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Abstract 

An ideal drug delivery system should contain an appropriate therapeutic agent and 

biocompatible carrier. In this study, we investigated the ability of the all-complementary self-

assembling peptide AC8 in stabilizing the anticancer compound and determined the in-vitro 

therapeutic efficacy of the peptide-mediated anticancer drug delivery. The all-complementary 

peptide AC8 was designed based on the amino acid pairing principle (AAP), which contains 

hydrogen bonding, electrostatic, and hydrophobic interaction amino acid pairs. AAP 

interactions make the peptide capable of self-assembling into β-sheet structure in solution in 

a concentration dependent manner. Peptide solution concentration is a key parameter in 

controlling the nanoscale assembling of the peptide. The critical assembly concentration 

(CAC) of the peptide was found ~ 0.01 mg/ml by several techniques.  

The all-complementary peptide AC8 was found to be able to stabilize neutral state of 

hydrophobic anticancer compound ellipticine in aqueous solution. The formation of peptide-

ellipticine complex was monitored by fluorescence spectroscopy at different mass ratios of 

peptide-to-ellipticine. The anticancer activity of the complexes with neutral state of 

ellipticine was found to show great anticancer activity against two cancer cells lines, A-549 

and MCF-7. This peptide-mediated anticancer delivery system showed the induction of 

apoptosis on cancer cells in vitro by flow Cytometry.  
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Chapter 1 

Introduction 

1.1 Overview   

Cancer is the second most fatal disease after heart attack in the world. The National Canadian 

Statistics has reported 166,400 new cases of cancer found in Canada and 73,800 deaths in 

2008.1 Cancer is a type of genetic disease but in most cases is not inheritable. Cancers are 

usually traced by genetic alternation resulting from mutation of genes in a normal cell to 

malfunction in cell cycle. 31This failure in cell cycle function leads to uncontrollable cell 

growth and metastasis. Cancerous cells originate from the normal cells in body, so they are 

not seen by the immune system. This immune invisibility of the cancer cells and 

uncontrollably proliferation make cancers as the most deadly diseases.2-5  

The importance of cancer in human society has inspired researchers in diverse fields 

such as pharmaceutical, medical, and engineering to develop new and practical cancer 

treatment methods. By far, three major cancer treatment options are: surgery, radiotherapy, 

and chemotherapy.6 Surgery and radiotherapy are local treatments and just applicable in early 

diagnosis, i.e., before the tumor metastasizes. Chemotherapy, on the other hand, becomes a 

treatment of choice after metastasis. It is also applied as the adjuvant treatment after surgery 

or radiotherapy. Chemotherapy can prolong life and palliate symptoms but it can also cause a 

number of deliberating side effects. The new cancer treatments have been developed by 

studying the cellular and molecular biology of the cancer. Immunotherapy, gene therapy, 

inhibitors for cancer-promoting proteins, antiangiogenesis therapy, hormone and growth 

factor antagonists and RNAi therapy are emerging to the cancer therapy strategies, recently. 
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Although, these strategies already have shown significant development in pre-clinical trials, 

but there are still challenges toward clinical applications. 2-5,7-8 

There are two main barriers in conventional cancer chemotherapy. One is the severe side 

effect of the cytotoxic chemicals in normal tissues; the other one is the drug resistance in 

human body. Most chemotherapeutic agents have harmful side effects on healthy tissues 

resulting from the lack of specificity in reaching tumor tissue. The defense mechanism of the 

cancer cells against drugs is categorized as cellular drug resistance. The most noticeable one 

is the multidrug resistance (MDR) phenotype, which involves active efflux of a broad range 

of cytotoxic drug molecules out of the cytoplasm by membrane-bound transporters.9 These 

obstacles may be overcome with active or passive targeting delivery devices, e.g., 

nanocarriers. Nanocarriers are small enough to intravasate the blood membrane and 

extravasate out of tumor microvasculature and accumulate in the tumor, known as enhanced 

permeability and retention effect (EPR).8 The targeting molecules can also attach the 

nanocarriers to recognize and bind specifically to cancer cells. These developments in drug 

delivery systems increase the therapeutic efficacy and undesired side effects.7-8, 10 

Many delivery devices have been emerged in cancer therapy to improve drug solubility, 

targeting, safety, transport, biodistribution and pharmacokinetics.10 These carriers include 

polymeric vesicles11-15, liposomes 16-19, lipoproteins20, nanoparticles7-8,11,21-23, 

microemulsions, dendrimers22, carbon nanotubes, etc. The main objective of these delivery 

vehicles for chemotherapy is to provide an enclosed, protective, biocompatible interior that 

can solubilize anticancer drug and circulate into blood stream.24 
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Besides polymers, liposomes and some inorganic materials, self-assembling peptides 

have attracted an intensive research focus in drug delivery due to their desirable 

chemical/physical properties and biological activities.8, 21, 25-26 First, peptides can be easily 

designed to form stable structures, such as tubes, fibers, nanovesicles and globules, which 

can deliver drug into blood stream.27-31 Second, peptides can be engineered to incorporate 

natural binding materials, such as targeting motifs, oligonucleutides, siRNA, shRNA and 

hydrophobic compounds.8, 32-33 Third, they can also provided with some moieties for cell 

penetration and targeting.33All these spectacular aspects make self-assembling peptides a 

great potential as delivery constructs for cancer therapy or any nanomedicine.  

In this research, a novel designed all-complementary, self-assembling peptide, called 

AC8 is introduced based on the new design principle called amino acid pairing peptide 

(AAPP). This peptide is a short self-assembling model facilitating by all three different 

amino acid pairing strategies: hydrogen bond pair, ionic pair, and hydrophobic pair. The 

schematic of the peptide molecular structure of AC8 is shown in Figure 1.1. AC8 has eight 

amino acids in sequence with one exemplary hydrogen bonding pair (QN), one ionic-

complementary pair (EK) and two hydrophobic residue pairs (FF). Hydrophobic amino acids 

were incorporated to create a hydrophobic interior for encapsulation and stabilization of 

hydrophobic compounds. The hydrogen bonding amino acid pairs stabilized the peptide 

assemblies; the charged residues enhanced the solubility of the peptide, and the hydrophobic 

residues also enhanced the peptide-peptide association. 

Ellipticine (EPT), a hydrophobic anticancer agent is selected as a drug in this study. The 

reasons of selecting this drug are anticancer activity, fluorescence properties and its 
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hydrophobicity. Ellipticine (EPT), a cytotoxic plant alkaloid, is known as a polycyclic 

molecule that intercalates between DNA base pairs, inhibits topoisomerase II, and induces 

G2/M phase cell cycle arrest.34 It has been reported that the fluorescence spectrum of 

molecularly solubilized ellipticine, depending on the environment, exhibits a peak ~ 430 nm 

or ~ 520 nm representing its neutral and protonated form, respectively.35 The fluorescence 

spectrum of solid ellipticine crystals was shown a similar peak as the colloidal suspensions at 

~ 470 nm. Figure 1.2 shows those molecular structures of ellipticine and its different states.35 

In the first part of this research, I demonstrate the concentration dependent assembly of 

the peptide by several techniques such as surface tension, static and dynamic light scattering 

measurements. In the second part, I explore the potential application of the designed peptide 

in drug delivery. For this objective, the capability of the AC8 in stabilizing hydrophobic 

anticancer agent, ellipticine, in aqueous solution was studied. The co-assembly of peptide-

ellipticine complexes was characterized by fluorescence spectroscopy and dynamic light 

scattering. The third part of this research is considered for anticancer activity of the peptide-

ellipticine complexes in-vitro. For this purpose, the complexes were tested on two cancer cell 

lines: human breast cancer cell MCF-7 and human lung cancer cell A-549. The cytotoxicity 

of the complexes and their dilutions was investigated by MTT assay. In the fourth part of this 

study, apoptotic effect of the peptide-ellipticine complex was evaluated on the cancer cells 

in-vitro by flow Cytometry.  
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Figure 1.1. A schematic of the chemical structure of the chemical structure of AC8 peptide 
(FEFQFNFK). The pairs of (FF) are hydrophobic residues. (QN) and (EK) are the hydrogen bonding 
and ionic-complementary residues, respectively.  
 Ionic pair (EK) 

 

 HB pair (QN) 

 

 

 
 

 

 Hydrophobic residues (FF) 

Figure 1.2. The molecular structure of Ellipticine. 5,11-Dimethyl-6H-pyrido[4,3-b]carbazole. 
Different states of Ellipticine and their emission wavelength at excitation of 294 nm. Ellipticine 
transforms within Crystalline, neutral and protonated form depending on the environment. 
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1.2 Research Objectives 

The goal of this research is to develop all-complementary self-assembling peptide-mediated 

delivery of hydrophobic anticancer drugs. To achieve this goal, the anticancer agent 

ellipticine is selected to examine the basic of the complexation with designed all-

complementary peptide. The specific objectives of this research study are listed as below: 

1) Study the concentration effect of on assembly of the peptide  

2) Characterize the photophysical properties of ellipticine in peptide solution environment 

3) Evaluate the therapeutic effect of the peptide-ellipticine complexes in vitro with two 

cancer cell lines: human lung cancer cell A-549 and breast cancer cell MCF-7 

4) Investigate the apoptotic effect of the peptide-ellipticine complexes in vitro on the 

same cancer cell lines as above.  

1.3 Outline of the Thesis 

This thesis consists of five chapters as followings: 

Chapter 1 gives the overview of the thesis, including introduction to cancer and cancer 

therapy and specifically for peptide-mediated hydrophobic drug delivery systems. The main 

objectives of the research are also listed in this chapter.  

Chapter 2 reviews the available literature about principle of cancer and different cancer 

therapy methods, new drug delivery systems and application of self-assembling peptide as 

the nanocarrier for anticancer drug delivery. 
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Chapter 3 gives the experimental methods and required materials in detail applied for 

this research. 

Chapter 4 reports the results and discussion from each objective including concentration 

effect on assembly of the peptide, complexation of peptide-ellipticine and results of in vitro 

studies.  

Chapter 5 presents the conclusions of studies in the thesis and the recommendation for 

future work.  

Appendices give the theory of some techniques applied in this research including 

dynamic light scattering, MTT assay, and Flow Cytometry.  
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Chapter 2 

Literature Review 

2.1 Cancer and Cancer Therapy 

2.1.1 Introduction 

 Cancer is one of the most devastating diseases in the world. The Canadian Cancer Statistics 

reported 166,400 new cases of cancer found in Canada and 73,800 deaths in 2008 alone.1 

This news inspired researchers in pharmaceutical and engineering fields to develop new and 

practical cancer treatment methods. Cancer is a genetic disease because it can be traced by 

genetic alteration, but in most cases it is not inheritable. Genetic changes in DNA level 

usually lead to cancer and cancer cells proliferate uncontrollably. This genetic alteration can 

be involved in three possible mechanisms: (i) the impairment of a DNA repair pathway (ii) 

the transformation of a normal gene to oncogene (iii) the malfunction of a tumor suppressor 

gene. These genetic changes happen because of environmental agents. Carcinogenic 

chemicals, such as cigarette and tobacco can almost be mutagenic. Similarly, ultraviolet 

radiation is another factor, which leads to cancer. There are different strategies to combat 

cancer or prevent it, which depend on its stage. Generally speaking, cancer is a malignant 

tumor. Tumors can be identified by their shape, size and growth speed. Benign tumors are 

localized and they can be removed by surgery. In contrast, malignant tumors tend to 

metastasize and enter vascular circulation and attack other tissues. In this case, removal of 

the tumor by surgery is no longer applicable. There are new strategies to overcome cancers 

recently under research. Immunotherapy, gene therapy, inhibiting the activity of cancer-
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promoting proteins and angiogenesis are the cancer therapy methods that can be combined 

with chemotherapy in case of metastasis.2 

2.1.2 Basic Properties of Cancer 

The most important property of cancer cells, whether in body or on a culture dish, is loss of 

growth control. When normal cells grow in a culture dish under the condition of cell 

proliferation, they grow and divide to the point where they cover the bottom of the culture 

dish to make a monolayer of cells. In contrast, when cancer cells grow in culture dish, they 

continue to proliferate uncontrollably and make clumps on the top of layer of the cells at the 

bottom. Cancer cells are not usually as responsive as normal cells to the signals that cause 

their normal counterparts to cease growth and division. This lack of response to the 

inhibitory growth signals in malignant cells makes them cancerous.2 

The rate and timing of cell division in a normal body for all cells are precisely regulated. 

All the cells follow a specific cycle and timing, which is called “cell cycle clock”. The cell 

cycle clock is composed of four main stages. G1, or gap one stage, includes increasing the 

size of the cells and preparing for DNA replication. Once cell decides whether to continue or 

not, the clock moves to the S phase. In the S phase, or synthesis stage, the cell copies its 

DNA. After DNA replication, the G2 phase, or gap 2, occurs. In this stage a cell is getting 

prepared for division. The phase in which the cell divides is called the M-phase, or Mitosis. 

Segregation of the chromosomes occurs in the M-phase and a cell divides into two daughter 

cells. The new daughter cells immediately enter the G1 and, depending on the signal they 

receive, their cell cycle clock moves forward. Therefore, in normal tissues, cell proliferation 
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and division is completely under control by internal clocks. However, the cell cycle clock in 

malignant cells is disrupted. Two types of genes play an important role in regulating the cell 

cycle. Oncogenes and tumor suppressor genes are the two major genes, which interrupt the 

cell cycle and lead to cancer. The detail about the function of these genes is discussed in the 

Genetic of Cancer section.4 

2.1.3 The Causes of Cancer 

Percival Pott, a British surgeon, established the correlation between environmental factors 

and the development of cancer first in 1775. He recognized a form of cancer of the nasal 

cavity and the skin of the scrotum in chimney sweeps because of the exposure to soot. Within 

the past several decades, hundreds of chemicals such as, tobacco, alcohol, Radon, asbestoses, 

etc have shown to cause cancer, so called carcinogenic chemicals. Besides the chemicals 

ionizing radiation, ultraviolet radiation and some viruses can be carcinogenic. All of these 

agents have common properties, which they alter the genome and cause DNA mutation.  

A variety of DNA and RNA-containing viruses can infect mammalian cells and 

transform them into cancer cells. They are called oncogenic viruses. In the most cases, these 

viruses increase the risk of cancer rather than being sole determinant. These viruses are 

associated with small fraction of human cancers.  

Epidemiologists carry out the determination of the causes of different types of cancer. 

The cause of some cancers is obvious: smoking causes lung cancer and exposure to 

ultraviolet radiation causes skin cancer. However, the causes of a large number of cancers are 

not completely known. Today’s world is a complex environment, so humans are exposed to 
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many potential carcinogens. Several types of nucleotide changes induced by chemical 

carcinogens such as smoking, Aflatoxin B1, UV, etc. More than 50 percent of human cancers 

are found with deletion or mutation of the TP53 gene.   

2.1.4 The Classification of the Cancer 

As discussed before, cancer cells have infinite cell division and invade territories normally 

reserved for other cells. If the proliferation of the cells becomes out of control, it will give 

rise to a tumor or neoplasm. As long as neoplastic cells localize together in a single mass, the 

tumor is called benign or Adenoma. Benign tumors are not considered cancer and they can be 

removed surgically. The tumors are considered cancer only when they are malignant. 

Malignancy happens when primary tumor cells have this potential to attack surrounding 

tissues. In this case, primary tumors enter the bloodstream or lymphatic vessels through 

intravasation and exit the capillaries of vessel through extravasation to enter other tissues and 

create secondary tumors. This mechanism is called metastasis. These actions make cancers 

peculiarly dangerous. Figure 2.1 shows the benign and malignant tumors.  

Cancers can be classified based on the tissue and the cell type they arise from. Carcinomas 

are the cancers from epithelial cells such as digestive, respiratory, breast, reproductive and 

urinary organs. Sarcomas are the cancers arising from connective tissues, muscles and 

vasculatures. There are other types of cancer, which do not fit in above category. Leukemias 

derived from hemopoietic cells and nerve cancers arise from cells of the nervous system. 

