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Abstract

Columns subjected to time varying axial load may exhibit dynamic instability due to para-

metric resonance. This type of instability is inherent in structures; it is not due to material

or geometrical imperfections, and can occur even in perfectly constructed structures. This

characteristic makes parametric resonance a very difficult to predict and therefore danger-

ous phenomenon.

In this thesis the stability of a structural column under bounded noise axial load is studied

by use of Lyapunov exponents. Bounded noise is especially useful as a loading because it may

be used to represent both wide and narrow band processes, making the stability equations

developed general enough to handle a wide variety of real world probabilistic loadings.

The equation of motion of the first mode of vibration for this system is a second-order

nonlinear stochastic ordinary differential equation. The nonlinearity makes the system

exhibit bifurcating behaviour where stability shifts from the trivial solution to a non-zero

mean stationary solution.

The stability of the trivial and non-trivial solutions is important in obtaining a complete

picture of the dynamical behaviour of the system. The effect that damping, the amplitude

of noise, and the level of nonlinearity have on the stability of a structural column is studied

using both analytical and numerical approaches. The largest Lyapunov exponent of the

trivial solution is determined analytically by using time averaged versions of the original

equation of motion. The validity of the analytical time averaged equation of motion is

also verified with Monte Carlo simulations. Due to the mathematical complexity the largest

Lyapunov exponent of the non-trivial stationary solutions is obtained using Monte Carlo

simulation only.
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1C H A P T E R

Introduction

1.1 Instability of Structures under Periodic Loading

1.1.1 Dynamic Instability

Instability is perhaps best defined as the lack of stability. Stability itself has been defined in

many ways. In most general terms it can be thought of as durability, constancy, steadiness,

immobility, ... ([3], p. 125). This definition is broad, but too subjective to be used in

practice, therefore a more quantifiable definition is needed. In mathematical modelling of

mechanical systems, a working definition is that a system is stable with respect to some

input if its response to that input is bounded. Dynamic instability occurs when a system is

made unstable by dynamic input. If the dynamic input is periodic, the instability is called

resonance instability, or simply resonance.

Resonance of a structure occurs when the applied dynamic loading adds more energy to

the system than the amount of energy lost through dissipative forces, causing the response

to grow without bound. Intuitively, because energy is the product of force and distance

traveled, this requires that there be some correlation between the frequency of the loading

and the frequency of the structural vibration. The natural frequencies of a structure play a

very important role in this. Natural frequencies are the frequencies at which structure will

oscillate at when subjected to an impulse load and are an intrinsic property of every elastic

system.

1



1.1 instability of structures under periodic loading 2

Depending on the nature of the loading, resonance may be further divided into main

resonance and parametric resonance.

1.1.2 Main Resonance

The classical study of structural dynamics usually focuses on main resonance. This case

presents itself most commonly in transverse, or out of plane, dynamic loading of columns,

beams, or entire structures.

xn−1

xn

x2

x1

Fn−1(t)

Fn(t)

F2(t)

F1(t)

mn−1

mn

m2

m1

kn

k2

k1

Figure 1.1 Structure Subjected to Dynamic Lateral Loading

The multistory structure in Figure 1.1 may be mathematically modelled by ordinary differ-

ential equations (ODE’s), which are in general given by

Mẍ(t) + Cẋ(t) + Kx(t) = F(t), (1.1.1)

where x is the floor displacement vector, M is the floor mass matrix, C is a damping matrix

representing energy dissipation, K is a stiffness matrix determined by the lateral stiffnesses

of each storey with respect to lateral displacement, and F(t) is the applied forces vector.

In the case of an individual beam, as shown in Figure 1.2, the equation of motion is a

partial differential equation (PDE):

ρA
∂2v(x, t)

∂t2
+ EI

∂4v(x, t)

∂x4
= w(x, t), (1.1.2)
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x

v

EI, L, A, 

v(x,t)

w(x,t)

ρ

Figure 1.2 Beam Subjected to Dynamic Loading

where ρ is the mass density per unit volume, A is the cross-sectional area, EI is the cross-

sectional bending stiffness, L is the span length, v is the transverse displacement, x is the

position, t is time, and w(x, t) is the applied distributed load.

Important in these systems is that the loading terms appear on their own on the right

side of the equations of motion. The system parameters are therefore independent of the

loading. Systems of this type are all susceptible to main resonance.

The properties of main resonance may be understood by studying a discrete single

degree-of-freedom example. Consider equation (1.1.1) in the case of a single story structure

under sinusoidal loading,

mẍ(t) + cẋ(t) + kx(t) = F0 sin νt, (1.1.3)

or in standard form,

ẍ(t) + 2ζωẋ(t) + ω2x(t) =
F0

m
sin νt, (1.1.4)

with

ω2 =
k

m
, ζ =

c

2mω
,

where F0 is the applied force magnitude, ν is forcing frequency, ω is undamped natural

frequency, and ζ is the damping coefficient.

The damping coefficient, ζ , is very important and dictates the nature of the response.

There exists a threshold level of damping (ζ =1), called critical damping, where the re-

sponse changes from oscillatory exponential decay to non-oscillatory exponential decay. In
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structures the level of damping is usually much lower than this threshold, in which case it

may easily be shown that solution of equation (1.1.4) is given by

x(t) =
F0

m

1
√

(ω2 − ν2)2 + (2ζων)2
sin (νt + φ), (1.1.5)

where

φ = arctan

(

2ζων

ω2 − ν2

)

.
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Figure 1.3 Dynamic Magnification Factor

The stability of this system may be determined by studying the amplitude of vibration,

which is the coefficient of the sine term in equation (1.1.5). In practice this coefficient is

usually normalized by dividing by F0/m. The normalized coefficient is often called the

dynamic magnification factor (DMF). Figure 1.3 shows a graph of the DMF vs. ν/ω for

different values of ζ . The DMF shows that the system will always be stable, i.e. have a

finite amplitude of vibration, unless there is no damping (ζ =0) and the forcing frequency,

ν, is exactly equal to the undamped natural frequency, ω. The system may vibrate with

large amplitude, but it will always be bounded unless both of the above conditions are

satisfied. In all real structures there is always some form of damping present, be it slipping
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in connections, friction caused by movement of non-structural components, or even atomic

scale inelasticities ([12], p. 15). Therefore main resonance cannot occur in a real structure.

It can also be shown that in the case of resonance of an undamped system, i.e. ω = ν, the

response is given by

x(t) = −
F0

2mω
t cos ωt. (1.1.6)

This result is graphed in Figure 1.4, which shows that, while the response grows without

bound, it does so in a linear fashion.

t

Linear

x(t)

ν = ω

Figure 1.4 Main Resonance - Linear Growth

These conclusions may be extended to multiple degrees-of-freedom and continuous

structures as well. An n degrees-of-freedom system has n natural frequencies ω1, ω2, . . . , ωn,

and n corresponding modes, while a continuous system has infinitely many discrete natural

frequencies ω1, ω2, . . . , and corresponding modes. When the excitation frequency ν is equal

to ωi, i = 1, 2, . . . the system is in resonance in the ith mode. Zero damping and perfect

matching of forcing and natural frequencies is however still required for resonance to occur.
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1.1.3 Parametric Resonance

Parametric resonance differs fundamentally from main resonance. It may occur when the

input to a system appears in differential equation of motion as coefficients, e.g.

mẍ(t) + cẋ(t) +
[

k − F(t)
]

x(t) = 0, (1.1.7)

where F(t) is periodic with frequency ν. The forcing function is therefore a parameter

of the system; hence the name parametric resonance. This leads to drastically different

behaviour than main resonant systems. The largest detrimental difference that this change

causes is that parametric resonance can occur even in the presence of damping, unlike main

resonance.

It is not possible to derive an explicit or implicit general solution of equation (1.1.7), but

it can be shown that in the case of resonance, the response grows exponentially as opposed

to linearly for main resonance ([14], p. 73). Figure 1.5 shows the behaviour of a typical

unstable system under parametric loading.

 
t

x(t)

Exponential

ν ≈ 2ω

Figure 1.5 Parametric Resonance — Exponential Growth

One characteristic of parametrically loaded systems that is actually beneficial is that in

the case of non-resonant loading (forcing frequency far from resonant frequencies) the

system is exponentially stable if damping is present, that is the response will decay to zero

even if the loading persists. Figure 1.6 shows the response of such a stable system.
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t

x(t)

Exponential Decay

ν = 2ω

Figure 1.6 Exponential Stability of Parametric System Loaded at Non-Resonant Frequency

Systems under non-resonant, non-parametric loading on the other hand will always

reach a stable, but non-zero steady state solution whether they are damped or undamped

(see equation (1.1.5)).

Therefore, parametrically loaded systems are, in a sense, exponential in nature. They

are either exponentially unstable (at resonant frequencies) or exponentially stable (at non-

resonant frequencies). For this thesis, however, the focus will be on resonant and near

resonant frequency loading as this is most crucial to structural stability.

The resonance behaviour of parametrically loaded systems is also affected by the presence

of nonlinearities. Consider a nonlinear system under sinusoidal loading

q̈(t) + 2εζωq̇(t) + ω2
[

1 − 2εµ cos νt + εγ q(t)2
]

q(t) = 0, (1.1.8)

where µ is the applied load magnitude, and γ is a nonlinearity coefficient. The parameter ε

is introduced to control the order of magnitude of damping, load, and nonlinearity.

The system response to F(t) depends greatly on the value of γ .

Linear System, i.e. γ =0

In this case equation(1.1.8) becomes

q̈(t) + 2εζωq̇(t) + ω2
[

1 − 2εµ cos νt
]

q(t) = 0. (1.1.9)
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It is clear that the trivial solution, q(t)=0, is an equilibrium solution to equation (1.1.9).

If the equation represents a structural system, this trivial solution is also the desirable

solution, as it represents the neutral state. Therefore the stability of this trivial solution is

important.

This system is known as the damped Mathieu equation. The stability of the trivial

solution of the Mathieu equation is well understood, and is discussed in detail in [14].

Figure 1.7 shows the first four stability boundaries of the trivial solution in (ν/2ω, µ) space

for the undamped system.

Theoretically there exist an infinite number of instability regions, however, they become

increasingly small. The first instability region is of primary concern as the other regions are

small in the case of small load magnitude and therefore difficult to realize in practice ([14],

p. 64).

Figure 1.8 shows the first stability boundary for both a damped (ζ 6=0) and undamped

(ζ =0) system. The first instability region is centred above ν/2ω=1. This is a typical

characteristic of parametrically loaded systems, and differs from main resonance where

instability occurs when ν=ω.

It is clear from Figure 1.8 that, if the loading parameter, µ, is sufficiently large, instability

can even occur in the presence of damping. Also of note is that for a given value of µ, the

instability region is a continuous frequency band as opposed to the single frequency, ν=ω,

in the case of main resonance.

Nonlinear System, i.e. γ 6=0

In general nonlinear differential equations may exhibit behaviour where the stability of

equilibrium solutions changes, or where several equilibrium solutions are present at the

same time ([2], p. 489). Both of these phenomena occur with equation (1.1.8).

If the dependant variable, q(t), is written in terms of amplitude, a(t), and phase, φ(t), i.e.

q(t) = a(t) cos
[

νt + φ(t)
]

, (1.1.10)

it can be shown that, together with the trivial equilibrium solution, there exist non-trivial

equilibrium amplitudes of vibration, a0, if ν/2ω ≈ 1 ([14], p. 113-118).
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Figure 1.7 Stability Boundaries of Undamped Linear System

Not all of the equilibrium solutions of this system are stable, however. Figure 1.9 is a

typical graph of ā0 vs. ν/2ω for both damped (ζ 6=0) and undamped (ζ =0) systems. The

stability of the equilibrium solutions, a0, is also indicated by line type.

From the amplitude-frequency relationship in Figure 1.9 it is clear that the nonlinear

system given by equation (1.1.8) has both stable and unstable non-trivial equilibrium

amplitudes of vibration. It also shows the effect that damping has on the behaviour. In
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Figure 1.8 Stability Boundaries of Damped Linear System
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Figure 1.9 Amplitude-Frequency Relationship of Nonlinear Systems

the presence of damping the stable and unstable equilibrium curves converge while in

the undamped case they are parallel. The stems of the stable amplitude-frequency curves

(curves in solid line type in Figure 1.9), which are called a pitchfork bifurcations due to their

shape, are where stability shifts from the trivial solution to a non-trivial solution. The trivial
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solution regains stability at the stem of the unstable amplitude-frequency curve, which

results in two simultaneously locally stable solutions (the stability can only be considered to

be local if two or more stable solutions co-exist).

The presence of simultaneous locally stable solutions is potentially cause for concern.

Two locally stable solutions may result in jump phenomena where the response jumps back

and forth between the two stable states when perturbed. This situation is analogous to the

potential energy surface in Figure 1.10, where the ball could move from point A to point C

if perturbed enough to get over the hill at point B. Jumping from one equilibrium position

to another would appear as the vertical line in Figure 1.9, with the points A, B, C matching

the same points in Figure 1.10.

A

Stable

Stable

Unstable

C

B

Figure 1.10 Potential Energy Surface

Figure 1.11 shows the relationship between linear and nonlinear systems with and without

damping. It is clear that the linear and nonlinear systems exhibit the same trivial solution

stability behaviour. This is expected because the nonlinear term in equation equation (1.1.8)

will always be of lower order of magnitude than linear terms near the trivial solution.

Nonlinearity actually improves the performance of the system in a certain sense. This is

because in the region of trivial solution instability, a new stable non-trivial solution becomes

stable. Therefore the response does not grow without bound, as it does in linear systems.

