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ABSTRACT 
 

CAMP factor is a 25kDa extracellular protein from Streptococcus agalactiae 

(Group B streptococci) that contains 226 amino acid residues. CAMP factor has 

been characterized as a pore-forming toxin (PFT). The typical mechanism of 

pore formation of PFTs involves three main stages, namely binding of toxin 

monomers to the membrane surface, oligomerization of the monomers on the 

cell membrane, and finally the insertion of oligomers into the membrane. 

This study focused on second stage, and investigates the oligomerisation of 

CAMP factor on sheep red blood cell membranes. It is known that the hemolytic 

activity of CAMP factor is greatly enhanced by interaction with 

sphingomyelinase from Staphylococcus aureus. We here focused on 

understanding the role of sphingomyelinase in the oligomerisation step.  

Experimental data were obtained using Förster resonance energy transfer (FRET) 

studies. The fluorescence dyes IAEDANS and Fluorescein-5-maleimide were used 

as donor/acceptor fluorophores and attached to mutant single cysteine 

residues in CAMP factor. Samples of donor- and acceptor-labelled protein were 

mixed and incubated with red cell membranes that had or had not been pre-

treated with sphingomyelinase. Energy transfer was monitored with time-

resolved and steady-state fluorescence measurements. In the time-resolved 

experiments, the fluorescence lifetime of the donor was measured in the 
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presence and the absence of the acceptor, on membrane samples that were 

or were not treated with sphingomyelinase.  

We observed a decrease in the fluorescence lifetime of the donor with the 

presence of the acceptor. The decrease in lifetime due to acceptor interaction 

signifies the occurrence of energy transfer between the donor and acceptor 

fluorophores, which indicates proximity due to oligomerisation of the CAMP 

factor protein on the cell membrane. This was only observed when the 

membranes had been treated with sphingomyelinase.  

When membranes were used that had not been treated with sphingomyelinase, 

the donor lifetimes are very low, suggesting the inability of the CAMP factor to 

undergo membrane insertion and oligomerisation.  
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CHAPTER 1 

INTRODUCTION 
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1.1 Membrane Damaging Toxins 
Gram-negative and Gram-positive bacteria both produce membrane-

damaging toxins or cytolysins, which disrupt or damage the plasma membrane 

of mammalian target cells, leading to cell swelling and lysis [1]. 

Membrane-damaging toxins have historically been identified through their 

cytolytic action on human and animal erythrocytes, which has led to many of 

them being referred to as hemolysins; however, the effect of most such toxins is 

not restricted to red cells, and some even act preferentially on other cells, for 

example leukocytes. According to their mode of action, membrane-damaging 

toxins can be divided into three groups 

(i) Enzymatically active cytolysins (phospholipases) 

These toxins disrupt the membrane by enzymatically hydrolyzing the 

phospholipids of the membrane bilayer. The most important toxins of this family 

are phospholipases, for examples are Clostridium-perfringens α-toxin 

(phospholipases C), Staphylococcus aureus β-toxin (sphingomyelinase C), and 

vibro damsela hemolysin (phospholipases D) [1].  

(ii) Tensio-active cytolysins, which solubilize the cell membranes by 

detergent-like action [2], and partial insertion into the hydrophobic regions of 

the target membranes, for example, the δ-toxins of 26 amino acids of 

Staphylococcus aureus, Staphylococcus haemolyticus and Staphylococcus 

lugdunensis [2].  
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Two models have been proposed for membrane penetration of these toxins, (1) 

the carpet model and (2) the barrel-stave model. Both models for membrane-

lytic peptides are not fully understood. 

(1) Membrane destruction and solubilization by the carpet model.  

i. According to this model the toxin adsorbs onto the membrane surface, 

where it non-specifically aggregates into large carpet-like structures.  

ii. The peptide monomers will bind to the phospholipids head groups and 

the membrane permeation will occur, when the local concentration of 

membrane-bound peptide will increase.  

iii. This will destabilize the membrane through defects in lipid packing of 

membrane, due to which the cytoplasm can leak out from the cell.  This 

finally breaks the membrane into micellar protein-lipid complexes, and the 

cell membrane will completely disintegrate.  

(2) In the barrel-stave model, the bundles of amphipathic α-helices will insert into 

the hydrophobic core of the membrane, and will recruit additional monomers, 

to form trans-membrane channels or pores [3, 4]. 
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Figure 1: The carpet mechanism (left) and the barrel-stave mechanism (right) of tensio-
active peptide action. 
In the carpet model the peptides are attached to the hydrophobic faces of 

membrane surfaces, and their hydrophilic surfaces facing the aqueous solution (step 

A). When a certain concentration of peptides monomers is reached the membrane is 

rapture and finally disintegrated, and formed the transient pores and micelles (step B 

and C). In a barrel-stave model the amphipathic α-helices (peptides) first assembled on 

the surface of the membrane (A), then insert into the lipid core of the membrane to 

recruit additional monomers to form trans-membrane pores (B), adapted from  [2]. 

(iii) Pore forming toxins 

Researchers have been studying pore-forming toxins (PFTs) for a long time, and 

with some toxins, quite a bit is known about their mechanisms of action.  
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They are widespread among bacteria, but can also be secreted by some higher 

organisms such as plants, insects, fungi or even animals such as sea anemones 

or earthworms as a means of attack or defence [5]. 

Pore-forming proteins and peptides form discrete pores in cell membranes. 

These toxins are typically secreted as water-soluble, monomeric proteins and, 

upon membrane binding, become membrane-inserted state after large 

conformational changes. The PFTs will interact with cell or synthetic lipid 

membranes, change conformation and oligomerize in the membrane to create 

water filled pores, which are permeable to solutes. This creates an osmotic 

imbalance causing the highly concentrated ions to diffuse out of the cell into 

the low concentrated extra cellular medium and water to flow inside the cell, 

leading to swelling, lysis and death of the host cell [6]. 

The flow of ions goes both ways. The osmotic imbalance is caused by more ions 

rushing into the cell than out of it. 

1.1-1 The general mechanism of pore formation 
According to the available experimental evidence, most of the characterized 

pore-forming toxins (PFTs) have similar mechanism of action [7]. Figure 2 outlines 

the model of pore formation [8]. Most bacterial PFTs are released as water-

soluble monomeric proteins, which later on diffuse and bind to target cell 

membrane. Membrane binding of PFTs may occur by the binding of specific 

receptors on the target cell surface, such as cholesterol or the glycan core of 

Glycosylphosphatidylinositol (GPI)-anchored proteins [9, 10]. Upon binding, the 
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toxin molecules oligomerize to form a pre-pore complex [11]. The pre-pore 

complex undergoes a major conformational change that leads to the exposure 

of hydrophobic surfaces. Thus the pre-pore complex inserts into the lipid matrix 

of the cell membrane, generating trans-membrane channels lined by 

hydrophilic residues. These channels differ in size, from 1-2 nm with 

staphylococcal α-hemolysin and Vibrio cholera cytolysin, [12], to 25-30 nm with 

SLO (Streptolysin O) and PFO (Perfringolysin O) [13-14]. 

