
The Frobenius Problem in a Free
Monoid

by

Zhi Xu

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2009

c© Zhi Xu 2009

I hereby declare that I am the sole author of this thesis. This is a true copy of the
thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Given positive integers c1, c2, . . . , ck with gcd(c1, c2, . . . , ck) = 1, the Frobenius prob-
lem (FP) is to compute the largest integer g(c1, c2, . . . , ck) that cannot be written
as a non-negative integer linear combination of c1, c2, . . . , ck. The Frobenius prob-
lem in a free monoid (FPFM) is a non-commutative generalization of the Frobe-
nius problem. Given words x1, x2, . . . , xk such that there are only finitely many
words that cannot be written as concatenations of words in {x1, x2, . . . , xk }, the
FPFM is to find the longest such words. Unlike the FP, where the upper bound
g(c1, c2, . . . , ck) ≤ max1≤i≤k c2

i is quadratic, the upper bound on the length of the
longest words in the FPFM can be exponential in certain measures and some of
the exponential upper bounds are tight. For the 2FPFM, where the given words
over Σ are of only two distinct lengths m and n with 1 < m < n, the length of the
longest omitted words is ≤ g(m,m |Σ|n−m + n−m).

In Chapter 1, I give the definition of the FP in integers and summarize some
of the interesting properties of the FP. In Chapter 2, I give the definition of the
FPFM and discuss some general properties of the FPFM. Then I mainly focus
on the 2FPFM. I discuss the 2FPFM from different points of view and present
two equivalent problems, one of which is about combinatorics on words and the
other is about the word graph. In Chapter 3, I discuss some variations on the
FPFM and related problems, including input in other forms, bases with constant
size, the case of infinite words, the case of concatenation with overlap, and the
generalization of the local postage-stamp problem in a free monoid. In Chapter 4,
I present the construction of some essential examples to complement the theory of
the 2FPFM discussed in Chapter 2. The theory and examples of the 2FPFM are
the main contribution of the thesis. In Chapter 5, I discuss the algorithms for and
computational complexity of the FPFM and related problems. In the last chapter,
I summarize the main results and list some open problems.

Part of my work in the thesis has appeared in the papers [83, 84, 157].

iii

Acknowledgements

First, I wish to thank my supervisor Jeffrey O. Shallit, who is a great scholar, a
nice friend of mine, and a good teacher who introduced to me the non-commutative
Frobenius problem that finally became the topic of this thesis. I owe him a great
deal for his valuable suggestions in our regular discussions and for his patience in
reading my poorly-written manuscripts and in improving my presentation skills. I
cannot find enough words to express my gratitude for his help in all aspects in my
PhD life.

I also wish to thank my temporary supervisor professor Richard Trefler and all
my friends in the WatForm group for their kindness that made my first year in
Waterloo an enjoyable memory.

I wish to thank professor Janusz Brzozowski, professor Jonathan Buss, professor
Ondřej Lhoták, professor Ming Li, all my friends in the Algorithm and Complexity
group, and all the people who have ever helped me during my stay at University of
Waterloo. Without their favors, my progress in the PhD program could not have
proceeded so smoothly.

I wish to thank Dr. Narad Rampersad for reading my thesis thoroughly and
providing helpful comments.

I wish to thank the members of my examining committee, professor Richard
Cleve, professor Ming Li, professor Kai Salomaa, and professor Edlyn Teske for
their precious time in reviewing my thesis, providing comments, and attending my
defense.

I particularly want to thank my parents and my sister for their endless love and
selfless support. Without that, I could not have gone so far in my career.

The research in the thesis was partly supported by David R. Cheriton Graduate
Scholarships, the International Doctoral Student Award from University of Water-
loo, and financial support from the David R. Cheriton School of Computer Science
at the University of Waterloo.

iv

Dedication

献给我的父亲母亲

(To my parents)

v

Contents

List of Tables ix

List of Figures x

1 Introduction 1

1.1 Introduction to the Frobenius problem 1

1.1.1 Number theory preliminaries 1

1.1.2 Integer Frobenius problem 2

1.2 Research on the FP . 5

1.2.1 Formulae for the Frobenius number 5

1.2.2 Bounds on the Frobenius number 9

1.2.3 Variations on the FP . 11

1.2.4 The FP in special sequential bases 16

1.2.5 Algorithm for and computational complexity of the FP . . . 18

1.3 Applications and related problems of the FP 19

1.3.1 Sylver coinage . 19

1.3.2 Quadratic residues . 20

1.3.3 Local postage-stamp problem 20

1.3.4 (g0, g1, . . . , gk)-tree . 21

1.3.5 Shellsort algorithm . 21

1.3.6 Tiling problem . 22

1.4 Shallit’s non-commutative generalization 24

1.4.1 Generalizations of the FP 24

1.4.2 Free monoids and the FP . 25

1.5 Organization of the thesis . 28

vi

2 General theory of the FPFM 29

2.1 The Frobenius problem in a free monoid 29

2.1.1 Definition of the FPFM . 29

2.1.2 Relations of the FPFM and the Frobenius number 32

2.1.3 Twins proposition in the FPFM 35

2.2 Various measures for the FPFM . 35

2.2.1 Measures of the input . 36

2.2.2 Measures of the output . 37

2.2.3 Constraints on the problem 37

2.3 Bounds on the longest omitted words 38

2.4 The FPFM for two lengths — the 2FPFM 41

2.4.1 Definition of the 2FPFM . 42

2.4.2 The First and Second Lemmas of the 2FPFM 42

2.4.3 Bounds on the longest omitted words for the 2FPFM 48

2.5 Combinatorics on words in the 2FPFM 49

2.5.1 Boosting the length of omitted words 49

2.5.2 The structure of omitted words 51

2.5.3 An equivalent condition on co-finiteness 53

2.6 The de Bruijn graph in the 2FPFM 57

2.6.1 Word graphs of the 2FPFM 57

2.6.2 Another equivalent condition on co-finiteness 60

2.6.3 The de Bruijn graph and a generalization 62

2.6.4 Spectrum theorem for the 2FPFM 67

2.6.5 Bounds on the size of the basis in the 2FPFM 70

2.7 The FPFM with basis of special sequential lengths 72

3 Variations on the FPFM and related problems 77

3.1 Concatenation of words with fixed order 78

3.2 Variations with different measures 78

3.2.1 State complexity of the generated language 78

3.2.2 Input in other forms . 85

3.2.3 Output in other forms . 89

3.3 Variations with different aspects . 90

vii

3.3.1 Number of words and number of symbols 90

3.3.2 Coverage of words as solutions 93

3.3.3 The number of different factorizations 95

3.4 General form of the Frobenius problem of words 97

3.4.1 Infinite words . 97

3.4.2 Concatenation with overlap 104

3.4.3 Other variations . 113

3.5 Generalized local postage-stamp problem 115

4 Examples of the FPFM 121

4.1 Exponential length of the longest words 6∈ S∗ 121

4.1.1 Examples of the 2FPFM with 0 < m < n < 2m 121

4.1.2 Examples of the 2FPFM with 0 < 2m < n 130

4.2 Doubly-exponential number of words 6∈ S∗ 133

4.3 Experiment statistics . 136

5 Computational Complexity of the FPFM 139

5.1 Algorithm for the FPFM . 139

5.2 Algorithm for the 2FPFM . 140

5.3 Algorithm for the case of infinite words 142

5.4 Algorithm for the case of concatenation with overlap 143

5.5 Computational Complexity . 144

6 Conclusion 149

6.1 Summary of results on the FPFM and variations 149

6.2 Open problems . 151

References 154

Index 165

viii

List of Tables

1.1 An integer Frobenius problem example — g(3, 5) = 7 4

1.2 Relation between quadratic residues of 3, 5 and x ∈ N \ 〈3, 5〉 20

1.3 Comparison of the original FP and the FPFM 27

2.1 Characteristics of the FPFM with bases S1, S2, and S3 34

2.2 Measures of a list of words x1, x2, . . . , xk as the input 36

2.3 Measures of the longest omitted words and other characteristics . . 37

2.4 Conditions to be satisfied and additional constraints 38

2.5 The length of longest words and the size of computing models . . . 39

2.6 All the words in { 0, 1 }∗ \ ({ 0, 1 }3 ∪ { 0, 1 }5 \ { 00001 })∗ 43

2.7 Different types of walks in a digraph 58

2.8 Comparison of the de Bruijn graph and the word graph Γ(m,n) . . 64

2.9 Spectrum κ(m,n) of length of longest words not in S∗ in the 2FPFM 69

2.10 All bases S ⊆ Σ3 ∪ Σ4 for Σ = { 0, 1 } with S∗ co-finite. 73

3.1 Spectrum of length Nh(S) of shortest words not in S≤h in 2LPSPFM 119

4.1 All the words in { 0, 1 }∗\({ 0, 1 }3 ∪ { 0, 1 }5\{ 00001, 01010, 10011 })∗124

4.2 Examples of the exponential length construction for 0 < m < n < 2m 126

4.3 NFA accepting Σm ∪ Σn \ T (m,n) 128

4.4 Examples of generalized de Bruijn words τ 133

4.5 Experiment summary on the number of different cases — one . . . 137

4.6 Experiment summary on the number of different cases — two . . . 138

6.1 Summary for the unary alphabet/integers 150

6.2 Summary for larger alphabets . 151

ix

List of Figures

1.1 Wilf’s algorithm to compute g(x1, x2, . . . , xk) 18

1.2 Shellsort algorithm . 22

1.3 Illustration to the solution to Problem B-3 23

2.1 Position of factors in the proof of the Second Lemma of the 2FPFM 47

2.2 Position of factors in the proof of the boosting lemma 50

2.3 Position of factors in the proof of the structure lemma 52

2.4 An example of a directed graph . 57

2.5 Binary de Bruijn words of order 3 63

2.6 Binary de Bruijn graph of order 2 63

2.7 G̃ has a Hamilton cycle if and only if G has an Euler tour 65

3.1 Example for the bound 2n−1 + 2n−2 on star operator 80

3.2 Examples for the bound 2n−3+2n−4 on star operator of finite languages 80

3.3 An NFA accepting {x1, x2, . . . , xk }∗ 81

3.4 The DFA accepts (Σ2 ∪ Σ3 \ {001})∗ 82

3.5 An NFA accepting x∗1x
∗
2 · · ·x∗k . 83

5.1 A polynomial-time algorithm to solve the 2FPFM 141

x

Chapter 1

Introduction

In §1.1, I will first give some basic definitions and notation in number theory, and
then give the definition of the original Frobenius problem. In §1.2, I will give a
brief introduction to some of the basic results about the Frobenius problem in the
literature. The discussion in the first two sections will take place in the domain of
non-negative integers. Then, in §1.3, we will see how some results from the study
of the Frobenius problem can be applied to analyzing and solving several problems
in other research areas. In §1.4, we will see how the Frobenius problem can be
generalized to the setting of a free monoid, which composes the main topic of this
thesis. At the end, in §1.5, I will outline the organization of the thesis.

1.1 Introduction to the Frobenius problem

1.1.1 Number theory preliminaries

Let N = { 0, 1, 2, . . .} denote the set of all non-negative integers, let Z = { 0,±1, . . . }
denote the set of all integers, and let qZ = { 0,±q,±2q, . . . } denote the set of all
integral multiples of the number q. We say q divides p if p is an integral multiple
of q and write q | p.

Let |x | denote the absolute value of the number x. For any integers p and q,
q 6= 0, the integer p can be uniquely represented as p = sq + r, where s, r ∈ Z and
0 ≤ r < | q |.

Let gcd(x1, . . . , xk) denote the greatest common divisor and let lcm(x1, . . . , xk)
denote the least common multiple of integers x1, . . . , xk. The operation gcd (respec-
tively, lcm) satisfies the associative law gcd(a, gcd(b, c)) = gcd(gcd(a, b), c), and the
distributive law a gcd(b, c) = gcd(ab, ac).

Lemma 1.1.1. Let x1, x2, . . . , xk ∈ Z with gcd(x1, x2, . . . , xk) = d. Then there
exist c1, c2, . . . , ck ∈ Z such that c1x1 + c2x2 + · · ·+ ckxk = d.

1

Corollary 1.1.2. Let x1, x2, . . . , xk ∈ Z with gcd(x1, x2, . . . , xk) = d. Then d = 1
if and only if there exist c1, c2, . . . , ck ∈ Z such that

c1x1 + c2x2 + · · ·+ ckxk = 1. (1.1)

We say p is congruent to q modulo k if k divides p− q and write p ≡ q (mod k).
The modulo-k congruence relation is an equivalence relation. Each equivalence
class in this case is called a residue class and the set of all modulo-k residue classes
is denoted by Zk = Z/kZ. The minimal non-negative integer that is congruent to
p modulo k is denoted by p mod k.

Lemma 1.1.3. If gcd(p, q) = 1, then for each integer r the equation

px ≡ r (mod q) (1.2)

has one unique solution x up to congruence (mod q).

An integer p > 1 is called a prime if p has no positive divisor except 1 and p.
The only integers that divide 1 are ±1 and we do not call 1 a prime.

Euler’s function φ(n) gives for each positive integer n the number of those
positive integers m satisfying 0 < m ≤ n and gcd(n,m) = 1. Note that φ(1) = 1.

1.1.2 Integer Frobenius problem

Given k positive integers x1, x2, . . . , xk, we say that an integer n can be written as a
non-negative integer linear combination of x1, x2, . . . , xk, if there exist non-negative
integers c1, c2, . . . , ck such that

n = c1x1 + c2x2 + · · ·+ ckxk. (1.3)

We call this sequence of positive integers x1, x2, . . . , xk a basis . Without loss of
generality, we always assume 0 < x1 ≤ x2 ≤ · · · ≤ xk without explicit explanation
in all of the following chapters when we mention a basis (of integers). We use

〈x1, x2, . . . , xk〉 =
{

c1x1 + c2x2 + · · ·+ ckxk : c1, c2, . . . , ck ∈ N
}

(1.4)

to represent the set of all integers that can be written as non-negative integer linear
combinations of x1, x2, . . . , xk, and say it is generated by the basis x1, x2, . . . , xk.

Deciding whether N \ 〈x1, x2, . . . , xk〉 is finite

It is a folklore result that if gcd(x1, x2, . . . , xk) = 1, then there are only finitely
many non-negative integers that are not in 〈x1, x2, . . . , xk〉. This property has been
used in additive number theory [142] and in probability theory [46, p. 336].

2

Lemma 1.1.4. Let x1, x2, . . . , xk be positive integers with gcd(x1, x2, . . . , xk) = 1.
There exists an integer N such that n ∈ 〈x1, x2, . . . , xk〉 for all integers n > N .

Proof. (Taken from Feller’s textbook [46, p. 336]) Since gcd(x1, x2, . . . , xk) = 1,
by Lemma 1.1.1, there exist integers c1, c2, . . . , ck such that c1x1 + · · · + ckxk = 1.
Let q =

∑k
i=1 xi and

N = q2 max
1≤i≤k

| ci | . (1.5)

Now we prove that for all integers n > N , n ∈ 〈x1, x2, . . . , xk〉. Each integer n > N
can be uniquely represented as n = N + pq + r, where p, r ∈ N, 0 ≤ r < q. Then

n = q2 max
1≤i≤k

| ci |+ pq + r

k∑
i=1

cixi =
k∑

i=1

(q max
1≤i≤k

| ci |+ p + rci)xi, (1.6)

where q max1≤i≤k | ci |+p+rci > 0 for all 1 ≤ i ≤ k. Hence n ∈ 〈x1, x2, . . . , xk〉.

Furthermore, if there are only finitely many non-negative integers that are not in
〈x1, x2, . . . , xk〉, then gcd(x1, x2, . . . , xk) = 1. Otherwise, there are infinitely many
non-negative integers not in 〈x1, x2, . . . , xk〉. Suppose gcd(x1, x2, . . . , xk) = d > 1.
Then any integer of the form nd+1 is not in 〈x1, x2, . . . , xk〉 for all n ∈ N. Therefore,
the following theorem holds.

Theorem 1.1.5. Let x1, x2, . . . , xk be positive integers. There are only finitely
many non-negative integers that are not in 〈x1, x2, . . . , xk〉 if and only if

gcd(x1, x2, . . . , xk) = 1. (1.7)

Definition of the (integer) Frobenius problem

If the number of non-negative integers that are not in 〈x1, x2, . . . , xk〉 is finite, one
natural question is, what is the largest integer among those integers? The Frobenius
problem (FP) is as follows:

Problem 1.1.6 (Frobenius problem). Given k positive integers x1, x2, . . . , xk such
that gcd(x1, x2, . . . , xk) = 1, what is the largest integer that cannot be represented
as a non-negative integer linear combination of x1, x2, . . . , xk?

The largest integer that is not in 〈x1, x2, . . . , xk〉 is called the Frobenius number
of x1, x2, . . . , xk, and it is usually denoted by g(x1, x2, . . . , xk).

The Frobenius problem is an old problem, and when it first appeared is not
completely clear. Ferdinand G. Frobenius (1849–1917) had discussed the problem
occasionally in his lectures in the late 1800’s (according to Brauer [17]), although he
did not publish anything on the problem (but obviously he knew this problem [49]).

3

Table 1.1: An integer Frobenius problem example — g(3, 5) = 7

1 6∈ 〈3, 5〉, 2 6∈ 〈3, 5〉, 3 = 1 · 3 + 0 · 5,
4 6∈ 〈3, 5〉, 5 = 0 · 3 + 1 · 5, 6 = 2 · 3 + 0 · 5,
7 6∈ 〈3, 5〉, 8 = 1 · 3 + 1 · 5, 9 = 3 · 3 + 0 · 5,

10 = 0 · 3 + 2 · 5, 11 = 2 · 3 + 1 · 5, 12 = 4 · 3 + 0 · 5,
13 = 1 · 3 + 2 · 5, 14 = 3 · 3 + 1 · 5, 15 = 5 · 3 + 0 · 5,

.

Example 1.1.7. Let k = 2, x1 = 3, x2 = 5. Then the first few integers generated
by the basis x1, x2 are shown in Table 1.1. Any larger integer that is not shown in
Table 1.1 can be written as a sum of a positive multiple of 3 plus one of the integers
10, 11, 12, and thus is in 〈3, 5〉. So g(3, 5) = 7.

There are also other names used for the Frobenius problem in the literature, such
as the money-changing problem (or the money-changing problem of Frobenius, or
the coin-exchange problem of Frobenius) [172, 60, 137], the coin problem (or the coin
problem of Frobenius) [149, 143, 163, 60], the Chicken McNuggets problem [168],
and the Diophantine problem of Frobenius (or the linear Diophantine problem of
Frobenius and other combinations of the nouns such as the Diophantine Frobenius
problem) [137, 126, 35].

Problem 1.1.8 (Chicken McNuggets problem). Chicken McNuggets
TM

are available
in packs of either 6, 9, or 20 nuggets at McDonald’s R©. What is the largest number
of Chicken McNuggets

TM
that one cannot purchase without throwing any away?

Solution. (Taken from Vardi’s book [168, pp. 233–234]) The answer is

g(6, 9, 20) = 43. (1.8)

To see this, first of all, 43 is not in 〈6, 9, 20〉. Suppose 43 = 6a + 9b + 20c for some
non-negative integers a, b, c. Then c ≤ 2 and 43 ≡ 6a + 9b + 20c (mod 3), which
implies c ≡ 2 (mod 3). So c = 2 and thus 6a + 9b = 3, which has no non-negative
integer solution. Now all of the integers from 44 to 49 are in 〈6, 9, 20〉 as shown
below:

44 = 1 · 6 + 2 · 9 + 1 · 20, 45 = 0 · 6 + 5 · 9 + 0 · 20,
46 = 1 · 6 + 0 · 9 + 2 · 20, 47 = 0 · 6 + 3 · 9 + 1 · 20,
48 = 8 · 6 + 0 · 9 + 0 · 20, 49 = 0 · 6 + 1 · 9 + 2 · 20.

Since every integer n ≥ 44 can be written as n = 6k + m, where k ∈ N and
m ∈ { 44, 45, 46, 47, 48, 49 }, all integers n ≥ 44 are in 〈6, 9, 20〉. Therefore, 43 is
the largest integer that is not in 〈6, 9, 20〉. In fact, one can check that the only
positive integers that are not in 〈6, 9, 20〉 are 1, 2, 3, 4, 5, 7, 8, 10, 11, 13, 14, 16,
17, 19, 22, 23, 25, 28, 31, 34, 37, and 43.

4

1.2 Research on the FP

Because of Theorem 1.1.5, one can efficiently decide whether g(x1, x2, . . . , xk) exists
for arbitrary positive integers x1, x2, . . . , xk by computing gcd(x1, x2, . . . , xk). To
compute g(x1, x2, . . . , xk), however, is generally a more difficult task.

1.2.1 Formulae for the Frobenius number

Cases k = 2, k = 3, and k = 4

There exist simple formulae for the FP for a small fixed k. When k = 2, it is folklore
that g(x1, x2) = x1x2− x1− x2, which is sometimes cited as due to Sylvester [165],
although he did not actually provide this equation (for the available literature,
see [4]).

Theorem 1.2.1. Let x1, x2 be two positive integers with gcd(x1, x2) = 1. Then

g(x1, x2) = x1x2 − x1 − x2. (1.9)

Proof. (Rewritten from a proof of Nijenhuis and Wilf [117]) Let N = x2(x1−1)−x1,
and let n > N be an integer. By Lemma 1.1.3, the equation

x2x ≡ n (mod x1) (1.10)

has a unique solution x = c2 such that 0 ≤ x < x1. Then x1 | n− x2c2. So we can
write n− x2c2 = x1c1 for some integer c1. Then

x1c1 = n− x2c2 > N − x2(x1 − 1) = −x1, (1.11)

which implies c1 ≥ 0. Therefore, n = x1c1 + x2c2 ∈ 〈x1, x2〉 for any integer n > N .

Suppose N = x2(x1− 1)− x1 ∈ 〈x1, x2〉. Let N = c1x1 + c2x2, where c1, c2 ∈ N.
Then

−x2 ≡ c2x2 (mod x1). (1.12)

Since gcd(x1, x2) = 1, it follows that c2 ≡ −1 (mod x1). So c2 ≥ x1 − 1. On the
other hand, since c2x2 ≤ N < x2(x1 − 1), we have c2 < x1 − 1. No such c2 exists.
Hence N is not in 〈x1, x2〉.

Therefore, g(x1, x2) = N = x1x2 − x1 − x2.

Example 1.2.2. To compute the Frobenius number g(3, 5) in Example 1.1.7,
one can apply Formula (1.9) and get

g(3, 5) = 3 · 5− 3− 5 = 7. (1.13)

5

Although when k = 2 there is a simple formula to compute the Frobenius
number easily, the Frobenius problem becomes much harder for any fixed k ≥ 3.
So far, when k ≥ 4, there is no simple formula known for the Frobenius number
except for various special cases of x1, x2, . . . , xk.

In 1957, Roberts [135, 136] showed that for integers x, b ≥ 2, where b | x + 1,

g(x, x + 1, x + b) =

(
x+1

b

)
x + (b− 3)x− 1, if x ≥ b2 − 5b + 3;

(
x+1

b

)
(x + b) + (b− 4)x− (b + 1), if x ≥ b2 − 4b + 2,

(1.14)
(for a generalized form of Eq. (1.14), see Goldberg [55]). Let x1, x2, x3 be positive
integers with gcd(x1, x2, x3) = 1. In 1960, Johnson [80] (also see the work of
Qiu and Niu [125]) showed that (as an immediate result from Lemma 1.2.6) when
x3 ≥ x1

d
x2

d
− x1

d
− x2

d
, where d = gcd(x1, x2), the Frobenius number of x1, x2, x3 is

g(x1, x2, x3) =
1

d
x1x2 − x1 − x2 + (d− 1)x3. (1.15)

In 1962, Brauer and Shockley [19] showed that if x1 | x2 + x3, then

g(x1, x2, x3) = max

{
x2

⌊
x1x3

x2 + x3

⌋
− x1, x3

⌊
x1x2

x2 + x3

⌋
− x1

}
. (1.16)

Suppose none of the x1, x2, x3 can be written as a non-negative integer lin-
ear combination of the others, and integers s, t, q, r are determined by x3 ≡ sx2

(mod x1), 1 < s < x1, x3 = sx2 − tx1, t > 0, x1 = qs + r, 0 < r < s, and
x2 ≥ t(q+1). Then, in 1977, Selmer [149] (also see Hofmeister [68] and Byrnes [25])
showed that

g(x1, x2, x3) = max { (s− 1)x2 + (q − 1)x3, (r − 1)x2 + qx3 } − x1, (1.17)

which was later generalized by Hujter and Vizvári [75] (their result is complicated
and is omitted here). In 1987, Hujter [74] proved that for any integer x > 2,

g(x2, x2 + 1, x2 + x) = 2x3 − 2x2 − 1. (1.18)

In 2006, Fel [45, Eq. (153)] showed that for any sufficiently large integer x,

g(2x + 1, 2x + 3, 4x + 3) = 2x2 + 3x− 1. (1.19)

For arbitrary positive integers x1, x2, x3 with gcd(x1, x2, x3) = 1, there is a
formula for g(x1, x2, x3) in terms of other constants. Let L1, L2, L3 be the smallest
positive integers that satisfy

L1x1 = c12x2 + c13x3, L2x2 = c21x1 + c23x3, L3x3 = c31x1 + c32x2, (1.20)

6

for some non-negative integers cij, 1 ≤ i, j ≤ 3. Then Denham [37] in 2003 and
Ramı́rez-Alfonśın [130] in 2005 showed by using Hilbert series that for arbitrary
positive integers x1, x2, x3 with gcd(x1, x2, x3) = 1, the Frobenius number satisfies

g(x1, x2, x3) +
3∑

n=1

xn =

max {Lixi + cjkxk, Ljxj + cikxk } , if cij > 0 for all i, j;

Ljxj + Lixi, if some cij = 0,

(1.21)
A restricted version of Eq. (1.21) was found by Johnson [80] in 1960. Johnson also
showed that for arbitrary x1, x2, x3, the numbers L1, L2, L3 can be calculated in
polynomial time [80].

For k = 4 the FP becomes even harder than the case k = 3. In 1964, Dulmage
and Mendelsohn [39] showed that for any positive integer x,

g(x, x + 1, x + 2, x + 4) = (x + 1)
⌊

x
4

⌋
+

⌊
x+1

4

⌋
+ 2

⌊
x+2

4

⌋− 1;

g(x, x + 1, x + 2, x + 5) = x
⌊

x+1
5

⌋
+

⌊
x
5

⌋
+

⌊
x+1

5

⌋
+

⌊
x+2

5

⌋
+ 2

⌊
x+3

5

⌋− 1;

g(x, x + 1, x + 2, x + 6) = x
⌊

x
6

⌋
+ 2

⌊
x
6

⌋
+ 2

⌊
x+1

6

⌋
+ 5

⌊
x+2

6

⌋
+

⌊
x+3

6

⌋

+
⌊

x+4
6

⌋
+

⌊
x+5

6

⌋− 1.
(1.22)

In 1975, Byrnes [26] examined some special cases for k = 4, 5 (the formulae are too
complicated and are omitted here).

Non-existence theorem of Curtis

In 1990, Curtis [34] proved that no simple formula for the Frobenius number exists
when k = 3. Here by “simple formula” we mean a finite set of polynomials.

Theorem 1.2.3. [34] Let

A =
{

(x1, x2, x3) ∈ N3 : x1 < x2 < x3, x1, x2 are primes, gcd(x1, x2, x3) = 1
}
.

(1.23)
Then there is no non-zero polynomial f ∈ C[[z1, z2, z3, z4]] such that

f
(
x1, x2, x3, g(x1, x2, x3)

)
= 0 (1.24)

for every (x1, x2, x3) ∈ A.

Corollary 1.2.4. [34] There is no finite set of polynomials f1, f2, . . . , fk in three
variables such that for each choice of x1, x2, x3 with gcd(x1, x2, x3) = 1 there exists
some fi computing the Frobenius number g(x1, x2, x3).

Proof. Proof by contradiction. Let f(z1, z2, z3, z4) =
∏k

i=1

(
fi(z1, z2, z3)−z4

)
. Then

f satisfies (1.24).

7

Every basis x1, x2, x3 can be padded with some dummy integers x4, . . . , xk that
are already in 〈x1, x2, x3〉, giving a basis of an arbitrary size k. The Frobenius
number of the new basis remains the same as the old:

g(x1, x2, x3, x4, . . . , xk) = g(x1, x2, x3). (1.25)

Since there are simple formulae providing upper bounds for g(x1, x2, x3) (see §1.2.2),
the dummy integers x4, . . . , xk can be given explicitly by polynomials, and thus
Corollary 1.2.4 also eliminates the possibility of the existence of a simple formula
for the Frobenius number for any fixed k ≥ 3.

Implicit formulae

There are several implicit formulae for the Frobenius number, which either depend
on other characteristics or are recursive. Some of them are very useful in the sense
that good bounds or algorithms can be derived from them.

For example, in 1962, Brauer and Shockley gave the following lemma [19, 68].

Lemma 1.2.5. [19] Let x1, x2, . . . , xk be positive integers. Given integers y and l,
0 ≤ l < y, let tl (= tl(y)) denote the smallest integer such that tl ∈ 〈x1, x2, . . . , xk〉
and tl ≡ l (mod y). Then for every non-zero choice of y ∈ 〈x1, x2, . . . , xk〉,

g(x1, x2, . . . , xk) = max
0≤l≤y−1

tl − y. (1.26)

In 1960, Johnson [80] gave the following lemma for k = 3, which was then
generalized by Brauer and Shockley [19].

Lemma 1.2.6. [80, 19] Let x1, . . . , xk be positive integers with gcd(x1, . . . , xk) = 1.
Then

g(x1, x2, . . . , xk) = dg
(x1

d
,
x2

d
, . . . ,

xk−1

d
, xk

)
+ (d− 1)xk, (1.27)

where d = gcd(x1, x2, . . . , xk−1).

Example 1.2.7. One can compute g(6, 9, 20) in the Chicken McNuggets problem
by either of the following procedures.

(a) By Lemma 1.2.6, we have

g(6, 9, 20) = 3g(2, 3, 20) + 2 · 20 = 3g(2, 3) + 40 = 3 + 40 = 43, (1.28)

(b) By Lemma 1.2.5, we have g(6, 9, 20) = 63− 20 = 43, where

63 = max { 0, 21, 42, 63, 24, 45, 6, 27, 48, 9, 30, 51, 12, 33, 54, 15, 36, 57, 18, 39 } .
(1.29)

8

1.2.2 Bounds on the Frobenius number

Since finding a general formula to exactly compute the Frobenius number for a
basis is infeasible (see §1.2.5), finding formulae for good upper bounds and lower
bounds on the Frobenius number becomes another interesting aspect of the FP.

A quadratic upper bound g(x1, x2, . . . , xk) = O(x2
k) for the basis x1, x2, . . . , xk

follows immediately from the following theorem, which was proved by Schur in his
lectures in 1935 (according to Brauer [17]).

Theorem 1.2.8. Let x1, x2, . . . , xk be a basis with gcd(x1, x2, . . . , xk) = 1. Then

g(x1, x2, . . . , xk) ≤ x1xk − x1 − xk. (1.30)

Proof. (Rewritten from a proof of Brauer [17]) Proof by induction. For k = 2,
g(x1, x2) = x1x2 − x1 − x2 follows from Theorem 1.2.1. Now we assume (1.30) is
true for all bases of size k − 1. Let gcd(x1, x3, . . . , xk) = d. Then gcd(x2, d) = 1,
and the equation

g(x1, x2, . . . , xk) ≡ x2x (mod d) (1.31)

has a unique solution 0 ≤ x = c2 < d. Furthermore, g(x1, x2, . . . , xk)− x2c2 is not
in 〈x1, x3, . . . , xk〉. Since gcd(x1

d
, x3

d
, . . . , xk

d
) = 1, by the induction hypothesis, we

have

g(x1, x2, . . . , xk)− (x1xk − x1 − xk)

= x2c2 + d · 1

d

(
g(x1, x2, . . . , xk)− x2c2

)− (x1xk − x1 − xk) (1.32)

≤ x2c2 + dg
(x1

d
,
x3

d
, . . . ,

xk

d

)
− (x1xk − x1 − xk) (1.33)

≤ x2c2 + d
(x1xk

d2
− x1

d
− xk

d

)
− (x1xk − x1 − xk) (1.34)

=
(
dx2c2 − x1xk(d− 1)

)
/d (1.35)

≤ 0. (1.36)

Therefore, g(x1, x2, . . . , xk) ≤ x1xk − x1 − xk.

The asymptotic upper bound g(x1, x2, . . . , xk) = O(x2
k) is tight for fixed k (= 2).

When k = 2, by Theorem 1.2.1, we know g(x, x + 1) = x2 − x− 1 = Θ(x2).

In 1942, Brauer [17] gave another upper bound as in the following theorem,
which is the best possible upper bound under certain conditions [17, 18, 117].

Theorem 1.2.9. [17] Let x1, . . . , xk be positive integers with gcd(x1, . . . , xk) = 1,
and let di = gcd(x1, x2, . . . , xi) for 1 ≤ i ≤ k. Then

g(x1, x2, . . . , xk) ≤ x2
d1

d2

+ x3
d2

d3

+ · · ·+ xk
dk−1

dk

−
k∑

i=1

xi. (1.37)

9

There are other upper bounds for the Frobenius number in the literature. Let
x1, x2, . . . , xk be a basis with gcd(x1, x2, . . . , xk) = 1, where xi 6= xj for i 6= j.
In 1972, Erdös and Graham [42] showed that

g(x1, x2, . . . , xk) ≤ 2xk−1

⌊xk

k

⌋
− xk, (1.38)

which is tight for k = 2. In 1977, a similar tight bound was found by Selmer [149]
for the case x1 ≥ k, as follows:

g(x1, x2, . . . , xk) ≤ 2xk

⌊x1

k

⌋
− x1. (1.39)

In 1975, Vitek [169] showed another bound for k ≥ 3 (also see Lewin’s work [97])

g(x1, x2, . . . , xk) <

⌊
(x2 − 1)(xk − 2)

2

⌋
. (1.40)

In 1990, Dixmier [38] proved a conjecture of Erdös and Graham [43, p. 86] that

g(x1, x2, . . . , xk) ≤ x2
k

k − 1
= O

(x2
k

k

)
(1.41)

is tight in the sense that for any integer n and 2 ≤ k < n,

⌊
n− 2

k − 1

⌋
(n− k + 1)− 1 ≤ max

1≤x1,x2,...,xk≤n
g(x1, x2, . . . , xk) ≤

(⌈
n− 1

k − 1

⌉
− 1

)
n− 1.

(1.42)
There are works on upper bounds for the Frobenius number in terms of other mea-
sures. For example, in 1992, Chrza̧stowski-Wachtel (according to the paper [126])
obtained the following upper bound:

g(x1, x2, . . . , xk) ≤ (k − 1) lcm(x1, x2, . . . , xk). (1.43)

There are also upper bounds for fixed k (= 3). In 1957, Robert [136] showed that
for 0 < a < b, gcd(a, b) = 1, and m ≥ 2:

g(m,m + a,m + b) ≤ m
(
b− 2 +

⌊m

b

⌋)
+ ab− a− b. (1.44)

In 2002, Beck, Diaz and Robins [8] showed that

g(x1, x2, x3) ≤ 1

2

(√
x1x2x3(x1 + x2 + x3)− x1 − x2 − x3

)
. (1.45)

There are some results on lower bounds for the Frobenius number. Let x1, . . . , xk

be a basis with gcd(x1, . . . , xk) = 1. A trivial lower bound is

g(x1, x2, . . . , xk) ≥ x1 − 1 = Ω(x1), (1.46)

10

which can be achieved by the example of consecutive integers in (1.72) on page 16.
In 1994, Davison [35] gave the following tight lower bound for k = 3 (also see
Hujter’s work [74]):

g(x1, x2, x3) ≥
√

3x1x2x3 − x1 − x2 − x3. (1.47)

In 1982, Hujter [73] gave the following lower bound for any arbitrary k (also see
Killingbergtrø’s work [85]):

g(x1, x2, . . . , xk) ≥
(k − 1

k

)(
(k − 1)!x1x2 · · ·xk

) 1
k−1 −

k∑
i=1

xi = Ω
(
kx

k
k−1

1

)
. (1.48)

1.2.3 Variations on the FP

Many variations on the FP are of interest. As usual, let x1, x2, . . . , xk be positive
integers with gcd(x1, x2, . . . , xk) = 1 and 〈x1, x2, . . . , xk〉 be the set of all integers
that can be represented as non-negative integer linear combinations of the given
integers x1, x2, . . . , xk. Instead of asking for the Frobenius number g(x1, x2, . . . , xk),
the largest integer that is not in 〈x1, x2, . . . , xk〉, there are several other interesting
problems.

One such problem is to find the minimal integer n ∈ 〈x1, x2, . . . , xk〉 such that
m ∈ 〈x1, x2, . . . , xk〉 for all m ≥ n. Obviously, n = g(x1, x2, . . . , xk) + 1. This
integer n is called the conductor of x1, x2, . . . , xk. Sometimes a formula involving
the conductor has a simpler form (or proof) than the equivalent formula involving
the Frobenius number. For example, while the Frobenius number of integers x1, x2

is x1x2 − x1 − x2, the conductor of x1, x2 is simply (x1 − 1)(x2 − 1).

Another variation on the FP is to find the number of all positive integers that
are not in 〈x1, x2, . . . , xk〉.

Number h(x1, x2, . . . , xk) of positive integers not in 〈x1, x2, . . . , xk〉

In 1882, James J. Sylvester (1814–1897) discussed the total number of those positive
integers that are not in 〈x1, x2, . . . , xk〉 [164, p. 134], and later this problem appeared
in the Educational Times as a recreational question asking for a formula for k = 2,
which was then answered by Curran Sharp [165]. Let h(x1, x2, . . . , xk) denote the
number of positive integers that are not in 〈x1, x2, . . . , xk〉.
Theorem 1.2.10. [164, 165] Let x1, x2 be positive integers with gcd(x1, x2) = 1.
Then the number of positive integers that are not in 〈x1, x2〉 is

h(x1, x2) =
1

2
(x1 − 1)(x2 − 1). (1.49)

11

Proof. (Rewritten from Sharp’s solution [165]) Consider the coefficient of the term
zn, 0 ≤ n ≤ 2x1x2, in the expansion of the following product:

f(z) = (1 + zx1 + z2x1 + · · ·+ zx1x2)(1 + zx2 + z2x2 + · · ·+ zx2x1). (1.50)

Suppose c1x1 + c2x2 = n = c′1x1 + c′2x2, 0 ≤ c1, c
′
1 ≤ x2 and 0 ≤ c2, c

′
2 ≤ x1. Then

(c1 − c′1)x1 = (c′2 − c2)x2. (1.51)

We have either c1 = c′1, c2 = c′2 or c1 = x2, c
′
2 = x1, c

′
1 = c′2 = 0. So each coefficient

of a non-zero term is 1 except that of zx1x2 , which is 2. By symmetry, the coefficient
of the term zn is equal to the coefficient of the term z2x1x2−n. Let z = 1. Then the
number of non-zero terms between z0 and zx1x2 is

1

2

(
f(1)− 2

)
+ 1 =

1

2
(x1 + 1)(x2 + 1). (1.52)

In addition, each non-zero term between z0 and zx1x2 corresponds to an integer in
〈x1, x2〉, and the converse is also true. By Theorem 1.2.1, we have

g(x1, x2) = x1x2 − x1 − x2 < x1x2. (1.53)

So the number of zero terms between z0 and zx1x2 is exactly h(x1, x2), which is

h(x1, x2) = (x1x2 + 1)− 1

2
(x1 + 1)(x2 + 1) =

1

2
(x1 − 1)(x2 − 1). (1.54)

Example 1.2.11. In Example 1.1.7 we saw that there are four integers 1, 2, 4, 7
in total that are not in 〈3, 5〉. To compute h(3, 5), we apply Formula (1.49) and get

h(3, 5) =
1

2
(3− 1)(5− 1) = 4. (1.55)

Nijenhuis and Wilf [117] compared the two values g(x1, . . . , xk), the Frobenius
number, and h(x1, . . . , xk), the number of positive integers not in 〈x1, . . . , xk〉, and
gave a tight lower bound on h(x1, . . . , xk) in terms of g(x1, . . . , xk). The conditions
under which that lower bound is achieved were also discussed [117, 88].

Theorem 1.2.12. [117] Let x1, . . . , xk be positive integers with gcd(x1, . . . , xk) = 1.
Then

1

2

(
g(x1, x2, . . . , xk) + 1

) ≤ h(x1, x2, . . . , xk) ≤ g(x1, x2, . . . , xk). (1.56)

Both upper and lower bounds given in (1.56) are tight. When the basis x1, . . . , xk

is p, p + 1, p + 2, . . . , 2p− 1, the equality of the upper bound in (1.56) is achieved,
since in that case h(x1, x2, . . . , xk) = g(x1, x2, . . . , xk) = p − 1. When k = 2, the
equality of the lower bound in (1.56) is achieved as follows:

1

2

(
g(x1, x2) + 1

)
=

1

2
(x1x2 − x1 − x2 + 1) =

1

2
(x1 − 1)(x2 − 1) = h(x1, x2). (1.57)

12

Since g(x1, . . . , xk) = O(x2
k) and g(x1, . . . , xk) = Ω(x1), then we know

h(x1, . . . , xk) = O(x2
k), and h(x1, . . . , xk) = Ω(x1). (1.58)

Killingbergtrø [85] studied h(x1, x2, . . . , xk) by using a geometric method and
presented the following lower bound:

h(x1, x2, . . . , xk) ≥
⌊(k − 1

k

)(
(k − 1)!x1x2 · · ·xk

) 1
k−1 −

k∑
i=1

xk − 1
⌋
. (1.59)

Sum of positive integers not in 〈x1, x2, . . . , xk〉

A further question is to ask what is the sum of all positive integers that are not in
〈x1, x2, . . . , xk〉. It is straightforward that the sum is bounded by

h(x1,...,xk)∑
n=1

n ≤
∑

{
n∈N : n6∈〈x1,x2,...,xk〉

} n ≤
g(x1,...,xk)∑

n=g(x1,...,xk)
−h(x1,...,xk)+1

n = O(x4
k). (1.60)

In 1993, Brown and Shiue [21, 66] discovered the following simple formula for k = 2:

∑
{

n∈N : n6∈〈x1,x2〉
} n =

1

12
(x1 − 1)(x2 − 1)(2x1x2 − x1 − x2 − 1). (1.61)

Rödseth [139] generalized Eq. (1.61) to any arbitrary power m ≥ 1 as follows:

∑
{

n∈N : n6∈〈x1,x2〉
} nm−1

=
1

m(m + 1)

m∑
i=0

m−i∑
j=0

(
m + 1

i

)(
m + 1− i

j

)
BiBjx

m−j
1 xm−i

2 − 1

m
Bm, (1.62)

where the B’s are the Bernoulli numbers, which are defined by the following expan-
sion

x

ex − 1
= B0 +

B1

1!
x +

B2

2!
x2 +

B3

3!
x3 + · · · . (1.63)

The denumerant d(n; x1, x2, . . . , xk) — the number of partitions

For an integer n ∈ 〈x1, x2, . . . , xk〉, the expression of n as a non-negative integer
linear combination of x1, x2, . . . , xk may not be unique. One question to ask is: in
how many different ways can m be written as m = c1x1 + c2x2 + · · · ckxk? A more
general problem arises when the basis x1, x2, . . . is infinite, for example, N.

13

The general partition problem for the basis N is an old problem. Leonhard P. Eu-
ler (1707–1783) established an entire theory in the late 1700’s [44] (100 years earlier
than Frobenius’s work!) by means of generating functions. In order to study the
partition problem for the basis N, he considered the series

1+
∞∑

n=1

p(n)zn =
∞∏

n=1

1

1− zn
= (1+z+z2+· · ·)(1+z2+z4+· · ·)(1+z3+z6+· · ·) · · · .

(1.64)
Hardy and Ramanujan [61, p. 79] proved the following asymptotic formula for p(n):

p(n) ∼ 1

4
√

3n
eπ
√

2n
3 . (1.65)

Sylvester [164] defined the denumerant d(n; x1, x2, . . . , xk) by the number of
different non-negative integer linear combinations of n in the basis x1, x2, . . . , xk

and studied the series

1 +
∞∑

n=1

d(n; x1, x2, . . . , xk)z
n =

1

(1− zx1)(1− zx2) · · · (1− zxk)
, (1.66)

where to decide whether d(n; x1, x2, . . . , xk) > 0 in general is equivalent to the well-
studied integer knapsack problem. A useful variation on Eq. (1.66) was discovered
by Özlük and Sertöz [152] and was used to obtain Eq. (1.61).

Assuming gcd(x1, . . . , xk) = 1, Schur [147] gave the following asymptotic esti-
mate of denumerants as n →∞,

d(n; x1, x2, . . . , xk) ∼ nk−1

x1x2 · · ·xk(k − 1)!
. (1.67)

For k = 2, there is an exact formula for denumerants, which has been rediscov-
ered several times [123, 151, 167, 8, 20], namely,

d(n; x1, x2) =
n + c1x1 + c2x2

x1x2

− 1, (1.68)

where c1, c2 are defined for each n such that

c1x1 ≡ −n (mod x2), 1 ≤ c1 ≤ x2, c2x2 ≡ −n (mod x1), 1 ≤ c2 ≤ x1.
(1.69)

Positive integer linear combinations

The FP is about the set 〈x1, . . . , xk〉 of all non-negative integer linear combina-
tions of x1, . . . , xk. What if we consider the positive integer linear combination
of x1, . . . , xk instead? Let f(x1, . . . , xk) denote the largest integer that cannot be
written as a positive integer linear combination of x1, . . . , xk. Then as mentioned
by Brauer [17] the two problems are strongly related.

14

Theorem 1.2.13. [17] f(x1, x2, . . . , xk) = g(x1, x2, . . . , xk) + x1 + x2 + · · ·+ xk.

Sometimes a formula involving f(x1, x2, . . . , xk) has a simpler form or an easier
proof than the equivalent one involving g(x1, x2, . . . , xk). For example, the for-
mulae f(x1, x2, . . . , xk) = df

(
x1

d
, x2

d
, . . . , xk−1

d
, xk

)
and f(x1, x2) = x1x2 are shorter

than their counterparts g(x1, x2, . . . , xk) = dg
(

x1

d
, x2

d
, . . . , xk−1

d
, xk

)
+ (d− 1)xk and

g(x1, x2) = x1x2 − x1 − x2.

Extending the basis

Let x1, x2, . . . , xk be a basis with gcd(x1, x2, . . . , xk) = 1. When we include a new
integer xk+1, the extended basis satisfies 〈x1, . . . , xk〉 ⊆ 〈x1, . . . , xk, xk+1〉. So, by
definition, the Frobenius number of the new basis cannot increase:

g(x1, x2, . . . , xk, xk+1) ≤ g(x1, x2, . . . , xk). (1.70)

The equality in (1.70) is achieved when xk+1 ∈ 〈x1, x2, . . . , xk〉. If we require that
xk+1 6∈ 〈x1, x2, . . . , xk〉, then one question is: can the equality in (1.70) be attained?

In 1970, Mendelsohn [111] showed that for k = 2 the equality in (1.70) cannot
be attained. By applying Lemma 1.2.6, we know for k = 2 the equality in (1.70)
can be attained only when x3 ∈ 〈x1, x2〉.
Theorem 1.2.14. [111] Let x1, x2, x3 ∈ N. If gcd(x1, x2) = 1, x3 6∈ 〈x1, x2〉, then

g(x1, x2, x3) < g(x1, x2). (1.71)

In 1977, Selmer [149] also studied the problem of extending a basis. By consid-
ering an arithmetic sequence, he showed a more general result on this problem.

Theorem 1.2.15. [149] For any integer l ≥ 2, there exist an integer k and a basis
x1, x2, . . . , xk with gcd(x1, x2, . . . , xk) = 1 such that when extending with positive
integers xk+1, xk+2, . . . , xk+l, where xk+i 6∈ 〈x1, . . . , xk, . . . , xk+i−1〉 for 1 ≤ i ≤ l,
the Frobenius number of the basis does not change: g(x1, x2, . . . , xk, . . . , xk+l) =
g(x1, x2, . . . , xk).

Coverage of Frobenius numbers

Finally, one question about the FP is whether every positive integer is a Frobenius
number for some basis. A recent paper of Rosales, Garćıa-Sánchez and Garćıa-
Garćıa [143] showed that every positive integer is a Frobenius number for some
basis {x1, x2, x3 }.
Theorem 1.2.16. [143] Let n be a positive integer. Then there exist three positive
integers x1, x2, x3 such that g(x1, x2, x3) = n.

15

Let k ≥ 3 be a fixed integer. For any positive integer n, there are integers
x1, x2, x3 ∈ N such that g(x1, x2, x3) = n. By padding with additional integers
x4, . . . , xk ∈ 〈x1, x2, x3〉, we know that g(x1, x2, . . . , xk) = g(x1, x2, x3) = n. So any
positive integer n is also the Frobenius number of k positive integers for k ≥ 3.
Furthermore, k = 3 is the least possible.

Proposition 1.2.17. [143] There exist infinitely many positive integers that are
not the Frobenius number of any pair of positive integers.

Proof. If gcd(x1, x2) = 1, then x1, x2 cannot both be even. So, the Frobenius
number of two positive integers g(x1, x2) = x1x2 − x1 − x2 is always odd.

1.2.4 The FP in special sequential bases

There are also studies on the FP in special cases, where the integers in a basis
belong to a special type of sequence.

Basis is an arithmetic sequence

The sequence of k consecutive positive integers that are in the same residue class,
x, x + d, x + 2d, . . . , x + (k − 1)d, is called an arithmetic sequence. A special case
of the FP is when the integers in a basis constitute an arithmetic sequence. In
particular, one can easily verify that

g(x, x + 1, x + 2, . . . , 2x− 1) = x− 1. (1.72)

In 1942, Brauer (and Schur) [17] found the following formula for the Frobenius
number of k consecutive integers:

g
(
x, x + 1, x + 2, . . . , x + k − 1

)
=

⌊
x− 2

k − 1

⌋
x + x− 1, (1.73)

which was generalized by Roberts [135] in 1956 (also see the simpler proof of Bate-
man [6]) as follows:

g
(
x, x + d, x + 2d, . . . , x + (k − 1)d

)
=

⌊
x− 2

k − 1

⌋
x + dx− d. (1.74)

Basis is an almost arithmetic sequence

A sequence x1, x2, . . . , xk is called an almost arithmetic sequence if excluding either
x1 or xk, the remaining part is an arithmetic sequence. The Frobenius number of
almost arithmetic sequences was introduced by Lewin [99, 98]. In 1977, Selmer [149]

16

gave the following formula (also see Rödseth’s work [138]) for the Frobenius number
of integers constituting an almost arithmetic sequence:

g
(
x, hx + d, hx + 2d, . . . , hx + (k − 1)d

)
=

⌊
x− 2

k − 1

⌋
hx + (d + h− 1)x− d. (1.75)

In 1979, Rödseth [138] found the formula (also see Shao’s work [158]):

g
(
x, x + d, . . . , x + (k − 2)d, x + Kd

)

= (x + Kd)α− d + max

{
x

⌊
β − 2

k − 2

⌋
+ dβ, x

⌊
K − 2

k − 2

⌋
− x

}
, (1.76)

where gcd(x, d) = 1, K ≥ k − 1, and x = αK + β, 0 ≤ β < K such that β = 0 or
α + d ≥ ⌊

K−β−1
k−2

⌋
.

Basis is a sequence of other type

In 1977, Selmer [149] considered sequences where the differences of terms consti-
tute geometric sequences (also see Hofmeister [68] and Goldberg [55] for similar
discussion), and gave the following formula:

g(x, x+1, x+2, x+22, . . . , x+2k−2) = (x+1)
(x

2k−2

)
+

k−3∑
i=0

2i

⌊
x + 2i

2k−2

⌋
+(k−4)x−1.

(1.77)
In 1982, Hujter [73] considered the same type of sequence and gave the following
formula:

g(xk−1, xk−1 + 1, xk−1 + x, . . . , xk−1 + xk−2) = (k − 1)(x− 1)xk−1 − 1, (1.78)

In 1987, Boros [16] considered a similar type of sequence, in which the differences
of consecutive terms except the first term constitute geometric sequences.

In 2007, Einstein, Lichtblau, Strzebonski and Wagon [40] presented a method to
produce formulae for the Frobenius number of a quadratic sequence of small length.
For example, for x ≥ 2,

g(9x, 9x + 1, 9x + 4, 9x + 9) = 9x2 + 18x− 2. (1.79)

In 2008, Ong and Ponomarenko [119] discussed the Frobenius number of a geo-
metric sequence, and showed that for gcd(x, y) = 1,

g(xk, xk−1y, xk−2y2, . . . , yk) =
xy(yk − xk)− (yk+1 − xk+1)

y − x
. (1.80)

17

1.2.5 Algorithm for and computational complexity of the
FP

There are several known algorithms to compute the Frobenius number for a small
fixed k. For k = 3, let x1, x2, x3 be a basis with gcd(x1, x2, x3) = 1 and xi 6= xj for
i 6= j. In 1960, Johnson [80] outlined an algorithm idea to compute g(x1, x2, x3)
without providing details. In 1962, Brauer and Shockley [19] presented a similar
method that costs O(x1 + log x2) time to compute g(x1, x2, x3). In 1978, Selmer
and Beyer [150] proposed an algorithm using simple continued fractions to compute
g(x1, x2, x3); it is not easy to implement. Later, Rödseth [137] simplified their
method and developed an algorithm that runs in O(x1 + log x2) time in the worst
case, but runs faster in practice. In 1994, Davison [35] developed an algorithm that
runs in O(log x2) time in the worst case, based on modifications of the algorithms
of Selmer-Beyer and Rödseth. In 2000, Killingbergtrø [85] developed an algorithm
that converts the FP for k ≤ 4 into a geometric problem of cube-figures, which can
be solved in polynomial time for k = 3; see Owens [121] for a similar approach.
So far, the algorithm given by Greenberg [59] in 1988 is the fastest algorithm to
compute g(x1, x2, x3) (according to the experiments in [9]), which runs in O(log x1)
time in the worst case.

Input: a basis x1, x2, . . . , xk.
Output: the Frobenius number g(x1, x2, . . . , xk).
form a circle of xk lights as 0, 1, . . . , xk − 1, with only 0 turned on ;1

repeat2

sweeping each light ;3

recording the number s(n) of visiting for each light n ;4

if any of the k lights n− xi is on for 1 ≤ i ≤ k then5

turn n on (or keep n on if it is already on) ;6

end7

until there are x1 consecutive lights, all of which are on ;8

let r be the last visited light that is off ;9

g(x1, x2, . . . , xk)←r +
(
s(r)− 1

)
xk ;10

Figure 1.1: Wilf’s algorithm to compute g(x1, x2, . . . , xk)

There are also several general algorithms for the FP for an arbitrary fixed k.
For example, in 1964, Heap and Lynn [63, 64] developed an algorithm by converting
the FP into the problem of computing the index of primitivity of a matrix, which
runs in O(x3

k log2 xk) time and uses O(x3
k) space. In 1978, Wilf [172] (also see

Huang’s work [72] in 1981) gave an algorithm, which runs in O(kx2
k) time and

uses O(xk) space; see Figure 1.1. In 1980, Greenberg [58] developed an algorithm
by similar approach; the correctness of both Wilf’s and Greenberg’s algorithms is
based on Lemma 1.2.5. In the same year, Nijenhuis [118] developed an algorithm
to compute the Frobenius number by finding a minimal path in a certain weighted

18

graph, which runs in O(x1(k +log x1)) time. In 1992, Kannan [81, 82], by studying
a geometric problem about covering radius, presented an algorithm to compute
the Frobenius number for any fixed k that runs in time bounded by a polynomial
in log xk. Kannan’s algorithm, however, runs in doubly-exponential time in the
dimension k and is not easy to implement. In 1993, Scarf and Shallcross [146]
developed an algorithm that converts the FP into the geometric problem of finding
a maximal lattice-free body. In 2005, Beihoffer, Hendry, Nijenhuis and Wagon [9]
showed a fast algorithm that can handle cases where k = 10, x1 = 107.

In 1996, Ramı́rez-Alfonśın [129] proved that in the general case of an arbitrary k
the FP is NP-hard by giving a Turing reduction from the integer knapsack problem
(IKP), which is NP-complete [103].

Problem 1.2.18 (IKP). Given k+1 positive integers x1, x2, . . . , xk and t, do there
exist non-negative integers c1, c2, . . . , ck such that

∑k
i=1 cixi = t?

Theorem 1.2.19. [129] The FP is NP-hard under Turing reductions.

Theorem 1.2.20. These problems are NP-hard under Karp reductions:

(a) Given integers x1, x2, . . . , xk and n, compute d(n; x1, x2, . . . , xk);

(b) Given integers x1, x2, . . . , xk, compute h(x1, x2, . . . , xk).

Proof. (a) Let x1, x2, . . . , xk and t be an arbitrary instance of IKP. Then

d(t; x1, x2, . . . , xk) > 0 (1.81)

if and only if t ∈ 〈x1, x2, . . . , xk〉, which means the IKP has a solution.

(b) Let x1, x2, . . . , xk and t be an arbitrary instance of IKP. Then

h(x1, x2, . . . , xk) = h(x1, x2, . . . , xk, t) (1.82)

if and only if t ∈ 〈x1, x2, . . . , xk〉, which means the IKP has a solution.

The NP-hardness result for h(x1, x2, . . . , xk) is due to Pawel Gawrychowski [52].

1.3 Applications and related problems of the FP

1.3.1 Sylver coinage

Game 1.3.1 (Sylver coinage). In this game the players name numbers in turn.
The number to be named must be a positive integer that has not yet been named.
In addition, no one is allowed to name a number which is a multiple of a named
number, nor to name a number which can be made up by adding together multiples
of named numbers. The winner is the player who names the last number except 1,
and the loser is the player who names 1. When 1 is named, the game is over since
no other integer can be named.

19

Sylver coinage was invented by Conway [11, Chap. 18] and the game cannot go
on forever due to Sylvester’s result (Theorem 1.2.10).

Theorem 1.3.2. The Sylver coinage game will always stop after a finite number
of turns.

So far, there is no efficient algorithm to produce a winning strategy from an
arbitrary opening of a game with named integers being x1, x2, . . . , xk. Some cases
with particular openings have been studied [11, 161].

1.3.2 Quadratic residues

Let p be a positive integer. An integer n, 0 < n < p, is called a quadratic residue of
p if the equation x2 ≡ n (mod p) has a solution. Otherwise n, 0 < n < p, is called
a quadratic non-residue. It is well-known that when p ≥ 3 is a prime then there are
exactly (p − 1)/2 quadratic residues and quadratic non-residues, respectively (for
example, see the textbook of Hardy and Wright [62, pp. 67–69]).

In 2007, Spivey [163] found a connection between quadratic residues and those
positive integers that are not in 〈x1, x2〉 as described in the following theorem.

Theorem 1.3.3. [163] Let x1, x2 ≥ 3 be two primes. Then the squares of integers
that are not in 〈x1, x2〉 modulo x1 (respectively, x2) consist of x2 − 1 (respectively,
x1 − 1) copies of each of the quadratic residues of x1 (respectively, x2).