The amplitude-frequency relationships of this system will be discussed in further detail

in Section 4.1.1.
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Figure 1.11 Effect of Damping in Linear and Nonlinear Systems

1.2 Noise Models and Stochastic Differential Equations

1.2.1 Stochastic Processes – General

Real world structural loadings, such as earthquake motion, wind load, and wave loading,

are incredibly complex. They are the aggregate result of many correlated environmental

factors working together ([9], p. 3). While it may be argued that these loads are actually

deterministic at the fundamental level, when the final aggregate result is observed it appears
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to behave with at least some level of randomness. Because of this, random, or stochastic

processes represent real world loading of structural systems much more realistically than

deterministic functions.

Consider a set of continuous random variables, ξ(ti), for i =1, 2, . . . , N , where the prob-

ability distribution is given by

FN

(

x1, t1; x2, t2; . . . ; xN , tN

)

= P
[

ξ(t1)<x1, ξ(t2)<x2, . . . , ξ(tN )<xN

]

, (1.2.1)

and P[E] is the probability of event E occurring.

If ti is taken to be time, then the set of all ξ(ti) is called a discrete time stochastic process.

Further, if

ti = t0 +
tmax − t0

N
i, (1.2.2)

and the limit N →∞ is taken, one obtains an uncountable set of random variables, ξ(t), for

all values of t between t0 and tmax, which is called a continuous time stochastic process ([6],

p. 269). The limits t0 and tmax may be taken as small and large as desired; therefore this can

also represent a process over 06 t<∞.

This is a very general definition of a random process, and unfortunately the full probabil-

ity density function in equation (1.2.1) is not generally attainable. In many cases, however,

lower order probability distribution functions are sufficient ([14], p. 159). In the case of

Gaussian distributed processes, the first and second order probability distribution functions

completely describe the process.

General first and second order probability distribution functions of a stochastic process

ξ(t) are given by

F1

(

x1, t1

)

= P
[

ξ(t1)<x1

]

,

F2

(

x1, t1; x2, t2

)

= P
[

ξ(t1)<x1, ξ(t2)<x2

]

,
(1.2.3)

while the probability density functions are

f1

(

x1, t1

)

= P
[

x1<ξ(t1)<x1+dx1

]

,

f2

(

x1, t1; x2, t2

)

= P
[

x1<ξ(t1)<x1+dx1, x2<ξ(t2)<x2+dx2

]

.

(1.2.4)

Figure 1.12 shows a single typical realization of a stochastic process, along with the first

order probability density function shown as a cross section at a few select locations. It is
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important to understand that there is actually a probability density function for the random

process at every point in time.

ξ(t)

t

f(ξ)

t
1

t
2

f(ξ)

f(ξ)

t
3

Figure 1.12 Illustration of a Stochastic Process and its Probability Densities

Descriptive Statistical Properties of Random Processes

If the first order probability density function of a stochastic process, f1

(

x1, t1

)

, is known, it

is possible to exactly determine the first moment, or mean, as well as higher moments of the

process as follows:

mk(t) = E
[

ξ k(t)
]

=
∫ ∞

−∞
xk f1

(

x, t
)

dx, (1.2.5)

where mk(t) is the kth moment of ξ(t).

For a stochastic process to be useful in the modelling of real systems, it should yield

at least locally Lipschitz continuous realizations with probability one (w.p.1), because real

events are always continuous. For example, the wind pressure at a given point on a structure

cannot change instantaneously with respect to time or space.

In order for a stochastic process to be continuous there must be non-zero autocorrelation.

If the second order probability density function is known, then the autocorrelation of a
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random process is given by

R(t1, t2) = E
[

ξ(t1)ξ(t2)
]

=
∫ ∞

−∞
x1 x2 f2

(

x1, t1; x2, t2

)

dx1dx2, (1.2.6)

Unfortunately the probability density functions of real processes are seldom available, as

the processes can often only be studied experimentally. Therefore the statistical properties

cannot be obtained by direct integration as in equations (1.2.5) and (1.2.6). In general the

kth moment, mk of ξ(t) is given by

mk(t) = E
[

ξ k(t)
]

=
1

N

N
∑

n=0

[

ξ (n)(t)
]k

, (1.2.7)

where ξ (n)(t) is the nth realization of the random process ξ(t).

Notice that in order to evaluate equation (1.2.7) one requires the knowledge of every

realization of ξ(t). These properties are therefore called ensemble averages because the

averaging is done over the entire ensemble of realizations of the process, as shown in Figure

1.13.

In practice it is impossible to obtain an ensemble average of a real process, because

one can only ever observe a finite number of samples. It could even be argued that it is

only possible to observe one occurrence of a real stochastic event in nature, such as wind

pressures or earthquake ground accelerations. This is because every time the event occurs,

it does so with different parameters as environmental factors change with time. Therefore a

reoccurring event is actually an entirely new event with new parameters. In order to get an

ensemble average of a real stochastic event one would need relive the event a multitude of

times, which is of course ridiculous.

Ergodic Random Processes

Ergodic processes have the property that the ensemble average is equal to the time average of

individual realizations. This is a very useful property, as it allows moments to be calculated

from only one sample realization of the random process ([10], p. 56 – 57). The time average

of the kth moment of ξ(t) is given by

mk(t) = E
[

ξ k(t)
]

= lim
T→∞

1

T

∫ T

0

[

ξ (p)(t)
]k

dt, (1.2.8)
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Figure 1.13 Ensemble and Time Averages of a Stochastic Process

where the pth realization from Figure 1.13 of the random process, ξ(t), can be chosen

arbitrarily.

Stationary Random Processes

If the first order probability distribution function, F1

(

x, t
)

, of a random process is indepen-

dent of time and the second order probability distribution function depends only on the

time difference τ = t2−t1, i.e. if

F2

(

x1, t1; x2, t2

)

= F2

(

x1, t1, x2, t1+τ
)

, (1.2.9)

is independent of t1, the process is known as a stationary random process. Stationary

processes occur when the factors driving a process do not change with time ([14], p. 158).

For example, the pressure of a turbulently flowing fluid is a stationary process if the flow is



1.2 noise models and stochastic differential equations 17

steady, earthquake ground acceleration however would not be a stationary process because

all of the driving factors change rapidly.

In the case of stationary processes the autocorrelation function is also a function of the

time difference only, i.e.

R(t1, t1+τ) = E
[

ξ(t1)ξ(t1+τ)
]

, (1.2.10)

is also independent of t1. The proof of this is trivial and follows from the independence of

F2

(

x1, t1, x2, t1+τ
)

with respect to t1 in equation (1.2.9) and the definition of autocorrelation

from equation (1.2.6). Autocorrelation may therefore be represented by R=R(τ ) in the case

of stationary processes.

Stationarity is implied by ergodicity, and many processes are assumed to be ergodic ([14],

p. 163). In this case autocorrelation can be calculated via time averaging of an individual

sample, for example realization p, as follows

R(τ ) = lim
T→∞

1

T

∫ T

0
ξ (p)(t)ξ (p)(t+τ)dt. (1.2.11)

Power Spectral Density

The autocorrelation function is also helpful as it may be used to obtain the power spectral

density of a random process. If a random process is thought of as a signal, the power

spectral density gives the distribution of the signal power at each frequency ([10], p. 68).

It is therefore analogous to the frequency spectrum for deterministic processes. Power

spectral density is given by the Fourier transform of the autocorrelation function, i.e.

S(ω) =
∫ ∞

−∞
R(τ )e−iωτ dτ. (1.2.12)

Figure 1.14 shows several autocorrelation and corresponding power spectral density

functions. This figure shows that, as one would expect, the power of a sinusoidal function is

focused on only frequency (both positive and negative of same frequency), while a constant

function (also a sinusoidal function with frequency zero) has power at frequency zero.

Functions that are not periodic have power spread across a band of frequencies.

When modelling the dynamic stability of a structural system, the choice of stochastic

process should of course be based on the properties of the loading. Because the stability of
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Figure 1.14 Autocorrelation, R(τ ),and Power Spectral Density, S(τ )

structures is primarily dependant on loading frequency, it is important that the stochastic

process chosen for the model has a similar frequency spectrum. Power spectral density is

therefore very useful in choosing a random process for a structural model to ensure the true

resonant behaviour is properly captured.

Many stochastic processes have been developed over time for use in a wide range of

applied sciences from finance to engineering. Two particular processes have proved useful

in modelling of structural loads, these are the Wiener process and the bounded noise

process.

1.2.2 The Wiener Process

The Wiener process, W̃(t), is a zero mean Gaussian distributed continuous time random

process with W̃(0)=0. Figure 1.15 shows a typical realization of the standard Wiener

process, W(t), which is a Wiener process with variance one.
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Figure 1.15 Realization of the Wiener Process

It can be shown that W̃(t) is continuous, non-differentiable, and unbounded in its growth

([8], p./ 122-125). The autocorrelation function is

R(t1, t2) = σ 2min(t1, t2), (1.2.13)

which may be used to obtain the variance of the Wiener process,

Var
[

W̃(t)
]

= E
[

W̃ 2(t)
]

= R(t, t) = σ 2t. (1.2.14)

This result can be used to redefine the general Wiener process in terms of a unit variance

Wiener process, i.e. W̃(t) = σW(t), where,Var[W(t)] = t.

When simulating the Wiener process it is useful to know the properties of its finite

difference, i.e. 1W̃(t). It may be shown that that it is normally distributed with mean zero

and variance σ 21t. The Wiener process is discussed in detail in the books by Lin & Cai [8]

and Xie [14].
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1.2.3 Bounded Noise Process

The unbounded nature of the Wiener process makes it unsuitable to modelling structural

loading, as structural loads are always bounded by certain limits. However, the Wiener

process is still helpful as it may be used to generate other stochastic processes.

Consider the following random process

ξ(t) = cos
(

νt + σW(t) + θ
)

. (1.2.15)

where θ is a uniformly distributed random variable in (0, 2π), which can be shown to make

the process stationary ([14], p. 199).

The process is of course bounded between −1 and +1. Also notice that if σ →0 the

process becomes a periodic function with frequency ν. Intuitively, one would expect that

as σ is increased the signal should gradually lose its periodic behaviour. This is indeed

true and can be seen by viewing the power spectral density of the bounded noise process in

equation (1.2.15) for various ν values and increasing σ , as shown in Figure 1.16.

Figure 1.16 shows that the frequency ν begins to lose its relative dominance as σ increases.

Therefore the process shift from a narrow band to a wide band process, as the signal’s power

spectral density is spread over a wider frequency band. Bounded noise therefore presents

an ideal model for use as a structural loading because it may be used to represent varying

types of loads.

1.2.4 Stochastic Ordinary Differential Equations

If the forcing function input into a differential equation of motion, such as equation (1.1.7),

is a stochastic process, i.e. F(t) = ξ(t), then the resulting equation,

q̈(t) + 2εζωq̇(t) + ω2
[

1 − 2εµξ(t) + εγ q(t)2
]

q(t) = 0. (1.2.16)

is a known as a stochastic ordinary differential equation (SODE).

The solution of an SODE, in this case q=q(t), is also a stochastic process. This means that

the solution can only be understood in a probabilistic sense, and no two sample outcomes

will ever be exactly the same. Therefore all statements made about the behaviour of such

systems must be accompanied by a probability.
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Figure 1.16 Power Spectral Density of a Bounded Noise Process

Stochastic differential equations are usually very difficult to solve analytically if at all

possible. The mathematics necessary to solve SODE’s is often very complex and requires

use of measure theory and functional analysis. Fortunately for systems such as equation

(1.2.16), while the general solution is not attainable, the stability may be determined without

directly applying these branches of mathematics. The stability may instead be determined

by using Lyapunov exponents, which is introduced in Section 1.4.2.

1.3 Monte Carlo Simulation

In many cases where the stability of a SODE is too complex to solve analytically, it may be

done numerically using Monte Carlo simulations. Monte Carlo simulation and the forward

Euler numerical scheme can provide useful numerical results for nearly any SODE.
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Consider the general state equation of a stochastically loaded system

ẋ(t) = F
(

x(t), ξ(t), t
)

. (1.3.1)

Approximating the derivative with a finite difference yields

1x(t) = F
(

x(t), ξ(t), t
)

1t. (1.3.2)

The forward Euler time step equation is therefore

x(t+1t) = x(t) + 1x(t) = x(t) + F
(

x(t), ξ(t), t
)

1t. (1.3.3)

Notice, however, that evaluation of this time step requires knowledge of the value of the

random process, ξ(t). Assuming for the moment that it is possible to generate samples

of this random process, one may augment equation (1.3.3) with forward Euler time step

equation for ξ(t).

x(t+1t) = x(t) + 1x(t) = x(t) + F
(

x(t), ξ(t), t
)

1t,

ξ(t+1t) = ξ(t) + 1ξ(t).
(1.3.4)

If the statistical properties of ξ(t) are known, then the finite difference 1ξ(t) may be

simulated by use of Monte Carlo simulation. Given the properties of the Wiener process

discussed in Section 1.2.2, it is easy to show that

1W(t) = σ1W(t) = σ
√

1t r, r ∼ N(0, 1). (1.3.5)

Therefore a pseudo random number generator is necessary to simulate SODE’s. The

numbers are considered to be pseudo random because a deterministic algorithm can never

create true random numbers. Pseudo randomness is usually sufficient however, because

their statistical properties resemble true random numbers ([7], p. 11). Many random

number generators have been developed over time. A procedure for generating random

numbers is discussed in [14].

