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Abstract

In manufacturing, measurement systems are used to control processes and in-

spect parts with the goal of producing high quality product for the customer. Mod-

ern Quality Systems require the periodic assessment of key measurement systems

to ensure that they are functioning as expected. Estimating the proportion of the

process variation due to the measurement system is an important part of these

assessments.

The measurement system may be simple, for example, with one gauge auto-

matically measuring a single characteristic on every part or complex with multiple

characteristics, gauges, operators etc. Traditional assessment plans involve select-

ing a random sample of parts and then repeatedly measuring each part under a

variety of conditions that depend on the complexity of the measurement system.

In this thesis, we propose new plans for assessing the measurement system vari-

ation based on the concept of leveraging. In a leveraged plan, we select parts

(non-randomly) with extreme initial values to measure repeatedly. Depending on

the context, parts with initial measurements may be available from regular pro-

duction or from a specially conducted baseline study. We use the term leveraging

because of the re-use of parts with extreme values.

The term leverage has been used by the proponents of the problem solving

system initially proposed by Dorian Shainin. Parts with relatively large and small

values of the response are compared to identify the major causes of the variation.

There is no discussion of the theory of leveraging in the literature or its application

to measurement system assessment. In this thesis, we provide motivation for why

leveraging is valuable and apply it to measurement system assessments.

We consider three common contexts in the thesis:
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• Simple measurement systems with one gauge, no operator effects and no ex-

ternal information about the process performance;

• Measurement systems, as stated above, where we have external information,

as would be the case, for example, if the measurement system was used for

100% inspection;

• Measurement systems with multiple operators.

For each of these contexts, we develop new leveraged assessment plans and

show that these plans are substantially more efficient than traditional plans in

estimating the proportion of the process variation due to the measurement system.

In each case, we also provide methodology for planning the leveraged study and for

analysing the data generated.

We then develop another new application of leveraging in the assessment of a

measurement system used for 100% inspection. A common practice is to re-measure

all parts with a first measurement outside of inspection limits. We propose using

these repeated measurements to assess the variation in the measurement system.

Here the system itself does the leveraging since we have repeated measurements

only on relatively large or small parts. We recommend using maximum likelihood

estimation but we show that the ANOVA estimator, although biased, is comparable

to the MLE when the measurement system is reliable. We also provide guidelines

on how to schedule such assessments.

To outline the thesis, in the first two chapters, we review the contexts described

above. For each context, we discuss how to characterize the measurement system

performance, the common assessment plans and their analysis. In Chapter 3, we

introduce the concept of leveraging and provide motivation for why it is effective.

Chapters 4 to 7 contain the bulk of the new results in the thesis. In Chapters

4, 5 and 6, which correspond to the three contexts described above, we provide
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new leveraged plans, show their superiority to the standard plans and provide a

methodology to help design leveraged plans. In Chapter 7, we show how to assess

an inspection system using repeated measurements on initially rejected parts. In

the final chapter, we discuss other potential applications of leveraging to other

measurement system assessment problems and to a problem in genetics.
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Chapter 1

Introduction

The quality of the measurement system is crucial to any manufacturing process,

scientific investigation, or clinical trial because all measurements are subject to

error. As discussed in Shrout and Fleiss [1979], “measurement error can seriously

affect statistical analysis and interpretation; it therefore is important to quantify

the statistical properties of measurement systems such as bias, variation, etc.”

This thesis focuses on the context of a manufacturing process but quantifying

measurement variation is also important in other contexts. For instance, in the

medical field we measure people rather than parts for health measures such as

blood cholesterol levels.

In a manufacturing setting, measurements of critical characteristics are taken

to determine if a part is being built to specification. For simplicity of language,

we assume that the characteristic of interest is a physical dimension but this as-

sumption is not critical. We also assume each part characteristic has a true value

which is unknown but fixed. That is, we assume that measuring the characteristic

does not affect its true value, so for example, we do not consider destructive mea-

surement systems. Another critical assumption is that we can make independent

measurements on the same part.
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In this thesis, we consider three contexts:

• a measurement system with no operators and a single gauge,

• a measurement system used with 100% inspection where the overall process

characteristics are known or estimated with negligible error,

• a measurement system with operators and a single gauge.

In the following sections we introduce and describe each context. In addition, in

each context, we review the metrics that characterize measurement system quality.

In the final section of the chapter, we describe the goal and outline of the thesis.

1.1 A Measurement System with No Operators

and a Single Gauge

The observations from a measurement system have two sources of variability; the

true part dimensions and the measurement errors. Measurement variation is the

variation observed among measurements on the same part. Part variation is the

additional variation observed among measurements on different parts. The part

variation is also referred to as the process variation.

Using manufacturing terminology, a commonly used statistical model for the

outcomes from a measurement system is the random effects model

Y = X + E (1.1)

where X is the random variable representing the possible true values for the dimen-

sion of a part and E is a random variable representing the measurement error. It is
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commonly assumed that the part effects (X) are independent and identically dis-

tributed normal random variables with mean µ and variance σ2
p, the measurement

errors (E) are independent and identically distributed normal random variables

with mean zero and variance σ2
m, and X and E are mutually independent. The

variance of Y , called the total variation, is σ2
t = σ2

p + σ2
m. We refer to σ2

m as the

measurement variation and σ2
p as the process variation.

Studies that quantify the measurement variation are used in several applications:

assessing a new measurement system, a routine assessment of an existing system,

and assessing a system as one of the first steps in process problem solving.

One way to summarize the relative sizes of the measurement and process vari-

ation is to use the proportion of variances. One such proportion is called the

intraclass correlation coefficient, ρ =
σ2

p

σ2
p+σ2

m
. It is the correlation between two mea-

surements on the same part, since two measurements on the same part, (Y1 & Y2)

using model (1.1), can be written as Y1 = X+E1 and Y2 = X+E2. The covariance

between these two measurement is

Cov (Y1, Y2) = Cov (X + E1, X + E2) = Cov (X,X) = V ar (X) = σ2
p

and Cor(Y1, Y2) =
Cov (Y1, Y2)√

V ar (Y1)V ar (Y2)
=

σ2
p

σ2
t

= ρ.

Also, note that correlation between the true part dimension X and a single mea-

surement Y1 on that part is

Cor(Y1, X) =
Cov (Y1, X)√

V ar (Y1)V ar (X)
=

σ2
p

σpσt
=
√
ρ.

The metric ρ is bounded between [0, 1] and values near 1 indicate that the part

variation is large relative to the measurement variation. Conversely, if ρ is near 0

then the measurement variation is large relative to the part variation.
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Figure 1.1, shows the relationship between two measurements on 100 different

parts when the intraclass correlation coefficient, ρ, is 0.2 and 0.9. When the process

variation is large relative to the measurement system, e.g. ρ = 0.9, the relationship

between the two measurements on the same part is strong. When the measurement

variation is small, we expect two measurements on the same part to be similar.

On the other hand, when the measurement system is the larger source of variation,

e.g. ρ = 0.2, there is little correlation between repeated measurements on the same

part.
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Figure 1.1: Scatterplot of Two Measurements on 100 Parts. Left panel has ρ = 0.2
and the right panel ρ = 0.9.

An important property of measurement systems is bias. We can include bias in

model (1.1) if the measurement error E has a non-zero mean, µm, instead of zero.

We demonstrate a bias in a measurement system using Figure 1.2. In each panel,

the line corresponds to equality of the measured and true dimensions. The left

panel in Figure 1.2, shows a measurement system which is unbiased, i.e. µm = 0.

A simple form of bias is a positive or negative constant adjustment across the

true dimensions. A constant positive bias is shown the right panel of Figure 1.2.

In general, to check measurement bias, we require parts with known dimensions.

Later, we will see that for measurement systems involving multiple operators it is

possible to check for relative bias of each operator with a part of unknown true
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dimension.
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Figure 1.2: Two Measurement Systems: Zero Bias (left), Positive Bias (right)

In a widely used manual on measurement system assessment [Automotive In-

dustry Action Group, 2002], linearity is a term used to describe how the bias or

measurement variability changes over the range of true dimensions. The measure-

ment bias and variability are considered “linear” if µm and σm do not depend

on the true dimension (as in either panel of Figure 1.2). A measurement system

showing signs of non-linearity in the measurement variance is shown in the right

panel of Figure 1.3. In the plot, the measurement variance increases with the true

dimension.
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Figure 1.3: Non-Linearity of Measurement Variability; left panel linearity and right
panel non-linearity
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Stability is a property similar to linearity. A measurement system is unstable

if its measurement bias or variability depend on time. An example of an unsta-

ble measurement system is drift in the bias, perhaps due to degradation of the

measurement system over time.

Linearity and stability are important quantities, but by adopting model (1.1)

we implicitly assume that the measurement system is linear and stable. That is,

we assume the measurement bias and variation are constant over both time and

the true dimension. However, when planning and analyzing a measurement system

study, we should always think about checking these assumptions and we provide

ways for making such checks in the recommended new study plans in Chapters 4

to 7.

1.1.1 Characterizing Measurement System Quality

A variety of performance metrics are used to quantify the precision or quality of

the measurement system. The appropriate choice in any application depends on

the goal and custom. The four common categories of metrics are functions of

• measurement variation (σm) only,

• measurement variation (σm) and the lower and upper specification limits (LSL

& USL),

• measurement and process variation (σm & σp), and

• measurement and process variation (σm & σp), process mean (µ), LSL and

USL.

The LSL and USL for the measured characteristic are given by the prod-

uct/process design. To calculate any metric defined in terms of the parameters

σm, σp and µ, these need to be estimated with an assessment study.

6



In most cases, the following metrics summarize the performance of the measure-

ment system as a single number. This is clearly a loss of information. These metrics

must be interpretable because otherwise one should report the original parameter(s)

instead.

1.1.1.1 Metrics based on Measurement Standard Deviation

How can we assess the quality of a measurement system with only the variation?

One answer is to report the standard deviation σm, but does a more interpretable

measure of performance exist? A measurement system is used to estimate the true

dimension of a part. Thus a natural metric is to quantify how well a measurement

system can estimate the true dimension of a part with a single observation. This

idea is called the effective resolution of a measurement system in Wheeler and

Lyday [1984].

One possibility is the width of a 100 (1− α) % confidence interval for the true

dimension with a single observation. For example, if the measurement error has

a normal distribution with standard deviation σm the metric is 2σmZ1−α/2, where

Z1−α/2 is the 1−α/2 quantile of a standard normal distribution. The width of a 95%

(α = 0.05) confidence interval for the true dimension using a single measurement

is roughly 4σm.

Wheeler and Lyday [1984] use the same idea, but their metric is based on the

half width of a 50% confidence interval. If we again assume normality, this quantity

is 0.67σm and known as the “Median Uncertainty” or the “Probable Error” of a

measurement.

Another argument which leads to a similar result is based on the question: What

is the required distance between two true dimensions for the measurement system

to reliably distinguish between them? We can quantify this question by examining

7



the power of a statistical test of hypothesis to detect differences among the true

values. The power of a statistical test is the probability that the test will reject a

false null hypothesis. As the difference between the true dimensions gets larger the

power will increase. How large a difference in the true dimensions will result in an

acceptably high power?

To set up the appropriate test of hypothesis, we assume δ1 and δ2 are the true

values of the two parts. Then, the measured values Y1, Y2 from each part have a

normal distribution with means δ1 and δ2, and variance σ2
m. To test the hypothesis

H0 : δ1 = δ2 vs. HA : δ1 6= δ2 we use the statistic

y1 − y2√
2σm

.

where the y1, y2 are the observed values. The test of hypothesis with size α will be

rejected if ∣∣∣∣y1 − y2√
2σm

∣∣∣∣ > Z1−α/2 (1.2)

The size of a test α is the probability of rejecting the null hypothesis H0 when it is

true. In the above test, there is an α chance of rejecting δ1 = δ2 when it is true.

The question of interest becomes how large does the difference between δ1 and

δ2 have to be for the test to have a power equal to 1− β. The power of the test is

1− β = 1− Φ

(
Z1−α/2 −

δ0√
2σm

)
+ Φ

(
−Z1−α/2 −

δ0√
2σm

)
(1.3)

where δ0 = δ1 − δ2. This means the difference between the two parts has to be

δ0 ≥
√

2σm |Zβ + Zα| (1.4)

for the test to have size α and power 1−β. Thus, another metric for a measurement
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system is
√

2 |Zβ + Zα|σm.

To illustrate this idea, consider the following numerical example. If the mea-

surement standard deviation is σm = 1 and the test of hypothesis is required to

have α = 0.05 and power 1−β = 0.80, then the true dimensions have to be at least

3.96 units away from each other to be reliably distinguished by the measurement

system. The term “reliably” is used to represent the size and power that were

chosen and represents one’s own personal risk level. I have chosen two particular

levels of the size and power but another person may choose different values.

All of these metrics define a form of effective resolution for the measurement sys-

tem and are a constant times σm. They simplify the interpretation of the standard

deviation but since they are simply scalar multiples of σm, I suggest reporting the

standard deviation only. Then, one can obtain any chosen metric by multiplying

the standard deviation by the appropriate constant. From a statistical perspective,

any of these metrics can be estimated once we have an estimate of σm.

1.1.1.2 Metrics based on Comparing Measurement Variation to the

Specification Limits

Burdick et al. [2005] and Automotive Industry Action Group [2002] use the precision-

to-tolerance ratio (PTR) to assess a measurement system. PTR compares the width

of the measurement error distribution to the width of the specification limits (tol-

erance). It is calculated as

PTR =
kσm

USL− LSL

where k is either 5.15 or 6. The values k = 6 and 5.15 correspond to the width,

centered at the mean, of an interval containing 99.73% and 99.00% percent of the

standard normal distribution, respectively. The guidelines in Automotive Industry
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Action Group [2002] suggest using k=5.15.

The precision-to-tolerance ratio applies when the key characteristic has a two-

sided specification or tolerance. The supplier or manufacturer will compare PTR

to some standard for the purpose of approving the measurement system. The Au-

tomotive Industry Action Group [2002] suggests classifying measurement systems

using PTR as

• PTR < 0.1: the measurement system is capable.

• PTR > 0.3: the measurement system is not capable.

• 0.1 < PTR < 0.3: the measurement system may be capable.

What does this metric quantify? It does not assess the measurement system

relative to a process because the PTR does not take into account the distribution of

the true part dimensions. Montgomery and Runger [1993a] and Larsen et al. [1999]

noted that PTR does not necessarily indicate how well a measurement system

performs for a particular process. This can occur because a process which always

produces parts well within specification can tolerate a measurement system that is

not capable.

It is hard to state a good reason why a measurement system should be assessed

only relative to the specification limits. A measurement system is intended to be

used along with a production process and not just the specification limits. One

justification for comparing the measurement variation and the specification limits

would be for a process that has not started producing yet. In this situation a

measure of PTR would be useful because the process variation is unknown and

there would be a requirement for the measurement system to be able to distinguish

parts inside and outside the specification limits.
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Wheeler and Lyday [1984] give an example of why measurement variation should

not be compared only to the specifications limits. In their example, a statistician

determined a measurement system was not capable relative to the tolerance because

σm was 8.0 units and the tolerance was 20.0 which gave a PTR = 2.06. Based on

these results, the statistician recommended a measurement system upgrade costing

$1.6 million. The plant manger, after seeing this price tag, brought the statistician

back to reassess the conclusion. It was then discovered that the standard devia-

tion due to the true dimensions (σp) was 36.0 units. Relative to the process, the

measurement system was good enough because upgrading the measurement system

would only help them better quantify how bad the process was. So, rather than

spending $1.6 million on an upgrade to the measurement system they invested these

resources into improving their process.

This example shows why comparing measurement system to the tolerance can

be misleading and should be avoided. Metrics based on the measurement variation

and the specification limits do not fully characterize the measurement system which

can lead to a misallocation of resources.

1.1.1.3 Metrics based on Measurement and Process Variation

There are two classes of metrics that compare the measurement and process vari-

ation. One class simply compares the relative size of the two. The other tries to

answer the question, “how many distinct categories of parts from the process can

the measurement system identify?”

Relative Variance

Comparing the size of measurement and process variation is valuable for process

improvement. Often the goal of process improvement is to reduce the total variation
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σ2
t = σ2

m + σ2
p. If σm > σp then reducing the variation due to the measurement

system will have a bigger impact on σ2
t than reducing the process variation. Four

common ways to quantify the relative size of measurement and process variation

are:

1. Gauge Repeatability (GR) defined by the proportion of measurement varia-

tion relative to the total variation on the standard deviation scale [Automotive

Industry Action Group, 2002]

GR =
σm√
σ2
m + σ2

p

=
σm
σt
.

2. The intraclass correlation coefficient, ρ, defined as the proportion of process

variation relative to the total variation [Donner and Eliasziw, 1987],

ρ =
σ2
p

σ2
m + σ2

p

=
σ2
p

σ2
t

. (1.5)

3. The discrimination ratio, D, defined as the process standard deviation divided

by the measurement standard deviation [Steiner and Mackay, 2005]

D =
σp
σm

. (1.6)

The metric D has also been called the signal-to-noise ratio (SNR) (See Burdick

et al. [2003], Automotive Industry Action Group [2002], and Larsen [2002]).

4. The classification ratio, DR, defined as the eccentricity of the bivariate prob-

ability ellipse from two measurements on the same part. Eccentricity is the

deviation of a curve or orbit from circularity. In the literature DR is called

the discrimination ratio but to avoid confusion with D we call DR the clas-

sification ratio. It is defined in terms of ρ, by Wheeler and Lyday [1984]
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as

DR =

√
1 + ρ

1− ρ
.

Clearly, these four measures are one-to-one functions of each other, since as shown

in Figure 1.4, ρ = 1 − GR2, ρ = D2

1+D2 and ρ =
D2

R−1

D2
R+1

. This means they all convey

the same information. It also means that a test of hypothesis phrased in terms of

one measure can be re-phrased in terms of another. Table 1.1 shows common cutoff

values of the GR, discrimination ratio and classification ratio used to determine if

the measurement system is acceptable. Note that the GR guideline is the strictest

because it requires the measurement variation to be less than one percent of the

total variation or ten percent on the standard deviation scale.
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Figure 1.4: Comparison of Three Common Measures of Measurement System Re-
liability

Any of these metrics are equivalent when comparing the relative variances of

σ2
p and σ2

m. Generally, in the medical industry ρ is preferred whereas in the man-

ufacturing industry using GR% is more common. Some favour using the intraclass

correlation coefficient (1.5) because it can be interpreted as the correlation between

two measurements on the same part. For this thesis, we focus on the intraclass

correlation coefficient, ρ.
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Table 1.1: Cutoffs for Acceptable and Unacceptable Measurement Systems in Terms
of ρ

Mesurement System
acceptable needs improvement not acceptable

GR < 10% .99 > ρ > .91 > 30%
Discrimination Ratio D ≥ 3 .90 > ρ > .80 < 2
Classification Ratio DR ≥ 4 .88 > ρ > .60 < 2

Number of Distinct Categories

Another metric of interest is the number of distinct categories that a measurement

system can readily identify. Here we define several metrics that claim to report this

quantity. The metrics are useful but the notion of the number of distinct categories

is not well defined.

One metric, recommended by Automotive Industry Action Group [2002][pg.

117] is the number of distinct categories (ndc). It is defined as the number of

non-overlapping 97% confidence intervals for the true value of the measured char-

acteristic that will span the expected product variation. The ndc is also referred

to as the number of distinct categories that can be reliably distinguished by the

measurement system. Equation (1.7) shows how to calculate the ndc.

ndc = b1.41
σp
σm
c ≈ b 6.12σp

2× (2.17)× σm
c (1.7)

where bc means to truncate to a whole number. The Automotive Industry Action

Group [2002] suggests ndc should be at least 5 for the measurement system to be

acceptable. The corresponding value of ρ is 0.926.

From Woodall and Borror [2007], ndc can be derived using two facts. Both use

properties of the normal distribution. The denominator of (1.7) is based on the

14



fact that 2× (2.17)σm is the width of a 98.5% confidence interval based on a single

observation. The value 2.17 corresponds to the quantile of the 98.5th percentile of

the standard normal distribution. The numerator of (1.7) uses the fact that for

a normal distribution 99.8% of the process variation is captured by an interval of

width 6.12σp. Then, we round 6.12
2×(2.17)

to the second decimal place to get 1.41.

Woodall and Borror [2007] state that on pg. 113 of Automotive Industry Action

Group [2002], “The number of data categories is often referred to as the discrimina-

tion ratio since it describes how many classifications can be reliably distinguished

given the observed process variation.” A similar statement is made by Wheeler and

Lyday [1984], who state, “The ratio of the major axis to the minor axis defines the

number of distinct product categories which could be established with the measure-

ments while making allowance for measurement error, and this ratio is estimated

by the Discrimination Ratio.”

Wheeler and Lyday [1984] suggest truncating DR to give the number of distinct

categories that a measurement system can readily identify. Woodall and Borror

[2007] and Wheeler and Lyday [1984] showed there is a close relationship between

the ndc (before truncation) and DR. If one uses 1.41 as an approximation to
√

2

then

DR =
√
ndc2 + 1.

Measures of the number of distinct categories represent a summary of the per-

formance of a measurement system. However, this class of metrics is not easy to

understand because the term “readily identify” is not clearly defined. Another

clear disadvantage is that to derive the number of distinct categories, we truncate

a continuous measure of performance with the resulting loss of information.
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1.1.1.4 Metrics based on the Process Mean and Variation, Measure-

ment Variation and the Specification Limits

Another way to assess the performance of a measurement system is by relating

measurement and process variation to the specification limits. Specification limits

denote the interval of true dimensions that are acceptable. These limits are defined

by the producer and/or customer. Due to measurement error, a part may have a

measured value within specifications while its true value is outside the specifications

limits or vice versa. When true part dimensions are close to either the LSL or

USL, it is easy to imagine that some parts could be labeled FAIL (measured value

outside of specifications) when the true dimension is GOOD (true dimension within

specifications).

The quality of a measurement system can be defined by how well it discriminates

between good and bad parts. Problems occur when parts are misclassified. The

missed failures (MF) and false failures (FF) are probabilities that can summarize

these problems. Doganaksoy [2000] prefers the Customer and Producer Risk which

are different probabilities although they are related to the MF and FF. These

probabilities [Burdick et al., 2003, Doganaksoy, 2000, Larsen et al., 1999] involve

the following events for individual parts:

• BAD - the true dimension is outside specification,

• GOOD - the true dimension is within specification,

• FAIL - the measured dimension is outside specifications, and

• PASS - the measured dimension is within specifications.

Two definitions of customer and producer risk are typically considered in the

literature. One is the manufacturing version of sensitivity and specificity called
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the conditional MF & FF, (See Burdick et al. [2003] and Larsen et al. [1999]).

Alternatively, Doganaksoy [2000] uses the joint probabilities of MF & FF to define

customer and producer risk. Two other useful measures not considered by the

literature are the escaped failures and detained quality probabilities. All three

measures of risk are defined in Table 1.2.

Table 1.2: Measures of Customer and Producer Risk

Risk
Consumer Producer

Conditional MF & FF Pr(PASS | BAD) Pr(FAIL | GOOD)

Joint MF & FF Pr(BAD and PASS) Pr(GOOD and FAIL)

Escaped Failures & Pr(BAD | PASS) Pr(GOOD | FAIL)
Detained Quality

The different measures of consumer and producer risk are not one-to-one func-

tions of each other. However, if we include the pass rate, Pr(PASS), to any group

of risks we can calculate the other measures of risk. Often Pr(PASS) is known or

well estimated from production records since it represents the current yield of the

process. Note that Pr(PASS) is a function of both the performance of the process

and the measurement system.

The conditional MF & FF are equivalent to type I and type II errors in hy-

pothesis testing. Doganaksoy [2000] considers the joint probabilities to be more

representative of the process because “the magnitudes of these risks help determine

the (economic) impact of the measurement error and whether or not the measure-

ment system requires a capability upgrade.”

While all three sets of misclassification probabilities are called consumer and
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producer risks, it is the escaped failures and detained quality metrics that the

consumers and producers use to measure performance. The consumer is typically

interested in how many bad parts are being shipped to them. This quantity is

calculated using the probability that a part is bad (out of specifications) given

that it was shipped which is the escaped failures probability. The supplier and the

customer are interested in this probability or risk because this is usually related

to contractual agreements. On the other hand, while the supplier is interested in

the escaped failures they are also curious to know how many good parts are being

scrapped. These parts cost the company since they should be shipped.

One problem with all these measures of risk is that there are no established cutoff

values or acceptable levels. Burdick et al. [2005] suggest comparing the conditional

MF & FF rates to the the misclassification rates that one would get by employing a

chance measurement system. The chance measurement system classifies parts not

by taking measurements, but by instead labeling a part PASS with probability π

and FAIL with probability 1−π, where the probability π is the assumed known value

of the proportion of GOOD parts. The joint MF & FF probabilities for the chance

measurement system are both π (1− π). The conditional MF & FF probabilities are

π and (1− π), respectively and escaped failures and detained quality probabilities

are (1− π) and π, respectively. Note that the chance measurement system depends

on knowing the probability of producing a good part which needs to be estimated

from the process.

Currently, there are no guidelines on how to reduce an unacceptable misclassi-

fication probability. For example, we do not know how changing the process mean

affects these probabilities. The escaped failures and detained quality measures can

be reduced by remeasuring parts that failed or passed. For example, if we want to

reduce the number of bad parts that are being shipped, we can simply remeasure

parts that have passed. Assuming the additional measurements are independent,
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more bad parts will be found. Conversely, if we remeasure the failed parts and

ship ones that pass the second time we will be decreasing the detained quality and

increasing the escaped failures. Another possible solution is to measure a part once

and then examine the probability of a bad part given the measured value. Then

make a decision based on this probability.

To calculate the consumer and producer risks we use the joint probability density

function (pdf) for Y and X from model (1.1). We derive results using the bivariate

normal probability density function (pdf) given by

g (x, y) =
1

2π |Σ|1/2
exp

−1

2

 x− µp

y − µp

Σ−1

 x− µp

y − µp




where Σ is the covariance matrix

Σ =

 σ2
p σ2

p

σ2
p σ2

p + σ2
m

 = σ2
t

 ρ ρ

ρ 1


The marginal pdfs of X and Y are both normal with means µp, µp and variances

σ2
p and σ2

p + σ2
m respectively. The pdf for a normal random variable Z with mean

µ and variance σ2 is

f (z;µ, σ) =
1√
2πσ

exp

(
−(z − µ)2

2σ2

)

To calculate the consumer and producer risks we simply integrate f(z) and

g(x, y) over the appropriate regions.

• Process yield:

Pr(PASS) = Pr (Y ∈ [LSL,USL]) =

∫ USL

LSL

f
(
z;µp,

√
σ2
p + σ2

m

)
dz

19



• True process yield:

Pr(GOOD) = Pr (X ∈ [LSL,USL]) =

∫ USL

LSL

f (z;µp, σp) dz

• Passing a good part

Pr(GOOD and PASS) = Pr (X ∈ [LSL,USL] ∩ Y ∈ [LSL,USL])

=

∫ USL

LSL

∫ USL

LSL

g (x, y) dxdy

• Joint Consumer Risk

Pr(BAD and PASS) = Pr (X 6∈ [LSL,USL] ∩ Y ∈ [LSL,USL])

=

∫ USL

LSL

∫ LSL

−∞
g (x, y) dxdy +

∫ USL

LSL

∫ ∞
USL

g (x, y) dxdy

• Joint Producer Risk

Pr(GOOD and FAIL) = Pr (X ∈ [LSL ∩ USL] , Y 6∈ [LSL,USL])

=

∫ LSL

−∞

∫ USL

LSL

g (x, y) dxdy +

∫ ∞
USL

∫ USL

LSL

g (x, y) dxdy

• Failing a bad part

Pr(BAD and FAIL) = Pr (X 6∈ [LSL,USL] ∩ Y 6∈ [LSL,USL])

=

∫ LSL

−∞

∫ LSL

−∞
g (x, y) dxdy +

∫ LSL

−∞

∫ ∞
USL

g (x, y) dxdy

+

∫ ∞
USL

∫ LSL

−∞
g (x, y) dxdy +

∫ ∞
USL

∫ ∞
USL

g (x, y) dxdy
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• Conditional Consumer Risk

Pr (PASS|BAD) =
Pr (BAD and PASS)

Pr (BAD)

• Conditional Producer Risk

Pr (FAIL|GOOD) =
Pr (GOOD and FAIL)

Pr (GOOD)

• Escaped Failures

Pr (BAD|PASS) =
Pr (BAD and PASS)

Pr (PASS)

• Detained Quality

Pr (GOOD|FAIL) =
Pr (GOOD and FAIL)

Pr (FAIL)

1.1.1.5 Numerical Example

This numerical example relates to the quality of a lamp used to illuminate the

target for an optical scanning device and is taken from Larsen et al. [1999]. In an

industrial process 150,000 lamps are produced per month and 100% inspection is

utilized. An important test parameter for lamp performance is the luminance in

units of candelas per square meter (cd/m2). A measurement assessment study was

conducted. Using the study results, we estimate µ, σ2
p and σ2

t as 35.2, 16.81, and

17.41 respectively. By using the relation σ2
p + σ2

m = σ2
t we estimate σ2

m = 0.60.

The LSL and USL are 30 and 42. All the previously described metrics for the

performance of the measurement system are estimated below.

1. Measurement variability
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• 95% Confidence Interval: 2σmZ1−0.05/2 = 3.063

• Median Uncertainty or Probable Error: 0.67σm = 0.52

• Minimum distance between 2 dimensions to reject when size 0.05 and

power 0.20:
√

2σm |Zβ + Zα| = 0.80

2. Measurement variability to specification limits

• PTR = kσm

USL−LSL with k = 5.15: PTR = 0.33, gauge not capable

3. Metrics based on Measurement and Process Variation

• GRR = σm

σt
= 0.186 ⇒ gauge needs improvement

• Intraclass Correlation Coefficient ρ =
σ2

p

σ2
t

= 0.966

• Discrimination Ratio D = σp

σm
= 5.29 ⇒ gauge acceptable for process

improvement

• Classification Ratio DR =
√

1+ρ
1−ρ = 7.55 ⇒ gauge acceptable

• ndc = b1.41 σp

σm
c = b7.46c = 7 ⇒ gauge acceptable

4. Metrics based on Measurement, Process Variation and Specification Limits

• Conditional Consumer and Producer Risk: 0.1180 & 0.0292.

• Joint Consumer and Producer Risk: 0.0178 & 0.0248.

• Escaped Failure Rate: 0.0211 and Detained Quality Rate: 0.1571

Similarly, a table of the estimated conditional and joint probabilities was formed

and it is replicated in Table 1.3. Also shown are the escaped failure and detained

quality rate measures of risk.

In Larsen et al. [1999] on page 572, they state “the customer can expect to

receive 1.78% nonconforming lamps or 2670 nonconforming lamps per month from
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Table 1.3: Numerical Example of Metrics for Consumer and Producer Risk (given
in terms of %)

the supplier.” Although the stated number of 2670 nonconforming lamps is correct,

the stated probability is false. The customer does not receive all the lamps, they

only receive lamps that have passed inspection. The customer can expect that

2.11% of their lamps are bad which is the probability of a bad part given that it

has been shipped, i.e. Pr (BAD|PASS).

We have included all the metrics of measurement system quality for complete-

ness but for this thesis, we focus on the intraclass correlation coefficient, ρ, given

in (1.5).

1.2 A Measurement System with 100% Inspec-

tion

Many manufacturing processes use 100% inspection to ensure parts meet specifica-

tions. In an inspection system, every part produced is measured at least once. If

the system stores the measured values, we can estimate the current process mean,

µ and standard deviation σt with negligible error. Therefore in this context, the

only unknown parameter is the relative size of σp and σm. Also, because of the high

volume, we have parts available with values spread across the whole distribution.
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One such measurement system is used to inspect journal diameters and several

other characteristics of finished crankshafts in an engine assembly plant. Another

involves the measurement of many functions of a circuit board assembled for use in

a hand-held electronic device. In both of these examples and many others, Qual-

ity Systems (such as ISO/TC 16949 or QS 9000) adopted by the manufacturer

require periodic assessments of the measurement system to ensure that the cur-

rent measurement variability is relatively small compared to the underlying process

variation.

If a manufacturing process does not use 100% inspection, estimates of the pro-

cess mean µ and standard deviation σt might be available from baseline studies.

In a baseline study we measure many parts once. Baseline studies are used for

performance evaluation and Steiner and Mackay [2005] suggest doing a baseline

study as the first stage in a variance reduction project. Note that a baseline study

alone cannot assess the performance of a measurement system. Typically, baseline

studies have relatively large sample sizes, so estimation of the baseline parameters,

µ and σt, is very precise.

1.3 A Measurement System with Operators

In measurement systems, operators are often thought to be a substantial source of

variability. Each operator is assumed to have a different mean effect on measure-

ments so that there are relative biases among the operators. That is, two operators

measuring the same part will obtain different mean values. This is an additional

source of measurement variability. We will use multiple operator terminology, but

the context would be the same, if there are multiple automated gauges with the

same variability.

The most common measurement assessment plan for a system which includes
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operators is called a Gauge Reproducibility and Repeatability (R&R) as described

in Automotive Industry Action Group [2002]. A Gauge R&R labels the two sources

of measurement variability as repeatability and reproducibility. Repeatability is

the variation associated with one operator repeatedly measuring the same part.

Reproducibility is the variation associated with different operators when measuring

the same part. The gauge R&R plan has each operator measure each part (typically

10 parts) 2 or 3 times.

The effect from operators can be fixed or random depending on the situation.

Assuming fixed effects means there are a finite (usually a small) number of opera-

tors. A random effects model characterizes the effects from operators (when chosen

at random) as being from some distribution (usually assumed to be normal). If

operator effects are assumed to be random, the model for the standard plan (SP)

will be a two-way random effects model which is the common model assumed by

Burdick et al. [2005], Montgomery and Runger [1993a] and Wheeler and Lyday

[1984]. For the remainder of this thesis we treat the effect from operators as fixed.

In section 8.2.3, we discuss treating the effects from operators as random.

We recommend assuming the effects from operators are fixed because in practice,

only a few operators are trained to measure parts and/or actually measure parts in

regular production. If a site has multiple gauges, again a fixed effect model should

be assumed as there are rarely large numbers of gauges.