According to the general mechanism of action described above, PFTs can 

assume two different stable states, namely the water-soluble, monomeric and 

the membrane inserted, oligomeric state [15]. In the water-soluble state, the 

hydrophilic surface is exposed in the aqueous environment, thus avoiding the 

aggregation and precipitation that is common in proteins, such as integral 

membrane proteins that expose their hydrophobic surfaces. In the oligomeric 

state, a conformational change has occurred that exposes hydrophobic 

surfaces, which now mediate the interaction with the non-polar fatty acyl chains 

in the lipid membrane. 
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Figure 2: General mode of action of PFTs. 

(1) Water-soluble local monomers (2) bind to and adjust themselves on Lipid bilayer, 

sometime via specific receptors (3) Membrane bound monomers have a collision by 

means of lateral diffusion in the membrane plane to form a pre-pore complex and 

undergo a conformational change, which leads to the exposure of hydrophobic 

surfaces and the formation of the membrane inserted pore, adapted from [8]. 

1.2 Classification of pore forming toxins 
Pore forming toxins (PFTs) can be classified in a number of ways; for example, on 

the basis of organism that produces them or according to some particular 

features that are required for their activities. A particularly useful classification is 

based on the membrane damaging mechanism and certain structural features. 
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1.2-1 The α-Pore-forming toxins 
 
The α-PFTs are interacting with the membrane through α-helices to form pores. 

These toxins are generally rich in α-helices. Their pore forming domains consist of 

a three-layered structure, which has up to approximately ten α-helices 

sandwiching a central hydrophobic helical hairpin. It is assumed that this hairpin 

will take the initial step of the insertion process in the membrane [16]. For 

example, the pore forming colicins are typical member of the class that also 

includes Pseudomonas aeruginosa exotoxin A, and some insecticidal δ-

endotoxins (Figure 3). 

The δ-endotoxins from Bacillus thuringiensis are insecticidal proteins that kill some 

insects by forming pores in the midgut epithelial cell membrane [17]. When the 

δ-endotoxin crystals are ingested by an insect, these crystals are dissolved in the 

midgut (due to low basic pH) releasing the protoxin molecules of which they are 

made. The protoxin is activated by proteolysis, and then the activated toxin 

binds to the midgut epithelial cells. This activated toxin creates pores in the cell 

membranes leading to cell lysis [18]. As a result the gut becomes immobilised, 

the larvae stop feeding, allowing the bacteria to be retained and to break 

down the insect gut wall. The insect will die within a few hours of ingestion due to 

starvation and septicaemia [18]. 

 The binding affinity of these activated toxins is often directly related to the 

toxicity, though binding does not assure toxicity. 
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Insecticidal proteins of Bacillus thuringiensis are divided into two families; crystal 

forming (Cry) toxin family that is receptor specific and cytolytic (Cyt) toxin that 

probably bind to phospholipids [19, 20]. 

The Cry toxins are discussed here as a model for α-PFT. The Cry δ-endotoxins are 

the largest group with 89 known members. They are produced as protoxins 

having a molecular weight of about either 70kDa or 130kDa; after proteolytic 

activation, they form active toxins having molecular weight of 66-67kDa [21]. In 

the case of larger precursors, the active region resides in the N-terminal half. Cry 

proteins are made of three functional domains: The N-terminal domain (domain 

I) is a bundle of seven amphipathic and hydrophobic α-helices, in which α5 is in 

the middle of the bundle and is surrounded by other outer helices. Mutagenesis 

data suggest that this domain might play a major role in membrane insertion 

and pore formation [16]. 

Domain II has variable loops that are involve in the binding of receptor. Domain 

II adopts a triangular β-prism shape with anti-parallel β-sheets that are packed 

around a central hydrophobic core [16, 22]. 

The receptors for some Cry toxins that are well known include a cadherin-like 

protein (CADR), GPI-anchored aminopeptidase-N (APN); GPI-anchored alkaline 

phosphatase (ALP) and a 270kDa glycoconjugate. In insects and nematodes, 

glycolipids are proposed to be very important as Cry receptor molecules [16, 

22]. 
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The C-terminal domain (domain III) is a β-sandwich of two anti-parallel sheets. 

The mechanism of this domain has still not known although mutagenesis data 

suggests that it may also play a role in receptor binding [16] (Figure 4). 
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Figure 3: Ribbon representations of PFT structures. The domains thought responsible for the pore-

forming activity of each toxin are highlighted in red. A : Colicin Ia [23] ; B : Pseudomonas aeruginosa exotoxin A 

[24]; C : Cry insecticidal δ-endotoxin adapted from [22]. 
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Figure 4: Structure of Cry endotoxins in the soluble state A: Cry3Bb, B: Cry4Aa adapted 
from [16]. 

1.2-2 β-Pore-forming toxins 
Another major class of pore forming toxins are known as the β-PFTs; these toxins 

act by inserting into the membranes to form a β-barrel. At first sight, β-PFT bear 

little resemblance to one another; they are different in their primary, secondary, 

tertiary and quaternary structures. The three common characteristics of β-PFTs 

are (1) they are rich in β-sheet content, (2) in their primary structure they have a 

lack of stretch in hydrophobic residues that could be used to partition into a 

membrane, (3) during pore formation they must assemble into high order of 

oligomeric state.  

The pore structure and the insertion pathway of β-PFTs are much better 

understood as compare to α-PFTs. But it is not easy to distinguish a common 

characteristic between β-PFTs that might elucidate exactly how they insert into 

membranes. 
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The examples of β-pore forming toxins are aerolysin, Clostridium septicum α-

toxin, Staphylococcus aureus α-hemolysin, Pseudomonas aeruginosa cytotoxin, 

anthrax toxin protective antigen, some insecticidal δ-endotoxins (Cyt) [16] and 

the cholesterol dependent cytolysins. Recent studies suggest that α-PFTs and β-

PFTs have a similar mechanism for the insertion in to membrane [16]. 

1.2-3 A-B toxins 
These toxins are composed of two major domains. The A portion is an active 

enzymatic moiety, and the B portion is responsible for membrane binding and 

pore formation [25]. As is the case with “pure” pore-forming toxins, the B subunits 

can insert into the membrane either with α-helices or with β-strands. Once the 

pore is formed, the “B” portion translocates the “A” portion into the cytosol of 

the target cell, and the enzymatic activity of the “A” portion then causes cell 

death [25]. 

Examples of AB toxins include Cholera, diphtheria, tetanus and anthrax toxins 

[26]. 
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1.3 Structure and action of two prototype pore-forming toxins 
Two particularly well-studied examples of bacterial pore-forming toxins (β-PFTs) 

are α-hemolysin and the cholesterol dependent cytolysins. 

1.3-1 α-Hemolysin 
Staphylococcus aureus secretes many PFTs including the single component 

toxin α-hemolysin and the bi-component leukotoxins are related in amino acid 

sequence [16, 27]. The bi-component leukotoxins consists of two different 

subtype proteins, one each belonging to the classes S and F [27]. 

α-Hemolysin is released as a 33kDa water-soluble monomer from the 

Staphylococcus aureus cells [28]. Upon binding on the surface of the susceptible 

cells, the membrane bound monomers oligomerize to form a heptameric β-

barrel trans-membrane pore, which leads to cell death and lysis [29]. For the 

molecular study of the pore-forming proteins, the crystal structure of α-hemolysin 

heptamer and monomer of the homologous toxin leukocidin are well explained 

structural models. Both the water soluble monomeric form and the membrane 

inserted heptameric form of α-hemolysin and leukocidin have been thoroughly 

investigated  [30]. 

The conformational changes that occur during the pore formation by α-

hemolysin can be shown by comparing the crystal structure of these two states. 

