., k.

To compute whether n1 ≤L n2 we simply have to wait for the first stage s where n1

and n2 appear together in L[s] and n1 ≤L n2 if and only if n1 ≤L[s] n2.

Note that since, in the above construction, we are enumerating the natural numbers

into L in their ω-order, the domain of L will either be ω or a finite initial segment

segment of ω. Of course, the c.e. set L can “correspond” to a computable ordering that

is not isomorphic to (ω,≤). For example, L could be finite and hence L will have a

finite initial segment of ω as its domain. Or L could enumerate numbers in such a way

that the induced ordering L has no endpoints, or is dense.

Now let L be a computable linear ordering with domain N. We will construct our

c.e. set L as follows: First enumerate 0 into L. Next compute whether 0 <L 1 or

1 <L 0. If we have the former case, find the least i such that q0 <Q qi; in the latter

case, find the least i such that qi <Q q0. In either case, enumerate i into L. In general,

let Ls = {i0, ..., is}. At stage s + 1 we determine the position of s + 1 in L relative to

the numbers < s+ 1. Find the smallest index is+1 such that, for all j ≤ s, qis+1 <Q qij

if and only if s+ 1 <L j. Since the rationals are dense, such a number qis+1 must exist.

Finally, enumerate is+1 into Ls+1.

So every computable linear ordering can be represented as a c.e. set. Let {Le : e ∈ ω}
be a uniformly effective list of all c.e. sets, then this will effectively list all possible

computable linear orderings. By our discussion above, this effective list will contain

all computable copies of (ω,≤), along with computable linear orderings of other order

types.

Let us suppose that we have a linear ordering L (corresponding to a c.e. set L)

and let U be a unary relation on the domain of L. Then U determines a subset of

the natural numbers. Moreover, the set U is computable if and only if U and U are

(disjoint) c.e. sets. We can also produce a uniformly effective list of all pairs of c.e. sets,

say {(We, Ve) : e ∈ ω}, and thus U is computable if and only if the pair (U,U) appears

in this list. So a unary relation X on (ω,≤) is order-computable only if we there exists

a triple, 〈L,W, V 〉 with the following properties:

19

1. L, W and V are c.e. sets

2. W ∩ V = ∅

3. L ∼= (ω,≤) (L being the linear ordering induced by L)

4. (XL, XL) = (W,V)

We can think of the proof of this theorem as a game between us and an opponent

that is trying to build such a triple. The opponent’s goal is to build a triple, 〈L,W, V 〉,
satisfying properties 1 − 4, and hence a triple witnessing the fact that X is order-

computable, and our goal is to build our set X ≡T A such that no such triple exists. If

we develop a strategy to build X in such a way that the opponent fails, then we win

and we have proven the theorem.

During the construction, the opponent is building the sets L, W and V in stages,

ensuring that the sets are c.e. (i.e. L = ∪sLs, W = ∪sWs and V = ∪sVs). L will

be producing a computable linear ordering L in stages and W and V will be guessing

at XL and XL respectively. Since W must list XL, each time W enumerates a new

number, y, the triple has declared that it believes y is in the set XL. Similarly, since

V must list XL, each time V enumerates a number, that number enters the triple’s

version of XL.

At each stage s, the opponent is trying to produce a partial isomorphism between

our ordering, (ω,≤, X)[s], and his ordering, 〈L,W, V 〉 [s], by enumerating new numbers

into the sets L, W and V at stage s. (Note that he cannot remove any numbers since

these sets must be c.e.) To counter this, whenever we see a partial isomorphism between

some initial segment of (ω,≤, X) and 〈L,W, V 〉 at stage s, we will destroy the matching

by enumerating a new number into X within that initial segment. (Again, since X must

be c.e., we cannot remove any numbers from X.)

We need to ensure that the opponent will fail no matter how he chooses to enumerate

into L, W and V . Luckily, we can list all possible triples effectively, and so we have a

good way of coding all possible strategies of our opponent. Let {〈Le,We, Ve〉 : e ∈ ω}
form a uniformly effective list containing all possible combinations of triples where Le,

20

We, Ve are c.e sets and We ∩ Ve = ∅. To succeed, our construction needs to meet the

following requirements for each e ∈ ω:

Qe : Le
∼= (ω,≤) =⇒ XLe 6= We or XLe 6= Ve

If our construction meets Qe for all e ∈ ω then we win; if there is some e ∈ ω such

that Qe is not met, then our opponent wins. Our goal is to outline a construction that

has only two possible outcomes for the given triple: either We and Ve do not witness

XLe being computable, or Le eventually builds an ordering that is not isomorphic to

(ω,≤). In either case, Qe is met.

Note that from now on, we will not differentiate between Le, the c.e. set, and Le,

the induced linear ordering. We will simply write Le to reference either one since the

correspondence should be clear from our previous discussions.

We will now outline a construction to meet one requirement Qe. In our construction,

we need not act until it appears that Qe is a “threat”, or, in other words, until it appears

that Qe may not be met. First we need to define what we mean by a requirement being

a “threat”.

At the begining of our construction, we will produce a list of numbers {xi : i ∈ ω} ⊂
ω that we will enumerate into X. This countable list of natural numbers will divide

(ω,≤) into intervals. In our construction, we will wait for lengths of agreement on the

intervals [0, xi] for each i in turn. Before we proceed, we must decide what we mean by

a length of agreement on the entire interval [0, xi]. We will wait until we see a stage s

when Le,s contains at least xi + 1 elements, and each of these xi + 1 numbers has been

enumerated by either We or Ve by stage s. At this moment, the pair (We, Ve)[s] has

made a guess at whether each of the first xi + 1 numbers of (ω,≤) are in or out of X.

For each x ∈ ω, let xLe be the image of x in Le. We say we have a length of agreement

up to xi at this stage s if for each x ∈ Xs��xi,

x ∈ Xs ⇔ xLe ∈ We,s and x /∈ Xs ⇔ xLe ∈ Ve,s.

Using the terminology from [2], we say that xi is “realized” for Qe at stage s if

〈Le,We, Ve〉 [s] has a length of agreement up to xi at this stage.

21

We will now outline our strategy for enumerating into X: First, we will do nothing

until we see an agreement between 〈Le,We, Ve〉 [s] and (ω,≤, Xs) on an entire interval

[0, xi]. If this occurs, then we will enumerate a number in the interval [0, xi) to destroy

this length of agreement. Now the isomorphism that the opponent had built is no

longer valid, and thus Qe is no longer a threat for the time being. After stage s, there

are two possibilities: Either we never again see an agreement between 〈Le,We, Ve〉 [t]
and (ω,≤, X)[t] on [0, xi] for any stage t > s, or there is a stage t > s such that we see

xi realized once again at stage t. If we have the former case, then 〈Le,We, Ve〉 will not

be the winning triple for the opponent; if we have the latter case, then the sets Le, We

and Ve have enumerated in such a way that Qe is again a threat to us.

We wish to control how easily the triple 〈Le,We, Ve〉 can recover and impose new

agreements. We will do so by enumerating very specific numbers in our intervals [0, xi]

as follows:

Let’s suppose that at stage s, x0 is realized forQe. Since at stage 0 the setX contains

only the xi’s and we only enumerate into X after x0 is realized, (0, x0− 1) ⊂ Xs. So in

order to have an agreement up to x0 we must have y0 ∈ We,s with
∣∣{z : z <Le,s y0}

∣∣ = x0

and {z : z <Le,s y0} ⊂ Ve,s. Hence y0 is the apparent image of x0 in Le. At this stage, we

wish to derail the isomorphism between 〈Le,We, Ve〉 [s] and (ω,≤, Xs) up to x0. We will

do so by enumerating x0− 1 into X. Since {z : z <Le,s y0} ⊂ Ve,s, the opponent cannot

enumerate any z <Le,s y0 into XLe as the potential image of x0−1. The opponent must

then enumerate at least one new rational number <Le-below y0 to maintain the partial

isomorphism. This new member of Le will ensure that y0 is now the apparent image of

some natural number strictly to the right of x0 in (ω,≤). At this point, we wait and

see what our opponent does, and we extend our area of interest to the larger interval

[0, x1]. We will not act again until Le recovers on this larger interval and we see a stage

s′ > s where x1 is realized for Qe.