Example 1.3.4. As we saw in Example 1.1.7, the only positive integers not
in 〈3, 5〉 are 1, 2, 4, 7. The set of quadratic residues of 3 is { 1 }, and the set of
quadratic residues of 5 is { 1, 4 }. Their relation is illustrated in Table 1.2: there
are 5− 1 = 4 copies for each quadratic residue of 3, and 3− 1 = 2 copies for each
quadratic residue of 5.

Table 1.2: Relation between quadratic residues of 3, 5 and x ∈ N \ 〈3, 5〉
x 1 2 4 7
x2 1 4 16 49
x2 mod 3 1 1 1 1
x2 mod 5 1 4 1 4

1.3.3 Local postage-stamp problem

The local postage-stamp problem (LPSP) was introduced by Rohrbach [141, 140].

Problem 1.3.5 (Local postage-stamp problem). Given an integer h ≥ 1 and k + 1
positive integers x1, x2, . . . , xk, where x1 = 1, what is the smallest positive integer
that cannot be represented in the form c1x1 + c2x2 + · · ·+ ckxk, where all the ci are
non-negative integers for 1 ≤ i ≤ k and c1 + c2 + · · ·+ ck ≤ h?

20

The name of the local postage-stamp problem comes from the following in-
formal description of the problem: if the available denominations of stamps are
x1, x2, . . . , xk, then what is the smallest amount of postage that cannot fit on an
envelope of size h?

We denote by 〈x1, x2, . . . , xk〉h the set of all integers that can be represented as
non-negative integer linear combinations c1x1 + c2x2 + · · · + ckxk, where c1 + c2 +
· · · + ck ≤ h, and denote by Nh(x1, x2, . . . , xk) the smallest positive integer that is
not in 〈x1, x2, . . . , xk〉h. It is folklore that

Nh(x1, x2) = (h + 3− x2)x2 − 1. (1.83)

There are a few papers on the LPSP and its variations, such as the global postage-
stamp problem (refer to Guy’s book [60, pp. 123–126]). The FP is related to
the LPSP. For example, Shallit [153] proved LPSP to be NP-hard under Turing
reductions by reducing from the FP, which is NP-hard.

Theorem 1.3.6. [153] The LPSP is NP-hard under Turing reductions.

The proof relies on the fact that given positive integers b1 < b2 < · · · < bk with
gcd(b1, b2, . . . , bk) = 1, one can construct in polynomial time integers h, a1 = 1,
a2, . . . , ak, ak+1, ak+2 such that g(b1, b2, . . . , bk) = hak+2 −Nh(a1, a2, . . . , ak+2).

1.3.4 (g0, g1, . . . , gk)-tree

A tree is called a (g0, g1, . . . , gk)-tree if the number of children of every internal
node belongs to { g0, g1, . . . , gk } and all leaves are of the same height. An integer n
is called (g0, g1, . . . , gk)-realizable if there exists a (g0, g1, . . . , gk)-tree with n leaves.
The (g0, g1, . . . , gk)-tree is a useful data structure; see the textbook [33, p. 300,
p. 439] for examples of a (3, 4)-tree and a (3, 4, 5)-tree.

Theorem 1.3.7. [120, 92] All positive integers except finitely many of them are
(g0, g1, . . . , gk)-realizable if and only if gcd(gk − g0, gk − g1, . . . , gk − gk−1) = 1.

The relationship between the (g0, g1, . . . , gk)-tree and the FP is the following: the
largest integer that is not (g0, g1, . . . , gk)-realizable is≥ g(g0−1, g1−1, . . . , gk−1)−1.

1.3.5 Shellsort algorithm

An application of the FP appears in the analysis of the Shellsort algorithm [76, 148].
The Shellsort sorting algorithm was invented by Shell [159] in 1959; see Figure 1.2.
Depending on the chosen increments ht, . . . , h2, h1 = 1, the computational com-
plexity of the Shellsort algorithm varies. It is well known that for t > 1 the running
time of the Shellsort algorithm with Shell’s original setting h = . . . , 2j, . . . , 4, 2, 1
is O(N2) in the worst case, where N is the number of elements to be sorted. The

21

Input: an array a[1], a[2], . . . , a[N] to be sorted
Output: sorted array a
foreach increment h in {ht, . . . , h2, h1 = 1 } do1

foreach arithmetic progression index sub-array of increment h do2

sort . . . , a[i− 2h], a[i− h], a[i], . . . using insertion sort3

end4

end5

Figure 1.2: Shellsort algorithm

works of Ajtai, Komlós and Szemerédi [3] and Leighton [93] on sorting network the-
ory showed the possibility of the existence of increments that can make Shellsort
run in O(N log N) time on average, but no such increment has been found yet. So
far, the best increments were given by Pratt [124]. With Pratt’s increments the
Shellsort algorithm runs in O(N(log N)2) time.

In 1985, by studying the FP, Incerpi and Sedgewick [76] showed increments

that can make Shellsort run in O(N
1+ ε√

log N) time for any ε > 0. Their analysis was
based on the following lemma.

Lemma 1.3.8. [76] The number of steps required to sort with the increment hj after
a list of size N is already sorted with increments ht, . . . , hj+2, hj+1 in Shellsort is

costj ≤ Nnhj
(hj+1, hj+2, . . . , ht) = O

(
1

hj

Ng(hj+1, hj+2, . . . , ht)

)
, (1.84)

where nhj
(hj+1, . . . , ht) is the number of multiples of hj that are not in 〈hj+1, . . . , ht〉

and g(hj+1, . . . , ht) is the Frobenius number of hj+1, . . . , ht.

For example, for either Hibbard’s increments 1, 3, 7, . . . , 2k − 1, or Papernov-
Stasevich’s increments 1, 3, 5, . . . , 2k+1, or Knuth’s increments 1, 4, 13, . . . , 1

2
(3k−1),

the running time of Shellsort based on these increments are upper bounded by

∑
1≤j≤t

costj =
∑

1≤j≤t0

O(Nhj) +
∑

t0≤j≤t

O

(
N2

hj

)
= O

(
N

3
2

)
+ O

(
N

3
2

)
= O

(
N

3
2

)
,

(1.85)

where t0 is an index such that ht0 = Θ(N
1
2). The upper bound on the first sum

in (1.85) comes from Lemma 1.3.8. The upper bound on the second sum in (1.85)
comes from the analysis of insertion sort.

There are also papers on the analysis of the complexity of Shellsort using dif-
ferent methods (for example, see Jiang, Li and Vitányi [79]).

1.3.6 Tiling problem

The tiling problem is a family of problems, and the history of the tiling problem
can be traced back thousands of years ago to the early Greeks. The general tiling

22

problem is to use small pieces of certain types of tessellations, called tiles, with
fixed shapes and possibly painted colors, to mosaic a large area. Some problems
allow the tiles to be rotated, while other problems do not allow rotating tiles. The
FP is also related to a tiling problem [86].

Problem 1.3.9 (Problem B-3 from the 1991 William Lowell Putnam Examina-
tion). [86] “Does there exist a real number L such that, if m and n are integers
greater than L, then an m× n rectangle may be expressed as a union of 4× 6 and
5× 7 rectangles, any two of which intersect at most along their boundaries?”

. . .
g(6,7)
=29<

{

6

{

7

{

︸ ︷︷ ︸
20

︸ ︷︷ ︸
20

20︷ ︸︸ ︷

l

. . .
g(5,6)
=19<

{

5{

6

{
︸ ︷︷ ︸

28

︸ ︷︷ ︸
28

28︷ ︸︸ ︷

l

. . .
g(5,7)
=23<

{

5{

7

{

︸ ︷︷ ︸
35

︸ ︷︷ ︸
35

35︷ ︸︸ ︷

l
___ ___ ____ ___

___ ___ ____ ___

>197=g(20,28,35)︷ ︸︸ ︷

Figure 1.3: Illustration to the solution to Problem B-3

Solution. Here rotation of tiles is allowed. First, the 20× 6 and 20 × 7 rectangles
can be tiled by five 4× 6 tiles and four 5× 7 tiles, respectively. Since g(6, 7) = 29,
every 20 × n rectangle can be tiled for any n > 29. Then the 28 × 5 and 28 × 6
rectangles can be tiled by four 5×7 tiles and seven 4×6 tiles respectively. So every
28×n rectangle can be tiled for any n > g(5, 6) = 19. Finally, the 35×5 and 35×7
rectangles can be tiled by five and seven 5 × 7 tiles respectively and thus every
35 × n rectangle can be tiled for any n > g(5, 7) = 23. Since gcd(20, 28, 35) = 1
and g(20, 28, 35) = 4g(5, 7, 35) + 3 · 35 = 4g(5, 7) + 3 · 35 = 4 · 23 + 3 · 35 = 197,
any m× n rectangle with m,n > max { 29, 19, 23, 197 } = 197 can be tiled by first
dividing the m × n rectangle into several 20 × n, 28 × n, 35 × n blocks and then
tiling each block by the given 4× 6 and 5× 7 tiles. So, L = 197 is one solution.

In 2002, Narayan and Schwenk [115] proved that for m ≥ n ≥ 28 the only m×n
rectangles that cannot be tiled with the 4× 6 and 5× 7 tiles are the rectangles of
sizes 31× 29, 33× 32, and 33× 33. So the smallest L is 33.

The FP is related to many other problems, and has applications in various fields,
including but not limited to combinatorics, number theory, and algorithms. In fact,

23

a recent book by Ramı́rez-Alfonśın [130] lists over 400 references on the FP, related
problems (including most of the problems mentioned here), and applications. To
mention a few that we do not consider in the thesis, applications of the FP appear
in the theory of Petri nets [166, 31, 173], in the upper bound for the partition of a
vector space [65], in the structure of monomial curves [112], in the study of algebraic
geometric codes [69], in generating random vectors [171], in DNA sequencing [13,
14], and in image description [133].

1.4 Shallit’s non-commutative generalization

1.4.1 Generalizations of the FP

There are several generalizations of the FP in algebraic structures other than the
integers. For example, Skupień [162] in 1993 studied the following generalization
of the FP in a numerical semigroup (also see Hofmeister [67]):

Problem 1.4.1 (Modular generalization, FP). [162] Let x1, x2, . . . , xk,m ∈ N. We
define Nj(m; x1, x2, . . . , xk) to be the maximum p ∈ N such that p cannot be written

as p =
∑k

i=1 cixi, where ci ∈ N for 1 ≤ i ≤ k and
∑k

i=1 ci ≡ j (mod m). Then
what is the largest Nj(m; x1, x2, . . . , xk) for 0 ≤ j ≤ m− 1?

If we define K(m; x1, x2, . . . , xk) = max0≤j≤k−1 Nj(m; x1, x2, . . . , xk), then Prob-
lem 1.4.1 is a generalization of the Frobenius number in the sense that

K(1; x1, x2, . . . , xk) = g(x1, x2, . . . , xk). (1.86)

A multi-dimensional version of the FP about integer vectors has been studied
independently (Knight [87]; Vizvári [170]). Instead of integers in N, the multi-
dimensional FP considers integer vectors in Nm.

Problem 1.4.2 (Multi-dimensional generalization, FP). [170] Let x1, . . . ,xk ∈ Nm

be k integer vectors and 〈x1, . . . ,xk〉 be the set of all vectors that can be written as
a non-negative integer linear combination of x1, . . . ,xk. What is the vector v with
the smallest Euclidean distance from the origin such that every integral vector in
v +

{
c1x1 + · · ·+ ckxk : 0 ≤ c1, . . . , ck ∈ R

}
is in 〈x1, . . . ,xk〉?

If m = 1, then
{

c1x1 + c2x2 + · · · + ckxk : 0 ≤ c1, c2, . . . , ck ∈ R
}

is just a ray{
n ∈ R : n ≥ 0

}
and Problem 1.4.2 becomes the original FP.

There are also papers on a continuous version of the FP, where positive real num-
bers with certain conditions are considered (Lev [96]; Lenstra and Pomerance [95]).

In this thesis, we will focus on generalizations of the FP in a free monoid.
Instead of considering the non-negative integer linear combination of integers, we
will consider the concatenation of words. The concatenation operation does not
satisfy the commutative law in general while integer addition does. Due to the
lack of commutative law, the FP in a free monoid exhibits different and interesting
properties.

24

1.4.2 Free monoids and the FP

Let S and T be two sets. As usual, S ∪ T , S ∩ T , and S \ T denote the set
union, set intersection, and set difference of S and T , respectively. We use both S
and S− to denote the complement of S, use P(S) to denote the powerset of S, and
use both |S | and #S to denote the cardinality of the set S. The symbol ∅ denotes
the empty set { }. If S is a subset of T , we write S ⊆ T , and write S (T in case
S ⊆ T and S 6= T .

A binary operation in a set S is a mapping from the cartesian product S × S
into S as (a, b) 7→ c, where a, b, c are in S and we denote c by a · b, which is written
as ab for short, or by a + b in some cases. A binary operation · is associative if
(ab)c = a(bc) and commutative if ab = ba.

A semigroup is an algebra (S, ·), where S is a set and · is an associative binary
operation in S. For brevity, when we call a set S a semigroup, we mean the
semigroup (S, ·), where the binary operation · is implicitly known.

An element e of S is an identity (for the binary operation ·) if ea = ae = a for
every a in S. If an identity exists, then it must be unique.

A semigroup is called a monoid if it has an identity.

Let Σ be a set called an alphabet , where each element is called a letter . In this
thesis, without loss of generality, we always assume the letters in Σ are linearly
ordered and written as 0, 1, 2, . . . (, z) where z is the largest letter in Σ if Σ is finite.
For a letter a ∈ Σ, we write Σa to refer to the set Σ \ { a }. In this thesis, we write
arbitrary alphabets as Σ, ∆, . . . and we write arbitrary letters as a, b, c, d,

A (finite) word (or string) w over the alphabet Σ is a finite sequence of letters
written as a1a2 · · · an, and the empty word is written as ε. The length of a word is
defined by | a1a2 · · · an | = n, and | ε | = 0. Let u = a1a2 · · · an and v = b1b2 · · · bm

be two words. We say words u and v are equal if m = n and ai = bi for 1 ≤ i ≤ n.
In this thesis, we write arbitrary words as u, v, w, x, y, z,

We write Σ+ to refer to the set of all (finite) non-empty words over Σ, write Σ∗

to refer to the set of all (finite) words over Σ, and write Σk to refer to the set of all
words of length k. The concatenation · of two words is defined as follows:

x1x2 · · ·xn · y1y2 · · · ym = x1x2 · · ·xny1y2 · · · ym. (1.87)

Then (Σ+, ·) is a semigroup, which is called a free semigroup, and (Σ∗, ·) is a monoid,
which is called a free monoid .

For the word w = a1a2 · · · an, we define

w[i..j] =

{
aiai+1 · · · aj, if 1 ≤ i ≤ j ≤ n;

ε, otherwise.
(1.88)

Any word w[1..i] for 0 ≤ i ≤ |w | is called a prefix of w and any word w[i.. |w |] for
1 ≤ i ≤ |w | + 1 is called a suffix of w. We say a prefix (suffix) u of w is proper if

25

u 6= w. We write Pref(w) and Suff(w) to refer to the set of all prefixes and suffixes
of w, respectively. A word u is a conjugate of a word v if u = v[i + 1.. | v |]v[1..i] for
some 1 ≤ i ≤ | v | and in this case we write u ∼ v. The conjugacy relation ∼ is an
equivalence relation.

Let Σ∗, ∆∗ be two free monoids. A morphism h : Σ∗ → ∆∗ is a mapping such
that h(uv) = h(u)h(v) for all u, v ∈ Σ∗. Then h is uniquely determined by h′ : Σ →
∆∗ where h′(a) = h(a) for all a ∈ Σ. Usually, when we define a morphism h, we
only write down h′ for brevity. For a morphism h : Σ∗ → ∆∗, the inverse morphism
h−1 : P(∆∗) → P(Σ∗) is defined by h−1(L) =

{
w : h(w) ∈ L

}
. Two free monoids

Σ∗, ∆∗ are isomorphic if there are two morphisms f : Σ∗ → ∆∗, g : ∆∗ → Σ∗ such
that g(f(u)) = u and f(g(v)) = v for all u ∈ Σ∗ and v ∈ ∆∗.

The free monoid over an alphabet Σ is one of the major research objects in formal
language theory and combinatorics [101, 90, 160], and results from the research on
the free monoid have various applications in many domains, such as communication
theory [50, 10], algebraic linguistics [30, 53], DNA sequence computing [132, 106],
and text compression [176]. Due to the wide usage of the free monoid, the gener-
alization of the Frobenius problem in a free monoid is an interesting topic.

Example 1.4.3. Let Σ = { 0, 1 } be the binary alphabet. Then the set of
all finite binary words is Σ∗ = { ε, 0, 1, 00, 01, 10, 11, . . . } and, together with the
concatenation operation, comprise a free monoid.

Example 1.4.4. Let Σ = { 0 } be the unary alphabet. Then the set of all
finite unary words is Σ∗ = { ε, 0, 00, 000, . . . } and, together with the concatenation
operation, comprise a free monoid. In the free monoid over a unary alphabet, the
commutative law is satisfied.

The non-negative integers in N with addition constitute a monoid, which is
isomorphic to the free monoid over the unary alphabet { 0 }, specified by the mor-
phism f(y) = 0y and g(0y) = y. It is, however, special in the sense that the addition
satisfies the commutative law, which is in general not satisfied in a free monoid.

Let Σ be an alphabet. Any subset of Σ∗ is called a language (in Σ∗). Let S, T
be two languages. We denote by S · T , or ST for short, the language

ST =
{

xy : x ∈ S, y ∈ T
}
. (1.89)

We denote by Sk the language
{

x1x2 · · ·xk : x1, x2, . . . , xk ∈ S
}
, denote by S+ the

concatenation closure of S, which is
{

x1x2 · · ·xk : x1, x2, . . . , xk ∈ S, k ≥ 1
}
, and

denote by S∗ the language S+ ∪ { ε }.
The reverse of a word w = a1a2a3 · · · ak is wR = akak−1 · · · a2a1, and the reverse

of a language S is SR =
{

wR : w ∈ S
}
. A palindrome w is a word such that

wR = w.

A language S in Σ∗ is called finite if it consists of finitely many words. If S is
finite, we let llw (S) denote the length of the longest word(s) in S:

llw (S) = max
w∈S

|w | . (1.90)

26

We define llw (∅) = −1 and define llw (S) = ∞ when S is infinite. A language S is
called co-finite (in Σ∗) if its complement S = Σ∗ \ S is finite.

Shallit asked the following question: given k words x1, x2, . . . , xk such that
{x1, x2, . . . , xk }∗ is co-finite, then what is (the length of) the longest word that
is not in the language {x1, x2, . . . , xk }∗? This problem is the Frobenius problem in
a free monoid , and the goal of this thesis is to try to answer Shallit’s question from
different points of view.

The Frobenius problem in a free monoid is a generalization of the Frobenius
problem in the sense of the following theorem, which follows from Theorem 1.1.4.

Theorem 1.4.5. [83, 84] Let Σ = { 0 } and S = { 0x1 , 0x2 , . . . , 0xk }. Then S∗ is co-
finite if and only if gcd(x1, x2, . . . , xk) = 1. Furthermore, if S∗ is co-finite, then the
longest word in S∗ is 0g(x1,x2,...,xk) and the number of words in S∗ is h(x1, x2, . . . , xk).

As shown in Theorem 1.1.4, the condition gcd(x1, x2, . . . , xk) = 1 is neces-
sary and sufficient for the existence of the Frobenius number, g(x1, x2, . . . , xk), for
given positive integers x1, x2, . . . , xk. For the Frobenius problem in a free monoid,
however, there is no such simple condition. In fact, as we will see in Chapter 5,
CO-FINITENESS OF STAR OF STAR-FREE REGULAR EXPRESSION, a strongly related
decision problem, is NP-hard. A brief comparison of the original Frobenius problem
and the Frobenius problem in a free monoid is given in Table 1.3.

Table 1.3: Comparison of the original FP and the FPFM

the original FP the FP in a free monoid

x1, . . . , xk are integers x1, . . . , xk are words
non-negative integer linear combination concatenation of words
〈x1, . . . , xk〉 { x1, x2, . . . , xk }∗
gcd(x1, . . . , xk) = 1 the language is co-finite
the Frobenius number (length of) the longest word(s) omitted

g(x1, . . . , xk) llw
(
{x1, x2, . . . , xk }∗

)

Our generalization is non-commutative because in general the concatenation
of words does not satisfy the commutative law. In other words, while the non-
negative integers N with addition and multiplication comprise two commutative
(abelian) monoids (N, +, 0) and (N,×, 1), a free monoid (Σ∗, ·, ε) is not a commu-
tative (abelian) monoid in general.

To avoid ambiguity, we call the original Frobenius problem (FP) the integer
Frobenius problem, while we call the new generalization the Frobenius problem in
a free monoid (FPFM).

27

1.5 Organization of the thesis

In this thesis, I will discuss generalized forms of the Frobenius problem in the uni-
verse of words, including Shallit’s non-commutative Frobenius problem and other
variations.

In Chapter 2, I will give the definition of the Frobenius problem in a free monoid
(FPFM) and discuss some general properties of the FPFM. Then I will mainly focus
on a particular subproblem, the 2FPFM, where the words in the basis are of only
two distinct lengths. I will discuss the 2FPFM from different points of view. I
will present two equivalent problems and finally give the complete spectrum of the
solutions of the 2FPFM. A word graph, as the generalization of the famous de Bruijn
graph, is introduced in order to discuss the 2FPFM. At the end of Chapter 2, I will
discuss the Frobenius problem in a free monoid in case where the lengths of words
in the basis constitute a special sequence.

In Chapter 3, I will discuss some variations on the FPFM and related problems.
The first variation is that the concatenation of words are taken in a fixed order.
Then I will discuss the FPFM with the input and output being specified by other
means (for example, deterministic finite automata — DFAs, nondeterministic finite
automata — NFAs, regular expressions). Some other variations on the FPFM with
different aspects instead of the length of the longest omitted words are: the total
number of omitted words, numbers that can be solutions to instances of the FPFM,
bases with small sizes, and the number of different factorizations. I will also discuss
the co-finiteness of sets of infinite words (right-infinite, left-infinite, bi-infinite),
concatenation with overlap, co-slender languages and other settings. At the end, I
will discuss a generalization of the local postage-stamp problem in a free monoid.

In Chapter 4, I will present the construction of some essential examples to com-
plement the theory of the 2FPFM discussed in Chapter 2. The examples include a
description of bases achieving exponentially-long omitted words, and corresponding
examples with input being specified by NFAs, regular expressions, and determinis-
tic pushdown automata (DPDAs). The examples also include a description of bases
achieving doubly-exponentially many omitted words. At the end, I will give some
experimental statistics.

In Chapter 5, I will discuss the algorithm for and computational complexity of
the FPFM and related problems. I will present two exponential-time algorithms
for the general FPFM and one polynomial-time algorithm for the 2FPFM. At the
end, I will show that a particular decision problem related to the FPFM is NP-hard
and in PSPACE.

In the last chapter, I will summarize the main results in this thesis and list some
open problems.

Part of my work in this thesis has appeared in papers [83, 84, 157].

28

Chapter 2

General theory of the FPFM

In §2.1 I will give the definition of the Frobenius problem in a free monoid (FPFM)
and some general properties of the FPFM. In §2.2, I will discuss different ways
of describing the problem and different measures that we can use to bound the
solution. In §2.3, I will show bounds on the longest words that could be the
solutions to the FPFM. In the remaining sections, except the last one, I will focus on
a particular type of the FPFM, called the 2FPFM. In §2.4, I will give the definition
of the 2FPFM. In §2.5, I will discuss the 2FPFM from the view of combinatorics on
words and give an equivalent problem. In §2.6, I will use some concepts from graph
theory and define the word graph for the 2FPFM to present another equivalent
form of the 2FPFM. In §2.6, by generalizing the de Bruijn graph, I will also give
the complete spectrum of the lengths of words that could be the solutions to the
2FPFM. Finally, in §2.7, I will tackle the FPFM in some other special cases.

The main theorems in this chapter are 2.4.12, 2.5.3, 2.6.6, and 2.6.19; these are
my contribution to the FPFM.

2.1 The Frobenius problem in a free monoid

We will start from the formal definition of the Frobenius problem in a free monoid
(FPFM), which is the main topic of this thesis, and then exhibit some examples
and general properties of the FPFM.

2.1.1 Definition of the FPFM

Problem 2.1.1 (Frobenius problem in a free monoid). Let Σ be a (finite) alphabet.
Given k non-empty words x1, x2, . . . , xk ∈ Σ∗ such that there are only finitely many
words that cannot be written as concatenations of words in {x1, x2, . . . , xk }, then
what is the longest such word(s)?

29

If a word w can be written as a concatenation of non-empty words as

w = x′1x
′
2 · · ·x′l, (2.1)

where l ≥ 0 and all x′i ∈ {x1, x2, . . . , xk } for 1 ≤ i ≤ l, then we call (2.1) a
factorization of w (into x1, x2, . . . , xk) and each of the x′i a factor of w. In particular,
we say the empty word ε can be factorized into a concatenation of 0 words from
any basis. The set S∗ can be written as

S∗ =
{

x′1x
′
2 · · ·x′l : x′1, x′2, . . . , x′l ∈ S, l ≥ 0

}
, (2.2)

which contains all words that can be factorized into words in S, and we say that
S∗ is generated by the basis x1, x2, . . . , xk, where S = {x1, x2, . . . , xk }. Unlike the
case of integers, the longest word that is not in S∗, if any, may not be unique.

Example 2.1.2. For any arbitrary alphabet Σ, let S1 = Σ3 ∪ Σ5. Then S∗1 is
co-finite and S∗1 = Σ1 ∪ Σ2 ∪ Σ4 ∪ Σ7. The longest words not in S∗1 are Σ7 and
llw

(
S∗1

)
= 7 = g(3, 5).

The following propositions are about co-finiteness, some of which are based on
results from the study of the integer FP.

In the definition of the FPFM, the number of the given words is finite. In fact,
it does not matter whether the number of given words is finite or not, in the sense
that one can always choose a finite subset of them to get a new basis, and the two
bases generate the same co-finite language, as the following proposition says.

Proposition 2.1.3. Let S be a set of words over Σ. If S∗ is co-finite, then there
exists a finite subset T ⊆ S such that T ∗ = S∗.

Proof. If S∗ = Σ∗, then we can take T = Σ. Otherwise, S∗ 6= Σ∗. Since S∗ is
co-finite, let l = llw

(
S∗

)
. We now consider the finite set of words

U = Σl+1 ∪ Σl+2 ∪ · · · ∪ Σ2l+1. (2.3)

By Formula (1.72), g(l+1, l+2, . . . , 2l+1) = l. So any word of length l′ > l can be
factorized into words in U according to the partition of l′ into l+1, l+2, . . . , 2l+1.
Hence U∗ is co-finite and llw

(
U∗) = l = llw

(
S∗

)
. Furthermore, all words in U

can be factorized into words in S. Let T1 be the set of all words that appear in a
factorization, into the basis S, of each word in U , and let T2 be the set of all words
of lengths ≤ l in S. Then T = T1 ∪ T2 is a finite subset of S, and thus T ∗ ⊆ S∗.
Every word of length > l is in S∗ and is also in T ∗

1 . A word of length ≤ l is in
S∗ if and only if it can be factorized into words in T2. So S∗ ⊆ (T ∗

1 ∪ T ∗
2) ⊆ T ∗.

Therefore, T ∗ = S∗.

The following proposition is particularly useful to decide if a language generated
by a basis is co-finite. To show that S generates a co-finite language, one only needs
to check that S∗ covers all words of some lengths x1, x2 with gcd(x1, x2) = 1. In
particular, one can choose x1, x2 to be two consecutive integers.

30

Proposition 2.1.4. Let S ⊆ Σ∗. Then S∗ is co-finite if and only if there exist two
positive integers y1, y2 such that gcd(y1, y2) = 1 and Σy1 ∪ Σy2 ⊆ S∗. Furthermore,
llw

(
S∗

) ≤ g(y1, y2).

Proof. ⇒: If S∗ is co-finite, let y1, y2 > max
{

1, llw
(
S∗

) }
be two distinct primes.

Then T = (Σy1 ∪ Σy2) ⊆ S∗ and gcd(y1, y2) = 1.

⇐: Let y1, y2 be two positive integers such that gcd(y1, y2) = 1 and T = Σy1 ∪
Σy2 ⊆ S∗. Then any word of length l > g(y1, y2) can be factorized into words
in T according to the partition of l into y1, y2, and thus T ∗ is co-finite. Since
T ∗ ⊆ (S∗)∗ = S∗, we know that S∗ is also co-finite.

Furthermore, llw
(
S∗

) ≤ llw
(
T ∗) = g(y1, y2).

For any fixed k ≥ 2, a result similar to Proposition 2.1.4 also holds: namely, S∗

is co-finite if and only if S∗ includes all words of some lengths y1, y2, . . . , yk with
gcd(y1, y2, . . . , yk) = 1, and furthermore llw

(
S∗

) ≤ g(y1, y2, . . . , yk).

There exist non-trivial instances of the FPFM. Here are several examples.

Example 2.1.5. For the binary alphabet, let S2 = { 1, 00, 01, 10, 000, 010 }.
Then S∗2 is co-finite and factorizations of words of lengths ≤ 3 are given below:

(ε) 0 (1) (00) (01) (10) (1)(1)
(000) (00)(1) (010) (01)(1) (1)(00) (1)(01) (1)(10) (1)(1)(1)

Since gcd(2, 3) = 1, all words of lengths ≥ 4 > g(2, 3) = 1 are in S∗2 . Therefore, the
only word not in S∗2 is 0.

Example 2.1.6. For the binary alphabet, let

S3 = { 0, 11, 001, 010, 100, 101, 111, 1001, 1011, 1101, 10001, 10101 } . (2.4)

Then S∗3 is co-finite and factorizations of words of lengths ≤ 5 are given below:

(ε) (0) 1 (0)2 01 10 (11)
(0)3 (001) (010) (0)(11) (100) (101) (11)(0) (111)
(0)4 (0)(001) (0)(010) (0)2(11) (0)(100) (0)(101) (0)(11)(0) (0)(111)

(100)(0) (1001) (101)(0) (1011) (11)(0)2 (1101) (111)(0) (11)2

(0)5 (0)2(001) (0)2(010) (0)3(11) (0)2(100) (0)2(101) (0)2(11)(0) (0)2(111)
(0)(100)(0) (0)(1001) (0)(101)(0) (0)(1011) (0)(11)(0)2 (0)(1101) (0)(111)(0) (0)(11)2

(100)(0)2 (10001) (1001)(0) (100)(11) (101)(0)2 (10101) (1011)(0) (101)(11)
(11)(0)3 (11)(001) (11)(010) (11)(0)(11) (11)(100) (11)(101) (11)2(0) (11)(111)

Since gcd(3, 4, 5) = 1, all words of lengths ≥ 6 > g(3, 4, 5) = 2 are in S∗3 . Therefore,
the only words not in S∗3 are in { 1, 01, 10 } and 01, 10 are the longest two.

Proposition 2.1.7. Let x1, . . . , xk be k words over Σ. Then L = {x1, . . . , xk }∗ is
not co-finite if and only if there are words u, v, w such that v 6= ε and uv∗w ⊆ L.

31

Proof. Trivially, if such u, v, w exist, then by definition L is not co-finite. Now,
we suppose L is not co-finite. Then L contains arbitrarily long words. The finite
language {x1, x2, . . . , xk } is regular. Since the class of regular languages is closed

under Kleene-star ∗ and complement, L = {x1, x2, . . . , xk }∗ is also regular. So such
u, v, w exist by the pumping lemma (for example, see the textbook [71]).

Corollary 2.1.8. Let x1, x2, . . . , xk be k words over Σ such that L = {x1, . . . , xk }∗
is co-finite, and let n = max1≤i≤k |xi |. Then, for any letters b1, b2, . . . , bn ∈ Σ and
any word u ∈ Σ∗, we have {ub1, ub1b2, ub1b2b3, . . . , ub1b2 · · · bn } ∩ L 6= ∅.

Proof. Consider the language L′ = ub1b2 · · · bnΣ∗. Since L is co-finite, L′ ∩ L 6= ∅.
Let w ∈ L′ ∩ L, and let w = v1v2 · · · vt be a factorization of w into words x’s. Then
there is some r such that | v1 · · · vr | ≤ |u | < | v1 · · · vrvr+1 |. Since | vr+1 | ≤ n, by
comparing lengths, we have v1 · · · vr+1 ∈ {ub1, ub1b2, ub1b2b3, . . . , ub1b2 · · · bn }.
So {ub1, ub1b2, ub1b2b3, . . . , ub1b2 · · · bn } ∩ L 6= ∅.

2.1.2 Relations of the FPFM and the Frobenius number

In the following part of this section, we will see some propositions about co-finiteness
in the FPFM, and some propositions that illustrate the relation between the length
of the longest omitted words in the FPFM and the Frobenius number. Our first
proposition concerns restricting a basis to a smaller alphabet.

Proposition 2.1.9. Let S be a set of words over Σ such that S∗ is co-finite in Σ∗,
and let ∆ ⊆ Σ. Then T = S ∩ ∆∗ is a set of words over ∆, and T generates a
language that is co-finite in ∆∗. Furthermore, llw (∆∗ \ T ∗) ≤ llw (Σ∗ \ S∗).

Proof. Every word w in S∗ ∩ ∆∗ can be written as a factorization into the basis
S and all factors are in ∆∗, so w is in (S ∩ ∆∗)∗ and thus S∗ ∩ ∆∗ ⊆ (S ∩ ∆∗)∗.
On the other hand, T ∗ = (S ∩ ∆∗)∗ ⊆ S∗ ∩ ∆∗, so T ∗ = S∗ ∩ ∆∗. Then
∆∗ \ T ∗ = ∆∗ \ S∗ ⊆ Σ∗ \ S∗, and thus llw (∆∗ \ T ∗) ≤ llw (Σ∗ \ S∗).

Example 2.1.10. The basis S2 over the binary alphabet in Example 2.1.5
contains two bases { 1 } and { 00, 000 } for the unary alphabet. The longest word
not in S∗2 is 0 (of length 1), while g(1) = −1, g(2, 3) = 1. The basis S3 over the
binary alphabet in Example 2.1.6 contains two bases { 0 } and { 11, 111 } for the
unary alphabet. The longest words not in S∗3 are 01 and 10 (of length 2), while
g(1) = −1, g(2, 3) = 1.

Proposition 2.1.11. Let f : Σ∗
1 → Σ∗

2 be a morphism such that f(Σ∗
1) is co-finite

in Σ∗
2. If L ⊆ Σ∗

1 is co-finite, then f(L) ⊆ Σ∗
2 is also co-finite. Furthermore, if

f(Σ∗
1) = Σ∗

2, then llw (f(Σ∗
1 \ L)) ≥ llw (Σ∗

2 \ f(L)).

Proof. Since A \ C ⊆ A \B ∪ B \ C for arbitrary A,B,C, then

Σ∗
2 \ f(L) ⊆ (

Σ∗
2 \ f(Σ∗

1)
) ∪ (

f(Σ∗
1) \ f(L)

)
. (2.5)

32

Since f(A) \ f(B) ⊆ f(A \ B) for arbitrary A,B, then f(Σ∗
1) \ f(L) ⊆ f(Σ∗

1 \ L),
and thus Σ∗

2 \ f(L) is finite. This proves the first assertion. If f(Σ∗
1) = Σ∗

2, then
Σ∗

2 \ f(Σ∗
1) = ∅, and so Σ∗

2 \ f(L) ⊆ f(Σ∗
1 \ L).

If we define a morphism of words by omitting particular letters, then the image
of a co-finite language is also co-finite. This corollary follows immediately from
Proposition 2.1.11.

Corollary 2.1.12. Let ∆ ⊆ Σ and define the morphism |∆ : Σ∗ → ∆∗ by

a|∆ =

{
a, if a ∈ ∆;

ε, if a 6∈ ∆.
(2.6)

If {x1, . . . , xk }∗ is co-finite in Σ∗, then so is {x1|∆, . . . , xk|∆ }∗ in ∆∗. Furthermore,
llw

({
w|∆ : w ∈ Σ∗ \ { x1, . . . , xk }∗

}) ≥ llw (∆∗ \ { x1|∆, . . . , xk|∆ }∗).
Example 2.1.13. In Example 2.1.5, S2|{ 0 } = { 00, 0, 000 } and S2|{ 1 } = { 1 }.
The longest word not in S∗2 is 0 (of length 1), while g(1, 2, 3) = −1, g(1) = −1.
In Example 2.1.6, S3|{ 0 } = { 0, 00, 000 } and S3|{ 1 } = { 11, 1, 111 }. The longest
words not in S∗3 are 01 and 10 (of length 2), while g(1, 2, 3) = −1. Here ε in every
basis is omitted.

If a set of words generates a co-finite language, then the set of lengths of those
words generates a co-finite set in N. This can be viewed as another corollary of
Proposition 2.1.11, but I will present a complete proof here for further discussion.

Proposition 2.1.14. Let x1, . . . , xk be k words over Σ. If L = {x1, . . . , xk }∗ is
co-finite, then gcd(|x1 | , . . . , |xk |) = 1. Furthermore, llw

(
L

) ≥ g(|x1 | , . . . , |xk |).

Proof. One can verify that the mapping f(w) = |w | is a morphism from (Σ∗, ·) to
(N, +). Hence, if w ∈ { x1, x2, . . . , xk }∗, then |w | ∈ 〈|x1 | , |x2 | , . . . , |xk |〉. Assume
L = {x1, x2, . . . , xk }∗ is co-finite. Then there are only finitely many non-negative
integers that are not in 〈|x1 | , |x2 | , . . . , |xk |〉. By Theorem 1.1.5, it follows that
gcd(|x1 | , |x2 | , . . . , |xk |) = 1. Any word of length g(|x1 | , |x2 | , . . . , |xk |) is not in
L, so llw

(
L

) ≥ g(|x1 | , |x2 | , . . . , |xk |).

From the proof, we know that the set of lengths of words in a language generated
by a basis S is exactly the set generated by the lengths of words in S as follows:

{ |w | : w ∈ { x1, x2, . . . , xk }∗
}

= 〈|x1 | , |x2 | , . . . , |xk |〉, (2.7)

while in general a word not in a language generated by a basis S may be of length
that is in the set generated by the lengths of words in S, which means

{ |w | : w 6∈ { x1, x2, . . . , xk }∗
} ⊇ N \ 〈|x1 | , |x2 | , . . . , |xk |〉. (2.8)

33

Proposition 2.1.15. Let S be a set of words over Σ such that S∗ is co-finite. Then
there exists a finite sequence of integers y1, y2, . . . , yk ′ such that gcd(y1, . . . , yk ′) = 1
and the set of lengths of words not in S∗ is exactly the set N \ 〈y1, y2, . . . , yk ′〉. In
other words, llw

(
S∗

)
= g(y1, y2, . . . , yk ′).

Proof. Let l = llw
(
S∗

)
. We define U1 =

{
n ∈ N : n < l, Σn ⊆ S∗

}
and U2 =

{ l + 1, l + 2, . . . , 2l + 1 }. Let U = U1 ∪ U2, and let y1, y2, . . . , yk ′ be the integers
in U . Then

⋃
i∈U Σi ⊆ S∗ and the set of lengths of words not in S∗ is exactly

N\〈y1, . . . , yk ′〉. Furthermore, gcd(y1, . . . , yk ′) = gcd(l+1, l+2, . . . , 2l+1) = 1.

From the proof, we also know that there may exist a word in S∗ that is of a
length not in 〈y1, y2, . . . , yk ′〉, which means

{ |w | : w ∈ S∗
} ⊇ 〈y1, y2, . . . , yk ′〉, (2.9)

while the set of lengths of words not in S∗ is exactly N \ 〈y1, y2, . . . , yk〉 as follows:

{ |w | : w 6∈ S∗
}

= N \ 〈y1, y2, . . . , yk ′〉. (2.10)

Comparing Eqs. (2.9) and (2.10) with Eqs. (2.7) and (2.8), we know that the two
sets of integers { y1, y2, . . . , yk ′ } and { | x1 | , |x2 | , . . . , |xk | } are not identical in
general, nor there is any obvious relation between them. In fact, we will see in §2.5
that yk′ can be exponential in |xk |. The sequence y1, y2, . . . , yk ′ is not unique.

Example 2.1.16. Characteristics of Examples 2.1.2, 2.1.5, and 2.1.6, with their
constant sequences y1, y2, . . . , yk ′ specified in Proposition 2.1.15, are in Table 2.1.
We saw that Eqs. (2.7)–(2.10) hold and only in the example with basis S1 all the
equalities in Eqs. (2.8)–(2.9) are attained at the same time.

Table 2.1: Characteristics of the FPFM with bases S1, S2, and S3

S : x1, . . . , xk S1 : Σ3 ∪ Σ5 S2 : 1,02,01,10,
03,010

S3 : 0,12,001,010,100,101,13,
1021,1011,1101,1031,(10)21

|x1 | , . . . , |xk | { 3, 5 } { 1, 2, 3 } { 1, 2, 3, 4, 5 }
y1, . . . , yk′ { 3, 5 } { 2, 3 } { 3, 4, 5 }{ |w | : w ∈ S∗

} { 0, 3, 5, 6, i ≥ 8 } { i ≥ 0 } { i ≥ 0 }{ |w | : w 6∈ S∗
} { 1, 2, 4, 7 } { 1 } { 1, 2 }

〈|x1 | , . . . , |xk |〉 { 0, 3, 5, 6, i ≥ 8 } { i ≥ 0 } { i ≥ 0 }
〈|x1 | , . . . , |xk |〉− { 1, 2, 4, 7 } ∅ ∅
〈y1, . . . , yk′〉 { 0, 3, 5, 6, i ≥ 8 } { 0, i ≥ 2 } { 0, i ≥ 3 }
〈y1, . . . , yk′〉− { 1, 2, 4, 7 } { 1 } { 1, 2 }

34

2.1.3 Twins proposition in the FPFM

The following proposition is more powerful than it first appears, and later, based on
this proposition, I will present a complete solution to the 2FPFM. I prefer to call
it twins proposition in the Frobenius problem in a free monoid, because it shows
that if S∗ is co-finite, then every word in S must appear in groups (pairs, triples,
etc.).

Proposition 2.1.17 (Twins proposition). [83, 84] Let S be a set of non-empty
words over Σ such that S∗ is co-finite and S∗ 6= Σ∗. Then for each x ∈ S, there
exists y ∈ S such that y is a proper prefix of x, or vice versa. Similarly, for each
x ∈ S, there exists z ∈ S such that z is a proper suffix of x, or vice versa.

Proof. Let x ∈ S. Since S∗ 6= Σ∗, there is a word v 6∈ S∗. Consider the language
x∗v. Since S∗ is co-finite, x∗v ∩ S∗ 6= ∅. Let i be the smallest integer such that
xiv ∈ S∗. Since v 6∈ S∗, we have i ≥ 1. Let

xiv = y1y2 · · · yj (2.11)

be a factorization of xiv in the basis S. Then y1 6= x, for otherwise xi−1v =
y2 · · · yj ∈ S∗, which contradicts the minimality of i. If |x | < | y1 |, then x is a
proper prefix of y1, while otherwise y1 is a proper prefix of x. Here y1 ∈ S.

Consider the set SR that contains the reverse of every word in S. Then (SR)∗ 6=
Σ∗ is co-finite. By applying the result about prefixes on SR, we see that the
analogous result about suffixes holds.

Example 2.1.18. The bases S2 and S3 in Examples 2.1.5 and 2.1.6 are grouped
according to the prefix relation as follows, where every pair of words that satisfy
the prefix relation is connected by a line:

S2 : 1—10, 00—000, 01—010;

S3 : 001—0—010, 111—11—1101, 1001—100—10001, 1011—101—10101.

2.2 Various measures for the FPFM

Let Σ be an alphabet, which can be unary or of larger size. Given as input k
words x1, x2, . . . , xk, which satisfy certain conditions, we can apply the Kleene-star
operator to the language S = {x1, x2, . . . , xk } and determine some characteristics
of S∗. The FPFM is a special setting of the procedure described here.

If Σ is a unary alphabet: one particular case of the procedure is to let the
condition be gcd(|x1 | , |x2 | , . . . , |xk |) = 1 and let the output measure be llw

(
S∗

)
.

Then we have a problem equivalent to the integer FP, which we know is NP-hard,
and there is an upper bound on the output as follows: (see Eq. (1.41))

llw
(
S∗

)
= g(|x1 | , |x2 | , . . . , |xk |) ≤ max1≤i≤k |xi |2

k − 1
, (2.12)

35

where max1≤i≤k |xi | is one possible measure of the input. There are also other
measures of the input such as lcm(|x1 | , . . . , |xk |), and we know (see Eq. (1.43))

llw
(
S∗

)
= g(|x1 | , . . . , |xk |) ≤ (k − 1) lcm(|x1 | , . . . , |xk |). (2.13)

Another case of the procedure is, over an arbitrary alphabet Σ, to let the con-
dition be that S∗ is co-finite and let the output measure be llw

(
S∗

)
. Then we

have the FPFM. In order to give an upper bound on the output, there are different
measures of the input that can be chosen.

2.2.1 Measures of the input

In the general procedure described above, some choices of measures of the input
are listed in Table 2.2. But by no means is the table exhaustive. Here the state
complexity of a language L is the number of states in the minimal DFA that accepts
L, and the nondeterministic state complexity of L is the minimal number of states
in an NFA that accepts L. Here the alphabetic length of a regular expression is the
number of alphabet symbols of that regular expression.

Table 2.2: Measures of a list of words x1, x2, . . . , xk as the input

κ = k, the number of distinct words in the input;
ν = max1≤i≤k |xi |, the length of the longest words in the input;
µ =

∑
1≤i≤k |xi |, the total number of symbols in the input;

g(|x1 | , |x2 | , . . . , |xk |), the Frobenius number of lengths of input words;
lcm(|x1 | , . . . , |xk |), the least common multiple of lengths of input words;
sc(S), the state complexity of S;
nsc(S), the nondeterministic state complexity of S;
alph(S), the minimal alphabetic length of a regular expression for S.

There are more measures of the input in a free monoid than in the integers.
Over the unary alphabet (or integers), obviously some of the measures are related,
as we have

1 ≤ κ ≤ ν ≤ µ, and µ = O
(
ν2

)
. (2.14)

But over a larger alphabet, both κ and µ can be exponentially large in ν when
the input consists of all words of two lengths m,n with gcd(m,n) = 1 as shown
in Example 2.1.2, and thus they are different measures in general. Some of the
measures are bounded in others such as

g(|x1 | , . . . , |xk |) ≤ (κ− 1) lcm(|x1 | , . . . , |xk |), g(|x1 | , . . . , |xk |) ≤ ν2

κ− 1
,

µ ≤ κν, sc(S) ≤ 2nsc(S), nsc(S) ≤ alph(S). (2.15)

36

2.2.2 Measures of the output

Depending on the output measure, the procedure described at the beginning of
this section can become an entirely different problem. For example, as we saw
in the integer FP, one can ask for the Frobenius number g(x1, x2, . . . , xk), or the
number h(x1, x2, . . . , xk) of positive integers not in 〈x1, x2, . . . , xk〉, or the sum of
positive integers not in 〈x1, x2, . . . , xk〉, or the denumerant d(n; x1, x2, . . . , xk). In
the FPFM, we ask, as output, for the longest words not in S∗. There are different
measures of the longest words not in S∗, such as the length of such words, the
number of such words, the total number of symbols in all such words (which is
the product of the previous two measures). Furthermore, instead of considering
the longest words not in S∗, other output measures are also possible. Table 2.3
lists several candidates, some of which lead to variations on the FPFM and will be
discussed in Chapter 3.

Table 2.3: Measures of the longest omitted words and other characteristics

L = llw ((S∗)−) = maxw∈Σ∗\S∗ |w |, the length of the longest words not in S∗;
I = #

{
w 6∈ S∗ : |w | = L}

, the number of the longest words not in S∗;
IL = L · I, the total number of symbols in all the longest words not in S∗;
M = #S∗, the number of words not in S∗;
W =

∑
w∈S∗ |w |, the total number of symbols in all the words not in S∗;

S = sc(S∗), the state complexity of S∗;
N = nsc(S∗), the nondeterministic state complexity of S∗;
R = alph(S∗), the minimal alphabetic length of a regular expression for S∗;
D(w), the number of different factorizations of w in the basis S.

The output in the case of a free monoid differs from that in the case of integers
and there are more measures of the output. The measures in the case of the unary
alphabet are specified by the subscript o. Over the unary alphabet (or integers), Io,
if any, is always 1 and thus ILo = Lo. Furthermore, as immediate consequences of
results on the integer FP (see Formula (1.56)), the inequalities

Lo
2
≤Mo ≤ Lo and Wo =O(Lo2) (2.16)

hold. But over a larger alphabet, all of the quantities I, IL,M,W may be expo-
nential in L, and in §2.5 I will show that they are exponential in some cases.

2.2.3 Constraints on the problem

In order to consider llw
(
S∗

)
, it is necessary that S∗ be co-finite. When our measure

of the output changes, there can be more or fewer conditions. For example, even
when S∗ is not co-finite, we can still study the state complexity of S∗. Furthermore,

37

imposing certain constraints can simplify the problem and leads to interesting sub-
problems. As we saw in the integer FP, when κ = 2 nearly all output measures can
be expressed by a simple formula. Table 2.4 shows various possible conditions one
could impose.

Table 2.4: Conditions to be satisfied and additional constraints
on the alphabet: the alphabet Σ is unary;
on the generated language: S∗ = {x1, x2, . . . , xk }∗ is co-finite;
on the generated language: S∗ = {x1, x2, . . . , xk }∗ is co-slendera;
on the number of words: κ = 2;
on the number of words: κ is fixed;
on the lengths of words: x1, x2, . . . , xk are of only two lengths;
on the lengths of words: x1, x2, . . . , xk are of only a fixed number of lengths;
on the input words: x1, x2, . . . , xk satisfy certain patterns.

aSee §3.4.3 for the definition and discussion of the co-slender language.

These conditions are not totally independent. For example, over the unary
alphabet, as soon as each input word is distinct, a constraint on the number κ of
the input words is the same as the constraint on the number of the lengths of the
input words. Over larger alphabets, however, the two conditions are not equivalent
in general. In addition, S∗ is always co-slender over a unary alphabet, so when we
impose the latter condition the former condition is automatically satisfied.

Clearly not every combination of the measures of the input, the measures of
the output, and imposed conditions leads to a feasible and interesting question. In
addition, some combinations result in trivial problems and some result in a well-
studied problem. Nevertheless, the one appearing in the definition of the FPFM is
not such a combination. Some of the measures were given by Shallit and some of
their combinations are discussed in our papers [83, 84] with Shallit and Kao.

2.3 Bounds on the longest omitted words

One aspect of the generalized FP is to find a good upper bound or lower bound
on the length of the longest omitted words, in some measure. Since there is no
simple polynomial formula for the FP, a general simple formula for the FPFM is
also unlikely. Hence the study of upper and lower bounds is a more realistic goal.

Let S = {x1, x2, . . . , xk } be the input.

Lower bound on the length of the longest omitted words

A lower bound on llw
(
S∗

)
follows immediately from Proposition 2.1.14 as follows:

L = llw
(
S∗

) ≥ g(|x1 | , |x2 | , . . . , |xk |). (2.17)

38

The lower bound in (2.17) is tight, since the equality in (2.17) can be attained when
the set S consists of all words of some particular lengths as shown in Example 2.1.2,
where the gcd of those lengths is 1. The lower bound in (2.17), however, is not very
useful in practice.

Upper bound on the length of the longest omitted words

To discuss the upper bound on llw
(
S∗

)
, we can apply the following proposition

and obtain an upper bound from the corresponding result on state complexity.

Proposition 2.3.1. Let S be a set of words over Σ and M be a DFA of n states
accepting the language S∗. If S∗ is co-finite, then llw

(
S∗

)
< n.

Proof. Proof by contradiction. Assume w is not in S∗ and |w | ≥ n. Now we
consider all states that M visited when M rejects w. There are |w | + 1 of them,
which is ≥ n + 1. Then there must be one state that M visited at least twice.
Suppose δ(q0, u) = δ(q0, uv), where v 6= ε, and w = uvz. Then none of the words
in uv∗z is in S∗, which contradicts the fact that S∗ is co-finite.

Table 2.5: The length of longest words and the size of computing models

in sc(S) in nsc(S) in alph(S)

llw (S) linear or ∞ linear or ∞ linear or ∞
llw

(
S
)

linear or ∞ exponential or ∞ exponential or ∞
llw

(
S∗

)
exponential or ∞ exponential or ∞ exponential or ∞

llw (S∗) −1 or ∞ −1 or ∞ −1 or ∞

More generally, the relations between the length of the longest words and state
complexity (respectively, nondeterministic state complexity, alphabetic length of
regular expressions) are given in Table 2.5, where S is given by a DFA (respectively,
NFA, regular expression) and ∞ represents the case in which the corresponding
language is not finite.

So the two measures of L and S are related as follows:

L = llw
(
S∗

)
< S = sc(S∗). (2.18)

From Eqs. (3.4) and (3.6) for state complexity (which will be discussed in §3.2.1),
we have the following upper bounds on L. Let the input be a finite set of words S
over Σ. Let κ = |S |, ν = max1≤i≤κ |xi|, µ =

∑
1≤i≤κ |xi|. Then

L < 2sc(S)−3 + 2sc(S)−4 = O(2sc(S)), if sc(S) ≥ 4; (2.19)

L < 2µ−κ+1 = O(2µ); (2.20)

L < 2nsc(S)−1 = O(2nsc(S)) = O(2alph(S)). (2.21)

In particular, by Theorem 3.2.5, Shallit gave the following result in our papers [83,
84] with Shallit and Kao.

39

Corollary 2.3.2. [83, 84] Let S = {x1, x2, . . . , xk }. Suppose |xi | ≤ ν for all
1 ≤ i ≤ k, and S∗ is co-finite. Then

L = llw
(
S∗

)
<

2

2 |Σ| − 1
(2ν |Σ|ν − 1) = |Σ|O(ν) . (2.22)

One exciting aspect of the bound in Corollary 2.3.2 is that it is tight. A proof
of tightness of those bounds given above cannot be obtained easily from the study
of the state complexity, since none of the corresponding constructions, as discussed
in §3.2.1, generates a co-finite language. I will present in Chapter 4 examples to
show the upper bound in (2.22) to be asymptotically tight, based on the study of a
subproblem of the FPFM, the 2FPFM, where the words x1, x2, . . . , xk are of only
two distinct lengths.

Corollary 2.3.2 showed that L = llw
(
{x1, . . . , xk }∗

)
is exponentially bounded

in the measure ν = max1≤i≤k |xi|, while we know that in the FP (or equivalently
over the unary alphabet) the tight upper bound for the Frobenius number

g(x1, x2, . . . , xk) = O

(
n2

k

)
(2.23)

is quadratic in n = max1≤i≤k xi. In other measures, such as µ =
∑

1≤i≤k |xi |
(respectively, m =

∑
1≤i≤k xi for integers), the known upper bounds are also quite

different. While most of our upper bounds for the FPFM are exponential, the upper
bounds for the FP are only polynomial. We also observed this property in some
variations on the Frobenius problem, where a bound can even be doubly-exponential
and can be achieved in the case of a free monoid when the corresponding bound
in the case of integers is only quadratic. Intuitively, this can be explained by the
fact that in the case of integers, the commutative law holds and most of the input
measures are polynomially bounded in each other, while in a free monoid there is no
commutative law in general and there are measures that are exponential in others.

Bounds on the number, and total symbols, of the longest omitted words

While there is, if any, only one Frobenius number, there can be more than one
longest word as a solution to the FPFM. Obviously, the number of the longest
words not in S∗ could be exponential, since we have

I = #
{

w 6∈ S∗ : |w | = L} ≤ |Σ|L (2.24)

The equality in (2.24) can be achieved when the set S consists of all words of lengths
y1, y2, . . . , yk such that gcd(y1, y2, . . . , yk) = 1, as shown in Example 2.1.2.

In some cases of x1, x2, . . . , xk, the longest word not in {x1, x2, . . . , xk } is unique,
for example over the unary alphabet, while in some other cases, as shown, the
cardinality of the longest words can be exponential. So in the entire discussion

40

of this thesis, without further explanation, we do not differentiate between the
singular and plural form of the concept of longest omitted word(s).

Since IL = I · L, it follows trivially that

L ≤ IL ≤ |Σ|L L, (2.25)

and both equalities can be achieved.

2.4 The FPFM for two lengths — the 2FPFM

In this section, we will discuss a certain natural subproblem of the FPFM. As we
saw in Chapter 1, when k, the number of given integers, is fixed and small, the
solution to the integer FP becomes feasible. In particular, when k = 2, there are
formulae for most of the variations on the integer FP. What non-trivial constraint
can we impose on the FPFM in order to simplify it? We will examine the case
where the input words are of the same length, the case where the input consists of
two distinct words, and the case where the input words are of two distinct lengths.

Proposition 2.4.1. Let S ⊆ Σn for some integer n. Then S∗ is co-finite if and
only if S = Σ. Furthermore, when S∗ is co-finite, then S∗ = Σ∗.

Proof. If n 6= 1, then n - kn + 1 for all positive integers k. So (Σn)∗Σ ∩ S∗ = ∅,
which contradicts the fact that S∗ is co-finite. Hence n = 1 and thus S = Σ.

Proposition 2.4.2. Let x1, x2 be two words over Σ. Then {x1, x2 }∗ is co-finite if
and only if either Σ is unary and gcd(x1, x2) = 1 or Σ is binary and {x1, x2 } = Σ.

Proof. Without loss of generality, let Σ = { 0, 1, . . . }.
⇐: One can verify that, in either case, {x1, x2 }∗ is co-finite.

⇒: By Proposition 2.1.9, T = {x1, x2 } ∩ { 0 }∗ generates a co-finite language in
{ 0 }∗ and thus T 6= ∅. If both x1, x2 ∈ { 0 }∗, then by the co-finiteness of {x1, x2 }∗
in { 0 }∗, we have gcd(x1, x2) = 1 and there cannot be any other letter in Σ. If only
one of the two words, say x1, is in { 0 }∗, then x1 = 0; and similarly by considering
the letter 1, one can prove that x2 = 1, and there cannot be a third letter in Σ.

So the two special cases of the FPFM, where the words x1, x2, . . . , xk are of the
same length, and where the number of distinct words κ = 2, can only have trivial
solutions. We denote the FPFM with bases consisting solely of words of the same
length by 1FPFM . As we saw in Proposition 2.4.1, for the 1FPFM the generated
language is co-finite if and only if the basis is the entire alphabet. A slightly-
improved subproblem of the FPFM is that the words x1, x2, . . . , xk are of only two
distinct lengths m and n, and we denote by 2FPFM the Frobenius problem in a free
monoid with bases composed of words of two distinct lengths. By Proposition 2.1.14,
we know that {x1, x2, . . . , xk }∗ is co-finite only if gcd(m,n) = 1.

41

2.4.1 Definition of the 2FPFM

We now formally define the 2FPFM.