Figure 2.2 shows the cancer incidence and mortality in the United States for different types 

of cancers. 3 
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Figure 2.1. Adenoma (benign) Vs. Malignant tumors3 

 

 
Figure 2.2. The statistics of cancer incidence and mortality in the United States3 

 

 
 

2.1.5 The Genetics of Cancer 

Cancer after heart attack is the greatest causes of death in Western countries, afflicting 

approximately one in every three individuals. Cancer is a common disease, but at the cellular 
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research level, it is a remarkably new event. As discussed above, cancer is a genetic 

alteration but in most cases is not inherited disease. Any imbalance between genes causes 

cancer. Alteration of the genes usually leads to disruption in cell cycle regulation and cell 

division becomes uncontrollable.  

Proto-oncogenes and tumor suppressor genes are two main types of genes, which play a 

major role in regulating the cell cycle. Proto-oncogenes are the genes, which encourage cell 

division. Mutation of proto-oncogenes creates oncogenes. These genes encode proteins, 

which accelerate cell growth and promote malignancy. Example of these proteins would be 

BCL 2, HER 2 and K-Ras. They act like accelerators stimulating the cell to grow and divide. 

In contrast, tumor suppressor genes inhibit cell division. Proteins produced by these genes act 

like brakes to slow down cell division. APC, TP53, RB, and BRCA1 are examples of tumor 

suppressor genes. For instance, the TP53 gene is located at chromosome region 17p13 and is 

one of the most mutated genes in human cancers. Its normal function is regulation of the cell 

cycle involving the G1 and the G2 checkpoints in response to DNA damage. Generally 

speaking, a gain-of-function of oncogenes and a loss-of-function of tumor suppressor genes 

drive cells toward cancer. Figure 2.3 depictes the function of oncogenes and tumor 

suppressor genes and their function. It shows that overactivity mutation, or gain-of-function 

in normal cells, creates oncogenes, both of which stimulate cell proliferation. Underactivity 

mutation, or loss-of-function in normal cell inactivates tumor suppressor genes, which again 

stimulates cell proliferation. In both cases, cells proliferate abnormally and create cancer. 2-3 
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Figure 2.3. Gain-of-function of oncogene and loss-of-function of tumor suppressor gene leading to 
cell proliferation. 3 
 

 

2.1.6 New Strategies for Combating Cancer 

There are some conventional approaches for combating cancers such as surgery, radiation 

and chemotherapy, but, unfortunately, none of these methods can rid a patient of all cancer 

cells. Surgery and radiation therapy are only effective for early diagnosis, i.e. before the 

tumor metastasizes. On the other hand, chemotherapy becomes the treatment of choice after 

malignancy. In most cases chemotherapy can prolong life and palliate symptoms. However, 

it is painfully evident that chemotherapy is not only a complete cure but also it causes a 

number of debilitating side effects.  Recently, a large number of anticancer strategies, either 

in laboratories or clinics, are being developed. Before testing a particular drug on humans, 

that drug has to be shown effective in laboratory animals. In fact, most recently published 
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new therapies in clinical trials, which were effective at animal level have proven 

disappointing in humans. Any drug, before it is applied to human body, should be approved 

by Food and Drug Administration (FDA). There are many pharmaceutical and safety issues 

for each individual drug which should be considered in clinical trials. As discussed below, 

there are some notable successes in clinical trials, which are related to genetics of cancer. 

They provide reason to believe our insight to genetics of cancer would be the basic of 

therapeutic strategies.  

These new strategies to combat cancer are considerably related to genetics and they can 

be divided into four main groups: (1) immunotherapy, which depends on immune system and 

antibodies to attack tumor cells, (2) gene therapy, which introduces a particular gene to kill 

cancer cells or recover normal characteristics, (3) inhibition of the activity of proteins which 

promote cancer growth, and (4) anti-angiogenesis or inhibition of the growth of blood 

vessels, which nourish the tumor. The following section describes each strategy particularly.  

2.1.7 Immunotherapy  

In 1891, William Coley at New York Cancer Hospital discovered human immune system 

could be stimulated by administration of killed bacterial infusion. He developed the injection 

of bacterial extract, streptococcus pyogenes, directly into the tumor. Additionally, he 

postulated that these bacteria would stimulate a patient’s immune system to attack and 

destroy malignancy.  His works had great success against soft tissue sarcomas. Coley has 

confirmed that our body has the capability to destroy a tumor even if it is well established. 
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Basically, they have divided immunotherapy into two sections: passive and active 

immunotherapy.  

Passive immunotherapy is the strategy to employ antibodies against the proteins that 

play a key role in the activities of tumors as therapeutic agents. As discussed above, there are 

specific proteins, which are overactive in some particular cancer cells. Thus, introduction of 

the monoclonal antibodies, which can bind to particular target antigens, was first developed 

in the 1970s. The problem with the antibodies was the immune system. Antibodies are 

recognized as foreign materials and cleared from the bloodstream, so they cannot function. 

To solve this issue the idea of a “Humanized Antibody” appeared. These antibodies are 

completely human amino acid sequences. There are some approved antibodies for curing 

cancers. For example, herceptin is a humanized antibody used against cell surface receptor 

Her2. The Her2 gene is a receptor connected to more than 30 percent of breast cancers. 

Herceptin binds Her2 and inhibits the activation of the receptor by the growth factor. 

Herceptin shows promising results for breast cancer either alone or in combination with 

chemotherapy. In addition, rituxan is another monoclonal antibody approved as anticancer 

agent in 1997 for treatment of non-Hodgkin’s B-Cell lymphoma. CD20 is an over expressed 

protein in malignant B cells in approximately 95 percent of this disease. Rituxan binds with 

CD20 and inhibits its activation and it stimulates the proliferation of B cells. Recently, there 

are some new strategies to combine antibodies with chemotherapy and radioactive atoms to 

kill targeted cells.  

Active immunotherapy is a creative approach in immunology, which tries to employ 

person’s immune system to fight malignancy. The human immune system shows response 
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against foreign materials entering the body, so when a tumor, which is a part of the body, 

starts to grow it cannot be recognized by the immune system. Therefore, active 

immunotherapy occurs when the immune system distinguishes cancer cells. To end to this 

goal, cancer researchers tend to produce immunopreventive treatments in which people 

would be vaccinated with antigens that would prevent them from developing life-threatening 

cancers. 2 

2.1.8 Gene Therapy 

Gene therapy was first established for some inherited diseases such as cystic fibrosis and 

muscular dystrophy. These diseases need to be cured by correction of the genes, so the 

normal gene is introduced to targeted tissues. Therefore, scientists have applied gene therapy 

as a strategy for combating cancers. They assume that gene modification, including deletion, 

addition or alternation of the particular involved gene in cancer, could be an appropriate 

method to combat cancer.   

As discussed in the genetics of cancer section, two types of genes, tumor suppressor and 

oncogenes, play a key role in malignancy of the tumor. TP53 is one of the important gene, 

which is lost in most cancer cells. In normal cells, when DNA damage occurs, induction of 

TP53 arrests the cell cycle which leads to either repair the DNA damage and continuation of 

the cell division, or, if damage is too extensive, cells will undergo apoptosis. However, in 

cancer cell, which there is a lack of gene TP53 no cell cycle arrest exists, so cell growth 

continues with damaged chromosomes and mutation keep continuing until tumor forms. 

Figure 2.4 shows the activation of p53 gene.  
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Researchers presumed induction of the TP53 gene to cancer cells, which lack of this 

important gene could be a way to stop growing tumors. P53-adenovirus mediated has shown 

some promising results to stop malignancy in both culture and laboratory animals. Adnexin is 

a drug approved by the FDA, which contains P53 loaded in the adenovirus. It was first 

injected directly into the tumor in a patient with neck cancer. It showed significant survival 

and no evidence of toxicity.   

Figure 2.4. TP53 activity in normal cells Vs. Cancer cells 3 

 

2.1.9 Inhibiting the Activity of Cancer-Promoting Proteins 

Cancer cells behave abnormally because they contain some specific proteins, which enhance 

their tumor activity. If the activity of these proteins is blocked, it is possible to control the 

over growth of cancer cells. There are some known proteins for particular diseases. For 

example, BCR-ABL is the protein responsible for chronic myelogenous leukemia (CML). 

Translocation of ABL proto-oncogene to be contact with another gene BCR causes CML. 

The compound called Gleevec is identified to inhibit the activity of the ABL kinase. Gleevec 

binds the inactive form of protein kinase and prevents its phosphorylation by another kinase, 
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which is required for ABL activation. Figure 2.5 shows how both activate BCR-ABL and 

blocked BCR-ABL by Gleevec mechanism. Gleevec was approved for human use in 2001. It 

was very successful for patients with advanced CML when initially treated by Gleevec, but 

after several month resistance to the drug appears. In addition, this drug has no major adverse 

effect.  

Figure 2.5. Gleevec mechanism for blocking BCR-ABL in leukemia 3 

 

2.1.10 Inhibiting the Formation of New Blood Vessels (Angiogenesis) 

Uncontrollable growth of tumor cells stimulates the formation of blood vessels around the 

tumor area to nourish the cells. The process of increasing the number of blood vessels called 

angiogenesis. In 1972, Jodah Folkman at Harvard University suggested that blocking the 

blood vessels around solid tumors could destroy tumors. This idea has brightened the 

anticancer strategies. A protein called VEGF or vascular endothelial growth factor plays an 

important role in angiogenesis. It stimulates forming blood vessels. A number of 

angiogenesis inhibitors are established including antibodies and synthetic compounds. 

Approximately 80 angiogenesis inhibitors are examined on 100,000 patients. Avastin is the 
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most promising agent, which is a monoclonal antibody against VEGF. It binds VEGF, so it 

inhibits its function to produce more blood vessels and provide nutrition for tumor cells.  

2.2 New Drug Delivery Systems 

2.2.1 Introduction 

Drug administration used to be in conventional styles such as pills, eye drops, ointments and 

intravenous solutions. However, in the last few decades a number of novel drug delivery 

systems have been developed. Theses approaches include pharmaceutical agents 

encapsulated in carrier systems to injected into bloodstream and deliver to targeted tissue. 

This research is developed in several aspects: (i) many drug either old pharmaceutics or new-

engineered agents can be administrated by delivery system to enhance the safety, efficiency 

and also permit new therapies. (ii) The new and more complex drugs such as proteins or 

genes are becoming available and they may need advance delivery systems. (iii) Drug release 

pattern issue is also introduced to the pharmaceuticals, which improves the therapeutic 

responses. (iv) potentially, the dosage of drug needed for therapeutic is decreased 

significantly by drug delivery. (v) facilitation of drug delivery system with the intelligent 

substance like antibodies is another important development of this novel research. The above 

advantages must compete with following concerns in the development of drug delivery 

system: (i) toxicity of the carriers and drug, or other safety issues encountered with unwanted 

rapid drug release, (ii) discomfort of the drug administration by means of insertion, (iii) high 

expense due to drug encapsulation in manufacturing process.11, 36 
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2.2.2 Hydrophobic Anticancer Drug Delivery 

In past few years, drug delivery has significant improvement in cancer therapy. About 40% 

of new anticancer drugs discovered recently are hydrophobic compounds. Poor solubility of 

these candidates limits their application in drug delivery systems, so they necessitate novel 

carriers for drug delivery formulation. Extremely hydrophobic drugs such as Ellipticine, 

Nifedipine and Felodipine are the motivations for drug delivery technologies to design the 

systems, which solves the solubility issue and modifies the therapeutic effects.22 

 Many delivery systems have been designed for hydrophobic drugs as carriers. They 

are generally categorized into five classes: polymeric conjugates, liposome, emulsions, 

micelles and nanoparticles. Many pharmaceutical properties of free drug can be improved by 

drug delivery system (DDS) such as pharmacokinetics (PK), and biodistribution (BD).10  

Drug delivery systems have some major effects to combat non-ideal properties of drugs and 

their therapeutic implications. Table 1 summarized the advances in each class of hydrophobic 

drug delivery systems. The following sections are reviewing different drug delivery systems 

and their application. 
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Table 2.1. Non-ideal properties of drugs and their therapeutic implications 10 

Problem Implication Effect of DDS 

Poor solubility A convenient 
pharmaceutical format is 
difficult to achieve, as 
hydrophobic drugs may 
precipitate in aqueous 
media. Toxicities as 
associated with the use of 
excipients such as 
Cremphore (The stabilizer 
for Paclitaxel in Taxol) 

DDS such as lipid micelles 
or liposomes provide both 
hydrophilic and 
hydrophobic environments, 
enhancing drug solubility  

Tissue damage on 
extravasation 

Inadvertent extravasation of 
cytotoxic drugs leads to 
tissue damage, e.g., tissue 
necrosis with free 
doxorubicin 

Regulated drug release 
from the DDS can reduce or 
eliminate tissue damage on 
accidental extravasation 

Rapid breakdown of the 
drug in vivo 

Loss of activity of the drug 
follows administration, e.g., 
loss of activity of 
camptothecins at 
physiological pH. 

DDS protects the drug from 
premature degradation and 
functions as a sustained 
release system. Lower 
doses of drug are required.  

Unfavorable 
pharmacokinetics 

Drug is cleared too rapidly, 
by the kidney, for example 
requiring high doses or 
continuous infusion.  

DDS can substantially alter 
the PK of the drug and 
reduce clearance. Rapid 
renal clearance of small 
molecules is avoided. 

Poor biodistribution Drug that have widespread 
distribution in the body can 
effect normal tissues 
resulting in dose-limiting 
side effect, such as the 
cardiac toxicity of 
doxorubicin    

The particulate nature of 
DDS lowers the volume of 
distribution and helps to 
reduce side effects in 
sensitive, non-target tissues.  

Lack of selectivity for 
target tissues 

Distribution of the drug to 
normal tissues leads to side 
effects that restricts the 
amount of drug that can be 
administrated. Low 
concentration of drugs in 
target tissues will result in 
suboptimal therapeutic 
effect.   