At stage s′, by our argument above, y0 must be to the right of x0
Le,s′

. In fact, since

[x0+1, x1−1] ⊂ Xs′ , the next possible matching for y0 is x1. We can thus conclude that

if such a stage s′ occurs, then we have y0 ≥ x1
Le,s′

. Now that we have an agreement on

the entire interval [0, x1] we wish to repeat our strategy and this time, we enumerate the

predecessor of x1 to derail the apparent matching. By similar reasoning, the opponent

22

has no choice but to enumerate a new element <Le-below y0 as a possible image for

x1 − 1, thus shifting y0 to the right of x1
Le

. Now we wait for Le to recover on the even

larger interval [0, x2] and argue that if there exists a stage s′′ where x2 is realized for

Qe, then at this stage y0 ≥ x2
Le,s′′

. In general, we can argue that if there is a stage t

where xi is realized, then y0 must be strictly to the right of xi−1
Le,t

in Le.

Now, we focus our attention on this y0. Let us suppose that after some stage,

no new xi is realized. Then from some point on, Le can no longer be be considered

isomorphic to (ω,≤, X) as computed by (We, Ve). In this case, Qe is satisfied since we

have no isomorphism. If xi is realized for all i ∈ ω then y0 will be strictly to the right

of the apparent image of each xi−1 in Le. Thus Le has an element with infinitely many

predecessors, and hence cannot be isomorphic to (ω,≤). In either case, Qe is satisfied.

This strategy will produce a set X ⊆ ω that is not witnessed to be order-computable

by 〈Le,We, Ve〉 [s], and all that we require is enough room between the xi’s so that we

can enumerate whenever necessary. At this point, it appears that we are required to

enumerate just once under each xi to shift y0 as desired, so one number in between

each of the xi’s will suffice. It turns out that we will need more room due to the second

condition in our theorem: we require that X ≡T A, the fixed c.e. set in our given

high c.e. degree. To ensure that A is computable from X, we will use our master list

{xi : i ∈ ω} ⊂ ω for coding, and to ensure that X ≤T A, we will use the method of

high permitting.

Let Ā = {a0 < a1 < a2 < . . .} and Ās = {as0 < as1 < as2 < . . .}. Then the

computation function of Ā is defined as cĀ(i) = µs[asi = ai]. Since d is a high c.e.

degree, then by Martin’s Theorem [5], there is a c.e. set A ∈ d, with an enumeration

{As}s∈ω of A, such that the computation function of Ā is dominant. In other words, if

g is a computable function, then cĀ(i) > g(i) for almost every i ∈ ω.

We will define a Turing functional Γ in stages such that at each stage s, we are

computing Xs from the current approximation of A, As, with a certain associated use

γ. To ensure that Γ is correct, once we’ve defined ΓAs(z) = Xs(z) on some z ∈ ω with

use γ(z), we cannot cannot change the value of X(z) until we have a change in our

current oracle As below the use of the computation. Using this method, each time we

see a realization and wish to enumerate a number into X, we must ask for permission

23

from A. In other words, in order to enumerate x into X, we need to ask A to change

below the use γ(x). The set A “gives us permission” to enumerate x if A enumerates

a number ≤ γ(x) at some later stage.

Suppose we want to enumerate xi − 1 to shift y0 as desired. Then we must wait

for A to enumerate a number below the use γ(xi − 1) to do so. Since the success of

our construction depends on being able to enumerate when desired, we must ensure

that A will give us permission to enumerate often enough. To secure our win, we will

exploit the above property of A and amend our procedure so that receiving permission

co-finitely often will be sufficient.

We will use this property by building a computable function g for our requirement

Qe that will challenge the domination of cĀ and ensure that we will receive permission

sufficiently often to succeed. The general idea is as follows: We define Γ by stages to

compute X from the current approximation of A. We link each interval (xi−1, xi) to a

member, say aj, of the current complement of A by defining the use of the computation

on this interval to be aj. If we wish to change X in this interval, then we must wait

for a change in A below aj. We define our function g in order to tempt the desired

change in A. Suppose at stage s, xi is realized for Qe. Then at this stage, we wish to

enumerate the predecessor of xi in the interval (xi−1, xi). We will define g(j) = s and

by doing so we are stating that we want a change in A below the use aj after stage s.

This definition is made in order to push A to change. Defining g in this manner ensures

that since cĀ(i) > g(i) for almost every i ∈ ω, A can deny permission for only finitely

many j ∈ ω. Of course, permission does not have to be given immediately so we need

to leave sufficient room in our construction to handle this.

We need to examine how this new development affects our strategy. If x0 is realised

at stage s, then we will ask permission to enumerate x0 − 1 in order to shift our y0.

The interval [0, x0] will be linked to a certain member of Ā, say aj, and will thus be

waiting on a change below aj. It is possible that such a change will never occur after

stage s. In this case, we will never receive permission to enumerate the predecessor of

x0 and will thus not shift y0 as desired. Thus, if we rely solely on this y0-strategy, our

construction may not progress. To take this into account, once we ask permission from

A on this interval, we will set it aside and continue our construction with the idea that

24

we may never get permission here. We will turn our attention to the larger interval

[0, x1] and wait for a longer agreement.

Suppose at stage s′, x1 is realized. Then at this point we shift our attention to the

apparent image of x1, call this y1. We now start a new strategy, hoping that y1 will

be the number that is shifted to the right of each xi. We ask permission to enumerate

x1 − 1, and again wait for an appropriate change in A. We continue in this manner

until we receive from A permission to enumerate into an interval, say (xi−1, xi). Then

we will enumerate the predecessor of xi thus forcing a shift of its apparent image, yi,

as desired. We will now pursue the stragegy for yi by asking permission to enumerate

and move yi to the right of xi+1, and abandon all other initiated yj’s to the right of our

yi. Since we want one winner in the end, we will maintain all y-strategies that are to

the left of yi as the intervals they are linked to are still intact. To ensure success of our

construction, we will actually consider infinitely many possible yi’s and argue that, in

the end, one of them must have infinitely many predecessors.

Since we are selecting infinitely many yi’s to move, we must ensure that we have

enough room between each of the xi so that we can enumerate on behalf of Qe whenever

we need to. We need to be able to enumerate a unique predecessor of xi to shift each

image yj, j ≤ i, past xi. For example, we may realize x0 and x1 before receiving

permission to enumerate below x0. Thus we are waiting to enumerate both x0 − 1 and

x1 − 1 into X. Suppose we first receive permission to enumerate x1 − 1 to move y1 to

the right of x1 and do so. Then we may receive permission to enumerate below x0 − 1

at a later stage. We will then enumerate x0 − 1 to move the apparent image y0 of x0

to the right. Indeed y0 is now sitting under x1− 1 or x1 in our construction and is now

waiting to move past x1. To do so, we must ask permission again to enumerate below

x1. If there is no more room in this interval, then y0 is now stuck. To continue, we

must be able to enumerate x1 − 2 into X. Since y1 has already moved to the right of

x1, once y0 has shifted past x1 we will never again need to enumerate in the interval

(x0, x1). We thus require at most one number below x0 and two numbers between x0

and x1. Following similar reasoning, we need at most i + 1 natural numbers between

xi−1 and xi, so choosing a function f with i+ 1 numbers between f(i− 1) and f(i) will

suffice.

25

Each time we act, we are enumerating the right most number in (xi−1, xi) that is

not yet in X, so the numbers in (ω,≤) that are in our set X will be found in blocks.

