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Abstract

A practical and important class of scientific images are the 2D/3D images ob-
tained from porous materials such as concretes, bone, active carbon, and glass.
These materials constitute an important class of heterogeneous media possessing
complicated microstructure that is difficult to describe qualitatively. However, they
are not totally random and there is a mixture of organization and randomness that
makes them difficult to characterize and study. In order to study different proper-
ties of porous materials, 2D/3D high resolution samples are required. But obtaining
high resolution samples usually requires cutting, polishing and exposure to air, all
of which affect the properties of the sample. Moreover, 3D samples obtained by
Magnetic Resonance Imaging (MRI) are very low resolution and noisy. Therefore,
artificial samples of porous media are required to be generated through a porous
media reconstruction process. The recent contributions in the reconstruction task
are either only based on a prior model, learned from statistical features of real high
resolution training data, and generating samples from that model, or based on a
prior model and the measurements.

The main objective of this thesis is to some up with a statistical data fusion
framework by which different images of porous materials at different resolutions
and modalities are combined in order to generate artificial samples of porous me-
dia with enhanced resolution. The current super-resolution, multi-resolution and
registration methods in image processing fail to provide a general framework for
the porous media reconstruction purpose since they are usually based on finding an
estimate rather than a typical sample, and also based on having the images from
the same scene – the case which is not true for porous media images.

The statistical fusion approach that we propose here is based on a Bayesian
framework by which a prior model learned from high resolution samples are com-
bined with a measurement model defined based on the low resolution, coarse-scale
information, to come up with a posterior model. We define a measurement model,
in the non-hierachical and hierarchical image modeling framework, which describes
how the low resolution information is asserted in the posterior model. Then, we pro-
pose a posterior sampling approach by which 2D posterior samples of porous media
are generated from the posterior model. A more general framework that we pro-
pose here is asserting other constraints rather than the measurement in the model
and then propose a constrained sampling strategy based on simulated annealing to
generate artificial samples.
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Chapter 1

Introduction

Scientific imaging plays a significant role in research, especially with the availability
of sophisticated imaging tools, including magnetic resonance imaging (MRI), scan-
ning electron microscopy, confocal microscopy, computer aided X-ray tomography,
and ultrasound, to name only a few. Because of the significant research funding and
public interest in medical imaging and remote sensing, these aspects of scientific
imaging have seen considerable attention and success.

There is an enormous variety of imaging problems outside of medicine and re-
mote sensing, where we would argue the current image processing research to be
relatively rudimentary, and where substantial contributions remain to be made.
One such area is that of porous media [1]. Porous media are the permeable mate-
rials such as cement, concrete, cartilage, bone, wood, and soil, with corresponding
significance in the construction, medical, and environmental industries. Porous me-
dia possess complex, random-like structures which are difficult to describe quantita-
tively. However, they are not totally random, and there is a mixture of organization
and randomness that can be described using probability theory, statistical models
and random fields theory [1, 2, 3]. In analyzing the fluid transport, electromagnetic
and mechanical properties of porous media, different realizations of porous media
should be available. The 2D high resolution images of porous media (with reso-
lution around 1.8µm/pixel), shown in Fig. 1.1, obtained by microscopic imaging,
provide valuable information on the large and small-scale structures of pores and
solids. However, obtaining 2D images is invasive, requiring a series of processes
such as cutting, polishing and exposure to air, which can affect the real properties
of the porous materials. On the other hand, 3D samples of porous media can be
obtained using MRI and X-ray computed tomography [4, 5]. However, the 3D sam-
ples are very low in resolution (in some cases around 100 µm/pixel) in comparison
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Sintered Glass Spheres Carbonate Rock

Figure 1.1: Examples of 2D porous media images

with with the 2D samples, such that only some of the pore/solid structures can be
resolved. In order to study different properties of porous materials such as fluid
transport, permeability and conductivity, the real measured 2D or 3D samples are
not sufficient and artificial samples are required to be generated in a porous media
reconstruction task [3].

1.1 Motivation

Porous media reconstruction is aimed at generating typical artificial samples obey-
ing certain statistical features. Therefore, the reconstruction task is a sampling
process by which multiple samples are generated from a probability model. The
model is defined based on different statistical descriptors such as chord-length, two-
point correlation and histogram models [3, 6], using high resolution training data.
Depending on the absence or presence of measurements, the process is defined as
prior or posterior sampling [7]. The overwhelming majority of porous media simula-
tion methods in the literature perform prior sampling, in which the reconstruction
is solely based on the learned prior model [3, 6, 8, 9, 10, 11].

However, the growing availability and use of tomographic and MRI measure-
ments means that in many cases it is desirable to study a particular physical sample,
in which measurements are also available, and the reconstruction should reflect the
measured sample. Thus, a posterior sampling approach [12] aimed at fusing the
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information represented by the measurements and prior model, is required.

Fusing images at different resolutions and modalities has captured the interest of
many researchers specially in the area of medical imaging and remote sensing, using
super-resolution, multi-resolution, and image registration methods [13, 14, 15, 16].
Considering the existing methods in the literature, fusing the images of porous
media is still a challenging task, due to the following reasons:

• Reconstruction of porous media is a sampling task by which typical samples of
porous media with stochastic variability are generated from a statistical prior
model , while the data fusion methods in the image processing literature are
mainly aimed for finding an estimate.

• Despite many super-resolution and image registration problems, the porous
media images at different resolutions, are not derived from the same scene,
rather they are obtained from the same material, and consequently the images
only share the same statistical features.

• In porous media reconstruction we do not have the luxury of having multiple
low-resolution measurements from the same scene, as the case in some super-
resolution problems, rather a few shots of each type of measurements are
available.

In addition to the above reasons, most of the literature on multi-resolution image
fusion, mainly based on wavelets, assumes continuous-state representation of the
images – which is not the case with for porous media images. Therefore, a novel
image fusion approach is required in order to generate artificial samples of porous
media images.

1.2 Problem Summary

In order to reconstruct artificial samples of porous media a statistical data fusion
approach is proposed in this thesis. The existing literature on reconstruction of
porous media is mainly based on prior sampling in which artificial samples are
generated from a statistical prior model and the low resolution measurements are
not considered in the reconstruction process explicitly [3, 6, 17, 18]. The proposed
statistical fusion approach in this thesis addresses fusing the information obtained
from from low resolution measurements with the prior model, based on a Bayesian
framework. The prior model is learned from the 2D high resolution training data
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and the measurements are fused with the prior model using a measurement model.
The artificial samples are then generated using a posterior sampling approach, in
order to infer details at a higher resolution. Based on the proposed framework for
data fusion, three main problems will be addressed in the thesis:

• Two-scale porous media reconstruction

Low resolution measurements of porous media fail to resolve the pore/solid
structures at multiple scales, rather the measurements are only able to resolve
the large-scale structures while the fine/small-scale structures are unresolved.
However, the fine/small-scale structures are constrained by the measurements,
therefore there should be some possibility of inferring high resolution details
from the pattern of low-resolution measurements. Using both low resolution
measurements and a prior model learned from high resolution microscopic
samples, a posterior sampling approach is proposed in Chapter 4 to recon-
struct two-scale porous media images.

• Annealing with constraints

Reconstruction of porous media has been studied broadly by sampling from
the prior model using simulated annealing. Since porous media images pos-
sess complex structures at multiple scales, a single prior model can not reflect
the variability of the structures at different scales. Using an additional in-
formation in the model as a constraint, a constrained sampling approach
for porous media reconstruction is proposed in Chapter 5. The proposed ap-
proach is different from current porous media reconstruction methods in which
the probability distribution is maximized by simulated annealing. Rather
than maximizing the probability distribution, we sample from the constrained
probability distribution using simulated annealing and Gibbs sampler.

• Hierarchical posterior modeling

The reconstruction task becomes intractable when the size of the samples
increases, since it is based on simulated annealing which is a slow convergence
algorithm. Hierarchical sampling approaches for binary image synthesis have
been applied to tackle this problem, in the case of sampling from the prior
model. However, in the posterior sampling case, relating the measurement
with an unknown at the coarse scale is still a challenging task. We propose
a measurement model at each scale in Chapter 6, which defines how the
measurement constrains the unknown at a given coarse scale.

Each of the mentioned problems are discussed separately with the proposed
solutions in the thesis along with experimental results and evaluations.
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1.3 Thesis Layout

The thesis consists of seven chapters including the introduction. Chapter 2 contains
a brief overview of the background materials studied to pursue this research. In
Chapter 3, the main framework proposed for image fusion is introduced. Chapter
4 contains the contribution on two-scale porous media reconstruction using differ-
ent types of low resolution measurements. In Chapter 5, the constrained sampling
approach using simulated annealing is proposed. The proposed approach is able to
generate samples with more variable structures at different scales, as compared to
the unconstrained sampling approach. In Chapter 6, a new hierarchical measure-
ment model is proposed for the proposed hierarchical posterior sampling framework.
Finally, in Chapter 7 concluding remarks and possible future research directions are
provided.
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Chapter 2

Background

This chapter contains a brief overview and description on some of the background
materials used to pursue research for the thesis. The chapter starts with describing
the forward and inverse problem and continues with a brief description of porous
media. Then the image models used in this research are introduced and discussed
followed by an overview of Monte Carlo Markov Chain sampling methods and sim-
ulated annealing. Finally, different hierarchical approaches used in image modeling
and estimation are described.

2.1 Forward and Inverse Problems

In most physical systems two main sets of data are involved: a set of variables Z,
which describe the state of the system and a set of data M , known as observations,
indicating feasible measurements on that system [19].

Normally, Z is an ideal, complete representation of the system which refers to
original data, whereas M is limited to the physics of the measuring device, so it is
incomplete and irregular and does not provide detailed information on the system.

The task of inferring or computing measurements from the original data is
known as forward problem. In this problem the goal is usually to compute M from
Z according to some physical model f :

M = f(Z) (2.1)

Forward problems are, by definition, categorized as easy problems, since the
process of inferring M from Z can be fully characterized by a given physical model
f , that is also referred to as forward model.

6



However in many cases, the original data are not known, and they should be
determined given a set of measured values. In this case we are coping with another
kind of problem called inverse problem. An inverse problem is to infer the original
data from one or multiple observations of the data. In other words, solving an
inverse problem involves finding the inverse of the forward model f in Eq. (2.1).
Therefore, if the forward model can be represented mathematically, and is invert-
ible, possibly we can find the solution for the inverse problem as follows:

Z = f−1(M) (2.2)

However, it is usually hardly possible to determine Z from f−1, because [20, 21]:

• In many problems, f−1 may not even exist, for example when the measure-
ments are noisy, we can not define an explicit and exact relationship between
Z and M . In this case we say that the existence is failed.

• Measurements are usually incomplete and they are not enough to reconstruct
a complete original set of data. In many cases, different sets of original data
lead to the same set of measurement data, such that a unique Z can not be
inferred from M . In other words the uniqueness is failed.

• In finding Z from f−1 we may cope with an unstable situation in which a
small change in the measurement may lead to a huge change in Z. In this
case we say that continuity is failed.

According to Hadamard definition [22], a problem is well-posed if the existence,
uniqueness and continuity conditions hold, otherwise it is ill-posed. An ill-posed
problem turns to a well-posed problem by adding additional information using
regularization constraints or prior knowledge [21, 22].

2.1.1 Bayesian and non-Bayesian estimation

Many problems in image processing are ill-posed, such as image reconstruction, im-
age de-noising and image enhancement. However, an ill-posed problem can become
well-posed with regularization methods by adding constraints or a priori knowl-
edge. For instance, in the case that the existence fails, the inverse problem can be
modified to finding the closest Z, instead of finding the exact data from which the
measurement M is derived, i.e.

Ẑ = argmin
Z
‖f(Z)−M‖ (2.3)
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Here, we are looking for an estimate Ẑ of Z satisfying the minimization constraint.
Therefore, by regularizing the problem we are solving an estimation problem in
which an approximation of the original data is derived. Usually the estimated data
is consistent with the measurement (to some extend) and satisfy the constraint.
Depending on the nature of the problem and/or the degree to which we believe in
the constraint or the priori knowledge, an inverse problem can be regularized by a
deterministic constraint or by a stochastic prior model.

In the deterministic (non-Bayesian) approaches, Z is just an unknown that we
need to estimate. In such cases, estimation approaches such as the usual least
squares formulation [21], maximum likelihood (ML) estimation or smoothing con-
straints can be applied. For instance, the ML estimator is obtained by maximizing
the likelihood function

Ẑ = argmax
Z

p(M |Z) (2.4)

where p(M |Z) is also known as the measurement model.

In the Bayesian approach [23], we consider that the original data Z are a set
of random variables obeying some statistics known as prior model. In this case we
believe that the stochastic behavior of Z is an inherent part of the problem. Then
Bayesian estimation approaches, such as Maximum A Posteriori (MAP) or Bayesian
least square estimation [21], are usually applied to solve the inverse problem. For
instance, the MAP estimator which is a Bayesian version of the ML estimator, is
obtained by maximizing the posterior probability distribution,

Ẑ = argmax
Z

p(Z|M) = argmax
Z

p(M |Z)p(Z) (2.5)

where p(Z) is the prior model describing the statistical behavior of Z and p(M |Z)
is the likelihood function. The above equality is obtained via Bayes’ rule [23].

2.1.2 Sampling

Estimation methods usually find optimum solutions which maximize/minimize a
pre-defined set of criteria. However in some applications, such as texture analysis
and porous media reconstruction, we are not interested in finding the best/optimum
solution, rather we seek a random realization of the original data meeting a given
set of criteria (prior model) to some extent while being consistent with the mea-
surements [21]. The problem of generating such realizations or samples is referred
to as sampling. Depending on the absence/presence of measurements in a problem,
we have prior/posterior sampling, described as follows:
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• Prior Sampling : given a prior probability model p(·) of the original data,
prior sampling means generating random samples from the prior model. Prior
sampling is interesting in

– Studying prior models: since a prior sample depends only on the prior
model, it can reflect insights regarding model strengths and weaknesses.

– Image analysis and reconstructions: prior samples are applicable in
texture generation and porous media reconstruction, to synthesize and
study different aspects of the data [6].

• Posterior Sampling : given a prior probability model p(·) for the original data
and a set of measurements M , posterior sampling is generating samples from
the posterior distribution p(·|M). If Ẑ denotes the solution of the estimation
problem, then based on Eq. (2.3) the posterior sample Z|M is

Z|M = Ẑ + Z̃|M (2.6)

where Z̃|M is the estimation error. In fact, a typical posterior sample has

aspects of measurements, inferred by Ẑ, and also the prior model, inferred by
Z̃|M . [7].

As in estimation problems, two types of information are used in posterior
sampling, i.e. measurement and prior model. Therefore, there is a possibility
to cover the gap due to any incompleteness or inconsistency in one with an-
other. In estimation, we seek the optimum solution and it does not represent
a typical or representative sample of the system being studied. However, a
posterior sample is a typical random realization which is consistent with the
model and the measurements.

In this research a posterior sampling approach is considered in order to generate
artificial samples of scientific images such as porous media images.