Time Scaling of the Wiener Process

It is often necessary to use time scaling when solving SODE’s. If time is scaled by τ =νt

it is clear that the Wiener process must also be scaled. This follows from

1W(τ ) =
√

1τ r =
√

ν1t r =
√

ν
√

1t r =
√

ν1W(t), (1.3.6)
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which implies that

W(t) =
1

√
ν

W(τ ). (1.3.7)

1.4 Stochastic Stability and the Lyapunov Exponent

1.4.1 Stochastic Stability

Consider once again the general SODE in equation (1.3.1). If the model represents dis-

placements in structural system than the stability of the trivial solution is important, as zero

displacement is desirable. It is however possible to define stability in a more general fashion

for stationary solutions. A stationary solution xs(t) is stable in the sense of Lyapunov if

([13], p. 62, 63)

∥

∥x
(

t, x(0)
)

−xs(t)
∥

∥<ε for all t >0, if
∥

∥x(0)−xs(0)
∥

∥<δ(ε), (1.4.1)

and asymptotically Lyapunov stable if

∥

∥x
(

t, x(0)
)

−xs(t)
∥

∥→0 as t →∞. (1.4.2)

Intuitively, this means that solutions, which begin within the vicinity of a stable stationary

solution, will remain within the vicinity of that solution, or even approach that solution in

the asymptotically stable case. This concept may also be represented graphically. The three

different paths of the two dimensional example in Figure 1.17 represent all three cases:

asymptotic stability, stability, and instability.

Note that the origin in Figure 1.17 is the stationary solution whose stability is being

studied. This means that the origin will move with time; however, the definitions of

Lyapunov stability are still suitable and the shaded regions representing the distances ε and

δ(ε) will move together with the origin.

The stability of the trivial solution of an SODE is a special case where xs(t)=0. The

stability of steady state, or equilibrium, solutions of deterministic systems may also be

encompassed by this definition. Steady state solutions are simply stationary processes with

a variance of zero.

The definitions of stability and asymptotic stability in equations (1.4.1) and (1.4.2) are

general enough to apply to both linear and nonlinear systems. In practice, however, it is
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Figure 1.17 Illustration of Stochastic Stability

usually very difficult to prove stability of solutions of nonlinear system directly. It can

however be shown that if a linearized system is asymptotically stable then the full nonlinear

system is also asymptotically stable ([4], p. 84-93). This is a very useful fact, and makes

determining the stability of solutions of nonlinear systems much easier. Unfortunately

if a linearized system is stable but not asymptotically stable, the stability of the original

nonlinear system cannot be determined. In this situation the nonlinear terms in the system

need to be included in the stability analysis.

1.4.2 The Lyapunov Exponent

The definitions of stability given in Section 1.4.1 cannot be applied directly to determine

stability. Instead stochastic stability may be determined via the Lyapunov exponent.

Recall the stochastic system in equation (1.3.1). If the system is linear the largest Lya-

punov exponent, often just termed the Lyapunov exponent, of the trivial solution is given

by

λ = lim
t→∞

1

t
ln

∥

∥x(t)
∥

∥. (1.4.3)

It has been shown that, even for stochastic systems, λ is a deterministic number that

represents the average rate of growth or decay of the system [11]. Furthermore, if λ<0 the
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system is asymptotically stable with probability 1 (w.p.1), and if λ=0 it is stable w.p.1. It

is an incredible result that such a concrete statement may be made about the stability of

stochastic systems.

Considering that linear deterministic systems permit a solution of the form

y =
N

∑

n=0

anemx, (1.4.4)

it is easy to see that equation (1.4.3) returns a growth or decay rate for deterministic systems.

Furthermore, because the largest eigenvalue of such systems dominates the behaviour as

time grows large, the limit t → ∞ ensures that the Lyapunov exponent converges to the

largest growth rate. Therefore from a heuristic standpoint it is logical that the Lyapunov

exponent returns the largest average growth rate for stochastic systems.

The Lyapunov exponent is only suitable for linear systems. However, as mentioned

in Section 1.4.1, the stability of nonlinear systems may be investigated via the linearized

systems except for λ=0. Therefore Lyapunov exponents can be used to determine the

stability of nonlinear systems by simply linearizing about a solution of interest, even non-

trivial solutions.

Lyapunov exponents can occasionally be determined via an analytical approach, or at

least an approximate analytical approach. Unfortunately this is only possible in certain

cases. The other option is to use Monte Carlo Simulation which can always give a result.

The problem with using simulation alone is that the results are too specific, that is, they

are only good for the parameters selected. There are so many possible combinations of

parameters in most systems that using simulation to test every combination is infeasible.

Simulation can also miss special or singular behaviour with specific parameters. This

is especially true for nonlinear systems that exhibit bifurcating behaviour as shown in

Figure 1.8. The bifurcation points are discrete, and can only be found approximately with

simulation methods. Therefore the best approach is usually to get the general behaviour of

the system using the analytical methods available, then use simulations in a verification role.

Lyapunov exponent of time scaled systems



1.5 organization and scope 26

The Lyapunov exponent is a growth/decay rate. Therefore, if the time scaling τ =νt is

applied, the Lyapunov exponent will be changed. Given that regardless of the time variable

used, a system, x(t), should have decayed or grown to the same value after some elapsed

time t∗ one gets

‖x(t∗)‖ ∼ eλt t∗
,

‖x(τ ∗)‖ ∼ eλτ τ∗ = eλτ νt∗
,

‖x(t∗)‖ = ‖x(τ ∗)‖,

(1.4.5)

where the subscripts have been added to clarify which time scale is being used. This

implies that λt =νλτ . For this thesis, while many of the derivations are done in τ space, the

Lyapunov exponents will be given in t space.

1.5 Organization and Scope

This thesis focuses on the stability of a nonlinear stochastic differential equation represent-

ing a structural column subjected to bounded noise axial loading. Stability is determined

both analytically and numerically by studying the Lyapunov exponent of the system.

In Chapter 2 the general equation of motion is derived for a structural column under

bounded noise axial loading. The method of averaging is then introduced and applied to

the equation of motion in order to simplify it into a more manageable form. This chapter

also introduces the concept of stationary solutions of SODE’s, and uses this to write the

equations of variation about the stationary solutions.

Chapter 3 discusses the stability of the trivial solution. The Lyapunov exponent is derived

analytically, then validated by comparison with the results of Monte Carlo simulations.

Finally the effect that the system parameters, damping, load intensity, nonlinearity, and

noise level have on stability is presented and discussed.

Chapter 4 covers the non-trivial stationary solutions of the system. A combined analytical-

numerical approach is used to determine the mean amplitude vs. frequency relationship in

the limiting cases of zero noise and large noise. This is compared with the results from Monte

Carlo simulations in order to verify the results. There seems to be no analytical method

capable of determining the stationary solutions for intermediate noise levels; therefore they
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are determined via Monte Carlo simulations alone. The effect of system parameters have on

the behaviour of the non-trivial stationary solutions is also examined.

In Chapter 5 the stability of the non-trivial stationary solution is determined by studying

the Lyapunov exponent of the equation of variation. Due to the complexity of the system,

this can also only be done with Monte Carlo simulations.

Finally, Chapter 6 summarizes the findings of the thesis.



2C H A P T E R

Mathematical Model of a Structural
Column under Dynamic Loading

2.1 Equation of Motion

The stability of a column under axial loading is especially important in structural engineer-

ing. The importance is also magnified because column instability in a structure is often the

worst possible scenario and can lead to progressive collapse.

What follows in this chapter is the derivation of the equation of motion of a column under

bounded noise axial load for small displacements, light damping, low noise intensity, and

low applied force magnitude. These restrictions are required to make the system solvable

using approximate analytical methods, but do not hinder the usefulness of the model for

determining stability. This seems counter intuitive, because instability generally leads to

large magnitudes, i.e. large displacements or forces. However, a system must first lose

stability in a small local region before it can produce these large magnitudes. Dynamic

instability is also of the nature that, amplitude and damping merely have a scaling effect on

the response; the decay/growth behaviour is primarily dictated by the relationship between

natural frequency and loading frequency.

Consider a structural column under dynamic axial load as seen in Figure 2.1, where L is

the column length, EI is the cross-sectional bending stiffness, A is the cross-sectional area,

F(t) is the applied dynamic axial force, P is the internal compressive force, S is the shear

28
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force, M is the bending moment, ρ is the mass density per unit volume, β is the damping, v

is the transverse displacement, x is the position, and t is time.
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Figure 2.1 Column Under Axial Load

Note that damping is the aggregate result of macro and microscopic energy dissipations

that occur during vibration. It is not possible to model damping in its true detail but in the

study of mechanical vibrations it is typically taken to be proportional to velocity.

Using dynamic force equilibrium on the differential element in the horizontal direction

yields

1S + ρA1xv̈ + β v̇1x + (P+1P) sin (θ+1θ) − P sin θ = 0. (2.1.1)

For small angles one may use the relation, sin θ ≈ θ for θ ≪ 1, to further simplify this to

1S + ρA1xv̈ + β v̇1x + (P + 1P)1θ = 0. (2.1.2)

Taking the limit as 1x goes to zero and ignoring all second order terms leads to

∂S

∂x
+ ρAv̈ + β v̇ + P

∂θ

∂x
= 0. (2.1.3)

Because the displacements are small one may also use the approximation θ ≈ v′, to simplify

equation (2.1.3) to

∂S

∂x
+ ρAv̈ + β v̇ + P

∂2v

∂x2
= 0. (2.1.4)



2.1 equation of motion 30

To eliminate S one may use dynamic moment equilibrium about the centre of the differ-

ential element:

1M − S1x = 0. (2.1.5)

Notice, however, that the moment about the centre caused by the axial forces is of higher

order and may be neglected. Taking the limit as 1x→0 gives

∂M

∂x
= S =⇒

∂2M

∂x2
=

∂S

∂x
. (2.1.6)

Using equation (2.1.4) to eliminate S gives

∂2M

∂x2
+ ρAv̈ + β v̇ + P

∂2v

∂x2
= 0. (2.1.7)

The moment, M, can also be eliminated with the moment curvature relationship M =
EIv′′ from elastic beam theory to yield

EI
∂4v

∂x4
+ ρAv̈ + β v̇ + P

∂2v

∂x2
= 0. (2.1.8)

Notice that EI is constant with respect to x, so it may be removed from the derivative.

The axial force, P =P(x, t), is more difficult to eliminate. It is however known from

elasticity theory that, P(x, t)= − EAǫ0(x, t), where ǫ0(x, t) is axial strain along the centre-

line of the column.

It is expected that axial force will not vary greatly along the length of the column.

Therefore one can approximate P(x, t) with the average axial load over the entire column,

Pavg(t), where

P = P(x, t) ≈ Pavg(t) = −EAǫ0, avg(t). (2.1.9)

An expression for the average strain, ǫ0, avg, can be obtained from the deformation of a

differential element of the column as shown in Figure 2.2, where u is axial deformation.

The following relationships may be easily obtained from the geometry of the differential

element:

1u = ux1x, 1v = vx1x, 1s =
√

(1u+1x)2 + 1v2. (2.1.10)

Strain is defined as

ǫ0 = lim
1x→0

1s − 1x

1x
. (2.1.11)
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Figure 2.2 Deformed and Un-Deformed Differential Element of Column Under Axial Load

Substituting 1s from equation (2.1.10) into equation (2.1.11) yields

ǫ0 =
√

(1 + ux)2 + v2
x − 1. (2.1.12)

For small displacements a second order Maclaurin series approximation:

f (x, y) ≈ f (0, 0) + fx(0, 0)x + fy(0, 0)y +
1

2

[

fxx(0, 0) + 2 fxy(0, 0) + fyy(0, 0)
]

(2.1.13)

may be used to simplify the right side of equation (2.1.12) to

ǫ0 ≈ ux +
1

2
v2

x. (2.1.14)

Therefore

ǫo, avg ≈
1

L

∫ L

0
(ux +

1

2
v2

x)dx =
1

L

[

u(L, t) +
1

2

∫ L

0
v2

xdx
]

. (2.1.15)

Total axial displacement of the column u(L, t) is easily determined from strength of

materials theory,

u(L, t) = −
F(t)

EA
L. (2.1.16)

Finally, substituting equations (2.1.16), (2.1.15), and (2.1.9) into (2.1.8) yields the partial

integro-differential equation of motion

EI
∂4v

∂x4
+ ρAv̈ + β v̇ +

[

F(t) −
EA

2L

∫ L

0

(∂v

∂x

)2
dx

]

∂2v

∂x2
= 0. (2.1.17)
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This equation is of course too complex to solve analytically. It is however not necessary

to solve this system as is. The first mode of vibration is generally the most dominant;

therefore it is usually enough to understand the behaviour of only the first mode. If a

general expression of the first mode of vibration

v(x, t) = q(t) sin
πx

L
, (2.1.18)

is substituted into equation (2.1.17), one recovers a much more manageable nonlinear

ordinary differential equation of the first mode displacement, q:

q̈ + 2εζωq̇ + ω2
[

1 − εµF(t) + εγ q2
]

q = 0, (2.1.19)

where

2εζω =
β

ρA
, ω2 =

1

ρA
P1

π2

L2
, εµ =

1

P1
, εγ =

A

4I
, P1 = EI

π2

L2
.

It is interesting, but not surprising, that the Euler buckling load of the first mode, P1

appears in the equation. This shows that there must be some correlation between the static

and dynamic stability of columns.

The parameter ε is assumed to be small, and is introduced as a matter of convenience.

As mentioned earlier, the damping and forcing are assumed to be small for this system.

Furthermore, it can be seen, from the derivation of equation (2.1.19), that the nonlinear

term describes the shearing effect caused by the out of place component of the axial force

when the column is displaced from its neutral position. This effect can be assumed to

be small because the out of plane component of the axial load is small. Therefore, the

introduction of ε allows the order of magnitude of the three small terms to be controlled by

just one parameter.

2.2 The Method of Averaging

2.2.1 First Order Averaging

As discussed in Section 1.2.3, the bounded noise process is well suited to modelling real

world processes, due to its bounded nature and narrow band behaviour. If the function

F(t) is taken to be the bounded noise process F(t) = 2 cos (νt + 9), where 9 = 9(t) =
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ε1/2σW(t) + θ , equation (2.1.19) becomes

q̈ + 2εζωq̇ + ω2
[

1 − 2εµ cos (νt + 9) + εγ q2
]

q = 0. (2.2.1)

Applying the time scaling τ =νt and taking τ as the new independent variable leads to

q′′ + 2εζ
ω

ν
q′ +

ω

ν

2
[

1 − 2εµ cos (τ +9̄) + εγ q2
]

q = 0. (2.2.2)

where (·)′ represents differentiation with respect to τ .