In other words, for any z ∈ X, either z = xi for some i or the successor of z is also

in X. There are countably many blocks, and each block has an xi as its right-most

member. We will call the block of elements in the interval (xi−1, xi] that are in X the

xi-block. The important point is that if some yj has been shifted to the right by our

opponent, creating new length of agreement, then yj must appear in the image of some

xi-block, i > j. Now let us suppose that xi is realized at stage s. Then we wish to

enumerate the number, say z, immediately to the left of the xi block. (Note that such

a number greater than xi−1 must exist since we have already supposed that we’ve left

enough room to enumerate when we so desire.) Thus z /∈ Xs and zLe ∈ Ve. If at some

stage we receive permission to enumerate z then zLe is now sitting under an element

of X and cannot be enumerated into We. Since [z, xi] ⊂ X, if the opponent fixes the

problem then zLe must be to the right of the xi-block thus forcing the image yi of xi to

shift to the right of xi. In fact, yi must end up under one of the xj-blocks to the right.

We will now outline a construction to satisfy a single requirement Qe, and X ≤T A.

One Requirement:

Construction 1 :

Let d be a high c.e. degree. Let A ∈ d, with an enumeration {As}s∈ω, such that cĀ

is dominant. Let Ās = {as0 < as1 < as2 < . . .}. We build a set X satisfying Qe and define

a Turing functional Γ by stages such that ΓA = X. Let x0 = 1 and for each i ∈ ω, let

xi = xi−1 + (i+ 1) and enumerate the set {xi : i ∈ ω} ⊂ ω into X. We will let γ be the

use function for Γ and we will define a secondary function λ that we will call the link

function. At stage 0, set λ0(i) = i for all i ∈ ω and let γ0(i) = a0
λ0(i) = a0

i for each i ∈ ω.

In doing so, we are making our first definitions of Γ as follows: for each z ∈ (xi−1, xi), we

are computing ΓA(z) = X(z)[0] with use γ(z) = aλ(i)[0]. In general, at any stage s, we

are computing ΓA(z) = X(z)[s] for z ∈ (xi−1, xi) with use γ(z) = aλ(i)[s]. Now if at any

point we have a change in A, for example, if A enumerates asi , then any computation

of Γ with use greater than or equal to asi is lost. Let m be such that λs(m) = i, then

26

by the definition of the link function λ, ΓAs(z) for z ∈ (xm−1, xm) is computed with use

asi . Since As has had a change within the use of the computation, the computation is

lost and we can now add a new definition, ΓAs+1(z), with our new approximation of A.

Hence we may enumerate any z ∈ (xm−1, xm) into X.

We will define a computable function g on behalf of Qe which will challenge the

domination of A. Now suppose at stage s we have defined g(0), g(1),. . . ,g(k) of our

computable function g. Assume that at the end of stage s, we were waiting for xi0 to

be realized. Consider the following 2 cases at stage s+ 1:

1. A enumerates asi , and we have asked permission to enumerate below some xm

with λ(m) ≥ i.

2. xi0 is realized.

If we are in case 1, then we have received permission to change our computation

of X on the intervals (xm−1, xm) for all m with λ(m) ≥ i. Select the least such m for

which we have defined g(λ(m)[s]). (I.e. the left-most interval on which we are awaiting

permission from A.) We enumerate the number preceeding the current xm-block into

X. At this time, we abandon all j-strategies that are waiting on intervals to the right

of xm, while making sure to maintain all j-strategies whose intervals are still intact.

We will now wait for xm+1 to be realized. Define λ(m + 1)[s + 1] = k + 1, the first

natural number where g has not yet been defined, and λ(m+ 1 + j)[s+ 1] = k + 1 + j

for each j ≥ 1. We have shifted our link function in order to ensure that g(λ(m + 1))

is not defined at stage s+ 1. Define ΓA(z) = X(z)[s+ 1] for all z ∈ (xi−1, xi) with use

γ(z) = aλ(i)[s+ 1].

Now suppose we are in case 2. We now define g(λ(i0)) = s + 1 to ask permission

to enumerate in the interval (xi0−1, xi0). Note that g(λ(i0)) was undefined at the end

of stage s. We are thus challenging As to enumerate below as+1
λ(i) = asλ(i). If at the last

eventful stage t we enumerated into the interval (xi0−2, xi0−1) on behalf of some yj0 ,

then this realization means that yj0 must now be at least as far as the xi0-block at stage

s + 1. If instead we saw a realization at this stage t, then we must have seen xi0−1

realized at that time. We would have then moved on to the interval [0, xi0] with the

27

assumption that our lower j-strategies will not succeed. When we see xi0 realized at

stage s + 1 we will want to initialize our yi0-strategy (possibly not for the first time).

It is now clear that our earlier defintion of g(λ(i0)) = s + 1 was made in an attempt

to eventually shift this yi0 to the next xi0+1-block. In the meantime, we now turn our

attention to xi0+1 and await a realization or an advantageous enumeration from A.

Note that at stage s+ 1, g is undefined on λ(i0 + 1).

If neither case occurs, then we have not received permission to enumerate anything

into X at stage s + 1, nor have we seen a new realization. We thus let Xs+1 = Xs

and leave the link function λ unchanged. We may however have a new approximation

of A, As+1, and so we define ΓA(z) = X(z)[s + 1] for all z ∈ (xi−1, xi) with use

γ(z) = aλ(i)[s+ 1]. Note that if As+1 = As, then nothing changes.

End Construction 1

A proof of construction 1 is not provided here as we will prove a more detailed

construction involving all requirements Qe shortly. We can however provide some dis-

cussion.

By how we chose our xi’s, we know that whenever we wish to enumerate on behalf

of Qe, we have room to do so. We also defined our Turing functional Γ in stages so

that in the limit ΓA = X. To ensure that this happens, we must prove that the use of

our computation settles and that one of our computations will hold forever. Since λ(n)

can only change finitely often, we can show that aλ(n) will eventually settle.

We must also show that Qe will be satisfied. If 〈Le,We, Ve〉 is only a threat finitely

often, then Qe is clearly satisfied. So it suffices to show that if there are infinitely many

stages s where Le,s appears to be isomorphic to (ω,≤, Xs) as computed by (We,s, Ve,s),

then in the limit, Le will have an element y with infinitely many predecessors. (This

element y will be equal to yj for some j ∈ ω.) If infinitely many such stages exist,

then by our construction, the computable function g that we build must be total. If

g is total, then it must be dominated by the computation function of Ā. This means

that there must exist a stage after which A gives us permission whenever we ask. One

of the yj’s that is “alive” at that time will be our winner: the element that is pushed

past xi for each i ∈ ω. Since yj ∈ Le has infinitely many predecessors, Le cannot be

28

isomorphic to (ω,≤) and thus Qe is satisfied.

This construction is not the most efficient, and there are many precautions taken

here that need not be in order to satisfy only one requirement. This was done so that

only slight amendments must be done if we wish to include all requirements Qe, e ∈ ω.

Also, in the previous construction we did not ensure that A ≤T X by using our master

list {xi : i ∈ ω} ⊂ ω. In this next construction, we will include this coding and and

examine how the countable list of requirements interact.

All Requirements:

Before attempting construction 2 involving all requirements, we must examine the

method of satisfying a single requirement, and study how all the requirements will

interact. If there is injury, then we may need to amend Construction 1 to take that

into account. Since no requirement is trying to keep numbers out of X on its behalf,

there is no real interaction between the requirements. Each requirement Qe is only

concerned with 3 things: a length of agreement on a certain interval [0, xi], asking

permission to enumerate below the xi-block and enumerating as desired. The former

two actions do not result in a change in X and thus do not affect the strategy of the

other requirements. The latter case does result in a change in X, but we argue that

this will not affect the other strategies either. Qe is only allowed to enumerate the

predecessor of an xi-block into X, thus we are at worst lengthening that block by one

number. We are not introducing any extraneous ‘1’s strictly between our xi blocks,

so our enumeration strategy will remain unchanged. The only issue is ensuring that

we now have enough room for each of the countably many requirements to enumerate

whenever necessary. This will of course mean having more room between each of the

xi’s in the new construction. Now we will describe our second construction in detail.