2.2 Porous Media

A practical and important class of scientific images are the 2D/3D images obtained
from porous materials such as concretes, soils, sandstone, active carbon and glass.
Fig. 2.1 shows two examples of 2D images of porous media. Most porous media
possess a chaotic structure that is difficult to describe qualitatively [1, 3], but they
are not totally random: there is a mixture of organization and randomness that
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(a) Sintered Glass Spheres (b) Carbonate Rock

Figure 2.1: High resolution samples of porous media. The samples have different
structures at different scales.

makes them difficult to characterize and study. A porous material contains multi-
phases, mainly limited to two: void and solid. The pore or void phase shown as
the black areas in Fig. 2.1, can transport fluids/ gas and the rest shown as white
in Fig. 2.1 are solid.

2.2.1 Reconstruction of porous media

In order to study the permeability, conductivity, and transport properties of porous
materials, 2D/3D high resolution samples are required. But obtaining high resolu-
tion data from a physical material usually requires cutting, polishing and exposure
to air, all of which affect the properties of the sample. On the other hand, 2D/3D
samples from Magnetic Resonance Imaging (MRI) can be obtained in-situ, with
no modification of the sample, however the measurements are noisy and taken at
a very low resolution, such that only comparatively large pores are resolved (as
shown in Fig. 2.2). Therefore, high resolution samples of porous media need to be
generated through a reconstruction process [3].

Porous media 2D/3D reconstruction involves combining certain features of a
set of real measured media and generating artificial media with the same feature,
usually using numerical methods. The features can be represented by a statistical
model, specific structure, and/or even the real measured data.
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(a) Sintered Glass Spheres (b) Carbonate Rock

Figure 2.2: 2D slices of MRI measurements [4] obtained from the same samples
shown in Fig. 2.1. The measurements in (a) and (b) and their corresponding images
in Fig. 2.1 are not from the same scene, rather they are obtained from the same
material. The measurements only resolve the large scale structures.

One of the approaches used for porous media reconstruction is to use Gaus-
sian linear and non-linear filters [1, 24]. The Gaussian filtering method is limited
to isotropic media and is formulated based on porosity and two-point correlation
function information. In addition, this approach is solely based on Gaussian ran-
dom field which is not able to model non-stationarity and the multi-scale structures
presented in porous materials [1, 9]. Therefore, the Gaussian filtering method is of
limited use in porous media reconstruction.

Another approach, which is the main focus of this research, is based on defining
statistical models describing the characteristics and different structures of pore and
solid [3] and using computational methods to assert the same statistical features
represented by the prior model to generate an artificial sample. The parameters of
the model are usually learned from high resolution training samples. The statistical
models can be considered as a prior probability distribution describing the proba-
bility of having a certain structure or feature in a porous medium. The artificial
samples are then generated by sampling from the prior model [9, 6, 3]. Most of these
methods are based on creating a single, fixed, target distribution (e.g. correlation
function or chord-length distribution). However, realistic samples of porous media
have complicated structures, so there is a need to have an average model containing
different aspects of each single distribution. Although some research has been done
recently on incorporating the measurements information such as the overall porosity
and the information on the large-scale structures in the reconstruction task [5, 25],
they do not couple the measurements with the prior model explicitly.

In the next section a brief overview of some of the models used to describe the
statistical behavior of porous media is provided.
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2.3 Image Modeling

Bayesian image analysis involves representing image attributes as a prior model.
The prior model can be defined based on the local or non-local interactions between
different pixels in an image. In this section we review three local models including
Ising, Potts and histogram, and two non-local models – two-point correlation and
chord-length.

While simple image models can be obtained from image statistics such as mean,
variance, histogram and correlation [26, 27] a more general approach is to use
random fields, probably the most common class of image models. A random field
is a two-dimensional extension of a random process, and can be defined as follows:

Definition (random field): Let Z be a finite set of sites or locations Z =
{z1, z2, ..., zN} in a lattice, where each zi ∈ Z can have finite possible states from
Λ. Then Z is a configuration such that

Z = { zi | 1 ≤ i ≤ N} (2.7)

We can consider a probability measure or distribution p on the set of all configura-
tions, Ω, such that

p(Z) ≥ 0 and
∑
Z∈Ω

p(Z) = 1. (2.8)

In this case Z is a random field. An (n ×m) image can also be represented as a
random field as shown in Eq. (2.7). Each site in image Z can be represented as zi,j,
where i = 1, . . . , n and j = 1, . . . ,m.

2.3.1 Markov random fields

There are variety of models proposed for random fields analysis. Markov random
field (MRF) models [28] consider conditional decoupling of a set of sites from the
rest of the field. In image processing and modeling problems the focus is more on
statistical modeling of images with specific emphasis on MRF, [26, 28]. Some of
the reasons for using MRF are [29] as follows:

• Applying spatial context in image classification deals with assigning a sym-
bolic label to a group of pixels. In these problems, the contextual information
is taken locally, an MRF can provide a flexible mechanism to model spatial
connection and correlation between the local information.
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• In a random field, if we want to consider the probability of a site taking
a specific value, we need to study and consider the rest of the field which
is computationally very expensive. MRF models are based on considering a
local neighborhood rather than the whole field to compute the aforementioned
probability.

MRFs are characterized by conditional dependency between a set of pixels with
its neighbors. The neighborhood structure is defined as follows.:

Definition (neighborhood structure): A set N (i, j) is said to be neighbors
of a site or a pixel zi,j in an n ×m lattice if it contains all the neighbors of that
site based on a neighborhood relationship. The neighboring relationship has the
following properties:

• a site is not neighboring to itself zi,j /∈ N (i, j)

• the neighboring relationship is mutual zi,j ∈ N (i′, j′) ⇐⇒ zi′,j′ ∈ N (i, j)

For a regular lattice , N (i, j) is defined as the set of nearby sites within a radius
r, based on the Euclidean distance [30]

N (i, j) = {zi′,j′ |(i− i′)2 + (j − j′)2 ≤ r2, i′ 6= i, j′ 6= j} (2.9)

where r takes an integer value. Note that sites at or near the boundaries have fewer
neighbors. Fig. 2.3 (a) and (b) shows the first and second order neighborhood struc-
tures, respectively and in (c) higher order neighborhood structures are illustrated
as well. The kth order neighborhood structure encompasses all the elements in of
the lower order neighborhood structures.

By changing the lattice of sites in a lexicographic order the columns of the
lattice are stacks from left to right in a single array. Therefore, we can re-write
image Z as Eq. (2.7) and we can represent the location of a site in the image with
a single index i. For the sake of simplicity, we consider the lexicographic order and
consequently call the neighborhood set of site zi as N (i).

Definition (Markov random field): A random field Z with probability distri-
bution p is Markov if :

p( zi = z∗ | Z/{i}) = p( zi = z∗ | N (i)). (2.10)

and consequently

p(Z = Z∗) =
n∏
i=1

p(zi = z∗i |N (i)) (2.11)
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(a) First-order neighbor-
hood structure

(b) Second-order neighbor-
hood structure

(c) Neighborhood struc-
tures at different orders

Figure 2.3: Two examples of neighborhood structure, in (a) and (b). The numbers
in (c) denotes the order of the neighborhood structures, and the location of a certain
number in (c) shows the extent of the neighborhood structure.

where Z/{i} excludes the site i form the whole random field Z. MRFs can be
used for modeling real microstructural/heterogeneous media whose properties vary
randomly and smoothly in space [2].

2.3.2 Gibbs random field

Gibbs Random Fields (GRFs) were originally used in statistical physics to study the
thermodynamic characteristics of interacting neighboring particles in a system [31].
They are used as models for equilibrium states of large physical system. For these
fields a probability distribution function called Gibbs distribution is defined as

p(Z) =
e−

H(Z)
T

Z
(2.12)

where H(Z) is an energy function capturing the interaction between neighboring
particles, T is a parameter usually called the temperature, and Z is a normalization
factor, such that

Z =
∑
Z∈Ω

H(Z). (2.13)

The most important part of the Gibbs distribution is the energy function H(Z).
In fact, this function reflects the whole characteristics of the model. In general the
energy function H(Z) can be written as

H(Z) =
∑
c∈C

Vc(Z) (2.14)
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where c is a clique—a single site or a set of sites that interact with each other— and
C denotes the set of all cliques. The potential function Vc represents the interaction
between sites in clique c [31].

According to the Hammesley-Clifferd [29] theorem, GRFs and MRFs are equiv-
alent. Both MRFs and GRFs are used to quantify the spatial interactions of ob-
served values at the sites of a field and give a probability for any configuration of that
field. The algorithms that exist for analyzing MRFs usually assume that the field is
Gaussian, where GRFs’ algorithms can also handle non-Gaussian, non-linear prob-
lems [13]. Moreover, Gibbs probability distribution is used for the discrete-state
random fields [32, 31]. In this research we are coping with the reconstruction of
discrete-state random fields (porous media images are binary), therefore, we con-
sider Gibbs probability distribution to model the characteristics of porous media
images.

2.3.3 Classic models

In this section three image prior models are discussed: Ising, Potts and histogram.
The models are pixel-based and the interaction between pixels are local. The bi-
nary Ising model [31], based on defining a first-order neighborhood for a pixel, is
considered due to its simplicity and for comparison purposes. The Potts model [31]
as a generalization of the binary Ising model is also discussed for the case that the
image is not binary. The histogram model [6], a pixel-based and local model, is a
non-parametric model in which the neighborhood size is flexible.

Ising model

The Ising model was first introduced in quantum physics where each field element
reflects the discrete quantum state of an atom [21]. Each site can take two possible
values, 0, and 1, and a first-order neighborhood structure, as in Fig. 2.3 (a), is con-
sidered for each site, i.e. for every site zi,j in the field, sites zi,j+1, zi,j−1, zi+1,j, zi−1,j

are defined as its neighbors. The general form of the energy function for an Ising
model is

H(Z) = a
∑
i,j

zi,j (zi,j+1 + zi,j−1 + zi+1,j + zi−1,j) + b
∑
i,j

zi,j hi,j (2.15)

where a and b are model parameters and hi,js are constants related to an exter-
nal field constraint. Here a clique is either a site (zi,j), or two neighboring sites
({zi,j, zi,j+1}, {zi,j, zi,j−1}, {zi,j, zi+1,j}, {zi,j, zi−1,j}). The random field shown in
Fig. 2.4 is generated using Ising model at different values of temperature T .
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(a) T = 5, “hot” (b) T = 2.27, “warm”, (c) T = 1.25, “cold”

Figure 2.4: Samples from Ising model at different temperatures

Potts model

The Potts model [31] originally used in statistical physics, is the generalization
of the Ising model in which each site can take q possible values. It is sometimes
referred to as q-Potts model.

This model identifies boundaries in the random field using the Kronecker func-
tion δ(a, b) defined as

δ(x, y) =

{
1 if x = y
0 if x 6= y.

For a binary image, the Kronecker function measures the length of the boundary
in the whole image. The energy function for the standard Potts model is defined
as

H(Z) = a
∑
i,j

[1− δ(zi,j, zi,j−1)] + [1− δ(zi,j, zi−1,j)]
∑
i,j

zi,j hi,j (2.16)

where a and b are model parameter and hi,js are constants related to external field
interactions.

Histogram model

The histogram model [6] is non-parametric, keeping the entire joint probability
distribution of a local set of pixels within a neighborhood. Choosing eight adjacent
pixels as the neighborhood structure (as Fig. 2.3 (b)) leads to a non-parametric
model containing a histogram of 29 = 512 probabilities (for binary random field,
each site can take two possible values). Fig. 2.5 shows such a normalized histogram,
learned from the image in Fig. 2.1(a).
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Configuration # 78
Probability = 0.00

Configuration # 155
Probability = 0.024

(a) Probability of 256 possible con-
figurations

(b) Examples of two configu-
rations and their probability

Figure 2.5: An example of probability distribution of 29 = 512 configurations with
black pixels at the center (a), with examples of two configurations and their prob-
abilities (b). The random field is modelled non-parametrically via the probability
of every configuration of the eight binary pixels surrounding a central pixel.

2.3.4 Porous media models

The reconstruction of porous media, which is the core objective of this research
needs defining models describing their statistical properties and microstructures.
The porous media models which are microstructural descriptors are defined based
on structure/property relations [3]. Here, we introduce two types of porous media
models: two-point correlation and chord-length model.

Two-point correlation model

The random space of a binary porous medium can be partitioned into two phases
made up of pore and solid phases. Having two phases, the two-points correlation
model [9, 3] considers the probability of finding two vectors at two different specific
positions ~r1 and ~r2, in the same phase.

The model defines an autocorrelation function

S
(j)
2 (~r1, ~r2) = E[ I(j)(~r1) I(j)(~r2) ] (2.17)

where E[·] stands for statistical expectation and I(j)(r) is the characteristic function

I(j)(r) =

{
1 when r is in phase j
0 otherwise.
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Figure 2.6: Chords are line segments between the intersection of two phases with
an infinitely long line

For statistically isotropic media, S
(j)
2 (~r1, ~r2) depends only on the distance r =

|~r1−~r2|, between two points, and the autocorrelation function can be expressed as

S
(j)
2 (r). If φj is the volume fraction of phase j, then [3]

S
(j)
2 (0) = φj and lim

r→∞
S

(j)
2 (r) = φ2

j . (2.18)

The two-point correlation function can be extended to n-point correlation function
by considering the probability that n points at positions r1, r2, . . . , rn are found in
the same phase. Although extending to an n-point correlation function can give
a better understanding of the porous media, the storage of the information and
also the large computational time limit the use of high order (n > 2) correlation
functions in practice.

Chord-length model

In this model a chord-length density function p(i)(c) is defined for phase i of the
random field [3]. Chords are all of the line segments between intersections of an
infinitely long line thrown in a two-phase random field.

The chord-length distribution function can be defined in terms of Lineal-path
function L(i)(c). For statistical isotropic media, L(i)(c) is the probability that a
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line segment of length c lies wholly in phase i when randomly thrown into the field.
L(i)(c) can be obtained by counting the relative number of times that a line segment
of length c is wholly in phase i.

The first derivative of the lineal-path function is related to the cumulative dis-
tribution function F (c) associated with pi(c) and the second derivative is the chord-
length distribution function. Therefore [3]

p(i)(c) =
`

φi

σ2L(i)(c)

σc2
. (2.19)

where ` =

∫ ∞
0

y p(i)(y) dy.

The Chord-length distribution function can be defined for either phase in an
image for lines at different orientations. It is common to limit the orientation to
the horizontal and vertical directions in 2D. Defining this function only for one
phase gives limited information about the other. Therefore, having this function
for both phases (pore and solid) leads to better understanding of the image. For
the two phase porous media, if Chord-length distribution function is defined for
both phases, then we have a dual Chord-length model.