DDS can increase drug 
concentrations in diseased 
tissues such as tumors by 
the EPR effect. Ligand-
mediated targeting of the 
DDS can further improve 
drug specificity.  
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2.2.3 Polymer-based drug delivery systems 

Polymeric conjugated systems are widely used for anticancer drug delivery systems. The 

hydrophobic drugs covalently bind to hydrophilic or amphiphilic polymers to enhance 

solubility in aqueous solution. There are basically, three general mechanisms of drug delivery 

by polymers: (1) diffusion of the drug substance from he system, (2) degradation or cleavage 

of the drug from the system by a chemical or enzymatic reaction, (3) activation of solvent 

through osmosis or swelling of the system, (4) conjugation of drug into polymer, and 

cleavage of the polymer inside the body.11 

Figure 2.6. Four mechanisms of polymeric-based drug delivery11 

 

The concept of chemically binding drugs to polymers confers new properties such as, 

decreasing in immunogenicity or tissue targeting.  For instance, polyethylene glycol (PEG) 

binds to adenosine deaminase (ADA) as a new treatment of lymphoblastic leukemia shows 

promising decrease in immunogenicity.11, 13 
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Polymer-based drug delivery has been developed extensively in both active and passive 

targeting delivery. The approach of passive targeting includes polymer-drug linkage 

circulating in bloodstream then enters to cells by endocytosis. The circulation of polymer-

drug conjugates is longer than drug alone, which is another advantage of polymer-based 

systems. The polymers employed to conjugate anticancer drugs are classified into synthesis 

and natural materials. The synthetic polymers are non-immunogenic but in most cases are not 

biodegradable. Some of the examples of synthetic polymers are as follow: N-

(2hydroxypropyle) methacrylamide (HPMA copolymer), poly(styrene-co-maleic anhyride) 

(SMA), poly(divinylether-co-maleic anhydtide) (DIVEMA) and poly(ethylene glycol) 

(PEG). Natural polymers are biodegradable materials, which used for the conjugation to 

drugs. Poly(L-glutamic acid) (PG), some proteins, dextran and chistotan are the examples of 

natural polymers. Doxorubicin, Paclitaxel and Camptothecin, anticancer drugs, conjugated 

with HPMA, PG and PEG successfully for different cancer therapy. For example, HPMA 

conjugates to doxorubicin, anticancer drug, through peptidyl linker that is cleaved by thiol-

dependent proteases in lysosomes. In this case, the maximum tolerated dose (MTD) is 5-10 

times higher than the free drug in animals and human.11, 14 

Some of the polymer-drug conjugates are in clinical trial for different cancer therapy 

purposes as listed in Table 2.12 
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Table 2.2 Polymer-drug conjugates in clinical trials12 

Conjugates Indication Status Company 

HPMA-doxorubicin 

(PK1: FCE28068) 

Lung and Breast 
Cancers 

Phase II as of 
2002 

Pfizer, Cancer 
Research 

Campaign UK 

HPMA-doxorubicin-
galactosamine 

(PK2; FCE28069) 

Hepatocellular 
carcinoma 

Phase I/II Pfizer, Cancer 
Research 

Campaign UK 

HPMA-camptothecin Solid tumors Phase I; 
discontinued 

Pfizer, Cancer 
Research 

Campaign UK 

HPMA-paclitaxel Solid tumors Phase I; 
discontinued 

Pfizer, Cancer 
Research 

Campaign UK 

HPMA-platinate Ovarian, 
melanoma and 
colorectal cancers 

Phase I Access 
pharmaceutical 

PEG-Camptothecin Solid tumors Phase I; 
discontinued 

Enzon 

PEG-SN38 Solid tumors Phase I; 
initiated as of 
October 2007 

Enzon 

Polymeric micelles Pancreatic cancer Phase II Nippon Kayaku, 
Japan 

Cyclodextrin-based 
polymer-CPT 

Solid tumors Phase I Insert 
Therapeutics 

Carboxylmethyldexteran-
exateean 

Solid tumors Phase I Diiachi 
Pharmaceuticals, 
Japan 

PG-TXL Lung, ovarian, 
colorectal, breast 
and esophageal 
cancer 

Phase III Cell Therapeutics 

PG- Camptothecin Colorectal, lung 
and ovarian 
cancers 

Phase I Cell Therapeutics 
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Besides the passive targeting of polymer-based systems, active targeting can be achieved 

by complexation of polymer-drug system with a targeting molecules such as antibodies or 

carbohydrates. These targeting molecules can recognize cell surface receptors in specific 

tissue. HPMA-Taxol copolymer drug conjugate binds galactose to target the cell surface 

asialoglycoproteins receptors in liver cells.14 Another approach of active targeting is 

polymeric drug utilizing with poly[N2-(2-hydroxyethyl)-L-glutamine)]  immunoconjugates of 

adriamycin and human IgG antibody against tumor-associated antigen.15 Conjugated system 

has shown great promise in advance chemotherapy. However, the synthesis of 

multicomponent conjugates requires series of chemical reactions and purifications, which 

makes complications and high expense of manufacturing process.  

2.2.4 Liposome-based delivery systems 

Liposomes, small lipid vesicles, have shown great promise of drug delivery among many 

drug carrier systems. Liposomes are bilayered phospholipids membranes, which are made 

from natural lipids such as phosphatidylcholine (PC), phosphatidylglycerol and cholesterol. 

Lipids have different range of size based on their preparation method (sonication or 

filteration). There three major types of liposomes: multi-lamellar vesicles (MLV. > 0.1 µm), 

small unilamellar vesicles (SUV, < 0.1µm) and large unilamellar vesicles (LUV, >0.1 µm).   

Liposomes could encapsulate drugs rather than binding polymer chains. This drug 

encapsulation by liposomes provides high capacity of drug loading. In addition, they are 

biodegradable and essentially non-toxic vehicles. However, there are some issues should be 

solved to apply liposomes more effectively such as shelf life, targeting ability and stability in 
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reticuloendothelial system (RES).17 RES rapidly clears most of the conventional liposomes 

systems. Thus, modification of liposomal surfaces such as PEG modification is required for 

long-circulating and avoiding RES.  

A significant advance liposomal delivery is the development long-circulating liposome 

(LCL) system associated with PEG, poly(ethyleneglycol)  or other polymers including 

poly(acrylamide) and poly(N-vinyl pyrrolidine). PEG-conjugated liposmes enhance the 

circulation longevity of the liposome to avoid mononuclear phagocyte system (MPS) 

uptake.16 The size of liposome is an important factor to affect the longevity and targeting 

efficiency. To achieve this end, the optimal size of liposome is required for long blood 

circulation and higher tumor accumulation ranges from 50 to 200 nm.18 

The other significant factor in development of liposome-based drug delivery is incorporation 

of targeting moieties. The delivery system contains liposome and tumor vasculature targeted 

ligands is recently developed to deliver Combretastatin A4 as a novel antivascular agent. 

PEG2000 is sterically stabilized on the surface of long circulating liposome (LCL). Cyclic 

RGD (Arg-Gly-Asp) peptides with affinity for growth factors expressed on tumor vascular 

endothelial cells were coupled to PEG on the liposome surface.16 Figure 2.7 depicts the 

schematic of the targeted liposome delivery system. Figure 2.8 represents the coupling 

reaction to form the final targeted liposome. 

Other advance in liposomal drug delivery in clinical trial is pegylated liposome carrier for 

doxorubicin (Doxil) in metastatic breast carcinoma (MBC). There was a magnificence 
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development to in pharmacokinetics and decrease toxicity of Doxil with this delivery 

system.19 

Figure 2.7. Schematic representation of the targeted liposome delivery system. Cyclic RGD peptides 
coupled to the distal end of maleimide-PEG-DSPE in the liposome bilayer of PEG-grafted LCL.16 

  

 
Figure 2.8. Schematic representation of the coupling reaction between maleimide functional group at 
the distal end of PEG chain on the LCL and thiol group in the cyclic RGD peptide.16 

 

 

 

2.2.5 Lipoprotein targeted drug delivery  

Low-density lipoprotein (LDL) is the major ligand for the low-density lipoprotein receptors 

(LDLR) and it is also the major transporter of cholesterol in the plasma. The modified LDL 

was synthesized to determine its utility as a drug delivery vehicle targeted to tumors by 

Berekely Lab. The synthetic nano-LDL nanoparticles were constructed by combining a 
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synthetic peptide containing a lipid binding motif and the LDL receptor(LDLR) binding 

domain of apolipoprotein B-100 with a lipid emulsion consisting of phosphatidyl choline, 

triolein, and cholesteryl oleate. This technology is already applied on Glioblastoma 

multiforme (GBM) tumors, which is considered as a highly aggressive malignant tumor for 

approximately 85% of primary brain tumors in adults. Tumor cells generally require high 

cholesterol for their cell division, so they over express LDLR on the surface. nLDL-based 

drug delivery system selectively binds to LDLRs and inhibits cell growth in GBM cells.20 

2.2.6 Nanoparticles 

The magnificent development of nanotechnology incorporates cancer chemotherapy and 

diagnosis over the pas decades. Novel nanoparticles have been designed and applied for drug 

delivery for different therapeutic purpose. Nanoparticles are defined as submicrons (<1µm) 

colloidal particles, but not necessarily biodegradable polymers.7Based on preparation 

method, nanocarrieres are classified as nanocapsules, nanospheres and nanoparticles. 

Nanospheres are the matrix systems in which the drug is dispersed through out the particles. 

Nanocapsules are considered as reservoir systems in which the drug is entrapped in a cavity 

surrounded by a polymeric membrane. Figure 2.9 shows the schematic of nanosphreres and 

nanocapsules.7 
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Figure 2.9. Nanoparticles are nanosphere (matrix systems) (top) or nanocapsule (reservoir system) 
(bottom). 7 

 

According to the above definition, micelles and liposome are considered as 

nanoparticles. There are other nanoparticle systems for drug delivery such as gold 

nanoparticles, chitosan nanoparticles, carbon nanotubes (CNT), dendrimers, hydrogels and 

magnetic nanoparticles. For example, hydrogels are the polymeric nanoparticles designed for 

drug delivery systems. Drug can be encapsulated in the hydrogel, which is stable enough to 

circulate in bloodstream. The molecular weight, size and hydrophobicity of hydrogels are 

tailored to evade mononuclear phagocyte system (MPS). Chitosan-based drug delivery is 

another example of nanoparticle applying for drug delivery. Chitosan is polysaccharide, 

similar structure as cellulose. Different drugs can be loaded into chitosan for various 

therapeutic purposes. Drug release kinetic from chitosan particles is derived in three major 

mechanisms: release from the surface, release from erosion, and diffuse from swollen matrix. 

Chitosan nanoparticles have shown promising results for doxorubicin encapsulation and gene 

delivery.21
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Dendrimers are another examples of nanoparticles for drug delivery. They are polymeric 

nanoarchitectures, which enhance solubility of the drugs. They have well-defined size 

regarding to the generation and controlled surface functionalities. They can carry diverse 

molecules via hydrophobic interaction, ionic interaction and hydrogen bonding.22 

The major aim of using nanoparticles for cancer chemotherapy is to achieve intelligent 

delivery system in terms of active and passive targeting.11 As it discussed in previous 

sections, monoclonal antibodies (mAb), nucleic acid ligands (aptamers) and peptides like 

TAT, folic acids (folates) and nanobodies are targeting molecules for passive targeting.8, 23, 33 

Peptides have gained a lot of attention as the promising alternative to antibodies because 

of their small size, low immunogenicity, biodegradability and high stability. Examples of 

peptides applied in this area are cyclic RGD peptide, cell-surface hormone receptors (LHRH 

receptor) and tumor vasculature antigens, which binds vascular endothelial growth factor 

(VEFG) in tumor cells.8The development of protocols to design or select a potent peptide 

sequence as targeting ligand opens new window for peptide-mediated cancer chemotherapy.  

2.3 Self-Assembling Ionic-Complementary Peptides 

2.3.1 Introduction 

In the past decades, building advanced materials in diverse application has been 

tremendously developing. Self-assembly is ubiquitous in nature at both macroscopic and 

microscopic view. New technology through molecular self-assembly is one of the important 

approaches in designing materials. “Self-assembly defines as spontaneous association of 

numerous individual entities into a coherent organization and well-defined structures to 

maximize the benefit of the individual without external instruction. Molecular self-assembly 
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is spontaneous organization of molecules under thermodynamic equilibrium conditions into 

structurally well-defined and rather stable arrangements through a number of noncovalent 

interactions.”37The key engineering to build up self-assembly systems is artfully design 

molecular bindings that are able to undergo spontaneous assembly.  

Recently, short peptide sequences have attracted material scientists to construct 

functional nano/microstructures for different application in nanoscience.37-38 These peptides 

are designed to be self-assembled through the weak interactions including hydrogen bonds, 

ionic bonds, and hydrophobic interaction. A new class of peptide was discovered in yeast, 

which shows potential self-assembling for many biomedical applications. They originally 

derived from EAK16-II of a Z-DNA binding protein in yeast. These derivatives share 

common properties including amphiphilic molecular structure and self-assemble in β-sheet-

rich fibers. In addition, they have shown relatively good biocompatibility and 

biodegradability, so they can be used in scaffold in tissue engineering as well as carriers for 

therapeutic agents.37, 39Table 2.3 shows the few numbers of self-assembling peptides have 

been designed and developed.  
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Table 2.3. Self-assembling peptide studies.39 

Name Sequence (N→C) Ionic 
modulus 

Structure 

RADA16-I     +  –     +  –      +  –    + – 
n-RADARADARADARADA-c 

I Beta 

RGDA16-I +  –   +  –    +   –   +  – 
n-RADARGDARADRGDA-c 

I r.c. 

RADA8-I +– + – 
n-RADARADA-c 

I r.c. 

RAD16-II ++ –  – + + – – 
n-RARADADARARADADA-c 

II Beta 

RAD8-II + + – – 
n-RARADADA-c 

II r.c. 

EAKA16-II – + – + – + – + 
n-AEAKAEAKAEAKAEAK-c 

I Beta 

EAKA8-I – + – + 
n- AEAKAEAK-c 

I r.c. 

RAEA16-I + – + – + – + –  
n-RAEARAEARAEARAEA-c 

I Beta 

RAEA8-I + – + – 
n-RAEARAEA-c 

I r.c. 

KADA16-I + – + – + – + – 
n-KADAKADAKADAKADA-c 

I Beta 

KADA8-I + – + – 
n-KADAKADA-c 

I r.c. 

EAH16-II – – + + – – + + 
n- AEAEAHAHAEAEAHAH-c 

II Beta 

EAH8-II – – + + 
n-AEAEAHAH-c 

II r.c. 

EFK16-II – – + + – – + +  
n-FEFEFKFKFEFEFKFK-c 

II Beta 

EFK12-I – + – + – + 
n-FEFKFEFKFEFK-c 

I Beta 

EFK8-II – + – + 
n-FEFKFEFK-c 

II Beta 

 

The following sections are discussing the detailed information of physical and biochemical 

properties of self-assembly ionic-complementary peptides.  
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2.3.2 Molecular Structure and Physical/Biochemical Properties   

Molecular Structure 

Over the past two decades, a new class of peptides, self-assembly ionic-complementary 

peptides, has been systematically studied.40-41 Self-assembling peptides have been emerged as 

the promising nanomaterials in bio-nanotechnology research. Peptide is a chain of amino 

acids from 2 to 40 amino acids in length. Self-assembling ionic-complementary peptides are 

characterized by either alternating arrangement of charged residues or 

hydrophobic/hydrophilic amino acid residues.42 

The self-assembly process of ionic-complementary peptides depends on charge 

distribution along the peptide backbone. There are three types of charge distribution that are 

widely studied for self-assembling peptides. They are type I (−+ or +−), type II (−−++ or 

++−−) and type IV (−−−−++++ or++++−−−−). These charge distribution is the determining 

factor in self-assembling conformation, which results nanostructure stabilization of ionic-

complementary peptides. Jun et al. have widely studied the effect of charge distribution and 

molecular structure of model peptide EAK16s on theslef-assembly process. Figure 2.10 

shows the AFM images of three types EAK16 in terms of charge distribution. These pictures 

show EAK16-I and II self-assembled in febrile nanostructures, but EAK-IV shows globular 

form.42-43 
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Figure 2.10. AFM images of EAK16-I (a), -II (b) and –IV (c) at a concentration of 0.1 mg/ml. 
EAK16-I and II form fibrillar nanostructures, whereas EAK16-IV forms globular ones. The scan size 
of the images is 2*2 µm and the z-scale of 5nm.43 

 

Another feature of self-assembling ionic-complementary peptides is a special 

arrangement of hydrophilic and hydrophobic amino acid residues alternating in sequence. 

This arrangement leads to “side-to-side” amphiphilic structure, which is different from 

“head-to-tail” in surfactants. β-Sheet secondary structure of peptides is the result of 

hydrophobic interactions unlike micelle formation of surfactants.  