It may also be useful for structure functional relationships with the other β-barrel 

PFTs.  
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The crystal structure of the detergent solubilised heptamer has been solved at a 

1.9Å resolution by X-ray crystallography [28].  

The heptamer has a mushroom like shape and measure up to 100Å in diameter 

and 100Å in height. A solvent filled trans-membrane channels along the seven 

fold axis, ranges from 15 to 46Å in diameter. The heptamer consists of the 

cap,rim, and stem domains (Figure 5) [28]. 

The β-barrel is the part of the stem domain, a 14 strand antiprallel β-barrel to 

which each protomer contributes two β-strands; each is 70Å and form the lytic 

trans-membrane domain, the closed β-barrel is 52Å high and 26Å has of 

channel diameter [28]. 

The cap domain protrudes from the extracellular surface forming a large 

hydrophilic domain and the 7 rim domain underside of the cap. These domains 

are in close proximity and/or direct contact with the outer leaflet of the 

membrane bilayer [31]. 

Because of amino acid sequence identity and other similarities, many toxins are 

homologous to α-hemolysin. These toxins include the Staphylococcal 

leukocidins, Clostridium perfringens β-toxin and Bacillus cereus hemolysin II and 

cytotoxin K [32]. But there is a difference between the stem domain and the 

amino terminal latch of the α-hemolysin and Luk F. The amino latch of the Luk F 

monomer in the water soluble state is closely packed against the β-standwich 

core of the molecule, while in heptamer it is extend to interact with the 
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adjacent protomers of the α-hemolysin. In LukF the stem domain is folded in 

close proximity with β-standwich core to maintain the monomer water solubility, 

while in the heptamer of α-hemolysin the stem domain is unfolded to insert into 

the membrane with one β-hairpin [30]. 

Pore formation of α-hemolysin is processed by four steps. Water soluble 

monomer →Membrane bound monomer → Heptameric prepore → Heptameric 

pore [28]. 

1-Water soluble monomer: the α-hemolysin secreted by Staphylococcus aureus 

is a primilarly hydrophilic molecule that binds to target membranes as a water 

soluble monomer [33]. 

2- Membrane bound monomer: The toxin monomer binds to the host cell 

membrane without major conformational changes. 

3- Heptameric pre-pore: Membrane bound monomers oligomerize with N-

terminal latch, but the β-barrel is not yet inserted in this pre-pore state. Due to 

collision of membrane bound monomers a non lytic heptamer is formed on the 

membrane surface or non-lytic oligomeric intermediate is found before pore 

formation. 

4- Heptamirc pores: The final pore is formed by membrane insertion of an 

amphipathic β-barrel, which comprises of the central loop and domains of all 

heptamer subunits [34]. 
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                             A: Leukocidin F                                                                     B: α-

hemolysin protomer 

C: α-Hemolysin heptamer side view                                                  D: Top view of 

Heptamer 

Figure 5: Crystal structure of α-hemolysin and the homologous toxin LukF 

17 
 



(a) The LukF monomer represented in the water-soluble state. (b) Membrane inserted 

state represented by one protomer of the α-hemolysin heptamer. (C) Ribbon 

representation of the α-hemoysin heptamer (Side view).  (D) Different colors highlight 

protomers (Top view of Hetamer), adapted from [28]. 
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1.3-2 Cholesterol Dependent Cytolysins 
The cholesterol-dependent cytolysin (CDC) are a large family of pore-forming 

toxins that form large pores of approximately 25 nm in diameter, comprising 

rings of 30 to 50 subunits. CDCs are single chain polypeptides of 50 to 60 kDa. 

CDCs are produced by more than 20 species of gram-positive bacteria, 

including Clostridium, Streptococcus, Listeria, Bacillus, and Arcanobacterium. 

Among the CDCs, perfringolysin O (PFO), sterptolysin O, and intermedilysin (ILY) 

have been extensively characterized with respect to their structure and function 

[35]. 

The structure of PFO in its monomeric form has been identified by X-ray 

crystallography. The crystal structure of monomeric PFO revealed that CDCs has 

elongated, rod-like shape molecules [36]. These molecules are rich in β sheets 

and are hydrophilic without having hydrophobic patches on the surface. There 

are four domains in the PFO molecule, D1 to D4 (Figure 6). No crystal structure is 

available for the membrane inserted oligomers of any CDC. 

There cytolytic activities depend on the presence of cholesterol in the 

membrane. 

According to spectroscopic and mutagenesis studies [37, 38] CDCs exhibit 

several unique features during their transition from water-soluble monomer to 

the membrane inserted oligomers. 
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To a large extent, in water-soluble monomer form, each pre-stem domain is 

folded into three short α-helices within domain 3. During pore formation, each 

group of three helices extends into a β-hairpin. Ultimately each monomer 

contributes two β-hairpins (TMHs) to the β-barrel trans-membrane channel 

instead of one β-hairpin (Figure 6) [39] 

                                                    

                    

 

Figure 6: Pore formation by CDTs. Ribbon representation of the water-soluble of PFO 
monomer. 
Four domains D1, D2, D3, and D4 are shown (Left panel), the red is β hairpins-TMH1 and 

TMH2 green that each monomer contribute to the β-barrel [39]. A schematic model of 

stages of PFO insertion into the membrane, (Right panel): TMH1 and TMH2 insert in 

domain 3, insert in to the membrane once the prepore complex is formed, adapted 

from [40].  

20 
 



1.4 CAMP factor 
The CAMP factor is an extracellular, cysteine-free protein secreted by 

Streptococcus agalactiae or group B streptococci (GBS) [41]. Its molecular mass 

is approximately 25000 Da, and composed of 226 amino acids with a pI of 8.9 

[42.43]. 

Streptococcus agalactiae is a non-motile, catalase-negative and Gram-positive 

bacterium. It can be found in the normal flora of urogential, respiratory, and 

gastrointestinal tracts of humans [44]. Streptococcus agalactiae is a major 

cause of cattle mastitis, resulting in reduction of milk production and a greater 

source of economic loss for dairy industry [44]. 

It also accounts for a number of invasive infections in newborn babies and 

young infants, pregnant women, and non-pregnant adults who have typical 

medical conditions like cancer, liver disease, and diabetes mellitus [45, 46, and 

47]. It is very slightly hemolytic on non-sensitized sheep red blood cells (SRBC), 

but shows strong hemolytic activity on sphingomyelinase-sensitized red blood 

cells. This phenomenon is known as the CAMP reaction.  The CAMP reaction is 

presently used  as a diagnostic test for the presumptive identification of Group B 

streptococci in clinical isolates [48]. 

1.4-1 The CAMP reaction 
The CAMP reaction was first observed in 1944 by Christie, Atkins, and Munch-

Petersen [48], whose initials are combined in the name of the reaction and of 

the streptococcal protein involved in it (CAMP factor).  
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When a colony of S.agalactiae is grown on a sheep blood agar plate in the 

vicinity of a colony of S.aureus typically a hemolytic zone can be observed 

where two bacteria strain meet. 

                                                       

Figure 7: Illustration of CAMP reaction on a sheep blood agar plate 
A vertically streaked strain of S.aureus meets streaks of (1) Enterococcus faecalis, (2) 

Streptococcus salivarus, (3) Streptococcus agalactiae, and (4) Enterococcus durans, 

adapted from [48]. 