2.4 Monte Carlo Markov Chain Sampling Meth-

ods

Given a random field model defined for an image, the analyzing task such as sam-
pling, restoration and segmentation is usually intractable analytically since the
discrete configuration space on which the random field exists is very large; even
for a binary n× n image the space has 2n

2
elements. More specifically, computing

the normalization factor in the Gibbs probability distribution defined in Eq. (2.13),
which should encompass all the 2n

2
configurations, is not possible, and consequently

the probability distribution of the image can not be computed directly. Monte Carlo
methods are useful in image analysis problems since they can simulate the random
field regardless of the size of the image and optimize energy functions without
computing the normalization factor for the whole configuration space.

Computing the expected value of a random field based on a probability distri-
bution yields the most probable realization. Suppose that we want to compute the
expected value of φ(Z) for a given function φ and a random field Z. Given the
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probability distribution of Z as p(·), the formula

E[φ(Z)] =

∫
φ(Z) p(Z) dZ (2.20)

can be used. However, computing this integral is hardly possible. Using numerical
integration and the strong law of large numbers, the expectation can be estimated
by generating n samples (Z1, . . . , Zn) from the probability distribution p and com-
puting the ensembles, i.e.

E[φ(Z)] = lim
n→∞

1

n

n∑
i=1

φ(Zi). (2.21)

This method, known as Monte Carlo, is applicable when [33]

1. the probability distribution p can not be computed for a given Z, e.g. when
p is Gibbs distribution and the normalization factor Z defined in Eq. (2.13)
can not be computed,

2. the configuration space of Z is very large and sampling from this space is not
possible.

In sampling problems, where large random fields are involved, generating sam-
ples from the probability distribution is still a problem. Monte Carlo Markov Chain
(MCMC) methods based on constructing an ergodic Markov chain generate sam-
ples from the probability distribution. Running the Markov chain for a long time,
MCMC methods provide samples which are statistically consistent with the original
random field [31, 33].

MCMC have three main properties [31]:

1. A given configuration is updated in sequential steps,

2. Each step is governed by some probabilistic rule

3. The rule depends only on the number of the step and on the present config-
uration.

Gibbs and Metropolis-Hastings samplers are two main MCMC methods which are
used in different image analysis applications. In the following sections, these meth-
ods are discussed briefly.
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2.4.1 Gibbs sampler

The Gibbs sampler [34] algorithm is a technique for generating random variables
from a distribution indirectly, without having to calculate the density [33]. In par-
ticular, it can generate samples from the Gibbs probability distribution defined in
Eq. (2.12). The algorithm generates a Markov chain whose elements are sequential
random fields, Z(0), Z(1), , ..., such that Z(k−1) and Z(k) can differ in at most one
pixel. For the configuration space Ω, this iterative algorithm starts with an arbi-
trary Z(0) ∈ Ω. If the random field is written in lexicographic form, then given a
site visiting schedule at every iteration, for the jth site, the chain proceeds from
Z(k−1) to Z(k) as follows [29]:

Z
(k)
i =

{
Z

(k−1)
i if i 6= j

ξ if i = j for all i.

where ξ is a random variable with probability distribution

P (ξ = λ) = p(Zi = λ | N (i)). (2.22)

This conditional probability distribution determines the likelihood of random
variable Zi to be equal to λ, given its neighbors. Using Gibbs probability distribu-
tion, we have

p(Z(i) = λ | N (i)) =
1

Zi
e−

1
T
H(Z(i)=λ|N (i)) (2.23)

and
Zi =

∑
γ∈Λ

e−
1
T
H(Zi=γ|N (i)) (2.24)

The normalization factor, Zi sums over all possible values from the state space Ω
that Zi can take. In particular, when the field is binary, (Λ = {0, 1}), Eq. (2.24) is
simplified to

Zi = e−
1
T
H(Zi=0|N (i)) + e−

1
T
H(Zi=1|N (i)) (2.25)

and consequently for λ = 0, Eq. (2.23) is simplified to

p(Zi = 0 | N (i)) =
1

1 + e−
1
T

( H(Zi=1|N (i))−H(Zi=0|N (i)) )
(2.26)

The updating process from Z(k−1) to Z(k) is repeated until we get independent
samples [33] to compute the ensemble in Eq. (2.21). Algorithm (1) shows a summary
of steps taken by Gibbs sampler to generate a meaningful sample from the Gibbs
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probability distribution for a binary image. The Gibbs sampler and other types of
MCMC methods are converged when a stationary chain of processes are generated.
Several convergence diagnosis techniques are available usually based on studying
the covariance of the samples to see how much they are independent from each
other and determine whether the resulting chain is stationary or not [33, 35, 36].

Algorithm 1 Gibbs Sampler for a binary random field

1: Start with an initial field Z(0) by assigning 0 or 1 to each site randomly.
2: k ← 0
3: Re-order elements of Z(k) according to a site-visiting schedule
4: repeat
5: for i = 1 to N do
6: Z

(k)
i ← 1− Z(k)

i {change the value of pixel i}
7: if Z(k)(i) = 0 then
8: p← 1

1+exp(− 1
T

( H(Z(k)(i)=1|Ni)−H(Z(k)(i)=0|Ni)))

9: else
10: p← 1

1+exp(− 1
T

( −H(Z(k)(i)=1|Ni)+H(Z(k)(i)=0|Ni)))

11: end if
12: Pick a point r ∼ U(0, 1)
13: if p < r then
14: Z

(k)
i ← 1− Z(k)

i {undo the change}
15: end if
16: end for {Z(k+1) is generated}
17: Z(k+1) ← Z(k)

18: k ← k + 1
19: until Convergence condition is met

The Gibbs sampler is not practical when the number of possible states, |Λ|, is

large, since for each site Zi, e
− 1

T
H(Zi=λ|N (i)) needs to be computed for all λ ∈ Λ.

2.4.2 Metropolis-Hastings sampler

The Metropolis-Hasting sampler [37] is a mechanism for generating a Markov chain
Z(1), Z(2), . . . given an arbitrary starting point Z(0). The chain proceeds from
Z(k−1) = x to Z(k) = w by suggesting a change according to a proposal distribution
q(·|Z(k−1) = x). The proposal distribution may be chosen to be random, although
depending on the nature of the problem, there may be efficiency advantages in one
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form over another [33, 38]. The candidate point w is accepted with the following
probability

p(Z(k) = w|Z(k−1) = x) = min

{
p(Z(k) = w)

p(Z(k−1) = x)

q(Z(k−1) = x|Z(k) = w)

q(Z(k) = w|Z(k−1) = x)
, 1

}
.

(2.27)
If the suggestion is accepted, then Z(k) = w otherwise Z(k) = x. In other words,
in the Metropolis-Hasting method, depending on x, a new element w is proposed
by some procedure. If w is better than x in terms of energy function, the change
is accepted, if not, then it still has a chance to be accepted. The key advantage
of this method is that there is no need to compute the normalization factor in the
probability distribution p since it will be cancelled out in Eq. (2.27), therefore in
contrast with Gibbs sampler, this method is also applicable in the case that |Λ| is
large.

The same as Gibbs sampler, the process can be repeated till a relatively mean-
ingful number of samples are generated [33]. Algorithm (2) shows a summary of
steps taken by Metropolis-Hasting sampler to generate a meaningful sample from
the Gibbs probability distribution for a binary image. The proposal distribution q
is considered to be a uniformly random scheme.

2.4.3 Simulated annealing

Simulated annealing (SA) is an optimization method proposed by Kirkpatrick et
al.(1983) [39]. It finds the global minimum/maximum of a function that may possess
several local minima/maxima [40]. In image analysis problems, SA usually seeks the
maximal modes of the probability distribution on image space. For a Gibbs random
field, MCMC sampling methods provide a random sample of the Gibbs distribution.
However, we can apply SA to find the most probable sample, by maximizing the
Gibbs probability distribution which can be done by decreasing the temperature
(T ) during the sampling process. For that purpose, an initial configuration of
the random field is picked randomly and one sweep is done with the Gibbs or
Metropolis-Hasting sampler at a specific starting temperature T0. Decreasing T0

to T1, the next sweep is done with T1 and the process will continue while Tk → 0.
As T is decreased to zero, the Gibbs field converges to the uniform distribution on
the space of maximal modes which correspond to the field maximizing the Gibbs
probability distribution – minimizing the energy function.

Let H0(Z) = H(Z)−min(H(Z)), and for simplicity let min(H(Z)) = 0, hence
we have [31]
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Algorithm 2 Metropolis-Hasting Sampler for a binary random field with uniform
random proposal distribution

1: Start with an initial field Z(0) by assigning 0 or 1 to each site randomly.
2: k ← 0
3: Re-order elements of Z(k) according to a site-visiting schedule
4: repeat
5: for i = 1 to N do
6: Propose a value for Z

(k)
i as α, randomly. {α ∈ {0, 1}}

7: Pr ← p(Z
(k)
i =α)

p(Z
(k)
i =1−α)

8: if Pr ≥ 1 then
9: Z

(k)
i ← α

10: else
11: Pick a point r ∼ U(0, 1)
12: if Pr ≥ r then
13: Z

(k)
i ← 1− α

14: end if
15: end if
16: end for {a sample random field Z(k+1) is generated}
17: Z(k+1) ← Z(k)

18: k ← k + 1
19: until Convergence condition is met

p(Z) =
exp(− 1

T
H(Z))∑

Z∈Ω

exp(− 1

T
H(Z))

=
exp(− 1

T
H0(Z))∑

H(Z)=0

exp(− 1

T
H0(Z)) +

∑
H(Z)>0

exp(− 1

T
H(Z))

=
exp(− 1

T
H0(Z))

|M |+
∑

H(Z)>0 exp(− 1
T
H(Z))

T→0−−−→


1

|M |
if H(Z) is minimal

0 otherwise.

Therefore, as T decreases the probability distribution tends to a uniform proba-
bility distribution on the space of all configurations that minimize H. Consequently,
applying Gibbs or Metropolis-Hasting sampler on this space leads to a random field
with maximum likelihood.
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The parameter T is called the temperature [31]. In fact, the idea of SA comes
from physics, where large physical systems tend to states of minimal energy, called
ground states, if cooled down slowly enough. If T decreases rapidly, then the par-
ticles of the system do not have enough time to interact to achieve the equilibrium
point of the system, and the process will stick into local minima or non-equilibrium
point [34]. According to [34] the optimum annealing schedule for T is the logarith-
mic schedule

Tk ∝ 1/log(1 + k) (2.28)

However, the logarithmic schedule is not really practical and there are other types
of annealing schedules such as exponential schedule, which are more practical [6]

Tk = T0 b
k (2.29)

where a is constant and b is sufficiently close to 1 (b = 1 − ε, for small ε > 0) to
insure slowly enough decreasing temperature. The exponential annealing schedule
does not guarantee obtaining the global optimum at the end rather it provide a
local optimum, very close to the global solution.

Algorithm (3) shows a summary of steps taken by SA for exponential annealing
schedule to generate the most probable random field of the Gibbs probability distri-
bution, for a binary image. The practical convergence condition for the algorithm
is one of the following cases

• when T is smaller than a specific value

• when the energy function H(Z) reaches a pre-defined small value,

• when the energy function H(Z) settles down, i.e. it does not change for a
long range of time.

Where in this thesis the last criteria has been considered.
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Algorithm 3 Simulated Annealing with exponential annealing schedule

1: Choose suitable T0 and b
2: k ← 0
3: repeat
4: Do the Gibbs/Metropolis-Hasting Algorithm for Z(k) and Tk
5: k ← k + 1
6: Tk = T0 b

k

7: Z(k) ← Z(k−1)

8: until convergence condition is satisfied

2.5 Hierarchical Modeling of Markov Random Fields

The energy-based models for image analysis and reconstruction which are described
in Section 3.2 use the deterministic or stochastic iterative algorithms such as Gibbs
sampler and Metropolis Hasting sampler along with simulated annealing. Such iter-
ative methods are very slow in convergence and cause high computational time [41].
The hierarchical approaches such as multi-grid, multi-scale and multi-resolution al-
gorithms [41, 42, 43], are able to decrease the computational time significantly while
improving the quality of the results. An important class of hierarchical approaches
are Multi-grid method. However, multi-grid method is suitable for continuous-
state random fields and is based on incremental refinement of the result at each
scale. Since porous media images are binary, we review different types of energy-
based hierarchical approaches which can be applied to discret-state random fields.
Based on [42] this section provides a brief introduction to the algorithm-based and
model-based hierarchical approaches, and each is categorized into different group
of methods. Before describing each method, some notation and definitions for the
hierarchical representation of random fields are provided in the next section.

2.5.1 Notation and definition

A random field Z is a graph G = (S; ν), where S is the set of nodes (the sites) and
ν describe the relationship between the nodes (the neighborhood system). In the
hierarchical representation of a problem a class of random fields Zk are considered
when k = 1, . . . , n, where k = 1 and k = n denote the coarsest and finest scales,
respectively. In the hierarchical approach, the graph representation of a random
field becomes G = (S1, . . . , Sn; ν). The neighborhood system in the hierarchical
representation can include the spatial neighborhood system (the relationship be-
tween sites at each scale), or the inter-scale neighborhood system (the relationship
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between sites at two or more different scales). Based on the neighborhood system, a
tree-based or graph-based hierarchical framework can be defined. In the tree-based
framework, scale Markovianity is considered. Therefore, each node is connected
to the nodes at the next fine scale and no spatial neighborhood system is consid-
ered. Thus, the tree-based framework by definition does not include any cycle.
However, in the graph-based framework in addition to the inter-scale relationship,
spatial neighborhood system can be considered, therefore, scale and spatial Marko-
vianity is observed. Fig. 2.7 shows examples of tree and graph-based hierarchical
frameworks. The energy-based hierarchical models can be described by a tree or
graph-based framework, in such models the inter-scale or spatial relationship can be
described by the energy function in the Gibbs probability distribution. Depending
on the nature of the problem, one can define separate energy models for each scale
as Hk or choose a global energy model H for the whole hierarchy.

In the next two sections, four types of energy-based hierarchical approaches
are described from the algorithmic and modeling perspective. Each approach is
described briefly along with a schematic representation.

2.5.2 Algorithm-based hierarchical approaches

The algorithm-based hierarchical approaches are developed to simplify the opti-
mization and synthesizing problems in image processing, such as restoration, seg-
mentation, and sampling. These methods are based on two techniques: using an
ordered relationship on sites by a stochastic or determinist algorithmic transforma-
tion on the set of sites, known as renormalization group [42, 44], and considering
the problem as an ordered sequence of configuration spaces [45].

Renormalization group

The renormalization group method generates a multilevel structure by a multi- scale
coarse-to-fine processing. Each scale is related to the other with a transformation
such as decimation and block scaling (down-sampling). In decimation, a set of sites
at a given scale is a subset of site at the previous finer scale. In block scaling, a
site in a given coarse scale is a function (for example averaging) of a set of sites at
the previous fine scale. Then given the measurement M , the posterior probability
at scale k is defined as

Pr(Zk = wk|M) =
∑
xk+1

Pr(Zk = wk|Zk+1 = xk+1) Pr(Zk+1 = xk+1|M), (2.30)
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Graph-based representation Tree-based representation

Root Root

Figure 2.7: Graph-based representation versus a tree-based representation of the
hierarchical Markov random fields.
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where wk ∈ Ωk and xk ∈ Ωk+1, and Ωk and Ωk+1 are the configuration spaces at
scale k and k + 1,respectively. The probability function Pr(Zk = wk|Zk+1 = xk+1)
is defined based on a nonlinear transformation, such as decimation or block scaling.