Problem 2.4.3 (2FPFM). Let Σ be a (finite) alphabet. Given k non-empty words
x1, x2, . . . , xk ∈ Σm ∪ Σn, where m,n are two distinct positive integers and m < n,
such that there are only finitely many words that cannot be written as concatenations
of words in {x1, x2, . . . , xk }, then what is the longest such word(s)?

In the remaining part of this chapter except the last section, our discussion will
focus on the 2FPFM. To begin the discussion, we will first see one trivial type of
the 2FPFM.

Proposition 2.4.4. Let S ⊆ Σ ∪ Σn. Then S∗ is co-finite if and only if Σ ⊆ S.
Furthermore, when S∗ is co-finite, then S∗ = Σ∗.

Proof. ⇐: If Σ ⊆ S, then S∗ = Σ∗ is co-finite.

⇒: Let ∆ = Σ \ S and T = S ∩ ∆∗. Then by Proposition 2.1.9, T generates
a co-finite language in ∆∗. Furthermore none of the letters in ∆ is in S, so none is
in T , and thus the words in T can only be of length n. Then, by Proposition 2.4.1,
T = ∆, a contradiction. Therefore, Σ \ S = ∅ and thus Σ ⊆ S.

Example 2.1.2 on page 30, where S = Σ3 ∪ Σ5, is in fact an instance of the
2FPFM. Here is another instance of the 2FPFM.

Example 2.4.5. Let Σ = { 0, 1 } ,m = 3, n = 5 and S4 = Σ3 ∪ Σ5 \ { 00001 }.
Then S∗4 is co-finite and there are in total 222 binary words in S∗4 , as shown in
Table 2.6, where the longest words are

0000100000001, 0000100100001, 0000101000001, 0000101100001,
0000110000001, 0000110100001, 0000111000001, 0000111100001,

each of which is of length 13.

Given any set S of words of lengths m and n, then llw
(
S∗

)
is always a Frobenius

number of m and some l, where l characterizes the structure of the basis S, and l
can be calculated in polynomial time in the measure µ =

∑
w∈S |w | as the following

sections will show.

2.4.2 The First and Second Lemmas of the 2FPFM

I will devote this subsection to two fundamental lemmas about the 2FPFM, which
will be used to illustrate the upper bound for the 2FPFM, and from which some
results will be derived in later chapters. They are named the First Lemma of the
2FPFM and the Second Lemma of the 2FPFM, because almost the entire theory
of the 2FPFM is based on them. Furthermore, they characterize those sets S such
that S∗ is co-finite, when S is a set containing words of no more than two distinct
lengths.

42

Table 2.6: All the words in { 0, 1 }∗ \ ({ 0, 1 }3 ∪ { 0, 1 }5 \ { 00001 })∗

1 [1]0

2 [1]1

3 [2]00

4 [2]01

5 [2]10

6 [2]11

7 [4]0000

8 [4]0001

9 [4]0010

10 [4]0011

11 [4]0100

12 [4]0101

13 [4]0110

14 [4]0111

15 [4]1000

16 [4]1001

17 [4]1010

18 [4]1011

19 [4]1100

20 [4]1101

21 [4]1110

22 [4]1111

23 [5]00001

24 [7]0000000

25 [7]0000001

26 [7]0000010

27 [7]0000011

28 [7]0000100

29 [7]0000101

30 [7]0000110

31 [7]0000111

32 [7]0001000

33 [7]0001001

34 [7]0001010

35 [7]0001011

36 [7]0001100

37 [7]0001101

38 [7]0001110

39 [7]0001111

40 [7]0010000

41 [7]0010001

42 [7]0010010

43 [7]0010011

44 [7]0010100

45 [7]0010101

46 [7]0010110

47 [7]0010111

48 [7]0011000

49 [7]0011001

50 [7]0011010

51 [7]0011011

52 [7]0011100

53 [7]0011101

54 [7]0011110

55 [7]0011111

56 [7]0100000

57 [7]0100001

58 [7]0100010

59 [7]0100011

60 [7]0100100

61 [7]0100101

62 [7]0100110

63 [7]0100111

64 [7]0101000

65 [7]0101001

66 [7]0101010

67 [7]0101011

68 [7]0101100

69 [7]0101101

70 [7]0101110

71 [7]0101111

72 [7]0110000

73 [7]0110001

74 [7]0110010

75 [7]0110011

76 [7]0110100

77 [7]0110101

78 [7]0110110

79 [7]0110111

80 [7]0111000

81 [7]0111001

82 [7]0111010

83 [7]0111011

84 [7]0111100

85 [7]0111101

86 [7]0111110

87 [7]0111111

88 [7]1000000

89 [7]1000001

90 [7]1000010

91 [7]1000011

92 [7]1000100

93 [7]1000101

94 [7]1000110

95 [7]1000111

96 [7]1001000

97 [7]1001001

98 [7]1001010

99 [7]1001011

100 [7]1001100

101 [7]1001101

102 [7]1001110

103 [7]1001111

104 [7]1010000

105 [7]1010001

106 [7]1010010

107 [7]1010011

108 [7]1010100

109 [7]1010101

110 [7]1010110

111 [7]1010111

112 [7]1011000

113 [7]1011001

114 [7]1011010

115 [7]1011011

116 [7]1011100

117 [7]1011101

118 [7]1011110

119 [7]1011111

120 [7]1100000

121 [7]1100001

122 [7]1100010

123 [7]1100011

124 [7]1100100

125 [7]1100101

126 [7]1100110

127 [7]1100111

128 [7]1101000

129 [7]1101001

130 [7]1101010

131 [7]1101011

132 [7]1101100

133 [7]1101101

134 [7]1101110

135 [7]1101111

136 [7]1110000

137 [7]1110001

138 [7]1110010

139 [7]1110011

140 [7]1110100

141 [7]1110101

142 [7]1110110

143 [7]1110111

144 [7]1111000

145 [7]1111001

146 [7]1111010

147 [7]1111011

148 [7]1111100

149 [7]1111101

150 [7]1111110

151 [7]1111111

152 [10]0000000001

153 [10]0000100000

154 [10]0000100001

155 [10]0000100010

156 [10]0000100011

157 [10]0000100100

158 [10]0000100101

159 [10]0000100110

160 [10]0000100111

161 [10]0000101000

162 [10]0000101001

163 [10]0000101010

164 [10]0000101011

165 [10]0000101100

166 [10]0000101101

167 [10]0000101110

168 [10]0000101111

169 [10]0000110000

170 [10]0000110001

171 [10]0000110010

172 [10]0000110011

173 [10]0000110100

174 [10]0000110101

175 [10]0000110110

176 [10]0000110111

177 [10]0000111000

178 [10]0000111001

179 [10]0000111010

180 [10]0000111011

181 [10]0000111100

182 [10]0000111101

183 [10]0000111110

184 [10]0000111111

185 [10]0001000001

186 [10]0001100001

187 [10]0010000001

188 [10]0010100001

189 [10]0011000001

190 [10]0011100001

191 [10]0100000001

192 [10]0100100001

193 [10]0101000001

194 [10]0101100001

195 [10]0110000001

196 [10]0110100001

197 [10]0111000001

198 [10]0111100001

199 [10]1000000001

200 [10]1000100001

201 [10]1001000001

202 [10]1001100001

203 [10]1010000001

204 [10]1010100001

205 [10]1011000001

206 [10]1011100001

207 [10]1100000001

208 [10]1100100001

209 [10]1101000001

210 [10]1101100001

211 [10]1110000001

212 [10]1110100001

213 [10]1111000001

214 [10]1111100001

215 [13]0000100000001

216 [13]0000100100001

217 [13]0000101000001

218 [13]0000101100001

219 [13]0000110000001

220 [13]0000110100001

221 [13]0000111000001

222 [13]0000111100001

43

Lemma 2.4.6 (The First Lemma of the 2FPFM). [83, 84] Let S be a set of words
of lengths m and n, where 0 < m < n, over the alphabet Σ. If S∗ is co-finite, then
Σm ⊆ S.

Proof. If S∗ = Σ∗, then Σ ⊆ S, since no single letter can be written as the concate-
nation of more than one word. Hence m = 1 and Σm = Σ ⊆ S.

Now we assume S∗ 6= Σ∗. Let x ∈ Σm. Consider the language xΣ∗. Since S∗

is co-finite, xΣ∗ ∩ S∗ 6= ∅. We choose v such that xv ∈ S∗. Then there is a
factorization of xv of the form

xv = y1y2 · · · yj, (2.26)

where all the yi are in S for 1 ≤ i ≤ j and thus each yi is of length either m or n.
If y1 ∈ Σm, then by comparing lengths, we have x = y1, and thus x ∈ S. Otherwise
y1 ∈ Σn. By the twins proposition, there exists z ∈ S such that y1 is a proper
prefix of z, or vice versa. But since S contains words of only lengths m and n, and
y1 ∈ Σn, we must have z ∈ Σm, and z is a proper prefix of y1. Then by comparing
lengths, we have x = z, and so x ∈ S.

Proposition 2.4.4 can be viewed as a corollary of the First Lemma of the 2FPFM.
Before giving the Second Lemma of the 2FPFM, we will first prove a weaker version
of that lemma, by restricting the lengths m and n.

Lemma 2.4.7 (The Second Lemma of the 2FPFM, weaker version). [83, 84] Let
S be a set of words of lengths m and n over Σ, where 0 < m < n < 2m. If S∗ is
co-finite, then Σl ⊆ S∗, where l = m |Σ|n−m + n−m.

Proof. Proof by contradiction. Let x be a word of length l that is not in S∗. Then
we can write x uniquely as

x = y0z0y1z1 · · · y|Σ|n−m−1z|Σ|n−m−1y|Σ|n−m , (2.27)

where yi ∈ Σn−m for 0 ≤ i ≤ |Σ|n−m, and zi ∈ Σ2m−n for 0 ≤ i < |Σ|n−m.

Now suppose that yiziyi+1 ∈ S for some i with 0 ≤ i < |Σ|n−m. Then we can
write

x =

(∏
0≤j<i

(yjzj)

)
(yiziyi+1)

(∏

i+1≤k≤|Σ|n−m

(zkyk)

)
. (2.28)

Note that each factor yjzj and zkyk is of length m, which, by the First Lemma of
the 2FPFM, is in S. Hence all terms in the factorization (2.28) are in S and thus
x ∈ S∗, a contradiction. It follows that

yiziyi+1 6∈ S for all i with 0 ≤ i < |Σ|n−m. (2.29)

44

Now the factorization of x in Eq. (2.27) uses |Σ|n−m + 1 words yi, and there are
only |Σ|n−m distinct words of length n − m. So, by the pigeonhole principle, we
have yp = yq for some 0 ≤ p < q ≤ |Σ|n−m. Now define

u = y0z0 · · · yp−1zp−1, v = ypzp · · · yq−1zq−1, w = yqzq · · · y|Σ|n−m . (2.30)

Then x = uvw and v 6= ε. Consider the language uv∗w. Since S∗ is co-finite,
uv∗w ∩ S∗ 6= ∅. There exists a k ≥ 0 such that uvkw ∈ S∗.

Now let uvkw = x1x2 · · ·xj be a factorization into words in S. Then x1 is a word
of length either m or n. If |x1 | = n, then comparing lengths gives x1 = y0z0y1.
But by Eq. (2.29) we know y0z1y1 6∈ S. So |x1| = m, and comparing lengths gives
x1 = y0z0. By similar reasoning we see that x2 = y1z1, and so on. Hence finally
xj = y|Σ|n−m−1z|Σ|n−m−1y|Σ|n−m ∈ S. But this again contradicts (2.29).

Therefore, our assumption that x 6∈ S∗ must be false, and so x ∈ S∗. Since x
was arbitrary, this proves the result.

Example 2.4.8. Let Σ be a binary alphabet. If S contains words of lengths
n− 1 and n, and S∗ is co-finite, then all words of length

l1 = 2(n− 1) + 1 = 2n− 1 = (n− 1) + n (2.31)

can be factorized as concatenations of words in S. To see this, let w = aw1bw2c =
uv = vu′, where a, b, c ∈ Σ, w1, w2 ∈ Σn−2, u, u′ ∈ Σn and v, v′ ∈ Σn−1. All possible
factorizations of w are as follows:

a w1 b w2 c
u v

v′ u′

If b = c, by the co-finiteness of S∗, we have aw1b(w2b)
∗ ∩ S∗ 6= ∅. The possible

factorizations of a word in aw1b(w2b)
∗ are shown below by considering the first

factor of length n, any of which can be used to factorize w.

a w1 b w2 b w2 b · · · b w2 b
u ∗ ∗ . . . ∗
∗ u′ ∗ . . . ∗
∗ ∗ u′ . . . ∗

.
∗ ∗ ∗ . . . u′

The case a = b is similar to b = c. If a = c, by the co-finiteness of S∗, then
a(w1bw2a)∗ ∩ S∗ 6= ∅. The possible factorizations of a word in a(w1bw2a)∗ are
shown below by considering the first factor of length n, any of which can be used
to factorize w.

45

a w1 b w2 a w1 b w2 a w1 b · · · b w2 a
u ∗ ∗ ∗ ∗ . . . ∗
∗ u′ ∗ ∗ ∗ . . . ∗
∗ ∗ u ∗ ∗ . . . ∗
∗ ∗ ∗ u′ ∗ . . . ∗

.
∗ ∗ ∗ ∗ ∗ . . . u′

In all cases, w can be factorized over the basis S.

Example 2.4.9. Let Σ be a binary alphabet. If S contains words of lengths 3
and 5, and S∗ is co-finite, then all words of length of

l2 = 25−3 · 3 + (5− 3) = 4 · 3 + 2 = 14 (2.32)

can be factorized. To see this, let w be a word of length 14. Then all possible
factorizations of w are as follows (•’s and ◦’s are only labels, and the letters may
not be the same)

• • ◦ • • ◦ • • ◦ • • ◦ • •
u v1 v2 v3

v′1 u′ v2 v3

v′1 v′2 u′′ v3

v′1 v′2 v′3 u′′′

Since there are 5 ••’s, by the pigeonhole principle, at least two of them are identical.
By similar discussion, if S∗ is co-finite, then w is in S∗.

Proposition 2.4.10. Let S be a set that contains all words of length m and possibly
some words of length n over Σ, where 0 < m < n, and let x = a1a2 · · · al be a word
of length l, where l = n + jm for some j ≥ 0. Then x ∈ S∗ if and only if at least
one of the words yi = aim+1aim+2 · · · aim+n, for 0 ≤ i ≤ j, is in S.

Proof. If m | n, then for all x of length l, since Σm ⊆ S, it follows that x and all
the yi are in S for 0 ≤ i ≤ j. The result holds. Now, we assume m - n.

Suppose x ∈ S∗. Let x = w0w1 · · ·wh be a factorization of x into the words in
S. Since m - n, at least one of the w’s is of length n. Let wk be the first such factor.
By comparing lengths, wk = akm+1akm+2 · · · akm+n = yk is in S, and thus yk is the
desired word. This proves one direction.

For the converse, suppose yk = akm+1akm+2 · · · akm+n ∈ S for some k with
0 ≤ k ≤ j. Then we can write

x =
(∏

0≤i≤k−1

(aim+1aim+2 · · · aim+m)
)
yk

(∏

k≤i≤j−1

(aim+n+1aim+n+2 · · · aim+n+m)
)
.

(2.33)
Since Σm ⊆ S, each term in the factorization (2.33) is in S. Hence x ∈ S∗.

46

Lemma 2.4.11 (The Second Lemma of the 2FPFM). Let S be a set of words of
lengths m and n, where 0 < m < n, over the alphabet Σ. If S∗ is co-finite, then
Σl ⊆ S∗, where l = m |Σ|n−m + n−m.

Proof. Let x = a1a2 · · · al be a word of length l that is not in S∗. We define

yi = a(i−1)m+1a(i−1)m+2 · · · a(i−1)m+n, for 1 ≤ i ≤ |Σ|n−m ; (2.34)

zi = aim+1aim+2 · · · aim+n−m, for 0 ≤ i ≤ |Σ|n−m . (2.35)

Their positions are illustrated in Figure 2.1. (When m < n < 2m, no z overlaps
with other z’s. In generally, arbitrarily many y’s and z’s can overlap together.)

w
z0 · · ·

y1 · · ·
m ltrs z1 · · ·
m ltrs y2 · · ·
· · · 2m ltrs · · · z2 · · ·
· · · 2m ltrs · · · y3 · · ·
· · · 3m letters · · · z3 · · ·

· · ·
· · · (i− 1)m letters · · · zi−1 · · ·
· · · (i− 1)m letters · · · yi · · ·

· · · im letters · · · zi · · ·
· · ·

· · · z|Σ|n−m−1 · · ·
· · · y|Σ|n−m

· · · z|Σ|n−m

Figure 2.1: Position of factors in the proof of the Second Lemma of the 2FPFM

Since S∗ is co-finite, by the First Lemma of the 2FPFM, Σm ⊆ S. Then, by
Proposition 2.4.10, none of the yi for 1 ≤ i ≤ |Σ|n−m is in S.

There are only |Σ|n−m distinct words of length n−m over Σ. By the pigeonhole
principle, we have

zp = zq, for some 0 ≤ p < q ≤ |Σ|n−m. (2.36)

Now we define

u = a1a2 · · · apm, v = apm+1apm+2 · · · aqm, w = aqm+1aqm+2 · · · al. (2.37)

Then x = uvw and v 6= ε. Since S∗ is co-finite, uv∗w ∩ S∗ is not empty. Let k be
the smallest positive exponent such that uvkw ∈ S∗. Since x = uvw 6∈ S, we have
k ≥ 2. Now let

uvkw = x1x2 · · ·xj (2.38)

47

be a factorization into elements of S. If |x1 | = n, then comparing lengths gives
x1 = y1 6∈ S, a contradiction. So |x1 | = m. By similar reasoning we see that
|x2| = m, and so on. Notice that x = uvw and uvkw agree on the first |uv|+(n−m)
letters, since zq = zp. So all factors from x1 to xq are of length m. We can write

u = x1x2 · · ·xp, v = xp+1xp+2 · · ·xq. (2.39)

By removing the leftmost copy of v from uvkw, the new word

uvk−1w = x1x2 · · ·xpxq+1xq+2 · · ·xj (2.40)

is also in S∗, where k − 1 ≥ 1. This contradicts the minimality of k.

2.4.3 Bounds on the longest omitted words for the 2FPFM

Let S = {x1, x2, . . . , xk } be a set of words over the alphabet Σ such that S ⊆
Σm ∪ Σn, where 0 < m < n, and S∗ is co-finite. The lower bound for the FPFM
on llw

(
S∗

)
given by Proposition 2.1.14, namely,

L = llw
(
S∗

) ≥ g(m,n), (2.41)

still holds and it is tight for the 2FPFM as well. For any two positive integers m,n
with gcd(m,n) = 1, let

S = Σm ∪ Σn. (2.42)

Then S∗ is co-finite and llw
(
(Σm ∪ Σn)∗

)
= g(m,n). We will see in §2.5 that for

all other cases L is strictly greater than the Frobenius number g(m,n).

Furthermore, the exponential bound in the FPFM on the number of the longest
words not in S∗, namely

I = #
{

w 6∈ S∗ : |w | = L} ≤ |Σ|L , (2.43)

can also be achieved for the 2FPFM by the same example when the set S contains
all words of lengths m and n. In this case, the equality on the right hand side of
the bound

L ≤ IL ≤ |Σ|L L, (2.44)

can be achieved as well. In the 2FPFM, there are also examples of bases S such
that each S∗ is co-finite and the longest word not in S∗ is unique, in which case
equality on the left-hand side in (2.44) can be achieved.

Now I will provide an upper bound on the length of the longest words not in
S∗, where S contains words of at most two distinct lengths. The upper bound is
derived from the First and the Second Lemmas of the 2FPFM. A weaker version
of Theorem 2.4.12, by restricting m < n < 2m, appeared in our papers [83, 84].

48

Theorem 2.4.12. Let S be a set of words of lengths m and n, where 0 < m < n,
over the alphabet Σ. If S∗ is co-finite, then

llw
(
S∗

) ≤ g(m, l) = ml −m− l, (2.45)

where l = m|Σ|n−m + n−m.

Proof. If S∗ is co-finite, by Proposition 2.1.14, gcd(m,n) = 1. By the First Lemma
of the 2FPFM, we have Σm ⊆ S ⊆ S∗; by the Second Lemma of the 2FPFM, we
have Σl ⊆ S∗, where l = m|Σ|n−m + n−m. Since S∗ contains all words of lengths
m and l, and gcd(m, l) = 1, by Proposition 2.1.4, the length of the longest words
not in S∗ is ≤ g(m, l) = ml −m− l.

Corollary 2.4.13. Let S be a set of words of lengths m and n, where 0 < m < n
and gcd(m,n) = 1, over the alphabet Σ. Then S∗ is co-finite if and only if Σm ⊆ S
and Σl ⊆ S∗, where l = m|Σ|n−m + n−m.

Proof. If S∗ is co-finite, for the same reason as in the proof of Theorem 2.4.12, we
get Σm ⊆ S and Σl ⊆ S∗. On the other hand, if Σm ⊆ S and Σl ⊆ S∗, then since
gcd(m, l) = 1, by Proposition 2.1.4, S∗ is co-finite.

2.5 Combinatorics on words in the 2FPFM

We will discuss the 2FPFM in terms of combinatorics on words, and provide an
equivalent condition on co-finiteness, which is one of the supporting results for a
theorem, called the spectrum theorem, appearing in §2.6.4.

2.5.1 Boosting the length of omitted words

First we need one technical lemma, which allows us, from one word of a particular
length not in S∗, to construct a longer word that is also not in S∗. (All longest omit-
ted words can be constructed by this lemma; see Corollary 2.5.5.) A weaker version
of Lemma 2.5.1 (with the restriction m < n < 2m) appeared in our papers [83, 84].

Lemma 2.5.1. Suppose S ⊆ Σm ∪ Σn, 0 < m < n, and S∗ is co-finite. Let T be a
set of words that are not in S∗, where each word is of length ≡ n (mod m). Then

S∗ ∩ (TΣm)i−1T = ∅ (2.46)

for 1 ≤ i ≤ m− 1.

Proof. Since S∗ is co-finite, by Proposition 2.1.14, then gcd(m,n) = 1. Define

Li = S∗ ∩ (TΣm)i−1T, for 1 ≤ i < m. (2.47)

49

Now we will prove that S∗ ∩ Li = ∅ by induction on i, where 1 ≤ i < m.

The base case is i = 1. In this case, S∗ ∩ L1 = S∗ ∩ T = ∅.
Now we suppose S∗ ∩ Li = ∅ for some i, where 1 ≤ i ≤ m − 2, and we prove

that S∗ ∩ Li+1 = ∅.
First we show that S∗ ∩ ΣkLi = ∅ for all 0 ≤ k ≤ n such that k ≡ n (mod m).

Assume uw ∈ S∗ for some u ∈ Σk, w ∈ Li. Then there is a factorization

uw = y1y2 · · · yt, (2.48)

where all the y’s are in S. Consider the length of uw, which is

|uw | = |u |+ |w | ≡ n + ni = n(i + 1) (mod m). (2.49)

u w
y1 y2 · · · yr−1 yr yr+1 · · · yt

u z1 z2 · · · zr′−1 zr′ yr+1 · · · yt

Since 2 ≤ i + 1 ≤ m − 1, m does not divide i + 1, and thus i + 1 6≡ 0 (mod m).
Then, since gcd(n,m) = 1, it follows that n(i + 1) 6≡ 0 (mod m), and thus m
does not divide |uw |. Hence at least one of the y’s is of length n. Let r be the
smallest index such that | yr | = n. Consider the word y1 · · · yr−1yr, which is of
length n + m(r− 1). Since |u | < n and u ≡ n (mod m), by Eq. (2.48), comparing
lengths gives y1 · · · yr−1yr ∈ u(Σm)∗. By the First Lemma of the 2FPFM, all words
of length m are in S∗ and thus we can write y1 · · · yr−1yr = uz1 · · · zr′ , where all the
z’s are of length m and in S. Then

uw = y1 · · · yr−1yr yr+1 · · · yt = uz1 · · · zr′ yr+1 · · · yt, (2.50)

which, by canceling u from the left on both sides, gives a factorization of w, and
contradicts the induction hypothesis S∗ ∩ Li = ∅.

τ α ω
g1 · · · gr′ · · · α · · ·
g1 · · · gj+1 α · · ·
g1 · · · gj+2 · · ·
g1 · · · gr′ · · ·
g1 · · · gr′ · · ·
g1 · · · · · ·
Figure 2.2: Position of factors in the proof of the boosting lemma

Now we prove that S∗ ∩ Li+1 = ∅. Otherwise, since Li+1 = TΣmLi, there exist
words τ ∈ T, α ∈ Σm and ω ∈ Li such that ταω ∈ S∗. Then |τ | = n + jm for some
integer j, and there is a factorization

ταω = g1g2 · · · gt′ , (2.51)

where all the g’s are in S. Consider the first g of length n in the factorization, if
any, say gr′ . Now we consider several cases.

50

1. If r′ ≤ j + 1, then by comparing lengths, we have

τ = g1 · · · gr′−1gr′ · · · = g1 · · · gr′−1gr′ g′1 · · · g′j−r′+1 (2.52)

for some g′’s of length m, which shows τ ∈ S∗ and contradicts S∗ ∩ T = ∅.
2. If r′ = j + 2, then by comparing lengths, we have

τα = g1g2 · · · gj+2, and ω = aj+3 · · · ar ∈ Li, (2.53)

which shows ω ∈ S∗ and contradicts the induction hypothesis S∗ ∩ Li = ∅.
3. If j + 3 ≤ r′ ≤ j + d n

m
e,

ω = · · · gr′gr′+1 · · · gt′ = g′1g
′
2 · · · g′r′−j−2 gr′+1 · · · gt′ , (2.54)

for some g′’s of length m, which again contradicts our induction hypothesis
S∗ ∩ Li = ∅.

4. Finally, we consider the case where r′ > j +
⌈

n
m

⌉
or none of the g’s is of length

n. In either situation, the first j + d n
m
e g’s are all of length m and thus

gj+d n
me+1 · · · gt′ ∈ Σn mod mLi, (2.55)

which contradicts the result S∗ ∩ ΣkLi = ∅ for all 0 ≤ k ≤ n such that k ≡ n
(mod m).

In every case, there is a contradiction. So S∗ ∩ Li+1 = ∅, and the lemma is
proved.

2.5.2 The structure of omitted words

We also need another technical lemma, which specifies the structure of all omitted
words. Any word that is not in S∗ must be either of a specific length or can be
expressed in a factorization, where each factor is of a specific length and none of
the factors is in S∗.

Lemma 2.5.2. Suppose S ⊆ Σm ∪ Σn, 0 < m < n, and S∗ is co-finite. Let w be a
word that is not in S∗ and the length of w is in 〈m,n〉. Then w can be written in
the form

w = τ1u1τ2u2 · · · τt, (2.56)

where all the u’s are of length m, all the τ ’s are of lengths in {n−m,n, n + m, . . . },
none of the τ ’s is in S∗, and t is the smallest positive integer such that tn ≡ |w |
(mod m).

51

Proof. Since S∗ is co-finite, by the First Lemma of the 2FPFM, all words of length
m are in S. So, if a word w is not in S∗, its length cannot be a multiple of m.
Furthermore, any integer in 〈m,n〉 is of the form pm + qn, where p, q ≥ 0. Hence
we can write |w | = rm + tn, where 1 ≤ t < m, r ≥ 0.

We now prove the lemma by induction on the length of w. The base case is
|w | = n. In this case, w is already of the form w = τ1u1τ2u2 · · · τt, where τ1 = w
and t = 1. Now we assume the result is true for all cases with word length less
than |w |, and we prove it is true for w.

Let yi be the prefix of w of length n + im, and zi be the suffix of w such that
w = yizi. Consider the prefix sequence y0, y1, . . . , yr.

w
y0 · · ·

y1 · · ·
· · ·

yr n ltrs · · · n ltrs

Figure 2.3: Position of factors in the proof of the structure lemma

If y0 = w[1..n] ∈ S∗, then z0 = w[n+1.. |w |] 6∈ S∗. Otherwise w = y0z0 is in S∗

and this contradicts w 6∈ S∗. In addition, the length of z0 is rm+(t− 1)n, which is
in 〈m,n〉. By the induction hypothesis, z0 = τ1u1 · · · τt−1 for some τ ’s and u’s that
satisfy Eq. (2.56) for z0. On the other hand, S∗ is co-finite, so gcd(m,n) = 1, and
thus none of the words of length n−m is in S∗. In particular, the prefix y0[1..n−m]
is not in S∗. Then the following factorization

w = y0[1..n−m] y0[n−m + 1..n] τ1 u1 · · · τt−1 (2.57)

is the required form in Eq. (2.56) for w.

If yr = w[1..n + rm] 6∈ S∗, then we can write w = yrv1v2 · · · vn−1, where each of
the v’s is of length n. Then one can verify that the form

w = yr v1[1..m] v1[m + 1..n] · · · vn−1[1..m] vn−1[m + 1..n] (2.58)

is what is required.

Now we assume y0 6∈ S∗ and yr ∈ S∗. Then there must be an integer i such that
0 ≤ i < r, yi = w[1..n + im] 6∈ S∗, and yi+1 = w[1..n + (i + 1)m] ∈ S∗. Since w =
yi+1zi+1 6∈ S∗, it follows that zi+1 6∈ S∗. The length of zi+1 is (r− i−1)m+(t−1)n,
which is in 〈m,n〉. By the induction hypothesis, z0 = τ1u1 · · · τt−1 for some τ ’s and
u’s that satisfy Eq. (2.56) for z0. Then w can be written as

w = yi w[n + (i− 1)m + 1..n + im] τ1 u1 · · · τt−1. (2.59)

Therefore, the lemma is proved.

52

2.5.3 An equivalent condition on co-finiteness

Let S be a set of words of two lengths m and n, where m < n and gcd(m,n) = 1.
As we observed in Corollary 2.4.13, the basis S generates a co-finite language if and
only if all words of length m are in S and all words of length l = m |Σ|n−m +n−m
can be factorized into elements of S. Now I will give an equivalent condition, under
which S generates a co-finite language. Furthermore, the instance of the 2FPFM
specified by S can be solved accordingly. If m = 1, by Proposition 2.4.4, S∗ is
co-finite if and only if Σ ⊆ S, and when S∗ is co-finite, S∗ = Σ∗. So now we assume
m > 1.

Theorem 2.5.3. Let S be a set of words of lengths m and n over the alphabet
Σ, where 1 < m < n and gcd(m,n) = 1. Then S∗ is co-finite if and only if
S contains all words of length m and there exists an integer l such that l ≡ n
(mod m), Σl−m \ S∗ 6= ∅, and Σl \ S∗ = ∅. Furthermore, when S∗ is co-finite, this
l is unique and llw

(
S∗

)
= g(m, l).

Proof. ⇒: Suppose S∗ is co-finite. By the First Lemma of the 2FPFM, S contains
all words of length m. Now we prove the existence of l. No word of length n−m can
have any factor of length n. Furthermore, gcd(m,n) = 1, so Σn−m \S∗ 6= ∅. On the
other hand, by the Second Lemma of the 2FPFM, there exists l′ = m|Σ|n−m+n−m
such that Σl′ \ S∗ = ∅. Then consider the sequence

Σn−m \ S∗, Σn \ S∗, Σn+m \ S∗, · · · , Σl′ \ S∗. (2.60)

There must be two consecutive terms such that the former is non-empty and the
latter is empty. Therefore, there exists l between n and l′ such that l ≡ n (mod m),
Σl−m \ S∗ 6= ∅, and Σl \ S∗ = ∅.

⇐: Suppose such an integer l exists. Since Σm ⊆ S, Σl ⊆ S∗, and gcd(l, m) =
gcd(n,m) = 1, by Proposition 2.1.4, it follows that S∗ is co-finite.

Now, suppose S∗ is co-finite, and l is one integer satisfying the condition. Then

llw
(
S∗

) ≤ g(m, l). (2.61)

Let T = Σl−m\S∗ and L = (TΣm)m−2T . All words in T are of length ≡ n (mod m).
Applying Lemma 2.5.1, we get that L ∩ S∗ = ∅, where all words in L are of length

(l −m + m)(m− 2) + (l −m) = lm− l −m = g(m, l). (2.62)

So the bound in (2.61) can be actually achieved and llw
(
S∗

)
= g(m, l).

To prove uniqueness, suppose there are two such l1, l2. Then the length of the
longest words not in S∗ is g(m, l1) = g(m, l2), and thus ml1−m− l1 = ml2−m− l2.
So (m− 1)(l1 − l2) = 0. Since m > 1, we have l1 = l2. Hence, l is unique.

Example 2.5.4. For the basis S4 = Σ3 ∪ Σ5 \ { 00001 } in Example 2.4.5 on
page 42, the unique l is 8 as Σ5 \ S∗4 = { 00001 } 6= ∅ and Σ8 \ S∗4 = ∅. So S∗4 is
co-finite, and llw

(
S∗4

)
= g(3, 8) = 13.

53

Theorem 2.5.3 provides an equivalent condition for co-finiteness in the 2FPFM
and converts the 2FPFM into a simpler problem. Instead of finding the longest
words not in S∗, one can find the longest words not in S∗ with lengths ≡ n (mod m)
and then construct a set of longest words not in S∗. Suppose S is the basis for an
instance of the 2FPFM. Then S∗ is co-finite if and only if for some l all of the sets
Σn−m\S∗, Σn\S∗, . . . , Σl−m\S∗ are non-empty and all of the sets Σl\S∗, Σl+m\S∗, . . .
are empty. A set of longest words not in S∗ can be constructed accordingly, if such
an l exists. In fact, this constructed set contains precisely all the longest words not
in S∗.

Corollary 2.5.5. Let S be a set of words of lengths m and n over the alphabet Σ,
where 1 < m < n, and S∗ is co-finite, where l is the unique integer such that l ≡ n
(mod m), T = Σl−m \ S∗ 6= ∅, and Σl \ S∗ = ∅. Then the set of the longest words
not in S∗ is

(TΣm)m−2T. (2.63)

Proof. By the proof of Theorem 2.5.3, none of the words in (TΣm)m−2T is in S∗

and they are the longest such words, which are of length g(m, l). Furthermore,
all of the sets Σn−m \ S∗, Σn \ S∗, . . . , Σl−m \ S∗ are non-empty, and all of the sets
Σl \ S∗, Σl+m \ S∗, . . . are empty.

Let w be any longest word not in S∗. Then w is of length g(m, l) = ml−m− l.
The smallest positive integer t such that

tn ≡ g(m, l) (mod m) (2.64)

is t = m−1, since by the co-finiteness of S∗, gcd(m,n) = 1. By Lemma 2.5.2, there
are words u1, u2, . . . , um−2 of length m, and τ1, τ2, . . . , τm−1 of length ≡ n (mod m)
such that

w = τ1u1τ2u2 · · · τm−1, (2.65)

and none of the τ ’s is in S∗. Then the length of each τ ’s is ≤ l −m and thus the
length of w is

≤ (l −m)(m− 1) + m(m− 2) = lm− l −m = g(m, l), (2.66)

where the equality can be attained only when all the τ ’s are of length l−m. Hence
all the τ ’s are in T , and thus w is in (TΣm)m−2T .

Example 2.5.6. For the basis S4 = Σ3 ∪ Σ5 \ { 00001 }, the unique integer l
is 8. Since Σ5 \ S∗ = { 00001 }, the longest words not in S∗4 are 00001Σ300001.

Corollary 2.5.5 shows that the 2FPFM is equivalent to the following problem.

Problem 2.5.7 (Equivalent statement of the 2FPFM, the 1st). Let Σ be a (finite)
alphabet and let S be a set of non-empty words of lengths m and n, where m,n are
two positive integers and 1 < m < n, such that Σm ⊆ S and there exists an integer
l′ such that l′ ≡ n (mod m), Σl′ ⊆ S∗. Find the set T of words of some length l
such that l ≡ n (mod m), Σl \ S∗ = ∅ and T = Σl−m \ S∗.

54

Theorem 2.5.3 shows an equivalence between the 2FPFM and a combinatorics
problem considering only words of particular lengths. The longest omitted words for
the former problem can be expressed by words of a particular length in the latter
problem. In fact, all words not in a generated co-finite language in the former
problem can be expressed by words of particular lengths in the latter problem, as
the following corollary says.

Corollary 2.5.8. Let S be a set of words of lengths m and n over the alphabet Σ,
where 1 < m < n, and S∗ is co-finite, where l is the unique integer such that l ≡ n
(mod m), Σl−m \ S∗ 6= ∅, and Σl \ S∗ = ∅. Then the set of words not in S∗ is

(⋃

j 6∈〈m,n〉
Σj

)⋃ (
m−2⋃
i=0

(TΣm)iT

)
, (2.67)

where T = Σn−m ∪ Σn ∪ Σn+m ∪ · · · ∪ Σl−m \ S∗.

Proof. For any j 6∈ 〈m,n〉, by Eq. (2.8) on page 33, none of the words of length j
is in S∗. On the other hand, none of the words in T is in S∗. Furthermore, each
word in T is of length ≡ n (mod m), and so by Lemma 2.5.1, none of the words in⋃m−2

i=0 (TΣm)iT is in S∗.

Let w be a word that is not in S∗. If the length of w is not in 〈m,n〉, then w
is in

⋃
j 6∈〈m,n〉 Σ

j. Otherwise, by Lemma 2.5.2, there are words u1, u2, . . . , ut−1 of

length m, and τ1, τ2, . . . , τt of lengths in {n−m,n, n + m,n + 2m, . . . } such that

w = τ1u1τ2u2 · · · τt, (2.68)

where none of the τ ’s is in S∗ and t ≤ m− 1. From the proof of Theorem 2.5.3, we
know that all of the sets Σn−m \ S∗, Σn \ S∗, . . . , Σl−m \ S∗ are non-empty, and all
of the sets Σl \S∗, Σl+m \S∗, . . . are empty. So all the τ ’s are in T and thus w is in⋃m−2

i=0 (TΣm)iT .

Therefore, the complement of S∗ is
(⋃

j 6∈〈m,n〉 Σ
j
) ⋃ (⋃m−2

i=0 (TΣm)iT
)
.

Example 2.5.9. For the basis S4 = Σ3 ∪ Σ5 \ { 00001 }, the unique l is 8 and
T = { 00, 01, 10, 11, 00001 }. Then all words not in S∗4 are

Σ ∪ Σ2 ∪ Σ4 ∪ Σ7 ∪ T ∪ TΣ3T. (2.69)

Let S be a set of words of two lengths m,n with 1 < m < n such that S∗ is
co-finite. Then by Eq. (2.7) on page 33, the set of lengths of words in S∗ is

〈m,n〉. (2.70)

Furthermore, let l = n + jm be the unique integer satisfying the condition in
Theorem 2.5.3 for S. Then l can be exponential in n since

0 ≤ j ≤ |Σ|n−m − 1. (2.71)

55

Define Ti = Σn+im \S∗ for −1 ≤ i ≤ j− 1, and T = T−1 ∪ T0 ∪ T1 ∪ · · · ∪ Tj−1.
Then none of the T ’s is empty. By calculating the lengths of words in (2.67), we
see that the set of lengths of words not in S∗ is

(
N \ 〈m,n〉) ∪ {

pn + qm ∈ N : 1 ≤ p ≤ m− 1,−1 ≤ q ≤ pj − 1
}
, (2.72)

which satisfies Eq. (2.8) as a superset of N \ 〈m,n〉. The two terms of the expres-
sion (2.72) may not necessarily be disjoint, since the two subsets in the language
given in (2.67) can share common words. There is a simple formula for the set
of lengths of words not in S∗, which is obtained by noticing m, l are the y’s in
Proposition 2.1.15 on page 34. In other words, the integers m, l satisfy Eqs. (2.9)
and (2.10) on page 34.

Corollary 2.5.10. Let S be a set of words of lengths m and n over the alphabet
Σ, where 1 < m < n, and S∗ is co-finite, where l is the integer such that l ≡ n
(mod m), Σl−m \ S∗ 6= ∅, and Σl \ S∗ = ∅. Then the set of lengths of words not in
S∗ is

N \ 〈m, l〉. (2.73)

Proof. Since 〈m, l〉 ⊆ 〈m,n〉 ⊆ N, we have

N \ 〈m, l〉 =
(
N \ 〈m,n〉) ∪ (〈m,n〉 \ 〈m, l〉), (2.74)

Let l = n + jm. Then j ≥ 0. Any integer s can be uniquely written in the form

s = pn + qm, (2.75)

where 0 ≤ p ≤ m − 1. Then s ∈ 〈m,n〉 if and only if q ≥ 0. We can also write
s = p(n+ jm)+(q−pj)m, and by the same reason, s ∈ 〈m, l〉 if and only if q ≥ pj.
Hence it follows that

〈m,n〉 \ 〈m, l〉 =
{

pn + qm ∈ N : 0 ≤ p ≤ m− 1, 0 ≤ q ≤ pj − 1
}

(2.76)

=
{

pn + qm ∈ N : 1 ≤ p ≤ m− 1, 0 ≤ q ≤ pj − 1
}
, (2.77)

and
{

pn + qm ∈ N : 1 ≤ p ≤ m− 1, q = −1
} ⊆ N \ 〈m,n〉. So

N\〈m, l〉 =
(
N\〈m,n〉) ∪ {

pn+qm ∈ N : 1 ≤ p ≤ m−1,−1 ≤ q ≤ pj−1
}
, (2.78)

which is exactly the set of lengths in the language (2.67). By Corollary 2.5.8, the
language (2.67) is S∗.

Example 2.5.11. For the basis S4 = Σ3 ∪ Σ5 \ { 00001 }, the unique l is 8.
Then the lengths of all words not in S∗4 are in N \ 〈3, 8〉 = { 1, 2, 4, 5, 7, 10, 13 } .

Each term in the right-hand part in the language given in (2.67) is distinct,
since their words have different lengths. Then the number M of words not in S∗ is
bounded by

M≥
m−2∑
i=0

(|T | · |Σ|m)i |T | = |T |m |Σ|m(m−1) − |T |
|T | · |Σ|m − 1

= Θ
(|T |m−1 |Σ|m(m−2))

.

(2.79)

56

By Corollary 2.5.5, the number of the longest words not in S∗ is

I = (|T | · |Σ|m)m−2 |T | = |T |m−1 |Σ|m(m−2) , (2.80)

and the total number of symbols of the longest words not in S∗ is

IL = g(m,n + km) |T |m−1 |Σ|m(m−2) . (2.81)

2.6 The de Bruijn graph in the 2FPFM

In this section, I will give a set κ(m,n) of integers for each pair of positive integers
m and n with gcd(m,n) = 1 as a spectrum for the 2FPFM. For any set S consisting
of words of lengths m and n, if S∗ is co-finite, then llw

(
S∗

) ∈ κ(m,n). In order
to describe and prove the result about the spectrum κ(m,n), we need a graphical
concept and some properties of a particular type of directed graph, which can be
viewed as a generalization of the de Bruijn graph. All graphs in this section are
directed graphs.

2.6.1 Word graphs of the 2FPFM

Definitions in graph theory

First of all, we will review some basic concepts in graph theory. A directed graph G,
or digraph for short, is a triple (V, A, ψ) consisting of a nonempty set V of vertices,
a set A of arcs (also called edges in some literatures), and an incidence function

ψ : A → V × V. (2.82)

When ψ(a) = (u, v), arc a is said to join u to v, vertex u is the tail , and vertex v is
the head . A directed graph is strict if it has no loop and it has at most one arc from
one vertex to another. In the literature, “directed graph” sometimes refers to what

•A

x

¼¼

u

%%

s
**FED@GA

t

66 •B

r

z
oo

•C

w

OO

•
D

q

JJ

voo

y

OO

Figure 2.4: An example of a directed graph

57

we have called the strict directed graph here. Figure 2.4 is an example of a directed
graph, where {A,B,C,D } is the set of vertices and { q, r, s, t, u, v, w, x, y, z } is the
set of arcs. The incidence function can be easily understood by the arrows in the
diagram. For example, ψ(s) = (A,B).

Let G1 = (V1, A1, ψ1) and G2 = (V2, A2, ψ2) be two digraphs. Digraph G1 is a
subgraph of digraph G2 if V1 ⊆ V2, A1 ⊆ A2 and ψ1 is the restriction of ψ2 to A1.
Furthermore, when V1 = V2, the subgraph G1 is called a spanning subgraph of G2.
Digraph G1 is isomorphic to digraph G2 if there are bijections ζ : V1 → V2 and
ξ : A1 → A2 such that ψ2

(
ξ(a)

)
=

(
ζ(v), ζ(v′)

)
for all a ∈ A1, where ψ1(a) = (v, v′).

A walk in G is a finite nonempty sequence W = v0, a1, v1, a2, v2, · · · , ak, vk, or
simply v0, v1, v2, · · · , vk, or a1, a2, · · · , ak, where v’s are vertices and a’s are arcs such
that each ai joins vi−1 to vi, and k is the length of W . Without confusion, commas
between terms are omitted in order to save space. In Figure 2.4, AxDyBzAxDyB is
a walk. In particular, any sequence consisting of a single vertex is treated as a walk
of length 0. A walk is called a trail if each arc is distinct (such as AxDyBzAuDvC),
and is called a path if each vertex is distinct (such as AsBrDvC), and called

Table 2.7: Different types of walks in a digraph

The digraph •A

x

¼¼

u

%%

s
**FED@GA

t

66 •B

r

z
oo

•C

w

OO

•
D

q

JJ

voo

y

OO

walk •A
◦

x

KKKKKKKKKKKKKKK

y

¾¾¾¾¾¾¾¾¾¾

z
x

LLLLLLLLLLLLLL

y
LL¼¼¼¼¼

•B

•
C

•
D

cycle •A
◦

x

KKKKKKKKKKKKKKK

y

z
ppbbbbbbbbbbbbb•B

•
C

•
D

closed walk •A
◦

x

OOOOOOOOOOOOO
y

zbbbbbbbbbbbbb

u
NNNNNNNNNNNNNNN

y

z
ppbbbbbbbbbbbbb•B

•
C

•
D

Hamilton cycle •A ◦ s
bbbbbbbbbbbbb

r

v
\\\\\\\\\\\\\\\

w

LL½½½½½½½

•B

•
C

•
D

trail •A
◦

x

KKKKKKKKKKKKKKK

y

z
u

LLLLLLLLLLLLLL

v
qqbbbbbbbbbbb

•B

•
C

•
D

tour •A
◦

x
LLL

LLLLLLLLLL
y

z

u
MMMMMM

MMMMMM

v

w

s

rqMMMMMMMM

MMMMMMMM

GF EDs

r

v

w

@AGFEt ¦¦®® •B

•
C

•
D

path •A ◦ s
bbbbbbbbbbbbb

r

v
nn\\\\\\\\\\\\\

•B

•
C

•
D

Euler tour •A
◦

x
MMMMMMM

MMMMMMMM y

z

u
MMMMMM

MMMMMM

v

w

s

rqMMMMMMMM

MMMMMMMM

@GAFEDt
ªª •B

•
C

•
D

58

closed if the origin and terminus are the same (such as AxDyBzAuDyBzA). A
closed trail is called a cycle if the origin and internal vertices are distinct (such
as AxDyBzA). A Hamilton cycle is a cycle which contains every vertex (such as
AsBrDvCwA). A tour is a closed walk which traverses each arc at least once (such
as AxDyBzAuDvCwAsBrDqAsBrDvCwAtA). In the definitions given here, a
tour is not a cycle in general, since a cycle cannot contain a vertex twice except at
the ends, but a tour can. An Euler tour is a tour which traverses each arc exactly
once (such as AxDyBzAuDvCwAsBrDqAtA).

Two vertices u and v are said to be connected if each can be reached from the
other by a directed path. A graph is connected if every pair of vertices is connected.
The indegree d−(v) of a vertex v is the number of arcs with head v; and the outdegree
d+(v) of a vertex v is the number of arcs with tail v.

All above definitions in graph theory are taken from the textbook of Bondy and
Murty [15], and the reader may refer to it for more details.

There is a classic theorem on Euler tours as follows.

Theorem 2.6.1. A nonempty connected digraph G contains an Euler tour if and
only if d+(v) = d−(v) for each vertex v.

The definition of the word graph

In order to study the 2FPFM, I will introduce a concept of a word graph for a
set of words of two distinct lengths. Let S = {x1, x2, . . . , xk } be a set of words
of lengths m and n over an alphabet Σ, where 0 < m < n (m,n not necessarily

co-prime). The word graph G
(m,n)
S for S is a directed graph (Σn−m, Σn\S, ψ), where

ψ is defined on each word w ∈ Σn \ S by ψ(w) = (u, v), where u = w[1..n − m]
and v = w[m + 1..n]. The superscript (m,n) is omitted if it is clear from the
context. In addition, a labeling function ϕ : Σn \ S → Σm on the arcs of a word
graph is defined by ϕ(w) = w[n −m + 1..n]. In other words, if ψ(w) = (u, v) and
ϕ(w) = w′, then w = uw′ = w′′v, where w′′ = w[1..m]. In the graph diagram of
a word graph, we label each arc w by (u)w′ instead of the arc w for explicitness,
where w′ = ϕ(w), ψ(w) = (u, v), w = uw′.

Example 2.6.2. The word graph for the basis S1 = Σ3 ∪ Σ5 in Example 2.1.2
on page 30 is a digraph with no arcs:

•
00

•
01

•
10

•
11

Example 2.6.3. The word graph for the basis S4 = Σ3 ∪ Σ5 \ { 00001 } in
Example 2.4.5 on page 42 is the digraph depicted below:

•
00

(00)001
// •
01

•
10

•
11

59

Example 2.6.4. The word graph for Σ2 is the digraph depicted below, where
Σ2 is viewed as a set of words of lengths 2 and 4: (some labels are omitted for
clarity)

•00
@GAFED

²²
(00)01

**

¼¼²²

•01
GFBECD
oo

yy

(01)11

(01)00
oo

•
10@GAFBC
//

(10)00

JJ 99

(10)11
// •

11@ABECDOO
(11)10

jj

YY OO

2.6.2 Another equivalent condition on co-finiteness

The following lemma provides a general connection between a set S of words of
two lengths and its word graph. Any word not in S∗ that is of a particular length
is associated with a path in the word graph G

(m,n)
S , even when S∗ is not co-finite.

Hence the word graph G
(m,n)
S for a given set of words S ⊆ Σm ∪ Σn is a useful

characteristic of S when considering the words not in S∗.

Lemma 2.6.5. Suppose Σm ⊆ S ⊆ Σm ∪ Σn, where 1 < m < n and gcd(m,n) = 1.
Let j ≥ −1 be an integer, and l = n + jm. Then there is a word x of length l that
is not in S∗ if and only if there is a walk of length j + 1 in the word graph G

(m,n)
S .

Proof. Let j ≥ −1 be an integer, l = n + jm, and x = a1a2 · · · al be a word of
length l that is not in S∗. Define

yi = aim+1aim+2 · · · aim+n, for 0 ≤ i ≤ j; (2.83)

zi = aim+1aim+2 · · · aim+n−m, for 0 ≤ i ≤ j + 1. (2.84)

Then, by Proposition 2.4.10 on page 46, none of the y’s is in S∗. By comparing
lengths, we can write

yi = zi aim+n−m+1 · · · aim+n = aim+1 · · · aim+m zi+1 (2.85)

for each yi, and thus yi is an arc in the word graph G
(m,n)
S . Hence there is a walk

z0y0z1y1 · · · yjzj+1 of length j + 1 in the word graph G
(m,n)
S .

Let x0w1x1w2 · · ·wj+1xj+1 be a walk of length j + 1 in the word graph G
(m,n)
S .

Then, by definition, none of the words wi is in S∗ for 1 ≤ i ≤ j + 1, and wi =
xi−1ui = vixi for ui and vi of length m, where ui = ϕ(wi) is the labeling function.
Consider the word

x = x0u1u2 · · ·uj+1 = v1v2 · · · vj+1xj+1. (2.86)

By comparing lengths, it can be checked that for this word x, the factors yi in
Proposition 2.4.10 are exactly the wi defined here. Since none of the wi is in S∗, x
is not in S∗.

60

Now I will give another equivalent condition describing when S generates a
co-finite language. Furthermore, the instance of the 2FPFM specified by S can be
solved accordingly. If m = 1, by Proposition 2.4.4, S∗ can only be trivially co-finite,
which means S∗ = Σ∗. Assume m > 1. By Theorem 2.5.3 and Corollaries 2.5.5
and 2.5.8, the solution to an instance of the 2FPFM depends on the omitted words
of particular lengths, which are exactly those lengths specified in Lemma 2.6.5.
Therefore, based on the equivalent problem in combinatorics on words and the con-
nection between the word graph and words of particular lengths, another equivalent
problem to the 2FPFM in graph theory is as follows.

Theorem 2.6.6. Let S be a set of words of lengths m and n over the alphabet Σ,
where 1 < m < n and gcd(m,n) = 1. Then S∗ is co-finite if and only if S contains

all words of length m and there is no cycle in the word graph G
(m,n)
S . Furthermore,

when S∗ is co-finite, then llw
(
S∗

)
= g(m, l), where l = n + jm and j is the length

of the longest path in G
(m,n)
S .

Proof. Suppose S∗ is co-finite. By the First Lemma of the 2FPFM, all words of
length m are in S. If there is a cycle in G

(m,n)
S , then there are arbitrarily long walks

in G
(m,n)
S , and by Lemma 2.6.5, there are arbitrarily long words that are not in S∗,

which contradicts the co-finiteness of S∗. Hence there is no cycle in G
(m,n)
S .

If there is no cycle in G
(m,n)
S , let j be the length of the longest path and let

l = n + jm. Then by Lemma 2.6.5, Σl−m \ S∗ 6= ∅, and Σl \ S∗ = ∅. In addition,
all words of length m are in S, so by Theorem 2.5.3, S∗ is co-finite. Furthermore,
also by Theorem 2.5.3, the length of the longest words not in S∗ is g(m, l).

Now we extend the definition of the labeling function ϕ(a) from arcs to any
walk, where an arc is viewed as a walk of length 1. Let x0w1x1w2 · · ·wjxj be a

walk in the word graph G
(m,n)
S . Then, by definition, each wi can be written as

wi = xi−1ui = vixi for some ui and vi of length m, where ui = ϕ(wi). Define

ϕ(x0w1x1w2 · · ·wjxj) = ϕ(w1)ϕ(w2) · · ·ϕ(wj) = u1u2 · · ·uj. (2.87)

By the proof of Lemma 2.6.5, for any walk, the word x0ϕ(x0w1x1w2 · · ·wjxj) is not
in S∗.

Corollary 2.6.7. Let S be a set of words of lengths m and n over the alphabet Σ,
where 1 < m < n, and S∗ is co-finite, where l is the length of the longest path in
the word graph G

(m,n)
S . Then the set of the longest words not in S∗ is

(TΣm)m−2T, (2.88)

where T =
{

x0ϕ(x0 · · ·xl) : x0 · · ·xl is a path in G
(m,n)
S of length l

}
.

Proof. Follows directly from Lemma 2.6.5 and Corollary 2.5.5.

61

Corollary 2.6.7 shows that the 2FPFM is equivalent to the following problem.

Problem 2.6.8 (Equivalent statement of the 2FPFM, the 2nd). Let Σ be a (finite)
alphabet and let S be a set of non-empty words of lengths m and n, where m,n are
two positive integers and 1 < m < n, such that there is no cycle in the word graph
G

(m,n)
S . Find the longest paths in the word graph G

(m,n)
S .

Corollary 2.6.9. Let S be a set of words of lengths m and n over the alphabet Σ,
where 1 < m < n, and S∗ is co-finite. Then the set of words not in S∗ is

(⋃

j 6∈〈m,n〉
Σj

)⋃ (
m−2⋃
i=0

(TΣm)iT

)
, (2.89)

where T =
{

x0ϕ(x0 · · ·xl) : x0 · · ·xl is a path in G
(m,n)
S of length ≥ 0

}
.

Proof. Follows directly from Lemma 2.6.5 and Corollary 2.5.8.

Corollary 2.6.10. Let S be a set of words of lengths m and n over the alphabet
Σ, where 1 < m < n, and S∗ is co-finite, where l is the length of the longest path
in the word graph G

(m,n)
S . Then the set of lengths of words not in S∗ is

N \ 〈m,n + ml〉. (2.90)

Proof. Follows directly from Lemma 2.6.5 and Corollary 2.5.10.

Example 2.6.11. The word graph for the basis S4 = Σ3 ∪ Σ5 \ { 00001 } in
Example 2.4.5 on page 42 is

•
00

(00)001
// •
01

•
10

•
11

which contains only paths (00), (01), (10), (11) of length 0 and (00, 00001, 01) of
length 1, and has no cycle. So S∗4 is co-finite. Let T = { 00, 01, 10, 11, 00001 }.
Then the longest words not in S∗4 are 00001Σ300001 and all words not in S∗4 are

Σ ∪ Σ2 ∪ Σ4 ∪ Σ7 ∪ T ∪ TΣ3T. (2.91)

2.6.3 The de Bruijn graph and a generalization

The de Bruijn word and the de Bruijn graph

We call a word w a k-ary de Bruijn word of order n if each k-ary word of length
n appears in w as a factor exactly once. For example, two of the binary de Bruijn
words of order 3 are 0001011100 and 0001110100. It is easy to see that a k-ary
de Bruijn word of order n consists of kn + n − 1 letters. Sometimes, a de Bruijn
word is represented in a circular form by clockwise arranging the first kn letters in

62

1

0

ut

0

1 wv 0rs

1

0

pqOO

1

1

0

ut

0

0 wv 0rs

1

1

pqOO

1

Figure 2.5: Binary de Bruijn words of order 3

a circle. Figure 2.5 shows the two circular forms of the binary de Bruijn words of
order 3. Here we will use the linear form of the de Bruijn word.

In 1946, de Bruijn [22] showed that the number of such binary words of order n is
22n−1−n by introducing a digraph, which was independently produced by Good [57]
in the same year. In general, the number of distinct k-ary de Bruijn words of
length n is (k!)kn−1

k−n [1, 36]. The digraph de Bruijn introduced is usually called
the de Bruijn graph or de Bruijn-Good graph. The de Bruijn graph and de Bruijn
words are strongly related, since each Euler tour in a de Bruijn graph produces a
de Bruijn word. The binary de Bruijn graph of order 2 is depicted in Figure 2.6.

•00 001 //
FED ²²@GA

000

•01

010

yy

011

²²•
10

101

99

100

OO

•
11110

oo @ABOO ECD
111

Figure 2.6: Binary de Bruijn graph of order 2

More formally, a k-ary de Bruijn graph of order n is a digraph (Σn, Σn+1, ψ),
where Σ = { 0, 1, . . . , k − 1 } and ψ(ua) = (u, v) for v = u[2..n]a, u, v ∈ Σn, a ∈ Σ.
In a de Bruijn graph, the indegree and outdegree of each vertex is exactly |Σ|.