The white region where S.aureus and S.agalactiae meet is characteristic of the 

lytic activity of the CAMP factor on sensitized cells. 

S. aureus produces sphingomyelinase or β-hemolysin, and S. agalactiae 

produces CAMP factor. Sheep red blood cells contain sphingomyelin (Figure 8), 

and therefore are sensitive to the action of sphingomyelinase. The 

sphingomyelin of the sheep red blood cells membrane will be converted into 

ceramide by sphingomyelinase. CAMP factor then binds to these pre-treated 

cell membranes, and carries out its lytic activity. 
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Figure 8: Conversion of membrane sphingomyelin to ceramide catalyzed by 
sphingomyelinase. 
 

1.4-2 CAMP factor as a pore forming toxin 
CAMP factor is a part of PFT family. It forms pores of various sizes in diameter in 

sphingomyelinase containing membrane [49].The amount of sphingomyelin is a 

determinant of lytic activity of CAMP factor. It is reported that at least 45% of the 

membrane lipids should be sphingomyelin for the CAMP factor to react [41]. This 

is the reason that CAMP factor is toxic for sphingomyelinase treated bovine and 

sheep (50% and 45% sphingomyelin respectively) but not toxic to horse, rabbit, 

and human erythrocytes (less than 25% sphingomyelin).  
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However, the CAMP factor can be toxic for phospholipases C treated rabbit or 

human erythrocytes. The ceramide is therefore not specifically required for the 

CAMP reaction to occur.    

 

 

 Figure 9: Electron microscopy of CAMP factor treated sheep red blood cells. The size of 

the pores varies according to protein concentration. Magnification varies among 

panels A-D by the scale bars, adapted from [49].  

 

1.5 Fluorescence 
Fluorescence is widely using in biochemistry research laboratories and biological 

sciences research.  

Fluorescence is also used in clinical chemistry, environmental monitoring, DNA 

sequencing and genetic analysis; additionally fluorescence is also used for cell 

identification (51). 

24 
 



1.5-1 Fluorescence Resonance Energy Transfer (FRET) 
Fluorescence resonance energy transfer is a useful technique to study the 

dynamics of protein molecules (52). FRET is a distance-dependent excited state 

interaction in which the emitted energy of donor (D) is transferred to an 

acceptor (A) in a non-radiative process.  

The donor-acceptor pair must observe some particularities, such as the 

absorbance spectrum of the acceptor must overlap the emission spectrum of 

the donor (Figure 10), for the FRET to occur. The extent of energy transfer 

depends on distance (r) between the donor and acceptor by a factor of 1/r�, 

and the dipole-dipole interaction between the donor and acceptor [51]. 

FRET can be observed with steady-state spectroscopy by comparing intensities 

and time-resolved measurements by comparing lifetimes. 

                                         

Figure 10: Schematic representation of FRET phenomenon. 
FRET occurs if the emission spectrum of the donor overlaps the absorption spectrum of 

the acceptor, but the energy transfer is non radiative (does not occur via a photon), 

adapted from [51]. 
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1.6 Research Objectives 
The previous electron microscopy and osmotic protection studies proved that 

CAMP factor forms pores in red blood cell membranes. The results identified two 

stages of the proposed mechanism for CAMP factor activity, membrane binding 

and pore formation. 

In contrast to many other pore forming toxins, such as streptolysin O, preliminary 

studies of the CAMP factor oligomers showed that they are unstable outside the 

membrane environment. Additionally these studies suggests that the 

oligomerization and pore formation is affected by the change in lipid 

composition [49], implying the involvement of sphingomyelinase in these steps. 

As CAMP factor oligomers are not stable following membrane solubilisation [49], 

the aim of this research has to observe oligomerisation on the cell membranes. 

Additionally it is known that sphingomyelinase changes in the lipid composition 

of the cell membrane; therefore we will also observe its role in CAMP factor 

oligomerization and membrane insertion, by comparing FRET on membranes 

treated with sphingomyelinase with that on membranes not treated with the 

enzyme. 
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CHAPTER 2 
Experimental procedures and materials 
2.1 Reagents 
Glutathion-agarose resin, glutathione, DL-dithiothreitol (DTT), thrombin from 

human plasma, sphingomyeline phosphodiesterase (sphingomyelinase) and 

bovine serum albumin (BSA) were purchased from Sigma-Aldrich (Okaville, ON). 

Aminobenzylpencillin (Ampicillin) was from Bioshop (Burlington Ontario). The BL21 

(DE3) strain of Escherichia coli was obtained from Novagen (Madison, WI). The 

XL1 blue strain of Escherichia coli was attained from Clontech (Palo Alto, CA). 

pGEX-KG vector was a gifit from Jingya Li (National Center for Drug Screening, 

Shanghai, China). Restriction endonucleases, EcoRI+HindIII (DNA marker).  

Protein marker was obtained from MBI Fermentas (Burlington Ontario). Isopropyl 

β-thiogalactoside (IPTG), ethylene diaminotetraacetic acid (EDTA) and Triton X-

100 received from Bioshop (Burlington Ontario). PD-10 desalting columns were 

received from Amersham Biosciences. 5(2-iodoacetyl) amino) ethyl) amino) (1, 

5-IAEDANS) from Molecular probes (Eugene, Oregon, USA). Fluoresceine-5-

maleimide from Biotium, Inc. Sheep red blood cells purchased from Cedarlane 

(Hornby, ON).  

β-Mercaptoethanol was obtained from EM science ( Merck KGaA, Dramstadt 

Germany), DMSO (dimethyl sulphoxide) from Caledon Laboratories LTD, 

Georgetown Ontario, Canada. Plasmid DNA was prepared using QIAprep Spin 
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Miniprep Kit from Qiagen (Mississauga, Ontario). P1U1trapure MiliQ water was 

used in all reactions.   
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2.2-Preparation of competent cells

2.2-1 Preparation of XL1 Blue cells and their transformation 
1ml of overnight XL1 blue cells culture was inoculated to 100 ml of fresh LB broth 

and grown at 37� with vigorous shaking at 200 rpm to reach an optical density 

(OD 600) of 0.4. The cells were then centrifuged at 3000 rpm at 4� for 10 minutes 

after which the supernatant was removed and the fresh LB and 2X TSS buffer 

were add to the cell pellets and re-suspended gently on ice. The XL1 blue cell 

suspension was aliquot into a portion of 100 µl and stored in -80�. To transform 

the cells, 1 µl of DNA was added to 100 µl of thawed competent cells and 

incubated on ice for 45 minutes. The cells were heat shocked to keep the cell 

tubes in 42� water bath for 45 seconds. Immediately the cells were plated on 

already prepared 50 µg/ml ampicillin agar plates [53].  

One positive colony was selected from L.B agar plate containing 50 µg/ml 

(ampicillin) to inoculate 5 ml of sterilized L.B medium with ampicillin and grown 

overnight with shaking at 225 rpm at 37°C. 1 ml of overnight culture was taken 

and centrifuged at 10,000 g for 3 minutes. Centrifugation was repeated 2 to 3 

times. 