We extend model (1.1) to include operators, using a mixed effect model given

by

Y = µj +X + E (1.8)

where X is a random effect of the true part dimensions, µj is the mean effect from

operator j, j = 1, . . . ,m and E is the random effect from the repeatability or

a single operator repeatedly measuring the same part. X and E are assumed to
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be independent normals with zero means and standard deviations σp, σg, respec-

tively. The mean of the true part dimensions is included in the mean effect for each

operator.

The following characterizes the total variation when assuming fixed effects for

operators when each operator is equally likely to measure a part. We define

µ = (µ1, . . . , µm)t, (1.9)

µ =
1

m

m∑
j=1

µj (1.10)

σ2
pg = σ2

p + σ2
g (1.11)

σ2
m = σ2

o + σ2
g (1.12)

and σ2
t = σ2

o + σ2
p + σ2

g (1.13)

where σ2
o =

1

m

m∑
j=1

(µj − µ)2 , (1.14)

m is the number of operators and µj is the mean for jth operator. The parameter

σ2
pg is the variation seen in measurements made by any single operator on a sample

of parts from the process. The parameter σ2
t represents the total variation seen

in the process if each operator measured the same proportion of parts in regular

production. The parameter σ2
o captures the variation due to differences among

the m operator means (i.e. the effects of relative bias), but is not a variance in

the usual sense. Finally, the parameter σ2
m represents the total variation seen in

the measurement of any particular part if each operator is used in the system

with the same intensity. If each operator has the same mean, then σ0 = 0 and

we can interpret σm and σt as the standard deviations defined in model (1.1).

Using manufacturing jargon, σm represents the overall measurement variability, σg

the repeatability and σo the reproducibility. We assume σg is the same for each

operator and part.
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1.3.1 Characterizing Measurement System Quality

In the mixed effects model, we can partition the variance into three components;

parts, reproducibility, and repeatability. Quantities of interest for these studies are

split into two groups.

1. Metrics that use the total variation are

• the intraclass correlation coefficient, ie. the process variation divided by

the total variation

η =
σ2
p

σ2
p + σ2

o + σ2
g

=
σ2
p

σ2
t

, (1.15)

• the gauge repeatability and reproducibility, i.e. the measurement stan-

dard deviation divided by the total standard deviation.

GRR =
σm
σt

=

√
σ2
m

σ2
t

=

√
σ2
o + σ2

g

σ2
t

, (1.16)

2. Metrics that compare the components of the measurement variation are

• proportion of the variation due to operator bias

λ =
σ2
o

σ2
g + σ2

o

(1.17)

• reproducibility over the repeatability

R/R =
σ2
g

σ2
o

(1.18)

We have shown that the intraclass correlation coefficient and the gauge repeatability

and reproducibility are equivalent metrics of measurement system quality. When

trying to improve a measurement system, metrics like the reproducibility over the

repeatability and the proportion of the variation due to operator bias can identify
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which measurement system component contributes the majority of the variation.

In this thesis, we focus on the estimation of the two quantities η and λ. We will

treat η as the primary parameter of interest and λ as of secondary interest.

1.4 Goal and Outline

The goal of this thesis is to show that new measurement assessment plans, using

the concept of leveraging, are more efficient than the traditional measurement as-

sessment plans, called the standard plan (SP), in the three measurement system

contexts described in Sections 1.1, 1.2 and 1.3. We also provide detailed recom-

mendations on the design of these new plans and also indicate how to analyse the

data that are collected.

We compare the estimators derived from the leveraged plan (LP) and the stan-

dard plan SP using mean squared error (MSE) which is the variance plus the bias

squared. When the bias is not a significant contribution to the MSE, we will use

the standard deviation. Additionally, in some contexts we contrast the two classes

of plans using the hypothesis test

H0 : ρ ≤ ρ0 versus HA : ρ > ρ0, (1.19)

and/or the width of confidence intervals while holding the coverage probability

fixed.

To achieve our goal we begin with Chapter 2, where we describe the plan, design

and analysis for the standard approach for each context. In Chapter 3, we introduce

leveraging and give general guidelines for its implementation. Then, in the following

three chapters we describe the new LP designs and analyses for each context and

compare them to the SPs. Next, we present an application for leveraging in the

28



assessment of inspection systems with production data. Finally we suggest some

other problems where we may exploit leveraging.
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Chapter 2

Standard Measurement

Assessment Plan

This chapter introduces the standard plan (SP) design and analysis used to estimate

the parameters of interest in the three contexts of interest as described in chapter

1. That is, we present the details on how to perform the study and analyze the data

obtained from the study. We focus on assessing the parameter ρ in the first and

second context and η in the third context. To improve estimation for these ratios,

we show how to incorporate data from another study called a baseline investigation.

Note throughout this thesis, we use a circumflex (ˆ) to overscore a parameter

to denote the estimate (a number) and an overscore tilde ( ˜ ) to denote the cor-

responding estimator (a random variable). We feel it is important to distinguish

between an estimate and estimator because an estimate is single number and the

estimator has distributional properties.
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2.1 A Measurement System

The measurement system has two components of variation, the true part values

and the measurement error. Using the standard measurement system study, we

can estimate all the parameters (σp, σm and µ). In this study, we choose k parts

randomly from the process and then repeatedly measure each part n times (Donner

and Eliasziw [1987], and Burdick et al. [2003]). A typical design for the standard

plan is when k = 10 and n = 6 [Automotive Industry Action Group, 2002]. A

commonly adopted model for the data from this standard plan is the one-way

random effects model

Yij = Xi + Eij (2.1)

where i = 1, 2, . . . , k, j = 1, 2, . . . , n, Xi is a random variable representing the

possible true values for the dimension of part i, and Eij is a random variable

representing the measurement error, n is the number of repeated measurements on

each part, and k is the number of parts. We assume that the part effects {Xi}

are independent and identically distributed normal random variables with mean

µp and variance σ2
p, the measurements errors {Eij} are independent and identically

distributed normal random variables with mean zero and variance σ2
m, and the {Xi}

and {Eij} are mutually independent. The variance of Yij, called the total variation,

is σ2
t = σ2

p +σ2
m. Also we assume that σp, σm and µ do not depend on the true part

dimension and do not change over time; that is, the measurement system is linear

and stable. Note that model (2.1) is equivalent to model (1.1).

Burdick et al. [2003] and Automotive Industry Action Group [2002] call this type

of study a gauge repeatability and reproducibility, although there are no operators

in this context. The acronym GR&R is widely used to describe this study plan.

Another name used by Wheeler and Lyday [1984] for these studies is evaluating

the measurement process (EMP) study. In this thesis, we call GR&R the standard
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plan (SP).

2.1.1 Estimation

Traditionally, the Range method (Automotive Industry Action Group [2002], Bur-

dick et al. [2003]) is used for estimation of σp and σm. However, an analysis of

variance (ANOVA) and/or maximum likelihood (ML) are more efficient, can eas-

ily be carried out with easily available software and can be adapted to analyze

more complex studies. Table 2.1 is from Donner and Eliasziw [1987] and shows the

ANOVA table for the SP.

Table 2.1: Analysis of Variance for Gauge R&R Study

Analysis of variance

Degrees of Sum of
Source of variation freedom squares Mean square F

Among parts k − 1 SSA MSA = SSA/(k − 1) MSA/MSW
Within parts k(n− 1) SSW MSW = SSW/[k(n− 1)]

SSA =
∑k

i=1 n (yi. − y..)
2 SSW =

∑k
i=1

∑n
j=1 (yij − yi.)

2

yi. =
∑n

j=1 yij/n y.. =
∑k

i=1

∑n
j=1 yij/nk

From Burdick et al. [2003], to estimate ρ, we use

ρ̂ =
MSA−MSW

MSA− (n− 1)MSW
(2.2)

which is the sample intraclass correlation coefficient. MSA is the mean squared

error across parts and MSW is the mean squared error within parts. See Table 2.1
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for details on how to calculate these quantities. An estimate of ρ larger than 1/2

suggests the part-to-part variation is greater than the measurement variation.

The test of hypothesis (1.19) can be used to determine whether the desired level

of precision, ρ0, is achieved by the measurement system. The size of a test, α, is

defined as the probability of rejecting the null hypotheses H0 when the true value

of ρ is ρ0. The power of a test is the probability of rejecting the null hypotheses

H0 when the true value of ρ is ρ1 6= ρ0.

Donner and Eliasziw [1987] carry out the test of hypothesis in (1.19), by com-

paring the F value obtained from Table 2.1 to the quantity C0Fα(v1, v2), where

C0 = 1 + [nρ0/(1− ρ0)], and Fα(v1, v2) is the value of the F distribution with v1, v2

degrees of freedom at the α level of significance, v1 = k − 1 and v2 = k(n− 1). To

calculate the power of (1.19) when ρ = ρ1, we use

β = 1− P (F ≤ C Fα; v1, v2) (2.3)

where

C =
(1 + n ρ0

1−ρ0 )

(1 + n ρ1
1−ρ1 )

.

Details on how to derive this formula can be found in Donner and Eliasziw [1987].

Donner and Eliasziw [1987] use (2.3) to determine appropriate sample size re-

quirements for the test of hypothesis in (1.19). They accomplish this by rearranging

(2.3), expressing ρ1 as a function of n and k when testing (1.19) with α = 0.05 and

β = 0.80. They plot contours of ρ1 as a function of n and k.

Burdick et al. [2003] and Burdick et al. [2005] derive confidence intervals for the

SP using modified large sample methods and generalized intervals.

When using ML to analyze data, we are required to specify the distribution of

the data. Assuming (2.1) and normality, n measurements on a randomly selected
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part with mean µ have the joint distribution given in (2.4).



Yi,1

Yi,2
...

Yi,n


v N


µ



1

1

...

1


, Σn = σ2

t



1 ρ . . . ρ

ρ 1

...
. . .

...

ρ . . . 1




(2.4)

Observations from the k different parts are independent of each other. Thus,

combining the likelihoods across k parts, we obtain the log-likelihood

ls1(µ, σ2
t , ρ) = −k

2

{
n log σ2

t + (n− 1) log(1− ρ) + log [ρ(n− 1) + 1]
}

−{(1 + (n− 1)ρ)SSW + (1− ρ) (SSA+ nk(y.. − µ)2)}
2σ2

t (1− ρ) [ρ(n− 1) + 1]
(2.5)

where SSW , SSA and y.. are defined in Table 2.1. The maximum likelihood esti-

mates for µ, σ2
t and ρ are

µ̂ = y..,

σ̂2
t =

SSW + SSA

nk
, and

ρ̂s =
MSA(k − 1)−MSWk

MSWk(n− 1) +MSA(k − 1)

=
MSA (k−1)

k
−MSW

MSW (n− 1) +MSA (k−1)
k

≈ MSA−MSW

MSW (n− 1) +MSA

Thus for large k, ML and ANOVA, shown in (2.2), yield the same estimates for ρ.

If we use ML, we can obtain the asymptotic variance-covariance matrix of the

estimators using the Fisher information. The Fisher information is the negative of

the expectation of the second derivative of the log-likelihood with respect to the
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parameters. For the SP, the Fisher information, Js1 (µ, σ2
t , ρ) is


nk

σ2
t [1+ρ(n−1)]

0 0

0 kn
2σ4

t
− nkρ(n−1)

2σ2
t (1−ρ)[1+ρ(n−1)]

0 − nkρ(n−1)

2σ2
t (1−ρ)[1+ρ(n−1)]

1
2

nk(n−1)[ρ2(n−1)+1]
(1−ρ)2[1+ρ(n−1)]2

 (2.6)

The asymptotic variances of the maximum likelihood estimators (MLEs) are the

diagonal elements of the inverse of the Fisher information matrix. For the MLE of

ρ, this is

V ar (ρ̃s) =
2(1− ρ)2 [1 + ρ(n− 1)]2

kn(n− 1)
. (2.7)

Now, suppose we are planning an SP and are given the total number of mea-

surements, N and a hypothesized value of ρ. In this situation we have choice on

how to design the SP; that is we get to choose n and k. We call a design optimal

if it yields a MLE with the smallest variance. To minimize (2.7) with respect to n

and k, we set n = N/k and then optimize. The plan with the lowest asymptotic

variance has

k =
ρ

1 + ρ
N . (2.8)

Inserting these optimal k and n into the asymptotic variance (2.7), we have for the

optimal plan

V ar (ρ̃) =
4(1− ρ)2(1 + ρ)4

ρN3
.

Note however that this optimal variance may not be achievable because the design

parameters k and n must be positive integers.
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2.2 A Measurement System with 100% Inspec-

tion

We examine two methods to incorporate baseline information into measurement

system assessments. Both methods assume σt and µ are known or estimated with

neglible error from the available inspection data.

2.2.1 Analysis

We use ANOVA and ML for estimation when the baseline parameters are known.

Practitioners often do not recognize that there is substantial value in making use

of the known process characteristics µ and σt. In the next section, we demonstrate

the considerable value of this information.

In the standard plan, as described in Section 2.1, we estimated both σp and

σm from the measurement investigation. To incorporate the known parameters µ

and σt into the ANOVA method, we utilize the equations ρ =
σ2

p

σ2
p+σ2

m
and σ2

t =

σ2
p + σ2

m. Since σt is now known we only need to estimate σm in the measurement

investigation. By estimating σ2
m using MSW from Table 2.1 and rearranging the

equations, we obtain the estimate

ρ̂a = 1−
∑k

i=1

∑n
j=1

(
yij − yi.

)2

k(n− 1)σ2
t

= 1− MSW

σ2
t

. (2.9)

The corresponding estimator denoted ρ̃a, is unbiased and has variance

2(1− ρ)2

k(n− 1)
. (2.10)

A benefit of this estimator is that it does not depend on how the parts were se-

lected. This means the parts selected for the measurement study do not have to be
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representative of the process.

Since the error terms {Eij} in model (2.1) are assumed to be normally dis-

tributed with mean zero and variance σ2
m, the statistic

k(n− 1)MSW

σ2
t (1− ρ)

= W ∼ χ2
k(n−1). (2.11)

The critical region for testing if ρ is less than or equal to ρ0 is

MSW ≥ (1− ρ0)σ2
tχ

2
α,k(n−1).

where χ2
α,k(n−1) is the α quantile from a chi-square distribution with k(n−1) degrees

of freedom. The critical region, R, is the region such that if ρ̂ ∈ R then the null

hypothesis is rejected. The size of a test is defined as P (ρ̃a ∈ R) = α when ρ = ρ0.

To find the critical region of (1.19) with size α we need to determine c in

P (ρ̃a > c) = α

P

(
W ≤ (1− c)k(n− 1)

(1− ρ0)

)
= α

Solving for c we have c = 1− 1−ρ0
k(n−1)

χ2
α,k(n−1)

The power of this test is the probability the estimate is in the critical region

when the parameter ρ is different than the null value of ρ0. The power when ρ = ρ1

is

P

(
ρ̃a > 1− 1− ρ0

k(n− 1)
χ2
k(n−1)

)
= P

(
1− 1− ρ1

k(n− 1)
W > 1− 1− ρ0

k(n− 1)
χ2
k(n−1)

)
= P

(
W ≤ 1− ρ0

1− ρ1

χ2
α,k(n−1)

)
(2.12)
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Above, we modified the ANOVA-based analysis of the SP to include known

values of µ and σ2
t . The estimator ρ̃a does not depend on how we sampled the parts

in measurement system study. However if we assume the parts were randomly

sampled, then we can use ML to estimate the parameters. To apply ML we need

to determine the distribution of the repeated measurements.

Assuming (2.1) and normality, n measurements on the same randomly selected

part have the joint distribution given in (2.4). Observations from the k different

parts are independent of each other. Thus, combining the likelihoods across k parts,

we obtain the log-likelihood

ls2(ρ) = −k
2

{
n log σ2

t + (n− 1) log(1− ρ) + log [ρ(n− 1) + 1]
}

− 1

2σ2
t (1− ρ) [ρ(n− 1) + 1]

(
[ρ(n− 1) + 1]SSW ∗ − ρn2SSA∗

)
(2.13)

where SSW ∗ =
∑k

i=1

∑n
j=1 (yij − µ)2 and SSA∗ =

∑k
i=1 (yi. − µ)2. The “∗” signi-

fies that we are using the known parameter µ and not yi. and y.. as in SSW and

SSA.

There is no closed form solution for the maximum likelihood estimate of ρ.

We can however examine the asymptotic variance of the estimator with the Fisher

information of the parameter. The Fisher information is

Js2(ρ) = E

[
− ∂2

∂ρ2
l1 (ρ)

]
=

1

s2

nk(n− 1)(ρ2(n− 1) + 1)

(1− ρ)2(1 + nρ− ρ)2
. (2.14)

The asymptotic variance of the MLE is the inverse of the Fisher information. This

means a larger value for the Fisher information is better.

Maximum likelihood large sample theory provides three ways to test the hy-

pothesis in (1.19), the likelihood ratio test, the score test and the Wald test. The

score test is based on the score function (2.15) which is the first derivative of the
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log-likelihood function.

Ss2(ρ;Y ) =
∂

∂ρ
ls2 (ρ) (2.15)

The score test has critical region

R = { y; Ss2(ρ0 : y) [Js2(ρ0)]−1/2 > Z1−α }

where α is the size of the test and Z1−α is the 1−α quantile from the standard normal

distribution. The critical region is determined by the asymptotic distribution of the

score function in maximum likelihood theory. That is, as n→∞

Ss2(ρ0;Y ) [Js2(ρ0)]−1/2 →D Z ∼ N(0, 1). (2.16)

To carry out the score test, we calculate Ss2(ρ0;Y ) [Js2(ρ0)]−1/2 using the data and

reject the null hypothesis if the observed value is greater than Z1−α.

To apply the Wald test, we suppose that ρ̃ is the MLE of ρ. Then, we have

Ws2(ρ0;Y ) = (ρ̃− ρ0) [Js2(ρ0)]1/2 →D Z ∼ N(0, 1).

To perform the Wald test, we calculate the maximum likelihood estimate, calcu-

late Ŵs2(ρ0;Y ) and then reject the hypothesis ρ ≤ ρ0, if the calculated value of

Ŵs2(ρ0;Y ) is greater than Z1−α.

The approximate power of the Wald test when ρ = ρ1 is

P
{
Z >

(
Z1−α [Js2(ρ0)]−1/2 + ρ0 − ρ1

)
[Js2(ρ1)]1/2

}
. (2.17)

We use the Wald test when comparing maximum likelihood estimation to the other

methods.
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2.2.2 The Value of the Baseline Information

We use statistical power to compare the three methods of testing the hypothesis

(1.19): maximum likelihood, standard ANOVA and ANOVA incorporating baseline

information. Figure 2.1 shows power curves for testing (1.19), when the plans

consist of ten parts and six repeated measurements on each part, the default choice

in Gauge R&R studies [see Automotive Industry Action Group, 2002].

When comparing power curves from different tests, we ensure they all have the

same size α = 0.05, which is the power when ρ = ρ0.

The formulas (2.3), (2.12) and (2.17) were used to create Figure 2.1. These

formulas determine the power for each of the following analyzes: ANOVA, ANOVA

incorporating baseline information and MLE, respectively.
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Figure 2.1: Power Curves for Testing (1.19) when ρ0 = 0.80 and ρ0 = 0.91,

Figure 2.1 indicates that Maximum Likelihood and ANOVA with baseline infor-

mation are significantly more powerful than the standard ANOVA analysis when

ρ0 is 0.80 or 0.91. Clearly, if µ and σ2
t are known, this information should be used

in these situations. The values of ρ0 = 0.80 and 0.91 are important because they

correspond to cutoff values for unacceptable measurement systems as suggested by

the GRR and Discrimination Ratio in Table 1.1.
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Under the assumption that the k parts are sampled randomly from the process,

ML should be the most efficient method of estimation. However, Figure 2.1 shows

that ANOVA with baseline information has a higher power curve than the MLE.

This likely happened only because the Wald test used in Figure 2.1 is based on

the asymptotic distribution of the MLE. For large sample sizes, the order would be

reversed. We verified, using simulation that for ρ ≥ 0.80 and finite sample sizes,

maximum likelihood and ANOVA with baseline information are virtually equivalent

in terms of power. We believe these two estimators are similar when ρ is close to

one because most of the information about ρ is contained in MSW. We can infer

this because the variances of MSW and MSA are proportional to (1 − ρ)2 and ρ2

respectively.

In summary, we recommend the analysis that estimates ρ using ANOVA with

baseline information. The approach has a closed form estimate for ρ and performs

as well as Maximum Likelihood when ρ is larger than 0.80, which are the typical

values of interest. In addition, the method does not require the parts selected for

the measurement system study to be representative of the process.

2.3 A Measurement System with Operators

The standard measurement assessment plan (SP) in this context is to sample k parts

selected at random from the process and then have each of the m operators measure

each part n times for a total of N = kmn measurements. The plan commonly uses

two or three operators (m = 2, 3), each of whom measure the same k = 10 parts

two or three (n = 2, 3) times for a total of 40 to 90 measurements [See Automotive

Industry Action Group, 2002, Burdick et al., 2003]. .
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The data from this SP is described using a mixed effect model given by

Yijl = µj +Xi + Eijl (2.18)

where i = 1, . . . , k, j = 1, . . . ,m, l = 1, . . . , n, Xi is a random effect of the true part

dimensions, µj is the mean effect from operator j, and Eijk is the random effect

from the repeatability or a single operator repeatedly measuring the same part.

X and E are assumed to be independent normals with zero means and standard

deviations σp, σg, respectively. The mean of the true part dimensions is included

into the mean effect for each operator.

2.3.1 Analysis

The analysis for the (SP) in this context is based on the ANOVA which can found

in Burdick et al. [2005]. The ANOVA is reproduced in Table 2.2.

Table 2.2: ANOVA for Fixed Effects Model (2.18)

Source of Degrees of Mean Expected
variation freedom square mean square
Parts (P) k − 1 S2

P θP = σ2
g +mnσ2

p

Operators (O) m− 1 S2
O θO = σ2

g + kn
(
mσ2

O

m−1

)
Replicates kmn− k −m+ 1 S2

E θO = σ2
g

The statistics in Table 2.2 are defined in Table 2.3. The ANOVA estimators for

each parameter are defined in Table 2.4.

Burdick et al. [2005] focus on confidence intervals for parameters. We con-

sider standard errors which are directly related to the length of the approximate

confidence intervals.

To apply maximum likelihood, we form the likelihood using the parameter-
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Table 2.3: Statistics for Standard Plan with Fixed Effects

Statistic Definition

S2
P

mn
P

i(Y i∗∗−Y ∗∗∗)2
k−1

S2
O

kn
P

j(Y ∗j∗−Y ∗∗∗)2

m−1

S2
E

kn
P

i

P
j

P
l(Yijl−Y ij∗)2

km(n−1)

Y i∗∗

P
j

P
l Yijl

mn

Y ∗j∗
P

i

P
l Yijl

kn

Y ij∗

P
l Yijl

n

Y ∗∗∗

P
i

P
j

P
l Yijl

kmn

Table 2.4: Estimators for Standard Plan with Fixed Effects

Parameter Estimator

µ Y ∗∗∗
µj Y ∗j∗

σ2
p σ̃p

2 =
S2

P−S
2
E

mn

σ2
g σ̃g

2 = S2
E

σ2
o σ̃o

2 = (S2
O − S2

E) 1
kn

m−1
m

σ2
t σ̃2

p + σ̃2
o + σ̃2

g

σ2
m σ̃2

o + σ̃2
g

η σ̃2
p/σ̃

2
t

λ σ̃2
g/σ̃

2
m
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ization
{
µ = (µ1, . . . , µm), σ2

pg = σ2
p + σ2

g , ρ =
σ2

p

σ2
p+σ2

g

}
because it simplifies the

likelihood. Note, µ is defined in (1.9) and represents the vector of operator means.

The maximum likelihood estimates are found by maximizing the likelihood,

ls3(µ, σ2
pg, ρ) = −1

2
k

[
nm log(σ2

pg) + (nm− 1) log(1− ρ) + log(1 + (nm− 1)ρ)

]
−1

2

(1 + (nm− 1)ρ)SSW ′ − ρ(nm)2SSA′

σ2
pg(1− ρ)(1 + (nm− 1)ρ)

(2.19)

where SSW ′ =
k∑
i=1

m∑
j=1

n∑
k=1

(yijk − µj)2

SSA′ =
k∑
i=1

(yi.. − µ)2 (2.20)

and yi.. =
m∑
j=1

n∑
k=1

yijk/mn

Now to get the MLE’s for η and λ, we apply the appropriate transformations, given

by

η =
ρσ2

pg

σ2
o + σ2

pg

and λ =
σ2
o

σ2
o + (1− ρ)σ2

pg

(2.21)

where σ2
o is 1

m

∑m
j=1 (µj − µ)2 and µ = 1

m

∑m
j=1 µj.

The Fisher Information for the MLEs is

Js3
(
µ, σ2

pg, ρ
)

=

kn(1−ρ+ρnm−ρn)
σ2

pg(1−ρ)(1+ρ(nm−1))
. . . − ρn2k

σ2
pg(1−ρ)(1+ρ(nm−1))

0 0

. . .
...

...
...

kn(1−ρ+ρnm−ρn)
σ2

pg(1−ρ)(1+ρ(nm−1))
0 0

knm
2σ2

pg

−kmn(nm−1)ρ
2σ2

pg(1−ρ)(1+ρnm−ρ)

k(nm−1)nm(ρ2(nm−1)+1)
2(1−ρ)2(1+ρ(nm−1))2


.

We have the Fisher information for
(
µ, σ2

pg, ρ
)

but we want the Fisher informa-

tion for (µ, λ, η). Fortunately, the Fisher information for (µ, λ, η) can be written as
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the matrix multiplication of Js3
(
µ1, . . . , µm, σ

2
pg, ρ

)
and a matrix

D =


Im − 2

m
λη+1−λ
λ(η−1)

(µ− µ1m) 0m

0tm − σ2
o

λ2(1−η)
η(1−η)

(λη+1−λ)2

0tm
σ2

o

λ(1−η)2
1−λ

(λη+1−λ)2

 (2.22)

where µ and σ2
o are defined in (1.10) and (1.14), respectively. The matrix D is

formed by column vectors which are partial derivatives of the vector function

(µ, σ2
pg, ρ) = h(µ, λ, η) = h(µ1, . . . , µm,

σ2
o(λη + 1− λ)

λ(1− η)
,

η

(λη + 1− λ)
) (2.23)

with respect to (µ, λ, η). For example, the first column of D is the gradient vector

∂h(µ,λ,η)

∂µ1
. Note, the vector function h is mapping from (µ, λ, η) to

(
µ, σ2

pg, ρ
)

and

that σ2
o is a function of (µ1, µ2, . . . , µm).

Then, the Fisher information for (µ, λ, η) is

Js3
(
µ, λ, η

)
= DJs3

(
µ1, . . . , µm, σ

2
pg, ρ

)
Dt. (2.24)

Finally, to obtain asymptotic variance-covariance matrix for (µ, λ, η) we take the in-

verse of Js3
(
µ, λ, η

)
. We use these results when we compare the SP to the proposed

leveraged plan in Chapter 6.
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Chapter 3

Leveraged Plan and Why it Works

In the first context, a leveraged plan is conducted in two stages: In Stage 1, we

sample b parts at random from the process and measure each part once to obtain

a baseline. In Stage 2, from the baseline sample, we select k extreme parts using

the observed measured values. Then the k selected parts are repeatedly measured

n times each.

We use the term leveraging because of the re-use of units with extreme values.

In short, leveraging is a method of non-random sampling where we select extreme

units using a measured response.

In a different context, the term leverage is sometimes used by the proponents

of the problem solving system initially proposed by Dorian Shainin. Units with

relatively large and small values of the response are compared to identify the major

causes of the variation. See Steiner et al. [2008] for a more complete description.

However, there is no theoretical discussion in the literature regarding leveraging

methodology or its application to measurement system assessment. In this chapter,

we provide motivation for why leveraging is valuable.
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3.1 Leveraging and Regression

The measurement problem can be translated to a regression context if we let the

covariate x be the first measurement on a part and the response y be the second

measurement. The slope of the regression line is the correlation ρ, defined in (1.5),

because each measurement has the same variability.

To mathematically demonstrate that a measurement system assessment can be

translated into a regression context, we use the properties of the bivariate normal

distribution. Using model (1.1) the distribution of two measurements on the same

part Y1, Y2 is  Y1

Y2

 v N

µ
 1

1

 , Σ = σ2
t

 1 ρ

ρ 1




and then by conditioning on Y1 we obtain

Y2| (Y1 = y1) v N
(
µ+ ρ (y1 − µ) , σ2

t (1 + ρ) (1− ρ)
)
.

Since, Y2 depends on ρ linearly through the mean we can use regression to estimate

this parameter.

Suppose that µ and σt are known and we are interested in estimating ρ using the

slope of a regression line between the 1st measurement and the 2st measurement.

In addition suppose we have already measured 100 different parts once but now we

can only afford to remeasure 10 parts. We consider two methods of selecting the

10 parts;

• select 10 parts at random or

• choose the 10 parts associated with the five smallest and five largest initial

measurements.
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Figure 3.1: Left panel; 2 measurements on 10 parts chosen at random. Right panel;
10 parts the most extreme initial measurements chosen non-randomly.

These two sampling methods were simulated and the measured values are shown

in Figure 3.1. It is known that the second sampling method provides an estimator

with a smaller standard error because we chose extreme initial measurements or

x values [Montgomery et al., 2001]. To minimize the standard error of the regres-

sion estimator for β we would remeasure parts that had the most extreme initial

measurements relative to their average.

This example illustrates that if given the opportunity, we should sample parts

non-randomly instead of randomly. But what if we do not have 100 parts already

measured? Suppose instead we had the resources for 2N measurements and as-

suming 1st and 2nd measurements cost the same, then we consider two sampling

plans

Plan 1. randomly sample and measure N parts twice (yi1, yi2, i = 1, . . . , N),

Plan 2. randomly sample b parts and measure each part once (yi1, i = 1, . . . , b).

Then from those b parts, non-randomly sample, by choosing k parts with
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extreme measurements and remeasure the selected parts. Here b and k are

chosen such that b ≥ k and b+ k = 2N . We specify the k selected parts with

the set S which is a subset of {1, . . . , b}. The additional data is (yi2, i ∈ S).

A simple linear regression model is

Y = βX + E

where X ∼ N(0, σ2
x) and E ∼ N(0, σ2

e). In general, if we have m observations of

(yi, xi) and estimate β using least squares regression, the conditional variance for

the estimator β̃ is

Var
(
β̃ | xi, i ∈ S

)
=

σ2
e∑

i∈S (xi − x)2 .

Noting that the 1st measurements are the covariate x in a regression context, both

sampling plans have the above conditional variance with σ2
e = σ2

t (1 + ρ)(1− ρ) and

σ2
x = σ2

t .

When we consider the first sampling plan, the unconditional variance is

Var
(
β̃1

)
= σ2

eE

[
1∑N

i=1

(
Yi1 − Y .1

)2

]
=
σ2
e

σ2
x

1

N − 2

because the parts where randomly sampled and measured twice. For the second

sampling plan the unconditional variance is more complicated because we chose

parts with the most extreme 1st measurements. We have

Var
(
β̃2

)
= σ2

eE

[
1∑

i∈S
(
Yi1 − Y i1

)2

]
=
σ2
e

σ2
x

E

[
σ2
x∑

i∈S
(
Yi1 − Y i1

)2

]

where Y i1 =
∑

i∈S Yi1/k is the average of the 1st measurements in S.

If we fix 2N = 100 and set k = 100− b then Var
(
β̃2

)
depends only on b. Note,

b is bounded between N and 2N and when b = N then Var
(
β̃2

)
= Var

(
β̃1

)
. The
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ratio, Var
(
β̃1

)
/Var

(
β̃2

)
, is shown as a function of b in the left panel of Figure

3.2. The right panel shows a contour plot of this ratio while varying b and k and

setting N = (b+k)/2 in Var
(
β̃1

)
to ensure both plans have the same total number

of measurements. For example at b = 100 and k = 50, the Var
(
β̃1

)
is calculated

with N = 75. Note k ≤ b because we cannot select more than b parts. Figure

3.2 shows that when b
b+k
≈ 0.70, the second sampling plan yields estimators with

smaller standard errors.
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Figure 3.2: The ratio Var
(
β̃1

)
/Var

(
β̃2

)
, when both plans have the same sample

size.

In summary, if we sample parts with extreme first measurements (i.e. use lever-

aging) rather than sampling randomly, we can reduce the standard error for the

regression estimator of ρ.
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3.2 Known True Value Versus an Extreme Initial

Measurement

When we submitted our first paper on Leveraging, we got a quick response from the

Associate Editor. It read: “On its face, the proposed method [leveraging] cannot

work as well as claimed. Two extreme cases are (1) where the true value for each of

the parts is known, and (2) where no prior information about these true values is

available. The proposed method is one in which some prior information is available.

In assessing the measurement variance, the difference between the extreme cases

is one degree of freedom for each of the parts. Thus, the proposed method cannot

save more than one measurement per part. ”

To refute the Associate Editor’s erroneous comments, we consider estimating ρ

with a single measurement. We assume model (2.1) holds and that we know σt and

µ. Now we propose two options. We can choose

1. a part with known true dimension x or

2. a part with initial measurement y.

If we pick option 1, the distribution of the single measurement M1 on a part

with known value x is

M1| (X = x) v N
(
x, σ2

t (1− ρ)
)
.

Here, a natural estimator for ρ is

ρ̃1 =

[
1− 1

σ2
t

(M1 − µ)2

]
∼ (1− ρ) χ2

1.

If we pick option 2, the distribution of the second measurement M2 on a part
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that has an initial measurement, y, is

M2| (Y = y) v N
(
µ+ ρ (y − µ) , σ2

t (1 + ρ) (1− ρ)
)
.

Since, σ2
t and µ are known we can standardize the initial measurement y with

y = σtz + µ. A regression estimator for the second option is

ρ̃2 =
(M2 − µ)

(y − µ)
∼ N

(
ρ,

(1 + ρ) (1− ρ)

z2

)

(1 − ρ2)
2z2(1 − ρ)2

ρ

z 
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Figure 3.3: Plots of Var(ρ̃2)/Var(ρ̃1) =[(1− ρ2)/z2] / [2(1− ρ)2], the left panel is a
contour plot by z and ρ and the right panel displays the quantity when z = 2.