Instead of determining whether a single tuple 〈Le,We, Ve〉 is a threat, we will now

consider all 3-tuples simultaneously. This will allow us to consider all possible routes

our opponent could take to win. To ensure that each requirement will have room to

enumerate when they need to, we put some restrictions on all “lower priority” argu-

ments. A requirement Qi has higher priority than Qj if and only if i < j. When running

29

the procedure, requirement Qe will first look for an agreement on the interval [0, xe]

and and each larger interval in turn. In other words, we will not consider Qe a threat

until we see an agreement between 〈Le,We, Ve〉 and (ω,≤, X) all the way up to xe. For

example, only Q0 will wait for an agreement on [0, x0], only Q0 and Q1 will look for

an agreement on [0, x1], etc. We will run our enumerations of 〈Le,We, Ve〉, and we will

construct our procedure so that at any given time we are only concerned with a finite

approximation of each triple and a finite collection of these triples. In other words at

a stage s, we consider finite approximations 〈L0,W0, V0〉 [s],...,〈Ls,Ws, Vs〉 [s]. We then

check for an agreement according to our priority list and act in a similar manner as

in Construction 1 if we find one. While the requirements are interacting, there is no

injury since each requirement is waiting for the same event to occur: namely, for the

predecessor of some xi-block to be enumerated. There could be any finite number of

requirements waiting for permission under a single xi, and if we enumerate xi − 1 on

behalf of one of them, they all win.

To ensure that A ≤T X, we will produce a second master list of numbers for

coding. Along with our set {xi : i ∈ ω} ⊂ ω determined by an appropriate increasing

computable function f , we will construct as second set {zi = xi + 1 : i ∈ ω} ⊂ ω for

coding. In our construction, we will enumerate zi into X if and only if i goes into the

set A. With this new development, we will enumerate each xi into X as before, and

we will have the usual xi-blocks now succeeded by a single number zi that may or may

not be enumerated into X during our construction. If at any point in our construction

zi is enumerated into X to code A, zi will officially become the leading member of the

xi-block. In a way, we are informally re-setting xi = xi + 1 = zi at this moment. Of

course, the actual value of xi, as given by the function f , does not change.

Since we now have countably many requirements, we need more room between each

of the xi’s. In fact, we need to choose our computable function f such that f has

1+2+ ...+(i+1) = (i+1)(i+2)
2

numbers between xi−1 +1 = zi−1 and xi. By construction

1, our highest requirement Q0 needs one space to enumerate under x0, two spaces

between x0 and x1, etc. Based on our restrictions above, Q1 does not enumerate below

x0, but requires one space to enumerate under x1, two spaces between x1 and x2, etc.

So we will require 1 space below x0, 1 + 2 = 3 spaces between z0 and x1, 1 + 2 + 3 = 6

30

spaces between z1 and x2 and so on. Of course this computation only works if we

abandon j-strategies of each requirement exactly as we did in construction 1. In our

next construction, we will ensure that a j-strategy for requirement Qe is only abandoned

if we enumerate in a lower interval on behalf of Qe. A sufficiently low enumeration for

the sake of a different requirement will not result in abandoning any j-strategies of Qe.

With this independence in mind, each requirement Qe, e ∈ ω, will require one spot

below xe, two below xe+1, etc. By this reasoning, the function described above will

provide sufficient room for each requirement.

Each requirement Qe will choose inifitely many potential y(e)’s just as the single

requirement did in Construction 1. The goal for the following construction is to build

a set X ⊂ ω such that for each requirement Qe, either 〈Le,We, Ve〉 [s] only appears to

be isomorphic to (ω,≤, Xs) for finitely many stages s, or Le has a member, say y(e),

with infinitely many predecessors.

In this construction, all requirements will use the same link function λ and use

function γ for our functional Γ; however, each requirement will have its own auxillary

function ge to challenge A to enumerate on its behalf. Because we now have so many

requirements to keep track of, we will also build a tracking function τe : ω → ω and a

position function πe : ω × ω → ω for each requirement. The function τe keeps track of

what interval Qe is waiting on at each stage. For example, if τe(s) = i then at stage s,

we are waiting for xi to be realized for Qe. The function πe follows the position of each

j-strategy of Qe. We note here that the j-strategy is initialized for the first time when

we first see xj realized for Qe. We define yj(e) to be the image of xj at this stage.

At the beginning of the construction, we will set πe(j, 0) = −1 for each j ∈ ω. When

we initialize the j-strategy for Qe we will set πe(j) ≥ 0. If πe(j, s) = −1 then at stage

s the j-strategy for Qe is not active. This will be the case either if xj has not yet been

realized (for the first time) by stage s, or if we have recently enumerated (for Qe) into

a low enough interval to abandon the j-strategy. If at stage s we set πe(j, s) = i ≥ 0,

then at this stage either yj(e) is waiting on an enumeration in the interval (xi−1, xi), or

we have just enumerated in this interval on behalf of yj(e) and are waiting for xi+1 to

be realized for Qe. By our construction, only finitely many j(e)’s will have non-negative

πe values at any given time for each requirement Qe.

31

Construction 2:

Let d be a high c.e. degree. Let A ∈ d, with an enumeration {As}s∈ω, such that

cĀ is dominant. Let Ās = {as0 < as1 < as2 < . . .}. We build a set X satisfying Qe for

each e and define a Turing functional Γ by stages such that ΓA = X. Let x0 = 1,

z0 = x0 + 1 = 2 and for each i ∈ ω, let xi = zi−1 + (i+1)(i+2)
2

and zi = xi+ 1. Enumerate

the set {xi : i ∈ ω} ⊂ ω into X.

We will let γ be the use function for Γ and let λ be the link function. At stage

0, set λ0(i) = i for all i ∈ ω and let γ0(i) = a0
λ0(i) = a0

i for each i ∈ ω. In general,

at any stage s, we are computing ΓA(z) = X(z)[s] for z ∈ (xi−1, xi) with use γ(z) =

aλ(i)[s]. Every requirement will be using the same link function and the same use of the

computation. We will build a separate comuptable function ge for each requirement

Qe, each challenging the domination of cĀ.

Finding lengths of agreement is a similar process as in Construction 1, but we can

now have xi realized for any Qe with i ≥ e. At each stage, we are looking for the

smallest i such that xi is realized for some Qe (could be more than one), and this

defines the interval where we will ask for a new permission from A.

At stage 0, define τ0(0) = 0 and πe(j, 0) = −1 for all e, j ∈ ω. Suppose we are at

stage s + 1. To begin, define τs+1(s + 1) = s + 1. At stage s + 1, two distinct events

can occur:

1. A enumerates asi , and at least one requirement has asked permission to enumerate

below some xm with λ(m) ≥ i.

2. xi is realized for some Qe (e ≤ s) with τe(s) = i.

Suppose we are in case 1. First enumerate za
s
i into X for coding. Note that za

s
i =

xa
s
i + 1 is now the leader of the xa

s
i -block. For each e ≤ s determine whether ge(λ(m))

has been defined for some m with λ(m) ≥ i. If so, pick the least me with this property

for each e. This list refers to the left-most intervals on which each requirement Qe is

awaiting permission. Enumerate the number preceeding the xme-block into X for each

32

such me. Note that we only enumerate one number below each xme , even if me1 = me2

for two different requirements Qe1 and Qe2 . By our choice of xme and xme−1 (determined

by our function f), we know that there is enough room to enumerate below each xme-

block at stage s + 1. Let τe(s + 1) = me + 1 for each such e to state that Qe is now

waiting for xme+1 to be realized.

Let m be the least me as described above. Let

N = max{n ∈ ω : ge(n) is defined for some e}.

Define λ(m+ 1)[s+ 1] = N + 1 and λ(m+ j)[s+ 1] = N + 1 + j for each j ≥ 1. Doing

so ensures that ge is not defined on λ(τe(s+ 1)) = λ(me + 1) for any e (from above) at

stage s+1. Define ΓA(z) = X(z)[s+1] for all z ∈ (xi−1, xi) with use γ(z) = aλ(i)[s+1].

Lastly, we need to define πe(j, s + 1) for all j. If Qe did not receive permission to

enumerate, then let πe(j, s + 1) = πe(j, s) for all j. If we enumerated below xme on

behalf of Qe then there must exist a unique number je such that πe(je, s) = me. For

all j ≤ je, let πe(j, s+ 1) = πe(j, s), and for all j > je, let πe(j, s+ 1) = −1.