The study of the de Bruijn word dates back at least to the late 1800’s. In 1894,
de Rivière [134] raised the question of the number of de Bruijn words, which was
then answered by Flye Sainte-Marie [47], in the same journal L’Intermédiaire des
Mathématiciens. The concept of de Bruijn words is also connected to some other
concepts, such as Lyndon words and necklaces [144] and feedback shift registers [56].
All of the results can be used to efficiently generate a de Bruijn word; for example,
see Fredricksen [48] or Ralston [128] for a good survey on the topic of generating
de Bruijn words.

63

The generalized de Bruijn graph

Let m,n be two distinct positive integers, where m < n, and Σ be an alphabet.
The set of words Σm can be viewed as of lengths m and n, although it contains no
word of length n. The special word graph G

(m,n)
Σm is denoted by

Γ(m,n) = G
(m,n)
Σm . (2.92)

The digraph Γ(m,n) is a generalization of the de Bruijn graph in the sense of the
following theorem.

Theorem 2.6.12. The digraph Γ(1, n) defined over an alphabet of size k is iso-
morphic to the k-ary de Bruijn graph of order n− 1.

Proof. Let Σ be the alphabet of Γ(1, n) and let ∆ = { 0, 1, . . . , k − 1 }. Then, by
definition, Γ(1, n) = (Σn−1, Σn, ψ) and the k-ary de-Bruijn graph of order n − 1
is (∆n−1, ∆n, ψ′). Since |Σ| = |∆ | = k, let η : Σ∗ → ∆∗ be a bijection. Let ζ
and ξ be the restrictions of η on Σn−1 and Σn respectively, and let w ∈ Σn be an
arbitrary arc of Γ(1, n). Then by the definition of the word graph, ψ(w) = (u, v),
where u = w[1..n − 1] and v = w[2..n]. By the definition of the de Bruijn graph,
ψ′

(
ξ(w)

)
= ψ′(w′) = (u′, v′), where w′ = u′a and v′ = u′[2..n − 1]a for some

a ∈ ∆. By comparing lengths, we have u′ = w′[1..n − 1] and v′ = w′[2..n]. So
ψ′

(
ξ(w)) =

(
ζ(u), ζ(v)

)
, and thus (Σn−1, Σn, ψ) is isomorphic to (∆n−1, ∆n, ψ′).

We call Γ(m,n) a generalized de Bruijn graph. By the definition of the word

graph, G
(m,n)
Σm = G

(m,n)
∅ = G

(m,n)
T for any T ⊆ Σm. When S is co-finite, S must

contain all words of length m, so in the general discussion on the 2FPFM by the
graph approach, we are only interested in those S (and G

(m,n)
S) for which Σm ⊆ S.

We always assume Σm ⊆ S without further explanation in the remaining of this
section.

Table 2.8: Comparison of the de Bruijn graph and the word graph Γ(m,n)

word graph Γ(m,n) = G
(m,n)
Σm de Bruijn graph of order k

vertices Σn−m Σk

arcs Σn Σk+1

ψ(w) = (u, v) w ∈ uΣm ∩ Σmv w ∈ uΣ ∩ Σv

Proposition 2.6.13. Let m,n be two integers, 0 < m < n, and let G be a digraph.
The following two conditions are equivalent.

(a) There exists a set S of words of lengths m and n such that S contains all

words of length m and its word graph G
(m,n)
S = G;

(b) The digraph G is a spanning subgraph of Γ(m,n).

64

Proof. From the definitions, the result follows straightforwardly.

By Theorem 2.6.6 and corresponding Corollaries 2.6.7 and 2.6.9, we know that
each acyclic spanning subgraph of Γ(m,n) is a word graph that corresponds to a
basis S of words of lengths m,n such that S∗ is co-finite, and vice versa. The words
not in S∗ can be expressed by a regular expression in terms of the labeling of paths
in the corresponding word graph, and the length of the longest omitted word can be
expressed exactly in terms of the length of the longest paths in the corresponding
word graph. Based on the study of the generalized de Bruijn graph, I will show
below some general properties of the 2FPFM. For example, the maximum acyclic
subgraph of Γ(m,n) can be used to construct an S with the minimum κ = |S |
such that S∗ is co-finite; and the longest (simple) path in Γ(m,n) can be used to
construct an S with the maximum L = llw

(S∗) among all instance of the 2FPFM
with respect to the integers m,n.

Now we consider the general properties of the generalized de Bruijn graph
Γ(m,n). First we need a concept from graph theory. The arc graph of a digraph
G = (V, A, ψ) is a digraph G̃ = (A,B, ϕ) that has the arcs of G as vertices, and
the set B of arcs contains a, where ϕ(a) = (u, v), if there are x, y, z ∈ V such that
ψ(u) = (x, y) and ψ(v) = (y, z). Then the arc graph G̃ has a Hamilton cycle if and
only if G has an Euler tour as in the following proposition.

Proposition 2.6.14. Let G̃ = (A,B, ϕ) be the arc graph of G = (V, A, ψ). Then
G̃ has a Hamilton cycle if and only if G has an Euler tour.

•v0

a1

@@
@

ÂÂ@
@@

w1=⇒

•v2

a3

@@
@

ÂÂ@
@@

w3=⇒

•v4

a5

@@
@

ÂÂ@
@@

w5=⇒

•v6

a7

@@
@

ÂÂ@
@@

w7=⇒

•v8

a9

@@
@

ÂÂ@
@@

w9=⇒

· · ·

•v1

a2~~~

??~~~ w2=⇒
•v3

a4~~~

??~~~ w4=⇒
•v5

a6~~~

??~~~ w6=⇒
•v7

a8~~~

??~~~ w8=⇒
•v9

a10{{{{

=={{{ w10=⇒
· · ·

Figure 2.7: G̃ has a Hamilton cycle if and only if G has an Euler tour

Proof. ⇐: Suppose G has an Euler tour given by

W = v0a1v1a2v2 · · · ak−1vk−1akv0 (2.93)

that covers each arc in A exactly once and thus each ai is distinct for 1 ≤ i ≤ k.
By definition, between each pair ai, ai+1 of arcs in A (and ak, a1 at the very end) as
vertices in G̃, there is an arc wi such that ϕ(wi) = (ai, ai+1). Then there is a closed
walk in G̃

W̃ = a1w1a2w2 · · ·wk−1akwka1, (2.94)

where each vertex encountered is distinct, except that the origin is the same as the
terminus. Then W̃ is a cycle. Since W is an Euler tour, W̃ encounters each vertex
exactly once, and thus W̃ is a Hamilton cycle.

65

⇒: Suppose G̃ has a Hamilton cycle given by

W̃ = a1w1a2w2 · · ·wk−1akwka1. (2.95)

By the definitions, each ai and wi is distinct for 1 ≤ i ≤ k and W̃ covers each vertex
in A exactly once. For each wi, there are ai, bi, ai+1, bi+1 ∈ V such that ψ(ai) =
(vi, ui), ψ(ai+1) = (vi+1, ui+1), and ui = vi+1. In addition, by ϕ(wk) = (ak, a1), we
have uk+1 = v1. Consider the walk in G given by

W = v1a1v2a2 · · · vkakv1. (2.96)

Then W is a closed walk. Since W̃ is a Hamilton cycle, W encounters each arc
exactly once, and thus W is an Euler tour.

The following result is generalized from a property of the de Bruijn graph.
Zhang and Lin [175] showed in 1987 that the de Bruijn graph of order k + 1 is the
arc graph of the de Bruijn graph of order k. Lemma 2.6.15 is a generalization of
this result, namely, that the generalized de Bruijn graph Γ(m,n + m) is the arc
graph of the generalized de Bruijn graph Γ(m,n).

Lemma 2.6.15. Γ(m,n + m) is the arc graph of Γ(m,n).

Proof. Let Σ be the alphabet. By definition, we have

Γ(m,n) = (Σn−m, Σn, ψ), Γ(m,n + m) = (Σn, Σn+m, ϕ). (2.97)

The vertices of Γ(m,n + m) are exactly those arcs of Γ(m,n). Now, we consider
the arcs of Γ(m,n + m). Let a, b be two arcs in Γ(m,n) such that ψ(a) = (x, y),
ψ(b) = (y, z), a = xu, b = yv, where u, v are of length m. Then the word

xuv ∈ Σn+m, (2.98)

as an arc in Γ(m,n + m), is the one that corresponds to a, b in the definition of
the arc graph of Γ(m,n). On the other hand, each word w ∈ Σn+m as an arc in
Γ(m,n + m) joins w[1..n] to w[m..n + m], where the two vertices share a common
part w[m..n]. In other words, as two arcs in G,

ψ(w[1..n]) = (w[1..n−m], w[m..n]), (2.99)

ψ(w[m..n + m]) = (w[m..n], w[2m..n + m]), (2.100)

they share a common vertex that satisfies the condition in the definition of the arc
graph of Γ(m,n). Therefore, Γ(m,n + m) is the arc graph of Γ(m,n).

66

2.6.4 Spectrum theorem for the 2FPFM

Let Σ be the alphabet and m,n be two integers that 0 < m < n. We know
that each word graph for a set of words of lengths m,n is a spanning subgraph
of the generalized de Bruijn graph Γ(m,n), and from any spanning subgraph G of

Γ(m,n), we can construct a set S of words of lengths m,n such that G
(m,n)
S = G.

Furthermore, the language S∗ generated by S is co-finite if and only if the word
graph G

(m,n)
S contains no cycle. Then by the equivalence of the 2FPFM and the

word graph in Theorem 2.6.6, the bound in Theorem 2.4.12 is achievable if and only
if there is a path of length |Σ|n−m − 1 in an acyclic spanning subgraph of Γ(m,n),
that is to say there is a Hamilton path in Γ(m,n), since there are |Σ|n−m vertices
in Γ(m,n).

Euler tours and Hamilton cycles in Γ(m,n)

Each ordinary de Bruijn graph has Euler tours and Hamilton cycles [22, 57, 175].
I will show that this result can also be generalized for the word graph Γ(m,n).

Theorem 2.6.16. For any integers m and n, where 0 < m < n, there is an Euler
tour in the generalized de Bruijn graph Γ(m,n).

Proof. In order to prove that there is an Euler tour in Γ(m,n) = (Σn−m, Σn, ψ), by
Theorem 2.6.1, we only need to show the following two conditions hold:

1. For any vertex v, the indegree d−(v) is equal to the outdegree d+(v);

2. For any ordered pair of vertices u, v, there is a directed path from u to v.

By definition, for each vertex v ∈ Σn−m, the set of arcs with head v is vΣm,
and thus d+(v) = |Σ|m. Similarly, the set of arcs with tail v is Σmv, and thus
d−(v) = |Σ|m = d+(v)

For any two vertices u, v ∈ Σn−m, define τ = u0md n
m
e−nv. Then we have | τ | ≡ n

(mod m) and we can write

τ = uw1w2w3 · · ·wd n
m
e−1 = w′

1u1w2w3 · · ·wd n
m
e−1 = w′

1w
′
2u2w3 · · ·wd n

m
e−1

= · · · = w′
1w

′
2 · · ·w′

d n
m
e−2ud n

m
e−2wd n

m
e−1 = w′

1w
′
2 · · ·w′

d n
m
e−1v, (2.101)

where all the wi are of length m and all the ui are of length n. Then there is a
directed path from u to v given by

u, uw1, u1, u1w2, u2, . . . , ud n
m
e−2, ud n

m
e−2wd n

m
e−1, v. (2.102)

Therefore, there is an Euler tour in the generalized de Bruijn graph Γ(m,n).

67

Lemma 2.6.17. For any integers m and n, where 0 < m < n ≤ 2m, the generalized
de Bruijn graph Γ(m,n) has a Hamilton cycle.

Proof. First we prove that for any pair of vertices u, v, there is an arc that joins
u and v in each direction. By definition, Γ(m,n) = (Σn−m, Σn, ψ). For any two
vertices u, v ∈ Σn−m, the arc u02m−nv ∈ Σn has u as the head and v as the tail.
Now one can find a Hamilton cycle in Γ(m,n) as follows. First find an arbitrary
permutation of all vertices. Since there is an arc that joins each pair of vertices,
the permutation of all vertices can be converted into a closed walk, which is then a
Hamilton cycle.

Theorem 2.6.18. For any integers m and n, where 0 < m < n, there is a Hamilton
cycle in the generalized de Bruijn graph Γ(m,n).

Proof. If n ≤ 2m, by Lemma 2.6.17, Γ(m,n) has a Hamilton cycle. Now we assume
n > 2m. Then the notation Γ(m,n − m) is meaningful, and by Lemma 2.6.15,
Γ(m,n) is the arc graph of Γ(m,n−m). From Theorem 2.6.16, we know that there
is an Euler tour in Γ(m,n −m). Then by Proposition 2.6.14, there is a Hamilton
cycle in Γ(m,n).

The spectrum theorem

We are now ready to state the spectrum theorem, which gives a set of integers
κ(m,n) for the 2FPFM corresponding to each choice of m and n that covers all
possible lengths of longest omitted words. Recall that g(x1, x2) = x1x2− x1− x2 is
the Frobenius number of x1, x2.

Theorem 2.6.19 (Spectrum theorem). Let m,n be integers such that 1 < m < n
and gcd(m,n) = 1. For any basis U ⊆ Σm ∪ Σn such that U∗ is co-finite, then
llw

(
U∗) ∈ κ(m,n), where

κ(m,n) =
{

g(m, l) : l = n, n + m, . . . , n + im, . . . , n + (|Σ|n−m − 1)m
}
. (2.103)

Furthermore, there is a set S of words of lengths m,n for each number g(m, l) in
κ(m,n), such that llw

(
S∗

)
= g(m, l).

Proof. Let S be a set of words of lengths m,n such that S∗ is co-finite. By the
equivalence between the 2FPFM and combinatorics on words of particular lengths
as in Theorem 2.5.3, the longest words not in S∗ are of length g(m, l), where l is
the unique integer that l ≡ n (mod m), Σl−m \ S∗ 6= ∅, and Σl \ S∗ = ∅. By the
Second Lemma of the 2FPFM, all words of length m |Σ|n−m + n − m are in S∗.
In addition, none of the words of length n − m is in S∗ for gcd(m,n) = 1. So
n ≤ l ≤ n + (|Σ|n−m − 1)m, and llw

(
S∗

) ∈ κ(m,n).

By Theorem 2.6.18, there is a Hamilton cycle in the generalized de Bruijn graph
Γ(m,n). So there is an acyclic spanning subgraph Gj of Γ(m,n), where the longest

68

path is of length j for each j = 0, 1, 2, . . . , |Σ|n−m−1. That subgraph Gj is just the
graph consisting all vertices of Γ(m,n) and only the arcs that lie in a single path

of length j. Let Sj be the corresponding set of words such that G
(m,n)
Sj

= Gj. Then
by the equivalence between the 2FPFM and word graph as in Theorem 2.6.6, S∗j is

co-finite and llw
(
S∗j

)
= g(m,n + jm) for 0 ≤ j ≤ |Σ|n−m − 1.

As shown in Theorem 2.6.19, there are exactly |Σ|n−m integers that can be
the lengths of the longest words as solutions to the 2FPFM over the alphabet Σ
with lengths of words in the basis being m,n. Furthermore, the |Σ|n−m integers
in κ(m,n) constitute an arithmetic progression with common difference m2 −m.
With fixed m and alphabet size ≥ 2, the largest integer in κ(m,n) is

L = g(m, |Σ|n−m + n−m) = Θ(|Σ|ν), (2.104)

where ν = max {m,n } = n.

Example 2.6.20. Consider small integers m,n such that 0 < m < n < 10 and
gcd(m,n) = 1. Then the possible lengths of the longest words not in a co-finite
language generated by words of lengths m,n are in Table 2.9.

Table 2.9: Spectrum κ(m,n) of length of longest words not in S∗ in the 2FPFM
m,n |Σ| = 1 |Σ| = 2 |Σ| = 3 |Σ| = 4

1, ∗ {−1a} {−1} {−1} {−1}
2, 3 {1} {1, 3} {1, 3, 5} {1, 3, 5, 7}
2, 5 {3} {3, 5, 7, . . . , 17}8b {3, 5, 7, . . . , 55}27 {3, 5, 7, . . . , 129}64
2, 7 {5} {5, 7, 9, . . . , 67}32 {5, 7, 9, . . . , 489}243 {5, 7, 9, 2051}1024
2, 9 {7} {7, 9, 11, . . . , 261}128 {7, 9, 11, . . . , 4379}2187 {7, 9, 11, . . . , 32773}16384
3, 4 {5} {5, 11} {5, 11, 17} {5, 11, 17, 23}
3, 5 {7} {7, 13, 19, 25} {7, 13, 19, . . . , 55}9 {7, 13, 19, . . . , 97}16
3, 7 {11} {11, 17, 23, . . . , 101}16 {11, 17, 23, . . . , 491}81 {11, 17, 23, . . . , 1541}256
3, 8 {13} {13, 19, 25, . . . , 199}32 {13, 19, 25, . . . , 1465}243 {13, 19, 25, . . . , 6151}1024
4, 5 {11} {11, 23} {11, 23, 35} {11, 23, 35, 47}
4, 7 {17} {17, 29, 41, . . . , 101}8 {17, 29, 41, . . . , 329}27 {17, 29, 41, . . . , 773}64
4, 9 {23} {23, 35, 47, . . . , 395}32 {23, 35, 47, . . . , 2927}243 {23, 35, 47, . . . , 12299}1024
5, 6 {19} {19, 39} {19, 39, 59} {19, 39, 59, 79}
5, 7 {23} {23, 43, 63, 83} {23, 43, 63, . . . , 183}9 {23, 43, 64, . . . , 323}16
5, 8 {27} {27, 47, 67, . . . , 167}8 {27, 47, 67, . . . , 547}27 {27, 47, 67, . . . , 1287}64
5, 9 {31} {31, 51, 71, . . . , 331}16 {31, 51, 71, . . . , 1631}81 {31, 51, 71, . . . , 5131}256
6, 7 {29} {29, 59} {29, 59, 89} {29, 59, 89, 119}
7, 8 {41} {41, 83} {41, 83, 125} {41, 83, 125, 167}
7, 9 {47} {47, 89, 131, 173} {47, 89, 131, . . . , 383}9 {47, 89, 131, . . . , 677}
8, 9 {55} {55, 111} {55, 111, 167} {55, 111, 167, 223}
aThe length of longest words not in S∗ is −1 means all words are in S∗.
bThe subscript k in {. . .}k means the set contains k elements.

Given any set S of words of lengths m and n, the length llw
(
S∗

)
is the Frobenius

number of m and some l, where l characterizes the structure of the basis and can
be calculated in polynomial time in the measure µ, the total number of symbols in
the input. The algorithm will be discussed in Chapter 5.

69

2.6.5 Bounds on the size of the basis in the 2FPFM

Let S be a set of words of lengths m and n over the alphabet Σ such that S∗ is
co-finite. Now we consider the number of words in S. By the First Lemma of the
2FPFM, S must contain all words of length m and thus |S ∩ Σm | = |Σ|m. The
set Σm does not generate a co-finite language in general except when m = 1, so S
must contain words of length n. Since Σm ∪ Σn generates a co-finite language,
S may contain all words of length n and thus the upper bound |S ∩ Σn | ≤ |Σ|n
is tight. By Proposition 2.1.17 (the twins proposition), |S ∩ Σn | ≥ |Σ|m. Here I
will give a better lower bound for |S ∩ Σn |.

Maximum acyclic spanning subgraph of Γ(m,n)

Each set S of words of two lengths m,n with gcd(m,n) = 1 corresponds to a word

graph G
(m,n)
S , which is a spanning subgraph of Γ(m,n). By Theorem 2.6.6, S∗ is

co-finite if and only G
(m,n)
S contains no cycle and Σm ⊆ S. Since the arcs of G

(m,n)
S

are in Σn\S, the maximum acyclic spanning subgraph of Γ(m,n) is the word graph
of the basis of the least size among all such S that S consists of words of lengths
m,n and S∗ is co-finite.

Lemma 2.6.21. For any two integers m and n, where 0 < m < n ≤ 2m, let
G = (Σn−m, A, ψ) be an acyclic spanning subgraph of the generalized de Bruijn
graph Γ(m,n). Then

|A | ≤ |Σ|n − |Σ|m
2

. (2.105)

Proof. By definition, Γ(m,n) = (Σn−m, Σn, ψ). For each vertex u, there are |Σ|2m−n

loops in Γ(m,n) given by uΣ2m−nu. So there are in total |Σ|2m−n · |Σ|n−m = |Σ|m
loops, which cannot be in A. Now we consider the remaining |Σ|n − |Σ|m arcs.

•u
(u)02m−nv

**
@GAFED

// •v
(v)02m−nu

jj @ABECD
oo

By comparing lengths, any arc from u to v can be written as uwv for some w of
length 2m− n. Then there is another arc from v to u given by vwu, which forms a
cycle given by u, uwv, v, vwu, u. So A contains at most half of the remaining arcs.
Hence |A | ≤ (|Σ|n − |Σ|m)/2.

When 1 < m < n < 2m and gcd(m,n) = 1, there is a family of examples of
acyclic spanning subgraphs of Γ(m,n) such that the number of arcs is

|Σ|n − |Σ|m
2

= Θ(|Σ|n), (2.106)

which corresponds to the sets of words of lengths m,n of least size that generate
co-finite languages. The following theorem gives a bound on |A |.

70

Theorem 2.6.22. For any integers m and n, where 0 < m < n, let (Σn−m, A, ψ)
be an acyclic spanning subgraph of the generalized de Bruijn graph Γ(m,n). Then

|A | <
(
1− 1

n

)
|Σ|n . (2.107)

Proof. Define the function δ : Σn → Σn, where δ(w) = w[m+1..n]w[1..m]. Starting
from each arc w ∈ Σn, we consider the following walk in Γ(m,n):

w[1..n−m], w, w[m+1..n], δ(w), δ(w)[m+1..n], δ(δ(w)), δ(δ(w))[m+1..n], . . . ,
(2.108)

where all arcs are conjugates. Now we define a relation → on arcs, where u → v if
starting from the arc u, the walk described in (2.108) eventually visits v.

The relation → is an equivalence relation. The reflexive property follows from
the definition straightforwardly. Suppose u → v and v → w. Then there are two
walks u[1..n −m], u, u[m + 1..n], δ(u), . . . , v, v[m + 1..n] and v[1..n −m], v, v[m +
1..n], δ(v), . . . , w, w[m+1..n]. There is a walk starting from the arc u and visiting w
as follows: u[1..n−m], u, u[m+1..n], δ(u), . . . , v, v[m+1..n], δ(v), . . . , w, w[m+1..n].
So u → w and thus the transitive property holds. It remains to show the symmetric
property. By definition, v = δi(u) for some i ∈ N. Since for each word of length
n, there are at most n conjugates, the walk starting from v must visit some arc t
twice, where t = δj(v) = δl(v) for some j < l,j, l ∈ N. The function δ is invertible.
So u = δ−i(v) and v = δl−j(v). Then u = δ(l−j)i−i(v), where (l− j)i− i ≥ 0. Hence
u is in the walk starting from v, and thus v → u. The symmetric property holds.

Since all arcs in the same walk are conjugates, the relation → is a refinement
of the conjugates, and thus the number of the → equivalence classes is at least as
large as the number of necklaces1 of order n, which is

1

n

∑

d|n
φ(d) |Σ|nd >

|Σ|n
n

. (2.109)

Any acyclic subgraph of Γ(m,n) cannot contains an entire → equivalence class. So
for each of the → equivalence classes, there is at least an arc not in the subgraph,
and thus |A | < (

1− 1
n

) |Σ|n.

Bounds on the basis size

Theorem 2.6.23. Let S be a set of words of lengths m and n, where 1 < m < n,
over the alphabet Σ. If S∗ is co-finite, then S contains |Σ|m words of length m and
more than 1

n
|Σ|n words of length n.

1The number of necklaces is a classic result in combinatorics, which was discussed by
M. E. Jablonshi and M. Moreau in 1892. Refer to MacMahon’s paper [104] for more details.

71

Proof. If S∗ is co-finite, by the First Lemma of the 2FPFM, S must contain all
words of length m. By Theorem 2.6.6, the word graph G

(m,n)
S has no cycle, and by

Theorem 2.6.22, G
(m,n)
S has at most

(
1 − 1

n

) |Σ|n arcs. So, by definition, S has at
least 1

n
|Σ|n words of length n.

In order to be co-finite, the set S must contain sufficiently many words of both
lengths m and n. Let κ be the number of words in S. Then by Theorem 2.6.23,

|Σ|m +
1

n
|Σ|n < κ ≤ |Σ|m + |Σ|n . (2.110)

This suggests that the running time of an algorithm to decide the co-finiteness of
S∗ might be exponential in ν = llw (S). There is input with exponentially many
words such that the input generates a co-finite language but changing any input
word will result in a basis that does not generate a co-finite language. So in order
to determine co-finiteness for that input, an algorithm must read all input words,
which is exponential in ν = n. Another issue raised by this observation is that
one can discuss variations on the FPFM where the input, instead of in the form
of finitely many words x1, x2, . . . , xk, is given in a compact way, such as a regular
expression or an NFA. We will discuss some of those variations in Chapter 3. In
particular, in the 2FPFM, when S∗ is co-finite, using the words in Σm ∪ Σn \S to
describe S is more concise.

If 1 < m < n < 2m, by similar reasoning and Lemma 2.6.21, the bound becomes

3

2
|Σ|m +

1

2
|Σ|n ≤ κ ≤ |Σ|m + |Σ|n , (2.111)

where both the upper bound and the lower bound can be achieved, respectively.

2.7 The FPFM with basis of special sequential

lengths

Since there are simple formulae for special cases of the FP where the input satisfies
a certain pattern, this suggests the question of the existence of simple formulae
or algorithms for the FPFM where input words satisfy a certain pattern. So far,
however, we have not found such formulae, although some of the lemmas satisfied in
the case of the 2FPFM are also satisfied in some cases with input words satisfying
certain patterns.

Proposition 2.7.1. Let S, T ⊆ Σ∗, and suppose S∗ is co-finite.

(a) Then (S ∪ T)∗ is also co-finite, and llw
(
S∗

) ≥ llw
(
(S ∪ T)∗

)
.

(b) Let U be the set of factors of words in T such that T ⊆ U∗. Then ((S\T) ∪ U)∗

is co-finite, and llw
(
S∗

) ≥ llw
(
((S \ T) ∪ U)∗

)
.

72

Table 2.10: All bases S ⊆ Σ3 ∪ Σ4 for Σ = { 0, 1 } with S∗ co-finite.

Σ3 ∪ Σ4 \ S one w 6∈ S∗
{ |w | : w 6∈ S∗

} |Σ∗ \ S∗ |
{ 0001, 0011, 0101, 0111 } 00010000001 { 1, 2, 4, 5, 8, 11 } 282
{ 0001, 0011, 0101 } 00010000001 { 1, 2, 4, 5, 8, 11 } 200
{ 0001, 0011, 0111 } 00010000001 { 1, 2, 4, 5, 8, 11 } 200
{ 0001, 0011 } 00010000001 { 1, 2, 4, 5, 8, 11 } 132
{ 0001, 0101, 0111 } 00010000001 { 1, 2, 4, 5, 8, 11 } 200
{ 0001, 0101 } 00010000001 { 1, 2, 4, 5, 8, 11 } 132
{ 0001, 0111 } 00010000001 { 1, 2, 4, 5, 8, 11 } 132
{ 0001 } 00010000001 { 1, 2, 4, 5, 8, 11 } 78
{ 0011, 0101, 0111 } 00110000011 { 1, 2, 4, 5, 8, 11 } 200
{ 0011, 0101 } 00110000011 { 1, 2, 4, 5, 8, 11 } 132
{ 0011, 0111 } 00110000011 { 1, 2, 4, 5, 8, 11 } 132
{ 0011 } 00110000011 { 1, 2, 4, 5, 8, 11 } 78
{ 0101, 0111 } 01010000101 { 1, 2, 4, 5, 8, 11 } 132
{ 0101 } 01010000101 { 1, 2, 4, 5, 8, 11 } 78
{ 0111 } 01110000111 { 1, 2, 4, 5, 8, 11 } 78
{ 1000, 1010, 1100, 1110 } 10000001000 { 1, 2, 4, 5, 8, 11 } 282
{ 1000, 1010, 1100 } 10000001000 { 1, 2, 4, 5, 8, 11 } 200
{ 1000, 1010, 1110 } 10000001000 { 1, 2, 4, 5, 8, 11 } 200
{ 1000, 1010, } 10000001000 { 1, 2, 4, 5, 8, 11 } 132
{ 1000, 1100, 1110 } 10000001000 { 1, 2, 4, 5, 8, 11 } 200
{ 1000, 1100 } 10000001000 { 1, 2, 4, 5, 8, 11 } 132
{ 1000, 1110 } 10000001000 { 1, 2, 4, 5, 8, 11 } 132
{ 1000 } 10000001000 { 1, 2, 4, 5, 8, 11 } 78
{ 1010, 1100, 1110 } 10100001010 { 1, 2, 4, 5, 8, 11 } 200
{ 1010, 1100 } 10100001010 { 1, 2, 4, 5, 8, 11 } 132
{ 1010, 1110 } 10100001010 { 1, 2, 4, 5, 8, 11 } 132
{ 1010 } 10100001010 { 1, 2, 4, 5, 8, 11 } 78
{ 1100, 1110 } 11000001100 { 1, 2, 4, 5, 8, 11 } 132
{ 1100 } 11000001100 { 1, 2, 4, 5, 8, 11 } 78
{ 1110 } 11100001110 { 1, 2, 4, 5, 8, 11 } 78
∅ 00000 { 1, 2, 5 } 38

73

Proof. (a) S∗ ⊆ (S ∪ T)∗, so (S ∪ T)∗ is also co-finite and the result is straight-
forward.

(b) S∗ ⊆ (S ∪ U)∗ = ((S \ T) ∪ U)∗; then the result is straightforward.

The sequence m, 2m, 3m, . . . , (k − 1)m,n

As we saw, the First Lemma of the 2FPFM is crucial for the 2FPFM. But for a
set S of words of lengths m, 2m, 3m, . . . , (k − 1)m,n over the alphabet Σ, where
(k − 1)m < n, S need not contain all words of length m in order to generate a
co-finite language. For example, we can choose even multiples of m and odd n,
such as the particular case 2m,n, and still obtain a basis S consisting of words
of those lengths that generates a co-finite language, such as S = Σ2m ∪ Σn for
gcd(2m,n) = 1, where S contains no word of length m.

There are also bases for which none of Σim \S, Σim ∩ S is empty for 1 ≤ i < k,
and S∗ is still co-finite. Let k, m, n ≥ 3 be integers such that gcd(km−m,n) = 1,
and let T = Σ(k−1)m ∪ Σn. From arbitrary words x1, x2, . . . , xk−2 of length (k−1)m
and xi 6= xj for i 6= j, we construct

S = (T \ { x1, x2, . . . , xk−2 }) ∪
⋃

1≤i≤k−2

{xi[1..im], xi[im + 1..(k − 1)m] } . (2.112)

By Proposition 2.7.1, S also generates a co-finite language, and T ∗ ⊆ S∗. The basis
S contains exactly two words of each of the lengths m, 2m, . . . , (k − 2)m.

If we require that S contains all words of length m, then S∗ contains all words
of lengths that are multiples of m and the problem becomes the 2FPFM.

Proposition 2.7.2. Let S be a set of words of lengths m, 2m, 3m, . . . , (k − 1)m,n
such that S∗ is co-finite. Then llw

(
S∗

) ≥ g(m, l), where l = n + jm and j is the

length of the longest path in G
(m,n)
S .

Proof. Let U =
{

w[im + 1..im + m] : w ∈ S \ Σn, |w | = hm, 0 ≤ i < h
}
, and let

T = S ∩ Σn, where Σ is the alphabet. If S∗ is co-finite, by Proposition 2.7.1,

(U ∪ T)∗ is also co-finite and llw
(
S∗

) ≥ llw
(
(U ∪ T)∗

)
. Since U ∪ T contains

only words of lengths m,n, we have U = Σm and llw
(
(Σm ∪ T)∗

)
= g(m, l),

where l = n + jm and j is the length of the longest path in G
(m,n)
U ∪ T = G

(m,n)
S .

The sequence m,n, 2n, 3n, . . . , (k − 1)n

Lemma 2.7.3. Let S be a set of words of lengths m,n, 2n, 3n, . . . , (k− 1)n, where
0 < m < n, over the alphabet Σ. If S∗ is co-finite, then Σm ⊆ S.

74

Proof. If S∗ is co-finite, by Proposition 2.1.14, gcd
(
m,n, 2n, 3n, . . . , (k− 1)n

)
= 1,

and thus gcd(m,n) = 1. Let w ∈ Σm. Now we consider the language

w(Σn−mw)∗. (2.113)

Since S∗ is co-finite, T = w(Σn−mw)∗ ∩ S∗ 6= ∅. Suppose one of the words in T is

τ = wu1w · · ·ul = x1x2 · · ·xj, (2.114)

where all the ui are of length n−m and all the xi are in S. Then | τ | = (l−1)n+m.
Since gcd(m,n) = 1, at least one xi is of length m. By comparing lengths, the first
xi of length m in the factorization (2.114) is equal to w. Hence w is in S and by
the arbitrary choice of w, we see that S∗ contains all words of length m.

Lemma 2.7.3 shows that a basis must contain all words of length m in the case
that the basis consists of words of lengths of this particular sequence. Lemma 2.7.3
becomes the First Lemma of the 2FPFM in the case where k = 2, and thus gener-
alizes the latter.

Let T =
{

w[in+1..in+n] : w ∈ S\Σm, |w | = hn, 0 ≤ i < h
}
, and U = S ∩ Σm.

If S∗ is co-finite, then by Proposition 2.7.1, (U ∪ T)∗ is also co-finite. Since U ∪ T
contains only words of lengths m,n, the set U contains all words of length m

(which gives another proof for Lemma 2.7.3) and llw
(
(U ∪ T)∗

)
= g(m, l), where

l = n + jm and j is the length of the longest path in G
(m,n)
U ∪ T . So we can obtain a

lower bound llw
(
S∗

) ≥ llw
(
(U ∪ T)∗

)
= g(m,n + jm), where j is the length of

the longest path in G
(m,n)
U ∪ T .

The sequence m,m + d,m + 2d, . . . , m + (k − 1)d

In this case, a result analogous to the First Lemma of the 2FPFM does not hold in
general. For example, let S = Σm+(k−2)d ∪ Σm+(k−1)d for gcd(m,m + d, . . . , m +
(k − 1)d) = 1. Since gcd(m + (k − 2)d,m + (k − 1)d) = gcd(m, d) = (m,m +
d, . . . , m + (k − 1)d) = 1, the language S∗ is co-finite. But S contains no word of
the lengths m,m + d, . . . , m + (k − 3)d.

As we saw in the previous two sequences m, 2m, 3m, 4m, . . . , (k − 1)m,n and
m,n, 2n, 3n, . . . , (k − 1)n, we can convert an instance of the FPFM with lengths
being those sequences into an instance of the 2FPFM, and obtain a lower bound
for the longest omitted words. The case of m,m + d,m + 2d, . . . , m + (k − 1)d,
however, cannot be converted into the 2FPFM easily.

The sequence m,n, n + m,n + 2m, . . . , n + (k − 2)m

Since gcd(n + m,n) = gcd(m,n) = 1, in this case we can construct a basis S
consisting of words of lengths n + im, n + (i + 1)m, . . . , n + (k− 2)m that generate

75

a co-finite language. Then a basis may not necessarily contain all words of length
m in order to generate a co-finite language. In other words, there is no analogous
result to the First Lemma of the 2FPFM. But if the basis contains all words of
length m, then a similar result to the Second Lemma of the 2FPFM holds.

Lemma 2.7.4. Let S be a set of words of lengths m,n, n+m,n+2m, . . . , n+(k−
2)m, where k − 2 ≤ m < n, over the alphabet Σ. If Σm ⊆ S and S∗ is co-finite,

then Σl ⊆ S∗, where l = m |Σ|n+(k−3)m + n + (k − 3)m.

Proof. Proof by contradiction. Let x = a1a2 · · · al be a word of length l that is not
in S∗ and r = |Σ|n+(k−3)m + (k − 3). Then

x[im + 1..(i + j)m + n] 6∈ S (2.115)

for 0 ≤ i ≤ r, 0 ≤ j ≤ k − 2, (i + j)m + n ≤ l. Otherwise, x =
(∏

0≤f<i

x[fm+1..fm+m]
)
x[im+1..(i+j)m+n]

(∏
i+j≤g<r

x[gm+n+1..(g+1)m+n]
)

(2.116)
is a factorization of x into elements of S, since Σm ⊆ S. We define

zi = aim+1aim+2 · · · aim+n+(k−3)m, for 0 ≤ i ≤ |Σ|n+(k−3)m . (2.117)

There are only |Σ|n+(k−3)m distinct words of length n + (k− 3)m over Σ, but there

are |Σ|n+(k−3)m + 1 factors zi. By the pigeonhole principle, we have zp = zq, for
some 0 ≤ p < q ≤ |Σ|n+(k−3)m. Now we define

u = a1a2 · · · apm, v = apm+1apm+2 · · · aqm, w = aqm+1aqm+2 · · · al. (2.118)

Then x = uvw and v 6= ε. Since S∗ is co-finite, uv∗w ∩ S∗ is not empty. Let
λ be the smallest positive exponent such that uvλw ∈ S∗. Since x = uvw 6∈ S,
we have λ ≥ 2. Now let uvλw = x1x2 · · ·xj be a factorization into elements of S.
Since zq = zp, the words x = uvw and uvλw agree on the first |uv|+(n+(k− 3)m)
letters. So all factors from x1 to xq are of length m. We can write

u = x1x2 · · ·xp, v = xp+1xp+2 · · ·xq. (2.119)

By removing the leftmost copy of v from uvλw, the new word

uvλ−1w = x1x2 · · ·xpxq+1xq+2 · · ·xj (2.120)

is also in S∗, where λ− 1 ≥ 1. This contradicts the minimality of λ.

Similarly to the bound we obtained for the 2FPFM, when S contains all words
of length m and S∗ is co-finite, we have

llw
(
S∗

) ≤ g(m, l) = g
(
m,m |Σ|n+(k−3)m + n + (k − 3)m

)
. (2.121)

The upper bound is tight. One can consider the 2FPFM with lengths m and
n+(k−2)m, which can be viewed as of lengths m,n, n+m,n+2m, . . . , n+(k−2)m.
The example that achieves the upper bound in the 2FPFM also attains the equality
in the upper bound in (2.121) for the FPFM with sequential lengths.

76

Chapter 3

Variations on the FPFM and
related problems

In this chapter, I will examine variations on the FPFM, some of which can also be
viewed as a generalization of the Frobenius problem, and discuss problems related
to the FPFM. In §3.1, we will see the variation where the concatenation of words
is taken in a fixed order. In §3.2, we will see variations on the FPFM where
the input and output are specified by other forms, including deterministic finite
automata (DFAs), nondeterministic finite automata (NFAs), regular expressions,
deterministic pushdown automata (DPDAs), linear bounded automata (LBAs),
and context-sensitive grammars (CSGs). In §3.3, we will see some variations and
related problems of the FPFM with different points of view instead of the length
of the longest omitted words (L = llw

(
S∗

)
). These problems include

(a) the number of (symbols in) omitted words (M and W , §3.3.1);

(b) the number of words (and symbols) in a basis that generates a co-finite lan-
guage (κ, §3.3.2 and §3.3.3);

(c) what words (and integers) can be (the length of) the solution to instances of
the FPFM (§3.3.2);

(d) the number of different factorizations of a word w (D(w), §3.3.3).

In §3.4, I will examine co-finiteness in different settings, including

(i) infinite words (right-infinite Σω, left-infinite ωΣ, bi-infinite ωΣω, §3.4.1);

(ii) concatenation with overlap ([, \ ,] , §3.4.2);

and discuss co-slender languages (§3.4.3). At the end, in §3.5, I will examine a
generalization of the local postage-stamp problem in a free monoid.

The new results are mainly in §3.3, §3.4, and §3.5. My most important results
in this chapter include Theorems 3.3.4, 3.4.24, 3.5.9, and a series of propositions
in §3.4 concerning co-finiteness.

77

3.1 Concatenation of words with fixed order

Given k words x1, x2, . . . , xk, not necessarily distinct, we can consider two ana-
logues of the non-negative integer linear combination. One is to consider the lan-
guage {x1, x2, . . . , xk }∗, which is the FPFM. The other is to consider the language
x∗1x

∗
2 · · ·x∗k, which perhaps appears closer to the non-negative integer linear combi-

nation in the integer FP, which is based on the set

〈x1, x2, . . . , xk〉 =
{

c1x1 + c2x2 + · · ·+ ckxk : c1, c2, . . . , ck ∈ N
}
. (3.1)

Problem 3.1.1 (the FPFM with fixed word order). Let Σ be an alphabet. Given
k non-empty words x1, x2, . . . , xk ∈ Σ∗ such that there are only finitely many words
that are not in the language x∗1x

∗
2 · · ·x∗k, then what is the length of the longest such

word(s)?

Shallit asked the FPFM with fixed word order and proved the following theorem
in our papers [83, 84] with Shallit and Kao.

Theorem 3.1.2. [83, 84] Let x1, x2, . . . , xk ∈ Σ+. Then L = x∗1x
∗
2 · · ·x∗k is co-finite

if and only if |Σ| = 1 and gcd
(|x1 | , |x2 | , . . . , |xk |

)
= 1.

So the FPFM with fixed word order for the language x∗1x
∗
2 · · ·x∗k is only meaning-

ful over the unary alphabet. When the alphabet is unary, in fact, the two languages
x∗1x

∗
2 · · ·x∗k and {x1, x2, . . . , xk }∗ are identical. Hence the FPFM with fixed word

order can also be viewed as an equivalent form of the FP in the setting of a free
monoid in the same sense that the FPFM over the unary alphabet is an equiva-
lent form of the FP. The language over a unary alphabet is co-finite if and only if
gcd

(|x1 | , |x2 | , . . . , |xk |
)

= 1, and the length of the longest omitted words is the
Frobenius number llw

(
x∗1x

∗
2 · · ·x∗k

)
= g

(|x1 | , |x2 | , . . . , |xk |
)
.

3.2 Variations with different measures

In Chapter 2, various measures of the input and various measures of the output
were discussed. In this section, the input words x1, x2, . . . , xk of the FPFM will
be in a compact form other than simply enumerating them. For example, we will
use an automaton or a grammar to describe the words x1, x2, . . . , xk. Similarly, the
generated language {x1, x2, . . . , xk }∗ can also be described succinctly.

3.2.1 State complexity of the generated language

In this subsection, we will see another variation on the FPFM. The results illus-
trated in this subsection on state complexity are mainly due to Shallit and Kao. Let
x1, x2, . . . , xk be k words over Σ. For the language L = x∗1x

∗
2 · · ·x∗k or alternatively

78

L = {x1, x2, . . . , xk }∗, instead of considering L = llw
(
L

)
, the length of the longest

words not in L, we now consider S = sc(L), the state complexity, and N = nsc(L),
the nondeterministic state complexity, of L.

Here we do not require L to be co-finite. Discussing sc(L) and nsc(L) is sensible
when L is regular, which is always true for the two languages obtained by applying
Kleene-star to a finite language.

Problem 3.2.1 (State complexity of star of a finite language). Given k words

x1, x2, . . . , xk, (3.2)

what is the state complexity and nondeterministic state complexity of the languages
x∗1x

∗
2 · · ·x∗k and {x1, x2, . . . , xk }∗, respectively?

The state complexity of the star of a finite language can be viewed as one
generalized form of the Frobenius problem. Theorem 3.2.2 will show that in the
unary case the state complexity is strongly related to the Frobenius number of the
lengths of given words.

Over a unary alphabet

Let Σ = { 0 } be the unary alphabet. Then the two languages x∗1x
∗
2 · · ·x∗k and

{x1, x2, . . . , xk }∗ are identical. For convenience we use x to represent both the
integer x and the unary word of length x.

Theorem 3.2.2. [83, 84] Let x1, x2, . . . , xk be k words over the unary alphabet { 0 }
with gcd(x1, x2, . . . , xk) = 1. Then sc

({x1, x2, . . . , xk }∗
)

= g(x1, x2, . . . , xk) + 2.

Corollary 3.2.3. [83, 84] Let x1, x2, . . . , xk be k words over the unary alphabet { 0 }
and d = gcd(x1, . . . , xk). Then sc

({x1, x2, . . . , xk }∗
)

= d g(x1

d
, x2

d
, . . . , xk

d
)+(d+1).

By the results on the integer FP, it follows that sc
({x1, x2, . . . , xk }∗

)
= O

(
x2

k

k

)
,

which is tight.

State complexity of {x1, x2, . . . , xk }∗

Over a larger alphabet, the two languages x∗1x
∗
2 · · ·x∗k and {x1, x2, . . . , xk }∗ are not

necessarily identical. First, we consider the language {x1, x2, . . . , xk }∗.
In 1994, Yu, Zhuang, and Salomaa [174] showed that if S can be accepted by a

DFA of n states, then there exists a DFA of at most 2n−1 +2n−2 states that accepts
S∗, and that bound is tight when n ≥ 2 (for the latter result, also see Maslov [107]).
In the notation of the measures defined in §2.2, this translates into

S = sc(S∗) ≤ 2sc(S)−1 + 2sc(S)−2. (3.3)

79

ONMLHIJK1
0,1

,,ONMLHIJK2
0,1

³³ONMLHIJK0GF
//

@GFED1
ÂÂ?

??

0

44

ttWVUTPQRSONMLHIJKn–1
0,1

VV

0,1
ll

Figure 3.1: Example for the bound 2n−1 + 2n−2 on star operator

WVUTPQRS0GF
//

0,2
//

@GF ECD
1

ÄÄ

WVUTPQRS1
0,1

//

@GA BCD__
WVUTPQRS2

0,1,2
// //

@GA BCD

0,1
// WVUTPQRSONMLHIJKn–3

0,1,2
// WVUTPQRSONMLHIJKn–2

0,1
//

@GA BCD
2

__

WVUTPQRSn–1

@GF ECD
0,1,2

ÄÄ

WVUTPQRS0GF
// 0 //

@GF ECD
1

ÄÄ

@GA BCD__
WVUTPQRS1

0,1,2
//WVUTPQRS2

0,1
//

@GA BCD__
//

0,1
//

@GA BCD
WVUTPQRSONMLHIJKn–3

0,1,2
// WVUTPQRSONMLHIJKn–2

0,1
//

@GA BCD
2

__

WVUTPQRSn–1

@GF ECD
0,1,2

ÄÄ

Figure 3.2: Examples for the bound 2n−3 +2n−4 on star operator of finite languages

If S is a finite language, Câmpeanu, Culik, Salomaa, and Yu [29, 28] showed
that 2n−3 + 2n−4 states is enough for n ≥ 4 and that bound is tight when the
alphabet size is ≥ 3. That result can be translated into

S = sc(S∗) ≤ 2sc(S)−3 + 2sc(S)−4. (3.4)

In 2003, Holzer and Kutrib [70] examined the nondeterministic counterpart of
this problem and showed that if S can be accepted by an NFA of n states, n ≥ 3,
then there exists an NFA of at most n + 1 states accepting S∗ and that bound is
tight. Furthermore, when S is finite and n ≥ 2, then an NFA of n−1 states suffices
and that bound is also tight. It is equivalent to say respectively

N = nsc(S∗) ≤ nsc(S) + 1, and N = nsc(S∗) ≤ nsc(S)− 1. (3.5)

80

By the subset construction, we have

S = sc(S∗) ≤ 2nsc(S)+1, and S = sc(S∗) ≤ 2nsc(S)−1. (3.6)

Câmpeanu and Ho [27] gave in 2004 tight bounds for the state complexity of the
Kleene-star of a finite language in the input measure of the length of the longest
words in the input.

Shallit gave the following bounds in our papers [83, 84] with Shallit and Kao.

Proposition 3.2.4. [83, 84] Let x1, x2, . . . , xk be k words over the alphabet Σ as
the input, and let µ =

∑
1≤i≤k |xi| be the total number of symbols in the input.

(a) N = nsc
({x1, x2, . . . , xk }∗

) ≤ µ− k + 1 = O(µ).

(b) S = sc
({x1, x2, . . . , xk }∗

) ≤ 2µ−k+1 = O(2µ).

(c) If no xi is a prefix of any other xj, then S = sc
({x1, x2, . . . , xk }∗

) ≤ µ−k+2.

Proof. (a) We can construct an NFA as in Figure 3.3, where each cycle of states

x1

££

p0r2s3t4u5v6x8y9{;}=Ä?
¢A

GFED@ABC?>=<89:;q0GF
//

CC

0p 2r 3s 4t 5u 6v 8x 9y ;{ =} ?Ä
A¢
B£

++3s 2r 2r 1q 0p 0p /o .n .n -m ,l ,l +k

¾¾

.n -m +k *j)i (h &f %e #c !a Â_
À]
¿\

xikk s3r2r2q1p0p0o/n.n.m-l,l,k+

xk

\\

n.m-k+j*i)h(f&e%c#a!_Â
]À

Figure 3.3: An NFA accepting {x1, x2, . . . , xk }∗

starts from a common initial state q0, accepts one of the words x1, x2, . . . , xk, and
returns to q0. The NFA has at most µ− k + 1 states.

(b) Change the NFA in part (a) into a DFA by applying the subset construction.

(c) Add one “dead” state that absorbs all unspecified transitions in the NFA
given in part (a), and combine those cycles that present words with a common
prefix by using a shared path of states to read that prefix. If no xi is a prefix of
any other xj, then by doing so, the NFA in part (a) becomes a DFA.

Now we consider the upper bound on sc(S∗) in the measure ν = maxw∈S |w |.
Theorem 3.2.5. [83, 84] Let x1, x2, . . . , xk be k words over the alphabet Σ as the
input, and ν = max1≤i≤k |xi | be the length of the longest words. Then

S = sc
({x1, x2, . . . , xk }∗

) ≤ 2

2 |Σ| − 1
(2ν |Σ|ν − 1) = O(2ν |Σ|ν). (3.7)

81

WVUTPQRSONMLHIJK.00.
0 //

1

ÂÂ>
>>

>>
>>

>>
>>

>>
>>

>>
>>

>>
>

WVUTPQRSONMLHIJK0.0.
0 //

1

''OOOOOOOOOOOOOOOO
WVUTPQRSONMLHIJK.0.0.ABC

__

FED
0

1

²²

ONMLHIJK.0
1

//

0

=={{{{{{{{{{ WVUTPQRSONMLHIJK.01.

1

ÂÂ

0

ÂÂ>
>>

>>
>>

>>
>>

>>
>>

>>
>>

>>
>

WVUTPQRSONMLHIJK0.1.

1

½½4
44

44
44

44
44

44
44

44
44

44
44

44
44

44
4 0

»»

WVUTPQRSONMLHIJK.0.1.

0

ªª
1

~~

ONMLHIJKGFED@ABC.
GF

//

0

OO

1

²²

WVUTPQRS0.10

wwoooooooooooooooo
1

ÄÄ¡¡
¡¡

¡¡
¡¡

¡¡
¡¡

¡¡
¡¡

¡¡
¡¡

¡¡

ONMLHIJK.1
0 //

1
!!C

CC
CC

CC
CC

C
WVUTPQRSONMLHIJK.10.

1

??¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡0

??

WVUTPQRSONMLHIJK1.0.
1

FF

0

DD
WVUTPQRSONMLHIJK.1.0.

1

LL

0

``

WVUTPQRSONMLHIJK.11.
1

//0

77oooooooooooooooo WVUTPQRSONMLHIJK1.1.
1

//

0

77oooooooooooooooo WVUTPQRSONMLHIJK.1.1.

0

OO

ABC
__

FED
1

Figure 3.4: The DFA accepts (Σ2 ∪ Σ3 \ {001})∗

Proof. Let S = {x1, x2, . . . , xk }. The idea is to create a DFA M = (Q, Σ, δ, q0, F)
accepting {x1, x2, . . . , xk }∗, which keeps track of the last ν − 1 symbols scanned,
together with a set of ν signals, which represent whether a factorization of the input
word into words in the basis S could occur at the position after each of the last ν
symbols scanned. More formally,

Q =
{

[w, T] : w ∈ Σ∗, |w | < ν, T ⊆ { 0, 1, . . . , |w | } }
(3.8)

q0 = [ε, { 0 }], (3.9)

F =
{

[x, T] : 0 ∈ T
}
, and (3.10)

δ([x, T], a) = [xa, U], if |x | < ν − 1, where (3.11)

U =

{{
0, ν + 1 : ν ∈ T

}
, if x[ν − i.. |x |]a ∈ S for some i ∈ T ;{

ν + 1 : ν ∈ T
}
, otherwise;

δ([x, T], a) = [x[2 . . . |x |]a, U], if |x | = ν − 1, where (3.12)

U =

{{
0, ν + 1 : ν ∈ T

} \ { ν } , if x[ν − i.. |x |]a ∈ S for some i ∈ T ;{
ν + 1 : ν ∈ t

} \ { ν } , otherwise.

Then L(M) = S∗ and the number of states of M is

∑
0≤i<n

|Σ|i 2i+1 =
2

2 |Σ| − 1
(2ν |Σ|ν − 1) = O(2ν |Σ|ν). (3.13)

Shallit gave in our papers [83, 84] with Shallit and Kao a construction of a family
of finite languages L over the binary alphabet such that sc(L∗) is exponential for

82

each L, where the number of words in L is linear in the measure nsc(L) and also
in ν = maxw∈L |w |.

Let t ≥ 2 be an integer, and define words as follows:

y = 01t−10, xi = 1t−i−101i+1, 0 ≤ i ≤ t− 2 . (3.14)

Let St = { 0, x0, x1, . . . , xt−2, y }. For example,

S6 := { 0, 1111101, 1111011, 1110111, 1101111, 1011111, 0111110 } . (3.15)

Theorem 3.2.6. [83, 84] S∗t has state complexity 3t2t−2 + 2t−1.

Corollary 3.2.7. [83, 84] As usual, let κ be the number of words, ν be the length
of the longest words, and µ be the total number of symbols in the finite language
as input. There exists a family of word sequences x1, x2, . . . , xκ, where ν = κ, such
that the state complexity S = sc

({x1, x2, . . . , xκ }∗
)

satisfies

S = 2Θ(κ), S = 2Θ(ν), and S = 2Θ(
√

µ). (3.16)

State complexity of x∗1x
∗
2 · · ·x∗k

Now we will examine the state complexity of x∗1x
∗
2 · · ·x∗k. To avoid confusion, the

state complexity and nondeterministic state complexity of x∗1x
∗
2 · · ·x∗k, as output

measures, are written as S ′ and N ′ respectively.

Proposition 3.2.8. Let x1, x2, . . . , xk be k words over the alphabet Σ as the input,
and let µ =

∑
1≤i≤k |xi| be the total number of symbols in the input.

(a) N ′ = nsc(x∗1x
∗
2 · · ·x∗k) ≤ µ = O(µ).

(b) S ′ = sc(x∗1x
∗
2 · · ·x∗k) ≤ 2µ = O(2µ).

(c) If no xi is a prefix of any other xj, then S = sc(x∗1x
∗
2 · · ·x∗k) ≤ µ + 1.

Proof. (a) We can construct an NFA-ε as in Figure 3.5, where each cycle of states

x1

££

p0q1s3t4u5v6w7y9{;|<~>
¡@

x2

££

p0r2s3t4u5v6x8y9{;}=Ä?
¢A

xk

££

p0r2s3t4u5v6x8y9{;}=Ä?
¢A

GFED@ABCq0GF
//

CC

0p 1q 3s 4t 5u 6v 7w 9y ;{ <| >~
@¡
B£

ε
// GFED@ABCq1

CC

0p 2r 3s 4t 5u 6v 8x 9y ;{ =} ?Ä
A¢
B£

ε
// //

ε
// GFED@ABC?>=<89:;qk

CC

0p 2r 3s 4t 5u 6v 8x 9y ;{ =} ?Ä
A¢
B£

Figure 3.5: An NFA accepting x∗1x
∗
2 · · ·x∗k

accepts one x∗i , and qk is the only final state. Converting the NFA-ε into an NFA,
the number of states will not change, which is µ.

83

(b) Change the NFA in part (a) into a DFA by applying the subset construction.

(c) Add a “dead” state absorbing all unspecified transitions in the NFA-ε given
in part (a), and omit all ε transitions and let δ be the function for the remaining
transitions. If no xi is a prefix of any other xj, then there is a common prefix
vij ∈ Σ∗ for each pair of words xi and xj such that xi = vijayi, xj = vijbyj, where
a 6= b, a, b ∈ Σ. Without loss of generality, we assume i < j. Then add a new
transition from the state δ(qi, v) to δ(qj, vb) labeled by b. By doing so, the NFA-ε
becomes a DFA.

Using similar ideas from the results on {x1, x2, . . . , xk }∗, Kao created an ex-
ample achieving exponential state complexity S ′ = sc(x∗1x

∗
2 · · ·x∗k), in our pa-

pers [83, 84] with Shallit and Kao.

Theorem 3.2.9. [83, 84] As before, define y = 01t−10, xi = 1t−i−101i+1, 0 ≤ i ≤
t−2. Let L = (0∗x∗0x

∗
1 · · ·x∗t−2y

∗)e where e = (t+1)(t−2)/2+2t. Then sc(L) ≥ 2t−2.

Corollary 3.2.10. [83, 84] As usual, let κ be the number of words, ν be the length
of the longest words, and µ be the total number of symbols in the finite language
as input. There exists a family of word sequences x1, x2, . . . , xκ, where κ = Θ(ν2),
such that the state complexity S ′ = sc(x∗1x

∗
2 · · ·x∗κ) satisfies

S ′ = 2Ω(
√

κ), S ′ = 2Ω(ν), and S ′ = 2Ω(4
√

µ). (3.17)

State complexity for two words

Kao and Shallit also discussed the state complexity in the case κ = 2 in our pa-
pers [83, 84]. Here g(a, b) is the Frobenius number of a and b.

Theorem 3.2.11. [83, 84] Let x1, x2 ∈ Σ+. Then

sc({x1, x2 }∗) ≤
{
|x1|+ |x2|, if x1x2 6= x2x1;

d · g (|x1|/d, |x2|/d) + (d + 2), if x1x2 = x2x1,
(3.18)

where d = gcd(|x1|, |x2|). Furthermore, this bound is tight.

Theorem 3.2.12. [83, 84] Let x1, x2 ∈ Σ+. Then

sc(x∗1x
∗
2) ≤

{
|x1|+ 2|x2|, if x1x2 6= x2x1;

d · g (|x1|/d, |x2|/d) + (d + 2), if x1x2 = x2x1,
(3.19)

where d = gcd(|x1|, |x2|).

In this section, we discussed the state complexity S = sc(L) (or S ′ = sc(L′))
and nondeterministic state complexity N = nsc(L) (or N ′ = nsc(L′)) of a gen-
erated language L = {x1, x2, . . . , xk }∗ (or with fixed order as L′ = x∗1x

∗
2 · · ·x∗k).

