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Abstract

Informally, a rooted map is a topologically pointed embedding of a graph
in a surface. This thesis examines two problems in the enumerative theory of
rooted maps.

The b-Conjecture, due to Goulden and Jackson, predicts that structural sim-
ilarities between the generating series for rooted orientable maps with respect
to vertex-degree sequence, face-degree sequence, and number of edges, and
the corresponding generating series for rooted locally orientable maps, can be
explained by a unified enumerative theory. Both series specialize M(x, y, z; b), a
series defined algebraically in terms of Jack symmetric functions, and the uni-
fied theory should be based on the existence of an appropriate integer valued
invariant of rooted maps with respect to which M(x,y,z;b) is the generating
series for locally orientable maps. The conjectured invariant should take the
value zero when evaluated on orientable maps, and should take positive val-
ues when evaluated on non-orientable maps, but since it must also depend on
rooting, it cannot be directly related to genus.

A new family of candidate invariants, 7, is described recursively in terms of
root-edge deletion. Both the generating series for rooted maps with respect to
n and an appropriate specialization of M satisfy the same differential equation
with a unique solution. This shows that 1 gives the appropriate enumerative
theory when vertex degrees are ignored, which is precisely the setting required
by Goulden, Harer, and Jackson for an application to algebraic geometry. A
functional equation satisfied by M and the existence of a bijection between
rooted maps on the torus and a restricted set of rooted maps on the Klein
bottle show that 1 has additional structural properties that are required of the
conjectured invariant.

The g-Conjecture, due to Jackson and Visentin, posits a natural combinatorial
explanation, for a functional relationship between a generating series for rooted
orientable maps and the corresponding generating series for 4-regular rooted
orientable maps. The explanation should take the form of a bijection, ¢, between
appropriately decorated rooted orientable maps and 4-regular rooted orientable
maps, and its restriction to undecorated maps is expected to be related to the
medial construction.

Previous attempts to identify ¢ have suffered from the fact that the existing
derivations of the functional relationship involve inherently non-combinatorial
steps, but the techniques used to analyze n suggest the possibility of a new
derivation of the relationship that may be more suitable to combinatorial anal-
ysis. An examination of automorphisms that must be induced by ¢ gives evi-
dence for a refinement of the functional relationship, and this leads to a more
combinatorially refined conjecture. The refined conjecture is then reformulated
algebraically so that its predictions can be tested numerically.
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Chapter 1

Introduction

This Thesis is an examination of two conjectures related to the enumeration of
rooted maps: the b-Conjecture, and the g-Conjecture. Informally, a rooted map is
a pointed 2-cell embedding of a topological graph in a compact 2-manifold with-
out boundary, and each map is classified as either orientable or non-orientable
according to the orientability of its underlying manifold. Equivalence of maps
is defined up to homeomorphism, and the resulting equivalence classes also
admit a combinatorial characterization that is closely related to the symmetric
group in the case of orientable maps, and to the hyperoctahedral group in the
case of locally orientable maps. As a consequence, the study of maps can be
used as a tool to study these groups, and has applications in such diverse fields
as algebraic geometry, physics, and symmetric functions.

Emphasis is placed on the b-Conjecture of Goulden and Jackson, first intro-
duced in [G]J96a]. It predicts the existence of a topological invariant of hy-
permaps that measures departure from orientability with respect to which an
appropriately refined generating series has a particular expression in terms of
Jack symmetric functions. The main result of the Thesis, Theorem 4.16, estab-
lishes a concrete relationship between the combinatorics of rooted maps and
a parameter of Jack symmetric functions. In the process, the theorem resolves
a special case of the b-Conjecture that Goulden, Harer, and Jackson predicted
in [GHJO01] could be used to establish properties of a conjectured space that in-
terpolates between two moduli spaces of pointed algebraic curves. Structural
properties of the algebraic presentation of the relevant generating series sug-
gest that the invariants used to prove this specialization are also the invariants
predicted by Goulden and Jackson in the most general form of the b-Conjecture,
though no proof of this stronger claim is known at present.

Of secondary emphasis, the g-Conjecture of Jackson and Visentin, first intro-
duced in [JV90a], calls for a natural bijection to explain a functional relationship
between two generating series appearing in the study of two models of 2-di-
mensional quantum gravity. Though both involve generating series for rooted
maps, the two conjectures appear to be structurally unrelated, but the analy-



sis of the former introduces tools that are used in |Chapter 7/first to suggest a
refinement of the latter, and then to provide an analytic formulation that has
survived numerical testing.

1.1 Structure of the Thesis

After a brief review of relevant properties of surfaces, |Chapter 2 gives a pre-
cise definition of rooted maps. It then proceeds to familiarize the Reader with
the correspondence between various topological and combinatorial representa-
tions. A combinatorialization of topological maps is outlined in/Section 2.3} and
underpins the development of the subject: maps are defined topologically, and
both the invariant predicted by the b-Conjecture, and the bijection predicted
by the g-Conjecture are expected to have natural topological descriptions, but
the enumerative results on which the conjectures are based have combinato-
rial derivations. The Chapter concludes with a description of an operation, in
Section 2.4, of root-edge deletion that is subtly different from operations used
previously to study the b-Conjecture. This new operation gives a framework
for a recursive definition of the invariants used to analyze the b-Conjecture in

Chapter 4, and later, in Chapter 7| the operation acts as the basis for an attack

on the g-Conjecture.

The b-Conjecture was formulated by Goulden and Jackson in an attempt to
explain algebraic similarities between two generating series: the generating
series for orientable hypermaps, obtained by Jackson and Visentin in [JV90a]
in terms of Schur functions, and the analogous generating series for all hyper-
maps, both orientable and non-orientable, obtained by Goulden and Jackson in
[GJ96b] in terms of zonal polynomials. Both series have a common algebraic
generalization, the hypermap series, H(x,y, z;b), expressed in terms of Jack
symmetric functions. The b-Conjecture predicts that this generalized series is
a generating series for hypermaps with respect to an unidentified invariant
called a b-invariant. begins with a review of symmetric functions,
and proceeds by precisely describing the algebraic form of the b-Conjecture.
After surveying several relaxations of the Conjecture, some with independent
combinatorial derivations, the Chapter concludes by summarizing elementary
properties of b-invariants. This culminates with Theorem 3.35, a proof of the
non-existence of any b-invariant that is both additive, in a sense made precise

in Conjecture 3.32, and invariant under duality.

Chapter 4 introduces a family of candidate b-invariants, similar in form to an
invariant previously described by Brown and Jackson in [BJ07]. Analysis of the
new invariants uses root-edge deletion as described in/Section 2.4 By introduc-
ing a refined generating series that tracks the degree of the root face of a map
separately from the degrees of other faces, the Chapter establishes the main
result of the Thesis, [Theorem 4.16, that the generating series for rooted maps
with respect to any invariant that satisfies |Definition 4.1/is a specialization of
H(x,y,z;b). The series are identified by verifying that both the combinatorially



and algebraically defined series satisfy the same partial differential equation,
(4.2), with a unique solution. The analysis used to prove Theorem 4.16/is tight,
and cannot directly be applied to the most general version of the b-Conjecture,
but structural and numerical evidence presented in Chapter 5/ and Chapter 6
further suggest that these invariants are the ones required by the full b-Conjec-
ture.

Chapter 5 uses combinatorial properties of the invariants defined in/Chapter 4|
to predict algebraic properties of the hypermap series. Algebraically, the b-Con-
jecture states that a family of triply indexed coefficients of the hypermap series,
{cv,0,¢(b)}, known a priori to be rational functions in Q(b), are in fact polynomials
in Z.[b]. Extrapolation from |Theorem 4.22 predicts that these rational func-
tions satisfy functional equations that depend on their indices. A subsequent
verification of this prediction by algebraic methods, [Theorem 5.18, provides
evidence that the invariants can be used to resolve a more general form of the
conjecture. A secondary implication is that Corollary 5.22 imposes a degree
bound and permits efficient computation of the low order terms of H.

Chapter 6 outlines a programme for verifying that a particular function is a
b-invariant. The main tool is that the generating series for maps with respect
to any b-invariant must possess properties imposed on H by its algebraic pre-
sentation. A consequence of Corollary 5.22|is that the existence of a b-invariant
implies a bijective correspondence between certain restricted classes of rooted
maps that are defined in terms of the invariant. The major portion of the Chap-
ter details the search for natural descriptions of these induced bijections relative
to some of the invariants satisfying Definition 4.1/ Partial success, in the form
of Theorems 6.11 and supports the claim that the invariants satisfy the
general form of the b-Conjecture.

Chapter 7 offers evidence that the approach to the b-Conjecture can be ap-
plied more generally. The Chapter shifts focus to the g-Conjecture, which posits
the existence of a natural bijection between suitably decorated rooted orient-
able maps and rooted orientable 4-regular maps as an explanation for a func-
tional equation relating two generating series. Tools developed for the proof
of Theorem 4.16/are used first to refine the conjecture by predicting structural
properties of the bijection in/Conjecture 7.15, and then to formulate an analytic
condition that is both necessary and sufficient to guarantee the existence of a
bijection with this additional structure. Numerical testing using the analytic
characterization provides additional evidence for the refinement. The Chapter
concludes by describing possible restricted actions of the conjectured bijection
that are suggested by the refinement.

Chapter 8 concludes the Thesis with a summary of topics for future research.




Chapter 2

Background and Definitions

This Chapter defines objects used in this enumerative study of rooted maps;
that is, topologically pointed embeddings of graphs in surfaces. Its aim is to
present enough topology to provide a foundation for the combinatorics used
in later chapters, though it is intended as a survey. Beginning with a review of
surfaces, the Chapter develops the concepts required to describe an equivalence
relation on rooted maps. A brief survey of maps, from a topological perspective,
emphasizes the need for a combinatorial description of the equivalence classes
of this relation; one such combinatorialization, generalizing to hypermaps, is
given. Several representations of maps are discussed, and their equivalence is
used to give a precise definition to a new root-edge deletion operation.

2.1 Surfaces

This section collects classical facts about surfaces, with an emphasis on those
needed to represent maps. A more robust treatment, emphasizing graph em-
beddings, is presented by Gross and Tucker in [GTO01].

Definition 2.1 (surface, orientable surface, non-orientable surface, locally orient-
able surface). A Surface is a compact connected 2-manifold without boundary. It
is non-orientable if any subset is homeomorphic to a Mobius strip, otherwise it is
orientable. A neighbourhood of every point is homeomorphic to an open disc, and
collectively, all surfaces are locally orientable.

Since all surfaces are locally orientable, the adjective is not strictly necessary,
but non-orientability is a somewhat exotic concept. In particular, orientable
surfaces can be embedded in three-dimensional Euclidean space, but non-
orientable surfaces can be embedded in Euclidean spaces only of dimension
at least 4. For this reason, it is convenient to have a term for emphasizing the
departure from the familiar, especially when orientable examples are used to
illustrate general concepts.



Figure 2.1: A Mobius strip embedded in Euclidean 3-space.

Example 2.2. Every orientable surface is homeomorphic to a sphere or an n-handled
torus. A complete set, O, of orientable surfaces up to homeomorphism is given by

QOEDEED |

Remark 2.3. A Mobius strip can be embedded in Euclidean 3-space. |Figure 2.1
shows one such embedding. Without opposite sides of the strip identified,
the model would be an orientable double-cover of a Mobius strip. Similar
embeddings are not possible for non-orientable manifolds without boundary.

Beginning with a surface, X, a cross-cap or handle is added to L by removing
the interior of a closed disc and stitching the boundary of a Mobius strip or
punctured torus, respectively, along the boundary of the resulting hole. Since
a Mobius strip can be contracted across its width, adding a cross-cap is homeo-
morphically equivalent to identifying antipodal points on the boundary of the
excised disc: see Figure 2.2. Adding a handle is homeomorphically equivalent
to identifying opposite sides of an excised square: see|Figure 2.3, More gen-
erally, removing an open disc from each of two surfaces, and then identifying
the boundaries of the resulting holes produces the connected sum of the two
surfaces.

By a classical result (attributed by Gross and Tucker, [GTO01, p. 95] to Rado),
every abstract surface can be triangulated. The Euler characteristic of a surface
is then defined in terms of such a triangulation.

Definition 2.4 (Euler characteristic). For a surface, , homeomorphic to the com-
binatorial surface defined by the simplicial complex K, the Euler characteristic of
is

X&) = fo-fi+ fo
where f; denotes the number of simplices of dimension i in K.

Theorem 2.5 (Classification Theorem, Mobius and others). Surfaces, up to homeo-
morphism, are characterized by Euler characteristic and orientability. Every orientable
surface is homeomorphic to a sphere with n > 0 handles, and every non-orientable
surface is homeomorphic to a sphere with n > 1 cross-caps.
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Figure 2.2: Adding a cross-cap to a sphere produces a projective plane.

ce

Figure 2.3: Adding a handle to a sphere produces a torus.

Remark 2.6. Thomassen gives a an accessible proof of the Classification Theo-

rem in [Tho92].

Remark 2.7. The Euler characteristic of the sphere with n handles and i cross-
capsis 2—2n—i. In particular, if i is at least 1, then a sphere with 21 +i cross-caps
is homeomorphic to a sphere with n handles and 7 cross-caps.

Definition 2.8 (genus). For an orientable or non-orientable surface, T, the genus of
¥ is the maximum number of non-intersecting simple closed curves along which ¥. can
be cut without becoming disconnected.

A non-orientable surface with Euler characteristic y has genus g = 2 — y,
while an orientable surface with Euler characteristic x has genus %(2 —X)- The
parameter g = 2 — x plays a prominent role in the enumerative theory of locally
orientable maps as developed in Chapters|(3, [4, 5] and |6; when considering
locally orientable surfaces, this parameter will be referred to as genus, even
when the surface is orientable. Where the distinction is significant, it may be
emphasized by referring to the parameter as Euler genus. Using this terminology,
genus is additive with respect to connected sums.

Example 2.9. As locally orientable surfaces, both the torus and the Klein bottle have
genus 2.

Remark 2.10. For a Riemannian manifold, X, the Euler characteristic y(X) has
an additional interpretation given by the Gaufi-Bonnet theorem, which states
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Figure 2.5: Polygonal representations of non-orientable surfaces

that .
XD = 5 fz x dA,

where x is GaufSian curvature, and dA is the area measure. As a notable con-
sequence, average Gaufsian curvature is positive for the sphere and projective
plane, zero for the torus and Klein bottle, and negative for all other surfaces.
This property is used in/Section 2.2.5 in a discussion of tiling.

A polygon with an even number of sides, together with a labelling speci-
fying how to identify pairs of sides, describes a surface via the identification
topology. Identifying opposite sides of a polygon with 4n or 4n + 2 sides, in an
orientation preserving way, produces an n-handled torus. Figures(2.6 and[2.7,
on page|8, show how a torus is obtained from a square and hexagon by iden-
tification. Polygonal representations of orientable surfaces as polygons with
4n sides are shown in Figure 2.4| Figure 2.5 shows identifications that produce
the sphere with n cross-caps from a polygon with 2n sides. Though homeo-
morphically equivalent, the two representations of the Klein bottle appear to
be distinguished by an invariant of rooted maps introduced in Chapter 4.
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Figure 2.6: Cutting a torus along the two curves shown in/(a) leaves a square. The
torus can be recovered by identifying opposite sides of the square as indicated in

(d).
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Figure 2.7: Cutting along the curves indicated in[(a) leaves a hexagon,|(b)] Any two
of these curves define a simple closed curve, with each pair determining a distinct
homotopy class of non-contractible curves on the torus.



2.2 Graphs and Maps

This section provides a topological definition of maps. For enumerative pur-
poses, it is sensible to define maps using the combinatorialization of Section 2.3,
but the formalism has topological origins, and combinatorial conjectures intro-
duced in Chapters|3 and 7|are expected to have topological explanations. The
goal of this section is not to construct a rigorous foundation, but rather to pro-
vide a topological setting into which combinatorial conjectures can be lifted, for
analysis and visualization.

221 Graphs

Graphs are introduced as an intermediate step in defining maps. As with sur-
faces, many notational choices are possible for graphs. Most objects are defined
similarly in this section and in [GT01], but where Gross and Tucker emphasized
nomenclature that avoids ambiguity between topological and graph theoretic
terms, the present discussion reverts to usage more common in combinatorial
graph theory. Several significant deviations from [GTO01] are noted, and used
with an aim of streamlining the subsequent enumerative theory.

Definition 2.11 (graph, vertex, edge, loop, link). A graph, G, consists of a finite
set, V. = Vg, of vertices together with a finite set, E = Eg, of edges. Each edge,
e € Eg, is associated with a set of endpoints, V(e) € Vg, such that 1 < |Vg(e)| < 2.
An edge with one endpoint is a loop, while an edge with two endpoints is a link. Two
distinct edges are parallel if they have the same endpoints. A graph is simplicial if it
has no loops or parallel edges.

A simplicial graph defines a simplicial 1-complex, and this topological inter-
pretation has a natural extension to all graphs. In [HR84], Hoffman and Richter
describe the following representation.

1. A graph, G, is a Hausdorff space with a non-empty finite subset of single-
tons, V, called vertices.

2. The connected components of G \ V are a finite set of edges, E, such that,
with cl(e) denoting the topological closure of e:

(a) every edge is homeomorphic to R, and
(b) for any edgee, cl(e) —e € V with 1 <|cl(e) —¢| < 2.
Note that the closure of an edge is either the one-point or two-point compacti-

fication of the line, and may be homeomorphic either to a circle or to a closed
interval, depending on whether the edge is a loop or a link.

Remark 2.12. If the graph H is obtained from G by subdivision, then the two
graphs define homeomorphic topological spaces.



Two graphs, G and H are isomorphic if there are bijections
f:Ve—> Vy and g:Ec > Ey

such that v € V(e) if and only if f(v) € g(V(e)). Such bijections can be found
precisely when the topological representations of G and H are homeomorphic
via a homeomorphism that bijectively maps the vertex set of one graph onto
the vertex set of the other graph. It is typically unnecessary to distinguish
between combinatorial graphs and their topological representations. A graph
is connected if its topological representation is connected.

For a vertex v € V, the degree (Gross and Tucker [GTO01] use valence), of v is
deg(v) = deg(v) = [{e € Eg: v e Vg(e) }| +|{e € Ec: v = Vi(e) }|-
A classic result of Euler shows that

Y, deg(v) = 2IEq],

veVg

so in a graph with n edges, the degrees of the vertices of G form an integer
partition, v, of 2n. This is the vertex degree partition of G.

2.2.2 Maps

Definition 2.13 (embedding, face, cellular embedding). An embedding,i: G —
Y ofagraph, G, in a surface, ¥, is a continuous one-to-one function from the topological
representation of the graph into the surface. The components of the complement of i(G)
are the faces of the embedding. If every face is homeomorphic to an open disc, then the
embedding is a cellular embedding.

Remark 2.14. Itis possible to find a surface in which G has a cellular embedding
precisely when G is connected. Note that the graph with a single vertex and no
edges has a cellular embedding in the sphere.

Definition 2.15 (map, orientable map, non-orientable map). A map is a cellular
embedding of a graph in a surface. The map is orientable if the surface is orientable,
otherwise it is non-orientable. All maps are locally orientable.

Remark 2.16. An embedding, or by extension a map, is properly a function,
but one that implicitly references a graph as its domain. By a slight abuse of
notation, a vertex of the graph that is the domain of an embedding is referred
to as a vertex of the embedding. Other properties of the underlying graph may
also be considered to be inherited by the embedding when convenient.

Two maps, i: G — Z; and j: H — L, are equivalent if there is a homeomor-
phism h: X1 — X, such that h(i(G)) = j(H) and h(i(Vs)) = j(Vu). If such a
homeomorphism exists, then it follows that G and H are isomorphic graphs.
This definition of equivalence coincides neither with the definition given by

10



Figure 2.8: Four embeddings of a graph in orientable surfaces

Q@

Figure 2.9: The maps in figures|2.8a and|2.8b are equivalent, since by convention,
the plane represents its one-point compactification.
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Figure 2.10: The faces of a map Figure 2.11: Vertex permutations

Gross and Tucker in [GT01] for equivalence, which requires in addition that
hi = j, nor with their definition of weak equivalence, which requires only that
h(i(G)) = j(G). The subtle variations are not required in the present context, be-
cause the enumerative theory described in later chapters is primarily concerned
with rooted maps, that is maps that are topologically pointed.

Example 2.17. [Figure 2.8|shows four embeddings of a graph. Figures|2.8a,2.8b, and
2.8d\all depict maps. The embedding in|Figure 2.8¢ is not a map, since one of its faces
is homeomorphic to a punctured torus. Using the convention that the plane represents
its one point compactification, the embeddings in Figures|2.8a and|2.8blare equivalent
maps. With the understanding that a graph is to be identified with its image under the
embedding, the equivalence can be illustrated concisely, as in|Figure 2.9)

The degree of a face is the length of a closed walk passing once around its
boundary. In a map with n edges, the degrees of the faces form an integer par-
tition of 2n. This partition, denoted by ¢, is the face degree partition of the map.
While the vertex degree partition of a map is inherited from the underlying
graph, the face degree partition is determined by the embedding. The embed-
ding also determines cyclic permutations on the half-edges incident with each
vertex. Figure 2.11 illustrates one collection of vertex permutations. These per-
mutations are unique up to order reversal. Homeomorphism preserves vertex
permutations and face boundaries: see|Figure 2.12.

Example 2.18. Figure 2.10 shows the faces, fi, f», and f3, of the map in|Fiqure 2.9.
They have degrees 4, 3, and 5, so the map has face degree partition ¢ = [3,4,5]. Every

embedding in|Figure 2.8 has vertex degree partition v = [23,3?].

2.2.3 Ribbon Graphs, Flags, and Duality

When specifying a map, it is necessary to describe which cycles in the graph
are orientation preserving in the embedding. This information is encoded in a
neighbourhood of the image of the graph.

12



Figure 2.12: Faces and vertex permutations are invariant under homeomorphism.

Definition 2.19 (ribbon graph, ribbon). Given a map i: G — X, a ribbon graph
representing i is a family F of closed discs satisfying the following properties.

1. The union of the discs is a closed neighbourhood of i(G), and this neighbourhood
has i(G) as a retract in L.
There is a bijectionT': EgU Vg — F.
For every vertex v € Vg, i(v) € I'(v).
For every edge e in Eg, I'(e) N i(G) is connected and contained in i(e).
If u and v are distinct vertices, then I'(u) N I'(v) = @.
If e and f are distinct edges, then I'(e) N I'(f) = @.
If eis an edge, and v is a vertex, then I'(e) N I'(v) is:
(a) empty ifv ¢ Vs(e),
(b) two disjoint Jordan arcs if V(e) = {v}, and
(c) a Jordan arc if V(e) = {u, v} for some u # v.

NS ks L

For every edge e, the disc I'(e) is the ribbon representing e.

Remark 2.20. The existence of a ribbon graph representing a particular map
is a nontrivial consequence of the topological definition, but is guaranteed
by the existence of an open neighbourhood of each vertex with its boundary
intersecting each incident edge precisely once, a fact proved by Hoffman and
Richter in [HR84, Thm. 3.1].

Ribbon graphs correspond to the reduced band decompositions used by Gross
and Tucker in [GTO1, Sec. 3.2.1]. They are studied directly, without reference
to the underlying graph embedding, by Bollobds and Riordan in [BR02], and
get their name from the fact that they can be physically modelled in three-
dimensional space by gluing flexible ribbons, representing edges, to rigid discs,
representing vertices. Corresponding to this physical realization, it is some-
times convenient to draw open neighbourhoods of the discs, so that the inter-
sections between discs can be emphasized.

13



(@ (b)

Figure 2.13: Ribbon graph representations of maps

(e)

Example 2.21. The ribbon graph in|Fiqure 2.13a represents the map from Figure 2.9.
It is redrawn in|Figure 2.13b using open discs to emphasize the intersections between

discs representing vertices and discs representing edges.

The equivalence class of a map is uniquely determined by any ribbon graph
representing it. Specifying which elements of # correspond to vertices and
which correspond to edges is unnecessary. Intersections between elements of
¥ can be used to define an auxiliary bipartite graph with vertex set #. The
edges of the ribbon graph can be identified unambiguously with the class of
degree two vertices in this auxiliary graph, unless both classes consist entirely
of degree two vertices, in which case the map is a cycle and the two choices are
equivalent.

Two maps that differ only by the addition of degree one vertices or by the
subdivision of edges have homeomorphic neighbourhoods, so it is necessary
to specify the decomposition ¥ to describe a ribbon graph. In practice, visual
cues can be used to distinguish vertices from edges, and it is often sufficient to
draw only the neighbourhood.

Example 2.22. Figures|2.13c and|2.13d give two maps with homeomorphic neigh-

bourhoods. |Figure 2.13¢ unambiguously represents the same map as |Figure 2.13c,
even though only the neighbourhood is shown; shape is used to distinguish the vertices

from the edges, without specifying explicit boundaries.

Definition 2.23 (flag). With respect to an embedding, each edge has two sides and

14



as quarter edge:

(b) Flags as boundary points

(c) Flags as quarter edges (d) Flags as boundary points

Figure 2.14: Drawing flags

two ends, giving a total of four side-end positions, referred to as flags.

The best way to interpret flags as topological objects depends on context. For
combinatorial purposes, flags should be thought of as points on the boundary
of the intersections between discs representing edges and discs representing
vertices. This interpretation is used in [Section 2.3 to describe a combinato-
rialization of the equivalence classes of topological maps. For visualization,
however, it is sometimes convenient to depict flags as quarter edges. Most flags
can be described uniquely by a triple (f, ¢, v), consisting of a face f, an edge on
its boundary e, and a vertex v incident with e. This description is used in an in-
formal introduction to the subject in Sec. 17.10], but is ambiguous when
e is a loop or incident with the same face on both sides: the map in|Figure 2.13d,
for example, has 32 flags but has only 30 distinct face-edge-vertex triples.

Example 2.24. [Figure 2.14 illustrates the flags of a map. In Figures|2.14a and 2.14c
flags are shown as quarter ribbons, while in Figures|2.14b and|2.14d|flags are shown
as boundary points. The twisted ribbons used in Figures|2.14cland(2.14d\are necessary
because the map they show is non-orientable.

Given aribbon graph, ¥, representing the map i: G — X, every component of
the boundary of the neighbourhood of i(G) is a simple closed curve correspond-
ing to a face of the map. The surface, X, can be recovered by stitching a closed

15



(a) A band decomposition

(b) The dual decomposition

N Y D

(c) A map
(d) Its dual (e) Poincaré duality

Figure 2.15: Band decompositions and their relationship to duality

disc along each boundary component. Augmenting ¥ by adding these face
discs, and specifying which elements of ¥ correspond to vertices, edges, and
faces, gives a band decomposition of the surface, as described in [GTO01, Sec. 3.2.1],
where Gross and Tucker use 0-band, 1-band, and 2-band to describe the three
classes of discs. Interchanging the roles of vertices and faces in a band decom-
position gives the dual band decomposition, and implicitly defines a dual map.
In the context of duality, the original map is referred to as the primal map.

This form of duality is an involution, and is sometimes referred to as Poincaré
duality. It preserves orientability, and interchanges vertex and face degree
partitions, but primal and dual maps share an edge degree partition. See [GTO01,
Sec. 1.4.8] for a direct construction of dual maps that does not involve band
decompositions. If i: G — X is a map, and i*: G* — X is its dual, then the only
intersections between i(G) and i*(G*) are transverse intersections between edges
and their duals. There is a natural bijection between the flags of a map and the
flags of its dual.

Example 2.25. Figures 2.15a and |2.15b| show the open disc drawings of two band
decompositions that correspond to the same family of discs; shape is used to distinguish
between vertices and faces. The decompositions are dual to each other and represent
the maps in Figures|2.15cland 2.15d The drawing in|Figure 2.15e shows that the two
maps are Poincaré duals of each other. Additional examples of duality are given in

Figures 3.8, and[3.7.

16



2.24 Rooted Maps

Rooted maps are introduced as an enumeratively tractable variant of maps. A
general technique for enumerating topological objects, is to:

1. label constituent parts of the objects (in the case of maps, edges or flags
are convenient constituent parts),

2. give a combinatorial description to labelled objects,
3. enumerate the labelled objects, and

4. account for multiplicative factors introduced by equivalent labellings.

For maps, the final step presents an obstacle, since a map may have a non-trivial
automorphism group. The following definition is prompted by noting that the
automorphism group of a map acts by permuting flags.

Definition 2.26 (rooted map, root, root edge, root vertex, root face). A root of
a map is a distinguished orbit of flags under the action of the automorphism group of
the map. A rooted map is a map, together with a root. For a rooted map with at least
one edge, the root may be distinguished by marking one flag in the orbit. The edge
containing this flag is the root edge of the map. The point representing the flag is
contained in the boundary of a single vertex and a single face, referred to as the root
vertex and root face.

Remark 2.27. This differs from the standard definition of a rooted map. In
common usage (see [JV90a], [G]J96b], [GJ96a], [Bro00], [GHJO01], or [RW95],
for example), a rooted map is a map together with a distinguished flag, with
equivalence up to homeomorphisms that send the root flag of one map onto
the root flag of the other. The two definitions are equivalent except when
considering the map with no edges, which cannot be rooted under the standard
definition. The subtle difference simplifies the analysis in|Chapter 4

Remark 2.28. The unique map with no edges and one vertex has a root but
does not have a root edge. Its face and vertex are the root face and root vertex
of the map.

Without drawing a ribbon graph, a root can be indicated schematically. This
requires an implicit local sense of clockwise that can be inherited from the
drawing. Except where otherwise noted, an arrow pointing at the side of an
edge indicates the orbit containing the flag immediately counterclockwise from
the arrow; an arrow contained in a face and pointing at a vertex, indicates the
orbit containing the flag immediately clockwise of the arrow. Using these con-
ventions, it may be necessary to reflect a drawing of a map in order to indicate
a particular root. The two forms of root indication will be used interchangeably,
with suitability often depending on whether it is most convenient to emphasize
root vertices, root edges, or root faces. The first form is more conventional, but
the second can be used to draw the rooted map with no edges.

17



a) An orbit A single flag

(c) The side of an edge (d) A vertex-face incidence

Figure 2.16: Four ways to mark the root of a map

Example 2.29. Figure 2.16| illustrates four ways of marking the root of a map. In
all of the flags in an orbit are decorated. The same orbit is marked in|(b) by an

arrow pointing at a single flag. Figures|(a)land|(b) represent the same rooted map when
reflected, while Figures (c) and|(d)|do not.

In practice, the generality lost by working with rooted maps instead of maps
is often negligible in enumerative applications. Many exact enumerative results
about rooted maps can be applied asymptotically to unrooted maps. A result of
Richmond and Wormald, [RW95], shows that asymptotically almost all maps
have only trivial symmetries, so a typical map with 1 edges can be rooted in 4n
inequivalent ways.

2.2.5 Diagrammatic Conventions

An essential tool for investigating maps is a visual shorthand for drawing them.
It is convenient to have a variety of ways to represent a particular map. This
Section describes several conventions and emphasizes the advantages and dis-
advantages of each. [Table 2.1/summarizes the analysis. Figures[2.17 and[2.18
illustrate the representations for two particular maps.

18



(a) An embedding in three-dimensional Euclidean space

BT

(b) A ribbon graph (c) A polygon (d) A handle

Figure 2.17: Four representations of a map on the torus

\ 3
<

(a) A ribbon graph (b) A polygon (c) Two cross-caps

Figure 2.18: Three representations of a map on the Klein Bottle



Table 2.1: A comparison of map representation techniques

Representation Concrete Faces Surface Cellular Incidence
Physical Embedding O O O 0 0
Ribbon Graph O O O O O
Polygonal Surface 0 a/o O ad a
Tiled d d O O 0/0
Handles & Cross-caps O 0/0 O 0 0

Physical Embeddings

Drawing a map by embedding its surface in three-dimensional Euclidean space
provides a sense of concreteness, but physical intuitions are not always consis-
tent with the topological formalism: see, in particular,/Section 2.2.6 for a discus-
sion of non-isotopic homeomorphisms. Figure 2.17a/shows a map on the torus,
using dashed lines to indicate occluded portions of edges. In this represen-
tation, the surface and vertex-edge incidence are recognizable, but part of the
surface is occluded and it is difficult to verify that the embedding is cellular or to
trace face boundaries. The extra dimension required for non-orientable surfaces
makes physical embeddings practical only for orientable surfaces. [Section C.3

of Appendix Clincludes a PostScript program for drawing straight-line embed-
dings of maps on the torus.

Ribbon Graphs

A ribbon graph can be used to provide a concrete realization of any map. Since
every ribbon graph represents a cellular embedding, the representation is partic-
ularly suited to recursive decompositions of maps, and is used in Section 2.4/in
the description of root-edge deletion. Ribbon graphs are also used in/Section 2.3
to show the flags used in describing a combinatorialization of maps. Figures
2.17bland[2.18a show ribbon graph representations of two maps. Itis difficult to
recognize the surface or to trace face boundaries of ribbon graphs, and ribbon
graphs are not well suited to hand drawing.

Polygonal Representations of Surfaces

Every surface can be represented as a polygon with opposite sides identified, as
in Figures|2.4/and [2.5| Figures2.17c and[2.18b illustrate maps using this repre-
sentation. The surface is easily recognized, but the vertex-edge incidence of the
underlying graph is obscured, and it is difficult to verify that the embedding is
cellular. In the polygonal representation, faces can be coloured, as in Figures
2.20aland 2.21a, but it is not easy to trace face boundaries. Jackson and Visentin
used polygon representations in to catalogue maps.
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(a) (b)

Figure 2.19: An octagon,[(a), is used to tile the hyperbolic plane,|(b)

Tiled Polygonal Representations

At the cost of additional space, the polygonal representation of a surface can
be tiled to represent a map in the universal covering space of its surface. Face
boundaries can be recognized easily in a tiled map, and this property of tilings
was used in investigating the g-Conjecture (discussed in|Chapter 7). The uni-
versal covering space of both the torus and Klein bottle is the plane, and partial
tilings of the plane in Figures[2.20c and [2.21dreveal the faces of the maps from
Figures|2.17 and2.18. Surfaces with Euler genus greater than two have negative
average GaufSian curvature (recall|Remark 2.10), so polygonal representations
of these surfaces can be used to tile only hyperbolic space.

Remark 2.30. Euler genus occurs in [Theorem 4.22 and (5.8) as a bound on
the degree of b-polynomials (from [Definition 3.7). Given this role of genus
in the enumerative theory of maps, and the relationship between genus and
curvature, it is an intriguing possibility that the combinatorial property of maps
underlying the b-Conjecture might be describable in terms of a metric property
of their tiled representations.

Example 2.31. The Poincaré disc model represents hyperbolic space as the interior of a
disc with boundary circle C. Line segments in this model are arcs of circles that intersect
C orthogonally, and the axioms of incidence are as in Euclidean geometry. \Figure 2.19
gives a tiling of hyperbolic space by an octagon. Using the same tiling, a polygonal
representation of the map in |Figure 2.22alis tiled to give Figure 2.22c. [Figure 2.22a
shows that the map has vertex degree partition v = [62, 8], and|Figure 2.22c|shows that
the map has face degree partition ¢ = [3,43,5].
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Figure 2.22: A polygonal representation of a map on the double-torus,|(a)) is used
to tile the Poincaré hyperbolic disc, m where faces are coloured. A single tile is

given in|(b).
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Remark 2.32. Sections|C.2 and/C.4 of[Appendix C include PostScript programs
for drawing tiled maps on the torus and double-torus.

Localized Handles and Cross-caps

Most of the figures in later chapters are drawn schematically, with icons repre-
senting localized handles and cross-caps. The icons, given in|Figure 2.23, repre-
sent discs excised from the plane. Identifying opposite points on the boundaries
of cross-caps, or opposite sides of the boundaries of handles, corresponds to the
surgeries used to add cross-caps and handles to a surface (recall Figures[2.3land
2.2). This representation is used in Figures|2.17d/and [2.18c} and like the ribbon
graph representation, it emphasizes the incidence structure of the underlying
graphs. As with the polygonal representation, faces can be coloured, but tracing
face boundaries and verifying that a drawing represents a cellular embedding
is non-trivial: see Figures|2.20bland [2.21b| Of all the representations discussed,
this is the most suitable for hand drawing, and is particularly convenient for
representing monopoles. It is also the natural representation for discussing
connected sums of maps, as in|Section 3.6.2.

Representations are not unique. For non-orientable surfaces of genus at
least three, two cross-caps can be substituted for a handle: see Figures 2.24a
and|2.24b. This flexibility is useful for finding visually simple drawings of maps,
but makes verifying the equivalence of two maps somewhat difficult. The use
of two different, though topologically equivalent, icons representing handles
provides some flexibility when drawing orientable maps, and the preferred
choice is often related to homotopy: compare Figures|2.24c/and [2.24d!

© O O

(a) A cross-cap (b) A handle (c) Another handle

Figure 2.23: Icons for representing surfaces

(a) (b) (c) (d)

Figure 2.24: Equivalent maps drawn using localized handles and cross-caps
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2.2.6 Equivalent Maps

Determining whether two maps are equivalent requires finding a particular
homeomorphism, or verifying its nonexistence. Since the space of possible
homeomorphisms is neither discrete nor finite, a naive search of all candi-
date functions is not feasible. A combinatorial characterization of equivalence
classes, described in|Section 2.3, reduces the problem to an exhaustive search
through a finite set of permutations. This Section uses the example of Dehn
twists of the torus to illustrate the gap between intuition and topological for-
malism (in [LZ04, p. 30], Lando and Zvonkin refer to this gap by writing, “the
seemingly harmless definition contains a trap”), and to show why such a com-
binatorialization is necessary.

The most visually recognizable homeomorphisms are reflections and iso-
topies. Recall that two embeddings, ip,i1: G — X are isotopic if there is a con-
tinuous function F: G X [0, 1] — X such that F(x,0) = fo(x), F(x,1) = fi(x), and
F(-,t): G — Xisan embedding for every t. Experience with planar maps (on the
sphere) suggests that every map equivalence can be verified using an isotopy
of surfaces embedded in Euclidean space. But homeomorphism is defined in
terms of intrinsic properties of a surface, and except for maps on the sphere
and real projective plane, an isotopy view of homeomorphisms is not complete.
For the torus, it is necessary, in addition to isotopies and reflection, to con-
sider homeomorphisms involving Dehn twists. These homeomorphisms are
obtained in 3-dimensional Euclidean space by first cutting the surface along a
closed curve that does not bound a disc, and then re-identifying the boundaries
after twisting the surface within the ambient space: see Figure 2.25.

S RBD

Figure 2.25: A Dehn twist of a torus embedded in three-dimensional space

Example 2.33. Since the homotopy class of a curve is invariant under isotopy, the
embeddings in Figures(2.26a and|2.26¢lare not isotopic. Tiled polygonal representations
of these maps are given in Figures|2.26b and|2.26d. A Dehn twist, represented by a
continuous deformation of the covering space of the torus, in Figure 2.26c, shows the
equivalence of the two tiled representations.

Remark 2.34. Theisotopy classes of homeomorphisms of a surface have a group
structure, defining the mapping class group, a discussion of which is beyond the
scope of this Thesis, but it is worth noting that the mapping class group of an
orientable surface is generated by a reflection together with Dehn twists, while
the mapping class group of a non-orientable surface is generated by Dehn twists
and y-homeomorphisms.
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(e) Its physical embedding

¥

(d) A homeomorphic tiling
Figure 2.26: The map in|(a) is homeomorphic to the map in|(e) via a Dehn twist.

The homeomorphism is not an isotopy, but can be represented as a continuous
deformation of the covering space of the map: see|(b)}/(c), and[(d)!
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2.3 A Combinatorialization

This section describes a combinatorialization that characterizes equivalence
classes of a map in terms of the relationships between its flags in its ribbon
graph representation. The combinatorial description resolves the problem of
recognizing equivalent maps. It forms a foundation for the enumerative the-
ory of rooted maps, and could have been used as a definition. Indeed, the
problem motivating this Thesis, the Hypermap b-Conjecture (Conjecture 3.10),
originated in from purely combinatorial considerations. But the conjec-
ture calls for a topological interpretation, and the partial resolution presented
in|Chapter 4 is best understood with respect to a topological underpinning.

Definition 2.35 (matching graph). If ¥ is a family of closed discs in the ribbon
graph representation of a map with flag set F, then the union of the boundaries of the
discs forms a topological graph with vertex set F. This is the matching graph of the
map.

If B, is the union of the boundaries of edge ribbons, and B, is the union of
the boundaries of vertex ribbons, then the edges of the matching graph can be
partitioned into three disjoint class given by

M, = B, \ By, M, = B, \ B, and Mf: (BUOBE)\F

By a slight abuse of notation, each of M,, M,, and My is identified with an edge
set consisting of its connected components, so that each is a perfect matching on
the set of flags. Each cycle of M, U My corresponds to the boundary of an edge
ribbon, and has length four. The cycles of M, U My and M, U M, correspond to
the boundaries of vertices and faces, each cycle having length equal to twice the
degree of the vertex or face it corresponds to. Figure 2.27 illustrates a matching
graph. Each matching can be used to construct a fixed-point-free involution
with cycles acting on the vertex set of the matching graph by transposing flags
joined by an edge of the matching. Using this correspondence, the combinato-
rial properties of a matching graph are encapsulated by the following definition
of a combinatorial map used by Tutte in [Tut84], but given in its present form
in Sec. 17.10].

Definition 2.36 (combinatorial map). For a finite set of flags, F, the triple m =
(To, Te, Tf) is @ combinatorial map if:

1. Ty, Te, and Ty are fixed-point-free involutions acting on F,

2. TyTy = TfTy, and TyTy is fixed-point free, and

3. the group generated by T,, T., and Ty acts transitively on F.

Every combinatorial map can be used to construct a ribbon graph by trans-
lating the cycles of 7,7 and 7,7 into the boundaries of discs representing

vertices and edges (the cycles of 7,7, correspond to face boundaries). With this
interpretation, the definition of combinatorial maps can be deconstructed as
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Figure 2.27: The boundaries of ribbons define a three-regular graph with the flags
of the map as its vertex set, (a), The edges can be partitioned into three perfect
matchings, [(b), [(c)} and[(d). The union of any two matchings determines a two-
regular subgraph, the cycles of which are the boundaries of a class of bands, (e), [(f),

and @
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follows: the first condition states that each of 7,, 7., and 7 corresponds to a
perfect matching, the second condition forces edge boundaries to have length
four, and the final condition forces the map to be connected. The symmetry
between the conditions on 79 and 7, is a consequence of map duality, since if
m = (7, 71, T2) represents a map, then m* = (1, 71, 79) represents its dual.

Two combinatorial maps, m = (1, 7., 75) with flag set F, and m’ = (7}, 7, 7:})
with flag set F’, are equivalent if there is a bijection I': F — F’ such that

I'(ty) =1, I'(t,) =1, and [(tf) = T’f.

Using this definition, there is a bijective correspondence between equivalence
classes of combinatorial maps and equivalence classes of topological maps. The
correspondence has been known in various forms since the nineteenth century:
a brief history is provided by Gross and Tucker in [GT01, Sec. 3.2]. Hoffman and
Richter verify a similar correspondence between topological and combinatorial
maps in [HR84], albeit with respect to different definitions of maps. A proof of
the correspondence involves more topological subtlety than the present discus-
sion warrants, but the argument hinges on the correspondence between maps
and ribbon graphs. It uses compactness of graphs and several applications
of Schonflies Theorem, that any homeomorphism between Jordan curves on a
sphere can be extended to a homeomorphism of the sphere, to show that:

1. every topological map can be represented as a ribbon graph,
2. every ribbon graph represents a map,

3. a homeomorphism between maps can be extended to a homeomorphism
between ribbon graph representations,

4. a homeomorphism between two ribbon graphs can be used to construct
a homeomorphism between the maps they represent, and

5. the correspondence between matching graphs and ribbon graphs is in-
variant under homeomorphism.

Using the correspondence, determining if two maps are equivalent amounts
to determining whether they have isomorphic matching graphs with the same
ordered partition of edge sets into three matchings.

Example 2.37. |Figure 2.28 illustrates the matching graph of the map from|\Figure 2.18
with explicitly labelled flags. With Ty, T., and 7 ¢ determined by the matchings My, M.,

and My, the pairwise products are given by:
1,75 = (1 3')(1" 3)(2 5')(2 5)(4 8)(4" 8")(6 7')(6" 7)
11, =(1432)(1'2'3 4)5876)(5 67 8)
T, =(14"5)1"26 68)2 83)(3 477 5).

The cycle type of T, is [4*], and the cycle type of T,7. is [3?,5%]. These correspond to
vertex degree partition [4%] and face degree partition [3,5].
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(a) With labelled flags, the matching graph can be written explicitly using three matchings.

M, = {{1,3}, (1,3}, {2,5}, {2/, 5'), 4,8}, {4/,8),16,7), 16, 7'}
M, = {{1,2'),{1,4},2,3'}, (3,4}, (5,6} {5', 8}, 16,7}, 17,8}}
My ={{1,1'),12,2'},13,3'), 14,4}, 15,5, (6,6'), (7,7}, {8, 8"}

CEPEL

(b) My (c) Me (d) My
. ‘
(e) M. U My () My U My (g) M, UM,

Figure 2.28: The matching graph of the map in|Figure 2.18
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2.3.1 Specialization to Orientable Maps

The combinatorial encoding is simplified for orientable maps, which are char-
acterized as maps with bipartite matching graphs. This bipartition defines two
classes of flags, and the equivalence class of a rooted map can be recovered
from the actions of 7,7, 7,7, and 7.7 on the class of flags containing the root
flag. As in [Tut84], the equivalence class of an oriented combinatorial map,
m = (o, Te, Tf), can be encoded by the pair (€, v) with € and v the restrictions
of 7,75 and 747, to a single class of flags. This encoding is equivalent to the
definition used by Lando and Zvonkin in [LZ04]. The permutation € is a fixed-
point-free involution, and if the map has n edges, then for the purpose of map
equivalence, without loss of generality, after relabelling,

e=(11)22)33)--(nn).

This choice implicitly labels and orients each edge of the map, so that the edge
containing flags i and i’ is labelled i and directed from i to i’. A pair (€, v) encodes
a map if e is a fixed-point-free involution, v is a permutation acting on the same
set, and € and v act transitively on this set.

To encode a rooted oriented map with n edges, label the edges bijectively
with the elements of {1,2,3,...,n}, and orient each edge arbitrarily, with the
convention that the edge containing the root flag is labelled with 1 and directed
away from the root flag. The flags of the root class can then be identified with the
elementsof S ={1,2,...,n}U{1’,2,...,n’}, such that edge with label i is directed
from flagito flag i’. The permutation v is given by clockwise circulations of flags
around each vertex. Counterclockwise tours around the boundaries of faces can
be recovered from the cycles of ¢ = ev, which is the restriction of 7,7, to the class
of flags containing the root. Permuting the non-root edge labels, and reorienting
the non-root edges, produces 2"~ (n — 1)! distinct permutations representations
for a rooted oriented map with n edges. When encoding an unrooted map,
there is no restriction on which edge is labelled 1, or the orientation assigned
to this edge, but the labelling induces an implicit rooting, and the number of
distinct representations depends on the size of the automorphism group of the
map.

Example 2.38. |Figure 2.29 illustrates an encoding of the rooted map in|Figure 2.16.
First the edges are directed and labelled in Figure 2.29a| using the convention that

the root edge is labelled 1 and directed away from the root flag. The edge labels are
associated with flags in|Figure 2.29b, Reading clockwise cycles of flags at each vertex
in |Figure 2.29c| gives the permutation v. The permutation ¢ = ev can be recovered
by reading counterclockwise cycles of flags around each face boundary: note that the
orientation of the infinite face appears reversed as an artifact of the planar representation
of the sphere.

Example 2.39. [Figure 2.30 illustrates an encoding of the map from|Figure 2.17| The
root was chosen arbitrarily. Since the map has two rootings, it is represented by 2 - 2°5!

distinct permutations.

31



(

1 O |
-
P )

(a) A map is labelled. (b) Labels are associated with flags.

€= (11")(2 2" eimBamdedmt ) (5 5') (6 6")

G v=(123)(1 42 5@ 5 6)4 6)
p=(1463)1'2564)2 35)

(c) Permutations v and ¢ can be read from the map.