EAK16 is a famous self-assembling ionic-complementary peptide, which has been 

studied since 1993.40 It is originally found in a region of alternating hydrophobic and 

hydrophilic residues in zuotin, a yeast protein that was initially identified for its ability to 

bind to left-handed Z-DNA. The EAK 16 peptide consists of three amino acids Alanine, 

Glutamine and Lysine. Figure 2 shows the molecular structure of three derivatives of 

EAK16, such as EAK16-I, EAK16-II and EAK16-IV. It has been found by circular 

dichroism and FTIR that these peptides or the peptide in this family can self-assemble into β-

sheet fibrils.41 The fibril formation is assumed the result from the following interactions: 

hydrogen bonding from the peptide backbone, electrostatic interaction from ionic-

complementary residues, and the hydrophobic interactions from the hydrophobic side. Figure 

2.11 shows the three-dimensional molecular structure of EAK16s.  
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Figure 2.11. (A) Chemical structure of ionic-complementary peptide EAK16-II. (B) Three-
dimensional structure of EAK16s. From top to bottom EAK16-I, EAK16-II, and EAK16-IV24 

 

The unique structure of EAK16 is a basis of designing of other self-assembling peptides, 

like RAD16, to enhance bioavailability and compatibility for cell adhesion and tissue 

scaffolding. RAD can be derived from EAK by replacing the residues glutamic acid (E) and 

lysine (K) with arginine (R) and aspartic acid (D), respectively.  RAD16-I has been used in 

bone, cartilage and shown great promises in neural regeneration studies. Zhang et al have 

achieved the novel advanced approaches in angiogenesis through directly coupling pure 

RAD16-I with short biologically angiogenesis motifs.30, 44 Figure 2.12 shows the molecular 

structure of RAD16-I and the coupling functional motifs accompanied with AFM and SEM 

images.   
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Figure 2.12. Molecular models of designer peptides and schematic illustrations of self-assembling 
peptide nanofiber scaffolds. (a) Molecular modes of designer peptides RADA16-I, PRG, and KLT. 
(b) Schematic illustrations of self-assembling peptide nanofibers formation after mixing RADA16-I 
with PRG peptides, representing a b-sheet double-tape structure. Hydrophobic alanine side groups 
are present on one side of self-assembling motif RADA16-I b-sheet and the other side is populated 
with alternating positive and negative charges due to the arginine and aspartic acid residues, 
respectively. The functional motifs extrude from nanofiber backbones. (c) Typical SEM morphology 
of the functionalized peptides nanofiber scaffold. (d) Typical AFM image of self-assembling 
functionalized peptides solutions. (e) Typical CD spectrum of RADA16-I with high beta-sheet 
content and the mixtures with functionalized peptides, the two additional spectra (red and teal) show 
considerably less beta-sheet contents.44 

 

The functional motif PRG with two units of RGD binding sequences increases the 

tendency of attachment and promotes endothelial cell survival. The functional motif of KLT 

acts as VEGF agonist. Therefore, the designer functionalized self-assembling peptides PRG 
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and KLT have potentially great value for promoting angiogenesis in vitro and perhaps in vivo 

as well.44 

Three important features of ionic-complementary peptides are charge distribution, chain 

length, amino acids replacement. First, their charge distribution in peptide chain can alter 

molecular self-assembly and secondary structure. Second, specific peptide chain length is 

required to achieve ionic complementarity. The minimum number of amino acids required to 

build type I peptide is four, while for type II and IV peptides eight and sixteen amino acids 

are required, respectively. Third, the ionic complementary peptide can be improved by 

replacing amino acids in peptide chain to enhance functionality. For example, RAD and EFK 

are the derivatives of EAK just be replacing amino acids as discussed above.  

Secondary Structure  

An important characteristic of self-assembling ionic-complementary peptide is ability to form 

an unusually stable β-sheet structure in aqueous solution. The β-sheet structure is stable at 

various physicochemical conditions (extreme pH, wide range of temperature, and various 

dilution) and even in the presence of denaturizing agents. EAK16-II and RAD16-I are the 

examples of ionic-complementary peptides, which exhibit strong β-sheet structure in various 

conditions.44 Zhang et al. have studied β-sheet stability of EAK16-II in detail.45 

The β-sheet character of EAK16-II shows a maximum absorbance at 218 and a 

minimum at 195 nm in the circular dischorism CD spectra in the range of concentration of 

0.612 µM to 20 µM. In addition, CD spectra exhibit that β-sheet remains stable in high 

temperature as 90°C and at extreme pH (1.5 or 11). Unlike normal proteins that denature in 
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the presence of high concentration of denaturation agents, such as guanidine-HCl and urea, is 

above 4 M, EAK16-II maintains its β-sheet stability even in 7 M guanidine-HCl or 8 M urea. 

It also has shown high stability in 1% sodium dodecylsulphate (SDS) solution.45 

CD spectra of RAD16-I have shown high β-sheet content in both peptide alone and 

mixture with the functionalized peptides such as PRG and KLT. A typical spectrum for β-

sheet structures with a whole minimum mole residue ellipticity at 215 nm and a maximum as 

195 nm was observed from RAD16-I and its mixture. The functionalized peptides mixture 

exhibited similar structural properties as RAD16-I but in lower intensity of mole residue at 

215 nm. Figure 2.12(e) shows the above explanations.44 

The analysis of the molecular structure and interactions show the formation of stable β-

sheet is very important and necessary for peptide self-assembly and nanofibers formation. 

Hydrogen bonding between individual peptide backbones and charged residues in peptide 

sequence are the main causes of formation of β-sheet, which are evident in protein folding 

and aggregation. Similarly, the hydrophobic interactions from the nonpolar residues also play 

a role in stabilizing the β-sheet structure.  

2.3.3 Peptide Self-Assembly and Control of Structure Formation 

The understanding of the general self-assembly mechanism is important to control the 

nano/microstructure for formulation of peptide-drug complexes. There are many internal and 

external controlling factors that influence the self-assembly mechanism. These factors are: (i) 

amino acid sequence, (ii) molecular size, (iii) peptide concentration, (iv) solution pH, (v) 

temperature, (vi) presence of denaturation agents, (vii) ionic strength, (viii) solvent.40-41,46 
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The effect of peptide concentration, amino acid sequence, pH and presence of mechanical 

force on peptide structure are more relevant to this thesis which have been discussed in 

below.  

Effect of Amino Acid Sequence 

There is a considerable interest in the relationship between amino acid sequence and self-

assembly mechanism. The type, number and arrangement of amino acids in the peptide chain 

play important role in interactions and secondary structures. For example EFK8-I has β-sheet 

structure, however by replacing F with A with the same charge distribution in sequence, 

resulting peptide EAK8-I exhibits random coils instead. The reason of that is not clear, but 

the possibility is the hydrophobicity of phenylalanine helping β-sheet formation.  

Hong et al. 2003 has studied the effect of amino acid sequence on formation of self-

assembling peptides EAK16-II and EAK16-IV. The peptides chosen consisted of 16 

alternating hydrophobic and hydrophilic amino acids, where the hydrophilic residues possess 

alternating negative and positive charges. Two types of peptides, AEAEAKAKAEAEAKAK 

(EAK16-II) and AEAEAEAE- AKAKAKAK (EAK16-IV), were investigated in terms of 

nanostructure formation through self-assembly. The results from AFM imaging and surface 

tension measurement show that in the same pH EAK16-II forms fibrillar assemblies, 

meanwhile EAK16-IV self-assembles to globular forms. Figure 2.13 shows the AFM images 

of these two peptides in the same pH.47 The difference in charge distribution as discussed 

above can alter peptide self-assembly into different nanostructures. The assembly of β-turns 
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may result in the formation of globular aggregates. On the other hand, EAK16-II prefers a 

stretched β-stand to form linear fibrils. 

Figure 2.13. AFM images of EAK16-II(A) and EAK16-IV(B) EAK16-II shows fibril assemblies, 
whereas EAK16-IV shows globular assemblies. The scale bars are 200 nm.47 

 

  

 

Effect of Peptide Concentration 

The important parameter to trigger the peptide self-assembly and control nanostructure 

formation is the peptide concentration. The concentration dependence of peptide self-

assembly is expected to be similar to surfactants. Applying the concept of micellar systems, 

critical micelle concentration CMC, one may anticipate peptides would be dispersed in 

solution below the critical assembly concentration CAC and begin to aggregate or assembly 

at or above the CAC. This CAC has been reported for many proteins and amphiphilic 

peptides.46 

Recently, a CAC value of the self-assembling ionic-complementary peptide EAK16-II 

has been found as 0.1 mg/ml (60 µM) via surface tension measurements, light scattering and 

AFM imaging. AFM studies of the EAK16-II shows that nanofiber networks are formed 
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when the peptide concentrations are above CAC, while filaments and globules are observed 

at concentrations below CAC. Surface tension measurements reveal that EAK16-II has a 

CAC around 0.1 mg/ml. This value is comparable with CAC of human serum albumin (HAS) 

around 0.05 mg/ml. The light scattering also shows that EAK16-II aggregates over the time 

at concentrations below the estimated CAC of 0.1 mg/ml.31 

Effect of Solution pH 

The solution pH is an important factor, which affects protein and peptide structures. A pH 

change influences the ionic state of the charged residues as well as the net charge of 

peptides/proteins. Admittedly, pH will affect the self-assembling ionic-complementary 

peptide and protein folding or aggregation.  Self-assembly of EAK16s was determined at 

various pH values by Hong et al. 2003.47The results show that the assemblies of self-

assembling ionic-complementary peptides depend on the solution pH according to the charge 

distribution. Regardless of pH values EAK16-II forms fibrils. However, EAK16-IV shows 

changes in nanostructure in different pH values. EAK16-IV forms globular forms in pH 

between 6.5 and 7.5, but fibrils structures form in pH below 6.5 or above 7.5.47 These results 

illustrate that the charge distribution in peptide sequences plays an important role in self-

assembling of peptide nanostructures. Type IV charge distribution has strong intramolecular 

electrostatic attractions at neutral pH which leads to globular nanostructures. However, at 

extreme pHs, 4 or 11, intramolecular electrostatic interactions weaken which leads to smaller 

tendency for β-turn structures. Thus, nanofibers form predominantly.  
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2.3.4 Self-Assembling Peptide-Mediated Hydrophobic Drug Delivery 

To date, biomaterials are widely used in numerous medical applications. Chemical 

engineering is playing a central role in biomedical research and its development. Polymers, 

liposome, micelles, peptides and proteins are the novel approaches in drug delivery systems 

and tissue engineering. Drug delivery is a topical subject, which attracts researchers and 

engineers to design effective therapeutic delivery systems. An ideal delivery system should 

be able to control pharmacokinetics and pharmacodynamics. Not only it should have high 

therapeutic effect, but also should avoid non-specific toxicity and has no immunogenecity. 

Peptides have great potential to overcome some major issues among the other emerging drug 

carriers like liposomes or polymers. They have shown promising results to enhance safety, 

efficiency and cell targeting. The most attractive aspect from peptide-based drug delivery 

systems is the natural properties of many peptides for cell penetration and 

targeting.27,29,30,38,44  

Self-assembling ionic complementary peptides are the promising biomaterials for drug 

delivery systems. Their attractive properties including alternating hydrophobic and 

hydrophilic amino acids and stable β-sheet structure make them unique structures for 

encapsulating both hydrophobic chemotherapeutics and hydrophilic gene therapeutics. In 

addition, some peptides are capable to target cells or penetrate cell membrane based on their 

sequences. Accordingly, the discovery and design of novel biomaterials have become 

increasingly important for advanced tissue engineering and control drug delivery 

systems.28,41,44 
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Self-assembling peptides have shown a great potential in encapsulating hydrophobic 

materials and enhance their solubility in aqueous solutions. Micro/nanocrystals of 

hydrophobic compound, pyrene, and a hydrophobic anticancer agent, ellipticine, are 

stabilized by self-assembling ionic-complementary peptide EAK16-II in aqueous 

environment. The formation of the complex of pyrene and EAK16-II is simply mixing 

pyrene crystals with peptide solution in water under continuous mechanical stirring. Peptides 

assemblies seem to be more effective to stabilize pyrene than mature fibrils in aged peptide 

solution.35 The release mechanism of the pyrene and ellipticine from the complexes were 

determined by liposomes as the cell membrane mimics.27 The release rate has been found 

proportional to the peptide-to-pyrene or ellipticine ratio during the complexation.  Figure 

2.14 (a), (b) show the release profile of pyrene and ellipticine from EAK16-II into liposomes, 

respectively. The release rate has been found proportional to the peptide-to-compound ratio 

during the complexation. All the profiles have a similar trend with a fast increase initially and 

gradually reaching to plateau. These results indicate a rapid release of ellipticine in first 30s 

in the concentration of 0.5 mg/ml of EAK16-II, which corresponds the protonated form of 

ellipticine in the peptide environment. These protonated ellipticine molecules may easily 

migrate into lipid bilayers. However, other ratios of peptide-to-ellipticine concentrations do 

not stabilize protonated ellipticine, which show the lower rate of release. All these results 

show the possibility of such self-assembling peptides in the drug delivery of hydrophobic 

anticancer agents.24 
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Figure 2.14. Release profile of Pyrene and Ellipticine into liposome.24,27-28 
a)  

  

 

Besides the capability of peptides to encapsulate hydrophobic compounds, there is 

another novel approach from self-assembling peptide nanofibers scaffolds in tissue 

engineering. The self-assembling peptide scaffold, RADA16-I has shown great promises in 

3-D tissue cell culture and has been used in bone, cartilage, and neural regeneration. They 

have developed designer functionalized self-assembling peptide nanofiber scaffolds for 

mouse neural stem cell 3-D cultures as well as for growth, migration, and tubulogenesis of 

human umbilical vein endothelial cells. In both case RADA16-I peptide was utilized with 

two functional motifs. Cell adhesion, differentiation and bone marrow homing motifs were 

attached to RADA16-I peptide and self-assembled into nanofibers. BMHP1 (SKPPGTSS) 

and BMHP2 (PFSSTKT) belong to the family of peptides (bone marrow homing peptide) 

rich in K, P, F, S, and T, which have been shown to home into bone marrow. The results 

show significant enhancement in neural cell survival. On the other hand, KLT 

(KLTWQELYQLKYKGI) and PRG (PRGDSGYRGDS) were reported to modulate 

angiogenesis. RGD is a key binding sequence for cell attachment and KLT acts as a vascular 
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endothelial growth factor (VEGF) agonist. Binding these sequences to self-assembling 

peptide RADA16-I indicated the higher possibility to increase cell attachment and then 

promote endothelial cell long-term survival. Figure 2.15(a), (b) shows the molecular 

schematic of RADA16-I with the motifs for above applications.29-30 

Figure 2.15. (a) Molecular structure of RADA16-I with the BMHP1 and BMHP2 functional motifs. 
(b) The molecular structure of RADA16-I with the PRG and KLT functional motifs. 29-30 

 
(a) 

 

(b) 

 

 

2.4 The Anticancer Agent Ellipticine 

The original strategy of the anticancer agent selection is the mode of action of the drug to 

eradicate cancer cells. There are many anticancer drugs have been discovered from natural 

resources. Most of the anticancer agents are very cytotoxic and their mode of action related 

to cancer biology. These anticancer chemicals are classified into five categories: 

antimetablites, covalent DNA binding drugs, noncovalent DNA binding drugs, inhibitors of 

chromatin function, and drugs affecting endocrin function.6 The cytotoxicity of these drugs is 

usually very high, but most of them have severe side effects. Therefore, novel delivery 

systems are necessary to minimize the side effects and enhance the therapeutic efficacy.  
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Ellipticine was selected as a model of anticancer agent in this study because of the 

following reasons. First of all, ellipticine is an extremely hydrophobic agent, with a water 

solubility of 6.2 ×10-7 M.48 Thus, amphiphilic molecules are required to stabilize them in 

aqueous solution. Self-assembling ionic-complementary peptides would be appropriate 

candidates to stabilize hydrophobic agent, ellipticine, in water or culture media. Second, 

ellipticine showed the fluorescent property in different state. Therefore, its photo physical 

properties make it easy to be monitored either in physicochemical characterization or in-vitro 

experiments. Third, ellipticine and its derivatives have shown anticancer activity as well.34-35 

The anticancer activity of ellipticine is due to its polycyclic structure, which intercalates 

between DNA base pairs and induces G2-M-phase cell cycle arrest. Other molecules studies 

suggested that ellipticine acts via its binding to nucleic acids and inhibition of topoisomerase 

II (topo II) and topo II-mediated DNA damage.49 Figure 1.2 in the previous chapter depicts 

the molecular structure of ellipticine with three different possible formations.  
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Chapter 3 

Experimental Methods 

3.1 Materials 

The peptides AC8, EAK16-II, and EFK16-II were purchased from CanPeptide Inc. 