The time scaled random process 9̄ =9̄(τ ) may be determined from equation (1.3.7),

and is given by

9̄(τ ) =
(ε

ν

)1/2
σW(τ ) + θ. (2.2.3)

Rearranging equation (2.2.2) and further introducing the parameters 10 (detuning pa-

rameter) and ω0 (reference frequency) which are defined by ν = ω0(1−ε10) and κ = ω/ω0

in the stiffness gives

q′′ +
( κ

1−ε10

)2
q = ε

[

−2ζ
ω

ν
q′ + 2µ

ω

ν

2
cos (τ +9̄)q − γ

ω

ν
q3

]

. (2.2.4)

As mentioned earlier ε is small so one may use the first order Taylor series approximation

(1 − ε10)
−1 ≈ 1 + 2ε10, which after collecting terms in ε on the right hand side yields

q′′ + κ2q = ε
[

−2ζ
ω

ν
q′ − 210κ

2q + 2µ
ω

ν

2
cos (τ +9̄)q − γ

ω

ν
q3

]

. (2.2.5)

The dependant variable, q=q(τ ), appears on the right hand side of equation (2.2.5)

as a forcing function, but because it is preceded by the small parameter ε its effect is

small. Therefore one is tempted to use variation of parameters as if the right side was an

independent forcing function. Given that the homogeneous solution to the system is given

by

q(τ ) = a cos(κτ + φ)

q′(τ ) = −aκ sin(κτ + φ),

(2.2.6)

the particular solution can be taken to be

q(τ ) = a(τ ) cos[κτ + φ(τ)]

q′(τ ) = −a(τ )κ sin[κτ + φ(τ)].
(2.2.7)
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This relationship is illustrated in Figure 2.3. The figure clearly shows the greatest benefit

of solving the system in amplitude-phase coordinates, which is that amplitude, a(τ ), is slowly

changing, whereas the original variable, q(τ ), is fast changing. This makes the amplitude

and phase equations much less sensitive to time and easier to solve.

q(τ)

a(τ)

τ
0 

κ

2π 
≈

Figure 2.3 Time Varying Amplitude of a Function

Using the method of variation of parameters and equation (2.3.5) leads to the equation

of motion as a system of equations for amplitude, a(τ ), and phase angle, φ(τ),

a′ = εa
{

−
ζω

ν

[

1 − cos (2κτ +2φ)
]

+ κ10 sin (2κτ +2φ)

+
γω2

κν2
a2

[1

8
sin (4κτ +4φ) +

1

4
sin (2κτ +2φ)

]

−
µω2

2κν2

[

sin
(

2κτ +2φ−τ −9̄
)

+ sin
(

2κτ +2φ+τ +9̄
)]

}

,

φ′ = ε
{

−
ζω

ν
sin (2κτ +2φ) + κ10

[

1 + cos (2κτ +2φ)
]

+
γω2

κν2
a2

[1

8
cos (4κτ +4φ) +

1

4
cos (2κτ +2φ) +

3

8

]

−
µω2

2κν2

[

cos τ +
1

2
cos

(

2κτ +2φ−τ −9̄
)

+
1

2
cos

(

2κτ +2φ+τ +9̄
)]

}

.

(2.2.8)

These equations are still too complex to solve analytically. Notice, however, that the

right hand side is small for both equations because of the presence of the small parameter
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ε. This means that both a and φ change slowly. Therefore one should obtain reasonably

accurate results by averaging the response over one period. This may be done by applying

the averaging operator given by [1]

M (·) = lim
T→∞

∫ τ+T

τ

(·)dτ , (2.2.9)

where (·) represents the equations of motion. When applying the averaging operator the

integration is performed over explicitly appearing τ only.

The thin line in Figure 2.4, a(τ ), is typical solution of equation (2.2.8). The solution

demonstrates a low amplitude high frequency oscillation about a dominant low frequency

large amplitude trend. The method of averaging smooths higher order fluctuation, leaving

only the dominant trend. The thick line in Figure 2.4, ā(τ ), is a typical solution of the

equations of motion after application of the averaging operator. The averaging operator is

also applied to the phase equation.

The effect of averaging on the phase angle is shown in Figure 2.5. This figure shows

clearly that the averaged phase angle, φ̄, closely approximates the true phase angle, φ.

It is easy to show that

M

{

cos

sin

}

(

nτ +9̄
)

=
{

0

0

}

, n 6= 0,

M

{

cos

sin

}

(

nτ +9̄
)

=
{

cos

sin

}

(

n9̄
)

, n = 0,

(2.2.10)

which greatly simplifies equation (2.2.8), depending on the value of κ .

Case 1: κ 6= 1
2

If ν is not near 2ω, all of the trigonometric terms vanish once the averaging operator is

applied to equation (2.2.8), leaving only

ā′ = −ε
ζω

ν
ā,

φ̄′ = εκ

(

10 +
3γω2

8κ2ν2
ā2

)

,

(2.2.11)

where ā and φ̄ are the averaged amplitude and phase angle, respectively. It is clear that in

the presence of damping the amplitude is exponentially stable, while in the undamped case

it is stable.
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Case 2: κ = 1
2

In this case some of the trigonometric terms do not vanish once averaged and the equations

of motion become

ā′ = εā(1) = −ε
[ζω

ν
+

µω2

ν2
sin

(

2φ̄ − 9̄
)

]

ā,

φ̄′ = εφ̄(1) =
1

2
ε
[

10 +
3γω2

2ν2
ā2 −

2µω2

ν2
cos

(

2φ̄ − 9̄
)

]

,

(2.2.12)

These are the first order averaged equations of motion in the region ν≈2ω. This is the

region in which instability may occur, and therefore the stability of these equations is more

interesting than case 1. The equations derived in the following sections are also for this

region.

2.2.2 Second Order Averaging

The first order averaged equations are very convenient, as they are simple enough to obtain

some analytical results. They are, however, only approximations of the real system; therefore

it is necessary to verify the first order results. It is difficult, if not impossible, to analytically

prove convergence or divergence of the first order averaging technique. The higher order

averaging techniques used in [5] can be used to heuristically check the convergence of the

averaging schemes to the exact solution by inspection and comparison of results.

As seen in Figures 2.4 and 2.5, the difference between the exact and first order averaged

equations, or the error, is a small higher order fluctuation. It is possible to iteratively improve

on the first order averaging results by adding the averaged error. Without loss of generality,

the error (εa1, εφ1) about some, as yet unknown, averaged solutions ā and φ̄ (they will be

shown to be the first order averaged equations) may be given by

εa1(ā, φ̄, τ) = a(τ )−ā(τ ), (2.2.13)

εφ1(ā, φ̄, τ) = φ(τ)−φ̄(τ ), (2.2.14)
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where (a, φ) are the exact equations of motion (2.2.8). Solving for the exact equations and

dropping the postscripts for clarity yields

a = ā + εa1, (2.2.15)

φ = φ̄ + εφ1, (2.2.16)

Substituting equations (2.2.15) and (2.2.16) into the original equations of motion (2.2.8)

and keeping only terms of orders ε and ε2, gives
{

a′

φ′

}

= ε

{

f11

f21

}

+ ε2

{

f12

f22

}

. (2.2.17)

where

f11 = ā
{

−
ζω

ν

[

1 − Cτ

]

+
1

2
10Sτ +

2γω2

ν2
a2

[1

8
S2τ +

1

4
Sτ

]

−
µω2

ν2

[

sin
(

τ +2φ̄−τ −9̄
)

+ sin
(

τ +2φ̄+τ +9̄
)]

}

,

f21 =
{

−
ζω

ν
Sτ +

1

2
10

[

1 + Cτ

]

+
2γω2

ν2
ā2

[1

8
C2τ +

1

4
Cτ +

3

8

]

−
µω2

ν2

[

cos τ +
1

2
cos

(

τ +2φ̄−τ −9̄
)

+
1

2
cos

(

τ +2φ̄+τ +9̄
)]

}

,

f12 =
1

4ν2

[

− 8 āω ζ ν Sτφ1 − 8 āµ ω2 cos
(

2 τ +2 φ̄+ 9̄
)

φ1 + 4 ā10 Cτφ1 ν2

+ 3 ā2γ ω2a1 S2τ − 8 āµ ω2 cos
(

−2 φ̄+9̄
)

φ1 − 4 a1 ω ζ ν

+ 4 γ ω2ā3Cτφ1 + 4 γ ω2ā3C2τφ1 + 2 a1 10 Sτν
2 + 6 ā2γ ω2a1 Sτ

+ 4 a1 ω ζ ν Cτ + 4 a1 µ ω2 sin
(

−2 φ̄+9̄
)

− 4 a1 µ ω2 sin
(

2 τ +2 φ̄ + 9̄
) ]

,

f22 =
1

4ν2

[

− 8 ā2γ ω2Sτφ1 − 4 ā2γ ω2S2τφ1 + 8 µ ω2 sin
(

2 τ +2 φ̄+9̄
)

φ1

− 8 µ ω2 sin
(

−2 φ̄+9̄
)

φ1 − 4 10 Sτφ1 ν2 − 8 ω ζ Cτφ1 ν+

8 āγ ω2a1 Cτ + 6 āγ ω2a1 + 2 āγ ω2a1 C2τ

]

,

Cτ = cos
(

τ +2φ̄
)

, C2τ = cos
(

2τ +4φ̄
)

, Sτ = sin
(

τ +2φ̄
)

, S2τ = sin
(

2τ +4φ̄
)

.

(2.2.18)
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Differentiating equations (2.2.15) and (2.2.16) with respect to τ yields another expression

for a′ and φ′

{

a′

φ′

}

=









1 + ε
∂a1

∂ ā
ε
∂a1

∂φ̄

ε
∂φ1

∂ ā
1 + ε

∂φ1

∂φ̄









{

ā′

φ̄′

}

+ ε















∂a1

∂τ
∂φ1

∂τ















, (2.2.19)

or

{

a′

φ′

}

= A

{

ā′

φ̄′

}

+ ε















∂a1

∂τ
∂φ1

∂τ















. (2.2.20)

By comparing equations (2.2.42) and (2.2.20) it is easy to see that

{

ā′

φ̄′

}

= A−1









ε

{

f11

f21

}

+ ε2

{

f12

f22

}

− ε















∂a1

∂τ
∂φ1

∂τ























. (2.2.21)

The inverse matrix, A−1, may be calculated as a Taylor polynomial in ε to any order

desired. It is clear that for the right side of equation (2.2.21) to be of order ε2, A−1 need only

be determined to order ε, which can be shown to be

A−1 =









1 − ε
∂a1

∂ ā
−ε

∂a1

∂φ̄

−ε
∂φ1

∂ ā
1 − ε

∂φ1

∂φ̄









. (2.2.22)

Applying this to equation (2.2.21) and ignoring terms of order ε3 and higher gives

{

ā′

φ̄′

}

=















ε
(

f11 −
∂a1

∂τ

)

+ ε2
[

−
∂a1

∂ ā
( f11 −

∂a1

∂τ
) −

∂a1

∂φ̄
( f21 −

∂φ1

∂τ
) + f12

]

ε
(

f21 −
∂φ1

∂τ

)

+ ε2
[

−
∂φ1

∂ ā
( f11 −

∂a1

∂τ
) −

∂φ1

∂φ̄
( f21 −

∂φ1

∂τ
) + f22

]















, (2.2.23)

If the terms of order ε2 are ignored this system must return to the first order averaged

eqauations of motion. Therefore the term of order ε in equation (2.2.23) must be equal to

the first order averaging results in equation (2.2.12). This leads to

{

ā(1)

φ̄(1)

}

=















f11 −
∂a1

∂τ

f21 −
∂φ1

∂τ















=⇒

{

a1

φ1

}

=
∫

{

f11 − ā(1)

f21 − φ̄(1)

}

dτ , (2.2.24)
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where (ā(1), φ̄(1)) are indirectly defined in equation (2.2.12). Explicitly they are given by

{

ā(1)

φ̄(1)

}

=















−
[ζω

ν
+

µω2

ν2
sin

(

2φ̄ − 9̄
)

]

ā

1

2

[

10 +
3γω2

2ν2
ā2 −

2µω2

ν2
cos

(

2φ̄ − 9̄
)

]















, (2.2.25)

while f11 and f21 are defined in equation (2.2.18). Therefore (a1, φ1) may be determined

by substituting equations (2.2.25) and (2.2.18) into equation (2.2.24) and integrating over

explicitly appearing τ .

With (a1, φ1) now known, the terms of order ε2 in equation (2.2.23) are completely

defined as well. Denoting these terms as (a(2), φ(2)) one has

{

a(2)

φ(2)

}

=















−
∂a1

∂ ā
( f11 −

∂a1

∂τ
) −

∂a1

∂φ̄
( f21 −

∂φ1

∂τ
) + f12

−
∂φ1

∂ ā
( f11 −

∂a1

∂τ
) −

∂φ1

∂φ̄
( f21 −

∂φ1

∂τ
) + f22















, (2.2.26)

where f12 and f22 are also defined in equation (2.2.18).