Figure 2.29: The map from Figure 2.16 is encoded as the pair of permutations (e, v).
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e=(11)22)33)44)55)66)
v=(1254) 165 3)2 34 6)
e=(162534)1'23)465)

Figure 2.30: An edge-labelling of a map on the torus, and its permutation represen-
tation. The permutations are related through ¢ = ev.
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2.3.2 Hypermaps

A more symmetric version of the enumerative theory of maps is obtained by
considering the generalized objects obtained by dropping the second condition,
the restrictions on 7,7, from [Definition 2.36. The conditions on 7, 7., and
7 become completely symmetric, and this symmetry generalizes duality. The
resulting objects can be thought of as embeddings of hypergraphs in surfaces,
and are called hypermaps. The following combinatorial definition is convenient
for enumerative purposes.

Definition 2.40 (hypermap, hyperedge, hyperface). A hypermap is a three-
regular connected graph with an ordered partition, (M,, M., My), of its edges into
three perfect matchings. The cycles of M, U My are called vertices, the cycles of
M, U My are called hyperedges, and the cycles of M, U M, are called hyperfaces.
Every cycle has even length, and the degree of a vertex, hyperedge, or hyperface is half
the length of its corresponding cycle.

Orientable hypermaps were introduced in terms of pairs of permutations
(€,v) acting transitively on their ground sets. Using this presentation, Walsh, in
[Wal75], exhibited a genus preserving bijection between orientable hypermaps
and orientable two-coloured maps. Walsh'’s bijection extends to locally orient-
able maps, but in the present discussion it is more convenient to describe the
dual correspondence relating hypermaps and face two-coloured maps.

Up to homeomorphism, a matching graph has a unique embedding, such that
the face boundaries are the cycles of M, UM¢, M, UMy, and M, UM,. Beginning
with this embedding, contracting the faces bounded by cycles of M, UMy leaves
a map in the same surface, with M, as its edge set and two classes of faces,
one class corresponding to hyperfaces and the other class corresponding to
hyperedges. The degree of each vertex of the hypermap is half its degree as
a vertex of the map representation. To construct a matching graph from a
face-two-coloured map, truncate each vertex, and partition the resulting edges
appropriately. Note that the correspondence requires that the maps are face-
coloured with distinguishable colours, otherwise it is not possible to distinguish
between M, and My in the reconstructed matching graph.

Example 2.41. Figure 2.31illustrates the relationship between the representations of
a hypermap. A matching graph representation is given in|(a). The vertices, hyperedges,
and hypervertices are given in|(b),|(c)| and|(d)] Contracting the vertices produces a
representation of the hypermap as a face-two-coloured map|(e). The face-two-coloured
maps in |(f)| and ()| represent the same matching graph, but with different ordered
partitions of the edges into perfect matchings.

A hypermap in which every hyperedge has degree two shares a matching
graph with a map. Using the face-two-coloured representation of such a hy-
permap, and deleting one edge from the boundary of each hyperedge, a pro-
cess called digon conflation, produces the map with the same matching graph.

Figure 2.32 illustrates this process.
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(c) Hyperedges

(a) A matching graph of a hypermap (d) Hyperfaces

(e) ® (®

Figure 2.31: A hypermap with vertex degree partition [2%], hyperface degree par-
tition [6], and hyperedge degree partition [3%]

Lo -Dv

Figure 2.32: If every hyperedge has degree two, then digon conflation produces a
map with the same matching graph.
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2.4 Root-Edge Deletion

This Section describes a new operation of root-edge deletion. Its precise formu-
lation, appealing to the equivalence of the representations of maps discussed
in this Chapter, resolves some issues that make alternative definitions unsuit-
able for the analysis in/Chapter 4, where the operation is used as the basis of a
recursive decomposition of rooted maps.

Deleting an edge from a map produces a graph embedding with fewer edges
than the original map. This embedding is cellular only if the deleted edge sep-
arated faces in the original map. Working in the ribbon graph model, deleting
the disc associated with an edge leaves either one or two new ribbon graphs, de-
pending on whether or not the deleted edge was a cut edge; in this model, each
component can be interpreted as a map. Deletion preserves the incidence of
non-deleted edges around each vertex and preserves the orientability of every
cycle not containing the deleted edge.

For root-edge deletion to form the basis of a recursive analysis of maps, it
is necessary to specify a canonical choice of which edge to delete, and how to
root the resulting map or maps. The first choice is natural, since, in a map with
at least one edge, the root flag is part of a distinguished root edge. Using the
traditional convention of identifying a root with a side of an end of an edge,
it is unclear how the resulting map or maps should be rooted. To resolve this
dilemma, we use the convention of marking a root using an arrow contained in
a face and pointing at a vertex (recall Figure 2.16d). If the root edge is not a cut
edge, then after the root edge is deleted, this arrow continues to point from a
face to a vertex and indicates a root of the new map: see|Figure 2.33a. Deleting
the root edge decreases the Euler genus by at most two.

If the root edge is a cut-edge, then it is necessary to additionally indicate the
root of the second component, which can be accomplished by drawing a root ar-
row along the deleted edge, pointing at the second component: see|Figure 2.33b.
In this case, the Euler genus of the original map is the sum of the Euler genera
of the resulting components, and the original map is non-orientable if and only
if at least one of the resulting components is non-orientable.

/’\\ /’\\ P = = =
o s QDo (O O
\ //(/ \N_ 7/ o7 = ’* P *\

(@) A typical edge (b) A cut edge

Figure 2.33: A schematic description of root-edge deletion

Example 2.42. [Figure 2.34 gives an example of root-edge deletion. The root edge of|(a)
is not a cut-edge. Deleting it produces the map in|(b). The root edge of|(b) is a cut-edge,
and deleting it produces the ordered pair of rooted maps, given in|(c)

36



(b)
(a)

(0

Figure 2.34: An example of root-edge deletion

2.5 Summary

This Chapter surveyed several equivalent topological and combinatorial rep-
resentations of rooted maps. An emphasis on the topological characteriza-
tion of maps provided a setting for defining a root-edge deletion operation in
Section 2.4. This operation gives a topological interpretation to an essentially
combinatorial invariant of rooted maps that is introduced in |Chapter 4 to ad-
dress the b-Conjecture described in Chapter 3. The combinatorial description
of maps given in Section 2.3|forms the foundation of the enumerative theory
of maps discussed in later chapters. It was used to define hypermaps, the
combinatorial objects most naturally enumerated by the symmetric function

techniques discussed in/Section 3.5.1]
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Chapter 3

The b-Conjecture

This Chapter introduces a conjecture of Goulden and Jackson, [G]96a, Conj. 6.3],
referred to throughout as the Hypermap b-Conjecture. The conjecture relates b,
a shifted version of the Jack parameter from symmetric function theory, to
an unidentified topological invariant of rooted hypermaps. Structural simi-
larities between a generating series for rooted orientable hypermaps and an
analogous generating series for rooted locally orientable hypermaps suggest
a common generalization from which both series can be recovered by special-
ization. Despite a precise algebraic formulation, this generalized series lacks a
combinatorial foundation: verifying that it specializes correctly requires a fore-
knowledge of the specialized series. The Hypermap b-Conjecture predicts that
the generalizations can be explained in terms of a b-invariant, an invariant of
rooted hypermaps that is non-negative integer valued and quantifies departure
from orientability. A description of such an invariant might be used to derive
a unified enumerative theory from which generating series for orientable and
locally orientable rooted maps can be recovered by specialization.

The chapter reverses the historical development of the subject. After review-
ing the required terminology from symmetric function theory, it proceeds by
introducing the generalized series itself, before describing its origins. Several
relaxations of the conjecture are also described. Then a brief survey of parallel
enumerative techniques motivates the Hypermap b-Conjecture by exploring its
origins and its applications. Emphasis is placed on reasons that the techniques
do not extend to a general setting; this stresses the need for a new approach.

The conjecture originated with a comparison of series presented in terms of
symmetric functions and derived from character theoretic analyses in [JV90a],
[JV90b], and [G]J96b]. Jack symmetric functions assume a role in the generalized
series that is played by Schur functions in the generating series for orientable
maps, and by zonal polynomials in the generating series for locally orientable
maps. A second enumerative technique presents generating series for maps in
terms of integrals evaluated against Gauflian measures on appropriate spaces
of matrices. This integral presentation is combinatorially less refined, but cor-
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respondingly more computationally tractable, than the presentation involving
symmetric functions. Jackson adapted the technique to enumerate orientable
maps in [Jac94], and together with Goulden in [G]97], extended it to locally
orientable maps. With Harer, in [GHJ01], they used the corresponding gen-
eralized series as a starting point for computing a parametrized interpolation
between the virtual Euler characteristics of two moduli spaces, and they explic-
itly conjectured a combinatorial foundation for this geometric setting. Chapter 4
resolves the resulting weaker conjecture. An integration formula for Jack sym-
metric functions links the two generalizations, and was proved by Okounkov
in after being conjectured by Goulden and Jackson in [GJ96b]. Orig-
inating with the enumeration of rooted maps, the b-Conjecture is related to
symmetric functions, characters, integration formulae, and algebraic geometry.

Superficially, a framework for generalizing the enumeration of locally orient-
able and orientable rooted hypermaps appears unnecessary; combinatorially
one class clearly generalizes the other, but the generating series of the latter
class cannot be recovered by specializing the generating series of the former
class. Algebraic generalizations are not consistent with the simple dichotomy
of orientable versus non-orientable, and demand a refinement of the second con-
cept. From this perspective, a resolution of the b-Conjecture might illuminate
why there is no independent theory for the enumeration of non-orientable maps,
or why there do not appear to be significant applications for such a theory.

The chapter concludes by presenting preliminary observations about the na-
ture of b-invariants, in preparation for Chapters 4, 5, and |6l A new result,
Theorem 3.35, proves that a b-invariant cannot simultaneously satisfy two ap-
parently natural conditions, and clears the way for the description of a family
of invariants in Chapter 4 that do not obviously satisfy either.

3.1 Symmetric Functions

Symmetric functions form the algebraic foundation for the enumerative the-
ory of rooted maps. Macdonald’s development in is considered the
definitive reference on the subject, though Stanley’s systematic development
of Jack symmetric functions in [Sta89] is more suited to the present discussion,
since he presents several essential results in a more immediately applicable
form. This Section is intended only as a review of notation, following primar-
ily Macdonald’s usage, though adjusted through Stanley’s where it applies to
Jack symmetric functions. One notable exception is that, in standard usage, z,
denotes the size of the centralizer in &) of a permutation with cycle type A.
This conflicts with the desire to preserve z as an indeterminate marking edges
in generating series for maps, having reserved x for vertices and y for faces. In
place of z,, the present discussion uses w,: potential conflict with the use of @
as the fundamental involution on the ring of symmetric functions is minimal,
since the involution is not used in this Thesis, and the non-standard use of w is
noted when the quantity is needed explicitly.
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The ring of symmetric functions over the field Q(a) consists of polynomial
functions that are invariant under the action of the infinite symmetric group
permuting indeterminates, and it is denoted by Ag() = A®zQ(a). Asitapplies
to hypermap enumeration, it is convenient to begin by considering Ag(.) as the
Q(a)-algebra generated by algebraically independentindeterminates { p;: i > 1}.
For a partition A = [A1, Ay, ..., Ax], with no parts equal to zero, p, is defined
multiplicatively by py = pa,pa, -+ - pa,, and the set {py: A € 2} is a basis for
Ag() as a Q(a)-vector space. The ring has a natural grading, given by

AQ) = kEBo A&a) where Ag(a) = spang, {pa: A € Z,1Al = k}.
>|

The p,’s are collectively referred to as power-sum symmetric functions. A second
basis for A’é(a) is the monomial symmetric functions, {m,: A € &#,|A| = k}. For

n > k, the relationship between the two bases of A]‘{)(a) can be determined by

identifying the basis elements with polynomial functions given by

n (A)

pr(x) = Z x; (forr>1) and m(x) = Z H xﬁi].)/

i1 nesS, j=1

where S; C &, is a maximal set such that the monomials in the sum are unique.
Thus p,(x) and m,(x) are polynomials in Q(a)[x1, x2, ..., x,] that are invariant
under the action of S, permuting indeterminates (hence symmetric functions).
Since the relationships are unchanged by increasing #, the identifications can
be made as formal sums in the n — oo limit.

Remark 3.1. Distinction must be made between py(x) = 1, the power-sum
symmetric function indexed by the empty partition, and py(x) which is not a
generator of the algebra, and is reserved in this Thesis for use when x is a finite
set of indeterminates.

The ring of symmetric functions may be equipped with a scalar product (-, -),,
defined with respect to the power-sum basis by

(prpu), = Brgora®, (31

where w, is the size of the centralizer in S| of a permutation with cycle type
A, and 6 is Kronecker’s delta function. By considering a more general scalar
product, Macdonald showed, in [Mac95, Chap. VI (4.7)], that there is a unique
family {Ja: A € &2} of elements of Ag() satisfying the following criteria.

(P1) (Orthogonality) If A # u, then <]A, ] “>a =0.

(P2) (Triangularity) Expressing J, in the monomial basis,

Ja= Z U/\p(a)my/

usA
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where v, (a) is a rational function in @, and ‘<’ denotes the natural order
on partitions (called the dominance order by Stanley).

(P3) (Normalization) If |[A| = n, then v, [1+(ar) = n!.

If the partial order, ¥, in the triangularity criterion is replaced by any compatible
total order, then the existence follows by Gram-Schmidt orthogonalization, from
the fact that the scalar product is positive definite whenever « is a positive
real number. The content of Macdonald’s result is that the coefficients are
independent of which refinement of < is chosen.

Remark 3.2. For combinatorial applications, the choice of normalization used
in (P3) has the advantage that the coefficient of ppi»j in Jy is 0,1 A second
normalization, with respect to which the functions are monic, is often preferred
when deriving analytic properties of Jack symmetric functions as in [Oko97].

The functions, {J1: A € &2}, are called Jack symmetric functions. They were
introduced by Jack, in [Jac71], using an analytic characterization, as a parame-
trized generalization of Schur functions and zonal polynomials. Lapointe and
Vinet, [LV95], showed that the rational functions v,,(a) are polynomials in «
with coefficients in Z, and Knop and Sahi, [KS97], extended this result to show
thatv,, is in Z,[a]. Itis thus possible to interpret ], as a function of a; when this
is the intended interpretation, it is written [, (a). It can be evaluated at arbitrary
complex numbers, even those for which the inner product is degenerate. Most
of this Thesis is concerned with the coefficient of Jy(b + 1) with respect to the
power-sum basis.

Remark 3.3. The Maple procedure FastJack, in[Section B.4|of[Appendix B can
be used to compute Jack symmetric functions in terms of the power-sum basis
when « is a positive integer. In fact, the procedure works when « is an inde-
terminate, but the corresponding computations are prohibitively slow. A more
robust system for working with Jack symmetric functions is provided by the
MOPS package, as described by Dumitriu, Edelman, and Shuman in [DES07].

Jack symmetric functions appear in the study of rooted hypermaps. Their
relationship to Schur functions and zonal polynomials can be stated explicitly
using some additional notation. If a partition is identified with its Ferrers
diagram, so that

A={@):1<i<A),1<j<A},

then for x = (s, t) in A, the arm length and leg length of x, denoted by a,(x) and
[)(x), are given by

n) =6 erj>t)| and L =[GHerixsl  (32)

The quantity a,(x) + [1(x) + 1 is the hook length of x, and the product of all the
hook lengths of boxes of A,

Hy =[] (a@) + L) +1),

X€EA
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appears in the representation theory of the symmetric group. In terms of these
quantities, Stanley found an explicit formula for the norms of Jack symmetric
functions.

Proposition 3.4 (Stanley [Sta89, Thm. 5.8]). The value of {Jx, J1)« is given by

uJoa = [ [ (@ar) + ) +a)(@an() + L) +1),

xeA

Since Schur functions, {s): A € &7}, are known to satisfy (P1) and (P2) for a =
1, and similarly zonal polynomials, { Z): A € &7}, for a = 2, their relationship to
Jack symmetric functions is determined by choice of normalization, (P3). The
following proposition summarizes these relationships.

Proposition 3.5 (Stanley [Sta89, Prop. 1.2]). Jack symmetric functions generalize
Schur functions and zonal polynomials in the sense that

oI =H3, a()=Hasy, JaJay, =Han, and Ja(2) = Z,,
where 2 denotes the partition obtained from A by multiplying each part by two.

Jack symmetric functions are used in the next section to construct the hyper-
map series.

3.2 The Hypermap Series

Asacommon generalization of series appearing in [JV90a], [J[V90b], and [G]96b],
Goulden and Jackson, in [G]96a], introduced the series

401

D(x,y,z;t,b) = ——Jo(x;1+ b ;1 +0)]o(z; 1+ D), 3.3
(xy ) GZW <]6’]6>1+h]9( ey )o( ) (3.3)
and a related series
VY(x,y,zb) = (1+ b)t% Ind(x,y,zt,b) . (3.4)
t=

The sum is over the class &7, of all integer partitions, including the empty
partition. A complete development of Jack symmetric functions shows that ®
has no poles at b = 0, and so the series can be thought of as a formal power
series in t with coefficients that are symmetric functions in x, y, and z with
coefficients in the field Q(b). Since the unique Jack symmetric function indexed
by the empty partition is the constant function 1, and the term of the summa-
tion corresponding to this partition contributes 1 to the sum, the logarithm of
®, and hence WV, are well-defined as formal power series in the algebraically
independent indeterminates { pi(x), pi(y), pi(z): i = 1} with coefficients in Q(b).
Evaluating ® at b € {0,1}, and expressing the result in the power-sum basis,
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produces coefficients that enumerate matchings. A corresponding resolution
of W produces coefficients that enumerate hypermaps. The primary goal of this
and the next three chapters is to extend the combinatorial interpretation of this
second collection of coefficients to general values of b.

Remark 3.6. An analogous sum with similar algebraic grounding is the Cauchy

sum
]G(X o ]H(Y/a) | |(1 x: ]/ -1 (3 5)
1J] 7 .

=, ~ JoJoda
given by Stanley as [Sta89, Prop. 2.1].

Definition 3.7 (b-polynomial, hypermap series). The coefficients, c,,¢(b), referred
to collectively as b-polynomials, are implicitly constructed by expressing \V in the
power-sum basis as

Wy, zb) = Y CupeBppp(y)pe(@).

v,p,e€P

Using the algebraic independence of { pi(x): i > 1}, W can be evaluated at p;(x) = x;,
pi(y) = yi, and pi(z) = z; for all i, to produce the hypermap series, H, given by

H(x,y,zb) = Y(x,¥,2;D)|p=x; = Z Crp,e(D)X"y?z". (3.6)
Px‘((Y;:yi v,p,ee P
pi(@)=zi

Remark 3.8. Using the notation p(x) = (p1(x),p2(x),...), the relationship be-
tween H and W can be expressed functionally as

H(p(), p(y), p(z); b) = ¥(x,y,2; ).

Remark 3.9. By homogeneity of @, the coefficient ¢, ¢(b) is identically zero
unless V] = |q0) = |e|l. Numerical evidence suggests that all ¢, (b) are polyno-
mials in b with non-negative integer coefficients, but they are only known to
be rational functions except in specific cases. Polynomiality of the coefficients
of W with respect to the power-sum basis does not follow from the polynomi-
ality of Jack symmetric functions, because zeroes of (J,, 1)1+ are not cancelled
by zeroes of the corresponding numerators. In particular, as a consequence of
Proposition 3.4/and the non-vanishing of J1(0) = ¢/ []; A}! (see [Sta89, Prop.7.6]),
every summand of (3.3), except the term indexed by the empty partition, has a
poleatb = -1.

There is no known combinatorial interpretation for H, but Proposition 3.5
gives its specializationsat b = 0 and b = 1:

H (p(x), p(y), p(2); 0) = t% ln( Y, tIQIHGSG(X)SG(Y)SG(Z)) (3.7)

e

t=1
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and

d
H(p(9,p(y), pl2)i 1) = 2¢%; ln(;‘z tf"Hiwze<x>ze<y>ze<z>) (38)

t=1.

From [JV90a], [JV90b], and [G]J96b], and are recognized as generating
series, in the power-sum basis, for rooted orientable and rooted locally orient-
able hypermaps with at least one hyperedge. In particular, ¢, (0) and ¢, (1)
have combinatorial interpretations as the number of rooted orientable and
rooted locally orientable hypermaps with vertex-degree partition v, hyperface-
degree partition ¢, and hyperedge-degree partition €. These specializations
motivated the definition of W and led Goulden and Jackson to the following
conjecture, which they called “The Hypermap-Jack conjecture”, but which shall
be referred to throughout as the Hypermap b-Conjecture:

Conjecture 3.10 (Hypermap b-Conjecture, Goulden and Jackson [G]96a, Conj. 6.3]).
There exists a non-negative integer valued function B on the class of locally orientable
rooted hypermaps such that, B(m) equals O precisely when m is orientable, and for par-
titions v, @, and € of size at least one, the b-polynomial c,, ¢(b) has the combinatorial
interpretation:

Copelb) = ) b, (3.9)

MEH,, e

where the sum is taken over all rooted hypermaps with vertex degree partition v, face
degree partition ¢, and hyperedge degree partition €.

Remark 3.11. For algebraic reasons, the hypermap with no edges is not enu-
merated by b-polynomials.

Definition 3.12 (b-invariant for hypermaps). An invariant, B, such that (3.9) is
satisfied for all v, ¢, and €, is called a b-invariant for hypermaps.

Remark 3.13. The term anticipates that § may be topological in nature, in which
case it should be invariant under equivalence of rooted maps.

As defined, the hypermap series and b-polynomials depend on the normal-
ization used in defining Jack symmetric functions. Noting [pe1]Je(1 + b) = 1,
@ may be rewritten as

el Jo(; 1 +D)]o(y; 1+ b)]o(z; 1 +b)

(o, Jodr+p [pponlJe( +b) 7 (3.10)

D(x,y,z;b,t) = Z

e

to remove this dependence. The existence of a homogeneous form of the series
suggests that its significant properties are a consequence of orthogonality and
triangularity of Jack symmetric functions, and hints that their analytic descrip-
tion might be useful, since using their characterization as eigenfunctions, (see
for example [Mac87]), Jack symmetric functions are unique only up to scalar
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1
multiples. Replacing Hyp and 7 with
20

1 1 1
Hy=—-— an — =
O (6,500 [Pre]se Hag  (Zo,Zo)2 [ppen]Ze

(3.11)

puts (3.7) and (3.8) in homogeneous form, and emphasizes the extent of the
symmetry between (3.10), (3.7), and (3.8).

3.3 The Map Series

The hypermap series, and (3.8), were introduced as byproducts of the
study of maps. Character theoretic methods used in [JV90a] and [G]J96b] to enu-
merate rooted maps applied equally well to the study of hypermaps. Given the
relationship between maps and hypermaps, that there is a genus preserving
embedding of each class in the other, it is not clear which class is more fun-
damental. The enumerative theory of maps can, however, be recovered from
the enumerative theory of hypermaps. Assuming that H has an interpretation
as a generating series for hypermaps, a corresponding generating series for
maps, M, is obtained as an evaluation of H by algebraically suppressing terms
involving hyperfaces of degrees other than two.

Definition 3.14 (map series). The map series, M, is defined by

M(x,y,z;b) .= H(x,y, zes; b) = Z Z Crp 121 (D)X Y Z". (3.12)

n>0 v,p-2n

Remark 3.15. The symbol M will take on a polymorphic réle, and will be used
to refer to both specializations and refinements of the series defined by (3.12).
All versions are properly considered map series and any ambiguity is resolved
by context.

When H is evaluated at z = ze,, the degree of every monomial as a function
of t is equal to twice its degree as a function of z. It follows that, in the definition
of M, the operator t% can be replaced by Zz% to give

M(p(x), p(y), z; b)
=(1+ b)zz%mZ z

n>0
Or2n

W JoOG 1 +D)]o(y; 1 +Db)
<]9/]9>1+h

[Pl Jo(1 +b).  (3.13)

The map series exhibits less algebraic symmetry than the hypermap series, but
the approach used in|Chapter 4 relies on this broken symmetry.
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3.3.1 An Integration Formula

In practice, M is not computationally tractable, but applications of map enu-
meration do not always require the fully refined series. Jackson, in [Jac94],
used an approach originating in physics literature to express evalua-
tions of the generating series for orientable maps in terms of integrals over the
space of complex Hermitian matrices. A related formula was used by Goulden
and Jackson in [G]97] to express evaluations of the generating series for locally
orientable maps in terms of integrals over the space of real symmetric matrices.
They simplified the expressions and found that when N is a positive integer
evaluations of the series can be computed as

M(N,y,z0) = Zza% In f V(A) exp (%“) + )y, VZk)dA (3.14)
RN k=1

and

MOy =425 00 [ e (B2 + Y 40y vE)ar, @19
RY k=1

where V(A) is the Vandermonde determinant, and as before, pi(A) is the k-th
power-sum symmetric function. They are given by

vy = [[ w-4) and  pdy= ) AL

1<i<j<N 1<i<N

Note that N occurs on the right side of both (3.14) and (3.15) as the dimension
of the space of integration, but in both cases, coefficients of M, considered as
a power series in z, are known, from the generating function interpretation, to
depend polynomially on N. Evaluating the series for indeterminate x is thus
a matter of presenting M as an element of Z.[N,y][[z]] and replacing every
occurrence of N with an x: the validity of this substitution is a consequence of
the Fundamental Theorem of Algebra.

Remark 3.16. Pedantically, the evaluations should be written M(N1,y, z; -), but
the notation is simplified in the interest of aesthetics.

A common generalization of (3.14) and (3.15) that specializes (3.12) is best
described using some additional notation.

Definition 3.17 (), {-),). For a function f: RN — R, two expectation operators {-)
and (-),, are defined by

1

(f)= f]R VI ez D da, (3.16)
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and k
<f>€ - <f(/‘) eXpllW Liet pyepk(A) vz > . (3.17)

By comparing (3.14) and (3.15) to (3.7) and (3.8), Goulden and Jackson conjec-
tured an integration formula for Jack symmetric functions in [G]97]. Okounkov
proved the formula in [Oko97] to give the following theorem.

Theorem 3.18 (Okounkov [Oko97]). If N is a positive integer, 1 + b is a positive
real number, and O is an integer partition of 2n, then

Jo(A, 1+ b)) = Jo(In, 1 + b)[plje (1), (3.18)

where 1n = (1,...,1,0,0,...) is the vector consisting of N leading ones followed by
zeroes.

Corollary 3.19 (Goulden, Jackson, and Harer [GHJ01, Prop. 7.1]). Forany positive
integer N and any real number b > —1, the map series can be evaluated as
d . (1),

M(N,y,z;b) =1+ b)ZZg In O

(3.19)

Proof. The proof is based on [GHJ01, Prop. 7.1]. Notice that Jo(In;1 + b) is
obtained from [o(x;1 + b) by replacing p;(x) with N for every i. Starting with
(3.13) and applying | Theorem 3.18, shows that

Z 2 Jo(A; 1+ b)]o(y; 1 + b)>

&, Jo, Jo)1+b

N 1
=(1+ b)ZZ% ln<H H (1 - \/Eyi)\j)_ub>

M(N, p(y),z;b) = (1 + b)ZZ% ln<

0 1 1
= (14022 In <exp (m Y i vzk)>,

where the second equality is by restricting (3.5) to a finite set of indeterminates.
Appealing to the algebraic independence of { pi(y): i > 1}, and replacing every
occurrence of p;(y) with y; completes the proof. O

Remark 3.20. It is necessary to include the restriction b > -1 to guarantee
that the expectation operator is well-defined, but the expression can be used to
derive properties of M for arbitrary values of b, since in|Chapter 4, the series is
shown to have an expression in Z, [N, y, b][z].

Remark 3.21. The factor (1) does not depend on z, and can be omitted from
(3.19), but its inclusion is consistent with the derivations of (3.14) and (3.15)

described in that involve giving combinatorial interpretations to ‘2

D
€0

b=0

and

b=1"
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3.4 A Hierarchy of Conjectures

This Section outlines a sequence of relaxations of the Hypermap b-Conjecture,
Conjecture 3.10} Each calls for a combinatorial interpretation of only particular
sums of b-polynomials corresponding to maps. The relaxed conjectures are
introduced not only because they appear to be more tractable than the orig-
inal, but also because they are interesting in their own right. In particular,

Conjecture 3.23, which is resolved in |Chapter 4 has applications to algebraic

geometry.

The first relaxation involves sums of b-polynomials corresponding to maps
with identical face-degree partitions. Brown proved it in Lemm. 7.1]
using a character theoretic result of Jackson and Goulden from [G]J96a], and
gave a combinatorial interpretation to the sum as [Bro00, Lemm. 7.2]. A new
and shorter proof of the algebraic content is given here using (3.19) to evaluate
the map series at x = 1, with a combinatorial interpretation implicit in the proof

of Theorem 4.16.
Lemma 3.22 (Brown Lemm. 7.1]). The coefficient of y*z" in M(1,y, z; b) is

given by the marginal sum

Z Cv,(p,[Z"](b) = (1 + b)nil((PHl Z Cv,(p,[Z”](O)-

vF2n vE2n

Proof. Expanding M(1,y, z; b) in terms of an integral over R, using (3.19), and
changing the variable of integration, via the substitution A = p V1 + b, gives

o 9 1 1 A?
M(l,y,z,b)—(1+b)22821nfﬂ;exp(1+b;k]/k)\ Vz 2(1+b)]dA

d 1/ ko p?
=(1+ b)ZZE lnﬁ{exp (; T <1yTb) ok A +b) — E]dp
= (1+HM(1, 2, (1 + b)z;0).

7 1+b7
The result follows by comparing coefficients of y*z". ]

A second relaxation, the topic of Chapter 4, was stated explicitly by Goulden,
Harer, and Jackson in [GHJ01, p. 4422], and provides precisely the setting
needed to combinatorialize a parametrized function interpolating between the
virtual Euler characteristics of two moduli spaces of curves. The relaxation is

resolved in Chapter 4, where a strengthened version appears as Corollary 4.17.

Conjecture 3.23 (The Marginal b-Conjecture, [GHJO01]). For ¢ + 2n, the coefficient
of x°y?z" in M(x1,y, z; b) has a combinatorial interpretation as

dop(b) = Z Cop (D) = Z ppom

{(v)=0 meMy,,

48



where B is a non-negative integer valued function on the class of locally orientable
rooted maps such that f(m) is zero precisely when m is orientable, and the second sum
is over all rooted maps with v vertices and face-degree partition ¢.

Definition 3.24 (marginal b-polynomial, marginal b-invariant). The coefficients
dy,, are marginal b-polynomials, and an invariant f such that |Conjecture 3.23|is
satisfied for all v and @ is called a marginal b-invariant.

The final conjecture in this sequence is the strongest relaxation of Conjec-
ture to involve only maps, though a further refinement, that is not a spe-
cialization of|Conjecture 3.10} appears as|Conjecture 4.9} (Chapter 6 describes a
programme for verifying a combinatorial interpretation of the coefficients of M
for all maps of sufficiently low genus, but a general approach to this conjecture
remains elusive.

Conjecture 3.25 (The b-Conjecture). There exists a non-negative integer valued
function B on the class of locally orientable rooted maps such that, p(m) equals 0
precisely when m is orientable, and for v, @ + 2n, the b-polynomial c,, 2+(b) has the
combinatorial interpretation:

Copp(B) = Y b, (3.20)

meM,,,

where the sum is taken over all rooted maps with vertex degree partition v and face
degree partition .

Definition 3.26 (b-invariant for maps). An invariant, B, such that (3.20) is satisfied
forall v and ¢, is called a b-invariant for maps. When clear from context, such an
invariant will be referred to as a b-invariant.

Each relaxed conjecture described in this section anticipates a combinatorial
interpretation for a particular marginal sum of coefficients from H. Correspond-
ing algebraic forms of the conjectures predict that the marginal sums are poly-
nomials in Z.[b] but do not require combinatorial interpretations in terms of
maps. summarizes the evaluations of H and the coefficients involved
in each relaxation. Two of the relaxations have been resolved as true, and the
final column refers to these resolutions.

Despite the lack of a general approach to its solution, Conjecture 3.25 appears
more tractable than |Conjecture 3.10; and is the subject of the majority of this
Thesis. The emphasis on maps is justified both by the fact that the Hypermap
b-Conjecture originated from work on the enumeration of maps, with attention
given to hypermaps only when the algebraic techniques proved to be extensible,
and by the belief encapsulated in the following conjecture. It suggests that
b-invariants and b-invariants for hypermaps are compatible in the sense that
when each of H and M is embedded in the other, the invariant does not change.

Conjecture 3.27. If there is a b-invariant for hypermaps, then it is induced by the
restriction to face-two-coloured maps of a b-invariant for maps.
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Table 3.1: Relaxations of Conjecture 3.10

Relaxation Series Coefficients Resolved in
Conjecture 3.10  H(x,y, z;b) Crpe() Unresolved
Conjecture 3.25  M(x,y, z;b) Cr,p,1211(D) Unresolved
Conjecture 3.23  H(xly,zezb) ) cyppi(®)  [Corollary 417

{my=v

Lemma 3.22 H(1,y,zey; b) Z Cup211(b)  Lemma 7.1 of [Bro00]

vi2n

Remark 3.28. The converse is necessarily true; if maps are identified with
hypermaps having hyperedges only of degree two, then every b-invariant for
hypermaps induces a b-invariant for maps. Similarly, every b-invariant is also
a marginal b-invariant.

3.5 Historical Developments

A survey of the techniques originally used to derive (3.7), (3.8), (3.14), and
(3.15) is presented to emphasize the difficulty associated with extending the
derivations to general values of b. Parallels between the formulae suggest a
common generalization, but the generalization does not exist at the level of the
combinatorics used to derive the specialized expressions. The combinatorial
derivations of all four expressions follow the same format, a two-stage process
involving first deriving evaluations of ® directly as an exponential generating
series for collections of labelled hypermaps (maps in the cases of (3.14) and
(3.15)), and then extending this interpretation to W by giving combinatorial
interpretations to the actions of the logarithm and partial derivative: a standard
enumerative technique, due to Hurwitz, shows that the logarithm restricts the
generating series to connected components, and the partial derivative removes
multiplicative factors introduced by labelling the hypermaps. For technical
reasons involving the action of the logarithm, the map with no edges is not
considered connected when interpreted as a labelled object.

An analogous approach is not possible for general values of b. Because of the
leading factor of (b + 1) in the expression for W, either every b-polynomial is
divisible by b+1, or ® has an essential singularity at b = —1. Direct computation
shows the first possibility is not the case, in particular cpjp)2)(b) = b. Any
combinatorial interpretation of ® for general b must thus involve a rescaling of
coefficients, or involve considering the series ®'*. The proof of Conjecture 3.23
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in Chapter 4 avoids this complication by working directly with connected maps,
and not using labelled or disconnected objects as intermediaries.

3.5.1 A Symmetric Function Approach

The Hypermap b-Conjecture originated from a symmetric-function-based ap-
proach to the enumeration of rooted hypermaps. Jackson and Visentin used
a character theoretic derivation, in [JV90a], to obtain the generating series for
rooted orientable maps with respect to vertex- and face-degree partitions, and
extended their analysis to hypermaps in [JV90b]. Goulden and Jackson recast
the result in terms of Schur functions in [G]J96b], where they used a parallel
derivation to express the generating series for locally orientable hypermaps in
terms of zonal polynomials.

The derivations use the combinatorializations described in|Section 2.3 to re-
phrase the problem of enumerating hypermaps as one of computing a multipli-
cation table for an appropriate algebra: the class algebra of the symmetric group
for orientable hypermaps, and the double coset algebra of the hyperoctahedral
group for locally orientable hypermaps. In both cases the multiplication is car-
ried out by working over a basis of orthogonal idempotents described using
irreducible characters. The link to symmetric functions is made by noting that
the character evaluations involved are the coefficients of Schur functions and
zonal polynomials with respect to the power-sum basis. There is no correspond-
ing algebra known with respect to which the coefficients of Jack symmetric
functions in the power-sum basis are character evaluations.

Orientable Hypermaps

This Section sketches the derivation of (3.7) as the generating series for rooted
orientable hypermaps withrespectto vertex-, hyperface-, and hyperedge-degree
partitions. The series was originally derived by Jackson and Visentin for maps
in [JV90a], and extended to hypermaps in [JV90b]. Emphasis is placed on
parallels with the development of (3.8) from [G]J96b]. The necessary algebraic
tools are discussed in [Mac95] and [HSS92]. Starting with the combinatorializa-
tion for orientable maps from Section 2.3.1 and its generalization to orientable
hypermaps from [Section 2.3.2, arbitrary pairs of permutations are interpreted
as representing unordered collections of edge-labelled hypermaps. Counting
these representations is phrased as a problem in the class algebra of the sym-
metric group, and the solution is expressed using character sums before being
recast using Schur functions.

As in [JV90b], if two permutations, € and v in &, do not act transitively on
{1,2,...,n}, then {1,2,...,n} can be partitioned into its orbits under the action
of the group generated by € and v,

{1,2,...,n} =508 U---US,
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and € and v can be written as products
€=€16 € and V=1V Vg,

such that €; and v; act transitively on S; and fix all other elements of {1,2, ..., n}.
In this way, an arbitrary pair of permutations (e,v) acting on the same set
represents an unordered collection,

{(ei,vi): 1 <i<k},

of labelled orientable hypermaps, and in this context, following the terminol-
ogy of [JV90b], such a collection is called a permutation system. The concepts of
vertex-, hyperedge-, and hyperface-degree partitions are extended to permuta-
tions systems as the cycle types of €, v, and ev. Notably, some S; may consist
of a singleton, in which case €; and v; fix every element of {1,2,...,n}, but hy-
permaps without edges, that is hypermaps represented by permutations acting
on the empty set, do not appear in these collections. The machinery needed to
count permutations systems using the class algebra of the symmetric group is
summarized from [HS592, Sec. 2].

If G is any finite group, with conjugacy classes C1,C», . .., Cy, then its complex
group algebra, CG, is semisimple by Maschke’s Theorem (see, for example,
[Her94, Thm. 1.4.1]), and so Z(CG) has a basis of orthogonal idempotents given

by

di v —o) .
Ei=— C; 1<i<t), 3.21
|G|]:le ;o asisy (3:21)

where )(E.i) is obtained by evaluating the irreducible complex character y at any

w € Cj, the degree of x is d;, and C; is the formal sum of elements of C;. The
relationship is inverted, using orthogonality of characters to give

(l)

i dL : (3.22)

i=1

When G is €,, the symmetric group on n elements, the conjugacy classes are
naturally indexed by integer partitions of n. In this case C; is the set of permu-
tations with cycle type A, and if A + n, then x* has degree ﬁ—'\ Coefficients aﬁv
are defined implicitly by the multiplication

C.C, =) al,Cy,

A

SO aﬁ/v is the number of pairs of permutations (1,v) € C, X C, such that uv =

w for a fixed w € C,. It follows that the number of permutation systems
with vertex-degree partition v, hyperface-degree partition ¢, and hyperedge-

degree partition € is |Ce| a7, or the corresponding expressions with v, ¢, and €
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permuted. Explicit computation of a,, is possible by using (3.21) and (3.22) to
give
a5, = 0wyt Y Haxd )x (@) (), (3.23)
e

since the irreducible characters are real-valued, and w, = ﬁ, when A + n.
Schur functions were developed to record these character evaluations, and the
link to symmetric functions is made via the relationship,

Sy = Z a);zl/Y/\(Fl)py/

urk

due to Frobenius [Mac95, Sec. 1.7.10]. It follows that an exponential generating
series for permutations systems in the power-sum basis is given by

[v|
Y CrCa P (pe@) = Y, #Hoso(x)s0(y)s0(2):

|
V,Q,e€P |V| Oe P

A logarithm restricts the series to labelled connected hypermaps with at least
one edge, and (3.7) is recovered as the generating series for rooted orientable hy-
permaps by taking a partial derivative with respect to f to remove the labelling,
since each rooted hypermap has (1 — 1)! distinct labellings.

Locally Orientable Hypermaps

This Section describes the derivation of (3.8) as the generating series for rooted
locally orientable hypermaps with respect to vertex-, hyperface-, and hyperedge-
degree partitions. It follows the derivation used by Goulden and Jackson in
[GJ96b], but without an explicit derivation of the specialization to maps. Nec-
essary algebraic tools are discussed in [BG92], [HSS92, Sec. 2], and [Mac95,
VIL.2]. Beginning with the combinatorialization of hypermaps in|Section 2.3.2,
the problem of counting finite collections of hypermaps, called corner systems, is
phrased as a problem in the double-coset algebra of the hyperoctahedral group,
and then the solution is expressed using zonal polynomials.

As in [G]96b], a corner system is an ordered triple (M, M., My) of perfect
matchings on the same vertex set. If the matching graph G with edge set
M, U M, U My is connected, then the corner system (M,, M,, M) represents a
hypermap, but in general a corner system represents an unordered collection of
hypermaps with at least one hyperedge: there are no isolated vertices in G since
M, is a perfect matching. For two perfect matchings M; and M, let A(M;, M;)
be the partition with parts equal to half the lengths of the cycles in the graph
with edge set M; U M,. Vertex-, hyperface-, and hyperedge-degree partitions
are generalized to corner systems as A(M,, M¢), A(M,, M,), and A(M,, My).

The hyperoctahedral group of order 1, is the wreath product B, = S,[S;]. It
can be embedded in &;, as the centralizer of a fixed-point-free involution 7z. As
described in [BG92] and [HSS92], the double cosets of B, in S,, are naturally
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indexed by partitions, with Ky given by
7(9 = {G € GZn: A(M,GM) = 9},

where M is the matching that pairs elements transposed by m. If Ky is the
formal sum of elements of Ky, then {Kg: O + n} is a basis for a commutative
sub-algebra of CS,,, identified as J#(S,,, B,), the Hecke algebra of the Gel fand
pair (32, B,). Self-contained descriptions of 7#(S,,, B,) are given by Bergeron
and Garsia in [BG92] and by Macdonald in [Mac95, Chap. VII]. Coefficients b;\w
are implicitly defined by multiplication in J#(&,,, B,) using the expansion

K[,lKV = Z‘ b?WK/\/
A

and they are given a combinatorial description by Hanlon, Stanley, and Stem-
bridge in [HS592, Sec. 3]. From the correspondence,

ceK, = A(GM,M) = AM,c"'M) =v
T €Ky = A(TM,M) = ¢
o1 € K. = A(oTM, M) = A(TM, 7 'M) = ¢,

it follows that if (0, 7) € K, X K, contributes to bﬁ/w then (M, 0" 'M,T™) is a

corner system with vertex-, hyperface-, and hyperedge-degree partitions v, ¢,
and e. Counting multiplicities, it follows, as in [G]J96b], that the number of
corner systems with these degree partitions is given by

|62n| : |(]<e| e

€ o 3.24
18,2 "7 (329

As in the orientable case, the coefficients by, can be computed directly by
using the fact that J#(S,,, B,) is a semisimple commutative algebra, and thus

has a basis of orthogonal idempotents {EH: prn } In [HSS92, Sec. 3], these
idempotents are related to the coset sums by

1 1
E, = 0 y PO and K, = Y ¢'WE,  (3.29)

vkn vkn

where

'O =) ) Ak
ueKo
are irreducible characters of J#(S,,,, B,), as described in [BG92]. It follows that
1 1
b= — — PN Bv).
b= T ﬁZ 7y ¥ O W)

From [BG92], zonal polynomials, evaluations of Jack symmetric functions at
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a = 2, are given by

1
209 = g GZ P O)po(x),

so a generating series for corner systems, exponential with respect to the number
of vertices in the matching graph, is given in the power-sum basis by

Kel . 1
tlv|ubv,¢Pv(X)P(p(Y)Pe(Z) = Z t‘e‘H—zeZQ(X)ZG(Y)ZG(Z)/

3
v,p,e€ P | B, | 0e?

and (3.8) is obtained as in the orientable case. The leading factor of 2 accounts
for the fact that a hypermap with n edges has a matching graph with 2n vertices.

3.5.2 An Integration Approach to Map Enumeration

The integral expressions for evaluations of the map generating series, (3.14)
and (3.15), can be obtained by considering maps with painted vertices. If N is a
positive integer, then the coefficients of y*z" in M(N, y, z; 0) and M(N, y, z; 1) are
the numbers of orientable and locally orientable rooted maps with n edges, face-
degree partition ¢, and each vertex painted independently with a colour from
a set of cardinality N. A map with k vertices is thus counted with multiplicity
N*.  Both series were originally obtained combinatorially, in dual form, by
considering rooted maps with painted faces. Each face-painted map can be
decomposed as a collection of painted vertex neighbourhoods, together with
instructions for attaching ribbons to connect the vertices in a manner respecting
the face painting.

Given a collection of face-painted vertex neighbourhoods, each embedded
in an oriented plane, a clockwise tour around each vertex induces a cyclic
sequence of face colours. Encode the sequence (cy, ¢, ..., ) as the monomial
Mgy, Meyey - - - Mg, iNiNdeterminates { mij:1<i,j<N }, so thatm;; encodes a half-
edge such that its sides are painted i and j, and the side painted i is encountered
before the side painted j in a clockwise tour around the associated vertex.
With this encoding, the number of ways to draw colour-respecting ribbons is
determined by the product of the monomials encoding the vertices. In general,
when the monomial m encodes a collection of vertices, let (1) , be the number of
ways to match the half-edges by joining them with colour-respecting ribbons,
and let (m)p be the number of ways to do this in an orientation-preserving
fashion. Then

()= S, () = o, P = Po Do,
<m12in>./: - % <m7}m}]<1>£ = % and (pg) ;= (p) (D),
)

provided that all m;; and mj; appear in the same factor of pg for every i and j.
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Figure 3.1: Painted neighbourhoods of vertices are encoded by monomials repre-
senting half-edges.
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Example 3.29. |Figure 3.1 shows two decompositions of the map from|Figure 2.10\into

collections of vertex neighbourhoods, each face-painted using the colours {g,r,y}. The
collection shown in Figure 3.1a is represented by the monomial

(1111 (11 g1 11y 1) gy 11y 1) (11 ) = (1111 ) 03, 10 ) 112, ).
There are 11312! = 12 orientation-preserving and 5i- 55 55 = 45 ways to join its
half-edges with ribbons. The collection shown in |Figure 3.1b is represented by the
monomial

2 2 4 4 4
(Mg, ) (M iy imy, )~ (my, my,) = (mrymyr)(myy)'

Its half-edges can be connected with ribbons in 4! 53

and %% = 1260 ways.

= 72 orientation-preserving ways,

Integral representations of {-)p and {-) » are obtained by noting that, for non-
negative integers m and n,

2.2 nlnt ifn=m
X1+ ix0)"(xq —ixp)"e™ 12 dx = .
[ o inrn - iny g s

and
"‘%d _Jo if nis odd
Rx € = (221—11,)1!\/271 if n = 2iis even.

Let Vy be the space of N x N complex Hermitian matrices. A typical element of
“Vy is a matrix M with entries m;; = r;; + ic;;. In particular, r;; = rj; and ¢;; = —cj;,

SO
2 _ 2, 2
trM- =2 Z (rl.].+cij)+ Z rfi,
1Si<jSN 1<i<N

and it follows that
f%] fexp (—% ter) dM
f%: lexp (—% tr MZ) am’

(fo=

where dM = (Hiq ci,]-) (Hisj ri,]') is a Haar measure. Similarly, let W)y denote
the space of N X N real symmetric matrices with entries m;; = r;;. Then

f(VN fexp (—% tr Mz) dM
f‘VN lexp (_411 tr MZ) am’

(f)L:

where dM = [];.;r;; is again a Haar measure. These matrix models are particu-
larly useful, since the monomials representing paintings of the neighbourhood
of a degree k vertex with colours {1,2, ..., N} are generated by tr MF. Tt follows,
using factors of { and 5 to account for cyclic and dihedral symmetries in the
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orientable and locally orientable cases, that

Z‘>l \/_kt Mk L M2) dM
M(N/y,Z;O):Zzilnf(vNexp( k>1 kyk zhtr )exp( 5 T )

3.26
9z f%v exp (—% ter) dM (326

and

M(N,y,z1) = 4zai In b P (Tio a9 V2! tlr M) exp (~ trM?) dM
) Jy, exp (= rM?) dm

. (3.27)

As in[Section 3.5.1) the logarithm restricts the series to edge-connected compo-
nents, and the differential operator removes the order on the half-edges that is
implicit from the encoding. A Maple program in/Section B.3/of/Appendix B|can
be used to work with these expressions directly for small values of N. There are
nonatural candidates to interpolate between Vy and ‘W as topological groups,
but the integral over Wy can be represented as an integral over Vy by changing
the measure to include Dirac-delta functions of the complex components. This
approach has not been used to generalize the two series.