We display the ratio of variances V ar(ρ̃2)/V ar(ρ̃1) in Figure 3.3. The left panel

is a contour plot of the ratio by z and ρ. In this plot, a value less than one means that

having a part with a standardized initial measurement, z, is better than knowing

the true dimension x. This demonstrates that the AE’s intuition was not true for

all ρ. The value 0.25 means that the variance of option 2 is four times smaller than

option 1. The right panel displays the contour line along z = 2. When ρ ≥ 0.8,

option 1 is more efficient, but in the next chapter, we will show that by making

repeated measurements on the same part, leveraging (i.e. option 2) also works well
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for large values of ρ.

Leveraging, in the measurement system context, is defined as purposely selecting

parts with extreme initial measurement to repeatably measure. In this demonstra-

tion of the value of leveraging we have assumed µ and σt were known. In cases

where we do not know these parameters, the leveraged plan will include a baseline.

A baseline involves randomly sampling parts and measuring them once. This will

allow us to estimate the overall parameters σ2
t and µ. We present a leveraged plan

in the following chapters for each of the contexts of interest. These plans, with

increased efficiency over the plans currently in use, are all new to the literature.
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Chapter 4

Leveraged Plan for a

Measurement System

4.1 Context

In this chapter we compare the standard plan (SP) (as described in Section 2.1) to

a leveraged plan (LP) when the parameters µ, σ2
t and ρ are unknown. This context

occurs when assessing a new measurement system and when we assess an existing

measurement system ignoring any information about the process parameters. In

practice this is the most common situation.

The leveraged measurement system assessment plan is conducted in two stages:

Stage 1: Sample b parts from the process randomly (chosen to be representative

of the process) to obtain a baseline. We denote the observed values for these

measurements as {y10, y20, . . . , yb0} and the baseline average and sample vari-

ance by yb = 1
b

∑b
i=1 yi0 and s2

b = 1
b−1

∑b
i=1 (yi0 − yb)

2.

Stage 2: From the baseline sample, we select k parts (non randomly) using the

observed measured values. In particular, to improve our estimate for ρ, we
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sample k parts that are extreme relative to the baseline average, yb. We

denote the k selected parts using the set S. These k parts are then repeatedly

measured n times each to give the additional data {yij, i ∈ S & j =

1, . . . , n}. The total number of measurements for the leveraged plan is N =

b+ nk.

For example, for a leveraged plan with k = 2 we may pick the parts with the

minimum and maximum initial measurement. If the largest and smallest parts from

the baseline indexed as parts 5 and 11 we have S = {5, 11}.

We recommend repeatedly measuring the parts in Stage 2 over the range of con-

ditions (operators/time, environment, etc.) expected to capture the major sources

of measurement variation. Note that this recommendation matches the require-

ments for a standard plan.

As stated above, we assume the total variation σ2
t and the process mean µ are

unknown but interest lies in estimating ρ. The parameters µ and σt are viewed as

nuisance parameters.

This chapter has the following structure. In the next section, we describe the

analysis for an LP, including properties of the MLE for ρ and other simpler esti-

mators. In Section 4.3, we compare different designs (i.e. different values of b, k

and n) for leveraged plans when the total sample size is fixed. Based on empirical

evidence, we recommend specific plans for any total sample size. In Section 4.5, we

compare the derived estimators of ρ from standard and leveraged plans using the

bias and standard deviation.
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4.2 Estimation

We present four approaches for estimation of µ, σ2
t and ρ. The first method uses

Maximum Likelihood. The MLEs have no closed form and must be found numeri-

cally. The other three methods estimate µ and σ2
t with the baseline information only

and then estimate ρ using the repeated measurements, conditional on the baseline

observations. The second estimate uses a regression approach since the conditional

mean of the repeated measurements depends on ρ. The third uses the variation

within the repeated measurements to estimate ρ. Finally, the fourth estimate is a

combination of the second and third estimates.

4.2.1 Maximum Likelihood

We decompose the LP likelihood into two pieces by conditioning on the baseline

measurements. These two pieces are the baseline log-likelihood, denoted by

lb1
(
µ, σ2

t ; y10, . . . , yb0
)

and the log-likelihood of the repeated measurements conditional on the baseline

measurement denoted by

lr1
(
µ, σ2

t , ρ; yij, i ∈ S & j = 1, . . . , n
∣∣ y10, . . . , yb0

)
.

The b parts in the baseline sample are selected at random from the process, so the

baseline log-likelihood is

lb1(µ, σ2
t ) = − b

2
log σ2

t −
1

2σ2
t

{
(b− 1)s2

b + b (yb − µ)2} .
Now, to obtain lr1 we start with a single part. For a single part (selected to be
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repeatedly measured), the joint distribution of the initial measurement Y0 and the

n repeated measurements {Y1, . . . , Yn} is



Y0

Y1

...

Yn


v N


µ



1

1

...

1


, Σn+1 = σ2

t



1 ρ . . . ρ

ρ 1

...
. . .

...

ρ . . . 1




. (4.1)

where σ2
t = σ2

p + σ2
m is the total variation.

Using the properties of the multivariate normal, the distribution of the repeated

measurements {Y1, . . . , Yn} on a single part given the initial measurement Y0 = y0

is 
Y1

...

Yn

∣∣∣∣∣∣∣∣∣∣
Y0 = y0

 v N

[µ+ ρ(y0 − µ)]


1

...

1

 , Σc

 (4.2)

where the covariance matrix,

Σc = σ2
t


1− ρ2 ρ(1− ρ)

. . .

ρ(1− ρ) 1− ρ2

 , (4.3)

has a special form which allows us to obtain the following well known properties

[Dillon and Goldstein, 1984, reprinted in Appendix C]:

Σ−1
c =

1

σ2
t (1− ρ)(1 + nρ)


1 + ρ(n− 1) −ρ

. . .

−ρ 1 + ρ(n− 1)


|Σc| = σ2n

t (1− ρ)n(1 + nρ)
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Using the properties of Σc, we can write down the conditional likelihood (con-

ditional on y0) for the repeated measurements on a single part. The measurements

for one part are independent of the measurements from another part, so the con-

ditional likelihood for k parts, each with n measurements, is the product of their

likelihoods. Thus, the conditional log-likelihood for n repeated measurements on k

parts is

lr1
(
µ, σ2

t , ρ |y10, . . . , yk0) = −nk
2

log σ2
t −

nk

2
log(1− ρ)− k

2
log(1 + nρ) (4.4)

−1

2

1

σ2
t (1− ρ)(1 + nρ)

×{
(1 + nρ)SSW + n

k∑
i=1

[yi. − µ− ρ(yi0 − µ)]2
}

where yi0 is the baseline measurement for the ith part, yi. = 1
n

∑n
i=1 yij is the average

of the repeated measurements for the ith part and SSW =
∑

i∈S
∑n

j=1(yij − yi.)2.

Finally, we add (4.1) and (4.4) to get the (unconditional) log-likelihood for the

LP:

lL1(µ, σ2
t , ρ) = lb1

(
µ, σ2

t

)
+ lr1

(
µ, σ2

t , ρ
∣∣y10, . . . , yb0

)
(4.5)

To get the MLEs of µ, σ2
t and ρ, we can numerically maximize (4.5). In theorem 1,

we prove that this likelihood is appropriate regardless of the part selection method

in Stage 2.

Theorem 1. If Yij = Pi +Eij where Pi ∼ N
(
0, σ2

p

)
, Eij ∼ N (0, σ2

m) i = 1, 2, . . . , b

and j = 0, 1, 2, . . . , n, then if we sample {Y10, . . . , Yb0} and order them such that{
Y(1)0 ≤ . . . ≤ Y(b)0

}
then the conditional distribution of

{
Y(i)1, . . . , Y(i)n

∣∣Y(i)0 =

y(i)0

}
where i ∈ S and S is a subset of {1, . . . , b} is given by (4.2).

Proof: We begin with a joint distribution assuming we had repeated measure-
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ments on every part in the baseline.

f (y10, yi1, . . . , y1n, y20, . . . , y2n, . . . , yb0, . . . , ybn)

=
b∏
i=1

f (yi0, yi1, . . . , yin)
(

the distribution defined in (4.1)
)

=
b∏
i=1

f (yi1, . . . , yin| yi0) f (yi0)
(

the distribution defined in (4.2)
)

=
b∏
i=1

f (yi1, . . . , yin| yi0)
b∏
i=1

f (yi0)

do a change of variables such that y(1)0 ≤ y(2)0 ≤ . . . ≤ y(b)0

=

[
b∏

k=1

f
(
yk1, . . . , ykn| y(k)0

)]
n!

b∏
k=1

f
(
y(k)0

)
= n!

[
b∏

k=1

f
(
yk1, . . . , ykn| y(k)0

)
f
(
y(k)0

)]

= n!

[
b∏

k=1

f
(
yk1, . . . , ykn, y(k)0

)]
if k /∈ S integrate {yk1, . . . , ykn}

= n!

[∏
k/∈S

f
(
y(k)0

)] [∏
k∈S

f
(
yk1, . . . , ykn, y(k)0

)]

= n!

[∏
k/∈S

f
(
y(k)0

)] [∏
k∈S

f
(
yk1, . . . , ykn| y(k)0

)
f
(
y(k)0

)]

= n!

[
b∏

k=1

f
(
y(k)0

)] [∏
k∈S

f
(
yk1, . . . , ykn| y(k)0

)]
do a change of variables back to the original order

=

[
b∏
i=1

f (yi0)

][∏
i∈S

f (yi1, . . . , yin| yi0)

]

We can see that this is the joint distribution of
{
Y(i)0, Y(i)1 . . . , Y(i)n

}
. Thus, the

conditional distribution of
{
Y(i)1, . . . , Y(i)n

∣∣Y(i)0

}
where i ∈ S is (4.2). Note, the

conditional distribution given a baseline measurement does not depend on the rank

of the baseline measurement from a sample.
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Theorem 1 can be explained in words by imagining that we had repeated mea-

surements on every part in the baseline so the conditional distribution of repeats

depends only on the initial measurement. Then selection has no effect through the

value of the initial measurement. In other words, the conditional distribution of

the repeats are independent of the baseline measurements given the initial measure-

ment. So, conditional on the initial measurement, the rank of that measurement

in the baseline does not matter. The part could have come from a baseline of size

100 or 1000.

Score Function

The score function for ρ, the partial derivative of lr1 with respect to ρ, can be

written as a linear combination of three estimating functions,

Sρ =
∂lr1
∂ρ

= Ψ1(ρ)c1(ρ) + Ψ2(ρ)c2(ρ) + Ψ3(ρ)c3(ρ)

where

Ψ1(ρ) =
[
(1− ρ)σ2

t k(n− 1)− SSW
]

(4.6)

Ψ2(ρ) =

[
k∑
i=1

(yi. − µ) (yi0 − µ)− ρ
k∑
i=1

(yi0 − µ)2

]
(4.7)

Ψ3(ρ) =

[
kσ2

t (1− ρ)

(
ρ+

1

n

)
−

k∑
i=1

[yi. − µ− ρ(yi0 − µ)]2
]

(4.8)

and

c1(ρ) =
1

2

1

(1− ρ)2σ2
t

,

c2(ρ) =
n

σ2
t (1− ρ)(1 + nρ)

,

c3(ρ) =
1

2

n(1 + 2nρ− n)

σ2
t (1− ρ)2(1 + nρ)2

.
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These three estimating functions all have expectation zero and are important

because later we see that each provides an alternative way to estimate ρ.

Fisher Information

We recommend choosing parts with extreme initial measurements because this

decreases the asymptotic variance of the MLE of ρ. The asymptotic variance-

covariance matrix of the maximum likelihood estimator is the inverse of the Fisher

information matrix, which is

JL1

(
µ, σ2

t , ρ
)

=


(1−ρ)nk+b(nρ+1)

σ2
t (nρ+1)

0 nE[SC]
σt(nρ+1)

0 1
2
b+nk
σ4

t
−1

2
nkρ(n+1)

σ2
t (nρ+1)(1−ρ)

nE[SC]
σt(nρ+1)

−1
2

nkρ(n+1)

σ2
t (nρ+1)(1−ρ)

E
[
− ∂2

∂ρ2
lL1 (µ, σ2

t , ρ)
]

(4.9)

where E

[
− ∂2

∂ρ2
lL1

(
µ, σ2

t , ρ
)]

=
1

2

kn(n+ 1)(nρ2 + 1)

(1 + nρ)2(1− ρ)2
+
n (E [SSC]− k)

(1 + nρ)(1− ρ)
, (4.10)

SSC =
∑
i∈S

[
Yi0 − µ
σt

]2

and SC =
∑
i∈S

[
Yi0 − µ
σt

]
. (4.11)

It is shown in Appendix A.1 that if a sampling plan is chosen such that E [SC] = 0,

then the asymptotic variance of the MLE for ρ is reduced. Also, we show that the

variance of the MLE is reduced by choosing a sampling plan where E [SSC] is

large. A plan with both these properties is to choose an equal number of parts with

extreme initial measurements on either side of the baseline average.

When using maximum likelihood, standard errors for the estimates can be ob-

tained from the inverted information matrix (see Appendix A.1) with the parame-

ters replaced by their estimates.
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4.2.2 Regression Estimator

Maximum Likelihood is an efficient method of estimation but when explicit expres-

sions of the MLE cannot be found, it is useful to search for estimators with a closed

form. The distribution of the average of the repeated measurements on a single

part, given the initial measurement yi0, is

Y i. |(Yi0 = yi0) v N

(
µ+ ρ(yi0 − µ), σ2

t (1− ρ)

(
ρ+

1

n

))
(4.12)

The averages of the repeated measurements on different parts are mutually

independent. We can use regression to estimate ρ because in (4.12), the mean

depends on ρ linearly and the variance is the same for each part. The conditional

mean of Y i. also depends on µ but we use the baseline average yb to estimate this

unknown.

The regression estimate of ρ [Montgomery, Peck, and Vining, 2001] is

ρ̂r =

∑
i∈S (yi. − yb) (yi0 − yb)∑

i∈S (yi0 − yb)
2 (4.13)

If we standardize each quantity on the right hand side in (4.13), the marginal

distribution of ρ̃r, the corresponding estimator of the regression estimate, depends

only on ρ. The distribution of ρ̃r, conditional on the baseline sample, is normal

with mean

E [ ρ̃r| y10, . . . , yb0]

=

∑
i∈S
(
E
[
Y i.

∣∣ y10, . . . , yb0
]
− yb

)
(yi0 − yb)∑

i∈S (yi0 − yb)
2

= ρ

∑
i∈S (yi0 − µ) (yi0 − yb)∑

i∈S (yi0 − yb)
2 + (µ− yb)

∑
i∈S (yi0 − yb)∑
i∈S (yi0 − yb)

2

= ρ

∑
i∈S (yi0 − yb + yb − µ) (yi0 − yb)∑

i∈S (yi0 − yb)
2 + (µ− yb)

∑k
i=1 (yi0 − yb)∑
i∈S (yi0 − yb)

2
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= ρ

∑
i∈S (yi0 − yb)

2 + (yb − µ)
∑

i∈S (yi0 − yb)∑
i∈S (yi0 − yb)

2 + (µ− yb)
ŜC

ŜSC

= ρ

(
1 + (µ− yb)

ŜC

ŜSC

)
+ (µ− yb)

ŜC

ŜSC

= ρ+

[
(µ− yb)

ŜC

ŜSC

]
(1 + ρ) (4.14)

and variance

V ar [ ρ̃r| y10, . . . , yb0] =
σ2
t (1− ρ) (1/n+ ρ)∑

i∈S (yi0 − yb)
2 =

σ2
t (1− ρ) (1/n+ ρ)

s2
b ŜSC

(4.15)

where ŜC =
∑
i∈S

[
yi0 − yb
sb

]
and ŜSC =

∑
i∈S

[
yi0 − yb
sb

]2

(4.16)

are the baseline estimates of SC and SSC as defined in (4.11).

The estimator ρ̃r has a small bias (conditionally) if, as we recommend, we choose

parts so that ŜC ≈ 0 and ŜSC is large. We also expect that yb will be close to µ

since the baseline sample is selected at random from the process. Unconditionally,

ρ̃r is unbiased because Y b is independent of the random variables corresponding to

ŜC and ŜSC.

The unconditional variance of ρ̃r is

σ2
r = V ar (ρ̃r) ≈ (1− ρ)

(
ρ+

1

n

)
E

[
σ2
t∑

i∈S (Yi0 − yb)
2

]
(4.17)

because ρ̃r is unbiased. We estimate E
[

σ2
tP

i∈S(Yi0−yb)2

]
from the baseline observations

with the inverse of ŜSC as given by (4.16). Similar to the MLE, choosing parts

to re-measure with extreme baseline measurements relative to the baseline average

reduces the conditional variance of this estimator. Since the estimator is unbiased,

selecting extreme parts will also reduce the unconditional variance.

Note that the regression based estimator uses the average of the repeated mea-
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surements to estimate ρ. It does not, however, use the variability of the repeated

measurements within each part unlike the next estimator.

4.2.3 ANOVA Estimator

We can use the variation within the repeated measurements to get an ANOVA-

like estimate of ρ. For each part, the variation within the repeated measurements∑n
j=1

(
Yij − Y i.

)2
is independent of Yi0 and

MSW =

∑
i∈S
∑n

j=1 (yij − yi.)
2

k(n− 1)
(4.18)

is an estimate of σ2
m. Note that the average yi. in the above expression does not

include the baseline measurements. Since the baseline variation is an estimate of

σ2
t and ρ =

σ2
p

σ2
p+σ2

m
, by rearrangement, we obtain the estimate

ρ̂a = 1− MSW

s2
b

. (4.19)

Transforming the ANOVA estimator, we see that (1 − ρ̃a)/(1 − ρ) has an F-

distribution with k(n− 1) and b− 1 degrees of freedom and so the distribution of

the ANOVA estimator depends only on ρ and not the other unknown parameters

µ and σt. We have

E(ρ̃a) = 1− (1− ρ)
b− 1

b− 3
= ρ

(
b− 1

b− 3

)
− 2

b− 3
(4.20)

and σ2
a = V ar(ρ̃a) = (1− ρ)2vF (4.21)

where vF = V ar(Fk(n−1),b−1) =
2 (b− 1)2(k(n− 1) + (b− 1)− 2)

k(n− 1)((b− 1)− 2)2((b− 1)− 4)
(4.22)

Note that both the regression and ANOVA estimates do not require that the
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parts selected to be re-measured be representative of the process. They do however

require that the measurement errors be representative.

4.2.4 Combined Estimator

An estimator which has a closed form and turns out to have similar properties to

the MLE is a combination of the two estimators ρ̃r and ρ̃a as described in Sections

4.2.3 and 4.2.2 respectively. We combine these two estimators because they are

uncorrelated.

To show that the covariance between ρ̃r and ρ̃a is zero, we use the conditional

covariance formula

Cov (ρ̃r, ρ̃a) = E
[
Cov (ρ̃r, ρ̃a)

∣∣∣{yi0}bi=1

]
+Cov

(
E
[
ρ̃r

∣∣∣{yi0}bi=1

]
, E
[
ρ̃a

∣∣∣{yi0}bi=1

])
,

where we used {yi0}bi=1 to represent {y10, . . . , yb0} to save space. We show that each

term is equal to zero.

The first term,

E [Cov (ρ̃r, ρ̃a) |y10, . . . , yb0] = 0 (4.23)

because from repeated measurements, ρ̃r is a function of the means and ρ̃a is a

function of the variance. Since, the measurement error is assumed to have normal

distribution and the sample means and variances from observations with a normal

distribution are independent, their covariance is zero.

For the second term,

Cov

(
E
[
ρ̃r
∣∣y10, . . . , yb0

]
, E
[
ρ̃a
∣∣y10, . . . , yb0

])
= Cov

(
ρ+

[
(µ− yb)

ŜC

ŜSC

]
(1 + ρ), 1− σ2

t (1− ρ)

s2
b

)
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= Cov

([
(µ− yb)

ŜC

ŜSC

]
(1 + ρ),−σ

2
t (1− ρ)

s2
b

)

= −σ2
t (1− ρ)(1 + ρ) Cov

([
(µ− yb)

ŜC

ŜSC

]
,

1

s2
b

)

= −σ2
t (1− ρ)(1 + ρ)

(
E

[
(µ− yb)

ŜC

ŜSC

1

s2
b

]
− E

[
(µ− yb)

ŜC

ŜSC

]
E

[
1

s2
b

])

= −σ2
t (1− ρ)(1 + ρ)

(
E

[
µ− yb

]
E

[
ŜC

ŜSC

1

s2
b

]
− E

[
µ− yb

]
E

[
ŜC

ŜSC

]
E

[
1

s2
b

])

because the mean, (µ− yb) , is independent of the residuals,
ŜC

ŜSC

1

s2
b

.

= −σ2
t (1− ρ)(1 + ρ)

(
0× E

[
ŜC

ŜSC

1

s2
b

]
− 0× E

[
ŜC

ŜSC

]
E

[
1

s2
b

])
= 0

Therefore, the covariance between ρ̃r and ρ̃a is zero.

If we suppose the two uncorrelated estimators of ρ, ρ̃r and ρ̃a, had known

variances σ2
r and σ2

a then the minimum variance linear combination is

w ρ̃r + (1− w) ρ̃a =
σ2
a

σ2
r + σ2

a

ρ̃r +
σ2
r

σ2
r + σ2

a

ρ̃a. (4.24)

This combined estimator is unbiased because it is a weighted sum of two unbiased

estimators, ρ̃a and ρ̃r. The linear combination has

E [wρ̃r + (1− w)ρ̃a] =
σ2
a

σ2
r + σ2

a

E [ρ̃r]+
σ2
r

σ2
r + σ2

a

E [ρ̃a] =
σ2
a

σ2
r + σ2

a

ρ+
σ2
r

σ2
r + σ2

a

ρ = ρ.

An estimating function can be created (from 4.24) by subtracting its expectation

ρ. Multiplying by σ2
r + σ2

a, we get

Ψc(ρ) = σ2
a ρ̃r + σ2

r ρ̃a − (σ2
a + σ2

r)ρ. (4.25)
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An estimating function has expectation zero. Parameters are estimated by setting

the estimating function to zero and solving. Substituting the quantities in (4.21) for

σ2
a and (4.17) for σ2

r , we obtain the combined estimate ρc, as a root of the quadratic

equation (4.26).

(
vF − E

[
1

SSC

])
ρ2
c +

(
E

[
1

SSC

] [
ρ̂a −

1

n

]
− vF [1 + ρ̂r]

)
ρc

+

(
vF ρ̂r + E

[
1

SSC

]
ρ̂a
n

)
= 0 (4.26)

where vF = V ar
(
Fk(n−1),b−1

)
. As with the regression estimator, we estimate

E
[

1
SSC

]
from the baseline observations with the inverse of ŜSC =

∑
i∈S

[
yi0−µ̂
sb

]2

.

In this case based on simulations, the appropriate estimator is the smaller root

because the larger root gives estimates of ρ which are greater than one and ρ is

bounded between zero and one. Note that ρ̃c is not just a simple weighted average

of the two previous estimators because the variances σ2
r and σ2

a depend on ρ.

To find the asymptotic distribution, we use general results from Jorgensen and

Knudsen [2004] that establish the asymptotic normality of the estimates corre-

sponding to the estimating functions. The asymptotic variance of the combined

estimator is approximately

Var(ρ̃c) ≈
V ar [Ψc(ρ)]{
E
[
∂
∂ρ

Ψc(ρ)
]}2 =

σ2
aσ

2
r

(σ2
a + σ2

r)
. (4.27)

The asymptotic variance-covariance matrix [see Jorgensen and Knudsen, 2004]

of µ̃, σ̃2
t as estimated from the baseline and ρ̃c, as given by solving (4.26), is

Cov


µ̃

σ̃2
t

ρ̃c

 ≈


σ2
t

b
0 0

0
2σ4

t

b−1

2σ2
t (1−ρ)

b−3
σ2

r

σ2
r+σ2

a

0
2σ2

t (1−ρ)

b−3
σ2

r

σ2
r+σ2

a

σ2
aσ

2
r

(σ2
a+σ2

r)

 . (4.28)
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The variance of the combined estimator depends on ρ through σ2
a and σ2

r .

Throughout our simulations, we noticed that the distribution of ρ̃c is skewed to-

wards zero when ρ is close to one. Qualitatively, this occurs because ρ̃a (which has

a skewed distribution) has more weight in this situation.

To construct confidence intervals for parameters with skewed distribution it is

common to work on a transformed scale. A transformation that seems to perform

well is Fisher’s z-transformation. We let

θ =
1

2
log

1 + ρ

1− ρ
and

∂θ

∂ρ
=

1

1− ρ2
(4.29)

then its approximate variance is

Var
(
θ̃
)
≈ V ar [Ψc(ρ)]

E
{[

∂
∂ρ

Ψc(ρ)
]}2 [

∂ρ
∂θ

]2 . (4.30)

To construct approximate confidence interval for ρ, we suggest first constructing

a confidence interval on the θ scale based on asymptotic normality on the trans-

formed scale. Then transform the confidence interval limits to create a confidence

interval for ρ. See the example in the next section.

To perform the test of hypothesis in (1.19) we use the same approach as for a

one-sided confidence interval. First, we make a one-sided confidence interval on the

transform scale under normality and using the variance given in (4.30). Then, we

transform the limit to determine the critical value on the ρ scale.

4.2.5 Numerical Example of Various Estimates for ρ Based

on Leveraged Plan

Steiner and Mackay [2005] present an example of a leveraged measurement as-
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sessment study on an automated crankshaft main journal gauge. Although they

calculate only the ANOVA estimator, we can apply all four methods of estimation

for illustration. In their example, three parts, a large, small and medium sized part,

were selected from the baseline study to be re-measured. To more closely match

the suggestions in this thesis to select an equal number of extreme parts on each

side of the baseline average, we proceed by assuming only the large and small parts

were selected. In the example, a baseline of 100 parts was randomly selected from

the process. The baseline data, given as a difference from a target value, are shown

in Table 4.1.

Table 4.1: Baseline Data of 100 Camshaft Journal Diameters

5.3 0.0 -4.1 -6.4 -5.7 7.1 -0.5 -1.7 -2.7 2.1
0.9 -1.5 -5.4 3.3 6.0 2.4 -1.2 3.4 -2.9 -6.4

-12.8 -7.3 1.5 1.9 5.6 -5.2 2.4 0.9 -2.5 -0.8
4.6 4.1 -7.8 10.3 0.0 -0.9 -3.3 5.7 8.2 1.5

-5.3 4.2 4.6 10.5 -3.4 0.5 1.4 9.1 -1.1 12.8
-2.7 -3.2 4.4 1.0 1.2 -4.0 -1.6 -2.5 -6.9 1.2
-2.2 -0.6 -5.4 -6.0 -1.1 0.1 -3.5 2.5 1.4 -12.2
-1.5 -6.0 9.7 5.2 10.4 2.2 9.2 3.6 1.8 1.7
-2.0 -0.8 -4.1 -4.5 4.2 7.8 -3.2 1.9 -0.4 0.5
4.3 2.3 6.1 5.0 4.6 8.4 6.1 -7.1 4.7 -7.4

The baseline average yb is 0.540 and baseline variance is s2
b is 25.865. The parts

chosen to be repeatedly measured were parts 50 and 70 (i.e. S={50, 70}), with

baseline measurements 12.8 and -12.2 respectively. These two parts were measured

an additional 18 times each. Note that the average of the two baseline measurements

for the selected parts is very close to the baseline average. Part 21 with baseline

value -12.8 that is more extreme than part 70 could have been selected instead but

for reasons unknown to us, this was not done.

The individual measurements for each re-measured part are shown in Table 4.2

with the average and standard deviation for the repeated measurements within each
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part. We see regression toward the mean for the measurements on part 70 but not

on part 50. That is, all the repeated measurement for part 70 are below the initial

measurement but for part 50 the repeated are balanced by the initial measurement.

In addition, we see that the measurement system is easily able to distinguish the

two selected parts and that the measurement variation for the two parts is roughly

the same.

Table 4.2: Example of a Stage 2 Sample with 2 Extreme Parts Repeatedly Measured
18 Times Each

Part 50 Part 70
y50,0 = 12.8 y70,0 = −12.2

10.9 13.2 12.8 12.6 12.7 14.1 -10.3 -11.1 -10.0 -12.2 -11.0 -11.1
12.9 13.1 12.0 13.3 12.6 13.4 -10.9 -10.0 -10.6 -11.4 -11.5 -11.1
12.0 12.9 11.7 11.8 12.2 14.1 -11.4 -10.7 -10.3 -11.4 -9.8 -11.5

y50. = 12.7 y70. = −10.9
s2

50 = 0.68029 s2
70 = 0.40997

To check the normality assumptions, we constructed QQ-plots (not shown here)

of the baseline data and the residuals of the repeated measurements excluding the

baseline measurements. There is no evidence to contradict the model assumptions

in this example. It is interesting to note that all of the re-measured values for part 70

are larger than the baseline value. This suggests that there was a large measurement

error in the baseline value of this part. We would expect such behaviour if the

measurement variation is large relative to the process variation.

Using (4.18), the ANOVA estimate is

ρ̂a = 1− MSW

s2
b

= 1− (s2
50 + s2

70)/2

s2
b

= 1− (0.40997 + 0.68029)/2

25.865
= 0.97892

The estimates of SC and SSC using the two selected parts and the baseline
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summary statistics are

ŜC = −2.51 + 2.41 = −0.10 and ŜSC = 6.275 + 5.811 = 12.086

The maximum likelihood estimates for (µ, σ2
t , ρ) are (0.551, 25.392, 0.97809).

Using (4.13), the regression estimate is

ρ̂r =

∑
i∈S (yi. − yb) (yi0 − yb)∑

i∈S (yi0 − yb)
2 =

145.8 + 148.9

162.3 + 150.3
=

294.7

312.6
= 0.94267

We need vF and the baseline estimate of SSC to determine the coefficients

of the quadratic equation (4.26) used for the combined estimator. Using vF =

V ar (F34,99) = 0.0845, the combined estimate of ρ is the smaller root of the quadratic

equation

0.001755011ρ2
c − 0.0877455ρc + 0.08414984 = 0

The two roots of this equation are 0.97816 and 49.019. Therefore ρ̂c = 0.97816

is the combined estimate of ρ. Table 4.3 summarizes the four estimates and their

corresponding standard errors. Since ρ appears to be large for this measurement

system, there is little difference in the estimates and their standard errors with the

exception of the regression estimate which has much higher standard error.

Table 4.3: Estimates of ρ for the Camshaft Journal Diameters Example

Estimate Standard
Error

ρa 0.97892 0.00613
ρr 0.94267 0.06881
ρc 0.97816 0.00628

ρmle 0.97809 0.00597

We illustrate the calculations for confidence intervals, as given in (4.29), using
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the combined estimate. The transformed estimate, using (4.29) is θ̂ = 1
2
log
(

1+0.97816
1−0.97816

)
= 2.2531. Using the variance of this estimate given in (4.30) and the standard

error of the combined estimate (found in Table 4.3), the standard error of θ̂ is√
0.006282

(1−0.978162)2
= 0.14535. Thus, a 95% confidence interval for θ is 2.25±1.96(0.145) =

(1.968, 2.538) and the approximate 95% confidence interval in terms of ρ is (0.962, 0.988).

4.2.6 Comparison of the Various Estimators for ρ Based on

the Leveraged Plan

We consider a sampling plan with b = 30, k = 6 and n = 5 because this is the plan

that will be recommended in Section 4.3 when the total number of measurements is

60. We suggest choosing the six parts corresponding to the three largest and three

smallest measurements from the baseline study of 30 parts. Figure 4.1 shows the

bias and standard deviation for the MLE, regression estimator (ρ̃r), ANOVA esti-

mator (ρ̃a) and the Combined Estimator (ρ̃c). The figure was created by simulating

ten thousand samples for each value of ρ. The results of the simulation are based

on ten thousand samples for 23 values of ρ spread over the interval (0.01,0.99) with

higher density where the bias and standard deviation are changing rapidly. We

used the same set of values for ρ in all simulations in this chapter.

The two individual components of the combined estimator, the regression and

ANOVA estimators are efficient for different values of ρ. The standard deviation of

the ANOVA estimator is much larger than the regression estimator when ρ = 0.2

but it performs well when ρ is larger than 0.9. All estimators are slightly biased

except for the regression estimator.

Notice that the combined and the MLE estimators perform similarly when ρ ≥

0.3. Since usually measurement systems are reasonably good, i.e. ρ is larger than

0.5, we can use the combined estimator without loss of efficiency. We see similar
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Figure 4.1: Comparison of the Bias and Standard Deviation for Estimators of ρ
with a Leveraged Plan

results for leveraged sampling plans with other values of b, k and n.

4.2.7 The Effect of Varying the Number of Repeated Mea-

surements on Each Part

In Stage 2, the proposed LP recommends choosing k parts and remeasuring them

n times each. We may wonder if there is any benefit to varying the number of

repeated measurements and if so, does this benefit outweigh the cost of a more

complex plan. For example, we could increase the number of measurements for

parts with more extreme initial measurements.

Letting the number of repeated measurements on part i be ni, the degrees

of freedom for the ANOVA will be the same as long as each part has at least

two measurements. The variance for the regression estimator (4.15), now with ni
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measurements on each part, is

V ar [ ρ̃r| y10, . . . , yb0] =
σ2
t (1− ρ)∑

i∈S (yi0 − yb)
2

{
ρ+

∑
i∈S
[
(yi0 − yb)

2 /ni
]∑

i∈S (yi0 − yb)
2

}
.

We can use Lagrange multipliers to determine the optimal ni for each part given

the baseline measurements. If we assume b and k are fixed then
∑

i∈S ni = N − b.

To find the optimal ni we minimize

L(ni, λ) = V ar [ ρ̃r| y10, . . . , yb0] + λ

(
k∑
i

ni − (N − b)

)

∂L(λ)

∂ni
= − σ2

t (1− ρ)[∑
i∈S (yi0 − yb)

2]2 ∑
i∈S

(yi0 − yb)
2

n2
i

+ λ

⇒ ni ∝ |yi0 − yb| ⇒ ni = (N − b) |yi0 − yb|∑
i∈S |yi0 − yb|

(4.31)

but for any application we set ni = round

[
(N − b) |yi0 − yb|∑

i∈S |yi0 − yb|

]
Plugging in the optimal ni into the variance for the regression estimator (4.15) we

get the conditional variance

V ar [ ρ̃r| y10, . . . , yb0] =
σ2
t (1− ρ)∑

i∈S (yi0 − yb)
2

{
ρ+

1

(N − b)

[∑
i∈S |yi0 − yb|

]2∑
i∈S (yi0 − yb)

2

}
(4.32)

We compared the variance in (4.32) to the variance of the design where each part

gets the same number of repeated measurements given by (4.15). To reduce the

number of parameters, we will also assume that b ≈ N/2 which means
∑

i∈S ni = b.