(Montreal, Canada) and used without further purification. The sequences of the peptides are 

AcN-FEFQFNFK-CNH2 (Mw=1106.25 g/mol) AcN-AEAEAKAKAEAEAKAK-CNH2 

(Mw=1657 g/mol) and AcN-FEFEFKFKFEFEFKFK-CNH2 (Mw=2265.61), respectively. A 

corresponds to alanine (ala), E to glutamic acid (glu), K to lysine (lys), F to phenylalanine 

(phe), N to asparagines (asn), and Q to glutamine (gln). The N-terminus and C-terminus of 

the peptide were protected by acetyl and amino groups, respectivelyThe estimation of 

average hydrophilicity of these peptides are -0.4 for AC8, 1.3 for EAK16-II and 0.3 for 

EFK16-II, and the ratio of hydrophilic residues to total number of residues is 50% for all of 

them. . Figure 3.1 depicts the molecular structure of these three peptides. Crude peptides 

were used in this study. 

The anticancer agent ellipticine (99.8% pure) was purchased from Sigma-Aldrich 

(Oakville, ON, Canada). Tetrahydrofuran (THF, reagent grade 99%) was from Calendon 

Labratories Ltd. (Georgetown, ON, Canada). Cell culture reagents including Dulbecco’s 

modified eagle medium (DMEM), fetal bovine serum (FBS) and penicillin /streptomycin was 

purchased from Invitrogen Canada Inc. (Burlington, ON, Canada). Trypsin-EDTA was 

purchased from Sigma-Aldrich (Oakville, ON, Canada). MTT assay and APOAF kit for cell 
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viability and apoptosis detection, respectively, were both obtained from Sigma-Aldrich 

(Oakville, ON, Canada).  

Figure 3.1. Molecular structure of AC8, EAK16-II and EFK16-II50 

 

 

AC8: n-FEFQFNFK-c 
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3.2 Peptide Solution Preparation 

Peptide solutions were prepared for different experiments, such as surface tension 

measurement, static light scattering and complexation with anticancer compound. For surface 

tension and light scattering measurements, the peptide solutions were prepared by dissolving 

the peptide in pure water (18.2 MΩ; Millipore, Milli-Q A10 synthesis) at concentrations 

ranging from 0.001 mg/ml to 0.1 mg/ml. The solution was then sonicated in a bath sonicator 

(Branson, model 2510) for 10 min. Low AC8 concentrations ( <0.005 mg/ml) were obtained 

by diluting the stock solution (0.005 mg/ml) using a 10-100 µl micropipette. The surface 

tension measurements were performed one day after the sample was prepared. The time-

dependent light scattering (LS) measurements were performed less than 30 min after the 

solution preparation. All experiments were conducted at room temperature.  

3.3 Surface Tension Measurement 

The Axismmetric drop shape analysis-profile (ADSA-P) technique was used to study the 

dynamic surface tension of the peptide solutions over a period of 1 hr. The surface tension 

varied as a function of time in a dynamic process. The peptide solution was released at a 

speed of 0.04 ml/s for 5 s using a 1-ml motor-driven syringe to form a pendent drop at the tip 

of the syringe needle (inner diameter, 0.92 mm). The experimental sample chamber was 

saturated with pure water vapor to keep consistent humidity. ADSA-P system acquires 

images at 60s intervals for the first 3600 s (1hr). An optical Microscope magnified the 

images then CCD camera captured the images before transferring to the computer. All the 

images were digitized and analyzed to extract the drop profiles. The surface tension was 

obtained as a fitting parameter when the experimental drop profile was fitted to the 
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theoretical curve by the Laplace equation of capillarity. The schematic of the ADSA-P setup 

is shown in figure 3.2.  

Figure 3.2. Schematic of ADSA-P experimental setup 51 

 
1-Work Station 2- Light Source 3- Diffuser 4- Syringe 5- Environment Chamber 6- Stage 7- Microscope 8- 

Lens 9- Camera 10- Monitor 11- Stage 12- Computer  

3.4 Steady-state Light Scattering (SLS)  

In static light scattering a beam of light is focused on the particle and the scattered light is 

detected with a photodiode detector. The intensity of this light is measured, which is 
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proportional to the molar mass and the concentration of the particles in solution.  The 

following formula describes the phenomena:  

€ 

ILS ~ Mw .C                                                                                        (1) 

ILS: light scattering intensity, MW: Molar mass weight-average, C: Sample concentration 

The light scattering experiments were carried out on a steady state fluorescence system 

(type LS-100, Photon Technology International (PTI) London, ON, Canada) with a pulsed 

xenon flash lamp as the light source. The peptide samples were irritated at 314 nm, and the 

scattered light was monitored from 295 nm to 330 nm.31 The light scattering peak arose from 

the interaction of the peptide AC8 aggregates and the incoming light. The excitation and 

emission slit width of monochromators were set at ½ and 2 turns to yield the spectra 

resolution of 1 nm and 4 nm, respectively. 80 µl of the peptide solution was transferred into a 

square cell by a micropipette for each test. The lamp intensity was monitored for each 

sample, and each scattering-intensity was divided by the lamp intensity to account for 

potential lamp fluctuations. The experiments were started 30 min after sample preparation. 

All samples were tested in 1-hr intervals initially, and every three hours in the second day, 

and then once a day or once two days over a period of two weeks.  

 The light scattering intensity was expected to increase with the size of the particles 

present in solutions. Fung et al. confirmed the sensitivity of LS to particle size previously by 

latex particles.31 The solution with larger particles gives a larger LS intensity. The LS 

intensity was obtained with the PTI spectrofluorometer and monitored as a function of 

concentration. The DLS data (see below) also accompanied the LS data.  
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3.5 Dynamic light scattering (DLS) 

Particle Size Distribution 

The hydrodynamic diameter of the peptide assemblies and peptide-drug complexes were 

obtained on a Zetasizer Nano ZS (Malvern Instruments, Worcestershire, U.K.). The 

appropriate settings, viscosity, refractive index, and dispersant solvent, were set at for each 

measurement at 25 °C during the measurement. A small volume of 45 µL of the sample was 

transferred from the vial to a quartz microcell with a 3 mm light path (Hellma, Canada). The 

scattered light intensities of the samples were collected at the angle of 173°. This was known 

as backscatter detection. The relationship between the size of a particle and its scattered light 

intensity obtained with the multimodal algorithm CONTIN, which was provided in the 

software package Dispersion Technology Software 5.1 (Malvern Instruments, 

Worcestershire, U.K.). Three measurements were acquired to generate the intensity-based, 

volume-based and number-based size distribution plots. 

Zeta Potential 

The surface charge of AC8 assemblies and EPT-AC8 complexes in solution were determined 

by zeta potential measurements on a Zetasizer Nano ZS (Malvern Instruments, 

Worcestershire, UK) at 25°C. A prepared peptide solutions 20 µM AC8 solution was used 

for each measurement. The pH of the peptide solution was adjusted to the desired value using 

small amounts of 2 M NaOH or 2 M HCl. Samples were injected into a disposable cell 

(folded capillary DTS-1060 from Malvern, Worcestershire, UK) with a volume of ~1 ml and 

analyzed at constant voltage. The zeta potential distribution (in mV) was automatically 
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calculated from the electrophoretic mobility distribution based on the Smoluchowski 

formula. For each solution condition, the zeta potentials were repeated with two independent 

samples; at least three measurements were carried out for each sample. The zeta potentials 

reported herein correspond to the average of the peak values of the zeta potential 

distributions from the repeated measurements. The same method was applied for the 

measurement of the EPT-AC8 complexes and compared with the zeta potential of AC8 

samples to determine the effect of complexicity on assemblies. The pH of the complexes was 

measured before each measurement.  

The theory of the function of dynamic light scattering for measuring the size and zeta 

potential is explained in Appendix A.  

3.6 Peptide-Ellipticine Complex Preparation 

As discussed above, the peptide samples were prepared by dissolving peptide powder in pure 

water (18 MΩ; Millipore, Milli-Q system) at concentration of 0.01 to 0.5 mg/ml. The 

solutions were sonicated for 10 min in a tabletop ultrasonic cleaner (Branson, model 2510, 

USA).  

The stock solution of ellipticine was prepared in THF at a concentration of 0.4 mg/ml by 

dissolving ellipticine crystals in pure THF. To fix ellipticine’s concentration at 0.05 mg/ml, 

250 µl of ellipticine-THF was transferred into a vial and then the THF was blown away with 

filtered air (0.22 µm pore size filter) for about 5 min to make a thin film of ellipticine at the 

bottom of vial. Afterwards, 1 ml of fresh peptide solution was added into ellipticine film to 

have the final concentration of ellipticine as 0.05 mg/ml followed by mechanical stirring at 
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900 rpm for 24 hr. 1ml of pure water was added into ellipticine instead the peptide solutions 

into another vial to make a control sample. All the vials and solvents were sterilized and the 

samples were prepared in a biological safety cabinet to avoid possible contamination, for cell 

culture experiments. The complexes were photographed with digital camera (Sony 

Cybershot) and characterized with different techniques: dynamic light scattering and 

fluorescence spectroscopy, to obtain complex dimensions and molecular states of ellipticine 

in the peptide-ellipticine complex. Figure 3.3 depicts the preparation method of the complex.  

Figure 3.3 The schematic of preparation method of ellipticine-peptide complex 

 

3.7 Fluorescence Spectroscopy  

To study the molecular states of ellipticine in the complexes, fluorescence spectroscopy (type 

LS-100, Photon Technology International (PTI) London, ON, Canada) was applied. 60 µl of 

peptide-ellipticine solution was transferred to a microcell, 10 mm light path quartz glass 

(Hellma, Canada), and then tested on the spectrofluorometer. The excitation was set at 294 

nm and the emission was set to be collected from 320 to 650 nm. The excitation and emission 

slit width were set at 1 and 4 nm, respectively. The fluorescence intensities were monitored 
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for each sample and then normalized with an ellipticine standard sample (2 µM in ethanol, 

sealed and degassed), to account for potential lamp fluctuations. The fluorescence spectra of 

ellipticine-peptide complex solutions showed major peaks around 430 nm and 520 nm, which 

represent neutral and protonated state of ellipticine molecules, respectively.35  

3.8 Cell lines and culture 

Two cancer cell lines, non-small cell lung cancer cell A549 and breast cancer cell MCF-7, 

were kindly provided by Dr. Mingyao Liu at the University of Toronto for in-vitro cellular 

toxicity experiments on the peptide-drug complexes. These cell lines were cultured in 

DMEM containing 10% fatal bovina serum (FBS) and 1% penicillin/streptomycin, and kept 

in an incubator at 37°C and 5% CO2. When the cells grew to reach about 90% confluence, 

they were detached from the culture dish with trypsin-EDTA, centrifuged at 500 rpm for 5 

min, and then resuspended in fresh cell culture media at a concentration of 5×104 cells/mL. 

The cells were seeded in 96 and 6-well plate (Costar) dishes for viability and apoptosis 

assays. Figure 3.4 shows the MCF-7 and A-549 cell lines with the 100 µm scale bar.  

Figure 3.4 A-549 on left and MCF-7 on right. Scale bar: 100 µm. 
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3.9 Cytotoxicity assay (MTT) 

The MTT ((3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, a tetrazole) assay 

kit (TOX1 from Sigma-Aldrich, Oakville, ON, Canada) was applied for the cell viability 

after treatments with the peptide-drug complexes. 200 µL of the cell suspension was seeded 

on a flat bottom 96-well plate (costar) with a concentration of 5×103 and 1×104 cell/well for 

A549 and MCF-7 cell lines, respectively, followed by incubation for 24 hr at 37°C and 5% 

CO2. After 24 hr, the culture media was removed from the each well to be replaced by 50 µL 

of the treatment and 150 µL of fresh culture media. The plates were incubated for 6, 24, and 

48 hr prior the MTT assay. 5 mg of solid MTT was dissolved in 3 mL of PBS solution, 

followed by 10 times dilution with culture medium. All the treatment and medium were 

taken out from each well, and then 100 µL of the MTT solution was added into each well of 

the treated cells. The plates were incubated for 4 hr before addition of 100 µL solubilization 

solution (anhydrous isopropanol with 0.1 N HCl and 10% Triton X-100). After overnight 

incubation, the absorbance at 570 nm was collected for each well by a microplate reader 

(BMG FLUOstar OPTIMA, Germany) and subtracted by the absorbance of background 

signals at 690 nm. The absorption intensities were averaged from 4 replicates and normalized 

to the untreated cells (negative controls) to generate the cell viability. The theory behind of 

the MTT assay to determine cell viability is explained in Appendix B.   

3.10 Flow Cytometry  

The Annexin V-FITC Apoptosis Detection kit (APOAF, Sigma-Oakville, ON, Canada) was 

used for detection of apoptotic and necrotic cells using flow Cytometry. Both MCF-7 and 



 

  58 

A549 cell lines were seeded on 6-well plates (Costar) with a concentration of 1×105 cell/ml 

in a 2 ml medium (2×105 cell/well) and then incubated for 24 hr prior to treatment After 24 

hr, the culture medium was replaced with 500 µl of treatment (including complexes and 

control samples) and 1500 µl of a fresh culture medium. The cells were incubated with the 

treatment for 6, 24, and 48 hr prior to apoptosis analysis. After the treatment period, the 

medium was collected from the wells in a 15 ml centrifuge tube to collect dead cells floating 

in the medium. 1 ml Trypsin-EDTA was added to each well and the plates were incubated for 

5 min to collect adherent cells. After the incubation, 2 ml medium was added to each well to 

detach the cells and then transfer into the same centrifuge tube. The tube was centrifuged for 

5 min at 800 rpm. The supernatant was discarded from each tube and cell pellets were 

resuspended in ice-cold 100 µl of 1x binding buffer (100 mM HEPES/NaOH, pH 7.5, 1.4 M 

NaCl and 25 mM CaCl2). After suspension, cells were transferred to a 1.5 ml eppendorf tube, 

and 1 µl of Annexin V-FITC solution and 5 µl of PI were added to each tube. The tube was 

kept in ice and dark for 10 min and then 400 µl 1x binding buffer was added prior to Flow 

Cytometry analysis. Flow Cytometry (BD Biosciences, BD FACSVantage SE Cell Sorter, 

USA) detected the apoptosis and necrosis within 30 min. FL1 and FL3 channels were 

considered for Annexin V-FITC and PI, respectively. The cells labeled with Annexin V-

FITC represented the early apoptosis. Flow Cytometry data analysis has been done by 

software FlowJo 8.7. The theory of the function of Flow Cytometry in terms of apoptosis 

detection and cell sorting is described in Appendix C.  
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Chapter 4 

Results and Discussion 

4.1 Concentration effect on assembly of the peptide 

Concentration is a key parameter in controlling the assembly of self-assembling peptides. 

The concentration dependence of self-assembling peptides is expected to be similar to that of 

biosurfactants, which have both hydrophobic and hydrophilic parts. The concept of micellar 

systems can be applied for amphiphilic peptides; it is anticipated that the peptides would be 

disolved in a solution below a critical assembly concentration (CAC), and starts to assemble 

at or above CAC. This expectation is acceptable since the CAC has been reported for many 

peptides such as EAK16s.31, 46 Time is an important factor in the kinetics of assembly. 

Previously, Fung et al. have determined the CAC of a self-assembling peptide through 

different techniques, including surface tension measurement, light scattering and AFM 

imaging.31 In this study, we have characterized how the concentration affects the assembly of 

the all-complementary peptide AC8.  

4.1.1 Surface tension measurement 

The dynamic (or time dependent) surface tension is plotted over the time for a range of 

concentrations of AC8 from 0.001 to 0.05 mg/ml. Figure 4.1(A) shows the plot for the 

extremely low concentrations of 0.001 and 0.002 mg/ml, surface tension does not change 

significantly with time. At high concentrations of AC8 (> 0.01 mg/ml) the surface tension 

decreases exponentially with time. It drops fast at the first about 200 sec, and slowly reaches 
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the equilibrium. From the concentration of 0.003 to 0.01 mg/ml the dynamic surface tension 

profile shows an induction time at the beginning.  