Algebraic manipulation is used to generalize and (3.27) by first express-
ing them in terms of integrals over RY. Every element of Vy (respectively ‘Wy)
can be represented as a product of the form M = UDU, with D diagonal and U
unitary (respectively orthogonal). Since the measures factor according to this
representation, and since the integrands are invariant under conjugation, the
series can be transformed into integrals over RV using integration theorems
of Weyl to obtain (3.14) and (3.15), as in [Jac94], [GJ97], and [LZ04]: integra-
tion over a space of N X N matrices is replaced by integration over N-element
sets of eigenvalues of such matrices. The generalization to (3.19) is implicit in
[GJ97] and appears explicitly in [GHJ01], where Goulden, Harer, and Jackson
conjecture that it has a geometric interpretation. An indirect method is used in
Chapter 4Jto verify a combinatorial interpretation of M(N, y, z; b), but there is no
apparent way to lift the approach to a representation involving matrix integrals,
and a combinatorial derivation of the generalized series remains elusive.

3.5.3 Motivation (The Ubiquity of b)

As a consequence of the varied approaches to map and hypermap enumeration,
the parameter b interpolates between several different classes of structures. With
a positive resolution of the Hypermap b-Conjecture, it might be possible to lift
the constructions used to derive the map and hypermap series to more gen-
eral settings. In addition to giving a new combinatorial interpretation to Jack
symmetric functions, a description of a b-invariant could potentially be used to
describe algebraic objects interpolating between Z(C[S,]) and J(S,,, B,), or
between Vy and Wy. Strebel differentials link map enumeration to moduli
spaces of complex and real algebraic curves, and Goulden, Harer, and Jackson
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conjecture, in [GHJ01], that b might appear as a parameter of an as yet uniden-
tified interpolating space. Promisingly, only the symmetric-function-based
derivation leads to the full Hypermap b-Conjecture, so the marginal b-invariant
described in Chapter 4 might be sufficient for the remaining applications.

3.6 Approaching the Conjecture

Approaches to identifying a b-invariant fit into two broad categories. One
approach relies on the principle that a b-invariant should be natural: from
this perspective, it should be possible to search for combinatorial properties
of maps, and then check which properties are manifested algebraically by M.
A second approach involves finding algebraic properties of the series, and
then interpreting the combinatorial implications of those properties. The first
approach is used in |Chapter 4| to construct a marginal b-invariant, and the
second approach is used in|Chapter 5 to verify that a degree bound predicted
by Goulden and Jackson in [G]96a] holds for all b-invariants.

The derivations in Section 3.5/do not provide an independent enumerative
theory for non-orientable maps, though they can be enumerated as the comple-
ment of orientable maps within the class of locally orientable maps. It is more
natural to consider maps on the Klein bottle and the torus, than to consider
maps on the Klein bottle alone. If the b-Conjecture is true, then a b-invariant
can be interpreted as a measure of non-orientability, and from the perspective
of the enumerative theory of rooted maps, the classification theorem for sur-
faces presents a false dichotomy: though orientability is a binary concept, there
are degrees of non-orientability. That it is more natural to study rooted maps
for which the invariant is at most zero, than it is to study maps for which the
invariant is at least one, suggests that the analysis implicitly uses a partial order
with respect to which down-sets are more natural than up-sets. This is the basis
for the assumption that root-edge deletion recursively decomposes a map into
pieces that are each ‘less non-orientable” than the original map, and motivates
the description of the marginal b-invariants discussed in|Chapter 4|

This Chapter concludes by examining some known b-polynomials. Elemen-
tary observations reveal some properties that cannot be satisfied by b-invariants,
and provide a grounding for some of the assumptions made in later chapters.
In particular, the non-existence result of Theorem 3.35]is new, and shows that
an apparent deficiency of the invariant described in [Chapter 4is an essential
property of b-invariants. The emphasis is on maps, but most of the statements
also apply to hypermaps.

3.6.1 Dependence on Rooting

Since b-invariants are conjectured to measure non-orientability, and orientabil-
ity is independent of rooting, it might be expected that some b-invariant is
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Figure 3.2: Rooted monopoles with two edges and one face

independent of rooting. Examining the coefficients of g4 22(b) = 1 + b + 30,
obtained by direct computation, shows that this is not the case.

Theorem 3.30 (Goulden and Jackson [G]96a]). If there is a b-invariant of rooted
maps, then it depends on rooting, and it is not an invariant of unrooted maps.

Proof. The 5 rooted maps shown in Figure 3.2 are the only rooted maps with
vertex-degree partition [4] and face-degree partition [4]. Since the rooted map
in Figure 3.2cis orientable, it accounts for the constant term in ¢y 4 221 (b), so the
combined contribution of the rooted maps in Figures|3.2a and(3.2b to c() 41221 ()
is b + 3b*. However, for any invariant of unrooted maps, the total contribution
of these two maps to each term must be even. O

Remark 3.31. The presence of a linear term in ¢y 47,22(b) also shows that the
parity of a b-invariant is not determined by the number of cross-caps used to
construct the surface in which a map is embedded.

3.6.2 Known Values of b-Invariants

If ¢, 121 = ab" is a monomial, then every b-invariant has value k for every rooted
map with vertex-degree partition v and face-degree partition ¢. Goulden and
Jackson noted, in [G]96a], that every known b-polynomial is either identically
zero, or has degree equal to the Euler genus of the surfaces on which it is conjec-
tured to enumerate maps. This bound is explored in more detail in|Chapter 5.
In the present context, it is sufficient to note that numerical evidence suggests
that, when a b-invariant is evaluated at a rooted map in the projective plane, it
takes the value 1. As a consequence, b-invariants do not depend on rooting for
projective-planar maps. Besides planar and projective-planar maps, the only
known maps for which all possible b-invariants can be uniquely determined
are some embeddings in the Klein bottle; their corresponding b-polynomials

are the monomials of degree 2 that are tabulated in Figure 3.2

Of particular interest, the polynomial cjs)35)24)(b) = 8b? corresponds to a
unique map with face-degree partition [4?] and vertex-degree partition [3,5]

(see [JVO1, p. 125]), so all eight of its rootings, illustrated in Figure 3.3a, must
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Table 3.2: Degree 2 monomials

\ [3,42,5]  [4*] 96b”
©) ¢ty 5,7, 100 () = 1207 [1,5] [4*] 480°

[1,3,67] [44] 144b2
Figure 3.3: Rooted maps for which [3%,7] [44] 16b>
all b-invariants take the value two [22, 5,7] [44] 11202

4812
19202

8] [1,3°]
81 [2%3,5]

v Q@ n Cup2r] (b)
[42] 3,5] 4 8
\ (%) 3,51  [4] 4 8
9’ e» 2,3,5] [5*] 5 3002
7 5]  [23,5] 5 300
X [34] 571 6  12°
4] 3,45 6 3602
22,3,5] [6]] 6  60b2
3,45 [4] 6 36/
6] 2235 6 6002
5,7] 3 6 1212
23,3,5] [72] 7 12602
(2] [2%3,5] 7 12612
[1,3%] 8] 8 482
4]  [3,4%5] 8 9612
44  [1,5°] 8 4812
4] [1,3,6]] 8 144
44 37 8 16k
44  [2257] 8 11212
23,5] [8] 8 1921
8
8
8
8
8
8
8

have weight two with respect to every b-invariant. The map is notable for
the fact that it can be decomposed as the connected sum of two maps on the
projective plane: see |Figure 3.3b. The other monomials in the list appear to
enumerate other maps with the same property, and this provides numerical
evidence that it may be possible to construct a b-invariant that is additive with
respect to connected sums: for example, the twelve rootings of the map in
are enumerated by cpi)(57,20(b) = 12b%, and the underlying map
can be decomposed as the connected sum of two maps on the projective plane
in two different ways, one of which is indicated.

Brown and Jackson approached the problem of describing a b-invariant by
working with edge-labelled maps. In [B]J07], they introduced a candidate in-
variant and showed that, for edge-labelled maps, it is additive with respect to
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connected sums. Because b-invariants are necessarily dependent on rooting
(recall [Theorem 3.30), it is not clear how to define additivity with respect to
connected sums for unlabelled rooted maps, so a weaker property, satisfied by
all ‘reasonable’ forms of additivity, is used in the following conjecture.

Conjecture 3.32. There is a b-invariant 8 such that if m is a rooted map that can be
decomposed as the connected sum of smaller maps so that there are k non-orientable
pieces, and so that the total genus of the non-orientable pieces is g,, then k < p(m) < g,,.

3.6.3 Symmetry Breaking

The combinatorial definition of maps exhibits several symmetries, but it is im-
possible for a b-invariant to respect all of these symmetries. This is reminiscent
of modern particle physics, where explaining broken symmetries in apparently
symmetric systems has been a notable theme of the past century, and interest-
ing because several problems in map enumeration arose from physical models.
The theme of symmetry breaking is revisited in the context of the g-Conjecture
inSection 7.5

From [Definition 2.36, a combinatorial map can be represented as a triple,
m = (ty, Te, Tf), of fixed-point-free involutions, and the definition of hypermaps
is symmetric with respect to these three involutions. Using the convention that
a root is indicated by an arrow pointing from a face to a vertex, reflection acts
by replacing the root flag with its image under the action of 7,. Since 7,, 7.,
and 7 act transitively on the flags of a hypermap, any function that is constant

under the action of all three involutions cannot depend on rooting, and thus,
by Theorem 3.30, cannot be a b-invariant.

For maps, only the conditions on 7, and 7y are symmetric, but if additivity
is required, in the sense of (Conjecture 3.32, then a b-invariant cannot even be
constant under the action of 7,. If g is an additive b-invariant, then the two
rooted maps in |Figure 3.4 have different weights with respect to 5. Since the
two diagrams are related by reflection, it follows that additive b-invariants
exhibit a form of chirality with respect to this representation of rooting. The
symmetry between 7, and 7 corresponds to duality, and is discussed in the
next section.

Figure 3.4: These rooted maps, with diagrams related by reflection across a vertical
line, have different weights with respect to every additive b-invariant.
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3.6.4 Duality

The map series is symmetric with respect to x and y. A combinatorial inter-
pretation is that, if § is a b-invariant, then there is a bijection acting on the
class of rooted maps that interchanges vertex- and face-degree partitions while
preserving 8. This is not necessarily true of marginal b-invariants. In both the
b =0and b = 1 cases, duality is one such bijection, and it might be expected
that duality explains the symmetry in the case of arbitrary b. This leads to the
following conjecture.

Conjecture 3.33. There is a b-invariant, B, such that for every map m, the rootings of
m and the rootings of the dual of m have the same multi-set of values with respect to .

The conjecture intentionally avoids specifying a particular form of rooted
duality. In fact, it is not obvious how the concept of duality, inherently a
relationship between unrooted maps, should be extended to rooted maps. The
natural choice, using the bijection between the flags of a map and the flags of its
dual that is induced by exchanging M, with My in the matching representation,
is not the unique choice, and it is immediately shown to be inconsistent with
additivity.

Example 3.34. Figure 3.5 gives the maps from |Figure 3.2 superimposed with their
duals, and shows that every map with vertex-degree partition [4] and face-degree par-

tition [4] is self-dual. Suppose B satisfies the conclusion of Conjecture 3.32} then it
would follow, by additivity, that |Figure 3.5b has one rooting with weight 1 and one
rooting with weight 2, with respect to p. But in this map, the two equivalence classes
of flags are distinguished by whether they lie on an orientation-preserving edge, or on
an orientation-reversing edge, and duality exchanges these two classes.

It would appear that an alternate form of rooted duality is required, but
even this is not sufficient to provide compatibility with additivity. Somewhat
surprisingly, the conclusions of Conjectures|3.32 and|3.33/cannot be satisfied by
the same invariant.

Theorem 3.35. A b-invariant cannot be both additive with respect to connected sums,
and invariant under any form of rooted duality that is a refinement of unrooted duality.

%
(€] (b) (

Figure 3.5: Monopoles with v = [4] and ¢ = [4] superimposed with their duals.

)
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(g)

Figure 3.6: Rooted monopoles with three edges and one face

Proof. Let p be a b-invariant that is additive in the sense of Conjecture 3.32.
There are 41 rooted maps with three edges, one vertex, and one face, and the
corresponding b-polynomial is cj) 6} 25(b) = 13b + 13b* + 15b°. The maps are
given in Figure 3.6. With an illustration inheriting a local orientation from its
drawing, Figures[3.6g and [3.6h give the same unrooted map.

Of the eight maps, those given in Figures|3.6a,(3.6b, 3.6g=3.6h, and [3.6i are
self-dual. By additivity, the invariant is independent of rooting for Figures
13.6a, [3.6b, and [3.61, which contribute a total of 6b + 5b° to the sum. Since
Figure 3.6g=3.6h is a connected sum of two non-orientable maps, it cannot
contribute to the linear term. This means that precisely 13 — 6 = 7 rootings of
the remaining 4 maps have weight 1 with respect to f5.

Figure 3.7|shows that Figures(3.6c and 3.6d give dual maps, while Figure 3.8
shows that Figures [3.6e and [3.6f give dual maps. So if § is invariant under
duality, then the rootings given in Figures|3.6¢, 3.6d, 3.6e, and [3.6f must make
an even contribution to each term of cpy) (4] 241(b). Since 7 is not even, it follows
that § is not invariant under duality, in the sense of|Conjecture 3.33. o
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Figure 3.7: The maps in Figures[3.6¢ and[3.6d are duals with three rootings each.

)

Figure 3.8: The maps in Figures[3.6e and [3.6f are duals with six rootings each.

Remark 3.36. The contradiction used in the proof of Theorem 3.35/involves two
pairs of dual maps. Tiled representations of these maps are superimposed with
their duals in|Figure 3.9, but this representation does not suggest any structural
reasons that at least one of the maps is not invariant under duality with respect
to every b-invariant that is additive in the sense of Conjecture 3.32.

Remark 3.37. Since cjg 161 1291(b) = d1,(6](D),(Theorem 3.35 also applies to marginal
b-invariants, although in this setting it is less clear that invariance under duality
should be expected. The marginal b-invariants described in |Chapter 4| were
constructed without any consideration given to duality invariance.

3.7 Summary

This Chapter introduced the b-Conjecture, a conjecture that posits the existence
of a combinatorial interpretation for the algebraic generalization of two gener-
ating series. The enumerative techniques leading to the conjecture were dis-
cussed, and several elementary observations were used to examine the nature
of the b-invariants that are needed to resolve it.
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Figure 3.9: Tiled representations of Figures|3.6c and [3.6d are superimposed in|(a),
and tiled representations of Figures[3.6e and3.6f are superimposed in (b).
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Chapter 4

A Marginal b-Invariant

Theorem 4.16, the main result of this Chapter, resolves |Conjecture 3.23 the
Marginal b-Conjecture, by introducing a family of new invariants, and showing
that each of the new invariants is a marginal b-invariant. These new invariants
are defined inductively in terms of root-edge deletion, and are more easily
analyzed than a similar invariant introduced by Brown and Jackson in [BJ07].
Their invariant is defined in terms of directed maps with edge labels, and its
description for rooted maps uses the rooting to construct a canonical edge-
labelling. They analyzed the invariant in terms of the associated exponential
generating series for edge-labelled multi-component maps, but were unable to
determine whether or not they had defined a marginal b-invariant.

Since the new invariants are defined in terms of root-edge deletion, it is
possible to work directly with rooted maps, and this reveals a partial differential
equation, (4.2), that is satisfied by a generating series for rooted maps, with
respect to each of the new invariants. To obtain the partial differential equation,
the generating series must be refined to distinguish between the degree of the
root face and the degrees of non-root faces. [Conjecture 4.9 is used to predict the
analogous refinement for the algebraic form of the map generating series. The
two series are identified by showing that the algebraically defined series also
satisfies (4.2), and that the partial differential equation has a unique solution.

By resolving the Marginal b-Conjecture, this Chapter provides a concrete link
between the Jack parameter and the topology of rooted maps. In particular, each
of the new invariants gives a combinatorial interpretation to all terms of M that
correspond to monopoles. An analysis of the new invariants reveals structural
properties of marginal b-polynomials: Theorem 4.22|gives a strengthened form
of non-negativity for the coefficients of marginal b-polynomials, and this reveals
a combinatorial interpretation for the series M(—x, —y, —z; —1). These properties
are extended to all b-polynomials in The new invariants are con-
jectured to be b-invariants, and this possibility is examined in|Chapter 6. The
framework developed in this Chapter is used in|Chapter 7| to explore another

enumerative conjecture involving rooted maps.
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4.1 The Invariants

Definition 4.1. For a rooted map m, an invariant n(m) is defined inductively as
follows.

1. If m has no edges, then n(m) = 0.

2. Otherwise m has a root edge e, and this edge can be deleted to produce one or two
rooted maps with fewer edges, as described in|Section 2.4.

(a) If e is a bridge of m, then deleting e decomposes m into two rooted compo-
nents my and my, and n(m) = n(my) + n(imy).

(b) Otherwise, deleting e from m leaves a single rooted map w’. The number
of faces of ' differs from the number of faces of m by at most one.

i. If m’ has one fewer face than m, then e is a border, and n(m) = n(m’).

ii. If " has the same number of faces as m, then e is a cross-border, and
n(m) = n(m’) +1.

iii. If m" has one more face than m, then e is a handle. There is a second
map t(m) obtained from m by twisting the ribbon associated with e.
The edge e is also a handle of T(m), and deleting e from T(m) also
produces . In this case,

{n(m), n(z(m))} = {n(m’), n(m’) + 1}.

At most one of m and t(m) is orientable, and for the present purpose,
it is sufficient to allow any canonical choice such that if m is orientable,
then n(m) = 0 and n(t(m)) = 1.

Definition 4.2 (twisted). Fora map mwith root edge e, the edge e is said to be twisted
if it is not a bridge and n(m) = n(m\e) + 1.

Using this terminology, n(m) is the number of twisted edges encountered
when m is decomposed using iterated root-edge deletion. The definition of 7 is
ambiguous; when the root edge is a handle, 2(b)iii does not specify which of m
and 7(m) has the twisted rooting, unless m\e is orientable. Each choice produces
a distinct invariant, but in the present context, every choice produces the same
enumerative result, so for now, 1) represents a family of related invariants. The
definition can be made concrete by defining twisting relative to any canoni-
cally constructed spanning tree, but this is not necessary, and a discussion of
particular invariants is deferred to|Section 6.4.

Remark 4.3. Though the description of 1 is combinatorial, its definition is
motivated by topological considerations. Handles, borders, and cross-borders
can be distinguished by topological properties related to map duality. To see
this, work in the ribbon graph model for maps, as described in |Section 2.2.3,
and consider the ribbon graph representing the dual of a rooted map. The space
T, formed by the union of the root edge and its vertices is homeomorphic to a
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Figure 4.1: Root-edge deletion is used to compute 7.

Mobius strip, an open disc, or a cylinder. If T is a Mobius strip, then the root
edge is a cross-border. If T is a disc, then the root edge is a border. Otherwise,
T is a cylinder, and the root edge is either a handle or bridge. These final two
cases are distinguished by considering the connectivity of the complement of T
in the surface in which the map is embedded. A further topological link is the
following degree bound.

Theorem 4.4. If m is a map on the surface X, then n(m) = 0 if L is orientable, and
1 < n(m) < k if ¥ is the sphere with k cross-caps.

Proof. 1f iterated root-edge deletion of m encounters b borders, c cross-borders,
r bridges, and / handles, then m has r + 1 vertices, b —h +1 faces, and b+ c+r+h
edges. Itfollows that the Euler characteristic of X is (r+1)—(b+c+r+h)+(b—h+1) =
2—c—-2handc<n(m)<c+h<c+2h O

The same bound was shown by Brown and Jackson in to hold for their
invariant, and the analogous degree bound was conjectured for b-polynomials
by Goulden and Jackson in [GJ96a]. In|Chapter 5,/Corollary 5.24 shows that the
bound is satisfied by all b-invariants.

Example 4.5. Consider the rooted maps my and my given in \Figure 4.1, with 1 and
2 faces respectively. Deleting the root edge of either, leaves ms, which has 1 face. It
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follows that the root edge of m is a cross-border, and that the root edge of my is a border.
Deleting the root edge of ms leaves my, and increases the number of faces from 1 to 2,
so the root edge of mg is a handle. Since t(mg) is orientable, n(mz) = n(my) + 1. The
root edge of my is a border, so since its deletion leaves a map with no edges, n(my) = 0.
It follows, by back substitution, that n(ms) = n(my) + 1 =1, n(my) = n(mz) = 1, and
nimy) =nimg) +1=2.

Example 4.6. Each of ms and my, also given in|Figure 4.1} has 1 face. Deleting the root
edge of either leaves my, which has 2 faces. It follows that the root edges of both ms and
me are handles, and that {n(ms), n(me)} = {n(my), n(my) + 1}. Deleting the root edge of
my leaves mg, which also has 2 faces, so the root edge of my is a cross-border. Since mg
is orientable, n(mg) = 0. It follows, by back substitution, that n(my) = n(mg) +1 =1,
and that {n(ms), n(me)} = {1,2}. Since neither ms nor mg is orientable, the values of
n(ms) and 1n(me) depend on the particular invariant, but if ) is chosen to be additive,

in the sense of|Conjecture 3.32, then n(ms) = 1.

As with the invariant of Brown and Jackson from [BJ07], each invariant 1 is
dependent on rooting, with the rooting of a map being used to define a deletion
order on its edges. For a given deletion order, n uses effectively the same
deletion types and interpretations as its precursor, but the number of cases is
reduced from 9 to 4 by not excluding the rooted map with no edges and by
treating all handles uniformly. The key difference between the invariants is the
order in which edges are deleted. In contrast to the work of Brown and Jackson,
no attempt is made to specify the relative deletion order for edges in different
components after the deletion of a bridge, so 7 is defined in terms of a partial
order induced by the rooting. An advantage of this approach is that inductive
analysis is localized to the root face. In particular, by deleting the root edge
first, instead of last, it becomes possible to analyze a refined combinatorial sum
that records the degree of the root face.

4.2 A Partial Differential Equation

Brown and Jackson suggested, in [BJ07], that finding a partial differential equa-
tion satisfied by the map generating series would be a key tool for linking a
combinatorial sum to the algebraically defined map series. In the case of 7,
the generating series for maps is refined to mark the root face separately from
non-root faces. This leads to a differential equation arising from a recurrence
with non-negative integer coefficients. Using cues from the b = 0 and b =1
cases, the corresponding algebraic refinement is identified and shown to satisfy
the same partial differential equation.

Consider the combinatorial sum M defined by

M= M(x,y,z,1;b) = Z x\V(m)ly(p(m)\r(m)zlE(m)lrp(m)bn(m)’ 1)
meM
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where the sum is taken over all rooted maps, including the map with no edges,
V(m) is the vertex set of m, p(m) is the face-degree partition of m, p(m) is the
degree of the root face of m, and E(m) is the edge set of m. This sum refines

the generating series appearing in Conjecture 3.23, by treating the root face as

qualitatively different from other faces with the same degree. Corollary 4.17
justifies the notational abuse by showing that

M(x,y,z,y;b) = xyo + M(x1,y,z;b),

where the first series is the combinatorial sum from (4.1), and the second series
is the algebraically defined map series of (3.12). The present proof relies on
Theorem 3.18 for evaluating the maps series, and cannot be extended to include
the vertex degrees.

Lemma 4.7. The combinatorial sum M, given in (4.1), satisfies the partial differential
equation for f:

i+1

. 8 a
f=rox+ zz(l + 1)bri+2a—rif + 22 Z rjyi_j+23_rif

20 >0 j=1

+z Z(l + b)]ri+j+2mf tz Z;) Tirja2 (a_nf) (a_fjf) '

i,j>0 ij>

4.2)

Proof. The map with no edges is enumerated by ryx, and each sum corresponds
to one deletion type for the root edge. The proof proceeds by induction on the
number of edges in a rooted map, examining in turn the contributions from
each type of root edge.

Given a map m with root-face degree i, a cross-border can be added as the
root edge in any of i + 1 ways. The second end can be attached to any of the
i, counting multiplicities, vertices on the boundary of the root face, and a loop
has two distinct rootings. The following figure illustrates this schematically.

A \ A

Each resulting map has root-face degree i + 2 and weight n(m) + 1 with respect
to 1. Every cross-border-rooted map is obtained in this way precisely once, so
such maps are enumerated by

. d
z Z(z + 1)briyn B_nM'

i>0

Similarly, using the same end points with untwisted root edges, a border can
be added in i + 1 ways. The following figure illustrates this schematically.
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Each resulting map has one more face than m. The degrees of the two new
faces sum to i + 2, with the root faces taking each degree in the range 1 to i +1
inclusive precisely once. It follows that border-rooted maps are enumerated by

i+1

z Z Z T]‘y,'_]q.z %M

>0 j=1

A handle can be added as the root edge by picking an end for the edge on any
non-root face and either twisting the ribbon or not. If the chosen non-root face
has degree j, then the end point can be selected in j ways. Each end point can
be used to attach a twisted handle and an untwisted handle. The resulting root
face has degree i + j+ 2. This is illustrated schematically in the following figure.

The sum is independent of the canonical choice made in the definition of 7,
since precisely one of m and 7(m) contributes to each of

. 22 ]
z Z Jrivj+2 WM and zb Z Jrivj+2 WM
i,j>0

When the roots of two maps m; and m, with respective root-face degrees
i and j are joined by a bridge, the boundary of the root face of the resulting
map contains the boundaries of both m; and m, together with the new root
edge, which occurs twice. The new map has root-face degree i + j + 2, as in the
following figure.

4

Since every bridge-rooted map is produced in this way precisely once, such
maps are enumerated by

)5
z Tivizo | =—M || =—M].
L]ZZ;) o (81’1' 81’]'
The cases partition all root-edge types, and this completes the proof. O

Remark 4.8. The root-edge types and their contributions to M are summarized
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Table 4.1: The contribution to M from maps with each root-edge type

Root-edge type Schematic Contribution to M

Cross-border

. d
z Z(z + 1)brisa 7M

>0
i+1
Border @ z Z Z TiYi-j+2 p) M
>0 j=1

_ ‘ 9

Handle (—J@ z ;6(1 +b)frivjs2 o 8ij
| d d

Bl‘ldge D—/C zZ ”Z>O Ti+j+2 ((91’1‘ M) (ai’j M)

in[Table 4.1] Since the proof of[Lemma 4.7/does not involve edge-labelled maps,

the classification mightbe usefulin the analysis of the g-Conjecture, as discussed

in|Chapter 7.

4.3 A Refined b-Conjecture

Finding an analytic solution to (4.2) requires refining the map series, M, to
record the degree of the root face. For b = 0 and b = 1, since a map can be
re-rooted at any flag without changing its orientability, this is accomplished
by replacing 2z% with ¥, jrjaiyj in (3.13), the definition of the series. The
justification is not valid for general values of b, since Theorem 3.30/shows that
b-invariants depend on rooting, but numerical evidence suggests that the sub-
stitution remains combinatorially meaningful in this more general setting. As
a special case, shows that the substitution maintains its combi-
natorial interpretation for general values of b when the series is specialized at
x; = x for all i. The validity of a similar substitution in (3.4), the definition of H,
has not been investigated.

With the assumption that the coefficients of the map series are polynomials in
b, the Maple worksheet in|Section B.4/of Appendix B was used to compute the
map series up to coefficients of z8. That the validity of this computation depends
only on the assumption of polynomiality, is a consequence of Corollary 5.22.
Applying the substitution to the definition of the resulting series produces a
polynomial with 130,044 terms, each monomial of which has a coefficient that
is a non-negative integer. This provides numerical evidence for the following
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Figure 4.2: The unique map with ¢ = v =[1,3]

refinement of the b-Conjecture.

Conjecture 4.9 (Refined b-Conjecture). When 22% is replaced with ) j, jrjaiy]_ in
the definition of the map series, the coefficients of the resulting series,

) i L Jo(;1+Db)]o(y; 1+ b)
o JZ‘ iy, " Zo T oo Pl D)

Or2n Pi<X)=xx}w
piy)=yil

are non-negative integers. Furthermore, there is an interpretation for this refined series

as a generating series for maps with r; marking a root face of degree i.

A proof of this conjecture would explain why many b-polynomials for n-edge
maps are multiples of 2n. In particular, by considering the action of the differ-
ential operators, the refinement predicts that

imi(¢)

Tcwp,[z*’] (b) €Z, [b]

for every part i of ¢. It would follow from the symmetry between x and y that

2n Z.[b].

v, n b € ) +
Crol210) € & i ged(m), @)z,

Combinatorially, the conjecture is a statement that, among all maps with spec-
ified vertex- and face-degree partitions, there is no correlation between the
degree of the root face and the value of 1. The obvious combinatorial explana-
tion for this property, that 1 is independent of rooting, is false.

By duality, the series can be refined instead to record the degree of the root ver-
tex, but there is no apparent algebraic operation that refines the series to simul-
taneously record the degrees of both the root face and the root vertex. Without
a simultaneous refinement, an analysis of Conjecture 4.9|must be asymmetrical
with respect to vertices and faces, and this asymmetry partially explains the
difficulties inherent in analyzing the behaviour of n with respect to duality.

One obstacle to simultaneous refinement is that, among maps with given
vertex- and face-degree partitions, the degrees of the root vertex and root face
are correlated, even in the case of orientable maps. In particular, Figure 4.2
gives the rooted maps with v = ¢ = [1,3], and every rooting on a vertex
of degree 1 is on a face of degree 3. As a result, any algebraic operation
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Figure 4.3: A rooted map with root-vertex degree 1 and root-face degree 3
N

v
2b? b+ b? 1

Figure 4.4: The weights with respect to 1 of the five rooted maps with v = ¢ = [4]

that simultaneously refines the map series to record root-face and root-vertex
degrees cannot act independently on x and y. In fact, no linear operator can
carry out the simultaneous refinement.

Theorem 4.10. There is no operator that acts linearly on b-polynomials to produce
refined polynomials that record the degrees of both the root vertex and the root face.

Proof. Consider the polynomial ¢ = ¢fy 7)(3,5,12¢1(b) = 16 + 16b + 64b*. Any linear
operator acting on c produces coefficients in the ratio 1 : 1 : 4, but there are
precisely five rooted maps with v = [1,7] and ¢ = [3,5] that are rooted on a
vertex of degree 1 and a face of degree 3. To see this, note that deleting the root
edge of such a map leaves a rooted map with v = [6], ¢ = [1,5], and root-face
degree 1. Deleting the root edge of the resulting map leaves a rooted map with
v = [4] and ¢ = [4]. The root-deletion process is illustrated in Figure 4.3, and
the resulting maps are given inFigure 4.4. Since five maps cannot have weights
occurring in the ratio 1 : 1 : 4, the result follows. a

Remark 4.11. The choice of v = [1,7] and ¢ = [3,5] was arrived at by al-
gebraic considerations. Assuming that Conjecture 4.9 holds, it follows from
Corollary 5.22 that a refinement is possible for all polynomials corresponding
to maps with a single vertex, a single face, or Euler genus less than two.

Example 4.12. After two root-edge deletions, the five maps used in the proof corre-
spond to the maps enumerated by cpyypayo2(b) = 1 + b + 3b. With respect to 1, their
weights are given in Figure 4.4.

As a consistency check, among rooted maps with v = [1,7] and ¢ = [3,5], there
are seven rooted maps with root-vertex degree 1 and root-face degree 5. After a single
root-edge deletion, they correspond to the rooted maps enumerated by cje) (32123)(b) =
1+ b+ 5b%. These maps are given, together with their weights with respect to 1, in

Figure 4.5.
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Figure 4.5: Seven rooted maps with v = [1,7] and ¢ = [3,5]

Together, these twelve rooted maps are the only rooted maps with vertex-degree
partition v = [1,7], face-degree partition ¢ = [3,5], and root-vertex degree 1. Since
(1+b+5b%) + (1+b+3b%) = §(16+16b + 64b?), this is consistent with the prediction

of|Conjecture 4.9.

4.4 Solving the Equation

Assuming |Conjecture 4.9, the Refined b-Conjecture, the solution to the partial
differential equation (4.2) is given in terms of the expectation operators of
Section 3.3.1 by replacing ZZ% with ) oq jrj&iyj in the expression

_ . (D,
M= (1 + b)ZZE In m,

as given in|Corollary 3.19. Recall from Definition 3.17 that

1

= [ VI et Odn and (g = (deris B i ),

SO aiyj D, = ](11—+b)<p i \/E] >e. Since the set of indeterminates is finite, it is conve-

nient, for this Section, to use the convention that po(A) = Zfil /\? = N, so that,
in particular,

Yoo
Zp) = kpa ) (k= 1),
;‘a/\ik k-1

Using this convention, (po) = N (1), and the Refined b-Conjecture predicts that,
if R(b) > —1, then

pivz
M(N,y,z,t;b) =roN + (1 + D) {Z jrj%]ln % = er%,
=1 Yi =0 e

This is verified by using the following recurrence property for expectation.
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Lemma 4.13. For a fixed positive integer N, expectations of power-sum symmetric
functions in the variables A1, A,, ..., AN satisfy the recurrence:

j
(pivapo) = i+ b {pjpe) + (1 +b) Y imi(0) (pjsiponi) + Y (pipjipe). (4.3)

i€0 i=0

Proof. As in Mehta’s commentary on Aomoto’s proof of Selberg’s integration
theorem [Meh04, Chap. 17], let

1

YE T, and Q= e POV (x)P

so that, in particular, (f) = ﬁzN fQdx. Consider the partial derivative:

3%1’“1”11990 = (j+ Dxr/peQ =y /?Q

+ 2 imi(O)x1 ™ pgQ + 2y Z (4.4)

i€0
Thus, provided that R(y) > 0,

f (;xﬂ”pg&)) dxg = hm x1]+1p9Q— lim x/"'peQ =0,

. xl X1——00

since the exponential factor of (3, namely e”7%, dominates in the limit. Integrat-
ing (4.4) and rearranging terms gives

y<x11+2p9> =(G+1) <x1jPe> + Z imi(e) ]pe\l +2y Z< 1]+1 : > (4.5)

€O

By symmetry,< - p"> = <%> So

i i 1 1 1 j
x1]+1P6 x1]+1p6 ]+ P@ ]+ _ x ]+ .
2 = E X1 xl PG
X1 —Xi X1 —Xi X1 —Xi X1 —Xi

=0

Using this in (4.5) and multiplying by N(1 + ) gives

N (1172po) =N(1 + b)(1 + ) (xipg) + (1 + BN Y imi(0) (x1*Ipons)

i€0
N ]
N YL Y (ol ).

i=2 1=0
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But N<x1fp9> = <pjp9> and N((xljp@> + YN, <x1’x,-f‘lp@>) = <plp]-_lpg>, giving
the desired recurrence. O

Lemma 4.14. If N is a fixed positive integer and R(b) > —1, then equation (4.2) with
x = N is satisfied by '
(i V),

=L

20

Proof. The condition on b is required so that the integrals are well defined.
Mehta gives an explicit evaluation of (1) in [Meh04, Eq. (17.6.7)], but for the
present purposes the existence of the integral is sufficient. The existence of (1),

and <p]- \/Zj >e then follow from the recurrence in|Lemma 4.13.

When g is independent of y, as in the case of g = 1 or g = p; \/Zj ,

J J VZ
a_y,-<g>“=a_y,-< (1+bZkykPk A)\/']> v 9 Pider

so the partial differential equation is satisfied if

P \/Z] j+1 p \/_]
2 a i ko Ll <1> Z Y ety >
j=1 7=0 720 i=1
+z Z Z rz+]+2 p]pl Z Z 7’1+]+2 p] <2pl \/_ >
j=0 i>1 j=20 i>1 e

pivZ) (pivZ
+2z Z Z Titj+2 < z;;] >e-

j=0 =0

A cancellation between the last two sums leaves only the i = 0 terms, and is
a reflection of the intrinsic similarity between handles and bridges discussed
in Coefficients of rj,, for j > —1 are homogeneous in vz, so by
cancelling the denominators and using the fact that (po), = N (1), it is sufficient
to show that, for every j > -1,

<Pj+2> G+ 1)b P] + Z Yi-j Pi). "'Z PiPj-i +N<Pi>e

i>j+1
j
=G+ 0b(p;), + Y vi(pisi) + Y (pipj-i) (4.6)
i>1 i=0
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When g is independent of y, the coefficient of yg in (g), is given by

1 1 S V2
[yol(9). = [yol <9 exp[m ; ZYipr(A) \/Ek]> = ﬁ (gpo)-

Here wy is the order of the centralizer of a permutation of cycle-type 0: in
particular, if 6 = [1"™2" ... {"], then

wg = ml!mzl s m,-!l’”12’”2 ceegM (47)

By using this to compare coefficients of yg in (4.6), the equation is equivalent to

w—l -1 -1

@ N
1+ Iea)f(e) <pf+2f’9> :(1+—Z)“9)(j + b <ij9> ! ;‘ W <Pj+ipe\i>
-1

I a
+ Z —(1 n Z)Z(@) <Pin—iP6> ’
i=0

for every partition 0. Removing common factors in this recurrence, using the
fact that w!, = im;(0) w}', leaves precisely the recurrence in the statement of

Lemma 4.13 O

Corollary 4.15. If N is a fixed positive integer and R (b) > —1, then

(piv?),

M(N,y,z,1,b) = Z ro.

>0

Proof. The partial differential equation (4.2) leads to a recurrence for the coeffi-
cients of its solution as a power series in z, so its solution is uniquely determined
in the ring R[N, y, r, b][[z] by its evaluation at z = 0. Atz = 0, both expressions
evaluate to

<p 0 >e

1.’

so the series are identical. O

T’QN =70

This is sufficient to produce the main result of this Chapter by giving a
combinatorial interpretation to the map series M. The Marginal b-Conjecture is
then resolved as a corollary by specializing tor = y.

Theorem 4.16. The generating series M can be expressed in terms of Jack symmetric
functions as

M, y,7,1;6) = rox + (1 +1) [Z kr% In (©(x,y, %)),
k

k>1
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where

Jo( 1+ b)Jo(y; 1+ b)]Jo(z; 1 + b)
Py zb) = Z o, Jo)1+b

pi(x¥)=x,
Oz Piy)=vi, }Vizo.
pi(2)=bi2z
Proof. The combinatorial sum is in the ring Z[x,y, r, b][[z],, since there are only
finitely many rooted maps with any given number of edges, while the analytic
expression is in Q(b)[x, y, r][[z] by construction.

Evaluating either expression at x = N for any positive integer N and any real
b > 1, the second condition so that (., .);,, is an inner product, gives

7
y w% € Qly, Izl
>0 ¢

the combinatorial sum by Corollary 4.15, and the algebraic expression by sub-

stituting ) ;-4 krkaiyk for 2z4- in (3.19). It follows that the coefficients of r¢ygz" in

both expressions are elements of Q(b)[x] that agree at every non-negative real
b and every positive integer N. This is sufficient to show that the coefficients
agree as rational functions and that the series are equal. ]

Corollary 4.17. The Marginal b-Conjecture, Conjecture 3.23, is true with n as a
marginal b-invariant. In particular,

M(x,y,z,y;b) = xyo + M(x1,y,z;b),

and for @ v 2n, the marginal sums

dog®) = Y Cup (D)

{(v)=v

are polynomials with non-negative integer coefficients. Moreover, the coefficient of b' in
dy,(b) has a combinatorial interpretation as the number of rooted maps with v vertices,
face-degree partition ¢, and a total of | twisted edges when decomposed by iterative root
deletion. This number is divisible by

2n
ged{imi(p):ic @}

Proof. Specializing the combinatorial sum, through r = y, has the effect of
treating the root face and non-root faces identically. In the algebraic series, the
action of } - jyjaiy/_ is to scale yp by a factor of |0], which, by homogeneity,
is the same as the action of 22%. Divisibility is guaranteed by the fact that
replacing 2z< with ¥, o1 J7 J'aiy,- produces a refinement of the series with integer
coefficients. o
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Remark 4.18. Corollary 4.17 resolves precisely the case required by Goulden,
Harer, and Jackson in [GHJ01] to give a combinatorial interpretation to the
virtual Euler characteristic of the moduli space of curves.

Remark 4.19. As a particular case of Corollary 4.17, the coefficients of the map

series corresponding to monopoles are polynomials with a combinatorial in-
terpretation, since, if ¢ + 27, then cpu) g 2(b) = d1,(b). By symmetry, the
coefficient ¢, [2,)20(b) corresponding to one-faced maps is also a polynomial,
but a combinatorial interpretation consistent with 1 has not been verified.

The substitution of differential operators shows implicitly that/Conjecture 4.9
is true when vertex degrees are ignored. A direct combinatorial proof remains
elusive, but interpreting the substitution combinatorially shows the following

property of 7.
Corollary 4.20 (The Root-Face Degree Distribution Property). If a rooted maps is

selected uniformly at random after specifying a given face-degree partition and a fixed
number of vertices, then root-face degree and 1 are independent statistics.

Remark 4.21. By using this property, it is possible to analyze some enumerative
problems as though 1 is independent of rooting. In particular, if ¢ has a part
equal to i, then to compute d, ,(b), it is sufficient to determine the generating
series for rooted maps with root-face degree i, since this restriction introduces
a known multiplicative factor. This observation is used in [Section 4.7 and

4.5 Commentary on the Proof of Theorem 4.16

After specializing tob = 0 and b = 1, this Chapter provides a
simultaneous proof of the integration formulae for the orientable and locally
orientable map series. The new proof differs from the approaches described
in |Section 3.5 by working directly with rooted maps; it avoids introducing a
multiplicative factor associated with edge decoration and does not require the
use of multi-component analogues. exploits this to provide insight
into a conjecture on the enumerative properties of orientable maps.

The proof requires foreknowledge of the analytic form of the map series, and
does not provide any new insight into the role played by Jack symmetric func-
tions: their defining properties have notbeen given a combinatorial explanation.
It might be informative to show directly that the Jack function presentation of
the map series satisfies the differential equation, although such a proof would
be equivalent to verifying Theorem 3.18.

4.6 Implications

Lemma 4.7| gives a recurrence for the coefficients of M(x,y,z,r;b) as a power
series in z. Namely, with m,, = m,(x,y, ;b) denoting the coefficient of z" in M,
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the constant term is given by g = rpx, and for n > 0,

2n 2n—i

Mp41 = erz+]+2((1+b)]a & mn+2(arl )( 'mn k)]

i=0 j=0

2n i+1 (9
+ @i+ 1D)briyp + Z TiVi-j+2 Wm"'
=1 l

i=0

(4.8)

For computational purposes, it is more convenient to specialize to r = y using

Corollary 4.20. Under this specialization,
d j 9
mn(x 2y b) __mn(x ’ /b)
or;j Y 21 dy; i

when 1 # 0. In this case, the recurrence is given by two initial conditions,

my = XYo and my = X2y, + xyi + bxy,,
and forn > 1
2n 2n—i
92
Myl = Yivj+2 ((1 + ) n)
* ; ]21 A 2n dy:dy;

2n 2n—i - a

M Z Z Yirjr2 {Z k(- k) (ay, )(8_}/]m ")}
i=1 j=1
2n i+1 . a

+ ; [ (ib+ b+ 2x) Y0 + ]Z; YiYi- ]+2] o &y (4.9)

Terms of involving % vanish exceptwhenk = 0 orn—k = 0, and these terms
have been redistributed into the second sum, accounting for the presence of 2x.
Section B.1/of[Appendix B contains a computer algebra implementation of this
recurrence that was used to compute all marginal b-polynomials corresponding
to maps with at most 16 edges. The recurrence also reveals the following
structure for marginal b-polynomials.

Theorem 4.22. For a particular ¢ + 2nand v, if g = 2 — v — {(p) + n is the genus of
maps enumerated by d, ,(b), then integers hy,, ; are implicitly defined by

g/2
dop(®) = Y I 072 (1 + b, (4.10)
i=0

and there are 2'h,, ; rooted maps with v vertices, face degree partition ¢, and i handles
encountered in the computation of 1) through Definition 4.1.
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Proof. Recall that it was not necessary to specify a rule to distinguish between
twisted and untwisted handles in order to establish the differential equation
in|Lemma 4.7. As an algebraic reflection of this fact, consider a new variable
a defined by the relation 22 = 1 + b. Making the formal substitution 1 + b =
24 in recurrence has the effect of refining the computed polynomials so
that handles are marked by a, and b marks only cross-borders. Since d,, is a
coefficient of m,(x,y, r; b), it follows that

g/2
dop(B) = Y P b2 (2a).

i=0

Replacing 2aby 1+b recovers the original polynomials and proves the result. O

The form of (4.10) highlights the topological nature of 1. Polynomial degree
is bounded by genus, and the interplay between handles and cross-borders
alludes to the relationship between handles and cross-caps in the Classification
Theorem for surfaces, [Theorem 2.5. The theorem also strengthens the non-
negativity results for the coefficients of d,,,,(b) by showing that the polynomials
are non-negative with respect to the basis

B, ={b7%(1+by: 0<i<g/2}.

Theorem 4.22 arises here from combinatorial considerations, but/Chapter 5 ex-
plores how its algebraic form is a consequence of properties of Jack symmetric
functions. It implies that any b-invariant should share combinatorial proper-
ties with 1. also shows how the top coefficients of the marginal
b-polynomials may be determined.

Corollary 4.23. For ¢ + 2nwith £(¢) = f, the polynomial d,,,,(b) is non-zero precisely
when v —n+ f < 2. In this case, it has degree g = g(v, p) = 2 —v — f + n, and its top
coefficient is given by

Tog0 = (=1 dy o (-1). (4.11)

Proof. From the combinatorial interpretation of d, ,(b) in|Corollary 4.17, if the
polynomial is not identically zero, then there is a map with Euler characteristic
v—n+ f. This is not possibleif v —n + f > 2.

Alternatively, if v — n + f < 2, then consider the map m given in Figure 4.6a.
Borrowing terminology from flowers, the stem consists of v vertices and the
map has g petals, each a cross-border. The map has a single face with degree
2g+2v-2,and n(m) = g for every rooting of m. Represent m as a (2g+2v—2)-gon
with edges identified, then construct a new map m’ by adding f — 1 chords to
the interior of the face, each incident with the root, to induce the face-degree
partition ¢: see From this construction m’ has v vertices, face
partition ¢, and n(m’) = n(m) = g. It follows that the degree of d, ,(b) is at least
g. But g is also an upper bound for the degree, as a consequence of Theorem 4.4,
so the polynomial has degree exactly g.
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(a) A map with one face (b) Its polygonal representation

Figure 4.6: The genus of m’ is equal to n(m’).

The evaluation follows from (4.10), since every term of lower degree contains
a factor of 1 + b in that presentation. m]

Remark 4.24. By selectively replacing adjacent pairs of cross-caps with handles,
the same proof can be used to show that d, ,,(b) has a non-zero term of degree i
for every i in the range 0 < i < g when g is even, or in the range 1 < i < g when
g is odd.

The proof of Corollary 4.23 motivates the following definition for a class of
maps that is analyzed in more detail in/Section 5.7/

Definition 4.25 (unhandled map). A rooted map m is said to be unhandled if
n(m) can be computed, using the recursive description from Definition 4.1, without
encountering any handles. The class of all such maps is denoted by U.

Remark 4.26. Brown used the term fully non-orientable to refer to a related family
of ordered digraphs in Cor. 6.4], but did not give them a combinatorial
characterization.

With this terminology, the rooted maps enumerated by the top coefficients of
marginal b-polynomials are precisely the unhandled maps. As a consequence

of |Corollary 4.23| the generating series for such maps, with respect to number

of vertices, face-degree partition, and number of edges, is given by
U(x,y,zb) = M(-x, -y, —z; -1). (4.12)

All planar and projective-planar maps are unhandled, but in general, being
unhandled is a property of a rooting and not of the underlying surface or the
unrooted map. In particular Figure 4.7 gives two rooted maps; only Figure 4.7a
is unhandled. This is to be contrasted with the classes of orientable maps
and non-orientable maps corresponding to the b = 0 and b = 1 evaluations of
M, both of which are closed under re-rooting. In fact, all previously known
specializations of the map series correspond to classes of maps that are closed
under re-rooting.

Despite its simple form, this evaluation is algebraically unwieldy, since both
the integral- and Jack-based presentations of M are degenerate at b = —1. In

84



(a) Unhandled (b) Handled

Figure 4.7: One map may have both handled and unhandled rootings.

particular, unhandled maps correspond to the pole of 1z M. The maps are thus

unhandled both in the literal sense, of lacking combinatorial handles, and in
the sense that there is an algebraic difficulty with computing their generating
series. In practice, it appears necessary to compute U indirectly, using a limiting
process or polynomial interpolation, for example. As an alternative approach,
U, up to alternating signs, is determined by the constant coefficient of M as a
polynomial in 1+ b. Work in this direction appears in [GHJ01], where Goulden,
Harer, and Jackson expand M as an asymptotic series in y = (1 + b)~!, but only
after a specialization that discards face degree information. In specific cases,
coefficients of U can be recovered by other methods.