Given the aforementioned nonlinear transformations, however, in general the
probability Pr(Zk = wk|M) is no more a local Gibbs probability for the coarse
scales, i.e. it can not be written as the multiplication of the marginals, because the
renormalization of the sites causes long range interaction to appear at the coarse
scales [42, 44]. Therefore, for more convenience the probability is approximated
with Pr(Zk = wk|Mk) where Mk is an estimate of the measurement at scale k.

Based on the renormalization group approach, the energy is derived at each
scale using the fine scale information. Then starting at the coarsest scale, a suc-
cessive coarse-to-fine optimization approach is used in which the estimate at each
scale is obtained by maximizing the posterior distribution, usually using simulated
annealing. The estimate, Ẑk, is the solution of an energy minimization problem at
scale k. Fig. 2.8 shows a schematic overview of the renormalization group approach.

Ordered-constrained configuration spaces

The ordered-constrained configuration spaces, named by Preteux et al. in [41, 42,
45] is motivated from multi-grid techniques [43], and is based on solving the global
optimization problem by a sequence of subspaces of the original space of configu-
ration. Staring with the coarsest scale, at each scale an estimate is obtained using
optimization algorithms such as simulated annealing, then the estimate is mapped
into the next scale and considered as an initialization guess for the optimization
problem at the finer scale. This procedure continues until the finest scale is reached.
Despite the renormalization group approach, the ordered-constrained configuration
approach preserves the Markovianity of the random fields at each scale, because at
each scale a separate model is defined, independent from the fine scale, and also
each scale is constrained by the measurement M . Therefore, the estimate Ẑk at
scale k is obtained as

Ẑk = argmin
Zk

Hk(Zk;M). (2.31)

and the estimate is mapped into the next scale using an interpolation function
D(·). Fig. 2.9 shows a schematic representation of the approach based on Ordered-
constrained configuration spaces.
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is estimated at each scale.
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2.5.3 Model-based hierarchical approaches

Based on the model-based hierarchical approach, a new global model or an ordered
family of models are defined for the whole hierarchical graph. In model-based ap-
proach a global Markov model is considered for the whole hierarchy, therefore the
scale Markovianity is inherent in the model, while in the algorithm-based hierar-
chical approaches the Markovianity is considered at each scale rather than between
different scales. The hierarchical models based on this approach use a graph or
tree-based representation as shown in Fig. 2.7. There are two main categories for
the model-based hierarchical models based on using a single Markov model or a
family of models.

Hierarchical graph-based models

Here, a random Markov process is defined for the whole hierarchy and global energy
is associated with that. The global energy can be defined either by the sum of local
potentials at each scale, leading to spatial Markovianity, and/or by a transition
probability from one scale to the other, which interrelates the sites at each scale
with the sites at the finer or coarser scale. Therefore, the prior distribution is

p(Z = w) = p(Z0 = w0)
n∏
k=1

p(Zk = wk|Zk−1 = wk−1) (2.32)

Fig. 2.10 shows a schematic representation of the hierarchical graph-based models.
Viterbi-like algorithm, or Kalman filer-like algorithms can be used to solve the
optimization problem in this case.

Ordered family of models

In the ordered family of models a family of processes are considered, each associated
with a single scale in the hierarchy. Given the original Markov model of energy
H(Z;M), a similar Markov model is defined at each scale as Hk(Zk;Mk), where
Mk is obtained using multi-resolution techniques such as wavelet or Gaussian filter
decomposition. The estimation problem is solved using a coarse-to-fine exploration
of the hierarchical structure, by starting from the coarsest level. Using energy
minimization methods such as simulated annealing, an estimate Ẑk at a coarse scale
is obtained by minimizing the energy model Hk(Zk;Mk) and then the estimate is
propagated into the next scale. In most of the cases the estimate is interpolated
at the next scale, and it can be used as an initialization guess for the energy
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Figure 2.10: Graph-based hierarchical approaches. A global energy H is defined for
the whole framework and then by estimating the measurement at each scale, the
global estimation problem is solved using Kalman filer or Viterbi-like algorithms.
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minimization problem at that scale. Another approach in propagating the estimate
Ẑk at scale k into scale k+1 is to add Ẑk with the estimate obtained at scale k+1.
At the end, if Ẑ denotes the ultimate estimate of the problem, then

Ẑ = Ẑn +
k=n∑
k=0

D(Ẑk) (2.33)

where D(·) is an interpolation operator, and n is the number of scales. Fig. 2.11
shows a schematic representation of the ordered family of models hierarchical ap-
proach. Although, the model at each scale is the same as the global Markov model,
there are other situations in which different Markov / non-Markov models is con-
sidered in such hierarchical framework [42].

For the purpose of this research, we have considered a model-based hierarchical
approach which is similar to the ordered family of models framework discussed here.
Chapter 6 describes the hierarchical framework that has been used in this research
in details.
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2.6 Summary

This chapter has provided a brief overview of the background materials required
to develop the contributions in this thesis. The chapter starts with brief intro-
duction of sampling and estimation problems and continues with a definition and
overview of porous media reconstruction. Then, different modeling approaches that
can be used to model the complex structures of porous media are discussed. The
MCMC sampling methods along with simulated annealing is reviewed. Finally,
energy-based hierarchical modeling approaches for random fields representations
are discussed briefly.
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Chapter 3

Problem Formulation

In this chapter the main research idea in the thesis is presented. The chapter starts
with a literature review on porous media reconstruction to motivate the reader, then
continues with defining, describing and formulating the problem. Then, different
aspects of the proposed approach to solve the problem are discussed and finally, in
the last section some pre-liminary results are provided.

3.1 Porous Media Reconstruction

Problem Statement: Generating artificial samples of porous media images is a
crucial process in studying different properties of porous materials. The artificial
samples are generated from a statistical model learned from a limited set of high
resolution training data, using a porous media stochastic reconstruction process.
The stochastic reconstruction is a sampling process by which typical artificial sam-
ples of porous materials are computationally generated. Depending on the absence
or presence of measurements, the process is defined as prior or posterior sampling,
respectively [6, 7]. The overwhelming majority of porous media simulation meth-
ods in the literature perform prior sampling, in which the reconstruction is based
solely on the learned prior model [3, 6, 8, 9, 10, 11]. The prior model, as the ones
described in Section 2.3, typically consists of one or more statistical functions (e.g.
two-point correlation, chord-length distribution, etc.) learned from 2D images of
the pore and solid space. However the growing availability and use of tomographic
and MRI measurements (shown in Fig. 2.2), means that in many cases it is desirable
to study a particular physical sample, in which case measurements are also avail-
able, and the reconstruction should reflect the pore and solid structures appearing
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in the measured sample, thus a posterior sampling approach [12] is needed. This
approach is based on fusing the information presented in the measurements and
the prior model.

Fusing low resolution measurements with high resolution data has been studied
recently in porous media literature. Considering the measured porosity as an initial
condition, Zhao et al. [25] have proposed a stochastic reconstruction method based
on combining two-point correlations and lineal path functions. Okabe and Blunt [5]
have included low resolution information obtained from tomographic images of
porous media in which only large pores are resolved. In their method, the large
pores are reconstructed based on the tomographic data while the unresolved small
scale structures are generated according to the prior model, independently from the
large pores. There are two problems with this approach

• the measurements are not explicitly coupled with the prior model in comput-
ing a reconstruction sample,

• only a small portion of the information provided by the low resolution 3D
measurements is exploited, namely the overall sample porosity and the pres-
ence of pore and solid domains.

More specifically, low-resolution measurements, can be rich sources of informa-
tion. For instance, X-ray computed tomography or MRI measurements resolve
not only the relatively larger pores, but also provide information on the local
(voxel-scale) porosity of unresolved structures at different scales. In addition, MRI
can provide 3D maps of parameters sensitive to the geometry and connectivity
of unresolved scales [46]. For example, Pomerantz et al. [47] have recently pre-
sented spatially-resolved measurements of the decay of transverse magnetization in
a porous material and analyzed them to obtain the spectrum of decay constants,
T2, at a voxel. The physical interpretation of a T2 spectrum as a distribution of
pore surface-to-volume ratio, S/V , provides additional information on the geometry
(pore size) of unresolved structures [4, 48]. Therefore, in addition to the local poros-
ity information provided by the MRI measurements, the measurements of the pore
size at different scales can enrich the stochastic reconstruction process. Both types
of measurements can be fused with the prior model to reflect different statistical
features and aspects of a given material.

As motivated by the stochastic reconstruction of porous materials, the challenge
here is how to fuse the prior model with different types of measurement or con-
straints, to form a posterior model and then how to generate samples from the
posterior model.
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3.2 Modeling

Image reconstruction, which is an inverse problem, can be viewed as an image
resolution enhancement problem in which multiple observations are fused to gen-
erate a data with better resolution and possibly less noise. Based on the presence
or absence of prior knowledge, the reconstruction task is done using a Bayesian
or non-Bayesian approach, as described in section 2.1. In a non-Bayesian case
(Fig. 3.1 (a,b)), multiple observations can be combined using methods of super
resolution and image fusion [49] to generate high-resolution realizations. The super
resolution methods are based on combining multiple measured images taken from
a same scene, to generate an image with higher resolution from the measurements.
The multiple measurements are the same except for a sub-pixel shift, rotation or
noise [49]. However, in the case that the luxury of multiple images are not avail-
able, such as in porous media reconstruction, this approach is not applicable. In
addition, the super resolution methods are based on obtaining an estimate using
estimation methods described in Section 2.1.1. While in porous media reconstruc-
tion we are facing a sampling problem, seeking a typical realization drawn from the
prior or posterior model [7].

In multi-resolution image fusion approaches [16] (Fig. 3.1 (b)), the image data
are decomposed into multiple scales using multi-resolution decomposition methods
such as wavelet transform. Then the image data at multiple resolutions are fused
using pixel-based or region-based fusion algorithms [16], and finally the fused im-
age is transformed into the original domain. The multi-resolution image fusion
approaches assume that the images are obtained from the same scene, but with
different modalities – an assumption which is not true in porous media reconstruc-
tion. The porous media images which are going to be fused are obtained from the
same material rather than the same scene, so they need to obey the same statistical
features. Therefore, the multi-resolution image fusion techniques are not practical
here, rather we need to define a statistical fusion approach to combine the informa-
tion obtained from the high resolution and low resolution images of porous media,
as shown in Fig. 3.1 (c).

The limited number of 2D high resolution samples of a porous material contain
valuable and critical information about the structures and distributions of pores and
solids, although they are limited in number and they can not be applied directly
for image enhancement task. The high resolution samples are used as training data
to define statistical descriptors and to learn the parameters of the models (such as
histogram or chord-lengh) which are usually used to describe the statistical features
and characteristics of such materials. The reconstruction task uses these models as
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(a) (b) (c)

Figure 3.1: Different approaches in data fusion: We may be registering and fusing
multiple images (a), fusing data across resolution (b), or statistical fusion through
a model (c), as we propose in this paper. Although (b) and (c) appear superficially
similar, in (b) the two data sets correspond to the identical underlying images,
whereas in (c) the data sets obey the same statistics

a priori knowledge to generate artificial samples.

Considering the prior model obtained from the 2D high resolution samples, we
propose a Bayesian image reconstruction approach by which the low resolution
measurements such as MR images are coupled with the prior model to generate
artificial samples (Fig. 3.1 (c)). In this approach there is no need to have the
measurements and high-resolution realizations from the same original image, since
rather than fusing the images physically, we consider that the images share the
same statistics and consequently we fuse the images statistically.

The measurements available for reconstruction may be (i) weakly constrain-

40



(a) Sampling (b) Estimation

Figure 3.2: Sampling and estimation. In sampling (a) there is a continuum between
prior and posterior sampling, depending on the measurement noise variance σ2

M –
the degree to which the unknown random field is constrained by the measurements
relative to the prior. In estimation (b) there is a continuum between Bayesian and
non-Bayesian problems, depending on the regularization parameter λ – the degree
to which a prior model is present to constrain the random field.

ing, (ii) partly constraining, or (iii) fully determining, a continuum illustrated in
Fig. 3.2(a). A great many problems in image processing fall into (iii), such that
the measurements are of such a resolution and quality that no prior is needed, and
the image is processed or reconstructed in the absence of any specific prior. At the
other extreme (i) the measurements are so weak that one is essentially randomly
sampling from a prior model.

In principle, given measurements and a prior model, reconstruction can proceed
as either a sampling or estimation problem, as illustrated in Figure 3.2. Since our
measurements fail to resolve many of the fine scale details and at the same time fine
structure must be present in the stochastic reconstruction, a sampling approach is
required [7].

Fig. 3.3 shows how the posterior sampling approach combines the measurements
with the high resolution samples to generate reconstructed porous media samples.
As the unknown, training sample and themeasurements are assumed to be from
the same material they have the same statistical features.
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Figure 3.3: Posterior Sampling: The sample image Zs is used to learn the prior
model. A low resolution measurement M is taken from the unknown image ZT .
The unknown image ZT and the sample image Zs obey the same statistics.

For the statistical fusion problem, we are left with defining

• the prior model, p(·), which reflects statistical features and characteristics
of the image. The prior model will be defined using the 2D high-resolution
samples,

• the constraint term, M , usually contains measurement which is an incom-
plete/irregular observation of the original data.

Then the problem is how to generate samples which are statistically consistent with
the prior model and the measurements.

Therefore, given M we want to draw sample Z from the posterior probability
distribution, p(Z|M),

p(Z|M) ∝ p(Z) p(M |Z) (3.1)

While simple stochastic image models such as correlation models and spatial
variance [27] can be used to model porous media, they are very poor due to the
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chaotic and complex morphology of these material, and instead for discrete-state
problems (porous media images are binary) widely-used GRF are considered. Us-
ing Gibbs random fields theory, the prior model can be described by the Gibbs
probability distribution, p(·). Combining the measurement with the prior leads to
the posterior probability distribution, as shown below

Prior Posterior
H(Z) = H(Z) H(Z|M) = H(Z) + αJ(Z;M)

p(Z) =
1

Z
e−

1
T
H(Z) p(Z|M) =

1

ZM
e−

1
T
H(Z|M)

(3.2)

where J(·) is the constraint term, describing how the measurement M is incor-
porated with the model and α is a parameter balancing the the influence of the
measurement and prior in the energy function.

The way that the prior and posterior energy function are defined, is discussed
in the next two sections.

3.2.1 Prior model

The prior model can be studied in terms of three aspects:

• accuracy: determines whether the prior model reflects all the characteristics
of the original data perfectly,

• complexity: determines whether the prior model is mathematically compli-
cated or complex,

• existence: determines whether the inherent nature of the original data obey a
prior model, i.e. whether there exists a prior model, or the inherent nature of
the problem does not obey a prior model and an artificial prior model should
be considered for the purpose of regularization.