This assumption is reasonable because further ahead in Section 4.3 we show that

for the best leveraged plans, b should be roughly half of the sample size N. This
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means we have that n = k
b

because b = N/2. The ratio is

V ar [ ρ̃r| y10, . . . , yb0, ni]

V ar
[
ρ̃r| y10, . . . , yb0, ni = n = k

b

] =

{
ρ+ 1

b

[
P

i∈S |yi0−yb|]
2P

i∈S(yi0−yb)2

}
{
ρ+ k

b

} (4.33)

For large b this ratio can be approximated by

1 +
q(b, k)

ρ
+O

(
1

b2

)
where q(b, k) =

1

b

{[∑
i∈S |yi0 − yb|

]2∑
i∈S (yi0 − yb)

2 − k

}
(4.34)
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Figure 4.2: The approximate ratio of Var(ρ̃r) as given by (4.34)

Figure 4.2, shows the approximated ratio in two panels. The left panel is a

contour plot of q(b, k), which is given in (4.34), by k and b and was generated by

simulation. The right shows the ratio by q(b, k) and ρ. For example, if b = 40 and

k = 6 then from the left panel q(b, k) is approximately −0.01 and from the right

panel we see that the ratio in (4.33) is between 0.95 and 1 for ρ ≥ 0.2. That is,

when b = 40 and k = 6 the plan with optimal ni is at most 0.95 more efficient that

the plan with ni = n when ρ ≥ 0.2. Using the two panels we see that varying ni

does reduce the variance of the regression estimator but for typical large values of
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ρ the difference is small and would likely not compensate for the added complexity.

4.3 Leveraged Plan Design

In this section, we determine how to choose a leveraged plan (i.e. values for b, k

and n) when the total number of measurements is N and the precision desired

for the estimate of ρ using the combined estimator is specified. As with most

sample size calculations, we must also specify a value of ρ to select the plan. We

consider two specific values of ρ, namely 0.80 and 0.91. These values of ρ are

chosen because in terms of measurement repeatability they are equivalent to 0.45

and 0.30, respectively. Thus ρ = 0.91 corresponds to the minimum acceptable value

in Automotive Industry Action Group [2002]. We also include ρ = 0.80 in Tables

4.4 and 4.5 to show how the standard deviation of ρ̃c behaves with a relatively poor

measurement system. The goal of this section is to understand, for fixed N , how

the standard deviation of the estimator ρ̃c depends on b,k and n. In particular, we

want to find values of b,k and n that minimize the standard deviation.

When calculating the asymptotic variance (4.27) for the combined estimator, we

need to replace 1

ŜSC
by its expected value because σ2

r , as shown in (4.17), depends

on E
[

1
SSC

]
. This quantity corresponds to the sum of the standardized squares of

the k observations chosen for Stage 2 from the baseline. In an LP, we choose parts

to be remeasured based on their extreme initial values which typically correspond

to (assuming k is even) the k/2 smallest and k/2 largest observed values in the

baseline. This implies these extreme initial values can be represented as order

statistics from the standard normal distribution. We can write

E

[
1

SSC

]
= E

(
1

Z2
[1:b] + · · ·+ Z2

[k/2:b] + Z2
[b−k/2+1:b] + · · ·+ Z2

[b:b]

)
(4.35)
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where Z[i:b] is the ith order statistic from a sample of b standard normal random

variables. We estimate (4.35) by simulating ten thousand samples of b observations.

To start, we consider N = 60. The first step is an exhaustive search looking

at all possible values b,k and n with b + kn = 60. There are approximately 200

designs. Table 4.4 displays the approximate standard deviation, obtained using

the asymptotic variance (4.27), of the combined estimator for ρ. We show the five

plans with the smallest standard deviation, five plans with the largest standard

deviation and the five plans with close to the median standard deviation. To check

the asymptotic approximations we compared with simulation results. These results

are very close to those obtained through simulation. Poor plans with large standard

deviations tend to have a small number of observations allocated to the baseline.

The designs with the lowest standard deviation have b w nk, i.e. b w N/2.

Table 4.4: The LP Designs that have the Smallest, Middle and Largest stdev(ρ̃c)
when b+ nk = 60

ρ = 0.80 ρ = 0.91
b k n stdev(ρ̃c) b k n stdev(ρ̃c)
32 7 4 0.0684 32 4 7 0.0350
30 6 5 0.0688 33 3 9 0.0351

smallest 5 33 9 3 0.0688 30 5 6 0.0351
30 10 3 0.0689 30 6 5 0.0352
35 5 5 0.0690 30 3 10 0.0352
18 14 3 0.0785 38 11 2 0.0394
42 1 18 0.0785 45 3 5 0.0396

middle 5 22 2 19 0.0788 45 1 15 0.0397
25 1 35 0.0789 21 1 39 0.0401
18 7 6 0.0792 20 2 20 0.0401
7 1 53 0.1766 6 3 18 0.1017
6 2 27 0.1831 6 2 27 0.1058

largest 5 5 5 11 0.1870 6 1 54 0.1138
6 1 54 0.2053 5 5 11 0.1203
5 1 55 0.2475 5 1 55 0.1496

In Table 4.5, we show the plans corresponding to the lowest stdev(ρ̃c) for differ-

78



ent values ofN = b+nk when ρ equals 0.80 and 0.91. The differences in performance

among the plans with the same N is small but notice that the baseline size b is

close to N/2 for all the best plans. Using this empirical evidence, we suggest using

b w N/2, n w 5 and then k w N/10. This plan is in every set of the top 5 in Table

4.5. Since the LP design parameters must be integers, given a total sample size N,

we recommend the plan with k = bN/10c, n = 5 and b = N − 5bN/10c, where bc

is the floor function that rounds down to nearest integer.

In Table 4.6, assuming that we use the recommended plan, we give the value of

N required to achieve a specified standard error of the transformed variable (4.29)

when given a value of ρ. We used the transformed scale because the distribution of

the estimator is skewed when ρ is close to 1. To illustrate use of Table 4.6, suppose

historical data suggests ρ is approximately 0.91 and we want to estimate ρ with

a standard deviation of at most 0.025. Then using the variance from (4.30), we

obtain the standard deviation on the transformed scale to be 0.025
1−0.912 ≈ 0.145. Now

in Table 4.6, we look down the column with ρ = 0.91 and row corresponding to

stdev(θ̃) = 0.15 to get the total sample size of 101. Using the suggested plan, we

require 51 parts for the baseline study. Then, from the baseline sample, we select

10 extreme parts to repeatedly measure 5 times each.

4.3.1 Optimal Designs

The previous subsection used simulation to obtain the approximate standard devi-

ation to find a recommended plan. We choose only two values of ρ because this task

was computationally intensive. To further explore the optimal designs at different

values of ρ and N , we now use the Fisher information. This means that optimal

designs in this subsection will have the the smallest asymptotic standard deviation

in contrast to the previous analysis which found the plans with the smallest ap-
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Table 4.5: The Five Plans with the Lowest stdev(ρ̃c) for Different Values of N =
b+ nk

ρ = 0.80 ρ = 0.91
N b k n stdev(ρ̃c) N b k n stdev(ρ̃c)
30 18 3 4 0.1065 30 18 2 6 0.0552
30 18 4 3 0.1068 30 16 2 7 0.0555
30 15 5 3 0.1076 30 18 3 4 0.0556
30 18 2 6 0.1078 30 18 1 12 0.0557
30 15 3 5 0.1081 30 17 1 13 0.0558
50 26 6 4 0.0766 50 26 4 6 0.0393
50 26 8 3 0.0769 50 26 3 8 0.0393
50 25 5 5 0.0770 50 29 3 7 0.0393
50 30 5 4 0.0771 50 28 2 11 0.0394
50 29 7 3 0.0771 50 25 5 5 0.0395
75 39 9 4 0.0599 75 40 5 7 0.0306
75 40 7 5 0.0601 75 39 6 6 0.0306
75 43 8 4 0.0602 75 39 4 9 0.0307
75 39 12 3 0.0603 75 40 7 5 0.0307
75 35 10 4 0.0603 75 43 4 8 0.0308
100 52 12 4 0.0507 100 51 7 7 0.0259
100 48 13 4 0.0509 100 52 6 8 0.0259
100 50 10 5 0.0509 100 52 8 6 0.0259
100 56 11 4 0.0509 100 50 10 5 0.0260
100 55 9 5 0.0510 100 50 5 10 0.0260
125 65 15 4 0.0447 125 62 9 7 0.0228
125 61 16 4 0.0448 125 65 10 6 0.0229
125 65 12 5 0.0448 125 61 8 8 0.0229
125 69 14 4 0.0449 125 62 7 9 0.0229
125 60 13 5 0.0449 125 65 6 10 0.0229
200 100 25 4 0.0346 200 102 14 7 0.0177
200 104 24 4 0.0347 200 98 17 6 0.0177
200 100 20 5 0.0347 200 95 15 7 0.0177
200 96 26 4 0.0347 200 96 13 8 0.0177
200 105 19 5 0.0347 200 104 12 8 0.0177

proximate standard deviation. Using the Fisher information allows us to examine

the optimal designs over all ρ, as seen in Table 4.7. It presents the asymptotic

optimal leveraged designs given ρ when N = 30, 60 and 100 by showing the range

of ρ for which a design is optimal. For example, if we wanted the optimal design
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Table 4.6: Values of N for Estimating ρ with a Particular Standard Deviation when
b = N − 5bN/10c, n = 5 and k = bN/10c

Assumed value of ρ
stdev(z̃) 0.2 0.4 0.6 0.8 0.91 0.99

0.25 22 27 32 39 44 49
0.20 31 38 45 55 62 69
0.15 48 60 73 89 101 113
0.14 54 68 82 101 115 127
0.13 62 77 94 115 131 146
0.12 71 89 109 133 152 168
0.11 83 105 128 157 178 198
0.10 98 125 153 188 213 236
0.09 120 154 188 231 261 289
0.08 151 194 238 292 329 362
0.07 197 256 314 383 429 469
0.06 273 356 436 528 586 633
0.05 409 538 657 780 852 908

for ρ = 0.80 when N = 60 then we look down the eighth column. Since 0.8 falls

into the range 0.52 to 0.99 the optimal plan has b = 30, k = 10 and n = 3.

Table 4.7 has two interesting features; the optimal design for each N is station-

ary when ρ ≥ 0.54 and these optimal designs all have n = 3. This suggested small

number of repeated measurements is contrary to the conclusions from Table 4.5,

which suggested a larger n. However, Table 4.5 was created using simulation on

the combined estimator and not the maximum likelihood estimator. Also, we have

noticed that the optimal design space is fairly flat as long as b, the baseline size, is

roughly half N , the total sample size. This feature is shown in both Tables 4.5 and

4.7.

We can use the asymptotic variance to determine the optimal plans for estimat-

ing ρ given a constraint on the precision. Table 4.8 presents this on a transformed

scale, named q. The scale, q =stdev(ρ̃)/
√

(1− ρ2)ρ(1− ρ), was required to make

the table compact and scales the precision requirement so that we require higher
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Table 4.7: The Asymptotic Optimal Leveraged Designs (b, k, n) for a Given ρ When
N = 30, 60 and 100

N = 30 N = 60 N = 100
b k n ρ b k n ρ b k n ρ
2 1 28 0.01 to 0.03 2 1 58 0.01 4 1 96 0.01
4 1 26 0.04 5 1 55 0.02 10 2 45 0.02
6 2 12 0.05 to 0.07 8 2 26 0.03 13 3 29 0.03
8 2 11 0.08 to 0.10 10 2 25 0.04 16 4 21 0.04

10 2 10 0.11 to 0.14 12 2 24 0.05 20 4 20 0.05
12 2 9 0.15 to 0.16 12 3 16 0.06 24 4 19 0.06
12 3 6 0.17 to 0.23 15 3 15 0.07 25 5 15 0.07
14 4 4 0.24 to 0.53 16 4 11 0.08 to 0.10 28 6 12 0.08 to 0.10
15 5 3 0.54 to 0.99 20 4 10 0.11 to 0.13 30 7 10 0.11 to 0.12

20 5 8 0.14 to 0.15 36 8 8 0.13 to 0.17
24 6 6 0.16 to 0.26 37 9 7 0.18
25 7 5 0.27 to 0.29 40 10 6 0.19 to 0.25
28 8 4 0.30 to 0.51 45 11 5 0.26 to 0.34
30 10 3 0.52 to 0.99 48 13 4 0.35 to 0.50

52 12 4 0.51 to 0.52
52 16 3 0.53 to 0.99

precision for large ρ values. For example, suppose we thought ρ was 0.6 (i.e. the

measurement system was poor) then we might only require a standard deviation

of 0.05 whereas if ρ was 0.91 we would require a smaller standard deviation. To

illustrate the use of Table 4.8, suppose we thought ρ was about 0.6 and we required

a standard deviation equal to 0.05, then we find the q value to be approximately

0.12. To find the optimal plan that achieves this q value we search for the entry

that corresponds to ρ = 0.60 and q = 0.12 in Table 4.8. We get the LP with

b = 139, k = 42 and n = 3. In summary, this means we would require a total of at

least 265 measurements to achieve a standard deviation of 0.05 when ρ = 0.60.
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Table 4.8: Optimal Leveraged Designs (b, k, n) for Estimating ρ with a Particular
Standard Deviation

q = stdev(ρ̃)/
√

(1− ρ2)ρ(1− ρ)
ρ 0.32 0.28 0.24 0.2 0.16 0.12 0.08

0.1 (16,4,11) (25,5,11) (33,6,12) (46,9,11) (71,14,11) (120,25,11) (275,55,11)
0.2 (20,5,6) (23,6,7) (34,8,7) (53,12,6) (78,16,7) (132,29,7) (297,64,7)
0.3 (21,6,4) (28,8,4) (35,9,5) (50,12,5) (80,18,5) (135,33,5) (305,73,5)
0.4 (21,6,4) (27,7,4) (35,10,4) (49,14,4) (80,20,4) (136,36,4) (314,79,4)
0.5 (22,6,3) (27,7,4) (34,9,4) (48,13,4) (79,19,4) (134,34,4) (296,76,4)
0.6 (22,6,3) (26,8,3) (37,11,3) (52,16,3) (78,24,3) (139,42,3) (311,93,3)
0.7 (22,6,3) (26,8,3) (37,11,3) (50,15,3) (78,24,3) (137,41,3) (309,92,3)
0.8 (22,6,3) (26,8,3) (37,11,3) (50,15,3) (78,24,3) (139,42,3) (305,95,3)
0.9 (19,7,3) (26,8,3) (37,11,3) (52,16,3) (80,25,3) (138,44,3) (311,98,3)

0.99 (20,5,4) (28,9,3) (34,12,3) (49,17,3) (79,27,3) (139,47,3) (313,104,3)

4.4 Model Assumptions

To use an LP, we recommend selecting a number of extreme parts in Stage 2. Ques-

tions then arise about the sensitivity of the leveraged plan (relative to a standard

plan) to the model assumptions and to methods for detecting departures from the

assumed model.

A key assumption of model (1.1) is that the properties of the measurement

system are independent of those of the underlying process. This assumption is

sometimes called linearity of the measurement system [Automotive Industry Action

Group, 2002]. In particular, we are assuming that the bias (if any) and the standard

deviation σm do not depend on the part size P . Many measurement systems are

non-linear in that σm increases as the part size increases.

If the bias is constant across part size, this bias gets subsumed into the process

mean and has no effect on the estimation of ρ for either an LP or SP. If the bias

varies across part size so that, given Pi = pi, the mean of Eij in (1.1) depends on
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pi, then we can re-write the model so that the part effect is redefined to include

this bias. With either plan, we can estimate ρ but its value is inflated because the

varying bias is included in the process variation. Neither the SP or LP can detect

varying bias.

If the measurement variability is a function of part size, then, with either plan,

the meaning of ρ is not clear and we are unsure what it is we are estimating.

Since we repeatedly measure parts a number of times with either an SP or an

LP, we have some power to detect if σm is varying over part size. With a leveraged

plan, we typically have fewer repeated measurements. However, if the measurement

variability is increasing with part size, by using extreme parts we have a greater

chance to detect the difference. It is unclear which plan has the advantage to detect

this type of non-linearity.

For an LP, we can check the normality assumption for the baseline measure-

ments using a QQ plot. We can also construct a QQ plot for the residuals of the

repeated measurements, ignoring the baseline measurement to check the normality

of the measurement errors. In practice, if an outlier is observed in the baseline

measurements, we do not recommend the use of the corresponding part in the sec-

ond stage. Such an outlier may be due to either the process or the measurement

system. We would advise a separate study of this part, because, if the extreme

value is due to the measurement system, finding such an outlier in a small baseline

study suggests that there may be a larger problem with the measurement system.

Another question is the issue of robustness of the leveraged plan to departures

from normality to underlying distributions with heavier tails. One might expect

problems because of the use of parts with extreme baseline measurements. For the

standard plan we could not find any results on robustness of the estimators. To

investigate this issue briefly, we conducted a small simulation with four cases:
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1. both the part and measurement error distribution are normal

2. the part distribution is t5 and the measurement error distribution is normal

3. the part distribution is normal and the measurement error distribution is t5,

4. both the part and measurement error distributions are t5.

Although this distributional exchange does not confirm the robustness of lever-

aging, it does give some evidence to that effect. Since the variance of a t5 is 5/3,

the random variables simulated from this distribution were scaled by
√

3/5. Note

that in the simulation all the estimates of ρ were truncated to fall between zero and

one to match common practice and to reduce the unrealistic variation produced by

very large or small values. The results of the simulation, based on 10,000 replicates

for 23 values of ρ spread over the interval (0.01,0.99), are shown in Figure 4.3.

When comparing the other cases to Case 1 in Figure 4.3, we see that changing

the part or measurement error distribution has surprisingly little effect other than

a small increase in the standard deviation for all estimators and a change in the

bias of the ANOVA estimate.

In summary, we can assess the assumptions of model (1.1) as easily as for the

LP as for the SP. Departures from the model affect both plans, but there is no

evidence, based on our very cursory study, that the LP has greater sensitivity

to these departures than does the SP. To be convincing, a much larger study is

required.

4.5 The Leveraged versus Standard Plan

To demonstrate the value of leveraging, we resort to simulation. We consider five

situations. We will compare the LP to the SP where we chose k = 10 parts and

85



0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Case 1 − stdev

ρρ

st
de

v

0.0 0.2 0.4 0.6 0.8 1.0

−0
.0

5
0.

00
0.

05
0.

10

Case 1 − bias

ρρ

bi
as

Combined
ANOVA
Regression
MLE

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Case 2 − stdev

ρρ

st
de

v

0.0 0.2 0.4 0.6 0.8 1.0
−0

.0
5

0.
00

0.
05

0.
10

Case 2 − bias

ρρ

bi
as

Combined
ANOVA
Regression
MLE

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Case 3 − stdev

ρρ

st
de

v

0.0 0.2 0.4 0.6 0.8 1.0

−0
.0

5
0.

00
0.

05
0.

10

Case 3 − bias

ρρ

bi
as

Combined
ANOVA
Regression
MLE

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Case 4 − stdev

ρρ

st
de

v

0.0 0.2 0.4 0.6 0.8 1.0

−0
.0

5
0.

00
0.

05
0.

10

Case 4 − bias

ρρ

bi
as

Combined
ANOVA
Regression
MLE

Figure 4.3: The standard deviation and bias of the LP estimators of ρ for different
distributional assumptions
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make n = 6 repeated measurements for each part as recommended in Automotive

Industry Action Group [2002]. We used maximum likelihood estimation in all cases

to make the comparisons fair. We quantify the difference between the plans using

bias and standard deviation calculated from 10,000 simulations at each value of ρ

spread over the interval (0.01,0.99) with higher density where the bias and standard

deviation are changing rapidly. Also, recall that in most realistic situations ρ is

fairly large.

Comparison 1: N = 60

In this comparison, we assume that no parts have been previously measured. We

compare the following two plans each with a total of 60 measurements

• SP with k =10 and n=6

• LP with b = 30, k = 6 and n = 5.
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Figure 4.4: Comparison of Standard Deviation and Bias for a Leveraged and Stan-
dard Plan

We quantify the difference between the plans using bias and standard deviation

calculated from simulation. We see from Figure 4.4 that the LP is substantially

better than the SP with smaller standard deviation and bias for all values of ρ.
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We can also compare the LP and SP by looking at the total number of measure-

ments required to give a desired precision in the estimation of ρ. Figure 4.5 shows

the total number of measurements required for an LP to have the same precision

(standard deviation) as the SP (k = 10, n = 6) for different values of ρ. In Figure

4.5, the selected LP corresponds to the suggested plan from Section 4.3. For ex-

ample, at ρ = 0.91, when the SP has a standard deviation of 0.060 (see Figure 4.4)

the LP with the same standard deviation for estimating ρ has a total sample size

of 34, where k = 3, n = 5 and b = 19.
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Figure 4.5: The Sample Size N Required for a Leveraged Plan to Have the Same
Standard Deviation as the Standard Plan (k = 10, n = 6) Across the Range of ρ

Comparison 2: a free baseline

Suppose we have a baseline sample with b = 100 from a previous investigation. We

compare the following four sampling plans.

• SP with k = 10 parts selected at random from the baseline and n = 6 (does

not include baseline measurements).

• LP with k = 10 and n = 6 (selecting 10 parts at random). Note this is

equivalent to having an SP with k = 10, n = 6 and including the baseline

measurements into the analysis.
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• LP with k = 2 and n = 2 (selecting the largest & smallest parts from the

baseline).

• LP with k = 10 and n = 6 (selecting the 5 largest & 5 smallest parts from

the baseline).
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Figure 4.6: Comparison of Standard Deviation and Bias of ρ̃ for an LP and SP

For the SP, it is common practice to estimate ρ using only the information from

the 10 repeatedly measured parts, but the estimation procedure can be modified

to include the baseline sample information. We include this second SP as the LP

with k = 10, n = 6 and selecting 10 parts at random because this is equivalent to

having an SP with k = 10, n = 6 and including the baseline measurements into

the analysis. Figure 4.6 shows that the LP is more efficient than the SP in this

situation. Moreover, an LP with b = 100, k = 2, n = 2, is as efficient as the SP

when, in the analysis of the SP, the baseline information is ignored.

Not all of these four plans/analyses have the same number of total measure-

ments, so in some ways this is an unfair comparison. However, Figure 4.6 illustrates

that the baseline information should not be ignored when planning a measurement

assessment. See also Browne et al. [2007]. We show this comparison to promote

the use of baseline information in the analysis. Also, we suggest that planning a
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measurement assessment study after a baseline study is an effective use of resources

in terms of the number of the measurements. Baseline data are often readily and

cheaply available from regular production.

Comparison 3: Optimal Designs

In the previous two comparisons we fixed the standard plan design to be k = 10

and n = 6. In this subsection we compare the optimal design for both the LP and

SP given ρ and the total sample size N . For each plan the optimal design has the

(b, k, n) or (k, n), for the LP or SP respectively, which minimizes the asymptotic

standard deviation of the MLE for ρ given the total sample N and ρ. To find the

optimal designs we used an exhaustive search. That is, for a fixed N we calculate

the asymptotic standard deviation for all combinations of b, k and n such that

b+ kn = N .

Figure 4.7 displays an optimal plan comparison when N is set at either 60 or

100. For each setting of N , two plots are shown. The left plot is the ratio of

standard deviations for the optimal LP and SP when using MLE to estimate ρ and

fixing N. The right plot shows the sample size of an LP that has the same standard

deviation as the optimal SP for a given ρ and fixed N . For example in the top right

plot, when ρ = 0.4 the curve indicates that there is an LP with 45 measurements

that has the same standard deviation as the optimal SP with 60 measurements.

When N equals 60 or 100, the LP has maximum standard deviation that is at

most roughly 15% more efficient than the optimal SP. This occurs when ρ is around

0.4. Since the SP is a subset of the LP the ratio of standard deviations is less 1.

From the right panel of Figure 4.7, the largest savings by using the optimal LP

instead of the optimal SP is about 25% of the original sample size.

Figure 4.8 expands on Figure 4.7 by including the total sample size as a variable.
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Figure 4.7: Comparison of Optimal LP and SP. The left panels show the ratio of
standard deviations for the optimal LP and SP. The right panels show the sample
size of an LP that has the same standard deviation as the optimal SP that has
N=60 or 100 measurements.

The left panel of Figure 4.8 uses contours to demonstrate that the optimal LP has a

smaller standard deviation than the SP when using maximum likelihood to estimate

ρ. Although, the region explored in Figure 4.8 does not include values of N larger

than 250, we can modestly assume that the contours hold for larger N . In fact, the

contours depend on ρ more than N . The most common region for ρ is near one.

Here we see modest gains from using the LP.

The right panel 4.8 shows contours of N−No by ρ and N where No is defined as

the number of measurements required for an optimal LP to have the same standard

deviation as an optimal SP with N measurements and a given ρ. For example, if

we were planning an SP with resources for 150 (N) measurements and we thought

ρ was 0.8, then we could save approximately 20 (N −No) measurements by using
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an LP with 130 (No) measurements and have no loss of precision.
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Figure 4.8: Left panel shows the ratio of standard deviations for the optimal LP
and SP when using ML to estimate ρ. Right panel shows the difference N − No

where No is defined as the number of measurements required for an optimal LP to
have the same standard deviation as an optimal SP with N measurements and a
given ρ.

Comparison 4: Optimal SP versus the Recommended LP

An optimal plan is dependent on knowing the value of ρ. When we do not have this

information we would have to guess it. In contrast, the recommended LP design

given by k = bN/10c, n = 5 and b = N − 5bN/10c does not depend on ρ. We

compare the optimal SP and recommended LP in Figure 4.9. Both panels show

that the recommended LP is more efficient than the SP when we restrict ourselves

to the region ρ ≥ 0.1. For a typical measurement system we would expect a small

measurement error, thus ρ should be near 1. Although, when ρ < 0.1, the optimal

SP quickly becomes more efficient than the LP but again, in measurement system

studies, ρ near zero rarely occurs.

Restricting to the region ρ ≥ 0.1, both panels of Figure 4.9 quantify the advan-

tage of using the recommended LP instead of the SP. Similar, to Figure 4.8, the left
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Figure 4.9: Left panel shows the ratio of standard deviations for the recommended
LP and optimal SP when using ML to estimate ρ. Right panel shows contours of
N −Nr by ρ and N where Nr is defined as the number of measurements required
for the recommended LP to have the same standard deviation as an optimal SP
with N measurements and a given ρ.

panel of Figure 4.9 shows contours of the ratio of standard deviations from the rec-

ommended LP and SP given N and ρ. The right panel of Figure 4.9 shows contours

of N−Nr by ρ and N where Nr is defined as the number of measurements required

for the recommended LP to have the same standard deviation as an optimal SP

with N measurements and a given ρ. For example, if we were planning an SP with

resources for 100 (N) and we thought ρ was 0.8, then we could save approximately

10 (N −Nr) measurements by using the recommended LP with 90 (Nr) measure-

ments and have the same standard error. This means we can obtain modest gains,

over the optimal SP, from using the recommended LP when we restrict ourselves

to the region ρ ≥ 0.1.

Comparison 5: Non-normality

This subsection examines the robustness of the Leveraged and Standard plans when

the part and measurement distributions have longer tails. We repeat the experiment

in Section 4.4 which is a full factorial experiment, where the measurement and
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part distributions which are usually normal are exchanged with t5 distributions.

The results shown in this subsection do not constitute a complete study on the

robustness of the LP or SP but they give some insight as to how they perform

under different distributional assumptions.

An important comparison is against the recommended SP design, k = 10 and

n = 6. We choose to compare this SP against the recommended LP design, b = 30,

k = 6 and n = 5. The results for both the LP and SP are shown in Figure 4.10.

When ρ ≥ 0.2 the LP has a lower MSE in all four cases. In addition, when the

part distribution is t5, i.e. cases 2 and 4, the SP’s MSE becomes considerably worse

than the LP. However, both the LP’s and SP’s MSE increase when we stray from

normality.

Figure 4.11 compares the optimal SP and LP under the various distributional

assumptions. The optimal designs for both plans were chosen based on minimizing

the Fisher information when ρ = 0.80 and N = 100. The SP design was k =

50, n = 2 and the LP was b = 52, k = 16, n = 3. Figure 4.11 suggests that under

different distributional assumptions these two plans are comparable when ρ ≥ 0.8.

When we consider ρ ≤ 0.80, the LP has a lower MSE in all four cases.

We used a limited robustness study to see how the recommended SP and LP

act under different distributional assumptions. If the sample size were larger, we

would be able to detect changes in the part and measurement distribution and then

modify our analysis to compensate for the change.

4.6 Conclusions

In this chapter, we have presented a new leveraged plan for estimating the intraclass

correlation coefficient of a measurement system. We defined leverage to be the
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Figure 4.10: The MSE of the MLE’s for the SP (k = 10, n = 6) and LP (b =
30, k = 6, n = 5.) under different distributional assumptions; 1. both the part and
measurement error distribution are normal, 2. the part distribution is t5 and the
measurement error distribution is normal, 3. the part distribution is normal and
the measurement error distribution is t5, 4. both the part and measurement error
distributions are t5.
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Figure 4.11: The MSE of the MLE’s for the SP (k = 50, n = 2) and LP (b =
52, k = 16, n = 3.) under different distributional assumptions; 1. both the part
and measurement error distribution are normal, 2. the part distribution is t5 and
the measurement error distribution is normal, 3. the part distribution is normal
and the measurement error distribution is t5, 4. both the part and measurement
error distributions are t5.
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purposeful selection of parts with extreme initial measured values to be remeasured.

We showed that the leveraged plan with the same number of total measurements

is more efficient than the standard plan. We provided a closed form estimator for

ρ that performs as well as the maximum likelihood estimator. We recommend an

LP for a fixed number of total measurements N that has a baseline sample of size

b = N − 5bN/10c, in Stage 2 we select a sample of the k = bN/10c most extreme

parts from the baseline and we repeatedly measure each selected part n = 5 times.

We demonstrated that the LP is superior to the SP under a variety of conditions.

If we restrict ourselves to reasonable values of ρ, i.e. ρ ≥ 0.1 , the recommended

LP has a lower MSE than even the optimal SP that depends on the unknown ρ.
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Chapter 5

Leveraged Plan for a

Measurement System with 100%

Inspection

5.1 Context

In this chapter, we compare the leveraged plan with the standard plan, in a manu-

facturing setting which has a high volume in-production measurement system and

measured values are stored. For this chapter, we assume that there is no operator

effect (as is the case with many automated measurement systems) and that the

process involves 100% inspection. The consequences of this context are

• there are a large number of once-measured parts available,

• the total process variation σ2
t and mean µ are known (or estimated with

negligible error). We call µ and σt the baseline information.

We first compare the LP and SP based on the mean squared error (MSE) of

the estimates for ρ. Then, we compare the power of the LP and SP when testing
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the hypothesis (1.19) to determine whether the measurement system is acceptable.

To compare study plans, we compare the power of these tests over all values of ρ

when each test has equivalent size and the same number of total measurements.

5.2 Design

The LP plan is similar to the SP but instead of using a random sample, we sample

parts based on their initial measurements as recorded. In particular, we sample

parts that are extreme relative to the process known mean µ.

Since a large number of parts are measured in the regular process, we assume

that for a measurement study we can select a part with any observed initial mea-

surement (as long as we do not ask for a highly extreme part). To obtain these

parts, we can wait until a part is measured close to the desired measurement or

find the part associated with the desired measurement from the part inventory.

Recall that in the SP, we measure a sample of k = 10 parts n = 6 times each. In

this context, with the LP, k parts are selected based on their initial measurement

from a large sample of measured parts and each selected part is then re-measured

n times.

5.3 Estimation

We present three approaches for estimating ρ and testing the hypothesis of interest,

H0 : ρ ≤ ρ0 versus HA : ρ > ρ0.

The first method of estimation is Maximum Likelihood. The second is based on

a regression estimate. A third is based on a weighted average of the regression
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estimate and the ANOVA estimate using baseline information (from Section 2.2.1).

5.3.1 Maximum Likelihood

The log-likelihood for n repeated measurements on k parts is the same as (4.4).

To estimate ρ, we can maximize (4.4) numerically. The Wald test used to test the

hypothesis in (1.19) is found as in Section 2.2.1. However, the Fisher information

is a special case of (4.10) because the chosen initial measurements are no longer

random and the baseline parameters are known. The Fisher information is

JL2(ρ) =
1

2

kn(n+ 1)(nρ2 + 1)

(1 + nρ)2(1− ρ)2
+

n (SSS − k)

(1 + nρ)(1− ρ)
, (5.1)

The quantity SSC in (4.11) is replaced with the quantity SSS to signify that it

is no longer random in this context because we choose parts with specific initial

measurements. We define SSS as sum of the squared standardized values of the

initial measurements.

SSS =
k∑
i=1

z2
i0 =

k∑
i=1

[
yi0 − µ
σt

]2

. (5.2)

From (5.1) we see that on the standardized scale, increasing the z2
i0’s will increase

the Fisher information. Figure 5.1 shows the effect on the power of selecting 10

parts, with specified SSS value. It is based on the asymptotic power of the Wald

test as shown in (2.17) with Js2(ρ) replaced by JL2(ρ, y0), as given in (5.1). SSS

= 40 corresponds to 10 parts with initial values equal µ ± 2σt or any other set of

{y10, . . . , yk0} such that
∑k

i=1

[
yi0−µ
σt

]2

=
∑k

i=1 z
2
i0 = 40. If we select 10 parts at

random, the expected value of SSS = 10. This means that Figure (5.1) shows the

difference between random and non-random (choosing the most extreme) sampling.
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Figure 5.1: Power Curves for Testing the Hypothesis (1.19) when ρ0 = 0.80 and
ρ0 = 0.91 at α = 0.05, with six repeated measurements and ten parts having SSS
= 10, 40 and 90.