Corollary 4.27. Unhandled monopoles with face-degree partition ¢ v 2n are enumer-
ated by

hi,p0 = Z Cu,p,211(0).

vE2n

Proof. Appealing to Lemma 3.22,
Y o) =) cupn(®) = 1+ 5O ¢ 00 (0).

v>1 vk2n VvF2n

The result follows by comparing coefficients of b" ‘"1, since one consequence
of Corollary 4.23is that b"~“?*! only occurs in the lefthand sum whenv = 1. O

Remark 4.28. As in the proof of Lemma 3.22] the right hand sum is a coefficient
of M(1,y,z;0), a series that can be evaluated in terms of an integral over IR.

Using the fact that
.7(2 2 ! .7(2
fxzne_de = (nn)' fe‘de,
R 2! R

the generating series for unhandled monopoles with respect to face degree
partition and number of edges is

d 2n)! y?
Pn — n
E E hi,p0y"z 2282 ln[n>0 Sl !z E _9 ’

n>1 gr2n Or2n

where wg is defined in (4.7).
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Example 4.29. The number of unhandled one-faced monopoles with n edges is

(2n)!
hifon0 = Z Cyf2n),21(0) = T

vE2n

since rooted orientable one-faced maps can be identified with matchings on the the edges
of a 2n-gon. Alternatively, this result can be obtained inductively, since every edge of
an unhandled one-faced monopole is a cross-border.

4.7 Degree-One and Degree-Two Faces

This Section uses properties of low-degree faces, together with the Root-Face
Degree Distribution Property,|Corollary 4.20, to verify and strengthen patterns
conjectured from numerical evidence by Brown in [Bro00]. The analysis is
motivated by dual considerations, and reinforces the claim that 1 has a natural
topological interpretation.

Definition 4.30 (Smooth map). The class of smooth maps consists of all rooted
maps without any vertices of degree less than three.

This is the class of maps required in the application of map enumeration to
the moduli space of curves, in [GHJ01]. The generating series for smooth maps
cannot be recovered directly from the series presented in this Chapter, since
M(x,y,z;b) does not record the degrees of vertices. Effectively, smooth maps
are representative rooted maps with respect to a weakened equivalence relation,
the relation defined such that two rooted maps are equivalent if the first can
be transformed into the second using a combination of leaf deletions, edge
subdivisions, and their inverses. With respect to this equivalence, each class
of rooted maps contains either precisely one smooth map, or a representative

from the set
I= {/‘0 ’ @ , Q/})}

Every invariant described by Definition 4.1/is unchanged by leaf deletion, and
Item 2(b)iii of the definition can be strengthened to impose invariance with
respect to subdivision of edges.

Since 7 is also constant under the duals of these operations, equivalent results
can be obtained by considering rooted maps without any faces of degree one
or degree two. In any map, every face of degree one is bounded by a loop, and
if the map has at least two edges, then every face of degree two is bounded
by a pair of parallel edges. Since the boundaries of such faces are borders,
these edges do not contribute to 7, and thus, except when dealing with the
non-orientable rooted map with one edge, deleting the root edge from a map
with root-face degree one or two does not change the value of 7. In the case
that the root face had degree two, this operation also does not change the
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number of vertices or the degree of any other face. Appealing to|Corollary 4.20,
the restriction from maps with a degree-two face to maps roofed on a degree-
two face introduces a known multiplicative factor, and leads to the functional
equation inProposition 4.31]

Refining the map series to record root-face degree provides precisely the
setting required to prove an identity ‘anticipated’ by Brown. In Sec.7.4],
he noted that his invariant remains constant under the operations of adding
and conflating parallel edges, and incorrectly implied in [Bro00, Lemm. 7.9]
that every rooted map uniquely decomposes as a digon-free map with each
edge independently replaced by the dual of a path. The stated decomposition
fails to maintain bijectivity for maps rooted on faces of degree two: in particular,
two of the rooted maps with one edge, the duals of maps in 7, have degree-two
faces not bounded by parallel edges. Correcting the implication to account for
this, requires the refined series, with r; marking a root face with degree i.

Proposition 4.31. The map series M satisfies the functional equation

M(x, Yly=0, I—Lyzz' r; b) =M(x,y, z,1;b).

Proof. Rewriting the expression for M from|Corollary 4.15, if A is defined by
|y wpd| [z | p@)
= (1+Db)k st 1-1yoz 2(1+b)
Z YipPi(A) q 142 ) @)
T+bk\1-yz 1—12z)2(1+D)
Z Yipr(A) . 1 p2(A)
1+bk\1-yz 1—1z2(1+b)’

then for any fixed positive integer N,

M(N/ylypo,l_zm,r;b)
J IVFpyd) = exp (4)da
j20 Jew IV(A)|™ exp (A) dA
y Joe V@™ pi(0)VE exp Ty W22 V2" - 228 ) dp
-y,
T VO exp (e 58 VE - 55 ap
=M(N,y,z, ;D).

Additional factors introduced by changing the variables of integration, using
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Figure 4.8: By conflating non-root digons, a rooted map can be represented®y a
rooted map in which every face except the root face h i nt from two.
The number on each edge records the number of edg ass.

the substitution A = p /1 — y»z, do not affect the final sum because they occur in
both the numerator and denominator of each summand. Since the coefficients
of the series are polynomials in N, the identity continues to hold when N is
replaced by the indeterminate x. m]

Remark 4.32. As in [Bro00], the combinatorial explanation of the functional
equation is that 1 is constant under the addition of parallel edges bounding
digons. Such edges are deleted consecutively during the computation of 1, and
all but at most one edge from each parallel class are borders when deleted. The
result follows by noting that every rooted map can be expressed uniquely as
a rooted map with the same root-face degree, no non-root faces of degree two,
and each edge replaced independently by the dual of a path: see Figure 4.8}

The restriction of maps to those with root-face degree at most two can be
used to compute specific marginal b-polynomials more efficiently. Typical com-
putations, using the recurrence directly, involve a large number of terms,
but the Root-Face Degree Distribution Property, Corollary 4.20, can be used
to simplify these computations. The following two propositions illustrate this
technique.

Proposition 4.33. If ¢ + 2n, {(¢) > 2, and my(p) > 1, then

"9 4 0) = i,

Proof. By|Corollary 4.20, rooted maps with i vertices, face-degree partition ¢,

and root-face degree two are enumerated by mzrfq)) di(b). The root edge of such
a map is a border, and deleting this edge leaves a map with i vertices and
face-degree partition ¢ \ 2. This deletion is uniquely reversible, and the result

follows. o

Proposition 4.34. Fork >2andn >1,

k-1

i

kl/l +m dl’,[lm’],k—l,k"’l]‘
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Proof. For a rooted map with root-face degree one and face-degree partition
[17,K"], the root edge is a border. By connectivity, the faces it separates do not
both have degree one, so deleting it leaves a map rooted on a face of degree
k —1, with n — 1 faces of degree k and m — 1 faces of degree one. Applying

Corollary 4.20 twice produces the result. O

Remark 4.35. Combining these results and specializing, gives

1 1
j{di,[l,Zk—l](b) = d;px-2(b) = %di,[z,Zk—Z](b) fork >3,

which supersedes a result obtained by Brown, [Bro00, Lemm. 7.10].
Example 4.36. By Propositions|4.33land|4.34:

dig1,0,57(0) = (2) dip1.22.30(0)

= (%) (‘) i112,39(b)
= ($)(3)($)dign®)
=(£)(3)(©) (10)(2) d; 232 (0)
=(£)(3)(©) (10 di 32y (b)
= 560d, 32)(b),
which agrees with the direct computation
¢ | d,p(b) dr,p(b)  d3,(b)
[3?] 1+b+5b% 9b 4

[1,23,3%] | 560 + 560b + 2800b> 5040b  2240.
Example 4.37. When j > 1,

1 2
Zdi,[li,sf](b) = —zdz [1/-1,2,3/~ 1](5) i[1-1,3/~ 1](5)

Since dy2)(b) = b and dy 2(b) = 1, it follows inductively that dy ,; 37(b) = 4ib and
dz,[1i,3f](b) =4

4.8 Summary

This chapter introduced a family of invariants of rooted maps. All these invari-
ants, generically written 1, were shown to be marginal b-invariants by verifying
that the generating series for rooted maps with respect to 7 satisfies a partial
differential equation with a unique solution that is also satisfied by the map
series M. This resolved the Marginal b-Conjecture of Goulden, Harer, and Jack-
son from [GHJO1]. In the process, an algebraic operation for refining the map
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| [Conjecture3.10] |

| Crpe(b) € Z4[D] |

Ir [Conjecture 5.2| | [Conjecture 3.25| -: ;- Conjecture 4.9 I
i =1 <

| Cup,l2n(b) € spang, Cup,[21](b) € Z+[b] | i"'zi,iq)) Cp2n)(b) € Z4[D] |

[Theorem 4.22 ; Corollary 4.17| é Corollary 4.17

do g 201(b) € spany_(By) o1 (b) € Z4 [b] DD g, o 1 (b) € Z4 1]

U

[Lemma 3.22
Y cupin(b) € Z. 0]

vE2n

Figure 4.9: The relationships between the conjectures from [Section 3.4/ and the
refinements introduced in this Chapter are summarized, with dashed boxes indi-
cating open conjectures.

series to record the degree of the root face was shown to apply in the context
of b-weighted maps, leading to a strengthened form of the b-Conjecture, and
explaining divisibility properties observed from numerical evidence.

The proof revealed a strengthened form of non-negativity, by expressing
marginal b-polynomials in the basis B, a basis tied to the topological roles of
handles and cross-caps, and in the process gave a combinatorial interpretation
to a ‘strange evaluation’ of the map series at b = —1. |Chapter 5 explores this
further, by showing that B, is related to algebraic properties of Jack symmetric
functions, and is the natural basis in which to study all b-polynomials.
gives a summary of the relationships between the conjectures of
Chapter 3|and their refinements introduced in this Chapter. Unproven state-
ments are indicated by dashed boxes.

Proving the Marginal b-Conjecture relied on the full strength of Theorem 3.18.
The existing proof cannot be refined to show that 7 is a b-invariant, but/Chapter 6
explores how the algebraic properties of the map series and the combinatorial
properties of 1 might be used to verify that it is a b-invariant for all maps of low
genus. In the process, it investigates the issue of which choices of 1 should be
considered the most natural invariants.
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Chapter 5

Algebraic Properties of
b-Polynomials

Chapter 4|introduced 1 and showed that every invariant in the family is a mar-
ginal b-invariant, thus giving, in|/Corollary 4.17, a combinatorial interpretation

of the sums
dog(®) = Y Cup(®).
{(v)=v

This Chapter uses combinatorial properties of 7 as a guide for finding struc-
tural results about the individual b-polynomials. Since the techniques used in
Chapter 4 to verify the combinatorial interpretation relied, in an essential way,
on ignoring the degrees of vertices, the proof cannot be extended to show that
1 is a b-invariant. Instead, this Chapter uses combinatorial properties of 1 to
predict algebraic properties of the maps series, and to refine Conjecture 3.25.
Most significantly, a direct proof of one of the implications of this refinement
reveals combinatorial properties of all b-invariants.

Analyzing n gave structure to the sums d, ,(b). Theorem 4.22|shows that each
can be written in the basis B, with non-negative integer coefficients, and compu-
tational evidence suggests that this structure is preserved in individual ¢, ¢(b).
Standard facts about Jack symmetric functions are used to verify a relaxation of
this result. By re-interpreting the result combinatorially, it is possible to draw
conclusions about all possible b-invariants, though the approach does not ad-
dress existence. In particular, the degree bound for marginal b-polynomials is
extended to b-polynomials, first under the assumption of non-negativity of the
coefficients, and then, using structural properties, as a consequence of polyno-
miality. This second approach extends to arbitrary coefficients of the hypermap
series, and not just those associated with maps. Structural properties of b-poly-
nomials also suggest that the b = —1 evaluation of the map series continues to
have combinatorial significance as the generating series for unhandled maps
when the series is refined to record vertex degrees.
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51 A Degree Bound

Since cv,(p,[zn](O) can be interpreted combinatorially as the number of orientable
maps with n edges, vertex-degree partition v, and face-degree partition ¢, it
follows that ¢, ¢ [211(b) does not have a pole at b = 0. Being a rational function, it
is thus analytic in a neighbourhood of 0, and determines a formal power series
in the ring Q[[]. The b-Conjecture predicts further that every b-polynomial has
a representation in Z. [b], and a weakened form of this prediction is sufficient
to provide a degree bound on all b-polynomials.

Theorem 5.1. For a given ¢ + 2n, if ¢,y 2:(b) is analytic in a neighbourhood of 0
with a representation in Q. [b] for every v v 2n such that £(v) = v, then ¢, 21)(b) is
a polynomial with degree at most g = n + 2 — £(v) — €(¢) for every v with {(v) = v.

Proof. If the coefficients of ¢, 2+1(b) are non-negative for every partition v with
length v, then the degree of dy ¢, 1211(b) = Y ¢()=0 Crp,121(b) is at least the degree
of every summand, and the result follows from|Corollary 4.23| O

In particular, the existence of any b-invariant is sufficient to show that the
hypotheses of [Theorem 5.1 are satisfied. As in the marginal case, g is the
Euler genus of the maps enumerated by ¢, 211(1), and the degree bound offers
algebraic evidence of the topological nature of all b-invariants. A weaker degree
bound, n+1-£(¢), can be obtained by considering the marginal sums appearing

in Lemma 3.22.

5.2 The Basis Bg

Theorem 4.22 emphasizes the topological nature of marginal b-polynomials by
expressing them in the form

Lg/2]
dyp(b) = Z Cop(b) = Z Ho b7 2(1 + Y,
((v)=v i=0

for o + 2nand g = 2 — v — {(¢p) + n. The coefficients, h,,,; are non-negative
integers with a combinatorial significance, and the role of the basis

By = {0721 +b):0<i<}),

is explained by the fact that 1 distinguishes between handles, marked by 1 + b,
and cross-caps, marked by b. By hyp0 = O precisely when
dy, (D) is identically zero, consequently the degree of a marginal b-polynomial
determines the ratio between its coefficients of lowest degree; in a marginal
b-polynomial of degree 2i, the linear term and constant term are in the ratio
i : 1, which is also the ratio between the quadratic and linear terms of marginal
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b-polynomials of degree 2i + 1. That these ratios hold for all known b-polyno-
mials, provides phenomenological evidence of the following conjecture, which
predicts that all b-polynomials can be expressed in terms of B, for appropriate
choices of g. If the conjecture is true, then it can be used to implicitly define
coefficients, analogous to k¢, ;, that may have combinatorial interpretations in
terms of handles and cross-caps.

Conjecture 5.2. Withv,p,e v nand g = 2 +n — {(v) — {(p) — (), the rational
function c,,pe(b) is an element of span,, (Bg).

Remark 5.3. Elements of span(B,) are naturally bounded in degree by g. When
€ = [2"], the expression simplifies, since 21 — {(€) = n, so g is equal to the degree
bound predicted byTheorem 5.1. For general values of €, g is the degree bound
conjectured by Goulden and Jackson in [G]96a].

The conjecture should be viewed as a strengthening of the algebraic form of
the hypermap b-Conjecture, which predicts that ¢, ¢(b) is an
element of Z.[b]. Its utility arises from the relaxations obtained by consider-
ing spang(B;), with R a semi-ring containing Z.,. Figure 5.1 summarizes the
relationships between several algebraic relaxations of Conjecture 5.2}

| Cuped) espanZ+(Bg) |

e oon oo o s s s - -
-—_——————— =
I Cv,cp,s(b) € Spanz(Bg) |
L———_——— - - - -—_—————— =
I Crpe(b) € Q. [b] I
//
, 7/ [Theorem 5.1
N
Y
-—————— - - r——_————— = =
| Cupe(b) € span(B,) |:>| Cope®) € Q] |
e — — T —— -

Figure 51: A summary of relationships between algebraic relaxations of
Conjecture 5.2. That ¢,(b) € Q.[[b] implies c,,(b) € Q[b], is a consequence
of[Theorem 5.1} but only applies when € = [2"] and in the presence of the quantifier,
“for all v such that £(v) = v.” All other implications hold for individual polynomials
as a consequence of set inclusion.
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5.3 A Functional Equation

Focusing on the implication that ¢, ¢(b) is an element of spanQ(B ) has proved
to be particularly fruitful. By characterizing the elements of spang(B,) as the
polynomial solutions to a functional equation, and then using algebraic prop-
erties of the hypermap series to show that this functional equation is satisfied
by all b-polynomials, it becomes feasible to draw conclusions about all possi-
ble combinatorial interpretations of the hypermap series, without deriving an
explicit presentation for general b-polynomials. This approach is used to show
that the degree bound ofTheorem 5.1/must hold independently for each ¢, ¢,¢(b)
that is a polynomial (recall that ¢, (b) is conjectured to be a polynomial but
only known, in general, to be a rational function). The functional equation also
suggests a potential method for proving that c = ¢, ¢(b) is indeed a polynomial
inb.
Notice that for integers g and i, and with p(b) := b9~%(1 + b)', then

plb—1) = (b - 1720
= by (2 -1) (~ny 2
= (=B (% B 1)9—21‘ (%)z
= (-by’p(} - 1).
Rational functions of this form generalize the elements of B,, and are polyno-

mials precisely when g and i are non-negative integers with 0 < i < l%J This
observation leads to the definition of a class of rational functions.

Definition 5.4 ( E,-function). A rational function p(b) satisfying

p-1) = (-b)p(} - 1) (5.1)
is said to be a E,-function. The set of all such functions is denoted by E,.
Lemma 5.5. The set of E,-functions is closed under finite linear combinations.

Proof. If p(b), q(b) € E,, then by trivial calculation
(p+agb-1)=pb-1)+aqb-1) = (=b) (p+aq) (5 - 1). =

It follows from Lemma 5.5 that every element of span(B,) is a E,-function.
In particular, 0 is a Z4-function for every choice of g, and dy ,(b) is a E;-function
for g equal to the Euler genus of maps enumerated by d,,(b). With this second
example in mind, the index g can be thought of as encapsulating genus. For
marginal b-polynomials, additivity of genus with respect to connected sums is
reflected in the fact that

span(By) - span(B;) € span(By.x),

94



where ‘" denotes multiplication in the algebra of polynomials. Equality holds
unless g and / are both odd. An analogous result for &, is given in the following
lemma.

Lemma 5.6. Ifp € &, and q € By, then pq € Eyyy,.

Proof. This is an immediate consequence of the definition, since
(pq)(b = 1) = p(b = 1)g(b - 1) = (=b)*"(pg)(% - 1). .

In general, elements of E; are not polynomials. Varying i outside of the range

0<ic< {%J produces E,-functions of the form b9~%(1 + b)' with poles of any
order at b = —1 or any order with parity equal to g at b = 0. Additionally, for
any rational function f(b), the function

kb) = f(b+1) + (-1-b)7f (1) (5.2)

is a E,-function, since

Kb=1)= fO) + (b7 () = 07 (£ (1) + (=5) F®) = oy (f -1).

If f(b) = 2, then for general values of x, the construction produces a
E;-function with poles at x and 5. Thus all but finitely many rational numbers
occur as the pole of a E,-function with at most two poles. From the location
and multiplicity of these poles, it follows that &, does not have a finite basis.

After algebraic manipulation, sums of the form in (5.2) appear in the defining
expression for the hypermap series. This leads to the conclusion that each
coefficient, ¢, (b), is in B, for an appropriate choice of g. The following
lemma provides a characterization of the polynomials in Z,, which then further

circumscribes the search for a combinatorial interpretation of b-polynomials.

Lemma 5.7. For any ring R, a polynomial p(b) in R[b] is a E,-function if and only if
it is an element of span(B,).

Proof. Consider a non-zero polynomial, p, satisfying (5.1). Since (=b)?p (% - 1)
is a polynomial, the degree of p is at most g. Additionally, if p has degree d,
then (-b)7p (% - 1) has degree at least g — d. It follows that d > g — d, and so any

non-zero polynomial solution to (5.1) is bounded in degree between [g] and g.

If p has degree d = g — i and top coefficient a, then p — a - b9~%(1 + b)' is a
solution to (5.1) with degree less than d. Thus, for every non-zero polynomial
solution to (5.1), there is another solution of lower degree, differing from the
original solution by an element of span(B,). Since the number of possible
positive degrees is finite, it follows, by induction, that p(b) differs from 0 by an
element of spany(B,). |
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Since the proof of Lemma 5.7 makes use of additive inverses in R, this char-
acterization cannot be used to address the question of non-negativity, but it can
be used to split the task of proving that ¢, ¢(b) is an element of spang(By) into
proving the following two intermediate conjectures.

Conjecture 5.8. If g =2 + [v| = {(v) — €(¢p) — L(€), then ¢, (D) is a Ey-function.
Conjecture 5.9. The rational function c,¢(b) is a polynomial.

Conjecture 5.8 is resolved in the next section, but Conjecture 5.9 remains

open.

5.4 b-Polynomials Are E ;-Functions

Addressing Conjecture 5.8 involves unpacking the definition of the hypermap
series, Definition 3.7, and appealing to two technical results relating the Jack
symmetric functions J; and Jy.. The results are due to Macdonald, and a
discussion of their derivation can be found in [Mac95], but the present form is
described by Stanley in [Sta89]. As usual, A" denotes the conjugate partition of
A

Definition 5.10 (ca ., U2,mu). The coefficients ¢y, (@) and vy, (a) are defined implicitly
by expressing J(a) in terms of the power-sum and monomial bases:

(@) = ) cu@pu = ) orula)my. (53)

p u

Distinguishing between the doubly indexed ¢’s defined here, and the triply
indexed ¢’s used to denote b-polynomials is unambiguous, and the present
choice was made to agree with the cited source material.

Lemma 5.11 (Stanley [Sta89, Cor. 3.5]).

Ju(@) = Y ()" Wy, (1) py.
u

In the present context, it is useful to restate the lemma in the form,
cr(@) = ()W, (1), (54)
Lemma 5.12 (Stanley [Sta89, Prop. 3.6]).
JaT)a = aMopy(@orn (1). (5.5)
Remark 5.13. [Proposition 3.4 gives (], J1)a explicitly as a function of A, but

this level of detail is not required in the present context.
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Recalling the defining expression for b-polynomials from Definition 3.7}
dJ
YN Cope®pXpy(yIpe(z) = (1 + bt Indx,y, zt,b)|
novQpeErn t=1
it is useful to examine the expansion of @ in terms of the power-sum basis.

Define g,,y,.(b) by

Y G0 cOP XIpp(y)pe(@) = Py, 21, b)

v,p,€

1
=L ToJore Jobs b+ D]ely;b + Do(z;b + 1),

0
where the latter equality is from (3.3).

Lemma 5.14. The rational function q,,,.(b) is a E,-function, provided that g =
vl = () = Up) = L(e).

Proof. By homogeneity of Jack symmetric functions, g,,,,(0) is identically 0
unless |v| = |(p| = le|. Since 0 is a E,-function for every value of g, it remains
only to consider the case of v, ¢, € + n for some 7. In this case, by noting that

{6:0rn}={0":0rn},

expanding 4, (b) using (5.3) and (5.5) gives

qu,e(b -1)= Z !

Corv (b)CG’(p (b)CG’e(b)
o V"0 (D)voror (%)
(=b)r-tv)-tip)=te)

= ) ) l
Orn (%)n Voo (%) 09,9,(17)%” (b) Cogp (b) Coe (b)

- L)~ L(p)~L 1
= (=b)" V-l (e)qu,e(E_l)r

2n

with the second equality using and the fact (—=b)*" = (=b)" (%)_ . m|

Example 5.15. Directly computing |, for v + 2 gives
oL +b) = przy = pray,  and - Jig(1+b) = ppzy + (1 + b)ppay,

so the norms of J12; and ) are given by

(T Joon),,, =4+ 60+ 207, and  (Joy, Jop)y,p = 4+ 106 + 86 + 20°,
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The corresponding qy,,¢(b) for v, @, € + 2n are thus

S B 1 1
TR = G v ob2 T 44100+ 802 + 26°  2(1 + b2’
-1 1+0b
b = =
foae®) = g Y S s 2
1 (1 + b)? 1
2 b = = , d
T l) = e oE Y i ior s v 2 - 20+ )
-1 (1+0b)® b

b) = + = ,
) = St I b s s 2 21+ D)
with the unlisted functions recoverable through symmetry.

Remark 5.16. Structurally, the appearance of Z,-functions is a consequence of
a pairing between terms indexed by conjugate partitions. Using the notation

_ cou(b)cag(b)coe(b)

b) = ,
o) b%vge(b)ve o (%)

v,p,(b) can be written in the form

Gupe®) = Y ro(b+1) = % Y (rotb+ 1)+ ot + 1))

Orn Orn

The proof of implicitly shows that r:(b + 1) = (=1 — b)7re(57),
so it follows that each term in the second sum is in the form prescribed by
(5.2), and is thus a E,-function. Despite the proof revealing this additional
algebraic structure, a further investigation of these revised terms is not expected
to expose any additional combinatorial structure of the map series. In general,
the intermediate terms are not polynomials, nor do they have non-negative
coefficients, and many have several distinct poles.

Example 5.17. Computing J,(1 + b) for v + 3 gives
Jua)(1+0) = ppzy = 3ppa) + 2ppa),

Jin21(1 + b) = ppsy + bppiz) — (1 + b)ppay,
Ja1(L+b) = ppsp + 3(1 + b)pp gy + 2(1 + b)°ppa,

(T Jiwn),,, = 6(1+ D)2 + b3 +b),
T2 Jn2 e = G +b)(3 +2b)(1 + b)?, and
(i1 Ty = 6(2 + b)(2b + 3)(1 + b)°*.
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Applying|Remark 5.16, qy151131,1131(b) can be written as a sum of E_¢-functions, giving

1 3+ 3b + 202 1

L R G5 RN A AR T Y U 5 WP Rl o

By examining the actions of the logarithm and differential operator in the
construction of the hypermap series, the results of[Lemma 5.14|can be lifted to
arbitrary b-polynomials. The leads to the following, which is the main result of
this Section.

Theorem 5.18. For v, ¢, € + n, the rational function c,¢(b) is a E,-function with
g=2+n-{L{v)—-Lp)—L{(e).

Proof. Since @ has unit constant term, In @ is given by
(D -1)
In® = -1y —=.
n Z;‘( ) —
Thus, if qv oe(b) is defined by
() p)l = (D 'tb—li
T,p,e O Pu ()P (y)pe(z) = (P(x,y, 2; £, D) ,
V,p,e€P
then the b-polynomial, ¢, ¢(b), can be written explicitly as

v

Conel0)= 149 ) (- 1 240,00

The upper bound on the summation is finite, since by homogeneity, qf?(p,e(b) is
identically zero unless v, ¢, € + n for some n > i. Since 1 + b is a Zp-function, and
&, is closed under finite linear combinations, it is sufficient to show, for every

i,v, @, and €, that qv(p «(b) is a E;-function with t defined by
Ei= ) = V] - () - (@) - ((e).

The proof proceeds by induction on i. The base case is qw «(b) = qy,9,¢(b) when
[v] > 0, and this is a E;-function by Lemma 5.14. Viewing partitions as multi-
sets, when ® is a submulti-set of «, let k¥ := ¥ \ £ denote the complement of &
with respect to k. Then fori > 1,

Bl =Y a0 ), (5.6)

V,p,€
(7.0.8)€Ry ¢

where the sum is taken over




Inductively, q(ol(}j (b)is a Ep-function and q%g(b) is a Ex-function, where

P=t0,¢,8) and  F:=t©,3,8).

Since, for ® C «, [R] + [k| = [x| and £(R) + £(x) = {(x), it follows by Lemma 5.6

that each term of (5.6) is in B;, and, by that so is q(vl; ;}g(b). O

Remark 5.19. A comment of Brown, [Bro00, Cor. 6.6], suggests that he knew of
this proof in the setting of marginal b-polynomials, but, lacking the equivalent

of did not realize its potential applications.
Example 5.20. If g = [v| + £(v) + €(@) + {(€) is odd, then

Cv,(p,e(o) = Cv,(p,e(l -1)= (_1)gcv,(p,e (% - 1) = _Cv,q),e(o)/

50 Cy,pe(0) = 0. Combining this with the combinatorial interpretation of H(x,y, z;0)
gives an indirect proof that every orientable hypermap has even Euler characteristic.

5.5 Implications

Theorem 5.18 resolves|Conjecture 5.8, and reduces the problem of proving that
Crpe(b) is in spang (By) to proving that ¢,,¢(b) is a polynomial, that is verifying
This conjecture remains open, but offers some
additional insights. From the construction of the map series, any pole of a
b-polynomial must occur as a zero of a (J4, /1)1, for some partition A, since,
by the polynomiality results of Lapointe and Vinet, [LV95], or Knop and Sahi,
[KS97], the numerators of @ are polynomials in b. Recall from |Proposition 3.4
that

TacTnda = | [ (a0a() + L) + ) @) + 12(x) + 1), (5.7)

xeA

where a,(x) and /,(x) are defined in (3.2), and denote the arm and leg lengths of
x as a box of the Ferrers diagram of A. This can only vanish when « is a rational
number with a < 0, since for every box x € A, both a,(x) and [,(x) are non-
negative integers. Taking into account the change of variables, « = b + 1, every
complex pole of every b-polynomial must occur at a rational number on the
interval (—co, —1]. But, fromTheorem 5.18, if ¢,,4,¢(b) has a pole at x, then it also
has a pole at x% — 1. It follows that for every pole in the interval (-co, -2), the
function has a second pole in the interval (-2, —1). Thus, to show that cv,(p,g(b) is
a polynomial, it is sufficient to show that it has no poles in the interval [-2, 1],
which gives the following alternative characterization of polynomiality.

Proposition 5.21. If ¢, (b) has the Maclaurin series expansion Y5 a;b', then it is
a polynomial if and only if Y., a:(—2)" converges.

Even without resolving the question of polynomiality, it is still possible to
infer combinatorial properties of all b-invariants. Together, Theorem 5.18 and
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Y __ &
| Cupe(b) € spany(By) |
L———_——— - - - -—_————— = = -
I Crpe(b) € QL[] I
’/
, 7 Theorem 5.1
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\4
-r————— = — - 1 r——————— -
| cupell) € spang(B) 1<K > 1 ey Q]|
I e e e e e o — — e e e o —— — — — -

t :/Corollary 5.22

Crpe(b) is a E;-function

Figure 5.2: A revised summary of relationships between relaxations of
Conjecture 5.2. New implications are indicated by bold arrows.

have the following immediate corollary, the implications of which

are incorporated into [Figure 5.2, an updated version of [Figure 5.1, giving a
revised summary of relaxations of |Conjecture 5.2 that have been obtained in

this Chapter.

Corollary 5.22. If ¢, ¢(b) is a polynomial in b over the ring R, then it has degree at
most g =2+ |v| = {(v) — {(p) — {(€), and

C,p,e(b) € spany(By).

Remark 5.23. It is most notable that the existence of a b-invariant is sufficient
to show that the hypothesis of|Corollary 5.22is satisfied with R = Z. It is thus
possible, without addressing existence, to draw conclusions about all possible
b-invariants.
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Assuming polynomiality, and writing ¢, c(b) as an element of span(B,), em-
phasizes the relationship between b-invariants and edges. In the specialization
to maps, hy,,; can be refined by writing ¢, (p1(b) = ¥; 1,072 (1 + b)!, so that
ho,p,i = Yt(v)=0 Mv,p,i- Then using z as a scalar gives

M(xy,zb) = le Y Y i 2?22 (14 0)2), 68)

vQR2n i

with g = g(n,v,@) = 2+ n - €(v) — {(p), and i ranging between 0 and [gJ
Expressing M in this form, with b occurring together with z, emphasizes why a
combinatorial interpretation of the series may be expected to be derived from
an invariant that is naturally described in terms of edge deletion, and why such
an invariant is expected, like 7, to involve contributions from two qualitatively
different classes of edges. The form of M in (5.8) also reinforces the relationship
between b-invariants and Euler genus.

Corollary 5.24. If f is any b-invariant, and w is a rooted map on the sphere with k > 1
cross-caps, then 1 < f(m) < k.

Corollary 5.25. Ifthere is a b-invariant, then it agrees with 1 for all rooted maps on the
sphere and projective plane. For such maps, the invariant remains unchanged under
duality and re-rooting.

Corollary 5.26. Forv,p,e +n,if g = 2+n—{(v)— (@) — {(€) is negative and c, ¢ (b)
is a polynomial, then ¢, (D) is identically zero.

Proof. The set B, is empty when g is negative. ]

Interpreting H(x,y, z;0) and H(x,y, z; 1) as generating series for hypermaps,
shows that ¢, ¢(b) vanishes at b = 0 and b = 1 whenever g = 2 + [v| — {(v) -
t(p) — {(e) is negative. |Corollary 5.26 shows that, assuming polynomiality,
these b-polynomials vanish for general b, which is an algebraic prerequisite of
the conjectured combinatorial interpretation for H as a generating series for
rooted hypermaps.

Remark 5.27. With the structural restrictions imposed on b-polynomials by
Corollary 5.22, it becomes possible, at least in theory, to verify that a function
is a b-invariant, without relating its computation to the algebraic definition of
the map series. If ¢,(b) can be shown to be a polynomial, then it can be
identified with a combinatorial sum by equating evaluations at specific values
of b. In practice, evaluations of the map series at b = 0 and b = 1 are well
understood, and the evaluation at b = —1 has a conjectured combinatorial

significance (see|Conjecture 5.28), so this approach could potentially be used to

verify that a function is a b-invariant for all maps with Euler genus at most four.
This approach is explored in|Chapter 6|
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Table 5.1: Families of £, ; that can be shown to be non-negative with appropriate
assumptions on the coefficients of c,,, >+ (b) with respect to the standard basis.

Family Assumption Reason
t(v)y=1 None [Remark 4.19
{p) =1 None Remark 4.19 and symmetry
i= %, geven None Coefficients of M(x,y, z; 0)
g=0 Polynomiality Coefficients of M(x,y, z; 0)
g=1 Polynomiality =~ Coefficients of M(x,y,z; 1)
iZ0 Polynomiality,  h,,,; is the only contribution

Non-negativity  to the b term of ¢, ¢ 12+1(b)

. Polynomiality,  h,,, is the only contribution
i=1 - i 18 T
Non-negativity  to the b%~" term of ¢, [21(b)
. g1 Polynomiality,  h,,, is the only contribution
i=%-,go0dd . A

Non-negativity  to the linear term of ¢, 2:1(b)

5.6 Non-Negativity and Numerical Evidence

Knowing that b-polynomials are elements of span(B,), provided that they are
polynomials at all, narrows the gap between non-negativity with respect to the
standard basis and non-negativity with respect to B,.|Table 5.1 lists families of
coefficients for which Conjecture 5.2 and Conjecture 3.10 have identical impli-
cations. These families include all /,,,; corresponding to maps with at most
seven edges, or corresponding to maps in surfaces with Euler genus at most
five.

In the absence of a proof that 7 is a b-invariant, the best evidence for non-
negativity of the coefficients of b-polynomials, both as elements of span(B,)
and with respect to the standard basis, is currently numerical. Using the degree
bound of|Corollary 5.22 and assuming polynomiality, it is possible to compute
b-polynomials via polynomial interpolation. This replaces arithmetic over the
field of rational functions, Q(b), with arithmetic over Q, and offers a signifi-
cant improvement in run-time and memory usage, when compared to direct
computation. [Section B.4 of Appendix B|includes a procedure for computing
low-degree terms of the map series using Maple, a symbolic algebra system.
The procedure was used to compute the map series up to (and including) coef-
ficients of z5.

Assuming polynomiality, every map polynomial, ¢, 2:(b), with n < 8 has
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non-negative integer coefficients in both the standard basis and as an element
of span(By). This accounts for 24,187 polynomials, with 48,249 non-zero coeffi-
cients in the standard basis, enumerating 2,319,581,295 (this is over two billion!)
rooted maps. Expressing these polynomials as elements of span,,(B,) produces
36,218 positive coefficients, of which 64 do not occur in any family listed in
Table 5.11 These exceptional coefficients correspond to maps with eight edges,
two vertices, and two faces, and, up to symmetry, appear as the 36 coefficients

of b*(1 + b)? in[Table A.1 of[Appendix A
In contrast to Corollary 4.23| not every pair v,¢ + 2n with g =2 +n - {(v) -

{(@) > 0 can be realized as the vertex- and face-degree partitions of rooted maps.
For example, cj3321125)(b) = 0, but 2 + 3 — €([3%]) — £([3?]) = 1. Non-realizable
pairs of partitions are listed by Jackson and Visentin in [JV01, Chap. 11]. Of the
37,011 triples (v, @, i) with v, +2n, g =2 +n—€(v) = £(p) 20,0 <i < L%J, and

n < 8, the only triples for which h, ,; is zero occur with i = [gJ andg < 2. In

particular, every computed polynomial is either identically zero or has degree
equal to the bound predicted by Theorem 5.1.

Brown speculated, App. A.1], that coefficients might be shown to
be non-negative by relating them to ranks of appropriate homology groups,
noting that the dual of the matching graph is a simplicial complex. In this
setting, the relationship between the coefficients of ¢, , ¢(b) in the standard basis
and in the basis B, is reminiscent of the correspondence between f-vectors and
h-vectors in the study of simplicial complexes, with taking the role of the
Dehn-Sommerville equations.

5.7 Top Coefficients and Unhandled Maps

As in the marginal case, assuming polynomiality, the coefficient of b7 in ¢, ¢(b)
can be recovered, up to a factor of —1, by an evaluation at b = —1. Specializing
(5.8) shows that, for maps,

1
M(x,~y,~z=1) = 5 ) hupo02)(y2)°2".

v,pF2n

For hypermaps, recovering the top coefficients requires additionally evaluating
datt = —1. Motivated by the combinatorial interpretation of the top coefficients
in the marginal case, the procedure from/Section B.5/of Appendix B was used to
compute the generating series for unhandled maps (recall Definition 4.25) with
at most six edges. This series agrees with M(—x, —y, —z; —1), providing numeri-
cal evidence for the following two conjectures, both generalizing Corollary 4.23.

Conjecture 5.28. The series, U(x,y, z) .= M(—x, =y, —z; —1), is the generating series
for unhandled maps with respect to vertex-degree partition, face-degree partition, and
number of edges.
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Conjecture 5.29. Ifthere is a rooted map with vertex-degree partition v and face-degree
partition @, then there is an unhandled rooted map with the same vertex- and face-degree
partitions.

Remark 5.30. (Conjecture 5.29 is related to the essential nature of the factor 1+b
in the definition of the map series, and suggests that every non-zero g, 1211(b)
has a pole at b = —1. Verifying|Conjecture 5.28 would confirm that these poles
do not survive in M. It might then be possible to conclude that the coefficients
of the map series are polynomials in b by checking that each g, 2(b) has no
poles exceptat b = —1.

Conjecture 5.28 predicts that a third distinguished specialization of the map
series, at b = —1, complements its specializations at b = 0 and b = 1. This
suggests that unhandled maps may play a role comparable to that played by
orientable and locally orientable rooted maps. Besides extending the applicabil-
ity of the technique described in/Remark 5.27/to maps with Euler genus at most
four, the existence of a third combinatorially significant specialization offers a
test for the validity of a b-invariant, and this test is likely more tractable than
the general problem. In particular, in a direct enumeration of unhandled maps,
as used to generate the numerical evidence for the conjecture, it is possible to
ignore the structure of non-root faces.

It remains to find a presentation of the map series for which evaluation at
b = -1 is possible, since the symmetric function presentation is degenerate
there. The Jack symmetric functions themselves can only be constructed di-
rectly for positive values of the parameter «, but the limit, lim,_,g Jo(), is well
understood and can be taken as a definition, since the functions are known to
be polynomials in @ by [LV95] and [KS97]. Using this definition, J(0) is a renor-
malized elementary symmetric function, with the normalizing factor given by

Stanley in Prop. 7.6] as

Ja(x0) = e (x) H AL

This suggests that there is a relationship between elementary symmetric func-
tions and unhandled maps, but from (6.7), every column of the Ferrers diagram
of A contributes a factor of 1 4+ b to (Ja, Ja)ps1, SO the denominators of @ all
vanish at b = —1. Since the pole is removable in the conjectured combinatorial
interpretation, further asymptotics of the limits of the numerators are required.

It might also be possible to recover the top coefficients by analytic methods.
Since the top coefficients correspond to the pole of 1M, integrating the Jack
parameter around the contour |a| = 1 gives potentially the most compact ex-
pression for U, and provides a bridge to the rich integration theory of Jack
symmetric functions as developed by Kadell (see [Kad93], for example).
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5.8 Summary

This Chapter used combinatorial properties of 7, the marginal b-invariant intro-
duced in to predict, in that c,,¢(b) is an element of
spany, (B,) with g =2+ [v| - £(v) — {(¢p) — {(€). A weaker result, that if c,,p(b) is
a polynomial then it is in spang(B,), was verified, as|Corollary 5.22, using prop-
erties of Jack symmetric functions. The degree bound inherent to elements of
span(B,), makes it possible to compute b-polynomials using rational arithmetic,
and was used to provide additional numerical evidence that 7 is a b-invariant.

Writing b-polynomials in terms of B, provides a structural explanation for
the degree bound conjectured by Goulden and Jackson in [G]96a], and for the
numerical relationship observed between low degree terms. It also emphasizes
the topological nature of all b-invariants, and restricts possible combinatorial
interpretations of the hypermap series. Additional evidence suggests that the
‘strange evaluation” at b = -1 of the map series extracts its top coefficients
and enumerates unhandled maps, generalizing an observation from|Chapter 4.
Chapter 6 examines how these properties might be used to show that 1 is a
b-invariant for all maps of low genus.
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Chapter 6

Recognizing a b-Invariant

This Chapter explores the problem of how to show that a particular function
is a b-invariant, with an emphasis on the functions satisfying Definition 4.1.
While the existence of a b-invariant has not been verified, conditional on this
existence, the Chapter outlines an approach for verifying that functions are
b-invariants for all maps on surfaces of Euler genus at most 4. Together with
Theorem 4.16, this would be sufficient to give a combinatorial interpretation to
coefficients of z° in the map series M(x,y, z;b). If in addition a combinatorial
explanation for the symmetry between x and y in the map series is supplied,
then the interpretation could be extended to coefficients of z°.

Algebraic properties of b-polynomials, as given by Corollary 5.22, are used
to make concrete predictions about the combinatorics of b-invariants, and these
are sufficient to describe the behaviour of b-invariants for all rooted maps with a
small number of edges or sufficiently low genus. This description is sufficient to
achieve, 'mthe more modest goal of verifying that the functions
described in/Definition 4.1]are b-invariants for the infinite class of rooted maps
on the Klein bottle with at most three vertices.

The general approachis to classify rooted maps according to genus, number of
edges, and number of vertices, and then to verify that a function is a b-invariant
for each class. To extend this analysis beyond the simplest cases, clues are
taken from the marginal case discussed in|Chapter 4, These suggest that the
appearance of B, in Corollary 5.22/is an expression of the relationship between
twisted and untwisted handles (recall Definition 4.2), so Section 6.4] examines
the question of which handles should be considered twisted, and whether this
is indeed the correct question.

isolates two refinements of [Definition 4.1 for further study. One
specialization has enough structure for verifying that it defines b-invariants
for rooted maps with two vertices and at most six edges on the cross-capped
torus and doubly cross-capped torus, with the tangible consequence, given in
Corollary 6.29, that all such functions are b-invariants for all maps with at most
four edges. This is notable for the fact that it exhausts the list of 4428 non-
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orientable maps presented by Jackson and Visentin in [JV01], an atlas compiled
with an eye towards examining problems like the b-Conjecture. Computer as-
sistance in the proof of Corollary 6.29/is minimal, being limited to verifying the
polynomiality of coefficients of M(x,y, z;b) and generating the 260 unhandled
rooted maps with 4 edges, 2 vertices, and 1 face.

6.1 A Classification of Rooted Maps

At present, there is no uniform approach for verifying that a particular function
is a b-invariant for all maps, but Chapters/4 and 5 provide tools for dealing with
collections of rooted maps on a case-by-case basis. An armamentarium of these
tools can be used to analyze all sufficiently small maps: small in the sense of
having few edges, or few vertices and low genus. A precise description of these
tools reveals structural subtleties that are useful for analyzing the general prob-
lem. In particular, a specialization of Definition 4.1]is described in[Section 6.4,
and is motivated by a bijection used Section 6.2 for analyzing rooted maps on
the Klein bottle: the specialized family of invariants is used in to
analyze rooted maps on the cross-capped torus.

A brute force approach is infeasible, even for rooted maps with relatively few
edges, since the number of rooted maps grows quickly as the number of edges
is allowed to increase. This is summarized in the following table.

Edges |1 2 3 4 5 6 7
Rooted Maps | 3 24 297 4896 100278 2450304 69533397

offers a further refinement by giving the distribution of rooted maps
with respect to genus, number of edges, and number of vertices. Recall the
convention that 7 denotes any invariant that satisfies Definition 4.1/ Two infinite
classes of rooted maps for which existing results are sufficient to show that n
is a b-invariant are highlighted in Table 6.1} [Remark 4.19| shows that 1 is a
b-invariant for all monopoles, and Corollary 5.25shows that 1) agrees with every

b-invariant for planar and projective planar rooted maps.

Two additional approaches are available for verifying that a function is a
b-invariant for maps on the Klein bottle. Direct computation applies when
considering rooted maps with a small number of edges, while a bijective anal-
ysis applies when considering rooted maps on the Klein bottle with at most
three vertices. A combination of the two approaches is needed in|Section 6.5
for analyzing invariants for rooted dipoles on the cross-capped torus, so both
approaches are examined in more detail.

Remark 6.1. All invariants satisfying Definition 4.1 take the same values when
evaluated on rooted maps with Euler genus at most 2, so in this limited domain,
it is not necessary to distinguish between them.

Proposition 6.2. If there is a b-invariant for rooted maps on the Klein bottle with at
most 6 edges, then 1) is such an invariant.
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Table 6.1: This table shows the distributions of rooted maps with respect to genus,
number of edges, and number of vertices. Shaded regions indicate infinite classes
of rooted maps for which 1 is known to be a b-invariant, if any such invariant exists.

Edges Vertices g=0 g=1 g=2 g¢g=3 g=4 g=5

1 1 1 1
2 1
2 1 2 5 5
2 5 5
3 2
3 1 5 22 52 41
2 22 54 52
3 22 22
4 5
4 1 14 93 374 690 509
2 93 398 899 690
3 164 398 374
4 93 93
5 14
5 1 42 386 2290 7150 12143 8229
2 386 2480 9490 16925 12143
3 1030 4330 9490 7150
4 1030 2480 2290
5 386 386
6 42

Proof. 1f v and ¢ are the vertex- and face-degree partitions of a rooted map
with n edges on the Klein bottle, then ¢, 21)(b) = hyp1(1 + D) + hv,(p,ob2, by
Corollary 5.22. By [Theorem 4.4, the generating series for rooted maps with
vertex-degree partition v and face-degree partition ¢ with respect to 1) is of the
form

Z br’(m) = {11,,@,0 + ﬂV,¢’1b + av,(p,zbz,
meM,,

where M, , denotes the set of rooted maps with vertex-degree partition v and
face-degree partition ¢. Since ¢, 2:1(0) and ¢, ¢, [21(1) enumerate orientable and
locally orientable rooted maps, it follows that

hv,(p,l = aw,o and 2hv,<p,l + hv,(p,O = av,(p,O + aw,l + aw,g.

For maps with at most 6 edges, the result follows by direct computation, since
the procedure from Section B.5 of Appendix B shows that 4,0 enumerates
unhandled maps whenever [v| < 12, and 50 15,0 = dy,¢,2. O
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The proof of Proposition 6.2 relies on combinatorial interpretations for evalu-
ations of the map polynomialsatbh = 0,b = 1, and b = —1. Since the significance
of the third evaluation has been verified only numerically, this approach does
not apply for maps with arbitrarily many edges. Extending the analysis to
infinite classes of rooted maps involves giving a bijective explanation for the
appearance of B, in/Corollary 5.22, and using the fact that elements of span(B;)
can be reconstructed from their evaluations at b = 0 and b = 1. The bijective
content of the approach is predicted by the following theorem.

Theorem 6.3. If B is a b-invariant for rooted maps on the Klein bottle, then there is
a vertex- and face-degree partition preserving bijection between all rooted maps on the
torus and those rooted maps on the Klein bottle for which B takes the value 1.