The equilibrium surface tension was determined by two methods: “end point” or “ last 

measurement” meethod and “extrapolation” method. The first method calculated the 

equilibrium surface tension by averaging a certain number of points at the end of each run 

(10 points were considered in this study).52 For the second method, the surface tension is 

plotted  versus 1/t0.5  in figure 4.1(B). This plot is based on the assumption of a diffusion-

controlled mechanis.53 The equilibrium surface tension is estimated as the intercept of a 

straight line, which is fitted to the portion of plot (1/t0.5 <0.05), with the y-axis The 

equilibrium surface tensions obtained by the extrapolation method were plotted versus of 

concentration of AC8 in figure 4.1(C). The plot shows that the equilibrium surface tension of 

very low concentrations of AC8 (0.001-0.003 mg/ml) is close to water surface tension, while 

the concentration increases, the surface tension drops significantly to the minimum at 

49.0±1.4 mJ/m2. The small dip curve in the graph is due the small impurity of the peptide. It 

has been reported depending on the surface activity, the impurities may cause either 

minimum or higher break point in the surface tension versus peptide concentration.31 The 

similar trend is obtained from the “end point” method which is shown in the same figure 

4.1(C). The critical assembly concentration could be determined either at the concentration 

before the small dip or the intersection of two linear lines fitted on the data in two distinct 

part of the graph. The results from both methods presented in figure 4.1(C) and (D) 

demonstrated the critical assembly concentration of AC8 as around ~ 0.01-0.02 mg/ml.  
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Induction time in dynamic surface tension measurement is one of the characteristics of 

the surface-active molecules. The surface tension drops after this time as a result of a 

sufficient number of molecules adsorbed at the surface to affect the surface tension. This 

induction time is also related to size and amphiphilicity of the particles.31 The induction time 

was plotted with the concentration of AC8 in figure 4.1(E). It shows AC8, a surface-active 

peptide, has a induction time for the very low concentrations. At the concentration of lower 

than 0.003 mg/ml, the induction time was too large to be recorded during experimental 

period. However, as the concentration decreased the induction time dropped significantly. 

Almost no induction time was observed for AC8 concentrations above 0.01 mg/ml, which 

may consider as critical assembly concentration.  

Figure 4.1. (A) Dynamic surface tension of AC8 solutions. The concentrations are ranging from 0.001 
to 0.05 mg/ml. (B) Surface tension versus 1/t0.5 for different concentrations of AC8 (0.001-0.05 
mg/ml) for 1/t0.5 < 0.05. (C) Relationship between equilibrium surface tension and concentration of 
AC8 peptide in water solution. When the concentration of peptide increases the surface tension drops 
dramatically to the minimum point, then it increases slightly to reach the plateau based on the results 
from “extrapolation” method () and “end point” method () The critical assembly concentration is 
found around 0.01- 0.015 mg/ml. (D) Induction time versus concentration of AC8 peptide. The 
induction time is observed as a period before the surface tension starts to drop in dynamic surface 
tension measurements. The induction time drops significantly from after concentration of 0.005 
mg/ml and after the concentration of 0.01 mg/ml induction time is close to zero. Followed by next 
pages.  
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4.1.2 Light Scattering 

Light scattering intensity from the solution is proportional to the dimension of the particles 

present in the solution. The light scattering intensity from the peptide solutions is plotted in 

figure 4.2. Figure 4.2(A) shows the normalized light intensity as a function of time. The 

experiments have been performed over a week for a range of concentrations from 0.001 to 

0.05 mg/ml. This plot shows the profiles in two groups depending on the concentration. The 

concentration of around 0.01 mg/ml would be a breakpoint between high and low 

concentrations, so it would be presumed as critical assembly concentration (CAC). The LS 

intensity of the peptide with the concentration below CAC seems to remain unchanged over 

time. On the other hand, a sharp increase occurs for the concentration above CAC at the first 

48 hr before they reach to plateau.  

In addition, figure 4.2 (B) shows the equilibrium LS intensity as a function of 

concentration. These data indicates that the equilibrium LS intensity is has no significant 

difference for the low concentrations, say below 0.01. However, the concentrations above 

that the equilibrium LS increases by increasing the concentration.  This experiment 

demonstrates AC8 assemblies in bulk solutions with time.   

Figure 4.2. (A) Light scattering of AC8 peptide solutions with time in different concentrations from 
0.001 to 0.05 mg/ml. The data are separated into two groups depending on the concentration of 
peptide. The light intensity of high concentration group (0.01-0.05 mg/ml) increases sharply at the 
first 10 hr and then approaches to plateau after 50 hr. However, in the low concentration group 
(0.001-0.008 mg/ml), the LS intensity does not change significantly over the time. (B) The intensity 
of light scattering plotted versus concentration of AC8. The normalized light intensity of low 
concentration of AC8 are almost zero, but the intensity of light scattering of AC8 with the 
concentrations above 0.01 increases by increasing the concentration. Followed by next page. 
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4.1.3 Particle Size Distribution  

Dynamic light scattering method is the professional technique to determine hydrodynamic 

diameter of particles in solution. The hydrodynamic size of AC8 peptide was found relatively 

larger for low concentrations below CAC, while above CAC the size decreased significantly 

in sense of assembly of the particles. The range of concentrations of AC8 was prepared for 

this experiment at 0.003 to 0.5 mg/ml. The Figure 4.3 shows the hydrodynamic size of 

particles versus concentration of AC8 after 24 hr and 48 hr sample preparation.  

Figure 4.3. Hydrodynamic diameter (nm) for varying concentrations of AC8 peptide (numeric-based 
size distribution)  

 

4.1.4 Zeta Potential  

Zeta potential measurement was performed to determine the surface charge of AC8 

assemblies in solution. The net surface charge of particles helps to investigate the tendency 
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of the particle to aggregate and absorb onto surface. The magnitude of the zeta potential 

indicates the potential stability of the colloidal system. Theoretically, if all the particles in 

suspension have a large negative or positive zeta potential then they will tend to repel each 

other and to tendency to flocculate (i.e., no aggregation). However, if they have lower zeta 

potential, there is no force to prevent them from flocculating. The most important factor that 

affects zeta potential is pH. Basically the zeta potential value on its own without a quoted pH 

is a meaningless number.  Zeta potential alters in solution by adding alkali or acid. Adding 

alkali to solution the particles will tend to be more negative charge and then by adding acid 

in suspension the particles change to neutral from negative and any further addition of acid 

can cause a build up of positive charge. Therefore, a zeta potential versus pH curve will be 

positive at low pH and negative at high pH.  The point where the plot passes the zero zeta 

potential is called the isoelectric point. It shows normally where the colloidal system is less 

stable.54-55 

 Figure 4.4 shows the zeta potential versus pH of the 0.02 mg/ml AC8 solution. The 

isoelectric point derived from this curve is about 7.04. It is comparable from the calculated 

value for theoretical values as 7.45. The theoretical value is determined by regressed theory. 

This method is based on the pKa and pKb for major acidic and basic groups. In the case of 

acid-rich proteins this equation will be applied:  

€ 

pI = pKa − logR for R ≥1                                                         (1) 

while in the symmetrical case of base-rich proteins:  

€ 

pI = pKb − logR for R ≤1                                                (2) 
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in the case of amino acid sequence with an almost balance acid/base composition the pI 

will be the average of (1) and (2): 

€ 

pI =
pKa + pKb( )

2                                                                       (3) 

R is the molar ratio of acidic group over basic group. In AC8 case, because of glutamic 

acid and lysine R is equal to 1. Regressed acidic and basic dissociation constants were 

determined to be pKa=4.9 and pKb=10.0. These calculation shows pI as 7.45 for AC8 wich is 

comparable with experimental value as 7.04. Note that the isoelectric and pH was measured 

here for the mixture of monomers and aggregates not the monomers alone.57 

Figure 4.4. Zeta potential of AC8 as a function of pH. The standard deviation of zeta potential are less 
than 3 mV.     
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4.2  Peptide-drug complex formulation 

Ellipticine was selected as a model of anticancer agent in this study because of the following 

reasons. First of all, ellipticine is an extremely hydrophobic agent, with a water solubility of 

6.2 ×10-7 M.48 Thus, amphiphilic molecules are required to stabilize them in aqueous 

solution. Self-assembling peptides would be appropriate candidates to stabilize the 

hydrophobic agent, in water or culture media. Second, ellipticine is fluorescent compound 

that emits the light in different wavelength at certain excitation wavelength. Therefore, its 

fluorescence properties make it conventional to be monitored either in physicochemical 

characterization or in-vitro experiments. Third, ellipticine and its derivatives have shown 

anticancer activity as well.34-35 The anticancer activity of ellipticine is due to its polycyclic 

structure, which intercalates between DNA base pairs and induces G2-M-phase cell cycle 

arrest. Other molecules studies suggested that ellipticine acts via its binding to nucleic acids 

and inhibition of topoisomerase II (topo II) and topo II-mediated DNA damage.49 Figure 2.1 

depicts the molecular structure of ellipticine with three different possible formations. An 

appropriate peptide-drug complex in terms of particle size, solubility and activity is the first 

step toward developing a delivery system for ellipticine and further for other hydrophobic 

anticancer agents.    

Therefore, complexation of anticancer agent, ellipticine, with self-assembling peptide 

has been studied in this work. Since, peptide can self-assemble over the time, there is a 

competition between peptide-peptide association and peptide-ellipticine complexation. To 

better understand of the complexation of self-assembling peptide and ellipticine, several 
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physicochemical characterization experiments, such as fluorescence spectroscopy and 

dynamic light scattering, were performed in this study.  

As discussed above, fluorescence property of ellipticine in aqueous solution helps 

characterization of complex in different environment. Basically, fluorescence spectra of 

ellipticine in colloidal suspension show different peaks depend on the dispersants and 

concentrations. The fluorescence of the ellipticine suspension in neutral form is around 430 

nm and the protonated form of ellipticine exhibits the major peak at 520 nm. The crystalline 

form of ellipticine in some environment shows a maximum peak at ~470 nm, which is due to 

the colloidal suspension systems.35 Fluorescence spectroscopy with PTI has been applied in 

this study to determine ellipticine form in all-complementary peptide AC8.  

Dynamic light scattering have also applied for particle characterization of peptide-drug 

nanoparticles.  

4.2.1 Fluorescence Spectroscopy 

4.2.1.1 Sequence effect on peptide-ellipticine complexation  

In this study, three different peptides including AC8, EAK16-II and EFK16-II were used for 

ellipticine stabilization to determine the sequence effect on ellipticine formation. Since, 

ellipticine is fluorescent, it shows distinct maximum peak in fluorescent spectra depending its 

interactions. The complexes with ellipticine and peptides were prepared at fixed 

concentrations of 0.1 mg/ml and 0.5 mg/ml for ellipticine and peptides, respectively. The 

previous study in by S. Fung have shown the optimum ratio for peptide-to-ellipticine as 

5:1.24,28 Figure 4.5(A) and (B) shows the fluorescent spectra for AC8, EAK16-II and EFK16-
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II and the control sample of ellipticine in pure water since peptides are prepared in pure 

water. The complexes with AC8 and EFK16-II exhibits a peak at ~430 nm which indicates 

the presence of neutral form of ellipticine. Besides the peak at 430 nm, there is evidence of a 

peak at ~ 470-490 nm, indicating the presence of small portion of ellipticine in crystalline 

form for EPT-AC8 and a peak at 520 nm for EPT-EFK16-II. On the other hand, the spectra 

of ellipticine in EPT-EAK16-II shows the dominant peak at ~ 520 nm, which is the evidence 

of protonated form of ellipticine. The control sample of ellipticine in water without a peptide 

had a similar fluorescence spectrum as EPT-EAK16-II with the peak around 520 nm, but in 

with much less intensity. The reason of the similarity of the spectra of EPT-H2O and EPT-

EAK16-II but not the other two complexes is due to the higher hydrophilicity of the EAK16-

II compare to AC8 and EFK16-II. Ellipticine forms more in protonated state in more 

hydrophilic environment, while in more hydrophobic environment stays neutral. The 

ellipticine and peptide interaction is directly related to molecular structure of the peptide 

solution. Figure 4.5(C) shows the photograph of the three complexes after 24 hr stirring on 

magnetic stir plate. The appearance of the complexes indicates the more protonated complex 

is more yellowish and the more neutral complex is more colorless.  

Figure 4.5. Fluorescence spectra of the peptide-ellipticine complexes. (A)The blue and red arrows 
indicate the fluorescence from neutral (~ 430 nm) and protonated ( ~520 nm) ellipticine, respectively. 
The green arrows indicates the low fluorescence intensities from 450-470 nm representing the 
crystalline form of ellipticine. () EAK16-II, () EFK16-II , (♦) AC8 and () Water in corporation 
with Ellipticine. (B) The fluorescence spectra of EPT in water. (C) The photograph of the three 
complexes.  
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4.2.1.2 Concentration Effect on peptide-ellipticine complexation 

The second part of this study is peptide concentration effect on ellipticine stabilization. In 

this study we focused on all-complementary AC8 peptide to stabilize ellipticine in neutral 

form.  Ellipticine was stabilized in different concentrations of all-complementary peptide 

AC8 in a range of 0.01-0.3 mg/ml to find out the optimized formulation. The Ellipticine 

concentration was fixed at 0.05 mg/ml in solution. The fluorescence spectrum of peptide-

EPT complexes were monitored at different concentrations of AC8 with the fixed 

concentration of ellipticine at 0.05 mg/ml over 120 hr. Figure 4.6 shows the peptide 

concentration effect on the formation of peptide-ellipticine complexes through fluorescence 

spectra. Ellipticine formed in two distinct states, neutral and crystalline form, even at low 

AC8 concentrations. The results show that the dominant contemporary state of ellipticine in 

AC8 solution is neutral form. Such a neutral ellipticine must be stabilized in a hydrophobic 
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environment provided by peptide assemblies. This is anticipated because of the four-

phenylalanine residues in AC8 structure provide more hydrophobic environment than the 

other peptides as discussed above about hydrophilicity of the self-assembling peptides.  

Figure 4.6. (A) Fluorescence spectra of the complexes of ellipticine at fixed concentration of 0.05 
mg/ml and various concentration of AC8 peptide from 0.01 to 0.3 mg/ml.  

 

Since the peptide assemblies happened at concentrations above the CAC, the AC8 

concentrations were selected from CAC and above CAC to encapsulate the ellipticine. The 

peptide assemblies are assembled into b-sheet structures at the CAC and above 

concentrations. Therefore, we assume that the complexation with any hydrophobic 

compounds, such as ellipticine, is happened when the peptide is assembled to encapsulate 

EPT. From the low concentration of AC8 as 0.01 mg/ml to 0.3 mg/ml the dominant stable 

neutral form of ellipticine was observed. Figure 4.7 shows the stability of neutral form of 
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ellipticine over the time for the all peptide-ellipticine complexes. In this figure, the 

normalized intensity of each complex at the wavelength of ~ 430 nm (average of 21 data 

points around 430 nm, (420-440 nm)) are shown over the time. As discussed above the lower 

AC8 concentrations with ellipticine shown the relatively lower intensities but more stable 

neutral ellipticine over the time. However, the complexes with the higher concentrations have 

a significant increase in fluorescent intensity compare to low concentrations. This is an 

evidence of formation larger particles in the complex and relatively low stability over the 

time. This is also confirmed by figure 4.6, which shows the increasing the intensity over the 

time and reaching to plateau after about three days. At the same time, the particle size and the 

zeta potential of the complexes was determined with dynamic light scattering, which agreed 

the difference between low and high concentrations of AC8 to make the stable complex. The 

results are shown in next section. Figure 4.8 is a photograph of the peptide-ellipticine 

complexes at different peptide concentrations. It shows the formation of colloidal 

suspensions of ellipticine-peptide solutions after ~24 hr stirring. The control sample, without 

AC8, remained clear compared to the complex solutions. Here, the ellipticine concentration 

is 0.1 mg/ml and the AC8 concentration varies from 0.01 to 0.3 mg/ml. From the low 

concentration to high concentration of AC8 in samples, the appearance of the sample varies 

from clear to turbid. The turbidity of the complexes of high concentrations, more than 0.1 

mg/ml, is obvious and the stability is relatively low comparing the others. The stability of the 

complexes was determined by leaving the samples for several hours without stirring. The 

high peptide concentrations complexes have shown phase separation faster than the low 

concentration ones.   
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Figure 4.7. The stability of the neutral state of ellipticine in different concentration of AC8 peptide 
over the time.  
 