Suppose case 2 occurs. Let i0 be the smallest i such that xi is realized for some Qe

(e ≤ s) with τe(s) = i. Find all requirements Qe, e ≤ s, such that τe(s) = i0 and xi0 is

realized for Qe at stage s+1. There are finitely many such requirements, so let them be

Qe1 , . . . , Qek . For each i ∈ {1, . . . , k}, define gei(n) = s+ 1 for all n ≤ λs(i0) for which

gei(n) has not yet been defined. This is done first to ensure that ge will indeed be total

if there are infinitely many stages where Qe is a threat, and second to ask permission

to enumerate in the interval (xi0−1, xi0) on behalf of each of the Qei ’s. Note that gei

has not been defined on λ(τei(s)) by the end of stage s, for each i ∈ {1, . . . , k}.

For each ei (i = 1, . . . , k) do the following: Determine whether or not there exists

some j0 < i0 with πei(j0, s) = i0 − 1. If so, let t be the last stage when we either

enumerated into X on behalf of Qei or saw some xl realized for Qei . If τei(t−1) ≥ τei(t),

then at stage t we enumerated some number into X. (Note that τei(t) = τei(s).) In

this case we let πei(j0, s+ 1) = πei(j0, s) + 1 = i0 to shift our j0-strategy for Qei to the

interval (xi0−1, xi0). This definition reflects the fact that this yj0 is now at least as far

as the xi0-block since we have recovered up to xi0 after having enumerated below xi0−1.

33

If τei(t − 1) < τei(t), then we necessarily saw xi0−1 realized for Qei at stage t. In this

case, we let πei(i0, s+ 1) = i0 to initialize yi0 and pursue the new i0-strategy for Qei .

Leave all other definitions of πe and τe unchanged at stage s+ 1.

If neither case occurs, then we have not received permission to enumerate anything

into X at stage s+ 1, nor have we seen a new realization for any requirement. We thus

let Xs+1 = Xs and leave the link function λ unchanged. We may however have a new

approximation of A, As+1, and so we define ΓA(z) = X(z)[s + 1] for all z ∈ (xi−1, xi)

with use γ(z) = aλ(i)[s+ 1]. Note that if As+1 = As, then nothing changes. Finally, let

τe(s+ 1) = τe(s) and πe(j, s+ 1) = πe(j, s) for all e, j ∈ ω.

End Construction 2

Verification:

We defined our Turing functional Γ in stages so that in the limit ΓA = X; first we

must prove that the use of our computation settles.

Lemma 2.4.1. lim
s→∞

γs(n) <∞ for each n ∈ ω.

Proof. To prove this, it is enough to show that the link function λ settles on each

number. The link function λ only changes when we enumerate into X. Specifically,

λ(n) only changes when we enumerate into the interval (0, xn). Since there are finitely

many numbers below xn, λ(n) can only change a finite number of times. Since A is

noncomputable, A is infinite and coinfinite, and hence if λ(n) settles then so does aλ(n).

Thus lim
s→∞

γs(n) = lim
s→∞

asλ(n) <∞.

We get A ≤T X since xi + 1 ∈ X if and only if i ∈ A. By Lemma 2.4.1, the use

settles and thus one of our computations hold forever with ΓA = X. Hence X ≡T A as

desired.

It remains to show that Qe is satisfied for all e ∈ ω. To do this we need to show that

for each e, either Qe has only finitely many stages s where 〈Le,We, Ve〉 [s] is a threat,

or that in the limit, Le has an element y(e) with infinitely many predecessors. Recall

34

that we define yj(e) to be the apparent image of xj the first time we see xj realized for

Qe.

Lemma 2.4.2. Fix e ∈ ω. If πe(j, s) = i > 0 then yj(e) is at least as far right as the

image of the xi-block in Le at stage s.

Proof. Fix a number j ∈ ω. We will proceed by induction on the stage number s. Let

sej be the first stage where we see xj realized for Qe. Note that πe(j, s) = −1 for all

s < sej . By our construction, at stage sej we define πe(j, s
e
j) = j to initialize yj(e). Since

yj(e) is defined to be xjLe,se
j

, we indeed have yj(e) in the image of the xj-block at stage

sej , and hence the base case of our Lemma holds. Before we move on to our inductive

step, we make the following obervation:

(∗) ∀z ∈ ω (t1 < t2 ⇒ zLe,t2 ≤Le zLe,t1).

This follows from the fact that Le is c.e. so the number of predecessors that any member

of the ordering has can only increase.

Now suppose that at stage s > sej , we have πe(j, s) = i > 0. Suppose that πe(j, s−
1) = πe(j, s) = i. Then by the inductive hypothesis, yj(e) is at least as far as the

xi-block by stage s − 1. Since s > sej , by (∗) we have that yj(e) is at least as far as

the xi-block by stage s. Now suppose that πe(j, s − 1) 6= πe(j, s). Since the value of

πe can only change after Qe enumerates or we see a realization for Qe, we have two

possibilities. Either πe(j, s − 1) = −1 and πe(j, s) = j, or πe(j, s − 1) = i − 1 and

πe(j, s) = i. (Of course we could also set πe(j) back to −1, but this doesn’t not satisfy

the statement of the Lemma.)

If we have the former possibility, then at stage s, we saw xj realized for Qe. (Note

that here i = j) Since s > sej , then by assumption, this is not the first time we are

seeing this realization. At this moment we wish to claim that yj(e) ≥Le x
j
Le

at stage s.

The number yj(e) was defined as xjLe,se
j

at stage sej < s so by (*), xjLe,s ≤Le x
j
Le,se

j

= yj(e)

as claimed. Thus yj(e) is at least as far as the xj-block of Le at stage s.

In the latter case, at stage s we saw xi realized for Qe, and at the last stage t < s

when Qe acted, we enumerated the predecessor of the xi−1-block into X to pursue a

35

strategy for Qe. Note that by assumption πe(j, t) = πe(j, s−1) = i−1. By the inductive

hypothesis we must have yj(e) at least as far as the xi−1-block at stage t. If yj(e) is

already as far as the xi-block at stage t, then we win, so let us assume that yj(e) is

strictly to the left of the xi-block of Le at stage t.

Suppose that (A): yj(e) ≤Le xi−1
Le

at stage t. Then yj(e) is necessarily in the xi−1-

block of Le at this stage. We know that at stage t we enumerated the predecessor of

this block into X on behalf of Qe, thus introducing a new element, say z, into X below

the preimage of yj(e) at this stage. Later, at stage s, we see xi realized. This means

that Le,s must have a block of 1s matching up with the xi−1-block and the xi-block

in X. Since z ∈ X and zLe,t /∈ XLe , the opponent will have had no choice but to

match zLe,t with a ‘0’ to the right of z. Since the xi−1-block is contained in X, the next

possible match for zLe,t is strictly greater than xi−1. Indeed, the next possible ‘0’ is zi−1

if zi−1 /∈ X at stage s, and strictly greater than zi−1 otherwise. Since yj >Le zLe,t and

yj ∈ XLe the next possible match for yj(e) lies in the xi-block. We can thus conclude

that at stage s, yj(e) must be at least as far as the xi-block of Le.

Now suppose that (B): yj(e) > zi−1
Le

(but below the xi-block) at stage t. Then yj(e)

is necessarily matched with a ‘0’ at this stage. When xi is realized for Qe at stage s,

yj(e) must be matched with a ‘1’ since yj(e) ∈ XLe . The closest member of X is indeed

in the xi-block, so yj(e) has no choice but to be at least as far as the xi-block at stage

s.

Now let’s assume that yj(e) = zi−1
Le,t

. If zi−1 has been enumerated into X by stage

t, then the same reasoning from (A) will work here. If zi−1 is not in X by stage s,

then the argument from (B) works. So without loss of generality, assume that zi−1 is

in Xs but not Xt. At stage t we enumerated the predecessor of the xi−1-block, say w,

to destroy an agreement. This enumeration will induce a mismatch since wLe,t /∈ XLe,t .