These second order terms are very complex in their original form, however, applying the

averaging operator yields
{

ā(2)

φ̄(2)

}

= M

[

a(2)

φ(2)

]

, (2.2.27)

which, can be shown to be:

ā(2) = ε
ω2

ν2

(

2āζµCc
ω

ν
+ ā10µCs +

5

4
ā3γ Cs

ω2

ν2

)

,

φ̄(2) = ε
ω2

ν2

1

32

(

−32ζ − 52ā4γ 2 ω2

ν2
− 48ā2γ10 + 3210µCc

+ 80γ ā2µCc
ω2

ν2
− 64ζµCs

ω

ν
− 16µ2 ω2

ν2
− 812

0

ν2

ω2

)

,

(2.2.28)

where

Cc = cos (2φ̄ − 9̄), Cs = sin (2φ̄ − 9̄). (2.2.29)

Finally, with knowledge of both the first and second order averaged terms of equation

(2.2.23), one may get the second order averaged equations of motion

{

ā′

φ̄′

}

= ε

{

ā(1)

φ̄(1)

}

+ ε2

{

ā(2)

φ̄(2)

}

. (2.2.30)



2.2 the method of averaging 41

2.2.3 Third Order Averaging

The same procedure may be iterated to obtain the third order averaged equations of motion.

For this section, however, the intermediate results f13 and f23 are not shown as they are very

long winded and only disrupt the discussion. Let

a = ā + εa1 + ε2a2, (2.2.31)

φ = φ̄ + εφ1 + ε2φ2. (2.2.32)

Substituting these equations into the original equations of motion (2.2.8), and keeping

terms of orders ε, ε2, and ε3, gives
{

a′

φ′

}

= ε

{

f11

f21

}

+ ε2

{

f12

f22

}

+ ε3

{

f13

f23

}

, (2.2.33)

Differentiating equations (2.2.31) and (2.2.32) with respect to τ gives another expression

for a′ and φ′

{

a′

φ′

}

=









1 + ε
∂a1

∂ ā
+ ε2 ∂a2

∂ ā
ε
∂a1

∂φ̄
+ ε2 ∂a2

∂φ̄

ε
∂φ1

∂ ā
+ ε2 ∂φ2

∂ ā
1 + ε

∂φ1

∂φ̄
+ ε2 ∂φ2

∂φ̄









{

ā′

φ̄′

}

+ ε















∂a1

∂τ
∂φ1

∂τ















+ ε2















∂a2

∂τ
∂φ2

∂τ















,

(2.2.34)

or

{

a′

φ′

}

= A

{

ā′

φ̄′

}

+ ε















∂a1

∂τ
∂φ1

∂τ















+ ε2















∂a2

∂τ
∂φ2

∂τ















. (2.2.35)

By comparing equations (2.2.33) and (2.2.35) it is easy to see that

{

ā′

φ̄′

}

= A−1









ε

{

f11

f21

}

+ ε2

{

f12

f22

}

+ ε3

{

f13

f23

}

− ε















∂a1

∂τ
∂φ1

∂τ















− ε2















∂a2

∂τ
∂φ2

∂τ























. (2.2.36)

It is clear that, for the right side of equation (2.2.36) to be of order ε3, A−1 need only be

determined to order ε2, which can be shown to be

A−1 =









1 − ε
∂a1

∂ ā
+ ε2α11 −ε

∂a1

∂φ̄
+ ε2α12,

−ε
∂φ1

∂ ā
+ ε2α21 1 − ε

∂φ1

∂φ̄
+ ε2α22









, (2.2.37)
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where

α11 =
∂a1

∂ ā

∂φ1

∂ ā
−

∂a2

∂ ā
+

(

∂a1

∂ ā

)2

, α12 =
∂a1

∂φ̄

∂φ1

∂φ̄
−

∂a2

∂φ̄
+

∂a1

∂φ̄

∂a1

∂ ā
,

α21 =
∂φ1

∂φ̄

∂φ1

∂ ā
−

∂φ2

∂ ā
+

∂φ1

∂ ā

∂a1

∂ ā
, α22 =

∂a1

∂φ̄

∂φ1

∂ ā
−

∂φ2

∂φ̄
+

(

∂φ1

∂φ̄

)2

.

Applying this to equation (2.2.36) and ignoring terms of order ε4 and higher gives

{

ā′

φ̄′

}

=















ε
(

f11 −
∂a1

∂τ

)

+ ε2
[

−
∂a1

∂ ā
( f11 −

∂a1

∂τ
) −

∂a1

∂φ̄
( f21 −

∂φ1

∂τ
) + f12 −

∂a2

∂τ

]

ε
(

f21 −
∂φ1

∂τ

)

+ ε2
[

−
∂φ1

∂ ā
( f11 −

∂a1

∂τ
) −

∂φ1

∂φ̄
( f21 −

∂φ1

∂τ
) + f22 −

∂φ2

∂τ

]















+ ε3















α11( f11 −
∂a1

∂τ
) + f13 +

∂a1

∂ ā
(
∂a2

∂τ
− f12) +

∂a1

∂φ̄
(
∂φ2

∂τ
− f22) + α12( f21 −

∂φ1

∂τ
)

α22( f21 −
∂φ1

∂τ
) + f23 +

∂φ1

∂ ā
(
∂a2

∂τ
− f12) +

∂φ1

∂φ̄
(
∂φ2

∂τ
− f22) + α21( f11 −

∂a1

∂τ
)















.

(2.2.38)

If terms of order ε3 are ignored this should return to the second order equations of motion.

Therefore the second order terms in equation (2.2.38) are equal to the averaged second

order terms in equation (2.2.28). This relationship yields

{

ā(2)

φ̄(2)

}

=















−
∂a1

∂ ā
( f11 −

∂a1

∂τ
) −

∂a1

∂φ̄
( f21 −

∂φ1

∂τ
) + f12 −

∂a2

∂τ

−
∂φ1

∂ ā
( f11 −

∂a1

∂τ
) −

∂φ1

∂φ̄
( f21 −

∂φ1

∂τ
) + f22 −

∂φ2

∂τ















. (2.2.39)

It is clear from equation (2.2.26) that this is also

{

ā(2)

φ̄(2)

}

=















a(2) −
∂a2

∂τ

φ(2) −
∂φ2

∂τ















=⇒

{

a2

φ2

}

=
∫ {

a(2) − ā(2)

φ(2) − φ̄(2)

}

dτ , (2.2.40)

where the integration is again performed over explicit τ only.

The terms of order ε3 in equation (2.2.38) can be determined with the new knowledge of

(a2, φ2). Once again these terms are very long and complex, however, it can be shown that
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once averaged these terms, denoted by (a(3), φ(3)), become

ā(3) = ε
ā

64

[

119
ω5

ν5
ζγ 2ā4 − 12ā2 ω6

ν6
γµ2 sin (4φ̄ − 29̄) + 3210

ω2

ν2
µCs

+ 64µ
ω3

ν3
ζCc + 251γ

ω6

ν6
ā4µCs + 84ā2 ω5

ν5
γµζ + 80ā2 ω3

ν3
γ10ζ

− 112
ω6

ν6
µCs + 226γ

ω4

ν4
ā2µCs

]

,

φ̄(3) = ε
1

512

[

51210
ω3

ν3
ζµCs + 96

ω6

ν6
ā2µγ cos (4φ̄ − 29̄) + 896

ω6

ν6
µ3Cc

+ 1392γ
ω2

ν2
ā212

0 + 2643γ 3 ω6

ν6
ā6 + 51210

ω3

ν3
ζ 2 − 384

ω4

ν4
µ210

+ 1600
ω5

ν5
ā2ζµCc − 25612

0µ
ω2

ν2
Cc − 1008γ

ω6

ν6
ā2µ + 12813

0

− 2464
ω4

ν4
ā210µCc + 1984ā2 ω4

ν4
γ ζ 2 + 3600γ 2 ω4

ν4
ā410

− 3360γ 2 ω6

ν6
ā4µCc

]

,

(2.2.41)

where Cc and Cs are as defined in equation (2.2.29).

Finally the third order averaged equations of motion are
{

ā′

φ̄′

}

= ε

{

ā(1)

φ̄(1)

}

+ ε2

{

ā(2)

φ̄(2)

}

+ ε3

{

ā(3)

φ̄(3)

}

. (2.2.42)

The second and third order averaged equations are too complex to obtain any analytical

expressions for the Lyapunov exponent. They can, however, be used in the numerical

scheme introduced in Section 1.3 to check the convergence of the averaged solutions to the

exact solution, and thereby supply validation to the analytical expressions derived from the

much simpler first order averaged equations of motion (2.2.12).

2.3 Equations of Variation about Non-Trivial Stationary
Solutions

2.3.1 Procedure for Setting up Equations of Variation

The trivial solution, a(τ )=0, of equation (2.2.8) is obviously an equilibrium solution of

the equation of motion; the same is true for all of the averaged equations of motion. The
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stability of this solution may be determined from Lyapunov exponent of the linearized

equations of motion as discussed in Section 1.4.2. Linearization about the trivial solution

may be done by simply ignoring all nonlinear terms.

In Chapter 5 it will also be shown that there exist nontrivial stationary solutions a(τ ) =
as(τ ) of this system as well. The presence of non-trivial stationary solutions is interesting.

However, to have the complete picture one must also know the stability of these solutions.

The stability of a non-trivial stationary solution may be explored by studying the Lyapunov

exponent of the linearized equations of variation about the stationary solutions. Equations

of variation are equations of motion that describe how a system behaves in relation to some

a chosen reference function or process. If the equations of variation are linearized then they

can be used to study the stability of the reference function.

Consider a general first order system

a′ = f (a, φ),

φ′ = g(a, φ).

(2.3.1)

This may be the exact or any averaged equation of motion.

Let as and φs be stationary solutions of the system in equation (2.3.1). These stationary

solutions must also, by definition, solve the equations of motion, i.e.

a′
s = f (as, φs),

φ′
s = g(as, φs).

(2.3.2)

The general solution of any system may be written as the sum of a reference function and

a variation about that reference function. Using the stationary solutions as the reference

gives

a = as + u,

φ = φs + v,
(2.3.3)

where u and v are the variations about the stationary solutions. Substituting this into

equation (2.3.1) gives

a′
s + u′ = f (as+u, φs+v),

φ′
s + v′ = g(as+v, φs+v).

(2.3.4)
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By subtracting equation (2.3.2) from (2.3.4), one obtains the equations of variation about

the nontrivial stationary solution

u′ = f (as+u, φs+v) − f (as, φs),

v′ = g(as+v, φs+v) − g(as, φs).

(2.3.5)

The final step is to linearize equation (2.3.5), which is necessary to determine Lyapunov

exponents. This procedure is general enough to use on the exact equation of motion (2.2.8)

or on the averaged equations of any order. While the procedure is straight forward, it can

be very difficult to implement because the equations involved are long and trigonometric

identities are often necessary to get the system into a form which can be linearized.

2.3.2 Equations of Variation from First Order Averaged System

It is quite easy to derive the equations of variation from the first order averaged system

(2.2.12). Assuming a stationary solution exists, it must satisfy the equation of motion, i.e.

a′
s = −ε

[ζω

ν
+

µω2

ν2
sin

(

2φs−9̄
)

]

as,

φ′
s =

1

2
ε
[

10 +
3γω2

2ν2
a2

s −
2µω2

ν2
cos

(

2φs−9̄
)

]

.

(2.3.6)

Rewriting the general solution about the stationary solution

a = as + u,

φ = φs + v,
(2.3.7)

and substituting this into equation (2.2.12) gives

a′
s + u′ = −ε

[ζω

ν
+

µω2

ν2
sin

(

2φs+2v−9̄
)

]

(as+u),

φ′
s + v′ =

1

2
ε
[

10 +
3γω2

2ν2
(as+u)2 −

2µω2

ν2
cos

(

2φs+2v−9̄
)

]

.

(2.3.8)

To simplify the system further, the following trigonometric identities are useful

sin
(

2φs−9̄+2v
)

= sin
(

2φs−9̄
)

cos 2v + cos
(

2φs−9̄
)

sin 2v,

cos
(

2φs−9̄+2v
)

= cos
(

2φs−9̄
)

cos 2v − sin
(

2φs−9̄
)

sin 2v.

(2.3.9)
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Expanding cos 2v and sin 2v in Taylor series’ and linearizing leads to cos 2v ≈ 1 and

sin 2v ≈2v. Therefore

sin
(

2φs−9̄+2v
)

= sin
(

2φs−9̄
)

+ cos
(

2φs−9̄
)

2v,

cos
(

2φs−9̄+2v
)

= cos
(

2φs−9̄
)

− sin
(

2φs−9̄
)

2v.

(2.3.10)

Substituting this result into equation(2.3.8) leads to

a′
s + u′ = −ε

[ζω

ν
+

µω2

ν2
sin

(

2φs − 9̄
)

+
µω2

ν2
cos

(

2φs − 9̄
)

2v
]

(as + u),

φ′
s + v′ =

1

2
ε
[

10 +
3γω2

2ν2
(as + u)2 −

2µω2

ν2
cos

(

2φs − 9̄
)

+
2µω2

ν2
sin

(

2φs − 9̄
)

2v
]

.

(2.3.11)

Linearizing u and v and rearranging yields

a′
s + u′ = −ε

[ζω

ν
+

µω2

ν2
sin

(

2φs−9̄
)

]

as − ε
[µω2

ν2
cos

(

2φs−9̄
)

2v
]

as

− ε
[ζω

ν
+

µω2

ν2
sin

(

2φs−9̄
)

]

u,

φ′
s + v′ =

1

2
ε
[

10 +
3γω2

2ν2
a2

s −
2µω2

ν2
cos

(

2φs−9̄
)

]

+
1

2
ε
[3γω2

ν2
uas +

2µω2

ν2
sin

(

2φs−9̄
)

2v
]

.

(2.3.12)

Finally, subtracting equation (2.3.6) gives

u′ = −ε
[ζω

ν
+

µω2

ν2
sin

(

2φs−9̄
)

]

u − 2ε
µω2

ν2
cos

(

2φs−9̄
)

asv,

v′ = ε
3γω2

2ν2
asu + 2ε

µω2

ν2
sin

(

2φs−9̄
)

v.