 

 

Figure 4.8. The photographs of Ellipticine- AC8 complexes after 24 hr stirring. Ellipticine 
concentration was fixed at 0.05 mg/ml ad the peptide concentration varies from 0.01 to 0.3 mg/ml 
from left to right. The turbidity of the samples increases by increasing the concentration of AC8 
peptide.  
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4.2.2 Dynamic Light Scattering (DLS) 

4.2.2.1 Particle Size Distribution 

Dynamic light scattering was applied to determine the size of the particles in complexes. The 

hydrodynamic size of the peptide-ellipticine complexes was found to increase with 

increasing AC8 concentration from DLS measurement after 24 hr stirring. However, by keep 

stirring the samples for another 24 hr the size of the particles in the complexes increased for 

all the complexes but the complex with 0.1 mg/ml AC8 concentration. This particular 

concentration of was considered as critical assembly concentration of peptide-ellipticine 

complex. It was also shown by fluorescence spectroscopy in previous section, after this 

concentration the behavior of complex changed in terms of fluorescence.   

Figure 4.9. The number-based size distribution (%) (hydrodynamic diameter in nm) for EPT-
AC8(0.05:0.1) mg/ml . (A) 24 hr, (B) 48 hr 
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Figure 4.10 shows the comparison results from the size of all other complexes with 

different peptide concentration but the same ellipticine concentration. The results indicate 

that the complexes with lower concentration of AC8 have lower particle size than the high 

concentration ones. and over the time the size got larger because of the complexation and 

assemblies of peptide and ellipticine. The exception here in these demonstrations is the 

complex with AC8 at 0.1 mg/ml. The longer stirring time make smaller particles for this 

complex. We assume the critical assembly concentration for the AC8-ellipticine complexes 

around the ratio of (2:1) for peptide-to-ellipticine based on the DLS and fluorescence results.  

Figure 4.10. Hydrodynamic diameter in nm for varying concentration of AC8 peptide and fixed 
ellipticine concentration. Standard deviation is about 5%.  
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4.2.2.2 Zeta Potential 

Zeta potential was measured for the above complexes to determine the stability of the 

samples in terms of net charges and mobility. As discussed above, the solutions with the zeta 

potential above ±30 are considered as quite stable, but below this limits particles tend to 

fluctuate a lot and no aggregation will occur. For these complexes the zeta potential 

measurements have shown the relatively stable samples over the time by stirring. The 

stability is more obvious for the complexes with medium concentration of peptide. The pH of 

the complexes was measured over the time. Complexes have shown relatively stable pH ~7 

after 2 days preparation. Table 4.1 indicates the pH values for peptide-ellipticine complexes.  

 
 
Figure 4.11. Zeta potential of AC8-Ellipticine complexes for varying concentration of AC8 and fixed 
concentration of ellipticine 
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Table 4.1 pH Values of the complexes for the 24 and 48 hr. [AC8] in mg/ml, [EPT]:0.05 mg/ml 

 

[AC8] 
mg/ml 27 hrs - pH 48 hrs - pH 

0 7.17 7.31 
0.01 7.3 7.39 
0.02 7.3 7.32 
0.1 7.29 7.27 
0.2 7.04 7.06 
0.3 7.09 7.03 
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4.3 Cellular toxicity of the peptide-drug complexes: MTT Assay 

As discussed above, AC8 can stabilize ellipticine in neutral form in aqueous solution, 

depending on peptide and ellipticine concentrations. AC8 can stabilize neutral form of 

ellipticine in aqueous solution with two ratios of peptide-to-ellipticine: 2:1 and 6:1 

(peptide:ellipticine (by mass)) As it showed in previous section, when the ratio of peptide-to-

ellipticine is higher than 3:1 (by mass), the stable neutral state of ellipticine forms after about 

two days with a relatively large particle size. However, when the ratio of peptide-to-

ellipticine is lower than 3:1, the stabilized ellipticine is not predominantly in neutral form but 

crystalline in complex. This indicates that the ratio of peptide-to-ellipticine is important in 

determining the molecular state of ellipticine in the complexes.  

Two human cancer cell lines, MCF-7 and A549, were used in this study to investigate 

the cytotoxicity of neutral form of ellipticine against cancer cells over time. The results of 

MTT assay for the cytotoxicty of the serial dilutions of 2:1 and 6:1 ratio of peptide-to-

ellipticine for both MCF-7 and A549 cell lines after 48 hr treatment are shown in figure 4.12. 

The toxicity of the complex on the cell lines was increasing over the time even for the higher 

dilutions. The complexes are still effective in killing both cancer cells up to 16 times dilution 

complex compare to the ellipticine control group. Figure 4.13 depicts the comparison 

between the cytotoxicity results of serial dilutions of the two complexes with fixed 

concentration of ellipticine and different concentration of peptide, for both MCF-7 and A-

549 cell lines. The dashed lines represented complex with low concentration of peptide and 

the filled lined shows the complex with high concentration of peptide in both cell lines. 
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Results indicated that the complex with lower ratio of peptide-to-ellipticine, 2:1, in more 

effective on killing cells than the higher ratio 6:1. This is because of the complex formation. 

The higher concentration of peptide leads to larger aggregates, which prevent cell 

penetration. However, the smaller particles in complex, as it showed in the complex with low 

concentration of peptide, have more efficacies on killing cell over the time. Figure 4.14 

shows the comparison between the general results of two complexes on two cell lines. The 

neutral ellipticine in AC8-EPT complex seems to be slightly more effective at killing MCF-7 

cells than A549 cells, around 1-2% difference in viability. This may be due to the fact that 

MCF-7 cells sensitivity and membrane integrity of A549 cells. Fung et al. have showed the 

same effects for protonated ellipticine. In the study of protonated ellipticine incorporated 

with EAK16-II, MCF-7 cells were more sensitive to protonated ellipticine, compared to 

A549 cells. On the other hand, the complex with lower concentration of peptide shows higher 

efficacy on both cell lines compare to the high ratio-complex.    

Therefore, these results lead to select the appropriate formulation of complexes to kill 

different cancer cells. Peptide sequence and the ratio of peptide-to-ellipticine are the key 

factors for this drug delivery system for combating particular cancer cell. Since the ellipticine 

formed in either neutral or protonated state in various peptide solutions, and each molecular 

state of ellipticine could be effective on specific cancer cell lines.   

MTT assay has been done for control samples as well such as peptide control and 

ellipticine control. The results from the peptide control samples indicate the non-significant 

toxicity on both cell lines as well as ellipticine control sample. This present that the toxicity 

is from the peptide-ellipticine complex, which is desirable for this study. (Data not shown) 
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Figure 4.12. Viability of A549 cells treated with the complex AC8-EPT (A) (0.3:0.05)  (B) (0.1:0.05) 
mg/ml over the time. Viability of A549 cells treated with the complex AC8-EPT (C) (0.3:0.05) (D) 
(0.1:0.05) mg/ml.  
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Figure 4.13. The comparison of the cell viability over the time between two complexes. (- - -) is (L) 
low concentration of peptide (AC8:0.1, EPT:0.05). (—) is (H) the complex with high concentration of 
peptide. (A) A549 cell lines. (B) MCF-7 cell lines.  
A 

 

B 
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Figure 4.14.  Comparison between the complexes on both MCF-7 and A549 cell lines 
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4.4 Apoptosis induced by Ellipticine-AC8 complexes 

Two alternative modes of cell death can be distinguished, programmed cell death and 

accidental cell death, which are called as apoptosis and necrosis, respectively. Apoptosis is 

referred to as “programmed cell death”, which is an active and physiological mode of cell 

death. Cells die in a response to a variety of stimuli, but in the case of apoptosis they do so in 

a controlled and regulated fashion. This makes apoptosis distinct from necrosis in which 

uncontrolled cell death leads to lysis of cells, inflammatory responses and to serious health 

problem. Under normal circumstances damaged cell undergo apoptosis, but in the case of 

cancer, cell mutations may have occurred to prevent cells from apoptosis. Due to the lesser 

apoptosis in cancer cells, compared to normal cells, most of the tumors or cancer cells are 

difficult to eliminate, so cancer treatments rely on damaging the cells by radiation and 

chemicals and mutations in apoptotic pathway. Apoptotic cells show distinctive morphology 

during the apoptosis process. Condensation of nuclear chromatin because of cell dehydration 

is the main characterization of apoptosis at early stages. DNA cleavage by activation of 

endonucleose is another feature of apoptosis, which can be determined by agarose gel 

electrophoresis. Another characteristic feature of apoptosis are the preservation of the 

structural integrity and the plasma membrane function, at least at the initial phase of 

apoptosis. However, the loss of asymmetry of the phospholipids on the outer leaflet occurred 

in apoptotic cells in early stages. Recently it was shown that the anticoagulant Annexin V 

binds to negatively charged phospholipids like phosphotidylserine. Apoptotic cells, which 

still have intact membranes, become Annexin V positive after nuclear condensation had 
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started. In the case of labeling of Annexin V for Flow Cytometry analyses, vital cells are 

Annexin V-negative, and apoptotic cells are Annexin V-positive.58 

Light scattering of the cells by flow Cytometry technique is another method to 

discriminate different types of cell death such as apoptosis and necrosis. In most cases, 

apoptosis can be distinguished from necrosis on the basis of the scattering parameters in 

Flow Cytometry measurements.59-60 The forward-angle light scattering (FSC) is related to 

cell diameters, which means the magnitude of forward scattering is proportional to the cell 

size. Whereas the side-angle light scattering reflects the inner conformation of cellular 

structures and caused by granularity and complexity of the cell. During the initial stages of 

apoptosis the cell shrinks, but the membrane of the cell remains intact. However, during 

necrosis the cell swells as a result of failure of membrane integrity, so FSC increases. As a 

consequence of the structural changes of the cell, during early phases of apoptosis FSC 

decreases, while SSC increases or remains unchanged. After several hours, both FSC and 

SSC decrease. During necrosis, cells swell and FSC increases immediately, while SSC 

decreases because of lower complexity in necrosis nucleus. Accordingly, the appearance of 

apoptotic bodies is represented by separate particles with low forward light scatter. This 

method can be done easily by Flow Cytometry. The advantage of this technique is the 

combination of measurements simultaneously with analysis of cell markers.58-61  

To investigate the effect of ellipticine on the apoptosis of cancer cells, MCF-7 and A-

549 cells were exposed to the complexes of ellipticine-peptide at the ratio of 3:1 (by mass) 

and its dilutions. Flow Cytometry analyses were used to discriminate apoptosis and necrosis 

through cell light scattering and fluorescence labeling. For the light scattering detections, 
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cells were seated in 24-well plates and treated for three different treatment periods, 6 hr, 24 

hr and 48 hr. The signals were collected from the cells treated with the EPT-AC8 complexes 

and control samples. Figure 4.15 shows the scattering plot of the MCF-7 cells treated with 

the complexes. SSC is plotted versus FSC to observe the changes in light scattering of the 

cells over the time. Forward scattering of the cells decreases from short treatment time to 

longer treatment time. The cells treated with the complexes show shrinkage over the time, 

which is an indication of apoptosis. Whereas the cells treated with the peptide only control 

samples do not show any change in scattering plots, which means cell size remained 

unchanged. For the cells treated with the ellipticine only control sample, swelling of the cells 

occurred over the time, which is an indication of necrosis.  The same results were obtained 

for the complexes of ellipticine with other peptides, such as EAK16-II and EFK16-II. From 

the results of light scattering of the cells, the ellipticine-peptide complexes induced apoptosis 

after 48 hr treatment on the cancer cells with no indication of apoptosis induction from 

control samples. 
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Figure 4.15. Cell light scatter of MCF-7 cell lines treated with three different complexes over the time 
and the ellipticine control. SSC versus FSC for three treatment times, red dots for untreated cells, blue 
for 6 hr treatment time, green for 24 hr treatment time, and orange represents 48 hr treatment period.  
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 The alternative technique to observe apoptosis would be fluorescence labeling of the 

cells using Annexin V, which indicates apoptotic cells. MCF-7 and A-549 cell lines were 

exposed to ellipticine-AC8 peptide complex and control samples for 48 hr. Cells were 

harvested and stained with Annexin V for Flow Cytometry analyses. Based on the flow 

Cytometry analyses of Annexin V staining, the degree of programmed cell death resulting 
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from EPT-AC8 treatment at ~ 45% was marginal compared with EPED3, ellipticine 

derivative, at 45.5% reported by Tian et al, 2008.34 They were studied on an ellipticine 

derivative as an apoptosis inducer.34 They have shown 45.5% apoptosis on Myeloma cells 

and compared with positive control apoptosis inducer, which was bortezomib at 51.4%. Our 

results from ellipticine with the interaction of peptide are considerably comparable with the 

previous results. Figure 4.16 represents the flow Cytometry results for both cell lines, MCF-7 

and A-549. Untreated cells showed a low percentage of the Annexin V- positive at ~ 4%. The 

treated cells with AC8 as the peptide control showed ~ 6-10% of Annexin V-positive with is 

not significant compare to ~ 45% Annexin V-positive cells treated with ellipticine-peptide 

complexes for both cell lines. These data are compatible with cytotoxicity results from MTT 

assay. All the apoptosis and cytotoxity consequences suggest that the ellipticine-AC8 

complex is toxic in sense of inducing apoptosis on the both cancer cell lines.  
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Figure 4.16. Flow Cytometric analyses of cell viability with ellipticine-AC8 treatment for (A) MCF-
7, and (B) A-549 cell lines. Annexin V used as a apoptosis marker. The viable cells are located in left 
handed gates and Annexin V-positive cells are located in right handed gates, which show the 
apoptosis.  
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Chapter 5 

Conclusions and Recommendations 

5.1 Conclusions 

This thesis introduced the novel all-complementary self-assembling peptide as a promising 

potential carrier for hydrophobic anticancer drug delivery. We explored the capability of this 

peptide to well self-assemble and stabilize anticancer drug ellipticine. The thesis includes the 

following parts: (i) Studying on concentration effect of peptide on self-assembling, (ii) 

Characterizing the complex formation of ellipticine with a self-assembling peptide. (iii) 

Investigating the therapeutic effect of the complexes in-vitro on two cancer cells, (iv) 

Detecting the apoptosis induction by the complexes in-vitro on cancer cells. The original 

contribution and conclusions for each part are presented in the following.  

The all-complementary peptide AC8 was found to be able to self-assemble in aqueous 

solution depending on the concentration. Concentration dependent assembly of the peptide 

was studied by surface tension and light scattering techniques. The results of these assays 

indicated that a critical assembling concentration (CAC) of AC8 is around 10-15 µM (0.01-

0.015 mg/ml).  

The ionic complementary residue pairs (EK)s enhance the solubility of the peptide in 

water. The hydrogen bonding amino acid pairs (QN)s promote the peptide assembly. The 

hydrophobic residue pairs (FF)s also increase the peptide-peptide association and create a 

hydrophobic interior for encapsulation of hydrophobic compounds such as ellipticine. 
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Ellipticine is a potent anticancer agent, which intercalates between DNA pairs and induces 

G2/M phase cell cycle arrest as well as inhibition of topoisomerase II. The novel designed 

all-complementary peptide could encapsulate ellipticine and stabilize it aqueous solution in 

neutral molecular state. Concentrations of the peptide and ellipticine are an important factor 

to stabilize the neutral state of ellipticine. We have found in this study that AC8 can 

encapsulate 0.05 mg/ml ellipticine in neutral state at above its critical aggregation 

concentration around 0.1 mg/ml with the particle size of the complex as 100 nm, which is 

optimal for cell penetration.  

The cellular toxicity results indicated that the complexes (≥ 2:1 ratio) with neutral 

ellipticine were effective at killing both MCF-7 and A-549 cell lines after 48 hr treatment, as 

well as their dilutions until 16 time have shown reasonable toxicity. The toxicity of the 

complex of peptide-to-ellipticine at 2:1 ratio showed better result than the 6:1 ratio. It could 

be because of the particle size of the complex and their efficacy on both cancer cell lines. The 

complex with ellipticine at 0.05 mg/ml and AC8 at 0.1 mg/ml has shown higher toxicity and 

lower particle size and more neutral form of ellipticine.  