Porous media have inherent characteristics and features that can be asserted by
a prior model citeAdler,Torquato,Sobczyk. However, due to the complex nature of
porous materials, the mathematical prior models used for describing their behavior
are not able to characterize all of their properties. By combining different prior
models, one is able to characterize more complex structures than a single model.
For instance, one can combine histogram model with the chord-length model to
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capture the local small structures while describing the length scale of pore and
solid space [25, 50].

The Gibbs prior probability distribution is fully characterized by the prior en-
ergy H(·). There are various possibilities for H, such as histogram, chord-length
and/or correlation models described in Section 2.3. Depending on the nature of the
problem, we can merge multiple prior models to reflect various aspects of the data.
Chordlength and histogram models are widely used in porous media reconstruction,
here we define the prior energy for these two models. It is obvious that the energy
function can be defined for other types of models as well.

Based on the histogram model defined in Section 2.3.3, the energy function
when using the histogram model is defined as

Hh(Z) =
29∑
k=1

(
‖h̄(k)− h(k, Z)‖

v(k) + ε

)
(3.3)

where h̄ is the learned histogram distribution, and h(k, Z) is the observed dis-
tribution for a given, simulated Z. The term v is the variance for the respective
histogram entries to account for sample variation. A small constant ε is intro-
duced to avoid divisions by zero, especially in the comparatively common case of
unobserved configurations k corresponding to h̄(k) = 0.

The chord-length distribution function Ci(`) [3], as defined in Section 2.3.4, can
be interpreted as the probability of finding a chord with length ` in phase i. For
a two-phase porous medium, chord-length distributions can be defined for either
phase and for chords at different orientations. It is common to limit the orientation
to the horizontal and vertical directions in 2D, in which case the chord length energy
in phase i is

H i
c(Z) =

L∑
k=0

[‖C̄i
h(k)− Ch(k, Z)‖+ ‖C̄i

v(k)− Cv(k, Z)‖] (3.4)

where C̄i
h and C̄i

v are the learned model for the horizontal and vertical chords, re-
spectively, and Ci

h and Ci
v are the chord-length distributions of a simulated random

field Z. The norm function ‖ · ‖ is chosen to be an `2 norm which has a reasonable
computational complexity.

3.2.2 Measurement model

According to Eq. (3.2), the constraint term J in the posterior energy function
defines how measurements are formulated and asserted in the model. In order to
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determine J we need to

• define the forward problem function, f , which according to Section 2.1, de-
termines how measurements are related to the original data,

• define a relationship in J to include M and f .

The forward model, f , differs from one problem to another and depends on how
the measurements are generated. For instant, the low resolution measurements of
MRI can be interpreted as the down-sampled version of the original data. By down-
sampling we mean that a given datum, Mi,j, in the measurement space represents
the average of a corresponding block of pixels, Bi,j, in the original data space,
therefore

Mi,j = f({Z}i,j) =
1

d2

i∗d+d∑
h=i∗d+1

j∗d+d∑
g=j∗d+1

Zh,g (3.5)

Zh,g denote a pixel in the original image, and d is the down-sampling parameter,
such that for an n× n original image and an m×m measurement, then d = n/m.
The set {Z}i,j is the set of pixels in the original data space, corresponding to the
pixel Mi,j in the measurement space.

Then for a given sample Z, we can incorporate the measurement and the above
forward model in J , as

J(Z;M) = ‖f(Z)−M‖ (3.6)

where ‖ · ‖ is the `2 norm which has a reasonable computational complexity, and it
determines how much a given sample Z is consistent with measurement. Assum-
ing that the noise in the measurement is Gaussian, the choice of `2 norm in the
constraint is reasonable, however depending on the nature of the problem and the
statistics of the measurement, one can choose other types of norm functions as well.

Depending on the nature of the problem and how we are going to involve the
measurement in the model, different forms for J can be defined, for example in the
hierarchical formulation of the problem that we are going to discuss in Chapter 6,
other forms are defined. In this section the statistical model for fusing the prior
model with the measurement has been described. In the next section we discuss
how we can generate posterior samples from the proposed posterior model.
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3.3 Posterior Sampling and Annealing with Con-

straints

After defining the prior model and the constraint term J in Section 3.2, here we
describe how to choose the parameters T and α in the posterior model to generate
random samples. As shown in Eq. (2.6), posterior sampling produces results similar
to the solution of estimation problem (Eq. (2.5)) in the area that the measurements
are dense, and generates a random synthesis in those areas not constrained by
measured values. In fact, the measurements in the posterior distribution, constraint
degrees of freedom of the prior model.

3.3.1 Sampling from Gibbs probability distribution

In principle, to generate random samples, the posterior sampling appears straight-
forward: specify the energy function and run the Gibbs sampler as described in
Section 2.4.

In practice the problem is not at all straightforward. Astonishingly, almost all
porous media MCMC papers [31, 51] do simulated annealing to generate “random
samples” from the prior model, a procedure which succeeds because the annealing
process fails to find the optimum Z maximizing p(Z), and finds a random, near-
optimum Z instead. But here lies the problem:

• We are not seeking the most probable realization, rather we want a random
realization faithful to the prior model and measurements, that is, we wish to
draw a random sample from p(Z) at T 6= 0.

• However the energy function H(Z), empirically derived from porous media,
is really only valid at T = 0. That is, Z is unlikely to look like a porous
medium unless the empirical constraints in the energy function are asserted.

The theory of annealing and sampling with constraints has been reviewed before
in the literature by Geman [29]. Based on this theory, sampling from the Gibbs
probability distribution can proceed at a non-zero temperature T 6= 0 while increas-
ing the parameter α slowly enough [29] to infinity. On the other hand, decreasing
T and increasing α simultaneously, yield the solution of an optimization problem
in which the most probable realization is obtained. More specifically,
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• If T is constant, α → ∞, and lim α
T

= ε is sufficiently small, then we are
generating a sample Z|M from the constrained space, such that

Z|M ∈ {Z | J(Z;M) = 0} (3.7)

In this case the constraint term J is rigidly asserted.

• If T → 0, α→∞, and lim α
T

= ε is sufficiently small, then we get the estimate

Ẑ minimizing the posterior energy function, such that

Ẑ = argmin
Z

(H(Z) + αJ(Z;M)) (3.8)

In practice, for porous media reconstruction, the temperature T can not be
considered as a fixed value at the beginning, since we do not know at what value
for T we should run the sampler to generate random samples. This uncertainty
stems from how energy models H(Z|M) are developed for Z — we really do not
know any “true” model, rather we infer plausible constraints from sample data,
such that implausible Z|M is associated with a larger energy H, and plausible Z|M
with a small value of H. Because of the highly qualitative notions of plausibility
and implausibility, it is hardly possible to select a value of T which leads to an
accurate posterior distribution p(Z|M). This fact can be seen in Fig. 3.4. Samples
in Fig. 3.4 are obtained by doing incomplete annealing, i.e. decreasing T to a
specific point in the prior energy function. Comparing the case for T = 0.02 with
the case for T = 0.0002, the former case does not possess porous media structures,
and the later case entails less noise but still does not have the same pore structures
as the original image.

The posterior sampling problem is most effectively understood in the context
of simulated annealing [29]. As discussed in Section 2.4.3, simulated annealing
runs a Gibbs sampler, initially at a high temperature, where the image contains
purely random structures, then at progressively lower temperatures until the system
reaches a converged state.

Simulated annealing algorithm guarantees the convergence to the optimal solu-
tion if the temperature is decreased in the logarithmic form defined in Eq. (2.28).
However, as described in Section 2.4.3, the logarithmic schedule is not practical, and
usually a faster annealing schedule is used such as exponential schedule, defined in
Eq. (2.29). Using any other faster schedule than the logarithmic schedule leads to
quenching (cooling rapidly) rather than annealing. Therefore, some of the invalid
small-scale structures in Fig. 3.4 are due to rapid cooling rather than annealing.

Annealing over the posterior energy, as proposed in this research, is also based
on using an exponential annealing schedule, and consequently can be viewed as a
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(a) original (b) T = 0.02

(c) T = 0.002 (d) T = 0.0002

Figure 3.4: Samples generated by finite annealing. (b)-(d)Different samples gen-
erated from the prior model, by annealing down to T > 0.

quenching approach. However the constraint in the energy function is asserting
additional information which avoids the sample to encompass invalid structures
which might be generated due to quenching. This problem will be re-visited in
more details and from other perspectives in Chapter 5.

3.3.2 Choosing the parameters T and α

Inspired by the annealing with constraint approach presented in [29] and in Eq. (3.7),
we propose to start with a high temperature and decrease the temperature slowly
according to the exponential schedule, since as described before we can not come
up with a fixed value for T . However, due to possible noise and uncertainty in the
measurement, we do not want to assert the constraint rigidly, but rather we are
facing with a soft constraint situation. Therefore, we do not increase α, rather we
consider a fixed value for α, which is equivalent to a very slowly increasing rate as
compared to decreasing T .

48



The parameter α is chosen based on the initial values of the constraint and the
prior, such that

α = c
H0

J0

(3.9)

where H0 and J0 are the initial energy values for the prior and measurement energy,
respectively, and c is a parameter balancing the weight of the measurement in the
posterior energy function. There are three possible approaches to setting c

1. An initial balance by setting c = 1: the prior and constraint energy are having
the same contribution at the beginning of the annealing process

2. An initial dominance by the prior model by setting c < 1: the prior energy
has more contribution than the constraints term

3. An initial dominance by the constraint by setting c > 1: the constraint term
has more contribution than the prior term.

Therefore, the parameter α can be set depending on the degree of belief in the
prior and/or the measurement.

In Fig. 3.5 the prior energy during the annealing process for different choice of
c is illustrated. When c < 1, the prior has more weight in the energy function,
therefore it is going to be more effective, and we can see that the prior energy
reaches a smaller value at the end, compared with the other cases. When c > 1,
the measurement exerts a greater influence in the process and therefore the prior
may not have enough chance to get as small as for the case with c < 1.

3.4 Preliminary Results

As a preliminary experiment, we have applied the proposed posterior sampling
approach to a small set of porous media images with two different models: histogram
and Ising. The results shown in Fig. 3.6 are generated based on an equivalent
contribution from the prior and measurement, i.e. α = H0

J0
. The measurement

model is that considered in Eq. (3.6) and the forward model is the same as the
one described in Eq. (3.5), while the decimation factor d is equal to 8. As can
be seen from the figure, the Ising model can not capture the complex structures
of porous media, while the histogram model is more successful than the Ising in
reconstructing the details.

The results in Fig. 3.6 are preliminary results. More detailed results and eval-
uations are presented in Chapter 4, 5 and 6.
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Figure 3.5: Prior energy as a function of iteration for different values of c in
Eq. (3.3.2). As c gets larger than 1, the measurement term exerts a greater in-
fluence than the prior term in the process, and consequently does not allow the
prior energy to decrease as for the case with c < 1.

3.5 Summary

In this chapter, a model-based framework for image sampling and reconstruction of
porous media is introduced [12]. In contrast to the current approaches such as super-
resolution and multi-resolution image fusion, we have proposed a Bayesian statis-
tical framework in which low-resolution measurement constrains the prior model.
We have introduced a posterior sampling approach using Gibbs sampler and sim-
ulate annealing for porous media reconstruction. Different strategies for choosing
the parameters in the posterior model are discussed. At the end the reconstruction
of low resolution porous media images are provided based on Ising and histogram
prior model. The framework proposed in this chapter is extended in Chapter 4, 5
and 6 to handle more complex situations.

50



(a) Original images (b) Measurement (c) Reconstruction
using Ising model

(d) Reconstruction
using histogram
model

Figure 3.6: Reconstructed original image (a), given measurement as (b) and using
two different models. The result using Ising and Histogram model is illustrated
respectively in (c) and (d). The resolution of original image is 8 times greater than
the measurement, i.e., d = 8.
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Chapter 4

Posterior Sampling for Two-Scale
Porous Media Reconstruction

As proposed in Chapter 3 the low resolution measurement usually obtained from
MR imaging is combined with a prior model to form a posterior model. Since porous
media are nearly fractal-like, with pores on all scales, low resolution measurements
will fail to resolve the pores at fine scales. An interesting case occurs when only
the large pores and/or solid structures are resolved by the measurements, such as
the MRI measurements shown in Fig. 2.2. Motivated by this special case, in this
chapter a data fusion approach is proposed in which different types of low resolution
measurements are coupled with a prior model for reconstructing two-scale porous
media images.

4.1 Problem Statement

As discussed in Section 3.2 and shown in Fig. 3.2, based on how much information
(the resolution) the measurements are providing, the porous media reconstruction
fall into a continuum from estimation to prior sampling. Our interest lies in be-
tween, such that something of a delicate balance is required between the assertions
of measurements and prior model. This is the case with MRI or X-ray computed
tomographic data of porous media, in which relatively large pores are explicitly
resolved but smaller scale structures appear in the measured images as different
shades of gray. Although the low resolution measurements such as MRI data only
resolve the large pore, such measurements are able to provide valuable clues on the
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local porosity (fraction of pore space) for the unresolved structures. The recon-
struction of porous media in this case is a two-scale reconstruction process, since
at least the pores at one of the scales (the largest scale pores) are resolved.

The challenge in a two-scale porous media reconstruction is how to
couple the measurements with the prior and possibly incorporate other
types of measurement which can provide information on the geometry
of pores/solids to enrich the reconstruction process.

To cope with this challenge, in the next two sections we define a measurement
model and combine it with the prior model to form a posterior model and then
introduce a sampling approach based on the approach discussed in Chapter 3, to
sample from the posterior model.

4.2 Measurements as the Constraints

A typical low resolution measurement of porous media obtained by computed to-
mography or MRI measures the local porosity (the fraction of void) of a given
medium. The low resolution measurement, Mp, measures the porosity of a given
material within a pixel in 2D or a voxel in 3D. Therefore, each datum in the poros-
ity measurement corresponds to the pore fraction of a given block of pixels of the
underlying high resolution field Z.

Fig. 4.1 plots porosity measurements at three different resolutions for three
fields, the first synthetic, the second from sintered glass beads and the third from
carbonate rock. The down-sampling parameter d measures the reduction in reso-
lution from Z to M , such that each single measurement measures d × d elements
in two-dimensional Z. In (a) the measurements resolve all aspects of the field,
leaving little to do for a prior model, whereas in (c) the measurements are rela-
tively uniformly grey, meaning that any reconstructed sample is unlikely to bear a
resemblance to the measured physical sample. Of greatest interest in this chapter
are the measurements of (b), in which large-scale pores are resolved, but fine-scale
pores are not, leading to a balancing of assertions and contributions between the
prior and measurements.
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(a) Both scales (b) Single scale (c) No scales
resolved, d = 5 resolved, d = 15 resolved, d = 50

Figure 4.1: Porosity measurements at different resolutions (with downsampling
factor d). Particularly in (c) nearly all information of the image structure has been
lost, and the distinction of the two phases in the image is not inferrable from the
measurements.