(2.3.13)

The stationary solutions may be considered as forcing functions because they occur

as input to the system. Notice also that this is a coupled system. Unfortunately, it is

very difficult, if not impossible, to determine Lyapunov exponents of coupled systems

analytically. Monte Carlo simulation is therefore applied to solve the Lyapunov exponents

of the non-trivial stationary solutions.
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2.3.3 Equations of Variation from Exact System

In the case of the trivial solution the exact system need only be used in a verification

role, because analytical results are available. For the non-trivial solution the stability must

however be determined by simulation alone. There is no motivation to use the averaged

equations of motion in this case as the exact system will always provide best answer. The

averaged systems also do not provide any validation of the results, because they originate

from the exact system, so agreement of results is not a validation of the model, but rather

a validation of the averaging technique. Hence, the equations of variation from the exact

system is all that is used to study the stability of the non-trivial stationary solutions.

Using the procedure from Section 2.3.1, it can be shown that the equations of variation

about stationary solutions of equation (2.2.8) are given by

u′ = εB11u + εB12v,

v′ = εB21u + εB22v,
(2.3.14)

where,

B11 = 2γ
ω2

ν2
asCsC3

c (2 + as) + CsCc

[

10 − 4µ
ω2

ν2
cos

(

τ +9̄
)

]

− 2ζ
ω

ν
C2

s ,

B12 = as

[

2γ
ω2

ν2
a2

s C2
c

(

C2
c −3C2

s

)

+ 10

(

C2
c −C2

s

)

− 4ζ
ω

ν
CsCc

+ 4µ
ω2

ν2

(

C2
s −C2

c

)

cos
(

τ +9̄
)

]

,

B21 = 4γ
ω2

ν2
asCc ,

B22 = −8γ
ω2

ν2
asCsC3

c + 8µ
ω2

ν2
CsCc cos

(

τ +9̄
)

+ 2ζ
ω

ν

(

C2
s −C2

c

)

− 210CsCc ,

with Cc and Cs as defined in equation (2.2.29).

Notice that unlike the averaged systems, time τ appears explicitly in this system. In prin-

ciple this does not pose any problems when using numerical methods; however, numerical

stability could be of concern.
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2.4 Remarks and Conclusions

In Chapter 2 the equation of motion for the first mode of vibration of a structural column

subjected to bounded noise axial load was derived. The equation is a second order nonlinear

stochastic ordinary differential equation.

The method of averaging was also introduced and applied to the equation of motion.

Both first order and higher order averaged versions of the equation of motion were derived.

The first order averaged equations are very useful, and are used in Chapter 3 to analytically

determine the Lyapunov exponents of the system. In Chapter 4 the first order averaged

system is also used to determine non-trivial stationary solutions of the system. The higher

order averaged systems are actually more complex than the original exact equations of

motion, and therefore cannot be used to provide any analytical result. These equations are

used in Chapters 4 and 5 to check the convergence of the averaging method to the exact

solution, and thereby provide a verification of the analytical results obtained via first order

averaging.

The equations of variation about the non-trivial solutions were also derived in this

chapter. These equations are used in Chapter 5 to determine the stability of the non-trivial

stationary solutions.



3C H A P T E R

Stability of The Trivial Solution

3.1 Analytical Results – Lyapunov Exponents

From a structural engineering perspective, an asymptotically stable trivial solution is usually

desirable. If an asymptotically stable system is perturbed by some loading, it will always

return to the neutral state eventually.

The stability of a column under bounded noise axial load may be determined analytically

from the linearized first order averaged equations of motion (2.2.12), which are

ā′ = −ε
[ζω

ν
+

µω2

ν2
sin

(

2φ̄ − 9̄)
]

ā,

φ̄′ =
1

2
ε
[

10 −
2µω2

ν2
cos

(

2φ̄ − 9̄)
]

,

(3.1.1)

or

dā

ā
= −ε

[ζω

ν
+

µω2

ν2
sin

(

2φ̄ − 9̄)
]

dτ ,

dφ̄ =
1

2
ε
[

10 −
2µω2

ν2
cos

(

2φ̄ − 9̄)
]

dτ ,

(3.1.2)

where

9̄ =
(ε

ν

)1/2
σW(τ ) + θ.

Using the change of variables

ρ = ln ā, 2 = φ̄ −
1

2
9̄, (3.1.3)

49
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and noting that

d2 = dφ̄ −
1

2
d9̄ = dφ̄ −

1

2

(ε

ν

)1/2
σdW , (3.1.4)

one may get

dρ = −ε
[ζω

ν
+

µω2

ν2
sin (22)

]

dτ ,

d2 =
1

2
ε
[

10 −
2µω2

ν2
cos (22)

]

dτ −
1

2

(ε

ν

)1/2
σdW .

(3.1.5)

Using the definition of the Lyapunov exponent from Section 1.4.2, gives

λτ = lim
τ→∞

1

τ
ln ā(τ ) = lim

τ→∞
1

τ
ρ(τ) = lim

τ→∞
1

τ

∫ τ

0
−ε

[ζω

ν
+

µω2

ν2
sin (22)

]

dτ

= −
εµω2

ν2
E
[

sin 22
]

−
εζω

ν
. (3.1.6)

Note that while the equation of motion (3.1.1) is second order, the stability is determined

by amplitude, ā, alone. Therefore, φ̄ appears in equation (3.1.6) only indirectly due to the

coupling of amplitude and phase in the equation of motion (3.1.1).

Unfortunately evaluation of the expectation E
[

sin 22
]

is quite difficult and requires the

use of a Fokker-Planck equation to determine the probability distribution of 2 ([14], p.

312). The Fokker-Planck equation for 2 in this system is given by

1

2

(
√

ε

ν

1

2
σ

)2
d2p(2)

d22
−

d

d2

[

1

2
ε
(

10 −
2µω2

ν2
cos 22

)

p(2)

]

= 0. (3.1.7)

Integrating this yields,

dp(2)

d2
− 2

(

α + β cos 22
)

p(2) = C1, (3.1.8)

where

α =
210ν

σ 2
, β = −

4µω2

νσ 2
,

and C1 is an integration constant. The solution of this equation is quite complex; fortunately

a general solution for this equation is given in ([14], p. 315). The solution is given by

E
[

sin 22
]

= FI(α, β) =
1

2

[

Iiα+1(β)

Iiα(β)
+

I−iα+1(β)

I−iα(β)

]

, (3.1.9)
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where Iη(x) is the Bessel function of imaginary argument η. This may also be written as

Iη(x) = e−iηπ/2Jη(ix), (3.1.10)

where Jη(x) is the Bessel function of the first kind.

Therefore, the Lyapunov exponent of the trivial solution is given by

λτ = −
εµω2

ν2
FI(α, β) −

εζω

ν
, (3.1.11)

or in t space

λt = νλτ = −
εµω2

ν
FI(α, β) − εζω. (3.1.12)

Note: For the remaining discussion, Lyapunov exponents are always in t space.

A symbolic mathematical software, such as Maple, may be used to evaluate the Bessel

functions and calculate the Lyapunov Exponent. Figure 3.1 shows typical results of Lya-

punov exponent vs. ν/2ω for typical values of damping ζ , load intensity µ, and noise

intensity σ .

The Lyapunov exponent is positive in the region ν≈2ω. This means that the trivial

solution is unstable and the response will diverge exponentially from the trivial solution as

shown in Figure 1.5 in Chapter 1. The exponential divergence from the trivial solution will

however only occur in a small region near the trivial solution. As the response grows, the

nonlinear term in equation (2.2.12) begins to have a larger effect and the linearized model

will no longer properly represent the system. Note that the effects of the system paramaters

in Figure 3.1 is discussed in Section 3.3.

This expression for the Lyapunov exponent is analytically obtainable because of several

approximations that are made in the averaging process. Therefore it is necessary to validate

using Monte Carlo simulation. The validation is done in two ways. First by comparing

analytical results to those obtained numerically from the exact system (2.2.8). Second,

the convergence of the averaging scheme is examined by plotting the Lyapunov exponents

obtained for each order of averaging. If the Lyapunov exponent curves approach the exact

curve as averaging order is increased, it is a good evidence that the averaging scheme is

convergent to the exact solution.
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λ

σ =0.01

2ω

ν

ζ = 0.6

µ = 3.0

σ =0.6

σ =1.4

σ =2.0

Figure 3.1 Typical Lyapunov Exponent vs. ν/2ω Curves

3.2 Monte Carlo Simulation of Lyapunov Exponents

3.2.1 Numerical Algorithm

In this section. a procedure for evaluating Lyapunov exponents of the trivial solution of

the equation of motion of a column under bounded noise axial loading is presented. The

procedure may be applied to the exact or averaged equations of motion; however the exact

equations will be used to demonstrate the method as follows:
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Step 1 - Linearize equations of motion about trivial solution

If the nonlinear terms in a in the exact equation of motion (2.2.8) are ignored, one obtains

da = εa
{

−
ζω

ν

[

1 − cos (2κτ +2φ)
]

+ κ10 sin (2κτ +2φ)

−
µω2

2κν2

[

sin
(

2κτ +2φ−τ −9̄
)

+ sin
(

2κτ +2φ+τ +9̄
)]

}

dτ ,

dφ = ε
{

−
ζω

ν
sin (2κτ +2φ) + κ10

[

1 + cos (2κτ +2φ)
]

−
µω2

2κν2

[

cos τ +
1

2
cos

(

2κτ +2φ−τ −9̄
)

+
1

2
cos

(

2κτ +2φ+τ +9̄
)

]}

dτ.

(3.2.1)

This system may also be augmented by derivative of the noise, 9̄,

d9̄ =
(ε

ν

)1/2
σdW . (3.2.2)

Unlike the equations of variation in Section 2.3, the phase angle, φ, should not be

linearized for the trivial solution. This is because the amplitude alone dictates the stability,

and the phase angle is not necessarily small for a stable system.

Step 2 - Write forward Euler time step equation

The augmented system shown in equations (3.2.1) and (3.2.2) may be approximated by

finite difference equations

1a = εa
{

−
ζω

ν

[

1 − cos (2κτ +2φ)
]

+ κ10 sin (2κτ +2φ)

−
µω2

2κν2

[

sin
(

2κτ +2φ−τ −9̄
)

+ sin
(

2κτ +2φ+τ +9̄
)]

}

1τ ,

1φ = ε
{

−
ζω

ν
sin (2κτ +2φ) + κ10

[

1 + cos (2κτ +2φ)
]

−
µω2

2κν2

[

cos τ +
1

2
cos

(

2κτ +2φ−τ −9̄
)

+
1

2
cos

(

2κτ +2φ+τ +9̄
)

]}

1τ ,

19̄ =
(ε

ν

)1/2
σ1W ,

(3.2.3)
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or in shorter form

1















a

φ

9̄















(τ ) = f
(

a, φ, 9̄, τ
)

1τ + g
(

a, φ, 9̄, τ
)

1W , (3.2.4)

where

f
(

a, φ, 9̄, τ
)

=















1a/1τ

1φ/1τ

0















, g
(

a, φ, 9̄, τ
)

=















0

0

(ε/ν)1/2 σ















.

The time step equation therefore becomes














a

φ

9̄















(

τ +1τ
)

=















a

φ

9̄















(

τ
)

+ 1















a

φ

9̄















(

τ
)

=















a

φ

9̄















(

τ
)

+ f
(

a, φ, 9̄, τ
)

1τ + g
(

a, φ, 9̄, τ
)

1W (3.2.5)

Step 3 - Choose initial conditions

In the case of a deterministic system, it is possible that a wrong choice of initial conditions

can to lead incorrect results. For example, the system ÿ−y =0, which has the solution

y =Aet +Be−t , has an unstable trivial solution due to the et term. However if one chose

the initial conditions, y(0)=1 and ẏ(0)= − 1, only the stable eigenfunction survives and

the solution becomes, y =e−t . This result may lead one to erronneously conclude that the

trivial solution is stable. Therefore, one needs to avoid choosing initial conditions that are

entirely inside a stable eigenspace. This situation is, however, not possible for SODE’s ([14],

p. 280). Therefore, the initial conditions














a

φ

9̄















(0) =















a0

φ0

9̄0















. (3.2.6)

may be chosen freely. Of course the choice a0 =0 would always lead to a stable solution,

therefore a non-zero number should be chosen.
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From the definition of 9̄ one can also get

9̄0 = 9̄(0) =
(ε

ν

)1/2
σW(0) + θ. (3.2.7)

The fact that W(0)=0 leads to 9̄0 =θ . Therefore 9̄0 is a uniform randomly distibuted

variable in (0, 2π).

Step 4 - Perform time stepping

Using a computer program, one may iterate equation (3.2.6) up to any time, τ =T ,

desired. For every time step the random number 1W is given by

1W(τ ) = r
√

1τ. (3.2.8)

where r is a standard normally distributed number.

Step 5 - Calculate Lyapunov exponenent

Using equation (1.4.3) one may approximate the Lyapunov exponent:

λ = λt = νλτ = lim
τ→∞

ν

τ
ln a(τ ) ≈

ν

T
ln a(T), if T is large, (3.2.9)

where T is the simulation time. The choice of T is somewhat arbitrary. It is useful to

perform a sensitivity analysis for different values of T to test convergence. Depending on

the convergence rate, and assuming that the convergence is indeed to the exact Lyapunov

exponent, one may have to run simulations of different time spans, T . Figure 3.2 shows

typical Lyapunov exponent vs. ν/2ω curves calculated from equation (2.2.8) using different

values of T . It is clear that the convergence is generally quick. This is expected due to the

exponential nature of parametric systems.