In addition, the results from apoptotic effect of ellipticine on cancer cells have shown 

induction of apoptosis by ellipticine-peptide complex by two methods, cell light-scatter and 

Annexin V labeling. This study demonstrates the capability of the all-complementary peptide 

AC8 as a carrier for hydrophobic anticancer drug delivery.  
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5.2 Recommendations and Future Work 

Recommended future work to develop all-complementary peptide-based nanocarriers for 

hydrophobic anticancer drug delivery can be divided into four groups: (i) optimize peptide-

drug formulation, (ii) enhance the efficacy of delivery system, (iii) immunogencity test for 

the complex, (iv)evaluate the therapeutic effect of the complex in vivo.    

Optimize the peptide-drug formulation 

This part requires three important factors; appropriate peptide, drug and formulation.  

(1) A suitable peptide is required to be designed for drug encapsulation and formation of 

high stability, high loading capacity and controllable release. The peptide library was 

constructed by our group with considering all aspects of assembly and complexation 

as shown in table 5.1. It is the goal of our research group to screen the peptide library 

and identify the optimal candidates for drug delivery system.  

(2) An appropriate drug is another key factor to develop the drug delivery system and 

increase the efficiency. Numbers of anticancer drugs are found to be applicable for 

cancer therapy, but most of them have the problem with delivery and their side 

effects. The objective here, after this study, is identifying some suitable drug 

candidates and formulate with selected peptide as carrier. The list of drug candidates 

is tabulated in table 5.2.  

(3) Current study has shown the method to formulate the optimal complex with the 

appropriate size and efficiency. The new candidates of drug and peptide should 

formulate the stable complex. Hopefully, the new method and formulations will be 
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developed to quantify the amount of peptides as well as the drugs in the complexes, 

to determine the loading capacity. Ultracentrifuge and filtration are suggested for this 

work.  

Enhance the efficiency of delivery system 

(1) Targeted delivery is the advance achievement in cancer chemotherapy. Peptides 

can be incorporated with targeted motifs as well as encapsulate anticancer agent to 

construct an ideal drug delivery system. This project requires the following steps: 

(a) finding appropriate peptide sequence that can be incorporate with targeting 

motifs, (b) finding desirable targeting peptide from previous published research, 

(c) formulating the targeting motifs and peptide with the anticancer agent to 

develop nano-delivery system. (d) test the principle of the delivery system in vitro 

and in vivo.  

(2) Detailed cell biology studies on the mechanism of the fate of delivery system are 

required. Cell penetration, EPR effect, controlled release, biodistribution and 

pharmacokinetic are the biological studies that recommended for future work to 

characterize the cellular uptake of mechanism of our drug delivery system.  

Immunogenicity test  

Drug delivery systems are circulating in bloodstream. Foreign materials activate the 

complement system in human blood. Thus, the peptide-drug complex must avoid significant 

complement activation. The complement activation properties of the complexes should be 

examined with current methods such as Total Hemolytic Complement (CH50).  
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Evaluate the therapeutic effect of the complex in vivo 

As soon as promising drug-peptide complex is recognized, it should be examined in vivo 

experiments on cancer tumor animal models. For this purpose, the promising drug 

formulation is required, because in vivo studies cost incomparably with in vitro studies. 

Reliable formulation should have good stability and biocompatibility.  Different cancer 

models are recognized to apply for our drug delivery system.  
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Table 5.1 Peptide library for hydrophobic anticancer drug delivery24 

 

Design 
Category 

#of Amino 

Acids 

Sequence (n-c) Charg
es at  

pH 7 

Charges 
at  

pH 4.5 

 16 n-GEGGKGKGEGEGKGK-c 4+, 4- 4+, 4- 

 16 n-IEIEIKIKIEIEIKIK-c 4+, 4- 4+, 4- 

 8 n-EEKKEEKK-c 4+, 4- 4+, 4- 

 16 n-EEIIIIEERRIIIIRR-c 4+, 4- 4+, 4- 

 16 n-AAEEAAEEAAKKAAKK-c 4+, 4- 4+, 4- 

 16 n- AAAAEEEEAAAAKKKK-c 4+, 4- 4+, 4- 

 8 n- LLEELLRR-c  2+,2- 2+,2- 

 8 n- FFEEFFRR-c 2+,2- 2+,2- 

 8 n- IIEEIIRR-c 2+,2- 2+,2- 

 8 n- EEIIIIRR-c 2+,2- 2+,2- 

 2 FF   

 3 n- FFR-c 1+ 1+ 

 4 FFFF   

 2 n- YY-c   

 2 YY   

 4 YYYY   

 4 n- YYYQ-c   

 2 FF 1+ 1+ 

 4 n- NFFR-c   

 4 n- NFFQ-c    

 8 n-FNFNFRFR-c 2+ 2+ 

 8 n- LNLNLRLR-c 2+ 2+ 

 8 n- VNVNVRVR-c 2+ 2+ 

 8 n- ININIRIR-c 2+ 2+ 

 16 n- ININIRIRININIRIR-c 4+ 4+ 

 16 n- IINRIINRIINRIINR-c 4+ 4+ 

 20 n- WHIHININININIRIRIRIR-c 4+ 6+ 

 8 n- IINNIIRR-c 2+ 2+ 



 

  99 

 8 n- NNIIIIRR-c 2+ 2+ 

 12 n- WNNNIIIIIRRR-c 3+ 3+ 

 18 n- WHIINNIIHHIINNIIRR-c 5+ 6+ 

 20 n- WHHNNNSINISINISINRRR-c 2+ 5+ 

 11 n- WRIRIFININW-c 2+ 2+ 

 13 n- WQQQIIIIIRRRH-c 3+ 3+ 

 17 n- NNNISISIWININIRRR-c 3+ 3+ 

 13 n- NIEIINWRIIRIR-c 3+, 1- 3+, 1- 

 17 n- NNNNEIIIWIIIRHHHR-c 2+, 1- 5+, 1- 

 21 n- WHHENNININIFISISIRRRN-c 3+ 5+ 

Note: n- and –c refer to the end protection by acetylation and amidation, respectively.  



 

  100 

Table 5.2 Anticancer Drug Candidates proposed by our group. * 

* Thanks Hui Wang for providing this table  

Drug Name Solubility 
ug/ml 

Administration 
route Speciality Dosage 

(mg/m2) 

Epirubicin 93 injection breast/lung 100-120 

Daunorubicin 39.2 injection 
non-specific 
anti tumor 
drug/leukemia 

20 

Cisplatin 1000 injection solid tumor 20 

Topotecan 1000 injection 

cytotoxic anti 
cancaer 
drug/small cell 
lung cancer 

1.5 

Vinorelbin >1000 injection non-small cell 
lung/breast 25-30 

Docetaxel 0.025 injection lung/cancer 75/3 
weeks 

Teniposide >1000 oral     injection lymph/lung 60 

Etoposide 58.7 oral     injection 
small cell lung 
cance/solid 
tumor/leukemia 

60-100 

Paclitaxel 0.7 injection lung 135-200 

Carboplatin 14 Injection Ovarian/Lung 
Cancer 

10-20 
mg/kg 
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Appendix A 

Dynamic Light Scattering Theory 

The objective of this section is to describe the basic Size and Zeta Potential principles 

behind the dynamic light scattering.  

Particle Size Distribution  

Dynamic Light Scattering also known as Photon Correlation Spectroscopy (PCS) 

measures the Brownian motion and relates it to size of particles. The instrument illuminates 

the laser to the particles and analyses the intensity fluctuations in the scattered light. In 

practice, particles suspended in a liquid solution constantly move because of the Brownian 

motion. Brownian motion is the movement of the particles due to the collision of the particles 

with the surrounding molecules.  The important fact about the particles related to DLS is the 

smaller particles move fast and the larger ones move slowly. The relationship between size 

and speed of the particles is defined in Stokes-Einstein equation.  

€ 

dH =
kT
3πηD

  

dH is hydrodynamic diameter, D corresponds translational diffusion coefficient, η is viscosity 

and k is Boltzmann’s constant. The instrument measures the fluctuation in scattering 

intensity and uses it to calculate the size of particle suspended in the sample based on the 

correlation function. A correlator basically measures the degree of similarity between the 

signals over a period of time. The size of the particles affects the fluctuation of speckle 



 

  102 

pattern. Therefore, the rate of decay for the correlation function is related to particle size as 

the rate of decay is much faster for small particles than it is for larger.  

€ 

G(τ) = (t).(t + τ )  

τ is the time difference (the sample time) of the correlator. For the large number of 

monodisperse samples the correlation function is and exponential decaying: 

€ 

G(τ) = A[1+ Bexp(−2Γτ)] 

where A is the baseline of the correlation function and B is the intercept of the 

correlation function. 

€ 

Γ = Dq2 , D is translational diffusion coefficient, and 

€ 

q = (4πn /λ0)sin(θ /2) . n is refractive index, 

€ 

λ0 is the wavelength of the laser and 

€ 

θ  is 

scattering angle.  

However, for the polydisperse sample the correlation function follows as:  

€ 

G(τ) = A[1+ Bg1(τ)
2] 

€ 

g1(τ) is the sum of all the exponential decays contained in the correlation function.   

Figure A.1 Correlation function for small and large particles.  
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The information from correlation function are being used to calculate the size 

distribution. The Zetasizer software uses the standard algorithms to extract the decay rates for 

a number of size classes to produce a size distribution. There are three different distribution 

generated from the DLS: Intensity, volume and number distributions. Actually, the 

fundamental size distribution is obtained from intensity distribution, but it can be converted 

to volume distribution based on the Mei theory or number distribution. Figure A.2 shows the 

difference between three different distributions. Again, the basic distribution is obtained from 

intensity and the other ones generated from that.54-55 

 
Figure A.2 Number, volume, intensity distribution of a bimodal mixture of 5 and 50 nm lattices 
presented in equal numbers.  

 

Zeta Potential 

 The mobility of the particles in an electric field is called electrophoretic mobility. It occurs 

when the charged double layers are sheared from each other. By this mobility the electric 

potential establishes between two layers and the medium, which is called as zeta potential. 59 

Most liquids contain ions; either negatively or positively charged atoms. The net charge of 
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the particle at the surface affects the distribution of ions in the interfacial region, resulting in 

an increased concentration of opposite charge to the particle close to the surface. Therefore, 

the layer will form around the particle called electrical double layer. This layer surrounding 

the particle has two parts: an inner region called the Stern layer and outer region or diffuse 

region. The ions are strongly attached in Stern layer, but they are less bound in outer layer. 

When the particle moves, ions within the boundary moves with the particle, but the ions 

beyond the boundary do not travel with it. This boundary called slipping plane. The potential 

that exists at slipping boundary is known as Zeta potential. Figure A.3 depicts the above 

explanations for the charged particles.   

The net surface charge of particles helps to investigate the tendency of the particle to 

aggregate and absorb onto surface. The magnitude of the zeta potential indicates the potential 

stability of the colloidal system. Theoretically, if all the particles in suspension have a large 

negative or positive zeta potential then they will tend to repel each other and to tendency to 

flocculate (i.e., no aggregation). However, if they have lower zeta potential, there is no force 

to prevent them from flocculating. The most important factor that affects zeta potential is pH. 

Basically the zeta potential value on its own without a quoted pH is a meaningless number.  

Zeta potential alters in solution by adding alkali or acid. Adding alkali to solution the 

particles will tend to be more negative charge and then by adding acid in suspension the 

particles change to neutral from negative and any further addition of acid can cause a build 

up of positive charge. Therefore, a zeta potential versus pH curve will be positive at low pH 

and negative at high pH.  The point where the plot passes the zero zeta potential is called the 

isoelectric point. It shows normally where the colloidal system is less stable.54-55 
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Figure A.3 Schematic of Zeta potential 
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Appendix B 

Cell viability test by MTT assay 

The measurement of cell viability is the valuable tool in a wide range of research areas. 

There were several methods in the past for this purpose such as trypan blue staining and 

radioactive substances up taking. Trypan blue staining is no the sensitive and cannot be 

adapted for high throughput screening. Also, uptaking the radioactive substances is a time-

consuming method and it has a issue of handling of the radioactive materials.  

MTT assay is now recognized as a safe, accurate and alternative to other methods for 

cell viability tests. The yellow tetrazolium salt (MTT) is reduced in metabolically to form 

insoluble purple formazan crystals, which are solubilized by the addition of a detergent. The 

ELISA plate reader at wavelength of 570 nm can then quantify the color. The amount of 

color is directly proportional to alive cells. The reduction of the tetrazolium takes place only 

reductase enzyme in mitochondria is active, so the color change is often used as a measure of 

viable cell. Among the applications for the method are drug sensitivity, cytotoxicity, 

response to growth factors, and cell activation.62-63 

Figure B.1 The molecular structure of MTT and its function in alive cell 
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Appendix C 

 Flow Cytometry  

Flow Cytometry is the technological process that allows for the individual measurements of 

cell fluorescence and light scattering. This process is performed at rates of thousands of cells 

per second. Flow cytometry integrates electronics, fluidics, computer, optics, software, and 

laser technologies in a single platform. It is a powerful technique for simultaneously 

measuring and analyzing multiple physical characteristics of single cell as it flow in a fluid 

stream through a beam of light. Flow Cytometry consists the following basic parts: 64 

(1) Fluidic system: contains the central channel for sample injection, which enclosed by 

outer sheath that provides faster flowing fluid. The flow characteristics of the central flow 

can be determined by using Reynolds Number: 

 

€ 

Re =
ρVD

µ
    , 

€ 

ρ : Density of fluid, V: mean velocity of fluid, D: tube diameter, 

€ 

µ: 

viscosity of fluid.  

As the outer fluid sheath moves it creates the massive drag effect on the narrowing 

central chamber. This changes the velocity over the fluid flow as maximum velocity on the 

central chamber and zero velocity on the walls. This effect called hydrodynamic focusing. 

Figure C.1 shows the schematic of this part of flow Cytometry.  
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Figure C.1. Hydrodynamic focusing produces a single stream of particles 

  

(2) Optics and Detections: after hydrodynamic focusing each cell passes through one or more 

light beam. Light scattering or fluorescence emission provides the information about 

particles’ properties. There is two detection for scattered light; light that is scattered in the 

forward direction at 20º offset from the laser beam and it is collected by lens known as 

forward scatter channel (FSC). The FSC intensity roughly correlates to the particle’s size and 

can also be used to distinguish between cellular debris and living cells. Light measured 

approximately at a 90 angle to the excitation line is called side scatter. The side scatter 

channel (SSC) provides information about the granular content within a particle. Both FSC 

and SSC are unique for every particle and a combination of the two may be used to 

differentiate different cell types in a heterogeneous sample. Figure C.2 shows the relationship 

between SSC and FSC in flow Cytometry for cell light scattered. The larger particles have 

larger forward scatter light and more granular cells scatter larger in side channel.  
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Figure C.2. Schematic of FSC and SSC properties in Flow Cytometry 
 

 

Fluorescence measurements taken at different wavelength provides quantitative and 

qualitative information about fluorochrome-labeled cells. Flow Cytometry has separate (FL-) 

channels for different fluorescence labels. Table C.1 shows the popular fluorescence probes 

using in flow Cytometry and their excitation and emission wavelengths. PI, PE, annexin V 

are the common labels used in this study as well.  
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Table C.1 List of common fluorescence labels. 
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(3) Signal Processing: The electronics system, which converts the signals from the detectors 

into digital data that can be processed by the computer. When the light hits the photodetector 

a small current generated. The voltage associated with this current is proportional to the total 

number of photons. This voltage is converted to electrical signals by a series of linear or 

algorithmic amplifiers and by analog to digital converters (ADCs). Figure C.3 shows the 

schematic of whole setup of flow Cytometry.64 

Figure C.3. Schematic overview of a typical flow cytometer setup 
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