84

Since the FPFM is about the words not in L, a natural question is to discuss the
state complexity S̄ (or S̄ ′) and nondeterministic state complexity N̄ (or N̄ ′) of the
complement of L (or L′). Since the complement operation does not change the
number of states of a DFA, we have

S̄ = S, S̄ ′ = S ′, (3.20)

and the bounds on the state complexity of L (or L′) are also bounds on the state
complexity of the complement of L (or L′). Every DFA is also an NFA, so any
upper bound on the state complexity of L (or L′) is also an upper bound on the
nondeterministic state complexity of the complement of L (or L′) given by

N̄ ≤ S, N̄ ′ ≤ S ′. (3.21)

3.2.2 Input in other forms

Representation by complement

As we saw in the 2FPFM regarding words of lengths m and n, the number of words
must be exponential in n in order to generate a co-finite language, and each of the
bases S is essentially in the form

S = Σm ∪ Σn \ T (3.22)

for some T . So instead of enumerating all words in S, one easy way to represent the
basis S in an instance of the 2FPFM is to list the words in T instead and give the
two integers m,n (since the information about m is missing from the set T). More
generally, if S is a set of words of lengths c1, c2, . . . , ck, then instead of enumerating
S, the complement defined by

T = (Σc1 ∪ Σc2 ∪ · · · ∪ Σck) \ S (3.23)

may be of smaller size, and thus the basis can be represented by T and the integers
c1, c2, . . . , ck. Then it is possible that T may be more succinctly described than S
and provides an entirely different family of measures. In this way, we can reduce
the input size by giving the complement of the basis in some set.

Problem 3.2.13 (the FPFM with complement input). Given a set S of words
of length c1, c2, . . . , ck over Σ such that L = ((Σc1 ∪ Σc2 ∪ · · · ∪ Σck) \ S)∗ is
co-finite, then what is the longest word(s) not in L?

In general, llw
(
S∗

)
is not bounded in |S |, which will be discussed in a later

section as shown in Theorem 3.3.4. In the 2FPFM, however, it is bounded. For
a basis S of words of lengths m,n that generates a co-finite language, we have
L = llw

(
S∗

) ≤ g(m,m |Σ|n−m + n−m) and |S | > |Σ|m + |Σ|n /n. Hence there is
a trivial linear upper bound on L in the size of S as

L < g

(
m,mn

|S |
|Σ|m −mn + n−m

)
, (3.24)

85

which is not tight. There is a tight linear bound on L in the size of T = Σm ∪ Σn\S
as

L ≤ g
(
m,n + m min

{ |Σ|n−m − 1, |T |})
, (3.25)

which is an immediate result from the following proposition.

Proposition 3.2.14. Let S be a set of words of lengths m and n over the alphabet
Σ, where 1 < m < n, and S∗ is co-finite. Then llw

(
S∗

) ∈ κ, where

κ =
{

g(m, l) : l = n, n+m, . . . , n+im, . . . , n+m min
{ |Σ|n−m − 1, |T |} }

, (3.26)

and T = Σm ∪ Σn \ S.

Proof. By the equivalence of the 2FPFM and word graph, the longest words not
in S∗ is of length g(m, l), where l is the longest path in the word graph G

(m,n)
S .

Since each arc in G
(m,n)
S corresponds to a word of length n that is not in S, the size

of T is ≥ l. On the other hand, there are in total |Σ|n−m vertices in G
(m,n)
S . So

l ≤ |Σ|n−m− 1. Otherwise there is a cycle in G
(m,n)
S and S∗ cannot be co-finite.

Representation by regular expressions

There are also other compact ways to describe the basis, for example, by regular
expressions. We know that the length of a regular expression for the finite language
S = {x1, x2, . . . , xk } is bounded as follows:

alph(S) ≤ µ =
∑

1≤i≤k

|xi | , (3.27)

and thus a regular expression is at least as succinct as simply enumerating the
finite language S, where alph(S) is the smallest number of alphabetic symbols in
a regular expression for S. Although there is no standard definition for the length
of a regular expression, Ellul, Krawetz, Shallit, and Wang [41] showed in 2004 that
some common definitions on the length of a regular expression are bounded in each
other only up to a constant factor.

In 1980, Leiss [94] gave an algorithm (also see Glushkov [54]), by which an NFA
with ≤ alph(S) + 1 states can be built to accept S. In other words,

nsc(S) ≤ alph(S) + 1, sc(S) ≤ 2alph(S) + 1, (3.28)

and thus an NFA is at least as succinct as a regular expression in the sense of
representing the basis S.

In addition, if S is finite, we know that llw (S) must be bounded in the number
of alphabetic symbols (or the number of states) of a regular expression (or a DFA
or an NFA) for S, and thus for the finite language S = {x1, x2, . . . , xk },
ν = max

1≤i≤k
|xi | ≤ alph(S), ν = max

1≤i≤k
|xi | < nsc(S), ν = max

1≤i≤k
|xi | < sc(S). (3.29)

86

Therefore, some of the bounds in previous chapters in other measures can easily
be converted into bounds in alph(S). For example, by L < 2nsc(S)−1, it follows

L = llw
(
S∗

)
< 2alph(S). (3.30)

Representation by automata

The case of input being represented by DFAs and NFAs are discussed in §3.2.1. In
Chapter 4, I will show how to construct a family of examples in the 2FPFM, in
which llw

(
S∗

)
is exponential in llw (S). In other words, when the alphabet is of

size ≥ 2, the following bound

L = O
(|Σ|(1+log|Σ| 2)ν

)
(3.31)

is nearly tight in the sense there are examples such that

L̆ = Θ(|Σ|ν), (3.32)

where the “breve” sign means the bound is for some particular family of examples.
Based on the example, Shallit showed that an NFA with O(ν2) states and a regular
expression of length O(ν2 log ν) can be constructed such that the longest words as
solutions to the instance of the 2FPFM can be exponential. In other words,

L = O
(
2nsc(S)

)
, L̆ = Θ

(|Σ|
√

nsc(S))
, L = O

(
2alph(S)

)
, L̆ = Θ

(|Σ| 2+ε
√

alph(S))
.

(3.33)
Details will be given in Chapter 4.

Now we consider pushdown automata (PDA). A deterministic pushdown au-
tomata (DPDA) can be effectively constructed to accept each of the bases in my
exponential examples in the 2FPFM, and thus we know that the upper bound on
L must be at least exponential in the size of the DPDA accepting the basis. Never-
theless, so far, an upper bound has not been obtained yet, nor do we know whether
it is bounded. For the same reason, the upper bound on L in the measure of the
size of the PDA accepting the basis is at least exponential.

Now we consider linear bounded automata (LBA). For input being represented
by a LBA (or more generally a TM), L is unbounded in the size of the automaton.
In order to show that, we need an uncomputable function.

Problem 3.2.15 (Busy beaver problem). [127] Let M be a deterministic Turing
machine of n + 1 states with a single doubly-infinite tape, where the tape alphabet
is { 1, B } and B is the blank symbol. Initially, the tape is completely blank. At each
step, the tape head of M must move either right or left. There is a single halting
state that has no out-going transitions. Then what is the maximum number of 1’s
on the tape when M halts, say Σ(n), and what is the maximum number of moves
M made when M halts, say S(n)?

87

The busy beaver problem was introduced by Rado in 1962. Neither the function
Σ(n) nor the function S(n) are computable functions [127].

Theorem 3.2.16. There is a family of LBAs such that for each M , the language
L = L(M) generates a co-finite language L∗ =

(
L(M)

)∗
in Σ∗ and llw

(
L∗

)
is not

bounded by any computable function in the number of states of M .

Proof. Construct the LBA Mk as follows: on input x, it simulates a k-state busy
beaver Turing machine Nk on a second track for k ≥ 2. After each move of the Nk,
the machine Mk then erases a letter of the input. Before Nk halts, if at any point
the input tape becomes full of blank symbols, then we reject. If the simulated Nk

halts, then compare the number of remaining letters of the input and the number
of blanks on the input tape. If the former is less than the latter, then accept;
otherwise, reject. By the construction, at the i-th step, the simulated busy beaver
TM can move its head at most to the right and to the left i squares away. So, if
Mk accepts an input, then the simulation of the k-state busy beaver TM will not
move past the endmarkers of the LBA.

By the construction, the machine Mk has k + O(1) states and accepts all words
w of length S(k) ≤ |w | < 2S(k), where S is Rado’s uncomputable function given
above. Since S(k) ≥ S(2) = 6 for k ≥ 2 (see [100]), the basis L(Mk) generates a
co-finite language, where the longest words not in the generated language are of
length S(k) − 1 by Eq. (1.72) and S(k) − 1 is not bounded by any computable
function.

Representation by grammar

For input represented by a CSG (or more generally an unrestricted grammar),
the length of the longest words not in a generated language is unbounded by any
computable function in the number of symbols in the productions of the grammar.
This result is an immediate corollary of Theorem 3.2.16.

Corollary 3.2.17. There is a family of CSGs such that for each G, the language
L = L(G) generates a co-finite language L∗ in Σ∗ and llw

(
L∗

)
is unbounded by any

computable function in the number of symbols in the productions of G.

Proof. By the equivalence of CSGs and LBAs [91, 89], there is a CSG G that
represents each of the languages L(Mk) \ { ε } = L(Mk), where Mk is the machine
constructed in the proof of Theorem 3.2.16 and the number of symbols in the
productions of G is linear in the number of transition plus the number of states of
Mk. By Theorem 3.2.16, the length of the longest words not in L(G)∗ is unbounded
by any computable function in the number of states of Mk, while the number of
symbols in the productions of G is quadratic in the number of states of Mk.

The construction using the busy beaver TM in the previous discussion is due to
Shallit [154].

88

3.2.3 Output in other forms

As usual, let S be a set of words over the alphabet Σ. The cases of output being
represented by DFAs and NFAs are discussed in §3.2.1. As shown in Table 2.5 on
page 39, some of the measures are bounded in each other.

Let S be the number of states in the minimal DFA accepting S∗, N be the
minimal number of states of an NFA accepting S∗, R be the minimal number of
symbols in a regular expression for S∗, and S̄, N̄ , R̄ be those for the complement
of S∗ respectively. Then their relations are

N ≤ S ≤ 2N , N̄ ≤ S̄ ≤ 2N̄ , (3.34)

N − 1 ≤ R ≤ |Σ| N 4N , N̄ − 1 ≤ R̄ ≤ |Σ| N̄ 4N̄ , (3.35)

where the upper bound for regular expressions follows from the McNaughton-
Yamada algorithm [110].

Suppose S∗ is co-finite, and let L be the length of the longest words not in
S∗. By Proposition 2.3.1, a relation between L and the state complexity of S∗ (or
complement of S∗) is given by

L < S = S̄. (3.36)

Proposition 3.2.18. Let S be a set of words over Σ such that S∗ is co-finite., and
L be the complement of S∗.

(a) llw (L) ≤ nsc(L);

(b) llw (L) ≤ alph(L).

Proof. Let M be any NFA accepting L and R be any regular expression for L.

(1) Similar to the proof of Proposition 2.3.1. We prove the result by contra-
diction. Assume w ∈ S∗ = L(M) and |w | ≥ n, the number of states in the NFA
M . Then M accepts w and M visits n + 1 states to accept w. There must be one
state that M visits at least twice. Suppose δ(q0, u) = δ(q0, uv), where v 6= ε, and
w = uvz. Then M accepts all words uv∗z, which are not in S∗. Then S∗ cannot be
co-finite.

(2) We prove instead that if L(R) is finite, then llw (L(R)) ≤ alph(R), by
induction on the structure of a regular expression R. If R is ε, then llw (L(R)) = 0 ≤
alph(R). If R is a single letter, then llw (L(R)) = 1 ≤ alph(R). If R = R1 + R2, by
induction, llw (L(R)) = max { llw (R1) , llw (R2) } ≤ max { alph(R1), alph(R2) } ≤
alph(R1 + R2). If R = R1R2, then by induction llw (L(R)) = llw (R1) + llw (R2) ≤
alph(R1) + alph(R2) = alph(R1R2). If R = R∗

1, then since L(R) is finite, L(R1)
contains only ε. In this case, llw (L(R)) = 0 ≤ alph(R1). Therefore, llw (L(R)) ≤
alph(R), and thus if S∗ is co-finite, then llw

(
S∗

) ≤ alph(S∗).

89

Then we have additional bounds on L = llw
(
S∗

)
, in the nondeterministic state

complexity of S∗ (and complement of S∗) and in the minimal alphabetic length of
a regular expression for S∗ (and complement of S∗) as follows:

L < N̄ , L ≤ R̄, L < 2N , L < 2(R+1), (3.37)

where the exponential bounds follow from L < S.

As we saw, some measures of the input are more succinct than others in the sense
of considering the bound on L. For example, LBAs and more powerful automata,
CSGs and more powerful grammars are more succinct, since L is unbounded in
those measures. For DPDAs, we know that at least there are examples where L
is exponential in the size of the DPDA accepting the basis. For NFAs and regular
expressions, the bound on L is exponential, and there are examples to achieve
an exponential L. In the same sense, the number of distinct words in the input,
κ = |S |, is succinct, since L is unbounded in κ. The length of the longest words
in the input, ν = maxw∈S |w |, is almost as succinct as NFAs, since there is a tight
exponential bound on L in ν. For DFAs and the total number of symbols in the
input, µ =

∑
w∈S |w |, there is an exponential bound on L, but we do not yet know

whether it is tight.

For different measures of the generated language S∗, most of them provide an
good upper bound on L, except nondeterministic state complexity N = nsc(S∗)
and the minimal alphabetic length of the regular expression R = alph(S∗).

3.3 Variations with different aspects

Let x1, x2, . . . , xk be a basis. Instead of asking for the longest words not in L =
{x1, x2, . . . , xk }∗, there are other topics related to L and factorizations of words
into x1, x2, . . . , xk. For example, what is the number of all words not in L? If L is
co-finite, what is the possible size of k? Can every word be a solution to an instance
of the FPFM with some x1, x2, . . . , xk? For a word w, in how many different ways
can w be factorized into a concatenation of x1, x2, . . . , xk?

3.3.1 Number of words and number of symbols

Let S be a set of words such that S∗ is co-finite. The properties of the longest
words not in S∗ are discussed in Chapter 2. There are two other topics, one of
which concerns all words not in S∗ and the other concerns all words in S. The
number of these words and total number of symbols contained in those words will
be discussed in this section.

90

All words not in a generated co-finite language

Let x1, x2, . . . , xk be k integers. Recall that 〈x1, x2, . . . , xk〉 is the set of all non-
negative integers that can be written as non-negative integer linear combinations
of the given integers x1, x2, . . . , xk. As we saw in the integer FP, the number
of all positive integers not in 〈x1, x2, . . . , xk〉, denoted by h(x1, x2, . . . , xk), is an
interesting topic and the relation to the Frobenius number is given by Eq. (1.56)
as follows:

1

2

(
g(x1, x2, . . . , xk) + 1

) ≤ h(x1, x2, . . . , xk) ≤ g(x1, x2, . . . , xk). (3.38)

Now let {x1, x2, . . . , xk } be k words. The FPFM, as discussed in Chapter 2, is to ask
for the longest words that are not in {x1, . . . , xk }∗. The analog of h(x1, x2, . . . , xk)
in the setting of a free monoid is the following problem, which also exhibits different
properties from its integer counterpart as the FPFM does.

Problem 3.3.1 (the FPFM, all words). Given k non-empty words x1, x2, . . . , xk ∈
Σ∗ such that there are only finitely many words that cannot be written as concate-
nations of words in {x1, x2, . . . , xk }, then what are those words?

Let S = {x1, x2, . . . , xk } such that S∗ is co-finite. Two measures can be used
to describe those words not in S∗. One is M =

∣∣ S∗
∣∣, the number of words not in

S∗, and the other is W =
∑

w∈S∗ |w |, the total number of symbols of words not in
S∗. They are generalizations of the corresponding problems for integers, or over a
unary alphabet

Mo = h(|x1 | , |x2 | , . . . , |xk |) = O(ν2), (3.39)

Wo =
∑ {

i ∈ N : i 6∈ 〈|x1 | , |x2 | , . . . , |xk |〉
}

= O(ν4), (3.40)

where ν = max1≤i≤k |xi | is the length of the longest x’s.

For larger alphabets Σ, M and W are exponentially bounded in L = llw
(
S∗

)
.

Since S∗ ⊆ Σ ∪ Σ2 ∪ · · · ∪ ΣL, it follows that

M≤
∑

1≤i≤L
|Σ|i =

|Σ|L+1 − |Σ|
|Σ| − 1

= O(|Σ|L), (3.41)

W ≤
∑

1≤i≤L
i |Σ|i =

L |Σ|L+2 − (L+ 1) |Σ|L+1 + |Σ|
(|Σ| − 1)2

= O(L |Σ|L), (3.42)

both of which can be achieved. Since L = O(|Σ|ν), where ν = max1≤i≤k |xi |, then

M = |Σ|O(|Σ|ν) , W = |Σ|O(|Σ|ν) , (3.43)

both of which are doubly-exponential in ν. More precisely, the following corollary
is a direct result of Corollary 2.3.2.

91

Corollary 3.3.2. [83, 84] Let S = {x1, x2, . . . , xk }. Suppose |xi | ≤ ν for all i,
and S∗ is co-finite. Then the number of words not in S∗ is

M≤ |Σ|q − 1

|Σ| − 1
, (3.44)

where q = 2
2|Σ|−1

(2ν |Σ|ν − 1).

I will show in the next chapter that there are examples in which both the
number M of words not in a generated co-finite language, and the total number W
of symbols of such words, can be doubly-exponential in ν, the length of the longest
words in the given basis.

Number of words and symbols in the basis

Instead of considering the generated language, we can also consider the basis.

Problem 3.3.3 (the FPFM, the basis). Given a set S of non-empty words of lengths
c1, c2, . . . , ck over the alphabet Σ such that there are only finitely many words that
cannot be written as concatenations of words in S, then what is the size of S?

As usual, let ν = max { c1, c2, . . . , ck } be the longest length.

Over the unary alphabet, then |S | ≤ ν and the problem becomes less interest-
ing. Over the unary alphabet, either k = 1 and |S | ≥ 1 or k ≥ 2 and |S | ≥ 2 holds,
and the bounds are tight since there are two integers c1, c2 such that gcd(c1, c2) = 1.

Over a larger alphabet, |S | can be exponential in ν. Over larger alphabets,
obviously there is an upper bound on the size of S, even when S∗ is not co-finite,
given by

|S | ≤ |Σ|c1 + |Σ|c2 + · · ·+ |Σ|ck = O(|Σ|n),
∑
w∈S

|w | = O(n |Σ|n), (3.45)

both of which are tight. When k = 1, by Proposition 2.4.1, we have c1 = 1 and the
equation

|S | =
∑
w∈S

|w | = |Σ| (3.46)

holds. When k = 2, the problem is discussed in Chapter 2 in the 2FPFM, the
Frobenius problem in a free monoid with bases composed of words of two distinct
lengths. As we saw in the 2FPFM, if S is a set of words of lengths c1, c2 and S∗ is
co-finite, then by Theorem 2.6.23,

|S | > |Σ|c1 +
1

c2

|Σ|c2 ,
∑
w∈S

|w | > c1 |Σ|c1 + |Σ|c2 , (3.47)

where we suppose c1 < c2. In other words, when the basis consists of words of two
lengths, an exponentially large basis is required to generate a co-finite language.

92

For larger k ≥ 3, is it necessary for a basis to be exponential in ν in order to
generate a co-finite language? The answer is “no”. There are examples such that
the size of each basis is linear in ν and each basis still generates a co-finite language.

Kao gave in 2006 the following example, which shows the existence of a linear-
size basis. Over the binary alphabet Σ = { 0, 1 }, let

Uk =
{
1, 00, 01, 000, 010, 0010, 0110, . . . , 001k−30, 01k−20

}
, (3.48)

and Vk = Uk ∪
{
1k−20, 1k−10

}
for k ≥ 3. Then V ∗

k is co-finite, and one can verify
by induction that

Σ∗ \ V ∗
k =

{
0, 10, 110, . . . , 1k−30

}
. (3.49)

The basis Vk is minimal in the sense that any proper subset of Vk cannot generate
a co-finite language in { 0, 1 }∗. The size of Vk is 2k + 1, which is linear in ν =
llw (Vk) = k. In addition, the total number of symbols in Vk, the alphabetic length
of a shortest regular expression for Vk, and the (nondeterministic) state complexity
of Vk are all polynomial in ν.

I will show in the next section an even better example of a basis generating a
co-finite language, where the size of the basis is constant in ν and thus the total
number of symbols of all words in the basis is ν plus a constant.

3.3.2 Coverage of words as solutions

Given any word w over alphabet Σ, is there a basis S such that w is one of the
longest words not in the generated language S∗, or is there a basis S such that
w is the unique longest word not in the generated language S∗? For the integer
FP, we saw in Theorem 1.2.16 that any positive integer n is a Frobenius number
n = g(x1, x2, x3) for some positive integers x1, x2, x3. So over the unary alphabet,
any word can be the unique longest word not in a language generated by three
words.

Over larger alphabets when |Σ| ≥ 2, we first limit the number of words in the
basis S by |S | ≤ k for some constant k. Then at least for every positive odd integer
l, there is a basis S of size k such that S∗ is co-finite and l = llw

(
S∗

)
.

Theorem 3.3.4. Let Σ be an alphabet. There is an integer k such that every
positive odd integer l is the length of the longest words not in a generated co-finite
language S∗ in Σ∗, where the basis S is of cardinality k.

Proof. Let k = |Σ|2 + 2 |Σ| − 1. We define

Sl =
(
Σ \ { 0 }) ∪ Σ2 ∪ 0

(
Σ \ { 0 })

0 ∪ {
0l+2

}
(3.50)

for odd positive integers l. Then Sl is of cardinality k. Since Σ2 ⊆ Sl, any word of
even length is in S∗l . Consider a word w = a1a2 · · · an of odd length. If ai 6= 0 for
some odd integer i, then

w = (a1a2) · · · (ai−2ai−1)ai(ai+1ai+2) · · · (an−1an) ∈ S∗l , (3.51)

93

since Σ \ { 0 } ⊆ Sl. Now we assume ai = 0 for all odd integers 1 ≤ i ≤ n. If ai 6= 0

for some even integer i, then

w = (a1a2) · · · (ai−3ai−2)(ai−1aiai+1)(ai+2ai+3) · · · (an−1an) ∈ S∗l , (3.52)

since 0
(
Σ \ { 0 })

0 ⊆ Sl. So all words not in S∗l are powers of 0. Since

N \ 〈2, l + 2〉 = { 1, 3, 5, . . . , l } , (3.53)

then S∗l is co-finite and S∗l = Σ∗ \ {
0, 03, 05, . . . , 0l

}
, where llw

(
S∗l

)
= l.

Theorem 3.3.4 shows that using a fixed number of words, one can generate a
co-finite language such that the longest word can be arbitrarily long. Hence the
measure L = llw

(
S∗

)
is unbounded in the measure |S |. Theorem 3.3.4 also shows

that, for a fixed alphabet, the size of a basis that generates a co-finite language can
be a constant in ν = maxw∈S |w |, and thus the following bounds are tight for a
fixed alphabet

|S | = O(|Σ|ν), |S | = Ω(1). (3.54)

The constructed Sl is composed of words of only four lengths and the total number
of symbols in Sl is ν + O(1). That shows the exponential lower bounds for the
2FPFM, namely |S | > |Σ|m + |Σ|n /n and

∑
w∈S |w | > m |Σ|m + |Σ|n, where m,n

are the two lengths of words in the 2FPFM, cannot be generalized in the general
FPFM.

Now, we limit the number of different lengths of words in the basis. The follow-
ing proposition is a direct consequence of the integer FP.

Proposition 3.3.5. For any word w over the alphabet Σ,

(a) there is a basis S of words of three lengths such that S∗ is co-finite and w is
one of the longest words not in S∗;

(b) there is a basis S ′ of words of four lengths such that S∗ is co-finite and w is
the unique longest word not in S∗.

Proof. Let l = |w |. By Theorem 1.2.16, there are three integers c1, c2, c3 such that
g(c1, c2, c3) = l. Let

S = Σc1 ∪ Σc2 ∪ Σc3 . (3.55)

Then S∗ is co-finite, and w is one of the longest words not in S∗, where S is
composed of words of three lengths c1, c2, c3. Furthermore, let

S ′ = Σc1 ∪ Σc2 ∪ Σc3 ∪ Σl \ {w } . (3.56)

Then S ′∗ is co-finite, and w is the unique longest word not in S ′∗, where S ′ is
composed of words of four lengths c1, c2, c3, l.

94

Now we consider another type of problem: what fraction of bases generate co-
finite languages? First, we consider sets consisting of words of lengths m and n,
0 < m < n < 2m. By Lemma 2.6.21, we have |Σn \ S | ≥ 1/2(|Σ|n − |Σ|m) and
there are bases that achieve equality, which will be presented in Chapter 4. Suppose
S is one such basis. Then any set T such that S ⊆ T ⊆ Σm ∪ Σn also generates
a co-finite language. There are in total 2

1
2
(|Σ|n+|Σ|m) such T , while the number of

sets consisting of words of lengths m and n is 2|Σ|
n+|Σ|m . Now, we consider sets

consisting of words of lengths 1, 2, . . . , l for an odd integer l. By Theorem 3.3.4, the
set Sl−2 =

(
Σ\{ 0 }) ∪ Σ2 ∪ 0

(
Σ\{ 0 })

0 ∪ {
0l

}
generates a co-finite language.

Then any set T such that Sl−2 ⊆ T ⊆ ⋃l
i=1 Σi generates a co-finite language. Then

at least
1

2|Σ|
2+2|Σ|−1

(3.57)

of all subsets of
⋃l

i=1 Σi generate co-finite languages.

Now we consider extending a basis S by adding words into S without changing
llw

(
S∗

)
. For the unary alphabet, this problem becomes an integer problem and is

already studied (see §1.2.3). Now we discuss it over a larger alphabet.

Theorem 3.3.6. For any alphabet Σ, |Σ| ≥ 2, and any integer p ∈ N, there are
two sets S, T of words such that |T | ≥ p, for any w ∈ S ∪ T , w 6∈ (S ∪ T \{w })∗,
and llw

(
(S ∪ T)∗

)
= llw

(
S∗

)
.

Proof. Assume |Σ|q > p. Now we consider the 2FPFM with lengths m = q +1, n =
2q + 1. In the word graph Γ(m,n) = (Σn−m, Σn, ψ), there are |Σ|m − |Σ| arcs that
join the vertex 0n−m to other vertices, namely V = 0n−mΣ(Σn−m \ 0n−m). Let
S = Σm ∪ Σn \ V, S ′ = Σm ∪ Σn \ { 0n−11 }. Then the longest paths in both of

the word graph G
(m,n)
S , G

(m,n)
S′ are of length 1, which implies llw

(
S∗

)
= llw

(
S ′∗

)
=

g(m,n + m). Since S ′ ⊆ Σm ∪ Σn and gcd(m,n) = 1, for any w ∈ S ′, we have
w 6∈ (S ′\{w })∗. Then the two sets S and S ′\S satisfy the required conditions.

3.3.3 The number of different factorizations

Let S be a set of words over an alphabet Σ such that S∗ is co-finite. If a word w is
in S∗, then by definition, w can be written as a concatenation of words in S, and
this factorization may not necessarily be unique. Denote by D(w) the number of
different factorizations of w over the given basis S. We say two factorizations of a
word w = x1x2 · · ·xp and w = y1y2 · · · yq are different if p 6= q or p = q and there
exists i, 1 ≤ i ≤ p, such that xi 6= yi.

Problem 3.3.7 (Factorization of words). Given k non-empty words x1, . . . , xk over
Σ, and a word w that can be written as a concatenation of words in {x1, . . . , xk },
then in how many different ways can w be written in that form?

95

In the integer analogue, let x1, x2, . . . , xk be k positive integers. The denumerant
d(n; x1, x2, . . . , xk) is the number of different ways that n can be written as a non-
negative integer linear combination of x1, x2, . . . , xk given by

n = c1x1 + c2x2 + · · ·+ ckxk. (3.58)

As we saw in Eq. (1.67), for fixed basis x1, x2, . . . , xk and as n →∞, the asymptotic
bound is

d(n; x1, x2, . . . , xk) = Θ
(nk−1

x1x2 · · ·xk(k − 1)!

)
= Θ(nk−1), (3.59)

which is polynomial in n.

In the setting of a free monoid, even over a unary alphabet, the result on the
number of different factorizations is different. This property is one of the few cases
where the FPFM differs from the integer FP, even when over the unary alphabet
{ 0 }. For example, although d(11; 3, 5) = 1, as there is a unique partition of 11 in
〈3, 5〉 given by

11 = 2 · 3 + 1 · 5, (3.60)

there are three distinct factorizations of 011 in { 03, 05 }∗ given by

011 = 030305 = 030503 = 050303. (3.61)

The function d(n; x1, x2, . . . , xk) is strongly related to the Euler partition prob-
lem of integers which can be viewed as d(n;N). Similarly, the number D(w) of
different factorizations of w in a given finite basis is obviously less than or equal to
the number of different factorizations of w in the infinite basis Σ∗. Hence it follows
that

D(w) ≤ 2|w |−1 = O(2|w |), (3.62)

which is tight. Let S =
⋃

1≤i≤l Σ
l be the basis. Then for any word of length ≤ l,

the equality in the bound in (3.62) can be attained as D(w) = 2|w |−1.

There is a trivial lower bound

D(w) ≥ 1 (3.63)

(or D(w) ≥ 0 if we do not ask w to be in the generated language S∗), and it is tight.
Let w be one of the shortest words in the basis S. Then the factorization of w is
unique and thus D(w) = 1. In fact, in the trivial case S = Σ, each factorization is
unique due to the freeness of the monoid, and thus D(w) = 1 for all w.

In particular, in the 2FPFM with lengths being m,n, m < n, then the factor-
ization, if any, of each word of length im for 0 < i < n or in for 0 < i < m must be
unique, since im, for 0 < i < n, has a unique expression as a linear combination in
〈m,n〉 given by im = i ·m, and any word of length im has a unique factorization,
where each factor is of length m. The case of words of length in for 0 < i < m is
similar. There is another situation where the factorization is unique, as given by
the following proposition.

96

Proposition 3.3.8. Let S be a set of words over Σ of lengths m and n, m < n, such
that S∗ is co-finite. If w ∈ S∗ with |w | ≡ n (mod m), but either w[1.. |w |−m] 6∈ S∗

or w[m + 1.. |w |] 6∈ S∗, then w has a unique factorization in S.

Proof. Without loss of generality, we prove the prefix result. The suffix result is
similar. Suppose w ∈ S∗ and w[1.. |w | −m] 6∈ S∗.

Since S∗ is co-finite, gcd(m,n) = 1. Let |w | = n + jm. Then j ≥ 0. If j = 0,
then w has a unique factorization given by w = w. Now we assume j > 0. The
prefix w[1..n + (j − 1)m] is not in S∗, so by Proposition 2.4.10 none of the words

w[im + 1..im + n] (3.64)

is in S, for 0 ≤ i ≤ j − 1. Since w is in S∗, there is a factorization of w given by

w = w1w2 · · ·wk. (3.65)

Since m - |w | = n + jm, at least one of the factors is of length n. Consider the
first factor, say wl, that is of length n. Then all the wi, i < l, are of length m.
Comparing lengths leads to wl = w[(l − 1)m + 1..(l − 1)m + n]. Hence l − 1 ≥ j,
and thus |w1w2 · · ·wl | = (l − 1)m + n ≥ jm + n. But we know |w | = n + jm. So
k = l = j + 1, and all factors are of length m except the last factor, which is of
length n. Therefore, w has a unique factorization in S.

3.4 General form of the Frobenius problem of

words

Given x1, x2, . . . , xk such that {x1, x2, . . . , xk }∗ is co-finite, the Frobenius problem
in a free monoid is to find the longest word(s) not in the generated language.

One way to look at the generalized Frobenius problem is that by defining the
appropriate concatenation of words, such that the concatenation-closure is well-
defined, then the concatenation-closure of input words covers all words in some set,
for example Σ∗, over an alphabet Σ, except a “small” number of words, for example,
a finite number. When the concatenation is the normal concatenation, the set to
be covered is Σ∗, and that “small” number is finite, it becomes the FPFM. Here
we will see some other variations on the problem.

3.4.1 Infinite words

First, we will discuss some types of infinite words. The study on words of infinite
length is essential in symbolic dynamics [12, 113] and logic with temporal proper-
ties [24, 114, 109] (refer to the book [122] for a comprehensive reading). Since each
word is of infinite length, the length of the longest words is not interesting, and
thus we will instead focus on the co-finiteness property.

97

An infinite word w is an infinite sequence of letters over an alphabet Σ

w = a1a2a3 · · · (3.66)

and the set of all infinite words is denoted by Σω. To avoid ambiguity, the words
we have studied thus far are called finite words. The set of all finite words and
infinite words over Σ is denoted by Σ∞. Let w1, w2 be two infinite words and u be
a finite word. Then we define w1 · w2 = w1, w1 · u = w1, and u · w1 = uw1.

An infinite word w is periodic if w = uω for some u ∈ Σ∗ and is ultimately
periodic if w = vuω for some u, v ∈ Σ∗.

The set of all words that can be written as concatenations of words in S is, as
usual, denoted by

S∗ =
{

x1x2 · · ·xl : x1, x2, . . . , xl ∈ S, l ≥ 0
}
. (3.67)

Analogously, we define the set of infinite concatenation of words in S as

Sω =
{

x1x2 · · · : x1, x2, . . . ∈ S
}
, (3.68)

and we write S∞ = S∗ ∪ Sω.

The co-finiteness of infinite words over a unary alphabet is not interesting, since
there is only one such word. In this section, we always assume the alphabet contains
at least two letters without further explanation.

Proposition 3.4.1. Let S be a set of words in Σ∞ and T = S ∩ Σ∗. Then S∞

is co-finite in Σ∞ if and only if T ∗ is co-finite in Σ∗. Furthermore, when T ∗ is
co-finite in Σ∗, then T∞ is co-finite in Σ∞.

Proof. ⇒: If S∞ is co-finite, then S∞ ∩ Σ∗ is co-finite in Σ∗. Since any infinite
concatenation of nonempty words gives an infinite word, and any concatenation
involving an infinite word gives an infinite word,

S∞ ∩ Σ∗ = S∗ ∩ Σ∗ = T ∗ ∩ Σ∗ (3.69)

is co-finite in Σ∗. Hence T ∗ is co-finite in Σ∗.

Assume T ∗ is co-finite in Σ∗. We now prove T∞ is co-finite in Σ∞. Let w be
an infinite word, and l = llw (Σ∗ \ T ∗). Write w = u1w1, where |u1 | = l + 1. Then
u1 ∈ T ∗ and w1 is an infinite word. Repeat this procedure for w1, and so forth.
Then w = u1u2 · · · is in T ω, where all the ui, i ≥ 1 are in T ∗. Hence Σω = T ω. In
addition, T ∗ is co-finite in Σ∗, so T∞ is co-finite in Σ∞ = Σ∗ ∪ Σω.

⇐: If T ∗ is co-finite in Σ∗, then we already proved T∞ is co-finite in Σ∞. Hence
S∞ ⊇ T∞ is also co-finite in Σ∞.

98

Therefore, any set S of words that generates a co-finite language in Σ∞ includes
as a subset a set of finite words that generates a co-finite language in Σ∗, and any
set S ′ of finite words that generates a co-finite language in Σ∗ itself generates a
co-finite language in Σ∞. In this sense, the behavior in Σ∞ and the behavior in Σ∗

are equivalent. Furthermore, if S generates a co-finite language in Σ∞, then any
word given by a concatenation of words in S that includes some infinite word must
be an infinite word, and thus can be written as concatenation of words in S ∩ Σ∗.
So in fact S∞ = (S ∩ Σ∗)∞.

Right-infinite words

Now we consider Σω. To avoid confusion with another concept, the left-infinite
word, the type of infinite word discussed so far is also called a right-infinite word .
Let S be a set of words in Σω. Then by definition, Sω = S. Hence, any set of words
in Σω that generates a co-finite language in Σω must itself be co-finite. So in order
to generate a co-finite language in Σω non-trivially, the basis must contain words
in Σ∗. The following corollary follows directly from the proof of Proposition 3.4.1.

Corollary 3.4.2. Let S be a set of words in Σ∗. If S∗ is co-finite in Σ∗, then
Sω = Σω.

Shallit observed the property in the previous corollary and he gave an equivalent
condition in Proposition 3.4.3 to check whether Sω = Σω for a set S of words in Σ∗.
Proposition 3.4.3 can be used to disprove the co-finiteness of S∗ for a particular
basis S of words in Σ∗ in the FPFM. The converse of Corollary 3.4.2 is not true.
For example, over the binary alphabet, let

S = { 00, 01, 1 } . (3.70)

Proposition 3.4.3 implies that Sω = Σω, but S∗ is not co-finite in Σ∗.

Proposition 3.4.3. Let S be a set of words in Σ∗. Then Sω = Σω if and only if
for any word w in Σω there is a finite nonempty prefix of w that is in S.

Proof. ⇒: Suppose Sω = Σω. Then any word w in Σω can be factorized into
nonempty words in S, and the first factor is a nonempty finite prefix of w that is
in S.

⇐: Let w be a word in Σω. Then w = u1w1, where u1 is a nonempty word
in S. Since w1 is again in Σω, w1 = u2w2, where u2 is in S, and so on. Hence
w = u1u2 · · · can be factorized into words in S. So Sω = Σω.

As we saw in Proposition 2.1.3, if a set S of words in Σ∗ generates a co-finite
language in Σ∗, then there is a finite subset of S that generates the same co-finite
language in Σ∗. But for co-finite languages in Σω, this is not true. Consider

S = 0∗1 + 0ω = { 1, 01, 001, 0001, . . . , 00 · · · } . (3.71)

99

Then Sω contains all words in Σω for Σ = { 0, 1 }. For any word w in Σω, if w = u0ω,
where u is a finite word that does not end with 0, then w = u1u2 · · ·uk0

ωvω is in
Sω, where u = u1u2 · · ·uk is the factorization of u into { 1, 01, 001, 0001, . . . } and
v is an arbitrary word in S. Otherwise, w can be factorized by the positions after
each letter 1 and thus w is in Sω. Now we consider a subset T (S. If T does not
contain 0i1 for some i ≥ 0, then none of the words 0i1Σω is in Sω. If T does not
contain 0ω, then none of the words Σ∗0ω is in Sω. Hence S generates a co-finite
language in Σω, while no proper subset of S generates a co-finite language in Σω.

Is there a basis S generating a co-finite language in Σω such that Sω 6= Σω?
The answer is “yes”. Consider the following basis over the binary alphabet

S = 0∗1 + 0∗10ω = { 1, 01, 001, 0001, . . . , 100 · · · , 0100 · · · , 00100 · · · , . . . } .
(3.72)

For any word w in Σω that contains at least one 1, w can be factorized by the
positions after each letter 1 (except the last), and thus w is in Sω. The only word
that cannot be so factorized is 0ω, and thus Sω = Σω\{ 0ω } is non-trivially co-finite
(6= Σω).

Even when the basis contains only finitely many words in Σω, the answer is still
“yes”. For example, let

T = { 1, 00, 011, 0100, 01011, 010100, . . . } , and S = T ∪ T0, (3.73)

where T contains all prefixes of (01)ω with the last letter altered. Clearly, S contains
no word in Σω. We claim that Sω is co-finite in Σω and Sω 6= Σω. Let w be any
word in Σω except (01)ω. Then w has a prefix u1 in T and can therefore be written
as w = u1w1. Now there are two cases for w1. If w1 is not (01)ω, then we can
perform the factorization again on w1, and so forth. Otherwise, w1 is (01)ω, then
write w = (u10)(10)

ω, which is a factorization of w into words in S. Hence Sω is
co-finite in Σω, and Sω = Σω \ { (01)ω }.

When the basis contains only finitely many words in Σ∗, the answer is trivially
“yes”. Let S be any co-finite proper subset of Σω. Then S contains no word in Σ∗

and Sω = S 6= Σω is non-trivially co-finite in Σω.

When a basis is finite, however, the answer is “no” as in the following proposi-
tion.

Proposition 3.4.4. Let S be a finite set of words in Σ∞. Then Sω is co-finite in
Σω if and only if Sω = Σω.

Proof. ⇐: It is straightforward. ⇒: Suppose there is a word w in Σω such that no
finite nonempty prefix is in S. Since S ∩ Σ∗ is finite, let u be a prefix of w that
is longer than any word in S. Now consider the language uΣω. We claim that if
w in uΣω can be factorized into words in S then w is in S. To see this, consider
the first factor in the factorization of u in S. It must be infinite, since any finite
word in S is of length < |u | and none of the prefixes of u is in S. But S ∩ Σω

100

is finite, so there are infinitely many words in uΣω that are not in Sω, and thus
Sω cannot be co-finite. Therefore, every word w in Σω has a finite prefix in S. By
Proposition 3.4.3, we have Sω = Σω.

By the preceding proof, we also know that for a finite set S of words, if Sω 6= Σω,
then Σω \ Sω is of uncountable cardinality.

Left-infinite words

For each finite word w = a1a2 · · · al, the reverse of w is wR = alal−1 · · · a1. Similarly,
a left-infinite word wR is the reverse of an infinite word w = a1a2a3 · · · as

wR = · · · a3a2a1 (3.74)

and the set of all left-infinite words is denoted by ωΣ. The set of all finite words
and left-infinite words is denoted by ∞Σ = Σ∗ ∪ ωΣ. The concatenation of two
finite words is defined as usual. Let w1, w2 be two left-infinite words and u be a
finite word. Then define w1 · w2 = w2, w1 · u = w1u, u · w1 = w1. A left-infinite
word w is periodic if w = ωu for some u ∈ Σ∗ and is ultimately periodic if w = ωuv
for some u, v ∈ Σ∗. Analogously, we define the set of left-infinite concatenations of
words in S as follows:

ωS =
{ · · ·x2x1 : x1, x2, . . . ∈ S

}
, (3.75)

and we write ∞S = S∗ ∪ ωS. Then by the previous discussion on right-infinite
words, the following propositions hold analogously.

Proposition 3.4.5. Let S be a set of words in ∞Σ and T = S ∩ Σ∗. Then ∞S
is co-finite in ∞Σ if and only if T ∗ is co-finite in Σ∗. Furthermore, when T ∗ is
co-finite in Σ∗, ∞T is co-finite in ∞Σ, and ωT = ωΣ.

Proposition 3.4.6. Let T be a set of words in Σ∗. Then ωT = ωΣ if and only if
for any word w in ωΣ there is a nonempty finite suffix of w that is in T .

Applying the reversal operator to each word in a basis in the examples for
right-infinite words, we obtain examples for left-infinite words. Let

S = 10∗ + ω0 = { 1, 10, 100, 1000, . . . , . . . 00 } . (3.76)

Then S generates a co-finite language in ωΣ, but no proper subset of S generates
a co-finite language in ωΣ. So Proposition 2.1.3 does not hold for languages of
left-infinite words. Let

T = { 1, 00, 110, 0010, 11010, 001010, . . . } , (3.77)

which contains all suffixes of ω(10) with the first letter altered. Then S = T ∪ 0T
generates a co-finite language in ωΣ with ωS = ωΣ \ { ω(10) } 6= ωΣ.

Proposition 3.4.7. Let S be a finite set of words in ∞Σ. If ωS is co-finite in ωΣ,
then ωS = ωΣ.

101

Bi-infinite words

Another concept of words of infinite length is the bi-infinite word. A bi-infinite
word w is the concatenation of a left-infinite word u with a right-infinite word v,
for example,

w = u · v = · · · b3b2b1a1a2a3 · · · . (3.78)

For an arbitrary left-infinite word u, an arbitrary finite word x, and an arbitrary
right-infinite word v, we let (ux)v = u(xv). In other word, for a bi-infinite word w,
the factorization w = u · v is not necessarily unique. This kind of bi-infinite word is
called an “unpointed” bi-infinite word [7]. The set of all bi-infinite words is denoted
by ωΣω, and the set of all finite words and bi-infinite words is denoted by ∞Σ∞.
Since the concatenation of 2 bi-infinite words is not well-defined, the concatenation
in the discussion on bi-infinite words is only performed on finite words. A bi-
infinite word w is periodic if w = ωuuω for some u ∈ Σ∗ and is ultimately periodic
if w = ωuxvω for some u, x, v ∈ Σ∗. We define the set of bi-infinite concatenations
of words in a set S of finite words as

ωSω =
{ · · ·x2x1y1y2 · · · : x1, x2, . . . , y1, y2, . . . ∈ S

}
, (3.79)

and write ∞S∞ = S∗ ∪ ωSω. Analogously, a basis that generates a co-finite
language in Σ∗ also generates a co-finite language in ∞Σ∞ and ωΣω, respectively.

Proposition 3.4.8. Let S be a set of words in Σ∗. If S∗ is co-finite in Σ∗, then
∞S∞ is co-finite in ∞Σ∞, and ωSω = ωΣω.

Proof. Since S∗ is co-finite in Σ∗, let l = llw (Σ∗ \ S∗). Then Σl+1 ⊆ S∗. Any
bi-infinite word can be factorized into Σl+1, by grouping l + 1 consecutive letters
together, so ωΣω ⊆ ω(Σl+1)ω ⊆ ω(S∗)ω ⊆ ωSω. Hence ωΣω = ωSω. Then the
language ∞Σ∞ \ ∞S∞ = Σ∗ \ S∗ is finite, and thus ∞S∞ is co-finite in ∞Σ∞.

The co-finiteness of generated sets of bi-infinite words is related to the co-
finiteness of generated sets of right-infinite words and left-infinite words. First
we need a technical lemma.

Lemma 3.4.9. Let S be a set of words in Σ∗.

(a) If Sω is co-finite in Σω, and w is a periodic word not in Sω, then there is a
suffix u of w such that u ∈ Sω.

(b) If ωS is co-finite in ωΣ, and w is a left-periodic word not in ωΣ, then there is
a prefix u of w such that u ∈ ωS.

Proof. We prove the result (a) for right-infinite words; the result (b) on left-infinite
words is similar.

Suppose Sω is co-finite in Σω, and w is a periodic word not in Sω. Consider the
language L = Σ∗w. Since Sω is co-finite in Σω, we see that L ∩ Sω 6= ∅. Let v be

102

a word in L ∩ Sω and v = u1u2 · · · be the factorization of v into the elements of
S. Then v is ultimately periodic and all of the ui that are fully in the periodic part
of v give a suffix of v which is in Sω. This suffix of v is also a suffix of w.

Proposition 3.4.10. Let S be a set of words in Σ∗. If Sω is co-finite in Σω and
ωS is co-finite in ωΣ, then ωSω is co-finite in ωΣω.

Proof. Let w be a word in ωΣω that is not ultimately periodic in any direction.
Then w can be written as w = uv for some u in ωΣ and v in Σω. Since w is not
ultimately periodic in any direction, the number of distinct factorizations w = uv
is infinite. Since there are only finitely many words in ωΣ\ωS and in Σω \Sω, there
must be some u, v such that w = uv and u ∈ ωS, v ∈ Sω. So w is in ωSω.

Let w be a word in ωΣω, which is ultimately periodic in some direction (or both
directions), but not periodic. Without loss of generality, suppose w = uv and v is
periodic. By Lemma 3.4.9, there is a suffix v′ of v such that v′ is in Sω. Then w
can be written as w = u′v′, where the number of factorizations of w with distinct
u′ is infinite. Since there are only finitely many words in ωΣ \ ωS, there must be
some u′ such that w = u′v′ and u′ ∈ ωS. Since v′ ∈ Sω, w is in ωSω.

Now, assume w = ω(w′)ω is a periodic word in ωΣω. Write w = uv for some
u ∈ ωΣ and v ∈ Σω. Then both u, v are ultimately periodic and w is uniquely
determined by u and by v. If w is not in ωSω, then either u is not in ωS or v is not
in Sω. Hence the number of w not in ωSω is less than or equal to the number of
periodic and ultimately periodic words in (ωΣ \ ωS) ∪ (Σω \ Sω), which is finite.

Therefore, the words, if any, in ωΣω \ ωSω must be periodic, and there are only
finitely many such words. In other words, ωSω is co-finite in ωΣω.

By Proposition 3.4.10, if a set S of finite words generates co-finite languages in
both right-infinite words and left-infinite words, then S also generates a co-finite
language in bi-infinite words, and those words that cannot be factorized must be
periodic. The converse of Proposition 3.4.10 is not true. For example, let

S = { 00, 10, 1 } . (3.80)

Then ωSω = ωΣω is co-finite in ωΣω as Σ2 ⊆ S∗, but Sω is not co-finite in Σω as
01Σω ⊆ Σω \ Sω. Nevertheless, the co-finiteness in both right-infinite words and
left-infinite words does not ensure the co-finiteness in finite words. Let

S = { 00, 01, 1, 10 } . (3.81)

Then S = { 00, 01, 1 } ∪ { 00, 10, 1 }, where the first term generates a co-finite
language in Σω and the second term generates a co-finite language in ωΣ. So S
generates co-finite languages in all three types of infinite words, but S does not
generate a co-finite language in Σ∗, since 0(00)∗ ⊆ Σ∗ \ S∗.

To summarize, the strength of co-finiteness is as follows. The co-finiteness in
finite words leads to the co-finiteness in all types of infinite words. The co-finiteness

103

in both single direction (right and left) infinite words leads to the co-finiteness in
bi-infinite words.

In 2009, Shallit [154] showed that a finite set cannot generate a co-finite language
in ωSω non-trivially. First, we need a proposition.

Proposition 3.4.11. [154] Let S be a finite set of words in Σ∗. Then ωSω = ωΣω

if and only if for any word w in Σ∗ there are words u, v ∈ Σ∗ such that uwv ∈ S∗.

Proof. ⇒: Suppose ωSω = ωΣω. Let w be a word in Σ∗. Now we consider the
factorization ω0w0ω = · · ·x3x2x1y1y2y3 · · · into words in S. Then there are u, v
such that uwv = xj · · ·x1y1 · · · yi ∈ S∗ for some indices i, j.

⇐: Let z = · · · b3b2b1a0a1a2a3 · · · be a bi-infinite word in ωΣω, where ai, bi ∈ Σ.
Consider the following sequence of finite words

a0, b1a0a1, b2b1a0a1a2, b3b2b1a0a1a2a3, (3.82)

Then for each i ≥ 0, there are ui, vi such that wi = uibi · · · b1a0a1 · · · aivi ∈ S∗. Now
we consider the middle factor that covers the letter a0 in each of the factorizations
of words in W0 =

{
wi : i ≥ 0

}
into words in S. Since S is finite, by the infinite

pigeonhole principle there must be infinitely many words in W0 such that their
factorizations have the same middle term, say x0. Let W1 be the set of all such
words. Now among those factorizations of words in W1, we consider the factors to
the left and to the right of x0. Again, since S is finite, by the infinite pigeonhole
principle, there must be infinitely many words in W1 such that their factorizations
have the same middle terms, say x1x0y1. Let W2 be the set of all such words. Then
consider the factors to the left of x1 and to the right of y1. Continuing in this
procedure, we construct a factorization for z as z = · · ·x2x1x0y1y2 · · · .
Proposition 3.4.12. [154] Let S be a finite set of words in Σ∗. Then ωSω is
co-finite in ωΣω if and only if ωSω = ωΣω.

Proof. ⇐: It is straightforward. ⇒: Suppose ωSω 6= ωΣω. By Proposition 3.4.11,
there exists a word w in Σ∗ such that no word uwv can be factorized into words in
S for all u, v ∈ Σ∗. Then none of the words in ωΣwΣω can be factorized into words
in S, which contradicts the co-finiteness of ωSω.

By the preceding proof, we know that for a finite set S of words, if ωSω 6= ωΣω,
then ωΣω \ ωSω is of uncountable cardinality.

3.4.2 Concatenation with overlap

In this section, we will see some alternative definitions of concatenation of words.
We now return to words of finite length. Some concatenations do not satisfy the
associative law and thus may not lead to a monoid. But as far as the concatenation-
closure is well-defined, the discussion will be meaningful. To avoid ambiguity, we
denote by u · v or uv for short the normal concatenation of words, and by other
notation for each alternative.

104

Repeated deletion

Ito, Kari, Kincaid, and Seki [77] introduced a new binary operation on languages
L,R ⊆ Σ∗ defined by

L \ R =
{

xyz : xy ∈ L, yz ∈ R, y 6= ε
}
. (3.83)

Proposition 3.4.13. [77] The class of regular languages is closed under the oper-
ation of \ .

Proof. Define a morphism on words h : (Σ ∪ Σ′)∗ → Σ∗ by h(a) = a and h(a′) = a
for all a ∈ Σ, a′ ∈ Σ′. Let h−1 be the inverse morphism of h. Then

L \ R = h
(
(h−1(L) ∩ Σ∗Σ′+)Σ∗ ∩ Σ∗(h−1(R) ∩ Σ′+Σ∗)

)
. (3.84)

Since the family of regular languages is closed under the operations of inverse
morphism (for example, see Shallit’s textbook [156]), intersection, concatenation,
and morphism, it is also closed under \ .

Next we consider a variation on \ where the overlap can be empty. We define
the concatenation with overlap of two words by

u [v =
{

u′w′v′ : ∃w′ ∈ Σ∗ such that u = u′w′, v = w′v′
}

(3.85)

and define the concatenation with overlap of two languages L,R by

L [R =
{

w : w ∈ u [v, u ∈ L, v ∈ R
}
. (3.86)

We call L \ R the concatenation with non-empty overlap of L and R, and define
u \ v = {u } \ { v } for two words u, v. Then the relation between the two new
operations is that

L [R = (L \ R) ∪ (L ·R), (3.87)

where L ·R is the normal concatenation of languages. The next proposition follows
immediately.

Proposition 3.4.14. The family of regular languages is closed under the operation
of concatenation with overlap [.

The concatenation-with-overlap [does not satisfy the associative law. For
example, let L1 = { 001 } , L2 = { 12 } , L3 = { 0123 }. Then

(L1 [L2) [L3 = { 0012, 00112 } [{ 0123 } = { 00123, 00120123, 001120123 } ,

L1 [(L2 [L3) = { 001 } [{ 120123 } = { 00120123, 001120123 } . (3.88)

The concatenation-with-nonempty-overlap \ also fails to satisfy the associative
law. For the same example of L1, L2, L3,

(L1 \ L2) \ L3 = { 0012 } \ { 0123 } = { 00123 } , (3.89)

105

L1 \ (L2 \ L3) = { 001 } \ ∅ = ∅. (3.90)

In the following discussion, without further explanation, a sequence of concatena-
tion appearing without parenthesis means the concatenation is done from the left
to the right, as follows:

L1 [L2 [L3 [· · · [Lk
def
= (((L1 [L2) [L3) [· · ·) [Lk, (3.91)

L1 \ L2 \ L3 \ · · · \ Lk
def
= (((L1 \ L2) \ L3) \ · · ·) \ Lk. (3.92)

Both concatenations with overlap [and with non-empty overlap \ satisfy the
associative law in the case where the arguments are the same language.

Proposition 3.4.15. Let L be a language over Σ. Then L [(L [L) = (L [L) [L
and L \ (L \ L) = (L \ L) \ L.

Proof. First of all, by definition, L ⊆ L [L and L ⊆ L \ L.

Let s ∈ L [(L [L). Then s = wuv, where wu ∈ L, uv ∈ L [L, and uv = xyz,
where xy ∈ L, yz ∈ L. So s = wuv = wxyz. Consider the length of u. If
|u | > |xy |, then

s ∈ wu [yz ⊆ L [L ⊆ (L [L) [L. (3.93)

Otherwise |u | ≤ |xy |. Then

s ∈ (wu [xy) [yz ⊆ (L [L) [L. (3.94)

Hence L [(L [L) ⊆ (L [L) [L. Considering the language LR that contains
the reverse of all words in L, it follows that LR [(LR [LR) ⊆ (LR [LR) [LR.
Applying reversal operator on both sides, we get (L [L) [L ⊆ L [(L [L). So
L [(L [L) = (L [L) [L.

The proof of L \ (L \ L) = (L \ L) \ L is similar. The only difference is that u
and y are non-empty.

As an immediate consequence, the following corollary holds.

Corollary 3.4.16. Let L be a language over Σ. Then the order of calculation does
not matter for two or more applications of [(respectively, \) of L.

Let S[be the concatenation-with-overlap closure of S, which is the set of words
that can be written as concatenation-with-overlap of finitely many words in S. In
other words,

S[= { ε } ∪ S ∪ (S [S) ∪ (S [S [S) ∪ · · · . (3.95)

The concatenation-with-overlap closure is well-defined, since the i-times [of S
with itself is a subset of (i + 1)-times [of S with itself, and thus the infinite

106

set-union converges. Similarly, for the \ operation, let S\ be the concatenation-
with-nonempty-overlap closure of S, which is the set of words that can be written as
concatenation-with-nonempty-overlap of finitely many words in S. In other words,

S\ = { ε } ∪ S ∪ (S \ S) ∪ (S \ S \ S) ∪ · · · . (3.96)

By similar reasoning, the concatenation-with-nonempty-overlap closure is also well-
defined. Furthermore, the family of regular languages is closed under both of the
closure operations. In 2009, Shallit [154] proposed a way to prove the following
proposition by considering a normal form where at most two words overlap at any
given position.

Proposition 3.4.17. [154] If L is a regular language, then both L[and L\ are
regular languages as well. Furthermore, if L is accepted by an NFA of n states,
then there is an NFA of O(n2) states accepting each of L[and L\, respectively.

The construction in Theorem 3.2.5 can be altered to accept L = S[by replacing
the transition function by

δ([x, T], a) =

{
[xa, U], if |x | < n− 1;

[x[2 . . . |x |]a, U \ {n }], if |x | = n− 1, where
(3.97)

U =

{{
0, n + 1 : n ∈ T

}
, if x[n− i . . . |x |]a ∈ S for some j ∈ T , j ≤ i;{

n + 1 : n ∈ T
}
, otherwise.

Replacing “j ≤ i” by “j < i” in the definition of δ, the resulting DFA accepts
L = S\. The numbers of states in both DFAs are

≤ 2

2 |Σ| − 1
(2ν |Σ|ν − 1) = O(2ν |Σ|ν), (3.98)

where ν = llw (S).

We will now discuss the co-finiteness in the concatenation closure, with overlap
and with non-empty overlap, and define the corresponding generalizations of the
Frobenius problem. Nevertheless, finite words over an alphabet with neither the [
operation nor the \ operation define a monoid, since the operations do not satisfy
the associative laws.

Problem 3.4.18. Given k non-empty words x1, x2, . . . , xk ∈ Σ∗ over a finite al-
phabet Σ such that there are only finitely many words that cannot be written as
concatenations with overlap (respectively, with non-empty overlap) of words in
{x1, x2, . . . , xk }, then what is the longest such word(s)?

Let S be the set of words x1, x2, . . . , xk. Our first observation about co-finiteness
is the following proposition, which is the analog of Proposition 2.1.4.

107

Proposition 3.4.19. Let S be a set of words over the alphabet Σ. Then S[(re-
spectively, S\) is co-finite if and only if there is an integer y ≥ 2 such that Σy ⊆ S[

(respectively, S\). Furthermore, the length of the longest words not in S[(respec-
tively, S\) is ≤ y − 1.

Proof. ⇐: If there is such a y that Σy ⊆ S[(respectively, S\), then by concatenating
i words in Σy with non-empty overlap, S can generate all words of length y + i− 1,
for i ≥ 1. Hence S[(respectively, S\) is co-finite, and the length of the longest
words not in the generated languages is ≤ y − 1.