Proof. Since B is assumed to be a b-invariant, the series M has coefficients that
are polynomial in b. By Corollary 5.22, if v, ¢ + 2n are, respectively, the vertex-
and face-degree partitions of a map on the Klein bottle, then the b-polynomial
Cy,p,271(b) is an element of span(B,), and can be written in the form

Cop2a(B) = Y DR = Ty 1 (14 ) + b,

meM,,,

Specializing to b = 0 shows that I, , 1 is the number of rooted maps on the torus
with the prescribed vertex- and face-degree partitions, but it is also the number
of rooted maps in M, , for which f takes the value 1. m]

Remark 6.4. Similar combinatorial predictions can be made for rooted maps
of higher genera, but aside from the analogous statement for rooted maps on
the cross-capped torus, they do not involve bijections and are better stated in
terms of equivalence classes. Generalizations of Theorem 6.3/are discussed in
Section 6.3.

Remark 6.5. Every element of B, is monic, so any common factor of the coef-
ficients of ¢,y (b) with respect to the standard basis is also a common factor
of its coefficients with respect to B;. As a consequence, if Conjecture 5.2 and
Conjecture 4.9| are both true, then they can be applied simultaneously. Thus
the bijection predicted by Theorem 6.3 is expected to preserve the degree of the
root face. It reasonably may be expected to also preserve the degree of the root
vertex, but this is not predicted by any of the stated algebraic conjectures.

6.2 Explicit Bijections for Genus 2 Rooted Maps

To show that 7 is a b-invariant for rooted maps on the Klein bottle, it remains
only to find the bijection predicted by Theorem 6.3|[Proposition 6.2 guarantees
the existence of such a bijection for rooted maps on the Klein bottle with at most
six edges, but it does not give an explicit bijection. The case of monopoles offers
more insight.
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If ¢ is the face-degree partition of a rooted monopole on the torus or Klein
bottle with n edges, then by Remark 4.19 and [Theorem 4.22]

Cnlp21(b) = dip(b) = hpob* + hip1(b+ 1),

where 21,1 enumerates rooted maps with 1 handle. In this case, the bijection
provides a perfect matching between rooted maps with twisted handles and
rooted maps with untwisted handles.

The bijection for monopoles is related to the computation of 7. Attempting
to extend the bijection to maps with more than 1 vertex reveals a distinction
between two classes of maps, and motivates the following definition.

Definition 6.6 (h-rooted, i-rooted). For a rooted map m, consider the process of
computing n(m) using the recursive description from|Definition 4.1, If a handle that
is incident with the root vertex of m is deleted during the computation of 1, then m is
h-rooted. Otherwise, the root vertex becomes isolated before a handle is deleted, and
the map is i-rooted.

Remark 6.7. If m is an h-rooted map on the Klein bottle, then n(m) = 1.

Lemma 6.8. There is a vertex- and face-degree partition preserving bijection between
h-rooted maps on the torus and h-rooted maps on the Klein bottle.

Proof. One such bijection, illustrated in Figure 6.1|is described as follows.

Suppose m is an h-rooted map of Euler genus 2. The handle found when
computing 1 is denoted by e. A second h-rooted map, nt’, is obtained from
m by iteratively deleting the root edge until the resulting map is rooted on e.
Figure 6.1a gives a generic h-rooted map, m, with the corresponding m’ given
in|Figure 6.1b: in both figures, the vertices are arranged according to the order
they are encountered in a clockwise walk around the boundary of the root
face of m’. A vertex may occur more than once in this boundary, but except
for identifying the two occurrences of each end of ¢, labelled u; and v; in the
figures, these occurrences are to be considered distinct vertices.

Both sides of e are on faces that are incident with the root vertex. Denote
the first such face encountered in a clockwise tour around the root vertex by
f. Then walk around the boundary of f in a clockwise direction starting at
e, denote the last vertex visited before returning to the root vertex by v’, and
denote the edge from v’ to the root vertex by ¢’: it is possible that ¢ = ¢’. In the
rooted map given in Figure 6.1a, the distinguished vertex is v’ = vj.

Since e is a handle, it connects two faces, the root face, f;, and a second face,
f2, in the planar map m’\e: see|Figure 6.1c| Replace e by a new handle labelled
¢’ that is twisted relative to e and runs from the root vertex in f; to ¢’ in f, to
obtain a new h-rooted map, n, also of Euler genus 2: see [Figure 6.1d. The
boundary of the root face of m’ contains the same vertices as the boundary of
the root face of m’, but in a different order: compare Figures|6.1e and [6.1b!

The image T of m is constructed from m’ by adding the edges deleted from m
to obtain m’, omitting ¢’, and when e # ¢’, inserting an extra edge e to complete
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(c) The edge ¢ joins two faces in m”\e

0

()
‘ @)
)
©

(e) This gives m (f) The image, 11, on the Klein bottle

Figure 6.1: The bijection described in the proof of[Lemma 6.8/pairs the rooted map
on the torus,|(a)} with the rooted map on the Klein bottle,|(f). The bijection preserves
every face boundary walk, except the walk around the unshaded face f.
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(a) A handle in a dipole on the torus (b) A twisted handle

Figure 6.2: A simpler bijection for monopoles and dipoles

the boundary of f. Edges clockwise of f in m are added to m’ in a reversed order
so that, up to dihedral symmetry, boundary walks of the faces of m and 1t are
identical for every face other than f: compare Figures|6.1f and|6.1a. Each face
may contain blocks consisting of vertices not present in m’, and these blocks
are also added to the appropriate faces.

The process is an involution, and precisely one of m and 1t is on the torus,
with the other on the Klein bottle. Since the boundaries of f in m and m contain
identical vertices, the required bijection is established. m]

To complete the verification that 7 is a b-invariant for rooted maps on the Klein
bottle, it remains to find a bijection between i-rooted maps on the torus and
i-rooted maps on the Klein bottle for which n takes the value 1. The difficulty
comes from the fact that the bijection described in the proof of[Lemma 6.8 does
not preserve the boundary walk of f. For rooted maps with at most two vertices,
this can be rectified by modifying the proof to acknowledge the identification
between vertices that occur more than once in the boundary of f,. This produces
a second bijection that preserves the vertices encountered in each face boundary
walk, but acts only on rooted maps with at most two vertices. The two bijections
for h-rooted maps are used in the proof of Theorem 6.11/to construct a bijection
for i-rooted maps with at most three vertices.

Lemma 6.9. There is a bijection, between h-rooted maps with at most two vertices on
the torus and h-rooted maps with at most two vertices on the Klein bottle, that preserves
vertex-degree partitions and face-boundary walks.

Proof. Begin, as in the proof of Lemma 6.8, by constructing m’ from m. Denote
the vertex at the non-root end of e by v, and the second vertex of the map, if
it exists, by u. Since f, is a face of nt\e, a planar map with at most 2 vertices,

113



(a) A rooted map on the Klein bottle (b) A rooted map on the torus

Figure 6.3: Examining the root faces of i-rooted maps with vertex-degree partition
[2?,4] and face-degree partition [8] reveals thatLemma 6.9 does notextend to rooted
maps with three or more vertices.

the boundary of f, contains k > 1 consecutive occurrences of v, and m > 0
consecutive occurrences of u: this description of the boundary is invariant
under reflection. In clockwise order, denote the occurrences of v by vy, vy, ..., vk,
and denote the occurrences of u by uy, 1y, ..., u,: see Figure 6.2a.

If the f, end of the handle e is v;, then replace ¢ with a twisted handled, ¢,
constructed in such a way that its f, end is v;, where j = k —i+ 1if m > 0 and
j = i otherwise: see Figure 6.2b. Since a boundary walk of the root face of m’
encounters vertices in the same order as a boundary walk of the root face of n’,
proceeding as in the proof of[Lemma 6.8 produces m with face-boundary walks
containing the same vertices as the face-boundary walks in m. m]

Remark 6.10. Lemma 6.9 is best possible, in the sense that it does not extend to
rooted maps with three or more vertices. To see this, consider all the i-rooted
maps with vertex-degree partition v = [2%,4] and face-degree partition ¢ = [8].
One such map on the Klein bottle is given in[Figure 6.3a} and a boundary walk
of its root face visits the vertices in the order (u, u, v, w, u, u, v, w), but this isnot a
face-boundary walk of any of the six rooted orientable maps with the specified
vertex- and face-degree partitions (see pp- 90-91] for a listing). Similarly,
among rooted maps on the Klein bottle, only unhandled maps have the same
root-face boundary as the orientable h-rooted map given in Figure 6.3b.

Using Lemmas (6.8 and 6.9} it is now possible to describe the bijection pre-
dicted by [Theorem 6.3/ for i-rooted maps on the torus with at most 3 vertices.
The main result of this section, Corollary 6.13, that 1 is a b-invariant for two
new infinite classes of rooted maps on the Klein bottle, is then obtained as an
immediate corollary.
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(a) An i-rooted map (b) The underlying h-rooted map

Figure 6.4: An i-rooted map and its associated h-rooted map

Theorem 6.11. There is a vertex- and face-degree preserving bijection between rooted
maps on the torus and rooted maps on the Klein bottle for which 1 takes the value 1.

Proof. By Lemma 6.8, it is sufficient to describe a bijection for i-rooted maps. Let
m be an i-rooted map with Euler genus 2 such that n(m) < 1. Since n(m) # 2, a
handle is deleted when 7(m) is computed using the recursive description from
Definition 4.1, and it follows that m can be decomposed as a planar piece, p,
embedded in the root face of an h-rooted map m’, with n(m) = n(m’). Figure 6.4
gives a schematic representation of an i-rooted map and its underlying h-rooted
map.

Since m has at most three vertices, m” has at most two vertices, so the bijection
from Lemma 6.9]applies: denote the image of m’ with respect to this bijection
by m’. Then m” and m’ have identical face boundaries, and {n(m’), n(m’)} = {0, 1}.
Attaching p to the root face of m’ completes the desired bijection. m]

Remark 6.12. A slight modification to the proof of Theorem 6.11 gives a bijec-
tion for all i-rooted maps on the Klein bottle with at most 6 edges, but the exis-
tence of such a bijection is already guaranteed numerically by Proposition 6.2,
and the modified proof does not offer any additional combinatorial insights,
since it relies on subtle symmetries that only exist for maps with a small num-
ber of edges.

Corollary 6.13. If any b-invariant exists for rooted maps on the Klein bottle, then
every invariant satisfying Definition 4.1 is a b-invariant for all rooted maps on the
Klein bottle with at most three vertices.

Proof. If B is a b-invariant for rooted maps on the Klein bottle, and v and ¢ are
the vertex- and face-degree partitions of a map on the Klein bottle with 1 edges
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and at most three vertices, then by Corollary 5.22

Cup2(b) = Z bF™ = Ry 1 (1 + b) + Iy 0b”. (6.1)
meM,,,

But from the bijection in[Theorem 6.11/and the degree bound inTheorem 4.4

5 2
Z b1 = Ay,p,0 + Ayl + 43,5 20" = 4 0(1 + b) + a1y, 20" (62)
meM,,

Since p(m) and 7(m) each equals zero precisely when m is orientable, the sums
in (6.1) and (6.2) agree at both b = 0 and b = 1, and the result follows. i

6.3 Towards Higher Genera

The approach used to prove Corollary 6.13/involved identifying two polynomi-
als by comparing their evaluations. With combinatorial interpretations avail-
able for two evaluations of b-polynomials, at b = 0 and b = 1, and conjectured
for only one more, at b = —1, the approach would appear to be limited to poly-
nomials of degree at most 2. But|Corollary 5.22 offers additional structure by
suggesting that b-polynomials should be expressed as elements of span(B,) for
appropriate choices of g. Interpreting this combinatorially gives the following
generalization of|Theorem 6.3.

Corollary 6.14. If f is a b-invariant and g = |v| - €(v) — {(@) — €(€) is even, then there
is a1 : % map between orientable maps of Euler genus g and non-orientable maps of
genus g for which B takes the value 1.

Focusing on 1 and extrapolating from|Theorem 4.22} if ¢, 2+(1) enumerates
rooted maps of genus g, then the coefficient of b7~%(1 + b)" in ¢, ¢, (| (b) may be
expected to count equivalence classes of rooted maps with i handles, where
each class consists of 2 rooted maps with identical vertex- and face-degree par-
titions. Within each class the weights of maps with respect to n are distributed
binomially. A combinatorial description of these equivalence classes would
show that generating series for rooted maps with respect to ) can be expressed

in the form . .
Y = N a7+ b, 6.3)

meM,, 0<2i<g

and would allow a generalization of Corollary 6.13.

To verify that a function is a b-invariant, subject to the existence of at least
one such invariant, it is sufficient to show that the generating series for rooted
maps with respect to that function takes the form seen in (6.3), and then to con-
firm combinatorial interpretations for enough evaluations of the corresponding
b-polynomials to equate all the coefficients.
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Figure 6.5: Sums of coefficients of b-polynomials obtainable using evaluations

Example 6.15. The generating series for rooted maps on the cross-capped torus with
respect to any b-invariant  should be of the form

Y P = a0 0b + a,1b(1 + b),

meM,,,

so to verify that n is a b-invariant for rooted maps on the cross-capped torus, it would
be sufficient to confirm that M(—x, =y, —z; —1) is the generating series for unhandled
maps with respect to vertex- and face-degree partitions, and to then construct a vertex-
and face-degree partition preserving bijection between weight 1 and weight 2 rooted
maps on the cross-capped torus.

Example 6.16. Verifying that 1 is a b-invariant for rooted maps of Euler genus four
would involve verifying the combinatorial interpretation for M(—x, -y, —z; —1), and
then showing that the appropriate sums take the form

Z p1m — av,¢,0b4 + ﬂv,(p,lbz(l +b) + aV,(P,2(1 + b)2

meM,,,

Figure 6.5illustrates which sums of coefficients of b-polynomials, with respect
to the basis B,, can be obtained from evaluations of the b-polynomials. Each
coefficient is represented by a black dot, and each evaluation is indicated with
a shaded region. There are not enough conjectured combinatorially significant
evaluations of the b-polynomials to verify that a function is a b-invariant for
rooted maps on surfaces with Euler genus five or higher, but three evaluations
are sufficient to identify the b-polynomials that are conjectured to enumerate
rooted maps on surfaces with Euler genus at most four.

Remark 6.17. The horizontal near-symmetry of|Figure 6.5 suggests that unhan-
dled maps generalize planar maps in a sense similar to orientable maps.
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(d) (f)

Figure 6.6: Deleting the root edges of any of the rooted maps in (b), (c), (d), (e), or
(f) leaves one of the non-orientable rooted maps in (a).

6.4 Which Handles Are Twisted?

If the root edge e of a rooted map m is a handle, then the involution 7 de-
scribed in Definition 4.1 defines a pair of handles by matching e with a handle
in 7(m). If m\e is non-orientable, then these handles are treated symmetrically
by|Definition 4.1, and there are marginal b-invariants both for which e is twisted
and for which e is not twisted, although specifying whether e is twisted in m
determines whether the corresponding edge is twisted in 7(m). It follows that
an uncountably infinite family of marginal b-invariants satisfy [Definition 4.1.
This family is not sufficiently structured to permit extending the analysis from
Section 6.2 to rooted maps with Euler genus greater than two.

Example 6.18. If the root edge is deleted from any of the twelve rooted maps given
in Figures 6.6b—f, then the result is one of the non-orientable rooted maps given in

Figure 6.6a. It follows that functions satisfying|Definition 4.1|can take any of 2° = 64

combinations of values on these rooted maps. Invariants that are additive in the sense of
Conjecture 3.32 must take the value 1 for the rooted maps in|\Figure 6.6f: this additional
constraint leaves 2> = 4 possible combinations of values taken by marginal b-invariants
when restricted to the rooted maps given in Figures|6.6b and|6.6¢.

It is possible that the best way to analyze the map series is to avoid making
a distinction between twisted and untwisted handles: this was the case, for
example, in the proof of Theorem 4.22. After briefly describing this alternative,
the Section proceeds by discussing two schemes for defining restricted families
of invariants, each involving an explicit rule for distinguishing between twisted
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and untwisted handles. The first family is related to the invariant described by
Brown and Jackson in [BJ07], with twisting measured relative to spanning trees.
The second family defines twisting relative to oriented faces, and provides the
structure needed in/Section 6.5 for extendingLemma 6.8to h-rooted maps with
Euler genus greater than two.

6.4.1 Alternatives To Twisted Handles
Corollary 5.22 predicts that the b-polynomial ¢, 21](b) can be written as

Crp2(b) = Z By ib? % (1 + D).
0<2i<g

This emphasizes that b is conjectured to play two distinct combinatorial roles:
in the marginal case, as discussed in|Chapter 4, factors of b correspond to cross-
borders, while factors of 1 + b correspond to handles, and this interpretation is
expected to extend to all b-polynomials. It might be possible to give a direct
combinatorial interpretation to the coefficients £, ; by considering an invariant
that counts cross-borders and handles independently, and ignores the distinc-
tion between twisted and untwisted handles. This refinement was predicted
in the context of marginal b-polynomials by Brown in [Bro00, Sec. A.6]. The
corresponding modification to the generating series would involve formally re-
placing 1+ b by 24, as in the proof of Theorem 4.22, but this substitution cannot
be made algebraically, and requires a refined family of symmetric functions to
replace Jack symmetric functions in the definition of the map series.

It is difficult to predict the form that the required family of symmetric func-
tions should take, although it does not appear to be an obvious specialization
of the (g, t)-symmetric functions described by Macdonald in [Mac95, Chap. VI].
The double role of the Jack parameter has also been observed in an analytic
context by Lassalle, who in obtained expressions for expanding Ji(a)
in terms of power-sums when A is a rectangular partition. Lassalle conjectured
that there is a two-parameter refinement of Jack symmetric functions that re-
flects this directly. It is unclear whether the refinement needed for rooted map
enumeration is the same refinement predicted by Lassalle.

If M(x,y, z; b) has the conjectured combinatorial interpretation as the gener-
ating series for rooted maps with respect to 7, then it may also be useful to
consider two other series:

Y g2ty and Y g+ DY Xy

niv,Qp niv,Qp

Neither series is easily refined to recover the generating series for orientable
or locally orientable rooted maps, but both correspond to invariants that are
potentially easier to analyze than 7. The first sum is obtained by treating all
handles as twisted, and the second sum is obtained by allowing each cross-
border to have both a twisted and an untwisted form.
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(a) An untwisted root edge (b) A twisted root edge

Figure 6.7: Not all twisting can be defined relative to a spanning tree.

The alternatives to specifying which handles are twisted each requires con-
structing new families of symmetric functions, so that a corresponding gener-
ating series can be given algebraic form. To proceed without describing these
families, it is necessary to work with a restricted family of invariants.

6.4.2 Twisting Relative to a Spanning Tree

For the first restricted family, the rooting of a map is used to construct a dis-
tinguished spanning tree T, and the twisting of a handle e is determined by
whether the unique cycle in T U {e} is a one- or two-sided curve. Any canoni-
cal spanning tree can be used, but the particular tree consisting of the bridges
encountered during the computation of 17 appears to be well suited for further
study. When twisting is defined relative to this tree, the invariant remains con-
stant under the operation of contracting tree edges, and as a consequence, it
is additive in the sense of Conjecture 3.32} In this case, 7 may be studied as
an invariant of rooted monopoles, since for any map m, the value of n(m) can
be computed by contracting a spanning tree and working with the resulting
monopole. Since every invariant satisfying is a b-invariant for
monopoles, this is a promising decomposition.

Remark 6.19. The same choice of spanning tree was used by Brown and Jackson
to define twisting for their invariant in [BJ07], though they described it as the
result of a depth-first search with the search order defined by counterclockwise
circulations at each vertex. This connection helped motivate the definition of .

Example 6.20. When twisting of handles is measured relative to a spanning tree, the
root edges of the two rooted maps given in|Figure 6.6b are twisted, while the root edges
of the two rooted maps given in Figure 6.6 are not.

The disadvantage of defining the twisting of handles relative to a spanning
tree is that it creates two distinct forms of twisting, and breaks a potential sym-
metry between the descriptions of cross-borders and handles. Some untwisted
edges, recognized by 1 as borders, are orientation reversing, as is the root edge
in|Figure 6.7a. Similarly, all cross-borders are twisted, but some are orientation

preserving relative to a spanning tree, as is the root edge in Figure 6.7b
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6.4.3 Twisting Relative to Oriented Faces

For the second family of invariants, the rooting of a map is used to assign an
orientation to each face of the map. Whether a handle is untwisted or twisted is
determined by whether local orientation is preserved or reversed between the
faces at its ends. When face orientations are chosen to be consistent across the
edges of a dual-spanning tree, the second family is effectively dual to the first.
Proving Lemmas 6.8 and [6.9 required comparing the relative twisting of two
handles with different end points on the same face, as in defining
twisting relative to oriented faces provides precisely this structure to rooted
maps of genus greater than two.

Besides permitting the extension of Lemma 6.8 to rooted maps of all genera,
defining twisting relative to oriented faces has the advantage of producing only
one form of twisting. With this restriction, if e is the root edge of m, then e is
untwisted if it preserves local orientation between its ends in m\e, whether it is
a handle, bridge, or border. Similarly, e is twisted if it reverses local orientation
between its ends in m\e, whether it is a handle or a cross-border.

At present, there does not appear to be a reason to prefer any particular
method for constructing a canonical dual-spanning tree, though a tree con-
sisting entirely of edges identified as borders during the computation of 7 is
computationally convenient. It is necessary to use a rule to describe which
borders are to be excluded from the dual-spanning tree, since in general the set
of all borders is too large, a consequence of the fact that adding a handle to a
rooted map has the effect of identifying two faces. Any rule that acts sufficiently
locally determines an invariant that is additive in the sense of Conjecture 3.32.

Example 6.21. When twisting of handles is measured relative to face orientations
defined with respect to a dual-spanning tree, the root edges of the two rooted maps
given in Figure 6.6¢ are twisted, while the root edges of the two rooted maps given in
Figure 6.6b are not. This reverses the twisting as measured relative to a spanning tree

in|Example 6.20
Section 6.5/uses this second family to extend|Corollary 6.13 by constructing

equivalence classes of rooted maps with Euler genus greater than two.

6.5 The Cross-capped Torus and Beyond

This Section, uses the extra structure provided by restricting attention to the
invariants described in|Section 6.4.3/to verify that generating series for rooted
dipoles on the cross-capped torus and doubly cross-capped torus take the form
predicted by/Corollary 5.22| Combined with the combinatorial interpretation of
M(x, =y, —z; —1) as the generating series for unhandled rooted maps (numerical
evidence currently verifies the interpretation for rooted maps with at most six
edges), this will be sufficient to show that 17 is a b-invariant for all rooted dipoles
on surfaces with Euler genus at most four.
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(a) A rooted map m (b) Its image m

Figure 6.8: It is possible that two face boundaries, labelled f and f’, differ between
m and its image under the bijection used to proveTheorem 6.22.

Theorem 6.22. If v and ¢ are, respectively, the vertex- and face-degree partitions of

a map on the cross-capped torus with two vertices, and 1 satisfies \Definition 4.1 with

twisting of handles measured relative to a dual spanning tree, then

Z bn(m) — av,(p,0b3 + av,(p,lb(l + b) (S Spal'lz+ (B3)
IHEM\r,q)

Furthermore, the coefficients a,, 0 and a,,,1 are independent of the choice of invariant.

Proof. For any two invariants satisfying|Definition 4.1, the corresponding sums
agree when evaluated at b = 1. So independence of the coefficients from the
choice of invariant follows from the fact that a, ;o is the number of unhandled
rooted maps with vertex-degree partition v and face-degree partition ¢.

If m is a rooted map on the cross-capped torus, then Theorem 4.4 gives the
bound 1 < n(m) < 3. It is thus sufficient to establish the existence of a vertex-
and face-degree preserving bijection between those rooted dipoles on the cross-
capped torus for which 1) takes the value 1, and those for which 1) takes the value
2. The existence of such a bijection, which additionally preserves the degree of
the root face, and hence the vertices encountered in a boundary walk of the root
face, is guaranteed for monopoles by Theorems|4.16 and As in the proof
of[Lemma 6.9} this is sufficient to show the existence of the required bijection
for all i-rooted maps with two vertices on the cross-capped torus.

It remains only to construct an explicit bijection for h-rooted dipoles. This is
accomplished as in the proof of Lemma 6.8, with the exception that, because of
the possible presence of a cross-border, there may be two faces with boundaries
that differ between a map and its image: consider the faces marked f and f’ in

Figures and mi
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(c) An alternate choice of ¢’ (d) A second image

Figure 6.9: It is possible to give a second description of ¢’. The two descriptions
lead to different bijections for rooted maps of genus greater than two.

Remark 6.23. An alternative description of the edge ¢’ used in the proof of
Lemma 6.8|leads to a second bijection for rooted maps of genus greater than
two. In the terminology from that proof, ¢’ can be described as the first edge
bounding f encountered on a counterclockwise tour around the root face of m’.
For rooted maps with genus at most two, there is no distinction between the
two descriptions, but for rooted maps with Euler genus at least three, the de-
scriptions may produce different edges, and consequently this new description
gives a second bijection. There does not appear to be a reason to prefer one
bijection over the other.

Example 6.24. Contrast Figure 6.9a, where ¢’ is constructed as in the original descrip-
tion, with|Figure 6.9c, where ¢’ is constructed using the alternative description. Their
images are given in Figures|6.9bland|6.9d, respectively.
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Theorem 6.25. If v and ¢ are, respectively, the vertex- and face-degree partitions of a

map with two vertices and Euler genus four, and 1) satisfies|Definition 4.1\with twisting

of handles measured relative to a dual spanning tree, then

Z B = 4,0,0b* + 8,1 b7 (1 + b) + a,,,2(1 + b)* € spany,_(Ba).

meM,,
The coefficients a0, a1, and a,, are independent of the choice of invariant.

Proof. For any invariant satisfying Definition 4.1} the coefficient 4, is the
number of unhandled rooted maps with the vertex-degree partition v and
face-degree partition ¢. Independence of the remaining coefficients on the
choice of invariant follows from the fact that the sums agree when evaluated at
b=0andb=1.

In the terminology from the proof of [Lemma 6.8, Lemma 6.9 gives the re-
quired bijection for h-rooted maps where constructing m from m’ involves
adding two cross-borders or a handle. The remaining cases use the same
constructions as in the proof of Theorem 6.22. O

Corollary 6.26. If there is at least one b-invariant, then every invariant from the family
described in|Section 6.4.3 is a b-invariant for all rooted maps with Euler genus at most
four, at most two vertices, and at most six edges.

Proof. If 11 is such an invariant, and v, ¢ + 2n are, respectively, the vertex- and
face-degree partitions of a map on the cross-capped torus with at most two

vertices, then by Theorem 6.22

Y1 = ay00b + ay01b(1 + ).

meM,,

By the existence of a b-invariant for rooted maps on the cross-capped torus,
Corollary 5.22 shows that ¢, [21(b) can be written in the form

Crp21(b) = hv,qo,ObS + hyp1b(1 + b).

But combinatorial interpretations of M(x, y, z; 1) and M(—x, —y, —z; —1) give that
whenn <6

av,(p,O = hVKP/O and av,(p,O + ZQWPIO = hv,(p,O + Zhv,(p,l ,

SO Cy,p,[2¢1(D) is equal to the required combinatorial sum.

Similarly, if v, @ F 2n are, respectively, the vertex- and face-degree partitions
of a map with Euler genus four, then|Theorem 6.25 applies, and combinatorial
interpretations of M(x,y, z;0), M(x,y,z;1), and M(—x, -y, —z; —1) are sufficient
to equate corresponding coefficients. ]
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Remark 6.27. Corollary 6.26 is restricted to rooted maps with at most six edges
because of computational limitations associated with directly verifying that
M(—x, =y, —z; 1) is the generating series for unhandled maps. The limitation
is not inherent to the proof technique.

Remark 6.28. It may be possible to modify the proof of| Theorem 6.25/to show
that generating series for all dipoles on all surfaces take the form required by
Corollary 5.22. For genera greater than four, the independence of the coefficients
on choice of invariants will require additional analysis, and there are not enough
evaluations of the map series to verify that 7 is a b-invariant.

Recalling [Table 6.1, Corollaries [6.13| and 6.26 cover the outstanding cases
required to verify the combinatorial interpretation of a b-invariant for all rooted
maps with at most four edges. This gives the following corollary.

Corollary 6.29. Every invariant from the family described in|Section 6.4.3|is a b-in-
variant for all rooted maps with at most four edges.

Proof. Direct computation verifies that ¢, 21)(b) is a polynomial with non-
negative integer coefficients when n < 5, so the existence of a b-invariant for
rooted maps with at most five edges is guaranteed.

It follows from|Corollary 5.25|that 1) is a b-invariant for planar and projective
planar rooted maps, from|Corollary 6.13|that 1 is a b-invariant for rooted maps
on the torus and Klein bottle with at most three vertices, from/Corollary 6.26/that
n is a b-invariant for rooted maps on the cross-capped torus with two vertices,
and from that 1) is a b-invariant for all monopoles. Collectively,
these classes account for all rooted maps with at most four edges. a

Remark 6.30. Besides verifying the existence of a b-invariant, computer assis-
tance in the proof of Corollary 6.29)is limited to verifying that M(—x, -y, —z; —1)
gives the generating series for unhandled rooted maps. For rooted maps with
at most four edges, this verification is required only for the 260 rooted maps on
the cross-capped torus with one face and two vertices, and could potentially be
carried out manually by using the list of rooted maps in pp- 131-134].

To extend|Corollary 6.29 to all rooted maps with at most five edges, it would
be sufficient to verify that 7, is a b-invariant for all rooted maps on the Klein
bottle with four vertices, and for all rooted maps on the cross-capped torus with
three vertices. More broadly, it might be possible to find a combinatorial proof
that if v and ¢ are, respectively, the vertex- and face-degree partitions of a map
with Euler genus g < 4, then

Z b1 ¢ spany_ (By). (6.4)
meM,,

This would generalize Theorems|6.11,/6.22, and [6.25, and would likely require
further restricting the family of invariants, or using additional symmetries of
the class of rooted maps. An alternative approach, using the symmetry between

x and y in M(x,y, z; b), is discussed in[Section 6.6/
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6.6 An Involution to Replace Duality

To verify that a function is a b-invariant for rooted maps with six or more edges,
it will be necessary to verify that it is a b-invariant for rooted maps with two
vertices, one face, and genus equal to five. Without finding additional combi-
natorially significant evaluations of the map series, the approach outlined in
Section 6.3 will not apply. Verification may, however, be possible by appealing
to the symmetry between x and y in M(x, y, z; ). Combinatorially the symmetry
states that if 17 is a b-invariant, then

Y p= Y g, (6.5)

meM,, meM,,y

That these sums are equal when evaluated at b = 0 or b = 1 is a consequence
of the fact that duality is an involution of both orientable and locally orientable
maps, but a modification to the proof of Theorem 3.35 shows that even non-
additive invariants satisfying Definition 4.1/cannot be invariant with respect to
duality.

Theorem 6.31. If 1 satisfies|Definition 4.1, then there is a map m, such that the multi-
set of values taken by 1 on the rootings of w is not equal to the multi-set of values taken
by n on the rootings of the dual of m.

Proof. As in the proof of [Theorem 3.35, consider the rooted maps with one

vertex, one face, and three edges, as given in[Figure 3.6 on page|64. Suppose 7

satisfies Definition 4.1} then by|Corollary 4.17, 17 is a marginal b-invariant, so
Z b”(m) = C[6],[6],[23](b) =13b + 13V + 151°.

HIEM[(,],[Q

Since every edge of the rooted maps given in Figures|3.6a and is a cross-
border, they collectively contribute 5b° to the sum. Similarly, the rooted maps
given in Figures [3.6g, 3.6h, and [3.6i collectively contribute 6b + 6b> + 6b° to
the sum, with the distribution between the maps determined by the particular
invariant.

It follows that the total contribution of the rooted maps given in Figures|3.6¢,

3.6d,[3.6e, and [3.6f must be 7b + 7b* + 4b>. But the map given in[Figure 3.6 is
dual to the map given in|Figure 3.6d, and the map given in Figure 3.6¢ is dual

to the map given in Figure 3.6f, so the total contribution of these four maps to
each coefficient is even with respect to every function that is invariant under
duality. ]

It follows that a combinatorial proof of (6.5) will require an alternative family
of invariants or an alternative explanation for the symmetry. With such a
proof, |Corollary 6.29| can be extended to rooted maps with at most six edges,
independent of verifying (6.4), since the outstanding cases are all dual to cases
covered by Corollaries|6.13]and 6.26.
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While not suggesting a combinatorial proof of (6.5), the invariants satisfying
Definition 4.1 offer enough structure to prove a weaker property of b-invariants.
In particular, if 1) is a b-invariant, and v + 2n, then by interchanging the réles of

v and ¢ in|Lemma 3.22) it follows that
Y Cpa®) = @+ 0y Y 6 p(0). (6.6)

Pr2n Qr2n

The coefficients of the generating series for rooted maps with respect to 1 also
satisfy this relationship. As with the invariant of Brown and Jackson, [B]07],
fixing a spanning tree of a map m by depth-first search, and independently
twisting each of the remaining 1 — £(¢) + 1 edges, in the sense of ribbon graphs,
produces a class of rooted maps with identical vertex degrees and weights
distributed consistently with (6.6), each edge contributing a factor of 1 + b to
the expression on the right.

6.7 Conclusion

This Chapter outlined an approach for verifying that a function is a b-invariant
for all rooted maps with a bounded number of edges or bounded genus. Rooted
maps are classified according to genus, number of vertices, and number of
edges, and then each class is analyzed individually. Additional techniques will
be required to completely resolve|Conjecture 3.25, since, for example, other than
direct computation, there is not yet an approach that could be used to verify that
a particular function is a b-invariant for all rooted maps with two vertices, two
faces, and seven edges: there are 10 392 697 such rooted maps, all embedded on
the triply cross-capped torus. The analysis did, however, show that a restriction
of [Definition 4.1} described in [Section 6.4.3, defines b-invariants for all rooted
maps with at most four edges. In the process, this provided additional evidence
for the conjectured relationship between handles and the basis B,,.

The approach identified four significant open problems, the resolution of
which will confirm that 7 is a b-invariant for all rooted maps with at most six
edges and for all rooted maps with Euler genus at most four. The problems con-
sist of verifying each of the following statements when v and ¢ are, respectively,
the vertex- and face-degree partitions of a rooted map with Euler genus g.

O The coefficient ¢, 21)(b) of M(x,y, z; D) is a polynomial in b.
O The generating series for unhandled rooted maps is M(—x, -y, —z; —1).
O The combinatorial sum ), Moy b1 is an element of span(B,).
O The sum Y, e, b1 is equal to Y. My, pm,
Several combinations of these problems are significant. Table 6.2|summarizes

classes of rooted maps for which the approach outlined in this chapter might be
used to verify that 17 is a b-invariant. The final column lists the open problems
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Table 6.2: Verifying that 1 is a b-invariant

Genus Edges Vertices What is needed?

<1 any number any number O

<2 any number <3 O

<2 and number any number Oand O

<4 any number <2 0 and O

<4 any number any number 0,0,and O
any genus <4 any number  |Corollary 6.29
any genus <5 any number Oor0O
any genus <6 any number Oand O
any genus  any number 1 Corollary 4.17

that must be resolved to complete this verification. Two classes for which the

verification is complete are included in the Table for comparison.

128



Chapter 7

The g-Conjecture

This Chapter gives evidence that tools developed in Chapter 4 are applicable to
the g-Conjecture, a problem that appears otherwise unrelated
to the b-Conjecture. A chain of structural observations suggests a refinement,
Conjecture 7.15} of the original conjecture, and numerical evidence supports
this refinement. The refinement is used to identify a special case that appears
to be both more tractable than the original problem, and interesting in its own
right. Since the discussion emphasizes structural similarities, the general case is
more relevant than marginal particulars. Several technical details are included
as footnotes, to avoid interrupting the discourse.

The g-Conjecture is based on a functional relationship, (7.1), that was discov-
ered by Jackson and Visentin in [JV90a]. The relationship equates evaluations
of generating series of two classes of rooted orientable maps, and relates the ¢*
and Penner models of 2-dimensional Quantum gravity, as discussed in [JPV96].
The two series, A(u,x,y,z) and Q(u,x,y,z), are generating series for rooted
orientable maps with at least one edge and rooted orientable 4-regular maps,
with respect to Euler genusm number of vertices, number of faces, and num-
ber of edges. They are less combinatorially refined than the series studied in
previous chapters, and are given by

y

A(u,x,y,2) = u? M(gl, ;1, uz; 0) —xy and

T . )
Qu,x,y,z) =u M(ux,ul,uz,o

Xj:éj,4x.

As a mnemonic, Ay, x, y,z) enumerates all orientable maps with at least one
edge, and Q(u, x, y, z) enumerates quartic maps. In both series, the variable u is
redundant, but it is included to simplify the statement of (7.1), the motivating
functional relationship.

Maps on the n-torus are enumerated by monomials of degree 27 in u.
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By factoring an exponential generating series for edge-labelled face-4-regu-
lar orientable rooted maps, the duals of the maps considered in the present
discussion, Jackson and Visentin, in [JV90a], derived the relationship

Qu,x,y,2) = 1 (A(Zu, y+u,y,22x) + AQu,y —u,y, z2x)) . (7.1)

The second series on the right, AQu,y — u,y, z2x), contains negative terms
when expanded as a power series in Q[u, x, y][z], but the sum is a generating
series for appropriately decorated rooted maps. The relationship demands a
combinatorial explanation, though none is currently known, since the existing
proof of (7.1), as outlined in[Section 7.1, is algebraic, relies on subtle properties
of the character theoretic presentation of M(x,y, z;0) described in|Section 3.5.1,
and contains inherently non-combinatorial steps.

Conjecture 7.3, the g-Conjecture, originally stated implicitly in [JV90a], ex-
tended to hypermaps in [JV99], and named the Quadrangulation-Conjecture
in [JVO01], predicts that there is a combinatorial explanation for (7.1). This ex-
planation should take the form of a natural bijection, ¢, between appropriately
decorated rooted orientable maps and 4-regular rooted orientable maps. The
content of the g-Conjecture rests on the meaning of the word ‘natural’, and it
is to be interpreted as an assertion that there is a bijection that preserves addi-
tional structure, though the precise nature of this structure is not known, and
at present no explicit bijections are known.

As a starting point, evaluating (7.1) at u = 0 produces the equation

Q0,x,,2) = A0, y,y,2°x), (7.2)

with both sides enumerating planar maps. The medial construction, gives a
combinatorial explanation for (7.2) in this special case by providing a natural
bijection. The construction was developed in dual form by Tutte for an appli-
cation to the dissection of equilateral triangles in [Tut48], and was applied to
map enumeration in [Tut62] and [Tut63]. Both the medial construction, and its
dual, the radial construction are described by Ore in [Ore67, pp. 46-47].

A natural generalization of the medial construction to higher genera is ex-
plored by Schaeffer in [Sch98, Ch. 2], and gives a bijection between rooted maps
and face-bipartite 4-regular rooted maps. This bijection is used in Section 7.3
as a guide for predicting which structures might by preserved by ¢. At present,
the most explicit construction is one given by Brown and Jackson in [BJ02]. It
generalizes the radial construction and provides a combinatorial proof of the
weaker relationship

Q,x,1,2) = 1AQ2,2,1,7%) =24 (1,1,},22%x) =2A(1,},1,22%),  (7.3)

a special case of (7.1), with additional conditions on genus that are not apparent
from the generating series.

Instead of searching for an explicit bijection, this Chapter identifies structures
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that might be preserved by such a bijection, with an emphasis on involutions
and products on both classes of maps. One difficulty with combinatorializing
the proof of (7.1) is that the original derivation involved manipulating expo-
nential generating series for edge-labelled rooted maps, but the combinatorial
interpretation is expected only for unlabelled rooted maps. Since the proof
of Theorem 4.16 avoids edge-labelled intermediaries, the construction used in
Chapter 4]is taken as a starting point for the investigation. In particular, ¢!
induces a many-to-one function from 4-regular maps to undecorated maps,
and the root-edge classification used in the proof of Lemma 4.7 is related to the
cardinality of fibres of ¢ 1. It is thus expected that the behaviour of ¢ is related
to the root-edge classification.

Cut-edges in maps are associated with a product on rooted maps, so the
required bijection ¢ can be used to induce products on the class of quartic
rooted maps. investigates the form these induced products might
take, and states Conjecture 7.15, a more combinatorially refined version of the
g-Conjecture. A combinatorial analysis gives an algebraic formulation for the
refinement in/Section 7.6, where additional equivalent statements are discussed.
The Chapter concludes with a more detailed analysis of a special case involving
minimally decorated rooted maps on the plane with images on the torus.

7.1 Origins of the g-Conjecture

Jackson and Visentin derived (7.1) indirectly in [JV90a] by exhibiting a multi-
plicative relationship between two series in two indeterminates each, but the
reduction to this form eliminates features that are essential to the conjectured
combinatorial interpretation. In particular, the right side of (7.1) is a generating
series for a class of rooted maps with decorated vertices and handles, but the in-
determinate associated with handles, u, is redundant, since by Euler’s formula
and degree counting,

2 _ .2 Xy ) _ .2 ( xy )
A Yy - 1r_/_/ d A rrAr Yy - A 1/_r_r .
Q*,x,y,2) uQ( uuuz an (u,x,9,2)=u uuuz
It is sufficient to restrict consideration to evaluations of A and Q at u = 1, since
A (2, y+1, y,zzx) =4A (1, %(y +1), %y, 222x) .

Using the derivation of the map series from [Section 3.5} specializations of A
and Q at u = 1 can be expressed in the form

0

A, x,y,2z) =2z % In (Rﬂ(x, Y, z)) and (7.4)
d

QL x,y,2) =2z - In(Ry(x, y,2)). (7.5)
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The series R 4 (x, y,z) and Ry (x, y,z) are defined implicitly, up to a constant
multiple, and may be normalized to have unit constant terms. With this normal-
ization they are generating series for maps with labelled half-edges, ordinary
with respect to vertices and faces, marked by x and y, and exponential with
respect to half-edges, marked by +/z.

Jackson and Visentin worked with a related series, R y(x,y|z), a gener-
ating series for orientable maps with directed labelled edges that satisfies
Roy(x,y,2) = Ry(x,y15). They showed in [JV90a, Thm. 5.1] that, when N
is a positive integer,

Ruy(1,2N,2) = Ry (N +1,N,22%) - R (N - },N,22%), (7.6)

which, by polynomiality, is equivalent to (7.1). Their derivation involved alge-
braic properties of character evaluations rather than any direct appeal to the
combinatorics of rooted maps.

When R_y and R4 are expressed as integrals, as in [JPV96], the relationship in
(7.6) is a statement that an integral over R?" factors as a product of two integrals
over RY. This is written more compactly using the expectation operator from
Definition 3.17, which for the remainder of this Chapter is specialized to b = 0,
so that (-) = (")) and (), = {-)(n) are given by

()= f]R V@PfQe D A and (f), = (f(A)eZm %*k"k<wk>,

and the recurrence from|Lemma 4.13 specializes to

j
<Pj+2pe> = Z im;(0) P;HP@\: + Z pipj- zpe (7.7)
i=0

i€0

Using duality to interchange the roles of x and y,|Corollary 4.15 states that

<<]»71k>> %N + 22; h’l< Y1 §PA% \/ik> (78)

M(x,N,z0) = Z vz

for every positive integer N. It follows that

1 k N 1
Ry (x,N,2) (D) = <eXP [Z “Px vz J> = <H —1>
k ™ (1-+zA) ™)

k>1 i=1

and similarly Ri(1,N,z) (1)) = <exp (ip4z2)>(N), so the identity is given by

N 1 N 1
(o Do =<([ =), (=), @

i=1 (N),
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where ¢ = ¢(N) = (1)on) (1)(}3). This presentation suggests the possibility of
a direct analytic proof, although none is known at present. The derivation in
[JPV96] follows, in effect, the same steps as the earlier proof, after exp (% P4 (/\)22)
is expanded in terms of the Schur basis for symmetric functions in A.

Remark 7.1. Jackson, Perry, and Visentin appear to have conflated the series
R 4 (x,y,z) in [JPV96], defined consistently with its usage in the present setting,
with R ¢ (x, y|z) from the earlier work of Jackson and Visentin in [JV90a]. Since
the distinction went unnoticed when results were adapted from the earlier
work, several theorems are false as they appear in [JPV96], but easily corrected
to the present form by scaling the third argument of R s by a factor of two.

The factors of (7.6) do not lend themselves to a combinatorial interpretation,
but taking logarithms and partial derivatives gives an additive identity,

Qu,x,y,z) = % (A(Zu, y+uy, 22x) + AQu, y—uy, zzx)) . (7.1)

If A denotes the class of rooted maps with 2k distinguished vertices, then

%(A(l,y +1,9,%)+A1,y—-1,y, x)) - Z 2 yIVOHEmI=2k [E),

k>0 meA

so 1 (A(2u, y+u,y,22x) + AQu,y —u,y, zzx)) enumerates elements of | J.o Ak
with each handle decorated in one of four ways. This led Jackson and Visentin,
in [JV90a], to implicitly posit/Conjecture 7.3 as an explanation for (7.1).

Definition 7.2 (A, Qyn). Let Ay, denote the class of rooted orientable maps with
n > 1 edges, each handle decorated independently in one of four ways, orientable genus
g — k, and 2k decorated vertices for some integer k. Similarly, let Q,,, denote the class
of rooted orientable 4-reqular maps with n vertices and orientable genus g.

Conjecture 7.3 (Jackson and Visentin [JV90a]). There is a bijection

P: U Agn — U Qy,n, such that (Ayn) = Qyn,
gn gn

and @ is ‘natural” in the sense that it respects additional structure.

Remark 7.4. If m has f faces and v vertices, 2k of which are decorated, then
@(m) must have f + v — 2k faces.

Remark 7.5. Without the insistence on naturality, the existence of at least one
such bijection is guaranteed by (7.1). Since the sets A, , and Q,, are finite and
equicardinal for every g and n, it is possible to construct an explicit bijection by
assigning any total order to the elements of each set, but such a bijection does
not provide any meaningful insight into the nature of maps.

Remark 7.6. By implicitly identifying handles with canonically chosen pairs
of edges, Brown and Jackson represented handle decorations as distinguished
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Figure 7.1: The image of the unique rooted map with two decorated vertices, indi-
cated by hollow circles, is the rooted map with two edges on the torus.

subsets of edges in [BJ02]. Their approach has the advantage that undecorated
maps are naturally identified with decorated maps in which no vertices are
distinguished and the handles are decorated by the empty set of edges, but
without constructing ¢ explicitly, it is unclear whether this is the best way to
represent the decoration of handles.

7.2 Initial Observations

Since |?(1,1| = (Q1,1| = 1, the action of ¢ is known for the unique rooted map with
one edge and two decorated vertices: see Figure 7.1/ No other explicit values
are known, but the medial construction, described inSection 7.3 provides an
appropriate bijection from (J,, Ao, to U, Q. This is used as a starting point
in/Section 7.3/to predict which structures might be respected by ¢.

The remainder of this Chapter examines Conjecture 7.3/in terms of the root-
edge classification introduced in |Chapter 4| for establishing Lemma 4.7, and
reproduced, as it relates to orientable maps, in/Table 7.1| Specializing the proof
of |Corollary 4.15 to b = 0 and r = y, and appealing to duality of orientable
rooted maps, established directly for rooted maps, without reference to
edge-labelled intermediaries. Additional specialization establishes the integral
expressions for A(1,x,N,z) and Q(1, x, N, z) while avoiding the character eval-
uations associated with the derivation of R 4 (x,y,z) and Ry(x, y,z). These
character evaluations, though essential to the original proof of (7.6), present
an obstacle to its combinatorialization. By avoiding them, it may be possible
to establish the identity directly in its additive form, (7.1), and thus avoid the
difficulty of finding a combinatorial interpretation for the factors in (7.6).

The root-edge classification is compatible with decorated maps: each rooted
map with b borders, r bridges, and & handles corresponds to 2"4" elements of
A = Ugn Agn- It is thus possible to represent elements of A by associating
decorations to edges, with each bridge decorated in one of two ways, and each
handle decorated in one of four ways: the final column of [Table 7.1 lists the
number of decorations that may be attached to a root-edge of each type. With
this convention, root-edge deletion extends naturally to decorated maps, since
the decoration of m\e can be inherited from the decoration of m.
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Table 7.1: The contribution to M from maps with each root-edge type

Root type Schematic Contribution to M Multiplicity

i+1
Border @ er]y, ]+2 1
i>0 j=1
8 d
Bridge z Tiyis M)( M) 2
D_C 0720 7 \or Ir;
2
Handle Jrivie2s—=— 4
Q/}@ ;6 +jt or ay]

Remark 7.7. One way to obtain two of the required four decorative states of
a handle is to allow each to be either twisted or untwisted. This interpreta-
tion helps to explain why non-orientable intermediaries appear in the bijection
between (J, A, and |, Q,n, obtained by Brown and Jackson in [BJ02].