 The pellets were re-suspended in RNase buffer P1, and the plasmid was 

extracted by using QIAprep Spin Miniprep Kit. The plasmid size was confirmed by 

0.8% agarose gel electrophoresis. The plasmid was used to transform  E-coli BL21 

(DE3) cells for expression. 
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2.2-2 Preparation of BL21 (DE3) cells and their transformation 
1 ml of fresh overnight BL21 (DE3) cell culture was diluted into 250 ml of sterilized 

L.B broth and grown at 37°C with vigorous shaking for 4 to 5 hours to reach an 

OD 600 of 0.5. The cells were spilt in to two centrifuge tubes and centrifuge at 

3000 g for 15 minutes at 4°C. The Supernatant were discarded and the pellets 

were re-suspended in 2x125 ml of ice-cold 10% glycerol. The cells were 

harvested again followed by centrifugation and the supernatant discarded. The 

cells were re-suspended in 125 ml of 10% ice-cold glycerol.  

Finally the cells were re-suspended to the final volume of 2x1 ml 10% ice-cold 

glycerol. The suspension was spilt into 100 µl aliquots and stored at -80°C [54]. 

1 µl of plasmid DNA was added to 50 µl BL21 competent cells, mixed well and 

incubated on ice for 1 minute. The electroporation instrument, a BioRad cell 

pulsar electroporation unit, was set on 1.80 KV. The mixture of cells and plasmid 

DNA was transformed into the inner slit of elcotroporation cuvette. The cuvette 

was placed into the instrument chamber and pulsed once for every sample. The 

cuvette was removed from the chamber immediately. The cells contents were 

removed from the cuvette and mixed with 1 ml SOC medium(0.5% (w/v yeast 

extract), 2% (w/v) Bio-trypton, 10 mM NaCl, 2.5 mM KCl,10 mM MgCl�, 20 mM 

MgSO�, 20 mM glucose).  The sample was incubated at 37°C with vigorous 

shaking for 1 hour at 225 rpm. The solution was then centrifuged at 6000g for 1 

minute, the 900µl supernatant was discarded and the pellets were re-suspended 
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in 100 µl SOC solution. The 100 µl transformed cells were placed on ampicillin L.B 

agar plates. 
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2.3 Protein induction and purification  
Protein induction and purification were performed according to a protocol by K. 

Guan and J.E. Dixon [55]. 

A single colony from ampicillin plate was picked and inoculated in 100 ml 2xYT 

sterilized media containing 100 µg/ml ampicillin, and grown overnight at 37°C 

with vigorous shaking at 225 rpm. 

100 ml overnight culture was inoculated into 1 litre sterilized 2xYT (liquid medium, 

10 g yeast extract, 16 g tryptone, 5 g NaCl, in 1 litre) with 100 mg/ml ampicillin, 

and grown at 37 °C with shaking at 200 rpm untill the OD��� reached a value 

between 0.5 and 0.8. A 1 ml sample before inducing the protein synthesis with 

Isopropyl-β-D-thioglactopyranoside (IPTG) (Bioshop Canada Inc) was taken for 

SDS-PAGE analysis (sodium dodecyl sulphate polyacrylamide gel 

electrophoresis). Protein synthesis was induced with 1 mM IPTG. The culture was 

grown at 37°C on 200 rpm for four hours; the 1ml sample was taken for SDS-PAGE 

analysis after induction. 20 µl samples taken before induction and after 

induction were added to 1X SDS-PAGE sample buffer. The samples were heated 

at 95°C for 5 minutes, and loaded on 12% SDS-Gel at 200 V to analyse the 

protein synthesis. 

The cells were harvested by centrifugation at 10,000 g, at 4°C for 10 minutes 

(Beck Man Coulter, Avanti J-E Centrifuge) and then stored at  -20°C. 
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For CAMP factor, the cells were thawed on ice and resuspended in 15 ml 

phosphate buffer saline (PBS) (16 mM K�HPO�, 150 mM NaCl, pH 7.2). The cells 

were lysed by using an emulsifier at 17000 psi. The lysed cells were centrifuged 

on 20,000 g at 4°C for 30 minutes.  

Growth of E-coli, protein induction, purification and thrombin cleavage of the 

recombinant protein was done as described Guan and Dixon [55], with some 

modification.  

The glutathione column was equilibrated with PBS buffer before protein 

purification, by washing 4 to 5 times with PBS buffer. The fusion protein (lysate) 

was gently mixed with glutathione-agarose beads and shaken for 30 minutes at 

4°C, 5 washes were performed using 10 ml of PBST buffer (16 mM K2HPO4, 150 

mM NaCl, pH 7.2,1% tritonX-100, and 2 mM DTT). 

 The protein bound to the glutathione beads was shaking for 1 hour at 4°C with 

the last 10 ml wash of PBST buffer. The PBST buffer was removed and one wash of 

10 ml was performed with thrombin cleavage buffer (50 mM Tris, 150 mM NaCl, 

2.5 mM CaCl2, pH 8.0). 12 µg/ml of thrombin was added to the protein solution 

and the GST beads resuspended and incubated for 1 hour at 4°C. 2 ml of 

cleaved protein was eluted [55, 56], and the native concentration was 

determined using the Bradford assay [57]. The eluted fractions brought to the 

final concentration of 10% glycerol and stored at  -80°C . 
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2.4 Gel filtration 
After the GST column purification, the CAMP factor protein was passed through 

a PD-10 column (Amersham biosciences Baie D’ Urfe QC) (diameter 16 mm: 

length 25 cm) or a desalting gel Bio-Gel P-6DG column (Bio-Rad Laboratories). 

The column was equilibrated with the elution buffer (50 mM Tris, 150 mM NaCl, 1 

mM EDTA, pH 7.5). The CAMP protein was eluted with 2.5 ml of elution buffer and 

collected in 0.5 ml fractions. Bradford method (Coomassie brilliant blue G-250) 

was used to check the protein presence in the eluate. 
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2.5 Cysteine-specific labelling of the CAMP factor F109C mutant  

Cysteine is the only one among the 20 standard amino acids that has a thiol 

group, which can easily and selectively be modified by a variety of reagents, for 

example maleimides [58] such as fluorescein-5-maleimide and haloacetamides 

[59] (Figure 11). 

The desalted CAMP factor mutant F109C was labelled with 1 mM Fluorescein-5-

maleimide (Biotium, Inc) and  5 mM IAEDANS ( N-(iodoacetylaminoethyl)-5-

naphthylamine-1-sulfonic acid (Molecular probes). Incubation occurred at room 

temperature for one hour with fluorescein maleimide and overnight with 

IAEDANS (Molecular Probes). The unreacted dye was removed by gel filtration 

over P-6DG with labelling buffer as eluant. The presence of labelled protein was 

determined by observing the fractions on a UV-transilluminator. The fluorophores 

used possess the following properties (Table 1). 
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Table 1: Some properties of the fluorophores used in the project, (1) Fluoresceine-5-

maleimide and (2) IAEDANS  

Name Fluorescein-5-
maleimide 

IAEDANS 

Chemical formula 

  

Maximum 
excitation 

wavelength (nm) 
490 336 

Maximum emission 
wavelength (nm) 520 496 
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Figure 11: Reactions of Sulfhydryl groups 
A cysteine residue with a maleimide (e.g. fluorescein-5-maleimide) and a 
haloacetamide (e.g. IAEDANS) 

2.6 Hemolysis assay 
10% sheep red blood cells were prepared by washing 400 µl sheep blood in 600 

µl PBS buffer and spun down at 2000 g for 4 minutes. 900 µl of the supernatant 

was removed and the 100 µl pellets was resuspended in 900 µl fresh PBS buffer. 