5.3.2 Regression Estimator

When µ and σt are known the regression estimate (4.13) becomes

ρ̂r =

∑
i∈S (yi. − µ) (yi0 − µ)∑

i∈S (yi0 − µ)2

By defining ri = (yi. − µ) /σt and zi,0 = (yi,0 − µ) /σt the regression estimate can

be written as

ρ̂r =

∑k
i=1 rizi0∑k
i=1 z

2
i0

(5.3)

The estimator is unbiased and has variance

V ar (ρ̃r; ρ) =
(1− ρ)(ρ+ 1/n)∑k

i=1 z
2
i0

=
(1− ρ)(ρ+ 1/n)

SSS
. (5.4)

where SSS is defined in (5.2). We see from the denominator of (5.4) that this

estimator has smaller variance when we choose parts that increase the sum of

squares of the standardized initial measurements.
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Using ρ̂r, we reject the hypothesis ρ ≤ ρ0 if

ρ̂r − ρ0

V ar(ρ̃r; ρ0)1/2
> Z1−α (5.5)

The power of the test when ρ = ρ1 is given by

P
{
Z ≥

(
Z1−α [V ar(ρ̃r; ρ0)]1/2 + ρ0 − ρ1

)
[V ar(ρ̃r; ρ1)]−1/2

}
(5.6)

Note that this test based on the regression estimator does not use the informa-

tion from the variability of the repeated measurements to help to estimate ρ.

5.3.3 ANOVA Estimator

When µ and σt are known the ANOVA estimate (4.19) reduces to

ρ̂a = 1− MSW

σ2
t

. (5.7)

Transforming the ANOVA estimator, we see that (1 − ρ̃a)/(1 − ρ) has a χ2-

distribution with k(n − 1) degrees of freedom. Using its distributional properties

we have

E(ρ̃a) = 1− (1− ρ) = ρ

(
b− 1

b− 3

)
− 2

b− 3

V ar(ρ̃a) = (1− ρ)2V ar
(
χ2
k(n−1)

)
=

2(1− ρ)2

k(n− 1)
(5.8)

This estimator performs poorly unless ρ is near one but when combined with

the regression estimator the result has some good properties.
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5.3.4 Combined Estimator

In the next subsection, we show that the test based on the regression estimator does

not perform well when compared to the MLE. To improve the power, we propose

to estimate ρ using a weighted average of the regression and ANOVA estimators

when ρ is large.

The variances of the estimators (5.8) and (5.4) depend on ρ which makes finding

optimal weights impossible since ρ is unknown. We can, however, find optimal

weights for a given value of ρ = ρ0, the hypothesized value in (1.19).

If we have two unbiased independent estimators of ρ, ρ̃1 and ρ̃2 with known

variances σ2
1 and σ2

2, the optimal linear combination is

ρ̃ = w1 ρ̃1 + w2 ρ̃2 =
1/σ2

1

1/σ2
1 + 1/σ2

2

ρ̃1 +
1/σ2

2

1/σ2
1 + 1/σ2

2

ρ̃2 (5.9)

and thus the combined estimator has variance

V ar (ρ̃) =
σ2

1σ
2
2

σ2
1 + σ2

2

. (5.10)

Now, if we obtain ρ̂1 using (5.3) and ρ̂2 with (5.7), it can be shown that the

two estimators are independent. Applying (5.9), we define the combined leveraged

estimate as

ρ̂c = w1ρ̂r + w2ρ̂a

ρ̂c = w1

(∑k
i=1 rizi,0∑k
i=1 z

2
i,0

)
+ w2

(
1− MSW

σ2
t

)
(5.11)

with w1 =
2n
∑k

i=1 z
2
i,0(1− ρ0)

2n(1− ρ0)
∑k

i=1 z
2
i,0 + k(n− 1)(ρ0n+ 1)
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and w2 =
k(n− 1)(ρ0n+ 1)

2n(1− ρ0)
∑k

i=1 z
2
i,0 + k(n− 1)(ρ0n+ 1)

Using (5.10), the variance of ρ̃c when ρ = ρ0 is

V ar (ρ̃c; ρ = ρ0) =
2(1− ρ0)2(ρ0n+ 1)

2n(1− ρ0)
∑k

i=1 z
2
i,0 + k(n− 1)(ρ0n+ 1)

. (5.12)

When ρ = ρ1, the variance of ρ̃c is

V ar (ρ̃c; ρ = ρ1) =

2(1− ρ1)
[2n(1−ρ0)2(ρ1n+1)

Pk
i=1 z

2
i,0+k(n−1)(ρ0n+1)2(1−ρ1)]

[2n(1−ρ0)
Pk

i=1 z
2
i,0+k(n−1)(ρ0n+1)]

2 . (5.13)

We construct the test of the hypothesis (1.19) using the normal approximation

for the estimator. The approximate power of the test is

P
{
Z >

(
Z1−α [V ar(ρ̃c; ρ = ρ0)]1/2 + ρ0 − ρ1

)
[V ar(ρ̃c; ρ = ρ1)]−1/2

}
. (5.14)

Here we use a normal approximation of the distribution of MSW. Actually,

MSW follows a chi-square distribution with k(n− 1) degrees of freedom. A normal

approximation of a chi-square distribution is reasonable if k(n−1) is larger than say,

30. The default choice for the SP is k = 10 and n = 6 which means k(n− 1) = 50.

To create a confidence interval for ρ we assume normality of the estimator and

use the variance of the combined estimator as given in (5.12).

5.3.5 Comparison of Leveraged Plan Analysis Methods

We compare the three estimation methods for an LP using the power of the tests

because the combined estimator requires the specification of ρ0 for estimation. We
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use the power from the Wald tests from (5.6) and (5.14) to generate the power

curve for the Leveraged MLE. In all the comparisons, we use a sample of ten parts

with SSS =
∑k

i=1 z
2
i,0 = 40 and six repeated measurements on each part.
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Figure 5.2: Power Curves for Testing the Hypothesis (1.19) when ρ0 = 0.80 (left),
ρ0 = 0.91 (right), ten parts having

∑
z2
i,0 = 40 and k = 10, n = 6.

Figure 5.2 shows that the test based on the regression estimator performs poorly

and that the test based on the combined estimator performs almost as well as the

Wald test based on the MLEs, with the advantage of having a closed form solution.

5.4 Leveraged Plan Design

The goal of a measurement investigation is to demonstrate that the measurement

system is reliable. In terms of model parameters, the goal can be translated to

stating (with some uncertainty) that ρ is greater than some predetermined value

denoted as ρ0. This goal is achieved by rejecting the test of hypothesis in (1.19).

Figure 5.3 shows the true values of ρ, denoted as ρ1, that have 0.80 power when

testing ρ0 at various values of k (number of parts) and n (number of repeated

measurements). Thus, these contours show the (n, k) combinations that satisfy the

required size and power for the assumed values of ρ.
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Figure 5.3: Contours of ρ for Testing (1.19) when ρ0 = 0.80 and ρ0 = 0.91 at
α = 0.05, power = 0.80, with

∑k
i=1 z

2
i,0 = 4k.

To obtain the contours in Figure 5.3, we determined, for all discrete points

(n, k), the values of ρ that have power 0.80 using the asymptotic Wald test when

testing ρ0 in (1.19). To determine the power of the Wald test for Leveraged MSA,

we use (2.17) but instead of Js2(ρ), we substituted JL2(ρ) as given in (5.1).

Figure 5.3 can be used to determine the necessary sample sizes for testing (1.19)

when ρ0 = 0.80 and ρ0 = 0.91 with size 0.05 and power 0.80. For example, suppose

we wish to determine if the process variability is 80% or more of the total variation

(i.e. ρ0 = 0.80) and it is currently thought that ρ is around 0.95. The point on

Figure 5.3, with ρ0 = 0.80, that corresponds to five parts with
∑5

i=1 z
2
i,0 = 20 and

five repeated measurements on each part satisfies the needs of this investigation

because it is above the ρ = 0.95 contour.

For another example, suppose we are planning an investigation to determine if

the discrimination ratio, as defined in (1.6), is greater than 2 and we want to detect

a ratio greater than 3 with 0.80 power. As shown in Table 1.1, these discrimination

ratio values correspond to ρ = 0.80 and 0.90, respectively. Any combination of a

number of parts and repeated measurements which is above and to the right of the
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Figure 5.4: Contours of ρ for Testing (1.19) when ρ0 = 0, .2, .4 and ρ0 = 0.6 at
α = 0.05, power = 0.80, with
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0.90 contour on Figure 5.3, with ρ0 = 0.80, will be satisfactory.

Examining Figure 5.3 shows that theoretically a design with k ≤ 2 can satisfy

the power requirements. This type of design, though possible, is not recommended.

A more desirable plan is to use several extremes on either side of the mean and to

choose a couple of initial measurements close to the mean. This type of design will

also help to check if the measurement variance is constant across the range of true

part dimensions.

Figure 5.4 can be used in the same same way as Figure 5.3 for testing (1.19)

when ρ0 = 0, 0.2, 0.4 and 0.6 with size 0.05 and power 0.80.

In practice one will not be able to find k parts with initial measures of exactly

some predetermined value, for example, µ± 2σt. Fortunately, the analysis is condi-

tional on the set of initial measurements {y01, y02, . . . , y0k} because the distribution

of these measurements does not depend on ρ. The conditionality principle is reg-

ularly used in regression where the analysis is conditional on the covariates. See

Cox and Hinkley [1974] for a discussion of the conditionality principle. As seen in

(5.12) and (5.13) we obtain a reduction in the variance as long as
∑k

i=1 z
2
i,0 is large.

The results presented in Figure 5.6, given in section 5.5, illustrate the effectiveness

of leveraging and Figure 5.3 is useful to assist in planning an LP.

5.5 Leveraged versus Standard Plan

In this subsection, we show that leveraging is beneficial whenever there is a supply

of parts with measured (and recorded) values so that we can select extremes. Such

a supply will be available if the measurement system is used routinely in production

or if the measurement system assessment is preceded by a baseline study to assess

the performance of the process. There would be a small cost to find the extreme
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parts. What is the gain? To address this question we first compare the MSE and

the power curves for leveraged and standard plans with the same number of parts

and repeated measurements.
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Figure 5.5: The ratio of the square root of the MSE for the LP (n = 6 and ten part
with standardized initial measurements z0 = 2) and two SPs with k = 10, n = 6
(left panel) and k = 10, n = 7 (right panel).

The ratios of the MSE for LP and SP are shown in Figure 5.5. Two SP de-

signs are compared against one LP design. The LP design has n = 6 repeated

measurements and ten parts with standardized initial measurements z0 = 2, i.e.

SSS = 40. This LP design was chosen to match the common practice SP design,

k = 10 and n = 6. The left panel shows the comparison with the most common SP

that has 10 parts measured six times each. For illustration, the right panel shows

the comparison with the SP with k = 10 and n = 7. We include the 1 additional

measurement per part since the LP has n + 1 measurements on each part, if we

include the extreme initial measurement.

Next we compare the power for the same LP and SP discussed above. We

generated the power curves for testing the hypothesis in (1.19) using the Maximum

Likelihood Wald test for the LP and SP. The power of the Wald test for the SP is

given by (2.17). The power of the Wald test for Leveraged MSA uses the same
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formula but instead of Js2(ρ) it uses JL2(ρ) which is given in (5.1). We used

Maximum Likelihood for both power curves because this way, the two designs can

be evaluated fairly.

Figures 5.6 and 5.7 show that the LP is substantially more powerful than the

SP when the 10 parts selected have SSS = 40 and six repeated measurements on

each part.
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Figure 5.6: Power Curves for the LP and SP from Testing (1.19) when ρ0 = 0.80,
ρ0 = 0.91, ten parts having

∑
z2
i,0 = 40 and 6 repeated measurements.

We can also quantify the effects of leveraging by comparing sample sizes. Sup-

pose we select five parts with initial measured values that are two standard devia-

tions from the mean and then measure each part five times. Using the test based

on the combined estimate, the power of the test for ρ0 = 0.8 at ρ = 0.9 is about

0.80. To get the same power with the unleveraged plan as the standard plan and

the test based on the ANOVA estimate, we would need to measure each of five

randomly selected parts seven times.
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Figure 5.7: Power Curves for the LP and SP from Testing (1.19) when ρ0 = 0, .2, .4
and ρ0 = 0.6, ten parts having

∑
z2
i,0 = 40 and 6 repeated measurements.
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5.6 Conclusions and Discussion

In this chapter we presented a new leveraged assessment plan when the process

mean µ and overall process variance σ2
t are known or estimated with neglible er-

ror. This would be the case for a process with 100% inspection, since then every

part produced is measured at least once. Under these conditions, we showed that

leveraging increases the precision of estimation of ρ, the intraclass correlation co-

efficient and increases the power of the hypothesis test in (1.19) compared to the

standard plan. Complicated analysis is not required to realize this gain in power.

Section 5.3.4 shows that the estimator (5.11) which combines the regression (5.3)

and ANOVA using baseline information (4.19) estimators achieves almost the same

power as the MLE. The benefit of leveraging increases when more extreme parts

are chosen in the LP.

We also provided a methodology for designing an LP to meet pre-specified power

values in (1.19).

In conclusion, when we have 100% inspection, leveraging can increase power or

correspondingly, the precision of the estimate of ρ, with no increase in cost.
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Chapter 6

Leveraged Plan for a

Measurement System with

Operators

6.1 Context

In many measurement systems, operators are thought to be a substantial source

of variability. Each operator is assumed to have a different mean effect on mea-

surements so that there are relative biases among the operators. In this chapter,

we extend our previous work on leveraging in Chapters 4 and 5 to allow multiple

operators. Each operator is treated as a fixed effect denoted by µi. That is, there

is a relative bias between two measurements on the same part by different oper-

ators. Recall from Section 1.3 that we extended model (1.1) and (2.1) to include

operators, using a mixed effect model given by

Yijk = µj +Xi + Eijk (6.1)
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where Xi is a random effect of the true part dimension, µj is the mean effect from

operator j, and Eijk is the random effect from repeatedly measuring the same

part with the same operator. The random variables X and E are assumed to be

independent normals with zero means and standard deviations σp, σg, respectively.

The mean of the true part dimension is included into the mean effect for each

operator. Also, in Section 1.3 we defined

µ = (µ1, . . . , µm)t, (6.2)

µ =
1

m

m∑
j=1

µj (6.3)

σ2
pg = σ2

p + σ2
g (6.4)

σ2
m = σ2

o + σ2
g (6.5)

and σ2
t = σ2

o + σ2
p + σ2

g (6.6)

where σ2
o =

1

m

m∑
j=1

(µj − µ)2 , (6.7)

m is the number of operators and µj is the mean for jth operator. The parameter

σpg is the variation seen in measurements made by any single operator on a sample

of parts from the process. The parameter σt represents the total variation seen

in the process if each operator measured the same proportion of parts in regular

production. The parameter σo captures the variation due to differences among the

m operator means (i.e. the effects of relative bias), but is not a standard deviation

in the usual sense. Finally, the parameter σm represents the total variation seen

in the measurement of any particular part if each operator is used in the system

with the same intensity. If each operator has the same mean, then σ0 = 0 and we

can interpret σm and σt as standard deviations as defined in model (1.1). Using

manufacturing jargon, σm represents the overall measurement variability, σg the

repeatability and σo the reproducibility. We assume σg is the same for each operator
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and part.

We shall compare the LP and SP using the two metrics:

• the intraclass correlation coefficient or the process variation divided by the

total variation

η =
σ2
p

σ2
p + σ2

o + σ2
g

=
σ2
p

σ2
t

, (6.8)

• and the proportion of measurement variation attributable to operator bias,

λ =
σ2
o

σ2
g + σ2

o

. (6.9)

We will treat η as the primary parameter of interest while λ is of secondary interest.

Both quantities η and λ are bounded between zero and one. If η is larger than 1/2

the process variation is the dominant source of the overall variation. Similarly, if λ

is larger than 1/2 the variation due to operator differences is the dominant source

of variation in the measurement system. Note that the overall quality or reliability

of a measurement system depends on η and not λ. A good measurement system

will have a value of η near one. If we have a poor measurement system, examining

λ can help us determine how to improve the measurement system. For example,

if λ < 1/2, reducing the gauge variation will have a larger impact than addressing

the operator relative biases.

In this chapter, we introduce two new Leveraged plans (LPs), denoted A and

B, where we deliberately select extreme parts to re-measure from an initial baseline

sample. The two LPs have the same Stage 2 but different Stage 1. For both LPs, in

Stage 2 every operator measures each of the k selected parts n times. The baseline

or Stage 1 for LP A has m operators each measuring b different parts. The baseline

for LP B has m operators each measuring the same b parts. Both LPs require b×m

measurements in Stage 1 but LP A has b×m parts whereas LP B has b parts.
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We demonstrate the advantages of the LPs over the standard plan (SP) by

comparing the standard deviations of the estimators for η and λ defined in (6.8)

and (6.9), respectively.

6.2 Leveraged Plan A

6.2.1 Plan

This plan is conducted in two stages:

Stage 1: Sample (b×m) parts at random from the process to obtain a baseline.

Then allocate b parts to each of them operators. Each operator measures their

b allocated parts once. In this stage, no part is measured twice. We denote

the observed values from part i and operator j as {yij0} for i = 1, . . . , b and

j = 1, . . . ,m. We label the Stage 1 parts and operators as {(1, 1), . . . , (b,m)}

Stage 2: From the baseline sample, select k parts using the observed measured

values. In particular, to improve the estimation for η, sample k parts such

that both

• the initial measurements are extreme relative to their operator average,

defined as
∣∣yij0 − y.j0∣∣ where y.j0 = 1

b

∑b
i=1 yij0, and

• the average of the initial measurements of the selected parts is close to

the baseline average.

Next each operator measures each of the k parts n times to give the additional

data {yijlh, (i, j) ∈ S, l = 1, . . . ,m and h = 1, . . . , n} where S is a subset

of {(1, 1), . . . , (b,m)} with k elements. The total number of measurements in

the leveraged plan is N = m(b+ nk).
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For example, in a leveraged plan A with b = 10,m = 3, k = 6 and n = 2, we

first sample 30 parts at random from the process and allocate 10 parts to each

of the 3 operators. The operators measure each of their 10 assigned parts once.

Then, we pick the parts with the minimum and maximum initial measurement from

each operator. These k = 6 parts are then used in the standard plan where each

operator measures each part twice. This plan has a total of 10× 3 + 6× 3× 2 = 66

measurements. Alternatively, we might pick the six parts which are most extreme

relative to the operator averages, so the number of parts used in Stage 2 is not

necessarily balanced over operators in Stage 1. Note that the standard plan is not

a special case or subset of a leveraged plan A.

6.2.2 Estimation

We form the likelihood using the parameterization
{
µ = (µ1, . . . , µm), σ2

pg = σ2
p +

σ2
g , ρ =

σ2
p

σ2
p+σ2

g

}
because it simplifies the likelihood and we apply the likelihood (4.4)

from Section 4.2.1. Note, µ is defined in (1.9) and represents the vector of operator

means.

To obtain the likelihood for the LP, we (as in Section 4.2.1) decompose the

likelihood into two pieces by conditioning on the baseline measurements. The log-

likelihood for the LP is

lL3(µ, σ2
pg, ρ) = lb3(µ, σ2

pg) + lr3
(
µ, σ2

pg, ρ
∣∣ yij0 i = 1, . . . , b j = 1, . . . ,m

)
(6.10)

To get the complete likelihood, we begin with the likelihood for Stage 1. In the

baseline, each of the m operators measure b parts for total of (b×m) measurements.

Assuming the (b×m) parts in the baseline sample are selected at random from the
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process, the marginal log-likelihood of the baseline is

lb3(µ, σ2
pg) = −bm

2
log σ2

pg −
1

2σ2
pg

{
m∑
j=1

b∑
i=1

(
yij0 − y.j0

)2
+ b

m∑
j=1

(
y.j0 − µj

)2

}
.

(6.11)

where y.j0 = 1
b

∑b
i=1 yij0 is the average of the baseline measurements for operator

j.

To obtain the likelihood for Stage 2, we first consider a single part i (selected

to be repeatedly measured) which is initially measured by operator j. The joint

distribution of this initial measurement Yij0 and the n repeated measurements from

each of the m operators is



Yij0

Y ij1n

...

Y ijmn


v N


 µj

µ⊗ 1n

 , σ2
pg [(1− ρ) Imn+1 + ρJmn+1]

 . (6.12)

where ρ = σ2
p/(σ

2
p + σ2

g), µ = (µ1, µ2, . . . , µm)t, ⊗ denotes the kronecker product,

Y ijln = (Yijl1, Yijl2, . . . , Yijln)t for l = 1, . . . ,m, Iq is an identity matrix with dimen-

sion q, Jq is a square matrix of ones with dimension q and 1q is column vector of

ones with q rows. Y ijkn is vector of n measurements from operator k on a part i

which was initially measured by the jth operator.

The distribution of the repeated measurements
{
Y ij1n, . . . , Y ijmn

}
on a single

part given the initial measurement Yij0 = yij0 is


Y ij1n

...

Y ijmn

∣∣∣∣∣∣∣∣∣∣
Yij0 = yij0

 v N
([
µ+ ρ(yij0 − µj)1m

]
⊗ 1n, Σf

)
.
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where the covariance matrix

Σf = σ2
pg(1− ρ)

[
Imn + ρJmn

]
(6.13)

has a special form which allows us to obtain the following well known properties

[Dillon and Goldstein, 1984]:

Σ−1
f =

1

σ2
pg(1− ρ)(1 +mnρ)

{
(1 +mnρ) Imn − ρJmn

}
|Σf | = σ2mn

pg (1− ρ)mn(1 +mnρ).

Using these properties of Σf , we can write the conditional likelihood (conditional

on yij0) for the repeated measurements on a single part. The measurements for one

part are independent of the measurements from another part. Thus the conditional

likelihood for k parts, each with n measurements, is the product of the individual

likelihoods. By carefully defining new variables, zij0 = (yij0 − µj), we can use (4.4)

to obtain the conditional log-likelihood for all repeated measurements conditional

on the baseline. We get

lr3

(
µ, σ2

pg = σ2
p + σ2

g , ρ =
σ2
p

σ2
p + σ2

g

∣∣∣∣ yij0

)
(6.14)

=

[
−mnk

2
log σ2

pg −
mnk

2
log(1− ρ)− k

2
log(1 +mnρ)

]

−1

2

1

σ2
pg(1− ρ)(1 +mnρ)

(1 +mnρ)SSO +mn
∑

(i,j)∈S

[zij.. − ρzij0]2


where zij0 = (yij0 − µj) is the baseline measurement centred by the mean for op-

erator j, SSO =
∑

(i,j)∈S
∑m

l=1

∑n
h=1(zijlh − zij..)2, zij.. = 1

mn

∑m
l=1

∑n
h=1 zijlh and

zijlh = (yijlh − µl). The parameterization
{
µ, σ2

pg = σ2
p + σ2

g , ρ =
σ2

p

σ2
p+σ2

g

}
simplifies

the likelihood but it can also easily be expressed in terms of
{
µ, σ2

p, σ
2
g

}
.
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To get the MLEs of µ, σ2
pg and ρ, we maximize (6.10). Solutions can be found

numerically. Then to get the MLE’s for η and λ, we apply the appropriate trans-

formations,

η =
ρσ2

pg

σ2
o + σ2

pg

and λ =
σ2
o

σ2
o + (1− ρ)σ2

pg

(6.15)

where σ2
o is defined in (6.7).

6.2.2.1 Fisher Information

The asymptotic variance-covariance matrix of the maximum likelihood estimators

is the inverse of the Fisher information matrix. We obtain the Fisher information

matrix by summing several pieces. The first piece comes from the baseline likelihood

Jb3
(
µ, σ2

pg, ρ
)

=


b
σ2

pg
Im 0m 0m

1
2
mb
σ4

pg
0

0

 , (6.16)

where Im is the identity matrix with dimension m and 0m is a column vector of m

zeros. Since Fisher information matrices are symmetric, we do not show the lower

triangles in these matrices. In addition to the baseline Fisher information matrix,

we have one matrix for every part selected to be repeatedly measured. Each matrix

has the following form. Suppose, we have a part i with initial measurement Yij0

which was measured by operator j. Then the Fisher information is

Jr3ij(µ, σ
2
pg, ρ) =


M0 + M(j) 0m v0 + v(j)

1
2
mn
σ4

pg
−1

2
mnρ(mn+1)

σ2
pg(1−ρ)(1+mnρ)

1
2
nm(nm+1)(nmρ2+1)

(1+mnρ)2(1−ρ)2
+

mn(E[Z2
i10]−1)

(1+mnρ)(1−ρ)

 (6.17)
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where M0 = n(1 +mnρ)Im − n2ρJm, M(j) = nρ(mρ− 1)I(j) − nρJ(m),

I(j) = eje
t
j, J(j) = 1me

t
j + ej1

t
m − ejetj,

v0 = nE[Zi10]
σpg(1−ρ)(1+mnρ)

1m, v(i,j) =
−nmρE[Zij0]

σpg(1−ρ)(1+mnρ)
ej,

and Zij0 = (Yij0 − µj)/σpg
(6.18)

Note, ej is a column vector of zeros of length m except for a 1 at the jth position and

1m is a column vector of m 1s. We require special matrices and vectors M(j) and v(j)

to represent the extra information obtained about µj when we select a part from

that operator. Also, M0 and v0 represent the base amount of information obtained

about the operator means. To estimate the quantities E [Zij0] and E
[
Z2
ij0

]
we

suggest using the observed value yij0 and the maximum likelihood estimates for µj

and σpg. To get the complete Fisher information we sum over all parts used in the

2nd Stage and the baseline Fisher information.

JL3

(
µ, σ2

pg, ρ
)

= Jb3
(
µ, σ2

pg, ρ
)

+
∑

(i,j)∈S

Jr3ij(µ, σ
2
pg, ρ) (6.19)

To obtain the Fisher information for a leveraged plan in terms of (µ, λ, η) we

apply the transformation given in (2.24). Specifically, we apply a matrix, D, given

in (2.22) to JL31

(
µ, σ2

pg, ρ
)
. Then the Fisher information for (µ, λ, η) is

JL3

(
µ, λ, η

)
= DJL3

(
µ1, . . . , µm, σ

2
pg, ρ

)
Dt. (6.20)

Finally, to obtain the asymptotic variance-covariance matrix for (µ, λ, η) we take

the inverse of JL3

(
µ, λ, η

)
.
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6.2.3 Numerical Example

To illustrate how to get estimates, standard errors and check model assumptions

for a leveraged plan we simulated data with m = 3 operators suggested by the

design section with b = 11, k = 3 and n = 3. This means in Stage 1, 33 parts were

sampled at random and distributed equally to the three operators. The baseline

data are presented in Table 6.1. The three extreme parts chosen for Stage 2 are

Table 6.1: Example Baseline (Stage 1)

Baseline by Operator
(i,j) 1 2 3

1 -1.37 2.16 0.35
2 -0.05 -0.72 -0.18
3 -0.95 -0.07 0.14
4 -0.22 -1.34 -1.12
5 1.13 -1.84 1.20
6 0.22 0.61 -0.98
7 -0.61 -0.93 -0.49
8 0.23 -1.10 1.60
9 -1.24 1.03 -1.20
10 1.11 -0.05 1.89
11 -0.96 0.10 0.97
y.j0 -0.25 -0.20 0.20
s2
.j0 0.76 1.34 1.22

highlighted in bold. These three parts were then measured by each operator n = 3

times to yield the data in Table 6.2.

Using the observed data, the maximum likelihood estimates for
(
µ1, µ2, µ3, σ

2
pg, ρ

)
are (-0.187, -0.095, 0.046, 1.026, 0.997). Using the transformations (6.15), the maxi-

mum likelihood estimates for (λ, γ) are (0.765, 0.108). We can also obtain standard

errors by applying (6.20). In this example, the standard errors for λ and γ are

0.0609 and 0.0159, respectively. We can then construct approximate confidence

intervals using these standard errors.
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Table 6.2: Example repeats (Stage 2)

Repeated Measurements for Part (i, j)
(5, 1) (1, 2) (10, 3)

Repeats Repeats Repeats
Operator 1 2 3 1 2 3 1 2 3

1 1.16 1.08 1.27 1 2.05 1.96 2.03 1 1.82 1.65 1.73
2 1.23 1.29 1.17 2 2.15 2.15 2.08 2 1.79 1.87 1.83
3 1.35 1.36 1.37 3 2.26 2.37 2.35 3 1.93 1.96 1.94

To check the model fit, we created a QQ plot of the baseline residuals defined as

yij0− y.j0. This plot is shown in the left panel of Figure 6.1. The right panel shows

the baseline residuals by operator which can be used to verify the assumption of

constant variance σg across the three operators. These two plots show no evidence

to dispute the model.
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Figure 6.1: Checking model fit. The left panel shows a QQ plot of the baseline
residuals yij0 − y.j0 and the right panel shows these residuals by operator.

To further check the model fit, we created a QQ plot of the Stage 2 residuals

defined as yijlh − yijl. where yijl. = 1
n

∑n
h=1 yijlh. This is shown in the left panel of

Figure 6.2. The right panel shows the Stage 2 residuals by operator which can be
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used as a further check of constant variance across the three operators. These two

plots also show no evidence to reject the model for this example.
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Figure 6.2: Checking model fit. The left panel shows a QQ plot of the 2nd stage
residuals yijlh − yijl. and the right panel shows these residuals by operator.

6.2.4 The Effect of Direction in a Leveraged Plan

This subsection was motivated by the following problem. Suppose in Stage 2, we

select all large parts (or all small) from each operator. For example, in one sampling

plan we could choose large parts only for each operator. Then, is there a sampling

plan that minimizes the asymptotic variance for η? The answer is yes but we show

that the benefit of this plan is likely not worth the extra complexity. That is, there

is little benefit from selecting all large parts (or all small) from each operator.

Specifying if we select large or small parts for remeasurement affects what we

call direction of an LP. The term direction refers to the direction of the vector u,

defined in (6.21). Informally, u is the vector of sums by operator of the initial

measurements associated with the parts selected for Stage 2. In Appendix B.1,
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we show that asymptotic variance of η can be written as a function of the inner

product of

r = (µ− µ1m) and u =
∑

(i,j)∈S

E [Zij0] ej =


∑

(i,1)∈S E [Zij0]

...∑
(i,m)∈S E [Zij0]

 (6.21)

where ej a column vector of zeros except for the jth position which contains an one.

Note r is a vector of differences between each operator’s mean and the overall mean

so that σ2
o = 1

m
rtr.

In Appendix B.1, we show that the asymptotic variance of η is smaller when the

inner product (utr) > 0 or when u and r tend to point in the same direction. To

control the inner product, (utr), we modify the selection method for Stage 2. We

use the notation (a, b) to indicate that we chose parts with initial measurements

a and b from an operator. For example, if m = 3, µ = (−1, 0, 1), and we choose

parts with values (−3,−3), (−2,+2) and (+3,+3) from operator one, two and

three respectively. Then the vector ut = (−4, 0, 4) and the inner product (utr) =

4 + 0 + 4 = 8. In contrast, if we choose parts with values (+3,+3), (+2,−2) and

(−3,−3) from operators one, two and three respectively and then the inner product

(utr) = −4 + 0− 4 = −8.

The asymptotic variance of η depends on the Stage 2 sampling plan through

the vector u and
∑

(i,j)∈S
[
Z2
ij0

]
. This means we can summarize the behaviour of

the asymptotic variance of η with two quantities. If we select one part for remea-

surement from each operator then
∑

(i,j)∈S
[
Z2
ij0

]
reduces to utu. But if we have

more than one part from each operator the relationship between
∑

(i,j)∈S E
[
Z2
ij0

]
and u is more complicated.

To explore how changing the Stage 2 selection method affects the asymptotic
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standard deviation of the MLE for η, we let m = 2, b = 15, n = 2, fix the parameters

(µ, λ, η) by setting σ2
t = 1, µ2 ≥ 0, µ1 = −µ2, µ1 + µ2 = 0 and (µ2

1 + µ2
2)/2 = σ2

o ,

and select one part from each operator with initial measurements y10 and y20. Note,

that by applying the above constraints we have r = σ2
o(−1, 1). Next, to ensure the

initial measurements are reasonable, we standardize them with u1 = (y10−µ1)/σpg

and u2 = (y20 − µ1)/σpg so that ut = (u1, u2) and E
[
Z2
ij0

]
= σ2

pg(u
2
1 + u2

2). Figure

6.3 displays the contours of the asymptotic standard deviation for the MLE of η

when b = 15, k = 2, n = 2 and m = 2 versus the initial measurements u1 and

u2 taken from operator 1 and 2, respectively. In each plot we divide the standard

deviation by its minimum to give a comparable scale across the plots. For each

panel, the minimum standard deviation occurs when ut = (−2,+2). This point

has two features; it maximizes the length, utu and is parallel to or has the same

direction as the vector r = µ − µ1m. The other corners also maximize the length.

The worst corner (2,−2) still performs well relative to the best corner (−2,+2)

because in the top row of plots, the ratio between the minimum and maximum

standard deviation is small and in the other plots, maximizing the length (utu) is

far more important than the direction (utr). From this interpretation, Figure 6.3

suggests that if we select parts with extreme initial measurements, we can ignore

the direction.

We continue to compare the direction and length in Figure 6.4 by comparing

two points from Figure 6.3; (−2, 2) the corner which yielded the smallest standard

deviation within each plot and (2,−2) the point with the same length that had the

largest standard deviation. These corners yield the smallest and largest standard

deviations because r = σ2
o(−1, 1) and these two corners maximize and minimize the

inner product rtu while fixing the length. Figure 6.4 demonstrates that by choosing

extreme parts, even in the worst direction, we can achieve results comparable to

the best direction.
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Figure 6.3: The asymptotic standard deviation for the MLE of η when b = 15, k =
2, n = 2,m = 2 and the initial measurements u1 and u2 are from operator 1 and 2,
respectively. Each plot is scaled by its minimum.
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Figure 6.4: The ratio of asymptotic standard deviations for the MLEs of η from
ut = (2,−2) compare to ut = (−2, 2) when b = 15, k = 2, n = 2,m = 2 and the
initial measurements u1 and u2 are from operator 1 and 2, respectively.