In order for xi to be realized for Qe, this ‘0’ has no choice but to move past the block

of ‘1’s to its right, and must move at least as far as zi−1 (since this is the next possible

‘0’ in Le) regardless of whether or not zi−1 is in X at this point. Since yj(e) = zi−1
Le,t

,

we must have yj(e) ≥ zi−1
Le,s

in order for xi to be realized. Moreover, since the next

memeber of X is in the xi-block and yj(e) ∈ XLe , yj(e) must be at least as far as the

xi-block of Le by stage s as desired. This completes the proof of Lemma 2.4.2.

36

Finally, we will show that if, in the end, our function ge is total for some e, then

one of the yj(e)’s must be to the right of each xi.

Lemma 2.4.3. If ge (e ∈ ω) is total, then there exists some j ∈ ω with

lim
s→∞

πe(j, s) =∞.

Proof. Fix e ∈ ω. Let us assume that ge is total. Since cĀ is dominant and ge is

computable, we have cĀ(i) > ge(i) for almost every i ∈ ω. Hence there exists some

number ke such that cĀ(i) > ge(i) for all i > ke. Let s0 be the stage where we define

ge(ke) (i.e. g(ke) = s0). Then after this stage, any time we define ge on a new natural

number to challenge cĀ, A must eventually give Qe permission to enumerate.

Suppose that τe(s0) = i. Let se1 be the last stage when we enumerate below xi−1

for the sake of Qe. Since there are only finitely many numbers in the interval (0, xi−1),

such a stage must exist. Now we may receive permission from A to enumerate below

xi−1 for other requirements, but by our construction, these events can only happen

finitely often and moreover will not change the values of πe(j) for any j. Let te0 be the

next stage when xi is realized for Qe. This stage must exist since ge is total. At stage

te0 we will define πe(j0, t
e
0) = i for some j0 ≤ i to pursue the yj0(e)-strategy and define

ge(λ(i)) = te0 to ask permission to enumerate below xi on behalf of yj0(e). At this point

we set τ(te0) = i + 1. We now claim that next time πe(j0) changes, say at stage te1, we

will have πe(j0, t
e
1) = i+ 1.

By our construction, πe(j0) will not change until after we receive permission to

enumerate somewhere below xi on behalf of Qe. Also by our construction, at this later

stage when πe(j0) changes, it will either be set back to −1 or to i + 1, depending on

the interval of enumeration. We would like to rule out the former case and ensure that

the latter will indeed occur. Since λ(i) > ke, A must eventually give us permission to

enumerate below xi for Qe. By assumption, we no longer enumerate below xi−1 and

thus this enumeration can only occur in the interval (xi−1, xi). Hence the value of πe(j0)

will not be set back to −1.

37

In Case 1 of our construction, we ensure that if A gives us permission to enumerate,

then we indeed enumerate on behalf of each requirement Qe that was waiting. In other

words, if Qe receives permission to enumerate into the interval (xi−1, xi) at some stage

s′, then we will enumerate in the desired interval at that stage on behalf of Qe; this

will happen regardless of whether or not another requirement received permission on a

lower interval. We can thus conclude that this enumeration must happen for the sake

of Qe. At this point we will set τe to i+1 and wait for xi+1 to be realized for Qe. Again,

since ge is total, we must see a later stage te1 where xi+1 is realized for our requirement.

Following our construction, πe(j0) will remain unchanged until this event occurs. At

stage te1 we will define πe(j, t
e
1) = i + 1 as desired, following Case 2 of Construction 2.

Moreover, we know that from this point on, we are finished enumerating below xi on

behalf of requirement Qe. The reasoning is as follows: By assumption, we will never

again enumerate below xi−1 for the sake of Qe, so no j-strategies of Qe with j < j0 will

advance after stage te0. Thus the only j-strategy that can ask for an enumeration in

the interval (0, xi) for Qe is the j0-strategy. Since we have already enumerated below

xi on behalf of yj0(e) for the last time, we will not enumerate below xi for the sake of

requirement Qe after stage te1.

Now suppose that we are at a stage tek > te1 with πe(j0, t
e
k) = i + k, and that we

are finished enumerating below xi+k−1 on behalf of Qe at stage tek. We claim that there

exists tek+1 > tek with πe(j0, t
e
k+1) = i + k + 1 and the property that we never again

enumerate below xi+k for Qe after this stage. By similar reasoning as above, πe(j0) will

remain unchanged until we enumerate below xi+k for the sake of Qe. By assumption,

we must see a later stage where A gives us permission to enumerate below xi+k on

behalf of Qe, and this enumeration will indeed occur by Case 1 of our construction.

Since this enumeration cannot take place to the left of xi+k−1, it must be in the interval

(xi+k−1, xi+k). By Case 1 of our construction, this enumeration will result in setting τe

of this stage to i + k + 1, signifying that we are now waiting for xi+k+1 to be realized

for Qe. Since ge is total, we must see a later stage tek+1 > tek where xi+k+1 is realized

for Qe. By Case 2 of our construction, we will set πe(j0, t
e
k+1) = i + k + 1 as desired.

Since by assumption we are done enumerating below xi+k−1 for Qe and we have already

enumerated below xi+k on behalf of the j0-strategy of Qe, we will never again ask to

38

enumerate in the interval (0, xi+k) for Qe after stage tek+1. This proves our claim.

As a result, we can find stages te1 < te2 < te3 < ... such that πe(j0, t
e
k) = i+ k for each

k ∈ ω. So we have lim
s→∞

πe(j0, s) ≥ lim
k→∞

πe(j0, t
e
k) =∞ as desired.

Qe is satisfied for each e ∈ ω:

Fix e ∈ ω. If the function ge is not total, then at some point we stopped seeing

a new length of agreement for 〈Le,We, Ve〉 [s], so Qe is clearly satisfied. If ge is total,

then by Lemma 2.4.3, there exists a number j ∈ ω with lim
s→∞

πe(j, s) = ∞. By how

πe is defined in our construction, we can conclude that there exists stages se1, s
e
2, s

e
3, ...

such that πe(j, s
e
i) = i for all i ∈ ω. By Lemma 2.4.2, we must have yj(e) at least as

far as the xi-block at stage sei , so in the limit, we must have yj(e) to the right of each

xi. This shows that Le contains an element with infinitely many predecessors, namely

yj(e), and thus Le cannot be isomorphic to (ω,≤).

In either case Qe is satisfied.

39

Chapter 3

Degree Spectra on (ω,≤ζ)

After having examined known results about the degree spectra of unary relations on

(ω,≤), we wish to extend these results to the structure (ω,≤ζ). Passing to the integers,

we lose the rigidity of the structure, and we can ask whether this will affect the degree

spectrum of a relation. We can view (ω,≤ζ) as a copy of (ω∗,≤∗) (the natural numbers

in reverse order) followed by a copy of (ω,≤) and so it makes sense to ask whether

there is a strong relationship between the degree spectrum of a given relation on (ω,≤)

and the degree spectrum of the corresponding relation on (ω,≤ζ).

Most of our results from Chapter 2 relied on the fact that X was an infinite and

coinfinite set; we needed infinitely many bit alternations on the infinite segment of

(ω,≤). It seems likely that the success of analogous theorems for the structure (ω,≤ζ)
will rely on a similar property of our set X: whether X is infinite and coinfinite on

both segments, one segment or neither segment of (ω,≤ζ).

If X has no infinite and coinfinite segment in (ω,≤ζ), then the degree spectrum is

trivial. Let us assume, without loss of generality, that X is finite on the left segement

and cofinite on the right segment. Then there exist numbers a and b such that

x ≤ζ b⇒ x ∈ X and x ≤ζ a⇒ x /∈ X

Then we are left with only a finite area of interest in (ω,≤ζ), namely the segment

between a and b. Because of this, XL must be computable no matter what computable

41

copy L of (ω,≤ζ) we choose. In other words, the degree spectrum of X is a singleton,

namely {0}.