The washing steps were repeated until the supernatant was clear (typically 3 

washings). A 1% RBC suspension (100 µl, 890 µl PBS buffer, 10 µl 1 M MgCl�) was 

then sensitized with 0.5 µl (2 mg.ml¯¹) sphingomyelinase and incubated at 37°C 

for 15 minutes. 
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Serial dilution of 50 µl CAMP factor was performed in 8 wells of a 96-well plate 

containing 50 µl of PBS buffer.  

50 µl of sensitized sheep RBC were added to each well and incubated for 30 

minutes at 37°C. The absorbance was read at 650 nm (SPECTRAmax 190, 

Microplate Spectrophotometer; Molecular Devices, Sunnyale, (CA).  

The positive control consisted of 50 µl PBS buffer, 50 µl Na-Deoxycholate (10%) 

and 50µl sensitized sheep RBC. The negative control consisted of 100µl PBS buffer 

and 50µl sensitized sheep RBC. 

 2.7 Preparation of erythrocyte ghost membranes 
400 µl of sheep red blood cells were washed three times with PBS buffer by 

centrifugation at 2000 g for 4 minutes. 600 µl a solution containing 10% red blood 

cells and 1 M MgCl2 was treated with sphingomyelinase (3 µl, 2 mg/mL), and a 

second sample not treated with sphingomyelinase, when incubated for 15 

minutes at 37°C. The red blood cell samples were osmotically lysed in 5 mM 

phosphate buffer (pH 7.5). The membrane pellets were repeatedly washed by 

centrifugation at 13000 g for 10 minutes with the same buffer until they 

appeared white. Eventually the membrane pellets were resuspended in 500 µl of 

phosphate lysis buffer. 

2.8 Membrane binding of CAMP factor 
 Labelled CAMP factor and unlabelled W.T CAMP factor protein were both 

added to 100 µL of sphingomyelinase-treated or untreated membranes. Both 

samples were incubated for 30 minutes at 37°C. 
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 After incubation, the membranes were spun down at 13000g for 10 minutes to 

remove the unbound CAMP factor. The pellets were resuspended in Tris buffer 

(50mM Tris, 150mM NaCl, pH 7.5).  The dissolved membrane pellets were 

analyzed by SDS-PAGE. 
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2.9 Electrophoresis 
SDS-PAGE was performed according to Laemmli [60], using a polyacrylamide 

concentration of 4% in the stacking gels and 12% in resolving gels. Gels were 

stained with Coomassie Blue R250 and de-stained with de-staining buffer (water 

88%, methanol 5%, and acetic acid 7%). 

2.10 Protein Assay 
The CAMP factor protein concentration was determined by absorbance at 280 

nm or using the Bradford assay [61]. 

2.11 Spectrofluorimetry 
A PTI QuantaMaster spectrofluorimeter was used to take the steady-state 

fluorescence measurements. The excitation and emission for IAEDANS was 336 

and 496 nm, and for fluorescein was 490 and 520 nm. Each of the labelled 

mutants were examined free in solution and after being incubated with 

membrane, and fluorescence intensity of the membrane bound toxin was 

calculated by the following equation.  

 

% of membrane bound toxin = (FI of membrane pellets or oligomer / FI protein 

solution, or monomer) Χ 100                                                                                 [1] 
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To obtain the emission changes as a result of membrane binding, the emission 

from the monomer protein was compared with the emission of membrane 

bound toxin. 

Time resolved measurements for IAEDANS and fluorescein-labelled CAMP factor 

were performed using a FT-100 compact fluorescence lifetime spectrometer 

(PicoQuant, Berlin, Germany). A LDH-P-C-370 LED laser light source was used for 

IAEDANS labelled protein, and the IAEDANS emission was isolated using a band 

pass filter 450FL07-25 AM-60192 S/N: 05 (Melles Griot Canada Inc, Montreal, QC).  

A LDH-P-C-470 LED laser light source was used for fluorescein-labelled samples 

and the emission was isolated using a 520-5 nm band pass filter (Andover 

Corporation, NH, USA).  

Decays counts were fitted using the FluoFit software (PicoQuant), allowing for 

three fluorescence lifetime components, from which the average lifetime < τ > 

was calculated according to the following equation. 

    < τ >= ∑aiτi / ∑ai [2] 

Here, ai represents the amplitude at time zero and τi is the lifetime of ith 

component [61]. 
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CHAPTER 3 
 

RESULTS  
 

3.1 Construction and choice of the mutant 
Mutants of CAMP-factor F109C and L107C were constructed by Tianhua Zhang. 

We chose the two mutants L107C and F109C, in which the 107th residue and the 

109th residue (leucine and phenylalanine, respectively) had been replaced with 

cysteine by site directed mutagenesis. These mutants were chosen from a larger 

set of mutants, since they retain a hemolytic activity similar to the wild type 

CAMP factor both before and after labelling with the fluorescent reagents. The 

steady state fluorescence spectra were observed with fluorescein-labelled 

L107C and F109C mutant (Figure 12). Both the labelled samples were treated 

with membrane, F109C observed high intensity spectra as compare to L107C 

intensity spectra. F109C showed better labelling than to L107C, so we chose to 

use the F109C mutant for our experiments. 
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Figure 12: Choice of Mutant; Comparison of L107C and F109C. (Excitation 490 nm) 
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3.2 purification of CAMP factor DNA 
The F109C mutant cells were transferred to E-coli BL-21 cells a number of 

colonies grown on the plate after 24 hours. One colony was picked and grown 

for plasmid extraction. DNA was purified by following QIAprep Spin Miniprep Kit 

protocol [Figure 13]. The 0.8% agarose gel was run to analyze the DNA fractions. 

                                                 M              1 

 

Figure 13: 0.8% agarose gel for CAMP factor DNA, M; Lambda DNA/EcoR1+HindIII 

Marker, 1; DNA Fragment 3530bp 
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3.3 CAMP factor protein expression and purification 
A number of colonies were grown on ampicillin plates after 24 hours. One 

colony was cultured for 24 hours in 100ml 2XYT media. During the cell culture 

samples were collected before and after IPTG induction. After cell lysis and 

centrifugation, the protein was expressed as glutathione-S-transferase/CAMP 

factor fusion protein.  

A 53 kDa fusion protein was purified with a well established protocol [55, 61]. The 

fusion protein absorbed to the glutathione agarose beads was cleaved by 

thrombin, after which the 25 kDa CAMP factor fragment was released from the 

agarose beads with a concentration of 2mg/ml of CAMP factor protein [Figure 

14].  

 M                    1                   2                     3 

 

                             

 

                 53kDa 

 

                25kDa 

         

Figure 14: Expression and purification of CAMP factor in E.Coli by SDS-PAGE analysis. 
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M, molecular weight marker; Lane 1, E.Coli protein extract before induction with IPTG 

and Lane 2, after induction with IPTG, Lane 3, CAMP factor protein released from GST-

CAMP after thrombin cleavage. 

3.4 Cysteine-specific fluorescent labelling 

F109C was labelled with 5 mM IAEDANS or 1 mM fluorescein-5-maleimide 

fluorophores, respectively (Figure 15). After gel filtration (P-6DG) used for 

desalting and labelling, the Bradford reagent was used to identify the protein 

fractions.  

The labelled protein concentrations were determined by absorbance at 280, 

and with the Bradford assay. The concentrations were 0.1mg/ml for the 

IAEDANS-labelled protein and 0.6 mg/ml for the fluorescein-labelled protein.  