Remark 7.8. If mis rooted on a cut-edge ¢, or if ¢ is the only edge of m, then one
or both of the components of nt\e may be the rooted map with no edges. The
augmented set, A with the edgeless map adjoined will be denoted by A*. If Q*
is produced by adjoining an additional element to @, then ¢ can be extended
so that : A" — Q" is a bijection. The representation of this additional element

is discussed inRemark 7.12

Ifé&: A—- A UA X A is the operation of root-edge deletion on decorated
maps and ¢ is extended to A* X A* by @(my, my) = ((p(ml),(p(mz)), then the
g-Conjecture would be resolved by providing a natural description of the action
of @ o & o L. This action may be expected to take two distinct forms, x; and
X2, as summarized in the following commutative diagrams,

Ay —— A Ay — A XA
lgu ya l(,, lw
Q 5 @ Q L2 ax@

with Ay = EHAY) and A, = EH A X AY), so that x» acts on 4-regular maps
that are the images under ¢ of cut-edge rooted maps, and x; acts on all other
4-regular maps. It is possible that is true but x; and x» lack
natural descriptions. An investigation of properties expected of y, leads in
Section 7.4, an attempt to classify the images of maps rooted on cut-edges, to
the main result of this Chapter, an identification of partitions of A and Q that
appear to be respected by ¢. More generally, natural descriptions of x; and x»
should provide a description of additional correspondences between A and Q.
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Example 7.9. If m is a rooted orientable map with n edges and root-face degree j that
can be decorated in c ways, then E1(m) consists of 2n + 1 rooted maps. Precisely j+ 1
of these are rooted on borders with c decorations each, while the remaining maps are
rooted on handles with 4c decorations each. It follows that for q € Q, the number
|x1(a)| determines the root-face degree of ¢1(q), so a natural description of x1 defines
a parameter of 4-reqular maps corresponding to root-face degree in rooted maps.

The medial construction, a possible specialization of the bijection required

by |Conjecture 7.3, is discussed in|Section 7.3 in an attempt to anticipate which
structures might be respected by ¢.

7.3 The Medial Construction

The medial construction, described for all genera by Schaeffer in [Sch98, Ch. 2]2
gives an explicit genus preserving bijection between rooted orientable maps and
face-bipartite rooted orientable 4-regular maps. If the decoration of handles is
represented in such a way that some maps in J,, Ay are considered undec-
orated, then there is a bijection between A and Q such that its restriction to
undecorated maps is the medial construction. If it is assumed that that at least
one bijection explaining Conjecture 7.3| takes this form, then any additional
structure respected by ¢ must also be respected by the medial construction.
This approach is used in/Section 7.4/to attempt to predict a characterization of
which 4-regular maps are the images under ¢ of decorated maps rooted on
cut-edges.

Definition 7.10 (medial construction). If m is a map, then the image of m under
the medial construction, denoted by p(m), is obtained by placing a vertex on every
edge of m. An edge joining two vertices of p(m) is drawn within every face in which
the corresponding edges of m appear consecutively around a face boundary. This
construction extends naturally to rooted maps.

The 4-regular maps produced by the medial construction are face-bipartite:
one class of faces corresponds to the faces of the original map, the other class
corresponds to vertices, and the degree of every face in p(m) equals the degree
of the corresponding face or vertex in m: see|Figure 7.2| The roles of vertices
and faces are interchangeable, since a map and its dual have the same unrooted
images under the action of ¢. The construction applies, unmodified, to maps
of all genera, with its image being all face-bipartite 4-regular maps.

Example 7.11. The first column of|Figure 7.3 gives the orientable rooted maps with
two edges, and the final column gives their images under the medial construction. Maps
are rooted by specifying the side of an edge, and 4-reqular maps are rooted by specifying
a vertex-face incidence, but the convention given in Figure 2.16|is altered so that the
root flag is counterclockwise of the head of the arrow in all cases.

2Gchaeffer, and other recent authors studying map enumeration, see for example [JV01], [JV90a],
and [BJ02], appear to have reversed the terms ‘'medial” and 'radial’. The present work attempts to
restore the terms to their historical meanings as used by Ore in pp. 46-47].
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Figure 7.2: The image, under the action of ¢, the medial construction, of a degree
i vertex or face in a rooted map is a degree i face in a face-bipartite 4-regular map.

o @
1 e OO0
-0 -0 €9
- - -0

} } 1

» »

Figure 7.3: The medial construction for orientable maps sends rooted maps with
two edges, given in the first column, to face-bipartite 4-regular rooted maps with
two vertices, given in the third column.
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Figure 7.4: If ¢ is used to defined };, an analogue of x; acting on undecorated
maps, then }; acts locally on 4-regular maps that are the images of border rooted
undecorated maps.

Root-face degree is preserved by ¢, but this does not generalize to ¢, since
root-face degree is not preserved by the action of ¢ given in Figure 7.1, where
a decorated map with root-face degree two has an image with root-face degree
four. The same example shows that vertex degree cannot be preserved in the
general case. Similarly, even though the involution induced by duality in A is
re-rooting in @, this behaviour cannot be generalized to decorated maps, since
the dual of the map in Figure 7.1 has only a single vertex, and thus no images
on the torus. The structures preserved by ¢ must be more subtle.

A more abstract characterization of the medial construction, one that might
generalize to ¢, is that local properties of rooted maps induce local properties of
4-regular maps. Two examples are that the action of the function on Q induced
by root edge deletion in (A can be described locally, as illustrated for borders in
Figure 7.4, and that topological cut-vertices® in face-bipartite 4-regular rooted
orientable maps are the images of cut-edges and their duals in undecorated
rooted orientable maps, as illustrated in|Figure 7.5. An examination of possible
relationships between cuts in Q and the action of ¢, in[Section 7.4} leads to

Conjecture 7.15, a refinement of Conjecture 7.3.

Remark 7.12. With ¥, defined analogously to x»,Figure 7.6/gives the action of
X> on @(m) when neither component of m\e is a leaf. Under the assumptions
that ¢ acts locally, extending this to the map in which both components of m\e
are leaves, as in|Figure 7.7, suggests the action

(p:/’—)@ sothat @ :=QU{®}.

The additional map should be considered orientable, 4-regular, and planar. It
has two faces, no vertices, and no edges.

3 A topological cut-vertex is a vertex whose deletion disconnects the graph as a topological space.
The term includes both graphical cut-vertices and all vertices incident with loops.
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Figure 7.5: Topological cut-vertices in face-bipartite 4-regular orientable rooted
maps are the images under ¢ of cut-edges and their duals.
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Figure 7.6: The function ), is analogous to x», and it acts locally.
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Figure 7.7: The medial construction suggests the image of the edgeless map.
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7.4 Cuts, Products, and a Refined Conjecture

The medial construction induces a correspondence that relates cut-edges and
their duals in rooted maps to topological cut-vertices, which occur in two forms,
in face-bipartite 4-regular rooted orientable maps. Shifting attention to deco-
rated rooted maps from rooted maps, and from face-bipartite to all 4-regular
rooted orientable maps, as required by the g-Conjecture, introduces a third fam-
ily of cuts on each class, but ¢ cannot induce a correspondence between these
additional cuts since they behave differently with respect to the parameter g.
With the goal of reconciling these differences, this Section describes products as-
sociated with each family of cuts, and in the process, partitions of each of A and
Q into two qualitatively different classes of maps, with each class identifiable
using properties of an appropriate product. Since numerical evidence suggests
that there may be a bijection that satisfies the g-Conjecture and respects the
partitions, this leads to a refined conjecture.

This Section analyzes twelve products. Three of them, p;, p2, and p3, are
defined by natural actions on A* X A", three more, 711, 715, and 73, are defined
by natural actions on @ x @', and the remaining six are defined implicitly by
the dashed arrows in the following commutative diagrams for 1 <i < 3:

A XA —Ps AXA -5 A
lwxw l(l? l«mp lw
@xQ --->aQ axq —/— a

The implicitly defined products do not necessarily have natural descriptions
on A* x A" and @ x @, but the products are indexed such that the actions
of m; and 7; on face-bipartite 4-regular rooted orientable maps agree for i €
{1,2}, provided that the restriction of ¢ to undecorated maps is the medial
construction. examines the possibility that 73 and 1, agree on a
non-trivial subset of @ x Q.

Remark 7.13. The names of the products have been selected such that the
correspondence preserves subscripts, the p’s act on A" X A, the n’s act on
Q X @, and a bar indicates that a product is defined implicitly. With Q sitting
below A, the position of a bar indicates the position of the implicitly defined
product relative to the naturally defined product to which it corresponds.

7.4.1 Products Acting Naturally on @ X @

Deleting a topological cut-vertex separates a 4-regular map into precisely two
components. Since each component is incident with the vertex along two half-
edges, this induces a perfect matching on the half-edges. There are precisely
three possible configurations in which a 4-regular map can be rooted at a cut-

140



//—\\ //—\\ //—\\
/ \ / \ / \
/ \ / \ / \
| | | | | |
\ / \ / \ /
\ / \ / \ /

\\_// \\_// \\—’/

(a) (b) ()
-~ ~
A £
/ ) : * : '

~ -
l/ \‘ . l’ ,\\
% | | y _— \ ) & )
* / * K ) -

-~ ~
) [
\ * /

~ _)a

(d) Products associated with the configurations

Figure 7.8: The root vertex of a 4-regular map rooted on a cut-vertex has one of three
possible configurations, [(a)-(c), classified by the matching on half-edges induced
by the cut. Products corresponding to each configuration are given in|(d), where
crossing edges are treated as in ribbon graphs.

vertex, one for each perfect matching. Each configuration corresponds to a

product on @', and the products are denoted by 71, 7, and 713 as in Figure 7.8

Remark 7.14. As in Example 7.11, the rooting convention from Figure 2.16|is
reversed for 4-regular maps relative to maps: arrows pointing at vertex-face

incidences in 4-regular maps indicate flags immediately counterclockwise of
their heads, while arrows pointing at edges in 4-regular maps indicate flags
clockwise of their heads. The distinction may be significant since, if the refine-
ment predicted in this Section is true, then ¢ does not commute with orientation
reversal. The modified convention is used for the rest of the Chapter.

Both 11 and m, are genus additive, but the genus of m3(q1, 92) depends on
whether the root edges of q; and q; are face-separating. Table 7.2 summarizes
the behaviours of 71, 7z, and 73, relative to whether or not the root edges of
their operands are face-separating. A [J indicates a map with a face-separating
root edge, and an [ indicates a map with a face-non-separating root edge.

For the purpose of the map ¢ (,°) = @, its representation sug-
gested by Remark 7.12, has a face-separating root edge. A comparison of the
genus and number of decorated vertices in p, (m, 4°) to the same parameters in
m determines whether the root edge of (i) is face-separating. It follows that a
natural description of p, induces a parameter of A that determines which maps
have images that are rooted on face-separating edges.
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Table 7.2: The genus of 73(q1, q2) depends on which root edges are face-separating.

g 9 mla,a2) m(q,a2) 7a(a,q2) Genus of ms(qy, 62)

o 0O O O O glar) + g(a) +1
o o O u u g(a1) + g(a2)
o O a 0 O g(a1) + g(a2)
0o 0O g U U g(a1) + g(a2)

7.4.2 Products Acting Naturally on A* X A’

In A, cut-edges occur in two forms, decorated and undecorated. Taken together
with duals of cut-edges, which are borders, and thus never decorated, this gives
three natural classes of cuts, and as with 4-regular maps, each cut is associated
with a corresponding product. These products are related to, but differ from,
P1, Py, and p,. The differences suggest a refined conjecture that limits which
structures might be preserved by ¢.

Recall that A; is the set of decorated maps that are rooted on bridges. Such
maps fall into two classes, distinguished by whether or not the root is decorated.
If the decoration of bridges is indicated by decorating an even subset of vertices,
as suggested by (7.1), then the two classes can be represented by Ay, those
rooted maps with an even number of decorated vertices on each side of the cut-
edge, and Ay,, those rooted maps with an odd number of decorated vertices on
each side of the cut-edge. Since &: Ay, — A* X A* preserves legal decorations,
when £ acts on Ay,, the decoration of each resulting root vertex is changed to
give each component an even number of decorated vertices. Two products, p;
and p3, both related to cut-edges, are then defined so that the following diagram
commutes:

The diagram can also be used to define 7 := <p1 o p;l)EB(pg, o p;l), an involution
of A that acts as a bijection between Ay, and A, by changing the decoration
of each vertex incident with the root edge: see Figure 7.9|

N 7 T N 7
l o—0 ) é—— | —o |
\’//(\‘, \’//(\‘,
[OREN RS T RN PRER
( —O I &> | o—e ]
\’//(\‘, \’//(\‘,

Figure 7.9: An involution of A, denoted by 7, interchanges A, and Ay,.
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Figure 7.10: The products p; and 73 are related.

Since the element-wise action of p;, given by

TN AT TN AT
pP1: [ » @ )] — »—C )
\,/*/*\‘/ \_7 A NLU,

is the inverse of ¢ as it occurs in Figure 7.6, the products 7i; and 71 coincide on
face-bipartite maps, provided that ¢ is the restriction of ¢ to undecorated maps.
Both products are genus additive, and it may be expected that their coincidence
extends to all decorated maps.

The second product, p3, is the composition of p; with 7. Since every element
of p3(A* x A*) has at least two decorated vertices, it does not correspond to a
product on undecorated maps. With the action of ¢ still unknown, a relationship
between 71, and 73 is only conjectured, but both products agree on (@, @),
as illustrated in [Figure 7.10, If q; and g, are both images of rooted maps with
decorated root vertices, then the genus of 7t,(q1, a2) is g(a1) + g(a2) — 1, but the
genus of 73(q1, a2) is at least g(a1) + g(az). It follows that the products r; and
113 cannot coincide for all 4-regular maps, but qualitative similarities between
their behaviours suggest the existence of some relationship, and this possibility
is examined in|Section 7.4.3.

The third product, p», is not directly related to &, but corresponds instead to
the duals of cut-edges. Its action is defined by

| N AT P
p2: k_/?,?\‘/' _)\__/
with the root vertex of p, (i, my) decorated as necessary to maintain parity. If

@ is the restriction of ¢ to undecorated maps, then 1, and 7, agree on face-
bipartite 4-regular maps, but this agreement cannot extend to all maps: if the

7
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Table 7.3: The products p1, p2, and ps, are summarized. Maps are listed with the
genera of theirimages under ¢. Decorated vertices are hollow, and g; denotes ¢(m;).

(my, my) p1(my, my) p2(my, my) p3(y, my)

[ N T TN T T 2N T

( -’ ) l\ S /' \_~- l\ /O_o\ /'
pre) TR N

g(a1) + g(a2) g(a1) + g(a2) g(a) +g(a) +1

(4: \:. of : \;) (" e 0 { - : . So—e o
i it il
g(a1) + g(a2) g(a1) + g(a2) g(a1) + g(a2)

(@0 +@) Qo G0 O
2 it =S
g(a) + g(qz) g(m) + g(a2) g(a1) + g(a2)

o~ - ~ - — ~ -
N D [N TN ~ [N TN
( O O ) ( o—O ) { ( o—o )
N_7 . N7 4 \_~- -7 4
trt ¢ } :

g(a1) + g(a2) gla) +g(a) =1 g(a1) + g(az) —

root vertices of both m; and m; are decorated, q; = (1), and q; = @(my), then
7,(a1, 92) has genus g(a1) + g(a2) — 1, but 2(a1, 02) has genus g(a1) + g(a2).
Table 7.3 gives the dependence of pi, p2, and p3 on root decoration. Both
p2 and p3 are genus-additive, but neither preserves total number of decorated
vertices, so 1, and 1, the corresponding products on @, are not genus-additive.
From their behaviour with respect to genus, a natural description of either 1,
or 1, can be used to describe a property of 4-regular maps that distinguishes
images of rooted maps with face-separating root edges from images of rooted

maps with face-non-separating root edges.

7.4.3 A Comparison and a Refinement

Each of the implicitly defined products described in the preceding sections
induces structure on the class of maps on which it acts. One approach to iden-
tifying the bijection ¢ required by Conjecture 7.3 involves trying to recognize
these induced structures by comparing their expected properties to properties of
structures associated with the naturally defined products. This approach leads
to Conjecture 7.15, a refined conjecture that is further supported by numerical

evidence.
The products 7;, 71,, and 1, induce three disjoint embeddings of @ X Q" in Q.
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Provided that the medial construction is the restriction of ¢ to undecorated
maps, 711 and 11z agree with 7t, and 71, respectively, when acting on face-bipartite
4-regular rooted orientable maps. Similarly, 13 and 7, agree unconditionally
when acting on (@, @) A dearth of natural candidates for the images of
the induced embeddings, together with the prediction that 7i; and 7t; agree on
restricted sets for every i, suggests that the products agree on substantially
larger sets.

Comparing 73 with 7, shows that the two products are distinct. For two
4-regular rooted orientable maps, q1 = @(m;) and q» = @(my), with the root
vertex of m; denoted by v; and the root edge of q; denoted by ¢; for i € {1, 2}, the
products 1, and 73 have the following behaviour with respect to genus:

neither v; nor v, is decorated
one of v; and v, is decorated

g(7s(a1, 02)) = glan) + g(a) +
both v; and v, are decorated, and

both e; and e, are face-separating
one of e; and e, is face-separating

g(ma(ar, 92)) = g(an) + g(en) +
neither e; nor e; is face-separating.

OO =R =)o

Since 73 is genus-superadditive, the two products cannot agree on images of
maps that are both rooted on decorated vertices, but comparing the operands
on which the products are strictly genus-superadditive suggests a relationship
between undecorated root vertices in maps and face-separating root edges in
4-regular maps.

Similarly, if 7r, and p, have natural descriptions, then A" and @ carry the
structure necessary for identifying which elements of A" are sent to 4-regular
maps rooted on face-separating edges by ¢, and which elements of Q" are the
images of maps rooted on decorated vertices. The simplest explanation, in that
it demands the least additional structure on each class, is that the structures are
related by the action of ¢. This is the same conclusion as the one implied by
the hypothesis that 73 and 1, coincide on the maximum set not excluded by
their behaviours with respect to genus. Together with numerical evidence, this
suggests the following refinement of Conjecture 7.3.

Conjecture 7.15 (The Refined g-Conjecture). There is a bijection ¢ satisfying the
conditions of|Conjecture 7.3 such that the root edge of p(m) is face-separating if and
only if the root vertex of m is not decorated.

Remark 7.16. In support of this refinement, even without knowing any explicit
actions of ¢, if m is a one-faced map in which every vertex is decorated, then
@(m) also has only one face, so the root edge of ¢(m) is face-non-separating.

Example 7.17. There are 1720 rooted maps with 3 vertices on the torus, each with
4(2) = 12 decorations having images on the double-torus under the action of ¢. If
Conjecture 7.15 is true, then 4(3) = 4 of these have face-separating root edges and
4(%) = 8 have face-non-separating root edges.
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Table 7.4: Number of 5-vertex maps in Q refined by genus and root-edge behaviour

g Face-separating Face-non-separating  Total

0 2,916 0 2,916
1 23,976 7,290 31,266
2 27,972 28,674 56,646
3 0 9,450 9,450

Table 7.5: Number of 5-edge maps refined by genus and number of vertices
g v=1 v=2 ©v=3 v=4 v=5 v=6
0 42 386 1030 1030 386 42

1 420 1720 1720 420
2 483 483

Example 7.18. A computer search was used to classify all 100,278 of the 4-regqular
rooted orientable maps with 5 vertices according to genus and whether or not the
root-edge of each is face-separating. The results appear in [Table 7.4. The following
calculation uses Conjecture 7.15|to express each non-zero entry of the Table in terms of
coefficients of A(u, x, 1, z), with the relevant values appearing in|Table 7.5 a tabulation
of the number of orientable 5-edged maps with each genus and number of vertices:

2,916:(0)42+(1)386+(2)1030+(3)1030+(4)386+(g)42,

0 0 0 0 0
2 3 4 5
23,976—(2)1030+(2)1030+(2)386+(2)42
0 1 2 3
+4((O)420+(0)1720+(O)17zo+(0)420),
(4 5 2 3 2 (10 1
27,972_(4)386+(4)42+4((2)1720+(2)420)+4 ((0)483+(0)483),
1 3 5
7,290:(1)386+( )1030+(1)1030+( )386+(1)42,
3 2 3
28, 674 = (3)1030+( )386+( )42+4(( )1720+(1)1720+(1)420),
(5 3 2 (1
9,450_(5)42+4(3)420+4 (1)483.

146



7.5 Symmetry Breaking and Chirality

This Section examines symmetries of A and Q, with emphasis on symmetries
of A that preserve the root edge and symmetries of Q that preserve the root
vertex. As in |Section 3.6.3, where it was noted that a b-invariant must break
the symmetry between three involutions acting on hypermaps in order to have
a dependence on rooting, the bijection predicted by |(Conjecture 7.15 cannot
respect all of the symmetries that are shared by A and Q, even those that are
respected by the medial construction. In particular, the left-right symmetry
exhibited by both classes must be broken by every suitable bijection.

A 4-regular rooted map has eight flags incident with each vertex, and the
dihedral group with 8 elements acts on Q by re-rooting maps to new flags
incident with the same vertex. The group is generated by three involutions,
a1, ap, and a3, and each induces a corresponding action on A: [Figure 7.11
gives the actions of a1, @y, and a3, together with the actions of 1, p2, and
B3, the corresponding involutions induced on undecorated elements of A by
the medial construction. All three induced actions are natural on undecorated
maps and preserve root edges: 1 and f, do so directly, and f3 does so via
the natural bijection between the flags of a map and the flags of its dual. As
noted in|[Section 7.3, a map and its dual need not have the same number of
vertices, and thus need not have images on the same surfaces. It follows that a3
cannot correspond to duality in general. |Conjecture 7.15 additionally precludes
extending the actions of f; and f, given in Figure 7.11 to all decorated maps.

,33

\\

\
51 2 \
|
!

. /

//

@ @

| | E la

a ap
—> —>

Figure 7.11: Three involutions, a1, @y, and a3, act on @ by changing the root to a
new flag incident with the same vertex, and generate a group of order eight. In the
restriction to face-bipartite maps, they correspond, via the medial construction, @,
to 1, B2, and B3. The first two re-root maps to new flags on the same edge. The
third, B3, is rooted duality. It does not act locally, but it does preserve root edges.
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Figure 7.12: There are fifteen rooted orientable 4-regular maps with two vertices
on the torus. Face-non-separating edges are indicated with broken lines, while
face-separating edges are solid.

e by :
e oo o

Figure 7.13: Nine of the eleven elements of A with two edges and images on the
torus are rooted at decorated vertices, which are indicated with hollow circles.

To see that the actions of 1 and a; given in Figure 7.11 do not correspond
to each other in general, consider the elements of A with two edges and their
images in Q with two vertices. gives the fifteen rooted orientable
4-regular maps with two vertices on the torus, using line-style to distinguish
face-separating edges from face-non-separating edges. Eleven of these are
images of the decorated planar rooted maps given in [Figure 7.13, and the re-
maining four are images of decorated copies of the monopole with two edges
on the torus, all of which have undecorated root vertices. Assuming the Refined
g-Conjecture, if the correspondence between the actions of a; and $; given in
Figure 7.11 extends to all maps, then ¢ induces a bijection between

1. elements of A, with root arrows that are clockwise of decorated vertices
and counterclockwise of undecorated vertices, and

2. elements of Qg,n withrootarrows thatare clockwise of face-non-separating
edges and counterclockwise of face-separating edges.

Since there are three of the former in Figure 7.12/and only two of the latter in
Figure 7.13, no such bijection exists.

Similarly, there are three maps in Figure 7.12 with face-separating root edges
that have images under the action of a, with face-non-separating root edges.
It follows that if Conjecture 7.15 is true, then the action on A induced by a,
cannot preserve root vertices. So the correspondence between the actions of a,
and f3; given in Figure 7.11/does not extend to all decorated maps either.

Attempting to match involutions acting on A with naturally defined invo-
lutions acting on Q suggests why the g-Conjecture has remained relatively
intractable: to wit, the required bijection exhibits an unexpected chirality. Even
though the enumerative theories of both A and Q are unchanged by interchang-
ing the senses of clockwise and counterclockwise used to determine which flag
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is indicated by a particular arrow, the bijection predicted by Conjecture 7.15
cannot respect this symmetry. Since the underlying enumerative problem was
introduced from a study of two models of 2-dimensional quantum gravity, this
chirality might have a physical significance.

Additional insight into the g-Conjecture might be obtained by trying to match
involutions acting on Q with naturally defined involutions acting on A. In
particular, the actions of 1 and B, given in extend unmodified to
all of A. Similarly, the involution 7, its action on bridge-rooted maps given in
Figure 7.9, acts on any decorated map by changing the state of decoration of
each vertex once for every time it is incident with the root edge. By comparing
fixed points, a natural description of the involution induced by t could be used
to identify the images in Q of loop-rooted maps in A. Together, 7, 1, and B,
generate a group isomorphic to Z, X Z, X Z, that acts on A, but attempts to
find the induced action of this group on Q have been no more successful than
attempts to identify a natural action of the eight element dihedral group on A.

To date, attempts to identify the actions that a, a, and a3 induce on A, or
the actions that 81, B2, and 7 induce on @, have been unsuccessful. This suggests
that perhaps the correct approach to the g-Conjecture should be to study a class
of covering objects on which all of the actions described in this Chapter act
naturally.

7.6 An Algebraic Formulation

Though the Refined g-Conjecture begins to answer questions of what structures
might be preserved by a bijection between A and @, and through [Section 7.5
what structures cannot be preserved by such a bijection, it does so at the ex-
pense of certainty about existence. The existence of a bijection between A, ,
and @, is guaranteed by the work of Jackson and Visentin in [JV90a], but
the existence of a bijection that additionally sends maps rooted on decorated
vertices to 4-regular maps rooted on face-non-separating edges, as required
by Conjecture 7.15, is presently supported only by structural observations and
numerical evidence. This Section describes the combinatorial observations nec-
essary to give|Conjecture 7.15 an algebraic reformulation that can potentially
be verified using an approach similar to that used by Jackson and Visentin in
[JV90a]. The desired reformulation is obtained by giving explicit expressions
to the generating series of the relevant partitions of A and Q.

Definition 7.19 (Q;, Q>, Q1(u,x,vy,z), and Q(u, x, y,z)). Denote the subset of Q
consisting of maps with face-separating root edges by Qy, and denote the subset consist-
ing of maps with face-non-separating root edges by Q,. The generating series for these
sets are Q1(u, x, y,z) and Qx(u, x, y, z), respectively.

Finding generating series for the required partitions of A requires decorating

the root vertex separately from the remaining vertices. Since the generating
series for elements of A with root vertices marked by r instead of x is given by
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~A(u,x,y,z), dropping the condition of naturality from Conjecture 7.15 gives
the following algebraic formulation.

Conjecture 7.20. The series Q1(u, x, y,z) and Qx(u, x, y, z) are given by
Q1(u,x,y,z) = bis, LA(ZM y+uy xzz) and
7 7 7 y + u 7 7 7 7
— 1 u 2
Qa(u, x, y,2) = bisy (}/Jr_u A (2u, y+uy,xz )) ,

where bis,, f(u) := %( flu)+ f (—u)) denotes the even bisection of f with respect to u.

Neither Q1(u,x,y,z) nor Qx(u,x,y,z) specializes M(x, y,z), but both series
can be obtained indirectly from a system of two equations involving linear
combinations of Q; and Q,. The first equation, Q = Q1 + Q», is obtained by
noting that Q is the disjoint union of Q; and @. A second equation is obtained
by using two different methods to compute the generating series for a class of
maps with at most two vertices having degree different from four.

7.6.1 Pseudo-4-Regular Maps

Definition 7.21 (pseudo-4-regular map). A map is m-pseudo-4-regular if it has
a root vertex of degree m but every other vertex has degree 4. Similarly, a map is
(m, n)-pseudo-4-regular if it has a root vertex of degree m, it has a non-root vertex of
degree n, and its remaining vertices all have degree 4. Classes of such maps are denoted
by Py, and Py, ,, with corresponding generating series denoted by P, and Py, ,,.

Remark 7.22. Only (3,1)-pseudo-4-regular maps are required in the present
discussion, but 2-, 6-, and (3, 3)-pseudo-4-regular maps all arise naturally when
considering minors of 4-regular maps.

The series P31(u, x,y,z) can be obtained either by considering a bijection be-
tween P31 and Q, or by specializing M(x, y, z; 0) and appealing to|Corollary 4.20
and duality. Comparing the resulting expressions gives the second equation
required for determining Q1 (u, x, y,z) and Qx(u, x, v, ).

If pis a (3,1)-pseudo-4-regular map and the edge e is incident with its degree
one vertex, then a 4-regular map is obtained from p by identifying its degree
one vertex with its root vertex so that e becomes the new root edge. Every
4-regular map can be obtained in this way, and the operation is invertible when
attention is restricted to orientable maps. It follows that the function C defined
by the local action,
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is a bijection from elements of P51 with k vertices to elements of Q with k — 1
vertices. If the degree one vertex of p is incident with its root face, then ((p) has
a face-separating root edge and one more face than p, so {(p) and p have the
same genus. Otherwise, {(p) has a face-non-separating root edge and one face
fewer than p, so {(p) has one more handle than p. It follows that P3; is given as
a linear combination of Q; and Q» by

X
Par(it,%, 1, 2) = §Ql<u, %,,2) + 3 Qalt,3,9,2) (7.10)

Solving this simultaneously with Q = Q; + Q; gives the solution

u>Py1 —xyQ
x(u® = y?)

sz—]/Pm

Q= x(u? - 2)

and Qr=u , (7.11)
so it remains only to find an expression for P3(u, x, v, z).

By duality and if a rooted map has vertex-degree partition
[1,3,451], then precisely j of its rootings are on its degree three vertex. Since
such a map has 2k edges, the operator sending f to f 5 f dz has the effect of
restricting the generating series of arbitrarily rooted maps with vertex degree
partitions in the set { [1,3,45: k> 0} to the generating series for (3, 1)-pseudo-
4-regular maps, and it follows that P3; is given by

dz. (7.12)

x,-:é,-,4x

P31(1,x,y,2) = f% ([X1X3]M(X, v,z 0))

Remark 7.23. Using (7.11) and (7.12), a Maple program naively based on the
specialization of (4.9) at b = 0 took less than two hours and less than 1Gb
of memory to compute the low order terms of P3; necessary to verify that
Conjecture 7.15|predicts the correct distribution between Q; and @, of the over
8 x 10™ elements of Q with at most 9 edges.

7.6.2 An Integral Factorization

By using the expectation operator (-) to represent P3:(1,x, y,z), the algebraic
content of Conjecture 7.20 can be rephrased as an integral factorization. Since
its form is analogous to the factorization given by Jackson, Perry, and Visentin
in [JPV96], it may be resolvable using a similar approach. For this purpose, it is
sufficient to work with the two-parameter series P31(x, N) := P31(1,x,N, 1) and
Qi(x,N) = Qi(1,x,N, 1), since the remaining parameters can be recovered via
the relationships

1 1
Pai(u,%,y,2) = = Pan (uxzz, %) and  Qiw,x,y,2) = — Qi (uxzz, %)
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. 3 .
Starting from (7.8), Vz xgip%z” enumerates maps with root vertex degree three,
and specializing this series at z = 1 and x, = x5 = x6 = - - - = 0 gives that, when
N is a positive integer,
<p3 exp (p1x1 + %p3x3 + %p4X4)>

<exp (p1x1 + paxs + %p4x4)>

P3,1(x,N) = x* [x1x3] x3

X4=X.

Since
psexp (pix1 + 1paxs + dpaxs) = pa(1 + pror) exp (paxs) + O() + O(x3),

and the odd function p3exp (%p4x4) is annihilated by (), the only non-zero

contribution to the numerator is from x; <p3p1 exp (%mx)), so it follows that

P31 (x,N) = *(psp1 exp (3pax) exp (3p4)) (7.13)

which, when combined with (7.11), gives the following theorem.

Theorem 7.24. If N is a positive integer not equal to 1, then
Qi1(x,N)=x L<( — Npy) (1 x)>< (1 x)>1 and
1(X, =Y N2 P3p1 P4)exp 4P4 exp 4P4 ,

1 1 1 -1
Qxtx,N) =3 7= = Nowpexp (g (7))
Remark 7.25. AtN = 1, thelinear system used to derive Q; and Q, is degenerate.
Substituting (7.13) in (7.11) and multiplying by N gives

-1

Q1(x,N) + N?Q,(x,N) = Nx <p3p1 exp (%p4x)><exp (}1;743()) ,

but at N = 1 this gives only the trivial identity, Q1(x, 1) + Q2(x,1) = Q(1,x,1,1),
since p3(A)p1(A) = A3A1 = A7 = pa(A).

Example 7.26. The recurrence from (7.7) gives the following expectations of power-
sums, with factors of (1) omitted for clarity:

(pa) =N +2N°,
(p3) = 61N? + 40N* + 4N®,
(p}) = 1440N + 6517N° + 2202N° + 228N7 + 8N?,

(p1ps) = 3N?,
(p1papa) = 24N + 75N> + 6N°,

(p1psp}) = 5232N2 + 4743N* + 408N° + 12NP.
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These values, in turn, are sufficient to derive all terms of Qi(x,N) and Qx(x,N)
with degree at most 3 in x, by first evaluating <exp (}lp4x4)>, X <p4 exp (%p4x)>, and
x <P1P3 exp (}Ip4x)> as follows:

2 3
oot -+ G B )
L NH2NT6IN 4 4ON* +4N°

4 32

2 3
x <p4 exp (%p4x)> = (ps)yx + <pT4>x2 + 2<P1>2
(v 2n)as 61N? + 4(4)1N4 HANG
N 1440N + 6517N3 + 2202N° + 228N” + 8N°

32

x® + O(x*h

=1

x* + 0@,

x* +O(xh)

¥+ O(x4),

2
. ~ T D G
x<p1p3 exp (Zp4x)> = (ppayx + 1 St ogp ¥
24N +75N° + 6N°
1 x
N 5232N? + 4743N* + 408N° + 12N8
32

Combining these according to (7.11), gives after significant cancellation,

+O(x*h

= 3N%x +

x>+ O0(xh).

Nx <p1p3 exp (ip4x)> - N%x <p4 exp (}Ip4x)>

,N) =
Q1(x,N) -\ <exp (};Pﬁix»
= 2Nx + (6N + ON*)x? + (117N + 54N°) * + O(x*),  and
M) = X <p4 exp (ip4x)> —x <Np1p3 exp (}Ip4x)>

(1-N?) <exp (ip4x)>
= Nx + 9N?2% + (45N + 81N?) * + O(x).

The term 81N3x3 in Qy(x, N), for example, corresponds to the monomial 81ux313z°
in Qa(u, x,y,z), and enumerates the three-vertex elements of Q, on the torus: these 81

maps are given in Figure 7.14.

Remark 7.27. The program inSection B.6 of Appendix B uses this approach for

computing Q;, and was used to verify the predictions of Conjecture 7.20 for all
rooted orientable 4-regular maps with at most 20 vertices.
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Figure 7.14: In this listing of the 4-regular maps with 3 vertices on the torus, line
style distinguishes between face-separating and face-non-separating edges, and
root arrows indicate the 81 elements of @, on the torus that have three vertices.
Rootings in @; are not marked.
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With some algebraic manipulation, it is now possible to use [Theorem 7.24

to rephrase (Conjecture 7.20/in a form similar to (7.9), and thus potentially al-

low a modification of the techniques from [JV90a] to resolve the question of
the existence of an appropriate bijection. To this end, it is sufficient to prove
Conjecture 7.20|for u = z = 1, in which case only the evaluations

AQR,y+1,y,xz%)=4A (1, ly+1), 1y, 2sz) ,

need to be considered. Further restricting to the case that 1y = N is a positive
integer permits working exclusively with the integral representation

A(l,x,N,z) = Zxx/E" <Pk exp (Zl %Pz‘xﬁi»,
k>1 <exp (Zl %Pix \/zz)>

of A. It is convenient to introduce S(u) and T(u) defined by

N
S(u) = Z V2x < kH 1 A \/_ (N+H)> and

k>1 i=1

T(u) ::<H(1—A vax) ”)>

i=1

so that A(1, N + g, N, 2x) = (N + ) S(u)T(w) ", and (7.9) can be rewritten as

! <exp <}IP4X)>(2N) =T (—%) T (%) , (7.14)
with ¢ = ¢(N) = (1) (1)(1\7;) defined as before. Similarly (7.1) can be written as
ps expl(imx»(m) onan ) s(4) o) S (—%)

<exp (me»(zm T(E) (_5)

which when multiplied by (7.14) gives
cx (paexp (§p4x)>(2N) =eN+DS(H)T(-3)+@N-1s(-1)T(}). (7.15)
Using this notation, Conjecture 7.20 predicts that

A(2u,2N + u, 2N, x))

. 2N
Qi(x,2N) = (blSu N

u=1

=2( 2N A(LN+1,N,2x) + 2N

2N +1 2N -1

- 2N (s (%)T‘l (%) +8S (—%)T‘1 (—%)),

A(UN - 1,N,29))
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and also that

Qa(x,2N) = (b1su N T A(Zu 2N +u,2N, x))

u=1

- 2(2N1+ A LN+ 1N,21) -

=S () -s()r ()

Substituting the value from Theorem 7.24 into this conjectured expression
then predicts, after multiplying both sides of the equation by (7.14), that

T ALN =L N,20))

clx <(P4 — 2Npips) exp (}1}749())(21\]) (1 4N2) (S ( ) T(_%) -5 (_%) TG) )’
or equivalently, by subtracting and then dividing by —2N, that
e (pips exp (§pax)) ,, = @V +DS(3) T(=5) - @N - 1s(-4) 7(5)-

Subtracting (7.15) again, and noting that pips = ps + my1 3], shows that the
required bijection exists if and only if the following factorization holds:

cx <m[1l3] exp (%{mx»(zm = (2-4N)S (—%) T (%) .
This equivalence has a purely analytic statement given in the following theorem.

Theorem 7.28. With V(A) denoting the Vandermonde determinant, the factorization

2
1 1 1
x (f V(A)ZAl/\gezpat(/\)x—zpz(/\) d/\) (f V(A)Ze—zpz(/\) d/\)
R2N RN

- 2 eV e )( 2 - 1p) )
(fR V(A)H(l /\l\/Z_x) e 2N ga jH;ZNV(A)eZ dA

i=1
N

1
X V(/\2 (1-Aiv2x) Ze_i”zwd)\), (7.16)
(LN 1- /\1 H

i=1

holds for all positive integers N, if and only if|Conjecture 7.20|is true, or equivalently,

if and only if there is a bijection, not necessarily natural, between A, and Q,,, such
that the image of a map has a face-separating root edge precisely when that map has an
undecorated root vertex.

Remark 7.29. From their combinatorial interpretations, when evaluated at any
positive integer N, the series appearing in (7.16) are elements of R[x], and by
Remark 7.27} any term that differs between the two products must have degree
greater than 20 in x.
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7.6.3 Characterizing the Refinement Using #;

‘Conjecture 7.20|also asserts the existence of functional relationships involving
P31(1,x,y,1), and thus offers the possibility that there is a combinatorial proof
of (7.16) that avoids reference to A. Such a proof would not require a represen-
tation for decorated handles.

With the bisections expanded explicitly, and the resulting expressions evalu-
ated at u = z = 1,|Conjecture 7.20|predicts two other identities that are equiva-
lent to each other as a consequence of (7.1):

__Y y _
2Q:1(x,y) = erlA(2,y+ 1,y,x)+ = 1A(Z,y 1,y,x), and
1 1
2Qo(x,y) = ﬁA(Zly +1,y,x) - FA(zly -1, y,x).

Solving this system for A2,y + 1, y,x) and A2,y — 1, y,x) in terms of Qi(x, y)
and Q»(x, y), and then applying (7.10), the conjecture holds if and only if

AR,y +1,y,%) = y_;-l(Ql(x/ y) +yQa(x, )
=Q(1,x,y,1)+1P31(1,x,y,1), (7.17)
or equivalently, if and only if
AR,y-1,y,x)=Q(Lx,y,1) - 1Ps:(1,x,y,1). (7.18)

If A denotes the class of rooted maps with each handle decorated in one of
four ways and any number (even or odd) of decorated vertices, then (7.17)

suggests that ¢ can be extended to a bisection from A to QU P3;. In this
extended framework images of maps with an odd number of decorated vertices
are precisely the elements of 31, and it might be possible to describe the action
of 1, by giving an appropriate function from $31 X P31 to Q.

The combination of (7.17) and (7.18) also predicts a functional relationship
between P3; and Q. Symmetry between x and y in A(u, x, y, z) gives

Q,x,y,1)+1P31(1,xy1) = AR y+1,y,x)
=AQ2yy+1,x)
=AQ2,y+1)-1y+1,x)
=Q(xy+1,1)-1P;;(1,xy+1,1),

and after a rearrangement of terms, this is equivalent to
Q(ll X, y + 1/ 1) - Q(lr X, yr 1) = %P3,1(11 X, y + 11 1) + %P3,1(1l X, yr 1) (719)

This relationship suggests the existence of a bijection between two multisets of
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face-decorated maps: the first multiset consists of elements of Q with n edges
and k undecorated faces such that at least one face is decorated, and the second
multiset consists of elements of 3, with n edges and k undecorated faces such
that maps with no decorated faces each appear twice.

In fact, holds if and only if Conjecture 7.20/is true. The equivalence is
verified by considering the series P'(x,y) = xAQ2,y + 1,y,x) — xQ(1,x,y,1). It
follows from (7.1) that P’ is also given by P’ (x, y) = xQ(1,x,y, 1)-xA(2, y—1,v, ),
and so the same reasoning as above gives

Q1,xy+1,1)-0Q1xy1) =P (xy+1)+1P(xy).
Thus if (7.19) holds, then
P(x,y+1)+P'(x,y) = P31(x,y + 1) + P31(x, y),

which implies that P’(x, y) and Ps1(x, y) are equal as elements of Q[y][[x].

The equivalence provides two additional approaches that might be used to
prove Conjecture 7.20, A purely analytic approach could involve verifying
(7.19) by showing that

<(P4 + P1P3)ep4x>(N) (ep4x>(N+1) == <m[1,3]ep4x>(N+1) <ep4x>(N) ’ (7.20)

for every positive integer N. Similarly, a purely combinatorial approach could
involve exhibiting an appropriate explicit bijection between face-decorated ele-
ments of Q and P 1.

7.7 Possible Restricted Actions of ¢

Although the action of ¢ remains known only on the rooted map given in
Figure 7.1, itis possible to define actions that are consistent with/ Conjecture 7.15
on restricted subsets of A. The aim is to describe consistent actions on enough
restricted sets that additional actions can be deduced by the process of elimina-
tion. Care must be taken when extrapolating from such examples, since as seen
in/Section 7.5, symmetries that are respected on restricted classes need not be
preserved by ¢ in general.

7.7.1 Maps With Degree One Root Vertices

One of the goals introduced in|Section 7.2, the goal of describing the action of ¢
on maps rooted on cut-edges, would be accomplished by giving natural descrip-
tions to the products 7t, and 7, that were defined implicitly in|Section 7.4.2. The
Refined g-Conjecture was obtained in/Section 7.4.3 by assuming that 7, and 73
agree except where this is precluded by their behaviours with respect to genus
additivity: their actions cannot coincide when acting on pairs of 4-regular maps
both of which are images of maps with decorated root vertices. Extrapolating
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l(PX(P l(P

Figure 7.15: The assumption that 7, and 73 coincide, except where precluded by
genus, gives a possible action of ¢ on maps with degree one root vertices. Decorated
vertices are indicated by hollow circles. The action of ¢ on Q induced by the action
of T on A is identical when an even number of decorated vertices are incident with
the root edge.

the presumed relationship between 7, and 73 gives a candidate action for ¢,
except when the root edge is an odd cut that separates two undecorated vertices.
An edge incident with a degree one vertex induces an odd cut if and only if
that vertex is decorated. So when considering only maps with degree one root
vertices, no inconsistency is incurred by assuming that r; = 7; and 7, = 7.

Under these assumptions, any action of ¢ consistent with|Conjecture 7.15 on
all rooted maps with at most n edges can be extended to an action consistent
with|/Conjecture 7.15 on all maps with n + 1 edges that are rooted on degree one
vertices: if the root vertex is undecorated, then the root edge induces an even
cut, and ¢ can be defined in terms of 71, otherwise, the root edge induces an
odd cut, and ¢ can be defined in terms of 3. More explicitly, if m is rooted on
a degree one vertex v, and &(m) = (v, 4°), then the recursive definition,

el ((p(m’), @) if v is undecorated,
(3 ((p(m’), @) if v is decorated,

is consistent with |Conjecture 7.15. In particular, there is at least one bijection ¢
between A and Q for which the diagram in Figure 7.15 commutes, but it is not
known if any such bijection is ‘natural” on all of A.

p(m) =
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Figure 7.16: The action of 0 := ¢ 0 7 0 ¢! on a restricted subset of Q is predicted in
Figure 7.15 by assuming that t; = 71; and 1, = 73. This action extends consistently
to the images of planar maps with precisely two decorated vertices both of which
are incident with the root edge.

7.7.2 Planar Maps with Two Decorated Vertices

The bijection ¢ sends two classes of maps to images on the torus: rooted maps
on the torus with no decorated vertices, and rooted planar maps with two
decorated vertices. (Conjecture 7.15 predicts further that 4-regular rooted maps
on the torus with face-non-separating root edges are precisely the images of
planar maps with two decorated vertices, one of which is the root vertex. The
action on Q induced by the action of 7 on A suggests the behaviour of this
bijection when both decorated vertices are incident with the root face.

Two involutions, 7 acting on Ay, and ¢ acting on a subset of Q, are defined in
terms of p; and ps3: see[Figure 7.16a, As mentioned in/Section 7.5, the action of
T extends to all of A: if the root edge of m is incident with two distinct vertices,
then 7 acts by changing the decoration of each of these two vertices, otherwise
T acts as the identity. Similarly, the action of ¢ predicted in Figure 7.15 can be
extended to all of Q by

so thatoo@ort gives a candidate action for ¢ on planar maps with two decorated
vertices, both of which are incident with the root edge: see Figure 7.16b. If m
is such a map, then tv(m) has no decorated vertices and ¢ o 7(m) is a planar
4-regular map with distinct faces clockwise and counterclockwise of the root.
Applying o to the result decreases the number of faces by two, increases the
genus by one, and gives a map on the torus.
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Figure 7.17: The action of o o ¢ o 7 is related to the representation of the torus as
a tiled hexagon. It extends from maps with both decorated vertices incident with
the root edge (the first three rows) to a more general class of maps (the fourth
row). The first column gives planar maps with two decorated vertices. These
maps are superimposed with their images under ¢ in the second column. In the
third column, hexagons are drawn intersecting edges determined by the decorated
vertices. Finally, in the fourth column, the interiors of these hexagons represent
tori. A partial tiling is used to emphasize face structure.
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The action just described is closely related to the representation of the torus
as a tiled polygon: see the first three rows of It extends, with
modification, to rooted maps in which the two decorated vertices are separated
by a path along the boundary of the root face that contains the root arrow and
along which only undecorated vertices appear: see the fourth row of{Figure 7.17.

7.7.3 Maps With Handles as Root Edges

There are only six 4-regular maps on the torus with two vertices and face-non-
separating root edges. Of these, two are images of planar maps, and four are
images of the rooted map on the torus with two edges. Sections7.7.1 and|7.7.2
predict the images of the planar maps: see Figures|7.18a and|7.18b| So assuming
there is a bijection between A and Q that is consistent with these actions, this
gives the four images of decorated copies of the rooted map with two edges on

the torus: see Figure 7.18c.

O—0—e Oo—e—0

N N

-
(a) An image determined by the &~ (b) An image determined by the
action of ¢ given in|Section 7.7.1 action of ¢ given in|Section 7.7.2
x4

N

S
7 7

A

N
>
(c) The remaining four 4-regular maps on the torus with two vertices and face-non-
separating edges are all images of the rooted map with two edges on the torus.