To end this section, we explore selection methods for Stage 2 where two parts

are selected from each operator. Similar to the previous comparison we allow the

standardized initial measurements to take on values between −2 and +2 but now

we assume there are m = 3 operators such that µ = (−a, 0, a) and a =
√

3
2
σ2
o .

Other compositions of µ are more realistic but since we restricted the standard

initial measurements to be between −2 and 2 the chosen composition allows a

corner, which maximizes the length, to be parallel to the optimal direction. For

this comparison we consider three different selection methods with the same design

b = 18, k = 6, n = 2. The three selection methods are

1. The optimal selection method selects parts along the direction of (µ − µ1m)

which means we select parts with standardized initial measurements (−2,−2)

from operator 1, (−2,+2) from operator 2 and (+2,+2) from operator 3.

2. The balanced selection method selects two parts, one with a large and one with

a small initial measurement, which means we select parts with standardized
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initial measurements (−2,+2) from each of the three operators.

3. The worst selection method selects parts in the opposite direction of (µ−µ1m)

which means we select parts with standardized initial measurements (+2,+2)

from operator 1, (−2,+2) from operator 2 and (−2,−2) from operator 3.
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Figure 6.5: The ratio of asymptotic standard deviations for the MLEs of η from
the balanced (left panel) and worst (right panel) selection methods compared to
the optimal selection method. All three selection methods have the same design
(b = 18, k = 6, n = 2 and m = 3).

Figure 6.5 shows similar results as Figure 6.4 in that the non-optimal selection

methods are comparable to the optimal selection method. In practice, it is possible

to adopt an approximately optimal selection method because we can estimate (µ−

µ1m) from the baseline. Based on the results seen for this particular example,

the gains will be small (smaller than what is presented here) and it is probably

not worth the additional complexity. In addition, here we have assumed that µ

were known and in practice they would have to be estimated. We suggest using a

balanced selection method. That is, select a roughly equal number of parts with

large and small initial measurements for each operator because these parts will
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typically have the most extreme measurements. Also, a balanced selection method

will help detect if the measurement system has constant variance across the part

values.

6.2.5 Leveraged Plan A Design

In this section, we present some general guidelines for choosing a type A leveraged

plan (i.e. choosing values for b, k and n) when the total number of measurements

is N=60, 90 or 150 and there are m = 3 operators. We based our guidelines on

designs that have the smallest asymptotic standard deviation of η calculated using

the Fisher information. To find the preferred plans with N and m fixed, we pick

a point in the region η ∈ (0.01, 0.99) and λ ∈ (0, 1) and calculate the asymptotic

standard deviations for all possible designs. Again we assume that the operator

effects are equally spaced. That is, if σ2
o = 1 and µ = 0 then µ = (−1.225, 0, 1.225).

When k is not a multiple of 2m = 6, the set S of parts selected for Stage 2 is not

balanced across operators. To select the parts, we use a balanced selection method

as suggested in the last paragraph of subsection 6.2.4.

In Table 6.3, we present a cross-section of the full results of the search (given in

Appendix B). The optimal designs in Table 6.3 change slowly with η. Choosing an

optimal design in practice is not possible because of the dependence on the unknown

parameters. We might suggest a criterion that summarizes the performance of a

design over all values of η and λ. However, any such criterion would be difficult

to justify. In Table 6.3, the baseline size (b ×m) is around half the total number

of measurements N and the number of repeated measurements n is two or three.

We thus consider only two leveraged plans (b = 11, k = 3, n = 3) and (b = 18, k =

6, n = 2) because they match designs featured in Table 6.3 and have k equal to an

integer multiple of the number of operators. This property ensures that an equal
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Table 6.3: The LP designs (b,k,n) with the smallest asymptotic standard deviation
of η given λ, η when m = 3.

η N=60 λ ∈ N=90 λ ∈ N=150 λ ∈
0.5 (8,6,2) (0.05,0.08) (14,8,2) (0.01,0.14) (24,13,2) (0.01,0.05)

(10,5,2) (0.09,0.29) (16,7,2) (0.15,0.31) (26,12,2) (0.06,0.35)
(12,4,2) (0.30,0.87) (18,6,2) (0.32,0.67) (28,11,2) (0.36,0.62)
(14,3,2) (0.88,0.95) (20,5,2) (0.68,0.86) (30,10,2) (0.63,0.83)

(22,4,2) (0.87,0.95) (32,9,2) (0.84,0.86)
(38,6,2) (0.87,0.91)

0.75 (10,5,2) (0.05,0.26) (14,8,2) (0.05, 0.05) (26,12,2) (0.05,0.23)
(12,4,2) (0.27,0.84) (16,7,2) (0.06, 0.31) (28,11,2) (0.24,0.56)
(14,3,2) (0.85,0.94) (18,6,2) (0.32, 0.65) (30,10,2) (0.57,0.8)
(16,2,2) (0.95,0.95) (20,5,2) (0.66, 0.85) (32,9,2) (0.81,0.85)

(22,4,2) (0.86, 0.95) (35,5,3) (0.86,0.88)
(36,7,2) (0.89,0.9)
(38,6,2) (0.91,0.94)
(40,5,2) (0.95,0.96)

0.9 (10,5,2) (0.05,0.35) (16,7,2) (0.05,0.34) (26,12,2) (0.05,0.26)
(12,4,2) (0.36,0.84) (18,6,2) (0.35,0.67) (28,11,2) (0.27,0.57)
(14,3,2) (0.85,0.94) (20,5,2) (0.68,0.85) (30,10,2) (0.58,0.79)
(16,1,4) (0.95,0.95) (22,4,2) (0.86,0.95) (32,9,2) (0.80,0.86)

(34,8,2) (0.87,0.87)
(36,7,2) (0.88,0.92)
(38,6,2) (0.93,0.95)
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number of parts measured by each operator in the baseline are represented in the 2nd

Stage. Figure 6.6 shows the asymptotic standard deviation of η for these two plans

versus the optimal designs given in Table 6.3, over the parameter space. For either

plan, there is at most a 15% increase in the standard deviation of η from using

the suggested LP design as opposed to an optimal design which depends on the

unknown parameters. The benefit of choosing the optimal over the recommended

plan diminishes as we increase the total number of measurements (i.e. move from

the left panel to the right panel in Figure 6.6).
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Figure 6.6: The standard deviation of the LP estimator from two designs b =
11, k = 3, n = 3 (left panel) and b = 18, k = 6, n = 2 (right panel) divided by the
standard deviation of the optimal plan given N = 60 (left panel), 90 (right panel),
η, λ and m = 3.

We also investigated how these two plans behave when the operator effects are

not equally spaced. Because we select the same number of parts for each operator

from the baseline, we see in (B.7) that the estimators from these plans do not

depend on how the operator effects are distributed to make up σo.

To summarize, we have the following guidelines for selecting a leveraged plan

when only a few operators make regular use of the measurement system and the
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total number of measurements N available is roughly specified:

• involve all m operators

• in Stage 1, select bm parts at random from the process where bm is close to

N/2. Each operator measures b parts.

• in Stage 2, select an equal number of extreme parts from each operator based

on the initial measurements to give a total of k parts. Since each of these

parts will be measured two or three times by each operator, select k so that

2mk or 3mk is approximately N/2.

6.2.6 Leveraged Plan A versus Standard Plan

To demonstrate the value of the leverage plan we resort to simulation. We compare

the following two plans when there are m = 3 operators and the total number of

measurements is N = 60 or 90:

1. N = 60, with m = 3

• SP with k = 10 and n = 2 (a commonly used plan in practice)

• LP with b = 11, k = 3 and n = 3 (as recommended in Section 6.2.5)

2. N = 90, with m = 3

• SP with k = 10 and n = 3 (a commonly used plan in practice)

• LP with b = 18, k = 6 and n = 2 (as recommended in Section 6.2.5)

We use MLE for both the leveraged plan and standard plan. We quantify the

difference between the plans using the ratio of square root of the mean squared

error (MSE) of the estimators for η and λ from the LP and SP. To calculate the
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ratio we simulated 1,000 repeats at a grid of values of η and λ spread over the

region (0, 1)× (0, 1). Then to present the data in Figure 6.9 we applied a smoother

across the parameter space. We used fitted values from a non-linear regression

model because of simulation error.
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Figure 6.7: The MSE ratios for estimators of η (left panel) and λ (right panel) from
the leveraged plan (b = 11, k = 3, n = 3) and standard plan (k = 10, n = 2) across
η and λ when the total sample size is 60.

Figure 6.9 shows that the LP has a lower MSE for η than does SP. Conversely,

the SP has a lower MSE for λ than the LP. We think estimation of η is more

important than λ because the λ value does not matter if we have a good mea-

surement system. A good measurement system [as recommended by Automotive

Industry Action Group, 2002] should have η ≥ .91. In this range the SP is 1.3 to

1.4 times more efficient in estimating λ while the LP is 1.6 to 2 times more efficient

in estimating η.

Figure 6.10 shows the results when the total sample size is N = 90. For this

case we get similar qualitative results but now estimation of η with the LP is 2

times more efficient than the SP for η ≥ 0.91.
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Figure 6.8: The MSE ratios for estimators of η (left panel) and λ (right panel)
from the leveraged plan (b = 18, k = 6 and n = 2) and standard plan (k = 10 and
n = 3) across η and λ when the total sample size is 90.

6.3 Leveraged Plan B

We consider a second version of the leveraged plan where in both Stages 1 and 2

any selected part is measured by all operators.

6.3.1 Plan B

This second LP is conducted in two stages:

Stage 1: Sample b parts at random from the process and have the m operators

measure each part once for a total (b×m) measurements. In this stage, every

part is measured m times. We denote the observed values from part i as a

vector, y
i0

= (yi10, . . . , yim0). Individually, {yij0} is the measured value from

operator j on part i.

Stage 2: From the baseline sample, select k parts using the observed measured
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values. In particular, to improve the estimation for η, sample k parts such

that both

• the part average of initial measurements are extreme relative to the

overall average, defined as |yi.0 − y..0| where yi.0 = 1
m

∑m
j=1 yij0 and y..0 =

1
bm

∑b
i=1

∑m
j=1 yij0, and

• the average of the initial measurements of the selected parts is close to

the baseline average.

These k parts are then used in a standard plan. That is each operator mea-

sures each of the k parts n times to give the additional data {yijlh, (i, j) ∈

S, l = 1, . . . ,m and h = 1, . . . , n} where the S is a subset of {(1, 1), . . . , (b,m)}

with k elements. The total number of measurements in the leveraged plan is

N = m(b+ nk).

For example, for a type B leveraged plan with b = 10, m = 3, k = 2 and

n = 2, we sample 10 parts at random from the process and then have each of

the three operators measured every part once. Then, we pick the parts with the

minimum and maximum average initial measurements. These k = 2 parts are then

measured by each operator twice more. This plan has a total of 3(10 + 2× 2) = 42

measurements. Note, that the standard plan is a subset of a leveraged plan where

k = b. If, in this leveraged plan, we repeatedly measure all the parts from the

baseline we have the standard plan.

6.3.2 Estimation for Leveraged Plan B

We form the likelihood using the parameterization
{
µ, σ2

pg = σ2
p + σ2

g , ρ =
σ2

p

σ2
p+σ2

g

}
because it simplifies the likelihood and we apply the likelihood (4.4) from Section

4.2.1. Note, µ is defined in (1.9) and represents the vector of operator means.
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To obtain the likelihood for the LP, we again decompose the likelihood into two

pieces by conditioning on the baseline measurements. The log-likelihood for the LP

is

lL4(µ, σ2
t , ρ) = lb4(µ, σ2

pg) + lr4
(
µ, σ2

pg, ρ
∣∣ yij0

)
. (6.22)

To get the complete likelihood, we begin with the likelihood for Stage 1. In the

baseline, each of the m operators measure b parts for total of (b×m) measurements.

This is the same as the standard plan. Thus we can use the standard plan likelihood

given in (2.5) but instead we have k = b and n = m. The baseline likelihood is

lb4(µ, σ2
pg) = −1

2
b

[
m log(σ2

pg) + (m− 1) log(1− ρ) + log(1 + ρ(m− 1))

]
−1

2

[1 + ρ(m− 1)]SSW ′ − ρm2SSA′

σ2
pg(1− ρ) [1 + (m− 1)ρ]

(6.23)

where SSA′ =
∑b

i=1 z
2
i.0, SSW ′ =

∑b
i=1

∑m
j=1 z

2
ij0, zi.0 =

∑m
j=1 zij0/m and zij0 =

yij0 − µj.

To obtain the likelihood for Stage 2, we first consider a single part i (selected to

be repeatedly measured). Note that in LP B each part was already measured once

by each operator in Stage 1. The joint distribution of these initial measurements

Y i0 = (Yi10, . . . , Yim0) and the n repeated measurements {Y 10, . . . , Y m0} is



Y i0

Y i1

...

Y in


v N


 µ

µ⊗ 1n

 , Σm(n+1) =
Σm ρσ2

t Jm,mn

ρσ2
t Jmn,m Σmn

 , (6.24)

where Σn is defined in (4.1), ρ = σ2
p/(σ

2
p+σ2

m), Y il = (Yi1l, Yi2l, . . . , Yiml)
t represents

a vector of the lth measurement by the m operators on part i for l = 1, . . . , n and

Yijl is a random variable representing the kth measurement by operator j on part i.
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Since, the random variables {Y i0, Y i1, . . . , Y in} have a multivariate normal dis-

tribution, if we condition on the initial measurements {Y i0 = y
i0
}, the distribution

of the repeated measurements {Y i1, . . . , Y in} is


Y i1

...

Y in

∣∣∣∣∣∣∣∣∣∣
Y i0 = y

i0

 v N

([
µ+

ρm

1− ρ+ ρm

m∑
j=1

(
y
ij0
− µ

)
/m

]
⊗ 1mn, Σv

)
.

This distribution has a similar form as seen in (4.2). Specifically, we notice that

the initial measurements affect the mean but not the variance. Additionally, the

mean is only affected by the average of the initial measurements.

We derive the covariance matrix Σv, using the properties of matrices

Σv = Σmn −
(
ρσ2

t Jmn,m
)
Σ−1
m

(
ρσ2

t Jm,mn
)

= Σmn − ρ2σ4
t Jmn,m

(
1

σ2
t

{
1

1− ρ
Im −

ρ

(1− ρ)(1− ρ+ ρm)
Jm

})
Jm,mn

= Σmn − ρ2σ2
t

{
1

1− ρ
Jmn,mImJm,mn −

ρ

(1− ρ)(1− ρ+ ρm)
Jmn,mJmJm,mn

}
= Σmn − ρ2σ2

t

{
1

1− ρ
mJmn,mn −

ρ

(1− ρ)(1− ρ+ ρm)
m2Jmn

}
= Σmn − ρ2σ2

t

{
m

(1− ρ+ ρm)

}
Jmn

= σ2
t

[
(1− ρ)Imm + ρJmn

]
− ρ2σ2

t

{
m

(1− ρ+ ρm)

}
Jmn

= σ2
t

(
(1− ρ)Imm +

ρ(1− ρ)

(1− ρ+ ρm)
Jmn

)
= σ2

t (1− ρ)

(
Imm +

ρ

(1− ρ+ ρm)
Jmn

)
.

Σv has a special form which allows us to obtain the following well known properties

[Dillon and Goldstein, 1984]:

Σ−1
v =

1

σ2
t (1− ρ)

(
Imn −

ρ

1− ρ+ ρm+ ρnm
Jmn

)
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∣∣Σv

∣∣ =

(
σ2
t (1− ρ)

)mn(
1− ρ+ ρm+ ρnm

1− ρ+ ρm

)

Using these properties of Σv, we can write the conditional likelihood (conditional

on the vector y
i0

) for the repeated measurements on a part. The measurements

on one part are independent of the measurements from another part. Thus the

conditional likelihood for the k parts is the product of the individual likelihoods.

This conditional likelihood has the same form as (4.4) but is slighly different because

here we are conditioning on more than one measurement. The conditional log-

likelihood is

lr4( µ, σ2
pg, ρ

∣∣∣ y
i0

) =

−k
2

{
mn log

(
σ2
pg(1− ρ)

)
− log (1− ρ+ ρm) + log (1− ρ+ ρm+ ρnm)

}
−1

2

1

σ2
pg(1− ρ)(1− ρ+ ρm+ ρnm)

{
(1− ρ+ ρm+ ρnm)SSV

+nm(1− ρ+ ρm)
∑
i∈S

(
vi.. −

ρm

1− ρ+ ρm
vi.0

)2
}

(6.25)

where vij0 = (yij0 − µj) is the baseline measurement for the ith part measured

by operator j, SSV =
∑

i∈S
∑m

j=1

∑n
k=1(vijk − vi..)

2, vi.. = 1
mn

∑m
j=1

∑n
k=1 vijk,

vijk = (yijk − µj) and vi.0 =
∑m

j=1(yij0 − µj)/m. Surprisingly, even though we

condition on a vector of measurements the conditional likelihood depends only on

the average of the initial measurements, denoted by vi.0.

To find the MLEs of µ, σ2
pg and ρ, we maximize (6.22). Solutions can be found

numerically. Then to get the MLE’s for η and λ, we apply the appropriate trans-

formations given in (6.15).
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6.3.2.1 Fisher information

We obtain the Fisher information matrix by summing two pieces. The first piece

comes from the baseline likelihood,

Jb4
(
µ, σ2

pg, ρ
)

=
b

σ2
pg(1−ρ)(1+ρ(m−1))

[(1− ρ+ ρm)Im − ρJm] 0m 0m

bm
2σ2

pg

−bm(m−1)ρ
2σ2

pg(1−ρ)(1+ρ(m−1))

b(m−1)m(ρ2(m−1)+1)
2(1−ρ)2(1+ρ(m−1))2

(6.26)

and the second piece is from the Stage 2 likelihood. The Stage 2 Fisher information

is shown element by element,

E

[
−∂

2lr4
∂µ2

j

]
=

kn [(1− ρ)2 + (1− ρ+mρ [n+ 1])(1− ρ+mρ)(m− 1)]

σ2
pg(1− ρ)(1− ρ+mρ [n+ 1])(1− ρ+mρ)m

E

[
− ∂2lr4
∂µj∂µl

]
=

kn [(1− ρ)2 − (1− ρ+mρ [n+ 1])(1− ρ+mρ)]

σ2
pg(1− ρ)(1− ρ+mρ [n+ 1])(1− ρ+mρ)m

(6.27)

E

[
− ∂2lr4
∂µj∂σ2

pg

]
= 0 (6.28)

E

[
− ∂2lr4
∂µj∂ρ

]
= −

nm
∑

i∈S vi.0

σ2
pg(1− ρ+ ρm)2(1− ρ+ ρm+mnρ)

(6.29)

E

[
− ∂2lr4
∂(σ2

pg)
2

]
=

1

2

kmn

σ2
pg

(6.30)

E

[
− ∂2lr4
∂σ2

pg∂ρ

]
= −1

2

mnkρ(ρ(n+ 1)m2 + (1− ρ)(n+ 2)m− 1 + ρ)

(1− ρ)(1− ρ+ ρm+ ρnm)(1− ρ+ ρm)σ2
pg

(6.31)

E

[
−∂

2lr4
∂ρ2

]
=

{
2nm3(1− ρ)(1− ρ+ ρm+ ρnm)

k(1− ρ+ ρm)

∑
i∈S

v2
i.0/σ

2
pg

−(2ρ− 1)(mn− 1)

+ρ2m(4(mn+m− 1) + n(mn− 1))

+ρ32(m− 1)(mn+ 2m− 1)(mn+m− 1)

+ρ4(m− 1)2(mn+m− 1)2

}
×
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kmn

2(1− ρ)2(1− ρ+ ρm)2(1− ρ+ ρm+ ρnm)2
(6.32)

The first thing to notice about this Fisher information is that (6.32) increases

when we select parts associated with initial measurements that are far from the

overall mean µ. In contrast to the LP A, the Fisher information is the same for all

the means µ because this plan is symmetric with respect to the operators.

To get the complete Fisher information we add the baseline and the 2nd Stage

Fisher information matrices.

JL4

(
µ, σ2

pg, ρ
)

= Jb4
(
µ, σ2

pg, ρ
)

+ Jr4(µ, σ2
pg, ρ) (6.33)

To obtain the Fisher information for η, λ we use the method given in (2.24).

6.3.3 Leveraged Plan B Design

In this section, we present some general guidelines for choosing a leveraged plan (i.e.

choosing values for b, k and n) when the total number of measurements is N=60,

90 or 120 and there are m = 3 operators. We based our guidelines on designs that

have the smallest asymptotic standard deviation of η calculated using the Fisher

information. To find the preferred plans with N and m fixed, we pick a point in

the region η ∈ (0.01, 0.99) and λ ∈ (0, 1) and calculate the asymptotic standard

deviations for all possible designs. Again, as in section 6.2.5, we assume that the

operator effects are equally spaced. To select the parts, we take a roughly balanced

number of large and small parts.

In Table 6.4, we present a cross-section of the full results of the search (given

in Appendix B). The optimal designs in Table 6.4 change slowly with η. Choos-

ing an optimal design is not possible because of the dependence on the unknown
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Table 6.4: The LP B designs (b,k,n) with the smallest asymptotic standard devi-
ation of η given λ, η when m = 3.

η N=60 λ ∈ N=90 λ ∈ N=150 λ ∈
0.25 (14,3,2) (0.01,0.17) (22,4,2) (0.01,0.41) (34,8,2) (0.01,0.05)

(16,2,2) (0.18,0.64) (24,3,2) (0.42,0.48) (36,7,2) (0.06,0.16)
(18,1,2) (0.65,0.99) (26,2,2) (0.49,0.71) (38,6,2) (0.17,0.41)

(28,1,2) (0.72,0.99) (40,5,2) (0.42,0.45)
(42,4,2) (0.46,0.62)
(44,3,2) (0.63,0.64)
(46,2,2) (0.65,0.76)
(48,1,2) (0.77,0.99)

0.5 (16,2,2) (0.01,0.19) (26,2,2) (0.01, 0.33) (42,4,2) (0.05,0.17)
(18,1,2) (0.20,0.99) (28,1,2) (0.34, 0.99) (44,3,2) (0.18,0.21)

(46,2,2) (0.22,0.44)
(48,1,2) (0.45,0.99)

0.75
to (18,1,2) (0.05,0.35) (28,1,2) (0.01,0.99) (48,1,2) (0.01,0.99)

0.99

parameters. In Table 6.4, n, the number of repeated measurements is 2 and k is

small.

6.3.4 Leveraged Plan B versus Standard Plan

To demonstrate the value of the leveraged plan, we resort to simulation. We com-

pare the following two plans when there are m = 3 operators and the total sample

size is N = 60 and 90 measurements:

1. N = 60, with m = 3

• SP with k = 10 and n = 2 (a commonly used plan in practice)

• LP with b = 16, k = 2 and n = 2 (as recommended in Section 6.3.3)

2. N = 90, with m = 3

• SP with k = 10 and n = 3 (a commonly used plan in practice)
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• LP with b = 26, k = 2 and n = 2 (as recommended in Section 6.3.3)

We use MLE for both the leveraged plan and standard plan. We quantify the

difference between the plans using the ratio of the square root of the mean squared

error (MSE) of the estimators for η and λ from the LP and SP. To calculate the

ratio we simulated 1,000 repeats at a grid of values of η and λ spread over the

region (0, 1)× (0, 1). Then to present the data in Figure 6.9 we applied a smoother

across the parameter space.

MSE(ηLP) MSE(ηSP)

λ
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0.2 0.4 0.6 0.8

0.
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MSE(λLP) MSE(λSP)

λ

η

0.2 0.4 0.6 0.8

0.
2

0.
6

Figure 6.9: The mean squared error (MSE) ratios for estimating η (left panel) and
λ (right panel) from the leveraged plan (b = 16, k = 2, n = 2) and standard plan
(k = 10, n = 2) across η and λ when the total sample size is 60.

Figure 6.9 shows that the LP B has a lower MSE for η than does SP except

when λ is near 1. Unlike the LP A, LP B is comparable to the SP when it comes

to estimating λ, although the SP still has a lower MSE for λ. Figure 6.10 shows

similar results when the total sample size is N = 90.
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Figure 6.10: The mean squared error (MSE) ratios for estimating η (left panel) and
λ (right panel) from the leveraged plan (b = 26, k = 2 and n = 2) and standard
plan (k = 10 and n = 3) across η and λ when the total sample size is 90.

6.4 Leveraged Plan A versus B

To compare the two types of leveraged plans, we use simulation. We compare the

following two plans when there are m = 3 operators and the total sample size is

N = 60 and 90 measurements:

1. N = 60, with m = 3

LP A with b = 11, k = 3 and n = 3

LP B with b = 16, k = 2 and n = 2

2. N = 90, with m = 3

LP A with b = 18, k = 6 and n = 2

LP B with b = 26, k = 2 and n = 2

We use MLE for these two leveraged plans. Figures 6.11 and 6.12 suggest that

the LP A is more efficient than LP B for estimating η when the true value of
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η ≥ 0.4. Conversely, as shown in the right panels of the two Figures LP B is more

efficient than LP A for estimating λ except when λ is near 1. We recommended LP

A because of its efficiency when estimating the primary parameter η.
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Figure 6.11: The mean squared error (MSE) ratios for estimating η (left panel) and
λ (right panel) from the leveraged plan A (b = 11, k = 3, n = 3) and leveraged plan
B (b = 16, k = 2n = 2) across η and λ when the total sample size is 60.

6.5 Discussion and Conclusions

In this chapter, we introduced two new leveraged plans for assessing measurement

systems with operators. We compared these two plans to the standard measurement

system assessment under specific conditions. We treat η, the part variation divided

by the total variation, as the primary parameter of interest while λ, the proportion

of the measurement variation due to operator bias, is of secondary interest, since

the main purpose of the assessment is to validate the measurement system as a

whole. The comparisons were based on the MSE of the ML estimators from each

plan.
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Figure 6.12: The mean squared error (MSE) ratios for estimating η (left panel) and
λ (right panel) from the leveraged plan A (b = 18, k = 6, n = 2) and leveraged plan
B (b = 26, k = 2, n = 2) across η and λ when the total sample size is 90.

When comparing the MSEs for estimators of η we found that the LP A was

most efficient followed by the LP B and then the SP. Conversely in the comparison

based on estimating λ, SP and LP B were more efficient than LP A. Relative to

the SP, the LP B was more efficient in estimating η and was comparable when

estimating λ whereas LP A was more efficient in estimating η and less efficient

when estimating λ. We recommend LP A because of its efficiency when estimating

the primary parameter η.

We also provided a methodology for practicioners to aid in the design of an LP

A.
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Chapter 7

Assessment of an Inspection

System with Production Data

7.1 Context

Many manufacturers require parts to pass an inspection system before being shipped.

The purpose of the inspection is to prevent customers from receiving poor quality

parts. The ideal system rejects each part with a true value outside of inspection

limits but due to measurement error, the actual system rejects parts with observed

or measured characteristics outside of these limits. Thus, an inspection system will

reject some good parts and accept some bad parts. Accepting and rejecting the

wrong parts can be costly, making it essential to verify or quantify the performance

of the inspection system. Measurement variability explains why inspection limits

are often tighter than the specification limits.

In general, an inspection system has two parts, a measurement system and an

inspection protocol. The measurement system is the method or device used to

measure the characteristic of interest. The inspection protocol is the set of decision
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rules for the inspection system. Figure 7.1 gives an example of a commonly used

protocol but there are many possibilities.

Production

Test

Re-test

Ship

Scrap 

or Repair

Pass

Pass

Fail

Fail

Figure 7.1: Typical Inspection Protocol

The performance of any inspection system is highly reliant on the measure-

ment system used to measure the characteristic of interest. To assess a continuous

measurement system, a Gauge Repeatability and Reproducibility study is typically

performed. See Automotive Industry Action Group [2002] and Burdick et al. [2003].

Since these studies are conducted off-line, they can be costly and may not reflect

the properties of the measurement system during production.

In some industries, such as integrated circuit or electronic device manufacturing

it is common to use the protocol given in Figure 7.1. The inspection protocol starts

with each part being measured. This first measurement is called the production

test. The test result can be either pass or fail based on whether the measured

value lies within the inspection limits or not. A pass allows the part to be shipped

whereas a failure means the part is retested. Commonly, this retest is carried out

immediately and if the part passes the second test it is shipped. Otherwise it is

sent to be repaired or scrapped.
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Table 7.1: 100 Production Test Observations or 1st Measurements
103.6 100.2 107.6 97.4 92.4 96.1 97.3 102.1 95.2 101.6
96.8 105.8 100.9 101.6 105.5 107.6 112.9 104.2 104.3 91.9

105.5 96.0 92.9 101.1 92.6 94.9 97.7 98.8 105.0 104.2
105.3 104.4 99.5 103.1 101.5 93.8 101.6 99.4 101.2 98.9
100.6 105.9 103.9 98.3 99.5 98.0 98.1 97.3 100.9 93.9
96.5 97.8 98.8 100.3 99.1 93.6 107.1 85.7 107.2 101.5

100.1 97.9 107.8 99.8 104.0 99.3 96.8 95.8 103.1 100.4
112.2 97.8 95.3 97.5 101.5 99.1 107.9 111.5 89.5 91.9
93.8 101.6 99.2 98.1 99.8 103.9 101.2 103.1 102.4 93.3
95.6 96.9 97.3 94.5 104.1 98.6 104.4 98.3 105.8 100.6

Using the inspection protocol shown in Figure 7.1, some parts are measured

twice. As a result it is possible to carry out an assessment of the measurement

system using data from the inspection system alone and avoid off-line studies such

as a standard Gauge R&R. The data from the inspection system has a special form

because a part is measured a second time if and only if the first measurement falls

outside the “pass” region, denoted B = (LIL, UIL) where (LIL) and (UIL) are the

lower and upper inspection limits, respectively. The possible outcomes for any part

are (PASS), (FAIL, PASS) and (FAIL, FAIL).

Suppose, for example, we have the results of an inspection system with limits

(95, 110) for 100 parts. Of these, 17 have second measurements. The data are shown

in two tables. Table 7.1 gives the production measurements and Table 7.2 gives

the repeated measurements. The 1st measurements or production data average and

standard deviation are 100.1 and 4.86, respectively.

Generally, any existing process operates well so we assume that the majority

of the observed measurements are within the inspection limits. Thus, there are

typically a large number of first measurements and a relatively small number of

second measurements.

We use the following notation. The production data, the first measurement

from each of n1 parts is denoted by {y11, y21, . . . , yn11}. For the retest data, we use
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Table 7.2: 17 2nd Measurements
Part # 1st 2nd Part # 1st 2nd

5 92.4 91.3 71 112.2 111.8
17 112.9 111.1 78 111.5 110.8
20 91.9 92.2 79 89.5 88.8
23 92.9 93.3 80 91.9 91.1
25 92.6 94.1 81 93.8 95.4
26 94.9 94.2 90 93.3 90.8
36 93.8 92.4 94 94.5 93.6
50 93.9 92.9
56 93.6 92.2
58 85.7 84.6

S, a subset of {1, 2, . . . , n1}, to indicate all the parts that have failed the production

test so that yi1 /∈ B. Suppose there are n2 such parts. The retest data, the second

measurements, are denoted by {yi2, i ∈ S}.

To model an inspection system, we follow Burdick et al. [2003] and Doganaksoy

[2000] by assuming that a normal random effects model (7.1) describes the observed

characteristics. The model is

Yij = Pi + Eij (7.1)

where Pi is a random variable representing the possible values for the true dimen-

sion of part i (i = 1, . . . , n) and Eij is a random variable representing the error

on each measurement (j = 1, 2) for part i. We assume that the part effects Pi

are independent and identically distributed normal random variables with mean µ

and variance σ2
p, the measurement errors E are independent and identically dis-

tributed normal random variables with mean zero and variance σ2
m, and P and

E are mutually independent. The variance of Yi1, called the total variation, is

σ2
t = σ2

p +σ2
m. By adopting model (7.1), we assume that µ, σp and σm are constant

over the time needed to conduct the investigation and that σm is constant across

true part dimensions.

We also assume the measurement system has no material operator effects. This
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contrasts with what is typically assumed in the literature [See Burdick et al., 2003],

but examples with no or little operator error are common in practice. For instance,

in one example, piston diameters were inspected by an inline gauge with automated

part handling. Using manufacturing jargon, with no operator effects, σm captures

measurement repeatability but not reproducibility.

Burdick et al. [2003] describe a variety of metrics used to quantify measure-

ment system quality or reliability. The metric we use for this chapter is again the

intraclass correlation coefficient ρ.

This chapter provides justification for using the ANOVA estimator when assess-

ing the measurement system data from regular production. Note our purpose is

not to assess or try to optimize the inspection protocol. We assume the inspection

protocol is described by Figure 7.1.

The ANOVA estimator is based on the pooled variance of the measured values

for each part that has two measurements. We derive the bias and variance of the

estimator using properties of the truncated normal distribution. We compare the

root mean squared errors of the ANOVA and MLE. We show that the ANOVA esti-

mator has a relatively small bias and high efficiency when compared the maximum

likelihood estimator for most common values of ρ. Finally, we consider some other

applications for this assessment method.

7.2 Inspection System Analysis

Three methods of analysis are presented and compared: analysis of variance (ANOVA),

regression and maximum likelihood (ML). Although interest lies in estimating ρ,

two other parameters σ2
t and µ are unknown and need to be estimated. To estimate

these additional parameters, the ANOVA procedure uses the first measurements,

i.e. the production data, only. In contrast, the ML procedure uses all the data.
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7.2.1 ANOVA

A natural estimate of the measurement variation σ2
m is the average within part

variance from those parts with two measurements. We estimate σ2
t by the sample

variance of all the first measurements. The ANOVA estimate, denoted as ρ̂a is

ρ̂a = 1− s2
m

s2
1

(7.2)

where s2
1 = 1

n1−1

∑n1

i=1 (yi1 − y.1)2 is the production data variance, s2
m =

∑
i∈S
∑2

j=1

(yij − yi.)2/n2 is the average variation within parts with two measurements, yi. =

(yi1 + yi2)/2 is the average for any part i with two measurements and y.1 =∑n1

i yi1/n1 is the production data average. In the corresponding estimator ρ̃a,

each yij is replaced with the corresponding random variable Yij.