It is left for us to distinguish between unary relations that have two infinite and

coinfinite segments or simply one such segment in (ω,≤ζ). For clarity, we will consider

the usual copy of the integers with domain Z under the usual ≤Z-order:

... − 3 − 2 − 1 0 1 2 3 ...

This structure is computably isomorphic to our previous structure, (ω,≤ζ), and hence

the two structures can be identified for the purposes of determining the degree spectra

of unary relations. For the time being, we will consider any unary relation X on (ω,≤ζ)
as a subset of Z (which, of course, can be identified with a subset of N under our coding.)

This will allow us to differentiate between unary relations that form subsets of Z and

those that form subsets of N. The latter type can only be infinite and coinfinite on the

right segment of (ω,≤ζ).

Let X ⊆ N. If deg(X) = d then we have d ∈ DgSp(ω,≤ζ)(X) and d ∈ DgSp(ω,≤)(X),

since X has degree d on both standard copies:

(ω,≤, X) 0 1 2 3 4 5 6 ...

(ω,≤ζ , X) ... −3 −2 −1 0 1 2 3 4 5 6 ...

We now claim that if X is any unary relation on (ω,≤ζ) such that X ⊆ N, then

DgSp(ω,≤ζ)(X) = DgSp(ω,≤)(X).

We will start by showing that for X ⊆ N, DgSp(ω,≤)(X) ⊆ DgSp(ω,≤ζ)(X).

Let d ∈ DgSp(ω,≤)(X). Then, by definition, there is a computable presentation L

of (ω,≤) such that deg(XL) = d. Using the program that builds L from (ω,≤) we

can build a computable copy, L̃, of (ω,≤ζ) such that the right segment of L̃, L̃≥0, is

computably isomorphic to L. For example, let L and XL be as follows:

42

(L, XL) 5 0 1 9 4 13 2 ...

(L̃, XL̃) ... −3 −2 −1 5 0 1 9 4 13 2 ...

We thus have a clear effective procedure to obtain the ordering L̃ from L. Since XL̃

is contained on the right segment of L̃ and this segment is computably isomorphic to

L, we must have deg(XL̃) = deg(XL) = d. And hence d ∈ DgSp(ω,≤ζ)(X).

We will now argue that the reverse inclusion also holds, that is, DgSp(ω,≤ζ)(X) ⊆
DgSp(ω,≤)(X) for such a set X.

Let X ⊆ N and suppose that d ∈ DgSp(ω,≤ζ)(X). Consider the computable copy,

L̃, of (ω,≤ζ) having deg(XL̃) = d. For example:

(ω,≤ζ , X) ... −4 −3 −2 −1 0 1 2 3 4 5 6 ...

(L̃, XL̃) ... 7 −1 −9 2 0 6 −2 1 11 3 -13 ...

Note that we have kept 0L̃ = 0 for clarity. Then for any n ∈ ω, L̃≥n ∼= (ω,≤) and,

in particular, L̃≥0
∼= (ω,≤). Now we wish to build a computable copy L of (ω,≤) that

is computably isomorphic to the right segment of L̃, L̃≥0.

Since X ⊆ N, we know that no member of XL̃ can appear to the left of 0, so we

will build in the ordering L only if L̃ builds to the right of 0. For example, when −1

appears in L̃ (to the left of 0), we will not introduce a match for −1 in L. However,

when 1 appears in L̃ (to the right of 0), we will place the next natural number into L

as the isomorphic image ϕ(1) in L. We reveal L̃ stage by stage and build the ordering

L as follows:

43

Stage 0 : L̃ 0

L 0

Stage 1 : L̃ 0 1

L 0 1

Stage 2 : L̃ − 1 0 1

L 0 1

Stage 3 : L̃ − 1 2 0 1

L 0 1

Stage 4 : L̃ − 1 2 0 − 2 1

L 0 2 1

Since we do not change our minds about the definition of ϕ, the isomorphism be-

tween L̃≥0 and L is a computable function. Since the L̃≥0 and L are computably

isomorphic, any relation on L̃≥0 and its isomorphic image in L must have the same

Turing degree. Since XL̃ is contained in L̃≥0, we must have deg(XL) = deg(XL̃) = d,

and hence d ∈ DgSp(ω,≤ζ)(X) as desired.

We now know that for any X ⊆ N, we have DgSp(ω,≤ζ)(X) = DgSp(ω,≤)(X). It

remains to determine whether an abitrary X ⊆ Z will have the same property, or do

we introduce new possible degree spectra that can be realized in this case? In other

words, do we get anything new if we allow the set X to distribute as an infinite and

coinfinite set on both segments of (ω,≤ζ)? While this question is open and an answer

will not be presented in this paper, we will provide some insight on how to reduce the

problem of determining degree spectra on (ω,≤ζ) to a question about degree spectra

on (ω,≤).

44

Let X ⊆ Z. Since we wish to discuss Turing degrees of sets, we will return to the

structure (ω,≤ζ) under our coding

... 9 7 5 3 1 0 2 4 6 8 10 ...

so that the domain is again ω. Recall that now the positive numbers in Z are coded as

even numbers and the negative numbers are coded as odd numbers. We will consider

an example to illustrate the next result:

Let us suppose that X distributes over the standard copy of (ω,≤ζ) as follows:

(ω,≤ζ , X) . . . 9 7 5 3 1 0 2 4 6 8 10 . . .

Recall that the join of two sets A and B, denoted A⊕B is defined as

A⊕B = {2n+ 1 : n ∈ A} ∪ {2n : n ∈ B}.

Let X1 = {x−1
2

: x ∈ X, x odd} = {0, 2, 3, ...} and X2 = {x
2

: x ∈ X, x even} =

{1, 2, 4, ...}. Then the degree of X1 is equal to the degree of X ∩ {2n+ 1 : n ∈ N} and

the degree of X2 is equal to the degree of X ∩{2n : n ∈ N}, and we have X = X1⊕X2.

Since the right and left segments of (ω,≤ζ) are isomorphic to the structures (ω,≤)

and (ω∗,≤∗) respectively, we can consider X1, X2 ⊂ N as unary relations on (ω,≤) and

(ω∗,≤∗) as follows:

(ω,≤, X2) 0 1 2 3 4 5 ...

(ω∗,≤∗, X1) ... 5 4 3 2 1 0

And we get the following proposition:

Proposition 3.1. Let X be unary relation on (ω,≤ζ) and let X = X1⊕X2 as previously

described. Then

DgSp(ω,≤ζ)(X) = {d1 ∪ d2 : d1 ∈ DgSp(ω,≤)(X1) and d2 ∈ DgSp(ω,≤)(X2)}

where d1 ∪ d2 denotes the join of the degrees d1 and d2.

We will denote the right hand side as DgSp(ω,≤)(X1)⊕DgSp(ω,≤)(X2).

45

Proof. Let X = X1 ⊕X2 as defined above. First we will show that

DgSp(ω,≤)(X1)⊕DgSp(ω,≤)(X2) ⊆ DgSp(ω,≤ζ)(X).

Suppose that d1 ∈ DgSp(ω,≤)(X1) and d2 ∈ DgSp(ω,≤)(X2). Then there exist programs

that build computable copies L1 and L2 of (ω,≤) where the image of Xi in Li has degree

di. Using these programs we can build L1 having the odd numbers as its domain, and

L2 having the even numbers as its domain (again with the image of Xi in Li having

degree di). Finally, we build a computable ordering L ∼= (ω,≤ζ) as follows:

• Odd numbers ≤L Even numbers,

• 2n+ 1 ≤L 2m+ 1⇔ m ≤L1 n, and

• 2n ≤L 2m⇔ n ≤L2 m.

Since deg((X1)L1) = d1 and deg((X2)L2) = d2, we have deg(XL) = deg((X1)L1) ∪
deg((X2)L2) = d1 ∪ d2 and hence d1 ∪ d2 ∈ DgSp(ω,≤ζ)(X).