Other measurements can be defined which can provide complementary informa-
tion on fine-scale structures. Consider, for example, a spatially-resolved measure-
ment of the decay of transverse nuclear magnetization, Mz(t) [47]. This measure-
ment is generally described in terms of a multi-exponential distribution of apparent
relaxation times T2i

Mz(t)

M0

=
∑

fi exp(−t/T2i) 1 (4.1)

where fi is the volume fraction of fluid relaxing at a rate 1/T2i. A number of
processes can potentially influence magnetization decay in porous media, including
bulk and surface-enhanced relaxation, and relaxation due to diffusion in the internal
and external gradients. The effects of relaxation due to diffusion can be minimized
by a proper choice of the pulse sequence and the effect of bulk relaxation, so that
the distribution of surface-enhanced relaxation times T2s may be extracted from the

1This equation and some of the text in this section are borrowed from [52] which includes
contributions from Professor Marios A. Ioannidis and Professor Paul Fieguth.
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(a) d = 5 (b) d = 15 (c) d = 50

Figure 4.2: Simulated surface-to-volume ratio measurements at three resolutions.
The measurement is a function of pore structure, even at unresolved scales. In
sharp contrast to Figure 4.1, the delineation of the two phases in the top row is
clear at even very low resolutions.

distribution of apparent relaxation times. A T2s-distribution may be interpreted
as a volume-weighted pore size distribution. That is, each relaxation rate 1/T2s

corresponds to a different pore length scale `, where ` is the ratio of pore volume to
pore surface area, Vp/S, of a region of pore space where uniform magnetization is
maintained by molecular diffusion over measurement times [4, 48, 53]. MRI is thus
able to provide a measurement Md, reflecting information on the average surface-
to-volume ratio within a pixel in 2D or a voxel in 3D. Each datum in measurement
Md reflects the average pore size of a given block of pixels of the underlying high
resolution field Z. Such a measurement provides valuable clues with respect to
unresolved structures and geometry, as illustrated in Fig. 4.2.

Moreover, as can be seen from the scatter plot in Fig. 4.3 there is no specific
linear correlation between the information that the local porosity measurement
and the surface-to-volume measurement are providing. In other words, each type
of measurement is able to provide independent information on pores and solid
structures from another.
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Figure 4.3: Scatter plot of perimeter and area. The plot provides a notion about
the correlation between the area of pores in 2D (equivalent to the volume of pores
in 3D), corresponding to the local porosity measurements, and the perimeter of
pores in 2D (equivalent to the surface of pores in 3D).

Including both measurements leads to a modification of the constraint term in
the posterior energy of Eq. (3.2) as

J(Z;M) = J(Z;Md,Mp) = ‖fd(Z)−Md‖+ γ‖fp(Z)−Mp‖ (4.2)

where fd(·) and fp(·) are the forward models for surface-to-volume ratio and poros-
ity measurements, respectively, and γ is a weighting parameter between the two
constraints.

The forward model for obtaining the local porosity measurement, fp, is based
on downsampling the simulated Z according to Eq. 3.5.

The forward model fd corresponds to the relaxation of T2. A datum f id in fd(Z)
is defined as

f id =
f ip

P (Bi)
(4.3)

the ratio of area to perimeter, where the perimeter P (·) is defined based on the
fraction of pixels which are at the perimeter of pores in a block of pixels Bi in Z
corresponding to f id in the measurement space.
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4.3 Posterior Sampling

If we view the measurements as noiseless and the prior energy as a set of empirical
hard constraints, then the set of minimal energy configurations becomes

{Z | H(Z) = 0 and J(Z;M) = 0} (4.4)

That is, the posterior sample is a random Z chosen from the combined null-spaces
of the prior model H and measurement model J .

In practice, there are multiple reasons why this hard-constraint perspective
becomes impractical:

1. It is possible for the null spaces of H and J to be non-intersecting, meaning
that no solution exists for Z. In other words, there might be inconsistencies
between the information provided by the prior model and the measurements,
such that all valid structures in one will be forbidden in the other.

2. An energy function which contains terms which either permit or forbid hy-
pothesized states leads to an energy map with abrupt local minima, which
present difficulties to simulated annealing. Continuous energy functions are
more likely to lead to robust convergence.

3. Given a finitely-sized sample, it is not possible to infer rigid rules regarding
the prior model. At best we can infer that certain behaviors are more or less
likely to occur, again leading to a continuous definition for the prior energy
H.

If the measurements are treated as exact, then our posterior sampling problem is an
example of annealing subject to hard constraints, a problem which has previously
been investigated [29], in which we seek a random sample from p(Z), subject to
precisely matching the measurements:

{Z ∼ p(Z) | J(Z;M) = 0 }. (4.5)

Since the hard constraint is not easily asserted, in practice this is most easily
accomplished within the context of annealing by asserting the hard constraint to
an ever increasing degree, annealing over

H(Z|M) = H(Z) + αJ(Z;M) (4.6)
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such that α→∞ as T → 0. The result of this annealing is to produce a posterior
sample, forced to be consistent with the measurements, and randomly sampled from
the prior within the constrained space.

In practice we have used an exponential cooling schedule for T , starting with
a high temperature T and small α, and continuing by decreasing T very slowly
with constant or slowly increasing α. The sampling process starts with a purely
random binary image, without any special initialization or porosity assertion, since
the measurement in the energy function will itself constrain the local porosity dur-
ing the annealing process. When the measurement constraints are satisfied, the
temperature is fixed at Tc 6= 0 and the Gibbs sampler continues sampling from the
constrained space in Eq. (4.5), at non-zero temperature.

In the more usual event of imprecise measurements, the setting of the relative
weight α as a function of annealing iteration is less clear and remains an open
problem.

4.4 Results and Evaluation

We have applied constrained sampling on various data shown in Figure 4.4 (a):
the small-large circle toy problem, a sample of real vuggy carbonate rock, and
two physical models of vuggy carbonate rock made of sintered glass spheres [4].
According to repeated tests, all examples are based on a chord length prior, with
the exception of the first sintered spheres, for which a histogram distribution acts
as the prior model. In all cases an exponential annealing schedule was used, as
follows

Tj = T0 b
(j−1) (4.7)

where j indicates the iteration and T0 is the starting temperature. The parame-
ter γ in Eq. (4.2) was set to make equal the initial energies of the porosity and
surface-to-volume ratio measurements, and the initial value of α in Eq. (4.6) was
set to make an initial balance between the prior and measurements terms. The
sampling algorithm is converged when then energy does not changed for around
100 consequent iterations. Using MATLAB programming on a machine with 3.0
GHz CPU and 1GB RAM, the reconstruction of 512 × 512 samples are generated
within twenty hours.

A first set of samples, generated by the proposed constrained sampling approach,
are shown in Fig. 4.4. In row (d) of this figure we can see a stunning enhancement
of the low-resolution measurements of rows (b) and (c). Indeed, (d) reproduces
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many of the finer-scale features seen in the original images of (a), but which are
completely lost in the measurements (b). Although the prior model does not have
any specific preference for the two different structures represented in the small-large
circle data, the reconstructed sample does contain structures at two distinguishable
scales due to using the information provided by the measurements. The samples
are not perfect, of course, and are particularly limited by the sophistication and
quality of the prior model. In particular, our use of a single, stationary prior model
has some difficulty in reproducing fine details in the nonstationary fields of the
leftmost and rightmost columns in Fig. 4.4.

Fig. 4.5 shows three posterior samples of sintered glass spheres, all three drawn
from the same prior model and the same measurements. That the three samples
are different, despite being drawn from identical prior and measurements, serves
to emphasize the random posterior sampling nature of our approach. Features
which are resolved by the low resolution measurements, such as large pores, well
appeared in their original location where their edged have some perturbations. The
unresolved features are constrained by the pattern of low resolution measurements,
however the unconstrained degree of freedom are randomly sampled.

To quantify our results we begin with Fig. 4.6, which shows the correlation
between the original and reconstructed data. Because a pixel in the middle of a
large pore or solid is likely to be the same in the original and reconstructed images,
as opposed to a pixel on a pore or solid boundary, the correlation is computed
as a function of scale, where the scale of each pixel is defined as the number of
scales over which a pixel’s value is unchanged under repeated decimation. The
resulting figure reflects the degree to which the results in Fig. 4.4 (c) are consistent
with the original data. As seen in Fig. 4.6, the correlation is significant below the
measured scale, shown as a vertical dotted-line, emphasizing that the structures in
the reconstructed results below the measurement scale remain consistent with the
original data. The MATLAB code in Appendix A shows how the correlation is
computed.

The proposed method has been compared with another method described by
Okabe and Blunt [5], which proposes a modified form of posterior sampling, in
which areas where measurements are purely white or black (i.e., pore or solid) are
preserved, with the remaining values filled by prior sampling. Because the fraction
of black or white pixels in the measurements is clearly a decreasing function of the
decimation factor d, as shown in Fig. 4.7, the performance of this method is likely
to suffer as d increases. Indeed, the results in Fig. 4.8 confirm this conjecture,
and furthermore show the strength of the proposed posterior sampling approach.
Fig. 4.8(c) suffers from blocky structures and pores completely disappearing as they
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Small-large circle Carbonate rock Sintered glass Sintered glass
toy problem spheres (case 1) spheres (case 2)

(a) Original media

(b) Low resolution porosity measurements, downsampled by d = 15 from (a).

(c) Low resolution surface-to-volume ratio measurements

(d) Reconstruction, using measurements in (b)

(f) Reconstruction, using both measurements in (b) and (c)
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(See the proceeding page)

Figure 4.4: Artifically reconstructed samples (bottom), using posterior sampling,
based on the low-resolution measurements in (b) and (c). The improvement in detail
in (f) relative to (b) and (c) is striking. Some of the reconstructed samples (specially
the small-large circle example) in (d) do not have the same pore size structures as
the original, since the local porosity measurement solely can not provide detailed
information on the pore size structures at different scales.

Figure 4.5: Three posterior samples: observe that the large, resolved structures
(such as the pore, top-right and bottom) remain unchanged, whereas unresolved
details (fine-scale structure) are randomly synthesized. Thus we are constructing
multiple samples, all representative of a given measured medium.
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Figure 4.6: The correlation between the reconstruction results in Fig. 4.4(d) and
their corresponding original images. The dotted line shows the measured scale. It is
clear that the reconstruction is correlated with the true field one or two scales finer
than measured. That is, the proposed posterior sampling approach does add value
below the measured scale; the fine-scale details are not just random, rather they
are consistent with the measurements, where constrained by the measurements, and
consistent only with the prior model where not constrained by the measurements.

Figure 4.7: Fraction of purely black or purely white pixels in the measurements as
a function of downsampling for the sintered glass spheres.
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fail to be explicitly resolved in the low-resolution measurements. The key to our
results is that a given feature is not either perfectly resolved or fully unresolved,
rather the degree to which the measurements resolve a feature lies on a continuum.
Even grey, low-resolution measurements offer some constraint on the reconstruction,
and it is the interaction between measurements and prior model which provides the
consistent results, specifically with respect to the middle pore in Fig. 4.8(d).

Next, Fig. 4.9 shows the correlation, computed as in Fig. 4.6, between the
reconstructed samples and original data for three different approaches:

1. Random sampling (no prior) constrained by the measurements,

2. Prior sampling constrained on pure black and white pixels, as in [5],

3. Our proposed posterior sampling.

In the first method no prior is involved and the results are generated randomly,
only consistent with the measurements. The second method [5] leaves the pure
solid and pore areas unchanged in the reconstructed image, while the rest are gen-
erated through a prior sampling approach. As is expected, using only measurements
(first method) or using uncoupled measurements and prior (second method) lead
to reconstructions in which little or no relevant detail is created at scales finer than
the measured one, whereas our coupled, measurement-prior posterior sampling ap-
proach leads to more strongly correlated details.

A similar conclusion can be reached by examining the overall reconstruction
accuracy, measured in terms of Mean Squared Error (MSE), between the original
and reconstructed samples. The MSE between true field G and reconstructed field
Z, can be computed as

MSE =
1

n2

∑
i

|gi − zi|2 (4.8)

where n is the size of the image. Fig. 4.10 plots the MSE for the three different
methods described above as a function of decimation factor d. Compared with the
two other approaches, posterior sampling produces results more consistent with the
original sample.

To study how much the structures in the results are similar to real porous me-
dia, we have evaluated the reconstructed samples under statistical models learnt
from real samples, such as histogram and chord length models shown in Eq. (3.4)
and (3.3). These models reflect valid statistical structures and features of porous
media. The values shown in Table 4.1 in fact, indicate the dissimilarity between the
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(a) The original data

Decimation d = 10 Decimation d = 15 Decimation d = 20

(b) Local porosity measurement at different resolutions

(c) Reconstruction, using prior sampling as in [5]

(d) Reconstruction, using the proposed posterior sampling

Figure 4.8: Reconstructed artificial samples. Because the method of [5] relies on the
presence of purely white and black measurements, as d increases the reconstructions
suffer from blocky artifacts and lost pores (as in (c)). Posterior sampling, on the
other hand, is able to use shades of gray in the measurements as constraints on the
random field, and therefore is able to tolerate reduced resolution more gracefully.
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(a) d=3 (b) d=5

(c) d=10 (d) d=30

Figure 4.9: Correlation between reconstructed and original data (for sintered glass
spheres) comparing our proposed approach (posterior sampling) with two other
methods, as a function of scale, for four different values of the decimation parameter
d. The dotted line shows the measured scale in each case. The proposed method
is more successful in reconstructing structures finer than the measured scale, with
the distance between the circled and squared curves essentially representing the
improvement of our proposed method over that of [5].
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Figure 4.10: Mean-Square Error (MSE) between the reconstructed and true fields
as a function of decimation factor d for sintered glass spheres. The four lines show
MSE corresponding to a purely random field, a prior-free reconstruction based on
measurements only, the prior sample constrained on pure black and white pixels in
the measurement [5], and our proposed sample.

Table 4.1: Dissimilarity between the original and reconstructed samples for sintered
glass spheres, case 1. Comparing the numbers within each row, we observe that
using both measurement lead to smaller numbers, meaning more consistency with
the original data.

Measurement
Prior model

Md & Mp Md Mp

chord length Horizontal chord 0.0089 0.0581 0.0118
model Vertical chord 0.0112 0.0724 0.0142

Histogram White histogram 0.000007 0.00150 0.00013
model Black histogram 0.000016 0.00031 0.00003

reconstructed and real samples of porous media in terms of chord length and his-
togram models. These values are obtained by supplying the reconstructed results
into Eq. (3.4) and (3.3) when using different types of measurements in the recon-
struction process. As can be seen from this table, when both measurements are
involved in the reconstruction process, the dissimilarity decreases, i.e. the results
contain more consistent porous media structures and features.