As one would predict, this estimator is biased because the second measurement

is not independent of the first measurement. To find the expectation and vari-

ance of the estimator ρ̃a, we note that the distribution of the second measurement

conditional on the first measurement is given by

Yi2 |(Yi1 = yi1) v N
(
µ+ ρ(yi1 − µ), σ2

t (1 + ρ) (1− ρ)
)
. (7.3)

and when a second measurement occurs, the first measurement is outside the in-

spection limits. This means, that if there is a second measurement, the distribution

of the first measurement, Yi1, is a truncated N(µ, σ2
t ) such that Yi1 /∈ B. By con-

ditioning on the first measurements, we can determine the expectation of S2
m as

E
[
S2
m

]
= σ2

t (1− ρ)

[
1− (1− ρ)

β1

2

]
(7.4)
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and the variance of S2
m is

V ar
(
S2
m

)
=

2σ4
t (1− ρ)2

n2

{
1− (1− ρ) β1 +

(1− ρ)2

8

(
3β1 − β2

1 − β3

)}

≈ 2σ4
t (1− ρ)2

n2

{1− (1− ρ) β1} (7.5)

where βi is defined in equation (D.3). The derivation of both variance and expec-

tation are shown in Appendix (D). The expression for V ar (S2
m) can be simplified

as given in (7.5) because the contribution of the term 1
8

(1− ρ)2 (3β1 − β2
1 − β3) is

small. This simplification shows that variance of S2
m is inflated by a multiplica-

tive factor, (1− (1− ρ) β1), relative to measuring a randomly chosen part twice.

Since, the covariance between S2
m and S2

1 is near 0, the approximate expectation

and variance of ρ̃a are

E [ρ̃a] ≈ ρ+
1

2
β1 (1− ρ)2 , and (7.6)

V ar (ρ̃a) ≈ 2 (1− ρ)2

{
1

n1 − 1
+

1

n2

[1− (1− ρ) β1]

}
. (7.7)

Equation (7.6) shows that ρ̃a is biased. Figure 7.2, shows the bias, 1
2
β1 (1− ρ)2,

as a function of the standardized inspection limits (α1 = LIL−µ
σt

, α2 = UIL−µ
σt

) and ρ.

Note that the vertical axis is α2 − α1 in the left panel of Figure 7.2. For example,

if ρ is 0.8 and (α1, α2) = (−2, 2), then we find the point (-2, 4) on the left panel of

Figure 7.2 to obtain β1 = −5 and then on the right panel, we find the bias to be

≈ −0.1.

For one-sided inspection limits, β1, can be determined from the left panel of

Figure 7.2 because β1 is the same for limits of the form (−k, k), (−∞, k) and

(−k,∞). For example, to find β1 when the standardized inspection limits are

(−∞, 1.5), we look up the point α1 = −1.5 and α2 − α1 = 2 × 1.5 = 3 on the left
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Figure 7.2: The left panel gives β1 for different values of the standardized inspection
limits. The right panel is the bias of ρ̃a as a function of ρ and β1.

panel of Figure 7.2.

We analyze the example presented in section 7.1 using the above method. From

Table 7.2, we calculate s2
m = 0.725. Thus the ANOVA estimate, ρ̂a, from (7.2) is

0.969. Using Table 7.1, we can estimate β1 from our example to be −2.05. This

estimate is useful in determining the approximate bias of the ANOVA estimator.

In Figure 7.2, viewing the line along β1 = −2.05 we can see how the bias for this

estimator depends on ρ. Additionally, from (7.7) the standard error of ρ̂ can be

approximated as 0.0117.

7.2.2 Regression Estimator

The distribution of the second measurement Yi2 given the first measurement yi1, is

given in (7.3). Since the mean in (7.3) depends on ρ linearly, the variance is the same

for each part and the measurements on different parts are mutually independent,

we can use regression to estimate ρ. The conditional mean of Yi2 also depends

on µ but we use the 1st pass average y.1 to estimate this unknown. Applying the
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regression estimate of ρ from (4.13) we obtain

ρ̂r =

∑
i∈S1

(yi2 − y.1) (yi1 − y.1)∑
i∈S1

(yi1 − y.1)2

From Section 4.2.2, the distribution of ρ̃r, conditional on the 1st pass data, is normal

with mean

E [ ρ̂r| yi1, i ∈ S1] = ρ+

[
(µ− y.1)

ŜC

ŜSC

]
(1 + ρ) (7.8)

where ŜC =
∑
i∈S

[
yi1 − y.1

s1

]
and ŜSC =

∑
i∈S

[
yi1 − y.1

s1

]2

. (7.9)

Typically, n1 will be large and thus the estimator ρ̃r will have only a small bias

(conditionally) because y.1 will be close to µ. Unconditionally, the estimate is

unbiased up to O
(

1√
n1

)
because we can replace y.1 with µ+O

(
1√
n1

)
.

We use the methodology in Jorgensen and Knudsen [2004] and given in (4.27) to

derive two expressions for the asymptotic variance of ρ̃r. The first variance is based

on a particular dataset where we obtained the 1st pass data. The second covariance

is appropriate when we repeatedly or regularly use this method of estimation. We

suggest using expression (7.11) for analysis and expression (7.10) for planning.

• variance conditional on the data

V ar (ρ̃r) ≈
(1− ρ)2

n1

[
ŜC

ŜSC

]2

+
(1− ρ)(1 + ρ)

ŜSC
(7.10)

• variance

V ar (ρ̃r) ≈
(1− ρ)2

n1

[
β0

1− β1

]2

+
(1− ρ)(1 + ρ)

n2(1− β1)
(7.11)

The standard error for the regression estimator can be estimated in two ways

using either (7.10) or (7.11). The second expression (7.11) uses the properties of the

truncated normal distribution estimated from the 1st pass data. The first estimate
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(7.10) is more robust than (7.11) because it uses ŜC and ŜSC defined in (7.9).

We analyze the example presented in section 7.1 using the regression method.

The regression estimate is ρ̂r = 1.02 which is above the upper bound for ρ. When

we obtain estimates outside the range (0,1) we suggest setting the estimate to the

value of the closest boundary. In this case we would set ρ̂r to 1.

To illustrate how to calculate the standard errors for the regression estimator

we use ρ̂a = 0.969 to estimate ρ. Using Table 7.1, we can estimate σt, β0 and

β1 to be 4.86, 1.072 and −2.05, respectively. Then using Table 7.1, we calculate

ŜC = −14.50 and ŜSC = 56.15. Finally, the estimate of the standard error

conditional on the data is 0.0330 and the unconditional standard error is 0.0343

7.2.3 Maximum Likelihood

The log-likelihood for the inspection system data is the sum of two log-likelihoods:

lp(µ, σ
2
t ), the likelihood of the production data and lrp (µ, σ2

t , ρ |yi1, i ∈ S1) , the like-

lihood of the retest data given the production data. The distribution of the pro-

duction data is independent N(µ, σ2
t ). The distribution of Yi2 given Yi1 = yi1 is

given in (7.3). Thus the two log-likelihoods are

lp(µ, σ
2
t ) = −n1

2
log σ2

t −
1

2σ2
t

{
n1s

2
1 + n1 (y.1 − µ)2} , and (7.12)

lrp
(
ρ, µ, σ2

t |yi1, i ∈ S1) = −n2

2
log
[
σ2
t (1 + ρ)(1− ρ)

]
−1

2

∑
i∈S [yi2 − µ− ρ(yi1 − µ)]2

σ2
t (1 + ρ)(1− ρ)

.

(7.13)

The complete log-likelihood for the inspection process is the sum of the two log-

likelihoods (7.12) and (7.13). To get the MLEs of µ, σ2
t and ρ, we numerically

maximize the complete log-likelihood.

When using maximum likelihood, asymptotic standard errors for the estimators
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can be obtained from the inverted Fisher information matrix with the parameters

replaced by their estimates.

The Fisher information is obtained by taking the expectation of negative one

times the log-likelihood second derivatives. The expectations depend on the dis-

tribution of the observations. For retest data, the distribution of the second mea-

surements Yi2 is given in (7.3) and the first measurements Yi1 have a truncated

N(µ, σ2
t ) with Yi1 outside the inspection limits. Corresponding to the two compo-

nents of the log-likelihood, the Fisher information is the sum of two matrices, Jp

and Jrp. Taking derivatives and applying expectations, we obtain

Jp
(
µ, σ2

t , ρ
)

= n1


1
σ2

t
0 0

0 1
2σ4

t
0

0 0 0

 , (7.14)

and Jrp
(
µ, σ2

t , ρ
)

= n2


(1−ρ)

σ2
t (1+ρ)

0 − β0

σt(1+ρ)

0 1
2

1
σ4

t
− ρ
σ2

t (1−ρ2)

− β0

σt(1+ρ)
− ρ
σ2

t (1−ρ2)

(1+ρ2)
(1−ρ2)2

− β1

(1−ρ2)

 (7.15)

Details of the calculations are given in Appendix D.

The asymptotic variance of the MLE for ρ can be obtained by inverting the

matrix Jp + Jrp. In general, to get a reasonable number of retests, we need a large

number of production tests n1. We can simplify the calculations if we let n1 tend

to infinity, then the asymptotic variance of the maximum likelihood estimator for

ρ becomes

V ar(ρ̃mle) =
(1− ρ2)2

n2 [1− β1(1− ρ2)]
(7.16)

This is the same as the variance we get by assuming µ and σt are known. Figure

7.3 displays the standard error of the MLE (square root of (7.16)) as a function of

ρ and β1 assuming n1 is large. It shows that as β1 and ρ increase, the standard
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error decreases.

stdev(ρ~MLE)

β1

ρ

-8 -6 -4 -2 0

0.
0
0.
2
0.
4
0.
6
0.
8
1.
0

Figure 7.3: The asymptotic standard deviation of the MLE by ρ and β1

Applying maximum likelihood to the example, we get estimates for µ, σ2
t and ρ

of (100.0, 24.03, 0.971), respectively. Using the MLEs, we estimate β1 to be −1.98

and the standard error for the maximum likelihood estimator is 0.0105.

7.2.4 Comparison

In Figure 7.4, we compare the MSE of the ANOVA and regression estimators to

the MLE. These ratios are a function of ρ and β1. The figure shows, as expected,

that the MLE is more efficient. When ρ ≥ 0.9 the ANOVA and MLE estimators

are almost equivalent but when ρ < 0.9 the ANOVA estimator is very inefficient.

The regression estimator on the other hand is almost equivalent to the MLE for

smaller ρ but does much worse when ρ ≥ 0.9.

Inspection systems with good measurement systems will have ρ > 0.90. Re-

stricting ourselves to this interval and given the cost and complexity of finding the

MLE, we recommend using the ANOVA estimate.
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Figure 7.4:
√

MSE(ρ̃a) and
√

MSE(ρ̃r) divided by
√

MSE(ρ̃MLE) by ρ and β1

7.3 Model Assessment

This section gives suggestions for assessing model (7.1) and applies them to the

example. Normality is a key assumption in this proposal. We can assess the overall

normality (part plus measurement error) from the production data. A normal

quantile plot of the production data from Table 7.1 is plotted in the left panel of

Figure 7.5 and shows no evidence to reject normality.
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Figure 7.5: Normal quantile plots of the production data (left panel) and the resid-
uals from regressing yi2 onto yi1 (right panel).
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Another check on normality comes from equation (7.3). Since, Yi2 depends

on Yi1 conditionally through the mean with the equal variance for each pair of

measurements, we can regress yi2 onto yi1 and check the residuals for departures

from normality. A normal quantile plot of the residuals for the data in Table 7.2 is

shown from the right panel of Figure 7.5. There is no evidence to reject the model

in this example.

7.4 Assessment Intervals

Using this approach we can assess the measurement system without conducting a

separate off-line study but we need to specify how often we summarize the inspection

data. Then we could conduct analysis on a regular schedule say, weekly/monthly,

or when some desired precision is achieved. The precision can be achieved by

specifying the number of parts n1 or the number of second measurements n2 to be

included in the study.

For example, suppose we specify the desired precision for the ANOVA estima-

tor. Using the ANOVA estimate from the example, namely 0.969, as the true value,

equation (7.7) and assuming n1 is large, we can obtain the number of second mea-

surements, n2, required to achieve the desired precision. If the desired standard

error for ρ̂ is 0.01 and the standardized inspection limits are A = (−1.05, 2.04) and

ρ = 0.969, then the number of second measurements needs to be at least 21.

To obtain standard errors for any inspection system use Figure 7.2 or equation

(D.3) to calculate β1. Then along with the approximate value of ρ, input these

values into (7.7).
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7.5 Discussion and Conclusions

In this chapter we looked at the case where there is a single response. These

methods can be extended to inspection systems with k independent characteristics,

although the independence assumption is likely unreasonable. If all characteris-

tics from a part are remeasured when a single characteristic fails, then, because

of independence, some of the repeated measurements are equivalent to randomly

selecting a part and measuring twice. For example, suppose there are two indepen-

dent characteristics X and Y and during the production test, Y fails resulting in

a second measurement for both X and Y . Then the two repeated measurements

for X are equivalent to taking a random part and measuring X twice. Other parts

will have second measurements because the production test for X failed. So, in

this situation, the ANOVA estimator will be composed of two types of repeated

measurements.

The assumption that an inspection system has k independent characteristics

is very restrictive but removing this assumption complicates things considerably.

First we need to incorporate the dependency structure into the model (7.1). Second,

we note that with multiple measurements, we are apt to get continuous, ordinal

and binary characteristics determined by the same inspection system.

Using the analysis method presented in this chapter, we can also assess the

measurement variation in situations where multiple gauges are used in parallel and

we are trying to detect differences in variation among the gauges. This means σm

now becomes σmg where g denotes the gauge. We assume the parts are randomly

allocated to the gauges to ensure that over the long term the part variation is

the same for each gauge. Here we assumed there are only two gauges but the

methodology can be generalized.

Without the knowledge of Section 7.2, to assess the differences in the parallel
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gauges we might use the production data or the first measurements. This method

detects differences in σm1 and σm2 through the total variation σ2
t1 = σ2

p + σ2
m1 and

σ2
t2 = σ2

p + σ2
m2. Detection of differences will be difficult if σ2

p is the dominant

component of the variation. This is the typical situation. Thus, adding repeated

measurements into this type of analysis will greatly improve the power to detect

differences in the two measurement variation components when they are both small

relative to the part variation. The analysis in Section 7.2 suggests that we can use

the ratio of the ANOVA estimates for each gauge to compare σm1 to σm2g, if ρ ≥ 0.9

for each gauge.

Modifying the inspection protocol (see Figure 7.1) will change the results given

in this thesis. For example, allowing two retests will inflate the variance of the

ANOVA estimator beyond what is tolerable.

In summary we presented three ways to analyze a measurement system from

inspection data. They enable to us to avoid off-line studies such as a standard

Gauge R&R. We recommend the MLE but we showed that the ANOVA estimator,

although biased, is comparable to the MLE if ρ ≥ 0.9.
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Chapter 8

Conclusions and Extensions

8.1 Summary

The goal of this thesis was to apply leveraging in designing new measurement

system assessment plans in three contexts that commonly occur in manufacturing.

In each context, we were able to show that the proposed LPs were more efficient

for estimating the metric of interest than are the plans currently used in practice.

We also showed, in each case, how to analyse the data from the LP and we also

provided a methodology useful to practicioners for planning an LP. All of these LPs,

their design and analysis, are new to the mesurement system asessment literature.

In general a leveraged plan is conducted in two stages. In the first stage, called

a baseline study, we measure many randomly selected parts once. Then based

on these initial measurements, we select a subsample of parts to be remeasured

n times. In particular, to improve estimation, we sample parts that have initial

measurements which are extreme relative to the baseline average. In addition we

sample parts such that the average of the initial measurements of the selected parts

is close to the baseline average. We showed, in general, that a good LP uses about

half of its resources in the baseline study. This conclusion forms the basis for the
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recommended LPs.

When the measurement system is used for 100% inspection, we do not need a

baseline study and the LP requires only the second stage.

In addition, in Chapter 7, we presented a new approach for assessing a mea-

surement system used as part of an inspection system with operational data. In

this situation, the inspection protocol performs leveraging automatically by remea-

suring parts that have a first measurement outside of the inspection limits. Using

the methodology provided, practicioners can avoid costly off-line assessment studies

and essentially assess the system for free.

8.2 Extensions

Further research exploiting leveraging can go in many directions. One application

is determining how leveraging can be applied when comparing two measurement

systems. Another is with systems that exhibit non-constant measurement variation.

Here the use of leveraging would be valuable because we purposely select extreme

parts. Four other topics that involve leveraging are discussed in further detail

below:

• non-parametric measurement system assessments

• a problem in genetics,

• treating operator effects as random instead of fixed,

• multivariate measurement systems.
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8.2.1 Nonparametric Measurement System Assessments

In a non-parametric measurement system assessment, we allow the part and/or

measurement distributions to be nonparametric. Two modifications to the standard

assessment are suggested. The first is robust estimation of the parameters as defined

in the normal context [See Burdick et al., 2005]. For example, we could use the

trimmed mean to estimate the expectation and a robust statistic to estimate the

variance. The second suggestion is to use alternative parameters that are more

robust [See Lai and Chew, 2000]. For example, instead of estimating variances,

the parameters of interest might be defined in terms of the inter-quarantile ranges.

Also, side information such as knowing the overall distribution of the measured

values has never been included in non-parametric measurement system assessments

but such information is readily available in high volume manufacturing settings.

8.2.2 Genetic Variation Studies

In genetic variation studies [Li et al., 2004], the goal is to determine if genetically

related people (families) have more or less variability in a continuous characteristic

than individuals in a population. This problem can be translated to the mea-

surement system problem by labelling the family effect as the part effect and the

individual effect as the measurement effect [See Amos, 1994, Falconer and Mackay,

1994]. There are two major differences between the measurement and the genetic

problems. In the measurement problem, we can measure a part as many times

as we desire whereas the number of individuals in a family is varying outside of

our control. Second, the correlation between any two measurements on a part is

constant whereas the correlation can vary between members within a family. To

implement a leveraged genetic study, we first sample and measure b individuals

(from different families) to obtain a baseline. Then from the baseline, we select k
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individuals with large or small observed values and we measure each member of

their families.

To overcome these two major differences we might have to select additional

subjects in the second stage. Also, when planning an LP we will need to replace

the number of repeated measurements with the expected family size. The analysis

will be more difficult because the correlation between any two family members

can vary. Some work will be required to find a closed form for the conditional

mean and variance-covariance matrix. A simple solution is to numerically invert

the variance-covariance although this will dramatically increase the computational

effort.

8.2.3 Random Effects for Operators

In Section 1.3 and Chapter 6, we considered the addition of operators as fixed

effects to the measurement system. Burdick et al. [2003] suggest that the majority

of studies which treat operator effects as random do not have enough operators to

properly estimate the variation due to operators. That is, when treating operator

effects as random, we require a large number of operators to estimate the variance

of the distribution.

In this section, we consider the effect from the operators to be random instead

of fixed. For the effects to be random, we mean that the effects are realizations

from a distribution. We follow the literature from Burdick et al. [2005] by assuming

the operator effects have a normal distribution with mean 0 and variance σ2
o . This

extended model is written as

Yijk = µ+Xi +Rj + Eijk (8.1)

where µ is the mean of the true part dimensions, Xi is a random effect of the true
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part dimensions, Rj is the random effect from operator j, and Eijk is the random

effect from the same operator repeatedly measuring the same part on the same

gauge. X, R and E are assumed to be independent normals with means equal to

zero and standard deviations σp, σp and σm, respectively.

When we assume operators are random effects, the quantities of interest are the

same as in subsection 1.3.1. We will treat η as the primary parameter of interest

and λ as of secondary interest.

In this context, we again conduct a leveraged measurement system assessment

in two stages:

Stage 1: Sample b parts at random from the process and have b operators measure

a different part once each to obtain a baseline of b measurements. We denote

the observed values {y10, y20, . . . , yb0} and the baseline average and sample

variance by yb = 1
b

∑b
i=1 yi0 and s2

b = 1
b−1

∑b
i=1 (yi0 − yb)

2.

Stage 2: From the baseline sample, select k parts and/or operators using the ob-

served measured values. In particular, to improve the estimation for η, sample

k parts and/or operators such that

• the initial measurements are extreme relative to the baseline average,

and

• the average of the initial measurements of the selected parts is close to

the baseline average.

We denote the k selected parts using the set S. These k parts and/or op-

erators are then repeatedly measured n times each to give the additional

data {yij, i ∈ S and j = 1, . . . , n}. The total number of measurements in

the leveraged plan is N = b+ nk.
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For example, for a leveraged plan with k = 2, we might pick the parts and/or

operators with the minimum and maximum initial measurement in the baseline

sample.

There are at least three options for leveraging. We may leveraged by part, by

operator or by part and operator. These options correspond to the type of sampling

used for Stage 2. All three options are based on the idea that each measurement

within the baseline has three components: a measured value, a part number and

an operator number. We use the measured value to select either the part and/or

operator to be used in the second stage.

1. When leveraging by part we select the parts associated with the extreme

measurements in the baseline. Then in Stage 2 we repeatedly measure the

chosen parts with m new operators n times each. The total sample size is

N = b+ kmn.

For example, when leveraging by part with k = 2,m = 3, n = 2, we might

pick the parts with the minimum and maximum initial measurements in the

baseline sample. Then we recruit three new operators to measure these parts

twice each.

2. Similarly, when leveraging by operator we select the operators associated with

the extreme measurements in the baseline. Then in Stage 2 we repeatedly

measure k new parts n times each with the m choosen operators. The total

sample size is N = b+ kmn.

For example, when leveraging by operator with k = 2,m = 3, n = 2, we might

pick the operators associated with the minimum, maximum and 2nd largest

initial measurements in the baseline sample. Then we obtain two new parts

for these three operators to measure twice each.
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3. In Leveraging by part and operator, we select l operators and parts associated

with the extreme measurements in the baseline. Then in Stage 2 the l chosen

operators measure each of the l parts n times each. Note that with this version

of leveraging no new parts or operators are introduced in Stage 2. The total

sample size is N = b+ l2n.

For example, when leveraging by part and operator with l = 2, n = 2, we

might pick the parts and operators associated with the minimum and max-

imum initial measurements in the baseline sample. Then the two operators

measure the two parts twice more each.

The three options for leveraging will behave very differently. We believe lever-

aging by part will be most efficient for estimating η and the least efficient for

estimating λ. As for leveraging by operator we think it the least efficient for esti-

mating η and the most efficient for estimating λ. Finally, we believe leveraging by

operator and part will not be the most or least efficient but the balance between the

two plans. Unfortunately, we think the optimal plan will depend on our location

in the parameter space.

8.2.4 Assessing a Bivariate Measurement System

Another possible extension is to consider a bivariate measurement system where two

characteristics are measured on each part. An example of two characteristics might

be length and width or if we have people instead of parts, the two characteristics

could be height and weight.

If these observed characteristics are independent (both the true dimensions and

measurement errors are independent) then we can analyze them individually. How-

ever when correlation exists between them, how should we assess the quality of the

bivariate measurement system? Sweeney [2007] shows how to properly analyze data
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from a standard plan when it is used to assess a bivariate measurement system.

The question of interest is how to carry out a leveraged plan and will this plan yield

more efficient estimators than the standard plan in the multi-dimensional case?

The model assumed in (8.2) is the multivariate version of model (1.1). Similar

to (1.1) we assume the random effects in (8.2) are multivariate normal (MVN).

Y = µ+ P +M (8.2)

where

Y =

 Y1

Y2

 , P =

 P1

P2

 , M =

 M1

M2

 ,

µ =

 µ1

µ2

 , P ∼ MVN (0,Σx) , M ∼ MVN (0,Σe) ,

Σp =

 σ2
p1 λp

λp σ2
p2

 , Σm =

 σ2
m2 λm

λm σ2
m2

 ⇒ Σt = Σp+Σm =

 σ2
t2 λt

λt σ2
t2

 ,
and

• σ2
ti is the total variation of characteristic i, i = 1, 2;

• σ2
pi is the part variation of characteristic i, i = 1, 2;

• σ2
mi is the measurement variation of characteristic i, i = 1, 2;

• λm is the covariance between the measurements of the two characteristics;

• λp is the covariance between the true values of the two characteristics;

• λt is the total covariance between the characteristic 1 and 2;

• µi is the mean of characteristic i, i = 1, 2.
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The goal of a measurement system study is to assess ρi = σ2
pi/σ

2
ti, i = 1, 2.

Another goal used in Sweeney [2007] and Voelkel [2003], is to assess the diameter of

a circle that captures 99% of repeated readings made on one part, where the center

of the circle corresponds to the mean of the distribution. Voelkel [2003] suggests

that this measure be used when the engineering tolerance is a diameter.

As in the one-dimensional case, the leveraged measurement assessment plan can

be conducted in two stages. From a baseline study we will be able to estimate any of

the parameters that involve the means, variances and covariance (µ1, µ2, σ
2
t1, σ

2
t2, λt).

Then a sample of k parts that are extreme (a definition of extreme in the bivariate

case is to be determined) will be repeatedly measured n times each.

An extreme part in the one-dimensional case has a measured dimension which is

extreme relative to the baseline average but it was the part’s squared standardized

value that reduced the asymptotic standard errors. In the bivariate case, we believe

the squared standardized value will again play an important role. Although here

the standardized value is slightly different because we need to account for the

covariances. In the multivariate case, the squared standard initial measurement is

(yi0 − µ)t Σ−1
t (yi0 − µ) (8.3)

Note that the squared standard initial measurement reduces to the Euclidean dis-

tance when the variance-covariance matrix is diagonal. i.e. when the characteristics

are independent.

Using the baseline data we can estimate the value in (8.3) using the Mahalanobis

distance squared, denoted D2
M . The Mahalanobis distance is basically (8.3) with

Σt and µ replaced by the baseline estimates Σ̂t and µ̂, respectively.

[
DM

(
yi0,y.0; Σ̂t

)]2

= (yi0 − y.0)t Σ̂−1
t (yi0 − y.0) (8.4)
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We believe this distance can be useful to define a leveraged part because when the

two characteristics are not independent it will weight an initial measurement by

the covariances and standard deviations.

One concern with using the Mahalanobis distance is that it may suggest parts

which are extreme only in a single dimension. On average, this method may be

most efficient but in particular cases one estimator of ρi might be good while the

other is poor. In this context, the effect of different sampling methods needs to be

explored. A possible alternate sampling approach with bivariate data is to select

half the parts for remeasurement based solely on the first dimension and select the

other half based solely on the second dimension.

In the bivariate case, we propose to consider two situations. The first occurs

when interest lies in quantifying the measurement variation marginally in the two

correlated characteristics. In this situation, two questions should be answered.

Does an LP yield more efficient estimators than an SP and what is gained from

using a two-dimensional method instead of doing the analyses marginally?

The other situation involves quantifying the variation of the distance (radius)

from the true value and not the marginal components. This situation is considered

in Sweeney [2007]. We will also consider if the LP is more efficient than the SP.

Another question here is whether a two-dimensional analysis is even required. Can

the same efficiency be achieved by performing the analysis marginally on the dis-

tance? The use of baseline information (known µ and Σt) can also be considered

in the same manner as in Chapter 5.
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Appendix A

Two Stage Leveraged Plan

A.1 Fisher Information

Why does SC=0 and SSC�0 reduce the asymptotic variance of the MLE? Let

J
(
µ, σ2

t , ρ
)

=


x 0 t

0 y v

t v z


where x, y, z ≥ 0. Using the principal minors, the determinant and inverse of J are

det(J) = x

∣∣∣∣∣∣∣
y v

v z

∣∣∣∣∣∣∣− 0 + t

∣∣∣∣∣∣∣
0 t

y v

∣∣∣∣∣∣∣ = x
(
yz − v2

)
− t2y

J−1 =
1

det(J)


yz − v2 vt −yt

vt xz − t2 −xv

−yt −xv xy

 .
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This means the asymptotic variance of maximum likelihood estimator of ρ is

Asvar (ρ̃) =
xy

x(yz − v2)− t2y
=

1

z − v2/y − t2/x

Ideally, Asvar (ρ̃) is close to zero. From (4.10) we see that selecting parts to

repeatedly remeasured affects t and z. The Asvar (ρ̃) is reduced when z is large and

t = 0. Since, x, y, z ≥ 0, we can reduce Asvar (ρ̃) by decreasing v2 or t2. We cannot

change v, but we can set t = 0 by selecting parts with initial measurements such

that E [SC] = 0. If we choose parts with large and small extreme measurements

we can get E [SC] = 0, which means t = 0 and E [SSC] is large which increases z.
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Appendix B

Leveraged Plan with Operators as

Fixed Effects

B.1 Direction

In this section we derive a detailed expression for the asymptotic variance of η by

simplifying the result given in (6.20) which is product of three matrices. Then

we show that asymptotic variance of η can be written as a function of the inner

product of two vectors utr.

We start with the following two results about block matrix inversion established

by Banachiewicz [1937]. For a general block matrix the inverse is

 A B

C D


−1

=

 A−1 + A−1B(D−CA−1B)−1CA−1 −A−1B(D−CA−1B)−1

−(D−CA−1B)−1CA−1 (D−CA−1B)−1


(B.1)
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and the determinant is

det

 A B

C D

 = det (A) det
(
D−CA−1B

)
.

From (6.19), we notice that the Fisher information matrix for (µ, σ2
pg, ρ) has the

form

FA1 =

 M B

Bt P

 where B =

(
0m v

)
.

Applying (B.1) we obtain

F−1
A1 =

 M−1 + K −M−1BQ−1

−Q−1BtM
−1

Q−1


where Q = P−BtM

−1
B and K = M−1BQ−1BtM

−1
. (B.2)

Additionally, the matrix D from (2.22) can be written as

D =

 Im E

0tm×2 T

 where E =

(
m 0m

)
.

Applying (B.1) to D we obtain

D−1 =

 I −ET−1

0tm×2 T−1


Now, we evaluate the product D−tF−1

A1D
−1 to obtain the asymptotic variance of η

and λ,

D−tF1
−1D−1
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=

 I 0m×2

−T−1Et T−t


 M−1 + K −M−1BQ−1

−Q−1BtM
−1

Q−1

D−1

=

 M−1 + K −M−1BQ−1

−T−1
(
Et (M−1 + K) + Q−1BtM

−1
)

T−t (EtM−1BQ−1 + Q−1)

D−1

=

 M−1 + K − ((M−1 + K) E + M−1BQ−1) T−1

−T−1
(
Et (M−1 + K) + Q−1BtM

−1
)

Z


where

Z = T−t
(
Et
(
M−1 + K

)
+ Q−1BtM

−1
)

ET−1 + T−1
(
EtM−1BQ−1 + Q−1

)
T−1

= T−t
((

Et
(
M−1 + K

)
+ Q−1BtM

−1
)

E +
(
EtM−1BQ−1 + Q−1

))
T−1

= T−t
(
Et
(
M−1 + K

)
E + Q−1BtM

−1
E + EtM−1BQ−1 + Q−1

)
T−1.

We are only interested in the matrix Z because it contains the asymptotic variance

for λ and η. We can simplify Z further by letting X = BtM
−1

E and substituting

K = M−1BQ−1BtM
−1

then

Z = T−t
[
EtM−1E + (I2 + X)t Q−1 (I2 + X)

]
T−1. (B.3)

The first component of Z can be determined from

EtM−1E =

 mtM−1m 0

0 0

 and setting T−1 =
1

det (T)

 t2,2 −t1,2

−t2,1 t1,1



then T−t
(
EtM−1E

)
T−1 =

(mtM−1m)

det (T)2

 t22,2 −t2,2t1,2

−t2,2t1,2 t21,2

 . (B.4)
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For the second component we find that

I2 + X = I2 + BtM
−1

E =

 1 0

vtM−1m 1



and if we let Q−1 =
1

det (Q)

 q2,2 −q1,2

−q1,2 q1,1


and let α = vtM−1m (B.5)

then (I2 + X)t Q−1 (I2 + X) =
1

det (Q)

 q2,2 − 2αq1,2 + α2q1,1 −q1,2 + αq1,1

−q1,2 + αq1,1 q1,1


Finally, we can determine the [2, 2] element of T−t (I2 + X)t Q−1 (I2 + X) T−1 to

be

[(
t21,2q1,1

)
α2 − 2

(
t1,2t1,1q1,1 + t21,2q1,2

)
α +

(
t21,2q2,2 + t21,1q1,1 + 2t1,2t1,1q1,2

)]
det (Q) det (T)2 .

If we complete the square on α, we get

1

det (Q) det (T)2

t21,2
q1,1

[
q2

1,1

(
t1,1
t1,2

+
q1,2

q1,1

− α
)2

+ det (Q)

]
(B.6)

Combining the first (B.4) and second (B.6) components we get the asymptotic

variance of η as

1

det (T)2

t21,2
q1,1

[
q2

1,1

det (Q)

(
t1,1
t1,2

+
q1,2

q1,1

− α
)2

+ 1 + q1,1

(
mtM−1m

)]
. (B.7)

To further explore how the asymptotic variance depends on the selection of parts

for Stage 2, we look at the term that involves α. We first recall that T is the matrix
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formed from the last two components of D, as defined in (2.22),

T =

 − σ2
o

λ2(1−η)
η(1−η)

(λη+1−λ)2

σ2
o

λ(1−η)2
1−λ

(λη+1−λ)2

 .
Then we can write down the two terms that are squared along with α in (B.7)

t1,1
t1,2

= −σ
2
o(λη + 1− λ)2

λ2η(1− η)2
(B.8)

and

q1,2

q1,1

= − 1

σ2
pg

(1− ρ)(1 +mnρ)

ρ(mn+ 1)
≈ − 1

σ2
pg

(1− ρ) = −λ(1− λ)(1− η)2

(λη + 1− λ)2σ2
o

. (B.9)

Since, the two quantities (B.8) and (B.9) are both negative, to minimize the

asymptotic variance of η in (B.7) we need to set −α to be positive. Unfortunately,

we cannot we can minimize the asymptotic variance. To deduce how to use the

selection method to get α = vtM−1m to be negative, we begin with

m = c0r where r = (µ− µ1m) and c0 =
2

m

(λη + 1− λ)

λ(1− η)
. (B.10)

Note, r is a vector of differences between each operator’s mean and the overall mean

and σ2
o = 1

m
rtr. From the Fisher information (6.17), the vector v equals

∑
(i,j)∈S

[
v0 + v(i,j)

]
=

n

σpg(1− ρ)(1 +mnρ)

 ∑
(i,j)∈S

E [Zij0] 1m −mρ
∑

(i,j)∈S

E [Zij0] ej

 .
If we define

u =
∑

(i,j)∈S

E [Zij0] ej =


∑

(i,1)∈S E [Zij0]

...∑
(i,m)∈S E [Zij0]

 , (B.11)
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v simplifies to

v =
n

σpg(1− ρ)(1 +mnρ)

[(
ut1m

)
1m −mρu

]
= cv

(
ut1m

)
1m − cvmρu.