We used 2 µg IAEDANS-labelled protein as donor, 8 µg fluorescein-labelled 

protein as acceptor (1:4), and 20 µg wild type CAMP factor (1:4:10) as 

unlabelled protein.  To observe the labelling the SDS gel was analyzed by 

ultraviolet transilluminator without distaining by coomassie blue. 
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Figure 15: F109C labelled with Fluorescein, 2- F109C labelled with IAEDANS 
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3.5 Hemolytic activity of F109C on sheep erythrocytes 

Hemolysis assays were performed on the labelled F109C mutant and the 

unlabelled wild type CAMP factor protein. F109C mutant have hemolytic 

activity similar to that of wild type CAMP factor. Therefore the mutation and 

labelling didn’t affect the activity of the CAMP factor.  

Hemolysis was observed with F109C with cells treated with sphingomyelinase. 

However, on cells not treated with sphingomyelinase, F109C didn’t show any 

hemolytic activity, as there was no change in turbidity. F109C at the 

concentration of 0.35 mg/ml has lysed 50% of the sheep red blood cells in 1 min 

40s (Figure 16).  

Hemolysis was monitored decrease in turbidity (OD650). 

 

Figure 16: Hemolytic activity of F109C. F109C has lysed 50% of the sheep red blood cell 

in 1 minute 40 seconds at a concentration of 0.35mg/ml in 1 minute 40 seconds 
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3.6 Binding of F109C CAMP factor to erythrocyte membranes 

The CAMP factor F109C protein was incubated with red blood cell membrane 

with and without treatment with sphingomyelinase. After incubation the sample 

was centrifuged and washed once to remove the unbound protein.  

 The membranes samples were then analyzed SDS-PAGE [Figure 17]. F109C 

CAMP factor was found to bind to membranes treated with sphingomyelinase. 

Membrane binding was also observed with wild type CAMP factor with 

sphingomyelinase-treated membranes.  

Membranes without sphingomyelinase treatment did not show membrane 

binding with either F109C or wild type protein. Due to the interference of 

erythrocyte membrane protein, its binding couldn’t be reliably analyzed by SDS-

PAGE. Therefore the toxin binding was analyzed by spectrofluorimetry. 
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Figure 17: Binding of CAMP factor F109C protein with sphingomyelinase treated and 

untreated membrane.1-Molecular weight marker, 2- F109C protein, 3- F109C with 

membrane treated with sphingomyelinase, 4- F109C with membrane treated without 

sphingomyelinase, 5- W.T CAMP factor with membrane treated with sphingomyelinase, 

6- W.T CAMP factor with membrane treated without sphingomyelinase, 7- Membrane 

treated with sphingomyelinase without protein, 8- Membrane without sphingomyelinase 

without protein. 

Membrane binding was also analyzed by spectrofluorimetry (Figure 18). F109C 

was labelled with fluorescein maleimide. The binding efficiency was determined 

by emission intensity. It showed that CAMP factor could bind to the untreated 

cell membrane, although the binding efficiency was very low, while the treated 

membrane observed 60% binding efficiency. The binding efficiency was 

calculated by equation 1 section 3.11.  
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Figure 18 Emission spectra of CAMP F109C labelled with Fluorescein maleimide 

incubated with and without membrane (excitation wavelength 490 nm): The reduction 

in intensity corresponds to the fraction of the toxin bound to the membranes. The dark 

blue spectra representing membrane, (lower) yellow spectra representing F109C 

incubated with membrane have lower intensity counts (middle), and the purple 

spectra representing F109C without membrane (upper) have high intensity counts 

(upper) 

3.7 Steady State study for F109C mutant 
Emission spectra were obtained for F109C mutant oligomers labelled with 

IAEDANS and Fluorescein, which were bound to sheep erythrocyte ghost 

membrane treated with sphingomyelinase and without sphingomyelinase. Data 

were obtained for the donor and acceptor labelled proteins individually as well 

as for donor and acceptor mixture..  
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To account for self-quenching, the samples F109C were also made of the 

individual fluorophores and with the addition of unlabelled wild type CAMP 

factor. 

The comparison between the labelled protein alone and the label protein with 

the wild type unlabelled protein observed in the following figure 19 and 20.  

F109C labelled with fluorescein (Figure 19) and IAEDANS showed very little 

change in emission intensity when incubated with wild type unlabelled protein 

(Figure 20). The wild type showed lower intensity than with fluorescein labelled 

protein.  

This decrease in intensity is caused by competition of labelled and unlabelled 

proteins for binding sites on the membrane. 
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Figure 19: Fluorescein-labelled F109C with and without wild type CAMP factor incubated 

with membranes treated with sphingomyelinase (excitation wavelength 490 nm). Purple 

spectra (lower) representing F109C and wild type protein with membrane, and dark 

blue spectra (upper) representing F109C alone with membrane 
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Figure 20: IAEDANS-labelled F109C and wild type with membrane treated with 

sphingomyelinase (excitation wavelength 336 nm).  Purple spectra representing F109C 

and the wild type protein with membrane (upper) and the dark blue spectra 

representing F109C alone with membrane (lower) 

Comparing the fluorescence intensities of F109C labelled samples (fluorescein 

and IAEDANS) on membranes treated with sphingomyelinase and without 

sphingomyelinase yielded the following results:  

Fluorescein labelled F109C in membrane treated with sphingomyelinase showed 

60% toxin binding efficiency. While IAEDANS labelled F109C with treated 

membrane observed 35% toxin binding efficiency. The untreated membrane 

observed 6% and 5% binding efficiency respectively. 

Sphingomyelinase treated membrane with fluorescein labelled F109C showed 

12 time higher intensity (Figure 21), while with IAEDANS labelled F109C showed 6 
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times higher intensity than untreated membranes (Figure 22). The changes in 

emission intensity of fluorescein-labelled samples and IAEDANS-labelled samples 

were determined from the ratio of the fluorescence in the membrane-bound (FI 

membrane-bound protein) and without membrane (FI protein solution) [37]. The 

percentage of binding was calculated by equation 1 (section 3.11). 
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Figure 21: Fluorescein labelled F109C without membrane and F109C with membrane 

treated with sphingomyelinase and untreated with sphingomyelinase (excitation 

wavelength 490 nm). Dark blue spectra representing membrane, light blue spectra representing 

F109C with untreated membrane have low intensity counts (lower), the yellow spectra representing 

F109C with treated membrane have high intensity counts (middle), and the purple spectra representing 

F109C without membrane have highest intensity counts (upper) 
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Figure 22: IAEDANS labelled F109C without membrane and F109C with membrane 

treated with sphingomyelinase and untreated membrane (excitation wavelength 336 

nm) .The yellow spectra representing F109C with untreated membrane have low intensity counts (lower), 

the purple spectra representing F109C with treated membrane have high intensity counts (middle), and 

the dark blue spectra representing F109C without membrane have highest intensity counts (upper) 

We obtained with the steady state observations that F109C CAMP factor in 

membranes treated with sphingomyelinase, showed high intensity due to the 

insertion of F109C into the hydrophobic environment of the membrane, which 

displayed membrane binding and oligomerization as compared to membranes 

not treated with sphingomyelinase. In untreated membranes we observed low 

intensity spectrum, which suggested that the toxin is still present in the polar 
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environment or hydrophilic environment of the membrane, and didn’t observe 

membrane insertion and oligomerization.  