Figure 7.18: Rooted maps with undecorated root vertices and images on the torus
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Figure 7.19: A local action on Q induced with respect to the medial construction by
root-edge deletion on undecorated elements of A that are not rooted on cut-edges

Figure 7.20: The results of applying x; to the 4-regular maps in Figure 7.18c

A closer examination of these four images might reveal how the decoration
of handles interacts with ¢. With respect to the medial construction, Figure 7.19
gives the action x; induced on @ by root edge deletion in undecorated elements
of A that are not rooted on cutedges. Applying this action to the 4-regular maps
in Figure 7.18c| gives the maps in |Figure 7.20, but no pattern is immediately

apparent.

7.8 Summary

This Chapter examined possible structure of ¢, a conjectured bijection between
two classes of maps. Emphasis followed attempts to find the actions induced on
one class by natural actions on the other. The medial construction, a possible re-
striction of @, suggests a relationship between cut-edges in A and cut-vertices
in Q, and an examination of structural similarities between products associ-
ated with these cuts led to the main result of the Chapter, [Conjecture 7.15, a

refinement of the original conjecture.

Besides predicting a chirality that may be interesting in the physical set-
ting from which the problem originated, the Refined g-Conjecture suggests
additional combinatorial relationships involving (3, 1)-pseudo-4-regular maps,
a new class of maps introduced to permit an algebraic formulation of the con-
jecture. This reformulation recasts the conjecture in an analytic setting in which
the approach developed by Jackson and Visentin might apply, and permits
numerical testing.

Numerical evidence justifies using the refinement as a basis for conjecturing
the actions of ¢ on two restricted classes of maps. Together, these predicted ac-
tions are sufficient to give the four images of the smallest non-planar orientable
map.
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Chapter 8

Future Work

81 Onn

Chapter 4 showed that any invariant of rooted maps that satisfies|Definition 4.1
is a marginal b-invariant. Algebraic properties of the series M(x,y, z;b) guar-
antee that these invariants exhibit combinatorial properties for which there are
currently no combinatorial proofs. Establishing such proofs would help to re-
solve whether any invariant in the family is a b-invariant. Future work on these
invariants should fall into two categories:

1. developing and interpreting the properties of the invariants, and

2. determining if any elements of the family are b-invariants.

The Root-Face Degree Distribution Property

Corollary 4.20, the root-face degree distribution property, states that among all
rooted maps with a given number of vertices and a given face-degree partition,
the degree of the root face is independent of 1, for every invariant 1) that satisfies
Definition 4.1. A combinatorial proof of this property could provide an opera-
tion analogous to re-rooting, and such an operation could simplify structural

analyses, like those presented in|Chapter 6

Symmetry Between x and y

Similarly, if 17 is any marginal b-invariant, then the algebraic symmetry between
x and y in M(x, y, z; b) guarantees the existence of an n-preserving bijection be-
tween M, s and My, for every pair of positive integers v and f, where M,
denotes the class of rooted maps with v vertices and f faces. An explicit de-
scription of such a bijection will help to answer the question of whether any
such bijection additionally interchanges vertex- and face-degree partitions, as
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is necessary for 1) to be a b-invariant. A less ambitious goal would be to establish
that 7 is a b-invariant for one-faced maps.

The Basis B,

Additional attention should also be directed toward determining which invari-
ants satisfying [Definition 4.1 are compatible with Theorem 5.18. That is, for
which invariants 7 is the polynomial ). Mo b"™ an element of span,(B,) for
g =2+n-{(p)—L{(v), for every v,  2n? For any such invariant, there is a
vertex- and face-degree partition preserving bijection between rooted maps on
the torus and rooted maps on the Klein bottle for which 1 takes the value one.
The restricted bijections described in Chapter 6 may be a useful starting point.

A Geometric Interpretation for n

Asnoted inRemark 4.18) marginal b-invariants provide the combinatorial foun-
dation that Goulden, Harer, and Jackson, in [GHJ01], conjectured could be used
to explore the geometric significance of the Jack parameter in terms of an ap-
propriately defined moduli space. As a consequence, the invariants satisfying
Definition 4.1 should be examined in this geometric setting, whether or not any
is a b-invariant.

8.2 On Unhandled Maps

With respect to number of vertices, face-degree partition, and number of edges,
unhandled maps are enumerated by M(—x, -y, —z; -1). Future work should
involve determining whether Jack symmetric functions are sufficiently under-
stood in the a = 0 limit to establish Conjecture 5.28} that M(-x, -y, —z; 1) is
the generating series for unhandled maps with respect to both vertex- and face-
degree partitions. Unhandled maps might play a role in establishing whether
or not the degree bound predicted by|Corollary 5.22is tight.

8.3 On the Invariant of Brown and Jackson

The invariant described by Brown and Jackson in [BJ07] does not appear to
satisfy/Definition 4.1} but it may be a marginal b-invariant. It should be possible
to verify this, at least for monopoles, by considering an invariant with twisting
of handles defined relative to an appropriate spanning tree, as described in
Section 6.4.2. Such an invariant is not in the class to which Theorems [6.22
and [6.25 apply, but studying it could elucidate the relationship between the
Jack parameter and minors.
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8.4 On Map Polynomials

The question of the existence of a b-invariant, remains unresolved. Evidence
suggests that invariants satisfying [Definition 4.1 are appropriate candidates,
and |Chapter 6/introduced a framework for verifying this for rooted maps with
at most six edges. In addition to verifying combinatorial properties of 7, this
framework requires establishing additional algebraic properties of map poly-
nomials.

It remains to verify that the rational function ¢, 2:(b) is a polynomial for
every v, @ + 2n. One approach, sufficient by Corollary 5.22, would be to verify
that all terms of M(x,y,z;b) of degree less than 7 in z are annihilated by the
differential operator 2-. If polynomiality can be established, the conjectured
combinatorial interpretation suggests that the functions should be studied with
respect to the B, basis. This leads to two additional questions for future study:

1. Are the coefficients of ¢, 21(b) non-negative with respect to B;, and

2. Can the study be given an algebraic foundation in the form of a two vari-
able refinement of Jack symmetric functions, as discussed in|Section 6.4.1}

8.5 On Jack Symmetric Functions

Theorem 4.16 establishes a concrete link between the Jack parameter and the
combinatorics of rooted maps, but the link is via the integration formula from
Theorem 3.18, and thus indirect. Analytic characterizations of Jack symmetric
functions might be the key to finding a direct proof of Theorem 4.16 In partic-
ular, Jack symmetric functions in the parameter a are orthogonal with respect
to the inner product (-, -),, defined by

(u, v, = fT VO uom dt

where o(t) denotes the complex conjugate of v(t), and integration is over the
n-dimensional torus

T":={t=(t,tp,... ts) €C": |t = 1for 1 <i<n}.

It might be interesting to explore the relationship between this orthogonality
and (4.2), the partial differential equation used to establish/ Theorem 4.16.

8.6 On the Hypermap b-Conjecture
Algebraically, the most symmetric form of the b-Conjecture is Conjecture 3.10,

the Hypermap b-Conjecture. If hypermaps are identified with bipartite maps,

166



the dual of the standard identification, then every invariant 1 that satisfies
Definition 4.1 induces an invariant of hypermaps. In [G]96a], Goulden and
Jackson predicted from numerical evidence that

0" et (b) = 1C,

and asked for a convenient class of non-orientable hypermaps with this cardi-
nality. Unhandled hypermaps appear to be such a class, and this suggests that
the induced invariants are b-invariants for hypermaps.

If the two classes of vertices in a bipartite map are coloured red and blue,
with the root vertex receiving the colour red and 7 is any invariant satisfying
Definition 4.1, then the generating series for rooted hypermaps,

H( X,Y,2,1; b) — Z x#red vertices in by(p(b)\r(b) Z#blue vertices in brr(b)bq(b)l
beH

where @(b) is the partition with parts equal to half the lengths of the face
boundaries of I), satisfies the equation

i+1

H(x,y,z,1,b) = rox + ZZr,y, 3, H(x,y,z r;b) + berHl H(x y,z,1,b)
i>1 j=1 >0
d
+ Z rl+]+1 H(x,y,z,1;b) H(z y,x,1;b) (8.1)
i,j=20

. 02
+(1+Db) Z Jrivjs WH(x,y,z, r;b)
i9Yj

1,20

Verifying that an appropriately refined version of the algebraically defined
hypermap series satisfies (8.1) would establish a root-face degree distribution
property for hypermaps and provide additional evidence for|Conjecture 3.27.
This verification might involve using the identity

N1 @)o-n= (1Y) = [T (N=G=1)+a(i-1),
@i.j)er

established by Stanley in Thm. 5.4] when N is a positive integer, and
then appealing to the fact that Jack symmetric functions are eigenfunctions of
the Laplace-Beltrami operator

P
(Z(a 1)(k — 1)pkk ) (Zplp]1+]) +0cpl+]1]a 8;7)
j

k>1 i,j>1

as described in [Sta89, Thm. 3.1]. A similar approach was suggested, in relation
to the map series, by Brown and Jackson in [BJ07].
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8.7 On the g-Conjecture

Chapter 7| suggested a way to identify the bijection predicted by the g-Con-
jecture: identify the actions on Q induced by root-edge deletion in A. This
appears to be more tractable when root-edges in A are restricted to borders
and bridges, since it is not clear how best to represent the decoration of handles.
The refinement predicted by Conjecture 7.15 suggests that a more restricted
problem, finding an explicit bijection between planar maps with two decorated
vertices, one of which is the root vertex, and 4-regular maps on the torus with
face-non-separating root edges, will be more tractable than the general problem.
A precise description of this restricted bijection should help isolate the roles of
borders and bridges from the role of handles.

The Refined g-Conjecture

Another subject for future work is to establish Conjecture 7.15, which is presently
supported by structural and numerical evidence. This could be accomplished
either analytically, by verifying (7.16) or (7.20), or combinatorially by verifying
(7.19).

An Extension to Hypermaps

In [JV90b], Jackson and Visentin showed that (7.6), the multiplicative identity
thatsuggested the g-Conjecture, extends to a more general setting. Thisled them
to a generalized conjecture, with rooted maps replaced by rooted hypermaps,
and 4-regular maps replaced by Eulerian maps, rooted maps in which every
vertex has even degree. Since a slightly modified bijection C continues to apply
in this setting, it should be determined whether the Refined g-Conjecture can
also be generalized.

8.8 On Chirality

An unexpected relationship between the b-Conjecture and the g-Conjecture is
that both conjectures appear to involve forms of chirality. By the analysis in
Section 3.6.3, a b-invariant cannot be both additive and symmetric with respect
to orientation reversal, and by the analysis inSection 7.5, any bijection between
A and Q that respects the refinement predicted by Conjecture 7.15 cannot also
respect the left-right symmetry exhibited by both classes of maps. These asym-
metries should be examined in relation to applications of rooted maps to physics,
a subject where symmetry breaking and chirality are significant themes.
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Appendix A

Coefficients of b-Polynomials

This Appendix contains a tabulation, for [v| < 10, of the coefficients of each
b-polynomial, ¢, 21(b), with respect to the basis B, = { 21 +b)y:0<i<? },
where g is the Euler genus of the maps conjectured to be enumerated by ¢, ¢, 121 ().
For example, from the Table of coefficients for maps with two edges and genus
two, Cpaja221(b) = 30 + (1+Db). A similar tabulation with respect to the standard
basis was produced by Jackson and Visentin and appears in [JV01, Chap. 12].

All coefficients for [v| < 16 were computed using the Maple programs given
in |Appendix B, and each was found to be a non-negative integer, but only
coefficients for [v| < 10 are reproduced exhaustively. As discussed in/Section 5.6,
of the computed coefficients, both non-negativity and integrality with respect to
B, are guaranteed by non-negativity and integrality with respect to the standard
basis, exceptwhen v + 16, £(v) = 2, and £(¢) = 2. Coefficients of the polynomials
in this category are also reproduced, up to symmetry between v and ¢.

Tables are organized by number of edges, and the Euler genus of the maps
they are conjectured to enumerate. Within each table, entries are sorted first by
decreasing number of parts of v, and then by reverse lexicographical order of v
and ¢. Tables that are continued into another column or onto another page are
left unterminated.

A1 b-Polynomials for Maps with 1 Edge

1 edge, genus 0 1 edge, genus 1

v o 1 v @ b
21 [1°] 1 2] [2] 1
1’1 21 1
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A.2 b-Polynomials for Maps with 2 Edges

2 edges, genus 0 2 edges, genus 1 2 edges, genus 2
v p 1 v o b v ¢ b (1+b)
[4]  [1%2] 2 [4] [1,3] 4 (4] [4] 3 1
[1,3] [1,3] 4 [4] 271 1
[1,3] 221 o0 [1,3] [4] 4
2’1 [L3] 0 2] 4 1
21 2] 1
[1%,2] [4] 2

A.3 b-Polynomials for Maps with 3 Edges

3 edges, genus 0 3 edges, genus 1
v [ 1 v @ b
[6] [13,3] 2 [6] [12,4] 9
[6] [122, 2?21 3 [6] (1, 23 3] 12
[1,5] [1,4] 6 [6] [2°] 1
[1,5] [1,23,3] 6 [1,5] [1,5] 18
1, 2,4 6
Za [ o na
[2,4] [1,2,3] 6 [2,4] [1,5] 6
[2,4] [23] 0 [2,4] [2,4] 6
@ (134 3 24 [P 3
[321 (1, 23 3] 0 [3§] [1,5] 6
S W B oo
(124 4] 0 124 6] 9
[12,4] [3?%] 3 [1, 23, 3] {6} 12
[1,2,3] [1,5] 6 [2°] 6 1
[1,2,3] [2,4] 6
[1,2,3] [3%] 0
23] [1,5] 0
23] [2,4] 0
[2°] (3] 1
[13,3] [6] 2
[12,22] [6] 3
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3 edges, genus 2 3 edges, genus 3

v p b (1+Db) v @ b bl+b)
6] [1,5] 18 6 6] [6] 15 13
[6] [2,4] 9 3

6] [3°] 5 1

[1,5] [6] 18 6

[2,4] [6] 9 3

[3?] [6] 5 1

A.4 Db-Polynomials for Maps with 4 Edges

4 edges, genus 0 4 edges, genus 0 continued 4 edges, genus 0 concluded

v Q@ 1 Vv Q@ 1 v Q@ 1

[8] [1%,4] 2 [12,6] [1%2,6] 12 13,51 [1,71 8

8] [13,23] 8 [12,6] [1,2,5] 8 [13,5] [2,6] O

[8] [12,2%] 4 [12,6] [1,3,4] 16 [1%,5] [3,5] 8
[1,71  [13,5] 8 [12,6] [22,4] 0 [13,5] 4?1 o0
[1,7] [1%2,2,4] 16 [12,6] 2,3%] 4 [12,2,4] [1,7] 16
[1,71 [123,37] 8 [1,2,5] [1%46] 8 [1%,2,4] [2,6] 8
[1,71 [1,2%2,3] 8 [1,2,5] [1,2,5] 24 [1%,2,4] [3,5] 8
[1,7] [24] 0 [1,2,5] [1,3,4] 8 [12,2,4] [4%] 4
[2,6] [13,5] 0 [1,2,5] [2%4] © [12,3’] [1,7] 8
[2,6] [1%2,2,4] 8 [1,2,5] [2,3%] 8 [12,3?] [2,6] 4
[2,6] [12,3%] 4 [1,3,4] [1%,6] 16 [12,3’] [3,5] O
[2,6] [1,2%2,3] 8 [1,3,4] [1,2,5] 8 [12,3?] 4?1 4
[2,6] [24] 0 [1,3,4] [1,3,4] 16 [1,22,3] [1,7] 8
[3,5] [13,5] 8 [1,3,4] [2%,4] 8 [1,22,3] [2,6] 8
[3,5] [1%,2,4] 8 [1,3,4] [2,3°] 0 [1,22,3] [3,5] 8
[3,5] [1%43%*] © [22,4] [1%2,6] © [1,22,3] [4*] ©
[3,5] [1,2%2,3] 8 [2%2,4] [1,2,5] © [24] [L,7] O
[3,5] [24] 0 [22,4] [1,3,4] 8 [24] [2,6] O
[42]  [1%5] 0 [22,4]  [2%,4] 4 2] [35] 0
[4%] [1%,2,4] 4 [2%,4] [2,3] 0 [24] 4] 1
[4*] [1%,3%] 4 [2,3*] [1%,6] 4 [144] 8] 2
[42] [1,23] 0 [2,3°] [1,2,5] 8 [1%2,3] [8] 8
[42] [24] 1 [2,3*] [1,3,4] 0 [12,2°]  [8] 4

[2,3%] 22,41 ©
[2,3%] 2,32] 4
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4 edges, genus 1 4 edges, genus 1 concluded

v [ b v 0 b
[8] [13,5] 16 [12,6] [1,7] 48
[8] [1%2,2,4] 36 [12,6] [2,6] 12
8] [1%3?] 16 [12,6] [3,5] 32
[8] [1,2%3] 24 [12,6] [4*] 8
[8] [24] 1 [1,2,5] [1,7] 48

[1,71 [1%,6] 48 [1,2,5] [2,6] 32
[1,71 [1,2,5] 48 [1,2,5] [3,5] 32
[1,71 [1,3,4] 56 [1,2,5] [4?] 8
[1,71 [2%,4] 8 [1,3,4] [1,7]1 56
[1,71 [2,3%] 16 [1,3,4] [2,6] 24
[2,6] [1%6] 12 [1,3,4] [3,5] 16
[2,6] 1[1,2,5] 32 [1,3,4] [4%] 16
[2,6] [1,3,4] 24 [22,4] [L1,7] 8
[2,6] [2%,4] 8 [22,4] [2,6] 8
[2,6] [2,3%] 12 [22,4] [3,5] 8
[3,5] [1%,6] 32 [22,4] [4*] 6
[3,5] [1,2,5] 32 [2,32] [L,7] 16
[3,5] [1,3,4] 16 [2,32] [2,6] 12
[3,5] [2%,4] 8 [2,32] [3,5] 8
3,51 [2,3*] 8 2,3%] [41 0
4] [1%,6] 8 [13,5] [8] 16
4] [1,2,5] 8 [12,2,4] [8] 36
[4*] [1,3,4] 16 [12,32] [8] 16

(4’1 [2%4]
4’1 [2,3]

[1,22,3] [8] 24

6
0 (2] 8] 1
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4 edges, genus 2 4 edges, genus 3

v ) ¥ (1+Db) v o) B b(1+b)
[8] [12,6] 60 20 8] [1,7]1 120 104
8] [1,2,5] 72 24 8] [2,6] 60 52
8] 1,34 64 16 8] [3,5] 56 40
[8] [22,4] 18 6 8] [42] 24 19
[8] [2,32] 20 4 [1,7] [8] 120 104
1,71 [L7] 120 40 2,6] [8] 60 52
1,71 [2,6] 48 16 [3,5] [8] 56 40
[1,7]1  [3,5] 64 16 [42] [8] 24 19
[1,7] [42] 24 8

2,6] 1,71 48 16

2,6] [26] 36 12

[2,6] [3,5] 32 8

[2,6] [42] 12 4

[3,5] [1,7] 64 16

[3,5] [2,6] 32 8

[3,5] [3,5] 24 8

[3,5] [4%] 8 0

[42]  [L7] 24 8

[42] 2,6] 12 4

[4%] [3,5] 8 0

[4°] [4°] 9 3
[1%,6] [8] 60 20
[1,2,5] [8] 72 24
[1,3,4] [8] 64 16
[22,4] 8] 18 6
[2,32] 18] 20 4

4 edges, genus 4
v ¢ B PO+b) (1+Db2
[8] [8] 105 160 21
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A.5 b-Polynomials for Maps with 5 Edges

5 edges, genus 0 5 edges, genus 0 continued 5 edges, genus 0 continued
4 [ 1 v (] 1 ) 1

[10] [15,5] 2 [52]  [1%3,2,3?] 10 [13,7] 0
[10] [1%,2,4] 10 [52] [1,23,3] O [12,2,6] O
[10] [1%3%] 5 [5%] [25] 1 [1%2,3,5] 10
[10] [1%,22,3] 20 [12, 8] [13,71 20 [12,42] 5
[10] [13,24] 5 [12,8] [1%3,2,6] 30 [1,22,5] 10
[1,9] [1%6] 10 [12,8] [1%,3,5] 40 [1,2,3,4] 20
[1,9] [1%,2,5] 30 [12,8] [1%,4%] 20 [1,3°%] 0
[1,9] [1%,3,4] 30 [12,8] [1,2%,5] 10 [23,4] 0
[1,9] [1%2,2%,4] 30 [12,8] [1,2,3,4] 40 [22,32] 5
[1,9]1 [1%2,3?] 30 [12,8] [1,3°] 10 [13,71 10
[1,9]1 [1,25%,3] 10 [12,8] [23,4] 0 [12,2,6] 40
[1,9] [25] 0 [12,8] [22,3’] 5 [12,3,5] 10
[2,8] [1%46] 0 [1,2,71 13,71 10 [12,42] 0
[2,8] [13,2,5] 10 [1,2,71 [1%,2,6] 50 [1,22,5] 10
[2,8] [1%,3,4] 10 [1,2,7]1 [1%3,5] 30 [1,2,3,4] 30
[2,8] [1%,22,4] 20 [1,2,7] [1%,4%] 10 [1,3°] 10
[2,8] [1%,2,3?] 20 [1,2,71 [1,22,5] 30 [23,4] 10
[2,8] [1,2%,3] 10 [1,2,71 1[1,2,3,4] 50 [22,32] 0
[2,8] [25] 0 [1,2,71  [1,3°] 10 [13,7] 0
[3,71 [1%6] 10 [1,2,71  [25,4] 0 [12,2,6] O
[3,7]1 [1%,2,5] 20 [1,2,71 [23,3]] 10 [1%2,3,5] 10
[3,7]1 [1%,3,4] 10 [1,3,6] [1%,7] 30 [12,4?] 10
[3,7] [1%,22,4] 20 [1,3,6] [1%2,6] 30 [1,22,5] 10
[3,7] [1%,2,3%?] 10 [1,3,6] [1%3,5] 30 [1,2,3,4] 10
[3,7] [1,2%,3] 10 [1,3,6] [1%,4*] 30 [1,3°%] 0
[3,7] [25] 0 [1,3,6] [1,2%2,5] 30 [23,4] 0
[4,6] [1%6] 0 [1,3,6] [1,2,3,4] 40 [22,32] 5
[4,6] [13,2,5] 10 [1,3,6] [1,3%] 0 [13,71 10
[4,6] [13,3,4] 20 [1,3,6] [2%4] 0 [12,2,6] 10
[4,6] [1%2,2%,4] 10 [1,3,6] [2%,32] 10 [12,3,5] 10
[4,6] [1%,2,3?] 10 [1,4,5] [1%,7] 20 [12,42] 5
[4,6] [1,23,3] 10 [1,4,5] [1%2,6] 40 [1,22,5] 10
[4, 6] [2°] 0 [1,4,5] [1%,3,5] 40 [1,2,3,4] 10
[5%] (14, 6] 5 [1,4,5] [1%,4*] 10 [1,3°] 0
[531 [1%,2,5] 10 [1,4,5] [1,22,5] 10 [23,4] 0
[52] [13,3,4] O [1,4,5] [1,2,3,4] 40 [22,3]] 5
[52] [12,2%,4] 10 [1,4,5] [1,3°] 10

[1,4,5] [2%,4] 10

[1,4,5] [2%3,3*] O
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5 edges, genus 0 continued 5 edges, genus 0 continued 5 edges, genus 0 concluded

v @ 1 v Q@ 1 v @ 1
[13,7] [12,8] 20 [1,2,3,4] [1%2,8] 40 [13,2,5] [1,9]1 30
13,71 [1,2,7] 10 [1,2,3,4] [1,2,7] 50 [13,2,5] [2,8] 10
13,71 [1,3,6] 30 [1,2,3,4] [1,3,6] 40 [13,2,5] [3,7] 20
13,71 [1,4,5] 20 [1,2,3,4] [1,4,5] 40 [13,2,5] [4,6] 10
13,71 [2%6] O [1,2,3,4] [2%,6] 20 [13,2,5] [5%] 10
13,71 [2,3,5] 10 [1,2,3,4] [2,3,5] 30 [13,3,4] [1,9] 30
13,71 [2,4] O [1,2,3,4] [2,4%] 10 [13,3,4] [2,8] 10
13,71 [3%4] 10 [1,2,3,4] [3%4] 10 [13,3,4] [3,7] 10

[12,2,6] [1%,8] 30 [1,3%] [12,8] 10 [13,3,4] [4,6] 20
[12,2,6] [1,2,7] 50 [1,3°] [1,2,7] 10 [13,3,4] [5*] O
[12,2,6] [1,3,6] 30 [1,3°] [1,3,6] O [12,22,4] [1,9] 30
[12,2,6] [1,4,5] 40 [1,3°] [1,4,5] 10 [12,22,4] [2,8] 20
[12,2,6] [2%,6] O [1,3%] [22,6] O [12,22,4] [3,7] 20
[12,2,6] [2,3,5] 40 [1,3°] [2,3,5] 10 [12,22,4] [4,6] 10
[12,2,6] [2,4*] O [1,3%] 2,421 0 [12,22,4] [5%] 10
[12,2,6] [3%4] 10 [1,3%] [32,4] O [12,2,3%] [1,9] 30
[12,3,5] [1%,8] 40 [23,4] [12,8] 0O [12,2,3%] [2,8] 20
[12,3,5] [1,2,7] 30 [23,4] [1,2,7] O [12,2,3%] [3,7] 10
[12,3,5] [1,3,6] 30 [23,4] [1,3,6] O [12,2,3%] [4,6] 10
[12,3,5] [1,4,5] 40 [23,4] [1,4,5] 10 [12,2,3?] [5%] 10
[12,3,5] [2%,6] 10 [23,4] [22,6] O [1,23,3] [1,9] 10
[12,3,5] [2,3,5] 10 [23,4] [2,3,5] 10 [1,23,3] [2,8] 10
[12,3,5] [2,4*] 10 [23,4] [2,4]] O [1,23,3] [3,71 10
[12,3,5] [3%,4] 10 [23,4] [3%,4] O [1,23,3] [4,6] 10
[12,4%] [1%,8] 20 [22,32] [12,8] 5 [1,23,3] [5*] O
[12,4%] [1,2,7] 10 [22,321 [1,2,7] 10 [25] [1,9] O
[12,4%] [1,3,6] 30 [22,32] [1,3,6] 10 [25] 2,81 0
[12,4°] [1,4,5] 10 [22,32] [1,45] O [2°] 3,71 0
[12,4’] [2%,6] 5 [22,37] [2%2,6] 5 [2°] [4,6] 0
[12,4°] [2,3,5] O [22,32] [2,3,5] O [25] [5?] 1
[12,42] [2,4?] 10 [22,32] [2,4%] 5 [1°,5] [10] 2
[1%2,4%] [3%4] 5 [22,37] [3%,4] 5 [14,2,4] [10] 10
[1,22,5] [1%,8] 10 [14,6] [1,9] 10 [14,32] [10] 5
[1,22,5] [1,2,7] 30 [1%,6] 2,81 O [13,22,3] [10] 20
[1,22,5] [1,3,6] 30 [1%, 6] 3,71 10 [12,2*] [10] 5
[1,22,5] [1,4,5] 10 [1%,6] [4,6] O

[1,22,5] [2%,6] 10 [1%,6] [52] 5

[1,22,5] [2,3,5] 10

[1,22,5] [2,4*] 10

[1,22,5] [3%4] 10
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5 edges, genus 1

v () b
[10] [14,6] 25
[10] [1%,2,5] 80
[10] [1%,3,4] 70
[10] [1%,2%,4] 90
[10] [1%,2,3?] 80
[10] [1,2%,3] 40
[10] [25] 1
[1,9]1 [13,7]1 100
[1,9] [1%,2,6] 180
[1,9] [1%,3,5] 180
[1,9]1 [1%47] 90
[1,9] [1,2%,5] 90
[1,9] [1,2,3,4] 210
[1,9]1 [1,3°] 40
[1,91  [234] 10
[1,91 [2%3%] 30
[2,8] [13,7] 20
[2,8] [13,2,6] 90
[2,8] 1[13,3,5] 70
[2,8] [1%4%] 30
[2,8] [1,2%35] 70
[2,8] [1,2,3,4] 130
[2,8] [1,3%] 20
[2,8] [23,4] 10
[2,8] [2%3%] 25
[3,71 [13,7] 70
[3,71 [1%,2,6] 110
3,71 [13,3,5] 70
3,71 [1%,4%] 40
3,71 [1,2%3,5] 70
3,71 1[1,2,3,4] 90
3,71 [1,3°%] 10
3,71  [234] 10
3,71 [2%3%] 20
[4,6] [13,7] 30
[4,6] [1%,2,6] 60
[4,6] [13,3,5] 80
[4,6] [1%2,4?] 45
[4,6] 1[1,2%2,5] 50
[4,6] [1,2,3,4] 80
[4,6] [1,3%] 10
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5 edges, genus 1 continued

v Q@ b
[4,6] [23,4] 10
[4,6] [22,37] 15

[52] [13,7] 30
[52] [12,2,6] 60
[52] [12,3,5] 30
[5%] [12,4%] 5
[52] [1,22,5] 20
[5?]  [1,2,3,4] 50
[52] [1,3%] 10
[52] [23,4] 10
[5°] [22,3%] 0
[12,8] [12,8] 150
[12,8] [1,2,7] 120
[12,8] [1,3,6] 180
[12,8] [1,4,5] 150
[12,8] [22,6] 15
[12,8] [2,3,5] 80
[12,8] [2,4%] 20
[12,8] [32,4] 55
[1,2,7]1 [1%8] 120
[1,2,7]1 [1,2,71 210
[1,2,7]1 [1,3,6] 160
[1,2,7]1 [1,4,5] 140
[1,2,71  [2%6] 40
[1,2,7]1 [2,3,5] 130
[1,2,7] [2,4%] 30
[1,2,7]1  [3%4] 50
[1,3,6] [1%,8] 180
[1,3,6] [1,2,71 160
[1,3,6] [1,3,6] 120
[1,3,6] [1,4,5] 170
[1,3,6] [236] 40
[1,3,6] [2,3,5] 90
[1,3,6] [2,4%] 30
[1,3,6]  [324] 30
[1,4,5] [1%,8] 150
[1,4,5] [1,2,7] 140
[1,4,5] [1,3,6] 170
[1,4,5] [1,4,5] 110
[1,4,5] [236] 40
[1,4,5] [2,3,5] 40



5 edges, genus 1 continued

v @ b
[1,4,5] [2,4*] 50
[1,4,5] [3%4] 40

[22,6] [1%,8] 15
[22,6] [1,2,7] 40
[22,6] [1,3,6] 40
[22,6] [1,4,5] 40
[22,6] [2%,6] 15
[22,6] [2,3,5] 40
[22,6] [2,4*] 15
[22,6] [3%4] 15
[2,3,5] [1%8] 80
[2,3,5] [1,2,7] 130
[2,3,5] [1,3,6] 90
[2,3,5] [1,4,5] 40
[2,3,5] [2%6] 40
[2,3,5] [2,3,5] 40
[2,3,5] [2,4*] 30
[2,3,5] [3%4] 30
[2,42] [1%3,8] 20
[2,4*] [1,2,7] 30
[2,4] [1,3,6] 30
[2,4*] [1,4,5] 50
[2,42] [226] 15
[2,42] [2,3,5] 30
2,421 [2,4%] 10
[2,42] [3%4 5
[32,4] [1%,8] 55
[32,4] [1,2,7] 50
[32,4] [1,3,6] 30
[32,4] [1,4,5] 40
[32,4] [22,6] 15
[32,4] [2,3,5] 30
[32,4] [2,4*]] 5
[32,4] [3%4] 5
[13,7] [1,9] 100
[13,7] [2,8] 20
[13,7] 3,71 70
[13,7] [4,6] 30
[13,7] [52] 30
[12,2,6] [1,9] 180
[12,2,6] [2,8] 90
[12,2,6] [3,7] 110
[12,2,6] [4,6] 60
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5 edges, genus 1 concluded

v [0} b
[12,2,6] [5%] 60
[12,3,5] [1,9] 180
[12,3,5] [2,8] 70
[12,3,5] [3,7] 70
[12,3,5] [4,6] 80
[12,3,5] [5*] 30

[12,4]  [1,9] 90
[12,4] [2,8] 30
[12,4] [3,7] 40
[12,4%] [4,6] 45
12,41 [5*] 5
[1,2%2,5] [1,9] 90
[1,2%2,5] [2,8] 70
[1,22,5] [3,7] 70
[1,2%2,5] [4,6] 50
[1,22,5] [5%] 20
[1,2,3,4] [1,9] 210
[1,2,3,4] [2,8] 130
[1,2,3,4] [3,71 90
[1,2,3,4] [4,6] 80
[1,2,3,4] [5*] 50
[1,3°]  [1,9] 40
[1,3°] [2,8] 20
[1,3°] [3,7] 10
[1,3°] [4,6] 10
[1,3°] [52] 10
[23,4] [1,9] 10
[23,4] [2,8] 10
[23,4] [3,7] 10
[23,4] [4,6] 10
[23,4] [52] 10
[22,3?] [1,9] 30
[22,3?] [2,8] 25
[22,3?] [3,7] 20
[22,3?] [4,6] 15
22,31 [5*] O
[14,6] [10] 25
[13,2,5] [10] 80
[13,3,4] [10] 70
[12,22,4] [10] 90
[12,2,32] [10] 80
[1,2%,3] [10] 40
[2°] [10] 1




5 edges, genus 2

5 edges, genus 2 continued

v o) ¥ (1+b) v o) > (1+Db)
[10] [13,71 150 50 [5%] [12,8] 105 25
[10] [1%,2,6] 300 100 5] [1,2,7] 120 30
[10] [13,3,5] 250 70 [5’]  [1,3,6] 100 30
[10] [12,4?] 120 30 [5*] [1,4,5] 50 10
[10] [1,2%5] 180 60 [52] [22,6] 30 10
[10] [1,2,3,4] 320 80 [5’]  [2,3,5] 30 0
[10] [1,3%] 50 10 [52] [2,4*] 30 10
[10] [23,4] 30 10 [52] [32,4] 25 5
[10] [2%3%] 50 10 [12,8]  [1,9] 450 150
[1,9] [1%,8] 450 150 [12,8] [2,8] 150 50
[1,91 [1,2,71 450 150 [12,8] 3,71 250 70
[1,91 [1,3,6] 470 130 [12,8] [4,6] 165 55
[1,91 [1,4,5] 420 120 [12,8] [?2] 105 25
[1,9] [2%6] 90 30 [1,2,71 [1,91 450 150
[1,91 [2,3,5] 240 60 [1,2,7]1 [2,8] 270 90
[1,9] [2,47] 90 30 [1,2,71 [3,7] 260 70
[1,9] [3%4] 130 30 [1,2,71 [4,6] 180 60
[2,8] [1%8] 150 50 [1,2,71 [5*)] 120 30
[2,8] [1,2,71 270 90 [1,3,6] [1,9] 470 130
[2,8] [1,3,6] 210 60 [1,3,6] [2,8] 210 60
[2,8] [1,45] 180 50 [1,3,6] [3,7] 180 50
[2,8] [2%6] 75 25 [1,3,6] [4,6] 160 30
[2,8] [2,3,5] 160 40 [1,3,6] [5?] 100 30
[2,8] [2,47] 60 20 [1,4,5] [1,9] 420 120
[2,8] [3%4] 65 15 [1,4,5] [2,8] 180 50
3,71 [1%8] 250 70 [1,4,5] [3,7] 180 40
3,71 1[1,2,71 260 70 [1,4,5] [4,6] 180 50
3,71 [1,3,6] 180 50 [1,4,5] [5%] 50 10
3,71 [1,45] 180 40 [22,6] [1,9] 90 30
3,71 [2%6] 70 20 [22,6] [2,8] 75 25
3,71 [2,3,5] 120 30 [22,6] [3,71 70 20
3,71 [2,4%] 40 10 [22,6] [4,6] 55 15
3,71 [3%4] 40 10 [22,6] [5%] 30 10
[4,6] [1%8] 165 55 [2,3,5] [1,9] 240 60
[4,6] 1[1,2,71 180 60 [2,3,5] [2,8] 160 40
[4,6] [1,3,6] 160 30 [2,3,5] [3,7] 120 30
[4,6] [1,45] 180 50 [2,3,5] [4,6] 90 30
[4,6] [2%6] 55 15 [2,3,5] [5%] 30 0
[4,6] [2,35 9 30
[4,6] [2,47] 45 5
[4,6] [3%4] 35 5
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5 edges, genus 2 concluded 5 edges, genus 3

v o) ¥ (1+b) v 0 b b(1+D)

2,42]  [1,9] 9 30 [10] [128] 525 455
[2,42] [2,8] 60 20 [10] [1,2,7] 600 520
[2,4%] [3,7] 40 10 [10] [1,3,6] 500 380
[2,4%] [4,6] 45 5 [10] [1,4,5] 450 340
[2,4%] [5?] 30 10 [10] [22,6] 150 130
[32,4] [1,9] 130 30 [10] [2,3,5] 280 200
[32,4] [2,8] 65 15 [10] [2,47] 120 95
[32,4] [3,7] 40 10 [10]  [3%4] 125 80
[32,4] [4,6] 35 5 1,9 [L9] 1050 910
32,4 [5*] 25 5 [1,91 [2,8] 450 390
[13,71  [10] 150 50 [1,91 [3,7] 500 380
[12,2,6] [10] 300 100 [1,9] [4,6] 39 320
[1%,3,5] [10] 250 70 [1,9] [5%] 210 150
[12,42] [10] 120 30 [2,8] [1,9] 450 390
[1,22,5] [10] 180 60 [2,8] [2,8] 300 260
[1,2,3,4] [10] 320 80 2,8]  [37] 250 190
[1,3%] [10] 50 10 [2,8] [4,6] 195 160
2%,4] [10] 30 10 [2,8] [52] 105 75
[22,3?] [10] 50 10 [3,7] [1,9] 500 380
3,71 [28] 250 190

3,71 3,71 190 140

3,71  [46] 150 100

[3,7] [5%] 90 60

[4,6] [1,9] 390 320

[4,6] [2,8] 195 160

[4,6] [3,7] 150 100

[4,6] [46] 155 100

[4,6] [52] 75 60

[52] [1,9] 210 150

[52] [2,8] 105 75

[52] 3,71 90 60

[5%] [4,6] 75 60

[5%] [5%] 20 10

[12,8] [10] 525 455

[1,2,7] [10] 600 520

[1,3,6] [10] 500 380

[1,4,5] [10] 450 340

22,6] [10] 150 130

[2,3,5] [10] 280 200

2,42] [10] 120 95

[32,4] [10] 125 80
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5 edges, genus 4

v o) b*  PPA+b) (1+b)?
[10] [1,9] 1050 1600 210
[10] [2,8] 525 800 105
[10] [3,7] 450 620 70
[10] [4,6] 375 535 65
[10] [5*] 189 256 33

[1,9] [10] 1050 1600 210

[2,8] [10] 525 800 105

[3,71 [10] 450 620 70

[4,6] [10] 375 535 65

[5*] [10] 189 256 33
5 edges, genus 5

v @ b BA+b) b1+Db)>
[10] [10] 945 2136 753
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A.6 b-Polynomials for Selected Maps with 8 Edges

Table A.1: Coefficients expressing b-polynomials as elements of span(Bs) for maps
with 8 edges, 2 vertices, and 2 faces. Only pairs where the largest part of v is at
least as large as the largest part of ¢ are listed, since the remaining coefficients are
determined by symmetry.

v [0 e p*A+b) bPA+b? (1+b)?

[1,15] [1,15] 2162160 6593808 4196400 308880
[1,15] [2,14] 997920 3043296 1936800 142560
[1,15] [3,13] 887040 2617632 1594752 110880
[1,15] [4,12] 695520 2069376 1277760 90720
[1,15] [5,11] 628992 1831968 1111680 78624
[1,15] [6,10] 567840 1667552 1019296 71904
[1,15] [7,9] 549120 1594016 972416 68640
[1,15] [8%] 267120 782016 477984 33840
[2,14] [2,14] 582120 1775256 1129800 83160
[2,14] [3,13] 443520 1308816 797376 55440
[2,14] [4,12] 347760 1034688 638880 45360
[2,14] [5,11] 314496 915984 555840 39312
[2,14] [6,10] 283920 833776 509648 35952
[2,14] [7,9] 274560 797008 486208 34320
[2,14] [8%] 133560 391008 238992 16920
[3,13] [3,13] 327600 944784 560688 37968
[3,13] [4,12] 258720 742240 436736 29120
[3,13] [5,11] 241920 681152 395168 26208
[3,13] [6,10] 217440 616512 360544 24128
[3,13] [7,9] 211200 591296 343840 22880
[3,13] [8%] 102480 289456 169024 11232
[4,12] [4,12] 220080 627344 367444 24528
[4,12] [511] 193536 549936 323184 21792
[4,12] [6,10] 173640 495152 292736 19912
[4,12] [7,9] 168960 476528 279792 18912
[4,12] [8%] 81900 232764 137460 9300
[5,11] [5,11] 166704 472400 279472 19472
[5,11] [6,10] 151200 426336 251392 17280
[5,11] [7,9] 149760 418560 245280 16800
[5,11] [8%] 72240 203200 119984 8320
[6,10] [6,10] 143352 401896 235224 16200
[6,10] [7,9] 136320 384976 227296 15408
[6,10] [8%] 65520 184928 109152 7536
[7,91 [7,9] 126576 358800 214640 15056
[7,91 [8%] 61200 171120 99216 6384
[82]  [83] 33810 95940 57877 4118
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Appendix B

Maple Programs

Several conjectures appearing in this Thesis were tested numerically for low
order terms using programs written for version 11 of Maple, a symbolic compu-
tation system. The programs are reproduced here, as a starting point for future
investigation. The extent of the computation in each program is controlled
by an appropriately named variable, and the values reproduced here are se-
lected to ensure timely termination, rather than to reflect the limits of practical
computation.

B.1 Computing M(x,y, z; b) using Equation 4.9

maxedges := 8:

scale := (n,i) —> if n>0 then i/(2+n): elif i=0 then 1: else 0: end if:

M[0]:=y[0]=x:

for edges from 1 to maxedges do

MJedges]:=expand(add(scale(edges—1,i)+diff(M[edges—1],y[i])+
((i+1)sbsy[i+2]+add(y[jlsyli—j+2]j=1..i+1))
+add(y[i+j+2]«(axj+diff(scale(edges—1,)
«diff(Mledges—1] y[i),y[j)
+add(scale(k,i)=diff(M[k],y[i])xscale(edges—1-k,j)
+diff(M[edges—1-k],y[j]),k=0..edges—1))
j=0..2xedges—1i)
Ai=0..2xedges)

):

end do:

SMP := expand(add(eval(z"edgesM[edge],{a=1+b}),edge=0..maxedges)):
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B.2 Extracting ¢, 2(D) from M(x,y, z; b)

read(BMPS): with(combinat,partition):
for nedges from 1 to 8 do
for nu in partition(nedgess2) do
for phi in partition(nedges=2) do
X:=mul(x[i],i=nu);
Y:=mul(y[i],i=phi);
g:=nedges—nops(nu)—nops(phi)+2;
if g>=0 then
c[nu,phi,nedges]:=coeftayl(BMP,
[z,seq(x[i],i=1..nedgesx2),seq(y[i],i=1..nedges=2)]=
[0,5eq(0,i=1..nedges=4)],
[nedges,seq(degree(X,x[i]),i=1..nedges=2),
seq(degree(Y,y[i]),i=1..nedges=2)]
);
template:=(add(a[i]+b"(g—2+1)+(1+b)"1,i=0..g/2)):
soln := solve({coeffs(expand(template)—c[nu,phinedges],b)}):
h[nu,phi,nedges]:=eval([seq(a[i],i=0..g/2)],soln);
end if;
end do;
end do;
end do;

B.3 Computing M(x,y,z;0) and M(x,y,z;1) using
Matrix Integrals

with(linalg):

# The trace of the k’th power of an NxN matrix
M:=N->matrix(N,N,[seq(seq(m][ij],j=1..N),i=1..N)]):
tr:=(N,k)—>expand(trace(M(N)"k)):

# Integrate the input polynomial against all appropriate variables, one at a time
integrateit := proc(mono)
local vari, numu, deno: global N, m, r, ¢, b:
numu := monoxexp(—tr(N,2)/2/(1+b)):
deno := exp(—tr(N,2)/2/(1+b)):
for vari in indets(tr(N,2)) do
numu := int(humu, vari=—infinity..infinity):
deno := int(deno, vari=—infinity..infinity):
end do:
return numu/deno:
end proc:
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# Initialize the entries of M
setup:=proc(N)
global m, r, ¢, b: local i j:
m:=evaln(m): c:=evaln(c): r:=evaln(r):
forifrom 1 to N do
forjfrom 1 to N do
m[ij]:=simplify(r[ij]+1sc[i,j]+(b—1)):
end do;
end do;
forifrom 1 to N do ¢[i,i]:=0: end do:
forifrom 1 to N do forj fromi+1 to N do
rljil:=r[ij]: c[jil:=—cli,l:
end do: end do:
end proc:

# Bound is the maximum number of edges to consider

bound:=3:

OMap[0]:=0: LMap[0]:=0:

for N from 1 to bound+1 do
m:=evaln(m): b:=evaln(b):
mo:=add(1/k/(b+1)+y[k]szp~kstr(N k) k=1..boundx2):
gene:=convert(taylor(exp(mo),zp,2sbound+1),polynom):

b:=1: setup(N):

simplify(eval(integrateit(expand(gene)),zp=sqrt(z))):

LMap[N]:=expand(convert(taylor(2+(1+b)sz+diff(In(%),z),
z,bound+1),polynom));

b:=0: setup(N):
simplify(eval(integrateit(expand(gene)),zp=sqrt(z))):
OMap[N]:=expand(convert(taylor(2+(1+b)=z+diff(In(%),z),
z,bound+1),polynom)):
end do:

OriMap:=sort(expand(CurveFitting[Polynomiallnterpolation]
([seq(i,i=0..bound+1)],[seq(OMapli],i=0..bound+1)],x)));

AllMap:=sort(expand(CurveFitting[Polynomiallnterpolation]
([seq(i,i=0..bound+1)],[seq(LMapli],i=0..bound+1)],x)));
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B.4 Computing M using Jack Symmetric Functions

This program computes the map series from Jack symmetric functions. The
bottleneck of the computation is constructing the Jack symmetric functions
themselves. At the suggestion of Berkant Ustaoglu, a fellow doctoral candidate
in the Department of Combinatorics and Optimization at the University of
Waterloo, the program avoids working with rational functions in b, and instead
computes M using polynomial interpolation and an appeal to the degree bound
given by|Corollary 5.22| It is thus sufficient to work with evaluations of Jack
symmetric functions at positive integral values of the parameter a, but the
computation is only valid if the coefficients of M are polynomial in b. A slight
modification to the program forces it to work over the ring of rational functions
in b, but at significant cost in memory usage and run-time.