The next term in α is M which is the Fisher information for µ found in (6.17),

M = kn(1 +mnρ)Im − kn2ρJm +
∑

(i,j)∈S

[
nρ(mρ− 1)I(j) − nρJ(m)

]
.

If we select k parts and allocate them evenly to each operator then
∑

(i,j)∈S I(j) ≈
k
m

Im and
∑

(i,j)∈S J(j) ≈ k
m

Jm. If each operator is allocated the same number of

parts then these approximations will be equalities and k
m

will be a positive integer.

Under these approximations, we have

M =
kn

m

[
(m+m2nρ+mρ2 − ρ)Im − ρ(nm+ 1)Jm

]
This matrix has the usual special form, making the inverse

M−1 =
m

kn

1

(m+m2nρ+mρ2 − ρ)

[
Im +

ρ(nm+ 1)

[m(1 + ρ2)− ρ(m+ 1)]
Jm

]
= c1Im+c2Jm.

Finally, we can write an expression for α = vtM−1m as

vtM−1m

=
[
cv
(
ut1m

)
1m − cvmρu

]t
[c1Im + c2Jm] [c0r]

= cvc0

[(
ut1m

)
1m −mρu

]t
[c1Im + c2Jm] r

= cvc0

[(
ut1m

)
1m −mρu

]t [
c1r + c21m(1tmr)

]
= cvc0

[
c1

(
ut1m

) (
1tmr

)
− c1mρ

(
utr
)

+mc2

(
ut1m

)
(1tmr)− c2mρ(1tmr)

(
ut1m

)]
= cvc0

[
−c1mρ

(
utr
)

+ (c1 +mc2 − c2mρ)
(
ut1m

) (
1tmr

)]
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We have that (
1tmr

)
= 1tm(µ− µ1m) = mµ−

m∑
j=1

µj = 0,

⇒ α = −cvc0mρc1

(
utr
)

(B.12)

From this equation we can see that the value of α depends on the inner product

(utr).

B.2 Tables with optimal designs for m = 3

Table B.1: The LP designs (b,k,n) with the smallest asymptotic standard deviation
of γ given λ = (0.05, 0.05, 0.15, 0.25, 0.35, 0.45), η ∈ (0, 1) when m = 3 and N = 60.

0.05 0.15 0.25 0.35 0.45
0.01 (2,1,18) (2,1,18) (2,1,18) (2,1,18) (2,1,18)
0.05 (4,4,4) (5,5,3) (5,5,3) (8,6,2) (8,6,2)
0.10 (8,6,2) (8,6,2) (8,6,2) (8,6,2) (8,6,2)
0.15 (8,6,2) (8,6,2) (8,6,2) (8,6,2) (8,6,2)
0.20 (8,6,2) (8,6,2) (8,6,2) (8,6,2) (8,6,2)
0.25 (8,6,2) (8,6,2) (8,6,2) (8,6,2) (10,5,2)
0.30 (8,6,2) (8,6,2) (8,6,2) (10,5,2) (12,4,2)
0.35 (8,6,2) (8,6,2) (8,6,2) (10,5,2) (12,4,2)
0.40 (8,6,2) (8,6,2) (10,5,2) (10,5,2) (12,4,2)
0.45 (8,6,2) (10,5,2) (10,5,2) (12,4,2) (12,4,2)
0.50 (8,6,2) (10,5,2) (10,5,2) (12,4,2) (12,4,2)
0.55 (10,5,2) (10,5,2) (10,5,2) (12,4,2) (12,4,2)
0.60 (10,5,2) (10,5,2) (10,5,2) (12,4,2) (12,4,2)
0.65 (10,5,2) (10,5,2) (10,5,2) (12,4,2) (12,4,2)
0.70 (10,5,2) (10,5,2) (10,5,2) (12,4,2) (12,4,2)
0.75 (10,5,2) (10,5,2) (10,5,2) (12,4,2) (12,4,2)
0.80 (10,5,2) (10,5,2) (10,5,2) (12,4,2) (12,4,2)
0.85 (10,5,2) (10,5,2) (10,5,2) (12,4,2) (12,4,2)
0.90 (10,5,2) (10,5,2) (10,5,2) (10,5,2) (12,4,2)
0.95 (10,5,2) (10,5,2) (10,5,2) (10,5,2) (12,4,2)
0.99 (10,5,2) (10,5,2) (10,5,2) (10,5,2) (12,4,2)
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Table B.2: The LP designs (b,k,n) with the smallest asymptotic standard deviation
of γ given λ = (0.55, 0.65, 0.75, 0.85, 0.95), η ∈ (0, 1) when m = 3 and N = 60.

0.55 0.65 0.75 0.85 0.95
0.01 (2,1,18) (5,5,3) (8,6,2) (8,6,2) (8,6,2)
0.05 (8,6,2) (8,6,2) (8,6,2) (10,5,2) (12,4,2)
0.1 (8,6,2) (8,6,2) (12,4,2) (12,4,2) (12,4,2)
0.15 (8,6,2) (10,5,2) (12,4,2) (12,4,2) (12,4,2)
0.2 (10,5,2) (12,4,2) (12,4,2) (12,4,2) (14,3,2)
0.25 (12,4,2) (12,4,2) (12,4,2) (12,4,2) (14,3,2)
0.3 (12,4,2) (12,4,2) (12,4,2) (12,4,2) (14,3,2)
0.35 (12,4,2) (12,4,2) (12,4,2) (12,4,2) (14,3,2)
0.4 (12,4,2) (12,4,2) (12,4,2) (12,4,2) (14,3,2)
0.45 (12,4,2) (12,4,2) (12,4,2) (12,4,2) (14,3,2)
0.5 (12,4,2) (12,4,2) (12,4,2) (12,4,2) (14,3,2)
0.55 (12,4,2) (12,4,2) (12,4,2) (12,4,2) (14,3,2)
0.6 (12,4,2) (12,4,2) (12,4,2) (12,4,2) (14,3,2)
0.65 (12,4,2) (12,4,2) (12,4,2) (12,4,2) (14,3,2)
0.7 (12,4,2) (12,4,2) (12,4,2) (12,4,2) (16,2,2)
0.75 (12,4,2) (12,4,2) (12,4,2) (14,3,2) (16,2,2)
0.8 (12,4,2) (12,4,2) (12,4,2) (14,3,2) (16,2,2)
0.85 (12,4,2) (12,4,2) (12,4,2) (14,3,2) (16,1,4)
0.9 (12,4,2) (12,4,2) (12,4,2) (14,3,2) (16,1,4)
0.95 (12,4,2) (12,4,2) (12,4,2) (14,3,2) (16,1,4)
0.99 (12,4,2) (12,4,2) (12,4,2) (14,3,2) (16,1,4)
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Table B.3: The LP designs (b,k,n) with the smallest asymptotic standard deviation
of γ given λ = (0.05, 0.05, 0.15, 0.25, 0.35, 0.45), η ∈ (0, 1) when m = 3 and N = 90.

0.05 0.15 0.25 0.35 0.45
0.01 (2,1,28) (2,1,28) (2,1,28) (2,1,28) (2,2,14)
0.05 (6,6,4) (12,6,3) (12,6,3) (12,6,3) (12,6,3)
0.1 (12,6,3) (12,6,3) (12,6,3) (12,6,3) (14,8,2)
0.15 (12,6,3) (12,6,3) (14,8,2) (14,8,2) (14,8,2)
0.2 (14,8,2) (14,8,2) (14,8,2) (14,8,2) (16,7,2)
0.25 (14,8,2) (14,8,2) (14,8,2) (14,8,2) (16,7,2)
0.3 (14,8,2) (14,8,2) (14,8,2) (16,7,2) (16,7,2)
0.35 (14,8,2) (14,8,2) (14,8,2) (16,7,2) (18,6,2)
0.4 (14,8,2) (14,8,2) (16,7,2) (16,7,2) (18,6,2)
0.45 (14,8,2) (14,8,2) (16,7,2) (18,6,2) (18,6,2)
0.5 (14,8,2) (16,7,2) (16,7,2) (18,6,2) (18,6,2)
0.55 (14,8,2) (16,7,2) (16,7,2) (18,6,2) (18,6,2)
0.6 (14,8,2) (16,7,2) (16,7,2) (18,6,2) (18,6,2)
0.65 (14,8,2) (16,7,2) (16,7,2) (18,6,2) (18,6,2)
0.7 (14,8,2) (16,7,2) (16,7,2) (18,6,2) (18,6,2)
0.75 (14,8,2) (16,7,2) (16,7,2) (18,6,2) (18,6,2)
0.8 (16,7,2) (16,7,2) (16,7,2) (18,6,2) (18,6,2)
0.85 (16,7,2) (16,7,2) (16,7,2) (16,7,2) (18,6,2)
0.9 (16,7,2) (16,7,2) (16,7,2) (16,7,2) (16,7,2)
0.95 (15,5,3) (15,5,3) (15,5,3) (16,7,2) (16,7,2)
0.99 (15,5,3) (15,5,3) (16,7,2) (16,7,2) (16,7,2)
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Table B.4: The LP designs (b,k,n) with the smallest asymptotic standard deviation
of γ given λ = (0.05, 0.05, 0.15, 0.25, 0.35, 0.45), η ∈ (0, 1) when m = 3 and N = 90.

0.55 0.65 0.75 0.85 0.95
0.01 (6,4,6) (12,6,3) (12,6,3) (12,6,3) (16,7,2)
0.05 (12,6,3) (12,6,3) (16,7,2) (18,6,2) (18,6,2)
0.10 (14,8,2) (16,7,2) (18,6,2) (18,6,2) (20,5,2)
0.15 (16,7,2) (18,6,2) (18,6,2) (18,6,2) (22,4,2)
0.20 (16,7,2) (18,6,2) (18,6,2) (20,5,2) (22,4,2)
0.25 (18,6,2) (18,6,2) (18,6,2) (20,5,2) (22,4,2)
0.30 (18,6,2) (18,6,2) (18,6,2) (20,5,2) (22,4,2)
0.35 (18,6,2) (18,6,2) (20,5,2) (20,5,2) (22,4,2)
0.40 (18,6,2) (18,6,2) (20,5,2) (20,5,2) (22,4,2)
0.45 (18,6,2) (18,6,2) (20,5,2) (20,5,2) (22,4,2)
0.50 (18,6,2) (18,6,2) (20,5,2) (20,5,2) (22,4,2)
0.55 (18,6,2) (18,6,2) (20,5,2) (20,5,2) (22,4,2)
0.60 (18,6,2) (20,5,2) (20,5,2) (20,5,2) (22,4,2)
0.65 (18,6,2) (20,5,2) (20,5,2) (20,5,2) (22,4,2)
0.70 (18,6,2) (20,5,2) (20,5,2) (20,5,2) (22,4,2)
0.75 (18,6,2) (18,6,2) (20,5,2) (20,5,2) (22,4,2)
0.80 (18,6,2) (18,6,2) (20,5,2) (20,5,2) (22,4,2)
0.85 (18,6,2) (18,6,2) (20,5,2) (20,5,2) (22,4,2)
0.90 (18,6,2) (18,6,2) (20,5,2) (20,5,2) (22,4,2)
0.95 (18,6,2) (18,6,2) (18,6,2) (20,5,2) (22,4,2)
0.99 (16,7,2) (18,6,2) (18,6,2) (20,5,2) (24,3,2)
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B.3 Tables with optimal designs for m = 3 lever-

aged plan B

Table B.5: The LP B designs (b,k,n) with the smallest asymptotic standard devi-
ation of γ given λ = (0.05, 0.05, 0.15, 0.25, 0.35, 0.45), η ∈ (0, 1) when m = 3 and
N = 60.

0.05 0.15 0.25 0.35 0.45
0.01 (3,1,17) (3,1,17) (3,1,17) (4,1,16) (4,1,16)
0.05 (8,2,6) (8,2,6) (10,2,5) (10,2,5) (10,2,5)
0.10 (12,2,4) (12,2,4) (12,2,4) (12,4,2) (12,4,2)
0.15 (12,4,2) (12,4,2) (14,3,2) (14,3,2) (14,3,2)
0.20 (14,3,2) (14,3,2) (14,3,2) (16,2,2) (16,2,2)
0.25 (14,3,2) (14,3,2) (16,2,2) (16,2,2) (16,2,2)
0.30 (16,2,2) (16,2,2) (16,2,2) (16,2,2) (16,2,2)
0.35 (16,2,2) (16,2,2) (16,2,2) (16,2,2) (16,2,2)
0.40 (16,2,2) (16,2,2) (16,2,2) (16,2,2) (18,1,2)
0.45 (16,2,2) (16,2,2) (16,2,2) (18,1,2) (18,1,2)
0.50 (16,2,2) (16,2,2) (18,1,2) (18,1,2) (18,1,2)
0.55 (16,2,2) (18,1,2) (18,1,2) (18,1,2) (18,1,2)
0.60 (18,1,2) (18,1,2) (18,1,2) (18,1,2) (18,1,2)
0.65 (18,1,2) (18,1,2) (18,1,2) (18,1,2) (18,1,2)
0.70 (18,1,2) (18,1,2) (18,1,2) (18,1,2) (18,1,2)
0.75 (18,1,2) (18,1,2) (18,1,2) (18,1,2) (18,1,2)
0.80 (18,1,2) (18,1,2) (18,1,2) (18,1,2) (18,1,2)
0.85 (18,1,2) (18,1,2) (18,1,2) (18,1,2) (18,1,2)
0.90 (18,1,2) (18,1,2) (18,1,2) (18,1,2) (18,1,2)
0.95 (18,1,2) (18,1,2) (18,1,2) (18,1,2) (18,1,2)
0.99 (18,1,2) (18,1,2) (18,1,2) (18,1,2) (18,1,2)

187



Table B.6: The LP designs (b,k,n) with the smallest asymptotic standard deviation
of γ given λ = (0.55, 0.65, 0.75, 0.85, 0.95), η ∈ (0, 1) when m = 3 and N = 60.

0.55 0.65 0.75 0.85 0.95
0.01 (4,1,16) (4,1,16) (4,2,8) (10,2,5) (14,3,2)
0.05 (12,2,4) (12,2,4) (14,3,2) (16,2,2) (18,1,2)
0.10 (14,3,2) (14,3,2) (16,2,2) (16,2,2) (18,1,2)
0.15 (16,2,2) (16,2,2) (16,2,2) (18,1,2) (18,1,2)
0.20 (16,2,2) (16,2,2) (18,1,2) (18,1,2) (18,1,2)
0.25 (16,2,2) (18,1,2) (18,1,2) (18,1,2) (18,1,2)
0.30 (16,2,2) (18,1,2) (18,1,2) (18,1,2) (18,1,2)
0.35 (18,1,2) (18,1,2) (18,1,2) (18,1,2) (18,1,2)
0.40 (18,1,2) (18,1,2) (18,1,2) (18,1,2) (18,1,2)
0.45 (18,1,2) (18,1,2) (18,1,2) (18,1,2) (18,1,2)
0.50 (18,1,2) (18,1,2) (18,1,2) (18,1,2) (18,1,2)
0.55 (18,1,2) (18,1,2) (18,1,2) (18,1,2) (18,1,2)
0.60 (18,1,2) (18,1,2) (18,1,2) (18,1,2) (18,1,2)
0.65 (18,1,2) (18,1,2) (18,1,2) (18,1,2) (18,1,2)
0.70 (18,1,2) (18,1,2) (18,1,2) (18,1,2) (18,1,2)
0.75 (18,1,2) (18,1,2) (18,1,2) (18,1,2) (18,1,2)
0.80 (18,1,2) (18,1,2) (18,1,2) (18,1,2) (18,1,2)
0.85 (18,1,2) (18,1,2) (18,1,2) (18,1,2) (18,1,2)
0.90 (18,1,2) (18,1,2) (18,1,2) (18,1,2) (18,1,2)
0.95 (18,1,2) (18,1,2) (18,1,2) (18,1,2) (18,1,2)
0.99 (18,1,2) (18,1,2) (18,1,2) (18,1,2) (18,1,2)
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Table B.7: The LP B designs (b,k,n) with the smallest asymptotic standard devi-
ation of γ given λ = (0.05, 0.05, 0.15, 0.25, 0.35, 0.45), η ∈ (0, 1) when m = 3 and
N = 90.

0.05 0.15 0.25 0.35 0.45
0.01 (4,1,26) (4,1,26) (4,1,26) (4,1,26) (4,1,26)
0.05 (12,3,6) (12,3,6) (14,4,4) (14,4,4) (14,4,4)
0.10 (14,4,4) (18,4,3) (18,4,3) (18,4,3) (18,4,3)
0.15 (18,4,3) (18,4,3) (20,5,2) (22,4,2) (22,4,2)
0.20 (20,5,2) (22,4,2) (22,4,2) (22,4,2) (22,4,2)
0.25 (22,4,2) (22,4,2) (22,4,2) (22,4,2) (24,3,2)
0.30 (22,4,2) (22,4,2) (22,4,2) (24,3,2) (26,2,2)
0.35 (22,4,2) (22,4,2) (24,3,2) (26,2,2) (26,2,2)
0.40 (22,4,2) (24,3,2) (26,2,2) (26,2,2) (26,2,2)
0.45 (24,3,2) (26,2,2) (26,2,2) (26,2,2) (28,1,2)
0.50 (26,2,2) (26,2,2) (26,2,2) (28,1,2) (28,1,2)
0.55 (26,2,2) (26,2,2) (28,1,2) (28,1,2) (28,1,2)
0.60 (26,2,2) (28,1,2) (28,1,2) (28,1,2) (28,1,2)
0.65 (28,1,2) (28,1,2) (28,1,2) (28,1,2) (28,1,2)
0.70 (28,1,2) (28,1,2) (28,1,2) (28,1,2) (28,1,2)
0.75 (28,1,2) (28,1,2) (28,1,2) (28,1,2) (28,1,2)
0.80 (28,1,2) (28,1,2) (28,1,2) (28,1,2) (28,1,2)
0.85 (28,1,2) (28,1,2) (28,1,2) (28,1,2) (28,1,2)
0.90 (28,1,2) (28,1,2) (28,1,2) (28,1,2) (28,1,2)
0.95 (28,1,2) (28,1,2) (28,1,2) (28,1,2) (28,1,2)
0.99 (28,1,2) (28,1,2) (28,1,2) (28,1,2) (28,1,2)
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Table B.8: The LP B designs (b,k,n) with the smallest asymptotic standard de-
viation of γ given λ = (0.55, 0.65, 0.75, 0.85, 0.95), η ∈ (0, 1) when m = 3 and
N = 90.

0.55 0.65 0.75 0.85 0.95
0.01 (4,2,13) (8,2,11) (10,2,10) (14,4,4) (22,4,2)
0.05 (18,4,3) (18,4,3) (20,5,2) (22,4,2) (28,1,2)
0.10 (22,4,2) (22,4,2) (22,4,2) (26,2,2) (28,1,2)
0.15 (22,4,2) (24,3,2) (26,2,2) (28,1,2) (28,1,2)
0.20 (24,3,2) (26,2,2) (26,2,2) (28,1,2) (28,1,2)
0.25 (26,2,2) (26,2,2) (28,1,2) (28,1,2) (28,1,2)
0.30 (26,2,2) (28,1,2) (28,1,2) (28,1,2) (28,1,2)
0.35 (26,2,2) (28,1,2) (28,1,2) (28,1,2) (28,1,2)
0.40 (28,1,2) (28,1,2) (28,1,2) (28,1,2) (28,1,2)
0.45 (28,1,2) (28,1,2) (28,1,2) (28,1,2) (28,1,2)
0.50 (28,1,2) (28,1,2) (28,1,2) (28,1,2) (28,1,2)
0.55 (28,1,2) (28,1,2) (28,1,2) (28,1,2) (28,1,2)
0.60 (28,1,2) (28,1,2) (28,1,2) (28,1,2) (28,1,2)
0.65 (28,1,2) (28,1,2) (28,1,2) (28,1,2) (28,1,2)
0.70 (28,1,2) (28,1,2) (28,1,2) (28,1,2) (28,1,2)
0.75 (28,1,2) (28,1,2) (28,1,2) (28,1,2) (28,1,2)
0.80 (28,1,2) (28,1,2) (28,1,2) (28,1,2) (28,1,2)
0.85 (28,1,2) (28,1,2) (28,1,2) (28,1,2) (28,1,2)
0.90 (28,1,2) (28,1,2) (28,1,2) (28,1,2) (28,1,2)
0.95 (28,1,2) (28,1,2) (28,1,2) (28,1,2) (28,1,2)
0.99 (28,1,2) (28,1,2) (28,1,2) (28,1,2) (28,1,2)
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Table B.9: The LP B designs (b,k,n) with the smallest asymptotic standard devi-
ation of γ given λ = (0.05, 0.05, 0.15, 0.25, 0.35, 0.45), η ∈ (0, 1) when m = 3 and
N = 150.

0.05 0.15 0.25 0.35 0.45
0.01 (4,1,46) (4,2,23) (8,2,21) (10,2,20) (10,2,20)
0.05 (22,4,7) (22,4,7) (22,4,7) (25,5,5) (26,6,4)
0.10 (26,6,4) (26,6,4) (29,7,3) (32,6,3) (32,6,3)
0.15 (32,6,3) (32,6,3) (34,8,2) (34,8,2) (36,7,2)
0.20 (34,8,2) (34,8,2) (36,7,2) (38,6,2) (38,6,2)
0.25 (34,8,2) (36,7,2) (38,6,2) (38,6,2) (40,5,2)
0.30 (38,6,2) (38,6,2) (38,6,2) (42,4,2) (42,4,2)
0.35 (38,6,2) (38,6,2) (42,4,2) (42,4,2) (42,4,2)
0.40 (38,6,2) (42,4,2) (42,4,2) (42,4,2) (46,2,2)
0.45 (42,4,2) (42,4,2) (42,4,2) (46,2,2) (46,2,2)
0.50 (42,4,2) (42,4,2) (46,2,2) (46,2,2) (48,1,2)
0.55 (42,4,2) (46,2,2) (46,2,2) (46,2,2) (48,1,2)
0.60 (46,2,2) (46,2,2) (46,2,2) (48,1,2) (48,1,2)
0.65 (46,2,2) (46,2,2) (48,1,2) (48,1,2) (48,1,2)
0.70 (46,2,2) (48,1,2) (48,1,2) (48,1,2) (48,1,2)
0.75 (48,1,2) (48,1,2) (48,1,2) (48,1,2) (48,1,2)
0.80 (48,1,2) (48,1,2) (48,1,2) (48,1,2) (48,1,2)
0.85 (48,1,2) (48,1,2) (48,1,2) (48,1,2) (48,1,2)
0.90 (48,1,2) (48,1,2) (48,1,2) (48,1,2) (48,1,2)
0.95 (48,1,2) (48,1,2) (48,1,2) (48,1,2) (48,1,2)
0.99 (48,1,2) (48,1,2) (48,1,2) (48,1,2) (48,1,2)
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Table B.10: The LP B designs (b,k,n) with the smallest asymptotic standard de-
viation of γ given λ = (0.55, 0.65, 0.75, 0.85, 0.95), η ∈ (0, 1) when m = 3 and
N = 150.

0.55 0.65 0.75 0.85 0.95
0.01 (14,2,18) (14,3,12) (18,4,8) (25,5,5) (34,8,2)
0.05 (26,6,4) (32,6,3) (34,8,2) (38,6,2) (46,2,2)
0.10 (34,8,2) (38,6,2) (38,6,2) (42,4,2) (48,1,2)
0.15 (38,6,2) (40,5,2) (42,4,2) (46,2,2) (48,1,2)
0.20 (40,5,2) (42,4,2) (46,2,2) (48,1,2) (48,1,2)
0.25 (42,4,2) (46,2,2) (46,2,2) (48,1,2) (48,1,2)
0.30 (44,3,2) (46,2,2) (48,1,2) (48,1,2) (48,1,2)
0.35 (46,2,2) (46,2,2) (48,1,2) (48,1,2) (48,1,2)
0.40 (46,2,2) (48,1,2) (48,1,2) (48,1,2) (48,1,2)
0.45 (48,1,2) (48,1,2) (48,1,2) (48,1,2) (48,1,2)
0.50 (48,1,2) (48,1,2) (48,1,2) (48,1,2) (48,1,2)
0.55 (48,1,2) (48,1,2) (48,1,2) (48,1,2) (48,1,2)
0.60 (48,1,2) (48,1,2) (48,1,2) (48,1,2) (48,1,2)
0.65 (48,1,2) (48,1,2) (48,1,2) (48,1,2) (48,1,2)
0.70 (48,1,2) (48,1,2) (48,1,2) (48,1,2) (48,1,2)
0.75 (48,1,2) (48,1,2) (48,1,2) (48,1,2) (48,1,2)
0.80 (48,1,2) (48,1,2) (48,1,2) (48,1,2) (48,1,2)
0.85 (48,1,2) (48,1,2) (48,1,2) (48,1,2) (48,1,2)
0.90 (48,1,2) (48,1,2) (48,1,2) (48,1,2) (48,1,2)
0.95 (48,1,2) (48,1,2) (48,1,2) (48,1,2) (48,1,2)
0.99 (48,1,2) (48,1,2) (48,1,2) (48,1,2) (48,1,2)
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Appendix C

Extended Rank 1 Update

C.1 Rank 1 Update

Theorem 2. If W = C + wwt where C is non-singular then

1. det(W ) = det(C) [1 + wtC−1w]

2. W−1 =
[
I − 1

1+wtC−1w
C−1wwt

]
C−1

Corollary 3. If W = I + uut then

1. det(W ) = I + utu

2. W−1 = I − 1
1+utu

uut

Corollary 4. If W = aIn + bJn then

1. det(W ) = an−1 [a+ bn]

2. W−1 = 1
a
In − b

a(a+bn)
Jn
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C.2 Properties of Fisher information

We will need to use the following two results about block matrix inversion estab-

lished by Banachiewicz [1937].

Banachiewicz [1937] established the following two results about block matrix inver-

sion.

 A B

C D


−1

=

 A−1 + A−1B(D−CA−1B)−1CA−1 −A−1B(D−CA−1B)−1

−(D−CA−1B)−1CA−1 (D−CA−1B)−1


−1

det(A) = det

 A B

C D

 = det (A) det
(
D−CA−1B

)

We define

F0 =

 M 0m×2

0tm×2 P

 and F1 =

 M sv

svt r



F−1
0 =

 M−1 0m×2

0tm×2 P−1


and

F−1
1 =

 M−1 + M−1v(r − vtA−1v)−1vtM−1 −M−1v(r− vtM−1v)−1

−(r− vtM−1v)−1vtM−1 (r − vtM−1v)−1



M is positive definite which implies M−1. For a positive definite matrix P of

dimension q has the property that xtPx > 0 for any non-vector x ∈ Rq. Thus,

vtM−1v > 0. The asymptotic variance will be decreased if we we can set v = 0. If
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v 6= 0 we can quantify the loss of efficiency, which is the ratio F0/F1, by

1

1− 1
r
vtM−1v
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Appendix D

Assessment of a Measurement

System with Production Data

D.1 Truncated Normal

The moment generating function (MGF) for a X ∼ N(µ, σ2) [See Fisher, 1931]

that is truncated such that X ∈ [b1, b2], where b2 > b1 (denoted as truncated

N(µ, σ2; b1, b2)) is

M(t; b1, b2) = eµt+σ
2t2/2

[
Φ
(
b2−µ−σ2t

σ

)
− Φ

(
b1−µ−σ2t

σ

)]
[
Φ
(
b2−µ
σ

)
− Φ

(
b1−µ
σ

)] (D.1)

where Φ(x) is the standard normal cumulative distribution function. Using the

MGF the first four moments are

E(X) = µ− λ0σ

E(X2) = µ2 − 2λ0σµ+ (1− λ1)σ2

E(X3) = µ3 − 3λ0σµ
2 + (3− 3λ1)σ2µ+ (−2λ0 − λ2)σ3

E(X4) = µ4 − 4λ0σµ
3 + (−6λ1 + 6)σ2µ2 + (−8λ0 − 4λ2)σ3µ+ (−3λ1 + 3− λ3)σ4
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where α1 = b1−µ
σt

, α2 = b2−µ
σt

, for i = 0, 1, 2, 3, λi =
αi

2φ(α2)−αi
1φ(α1)

Φ(α2)−Φ(α1)
and φ(x) is the

standard normal probability density function.

If Y is truncated N(µ, σ2), such that Y /∈ A = (a1, a2), where a2 > a1 then we

can write Y = uX1 + (1 − u)X2 where X1 ∼ truncated N(µ, σ2;−∞, a1), X2 ∼

truncated N(µ, σ2; a2,∞) and u =
[
Φ
(
a1−µ
σ

)]
/
[
1− Φ

(
a2−µ
σ

)
+ Φ

(
a1−µ
σ

)]
then the

moment generating function for Y is

MY (t) = uM(t;−∞, a1) + (1− u)M(t; a2,∞) (D.2)

where M(t; b1, b2) is given in (D.1). Thus Y has the same moments as X with the

exception that for i = 0, 1, 2, 3 λi is replaced with

βi = uλi

(
−∞, a1 − µ

σ

)
+ (1− u) λi

(
a2 − µ
σ

,∞
)

(D.3)

where λi(z1, z2) =
zi2φ(z2)− zi1φ(z1)

Φ(z2)− Φ(z1)
(D.4)

D.2 Normal Moments

If X ∼ N(µ, σ2) then the first four moments [See Johnson and Kotz, 1970] are

E(X) = µ

E(X2) = µ2 + σ2

E(X3) = µ3 + 3µσ2

E(X4) = µ4 + 6µ2σ2 + 3σ4

198



D.3 Expectation of S2
m

We define

S2
m =

1

n2

∑
i∈S

2∑
j=1

(
Yij − Y i.

)2
=

1

n2

∑
i∈S

1

2
(Yi1 − Yi2)2 =

1

n2

∑
i∈S

S2
im. (D.5)

Each pair of measurements from different parts are independent so we need to

determine the properties of 1
2

(Yi1 − Yi2)2. To simplify the calculations, we notice

that we can define Yij = Xij + µ where Xij has the same distribution as Yij but

with paramter µ = 0. Then

E [Sim] =
1

2
E
[
(Yi1 − Yi2)2]

=
1

2
E
[
(Xi1 + µ−Xi2 − µ)2]

=
1

2
E
[
(Xi1 −Xi2)2]

=
1

2
E
[
E
[
X2
i1 − 2Xi1Xi2 +X2

i2

∣∣Xi1

]]
=

1

2
E
[
X2
i1 − 2Xi1E [Xi2|Xi1] + E

[
X2
i2

∣∣Xi1

]]
=

1

2
E
[
X2
i1 − 2Xi1 [ρXi1] + [ρXi1]2 + σ2

t (1− ρ) (1 + ρ)
]

=

[
−1

2
+ 1− ρ+

1

2
ρ2

]
E
[
X2
i1

]
+

1

2
σ2 (1− ρ) (1 + ρ)

=
1

2
[1− ρ]2

[
(1− β1)σ2

]
+

1

2
σ2 (1− ρ) (1 + ρ)

= σ2 (1− ρ) [1− (1− ρ) β1/2]

Thus, the expectation of S2
im is σ2 (1− ρ) [1− (1− ρ) β1/2].
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D.4 Variance of S2
m

To calculate the variance of Sm we use Sim, defined in (D.5), to get

Var(S2
m) =

(
1

n2

)2∑
i∈S

Var(S2
im) =

1

n2

Var(S2
im) (D.6)

because the measurements on different parts are independent. If we use the identity

Var(S2
im) = E

[
S4
im

]
− E

[
S2
im

]2
(D.7)

we only need to calculate E [S4
im] to determine the variance.

E
[
S4
im

]
= E

[(
1

2
(Yi1 − Yi2)2

)2
]

=
1

4
E
[
X4
i1 − 4X3

i1Xi2 + 6X2
i1X

2
i2 − 4Xi1X

3
i2 +X4

i2

]
=

1

4
E
{
E
[
X4
i1 − 4X3

i1Xi2 + 6X2
i1X

2
i2 − 4Xi1X

3
i2 +X4

i2 |Xi1

]}
=

1

4
E
{
X4
i1 − 4X3

i1E [Xi2 |Xi1 ] + 6X2
i1E

[
X2
i2 |Xi1

]
−4Xi1E

[
X3
i2 |Xi1

]
+ E

[
X4
i2 |Xi1

]}
...

=
1

4

[
−3 + 4(1− ρ)− 4ρ3 + ρ4 + 6ρ2

]
E
[
X4
i1

]
+

1

4

[
6σ2 + 6σ2ρ2 − 12σ2ρ

]
(1− ρ)(1 + ρ)E

[
X2
i1

]
+

1

4
3σ4(1− ρ)2 (1 + ρ)2

...

=
1

4
σ4(1− ρ)2

(
3(1− ρ)2β1 − (1− ρ)2β3 − 12β1(1− ρ) + 12

)
=

1

4
σ4(1− ρ)2

[
(1− ρ)2 (3β1 − β3)− 12β1(1− ρ) + 12

]
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Now, combing this result with the previous formula we have

Var(S2
im)

= E
[
S4
im

]
− E

[
S2
im

]2
=

1

4
σ4(1− ρ)2

[
(1− ρ)2 (3β1 − β3)− 12β1(1− ρ) + 12

]
−
[
σ2 (1− ρ)

[
1− (1− ρ)

β1

2

]]2

...

=
1

4
σ4(1− ρ)2

[
3(1− ρ)2β1 − (1− ρ)2β3 − 8β1(1− ρ)− (1− ρ)2β2

1

]
= 2σ4(1− ρ)2

(
1− β1(1− ρ)− (1− ρ)2

8

(
β3 − 3β1 + β2

1

))

and thus,

Var(S2
m) =

2σ4(1− ρ)2

n2

(
1− β1(1− ρ)− (1− ρ)2

8

(
β3 − 3β1 + β2

1

))
(D.8)
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