Finally, in Fig. 4.11 we illustrate the application of our proposed approach to
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real MRI measurements. The prior model is learned from accurate, high-resolution
images, shown in Fig. 4.11(a). However, in contrast with previous experiments, in
which we synthesized the measurements from high resolution data, in this case the
measurements are actual MRI data [4], taken from a different, but statistically con-
sistent, sample. The resulting reconstructed results in Fig. 4.11(c) are much higher
in resolution than the measurements in (b). We can see that the large scale struc-
tures in both examples are preserved, and that unresolved small scale structures
are mostly consistent with the underlying statistics of (a). Since we do not have the
measurements corresponding to S/V for the real samples at this time, the recon-
struction is only based on one type of measurement — the porosity measurements
shown in (b). We would have obtained a better enhancement in resolution and more
consistent structures, if the S/V measurement had been also considered in the re-
construction process. Moreover, due to the significant noise in the measurements
we also expect, and see, noisy structures in the reconstructed samples primarily, we
hypothesize, because the chosen prior models are insufficiently discriminating.

The computational time and memory usage of the reconstruction process is no
more complex than that of other energy-based approaches in the literature. If CP
and CM indicate the complexity of the prior model and the constraint term J in
the energy function, then the computational complexity of our proposed method
can be written as CP +CM , relative to CM for existing methods. Because common
prior models are much more complex than the evaluation of the forward model f(·)
in the measurement constraint, in general CM � CP and therefore CP +CM ≈ CP .

The method proposed by Okabe and Blunt [5] does not anneal over resolved
solid and void regions, only reconstructing the part of the image corresponding
to grey values in the measurements. If q denotes the fraction of black or white
measurements then the computational complexity of the Okabe and Blunt method
(COB) can be written as function of the computational complexity of the proposed
method (CPS) as

COB = (1− q) CP
CP + CM

CPS (4.9)

Since q is small compared to the total number of pixels, the term (1 − q) is close
to one, leading to COB ≈ CPS. Therefore, the computational complexity of the
proposed method is comparable to current energy-based methods in the litera-
ture in which simulated annealing is used. However, the hierarchical sampling
approaches [6, 18, 54] proposed recently are able to decrease the computational
complexity caused by annealing process significantly, both in posterior or in prior
sampling.

67



(a) 2D high resolution samples (512× 512)

(b) Real 2D local porosity measurements (32× 32) [4]

(c) Reconstruction, using porosity measurement (515× 512)

Figure 4.11: Reconstruction of two types of porous media using real 2D porosity
measurements. The prior is learned from a 2D high resolution sample (a), and
a single frame of 3D MRI low-resolution sample, shown in (b), is used as the
measurement. The posterior samples in (c) are the reconstructed samples of (b),
16 times higher in resolution. The samples in (a) and (b) are not identical, but are
assumed to obey the same statistics.
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4.5 Summary

In this chapter we proposed a statistical fusion approach based on posterior sam-
pling for two-scale porous media reconstruction, in particular, with problems hav-
ing one resolved and one unresolved scale [52, 55, 56]. The key to our approach
is the simultaneous assertion of prior and measurement constraints, which leads to
superior reconstructions, possessing useful details at scales finer than that of the
measurements. An extension of the proposed approach to three dimensions should
be possible in principle. The method is likely to be limited by computational com-
plexity, unless based on a hierarchical approach which is going to be discussed in
Chapter 6.
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Chapter 5

Annealing with Constraints

Generating artificial sample, solely based on a prior model is widely used in the
literature for the purpose of porous media reconstruction [3, 6, 17, 18]. In this
method the prior energy is minimized using simulated annealing as discussed in
Section 2.4.3 , equivalent to maximizing the prior probability distribution. However,
as will be shown in this chapter, the samples generated using this method can not
represent the variability of the pore/solid structures in a given porous material,
since a single prior model can only assert a limited set of plausible or implausible
pore/solid structures. In this chapter, a constrained sampling approach is proposed
to overcome the ill-representation of the prior model. Although simulated annealing
is used to generate artificial samples, the proposed approach is based on sampling
from the constrained Gibbs probability distribution rather than maximizing the
probability distribution.

5.1 Problem Statement

Porous media reconstruction using Gibbs sampler along with simulated annealing
(a widely used method in the literature [3, 9, 10] leads to minimizing the energy
function. Simulated annealing, as explained in Section 2.4.3, is an optimization
method which can also be done under deterministic constraints depending on the
problem at hand. Maximizing the probability distribution of an image using sim-
ulated annealing leads to the most probable realization which can not represent
the variability of different structures in the data at different scales. Moreover, as
discussed in Section 3.2.1 and 3.3 it is not possible to find a true prior model to rep-
resent all aspects and variations of structures in a given porous material, therefore
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prior sampling solely based on a single prior model may lead to artificial samples
with structures at a single scale .To cover the ill-representation of the prior model,
we propose a constraint term in the model and also propose a constrained sampling
approach based on simulated annealing. In summary

We propose to consider a regularization constraint in the energy func-
tion, and use a constrained sampling approach, rather than an opti-
mization approach, to generate artificial samples of porous media. The
challenge here is how to define and incorporate the constraint in the en-
ergy function and how to choose the temperature T and balance between
the prior and the constraint to generate the sample.

In the following section we study the variability of different structures of porous
media images at different scales.

5.2 Variability of the Samples

The artificial samples generated from the prior Gibbs probability distribution,
Eq. (2.12), are required to represent the variability in the training data S. The
variability of the training data can be studied in terms of different statistical de-
scriptors, as the ones discussed in Section 3.2. We consider chord-length distribution
function, described in Section 3.2, which is a reasonably widely used probability
function in porous media reconstruction [3], to study the variability of the training
data, although other types of models can be used for this purpose.

As can be seen from Fig. 5.1, a high resolution sample of porous media, used as
the training sample in the reconstruction process, has various structures at different
scales.

To study the variations in S at different scales, multiple random sk – truncated
images from S at size k×k — have been considered. Each sk has its corresponding
chord-length distribution leading to different energy function. In Fig. 5.2 panel (a),
superimposition of various chord-length distribution for different sk is shown, and
panel (b) shows the variability of chord-length distribution for different k. This
variability is due to having different structures at various scales in the training
sample S. As can be seen from this figure, smaller k leads to more variability.

The annealing process used in the literature to generate artificial samples, starts
at high temperature, where the probability distribution p(·) is only a weak function
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Figure 5.1: Two examples of porous media with different structures at different
scales.
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(a) Superimposed chordlength
distributions for multiple sam-
ples.

(b) Variations in the training
sample S at different scales (k).

Figure 5.2: Variation of the model with respect to the size of the training sample sk.
(a) shows a set of superimposed chordlength distributions taken from different parts
of a large image shown in Fig. 5.1. Note the considerable variation between samples.
For (b) we have considered a set of images of size k×k (k = 64, 128, 256, 512, 1024),
and inferred the average chordlength probability and its variability as a function of
k. Clearly as k decreases the variability increases.
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Figure 5.3: Superimposed chordlength distributions resulting from annealing down
to T = 0, with two example images shown in the right. The variation between
artificial images is smaller than the original variation shown in the Fig. 5.2 (a).

of Z, thus Z is relatively unconstrained, and as T decreases the system is driven
to lower energy until the minimum energy, the most probable Z maximizing p(Z),
is obtained. However, the images generated by this method can not represent the
original variability in the training sample shown in Fig. 5.2, since T is decreasing
down to zero and consequently the probability distribution p(·) is maximized. As
shown in Fig. 5.3, the superimposed chord-length distribution of the generated
images through this method are almost the same and do not contain the required
variability in comparison to the original variability shown in Fig. 5.2 (a).

Theoretically, for Gibbs sampler to generate uniformly distributed random sam-
ples from Gibbs probability distribution along with simulated annealing, the relax-
ation parameter T should be decreased down to a non-zero finite value such as
Tf 6= 0, and the rate of decrease should be logarithmic [34]. However, we do not
know at what finite value of T the Gibbs sampler generates independent random
sample from the chordlength distribution. Even if Tf can be determined, the log-
arithmic annealing schedule causing high computational time, should be used to
guarantee generating independent random samples, and using fast non-logarithmic
schedules leads to quenching (rapid cooling), instead of annealing. The small vari-
ability in Fig. 5.3 is due to quenching rather than a typical variability in typical
random samples. Quenching assumes upon decreasing T faster that the logarithmic
schedule, since logarithmic schedule involves very large computational time.

Moreover, even if we anneal the energy function down to small enough Tf 6= 0
(using logarithmic or non-logarithmic schedule), although large scale structures are
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Figure 5.4: Superimposed chordlength distributions of samples generated by an-
nealing down to Tf 6= 0. Although the variation in small scale structures (small
chordlength) is 21% more than the variation of the results generated by annealing
down to T = 0 in Fig. 5.3, the samples contain illegal morphologies and structures.

presented and there is more variations in the samples (since p(·) is not maximized),
the result contains illegal small scale morphologies and structures. Fig. 5.4 shows
superimposed chordlength distribution of the artificial samples generated by an-
nealing down to non-zero temperature Tf . As can be seen from this figure, the
variability in small scale structures of the samples generated by annealing down to
Tf 6= 0 is 21% more than the variability of the results generated by annealing down
to T = 0.

However, the variability is not inherent in porous media, rather it is a function
of scale. As can be seen from Fig. 5.2 (b), as k gets larger, the degree of variability
decreases. In general, for 1/f (power law, self-similar) [57] processes, there is almost
as much as variability in fine scale as in coarse scale, while for ergodic processes
(as in some of the porous materials), there is one scale from which the statistics
is stationary. Studying the variability in the training samples at different scales,
we can see from Fig. 5.5 that standard deviation (std) of a set of chordlength
distributions obtained from multiple sk decreases as k increases. Thus, the random
field is ergodic from one specific scale (k∗). Therefore to capture the variability in
the training sample a possible approach is to synthesize the image at scale k∗ – the
scale that the ergodicity of the random field is observable.

Thus, for generating random samples, one can

• synthesize an image at size k∗ × k∗ by simulated annealing. Since k∗ is very
large, synthesizing an image at that size requires a very large computational
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(a) Carbonate rock (b) Sintered glass spheres (c) Sintered glass spheres
with vugs (large pores) without vugs

Figure 5.5: Variation of the chordlength model with respect to the size of the
training sample for different types of porous media images.

time.

• consider a smaller scale k < k∗, and synthesize the image at that scale by
simulated annealing. As discussed earlier and shown in Fig. 5.3, the results
do not represent required variations in porous media.

• down-sample the training sample and synthesize at smaller scale by simulated
annealing. By down-sampling the image, we will loose small-scale morpholo-
gies information, therefore we can not reconstruct the small scale structures.

• use variable models at different scales and synthesize each by simulated an-
nealing. This makes the problem more complicated, and needs an annealing
method for variable models.

• use fixed model and synthesize an image at size k < k∗ by constrained an-
nealing.

Through the constrained sampling approach we propose to change the energy
function by adding a constraint and using constrained annealing to generate samples
form the model. More details on this approach follow in the next section.

5.3 Sampling with Constraints

To generate typical random samples from Gibbs probability distribution, we pro-
pose to
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• change the energy function to a constrained energy function,

• generate samples from the constrained energy function using constrained an-
nealing.

The constraint term in the energy function can be measurement, as discussed
in Chapter 4, or another prior model which avoids generating invalid small scale
structures observed in the non-zero temperature annealing. The constrained energy
function is defined as

Hcons(Z) = H(Z) + αJ(Z) (5.1)

where J(Z) is the constraint and α is a parameter controlling the contribution of
constraint in the energy function. The constraint term is considered to be another
model learnt from the training sample. More specifically,

Hcons(Z) = H1
c (Z) +H2

c (Z) + αHh(Z) (5.2)

where H1
c and H2

c are the chord-length distributions for the pore and solid phases,
respectively, as defined in Eq. (3.4), and Hh is the histogram distribution as defined
in Eq. (3.3). The energy function defined in Eq. (5.1) does not contain any term
related to the measurement. However, in the reconstruction from a low resolution
measured sample, one can add another term the same as discussed in Chapter 4,
as the measurement constraint.

Having the constrained energy function defined in Eq. (5.2), we need to generate
samples from the model. Basically, as discussed in Section 3.3 and in [29] one should
fix T 6= 0 and increase α up to infinity to satisfy the constraint. However, we do
not know what specific value for T leads to porous media samples.

Therefore, we propose to start with large T and small α, and decrease T while
increasing α very slowly. This annealing process has a critical phase in which the
large-scale structures are generated. Up to this phase both terms in the energy
function contribute to assert valid structures in the sample. As shown in Fig. 5.6,
by critical phase we mean when a steep decrease happens in the energy function.
The energy level for the following methods has been studied in Fig. 5.6

1. annealing the unconstrained energy function H down to T = 0,

2. annealing the constrained energy function Hcons down to Tf while increasing
α up to infinity.
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(a) Energy level for con-
strained and unconstrained
energy

(b) Prior and constrained
term in the constrained en-
ergy function

Figure 5.6: How the energy function changes as a function of iteration for two ap-
proaches: unconstrained and constrained annealing. In both annealing approaches
there is a steep decrease in the energy function, that we name as the critical phase.
In panel (a) the energy level for both approaches is illustrated. Panel (b) shows how
both terms in the constrained energy (Hcons) changes for the proposed approach.

Fig. 5.7 shows the samples generated from constrained energy Hcons and their
variations, right after the critical phase. As can be seen from the superimposed
chord-length distribution in Fig. 5.7, the variation between samples is more than
the variations between images shown in Fig. 5.3 generated from unconstrained
annealing.

After the critical phase, we set T to be fixed (Tf ), and by continuing increasing
α let the constraint term change the small scale structures. According to Fig. 5.3
sampling at Tf from the unconstrained energy function in Eq. (2.12) does not lead to
a result with valid structures, or we may say that it does not generate porous media
samples. With the proposed method, we are sampling at Tf , while the constrained
term J(·) contributes in the process from the beginning and also after T is fixed.
Thus, it can change the small scale structures into the valid structures. Therefore,
by the proposed method we end up sampling from the constrained space

{Z|Z ∈ Ω, J(Z) = 0}. (5.3)

Fig. 5.8 shows the variability of the samples generated by the proposed method.
We can see that the variability is 39% more than the one in Fig. 5.3.
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Figure 5.7: Constrained sampling by annealing down to finite T and increasing α
up to αf 6= ∞. Tf and αf are set according to the critical phase(Fig. 5.6), when
a steep decrease happens in the energy function. Although the variations in the
samples are 22% more than the unconstrained annealing shown in Fig. 5.3, the
samples still contain noisy and invalid structures.

The proposed approach can be generalized to have more than one constraint
in the energy function and changing the parameter for each constraint to control
their degree of contribution in the whole process. Although, we can synthesize
and reconstruct porous media at smaller scale while having more variations in the
samples, for larger image synthesis we still cope with large computational time, and
the original variability in the training sample has not been reached completely.

The proposed method is describe in Algorithm 4. The rate of decrease for T is
given in Eq. 2.29 and the increase rate for α is as follows

αk = α0a
k−1 (5.4)

where a is close enough to 1, such that a = 1 + ε, for small ε > 0.