⇒: Suppose L = S[(respectively, L = S\) is co-finite. Let y′ be the length of
the longest words not in L, and y = max { 2, y′ + 1 }. Then Σy ⊆ L, and y′ ≤ y− 1
holds.

Let S be a language such that S[or S\ is co-finite. Then below we prove
that there is a finite subset T ⊆ S such that T [= S[or T \ = S\. So we can
always assume a set of words to generate a language is finite, since otherwise we
can just choose the equivalent finite set. The following proposition is analogous to
Proposition 2.1.3.

Proposition 3.4.20. Let S be a set of words over Σ. If S[(respectively, S\) is
co-finite, then there exists a finite subset T ⊆ S such that T [= S[(respectively,
T \ = S\).

Proof. Let L = S[(respectively, L = S\). If L = Σ∗, then Σ ⊆ S. Let T = Σ.
Then T ∗ = Σ∗ = S∗. Otherwise, let l be the length of the longest words not in L.
Consider the language

U =
(
Σ ∪ Σ2 ∪ · · · ∪ Σl+1

) ∩ L. (3.99)

Let T be the set of all words that appear in a factorization of a word in U in the
basis S with respect to [(respectively, \). Then T is a finite subset of S, and
thus T [⊆ S[(respectively, T \ ⊆ S\). On the other hand, any word of length
≥ l + 1 can be written as a concatenation with non-empty overlap of words of
length l + 1. Hence S[⊆ U [⊆ T [(respectively, S\ ⊆ U \ ⊆ T \). Therefore, T [= S[

(respectively, T \ = S\).

Since S∗ ⊆ S[, if S∗ is co-finite, then S[is also co-finite. But for S\, when S∗

is co-finite, S\ is not necessarily co-finite. A trivial counter-example is S = Σ, in
which case S∗ = Σ∗, but S\ = S = Σ is not co-finite. Let p, q be two distinct
positive integers with gcd(p, q) = 1, and we assume |Σ| ≥ 2. Then

S = { 0 } ∪ Σp ∪ Σq \ { 0p, 0q } (3.100)

generates a co-finite language S∗ and S∗ 6= Σ∗, but S\ is not co-finite, since none
of the words in 000∗ is in S\. On the other hand, when either S[or S\ is co-finite,

108

S∗ is not necessarily co-finite. For example, let S = Σ2. Then both S[and S\ are
co-finite, but S∗ is not co-finite.

Since S\ ⊆ S[, if S\ is co-finite, then S[is also co-finite. The converse is not
true in general, and the counter-example S = Σ also applies. If all the lengths of
words in S are ≥ 2, however, the co-finiteness in S\ and in S[are equivalent.

Proposition 3.4.21. Let S be a set of words of lengths ≥ 2 over Σ. Then S\ is
co-finite if and only if S[is co-finite.

Proof. Since S\ ⊆ S[, if S\ is co-finite, then S[is also co-finite.

Now we suppose S[is co-finite. By Proposition 3.4.19, there is an integer y ≥ 2
such that Σy ⊆ S[. Let w be a word of length 2y − 1. Since each of the words

w[1..y], w[2..y + 1], . . . , w[y..2y − 1] (3.101)

is of length y, they can be factorized in the basis S with respect to [. Let ui, vi

be the first and last factors in the factorization of each of the words, for 1 ≤ i ≤ y.
Then all the ui and the vi are of lengths ≥ 2, and we can write w as

w ∈ u′1 \ u′2 \ · · · \ u′z \ w[y..2y − 1], w ∈ w[1..y] \ v1 \ v2 \ · · · \ vy, (3.102)

where u′1 = u1, u
′
2 = u|u′1 |, u

′
3 = u|u′1u′2 |, Hence

w ∈ u′1 \ u′2 \ · · · \ v1 \ v2 \ · · · \ vy, (3.103)

and thus w is in S\. So Σ2y−1 ⊆ S\. Then by Proposition 3.4.19, S\ is co-finite.

Since the co-finiteness of S[and S\ is equivalent when words in S are of lengths
≥ 2, in the following discussion, we will only show the co-finiteness of S[; the co-
finiteness of S\ then follows. Furthermore, by the proof of Proposition 3.4.21, the
length of the longest omitted words differs at most by a multiple of 2.

When either S[or S\ is co-finite, then both Sω and ωS are co-finite in Σω and ωΣ
respectively, and thus by Proposition 3.4.10 ωSω is co-finite in ωΣω. The converse
is not true in general. For example, let

S = { 00, 010, 011, 10, 11 } . (3.104)

Then Sω is co-finite in Σω, but neither S[nor S\ is co-finite in Σ∗, since (01)∗ ⊆ S[.

Proposition 3.4.22. Let S be a finite set of words of lengths ≥ 2 over Σ. Then
S[is co-finite in Σ∗ if and only if both Sω and ωS are co-finite in Σω and in ωΣ,
respectively.

Proof. ⇒: If S[is co-finite, by Proposition 3.4.19, there is an integer k such that
Σk ⊆ S[. Then any infinite word w has a prefix of length k, which is in S[, and

109

thus has a non-empty prefix in S. So by Proposition 3.4.3 Sω is co-finite. The case
ωS is similar.

⇐: Let n be the length of the longest words in S, and w = a1a2 · · · a2n−2 be a
word of length 2n− 2. Consider the following words

u1 = a1a2, u2 = a2a3, . . . , un−1 = an−1an, v1 = an−1an, . . . , vn−1 = a2n−3a2n−2.
(3.105)

Since each of the languages w[i..2n− 2] · Σω and ωΣ · w[1..i + n− 1] is infinite for
1 ≤ i ≤ n − 1, there is a word in each of them that can be factorized in the basis
S. Consider the first factor, say u′i, and the last factor, say v′i, respectively, in the
factorizations of such words. Since words in S are of lengths ≥ 2, ui must be a
prefix of u′i, and vi must be a suffix of v′i. Now let u′′1 = u′1, u′′2 = u′|u′′1 |, u′′3 = u′|u′′1u′′2 |,
. . . , u′′p, v′′1 = v′|u′′1u′′2 ...u′′p |−n+1

, v′′2 = v′|u′′1u′′2 ...u′′pv′′1 |−n+1
, . . . , v′′q . Then one can verify

that
w ∈ u′′1 [u′′2 [· · ·u′′p [v′′1 [v′′2 [· · · [v′′q . (3.106)

So Σ2n−2 ⊆ S[. Since 2n− 2 ≥ 2, by Proposition 3.4.19, S[is co-finite.

From the proof of Proposition 3.4.22, it follows that if S is a finite set of words
of lengths ≥ 2 over Σ, and S[is co-finite, then we have

llw
(
S[

)
≤ 2ν − 3, (3.107)

where ν is the length of the longest words in S. The proof is in fact also valid for
\ , and thus the length of the longest words not in S\ is also ≤ 2ν−3. When ν ≥ 3,
then by a similar construction, the upper bound can be improved to 2ν − 4. Both
bounds are tight. The upper bound 2ν − 3 is linear in ν, while in the FPFM an
upper bound on the length of the longest omitted words can be exponential in ν.

In the 1FPFM, where the basis S consists of words of the same length n, by
Proposition 2.4.1, if S∗ is co-finite, then n must be 1 and S = Σ. In the setting of [
and \ , however, there are bases consist of words of the same length that generate
non-trivially co-finite languages. Here non-trivially co-finite means co-finite but
6= Σ∗.

Proposition 3.4.23. Let S ⊆ Σn for some n ≥ 2. Then S[is co-finite if and only
if S = Σn.

Proof. If S = Σn, then one can verify by definition that S[is co-finite.

Suppose S[is co-finite. Let w ∈ Σn. Then the set wΣ∗ ∩ S[is not empty. Let
wu be a word in S[. Then

wu ∈ v1 [v2 [· · · [vj, (3.108)

where all the v’s are in S and thus each is of length n. Comparing lengths shows
v1 = w and thus w ∈ S. Therefore, S = Σn.

110

When S ⊆ Σn, where n ≥ 2, and S[is co-finite, then the longest words not in
S[are of length exactly n− 1. None of the words of length n− 1 can be written as
a concatenation with overlap of words of length n. Any word w of length n + i, for
i ≥ 0, can be written as a concatenation of i + 1 words of length n with non-empty
overlap, and thus w is in S[. It is also true for S\, that when S consists of words of
the same length n, where n ≥ 2, and S\ is co-finite, then the longest omitted words
are of length exactly n− 1.

Now we will discuss the analog of the 2FPFM in the setting of [and \ . Let
m,n be two lengths of words. In contrast to the original 2FPFM, here gcd(m,n)
may be an integer other than 1. First, we will prove an analog of Corollary 2.4.13.

Theorem 3.4.24. Let S be a set of words of lengths m and n, where 1 < m < n,
over the alphabet Σ. Then S[is co-finite if and only if S is of the form

(Σm \ T) ∪ Σn−mT ∪ TΣn−m ∪ U, (3.109)

where T ⊆ Σm, U ⊆ Σn.

Proof. ⇐: Let w be a word of length 2n − m − 1. Consider every factor ui =
w[i..i + m− 1] for 1 ≤ i ≤ 2n− 2m. Since m ≥ 2, we have

w ∈ u1 [u2 [· · · [u2n−2m. (3.110)

Now define u′i as follows:

u′i =

ui, if ui ∈ S;

w[i + m− n..i + m− 1], if ui 6∈ S, i + m > n;

w[i..i + n− 1], if ui 6∈ S, i + m ≤ n.

(3.111)

Then all the u′i are well-defined and are in (Σm \ T) ∪ Σn−mT ∪ TΣn−m. Fur-
thermore, the u′i cover all letters of w, and each u′i covers at least those letters
in w[i..i + m − 1]. Now let v1 be u′1, and vi be u′| v1v2···vi−1 | for i ≥ 2. Then

w ∈ v1 [v2 [· · · [vj for some j. Hence

Σ2n−m−1 ⊆ (
(Σm \ T) ∪ Σn−mT ∪ TΣn−m

)[⊆ S[. (3.112)

Since 2n−m− 1 > n− 1 ≥ 2, we have S[is co-finite by Proposition 3.4.19.

⇒: Let T = Σm \ S, w ∈ T , and u ∈ Σn−m. Since S[is co-finite, the set
wuΣ∗ ∩ S[is not empty. Let wuv be a word in S[. Consider a factorization of
wuv induced by [. Since w is not in S, the first factor is of length n, and thus it is
wu. Hence wu is in S. By the arbitrary choice of w and u, TΣn−m ⊆ S. Similarly
Σn−mT ⊆ S. Therefore, S is of the form S = (Σm\T) ∪ Σn−mT ∪ TΣn−m ∪ S.

From the preceding proof, it follows that when the words in S are of two lengths

m,n with 1 < m < n and S[is co-finite, then llw
(
S[

)
≤ 2n − m − 2. One can

111

verify that the construction in the proof for [in fact also valid for \ , and thus
the length of the longest words not in S\ is also ≤ 2n−m− 2. The bound is tight.
For example, assume |Σ| ≥ 2 and let

S = { 0m } ∪ Σn \ (Σn−m0m ∪ 0mΣn−m). (3.113)

Then S[is co-finite, but the word 0n−m−11m0n−m−1 is in neither S[nor S\.

Additive alphabets

Now we will discuss another type of concatenation with overlap, which takes place
over an additive abelian monoid as alphabet, such as the infinite alphabet N, and
the finite alphabet Zk.

Let Σ be an alphabet such that the addition “+” is defined in Σ and (Σ, +)
is an abelian monoid. Now we define concatenation with additive overlap of two
words over Σ as follows:

u] v =
{

u′w′v′ : u = u′a1 · · · an, v = b1 · · · bnv
′, w′ = (a1 + b1) · · · (an + bn), n ≥ 0

}
,

(3.114)
and we define concatenation with additive overlap of two languages L,R as

L] R =
{

w : w ∈ u] v, u ∈ L, v ∈ R
}
. (3.115)

For example, 123] 321 = { 123321, 12621, 1551, 444 }. If Σ = { 0 } with normal
addition, then concatenation with additive overlap is the same as concatenation
with overlap over the unary alphabet. Generally, the operation] does not satisfy
the associative law. For example, over N, let L1 = L3 = { 11 } , L2 = { 1 }. Then

(L1] L2)] L3 = { 111, 12 }] { 11 } =
{
15, 1121, 122, 1211, 131, 23

}
, (3.116)

L1] (L2] L3) = { 11 }] { 111, 21 } =
{
15, 1211, 221, 1121, 131, 32

}
. (3.117)

Even in the case L] L, the associative law does not hold. For example, let L =
{ 1, 111 } over N. Consider the word w = 1231. Since the sum of all letters
appearing in w is 7, w can only be factorized into seven 1’s or into two 111’s and
one 1. In the later case, w ∈ (111] 1)] 111 ⊆ (L] L)] L, but w 6∈ 111] (1] 111) ⊆
L] (L] L). Nevertheless, the concatenation-with-additive-overlap closure of S can
still be defined as the set of words that can be written as concatenation-with-
additive-overlap of finitely many words in S using all possible orders of association
of the operations. In other words,

S] = { ε } ∪ S ∪ S]2 ∪ S]3 ∪ · · · , (3.118)

where S]i =
⋃

p,q>0,p+q=i S
]p] S]q for i ≥ 2.

Over the infinite alphabet N = { 0, 1, 2, . . . }, a set S of words can generate a co-
finite language non-trivially with respect to] . (Here, non-trivial means S] 6= N∗.)
For example, let S = { 3, 5 } ∪ { 00, 01, 10 }. Then

S] = (N∗ \ N) ∪ 〈3, 5〉 = N∗ \ { 0, 1, 2, 4, 7 } . (3.119)

112

To see this, note that { 00, 01, 10 } generates { 00, 01, 10, 000, 001, 010, 100 }, which
again generates all words in N2 ∪ N3, which finally generates all words in N∗ \ N.
In addition, gcd(3, 5) = 1, so 〈3, 5〉 is co-finite in N.

Over the infinite alphabet N̂ = { 1, 2, . . . }, however, a finite set S of words can
only generate a co-finite language trivially as S∗ = N̂∗ with respect to] . To see
this, let S be a finite set of words. If the word 1 ∈ S, then S] = N̂∗, and S] is
trivially co-finite. Now we assume 1 6∈ S. Consider the language

L = 1N̂1. (3.120)

Let w = 1a1 be a word in L such that w is in S]. Then either w is in S, or
w ∈ 1b] c1, where 1b, c1 ∈ S and a = b+ c. Since S is finite, there are only finitely
many such w in S]. Hence S∗ cannot be co-finite.

Over the modulo-k residue classes Nk, a set S of words can generate a co-
finite language non-trivially with respect to] . For example, let S = 1Nk. Then
S] = N∗k \Nk is co-finite. To see this, let w = a1a2 · · · ak be a word of length k ≥ 2.
Then w ∈ (10)]a1] (10)]a2 · · · (10)]ak−1] (01)]ak ⊆ S] .

3.4.3 Other variations

Slender languages

In the previous discussion, all our generalizations of the Frobenius problem dealt
with co-finiteness, which means only finitely many words are omitted. For any
alphabet Σ with |Σ| ≥ 2, the number of words of lengths ≤ j is O(|Σ|j+1). In view
of this, a finite language is a set of words where the number of words of lengths ≤ j
is O(1). Now, we allow infinitely many words omitted but the number of omitted
words of lengths ≤ j must be O(j).

A language L is slender if there is a constant c such that for all integers
j, the number of words of length j in L is less than c. For example, (01)∗ =
{ ε, 01, 0101, . . . } is a slender language. Finite languages are special cases of slen-
der languages. In analogy with co-finiteness, a language is called co-slender if its
complement is slender. Thus, a co-finite language is co-slender.

Now we consider sets T such that by adding one word T generates a co-finite
language, but T itself does not generate a co-finite language. In other words, let
S be a set of words such that S∗ is co-finite, and T = S \ {w }, where T ∗ is not
co-finite. Then either T ∗ is co-slender, or T ∗ is not. Both cases are possible. For
example, let S = { 1, 00, 01, 10, 000, 010 } over Σ = { 0, 1 }. Then S∗ = Σ∗ \ { 0 } is
co-finite. Let T1 = S \ { 00 }, and T2 = S \ { 010 }. Then T ∗

1 ⊆ Σ∗ \ 001Σ∗ is not
co-slender, but T ∗

2 = Σ∗ \ 0(10)∗ is co-slender.

Obviously there are bases that generate co-slender languages but not co-finite
languages (the T2 discussed above). But the following proposition shows a relation
between co-slender languages and co-finite languages of infinite words.

113

Proposition 3.4.25. Suppose |Σ| ≥ 2. Let S be a finite set of finite words over Σ
such that S∗ is a co-slender language. Then S generates co-finite languages in Σω,
in ωΣ, in ωΣω, and in finite words with overlap-concatenation.

Proof. Since co-finiteness of generated languages in both right-infinite words and
left-infinite words implies co-finiteness of generated languages in finite words with
overlap-concatenation and co-finiteness in bi-infinite words, it is sufficient to show
that Sω is co-finite in Σω. Since S is a set of finite words, (SR)∗ is also a co-slender
language. By symmetry, the co-finiteness of ωS in ωΣ follows.

Let n = llw (S). If for each word w of length n, there is a non-empty prefix
of w in S, then by Proposition 3.4.3, Sω = Σω is co-finite. Otherwise, suppose
there is a word w of length n such that no non-empty prefix of w is in S. Then
wΣ∗ ∩ S∗ = ∅, which contradicts the fact that S∗ is co-slender.

Conversely, co-slenderness cannot be implied by any co-finiteness in Proposi-
tion 3.4.25. For example, let the basis S = Σ2. Then Sω is co-finite in Σω, ωS is
co-finite in ωΣ, ωSω is co-finite in ωΣω, and both S[, S\ are co-finite in Σ∗; but S∗

is not co-slender.

The condition in Proposition 3.4.25 that S is a finite set cannot be omitted.
There are infinite sets S of finite words such that S∗ is co-slender in Σ∗ and Sω is
not co-finite in Σω. For example, let S = Σ∗1Σ∗ over the binary alphabet. Then
S∗ = S = Σ∗ \ 0+ is co-slender, and Sω = Σω \ Σ∗0ω is not co-finite in Σω.

There are infinite sets S such that S∗ is co-slender but no finite subset of S
generates a co-slender language. For example, let S = 0∗10∗. Then S∗ = Σ∗ \ 0+

is co-slender, but for any finite subset T (S, we have T ∗ ∩ w1Σ∗ = ∅, where
w ∈ 0∗1 \ T .

Reverse of the basis

The following problem can be viewed as a special case of the FPFM where the basis
T satisfies TR = T . Let S be a set of words over Σ. Then what is the longest words
not in

(
S ∪ SR

)∗
? Suppose each letter in Σ represents a unique color, and there

are sufficient supplies of every tile of size 1 × n that is colored according to each
word of length n in S. Then the longest 1×m floor that cannot be mosaics of the

given tapes are of length m = llw
(
(S ∪ SR)∗

)
. Here we assume the tapes can be

reversed but cannot overlap.

Let LR = llw
(
(S ∪ SR)∗

)
. By considering the basis T = S ∪ SR in the

FPFM, we have

LR < 4µ−κ+1 = O(4µ), LR <
2

2 |Σ| − 1
(2ν |Σ|ν − 1) = O(2ν |Σ|ν). (3.121)

114

where µ is the number of symbols in S, κ is the number of words in S, and ν =
llw (S). There are also examples in each of which the length of the longest words
not in the generated language is

L̆R = Θ(|Σ|ν/2), (3.122)

which will be shown in Chapter 4.

3.5 Generalized local postage-stamp problem

As we saw in Chapter 1, the Frobenius problem is related to the local postage-stamp
problem. While the Frobenius problem is to ask for the largest integer that cannot
be written as a non-negative integer linear combination of given integers, the local
postage-stamp problem is to ask for the smallest positive integer that cannot be
written as a non-negative integer linear combination of given integers with the sum
of coefficients being bounded above by a constant.

Now we will discuss a generalized form of the local postage-stamp problem, the
Local Postage Stamp Problem in a Free Monoid (LPSPFM), which in some cases
is related to the FPFM, particularly to the word graph for the 2FPFM.

Problem 3.5.1 (local postage-stamp problem in a free monoid). Given a set S of
words of lengths 1 = c1 < c2 < · · · < ck, and an integer h ≥ 1, what is the shortest
word(s) that cannot be written as the concatenation of h or fewer words from S?

Here the property Σ ⊆ S is required to avoid trivial cases. Otherwise, the
shortest words are exactly Σ \ S, and they are of length 1.

We define the closure of a finite number of concatenation of S, S≤n, and the
length of the shortest words not in S≤n, Nh(S), for n ≥ 0 and h ≥ 1 as follows:

S≤n =
(
S ∪ { ε })n

=
⋃

0≤i≤n

Si, (3.123)

Nh(S) = min
w 6∈S≤h

|w | . (3.124)

First, I will show some easy results on special cases of the LPSPFM, which
follow rather straightforwardly from results on the LPSP for integers. For integers,
Nh(1) = h+1 and, by Formula (1.83), Nh(1, n) = n(h+3−n)−1 if h ≥ n−1 [60].

Proposition 3.5.2. For h ≥ 1, Nh(Σ) = h + 1.

Proposition 3.5.3. For n ≥ 2, h ≥ 1,

Nh(Σ ∪ Σn) =

{
h + 1, if h ≤ n− 2;

n(h + 3− n)− 1, if h ≥ n− 1.
(3.125)

115

Now, we consider a subproblem of the LPSPFM, in which the set of words are of
a fixed number of distinct lengths. Let 1LPSPFM denote the local postage-stamp
problem in a free monoid with basis consisting of words of the same length, and
let 2LPSPFM denote the local postage-stamp problem in a free monoid with basis
consisting of words of two lengths. As we saw in Proposition 3.5.2, the problem
1LPSPFM is trivial.

Problem 3.5.4 (2LPSPFM). Given a set S of words of two distinct lengths 1 =
m < n, and an integer h ≥ 1, what is the shortest word(s) that cannot be written
as the concatenation of h or fewer words from S?

Proposition 3.5.5. Let Σ ⊆ S ⊆ Σ ∪ Σn. If h < n− 1, then Nh(S) = h + 1.

Proof. Observe that words of length of h + 1 cannot be factorized into h words of
length 1, and the only other words available are of length n > h + 1. So we have
Σh+1 \ S≤h 6= ∅. On the other hand, all words of lengths ≤ h are in S≤h. Hence
Nh(S) = h + 1.

In what follows, we use the concept of word graph, which was introduced in the
discussion on the 2FPFM. Recall, for a set S of words of two lengths m,n with
0 < m < n over the alphabet Σ, the word graph G

(m,n)
S is a digraph

(Σn−m, Σn \ S, ψ), (3.126)

where ψ(w) = (u, v) when u is the prefix of w and v is the suffix of w of length
n − m. Let w = uw′. The arc w is labeled by ϕ(w) = w′, and for any walk
v0, a1, v1, a2, v2, . . . , vk−1, ak, vk, the labeling of that walk is v0ϕ(a1)ϕ(a2) · · ·ϕ(ak).
In particular, for the basis in the 2LPSPFM, m is always 1.

Theorem 3.5.6. Let Σ ⊆ S ⊆ Σ ∪ Σn, n ≥ 2. If there is a cycle in the word
graph G

(1,n)
S , then Nh(S) = h + 1.

Proof. If h < n− 1, then Nh(S) = h + 1 holds. Assume h ≥ n− 1. Since there is a

cycle in G
(1,n)
S , there are arbitrarily long closed walks in G

(1,n)
S . Choose one closed

walk of length (h + 1)− (n− 1) and let w be the label of that walk. Then w is of
length h + 1. Let w = u1u2 · · ·uk be a factorization of w into words from S. Then
by the definition of the word graph G

(1,n)
S , none of the factors ui is of length n.

Hence the factorization of w is unique, and at least h + 1 words are required. On
the other hand, every word of length ≤ h can be factorized into a concatenation of
at most h words of length 1. So Nh(S) = h + 1.

Let S be a set of words such that Σ ⊆ S ⊆ Σ ∪ Σn and n ≥ 2. Now we assume
there is no cycle in G

(1,n)
S , and the label of a longest path in G

(1,n)
S is a word of

length l. In other words, the longest path in G
(1,n)
S is of length l − (n − 1). Then

Nh(S) can be calculated recursively by the following two lemmas.

116

Lemma 3.5.7. Let Σ ⊆ S ⊆ Σ ∪ Σn, n ≥ 2. If there is no cycle in the word
graph G

(1,n)
S , and the length of the word labeling a longest path in G

(1,n)
S is l, then

Nh(S) = h + 1 for h ≤ l − 1.

Proof. All words of lengths ≤ h can be factorized into a concatenation of at most
h words of length 1 in S. Let w be a word of length l labeling a longest path in
G

(1,n)
S , and take a prefix u of w of length h + 1. Then this word u can be uniquely

factorized in the basis S, where each factor is of length 1, and thus at least h + 1
words are required to factorize u. Hence Nh(S) = h + 1.

Lemma 3.5.8. Let Σ ⊆ S ⊆ Σ ∪ Σn, n ≥ 2. If there is no cycle in the word
graph G

(1,n)
S , and the length of the word labeling a longest path in G

(1,n)
S is l, then

Nh(S) = Nh−(l−n+2)(S) + l + 1 for h ≥ l.

Proof. Let w be a word of length ≤ Nh−(l−n+2)(S)+ l. If |w | ≤ l, then w is in S≤h,
as h ≥ l. Assume |w | ≥ l + 1. Let w = uv, where u is of length l + 1 and v is

of length ≤ Nh−(l−n+2)(S)− 1. Since there is no cycle in G
(1,n)
S and l is the length

of the label of a longest path in G
(1,n)
S , any word of length l + 1 can be factorized

as the concatenation of a word of length n and l − n + 1 words of length 1 in S,
not necessarily in that order. So u can be written as the concatenation of l− n + 2
words in S. The suffix v is of length ≤ Nh−(l−n+2)(S)−1, so v can be written as the
concatenation of at most h− (l−n+2) words in S. Therefore, w can be factorized
into the concatenation of at most h words, and thus Σ≤Nh−(l−n+2)(S)+l ⊆ S≤h.

Now we prove that there is a word of length Nh−(l−n+2)(S)+l+1 not in S≤h. Let

u be a word of length l labeling a longest path in G
(1,n)
S , and let a be a letter. Then

the factorization of ua in S is unique, and is composed of l−n+1 words of length 1
and one word of length n, in exactly that order. On the other hand, by definition,
there is a word v of length Nh−(l−n+2)(S) such that any factorization of v needs at
least h− (l− n + 2) + 1 = h− l + n− 1 words in S. In addition, any suffix of v of
length | v |−i needs at least h−l+n−1−i words in S. Otherwise, by concatenating
with i words of length 1, the factorization of the suffix of v gives a factorization of v
with a smaller number of factors. Consider the word w = uav. Let w = w1w2 · · ·wk

be a factorization of w in S. If ua = w1w2 · · ·wj and v = wj+1wj+2 · · ·wk, then u
contains l− n + 2 factors, and v contains at least h− l + n− 1 factors. So we have

k ≥ (l − n + 2) + (h− l + n− 1) = h + 1 > h (3.127)

Otherwise, there is a word wj = w′
jw

′′
j of length n, such that ua = w1w2 · · ·wj−1w

′
j

and v = w′′
j wj+1wj+2 · · ·wk. Then w contains l + 1−

∣∣ w′
j

∣∣ factors, and v contains

at least h− l + n− 1−
∣∣ w′′

j

∣∣ factors. So we have

k ≥ (l + 1−
∣∣ w′

j

∣∣) + (h− l + n− 1−
∣∣ w′′

j

∣∣) + 1 = h + 1 > h (3.128)

Hence w is of length Nh−(l−n+2)(S) + l + 1 and is not in S≤h.

Therefore, Nh(S) = Nh−(l−n+2)(S) + l + 1.

117

From the previous two lemmas, Theorem 3.5.9 follows immediately.

Theorem 3.5.9. Let Σ ⊆ S ⊆ Σ ∪ Σn, n ≥ 2. If there is no cycle in the word
graph G

(1,n)
S , and the length of a word labeling a longest path in G

(1,n)
S is l, then

Nh(S) = max

{
0, (n− 1)

⌊
h− n + 2

l − n + 2

⌋}
+ h + 1. (3.129)

Proof. By Lemmas 3.5.7 and 3.5.8, the recursion for Nh(S) is

Nh(S) =

{
h + 1, if h ≤ l − 1;

Nh−(l−n+2)(S) + l + 1, if h ≥ l.
(3.130)

Now we prove Formula (3.129) by induction on h. For 1 ≤ h ≤ l − 1, we have
(h− n + 2)/(l − n + 2) < 1. Then

max

{
0, (n− 1)

⌊
h− n + 2

l − n + 2

⌋}
+ h + 1 = 0 + h + 1 = h + 1 = Nh(S), (3.131)

and thus Formula (3.129) is true. Now we assume for all h < H, where H ≥ l,
Formula (3.129) is true, and we prove Formula (3.129) is true for h = H:

NH(S) = NH−(l−n+2)(S) + l + 1

= max

{
0, (n− 1)

⌊
(H − (l − n + 2))− n + 2

l − n + 2

⌋}
+ (H − (l − n + 2)) + 1 + l + 1

=(n− 1)

⌊
H − n + 2

l − n + 2

⌋
− (n− 1) + H + n (3.132)

= max

{
0, (n− 1)

⌊
H − n + 2

l − n + 2

⌋}
+ H + 1. (3.133)

Therefore, Formula (3.129) is correct.

For the set S = Σ ∪ Σn, the corresponding l is n−1. Then by Formula (3.129),
Nh(S) = (n− 1)(h− n + 2) + (h + 1) = n(h + 3− n)− 1, which is the formula in

the LPSP for integers. For the set S = Σ, the digraph G
(1,n)
S has cycles. In other

words, the length l of the longest path in G
(1,n)
S is ∞, which means that there is a

cycle. The right-hand-side of Formula (3.129) converges to h + 1 as l goes to ∞.
In the case S = Σ, Nh(S) = h + 1 also holds.

Let S be a set of words of lengths m and n with m = 1, n ≥ 2 over the alphabet
Σ. Then the length of the longest path in the word graph G

(1,n)
S can only be in{

0, 1, 2, . . . , |Σ|n−1 − 1,∞}
, where ∞ means that there is a cycle in G

(1,n)
S . Then

all possible l, the lengths of words labeling longest paths in G
(1,n)
S , are given by

n− 1, n, . . . , |Σ|n−1 + n− 2, ∞. (3.134)

118

Table 3.1: Spectrum of length Nh(S) of shortest words not in S≤h in 2LPSPFM
h |Σ| = 2, n = 2 |Σ| = 2, n = 3 |Σ| = 2, n = 4

h = 1 215
a, 31 2 2

h = 2 313, 42, 51 3255, 51 3
h = 3 413, 52, 71 4243, 612, 81 465535, 71

h = 4 513, 72, 91 5225, 730, 111 565191, 8344, 111

h = 5 613, 82, 111 6217, 826, 1012, 141 663491, 92044, 151

h = 6 713, 102, 131 7217, 926, 1112, 171 760841, 104350, 13344, 191

h = 7 813, 112, 151 8217, 108, 1218, 1412, 201 859105, 116086, 14344, 231

h = 8 913, 132, 171 9217, 118, 1318, 1512, 231 958089, 125402, 151700, 18344, 271

h = 9 1013, 142, 191 10217, 1426, 1812, 261 1057641, 135850, 161700, 19344, 311

h = 10 11b, 16, 21 11217, 158, 1718, 1912, 291 11, 14, 17, 23, 35

h |Σ| = 3, n = 3 |Σ| = 3, n = 2 |Σ| = 4, n = 2

h = 1 2 2511, 31 265535, 31

h = 2 3, 5 3499, 412, 51 365449, 486, 51

h = 3 4, 6, 8 4487, 524, 71 465185, 5350, 71

h = 4 5, 7, 11 5487, 612, 712, 91 564993, 6456, 786, 91

h = 5 6, 8, 10, 14 6487, 712, 812, 111 664993, 7456, 886, 111

h = 6 7, 9, 11, 17 7487, 912, 1012, 131 764993, 8192, 9264, 1086, 131

h = 7 8, 10, 12, 14, 20 8487, 1012, 1112, 151 864993, 9192, 10264, 1186, 151

h = 8 9, 11, 13, 15, 23 9487, 1112, 1312, 171 964993, 11456, 1386, 171

h = 9 10, 12, 14, 18, 26 10487, 1312, 1412, 191 10, 12, 13, 14, 19
h = 10 11, 13, 15, 17, 19, 29 11487, 1412, 1612, 211 11, 13, 14, 16, 21

aThe subscript k in mk means there are k distinct bases S in which Nh(S) = m.
bUnsubscripted results are computed from the formula, not from calculations.

Then by Theorems 3.5.6 and 3.5.9, the complete spectrum of the length of shortest
words as solutions to 2LPSPFM can be obtained. Some of the results of calculations
are given in Table 3.1, which validates the spectrum for small n and alphabet size.

Here are some examples over the binary alphabet { 0, 1 }. Let S1 = Σ, S2 =

S1 ∪ { 00, 01, 11 }, S3 = Σ ∪ Σ2. Then there are |Σ|(2−1) + 1 = 3 different cases
given by

N2(S1) = 3, N2(S2) = 4, N2(S3) = 5. (3.135)

Let T1 = Σ, T2 = T1 ∪ { 000, 001, 101, 111 }, T3 = T2 ∪ { 011 }, T4 = T3 ∪ { 100 },
T5 = Σ ∪ Σ3. Then there are |Σ|(3−1) + 1 = 5 different cases given by

N7(T1) = 8, N7(T2) = 10, N7(T3) = 12, N7(T4) = 14, N7(T5) = 20. (3.136)

Let U1 = Σ, for Σ = { 0, 1, 2 }, U2 = U1 ∪ { 00, 01, 02, 11, 12, 22 }, U3 = U2 ∪ { 10 },
U4 = Σ ∪ Σ2. Then there are |Σ|(2−1) + 1 = 4 different cases given by

N4(U1) = 5, N4(U2) = 6, N4(U3) = 7, N4(U4) = 9. (3.137)

Over Σ = { 0, 1, 2, 3 }, let V1 = Σ, V2 = V1 ∪ { 00, 01, 02, 03, 11, 12, 13, 22, 23, 33 },
V3 = V2 ∪ { 10 }, V4 = V3 ∪ { 32 }, V5 = Σ ∪ Σ2. Then there are |Σ|(2−1) + 1 = 5

119

different cases given by

N6(V1) = 7, N6(V2) = 8, N6(V3) = 9, N6(V4) = 10, N6(V5) = 13. (3.138)

For some h, the Nh(S) corresponding to different cases of l, which is the length

of the longest path in the word graph G
(1,n)
S , may be the same. For example, let

|Σ| = 2, n = 3, h = 9. Since

⌊
h− n + 2

4− n + 2

⌋
=

⌊
8

3

⌋
= 2 =

⌊
8

4

⌋
=

⌊
h− n + 2

5− n + 2

⌋
, (3.139)

we have Nh(S1) = Nh(S2) = 14, where the longest paths in G
(1,n)
S1

and in G
(1,n)
S2

are
of lengths 2 and 3, respectively. Nevertheless, for sufficiently large h, the Nh(S) for

different cases of l are distinct. To see this, when h > |Σ|2(n−1) + n− 2, we have

∣∣∣∣
h− n + 2

l1 − n + 2
− h− n + 2

l2 − n + 2

∣∣∣∣ =
(h− n + 2) | l2 − l1 |

(l1 − n + 2)(l2 − n + 2)
> 1, (3.140)

where n− 1 ≤ l1, l2 ≤ |Σ|n−1 + n− 2.

120

Chapter 4

Examples of the FPFM

In this chapter, I will provide several families of examples that achieve some of the
upper bounds that appeared in the discussion on the FPFM and its variations in
Chapters 2 and 3. Let S be a set of words over the alphabet Σ such that S∗ is
co-finite. By Corollary 2.3.2, we have

L = llw
(
S∗

)
<

2

2 |Σ| − 1
(2ν |Σ|ν − 1) = |Σ|O(ν) . (4.1)

In §4.1, I will provide examples where the length L is exponential in ν. By Corol-
lary 3.3.2, the number of words not in S∗ is

M =
∣∣ S∗

∣∣ ≤ |Σ|q − 1

|Σ| − 1
= |Σ||Σ|O(ν)

, (4.2)

where q = 2
2|Σ|−1

(2ν |Σ|ν − 1). In §4.2, I will provide examples where the number
M is doubly-exponential in ν. Finally, in §4.3, I will provide some statistics from
experiments.

4.1 Exponential length of the longest words 6∈ S∗

All examples in this section in fact belong to the 2FPFM, the special subproblem
of the FPFM. Let S be a set of words of lengths m and n with 0 < m < n such
that S∗ is co-finite. As we saw in Theorem 2.4.12, we have

L = llw
(
S∗

) ≤ g(m, l) = ml −m− l, (4.3)

where l = m|Σ|n−m+n−m. The examples given below achieve L = g(m, l) in (4.3).

4.1.1 Examples of the 2FPFM with 0 < m < n < 2m

We now look at some examples achieving an exponential upper bound in ν = n,
the length of the longest words in the basis. Without loss of generality, we assume

121

the alphabet Σ is { 0, 1, 2, . . . }. We define c(n)k to be the unique word of length
c that represents the non-negative integer n in base k, possibly with leading zeros,
and define [w]k to be the non-negative integer represented by the word w in base
k. For example, 5(11)2 = 01011, and [01011]2 = 11. When c and k are clear from
the context, we write c(n)k and [w]k as (n) and [w] for short, respectively. For two
integers m and n with 0 < m < n < 2m, define

T (m,n) =
{

c(i)k0
2m−n

c(i + 1)k : 0 ≤ i ≤ |Σ|n−m − 2, k = |Σ| , c = n−m
}
. (4.4)

For example, over the binary alphabet Σ = { 0, 1 }, we have

T (3, 5) = { 00001, 01010, 10011 } . (4.5)

Theorem 4.1.1. [83, 84] Let m,n be two integers with 0 < m < n < 2m and
gcd(m,n) = 1, and let S = Σm ∪ Σn\T (m,n). Then S∗ is co-finite, and the longest
words not in S∗ are of length g(m, l) = ml −m− l, where l = m |Σ|n−m + n−m.

Proof. Let l = m |Σ|n−m + n − m. Since Σm ⊆ S and l ≡ n (mod m), in order
to show S∗ is co-finite and the longest words not in S∗ are of length g(m, l), by
Theorem 2.5.3, it is sufficient to prove that S∗ \ Σl−m 6= ∅ and S∗ \ Σl = ∅.

Let x be a word of length l. Then we can write x uniquely as

x = y0z0y1z1 · · · y|Σ|n−m−1z|Σ|n−m−1y|Σ|n−m , (4.6)

where all the yi are of length n−m, and all the zi are of length 2m− n. If all the
yiziyi+1 are in T (m,n), then [yi+1]|Σ| = [yi]|Σ| + 1, for 0 ≤ i < |Σ|n−m. So

[y|Σ|n−m]|Σ| = [y0]|Σ| + |Σ|n−m . (4.7)

But y|Σ|n−m is of length n −m, and thus it cannot be the base-|Σ| expansion of a

number ≥ |Σ|n−m, a contradiction. Hence some yiziyi+1 is in S, and so

x =

(∏
0≤p<i

ypzp

)
yiziyi+1

(∏

i+1≤q≤|Σ|n−m

zqyq

)
. (4.8)

Since Σm ⊆ S, all the ypzp and zqyq are in S. Therefore, x can be factorized into
elements of S, and thus S∗ \ Σl = ∅.

Let c = n − m, and k = |Σ|. Now we claim that there is a word τ of length
l −m that is not in S∗, which is

τ = c(0)k0
2m−n

c(1)k0
2m−n

c(2)k0
2m−n · · · 02m−n

c(|Σ|n−m − 1)k. (4.9)

Suppose there is a factorization of τ in S given by τ = w1w2 · · ·wt, where all the wi

are in S. Since m does not divide | τ |, at least one of the factors is of length n. Let
wj be the first factor of length n. Comparing lengths shows wi = c(i − 1)k0

2m−n

for 1 ≤ i < j and wj = c(j − 1)k0
2m−n

c(j)k. Then wj is in both S and T (m,n), a
contradiction. Therefore, τ 6∈ S∗.

122

The word τ = c(0)k0
2m−n

c(1)k0
2m−n · · · 02m−n

c(|Σ|n−m − 1)k is the only word
in S∗ \ Σl−m for S = Σm ∪ Σn \ T (m,n). By the same arguments in the
proof of Theorem 4.1.1, every word in S∗ \ Σl−m can be uniquely written as
x = y0z0y1z1 · · · y|Σ|n−m−1, where all the yi are of length n −m, and all the zi are

of length 2m− n, and yiziyi+1 6∈ S. So yiziyi+1 ∈ T (m,n) for 0 ≤ i ≤ |Σ|n−m − 1,
and τ is the only such word. By Corollary 2.5.5, the set of all longest words not in
S∗ is (τΣm)m−2τ .

Example 4.1.2. Let m = 3, n = 5, Σ = { 0, 1 }. In this case, l = 3 · 22 +2 = 14,
S = Σ3 ∪ Σ5 \ { 00001, 01010, 10011 }. Then one of the longest words not in S∗ is

00001010011 000 00001010011 (4.10)

of length 25 = g(3, 14). The members of the set Σ∗ \ S∗ are given in Table 4.1.

Theorem 4.1.3. Let v1, v2, . . . , v|Σ|n−m be any permutation of all words of length
n−m over the alphabet Σ, and let S = Σm ∪ Σn \ T , where

T =
{

vi0
2m−nvi+1 : 1 ≤ i ≤ |Σ|n−m − 1

}
. (4.11)

Then S∗ is co-finite, and the longest words not in S∗ are of length g(m, l) = ml −
m− l, where l = m |Σ|n−m + n−m.

Using vi instead of n−m(i)|Σ| for 0 ≤ i ≤ |Σ|n−m− 1, the proof of Theorem 4.1.1
is also valid for Theorem 4.1.3.

By Theorem 2.5.3, we know that in order to construct a basis S of words of
lengths m and n, where gcd(m,n) = 1, such that S∗ is co-finite and the length
of the longest words not in S∗ attains the upper bound in Theorem 2.4.12, it is
essential to construct an S such that S∗ is co-finite and there is a word τ of length
m |Σ|n−m + n − m that is not in S∗. When 0 < m < n < 2m, the S and τ can
be found easily, as shown in Theorem 4.1.1. The examples for small m and n are
summarized in Table 4.2. Since the proof of Theorem 2.4.12 does not rely on the
part 02m−n, one can verify that replacing the 02m−n part of each word in the set
T (m,n) by any word of length 2m − n (they do not even have to be the same),
then S = Σm ∪ Σn \ T (m,n) is also an example to attain the upper bound in
Theorem 2.4.12.

Now we consider a variation on the FPFM. In Chapter 3, we discussed a varia-
tion on the FPFM where we consider the language

(
T ∪ TR

)∗
instead of T ∗.

Proposition 4.1.4. Let S be a set of words of lengths m,n with 0 < m < n < 2m
such that SR ⊆ S and S∗ is co-finite. Then the length of the longest words not in S∗

is strictly less than g(m, l) = ml−m− l, where l = m |Σ|n−m +n−m. Furthermore,
there are examples in which the length of the longest words not in S∗ is Θ(|Σ|n−m).

Proof. Consider the word graph G
(m,n)
S as defined in Chapter 2, where the set of

vertices is Σn−m and the set of arcs is Σn \ S. Then we claim any path in G
(m,n)
S

encounters at most one vertex that is a palindrome.

123

Table 4.1: All the words in { 0, 1 }∗ \ ({ 0, 1 }3 ∪ { 0, 1 }5 \{ 00001, 01010, 10011 })∗

1 [1]0

2 [1]1

3 [2]00

4 [2]01

5 [2]10

6 [2]11

7 [4]0000

8 [4]0001

9 [4]0010

10 [4]0011

11 [4]0100

12 [4]0101

13 [4]0110

14 [4]0111

15 [4]1000

16 [4]1001

17 [4]1010

18 [4]1011

19 [4]1100

20 [4]1101

21 [4]1110

22 [4]1111

23 [5]00001

24 [5]01010

25 [5]10011

26 [7]0000000

27 [7]0000001

28 [7]0000010

29 [7]0000011

30 [7]0000100

31 [7]0000101

32 [7]0000110

33 [7]0000111

34 [7]0001000

35 [7]0001001

36 [7]0001010

37 [7]0001011

38 [7]0001100

39 [7]0001101

40 [7]0001110

41 [7]0001111

42 [7]0010000

43 [7]0010001

44 [7]0010010

45 [7]0010011

46 [7]0010100

47 [7]0010101

48 [7]0010110

49 [7]0010111

50 [7]0011000

51 [7]0011001

52 [7]0011010

53 [7]0011011

54 [7]0011100

55 [7]0011101

56 [7]0011110

57 [7]0011111

58 [7]0100000

59 [7]0100001

60 [7]0100010

61 [7]0100011

62 [7]0100100

63 [7]0100101

64 [7]0100110

65 [7]0100111

66 [7]0101000

67 [7]0101001

68 [7]0101010

69 [7]0101011

70 [7]0101100

71 [7]0101101

72 [7]0101110

73 [7]0101111

74 [7]0110000

75 [7]0110001

76 [7]0110010

77 [7]0110011

78 [7]0110100

79 [7]0110101

80 [7]0110110

81 [7]0110111

82 [7]0111000

83 [7]0111001

84 [7]0111010

85 [7]0111011

86 [7]0111100

87 [7]0111101

88 [7]0111110

89 [7]0111111

90 [7]1000000

91 [7]1000001

92 [7]1000010

93 [7]1000011

94 [7]1000100

95 [7]1000101

96 [7]1000110

97 [7]1000111

98 [7]1001000

99 [7]1001001

100 [7]1001010

101 [7]1001011

102 [7]1001100

103 [7]1001101

104 [7]1001110

105 [7]1001111

106 [7]1010000

107 [7]1010001

108 [7]1010010

109 [7]1010011

110 [7]1010100

111 [7]1010101

112 [7]1010110

113 [7]1010111

114 [7]1011000

115 [7]1011001

116 [7]1011010

117 [7]1011011

118 [7]1011100

119 [7]1011101

120 [7]1011110

121 [7]1011111

122 [7]1100000

123 [7]1100001

124 [7]1100010

125 [7]1100011

126 [7]1100100

127 [7]1100101

128 [7]1100110

129 [7]1100111

130 [7]1101000

131 [7]1101001

132 [7]1101010

133 [7]1101011

134 [7]1101100

135 [7]1101101

136 [7]1101110

137 [7]1101111

138 [7]1110000

139 [7]1110001

140 [7]1110010

141 [7]1110011

142 [7]1110100

143 [7]1110101

144 [7]1110110

145 [7]1110111

146 [7]1111000

147 [7]1111001

148 [7]1111010

149 [7]1111011

150 [7]1111100

151 [7]1111101

152 [7]1111110

153 [7]1111111

154 [8]00001010

155 [8]01010011

156 [10]0000000001

157 [10]0000001010

158 [10]0000010011

159 [10]0000100000

160 [10]0000100001

161 [10]0000100010

162 [10]0000100011

163 [10]0000100100

164 [10]0000100101

165 [10]0000100110

166 [10]0000100111

167 [10]0000101000

168 [10]0000101001

169 [10]0000101010

170 [10]0000101011

171 [10]0000101100

172 [10]0000101101

173 [10]0000101110

174 [10]0000101111

175 [10]0000110000

176 [10]0000110001

177 [10]0000110010

178 [10]0000110011

179 [10]0000110100

180 [10]0000110101

181 [10]0000110110

182 [10]0000110111

183 [10]0000111000

184 [10]0000111001

185 [10]0000111010

186 [10]0000111011

187 [10]0000111100

188 [10]0000111101

189 [10]0000111110

190 [10]0000111111

191 [10]0001000001

192 [10]0001001010

193 [10]0001010011

194 [10]0001100001

195 [10]0001101010

196 [10]0001110011

197 [10]0010000001

198 [10]0010001010

199 [10]0010010011

200 [10]0010100001

201 [10]0010101010

202 [10]0010110011

203 [10]0011000001

204 [10]0011001010

205 [10]0011010011

206 [10]0011100001

207 [10]0011101010

208 [10]0011110011

209 [10]0100000001

210 [10]0100001010

211 [10]0100010011

212 [10]0100100001

213 [10]0100101010

214 [10]0100110011

215 [10]0101000000

216 [10]0101000001

217 [10]0101000010

218 [10]0101000011

219 [10]0101000100

220 [10]0101000101

221 [10]0101000110

222 [10]0101000111

223 [10]0101001000

224 [10]0101001001

225 [10]0101001010

226 [10]0101001011

227 [10]0101001100

228 [10]0101001101

229 [10]0101001110

230 [10]0101001111

231 [10]0101010000

232 [10]0101010001

233 [10]0101010010

234 [10]0101010011

235 [10]0101010100

236 [10]0101010101

237 [10]0101010110

238 [10]0101010111

239 [10]0101011000

240 [10]0101011001

241 [10]0101011010

242 [10]0101011011

243 [10]0101011100

244 [10]0101011101

245 [10]0101011110

246 [10]0101011111

247 [10]0101100001

248 [10]0101101010

249 [10]0101110011

250 [10]0110000001

251 [10]0110001010

252 [10]0110010011

253 [10]0110100001

254 [10]0110101010

255 [10]0110110011

256 [10]0111000001

257 [10]0111001010

258 [10]0111010011

259 [10]0111100001

260 [10]0111101010

261 [10]0111110011

262 [10]1000000001

263 [10]1000001010

264 [10]1000010011

265 [10]1000100001

266 [10]1000101010

267 [10]1000110011

268 [10]1001000001

269 [10]1001001010

270 [10]1001010011

271 [10]1001100000

272 [10]1001100001

273 [10]1001100010

274 [10]1001100011

275 [10]1001100100

276 [10]1001100101

277 [10]1001100110

278 [10]1001100111

279 [10]1001101000

280 [10]1001101001

281 [10]1001101010

282 [10]1001101011

283 [10]1001101100

284 [10]1001101101

285 [10]1001101110

286 [10]1001101111

287 [10]1001110000

288 [10]1001110001

289 [10]1001110010

290 [10]1001110011

291 [10]1001110100

292 [10]1001110101

293 [10]1001110110

294 [10]1001110111

295 [10]1001111000

296 [10]1001111001

297 [10]1001111010

298 [10]1001111011

299 [10]1001111100

300 [10]1001111101

301 [10]1001111110

302 [10]1001111111

303 [10]1010000001

304 [10]1010001010

305 [10]1010010011

306 [10]1010100001

307 [10]1010101010

308 [10]1010110011

309 [10]1011000001

310 [10]1011001010

311 [10]1011010011

312 [10]1011100001

313 [10]1011101010

314 [10]1011110011

315 [10]1100000001

316 [10]1100001010

317 [10]1100010011

318 [10]1100100001

319 [10]1100101010

320 [10]1100110011

321 [10]1101000001

322 [10]1101001010

323 [10]1101010011

324 [10]1101100001

325 [10]1101101010

326 [10]1101110011

327 [10]1110000001

328 [10]1110001010

329 [10]1110010011

330 [10]1110100001

331 [10]1110101010

332 [10]1110110011

333 [10]1111000001

334 [10]1111001010

335 [10]1111010011

336 [10]1111100001

337 [10]1111101010

338 [10]1111110011

339 [11]00001010011

340 [13]0000000001010

341 [13]0000001010011

342 [13]0000100000001

343 [13]0000100001010

344 [13]0000100010011

345 [13]0000100100001

346 [13]0000100101010

347 [13]0000100110011

348 [13]0000101000000

349 [13]0000101000001

350 [13]0000101000010

351 [13]0000101000011

352 [13]0000101000100

353 [13]0000101000101

354 [13]0000101000110

355 [13]0000101000111

356 [13]0000101001000

357 [13]0000101001001

358 [13]0000101001010

359 [13]0000101001011

360 [13]0000101001100

361 [13]0000101001101

362 [13]0000101001110

363 [13]0000101001111

364 [13]0000101010000

365 [13]0000101010001

366 [13]0000101010010

367 [13]0000101010011

368 [13]0000101010100

369 [13]0000101010101

370 [13]0000101010110

371 [13]0000101010111

372 [13]0000101011000

373 [13]0000101011001

374 [13]0000101011010

375 [13]0000101011011

376 [13]0000101011100

377 [13]0000101011101

378 [13]0000101011110

379 [13]0000101011111

380 [13]0000101100001

381 [13]0000101101010

382 [13]0000101110011

383 [13]0000110000001

384 [13]0000110001010

385 [13]0000110010011

386 [13]0000110100001

387 [13]0000110101010

388 [13]0000110110011

389 [13]0000111000001

390 [13]0000111001010

391 [13]0000111010011

392 [13]0000111100001

393 [13]0000111101010

394 [13]0000111110011

395 [13]0001000001010

396 [13]0001001010011

397 [13]0001100001010

398 [13]0001101010011

399 [13]0010000001010

400 [13]0010001010011

401 [13]0010100001010

402 [13]0010101010011

403 [13]0011000001010

404 [13]0011001010011

405 [13]0011100001010

406 [13]0011101010011

407 [13]0100000001010

408 [13]0100001010011

409 [13]0100100001010

410 [13]0100101010011

411 [13]0101000000001

412 [13]0101000001010

413 [13]0101000010011

414 [13]0101000100001

415 [13]0101000101010

416 [13]0101000110011

417 [13]0101001000001

418 [13]0101001001010

419 [13]0101001010011

420 [13]0101001100000

421 [13]0101001100001

422 [13]0101001100010

423 [13]0101001100011

424 [13]0101001100100

425 [13]0101001100101

426 [13]0101001100110

427 [13]0101001100111

428 [13]0101001101000

429 [13]0101001101001

430 [13]0101001101010

431 [13]0101001101011

432 [13]0101001101100

433 [13]0101001101101

434 [13]0101001101110

435 [13]0101001101111

436 [13]0101001110000

437 [13]0101001110001

438 [13]0101001110010

439 [13]0101001110011

440 [13]0101001110100

124

441 [13]0101001110101

442 [13]0101001110110

443 [13]0101001110111

444 [13]0101001111000

445 [13]0101001111001

446 [13]0101001111010

447 [13]0101001111011

448 [13]0101001111100

449 [13]0101001111101

450 [13]0101001111110

451 [13]0101001111111

452 [13]0101010000001

453 [13]0101010001010

454 [13]0101010010011

455 [13]0101010100001

456 [13]0101010101010

457 [13]0101010110011

458 [13]0101011000001

459 [13]0101011001010

460 [13]0101011010011

461 [13]0101011100001

462 [13]0101011101010

463 [13]0101011110011

464 [13]0101100001010

465 [13]0101101010011

466 [13]0110000001010

467 [13]0110001010011

468 [13]0110100001010

469 [13]0110101010011

470 [13]0111000001010

471 [13]0111001010011

472 [13]0111100001010

473 [13]0111101010011

474 [13]1000000001010

475 [13]1000001010011

476 [13]1000100001010

477 [13]1000101010011

478 [13]1001000001010

479 [13]1001001010011

480 [13]1001100000001

481 [13]1001100001010

482 [13]1001100010011

483 [13]1001100100001

484 [13]1001100101010

485 [13]1001100110011

486 [13]1001101000001

487 [13]1001101001010

488 [13]1001101010011

489 [13]1001101100001

490 [13]1001101101010

491 [13]1001101110011

492 [13]1001110000001

493 [13]1001110001010

494 [13]1001110010011

495 [13]1001110100001

496 [13]1001110101010

497 [13]1001110110011

498 [13]1001111000001

499 [13]1001111001010

500 [13]1001111010011

501 [13]1001111100001

502 [13]1001111101010

503 [13]1001111110011

504 [13]1010000001010

505 [13]1010001010011

506 [13]1010100001010

507 [13]1010101010011

508 [13]1011000001010

509 [13]1011001010011

510 [13]1011100001010

511 [13]1011101010011

512 [13]1100000001010

513 [13]1100001010011

514 [13]1100100001010

515 [13]1100101010011

516 [13]1101000001010

517 [13]1101001010011

518 [13]1101100001010

519 [13]1101101010011

520 [13]1110000001010

521 [13]1110001010011

522 [13]1110100001010

523 [13]1110101010011

524 [13]1111000001010

525 [13]1111001010011

526 [13]1111100001010

527 [13]1111101010011

528 [16]0000000001010011

529 [16]0000100000001010

530 [16]0000100001010011

531 [16]0000100100001010

532 [16]0000100101010011

533 [16]0000101000000001

534 [16]0000101000001010

535 [16]0000101000010011

536 [16]0000101000100001

537 [16]0000101000101010

538 [16]0000101000110011

539 [16]0000101001000001

540 [16]0000101001001010

541 [16]0000101001010011

542 [16]0000101001100000

543 [16]0000101001100001

544 [16]0000101001100010

545 [16]0000101001100011

546 [16]0000101001100100

547 [16]0000101001100101

548 [16]0000101001100110

549 [16]0000101001100111

550 [16]0000101001101000

551 [16]0000101001101001

552 [16]0000101001101010

553 [16]0000101001101011

554 [16]0000101001101100

555 [16]0000101001101101

556 [16]0000101001101110

557 [16]0000101001101111

558 [16]0000101001110000

559 [16]0000101001110001

560 [16]0000101001110010

561 [16]0000101001110011

562 [16]0000101001110100

563 [16]0000101001110101

564 [16]0000101001110110

565 [16]0000101001110111

566 [16]0000101001111000

567 [16]0000101001111001

568 [16]0000101001111010

569 [16]0000101001111011

570 [16]0000101001111100

571 [16]0000101001111101

572 [16]0000101001111110

573 [16]0000101001111111

574 [16]0000101010000001

575 [16]0000101010001010

576 [16]0000101010010011

577 [16]0000101010100001

578 [16]0000101010101010

579 [16]0000101010110011

580 [16]0000101011000001

581 [16]0000101011001010

582 [16]0000101011010011

583 [16]0000101011100001

584 [16]0000101011101010

585 [16]0000101011110011

586 [16]0000101100001010

587 [16]0000101101010011

588 [16]0000110000001010

589 [16]0000110001010011

590 [16]0000110100001010

591 [16]0000110101010011

592 [16]0000111000001010

593 [16]0000111001010011

594 [16]0000111100001010

595 [16]0000111101010011

596 [16]0001000001010011

597 [16]0001100001010011

598 [16]0010000001010011

599 [16]0010100001010011

600 [16]0011000001010011

601 [16]0011100001010011

602 [16]0100000001010011

603 [16]0100100001010011

604 [16]0101000000001010

605 [16]0101000001010011

606 [16]0101000100001010

607 [16]0101000101010011

608 [16]0101001000001010

609 [16]0101001001010011

610 [16]0101001100000001

611 [16]0101001100001010

612 [16]0101001100010011

613 [16]0101001100100001

614 [16]0101001100101010

615 [16]0101001100110011

616 [16]0101001101000001

617 [16]0101001101001010

618 [16]0101001101010011

619 [16]0101001101100001

620 [16]0101001101101010

621 [16]0101001101110011

622 [16]0101001110000001

623 [16]0101001110001010

624 [16]0101001110010011

625 [16]0101001110100001

626 [16]0101001110101010

627 [16]0101001110110011

628 [16]0101001111000001

629 [16]0101001111001010

630 [16]0101001111010011

631 [16]0101001111100001

632 [16]0101001111101010

633 [16]0101001111110011

634 [16]0101010000001010

635 [16]0101010001010011

636 [16]0101010100001010

637 [16]0101010101010011

638 [16]0101011000001010

639 [16]0101011001010011

640 [16]0101011100001010

641 [16]0101011101010011

642 [16]0101100001010011

643 [16]0110000001010011

644 [16]0110100001010011

645 [16]0111000001010011

646 [16]0111100001010011

647 [16]1000000001010011

648 [16]1000100001010011

649 [16]1001000001010011

650 [16]1001100000001010

651 [16]1001100001010011

652 [16]1001100100001010

653 [16]1001100101010011

654 [16]1001101000001010

655 [16]1001101001010011

656 [16]1001101100001010

657 [16]1001101101010011

658 [16]1001110000001010

659 [16]1001110001010011

660 [16]1001110100001010

661 [16]1001110101010011

662 [16]1001111000001010

663 [16]1001111001010011

664 [16]1001111100001010

665 [16]1001111101010011

666 [16]1010000001010011

667 [16]1010100001010011

668 [16]1011000001010011

669 [16]1011100001010011

670 [16]1100000001010011

671 [16]1100100001010011

672 [16]1101000001010011

673 [16]1101100001010011

674 [16]1110000001010011

675 [16]1110100001010011

676 [16]1111000001010011

677 [16]1111100001010011

678 [19]0000100000001010011

679 [19]0000100100001010011

680 [19]0000101000000001010

681 [19]0000101000001010011

682 [19]0000101000100001010

683 [19]0000101000101010011

684 [19]0000101001000001010

685 [19]0000101001001010011

686 [19]0000101001100000001

687 [19]0000101001100001010

688 [19]0000101001100010011

689 [19]0000101001100100001

690 [19]0000101001100101010

691 [19]0000101001100110011

692 [19]0000101001101000001

693 [19]0000101001101001010

694 [19]0000101001101010011

695 [19]0000101001101100001

696 [19]0000101001101101010

697 [19]0000101001101110011

698 [19]0000101001110000001

699 [19]0000101001110001010

700 [19]0000101001110010011

701 [19]0000101001110100001

702 [19]0000101001110101010

703 [19]0000101001110110011

704 [19]0000101001111000001

705 [19]0000101001111001010

706 [19]0000101001111010011

707 [19]0000101001111100001

708 [19]0000101001111101010

709 [19]0000101001111110011

710 [19]0000101010000001010

711 [19]0000101010001010011

712 [19]0000101010100001010

713 [19]0000101010101010011

714 [19]0000101011000001010

715 [19]0000101011001010011

716 [19]0000101011100001010

717 [19]0000101011101010011

718 [19]0000101100001010011

719 [19]0000110000001010011

720 [19]0000110100001010011

721 [19]0000111000001010011

722 [19]0000111100001010011

723 [19]0101000000001010011

724 [19]0101000100001010011

725 [19]0101001000001010011

726 [19]0101001100000001010

727 [19]0101001100001010011

728 [19]0101001100100001010

729 [19]0101001100101010011

730 [19]0101001101000001010

731 [19]0101001101001010011

732 [19]0101001101100001010

733 [19]0101001101101010011

734 [19]0101001110000001010

735 [19]0101001110001010011

736 [19]0101001110100001010

737 [19]0101001110101010011

738 [19]0101001111000001010

739 [19]0101001111001010011

740 [19]0101001111100001010

741 [19]0101001111101010011

742 [19]0101010000001010011

743 [19]0101010100001010011

744 [19]0101011000001010011

745 [19]0101011100001010011

746 [19]1001100000001010011

747 [19]1001100100001010011

748 [19]1001101000001010011

749 [19]1001101100001010011

750 [19]1001110000001010011

751 [19]1001110100001010011

752 [19]1001111000001010011

753 [19]1001111100001010011

754 [22]0000101000000001010011

755 [22]0000101000100001010011

756 [22]0000101001000001010011

757 [22]0000101001100000001010

758 [22]0000101001100001010011

759 [22]0000101001100100001010

760 [22]0000101001100101010011

761 [22]0000101001101000001010

762 [22]0000101001101001010011

763 [22]0000101001101100001010

764 [22]0000101001101101010011

765 [22]0000101001110000001010

766 [22]0000101001110001010011

767 [22]0000101001110100001010

768 [22]0000101001110101010011

769 [22]0000101001111000001010

770 [22]0000101001111001010011

771 [22]0000101001111100001010

772 [22]0000101001111101010011

773 [22]0000101010000001010011

774 [22]0000101010100001010011

775 [22]0000101011000001010011

776 [22]0000101011100001010011

777 [22]0101001100000001010011

778 [22]0101001100100001010011

779 [22]0101001101000001010011

780 [22]0101001101100001010011

781 [22]0101001110000001010011

782 [22]0101001110100001010011

783 [22]0101001111000001010011

784 [22]0101001111100001010011

785 [25]0000101001100000001010011

786 [25]0000101001100100001010011

787 [25]0000101001101000001010011

788 [25]0000101001101100001010011

789 [25]0000101001110000001010011

790 [25]0000101001110100001010011

791 [25]0000101001111000001010011

792 [25]0000101001111100001010011

125

Table 4.2: Examples of the exponential length construction for 0 < m < n < 2m
|Σ| m n τ | τ | w |w |
2 2 3 001 3 τ 3
2 3 4 0001 4 τ03τ 11
2 3 5 00001010011 11 τ03τ 25
2 4 5 00001 5 τ04τ04τ 23
2 4 7 0000001001000110100010101100111 31 τ04τ04τ 101
2 5 6 000001 6 τ05τ05τ05τ 39
2 5 7 00000010001000011 17 τ05τ05τ05τ 83
2 5 8 00000001000100001100100001010011000111 38 τ05τ05τ05τ 167

2 5 9 000000001000100001100100001010011000111-
0100001001010100101101100011010111001111

79 τ05τ05τ05τ 331
2 6 7 0000001 7 τ06τ06τ06τ06τ 59
2 7 8 00000001 8 τ07τ07τ07τ07τ07τ 83
2 7 9 00000000100000100000011 23 τ07τ07τ07τ07τ07τ 173
2 8 9 000000001 9 τ08τ08τ08τ08τ08τ08τ 111
3 2 3 00102 5 τ 5
3 3 4 0001002 7 τ03τ 17
3 3 5 00001002010011012020021022 26 τ03τ 55
3 4 5 000010002 9 τ04τ04τ 35
4 2 3 0010203 7 τ 7
4 3 4 0001002003 10 τ03τ 23

4 3 5 00001002003010011012013-
020021022023030031032033

47 τ03τ 97
4 4 5 0000100020003 13 τ04τ04τ 47

Assume there are two palindromes a1, a2 in the same path a1w0b1w1 · · · bkwka2.
Since SR ⊆ S, the words wR

0 , wR
1 , . . . , wR

k are also in S. Hence aR
2 wR

k bR
k · · ·wR

1 bR
1 aR

1

is also a path. But a1, a2 are palindromes, so aR
1 = a1 and aR

2 = a2. Then the

concatenation of the two paths gives a cycle in G
(m,n)
S , which contradicts the fact

that S∗ is co-finite. Therefore, the longest path in G
(m,n)
S cannot encounter every

vertex, so by Theorem 2.5.3, the longest words not in S∗ are of length less than
g(m, l) = ml −m− l, where l = m |Σ|n−m + n−m

We can construct a set of words S such that the longest path in G
(m,n)
S encounters

every non-palindrome vertex and 0n−m. We start from w0 = 0n−m and T being
empty. First we pick any non-palindrome vertex w1 of length n − m, and add
w00

2m−nw1 and wR
1 0

2m−nwR
0 to T . Then we pick any non-palindrome w2 of length

n − m such that neither w2 nor wR
2 was considered in previous steps, and add

w10
2m−nw2 and wR

2 0
2m−nwR

1 to T . Continue this procedure until no word can be
added. Then we claim Σm ∪ Σn \ T is the required set. To see this, first, no
non-palindrome vertex is left, or the procedure will not stop. Since at each step
the vertex w is picked only if it was not considered, it remains to check wR was
not considered in any previous step. Otherwise, for some previous chosen vertex
u, we have u = wR. Then w = uR was already considered, a contradiction. So
the longest path in G

(m,n)
S encounters each non-palindrome vertex exactly once,

and the longest words not in S∗ are of length g(m, l′) = Θ(|Σ|n−m), where l′ =

m(|Σ|n−m − |Σ|d(n−m)/2e) + n−m.