The time step 1τ , chosen for the simulation can also affect the results. Generally the

smaller the time step is, the better the results are. There are of course practical limits to this

as smaller time steps may introduce excessive rounding error due to the extra steps required

to reach the termination time T . Small time steps may also make simulations needlessly

computationally expensive, as good results are often attainable with large step. Figure 3.3

shows typical Lyapunov exponent vs. ν/2ω curves simulated from equation (2.2.8) using

various time steps. These results show that the curves converge for relatively large time

steps.
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Step 6 - Generate stability curves

The end goal of the simulation is to generate stability curves. This is done by simulating

the Lyapunov exponent over a set of ν values. The results are then plotted in (λ, ν/2ω)

coordinates. Stability curves can be generated for a range of damping, load intensity, and

noise intensity to show the sensitivity of the system stability to these parameters.

3.2.2 Comparison of Analytical and Numerical Solutions

Figure 3.4 shows typical stability curves calculated by the analytical equation (3.1.12) along

with the results of simulation of the exact, first order averaged, second order averaged, and

the third order averaged systems.

This shows that the analytically derived Lyapunov exponents given by equation (3.1.12)

closely match the results from simulation of the exact and higher order averaged equations.

It is also clear that as the order of averaging increases the results approach those of the exact

system. This is an evidence that the averaging scheme is convergent to the exact system.

Note that the analytical and first order averaged curves lie on top of one another. This

is of course expected because the analytical result is derived from the first order averaged

equations.

3.3 Affect of System Parameters on the Lyapunov
Exponent of the Trivial Solution

The sensitivity of the stability of a column under axial load to the system parameters is very

important. This information may potentially be used to improve a design. In this section

stability curves are used to study the effect that damping, load intensity, and noise have on

the stability of the trivial solution of this system. Note that the level of nonlinearity does

not have an effect on the trivial solution. This is obvious because the nonlinear effects are

small near the trivial solution.

Equation (3.1.12) has been shown to provide accurate results, so this equation is used

for the analysis. This is especially convenient, since analytical results can easily be used
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to generate 3D stability surfaces, where the third dimension can be the system parameter

under investigation.

Affect of Damping on the Lyapunov Exponent of the Trivial Solution

Figure 3.5 shows a typical stabilily surface in (ν/2ω,λ,ζ ) space. It is clear that damping

improves stability, as the region of instability (where λ is positive) shrinks as ζ is increased.

It is easier to see this by taking cross-sections in the (ν/2ω,λ) plane as shown in Figure 3.6.

Affect of Load Intensity on the Lyapunov Exponent of the Trivial Solution

Figure 3.7 shows a typical stabilily surface for varying level of load, µ. As one would

expect, increasing the load leads to a larger region of instability. This is also clear from the

cross-sections in Figure 3.8.

Affect of Noise Intensity on the Lyapunov Exponent of the Trivial Solution

Figure 3.9 presents a typical stabilily surface in (ν/2ω,λ,σ ) space, while Figure 3.10

shows cross-sections for several σ values. It is interesting that noise seems to generally

improve stability by lowering the peak Lyapunov exponent. Noise therefore has a tendency

of interfereing with the resonance. This is consistent with expectation because noise makes

it difficult for the forcing frequency to be tuned to the natural frequency of a system. Noise,

however, also seems to slightly de-stabilize the trivial solution in region where it is already

stable. This effect is however not studied in detail, and the stabilization of the originally

unstable regions is much more dramatic.
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3.4 Remarks and Conclusions

Chapter 3 focused on determination of the stability of the trivial solution of a column

subjected to bounded noise axial load by studying the Lyapunov exponent of the system.

The first order averaged equations of motion derived in Chapter 2 were used to derive an

analytical expression for the Lyapunov exponent. The validity of the analytical expression

was then verified by comparison with Monte Carlo simulations of the Lyapunov exponent.

Finally the effect that damping, load intensity, and noise intensity have on stability of the

system was examined by studying stability surfaces. It was discovered that damping, as one

would expect, has a stabilizing effect, while load magnitude has a destabilizing effect. Noise

was actually proven to mostly improve the stability of the system.



4C H A P T E R

The Non-Trivial Stationary Solution

4.1 Analytical Results – Non-Trivial Stationary Solution

4.1.1 General

Recall the first-order averaged system in equation (2.2.12). If there exist stationary solutions,

ās and φ̄s, then they must themselves satisfy the equation of motion, i.e.

ā′
s = −ε

[ζω

ν
+

µω2

ν2
sin

(

2φ̄s − 9̄
)

]

ās,

φ̄′
s =

1

2
ε
[

10 +
3γω2

2ν2
ā2

s −
2µω2

ν2
cos

(

2φ̄s − 9̄
)

]

,

(4.1.1)

where

9̄ =
(ε

ν

)1/2
σW̃(τ ) + θ.

By dividing the amplitude equation of motion by ās on both sides, one gets

ln ā′
s = −ε

[ζω

ν
+

µω2

ν2
sin

(

2φ̄s − 9̄
)

]

,

φ̄′
s =

1

2
ε
[

10 +
3γω2

2ν2
ā2

s −
2µω2

ν2
cos

(

2φ̄s − 9̄
)

]

.

(4.1.2)

Taking the expected values of both sides yields

E
[

ln ā′
s

]

= −ε

{

ζω

ν
+

µω2

ν2
E

[

sin
(

2φ̄s − 9̄
)]

}

,

E
[

φ̄′
s

]

=
1

2
ε

{

10 +
3γω2

2ν2
E

[

ā2
s

]

−
2µω2

ν2
E

[

cos
(

2φ̄s − 9̄
)]

}

.

(4.1.3)
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The expectation operator is an integral operator; therefore the order of expectation and

differentiation on the left side may be reversed, yielding

E
[

ln ās

]′ = −ε

{

ζω

ν
+

µω2

ν2
E

[

sin
(

2φ̄s − 9̄
)]

}

,

E
[

φ̄s

]′ =
1

2
ε

{

10 +
3γω2

2ν2
E

[

ā2
s

]

−
2µω2

ν2
E

[

cos
(

2φ̄s − 9̄
)]

}

.

(4.1.4)

Note that, as discussed in Section 1.2, the probability distribution of a stationary process

is independent of time. This means that E
[

f (ās)
]

and E
[

g(φ̄s)
]

, where f and g are arbitrary

functions, are invariant with respect to time. Therefore the right hand sides in equation

(4.1.4) vanish. This leads to

E
[

sin
(

2φ̄s − 9̄
)]

= −
ζν

µω
, (4.1.5)

and

10 = −
3γω2

2ν2
E

[

ā2
s

]

+
2µω2

ν2
E

[

cos
(

2φ̄s − 9̄
)]

. (4.1.6)

Equation (4.1.6) may be written in amplitude-frequency form by using the relationship

ε10 = 1 − ν/ω0 = 1 − ν/2ω:

ν

2ω
− 1 = ε

ω2

ν2

{

3

2
γ E

[

ā2
s

]

− 2µE
[

cos
(

2φ̄s − 9̄
)]

}

. (4.1.7)

One is motivated to use equation (4.1.5) to evaluate the expectation of the cosine function

in equation (4.1.7). Unfortunately this is very difficult in the general case because the

probability distributions of ās and φ̄s are not known. However, in the two extreme cases of

vary small noise intensity (σ =0, i.e. deterministic) and very large noise intensity (σ →∞),

it is possible to determine the expectation of the cosine function.

4.1.2 Special Case – Deterministic System

If σ =0 the forcing function 9̄ is deterministic, which gives

E
[

cos
(

2φ̄s − 9̄
)]

= cos
(

2φ̄s − 9̄
)

= ±
[

1 − sin2
(

2φ̄s − 9̄
)]1/2

,

E
[

sin
(

2φ̄s − 9̄
)]

= sin
(

2φ̄s − 9̄
)

= −
ζν

µω
,

E
[

ā2
s

]

= ā2
s .

(4.1.8)
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Therefore the amplitude-frequency relationship is
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− 1 = ε

ω2

ν2







3

2
γ ā2
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[
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ζν

µω

)2
]1/2







. (4.1.9)

In the book "Dynamic Stability of Structures" ([14], p. 114) it is shown that, for this

deterministic system, the amplitude-frequency relationship is given by,

ν

2ω
− 1 = ε







3γ

8
ā2

s ∓
[

µ2

4
−

(

2ζω

ν

)2
]1/2







. (4.1.10)

Figure 4.1 shows a comparison of the results given by equations (4.1.9) and (4.1.10).

The reason for the difference is that the derivation in [14] uses the approximation ν≈2ω,

while equation (4.1.9) is obtained without any approximation. It is expected therefore that

equation (4.1.9) will provide more accurate results over a wider range of frequency ratio

ν/2ω. This is shown to be true in Section 4.2.1.

The stability of the nontrivial solutions in the deterministic case is discussed in [14]. The

approximation ν≈2ω is however not used in the stability analysis; therefore the stability

results obtained are also valid for the curves described by equation (4.1.9). It is shown in

this book that the top curves of Figure 4.1 are stable while, the bottom curves are unstable.

4.1.3 Special Case – High Noise Intensity

A combined analytical-numerical approach may be used to determine the amplitude-

frequency relationship for the case of high noise intensity. Monte Carlo simulation is used to

determine E
[

cos
(

2φ̄s − 9̄
)]

. This value is then substituted into the amplitude-frequency

relation in equation (4.1.9). The method is as follows:

Step 1 - Generate a stationary solution

Using the forward Euler Monte Carlo scheme discussed in Section 1.3 simulate a sample

from the equations of motion. If a stationary solution exists and is asymptotically stable,

then the response will eventually approach this solution. Figure 4.2 shows a typical realiza-

tion of a from the original equation of motion (2.2.8). This realization appears to reach a

stationary solution at approximately time T1. There is no analytical method to determine
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T1; however, since the simulation is not computationally expensive, one may simply choose

a large value.

Step 2 - Perform time averaging

After time T1 the amplitude in the original equation of motion (2.2.8) has reached a

stationary solution. If the system is further assumed to be ergodic, then time averaging of

cos
(

2φ̄s − 9̄
)

will yield the expected value desired. The time T2 in Figure 4.2 should be

chosen to be much larger than T1 to ensure the average calculated is accurate.

Step 3 - Repeat simulation for increasing levels of noise

Figure 4.3 contain a plots of E
[

cos
(

2φ̄s − 9̄
)]

and E
[

sin
(

2φ̄s − 9̄
)]

from simulation,

the Lyapunov exponent of the trivial solution, and the analytical result of equation (4.1.5)

vs. noise intensity, σ . The simulations are done with ν=2ω to ensure the existence of a
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non-trivial stationary solution. This figure shows that E
[

cos
(

2φ̄s − 9̄
)]

nears zero for

relatively small noise intensity σ .

The divergence of E
[

sin
(

2φ̄s − 9̄
)]

from the analytical value given by equation (4.1.5)

shown in Figure 4.3 occurs at exactly the σ level where the Lyapunov exponent become

negative. Therefore the divergence can be explained by the fact that the trivial solution

becomes stable and begins to affect the trajectory of the system.

Also of note is that there is a discrepancy between the analytical and simulated values

of E
[

sin
(

2φ̄s − 9̄
)]

. This is because the simulation is done using the original equations

of motion (2.2.8), while the analytical results are from the averaged equations of motion

(2.2.12). Figure 4.4 shows these same two values when simulation is done using the averaged

equations of motion. As expected, there is near perfect correlation in this case.

It can be shown that this decay of E
[

cos
(

2φ̄s − 9̄
)]

to zero with increasing noise is

typical of the system in equation (2.2.8). The decay rate is inversely related to damping

ζ . Figure 4.5 shows this relationship, where σ1% is the noise intensity level required for

E
[

cos
(

2φ̄s − 9̄
)]

to reach 1% of its value in the deterministic (σ =0) case.
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Step 4 - Apply result to analytical equation

Given that the expectation of the cosine term in equation (4.1.7) tends to zero with

increasing σ , the amplitude-frequency relationship approaches

ν

2ω
− 1 = ε

3γω2

2ν2
E

[

ā2
s

]

. (4.1.11)

Therefore instead of an upper and lower curve, one is left with just one central curve in

the extreme case as σ →∞. Figure 4.6 shows this shifting that occurs when σ is increased.

Note that the amplitude axis is now given as E
[

ā2
s

]

. This is because it is difficult, and not

necessary to obtain the average given the second moment. Also note that in the stochastic

case the amplitude-frequency relationship is not strictly amplitude vs. frequency, but rather

a relationship between the second moment of amplitude and frequency.
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Figure 4.6 The Amplitude-Frequency Relationship for Limiting Cases of Noise

The region between the stems of the top and bottom nontrivial solutions is also the

region of trivial solution instability. Therefore Figure 4.6 coincides with the trivial solution

Lyapunov exponent results from Chapter 3, where it was shown that the region of trivial

solution instability shrinks with increasing σ .
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4.2 Monte Carlo Simulation of Non-Trivial Stationary
Solution

4.2.1 General

The Monte Carlo method is essentially an experimental method. One begins a simulation

and observes the outcome. Unfortunately this means that peculiarities such as unstable non-

trivial solutions (bottom curves in Figures 4.1 and 4.6) cannot be examined via Monte Carlo

simulation. This is because a system will diverge exponentially from an unstable solution

if given even the slightest perturbation and is therefore not observable (theoretically even

floating point rounding in a computer simulation is potentially enough to de-stabilize the

system). Therefore all further discussion of non-trivial solutions is directed towards the

stable non-trivial solution.

Note that while it is possible to use the Fokker-Planck equation to determine the prob-

ability distribution of φ in Chapter 3, this is not possible for the nonlinear system as the

equations of motion are coupled. Therefore, for the general case of finite σ one has to use

Monte Carlo simulations to determine the amplitude-frequency relationship.

Recall steps 1 and 2 from Section 4.1.3. These same steps may be used to determine

the amplitude-frequency relationship directly from simulation, if, instead of time averag-

ing cos
(

2φ̄s − 9̄
)

, one simply averages ā as shown in Figure 4.2. Note that when using

simulation one is able to choose to average E [ās] as opposed to second moment E
[

ā2
s

]

.