To prove the reverse inclusion, let d ∈ DgSp(ω,≤ζ)(X) and let L be a computable

presentation of (ω,≤ζ) with deg(XL) = d. We claim that we can build a copy L̃ of

(ω,≤ζ) that is computably isomorphic to L where all odd numbers in ω are ≤L̃-below

the even numbers. Assume that we know 0L = x0, i.e. x0 is the “zero” in L. We will

run the enumeration of L and build our computable isomorphism ϕ in stages as follows:

When the number s appears at stage s, we will compute whether s <L x0 or s ≥L x0.

If s <L x0 then we define ϕ(s) to be the smallest odd number not yet in the domain of

L̃[s]; if s ≥L x0 then we define ϕ(s) to be the smallest even number not yet in L̃[s]. If

a is the current predecessor and b is the current successor of s in L[s] then we declare

ϕ(a) ≤L̃ ϕ(s) ≤L̃ ϕ(b) in L̃.

It is clear, by our contruction, that all of the odd numbers in appear L̃-below all of

the even numbers in L̃ and since L is infinite in both directions, L̃ will have domain

ω. Since we define the value of ϕ(x) at the stage when x first appears in L, ϕ is in

fact a computable isomorphism. Let y, z ∈ L̃. To compute whether y ≤L̃ z we need

only wait until they are both placed in the L̃-ordering, which must occur after finitely

46

many stages. (Of course, another way is to determine ϕ−1(y) and ϕ−1(z) and compute

whether ϕ−1(y) ≤L ϕ−1(z).) So L̃ is indeed a computable copy of (ζ,≤) with the

desired property.

Since L ∼= L̃ via a computable isomorphism, we have deg(XL̃) = deg(XL) = d. Since

L̃≥0L̃

∼= (ω,≤) and L̃<0L̃

∼= (ω∗,≤∗) we can write the degree of XL̃ as d1 ∪d2 where d1

is the degree of XL̃ ∩ {odd numbers} and d2 is the degree of XL̃ ∩ {even numbers}.
So d = d1∪d2 where di ∈ DgSp(ω,≤)(Xi) and hence DgSp(ζ,≤)(X) ⊆ DgSp(ω,≤)(X1)⊕
DgSp(ω,≤)(X2) as desired.

With this result in mind, we will now dicuss how our results from Chapter 2 extend

to the integers.

First, we recall Theorem 2.4 for unary relations on the structure (ω,≤). We now

wish to prove an analogous result for the integers. Since 2.4 is about the existence of a

high c.e. set X that is not order-computable, we get the following Corollary from our

discussion above.

Corollary 3.2. Let d be a high c.e. degree. Then there exists a unary relation X on

(ω,≤ζ) such that deg(X) = d and 0 /∈ DgSp(ω,≤ζ)(X).

Proof. Fix a high c.e. degree d. Then by Theorem 2.4, there exists a unary relation

X on (ω,≤) such that deg(X) = d and 0 /∈ DgSp(ω,≤)(X). Since X ⊂ N, we have

DgSp(ω,≤ζ)(X) = DgSp(ω,≤)(X) and hence 0 /∈ DgSp(ζ,≤)(X) as desired.

Next we will examine how Theorems 2.1 and 2.2 extend to the integers using Propo-

sition 3.1.

Corollary 3.3. Let X be a unary relation on (ω,≤ζ). Suppose that X forms a c.e. set

such that either X ∩{2n+ 1 : n ∈ N} is infinite and coinfinite within the odd numbers,

or X ∩{2n : n ∈ N} is infinite and coinfinite within the even numbers (or both). Let Y

be a c.e. set such that X ≤T Y . Then there is a computable presentation L of (ω,≤ζ)
such that XL ≡T Y .

47

Proof. Let Y be c.e. set such that X ≤T Y . To prove the corollary, we need to

show that deg(Y) ∈ DgSp(ζ,≤)(X). Let X = X1 ⊕ X2, as defined in Proposition

3.1. Since X ≤T Y , we have X1, X2 ≤T Y as well (by a property of the join [5]).

By assumption, at least one of X1 and X2 is infinite and coinfinite. Let us suppose,

without loss of generality that it is X2. We can consider X2 ≤T Y as a unary relation

on (ω,≤), and hence by Theorem 2.1, deg(Y) ∈ DgSp(ω,≤)(X2). By Proposition 3.1,

deg(X1) ∪ deg(Y) ∈ DgSp(ω,≤ζ)(X). But X1 ≤T Y ⇒ deg(X1) ∪ deg(Y) = deg(Y), so

we have proven the result.

Theorem 2.2 extends to the integers on a similar manner as 2.1.

Corollary 3.4. Let X be a unary relation on (ω,≤ζ) and suppose that there exists a

computable copy L of (ω,≤ζ) such that XL is computable. If X ∩ {2n + 1 : n ∈ N}
is infinite and coinfinite within the odd numbers, or X ∩ {2n : n ∈ N} is infinite

and coinfinite within the even numbers (or both), then DgSp(ω,≤ζ)(X) contains all ∆2

degrees.

Proof. Again, let X = X1⊕X2 as defined in Proposition 3.1. Since 0 ∈ DgSp(ω,≤ζ)(X),

we have 0 ∈ DgSp(ω,≤)(X1) and 0 ∈ DgSp(ω,≤)(X2). We know that X is infinite and

coinfinite on at least one infinite segment, so we know where we can find our infinitely

many bit alternations in XL. This time, let us assume that XL is infinite and coinfinite

to the left of 0. Then X1 is infinite and coinfinite, and thus by Theorem 2.2, we know

that DgSp(ω,≤)(X1) contains all ∆2 degrees. Since d∪ 0 = d for any degree d, then by

Proposition 3.1, DgSp(ω,≤ζ)(X) contains all ∆2 degrees.

Finally, in Theorem 2.3 we stated that a sufficient condition for a set X to be

order-computable is for X to be of non-high degree. We will now extend the notion of

order-computable sets to unary relations on the structure (ω,≤ζ). Again, we need to

examine how the given set X ⊆ Z is distributed across the the two segments of (ω,≤ζ).

Corollary 3.5 Let X be a unary relation on (ω,≤ζ). If X is c.e. set whose Turing

degree is not high, then 0 ∈ DgSp(ω,≤ζ)(X).

48

Proof. Let X = X1 ⊕X2 as defined in Proposition 3.1.

First, we claim that if X is not high, then neither X1 nor X2 can be high. Suppose

that X ′1 ≥ ∅′′. By properties of the join from [5] and [1], we know that X1 ≤T X1⊕X2.

This implies that X ′1 ≤T (X1 ⊕ X2)′, by a property of the jump [5]. So we have

∅′′ ≤T X ′1 ≤T (X1 ⊕ X2)′ and thus X1 ⊕ X2 = X must be high. This contradiction

proves our claim.

Since X1 and X2 are not high, then by Theorem 2.3, 0 ∈ DgSp(ω,≤)(X1) and

0 ∈ DgSp(ω,≤)(X2). Therefore 0 = 0 ∪ 0 ∈ DgSp(ω,≤ζ)(X) by Proposition 3.1.

We see that each analogous result follows quite directly from the correspondence in

Proposition 3.1. We are now left to ask whether a set of Turing degrees can be obtained

by considering DgSp(ω,≤)(X1)⊕DgSp(ω,≤)(X2) for X1, X2 ⊆ N, but cannot be realized

as the degree spectra of a single unary relation X on (ω,≤).

49

References

[1] S. Barry Cooper. Computability theory. Chapman & Hall/CRC, Boca Raton, FL,

2004.

[2] R. Downey, B. Khoussainov, J. Miller, and L. Yu. Degree spectra of unary relations

on (ω,≤). to appear.

[3] Denis Hirschfeldt, Russell Miller, and Sergei Podzorov. Order-computable sets.

Notre Dame J. Formal Logic, 48(3):317–347 (electronic), 2007.

[4] Denis R. Hirschfeldt. Degree spectra of relations on computable structures. Bull.

Symbolic Logic, 6(2):197–212, 2000.

[5] Robert I. Soare. Recursively enumerable sets and degrees. Perspectives in Mathe-

matical Logic. Springer-Verlag, Berlin, 1987. A study of computable functions and

computably generated sets.

51