Shallit [154] considered examples with other input forms, such as NFAs, regular
expressions, and PDAs, accepting the example in Theorem 4.1.1 and variations.
The following constructions are mainly based on his ideas.

There is an NFA with O(n2) states accepting the example S in Theorem 4.1.1

126

over the alphabet Σ. For two integers m,n with 0 < m < n < 2m and gcd(m,n) =
1, the set S contains all words of lengths m and n except words of the form
(i)02m−n(i + 1) for 0 ≤ i ≤ |Σ|n−m − 1. For brevity, write # to represent the
middle zeros 02m−n. The NFA M is composed of five parts, an NFA accepting all
words of length m and words of length n not of the form u#u′ and Ga, Aa, Ca, T
for letters a ∈ Σ. Then M is constructed by combining the initial states of the five.
Each of the latter four parts handles a particular type of the word u#v such that
[v]|Σ| 6= [u]|Σ| + 1. Let z be the lexicographically last letter in Σ, and let Σa denote
Σ \ { a }. The NFA Ga accepts words of the form Σn−m−i−1aLi#Σn−m−i−1ΣaΣ

i,
where Li is the set of all words of length i that contain at least one letter in
Σz, for 1 ≤ i ≤ n − m − 1. The NFA Aa, a 6= z, accepts words of the form
Σn−m−1a#Σn−m−1Σb, where [b]|Σ| = [a]|Σ| + 1. The NFA Ca, a 6= z, accepts
words of the form Σn−m−i−1azi#Σn−m−i−1(Σi+1 \ b0i), where [b]|Σ| = [a]|Σ| + 1,
for 1 ≤ i ≤ n −m − 1. The NFA T accepts the language zn−m#Σn−m. One can
verify that all words accepted by the four NFAs are of length n.

First of all, none of the words accepted by any of the NFAs is of the form
(i)02m−n(i + 1). Let u#v be a word of n, where u, v are of length n − m. If Ga

accepts u#v, then u = waw′ ∈ Σn−maLi, for w′ ∈ Li. Since w′ contains a letter in
Σz, u plus 1 will not change the letter a even when a carry occurs. But u and v are
different at the position of a, so [v] 6= [u] + 1. If Aa accepts u#v, then u = wa for
w ∈ Σn−m−1. Since a 6= z, the addition of u and 1 will not carry, and equals wb,
where b is the letter that follows a. The last letter in v is not b, so [v] 6= [u] + 1.
If u = wazi for w ∈ Σn−m− i, then u plus 1 will carry right to the position of
a, and result in wb0i, where b is the letter that follows a. Now b0i is not a suffix
of the word v and thus [v] 6= [u] + 1. Finally, the word zn−m represents the largest
integer with length n−m, and thus none of the words accepted by T is of the form
(i)02m−n(i + 1).

Now we prove that if u#v is not of the form (i)02m−n(i+1), then u#v is accepted
by one of the four NFAs. If u = zn−m, then T accepts u#v. Otherwise, assume
u = xy, such that [xy] + 1 = [xz] and the first letters of y, z are different. Then y
contains at least one letter that is not z, and v 6= xz. The mismatching can happen
either in x or in z. If there is a letter in x which does not match v, then Ga accepts
u#v. If the mismatching is in z, then either Aa or Ca accepts u#v, depending on
whether the calculation [xy] + 1 in base |Σ| carries.

There is an NFA of m + 1 states accepting words of length m, and an NFA of
n + 1 states accepting words of length n not in the form of w#w′, where w’s are of
length n−m. Each of the Ga with i has (n−m− i)+2i+(2m−n)+(n−m) ≤ 2n
states. Each of the Aa has (2n − 2m) + (2m − n) + 1 ≤ n + 1 states. Each of
the Ca with i has (n − m) + 1 + (2m − n) + (n − m − i) + 2i ≤ 2n states. T
has (2n − 2m) + (2m − n) + 1 ≤ n + 1 states. So the total number of states is
< 4 |Σ|n2 + |Σ| (n + 1) = O (|Σ|n2). For |Σ| = 2, n−m = 4, the NFA is illustrated
in Table 4.3, where the number for each state is omitted, and repeated structures
are combined.

127

Table 4.3: NFA accepting Σm ∪ Σn \ T (m,n)

a ©◦ ◦ 0 // ◦ #
// ◦ 0,1

// ◦ 0,1
// ◦ 0,1

// ◦ 0 //©◦

◦ 0 //

0,1
@@¢¢¢¢¢¢¢¢ ◦
0

²²

1 // ◦ #
// ◦ 0,1

// ◦ 0,1
// ◦

0

²²

1 // ◦
1
²²

◦ #
// ◦ 0,1

// ◦ 0,1
// ◦ 1 // ◦ 0,1

//©◦

◦ 0 //

0,1

GG³³³³³³³³³³³³³³³ ◦ 1 //

0

²²

◦
0

²²

1 // ◦ #
// ◦ 0,1

// ◦
0

²²

1 // ◦
1

²²

0 // ◦
1
²²

◦ 0,1
// ◦ #

// ◦ 0,1
// ◦ 1 // ◦ 0,1

// ◦ 0,1
//©◦

◦
0

²²

1 // ◦ 1 //

0

²²

◦
0

²²

1 // ◦ #
// ◦

0

²²

1 // ◦
1

²²

0 // ◦
1

²²

0 // ◦
1
²²

◦ 0,1
// ◦ 0,1

// ◦ #
// ◦ 1 // ◦ 0,1

// ◦ 0,1
// ◦ 0,1

//©◦

◦

{ 0,1 }m

OO

{ 0,1 }n−m

²²

GF
// 1 //

0

HH³³³³³³³³³³³³³³³

0,1

KK»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»

0,1

¶¶
&&
&&
&&
&&
&&
&&
&&
&&
&&
&&
&&
&&
&&
&&
&&

1

´
$́$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$ ◦ 1 // ◦ 1 // ◦ 1 // ◦ #

// ◦ 0,1
// ◦ 0,1

// ◦ 0,1
// ◦ 0,1

//©◦

◦ 1 // ◦ #
// ◦ 0,1

// ◦ 0,1
// ◦ 0,1

// ◦ 1 //©◦

◦

{ 0,1 }2m−n\#

²²

◦ 1 //

0,1
@@¢¢¢¢¢¢¢¢ ◦
0

²²◦ #
// ◦ 0,1

// ◦ 0,1
// ◦ 0 // ◦ 0,1

//©◦

◦

{ 0,1 }n−m

²²

◦ 1 //

0,1

GG³³³³³³³³³³³³³³³ ◦ 1 //

0

²²

◦
0

²²◦ 0,1
// ◦ #

// ◦ 0,1
// ◦ 0 // ◦ 0,1

// ◦ 0,1
//©◦

©◦ ◦
0

²²

1 // ◦ 1 //

0

²²

◦
0

²²◦ 0,1
// ◦ 0,1

// ◦ #
// ◦ 0 // ◦ 0,1

// ◦ 0,1
// ◦ 0,1

//©◦
aHere©◦ denotes final states.

128

Now we consider regular expressions. By the same construction in the NFAs, we
can effectively convert them into a regular expression of length O(n2 log n), which
is also composed of five parts. Let Σ represent the regular expression

∑
a∈Σ a,

= 02m−n, and let Lk abbreviate the regular expression of k-times concatenation
of L (when we count the length of the regular expression, alph(Lk) = k · alph(L)).
We define omit(w) to be the regular expression for the language Σn \{w }, where w
is a word of length n over the alphabet Σ. It can be recursively constructed using
divide-and-conquer method as follows:

omit(a1a2 · · · an) = Σbn/2c omit(abn/2c+1 · · · an) + omit(a1 · · · abn/2c)abn/2c+1 · · · an,
(4.12)

and thus has O(n log n) alphabetic symbols [41]. Let R1 = R′
1+R′′

2, where R′
1 = Σm

is of length m |Σ| and contains all words of length m, and R′′
2 = Σn−m omit(#)Σn−m

is of length O(n + m log m). Let R2 be a regular expression for Ga, that is∑
1≤i≤n−m−1

∑
a∈Σ

(
Σn−m−i−1aLi#Σn−m−i−1ΣaΣ

i
)
, where Li is the set of all words

of length i that contain at least one of the non-z letters and can be constructed
recursively as follows:

Li = Lbi/2cΣ
di/2e + Σbi/2cLdi/2e. (4.13)

Thus Li has length O(i log i). Hence the total length of R2 is O(|Σ|n2 log n). Let
R3 be a regular expression for Aa, that is

∑
a∈Σ,a 6=z Σn−m−1a#Σn−m−1b, where b is

the letter that follows a. Then the length of R3 is ≤ 2 |Σ|2 n. Let R4 be a regular ex-
pression for Ca, that is

∑
1≤i≤n−m−1

∑
a∈Σ,a 6=z

(
Σn−m−i−1azi#Σn−m−i−1 omit(b0i)

)
,

where b is the letter that follows a. Since omit(b0i)
)

has length O(i log i), then the
total length of R4 is O(|Σ|n2 log n). Finally, R5 is just zn−m#Σn−m, which is of
length n−m+m |Σ|. Therefore, there is a regular expression R1+R2+R3+R4+R5

of length O(ν2 log ν) specifying the example in Theorem 4.1.1, where ν = n is the
length of the longest words in the basis S.

For example, T (5, 9) = { 000000001, 000100002, 000200010, . . . , 222102222 },
for Σ = { 0, 1, 2 }. The regular expression for S = Σ5 ∪ Σ9 \ T (5, 9) is

Σ20(0+1)#Σ2(1+2)Σ+Σ0
(
(0+1)Σ+Σ(0+1)

)
#Σ(1+2)Σ2+0

((
(0+1)Σ+Σ(0+1)

)
Σ+Σ2(0+1)

)
#(1+2)Σ3+

Σ21(0+1)#Σ2(0+2)Σ+Σ1
(
(0+1)Σ+Σ(0+1)

)
#Σ(0+2)Σ2 +1

((
(0+1)Σ+Σ(0+1)

)
Σ+Σ2(0+1)

)
#(0+2)Σ3+

Σ22(0+1)#Σ2(0+1)Σ+Σ2
(
(0+1)Σ+Σ(0+1)

)
#Σ(0+1)Σ2 +2

((
(0+1)Σ+Σ(0+1)

)
Σ+Σ2(0+1)

)
#(0+1)Σ3+

Σ30#Σ3(0 + 2) + Σ31#Σ3(0 + 1) + Σ32#Σ3(1 + 2) + 2222#Σ4+

0222#
((

(0 + 2)Σ + 1(1 + 2)
)
Σ + 10

(
(1 + 2)Σ + 0(1 + 2)

))
+ Σ022#Σ

((
(0 + 2)Σ + 1(1 + 2)

)
Σ + 10(1 + 2)

)
+

Σ202#Σ2
(
(0 + 2)Σ + 1(1 + 2)

)
+ 1222#

((
(0 + 1)Σ + 2(1 + 2)

)
Σ + 20

(
(1 + 2)Σ + 0(1 + 2)

))
+

Σ122#Σ
((

(0 + 1)Σ + 2(1 + 2)
)
Σ + 20(1 + 2)

)
+ Σ202#Σ2

(
(0 + 1)Σ + 2(1 + 2)

)
+ Σ5 + Σ4(1 + 2)Σ4,

where Σ = (0 + 1 + 2) and # = 0. The set S contains 19846 words.

Now we consider DPDAs. A DPDA of O(n) states can be constructed to accept
a variation on the example in Theorem 4.1.1. The idea is to construct a DPDA
M accepting all words of length n except those of the form (i)02m−n(i + 1)R for
0 ≤ i ≤ |Σ|n−m − 2. The machine M simply reads the first n − m symbols in

129

the input, and stores the result in the stack. Then M checks that the following
2m − n symbols are zeros. Finally, M does an addition of the word in the stack
with 1 in base |Σ| and matches the last n−m symbols of the input. If these match,
then M rejects. If any mismatching appears at any step, M continues to read
input symbols and verifies that the total number of input symbols is n. If it is,
M accepts; otherwise, M rejects. One can modify M such that when M reads m
symbols and there is no other symbol left on the tape, then M also accepts. So a
DPDA accepting

L = Σm ∪ Σn \ {
(i)02m−n(i + 1)R : 0 ≤ i ≤ |Σ|n−m − 2

}
. (4.14)

can be constructed. The DPDA needs to store the information on the number of
symbols it had read, so M needs O(n) states.

For |Σ| even and n−m odd, Shallit proved in our paper [102] with Lubiw and
Shallit that starting from x0 = 0n−m and applying the recursion xk+1 = ([xk]+1)R,
all words of length n − m will be generated and zn−m is the last one generated,
where z is the lexicographically last letter in Σ. This means each word of length
n −m except zn−m appears as a prefix of a word not in L exactly once and each
word of length n −m except 0n−m appears as a suffix of a word not in L exactly
once. Then by Theorem 4.1.3, L∗ is co-finite and the length of the longest words
not in L∗ is g(m, l) = ml −m− l, where l = m |Σ|n−m + n−m.

4.1.2 Examples of the 2FPFM with 0 < 2m < n

In this subsection, I will show how to construct examples achieving exponential
longest omitted words in the general case without the constraint n < 2m. By the
equivalence between finding the longest words not in S∗ and the words τ not in S∗

in Theorem 2.5.3, in order to construct an example for the 2FPFM with exponential
length of longest omitted words g(m, l) = ml−m− l, where l = m |Σ|n−m +n−m,
it is essential to find a word τ of length l − m. When 0 < m < n < 2m, as we
saw in the last subsection, such a τ can be effectively found. In order to do this for
0 < 2m < n, we again use the word graph.

By Theorem 2.6.6, the longest words not in S∗ are related to the longest paths
in the word graph. The labeling of a longest path in G

(m,n)
S gives the word τ that

can be used to describe the longest omitted words. Then it remains to find a set
of words S with the longest path of length |Σ|n−m − 1, which is a Hamilton path
in the generalized de Bruijn graph Γ(m,n). For each Hamilton path in Γ(m,n), let
T be the set of arcs in the path, and S = Σm ∪ Σn \ T . Then S∗ is co-finite and

the word graph G
(m,n)
S is exactly the spanning subgraph induced by the Hamilton

path, and thus S can achieve the upper bound in the 2FPFM.

We know that a de Bruijn word, or a Hamilton cycle in the usual de Bruijn graph,
can be constructed. I will show how to find a Hamilton cycle in the generalized
de Bruijn graph by finding two de Bruijn words of particular lengths over particular
alphabets.

130

When m = 1, Γ(1, n) is the usual de Bruijn graph, and a Hamilton cycle can be
found accordingly. Furthermore, if m divides n, then a Hamilton cycle in Γ(m,n)
can be obtained as follows. Let Σ be the alphabet. Now we consider the de Bruijn
graph G′(1, n/m) on the alphabet ∆, where |∆ | = |Σ|m. The vertices in G′(1, n/m)
are ∆n/m−1 and the arcs are ∆n/m. Let v0a1v1a2 . . . a|∆ |v0 be a Hamilton cycle in
G′(1, n/m). For each of the vertices and arcs in the cycle, treat them as base-|∆ |
expansion of integers and re-encode them in base |Σ|, possibly with leading zeros
as follows:

(n−m)([v0]∆)Σ · (n)([a1]∆)Σ · (n−m)([v1]∆)Σ · . . . · (n)([a|∆ |]∆)Σ · (n−m)([v0]∆)Σ. (4.15)

Then one can verify that the result gives a Hamilton cycle in Γ(m,n). For example,
to find a Hamilton cycle in Γ(2, 4) on the alphabet { 0, 1 }, first we find a Hamilton
cycle in Γ(1, 2) on the alphabet { 0, 1, 2, 3 } given by 0, 01, 1, 12, 2, 23, 3, 30, 0. Then
a Hamilton cycle in Γ(2, 4) is given by 00, 0001, 01, 0110, 10, 1011, 11, 1100, 00.

When 0 < m < n < 2m, a Hamilton cycle in Γ(m,n) can be found by first
finding a Hamilton cycle in Γ(n − m, 2n − 2m) and then adding extra letters in
the middle. More precisely, let v0, v0v1, v1, v1v2, v2, . . . , v|Σ|n−m−1, v|Σ|n−m−1v0, v0 be
a Hamilton cycle in Γ(n−m, 2n− 2m). Then one can verify that

v0, v00
2m−nv1, v1, v10

2m−nv2, v2, . . . , v|Σ|n−m−1, v|Σ|n−m−10
2m−nv0, v0 (4.16)

is a Hamilton cycle in Γ(m,n). Here the padded factor 02m−n can be any word of
length 2m− n, not even necessarily the same. Then there exists a Hamilton cycle
in Γ(m,n). The construction here is precisely the same as I used to construct the
examples for 0 < m < n < 2m in the previous subsection.

Now we are ready to see the construction for a Hamilton cycle in a general
generalized de Bruijn graph Γ(m,n) with 0 < m < n. Let n = km + r, where
0 ≤ r < m. If either gcd(m,n) = m or k = 1 holds, we already saw how to construct
a Hamilton cycle in Γ(m,n). So we assume m > 1, gcd(m,n) 6= m, and k > 1. Let
m1 = r, n1 = (k + 1)r,N1 = |Σ|n1−m1 . Then m1 divides n1, and we can construct
a Hamilton cycle of length N1. Suppose the labeling of the arcs in one Hamilton
cycle are u1, u2, · · · , uN1 , starting from the vertex 0n1−m1 . Define uj = uN1+j for
j ≤ 0, and u′i = uj, where j = 1+

(
i mod (N1−1)

)
. Then by comparing lengths we

have that the ith vertex in the cycle is ui−k · · ·ui−1, and thus uN1 = uN1−1 = · · · =
uN1−k+1 = 0m1 . Let m2 = m− r, n2 = k(m− r), N2 = |Σ|n2−m2 . Similarly, suppose
the labeling of arcs in a Hamilton cycle are v1, v2, · · · , vN2 , starting from the vertex
0n2−m2 . Define vj = vN2+j for j ≤ 0, and v′i = vj, where j = 1+(i−1 mod N2). Then
the ith vertex in the cycle is vi−k+1 · · · vi−1, and vN2 = vN2−1 = · · · = vN2−k+2 = 0m2 .
Consider the following two cycles in Γ(m,n). Starting from vertex 0n−m, one cycle
is labeled by

v10
m1 , v20

m1 , . . . , vN2−10
m1 , vN20

m1 . (4.17)

Then one can check this cycle with labels in (4.17) visits every vertex in

(0m1Σm2)k−10m1 (4.18)

131

exactly once. Starting from the vertex 0(k−1)mu1, the other cycle is labeled by

v′1u
′
1, v

′
2u
′
2, · · · , v′(N1−1)N2−1u

′
(N1−1)N2−1, v

′
(N1−1)N2

u′(N1−1)N2
. (4.19)

Since gcd(N2, N1 − 1) = 1, this cycle with labels in (4.19) visits every vertex in
(Σm1Σm2)k−1Σm1 \ (0m1Σm2)k−10m1 exactly once. Linking the above two cycles
together by modifying two arcs, the labeling of the arcs in the new cycle are given
below:

v10
m1 , v20

m1 , · · · , vN2−10
m1 , vN2u

′
(N1−1)N2

,

v′1u
′
1, v

′
2u
′
2, · · · , v′(N1−1)N2−1u

′
(N1−1)N2−1, v

′
(N1−1)N2

0m1 .

Since the set of vertices in the two cycles are disjoint, and the length of the new
cycle is N2 + (N1 − 1)N2 = N1N2 = |Σ|n1−m1+n2−m2 = |Σ|km−m+r = |Σ|n−m, the
new cycle in Γ(m,n) is a Hamilton cycle.

Example 4.1.5. For m = 2, n = 5, we construct a τ of length 2 |Σ|3 + 1 = 17
and a set S of words of lengths 2 and 5 such that the longest words not in S∗ are of
length g(2, 19) = 17. Since n = km + r, where k = 2, r = 1, we first find Hamilton
cycles in G

(
r, (k+1)r

)
= Γ(1, 3) and in G

(
m−r, k(m−r)

)
= Γ(1, 2). One Hamilton

cycle in Γ(1, 3) is 00, 001, 01, 011, 11, 110, 10, 100, 00, which starts from 00 and is
labeled by 1, 1, 0, 0. Omit the first label 1. One Hamilton cycle in Γ(1, 2) is given
by 0, 01, 1, 10, 0, which starts from 0 and is labeled by 1, 0. Then we construct two
cycles in Γ(m,n). One starts from 000 and is labeled by 120, 020. The subscript
here denotes whether the letter is from the Hamilton cycle in Γ(1, 3) or from Γ(1, 2).
The other is from 001 and is labeled by 1211, 0201, 1211, 0211, 1201, 0211.

•0020
120

((•0120

020

hh •010211

1211

// •111211

0201

// •110201

1211

// •011211

0211

// •110211

1201

// •111201

BC@A
0211

OO

Now we connect the two cycles. Finally we obtain a Hamilton cycle in Γ(2, 5),
which starts from 000 and is labeled by 120, 0211, 1211, 0201, 1211, 0211, 1201, 020.

•01020 120 // •0120GF ED
0211

²²•00211

1211

// •111211

0201

// •110201

1211

// •011211

0211

// •110211

1201

// •111201

BC@A
020

OO

So there is a τ = 00010011100110110, and a set of words

S = Σ2 ∪ Σ5 \ { 00010, 01001, 00111, 11100, 10011, 01101, 10110 } , (4.20)

such that the longest word not in S∗ is τ of length g(2, 19) = 17.

When m = 1, the word τ labeling a Hamilton path in Γ(1, n) is essentially a
de Bruijn word. For example, m = 1, n = 4, then one de Bruijn word is τ =
0001011100, which contains every word of length 3 exactly once:

000 1011100, 0 001 011100, 00 010 11100, 000 101 1100

132

0001 011 100, 00010 111 00, 000101 110 0, 0001011 100.

For more general cases of τ with m,n, τ contains every word of length m − n
exactly once at a particular position in τ . For example, m = 2, n = 5, then one τ
is τ = 00010011100110110:

000 10011100110110, 00 010 011100110110, 0001 001 1100110110, 000100 111 00110110,

00010011 100 110110, 0001001110 011 0110, 000100111001 101 10, 00010011100110 110.

The definition of word graph and generalized de Bruijn graph does not require
the condition gcd(m,n) = 1. But in order to construct a basis to generate a co-
finite language, the condition gcd(m,n) = 1 is required. For the sole purpose of
discussion on co-finiteness, m = 1 only leads to trivial cases since a language is
co-finite when m = 1 if and only if the basis contains all letters. But as we saw,
when m = 1, the discussion on the word graph is not trivial. For small m,n, the
lexicographically least τ , the labeling of a Hamilton cycle in Γ(m,n) is summarized
in Table 4.4. When gcd(m,n) = 1, there is a basis S for each of the τ such that
the set of the longest words not in S∗ is (τΣm)m−2τ .

Table 4.4: Examples of generalized de Bruijn words τ
|Σ| m n τa | τ |
2 1 2 01 2
2 1 3 00110 5
2 1 4 0001011100 10
2 1 5 0000100110101111000 19
2 1 6 000001000110010100111010110111110000 36
2 1 7 000000100001100010100011100100101100110100111101010111011011111100000 69
2 1 8 : 9 (too long, omitted) 134 : 263
2 2 4 00011011 8
2 2 5 00001001011011110 17
2 2 6 0000010010001101011001111010111100 34
2 2 7 0000001000010001100010100100110011100110101101010111011110111111000 67
2 2 8 : 9 (too long, omitted) 132 : 261
2 3 6 000001010011100101110111 24
2 3 7 0000001000010011001010100101011100110111101111110 49
2 3 8 : 9 (too long, omitted) 98 : 195
2 4 6 00000100100011 14
2 4 8 0000000100100011010001010110011110001001101010111100110111101111 64
2 4 9 (too long, omitted) 129
2 6 8 00000001000010000011 20
2 6 9 000000001000010000011000100000101000110000111 45
3 2 4 000102101112202122 18
3 2 5 0000100020010110102011012021020211112112022122121222220 55
4 2 4 00010203101112132021222330313233 32
4 2 5 (too long, omitted) 129

aThose already in Table 4.2 are omitted.

4.2 Doubly-exponential number of words 6∈ S∗

I will give the following examples, in which the number of words not in the generated
co-finite language is doubly exponential in ν, the length of the longest words in the
basis. Here we also assume the alphabet Σ is { 0, 1, 2, . . . }. The notation c(n)k and

133

[w]k is the same as defined in the last section. Here c(n)k represents the expansion
of the non-negative integer n in base k of length c with possible leading zeros, and
[w]k represents the non-negative integer represented by the word w in base k. For
two integers m and n with 0 < m < n < 2m, define

U(m,n) =
{

c(i)kwc(j)k : 0 ≤ i < j ≤ |Σ|n−m − 1, w ∈ Σ2m−n, k = |Σ| , c = n−m
}
.

(4.21)
For example, over the binary alphabet { 0, 1 }, we have

U(3, 5) ={ 00001, 00010, 00011, 01010, 01011, 10011, 00101, 00110, 00111, 01110, 01111, 10111} .
(4.22)

Theorem 4.2.1. [83, 84] Let m,n be two integers with 0 < m < n < 2m and
gcd(m,n) = 1, and let S = Σm ∪ Σn \ U(m,n). Then S∗ is co-finite, and the

number of words not in S∗ is = |Σ|Ω(|Σ|n−m) .

Proof. Consider the word graph G
(m,n)
S . By the definition of U(m,n), we know that

the arcs in G
(m,n)
S are words of the form c(i)kwc(j)k, for 0 ≤ i < j ≤ |Σ|n−m−1, w ∈

Σ2m−n, k = |Σ| , c = n − m, which joins vertex c(i)k to vertex c(j)k. So following

any walk in G
(m,n)
S , the vertices visited must be strictly increasing in lexicographical

order. Then G
(m,n)
S does not contain a cycle. By the construction of S, we also

have Σm ⊆ S. By Theorem 2.6.6, S∗ is co-finite.

Furthermore, for any two vertices u and v such that v is lexicographically strictly
greater than u, then there are |Σ|2m−n arcs join u to v as uwv for any w ∈ Σ2m−n.

So the paths in G
(m,n)
S are exactly of the form

u1x1u2x2 · · ·ukxkuk+1, (4.23)

where u1, u2, . . . , uk+1 are distinct vertices in lexicographical order from a smaller
vertex to a bigger vertex, and xi = uiyiui+1 for y ∈ Σ2m−n. Then by Corollary 2.6.9,
we have

V =
{

(c1)w2(c2)w3 · · ·wl(cl) :

0 ≤ c1 < c2 < · · · < cl ≤ |Σ|n−m − 1, 1 ≤ l ≤ |Σ|n−m , wi ∈ Σ2m−n
}

(4.24)

and the set of words not in S∗ is

Σ∗ \ S∗ =

(⋃

j 6∈〈m,n〉
Σj

)⋃ (
m−2⋃
i=0

(V Σm)iV

)
, (4.25)

where the cardinality of V is

|V | =
|Σ|n−m∑

i=1

(|Σ|n−m

i

)
|Σ|(i−1)(2m−n) =

(1 + |Σ|2m−n)|Σ|
n−m − 1

|Σ|2m−n = |Σ|Ω(|Σ|n−m) .

(4.26)

Hence the number of words not in S∗ is ≥ V = |Σ|Ω(|Σ|n−m).

134

Corollary 4.2.2. Let m,n be two integers with 0 < m < n < 2m, gcd(m,n) = 1,
and let S = Σm ∪ Σn\U(m,n). Then S∗ is co-finite, and the number of the longest

words not in S∗ is = |Σ|Ω(|Σ|n−m) .

Proof. Similarly to the proof of Theorem 4.2.1, one can verify that the length of
the longest omitted words is g(m, l) for l = m |Σ|n−m + n−m. In addition, the set
of words of length l −m not in S∗ is given by

V ′ =
{

(0)w2(1)w3 · · ·w|Σ|n−m(|Σ|n−m − 1) : w2, w3, . . . , w|Σ|n−m ∈ Σ2m−n
}
. (4.27)

Then by Corollary 2.6.7, the set of the longest words not in S∗ is

(V ′Σm)m−2V ′, (4.28)

which is of cardinality

|V ′ |m−1 |Σ|m(m−2) = |Σ|(2m−n)(m−1)|Σ|n−m+(mn−m2−n) = |Σ|Ω(|Σ|n−m) . (4.29)

By the preceding two proofs, one can also verify that both the total number of
symbols in words not in S∗ and the total number of symbols in the longest words

not in S∗ are = |Σ|Ω(|Σ|n−m).

Example 4.2.3. Let m = 3, n = 5, Σ = { 0, 1 }. In this case, S = Σ3 ∪
Σ5 \ U(3, 5) = Σ3 ∪ { 00000, 00100, 01000, 01001, 01100, 01101, 10000, 10001, 10010,
10100, 10101, 10110, 11000, 11001, 11010, 11011, 11100, 11101, 11110, 11111 }. Then S∗ is
co-finite, and the set Σ∗ \ S∗ is of cardinality 11562. In this case, the cardinality
of V is 40 =

(
(1 + 2)4 − 1

)
/2, the cardinality of V ′ is 8 = 23, and the number of

longest omitted words is 512 = 22·4+1. The total number of symbols is 200638 for
all omitted words and 12800 for the longest omitted words.

Theorem 4.2.4. Let v1, v2, . . . , v|Σ|n−m be any permutation of all distinct words of
length n−m over the alphabet Σ, and let S = Σm ∪ Σn \ U , where

U =
{

viwvj : 1 ≤ i < j ≤ |Σ|n−m , w ∈ Σ2m−n
}
. (4.30)

Then S∗ is co-finite, and the number of the longest words not in S∗ is = |Σ|Ω(|Σ|n−m).

Using vi instead of n−m(i)|Σ| for 0 ≤ i ≤ |Σ|n−m− 1, the proof in Theorem 4.2.1
is also valid for Theorem 4.2.4.

Now, we consider a variation on the FPFM, where the basis is of the form
S ∪ SR. Let w0 = 0n−m, w1, w2, . . . , wk be the vertices defined in the proof of
Proposition 4.1.4, and U ′ =

{
wR

i wwj, wiwwj : 0 ≤ i < j ≤ k, w ∈ Σ2m−n
}
, where

k = (|Σ|n−m−|Σ|d(n−m)/2e)/2. Then the basis S = Σm ∪ Σn \ (U ′ ∪ U ′R) generates
a co-finite language, and one can verify that the number of the longest words not

in S∗ is also = |Σ|Ω(|Σ|n−m).

135

The examples given in Theorem 4.2.1 with 0 < m < n < 2m have the maximum
number of omitted words among all bases S of two lengths m,n such that S∗ is
co-finite. To see this, note that any basis S of lengths m,n such that S∗ is co-finite
can be reduced to a basis of the form in Proposition 4.2.4. Since reducing the basis
S will not decrease the number of words not in S∗, the number of omitted words
in the original S∗ is less than that of the reduced one. It remains to show that
the reduction can be done. First, we construct the word graph G

(m,n)
S , which is a

spanning subgraph of Γ(m,n). The language S∗ is co-finite, so G
(m,n)
S has no cycle.

There is an order of the vertices in G
(m,n)
S such that every arc in G

(m,n)
S joins a

smaller vertex to a bigger vertex. Since 0 < m < n < 2m, in Γ(m,n) there are
arcs between each pair of vertices in both directions, and thus there is a Hamilton
path that passes through all vertices from the smallest vertex to the biggest vertex.
Then, use the vertices in the order of the Hamilton path to construct a basis as in
Theorem 4.2.4, which defines the reduced basis of S.

Furthermore, when 0 < m < n < 2m, any example S with the maximum
number of omitted words among all bases of lengths m,n that generate co-finite
languages must also be an example with the longest omitted words. Suppose it is
not. Then consider the word graph G

(m,n)
S . By the same reasoning, there is a order

of the vertices in G
(m,n)
S and a Hamilton path in Γ(m,n) that passes through all

vertices in the same order. Use the vertices in the same order to construct a basis
as in Theorem 4.2.4, which defines a reduced set S ′ that has the longest omitted
words. Furthermore, since the longest omitted words are not in S ′∗ but in S∗, the
number of omitted words in S ′∗ is strictly greater than that of S∗, which contradicts
the maximality of the number of words not in S∗.

In general, an example with the maximal number of omitted words may not
be an example with the longest omitted words. For example, let m = 2 and
n = 5. Let S1 = Σ2 ∪ Σ5 \ { 00001, 00100, 10010, 01011, 01101, 10111, 11110 },
and S2 = { 00, 01, 10, 11, 00000, 00010, 01010, 10000, 10001, 10010, 10011,
10101, 11000, 11001, 11010, 11011, 11101, 11111 }. Both bases generate co-finite
languages. The longest word not in S∗1 is 00001001011011110 of length 17, which
is the maximum among all examples with m = 2, n = 5, and the longest words not
in S∗2 are of length 13, namely 01000(0 + 1)10111(0 + 1)0. But there are only 38
words not in S∗1 , while there are 112 words not in S∗2 .

4.3 Experiment statistics

In this section, I will summarize some of my experimental results. Most of the
experiments were done with GRAIL [131]. GRAIL automatically determines the
alphabet by choosing all letters and numbers that appear in the input. So, although
{ 00, 000 } does not generate a co-finite language over the binary alphabet, GRAIL
will treat it as over the unary alphabet and result in a co-finite language over the
unary alphabet. In addition, when a basis S generates Σ∗, we have llw

(
S∗

)
= −1,

136

but such an S is counted into the case of length 0 for programming reasons. Consid-
ering the number of words, these cases are not numerous and will not significantly
affect the statistics.

For words of three lengths over the binary alphabet, I randomly chose each
word with fixed probability according to their length. The numbers of bases in my
experiments that have the same length of the longest omitted words are given in
Table 4.5.

Table 4.5: Experiment summary on the number of different cases — one
length-probability ∞ 0/·0a 1/·1 2/·2 3/·3 4/·4 5/·5 6/·6 7/·7 8/·8 9/·9
80%2,80%3,80%4b 829213 0 71918 0 80178 0 42076 4376 4154 3063 2153
(1038275 in total) 93 1027 0 24
80%3,80%4,80%5 939533 0 0 2 0 9 11477 0 21190 23379 0
(1080802 in total) 21036 24278 1136 13331 9673 2462 4505 3798 928 1946

780 279 456 367 51 69 66 34 7 5
1 3 0 0 0 0 1

all2,90%5 41121 0 0 0 3676 0 32440 0 20260 0 5786
(104690 in total) 0 1172 0 211 0 24

all3,90%5 293447 0 0 0 0 0 0 0 14880 0 0
(440370 in total) 0 0 0 79090 0 0 0 0 0 44041

0 0 0 0 0 8912
all2,80%3,80%4 6600 0 1682 0 1978 (10260 in total)
all2,90%3,90%4 8930 0 10182 0 4898 (24010 in total)
all3,90%4,90%5 254543 0 0 12794 0 13519 649183 0 676868 211910 0

(2010370 in total) 141202 25184 0 20486 2209 0 2114 154 0 174
15 0 14 0 0 1

90%2,90%3,all4 33772 0 23557 0 10965 0 14836 (83130 in total)
70%3,70%4,all5 263442 0 0 61 0 410 0 0 17412 0 0
(308790 in total) 0 27465
90%3,90%4,all5 19438 0 0 6979 0 7048 0 0 22870 0 0
(85450 in total) 0 29115

all combination 1, 2, 3 12014 4104 259 0 6 (16383 in total)
all3,half4,most5 36341 0 0 0 0 0 0 0 23616 336 0
(144263 in total) 50792 180 0 29535 0 0 2916 0 0 547
all3,half4,half5 87528 0 0 0 0 0 0 0 0 0 0
(87539 in total) 0 0 0 0 0 0 0 1 0 0

4 0 5 0 0 1

aSymbol ∞ means the language is not co-finite. Symbol ·1 means lengths 11, 21, 31,
bWe chose each word of length 2 with 80% probability, of length 3 with 80% probability, and

of length 4 with 80% probability. The number 829213 below is the total number of samples.

Table 4.5 shows that in general, a basis that generates a co-finite language does
not necessarily contain all words of the smallest length or all words of the greatest
length. For words of lengths 3, 4, 5, there are bases that contain all words of length
3 and bases that contain all words of length 5, which generate co-finite languages
and the longest words not in the generated languages are rather long. In addition,
there indeed exist examples of words of lengths p, q, r achieving longer length of the
longest omitted words than those in the 2FPFM where the two lengths are { p, q },
{ p, r }, or { q, r }. For example, let { p, q, r } = { 3, 4, 5 }. Among all possible bases
in the 2FPFM where the two lengths ∈ { 3, 4, 5 }, the longest omitted words not
in a generated language are of length 25. The set of words of lengths 3, 4, 5, say
S = { 000, 001, 010, 100, 111, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010,

137

1011, 1100, 1101, 1110, 00000, 00010, 00011, 00101, 00110, 00111, 01001, 01010, 01100, 01110,
10000, 10010, 10011, 10100, 10101, 10110, 10111, 11000, 11001, 11010, 11011, 11100, 11101,
11110, 11111 }, generates a co-finite language and one of the longest words not in S∗

is 000011010101010110001111100001101111, which is of length 36.

Experiments suggest that if a set of words contains words of three consecutive
lengths, then it must contain most of the words (≥ 50%) in order to generate
a co-finite language. The bases were randomly chosen over the binary alphabet,
containing words of lengths 3, 4, 5 with different possibilities. The numbers of bases
that have the same length of the longest omitted words are summarized in Table 4.6.
The few examples that generate a co-finite language in the experiments with low
probability of 5% and 10% are those that contain only one letter, which is not
co-finite over the binary alphabet.

Table 4.6: Experiment summary on the number of different cases — two
length-probability ∞ 0/·0 1/·1 2/·2 3/·3 4/·4 5/·5 6/·6 7/·7 8/·8 9/·9

5%3,5%4,5%5 4706 0 0 0 0 0 3 0 3
10%3,10%4,10%5 4982 0 0 0 0 0 1

15–45%3,15–45%4,15–45%5 5000 0
50%3,50%4,50%5 4999 0 0 0 0 0 0 0 0 0 0
(5000 in total) 0 0 0 0 0 0 0 0 0 0

0 0 1
55%3,55%4,55%5 4999 0 0 0 0 0 0 0 0 0 0
(5000 in total) 0 0 0 1

60%3,60%4,60%5 4994 0 0 0 0 0 0 0 0 0 0
(5000 in total) 0 2 0 1 0 0 1 0 0 2

65%3,65%4,65%5 4972 0 0 0 0 0 0 0 1 3 0
(5000 in total) 2 3 0 7 7 1 1 1 0 1

0 0 1
70%3,70%4,70%5 4925 0 0 0 0 0 1 0 6 9 0
(5000 in total) 14 17 3 13 4 2 2 2 1 1

75%3,75%4,75%5 4751 0 0 0 0 0 12 0 21 50 0
(5000 in total) 34 34 3 38 20 2 15 4 1 6

3 0 3 2 0 0 1
80%3,80%4,80%5 4392 0 0 0 0 0 55 0 95 108 0
(5000 in total) 86 105 2 56 49 11 11 10 5 7

3 0 2 2 0 0 0 0 0 1
85%3,85%4,85%5 3570 0 0 0 0 1 217 0 319 221 0
(5000 in total) 174 242 10 89 71 26 22 23 4 6

0 1 1 3
90%3,90%4,90%5 2271 0 0 19 0 10 707 0 716 221 0
(5000 in total) 164 641 13 72 73 43 8 14 9 16

0 1 0 1 1
95%3,95%4,95%5 625 0 0 197 0 90 1214 0 690 65 0
(3625 in total) 35 635 1 20 25 16 0 4 2 4

0 1 0 1

In 2008, Bassino, Giambruno, and Nicaud [5] proved that for the uniform dis-
tribution over all bases S of fixed number of words, the average state complexity
sc(S∗) = Θ(µ), where µ =

∑
w∈S |w |. So the case of a basis S such that llw

(
S∗

)
is exponential in µ, if such a basis exist, is very rare.

138

Chapter 5

Computational Complexity of the
FPFM

In this chapter, I will discuss algorithms for and the computational complexity of
a decision problem related to the FPFM and its variations. In §5.1, I will provide
two exponential-time algorithms for the general decision problem. In §5.2, I will
give a polynomial-time algorithm for the particular case of the 2FPFM. In §5.3
and §5.4, I will show two polynomial-time algorithms for decision problems related
to the variations on 2FPFM of infinite words and with overlap, respectively. In the
last section, I will discuss the computational complexity of some related decision
problems of the 2FPFM.

5.1 Algorithm for the FPFM

Recall that the FPFM is to find the longest words that are not in a generated
co-finite language. Since there is no simple test to specify whether the given words
generate a co-finite language, a natural variation on the FPFM is to check whether
the given words do indeed generate a co-finite language. So, more formally, we
want to find algorithms to solve the following decision problem.

Problem 5.1.1 (DECISION PROBLEM FOR THE FPFM).

INPUT: k words x1, x2, . . . , xk, not necessarily distinct.

OUTPUT: YES, if L = {x1, x2, . . . , xk }∗ is co-finite; or NO otherwise.

The first algorithm to solve the problem was given by Shallit [154] as follows:
first construct an NFA M1 to accept S = {x1, x2, . . . , xk }, where M1 has transitions
from the initial state to accept each of the words xi. Then, by adding ε-transitions
from each final state to the initial state, an NFA-ε M2 can be constructed to accept
{x1, x2, . . . , xk }∗. Using the subset construction, convert M2 to a DFA M3, and

139

then exchange final states and non-final states to get M4. Finally, detect whether
there is a reachable cycle including a state that leads to a final state.

The machine M2 can be constructed without making an explicit M1 in linear
time in the size of the input, which is the total number of symbols in the x’s, plus
k. The constructed NFA M2 is of the same size as the input plus a constant. The
conversion of M3 can be carried out in O(|Σ|n2n) time, where n is the number of
states in M2. The new DFA M3 has ≤ 2n states. The machine M4 does not have to
be constructed explicitly. To detect a reachable cycle, we first use depth-first search
from all final states in the reversed-transition of the machine to eliminate states
that do not lead to a final state. Then we do depth-first search from the initial
states and record the states visited to detect if there is a cycle. There is a cycle if
and only if there is a state visited twice. The running time for constructing M1,M2

is polynomial in the size of the input, and the running time for converting M3

and finding a cycle can be exponential in the size of the input. By this algorithm,
if there is no cycle, then all longest paths in the machine M4 starting from the
initial state and going to a final state are also obtained, which essentially solves the
corresponding FPFM as well.

In the Step 3, one can also use Brzozowski’s algorithm for minimization of finite
automata, which runs in O(n22n) time [23]. Although it is slower than the usual
NFA-DFA convention algorithm, it can reduce the size of M3, and thus reduce the
running time of the last step. Usually, the number of states in the minimal DFA
equivalent to M3 is much smaller than the number of states in M3. Experiments
using GRAIL [131] with Brzozowski’s algorithm showed that the algorithm can
solve the DECISION PROBLEM FOR THE FPFM (and accordingly the FPFM)
very quickly when the longest words in the basis are of length ≤ 7.

We can also solve the decision problem by first building the DFA M described
in Theorem 3.2.5 on page 81, which has ≤ 2

2|Σ|−1
(2n |Σ|n − 1) states, and then

detecting if there is any cycle in the DFA M by breadth-first-traversal to record
the states visited, which costs exponential time and uses exponential space in the
worst case. But it is not easy to construct the DFA M in Theorem 3.2.5.

5.2 Algorithm for the 2FPFM

Theorem 5.2.1. The 2FPFM can be solved in polynomial time.

I will present a polynomial-time algorithm to solve the decision problem of the
FPFM in the special case of the 2FPFM.

By Theorem 2.6.6, a given set of words S generates a co-finite language if and
only if there is no cycle in the word graph G

(m,n)
S . So we can decide if S∗ is co-

finite by detecting whether there is any cycle in G
(m,n)
S , which can be constructed

from S in polynomial time. The first several steps check special cases and ensure
the cardinality of the input words is exponential in n. By Theorem 2.6.6, the set

140

Figure 5.1: A polynomial-time algorithm to solve the 2FPFM
Input: words x1, x2, . . . , xk.
Output: YES, if x’s are of only two lengths and {x1, x2, . . . , xk }∗ is co-finite;

NO, otherwise.
enumerate all words in the input and find the lengths m,n with m < n ;1

if no such m,n exist then2

return NO ;3

else if gcd(m,n) 6= 1 then4

return NO ;5

else if m = 1 or n = 1 then6

if input does not contains all words of length 1 ;7

then return NO ;8

else if the number of words in input is ≤ |Σ|m + |Σ|n /n then9

return NO ;10

else if the input does not contains all words of length m then11

return NO ;12

else13

construct the word graph G
(m,n)
S ;14

end15

if there is any cycle in G
(m,n)
S then16

return NO ;17

else18

return YES ;19

end20

141

S = {x1, x2, . . . , xk } of two lengths m,n, where 1 < m < n and gcd(m,n) = 1,
generates a co-finite language if and only if S contains all words of length m and
there is no cycle in G

(m,n)
S . Now it remains to see that the word graph can be

constructed in polynomial time. The arcs in G
(m,n)
S are words of length n and

vertices in G
(m,n)
S are words of length n−m, the total number of which is less than

2 |Σ|n. But by Theorem 2.6.23, it follows that a basis that generates a co-finite
language consists at least |Σ|m + |Σ|n /n words. So we first check that the number
of words in the input is at least |Σ|m + |Σ|n /n. If it is not, then it cannot generate
a co-finite language, and we just return NO. This ensures that the computation, if
any, of the word graph G

(m,n)
S is polynomial in the size of the input.

Lines 1–11 in the algorithm can be done in linear time. The construction of the
word graph in Line 14 can be done in time less than n times the size of the input.
Cycles can be detected by breadth-first-traversal from each unvisited vertex. Since
each vertex is visited at most once, the cycle-detection can be done in time linear
in the size of the word graph G

(m,n)
S , the size of which is again bounded by n times

the size of the input.

When G
(m,n)
S has no cycle, then one can find the longest path in the directed

acyclic graph G
(m,n)
S in polynomial time. Suppose j is the length of the longest

path. Calculating l = n+ jm, then g(m, l) = ml−m− l is the length of the longest
words not in S∗. By finding the labeling of the longest path, the longest words not
in S∗ can be constructed to solve the corresponding 2FPFM.

5.3 Algorithm for the case of infinite words

In this section, we will discuss instead the co-finiteness of {x1, x2, . . . , xk }ω and
ω {x1, x2, . . . , xk }ω. By applying the reverse operation on each word, the result on
the co-finiteness of ω {x1, x2, . . . , xk } can be obtained accordingly from the result
on the co-finiteness of {x1, x2, . . . , xk }ω.

Problem 5.3.1 (DECISION PROBLEM FOR FPFM OF INFINITE WORDS).

INPUT: k finite words x1, x2, . . . , xk, not necessarily distinct.

OUTPUT: YES, if L = {x1, x2, . . . , xk }ω is co-finite in Σω; or NO otherwise.

There is a polynomial algorithm for the DECISION PROBLEM FOR FPFM
OF INFINITE WORDS as in the following theorem. The algorithm is based on
Shallit [154]’s idea.

Theorem 5.3.2. The problem DECISION PROBLEM FOR FPFM OF INFINITE
WORDS can be solved in polynomial time.

Proof. We assume xi 6= ε. Let S = {x1, x2, . . . , xk }. By Proposition 3.4.4, Sω is
co-finite in Σω if and only if Sω = Σω. Then by Proposition 3.4.3, Sω = Σω if and
only if for any word w ∈ Σω there is a finite nonempty prefix of w that is in S.

142

The algorithm is as follows. Let S ′ be the minimal subset of S such that for any
w ∈ S \ S ′ there is a word u ∈ S ′ and u is a prefix of w. In the first step, we can
construct a tree T for S, where each node is labeled by a word in Σ∗. The root of
T is labeled by ε. The node u has a child v if v = ua for some a ∈ Σ. The leaves of
T correspond precisely to words from S ′. This tree T can be constructed in linear
time in the size of the input S. To see this, we simply add each word from S into
an empty tree. When we add a word w, we first find the longest prefix u = w[1..k]
that appears in the tree. If that prefix u is a leaf, then we simply ignore w since
w 6∈ S ′. If that prefix u = w, then we cut off all children { vi } of that node since
w is a prefix of every vi. Otherwise, from the node u, we construct a list of nodes
labeled by w[1..k + 1], w[1..k + 2], . . . , w. In the second step, we check whether
every internal node of T has exactly |Σ| children. If so, then Sω is co-finite in Σω;
otherwise, Sω is not co-finite in Σω. This can be done in linear time in the size of
the tree.

To see the correctness of the algorithm, first we suppose every internal node of
T has exactly |Σ| children. Let w be any word in Σω and let u be the longest prefix
of w that appears in the tree T . Then u must be a leaf, or otherwise u has less
than |Σ| children. So, there is a nonempty prefix u of w that is in S. Then Sω is
co-finite. Now we suppose some internal node of T has less than |Σ| children, say
u. Then none of the words w in uΣω can be factorized into words in S. Then Sω

is not co-finite.

For bi-infinite words, we do not yet know any polynomial algorithm to decide
the co-finiteness. But it is decidable as in the following theorem.

Theorem 5.3.3. Given k words x1, x2, . . . , xk, to decide whether ω {x1, . . . , xk }ω

is co-finite in ωΣω can be done in exponential time.

Proof. We assume xi 6= ε. Let S = {x1, x2, . . . , xk }. By Proposition 3.4.12, ωSω is
co-finite in ωΣω if and only if ωSω = ωΣω. Then by Proposition 3.4.11, Sω = Σω if
and only if for any word w in Σ∗ there are words u, v ∈ Σ∗ such that uwv ∈ S∗.

There is an algorithm proposed by Shallit [154] as follows. First we construct
an NFA M accepting the language

{
w : uwv ∈ S∗, |u | , | v | < llw (S)

}
. The NFA

M is similar to the NFA accepting S∗ except M guesses u and v at the beginning
and at the end respectively (this can be done by ε transitions). Then we convert
M to a DFA and see if L(M) = Σ∗. Then ω {x1, . . . , xk }ω is co-finite in ωΣω if and
only if L(M) = Σ∗.

5.4 Algorithm for the case of concatenation with

overlap

Now we will discuss the co-finiteness of {x1, x2, . . . , xk }\ and {x1, x2, . . . , xk }[. By
Proposition 3.4.21, if all xi are of lengths ≥ 2, then {x1, x2, . . . , xk }\ is co-finite if

143

and only if {x1, x2, . . . , xk }[is co-finite. So we only discuss {x1, x2, . . . , xk }[here.