4.2.2 Special Case – Deterministic System

In order to validate the amplitude-frequency relationship for deterministic systems in equa-

tion (4.1.9), it is necessary to compare with the results from simulation of the exact equation

of motion. Figure 4.7 presents the amplitude-frequency obtained from simulation using of

exact equations of motion, and the curves predicted by equations (4.1.9) and (4.1.10).

Both equations provide a good approximation for ν≈2ω; however it is evident that

equation (4.1.9) provides a better estimation over a broader range.
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4.2.3 Special Case – High Noise Intensity

The shifting tendency of the amplitude-frequency relationship can also be verified by sim-

ulation. Figure 4.8 shows typical amplitude-frequency curves obtained from the exact

equation of motion for increasing σ . It appears that the stem of the curve approaches

ν/2ω = 1 as σ increases, which provides some verification to equation (4.1.11).

4.3 Affect of System Parameters on Non-Trivial
Stationary Solution

In this section the effect that damping, load intensity, and the level of nonlinearity have on

the non-trivial stationary solution is studied via amplitude-frequency curves. The effect

of noise intensity was discussed in Section 4.2.2. The amplitude-frequency curves in this

section are all obtained from simulation of the exact equations of motion.
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Affect of Damping on Non-Trivial Stationary Solution

Figure 4.9 shows a typical plot of the amplitude-frequency relationship for various levels

of ζ .
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It is clear that increasing damping shifts the amplitude-frequency curve down and to

the right. This is equivalent to shrinking the region of trivial solution instability, and is

consistent with the results of Chapter 3. The existence of unstable non-trivial solutions

cannot be verified by simulation.

Affect of Load Intensity on Non-Trivial Stationary Solution

Figure 4.10 shows typical amplitude-frequency curves for various levels of µ. As one

might expect, increasing the load intensity shifts the amplitude-frequency curve up and to

the left, which also indicates that the region of trivial solution instability is being increased.

This is also consistent with the results of Chapter 3.

Note that the amplitude-frequency curves are all created by averaging the results over

several simulations. This generally smooths the curves, however it indirectly creates the

waviness on the right side of the curves in Figure 4.10. This is because for small load

intensity the trivial solution quickly (with respect to increasing ν not time) regains stability

for ν>2ω. This second stable solution makes it difficult to consistently obtain realizations of

the system that converge to the non-trivial solution. The trivial solution therefore interferes

with the averaging technique used to smoothen the curves. However, without averaging over

several simulations the curves become even worse, as they jump back and forth between

zero and the non-trivial solution.

Affect of Nonlinearity on Non-Trivial Stationary Solution

Figure 4.11 shows a typical amplitude-frequency curves for various levels of γ . These

curves show that the amplitude-frequency relationship grows large for decreasing γ . This

result is expected, because it is known that the response of linear systems grows without

bound in the region of trivial solution instability.

Nonlinearity, however, does not shift the bifurcation point where the trivial solution

becomes unstable. This is also expected because the nonlinear and linear systems have the

same trivial solution stability behaviour.
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4.4 Remarks and Conclusions

In Chapter 4 the non-trivial amplitude-frequency relationship for a column under bounded

noise axial load was determined via both a combined Monte Carlo simulation-analytical

method as well as from Monte Carlo simulations directly. The deterministic system was also

studied as a special case where the noise intensity tends to zero.

The method for generating non-trivial stationary solutions that was developed in this

chapter is used in Chapter 5 to study the stability of these same stationary solutions.

The effect that damping, load intensity, nonlinearity, and noise intensity have on the

amplitude-frequency relationship was also studied. It was shown that noise intensity, non-

linearity, and damping have stabilizing effects, while load intensity has a de-stabilizing effect.

These results are all consistent with the results of Chapter 3.
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Stability of The Non-Trivial Stationary
Solution

5.1 Monte Carlo Simulation of Lyapunov Exponents

The stability of the non-trivial stationary solutions can be determined by studying the

Lyapunov exponents of the linearized equations of variation. The equations of variation,

even for the first order averaged system, are too complex to solve analytically. Therefore the

method of Monte Carlo simulation is applied to study these equations of variation.

Because the method of simulation is applied, one is inclined to use the original equations

of motion. The only benefit of using an approximate equation of motion when simulating

is savings in computing time. This is however not a significant problem in the system under

study; therefore the original equations of motion will be used.

Consider the linearized equations of variation given by equation (2.3.14). This may be

treated as an entirely new system and the stationary solution, (as, φs), may be thought of as

inputs to the system along with 9̃. The difficulty comes in choosing the stationary solutions

to use as inputs. One cannot arbitrarily choose a stationary solution, as it must satisfy

the original equations of motion. The approach used therefore is to simulate two systems

simultaneously. The first system being original exact equations of motion, and the second

system the equations of variation about the stationary solution. The output of the first

system is therefore the input of the second system. The details of the method are as follows:
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Step 1 - Generate a stationary solution

Using the method developed in Section 4.1.3, generate a stationary solution, (as, φs), from

the original equations of motion.

Step 2 - Initiate simulation of linearized equations of variation

After simulation time T1 (see Section 4.1.3 for description) has passed, choose initial

conditions for the equations of variation. These initial conditions can be chosen freely or

even randomly. Then use the forward Euler scheme as discussed in Section 1.3 to simulate

the equations of variation. Continue to simulate the original equations of motion because

the outputs of the original system, (as, φs), are an input to the equations of variation.

Step 3 - Generate stability curves

While both u, and v need to be stable for the method to yield results, only the stability of u

is important in this system as it is the equation of amplitude variation. Therefore Lyapunov

exponents need to be calculated from the u equation as follows

λ = λt = νλτ = lim
τ→∞

ν

τ
ln |u(τ )| ≈

ν

T
ln |u(T)|, if T is large. (5.1.1)

Note that the absolute value of u must be taken because the variation about the stationary

amplitude, as, could be either negative or positive. For the original equations of motion, the

amplitude is always a positive value so it is not necessary to take the absolute value.

The stability curves can be obtained according to steps 5 and 6 of Section 3.2; simply

substituting u for a and v for φ. In this case, the simulation time T should be chosen such

that T ≫ T1.

Note that the equations of variation are derived by assuming the existence of stable sta-

tionary solutions. This method therefore seems to be somewhat of a catch-22, as whenever it

works it will always yield stable solutions. It is still useful however for studying the degree of

stability, i.e. exponential rate of decay, and also to study the effect that changing parameters

have on stability.

Also note that, while the Lyapunov exponents obtained actually describe the stability

of the equations of variation, they are usually just termed the Lyapunov exponent of the

stationary solution.
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5.2 Affect of System Parameters on the Lyapunov
Exponent of the Non-Trivial Solution

In this section the effect of system parameters on the Lyapunov exponent of the non-trivial

stationary solution is discussed.

In simulating the Lyapunov exponents of the non-trivial stationary solutions one en-

counters some interesting results. Figure 5.1 shows a typical stability curve for both the

trivial and non-trivial solutions of the original equations of motion (2.2.8). Also overlayed

in this figure is the amplitude-frequency diagram of the system, with stability indicated

by line type. As expected the Lyapunov exponent of the trivial solution becomes positive

(i.e. trivial solution becomes unstable) at the same point (referred to as the left peak) that

the Lyapunov exponent of non-trivial solution becomes negative (i.e. non-trivial solution

becomes stable). What is not expected is the small peak on the right side. This peak

should probably not be there, and is likely caused by the same phenomenon discussed in

Section 4.3, where the stable trivial solution interferes with the simulation of the non-trivial

solution. This peak is useful, however, as it helps to identify the bifurcation point where

the trivial solution regains stability. The region between the two peaks in non-trivial solu-

tion Lyapunov exponent curve is therefore the trivial solution instability region. Note also

that the non-trivial stationary solution does not exist left of the first peak, so its Lyapunov

exponent curve begins at this point.

The effect of damping is very difficult to study and is not included in the discussion.

The difficulty occurs because for small damping the system converges to the non-trivial

stationary solution very slowly.

Affect of Noise Intensity on the Lyapunov Exponent of the Non-Trivial Stationary

Solution

Figure 5.2 shows a typical plot of the Lyapunov exponent of the non-trivial stationary

solution for various levels of noise intensity. The peaks once again describe the width of the

zone of trivial solution instability.

This figure shows a very interesting effect of noise. The region of trivial solution insta-

bility is decreased with increasing noise as expected; however the stability of the non-trivial
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solution is actually reduced. This is similar to the effect of noise on the stability of the trivial

solution. Therefore it seems that noise causes the Lyapunov exponents of both the trivial

and non-trivial solutions to tend to zero.

Note that for very small noise intensities the Lyapunov exponent of the non-trivial solu-

tion approaches a constant value. This is an interesting and unexpected result.
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Figure 5.2 Non-Trivial Stationary Solution Stability Curve vs. Noise Intensity

Affect of Load Intensity on the Lyapunov Exponent of the Non-Trivial Stationary

Solution

Figure 5.3 shows a typical plot of the Lyapunov exponent of the non-trivial stationary

solution for various values of load intensity, µ.

It appears that the Lyapunov exponent of the non-trivial stationary solution, where it

is stable, seems relatively unaffected by load intensity. Near ν≈2ω all three curves lie on

top of one another. The load intensity however has a pronounced effect on the width of
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the trivial solution instability zone (distance between peaks). The peaks converge on each

other, showing that damping improves trivial solution stability.

Affect of Nonlinearity on the Lyapunov Exponent of the Non-Trivial Stationary Solu-

tion

Figure 5.4 shows a typical plot of the Lyapunov exponent of the non-trivial stationary

solution for different levels of nonlinearity, γ . Note that nonlinearity does not shift the

peaks at all, which indicates that the region of trivial solution instability is unchanged by

nonlinearity. This is consistent with the results in Chapters 3 and 4. Figure 5.4 also shows

that increasing nonlinearity improves stability, because the Lyapunov exponent decreases.
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5.3 Remarks and Conclusions

In this chapter the stability of the non-trivial stationary amplitude of vibration of a struc-

tural column under bounded noise axial loaded was investigated. The stability was de-

termined by studying the Lyapunov exponents of the equations of variation about the

stationary solutions via Monte Carlo simulation.

The stationary solutions of the equations of motion of this system are actually an input

to the equations of variation. Therefore Monte Carlo simulations is used in a dual role:

generating both an input stationary solution to the equations of variation, and determining

the Lyapunov exponents of these equations.

The effect that load intensity, nonlinearity, and noise intensity have on stability is also

studied. It is shown that, as one might expect, load increases Lyapunov exponents of the

system, while noise and nonlinearity decrease the Lyapunov exponents.
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Conclusions

6.1 Summary

Columns are the most critical component of many structures. The failure of one column

can often lead to progressive collapse of the entire structure. Column stability is therefore a

very important aspect of structural design. In this thesis the stability of a structural column

under dynamic axial load is investigated.

Real world structural loadings are random processes. Therefore a bounded noise process

is used in this thesis to model the axial loading of the column. A bounded noise process

is chosen because its statistical properties can be closely matched to those of real processes

such as wind loading or wave/tidal forces. Despite the loading being random in nature,

many concrete results are obtained by use of Lyapunov exponents.

The equation of motion of the system is derived and simplified by using the method of

averaging. The averaged equations are then used to derive an analytical expression for the

Lyapunov exponent of the trivial solution. The Lyapunov exponent is the average growth

rate of the system therefore it directly gives the stability of the system. It is also shown that

the introduction of noise into periodic loading improves the stability of the trivial solution.

The general equation of motion of a column under axial load is nonlinear; therefore there

exist non-trivial stationary solutions of the equation of motion. Physically this means that

the system may exhibit stable non-zero amplitudes of vibration. The relationship between
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the amplitude of this stationary solution and the forcing frequency, or the amplitude-

frequency relationship, is derived analytically in the case of a noise-free periodic load. In

the general case of a ”noisy”loading, Monte Carlo simulation is used to study the amplitude-

frequency relationship.

The stability of the non-trivial solutions is also studied via Lyapunov exponents. This

is done indirectly by studying the stability of equations of variation about the stationary

solutions. It is shown that the non-trivial solution is de-stabilized by the introduction of

noise into a periodic loading.

6.2 Extension of Research

In this thesis Monte Carlo simulation proved to be well suited to the study of bounded noise

excitation. The simulations yielded consistent results with little computational expense.

Therefore the numerical methods used in this thesis might be easily extended to the study

multiple degrees-of-freedom systems under bounded noise excitation.

Bounded noise processes may also be used to approximate wide-band processes if the

noise intensity is taken to be large. Therefore the results obtained in this thesis may also be

extended to systems under wide-band excitation.

Finally, this thesis shows that noise has a primarily stabilizing effect on the un-deformed

(un-buckled) state of columns under axial excitation. Therefore noise could potentially be

introduced into systems as a control technique. A major benefit of using noise as a control

technique is that, while it would be active control, it would not require any sensing of the

states of a structural system.

6.3 Future Work

In this thesis, Monte Carlo simulation is used in a primary role to determine both the

stationary solutions of columns under bounded noise axial load and the stability of these

solutions. Ideally, one would be able to derive analytical expressions of stability and use

simulation only in a verification role. Unfortunately analytical results are difficult to obtain

for this system because of the complexity of the equations of motion. The main stumbling



6.3 future work 88

block is the nonlinearity that is present in this system, which makes solution of the Fokker-

Planck equation very difficult, more difficult than the original equation of motion of the

system. However, further investigation of analytical solutions is warranted, because the

stability of a dynamical system can never be fully described by a set of simulations.

The stability results of this thesis would also be complemented by determination of the

moment stability of the system via moment Lyapunov exponents.

The effect of damping on the Lyapunov exponents of the non-trivial solution was not

studied in this thesis. To gain a complete picture of this system, this should be studied

further.
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