These results clarify the role of sphingomyelinase on CAMP factor binding to RBC 

erythrocyte ghost membrane.  

3.8 Time-resolved fluorescence studies for F109C 
To further characterize the F109C CAMP factor mutant, we obtained the 

fluorescence lifetime. Time-resolved measurements are widely used in 

fluorescence spectroscopy, especially in studies of biological macromolecules, 

because they provide more detailed information than steady-state data. 

The time-resolved study was used to obtain information on the donor (IAEDANS) 

lifetime with in the presence and absence of the acceptor (fluorescein).  

The change in the fluorescence lifetime was used to observe energy transfer 

between donor and acceptor (FRET), for both samples membrane treated with 

sphingomyelinase and untreated membrane. The fluorescence decays were 

fitted with a three-exponential model. From the parameters of these three 

exponential components, the average fluorescence lifetime was calculated by 

equation 2 (section 3.11). The lifetime components are shown in the following 

table. 
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Table 2: Time-resolves data, Fluorescein (F), IAEDANS (I) 

 

Lifetime Components  

Average 
Lifetime  

Amplitude3 

I0 

Decay3 

(ns) 

Amplitude2 

I0 

Decay  

(ns) 

Amplitude1 

I0 

Decay1 

(ns) 

Sample  

3.405 362 8.861 12954 3.827 2414 0.322 F109C(F)-Sph

3.5844 133 12.166 12240 3.966 2263 1.016 F109C (F)+WT-Sph

3.353 403 8.122 11336 3.8 2833 0.886 F109C (F)-without-
Sph

3.5685 231 9.929 11711 4.002 2373 0.81 F109C (F)+WT-
without-Sph

2.9752 2894 14.75 6867 4.687 16954 0.272 F109C(I)+F109C(F)-
Sph

6.8233 7296 19.577 3201 4.012 12883 0.299 F109C(I)-Sph

5.9681 3154 18.365 9669 4.343 4281 0.505 F109C(I)+WT-Sph

1.1966 3434 8.986 3410 3.713 34720 0.179  F109C(I)+ F109C(F)-
without-Sph

0.979 3484 7.65 3112 2.102 33802 0.19 F109C(I)+WT-
without-Sph

0.6926 1348 15.2542371 2.809 46983 0.168   F109C (I)without-
Sph 
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Figure 23: Average lifetime of donor (IAEDANS) labelled F109C plot shows fluorescence 

lifetime for the donor alone, donor-WT, and donor-acceptor 

The collected data are displayed in figure 23; it contains the fluorescence 

lifetime results of different IAEDANS samples treated with sphingomyelinase 

versus results without sphingomyelinase. There is a significant difference in 

fluorescence lifetimes of samples treated with sphingomyelinase and untreated 

samples. The fluorescence lifetime for the donor alone, [F109C (IAEDANS), F109C 

(IAEDANS)-WT] is twice that of the donor interacting with acceptor, [F109C 

(IAEDANS) +F109C (Fluorescein)].  A decrease in donor lifetime in the presence 

of acceptor indicated energy transfer from donor to acceptor (FRET). 
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The observation from the above (figure 23) and tabulated data (Table 2) 

indicate that the FRET has occurred with samples treated with 

sphingomyelinase, and therefore that oligomerization occurs when CAMP factor 

associated with sphingomyelinase treated membranes. While these results are 

not observed in the untreated samples (without sphingomyelinase), which is 

suggesting that oligomerization cannot occur without sphingomyelinase. It is 

believed that without sphingomyelinase the protein (CAMP factor) cannot insert 

into the cell membrane and the protein is present in the surrounding polar 

environment, which upon excitation gave very short fluorescence lifetime. In 

contrary  the sphingomyelinase treated samples shows longer fluorescence 

lifetime, which suggests that the protein (CAMP factor oligomers) are inserted 

into the cell membranes, and protected by the hydrophobic environment.  

3.9 Discussion and Future Considerations 
These results have shown that the FRET is a successful method for observing 

oligomerization of CAMP factor monomers on RBC membranes. The 

fluorescence assays have also confirmed that oligomerization is affected by the 

membrane lipid composition, such that sphingomyelinase activity is necessary 

for CAMP factor oligomer formation. 

In contrast to many other pore-forming proteins, the oligomers of the CAMP 

factor are not stable following membrane solubilization, and therefore previous 

attempts to observe CAMP factor oligomers have been unsuccessful [49] 
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Therefore, the oligomeric state of CAMP factor on membranes must be 

experimentally determined. In the present study, the steady-state fluorescence 

was observed on membranes treated with sphingomyelinase and on untreated 

membranes. The treated membrane showed high toxin binding efficiency, while 

the untreated membrane showed very low toxin binding efficiency. This is in 

keeping with previous studies, which showed that sphingomyelinase increases 

membrane binding. At the same time, it confirms that the difference in 

membrane susceptibility is not fully accounted for by the decrease in binding 

alone, because different mammalian cell membranes have different 

susceptibilities and the membrane binding will also affect by change in lipid 

composition [49].  

This suggested to us that sphingomyelinase also facilitates toxin binding and 

oligomerization. Addition of sphingomyelinase to the membrane leads to 

sphingomyelin cleavage (Figure 8) and produce a large amount of ceramide, 

[63, 64], which greatly increases the sensitivity of erythrocyte membrane [65] but 

it is not confirmed that ceramide has direct interaction with protein. It is still 

unclear which property of the red blood cell membrane mediates the sensitizing 

effect of ceramide [49].  

In the present experiments we used fluorescence resonance energy transfer 

(FRET) on the cell membrane by using measurements of fluorescence lifetime. 

We observed that oligomerization only occurred for samples treated with 

sphingomyelinase (Figure 23). 
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The results of fluorescence lifetime showed that the samples containing both the 

donor and acceptor fluorophores had a lifetime half the time of the samples of 

just donor.  

We didn’t observe the FRET with the CAMP factor in membrane without 

sphingomyelinase treatment.  

The lifetimes of the untreated membrane samples were considerably lower than 

the lifetimes observed for the membrane treated with sphingomyelinase. These 

experiments confirmed that without sphingomyelinase, membrane insertion and 

oligomerisation cannot occur. The labelled proteins are interacting with the 

polar environment and giving with rapid excitation decay. 

The experiments with steady state and lifetime fluorescence also confirmed that 

the F109C residue sits right in a membrane-inserting region of the molecule.  

In future studies we can use the same type of experiments, to investigate other 

CAMP factor mutants to observe and compare the results to the one stated 

here.  The fluorophores used for this experiment were IAEDANS, as a donor, and 

fluorescein-5-maleimide as acceptor. Both fluorophores are thiol-reactive and 

therefore reacted well with cystein mutant CAMP factor protein.  

IAEDANS was chosen as the donor because of its high water solubility, large 

Stokes shift (difference is the absorption and emission band maxima) and its 

emission overlaps with the absorption of many common fluorescent fluorophores 
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such as fluorescein, Alexa Fluor 546, and Oregon Green dyes, making it an 

excellent reagent for FRET measurements (Invitrogen, 2009).  

However IAEDANS is known to be strongly dependent on the environment, and 

its conjugates undergo spectral shifts and changes in fluorescence intensity.  

The results presented here demonstrate oligomerisation of CAMP factor on the 

cell membrane, and conclude that sphingomyelinase is essential for 

oligomerisation and pore formation.  
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