Problem 5.4.1 (DECISION PROBLEM FOR FPFM WITH OVERLAP).

INPUT: k words x1, x2, . . . , xk, not necessarily distinct.

OUTPUT: YES, if L = {x1, x2, . . . , xk }[is co-finite; or NO otherwise.

In the case where all the input words are of lengths ≥ 2, there is a polynomial
algorithm for the DECISION PROBLEM FOR FPFM WITH OVERLAP as in the
following theorem.

Theorem 5.4.2. When all words are of lengths ≥ 2, the problem DECISION
PROBLEM FOR FPFM WITH OVERLAP can be solved in polynomial time.

Proof. Let S = {x1, x2, . . . , xk }. By Proposition 3.4.22, S[is co-finite if and only
if both Sω and ωS are co-finite. To decide the latter two problems can be done in
polynomial time.

5.5 Computational Complexity

One natural question is what is the complexity of the decision problem for the
FPFM if the input is compressed in some way such that the algorithm does not
require exponential time in ν = llw (S) to read the input S. As shown in Chapter 3,
we can consider some variations on the FPFM.

Problem 5.5.1 (the FPFM, Variations on input). Given a DFA M (or NFA M ,
or regular expression E) such that there are only finitely many words that cannot
be written as concatenations of words in the language accepted by M (or language
specified by E), then what is the longest such word(s)?

A star-free regular expression is a regular expression in which the only operators
are · and +. A variation on the decision problem for the FPFM is the following
problem, which is NP-hard as I showed in a draft [157].

Problem 5.5.2 (CO-FINITENESS OF STAR OF STAR-FREE REGULAR EXPRESSION).
Given a star-free regular expression E, decide if the language represented by E∗ is
not co-finite.

Theorem 5.5.3. [157] The problem CO-FINITENESS OF STAR OF STAR-FREE REG-
ULAR EXPRESSION is NP-hard.

Proof. We reduce from 3SAT. Let U = {u1, u2, . . . , un } be a set of variables and
C = { c1, c2, . . . , cm } be a set of clauses over U making up an arbitrary instance of
3SAT. Discard any variable in U that does not appear in any clause in C, which can
be done in polynomial time. So now we assume there is no useless variable in U and

144

C is not empty. Then n ≤ 3m. For each clause ci, we construct a star-free regular
expression ei = t(i,1)t(i,2) · · · t(i,n), where t(i,j) = F if uj appears in ci, and t(i,j) = T
if ūj appears in ci, and t(i,j) = (T + F) otherwise. Let E ′ = e1 + e2 + · · · + em,
E ′′ = (T + F)n = (T + F)(T + F) · · · (T + F), and E = E ′ + E ′′(T + F). One
can verify the construction of E from the instance of 3SAT can be performed in
polynomial time. It remains to see the set C of clauses is satisfiable if and only if
the language represented by E∗ is not co-finite in {T, F }∗.

Let S be the finite language represented by the star-free regular expression E.
Then, by the construction of E, words in S are of two possible lengths n and n+1,
and S contains all words of length n + 1. If C is satisfiable, then one can verify
that E ′ 6= E ′′, which means that S does not contain all words of length n. Then
by the First Lemma of the 2FPFM on page 44, S∗ is not co-finite, since a basis
S consisting of lengths n, n + 1 such that S∗ is co-finite must contain all words of
length n. If S∗ is not co-finite, since gcd(n, n + 1) = 1 and S contains all words of
length n + 1, then S cannot contain all words of length n, which implies E ′ 6= E ′′.
So C is satisfiable. This finishes the NP-hardness proof.

By the polynomial-time reduction in the proof, restricting CO-FINITENESS OF
STAR OF STAR-FREE REGULAR EXPRESSION to the binary alphabet and/or de-
manding that the language represented by the regular expression consists of words
of only two distinct lengths also results in a NP-hard problem. Furthermore, as a
direct consequence, the following problems are also NP-hard.

Problem 5.5.4. Given a regular expression E, decide if L(E)∗ is not co-finite.

Problem 5.5.5. Given an NFA M , decide if L(M)∗ is not co-finite.

In 2007, Shallit [154] showed the following more general problem is PSPACE-
complete.

Problem 5.5.6 (CO-FINITENESS OF REGULAR LANGUAGE). Given an NFA M (or
regular expression E), decide if L(M) (or L(E)) is not co-finite.

Theorem 5.5.7. [154] The problem CO-FINITENESS OF REGULAR LANGUAGE is
PSPACE-complete.

Proof. Let E be an arbitrary regular expression, and t be the length of E. Then
an NFA M can be constructed in polynomial time to accept E with at most t + 1
states [70]. It therefore suffices to prove the case where the language is specified by
a regular expression is PSPACE-hard; and the case where the language is accepted
by an NFA, is in NPSPACE which by Savitch’s theorem [145] is equal to PSPACE.

First we show to decide whether L(E) is co-finite for a regular expression E
is PSPACE-hard. The idea is to construct a regular expression E for a PSPACE-
bounded TM T and the input x such that T accepts x if and only if L(E) is not
co-finite. Here we assume TMs accept input by going into a halting state. First

145

we construct a new PSPACE-bounded TM T ′ by adding a new state q′ into T .
When T goes into the halting state, T ′ goes into q′ instead. Then from q′, the
machine T ′ can arbitrarily move its head and stay on q′ or transits into the halting
state. Then T accepts x if and only if T ′ accepts x by infinitely many possible
computations. Now we construct E = Σ∗ \ {w }, where {w } represents the set of
all halting computations of the machine T ′ for the input x. This construction of E
can be done efficiently (see [2, §10.4] or [156, Lemma 6.7.1]). Then T accepts x if
and only if L(E) is not co-finite.

Now we prove to decide whether L(M) is co-finite for an NFA M with n states is
in NPSPACE. Let N = 2n. Now we nondeterministically guess a word w of length
i for N ≤ i < 2N , and check whether M rejects w. Then L(M) is not co-finite if
and only if M rejects such a w. To check whether M rejects the word w can be
done by storing a square 0− 1 matrix of dimension at most n + 1, where the entry
(p, q) is 1 if and only if q is reachable from p on a given word. At the beginning,
this matrix is initialized as an identity matrix, corresponding to the word ε. At
each step, the matrix is updated to process one guessed letter. At the end, one can
check that M rejects the word w by observing that no final state is reachable from
the initial state. This algorithm uses only polynomial space.

To prove the correctness of this algorithm, notice that a DFA M ′ accepting
L(M) has at most N = 2n states. By the pumping lemma, L(M)∗ is not co-finite if
and only if there is a word of length i not in L(M)∗, where N ≤ i < 2N . In other
words, M ′ rejects some word of length i, where N ≤ i < 2N .

Since CO-FINITENESS OF REGULAR LANGUAGE is PSPACE-complete, it follows
immediately that both Problem 5.5.4 and Problem 5.5.5 are in PSPACE.

Corollary 5.5.8. [157] To decide the co-finiteness of the star of a language repre-
sented by a regular expression E (or accepted by an NFA M) is in PSPACE.

Proof. A regular expression (or an NFA) for the star of a language represented by
a regular expression (or an NFA) can be constructed in polynomial time. Since
CO-FINITENESS OF REGULAR LANGUAGE is PSPACE-complete, the problem in the
assertion is also in PSPACE.

In 2008, Shallit [155] showed that over the unary alphabet, Problems 5.5.4
and 5.5.5 can be solved in polynomial time.

Now we consider another variation on the FPFM — in terms of concatenation
with overlap.

Theorem 5.5.9. Given a star-free regular expression E, to decide if the language
represented by E[(or E\) is not co-finite is NP-hard and is in PSPACE.

The proof is similar to that for the FPFM. Let S = L(E). First of all, by
Proposition 3.4.21, E[is co-finite if and only if E\ is co-finite, when all words in S

146

are of lengths ≥ 2. Furthermore, when S consists only of words of the same length
n ≥ 2 over Σ, then S[is co-finite if and only if S = Σn. Similarly to the proof
of Theorem 5.5.3, one can reduce from 3SAT to show the problem is NP-hard. To
show it is in PSPACE, by Proposition 3.4.17, an NFA-ε can be built effectively to
accept the language S∗ with a quadratic number of states in the length of E. Since
CO-FINITENESS OF REGULAR LANGUAGE is PSPACE-complete, the problem in the
assertion is in PSPACE. The proof of PSPACE is also valid when E is a regular
expression.

Theorem 5.5.10. The two problems

(a) Given a regular expression E, decide if L(E)[(or L(E)\) is not co-finite.

(b) Given an NFA M , decide if L(M)[(or L(M)\) is not co-finite.

are both NP-hard and in PSPACE.

By the equivalence of the co-finiteness of L(E)[and L(E)ω, ωL(E), the following
theorem holds.

Theorem 5.5.11. Given a star-free regular expression E, decide if Sω (or ωS) is
not co-finite is NP-hard and in PSPACE, where S is the language L(E). It is also
true if the input is a regular expression, or an NFA.

If the language is specified by a CSG, then to decide whether it is co-finite
becomes undecidable.

Theorem 5.5.12. The following problems are undecidable.

1. For two CFGs G1 and G2, decide whether L(G1) ∩ L(G2) is co-finite.

2. For a CFG G, decide whether L(G) is co-finite.

Proof. (1) Let M be an arbitrary TM. Here we assume TMs accept input by going
into a halting state. Now we construct a new TM M ′ by adding a new state q′

into M . When M goes into the halting state, M ′ goes into q′ instead. From state
q′, M ′ can either stay on q′ and move its head arbitrarily or goes into the halting
state. Then L(M) is not empty if and only if M ′ accepts some word by infinitely
many different computations. Two CFGs G1 and G2 such that the set of valid
computations of M ′ is L(G1) ∩ L(G2) can be effectively constructed from M ′

(see [71, Lemma 8.6] or [156, Theorem 6.6.1]). L(G1) ∩ L(G2) is either empty or
infinite. Then L(M) is empty if and only if L(G1) ∩ L(G2) contains finitely many
words (when it is empty).

(2) Similarly, we can construct a TM M ′ for each M such that L(M) is not empty
if and only if M ′ accepts some word by infinitely many different computations. The
set of invalid computations of M ′ is a CFL and there is an algorithm to produce
the grammar G for that CFL (see [71, Lemma 8.7] or [156, Theorem 6.6.3]). L(G)
is either empty or infinite. Then L(M) is empty if and only if L(G) is co-finite
(when L(G) is empty).

147

Nevertheless, the decision problem “Given a finite language S, is S∗ co-finite?”
has no obvious relationship, complexity-wise, to the problem “Given a finite lan-
guage S such that S∗ is co-finite, find a longest word not in S∗.” In addition, if we
are only interested in the length of the longest words not in S∗, then finding such
a length could possibly be faster than that of finding the longest words not in S∗.

There are algorithms for some related problems in the literature. For example, in
2005, Clément, Duval, Guaiana, Perrin and Rindone [32] developed an algorithm to
find all factorizations of a word w into elements in a given finite set S in O(ν |w |+µ)
time, where ν = |S | and µ =

∑
w∈S |w |, and developed an algorithm to decide

whether a word w ∈ S∗ in O(r |w |+µ) time, where r ≤ ν is determined by the basis
S. In 1977, Maier and Storer [105] showed the following problem is NP-complete:
given a finite set S of words, find the shortest word w that contains every word in
S as a factor at least once. In 1990, Neraud [116] showed the following problem is
co-NP-complete: given a finite set S of words, decide whether minX⊆Y ∗ |Y | = |X |.

148

Chapter 6

Conclusion

6.1 Summary of results on the FPFM and varia-

tions

The Frobenius problem in a free monoid (FPFM) is to find the longest words not
in a language generated by a given set of words in the case that the generated
language is co-finite. There are extensive works on the integer Frobenius problem
in the literature; a book [130] on the Frobenius problem lists over 400 references.
The FPFM, the generalization of the Frobenius problem on words, however, is a
new topic. Research on descriptional complexity of the Kleene star operator for
DFAs [174], NFAs, and regular expressions [70] provides another point of view on
the FPFM. The difference is that the latter focuses on descriptional complexity in
general cases, and the FPFM focuses on co-finiteness.

In the thesis, I studied and completely solved the 2FPFM, which is a special
case of the FPFM, where words in the basis are of two distinct lengths m and n.
I gave examples, where the longest words not in a generated co-finite language is
exponentially long, in the 2FPFM. More precisely, the length of the longest words
is ≤ g(m, l) = ml − m − l, where l = m |Σ|n−m + n − m. This upper bound is
tight. There are two equivalent problems of the 2FPFM. One is in combinatorics
on words and arises by considering words of length ≡ n (mod m). The other is
about the word graph. As a side product of the discussion on word graphs, I studied
a generalized form of the de Bruijn graphs (words).

In the 2FPFM, let S be a set of words of lengths m and n over the alphabet Σ,
where 1 < m < n and gcd(m,n) = 1. The set of the longest words not in S∗ is

(TΣm)m−2T, (6.1)

where T = Σl−m \ S∗. The set of words not in S∗ is
(⋃

j 6∈〈m,n〉
Σj

)⋃ (
m−2⋃
i=0

(T ′Σm)iT ′
)

, (6.2)

149

where T ′ = Σn−m ∪ Σn ∪ Σn+m ∪ · · · ∪ Σl−m \ S∗. The set of lengths of words
in S∗ is 〈m,n〉 and the set of lengths of words not in S∗ is

N \ 〈m, l〉. (6.3)

The number l here can be obtained by either of the two conditions:

1. l is the integer such that l ≡ n (mod m), Σl−m \ S∗ 6= ∅, and Σl \ S∗ = ∅.
2. l = n+jm, where j is the length of the longest path in the word graph G

(m,n)
S .

In the thesis, I discussed some variations on the FPFM, such as those about
infinite (bi-infinite) words, and those about concatenation with overlap. Roughly
speaking, the co-finiteness property behaves differently in each case and there are
non-trivially co-finite languages in most cases. (Here co-finiteness is non-trivial if
the complement of that language is not the empty set.) Let S be a finite set of
words of lengths ≥ 2. If S∗ is co-finite, then both Sω and ωS are co-finite. If both
Sω and ωS are co-finite, then ωSω is co-finite. In addition, S\ is co-finite, if and
only if S[is co-finite, if and only if both Sω and ωS are co-finite. If S is a finite
set and S∗ is co-slender, then both Sω and ωS are co-finite. In the thesis, I also
discussed some related problems, such as the size of S with S∗ co-finite, the number
of omitted words in the 2FPFM, the generalized local postage-stamp problem, and
related algorithms and computational complexity.

Table 6.1: Summary for the unary alphabet/integers

|S | ∑ |xi | max |xi | sc(S) nsc(S) alph(S) CSG
LBA

L = llw
(
S∗

)
unbnd.
unbnd.

quadratic
quadratic

quadratic
quadratic

quadratic
quadratic

quadratic
quadratic

quadratic
quadratic

unbnd.
unbnd.

sc(S∗) unbnd.
unbnd.

quadratic
quadratic

quadratic
quadratic

quadratic
quadratic

quadratic
quadratic

quadratic
quadratic ∗

sc(S∗) unbnd.
unbnd.

quadratic
quadratic

quadratic
quadratic

quadratic
quadratic

quadratic
quadratic

quadratic
quadratic ∗

nsc(S∗) unbnd.
unbnd.

linear
linear

linear
linear

linear
linear

linear
linear

linear
linear ∗

nsc(S∗) unbnd.
unbnd.

quadratic
quadratic

quadratic
quadratic

quadratic
quadratic

quadratic
quadratic

quadratic
quadratic ∗

alph(S∗) unbnd.
unbnd.

linear
linear

linear
linear

linear
linear

quadratic
linear

linear
linear ∗

alph(S∗) unbnd.
unbnd.

quadratic
quadratic

quadratic
quadratic

quadratic
quadratic

quadratic
quadratic

quadratic
quadratic ∗

M =
∣∣ S∗

∣∣ unbnd.
unbnd.

quadratic
quadratic

quadratic
quadratic

quadratic
quadratic

quadratic
quadratic

quadratic
quadratic

unbnd.
unbnd.

D(w) is expntl.
expntl. in |w | for unary words, and polynomial

polynomial for integers.

#Sa ∗ √ linear
linear

linear
linear

linear
linear

linear
linear

unbnd.
unbnd.

aOnly in the case where S is a finite set.

The bounds on the output of the FPFM are briefly summarized in Tables 6.1
and 6.2. The top part of each entry is the upper bound on the output measure

150

Table 6.2: Summary for larger alphabets

|S | ∑ |xi | max |xi | sc(S) nsc(S) alph(S) CFG
PDA

CSG
LBA

L = llw
(
S∗

)
unbnd.
unbnd.

expntl.
linear

expntl.
expntl.

expntl.
linear

expntl.
expntl.

expntl.
expntl.

Open
expntl.

a unbnd.
unbnd.

I =
∣∣ ΣL \ S∗

∣∣ Open db-exp.
linear

db-exp.
db-exp.

db-exp.
expntl.

db-exp.
expntl.

db-exp.
expntl.

Open
expntl.

unbnd.
unbnd.

sc(S∗) unbnd.
unbnd.

expntl.
linear

expntl.
expntl.

expntl.
linear

expntl.
expntl.

expntl.
expntl. ∗ ∗

sc(S∗) unbnd.
unbnd.

expntl.
linear

expntl.
expntl.

expntl.
linear

expntl.
expntl.

expntl.
expntl. ∗ ∗

nsc(S∗) unbnd.
unbnd.

linear
linear

expntl.
linear

linear
linear

linear
linear

linear
linear ∗ ∗

nsc(S∗) unbnd.
unbnd.

linear
linear

expntl.
linear

expntl.
linear

expntl.
linear

expntl.
linear ∗ ∗

alph(S∗) unbnd.
unbnd.

linear
linear

expntl.
linear

expntl.
linear

expntl.
linear

linear
linear ∗ ∗

alph(S∗) unbnd.
unbnd.

linear
linear

expntl.
expntl.

db-exp.
linear

db-exp.
expntl.

db-exp.
expntl. ∗ ∗

M=|S∗ |, and

W=
∑

w∈S∗ |w |
unbnd.
unbnd.

db-exp.
linear

db-exp.
db-exp.

db-exp.
expntl.

db-exp.
expntl.

db-exp.
expntl.

Open
expntl.

b unbnd.
unbnd.

D(w) is expntl.
expntl. in |w |.

#Sc ∗ linear
linear

expntl.
expntl.

expntl.
expntl.

expntl.
expntl.

expntl.
expntl.

Open
expntl.

unbnd.
unbnd.

aIt is at least expntl., which is also true for DPDA.
bAt least expntl. for DPDA.
cOnly in the case where S is a finite set.

that labels the row in the input measure that labels the column, and the bottom
part of each entry is the lower bound on achievable examples S with S∗ co-finite in
the same output measure and input measure. (The reader can refer to Tables 2.2
and 2.3 for notation of the measures.) The entries unbnd., linear, quadratic, expntl.,
db-exp., ∗, and Open mean the bound is unbounded, linear, quadratic, exponential,
doubly-exponential, not sensible, and still open, respectively.

Some of my work was published in the STACS 2008 proceedings [84], and some
is still to be published.

6.2 Open problems

There are still some problems about the FPFM that remain open. First of all, as
discussed in the Chapter 2, there are several possible measures used to describe the
size of the input words. Although the bound on the length of the answer to the
FPFM is exponential in ν (the length of the longest input word) and this bound
is tight as I showed in Chapter 2, there is still the possibility that the exponential
bound in µ, the total number of symbols in the input words, is not tight.

Open Problem 6.2.1. Is the exponential bound L = O(2µ) tight, where L =
llw

(
S∗

)
and µ is the total number of symbols in S, for a finite set S of words?

151

A regular expression (respectively, an NFA) with size polynomial in ν (the
length of the longest input word) can be made to represent (respectively, to accept)
each S in the family of languages I gave in Chapter 4, where the longest omitted
words are of length exponential in ν. But for the case of DFAs, the corresponding
problem is still open. In addition, for CFGs and PDAs, we don’t even know a
proper upper bound on the length of the longest omitted words, except that it
must be at least exponential since DPDAs can be used to accept the exponential
example in Chapter 4.

Open Problem 6.2.2. Is the exponential bound L = O
(
2sc(S)

)
tight, where L =

llw
(
S∗

)
and sc(S) is the state complexity of a finite language S?

Open Problem 6.2.3. What is a bound on L, the length of the longest words not
in S∗, in terms of the size of a PDA M (or a CFG G), where S = L(M) (or
S = L(G))?

The FPFM with 2 lengths, the 2FPFM, is solved in Chapter 2 of the thesis.
Some other interesting topics to pursue include the FPFM with a fixed number
of lengths, such as the 3FPFM. It is not likely that the kFPFM for k ≥ 3 can
be solved easily in general, since for the analog of integers, the case of a larger
number of integers is dramatically harder than the case for two integers. There is
a simple expression for the Frobenius number of two integers, which is at least 100
years old, but for three integers the expression was not discovered until recently and
the expression involves some implicit constants. Nevertheless, for some particular
situations, there is the possibility of the existence of explicit expressions or fast
algorithms for the FPFM with input given by certain patterns.

Open Problem 6.2.4. Is there any special integer sequence, such that when the
lengths of words in the basis S constitute such a sequence, the length of the longest
words not in S∗ can be computed efficiently?

In Chapter 3, some analogous problems of the FPFM are discussed in the setting
of right-infinite words, left-infinite words, and bi-infinite words. Let S be an infinite
set of finite words. Then I showed that some S can generate a non-trivially co-
finite language in the one-sided infinite words. Here co-finiteness is non-trivial if
the complement of that language is not the empty language. But it is still open
whether there is any non-trivially co-finite language in the bi-infinite words, which
is generated by some S.

Open Problem 6.2.5. Is there any infinite set S of finite words such that ωSω is
co-finite in ωΣω and ωSω is not the empty set?

Open Problem 6.2.6. Is there any infinite set S of finite words such that Sω is
co-finite in Σω and Sω is of size ≥ 2?1

1See the construction (3.73) on page 100 for a set S such that
∣∣ Sω

∣∣ = 1.

152

Open Problem 6.2.7. Is there any set S of finite words such that ωSω is co-finite
in ωΣω but neither of the languages Sω and ωS is co-finite in the corresponding set
of one-sided infinite words?

In Chapter 4, I showed how to construct a generalized de Bruijn word τ by first
finding two de Bruijn words of specific orders over specific alphabets. The word I
constructed, however, is not the lexicographically least generalized de Bruijn word of
the same length. Since the lexicographically least de Bruijn word can be calculated
efficiently, it is likely that the lexicographically least generalized de Bruijn word
can also be calculated efficiently, although we do not have any such algorithm yet.

Open Problem 6.2.8. How can we efficiently compute the lexicographically least
generalized de Bruijn word τ?

Although there is a tight exponential bound on the length of the answer for
the FPFM in the length of the longest words in the input, there is the possibility
that the FPFM could be solved in time faster than exponential in terms of the
total number of symbols in the input. So far, we only know that any algorithm to
solve the FPFM must run in at least linear time, and there is an exponential-time
algorithm to solve the FPFM. Furthermore, if we only ask for the length of the
longest omitted words instead of the longest words, then it is also possible that a
faster algorithm may exist. Any bound on the answer for the FPFM described in
terms of other measures is still to be studied. For a co-finite language, there may
or may not be a relationship between different measures. Some measures may be
more related and describe computational complexity better.

Open Problem 6.2.9. Is there any efficient algorithm to solve the FPFM?

The original Frobenius problem is NP-hard. It is very likely that no polynomial
algorithm for the FPFM exists, but we have no proof of this. We do not even
know if there is an efficient algorithm to decide, given a finite set S of finite words,
whether S∗ is co-finite. The decision problem with compressed input (by NFAs or
by regular expressions) is NP-hard and in PSPACE.

Open Problem 6.2.10. What is the computational complexity of the problem to
decide whether a given finite language generates a co-finite language?

153

References

[1] T. van Aardenne-Ehrenfest and N. G. de Bruijn. Circuits and trees in oriented
linear graphs. Simon Stevin, 28:203–217, 1951.

[2] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of
Computer Algorithms. Addison-Wesley, 1974.

[3] M. Ajtai, J. Komlós, and E. Szemerédi. An O(n log n) sorting network. In
Proc. Fifteenth Ann. ACM Symp. Theor. Comput., pages 1–9, 1983.

[4] P. Bachmann. Niedere Zahlentheorie—Additive Zahlentheorie. Chelsea, 1910.

[5] F. Bassino, L. Giambruno, and C. Nicaud. The average state complexity of
the star of a finite set of words is linear. In DLT 2008, LNCS 5257, pages
134–145, 2008.

[6] P. T. Bateman. Remark on a recent note on linear forms. Amer. Math.
Monthly, 65(7):517–518, 1958.

[7] D. Beauquier. Ensembles reconnaissables de mots bi-infinis limite et
déterminisme. In Automata on Infinite Words, LNCS 192, pages 28–46, 1985.

[8] M. Beck, R. Diaz, and S. Robins. The Frobenius problem, rational polytopes,
and Fourier-Dedekind sums. J. Number Theory, 96(1):1–21, 2002.

[9] D. Beihoffer, J. Hendry, A. Nijenhuis, and S. Wagon. Fast algorithms for
Frobenius numbers. Electronic J. Combinatorics, 12:R27, 2005.
http://www.emis.de/journals/EJC/Volume 12/PDF/v12i1r27.pdf

[10] E. R. Berlekamp. Algebraic Coding Theory. McGraw-Hill, 1968.

[11] E. R. Berlekamp, J. C. Conway, and R. K. Guy. Winning Ways for Your
Mathematical Plays. Academic Press, 1982.

[12] M.-G. D. Birkhoff. Quelques théorèmes sur le mouvement des systèmes dy-
namiques. Bull. Soc. Math. France, 40:305–323, 1912.

[13] J. BÃlażewicz, P. Formanowicz, M. Kasprzak, W. T. Markiewicz, and
J. Wȩglarz. DNA sequencing with positive and negative errors. J. Com-
put. Biol., 6(1):113–123, 1999.

154

[14] J. BÃlażewicz, P. Formanowicz, M. Kasprzak, P. Schuurman, and G. J. Woeg-
inger. DNA sequencing, Eulerian graphs, and the exact perfect matching
problem. In WG 2002, LNCS 2573, pages 13–24, 2002.

[15] J. A. Bondy and U. S. R. Murty. Graph Theory with Applications. MacMillan,
1976.

[16] E. Boros. On a linear Diophantine problem for geometrical type sequences.
Discrete Math., 66(1/2):27–33, 1987.

[17] A. Brauer. On a problem of partitions. Amer. J. Math., 64(1):299–312, 1942.

[18] A. Brauer and B. M. Seelbinder. On a problem of partitions. II. Amer. J.
Math., 76(2):343–346, 1954.

[19] A. Brauer and J. E. Shockley. On a problem of Frobenius. J. Reine Angew.
Math., 211:215–220, 1962.

[20] T. C. Brown, W.-S. Chou, and P. J.-S. Shiue. On the partition function of a
finite set. Australas. J. Combin., 27:193–204, 2003.

[21] T. C. Brown and P. J.-S. Shiue. A remark related to the Frobenius problem.
Fibonacci Quart., 31(1):32–36, 1993.

[22] N. G. de Bruijn. A combinatorial problem. Indag. Math., 8(4):461–467, 1946.

[23] J. Brzozowski. Canonical regular expressions and minimal state graphs for
definite events. In Mathematical Theory of Automata, MRI Sympos. Series 12,
pages 529–561, 1962.

[24] J. R. Büchi. On a decision method in restricted second order arithmetic. In
Proc. 1960 Internat. Congr. on Logic, Method., and Philos. of Sci., pages
1–11, 1962.

[25] J. S. Byrnes. On a partition problem of Frobenius. J. Combin. Theory Ser.
A, 17(2):162–166, 1974.

[26] J. S. Byrnes. On a partition problem of Frobenius, II. Acta Arith., 28(1):81–
87, 1975.

[27] C. Câmpeanu and W.-H. Ho. The maximum state complexity for finite lan-
guages. J. Autom. Lang. Comb., 9(2/3):189–202, 2004.

[28] C. Câmpeanu, K. Culik II, K. Salomaa, and S. Yu. State complexity of basic
operations on finite languages. In WIA’99, LNCS 2214, pages 60–70, 2001.

[29] C. Câmpeanu, K. Salomaa, and S. Yu. State complexity of regular languages:
finite versus infinite. In Finite Versus Infinite: Contributions to an Eternal
Dilemma, pages 53–73, 2000.

155

[30] N. Chomsky. Syntactic Structures. Mouton, the Hague, 1957.

[31] P. Chrza̧stowski-Wachtel and M. Raczunas. Liveness of weighted circuits
and the Diophantine problem of Frobenius. In FCT ’93, LNCS 710, pages
171–180, 1993.

[32] J. Clément, J.-P. Duval, G. Guaiana, D. Perrin, and G. Rindone. Parsing
with a finite dictionary. Theoret. Comput. Sci., 340:432–442, 2005.

[33] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms. MIT Press and McGraw-Hill, 2nd edition, 2001.

[34] F. Curtis. On formulas for the Frobenius number of a numerical semigroup.
Math. Scand., 67(2):190–192, 1990.

[35] J. L. Davison. On the linear Diophantine problem of Frobenius. J. Number
Theory, 48(3):353–363, 1994.

[36] R. Dawson and I. J. Good. Exact Markov probabilities from oriented linear
graphs. Ann. Math. Statist., 28:946–956, 1957.

[37] G. Denham. Short generating functions for some semigroup algebras. Elec-
tron. J. Combin., 10:R36, 2003.
http://www.emis.ams.org/journals/EJC/Volume 10/PDF/v10i1r36.pdf

[38] J. Dixmier. Proof of a conjecture by Erdös and Graham concerning the
problem of Frobenius. J. Number Theory, 34(2):198–209, 1990.

[39] A. L. Dulmage and N. S. Mendelsohn. Gaps in the exponent set of primitive
matrices. Illinois J. Math., 8:642–656, 1964.

[40] D. Einstein, D. Lichtblau, A. Strzebonski, and S. Wagon. Frobenius numbers
by lattice point enumeration. Integers, 7:A15, 2007.
http://www.emis.ams.org/journals/INTEGERS/papers/h15/h15.pdf

[41] K. Ellul, B. Krawetz, J. Shallit, and M.-W. Wang. Regular expressions: New
results and open problems. J. Autom. Lang. Comb., 10(4):407–437, 2005.

[42] P. Erdös and R. L. Graham. On a linear diophantine problem of Frobenius.
Acta Arith., 21:339–408, 1972.

[43] P. Erdös and R. L. Graham. Old and New Problems and Results in Com-
binatorial Number Theory, volume 28 of Monographies de L’Enseignement
Mathématique. Université de Genève, 1980.

[44] L. Euler. Observ. anal. de combinationibus. Comm. Acad. Pretrop., 13, ad
annum 1741–1743:64–93, 1751.

[45] L. G. Fel. Frobenius problem for semigroups S(d1, d2, d3). Funct. Anal. Other
Math., 1(2):119–157, 2006.

156

[46] W. Feller. An Introduction to Probability Theory and Its Applications, vol-
ume I. John Wiley & Sons, Inc., 1950.

[47] C. Flye Sainte-Marie. Solution to question nr. 48. L’Intermédiaire Math.,
1:107–110, 1894.

[48] H. Fredricksen. A survey of full length nonlinear shift register cycle algo-
rithms. SIAM Review, 24(2):195–221, 1982.

[49] G. Frobenius. Über Matrizen aus nicht negativen Elementen. Math.-Nat. Kl.,
S.-B. Königl. Preuss. Akad. Wiss. Berlin, pages 456–477, 1912.

[50] R. G. Gallager. Information Theory and Reliable Communication. John Wiley
& Sons, Inc., 1968.

[51] M. R. Garey and D. S. Johnson. Computers and Intractability — A Guide to
the Theory of NP-Completeness. Freeman, 1979.

[52] P. Gawrychowski, 2008. Private communication.

[53] S. Ginsburg. The Mathematical Theory of Context-Free Languages. McGraw-
Hill, 1966.

[54] V. M. Glushkov. The abstract theory of automata. Russian Math. Surveys,
16(5):1–53, 1961.

[55] E. L. Goldberg. On a linear diophantine equation. Acta Arith., 31:239–246,
1976.

[56] S. W. Golomb. Shift Register Sequences. Holden-Day, 1967.

[57] I. J. Good. Normal recurring decimals. J. London Math. Soc., 21(3):167–169,
1946.

[58] H. Greenberg. An algorithm for a linear Diophantine equation and a problem
of Frobenius. Numer. Math., 34(4):349–352, 1980.

[59] H. Greenberg. Solution to a linear Diophantine equation for nonnegative
integers. J. Algorithms, 9(3):343–353, 1988.

[60] R. K. Guy. Unsolved Problems in Number Theory. Springer-Verlag, 1981.

[61] G. H. Hardy and S. Ramanujan. Asymptotic formulae in combinatory anal-
ysis. Proc. London Math. Soc., 17:75–115, 1918.

[62] G. H. Hardy and E. M. Wright. An Introduction to the Theory of Numbers.
Oxford University Press, 1938.

[63] B. R. Heap and M. S. Lynn. A graph-theoretic algorithm for the solution of
a linear Diophantine problem of Frobenius. Numer. Math., 6:346–354, 1964.

157

[64] B. R. Heap and M. S. Lynn. On a linear Diophantine problem of Frobenius:
an improved algorithm. Numer. Math., 7(3):226–231, 1965.

[65] O. Heden. The Frobenius number and partitions of a finite vector space.
Arch. Math. (Basel), 42(2):185–192, 1984.

[66] C.-W. Ho, J. L. Parish, and J.-S. Shiue. On the sizes of elements in the
complement of a submonoid of integers. In Proc. of the 4th Internat. Conf.
on Fibonacci Numbers and Their applications, pages 139–144, 1991.

[67] G. Hofmeister. Remark on linear forms. Arch. Math. (Basel), 65(6):511–515,
1995.

[68] G. R. Hofmeister. Zu einem Problem von Frobenius. Norske Vid. Selsk. Skr.
(Trondheim), 5:1–37, 1966.

[69] T. Høholdt, J. H. van Lint, and R. Pellikaan. Algebraic geometry codes.
In W. C. Huffman and R. A. Brualdi, editors, Handbook of Coding Theory,
volume 1, pages 871–961. Springer-Verlag, 1998.

[70] M. Holzer and M. Kutrib. Nondeterministic descriptional complexity of reg-
ular languages. Internat. J. Found. Comput. Sci., 14(6):1087–1102, 2003.

[71] J. E. Hopcroft and J. D. Ullman. Introduction To Automata Theory, Lan-
guages, and Computation. Addison-Wesley, 1979.

[72] H.-S. Huang. An algorithm for the solution of a linear Diophantine problem
of Frobenius. Chinese J. Math., 9(1):67–74, 1981.

[73] M. Hujter. On a sharp upper and lower bound for the Frobenius prob-
lem. Technical Report MO/32, Computer and Automation Inst., Hungarian
Academy of Sciences, 1982.

[74] M. Hujter. On the lowest value of the Frobenius number. Technical Report
MN/31, Computer and Automation Inst., Hungarian Academy of Sciences,
1987.

[75] M. Hujter and B. Vizvári. The exact solution to the Frobenius problem with
three variables. J. Ramanujan Math. Soc., 2(2):117–143, 1987.

[76] J. Incerpi and R. Sedgewick. Improved upper bounds on Shellsort. J. Comput.
System Sci., 31(2):210–224, 1985.

[77] M. Ito, L. Kari, Z. Kincaid, and S. Seki. Duplication in DNA sequences. In
DLT 2008, LNCS 5257, pages 419–430, 2008.

[78] N. Jacobson. Lectures in Abstract Algebra, volume I. Springer-Verlag, 1951.

[79] T. Jiang, M. Li, and P. Vitányi. A lower bound on the average-case complexity
of Shellsort. J. Assoc. Comput. Mach., 47(5):905–911, 2000.

158

[80] S. M. Johnson. A linear Diophantine problem. Canad. J. Math., 12:390–398,
1960.

[81] R. Kannan. Solution of the Frobenius problem. Technical Report CMU-CS-
89-204, Carnegie-Mellon University, Dept. of Computer Science, 1989.

[82] R. Kannan. Lattice translates of a polytope and the Frobenius problem.
Combinatorica, 12(2):161–177, 1992.

[83] J.-Y. Kao, J. Shallit, and Z. Xu. The Frobenius problem in a free monoid.
CoRR, abs/0708.3224, 2007. http://arxiv.org/abs/0708.3224

[84] J.-Y. Kao, J. Shallit, and Z. Xu. The Frobenius problem in a free monoid. In
STACS 2008, Proc. 25th Internat. Symp. Theoretical Aspects of Comp. Sci.,
pages 421–432, 2008.

[85] H. G. Killingbergtrø. Using figures in Frobenius’s problem. (Norwegian)
Normat, 2:75–82, 2000.

[86] L. F. Klosinski, G. L. Alexanderson, and L. C. Larson. The fifty-second
William Lowell Putnam mathematical competition. Amer. Math. Monthly,
99(8):715–724, 1992.

[87] M. J. Knight. A generalization of a result of Sylvester’s. J. Number Theory,
12:364–366, 1980.

[88] A. Kunz. The value-semigroup of a one-dimensional Gorenstein ring. Proc.
Amer. Math. Soc., 25(4):748–751, 1970.

[89] S.-Y. Kuroda. Classes of languages and linear bounded automata. Inform.
Control, 7(2):207–223, 1964.

[90] G. Lallement. Semigroups and Combinatorial Applications. Pure & Applied
Mathematics. John Wiley & Sons, Inc., 1979.

[91] P. S. Landweber. Three theorems on phrase structure grammars of type 1.
Inform. Control, 6(2):131–136, 1963.

[92] D.-T. Lee, C.-L. Liu, and C.-K. Wong. (g0, . . . , gk)-trees and unary OL sys-
tems. Theoret. Comput. Sci., 22(1/2):209–217, 1983.

[93] T. Leighton. Tight bounds on the complexity of parallel sorting. In Proc.
Sixteenth Ann. ACM Symp. Theor. Comput., pages 71–80, 1984.

[94] E. Leiss. Constructing a finite automaton for a given regular expression.
SIGACT News, 12(3):81–87, 1980.

[95] H. W. Lenstra and C. Pomerance. Primality testing with Gaussian periods,
2005. http://math.dartmouth.edu/~carlp/aks0221109.pdf

(Abstract appeared in Proc. 22nd Conf. Kanpur on Found. of Software Tech.
Theor. Comp. Sci., LNCS 2556, page 1, 2002).

159

[96] V. F. Lev. The continuous postage stamp problem. J. London Math. Soc.,
73(3):625–638, 2006.

[97] M. Lewin. On a linear diophantine problem. Bull. London Math. Soc.,
5(1):75–78, 1973.

[98] M. Lewin. An algorithm for a solution of a problem of Frobenius. J. Reine
Angew. Math., 276:68–82, 1975.

[99] M. Lewin. On a problem of Frobenius for an almost consecutive set of integers.
J. Reine Angew. Math., 273:134–137, 1975.

[100] S. Lin and T. Rado. Computer studies of Turing machine problems. J. Assoc.
Comput. Mach., 12:196–212, 1965.

[101] M. Lothaire, editor. Combinatorics on Words. Cambridge University Press,
2nd edition, 1997.

[102] A. Lubiw, J. Shallit, and Z. Xu. A discrete iteration, 2009. Manuscript.

[103] G. S. Lueker. Two NP-complete problems in nonnegative integer program-
ming. Technical Report TR-178, Computer Science Laboratory, Princeton
University, 1975.

[104] P. A. MacMahon. Applications of a theory of permutations in circular pro-
cession to the theory of numbers. Proc. London Math. Soc., 23(1):305–313,
1892.

[105] D. Maier and J. A. Storer. A note on the complexity of the superstring
problem. Technical Report 233, Computer Science Laboratory, Princeton
University, 1977.

[106] A. Marathe, A. E. Condon, and R. M. Corn. On combinatorial DNA word
design. J. Comput. Biol., 8(3):201–219, 2001.

[107] A. N. Maslov. Estimates of the number of states of finite automata. Soviet
Math. Dokl., 11(5):1373–1375, 1970.

[108] C. J. H. McDiarmid and J. Ramı́rez-Alfonśın. Sharing jugs of wine. Discrete
Math., 125:279–287, 1994.

[109] R. McNaughton. Testing and generating infinite sequences by a finite au-
tomaton. Inform. Control, 9(5):521–530, 1966.

[110] R. McNaughton and H. Yamada. Regular expressions and state graphs for
automata. IRE Trans. Electron. Comput., EC-9(1):39–47, 1960.

[111] N. S. Mendelsohn. A linear diophantine equation with applications to non-
negative matrices. Ann. New York Acad. Sci., 175:287–294, 1970.

160

[112] M. Morales. Syzygies of monomial curves and a linear Diophantine problem
of Frobenius. Internal Report, Max Planck Institut für Mathematik, Bonn,
1987.

[113] M. Morse and G. Hedlund. Symbolic dynamics. Amer. J. Math., 60(4):815–
866, 1938.

[114] D. E. Muller. Infinite sequences and finite machines. In Proc. 4th Ann. IEEE
Symp. Switching Circuit Theory and Logical Design, pages 3–16, 1963.

[115] D. A. Narayan and A. J. Schwenk. Tiling large rectangles. Math. Mag.,
75(5):372–380, 2002.

[116] J. Neraud. Elementariness of a finite set of words is co-NP-complete. Theor.
Inform. Appl., 24(5):459–470, 1990.

[117] A. Nijenhuis and H. S. Wilf. Representations of integers by linear forms in
nonnegative integers. J. Number Theory, 4:98–106, 1972.

[118] M. Nijenhuis. A minimal-path algorithm for the “money changing problem”.
Amer. Math. Monthly, 86(10):832–838, 1979.

[119] D. C. Ong and V. Ponomarenko. The Frobenius number of geometric se-
quences. Integers, 8:A33, 2008.
http://emis.dsd.sztaki.hu/journals/INTEGERS/papers/i33/i33.pdf

[120] T. Ottman, H.-W. Six, and D. Wood. On the correspondence between AVL
trees and brother trees. Computing, 23:43–54, 1979.

[121] R. W. Owens. An algorithm to solve the Frobenius problem. Math. Mag.,
76(4):264–275, 2003.

[122] D. Perrin and J.-É. Pin. Infinite Words: Automata, Semigroups, Logic and
Games, volume 141 of Pure and Applied Mathematics. Academic Press, 2004.

[123] T. Popoviciu. Asupra unei probleme de patitie a numerelor. Acad. Rep. Pop.
Romane, Filiala Cluj, Studii si cercetari stiintifice, 4:7–58, 1953.

[124] V. Pratt. Shellsort and Sorting Networks. PhD thesis, Stanford University,
1971.

[125] Z.-M. Qiu and C.-Y. Niu. On a problem of Frobenius. J. Shandong Univ.
Nat. Sci., 21(1):1–6, 1986.

[126] M. Raczunas and P. Chrza̧stowski-Wachtel. A Diophantine problem of Frobe-
nius in terms of the least common multiple. Discrete Math., 150(1/3):347–357,
1996.

[127] T. Rado. On non-computable functions. Bell System Tech. J., 41(3):877–884,
1962.

161

[128] A. Ralston. De Bruijn sequences — a model example of the interaction of
discrete mathematics and computer science. Math. Mag., 55(3):131–143, 1982.

[129] J. L. Ramı́rez-Alfonśın. Complexity of the Frobenius problem. Combinatorica,
16(1):143–147, 1996.

[130] J. L. Ramı́rez-Alfonśın. The Diophantine Frobenius Problem. Oxford Univer-
sity Press, 2005.

[131] D. Raymond and D. Wood. Grail : A C++ library for automata and expres-
sions. J. Symbolic Comput., 11:1–10, 1995.

[132] G. Reinert, S. Schbath, and M. Waterman. Probabilistic and statistical prop-
erties of words: an overview. J. Comput. Biol., 7(1/2):1–46, 2000.

[133] E. Remy and E. Thiel. Medial axis for chamfer distances: computing look-up
tables and neighbourhoods in 2D or 3D. Pattern Recognition Lett., 23(6):649–
661, 2002.

[134] A. de Rivière. Question nr. 48. L’Intermédiaire Math., 1:19–20, 1894.

[135] J. B. Roberts. Note on linear forms. Proc. Amer. Math. Soc., 7(3):465–469,
1956.

[136] J. B. Roberts. On a Diophantine problem. Canad. J. Math., 9:219–222, 1957.

[137] Ö. J. Rödseth. On a linear Diophantine problem of Frobenius. J. Reine
Angew. Math., 301:171–178, 1978.

[138] Ö. J. Rödseth. On a linear Diophantine problem of Frobenius. II. J. Reine
Angew. Math., 307/308:431–440, 1979.

[139] Ö. J. Rödseth. A note on Brown and Shiue’s paper on a remark related to
the Frobenius problem. Fibonacci Quart., 32(5):407–408, 1994.

[140] H. Rohrbach. Anwendung eines Satzes der additiven Zahlentheorie auf eine
gruppentheoretische Frage. Math. Z., 42(1):538–542, 1937.

[141] H. Rohrbach. Ein Beitrag zur additiven Zahlentheorie. Math. Z., 42(1):1–30,
1937.

[142] H. Rohrbach. Einige neuere Untersuchungen über die Dichte in der additiven
Zahlentheorie. Jahres. Deutscher Math.-Verein., 48:199–236, 1938.

[143] J. C. Rosales, P. A. Garćıa-Sánchez, and J. I. Garćıa-Garćıa. Every pos-
itive integer is the Frobenius number of a numerical semigroup with three
generators. Math. Scand., 94(1):5–12, 2004.

[144] F. Ruskey. Information on necklaces, Lyndon words, de Bruijn sequences.
http://www.theory.csc.uvic.ca/~cos/inf/neck/NecklackInfo.html

162

[145] W. J. Savitch. Relationships between nondeterministic and deterministic tape
complexities. J. Comput. System Sci., 4(2):177–192, 1970.

[146] H. E. Scarf and D. F. Shallcross. The Frobenius problem and maximal lattice
free bodies. Math. Oper. Res., 18(3):511–515, 1993.

[147] I. J. Schur. Zur additiven Zahlentheorie. Phys. Math. Kl., S.-B. Königl.
Preuss. Akad. Wiss. Berlin, pages 488–495, 1926.

[148] R. Sedgewick. Analysis of Shellsort and related algorithms. In Algorithms –
ESA’96, LNCS 1136, pages 1–11, 1996.

[149] E. S. Selmer. On the linear diophantine problem of Frobenius. J. Reine
Angew. Math., 293/294(1):1–17, 1977.

[150] E. S. Selmer and Ö. Beyer. On the linear Diophantine problem of Frobenius
in three variables. J. Reine Angew. Math., 301:161–170, 1978.

[151] S. Sertöz. On the number of solutions of the Diophantine equation of Frobe-
nius. Discrete Appl. Math., 8(2):153–162, 1998.

[152] S. Sertöz and A. Özlük. On a Diophantine problem of Frobenius. İstanbul
Tek. Üniv. Bül, 39(1):41–51, 1986.

[153] J. Shallit. The computational complexity of the local postage stamp problem.
SIGACT News, 33(1):90–94, 2002.

[154] J. Shallit, 2007–2009. Private communication.

[155] J. Shallit. The Frobenius problem and its generalizations. In DLT 2008,
LNCS 5257, pages 72–83, 2008.

[156] J. Shallit. A Second Course in Formal Languages and Automata Theory.
Cambridge University Press, 2009.

[157] J. Shallit and Z. Xu. An NP-hardness result on the monoid Frobenius prob-
lem. CoRR, abs/0805.4049, 2008. http://arxiv.org/abs/0805.4049

[158] J.-Y. Shao. Some computational formulas of the Frobenius numbers. J. Math.
(Wuhan), 4:375–388, 1988.

[159] D. L. Shell. A high-speed sorting procedure. Comm. ACM, 2(7):30–32, 1959.

[160] H.-J. Shyr. Free Monoid and Languages. Soochow University, 1979.

[161] G. Sicherman. Theory and practice of Sylver coinage. Integers, 2:G2, 2002.
http://www.emis.ams.org/journals/INTEGERS/papers/cg2/cg2.pdf

[162] Z. Skupień. A generalization of Sylvester’s and Frobenius’s problems on nu-
merical semigroups. Acta Arith., 65(4):353–366, 1993.

163

[163] M. Z. Spivey. Quadratic residues and the Frobenius coin problem. Math.
Mag., 80(1):64–67, 2007.

[164] J. J. Sylvester. On subvariants, i.e. semi-invariants to binary quantics of an
unlimited order. Amer. J. Math., 5(1):79–136, 1882.

[165] J. J. Sylvester. Problem 7382. Math. Quest. with their Sol., Educ. Times,
41:ix, 21, 1884.

[166] E. Teruel, P. Chrza̧stowski-Wachtel, J. M. Colom, and M. Silva. On weighted
T -systems. In Application and Theory of Petri Nets 1992, 13th Internat.
Conf., LNCS 616, pages 348–367, 1992.

[167] A. Tripathi. The number of solutions to ax + by = n. Fibonacci Quart.,
38(4):290–293, 2000.

[168] I. Vardi. Computational Recreations in Mathematica R©. Addison-Wesley, 1991.

[169] Y. Vitek. Bounds for a linear Diophantine problem of Frobenius. J. London
Math. Soc., 10(2):79–85, 1975.

[170] B. Vizvári. Beiträge zum Frobenius-Problem. PhD thesis, Technische
Hohschule Carl Schorlemmer, 1987.

[171] B. Vizvári. Generation of uniformly distributed random vectors of good qual-
ity. Technical Report RRR 17–93, Rutcor Research Report, 1994.

[172] H. S. Wilf. A circle-of-lights algorithm for the “money-changing problem”.
Amer. Math. Monthly, 85(7):562–565, 1978.

[173] A.-G. Xu and Z.-H. Wu. The Petri net method for solving first-degree in-
determinate equations (III): research on the Frobenius problem. Shandong
Kuangye Xueyuan Xuebao, 12(1):63–69, 1993.

[174] S. Yu, Q.-Y. Zhuang, and K. Salomaa. The state complexities of some basic
operations on regular languages. Theoret. Comput. Sci., 125:315–328, 1994.

[175] F.-J. Zhang and G.-N. Lin. On the de Bruijn-Good graphs. (Chinese) Acta
Math. Sinica, 30(2):195–205, 1987.

[176] J. Ziv and A. Lempel. A universal algorithm for sequential data compression.
IEEE Trans. Inform. Theory, 23(3):337–343, 1977.

164

Index

[w]k, 122
|x |

of integers, 1
of sets, see #S
of words, 25

c(n)k, 122

| , 1
· , 25

of languages, 26
of words, 25

〈x1, x2, . . . , xk〉, 2
〈x1, x2, . . . , xk〉h, 21

≡, 2
alph(S), 36
B, 13
∼, 26
D, 37
d(n; x1, x2, . . . , xk), 14
∅, 25
ε, 25
f(x1, . . . , xk), 14
g(x1, x2, . . . , xk), 3
Γ(m,n), 64
gcd(x1, . . . , xk), 1

G
(m,n)
S , 59

h(x1, x2, . . . , xk), 11
I, 37
IL, 37
κ(m,n), 68
κ, 36
L, 37
lcm(x1, . . . , xk), 1
llw (S), 26
LR, 114
M, 37
mod, 2
µ, 36

N, 1
N , 37
Nh()

of integers, 21
of words, 115

nsc(S), 36
ν, 36
omit(w), 129
[, 105
\ , 105
] , 112
φ(n), 2
ϕ, 59
ϕ, 61
P(S), 25
ψ, 57
R, 37
S, 37
sc(S), 36
S−, see S
S∗, 26, 30, 98
S+, 26
S∞, 98
Sω, 98
Sk, 26
S[, 106
S≤n, 115
S\, 107
S, 25
∞S, 101
∞S∞, 102
ωS, 101
#S, 25
⊆, 25
(, 25
Σ∗, 25
Σ+, 25

165

Σ∞, 98
Σω, 98
Σk, 25
Σa, 25
∩ , 25
∪ , 25
\, 25
W , 37
Z, 1
Zk, 2
qZ, 1
z, 25

Ajtai, 22
alphabet, 25
alphabetic length, 36
arc, 57

basis, 2, 30
Bassino, 138
Bateman, 16
Beck, 10
Beihoffer, 19
Bernoulli, 13
Beyer, 18
binary operation, 25

associative, 25
commutative, 25

Bondy, 59
Boros, 17
Brauer, 3, 6, 8, 9, 14, 16, 18
Brown, 13
de Bruijn, 63

graph, see directed graph
word, see word

Brzozowski, 140
busy beaver problem, 87
Byrnes, 6, 7

Câmpeanu, 80, 81
Chicken McNuggets problem, see FP
Chrza̧stowski-Wachtel, 10
Clément, 148
CO-FINITENESS OF REGULAR LANGUAGE

145

CO-FINITENESS OF STAR OF STAR-FREE
REGULAR EXPRESSION, 144

coin problem, see FP
combination

concatenation, 25
closure, 26, 106, 107, 112
with additive overlap, 112
with non-empty overlap, 105
with overlap, 105

non-negative integer linear, 2
positive integer linear, 14

conductor, 11
congruent, 2
conjugate, 26
Conway, 20
Culik, 80
Curtis, 7

Davison, 11, 18
DECISION PROBLEM FOR THE FPFM,

139
OF INFINITE WORDS, 142
WITH OVERLAP, 144

Denham, 7
denumerant, 14
Diaz, 10
digraph, see directed graph
Diophantine problem of Frobenius, see

FP
directed graph, 57

arc graph, 65
de Bruijn graph, 63

generalized, 64
de Bruijn-Good graph, see de Bruijn

graph
connected, 59
indegree, 59
outdegree, 59
spanning subgraph, 58
strict, 57
subgraph, 58
word graph, 59

divide, 1
Dixmier, 10
Dulmage, 7

166

edge, see arc
Einstein, 17
Ellul, 86
Erdös, 10
Euler, 14
Euler’s function, 2

factor, 30
factorization, 30
Fel, 6
Feller, 3
First Lemma of the 2FPFM, 44
Flye Sainte-Marie, 63
FP, see Frobenius problem
FPFM, see Frobenius problem in a free

monoid
Fredricksen, 63
Frobenius, 3
Frobenius number, 3
Frobenius problem, 3

modular, 24
multi-dimensional, 24

Frobenius problem in a free monoid, 27,
29

1FPFM, 41
2FPFM, 42

equivalent statement, 54, 62
all words, 91
factorization of words, 95
state complexity of star of a finite

language, 79
the basis, 92
variations on input, 144
with fixed word order, 78

Garćıa-Garćıa, 15
Garćıa-Sánchez, 15
Gawrychowski, 19
generated, 2, 30
Giambruno, 138
Glushkov, 86
Goldberg, 6, 17
Good, 63
Graham, 10
graph, see directed graph

greatest common divisor, 1
Greenberg, 18
Guy, 21

Hardy, 14, 20
Heap, 18
Hendry, 19
Hibbard, 22
Ho, 81
Hofmeister, 6, 17, 24
Holzer, 80
Huang, 18
Hujter, 6, 11, 17

identity, 25
IKP, see integer knapsack problem
Incerpi, 22
incidence function, 57
integer knapsack problem, 19
isomorphic

of directed graph, 58
of free monoid, 26

Ito, 105

Jablonshi, 71
Jiang, 22
Johnson, 6–8, 18

Kannan, 19
Kao, 78, 84, 93
Kari, 105
Killingbergtrø, 11, 13, 18
Kincaid, 105
Knight, 24
Knuth, 22
Komlós, 22
Krawetz, 86
Kutrib, 80

labeling function, 59, 61
language, 26

co-finite, 27
co-slender, 113
finite, 26
slender, 113

least common multiple, 1

167

Leighton, 22
Leiss, 86
length, 25
Lenstra, 24
letter, 25
Lev, 24
Lewin, 10, 16
Li, 22
Lichtblau, 17
Lin, 66
local postage-stamp problem, 20

in a free monoid, 115
2LPSPFM, 116

LPSP, see local postage-stamp problem
Lynn, 18

MacMahon, 71
Maier, 148
Maslov, 79
Mendelsohn, 7, 15
modulo, 2
money-changing problem, see FP
monoid, 25

free monoid, 25
Moreau, 71
morphism, 26

inverse morphism, 26
Murty, 59

Narayan, 23
Neraud, 148
Nicaud, 138
Nijenhuis, 5, 12, 18, 19
Niu, 6
nondeterministic state complexity, 36

Ong, 17
open problem, 151
Owens, 18
Özlük, 14

Papernov, 22
Pomerance, 24
Ponomarenko, 17
Pratt, 22
prefix, 25

proper, 25
prime, 2

Qiu, 6
quadratic non-residue, 20
quadratic residue, 20

Rödseth, 13, 17, 18
Rado, 88
Ralston, 63
Ramı́rez-Alfonśın, 7, 19, 24
Ramanujan, 14
(g0, g1, . . . , gk)-realizable, 21
residue class, 2
reverse

of languages, 26
of words, 26

de Rivière, 63
Robert, 10
Roberts, 6, 16
Robins, 10
Rohrbach, 20
Rosales, 15

Salomaa, 79, 80
Savitch, 145
Scarf, 19
Schur, 9, 14, 16
Schwenk, 23
Second Lemma of the 2FPFM, 47

weaker version, 44
Sedgewick, 22
Seki, 105
Selmer, 6, 10, 15–18
semigroup, 25

free semigroup, 25
sequence

almost arithmetic, 16
arithmetic, 16
geometric, 17
quadratic, 17

Sertöz, 14
Shallcross, 19
Shallit, 21, 27, 38, 39, 78, 81, 82, 84, 86–

88, 99, 104, 105, 107, 126, 130,
139, 142, 143, 145, 146

168

Shao, 17
Sharp, 11, 12
Shell, 21
Shellsort, 21
Shiue, 13
Shockley, 6, 8, 18
Skupień, 24
spectrum theorem, 68
Spivey, 20
star-free regular expression, 144
Stasevich, 22
state complexity, 36
Storer, 148
string, see word
Strzebonski, 17
suffix, 25

proper, 25
Sylver coinage, 19
Sylvester, 5, 11, 14, 20

tile, 23
tree

(g0, g1, . . . , gk)-tree, 21
twins proposition, 35

Vardi, 4
vertex, 57

connected, 59
head, 57
tail, 57

Vitányi, 22
Vitek, 10
Vizvári, 6, 24

Wagon, 17, 19
walk, 58

closed, 59
cycle, 59
Euler tour, 59
Hamilton cycle, 59
path, 58
tour, 59
trail, 58

Wang, 86
Wilf, 5, 12, 18
word, 25

de Bruijn word, 62
empty word, 25
graph, see directed graph
infinite word, 98

bi-infinite word, 102
left-infinite word, 101
periodic, 98, 101, 102
right-infinite word, 99
ultimately periodic, 98, 101, 102

palindrome, 26
Wright, 20

Yu, 79, 80

Zhang, 66
Zhuang, 79

169