This program was used to compute the map series for all maps with at
most 8 edges. The process generated 24 954 b-polynomials, each of which had
non-negative coefficients as an element of span(B,). The entire operation took
approximately one week and required 2Gb of memory on a 1.7GHz proces-
sor. Speed improvements could be made by fitting the results to elements of
span(B,), thereby reducing the number of evaluations needed by a factor of
two.

with(combinat, partition):
with(combinat, numbpart):

# Input two partitions, output true unless the first dominates the second. This is used
# to sort the monomial symmetric functions prior to applying Gram—Schmidt.
domination := proc(a,b)

local na, nb, i:

if add(i, i=a) < add(i, i=b) then return true: end if:
if (nops(b) < nops(a)) then return true: end if:

na := nops(a)+1:
nb := nops(b)+1:
for i from 1 to nops(a) do
if add(op(a)[na—j], j=1..i) <
add(op(b)[nb—j], j=1..min(i, nb—1)) then
return true:
end if:
end do:
return false:
end proc:

innerproduct := proc(v1l, v2, n, alpha)

add(coeftayl(vl,p[P]=0,1)xcoeftayl(v2,p[P]=0, 1)
xalpha”(nops(P))s=macz(P), P=partition(n)):
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end proc:

# The order of the centralizer of a permutation of cycle type P
macz := proc(P)
local i, output, counter, n:
n:= add(i, i=P):
forifrom 1 ton do
counter[i]:=0:
end do:
for i from 1 to nops(P) do
counter[P[i]] := counter[P[i]]+1:
end do:
return mul((i)"counter[i]+(counter[i])!, i=1..n):
end proc:

kronecker := (i,j) —> if i=j then 1 else 0 end if:

# Build the Powersum symmetric functions of order n
BuildPowerSum := proc(n::posint)

local P, p:

for P in partition(n) do

p[P] := mul(add(x[j]"i, j=1..n), i=P):

end do:

return p:
end proc:

# Express the monomial symmetric functions of order n in the powersum basis.
MonomialFromPSum := proc(n::posint)
local P, psum, m, avals, mydiff, coefflist, tempsum:

# Construct the power—sum basis for Lambda[n]
# Express linear combinations of these elements in
# the monomial basis, and invert the system
psum:=BuildPowerSum(n):

tempsum := add(a[P]spsum[P], P=partition(n)):
for P in partition(n) do

coefflist[P] := coeftayl(tempsum,

. [seq(x[jl,j=1..nops(P))]=[seq(0,j=1..nops(P))],[seq(P[j], j=1..nops(P))]):
end do:

for P in partition(n) do
avals := solve({seq(coefflist[i] = kronecker(i,P), i=partition(n))}):
m[P] := eval(add(a[P]+p[P], P=partition(n)), avals):

end do:

return m:
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end proc:

# Construct the Jack symmetric functions of order n with Jack parameter alpha
# by applying Gram—Schmidt to the monomial symmetric function in the
# powersum basis. Instead of using the built in GramSchmidt function,
# the process is implemented manually to preserve the polynomial presentation
# of the series and to maintain fine control over when terms are collected.
FastJack := proc(n::posint, alpha::posint)

local lambda, J, P, i, oldp, m, Jnorms, j:

global p:

oldp :=p:

p:=evaln(p):

P := sort(partition(n), domination):
m := MonomialFromPSum(n):

forifrom 1 to nops(P) do
JIP[]] := m[P[i]]:
forj from 1 toi-1 do
JIP[]] := expand(J[P[i]]
— innerproduct(m[P[i]], J[P[j]], n, alpha) #J[P[j]] / Jnorms][j]):
end do:
JIP[I] == J[P[i]l/coeftayl(J[P[i]], p[[seq(1, i=1..n)]]=0, 1):
Jnormsl[i] := innerproduct(%,%,n,alpha):
end do:
p :=oldp:
return J:
end proc:

BuildJack := proc(n::posint, alpha)
# Instead of building the functions directly as rational functions in
# the Jack parameter, build evaluations of the function and then
# construct the polynomials by interpolation.
local numerics, J, P, j:

if type(alpha, posint) then
return FastJack(n, alpha):
end if:

numerics := [seq(FastJack(n,i), i=1..n)]:
for P in partition(n) do
for j from 1 to numbpart(n) do
J[P] := expand(eval(CurveFitting[Polynomiallnterpolation]
([seq( [i, numerics[i][P]], i=1..n)], v, form=power), v=alpha)):
end do:
end do:
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return J:
end proc:

MapPoly := proc(maxedge, b)
local Phi, edges, ], M, Inpart, i, curpow, P:
Phi :=0:

for edges from 1 to maxedge do
# Because we want to restrict to maps, we consider only even partitions.
J := BuildJack(2+edges, 1+b):
print("Built ", 2xedges, 1+b);
# The for loop is used instead of add so that coefficients
# can be combined more frequently.
for P in partition(2xedges) do
Phi := expand(Phi + t"(2+edges) /

(innerproduct(J[P], J[P], 2sedges, 1+b)) =
evalindets(J[P], indexed, n—>mul(x[i], i=op(n)))=
evalindets(J[P], indexed, n—>mul(y[i], i=op(n)))*
coeff(J[P], pl[seq(2, i=1..edges)]])+z"\edges):

end do:
end do:
Inpart := Phi:
curpow := Phi:
for i from 2 to maxedge do
curpow := add(coeftayl(—curpow=Phi, z=0, j)*z"j, j=1..maxedge):
Inpart := expand(Inpart+curpow/i):
end do:
M := eval((1+b)=diff(Inpart, t), t=1):
return M:
end proc:

maxedge:=3:

mydata := [seq(0, i=0..maxedge)]:

for i from 0 to maxedge do

mydata[i+1] := expand(convert(taylor(MapPoly(maxedge,i),
z, maxedge+1),polynom));

end do:

frominterp := add(CurveFitting[ Polynomiallnterpolation](
[seq([i, coeftayl(mydata[i+1], z=0, edge)], i=0..maxedge)],
b, form=power)zz"\edge, edge=1..maxedge):

BMP[maxedge] := simplify(expand(%)):
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B.5 The Top Coefficient

# The root face is represented as a sequence indicating
# the vertices encountered in a face traversal. For

# computational convenience, the root vertex occurs
# both first and last.

Kronecker := (x,y)—> if x=y then 1 else 0 end if:

CrossCap := proc(inFace::list) option remember:
local n:
n := nops(inFace):
return add(Reduce([inFace[1], seq(inFace[i—j+1],j=1..i),
seq(inFace[j], j=i.n-1),
[seq(inFace[n][j]+Kronecker(j,inFace[i])
+Kronecker(j,inFace[1]), j=1..nops(inFace[n]))]
1), i=1.n-1):
end proc:

NewFace := proc(inFace::list) option remember:
local n:
n := nops(inFace):
return add(Reduce([inFace[1], seq(inFace[j], j=i..n—1),
[seq(inFace[n][j]+Kronecker(j,inFace[i])
+Kronecker(j,inFace[1]), j=1..nops(inFace[n]))]
D=ylil, i=1.n-1):
end proc:

Reduce := proc(inList:list) option remember:
local i, mapping, nexti, outList, outDegrees, n, extraVertices, inDegrees:
nexti :=1:
n := nops(inList)—1:
inDegrees := inList[n+1]:
forifrom 1 ton do
if mapping[inList[i]]=evaln(mapping[inList[i]]) then
mapping[inList[i]]:=nexti:
outDegrees[nexti]:=inDegrees[inList[i]]:
nexti := nexti + 1:
end if:
outList[i]:=mapping[inList[i]]:
end do:
extraVertices := 1:
for i from 1 to nops(inDegrees) do
if mapping[i]=evaln(mapping]i]) then
extraVertices := extraVerticessx[inDegrees|i]]:
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end if:
end do:
return r[seq(outList[i], i=1..n),
[seq(outDegrees][i], i=1..nexti—1)]]+extraVertices:
end proc:

AddBridge := proc(Facel:list, Face2::list)

local n, m, shift:

n := nops(Facel):

m := nops(Face2):

shift := max(seq(Facelli], i=1..n-1)):

return Reduce([Facel[1], seq(Face2[j]+shift, j=1..m-1),
seq(Facel[j], j=1.n-1),
[seq(Facel[n][j]+Kronecker(j,Facel[1]), j=1..nops(Facel[n])),

seq(Face2[m][j]+Kronecker(j,Face2[1]), j=1..nops(Face2[m]))]

):

end proc:

BridgeMonomial := proc(inmon)
local rop, sop, i:
if inmon=dummyterm then
return O:
end if:
for i from 1 to nops(inmon) do
if op(0,0p(i,inmon)) = r then
rop := op(op(i,inmon)):
elif op(0,0p(i,inmon)) = s then
sop := op(op(i,inmon)):
end if:
end do:
return AddBridge([rop],[sop])=eval(inmon,{r[rop]=1, s[sop]=1}):
end proc:

BridgePoly := proc(inpoly::polynom)
local expoly, temp, curm:
expoly := expand(inpoly):
map(BridgeMonomial expoly+dummyterm):
end proc:

AddEdge := proc(inPoly)
# We have to use evalindets carefully, otherwise
# the variables that appear both pre and post
# expansion will be expanded a second time.
evalindets(inPoly, indexed, n—>
if(op(0,n)="r") then
"CrossCap([op(n)])+NewFace([op(n)])’
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else
n
end if):
return expand(%):
end proc:

maxedge :=5:
U:=0:
part[0]:=r[1,[0]];
for i from 1 to maxedge do
part[i] := expand(
AddEdge(part[i—1]) +
BridgePoly(add(part[j]+eval(part[i—j—1],r=s), j=0..i—1))
):
for curp in op(part[i]) do
U :=U + z"izevalindets(curp,indexed,n—>
if(op(0,n)=r) then
y[nops(n)—2]smul(x[i] i=op(n)[nops(n)])

else
n
end if):
end do:
end do:
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B.6 Testing the Refined g-Conjecture

#Compute the order of the stabilizer of a permutation with cycle type P
macz := proc(P) option remember: local i, output, counter, n:
n := add(i, i=P): #Find the size of the partition
for i from 1 to n do counter[i]:=0: end do: #Compute multiplicities
for i from 1 to nops(P) do counter[P[i]] := counter[P[i]]+1: end do:
return mul((i)"counter[i]+(counter[i])!, i=1..n):
end proc:

delta:=table(symmetric, identity):
deletionterm := (preterm,theta) —>
add(theta[i]+ expect’(sort([seq(theta[j]+delta[i,j]
#(preterm),j=1..nops(theta))])), i=1..nops(theta) ):
splitterm := (preterm, theta) —>
add(‘expect’(sort([i,preterm—i, op(theta)])), i=0..preterm):
expect := proc(theta) option remember: local j, thetaprime, temp:
if theta=[] then return 1: end if:
j:=theta[1]: thetaprime:=seq(theta[i],i=2..nops(theta)):
if j=0 then return yxexpect([thetaprime]) end if:
temp := deletionterm(j—2,[thetaprime])+splitterm(j—2,[thetaprime]):
return sort(expand(eval(temp))):
end proc:

maxedge:=5: maxvert:=maxedge:

#Compute A(1,x,y,z) using the expectation operator

with(combinat, partition):
add(add(expect(P)+z isx \nops(P)/macz(P), P=partition(2xi)),i=0..maxedge):
el:=simplify(%): del:=2xzxdiff(el,z):
A:=convert(simplify(taylor(del/el,z,maxedge+1)),polynom):

#Compute Q_1(1,x,y,1) also using the expectation operator
ep4:=add(expect([seq(4,j=1..0)])*(x/4)"i/i!,i=0..maxvert—1):
Nep4:=(1-y"2)=ep4:
xp4ep4:=add(expect([seq(4,j=1..i)])+x"i/4"(i—-1)/(i—1)!,i=1..maxvert):
xplp3ep4:=add(expect([1,3,seq(4,j=1..0)])xx"(i+1)/4"i/i!,i=0..maxvert-1):
Ql:=convert(taylor((yxxplp3ep4—y”2sxp4ep4)/Nep4,x,maxvert+1),polynom):
Ql:=sort(expand(simplify(Q1)),x):

#Compare the two computations
eval(A,{x=y+1/2,y=y,z=2xx})/(2+y+1)+eval(A,{x=y—1/2,y=y,z=2xx})[(2xy—-1):
eval(Q1,{y=2xy}):

simplify(4+y+%%—%);
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Appendix C

PostScript Programs

The problem of visualization is a significant obstacle to the study of maps.
Studying topological concepts from visual representations can provide insight
that is not present when only combinatorial descriptions are available. The
figures appearing in this Thesis were all written in PostScript, a stack-based
programming language developed for controlling laser printers. Though not
written explicitly for the purpose, most of the programs can be altered to draw
different maps. This Appendix reproduces the source code of several figures,
with the intention that they should be used as a framework for drawing other
maps.

The figures are organized in order of increasing complexity. Each is repro-
duced in a separate section that contains the listing of a *. eps’ file together with
a thumbnail of the figure that it generates. The nature of PostScript makes it
difficult to distinguish a framework for drawing figures, from the data that spec-
ifies a particular figure, so an excerpt of the source code appears beside each
thumbnail to indicate the portion of the program that most directly specifies
the map, though other parts of the programs can also be modified.

Section C.1 gives a framework for drawing the matching graph of a straight
line embedding in the plane. |Section C.2|gives a framework for drawing a pla-
nar tiling of a hexagon representing the torus. |Section C.3/gives a framework for
drawing a map on the surface of a torus embedded in 3-dimensional Euclidean
space, and makes use of PostScript level 3 features that may cause problems
on old printers. A portion of the program dealing with applying a non-linear
change of co-ordinates to a PostScript path was adapted from [Lan91]. The
programs are designed so that the description of maps is similar in Sections C.2
and|C.3.

The framework given in|Section C.4, for drawing tilings of hyperbolic space,
is the most complex, but also the least polished. It contains several features
that are not used in the final figure, but can be activated to draw tilings of
non-orientable surfaces and surfaces of higher genera.
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C.1 A Matching Graph

mark
/v1 {23 23} /v2 {95 23} /v3 {67 67}
/v4 {23 95} /v5 {131 59}
counttomark 2 idiv {def} repeat pop

/edges [{v4 v3}{v5 v3}{v3 v2}
{vd v1}{v5 v2}{v2 v1}] def
[vertices [{v1} {v2} {v3} {v4} {v5}] def

%!PS-Adobe-3.0 EPSF-3.0

%%BoundingBox: ® ® 154 118

%%Title: Matching_Graph.eps

%%Creator: Michael La Croix
%%CreationDate: Sat Dec 13 06:30:00 2008
%%EndComments

64 dict begin

mark
/black 000
Nlightgrey .85 .85 .85
/grey .6 .6 .6
/red .8 .2 .1
/green (0.7 .2
/blue .20 .8
/yellow 110
counttomark 4 idiv {[ 4 1 roll /setrgbcolor cvx] cvx def} repeat pop

mark
/v1{23 23} /v2 {95 23} /v3 {67 67}
/v4 {23 95} /v5 {131 59}
counttomark 2 idiv {def} repeat pop

/edges [{v4 v3}{v5 v3}{v3 v2}
{v4 v1H{v5 v2}{v2 v1}] def
[vertices [{v1} {v2} {v3} {v4} {v5}] def
/vsize 20 def % the size of a vertex
/bandwidth 5 def % the width of a ribbon
/endoff vsize dup mul bandwidth dup mul sub sqrt def

/eedge {gsave 3 setlinewidth black stroke grestore} def
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gsave
bandwidth 2 mul setlinewidth 0 setlinecap
lightgrey edges {exec moveto lineto} forall stroke
grey vertices {exec vsize 0 360 arc fill} forall

2 setlinewidth 0 setlinecap
/im matrix currentmatrix def
/flaglist [] def
edges {
% Set up co—ordinates so the edge runs from (0,—1) to (1,1)
exec moveto translate currentpoint exch atan rotate
endoff 0 translate currentpoint pop endoff sub bandwidth scale

% Draw the sides of the edge
0 —1 moveto 1 —1 lineto 0 1 moveto 1 1 lineto

% Save the co—ordinates of each flag in flaglist
[{0 —1}{0 1}{1 —1}{1 1}]{gsave
exec moveto im setmatrix
/flaglist [ flaglist {} forall [ currentpoint | cvx ] def
grestore} forall im setmatrix
} forall blue eedge stroke

% Add the edges to the current stroke so they can
% be used as a mask for drawing vertex boundaries
newpath edges {exec moveto lineto} forall
gsave currentlinewidth bandwidth 2 mul setlinewidth
strokepath setlinewidth
200 0 moveto 0 0 200 0 360 arc eoclip newpath
green vertices {exec vsize 0 360 arc eedge stroke]} forall
grestore newpath

% Draw the edges of the edges

red mark flaglist {exec} forall

counttomark 4 idiv {moveto lineto} repeat eedge stroke
cleartomark

% Draw the flags

black flaglist {exec 2.5 0 360 arc fill} forall

yellow flaglist {exec 2 0 360 arc fill} forall
grestore

showpage

end
%%EOF
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C.2 Tiling a Hexagon

/themap {
blue v1 v3 edge
green vl v2 edge
red v2 v3 edge
yellow v1 moveto v1 0 20 vadd
v2 —d2 40 40 vadd
v2 —d2 curveto estroke
purple v1 v3 —d3 edge
orange v2 v3 —d1 edge
} def

«Y‘
6\7

"

\'A?

%!PS-Adobe-3.0 EPSF-3.0

%%BoundingBox: O 0 396 410

%%Title: HexTorus.eps

%%Creator: Michael La Croix
%%CreationDate: Fri Mar 21 01:30:48 2008
%%EndComments

64 dict begin

% Some useful colors
mark
/black 000
/red .80.2.1
/green (0.7 .2
/blue .20 .8
/purple .50 .6
/orange .8 .60
/yellow 110
counttomark 4 idiv {[ 4 1 roll /setrgbcolor cvx] cvx def} repeat pop

% Parameters of the hexagon

/side {72} bind def

/height {3 sqrt side mul} bind def
/width {side 2 mul} bind def

/skip1 {0 height} bind def

/skip2 {1.5 side mul height —1.5 mul} bind def
Jorigin {18 side 2 div add 18 height 2 div add} bind def
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/vnorm{dup mul exch dup mul add} def
/vdiv{dup 3 1 roll div 3 1 roll div exch} def
/vmul{dup 3 1 roll mul 3 1 roll mul exch} def
/vneg{—1 mul exch —1 mul exch} def
/vdup{2 copy} def

/vadd{3 2 roll add 3 1 roll add exch} def
/vsub{3 2 roll sub neg 3 1 roll sub exch} def
/vavg{vadd 2 vdiv} def

[vertex{newpath 5 0 360 arc closepath fill} def
/edge{newpath moveto lineto estroke} def

% Coloured edges are stroked with black outlines
Jestroke{
currentgray 0 ne {gsave
currentlinewidth 1 add setlinewidth black stroke
grestore} if stroke
} def

% A procedure to draw the arrows indicate identification of sides
[arrow{% x y angle arrowsize
gsave
exch 4 2 roll translate rotate newpath
dup 2 copy neg exch moveto
0 0 lineto neg exch neg lineto stroke
grestore
} def

/arrowsize 5 def
/multiarrow { % x y number of arrows
gsave
31 roll exch 2 index —0.5 arrowsize mul
mul arrowsize add add exch translate
{
0 0 0 arrowsize arrow
arrowsize 0 translate
} repeat
grestore
} def

/hex { % x y sidelength
newpath 3 1 roll moveto
6 { dup O rlineto 60 rotate } repeat
pop closepath

} def
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% Draw a single hexagonal tile
/hextorus {
% First draw the inside of the tile.
00 side hex
gsave clip newpath
gsave
% 1t is necessary to additionally draw the edges
% from all the neighbours of the tile
—1.5 side mul height -2 div translate
2184
1 index exec
3 mod 0 eq {skip2}{skip1} ifelse translate
} for pop
grestore

% Draw the vertices after drawing the edges
black vertices {cvx exec vertex} forall

grestore stroke

% Draw the edge identification arrows

gsave
1134
side 2 div 0 2 index multiarrow
side 2 div height 3 —1 roll multiarrow
side 0 translate
60 rotate
} for
grestore
} def

% The co—ordinates of the vertices

/v1 {0 side 2 div} bind def

/v2 {side side 2 div} bind def

/v3 {side 2 div height side 2 div sub} bind def

% A list of all the vertices
/vertices [/v1 /v2 /v3] def

% Translations across boundaries

/d1 {height add} bind def

/—d1 {height sub} bind def

/d2 {exch 1.5 side mul add exch height 2 div sub} bind def
/—d2 {exch 1.5 side mul sub exch height 2 div add} bind def
/d3 {d1 d2} bind def

/—d3 {—d1 —d2} bind def
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% A procedure for drawing edges
/themap {
blue v1 v3 edge
green vl v2 edge
red v2 v3 edge
yellow v1 moveto v1 0 20 vadd
v2 —d2 40 40 vadd
v2 —d2 curveto estroke
purple vl v3 —d3 edge
orange v2 v3 —d1 edge
} def

gsave
origin translate
2 setlinewidth

218{
/themap cvx hextorus
3 mod 0 eq {skip2}{skip1} ifelse translate
} for
grestore
showpage

end
%HEQOF
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C.3 A Map on a Torus

The torus is modelled as the surface obtained by revolving a circle in the xz-plane
with radius r, centered at (71,0, 0) about the z-axis, and then projecting into the
plane x + y + z = 0. The surface is parametrized by (r3 cos 0,13 sin 0,1, sin @)
where r3 = 11 + 1, cos@. Hidden lines are detected for straight lines in the
intrinsic co-ordinate system of the torus, but using the simplifying assumption
that the only occluded portions of the torus have a negative component in the
direction (1,1, 1). This assumption is not valid for the two small regions of the
drawing that are more than 2 plies deep, and care should be taken to avoid
drawing edges through these regions.

/lines [
{blue v1 v3}
{green v1 v2}
{red v2 v3}
{purple v1 v3 —d3}
{orange v2 v3 —d1}
] def
[curves [
{yellow v1 moveto v1 —40 120 vadd
v2 —d2 20 120 vadd v2 —d2 curveto}
] def

%!PS-Adobe-3.0 EPSF-3.0

%%BoundingBox: 5 32 195 168

%%Title: TorusMap-19.eps

%%Creator: Michael La Croix
%%CreationDate: Fri Jul 25 17:30:51 2008
%%EndComments

64 dict begin

% Define some useful colours
mark
/black 000
/red .80.2.1
/green 0.7 .2
/blue .20 .8
/purple .7 0 .8
/orange .8 .60
/yellow 110
counttomark 4 idiv {[ 4 1 roll /setrgbcolor cvx] cvx def} repeat pop

% Useful vector operations
/vmul {dup 4 -1 roll mul 3 1 roll mul} bind def
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/vadd {exch 4 —1 roll add 3 1 roll add} bind def
/vdot {exch 3 1 roll mul 3 1 roll mul add} bind def

% Isometric projections of the co—ordinate axes
/y /x /2 90 120 360 {[ exch dup cos exch sin] cvx def} for
/isometric {
z 3 —1 roll vimul 4 2 roll
y 3 =1 roll vmul 3 2 roll
x 3 =1 roll vmul vadd vadd
} def

% Parameters of the torus
/r1 {50} def % the radius to the center of the tube
/12 {25} def % the radius of the tube

% Compute a point on the surface of the torus
ftorus { % theta phi

dup sin 12 mul 3 1 roll

cos r2 mul r1 add exch 2 copy

sin mul 4 1 roll cos mul 3 1 roll
} def

% Compute the normal to a point on the surface of the torus
/torusnormal {
2 dict begin
/phi exch def /theta exch def
theta cos phi cos mul theta sin phi cos mul phi sin
end
} def

% Determine if a point is visible by checking if its normal faces the viewpoint.
% This is cheating, because two small regions are occluded by the torus itself.
/isvisible{

torusnormal add add 0 gt
} def

% The following code segment, from here through the definition of
% "maxstraight” were found in the book PostScript Secrets

% by Don Lancaster, appearing there as section 32a—c.

/savecp {2 copy /y0 exch def /x0 exch def} def

/mt {savecp /xx0 x0 def /yy0 y0 def nlt moveto} def

/li {noshortcuts} def

/ct {savecp 3 {6 2 roll nlt} repeat curveto} def

/cp {xx0 yyO0 li closepath} def

% nlmap applies the nonlinear transform, nlt, to the current path,
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% leaving the transformed path on the stack for further manipulation.
% Line segments longer that maxstraight are split into curves.
/nlmap {gsave mark /newpath cvx {/mt cvx}{/li cvx}{/ct cvx]}

{/cp cvx} pathforall newpath] grestore cvx} def

% We were considering drawing a line to x1 y1 from x0 y0 in the

% untransformed co—ordinate space, but they were too far apart, so

% we’re splitting the line into the input number of co—ordinates.
/makecurves {floor cvi y1 y0 sub 1 index div 3 div /ydelta

exch def x1 x0 sub 1 index div 3 div /xdelta exch def {x0 y0 ydelta
add exch xdelta add exch 2 copy ydelta add exch xdelta add exch
2 copy ydelta add exch xdelta add exch ct} repeat} def

% Takes as input a point we’re considering drawing a line segment to and

% computes the distance in the untransformed space to see if this is a good idea.
/noshortcuts {/y1 exch def /x1 exch def y1 y0 sub abs x1 x0 sub abs

add maxstraight div dup 1 gt {makecurves}{pop x1 y1 savecp nlt lineto}
ifelse} def

/maxstraight 5 def
/nlt {torus isometric} def

/boundary { %phi from theta
dup cos exch sin add neg 1 atan
} def

% Directions around the torus

/—d1 {0 =360 vadd} def /d1 {0 360 vadd} def

/—d2 {=360 0 vadd} def /d2 {360 0 vadd} def

/—d3 {360 —360 vadd} def /d3 {360 360 vadd} def

/v1{10 20} def

/v2 {80 —10} def

/v3 {35 80} def

[vertices [{v1} {v2} {v3}] def

/lines [
{blue v1 v3}
{green v1 v2}
{red v2 v3}
{purple v1 v3 —d3}
{orange v2 v3 —d1}
] def
/curves [
{yellow v1 moveto v1 —40 120 vadd
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v2 —d2 20 120 vadd v2 —d2 curveto}
] def

gsave
100 100 translate

% Draw the inner boundary of the torus

0 dup boundary 180 add nlt moveto

11 90{dup boundary 180 add nlt lineto} for
—2701 =90 {dup boundary 180 add nlt lineto} for
closepath

% The outer boundary is an ellipse

/currentmat matrix currentmatrix def

—45 dup boundary torus isometric pop

—135 dup boundary torus isometric exch pop
scale 1 0 moveto 0 01 0 360 arc

currentmat setmatrix

gsave 1 setlinewidth stroke grestore

% Parameters determining how finely the torus is triangulated
/thetastep 9 def /phistep 18 def

% Determine the color of the point with intrinsic co—ordinates (Theta, Phi)
Nlightsource [10 20 5] def % [z y x]
/patternpoint {% Theta Phi
2 copy torus isometric 4 2 roll torusnormal
lightsource{mul 3 1 roll} forall
add add lightsource{dup mul}forall add add sqrt div
.5 add 1.75 div dup 0 1t {pop O}{dup 1 gt {pop 1} if} ifelse
} def

% Building a shading dictionary by triangulating the surface of the torus
<<
[PatternType 2
/Shading
<<
/ShadingType 4 % Gourad
/ColorSpace /DeviceGray % The underlying color space
/DataSource [-135 thetastep 45{/theta exch def
[
% Draw the torus as four quadrants
{theta phi neg} % back left
{90 theta sub phi neg} % back right
{theta phi} % top left
{90 theta sub phi} % top right
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/phi 0 theta —45 gt {180 add neg} if def
/cup exch def
0 cup patternpoint
0 cup thetastep 0 vadd patternpoint
phistep dup 180{
theta —45 gt {180 add neg} if
/phi exch def
1 cup patternpoint
1 cup thetastep 0 vadd patternpoint
} for
} forall
} for |
>>
>> % End prototype pattern dictionary
gsave matrix makepattern setpattern fill grestore

gsave
3 setlinewidth

% Draw all the lines as though they are hidden
gsave
1 setlinecap [2 8] 0 setdash
lines {
exec newpath moveto lineto
gsave
4 setlinewidth black
strokepath nlmap exec fill
grestore
strokepath nlmap exec fill
} forall
grestore

% Now draw the visible portions as solid lines
3 dict begin
lines {
newpath exec
[ 31roll | cvx /pathend exch def
[ 31 roll | cvx /pathstart exch def

pathstart moveto
05100 {
100 div /lambda exch def
pathstart 1 lambda sub vmul
pathend lambda vmul vadd
2 copy isvisible {lineto}{moveto} ifelse
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} for

gsave
4 setlinewidth black
strokepath nlmap exec fill

grestore

strokepath nlmap exec fill

} forall
end

% Draw curves edges without detecting hidden lines
curves {
newpath exec
gsave
4 setlinewidth black
strokepath nlmap exec fill
grestore
strokepath nlmap exec fill
} forall
grestore

% Draw the vertices after the map is drawn
vertices {
newpath exec 5 0 360 arc
nlmap exec black fill
} forall
grestore

end

showpage
%BEOF
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C.4 A Hyperbolic Tiling

This program gives a map on the double-torus as a tiling of hyperbolic space
represented by the Poincaré disc model. In the current incarnation, every edge
must be drawn as a geodesic. Adding an extra handle is accomplished by
adding extra labels, in 4’s to the array ‘fundlines’. Each of these labels is used
to represent one of the circular arcs bounding a fundamental tile. Translations
of the fundamental tile are computed as a series of reflections together with
circular inversions across these circles. To represent a non-orientable surface,
it is necessary to make one of the translations introduce a reflection, and this
is accomplished by setting the variable ‘nonorientable’ to “true’. For non-
orientable surfaces there may be any even number of labels in “fundlines’.

Since a full tiling requires infinite detail, it is necessary to specify a maximum
recursion depth. This can be specified independently for faces, edges, and
vertices. Since PostScript interpreters use numerical computation, there is a
practical limit to how many inversion can be computed without excessive loss
of precision.

/facelist [
[{va 12 Itran} {vc} {va} {vb}]
[{vb}{vc 18 Itran}{va 11 ltran}]
[{va 18 ltran}{vc 18 ltran}{vb}
{vc17 Itran}{va 12 ltran 17 Itran}]
[{vb}{vc 17 ltran}{vb 16 ltran}{va}]
[{vall ltran 14 ltran 17 ltran}
{vc17 ltran}{vb 16 ltran}
{va Il ltran 16 ltran}]

/edgelist [

{va vb 16 ltran} {va vb} {va vc} {vc 17 Itran vb 16 ltran}

{vall ltran vc 18 ltran} {vb vc 17 Itran} {vb vc 18 ltran}

{vb va Il ltran} {vc va 12 Itran} {va 18 ltran va 12 Itran 17 ltran}
] def

%!PS-Adobe-3.0 EPSF-3.0

%%BoundingBox: ® 0 610 610

%%Title: HyperbolicGraph.eps

%%Creator: Michael La Croix
%%CreationDate: Sat Apr 12 03:08:00 2008
%%EndComments
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64 dict begin
/maindict currentdict def

/radius {300} def

Jorigin {305 305} def
/backgroundcolor {white} def
/linecolour {black} def
/bordercolor {black} def
/skipperimeter true def
/skipthreshold 3 def
/facethreshold 5 def
/edgethreshold 5 def
/drawnthreshold 1 def
/monorientable false def

/circle {3 copy add moveto 90 450 arc} bind def
/line {(newpath moveto lineto stroke} bind def

/invertpointincircle { % x y centre radius
51 roll 2 copy 7 2 roll vsub 2 copy dup mul exch
dup mul add 4 —1 roll dup mul exch div vimul vadd
} def

/invertpoint { % x y
2 copy dup mul exch dup mul add radius dup mul exch div vimul
} def

[cyclicorder {% test the cyclic order of a,b,c
Y%a<b<cORb<c<aORc<a<b
3 copy 1t {1t {gt}{1t} ifelse} { 1t {lt}{gt} ifelse} ifelse
} def

% Draw the hyperbolic line between v1 and v2.
/hyperbolicarc { % v1 v2
4 copy
2 copy invertpoint circlefrom3pt {
% vl v2 centre radius
7 1roll 2 copy 9 2 roll
% centre radius vl v2 centre
2 copy
6 2 roll % centre radius vl centre v2 centre
vsub exch atan % centre radius vl centre a2
51 roll
vsub exch atan % centre radius a2 al
exch % centre radius al a2
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2 copy 5 index 7 index atan
cyclicorder {arc}{arcn} ifelse
H% The arc is a line

4 {pop} repeat

moveto lineto

} ifelse
} def

[reflectpointindirection { % point direction
4 copy 3 —1 roll mul 3 1 roll mul add
2 index dup mul 2 index dup mul add
div vmul -2 vmul vadd

} def

/hyperbolicline2pt {
2 copy dup mul exch dup mul add 0 eq
{moveto lineto stroke}
{2 copy invertpoint drawcircle3pt stroke}
ifelse

} def

/drawcircle3pt {
newpath circlefrom3pt {circle}{moveto lineto} ifelse
} def

[2ptsfromcircle {% centre radius

% try not to make points colinear with the origin

3 copy dup 47 cos mul exch 47 sin mul vadd

52 roll dup 94.3 cos mul exch 94.3 sin mul vadd
} def

% Starting with 3 points, this procedure returns one of two things
% centre radius true — if the three points lie on a circle
% x1y1 x2 y2 false — if the three points are colinear
[circlefrom3pt {%0v1 v2 v3
1index 4 index eq {6 2 roll} if
3 index 6 index eq {6 —2 roll} if
1 index 4 index eq {pop pop false}%colinear
{
10 dict begin
[/y3 /x3 /y2 /x2 [y1 /x1] {exch def} forall

/ma y2 yl sub x2 x1 sub div def
/mb y3 y2 sub x3 x2 sub div def
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ma mb ne {
% Compute the x—coordinate of the center
ma mb y1 y3 sub mul mul
mb x1 x2 add mul add
ma x2 x3 add mul sub
2 mb ma sub mul div

% Compute the y—coordinate
ma 0 ne {

dup neg x1 x2 add 2 div add ma div y1 y2 add 2 div add
it

dup neg x2 x3 add 2 div add mb div y2 y3 add 2 div add
} ifelse

% And the radius
2 copy y1 sub dup mul exch x1 sub dup mul add sqrt
true

% colinear points
x1 dup mul y1 dup mul add O ne {
x1 y1 1000 vmul x1 y1 —1000 vmul
it
x2 y2 1000 vmul x2 y2 —1000 vmul
} ifelse
false
} ifelse
end
} ifelse
} def

/vneg {neg exch neg exch} bind def

/vavg {3 2 roll add 3 1 roll add 2 div exch 2 div} def
/vsub{3 2 roll sub neg 3 1 roll sub exch} def
/vadd{3 2 roll add 3 1 roll add exch} def
/vmul{dup 3 1 roll mul 3 1 roll mul exch} def

/hyperbolicline {% R theta % to center
dup cos 2 index mul exch sin 2 index mul
3 2 roll dup mul radius dup mul sub sqrt
circle stroke

} def

/translateacrossfuncircle { % point circle
revor {5 —2 roll neg exch neg exch}
{3 copy 8 3 roll pop reflectpointindirection} ifelse
5 2 roll invertpointincircle
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} def

/buildreflectionlines {
2 mul /reflectionlines [2 2 5 4 roll {index} for] def
} def

/notyetdrawn {% drawnlist
1 dict begin
/target [ 4 2 roll | cvx def
/retvalue true def
{
% There are numerical accuracy issues, we’ll consider the patch drawn if
% we've drawn a patch within 1 pt of the origin of this patch
exec target vsub dup mul exch dup mul add sqrt
drawnthreshold It {/retvalue false def} if
} forall
retvalue
end
} def

/drawnpatchlist [] def
/drawtranslatedpatch { % translationdepth
4 add
gsave
drawnpatchlist v0 tran notyetdrawn
skipperimeter {
radius v0 tran dup mul exch dup mul add sqrt sub skipthreshold gt and
bif {
drawpatch /drawnpatchlist [ [ vO tran | cvx drawnpatchlist{}forall] def
}if
grestore
pop
} def

% Define some useful colors

mark
/red .8 2.1
/blue .20 .8
/green 0.6 .2
/black 00 0
/white 111
/grey .6 .6 .6
/cyan 611
/purple .7 0 .8
/magenta 101
Jazure 0 .4 .8
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Jorange 1.7 0
/yellow 110
counttomark 4 idiv {[ 4 1 roll /setrgbcolor cvx] cvx def} repeat pop

/v0 {0 0} def % The origin, used to determine if a patch has been drawn
/va {=50 90} def

/vb {100 —70} def

/ve {—80 —80} def

% tran takes a pair of co—ordinates representing a point in the
% fundamental patch and translates them to the current patch
Jtran {

reflectionlines {cvx exec translateacrossfuncircle} forall
} def

% ‘va 18 Itran’ translates the vertex va across the line 18
/ltran {cvx exec translateacrossfuncircle} def

% Draw a vertex at a somewhat appropriate size

/hypervertex {
tran 2 copy
dup mul exch dup mul add radius dup mul div neg 1 add
15 mul newpath circle closepath fill

} def

/[facelist [
[{va 12 ltran} {vc} {va} {vb}]
[{vbH{vc 18 ltran}{va 11 ltran}]
[{va I8 Itran}{vc 18 ltran}{vb}
{vc17 ltran}{va 12 Itran 17 ltran}]
[{vbH{vc 17 Itran}{vb 16 ltran}{va}]
[{vall ltran 14 ltran 17 ltran}
{vc 17 ltran}{vb 16 ltran}
{vall ltran 16 ltran}]
] def

/edgelist [

{va vb 16 ltran} {va vb} {va vc} {vc 17 ltran vb 16 ltran}

{va 1l ltran vc 18 ltran} {vb vc 17 ltran} {vb vc 18 ltran}

{vb va 11 ltran} {vc va 12 ltran} {va I8 ltran va 12 ltran 17 ltran}
] def

% Draw the faces of the map
/drawfaces {
gsave
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3 dict begin
/hue 0 def
/numfaces facelist length def
facelist {
hue .3 1 sethsbcolor
/central false def
dup {exec tran dup mul exch dup mul add sqrt
radius sub neg facethreshold gt {/central true def} if
} forall

central {
[ exch {} forall dup exec moveto ]{exec lineto} forall nlt fill
Hpop} ifelse
/hue hue 1 numfaces 1 add div add def
} forall
end

grestore
} def

% Draw the edges
/drawedges {
1 dict begin
gsave
0 setlinecap 1 setlinewidth black
edgelist {
% Only draw edges if at least one end is far enough from the boundary circle
/central false def
dup exec 2 {tran dup mul exch dup mul add sqrt
radius sub neg edgethreshold gt {/central true def} if
} repeat

newpath exec moveto lineto central {nlt stroke} if
} forall
grestore
end
} def

% Draw vertices on the fundamental patch
/drawvertices {
black
[{val{vb}{vc}l{
/canvert exch def
mark
canvert 10 add tran canvert 10 sub tran canvert exch 10 add exch tran
newpath circlefrom3pt {dup 1 ge {circle fill} if} if
cleartomark
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} forall
} def

% /11 78 cpol gives the point 78 degrees around 1
/cpol {2 copy cos mul 3 1 roll sin mul vadd} def

% Draws the lines bounding the current patch
/drawnclineslist [] def
/drawcolorlines {
gsave mark
newpath
0 setlinecap 8 setlinewidth
[
{red 14 0}{red 18 180}{orange 13 45}{17 225}
{green 12 90}{green 16 270}{blue 11 135}{blue 15 315}

1 dict begin
/canline exch def

drawnclineslist canline cpol tran notyetdrawn {
canline 45 sub cpol moveto canline 45 add cpol lineto
gsave
black currentlinewidth 2 add setlinewidth strokepath nlt fill
grestore strokepath nlt fill
maindict /drawnclineslist [ [ canline cpol tran | cvx
drawnclineslist{}forall] put
}if
end
} forall
cleartomark grestore
} def

/nlt {
5 dict begin
/hmt {tran moveto /closepoint[currentpoint]cvx def} def
/hli {tran currentpoint 4 2 roll hyperbolicarc} def
/het {3{tran 6 2 roll}repeat curveto} def
/hep {currentpoint closepoint hyperbolicarc} def

[ gsave /newpath cvx

{/hmt cvx}{/hli cvx}{/hct cvx}{/hcp cvx}
pathforall grestore | cvx exec
end

} def

% The fundamental lines bounding the main patch
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/fundlines [/11 /12 /13 /14 /15 /16 /17 /18] def

gsave
origin translate

newpath 0 0 radius circle closepath
gsave

0 0 radius 4 add circle closepath
bordercolor eofill

grestore

gsave backgroundcolor fill grestore
clip % Only draw in the Poincare disc

% The number of sides bounding a fundamental patch.
/sides fundlines length def

% Build the hyperbolic lines bounding a

% fundamental domain. The lines are circles
% in the real plane represented by their

% center and radius

360 sides div

radius 1 2 index 2 div sin 3 index 2 div cos div
dup mul sub sqrt div % anglestep radius
02 index 359.999 {

1 index exch

dup cos 2 index mul exch sin 2 index mul
3 2 roll dup mul radius dup mul sub sqrt
53 roll

} for

pop pop

% To translate across a fundamental line, either
% reflect twice or rotate and reflect

/tranl {/revor false def} def

/refl {/revor nonorientable def} def
fundlines {4 1 roll

2 index 0 eq {/refl}{/tranl} ifelse cvx

4 packedarray cvx def

} forall

/maxdepth 4 def
/recursivedraw {1 dict begin /curdepth exch def
curdepth maxdepth le {

curdepth buildreflectionlines

curdepth drawtranslatedpatch

curdepth maxdepth It {
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fundlines {
curdepth 1 add recursivedraw pop
} forall
}if
}if
end
} def

% The recursive depth for each type of object can be specified individually.
gsave
newpath
[
% Drawing faces, then edges, then vertices produces a natural layout.
{/skipperimeter false def 4 /drawfaces} %6
{4 /drawedges} % 4
{3 /drawvertices}

% Uncomment the next line to draw the boundaries of tiles
% {/skipperimeter true def /skipthreshold 3 def 4 /drawcolorlines}

exec
/drawnpatchlist [] def
/drawpatch exch cvx def
/maxdepth exch def
0 recursivedraw

} forall

grestore

grestore

end

showpage
%WEOF
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Notation

This list of notation is organized alphabetically, using the convention that num-
bers precede non-alphanumeric symbols, and both classes of symbols precede
letters. The Greek alphabet is considered to precede the Latin alphabet, and
within each alphabet, capitals precede the corresponding minuscules.

Numbers
1 the vector (1,1,1,1,...) consisting entirely of 1's

Iy the vector (1,1,...,1,0,0,...) of N leading 1’s padded with 0’s

Non-alphanumeric Symbols

I the cardinality of a set
(or) the size of an integer partition

¢ a an inner product on the ring of symmetric functions
¢ an expectation operator
(e an expectation operator defined in terms of ()
Greek Letters

@1,a2,@3  involutions acting on @ by re-rooting

P1,B2,B3  involutions acting on A

r a bijection from F to Eg U Vg
V4 the complex number 11@
0., the Kronecker delta function

Jr the boundary of a surface

the edge permutation of an orientable hypermap
(or) the edge-degree partition of a hypermap
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a bijection from (3, 1)-pseudo-4-regular maps to 4-regular maps
any one of a family of invariants defined on rooted maps
a partition

Gauflian curvature

> A D = o

the ring of symmetric functions with coefficients in Z
AQ the ring of symmetric functions with coefficients in Q(«)
Ay agraded piece of Agq

AG,Y) A(M;,M,) is the partition A where 21 consists of the lengths of
! cycles in My U M, for perfect matchings M; and M,

A the vector (A1, A2, A3, ..., AN)
A a partition

N the conjugate partition to A
H a partition

the vertex permutation of an orientable hypermap
(or) the vertex-degree partition of a hypermap

g, the space { p(b) € Q(b): p(b - 1) = (-b)’p (3 - 1)}
< the operation of root-edge deletion on A

Ty, T2, T3 natural products on Q' X @'

Ty, T, Ty induced products on @ X Q'
p the vector (p1, p2, p3,---, PN)

P1,P2,P3 mnatural products on A* X A*

P1/P2 Pz induced products on A* X A

X a surface
Y the involution on Q induced by 7 acting on A
T an involution acting on A by changing the decoration of vertices

Te, To, Tf  fixed-point-free involutions used to define combinatorial maps
@ a series defined in terms of Jack symmetric functions

the face permutation of an orientable hypermap (= ev)
% (or) the face-degree partition of a hypermap
(or) a conjectured natural bijection between A and Q

the medial construction

irreducible characters of J#(S,,, B,) indexed by the partition A

= < %

the Euler characteristic of a map or surface
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X1 the action on Q induced by & acting on A

X2 the action on Q induced by & acting on A

Xt an irreducible character of the symmetric group indexed by A
X ;i) the evaluation of x at an element of C;

)_(?) the complex conjugate of )(;i)

W a series related to the derivative of the logarithm of ®

Q the product e~ 2720|V(x)]*

W) the size of the centralizer of a permutation with cycle type A

Latin Letters

A a class of decorated rooted orientable maps with at least one edge
A A together with the rooted map with no edges
NSl the subset of A not rooted on cut edges
Az the subset of A rooted on cut edges

Agn a subset of A

A(u,x,y,2) the generating series for orientable maps
a,(x) the arm length of a cell x in a partition A
b a ubiquitous parameter

B, a basis, {bg‘Zi(l +b):0<i< 9/2} for b-polynomials

B, the wreath product S,[,] realized as the stabilizer of the fixed-
point free involution (1,2)(3,4) - - - (2n — 1, 2n) in S,

C the field of complex numbers

Ca a conjugacy class of S, indexed naturally by the partition A

Ca the formal sum of elements of C;

CS,  the group algebra of S, with coefficients in C
cap(@) the coefficient of p,, in [ ()
cvpe(b)  a coefficient of the hypermap series
Cij the complex component of a co-ordinate of Vy
cl() the topological closure of a set
dy,p(b) the sum ) tw)=v Cy,p,1271(b)
deg() the degree of a vertex or a face

Ex an orthogonal idempotent of either Z(CS,,) or 5(S,,, B,)
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Ki

)
Ir(x)

M
M()
M,

MC/ Mf/ M?}
M s

the edges of G

the base of the natural logarithm

an edge, often the root edge of the map mor g

the vector (0,1,0,0,0,...)

the elementary symmetric function indexed by the partition A

a closed family of discs forming a ribbon graph

a face of a map

a graph

genus

the hook length product [ ], (1 + a(x) + /(x)) when A is a partition
the Hecke algebra of B, as a subgroup of S,

a generating series for hypermaps

a coefficient of ¢, ¢, 2](b) with respect to the basis B,

is the imaginary unit

an embedding of Gin ©

the dual of the map i

the Jack symmetric function indexed by A with Jack parameter o
a double coset of B, in S,, naturally indexed by the partition A
the formal sum of the elements of K

the length of a partition

the leg length of a cell x in a partition A

an N X N matrix in Wy or Vy

a generating series for maps, its definition determined by context
the set of maps with vertex- and face-degree partition v and ¢
perfect matchings on the matching graph of a map

the set of maps with v vertices and f faces

M(x,y,z,1;b) a refinement of M(x, y,z;b)

m
m
w
m

ny

a map
a map, often obtained from m by successive root-edge deletions
a map obtained from m’ deleting one handle and adding another
the image of m under a bijection

the monomial symmetric function indexed by the partition A
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mi(A)  the multiplicity of the part i in the partition A

an indeterminate marking a half edge separating a face painted i
mi; from a face painted j

(or) an entry in an N X N matrix M
my(x,y,1;0) the coefficient of z" in M
N a positive integer, often the dimension of a space of integration
o the set of equivalence classes of orientable surfaces
O(x")  aformal power series with valuation at least n
z the set of integer partitions

P5,1(u,x,Y,2) a generating series for (3, 1)-pseudo-4-regular maps

p a (3, 1)-pseudo-4-regular map
pa the power-sum symmetric function indexed by the partition A
p(x) the vector (1, p1(x), p2(x), p3(x), .. .)
Q the field of rational numbers
Q the class of rooted orientable 4-regular maps
Q Q together with the object ()
Qyn a subset of Q consisting of maps with genus g and n vertices

Q(u,x,,2) a generating series for Q

Q1 the restriction of Q to maps with face-separating root edges
Q2 the restriction of Q to maps with face-non-separating root edges
q a rooted orientable 4-regular map

Gv,pe(b)  a coefficient of ® with respect to the power-sum basis
R the field of real numbers
R() the real part of a complex number
R y(x,y,2) a series related to A(1, x, y,2)

Rygy(x,y,2) a series related to Q(1,x, v, z)

R a semi-ring
R the semi-ring of positive elements of R € R
r the vector (rg, 1, 72,...), usually associated with root faces
Tij a co-ordinate of ‘Wy or the real component of a co-ordinate of Vy
S(u) the function ) ;-4 \/ﬂk <pk Iy, (1 - Ai @)_(Nﬂl)>
Sn the symmetric group on n elements
SA the Schur function indexed by the partition A
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T(u) the function <Hfi1 (1 - Ai @)_(va
tv,@,€)  the number [v| — £(v) — €(p) — £(e) when v, ¢, and € are partitions
Uu the class of unhandled maps
U(x,y,z) the generating series for U
V(A) the Vandermonde determinant [T ;n(Ai = A))
Ve the vertices of a graph G
VYN the space of N X N complex Hermitian matrices
v a vertex of a graph

vau(@)  the coefficient of m ¢ in Ji(a) when A and i are partitions

Wy the space of N X N real symmetric matrices

X the vector (xg, x1, xp, .. .), usually associated with vertices
x? a monomial ], xTi(Q) determined by the partition 0

y the vector (yo, ¥1, Y2, ... ), usually associated with faces

z the ring of integers
Z) the zonal polynomial indexed by the partition A

Z(CS,;) the centre of C3,
z the vector (zo, 21,22, . .. ), usually associated with edges
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