5.4 Results and Evaluation

We have considered chordlength distribution for the prior term H(Z) and histogram
model as the constraint term J(Z) in the constrained energy function.

Fig. 5.9 shows 256 × 256 samples generated using constrained sampling. We
have evaluated the artificial samples in terms of the following criteria
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Figure 5.8: Constrained sampling by annealing down to finite Tf and increasing
α up to infinity. Tf is chosen according to the critical phase, and the algorithm
will stop when the constraint in the energy function is satisfied, i.e. J(Z) = 0.
The variations in the samples as shown in the left panel are 39% more than the
variations in Fig. 5.3 obtained by annealing down to T = 0.

• How consistent the structures and morphologies presented in the results are
with porous media

• How close the results are to a typical random sample

For the first criterion, we have considered two different porous media models
learnt from the training sample sk at size 128 × 128 and evaluate the results in
terms of those models. We have evaluated the samples obtained from constrained
sampling and unconstrained annealing in terms of histogram model. The evalua-
tion shows that the error for unconstrained annealing (annealing the unconstrained
energy down to T = 0) in terms of histogram model is 17%, while for constrained
sampling it is 3%. The error for unconstrained annealing in terms of chordlength
model is 0.74%, while for constrained sampling it is 0.06%. Fig. 5.10 shows how
much the reconstructed samples are compatible with the chordlength model learned
from the original training sample.

For the second criterion, we study the variations in different samples generated
by constrained sampling and compare that with the following methods:

• Annealing the unconstrained energy down to Tf 6= 0

• Annealing the unconstrained energy down to T = 0
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(a) Samples generated
by annealing the uncon-
strained energy down to
T = 0

(b) Samples generated
by constrained sampling

Figure 5.9: Samples generated using annealing down to T = 0, and constrained
sampling.
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Algorithm 4 Constrained Sampling

1: Start with an initial random field Z(0)

2: Initialize T and α
3: while J(Z) 6= 0 do
4: Update Z(i+1) from Z(i) according to Gibbs sampler
5: if T < Tf (the critical phase has not reached) then
6: Decrease T according to exponential schedule
7: else
8: Let T ← Tf
9: end if

10: Increase α according to increase rate
11: i← i+ 1
12: end while

The variation in samples generated by constrained sampling is more than the other
methods, as confirmed in Fig. 5.11. Although there is variability in the results
generated by annealing the unconstrained energy down to T = 0, the variability is
due to quenching rather than sampling. The proposed approach generate samples
with 39% improvement in the variability.

5.5 Summary

In this chapter, an approach for sampling from Gibbs probability distribution is
proposed which is based on generating samples from the constrained energy func-
tion [58]. The previous methods in the literature used for porous media reconstruc-
tion are based on maximizing the probability distribution by annealing down to
zero temperature, since sampling at finite, non-zero temperature leads to results
containing illegal structures and morphologies. These methods generate the most
probable realizations which are different from a typical random sample of Gibbs
probability distribution, and they can not reflect the scale-to-scale variations. In
the proposed method a constraint term is added to the energy function to enable
sampling at finite, non-zero temperature while at the same time the generated
samples do not contain invalid, illegal structures. According to the evaluation re-
sults, not only does the constrained sampling approach generate samples with 39%
more variation than the other methods which are based on annealing down to zero
temperature, but also the samples are almost ten times more consistent with the
original real samples, than the ones generated by other methods.

82



Figure 5.10: How much the results are inconsistent with the original sample in
terms of chordlength model. The solid and dashed lines show dissimilarity to the
chordlength model for the constrained sampling and unconstrained annealing down
to T = 0, respectively. As the solid-line is closer to zero, the constrained sampling
method generates samples which are more similar to porous media samples in terms
of chordlength model, than the other method.
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Figure 5.11: Comparing the variations in the results in terms of standard deviation
between different methods .The standard deviation of the samples generated by
each method is illustrated and compared to the standard deviation of the original
training sample. The standard deviation of constrained sampling is closer to the
original than the others.

84



Chapter 6

Hierarchical Posterior Sampling

The large computational time and memory usage of the annealing process mainly
caused by decreasing the temperature very slowly, is a challenge in reconstructing
large samples of porous media. The hierarchical sampling approaches proposed
recently for binary image synthesis [6, 18] are able to overcome this challenge,
although these methods are based on prior sampling and no measurement is in-
volved in the process. In this chapter a hierarchical posterior sampling approach
is proposed in which the measurement is combined with the prior model at each
scale. The main contribution of this chapter is how to define a model to relate the
continuous-value low resolution measurement (coarse measurement) to a discrete-
value unknown at an intermediate scale coarser than the finest scale in the hierar-
chical framework.

6.1 Problem Formulation

Problem Statement: As proposed in Chapter 3 the sampling approach for gen-
erating porous media samples is based on Gibbs sampler along with simulated
annealing. The proposed annealing process is a slow convergence process, and it
will end-up with a posterior sample only if the temperature decreases very slowly,
based on an appropriate annealing schedule [29, 59]. Reconstruction of large 2D
samples of scientific images becomes challenging due to the large computational
time and memory usage of the annealing process. The challenge turns out to be a
barrier in 3D reconstruction of large volumes (usually larger than 256× 256) since
we are coping with a huge amount of data to store and to reconstruct.
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Hierarchical sampling approaches for binary image reconstruction, proposed
recently [6, 18], for porous media reconstruction, are able to decrease the com-
putational time significantly in reconstructing large samples. These approaches,
developed mainly for binary random fields, decompose the reconstruction problem
into several scales, and then choose different strategies to limit the number of data
points which are going to be reconstructed at each scale. However, these methods
are based on prior sampling, therefore no measurement is involved in the sampling
process. Here we propose a hierarchical approach for posterior sampling, i.e. when
the measurements are also included in the reconstruction task.

Using a ternary state space for the random fields at the coarse scale, the
challenge here is how to relate the continuous-value measurement with a
discrete-value ternary random field at an intermediate coarse scale in the
hierarchical model. We propose a measurement model describing how the
measurement is related to an unknown at each scale, and then generate
posterior samples based on hierarchical posterior sampling approach.

Before describing the proposed measurement model, we describe a general hier-
archical framework that can be applied for discrete-state random field reconstruc-
tion.

6.2 Hierarchical Framework

In this section a general framework for hierarchical approaches that can be ap-
plied in porous media reconstruction is discussed. The hierarchical framework is
discussed in terms of three main aspects

• hierarchical model: how to define the inter-scale and spatial relationship and
how to include the measurement in the model

• state space representation: how the state space of the random fields at each
scale is defined

• algorithm: how to generate a posterior sample given a hierarchical framework

Each of these aspects are described in the following three sections and at the end
of each section the relationship of each aspect with the framework that is used in
this Chapter is discussed.
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6.2.1 Hierarchical model

The hierarchical model that is used here is based on the graph-based representa-
tion of random fields as described in Section 2.5. More specifically, the hierarchical
model considers both spatial and scale Markovianity (the Markov relationship be-
tween two consequent scales), therefore it is similar to the model-based hierarchical
approaches described in Section 2.5.3. Each scale is represented by a single Markov
model similar to the global Markov model.

The spatial Markovianity of the random fields at each scale implies a relationship
between a site zki at scale k and its neighbors Nk(i) at that scale. Therefore, the
conditional probability of a pixel zki given its neighbors is

p(zki = z∗|Nk(i)) (6.1)

where z∗ ∈ Λk, the state space of scale k. The neighborhood system can encompass
the inter-scale relationship as well

N k(i) = Nk(i) ∪ Φk(i) ∪ φk(i) (6.2)

where Φk and φk represent the parents and the children of the ith site at scale k,
respectively. A more generalized approach is to extend the neighborhood to include
the grand-parents and other siblings as well,

N k(i) = Nk(i) ∪
u⋃
`=1

Φ`
k(i) ∪

f⋃
ω=1

φωk (i) (6.3)

where Φ`
k(i) stores the parents of site i at the `th coarser scale than the current

scale k, and φωk (i) indicates the siblings of site i at the ωth finer scale than the
current scale k. It is obvious that 1 ≤ u < k and k < f ≤ n.

The hierarchical model used in this chapter is the same as the model proposed
in [18], and it considers the spatial neighbors, Nk(i), and the parents at one scale
coarser than the kth scale, i.e. Φk(i) as the neighbors of a given site i at scale k.
Therefore the neighborhood system that we consider in this chapter is

N k(i) = Nk(i) ∪ Φk(i). (6.4)

In order to include the measurement in the hierarchical model we need a mea-
surement model describing how the measurement interrelate with an unknown Zk

at scale k. In Section 6.3.2 a novel measurement model is proposed for this purpose.
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6.2.2 State space representation

The state space of the porous media sample at the finest scale is a binary space:
{0, 1}. The question is how to define the state space for the scales coarser than the
finest scale. One possible approach is to consider a binary state space for the coarse
scales as well, as proposed in [6]. Considering a binary state space for intermediate
coarse scales, there is an ambiguity in what a value 0 or 1 at a given coarse scale
means at the finest scale. In other words, in order to arrive at a proper binary
pattern at the finest scale, how a 0 or 1 value at a coarse scale inter-relates with 0
and 1 at the finest scale. Ternary state space representation [18] is able to overcome
the ambiguity of the relationship between binary values at different scales, to some
extent. Rather than considering 0 and 1, the ternary state space representation
extends the state space at the intermediate coarse scale to {0, 0.5, 1}.

Based on the hierarchical framework proposed in [18], the ternary random field
representation at each scale and the parent-child relationship described in Eq. (6.4)
implies that each scale is rigidly constrained by the parents at the previous scale.
More specifically, the sites with black or white parents are frozen as black or white,
and only the sites with gray parents can change during the sampling process at a
given scale to generate a new sample. Therefore,

p(zki = z∗|Nk(i), Φk(i) = z∗) = 1, when z∗ ∈ {0, 1} (6.5)

and when z∗ = 0.5 the above probability only depends on the spatial neighbors of
zki , i.e.

p(zki = z∗|Nk(i), Φk(i) = z∗) = p(zki = z∗|Nk(i)) ≤ 1, when z∗ = 0.5. (6.6)

In this chapter a ternary state space and the parent-child relationship described
in Eq. (6.5) and (6.6) is used. It is notable that the value 0.5 at a coarse scale is only
a representation of uncertainty and can not be counted as a real value compared to
0 counted as black, or 1 counted for white. Such uncertainty causes a challenge in
relating the measurement with the random field at each scale. The measurement
model proposed in Section 6.3.2 is able to overcome this challenge.

6.2.3 Algorithm

Most common hierarchical sampling/estimation algorithms in literature are based
on a strategy in which stochastic optimization algorithms such as simulated an-
nealing along with MCMC methods, are used and the results are generated scale-
by-scale. Then the sample/estimate generated at each scale is directly or indirectly
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propagated into the next finer scales. According to this strategy the coarse scale
data can influence the fine scale information during the annealing process, however
the fine scale information is not influencing the coarse scale during annealing, since
the coarse scale is already frozen. A more general strategy is to anneal over multiple
scales simultaneously, to allow with more flexibility at each scale.

For instance, by using scale-by-scale annealing and a parent-child relationship
described in Eq. (6.5), a frozen black site at a coarse scale k leads to a large frozen
black area at the scales finer than k, which are constrained by the frozen coarse
scale. However, a non-frozen coarse scale causes more flexibility at the fine scale and
lets the coarse and fine scales influence back and force during the annealing process.
Figure 6.1 shows a schematic representation of the scale-by-scale and simultaneous
annealing strategy. According to (ii) in this figure the coarser scales than scale k
are not frozen, rather they are warm, such that some changes at the scales finer
than k can influence the scales coarser than k. An example of the “hot”, “warm”
and “cold” temperature is shown in Fig. 2.4. In the case of “warm” temperature,
the structures are not totally frozen and the small to medium scale structures have
a greater degree of freedom to change than the case with the “cold” temperature.

The degree of change in the scales coarser than a given scale is still an open prob-
lem and needs to be defined. The main focus of this chapter is how to incorporate
the measurement in the hierarchical model, and it is independent of the anneal-
ing strategy. In this chapter the scale-by-scale annealing strategy is considered,
however, the proposed approach can be also generalized easily to the simultaneous
annealing strategy.

6.3 Hierarchical Posterior Model

Based on the discussion in the previous section, the hierarchical framework that
we are using in this chapter considers the spatial and scale Markovianity in the
hierarchical model, a ternary state space representation for the coarse scales and
a scale-by-scale annealing strategy. The main challenge here is how to define the
posterior model at each scale based on the continuous-valued measurements.

The hierarchical posterior model at each scale consists of two parts: the prior
model and measurement model. The prior model is characterized by the prior
energy which reflects the spatial Markovianity at each scale. In most of the model-
based hierarchical models the measurements are estimated at each scale using
wavelet or other heuristic multi-resolution decomposition methods. Here, we do
not estimate the measurement at each scale, rather we define a measurement model
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(i) scale-by-scale annealing strategy

(ii) Simultaneous annealing strategy

Figure 6.1: Temperature profile for the scale-by-scale and the simultaneous anneal-
ing strategy. In (ii), the curves for the temperature profile overlap at a given time a,
meaning that at a given time a there are multiple scales with non-zero temperature,
while in (i) only a single scale is annealed in an arbitrary iteration a.
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coupled with the prior model. The following sections describe how the prior and
measurement models are defined in the proposed hierarchical framework.

6.3.1 Prior model

According to [18] rather than having binary random field at each scale, a ternary
random field is considered. The sample at the finest scale, Zn, is a binary image
which demonstrate the reconstructed image, and at the coarsest scale, Z0, is in the
same scale as the measurement scale. In a ternary random field representation, a
site can have three possible value: black, gray, white. According to the graph-based
model representation shown in Fig. 2.7 in Section 2.5, given n different scales, a
black, white or gray pixel at the kth coarse scale (k = 0, 1, . . . , n) represents a
2(n−k) × 2(n−k) block of black white or gray pixels, respectively, at the finest scale.

Here the histogram model explained in Section 3.2 is considered as the prior
model, although other types of prior models can be used as well. Based on the his-
togram model, for a 3×3 block as the second order spatial neighborhood structure,
there are 39 possible configurations when we are considering a ternary random field.
The prior energy at scale k when using the histogram model is defined as

Hk(Zk) =
39∑
c=1

|h̄k(c)− hk(Zk; c)|2

yk(c) + ε
(6.7)

where h̄k is the learned histogram distribution and hk is the observed histogram
distribution of a simulated random field Zk, at scale k. The term yk is the variance
for each histogram entry, to account for sample variation at each scale. A small
constant ε is introduced to avoid divisions by zero, especially in the comparatively
common case of unobserved configurations k corresponding to hk(c) = 0.

The parameters of the prior model are learned from the high resolution training
data. The training data at each scale is obtained by down-sampling the 2D high
resolution sample at the finest scale with different down-sampling parameter (d =
20, 21, 22, . . . 2n). The down-sampling function is the same as the one defined in
Eq. (3.5), except that all values between 0 and 1 are considered as 0.5 (grey). In
other words, the level for each site at a coarse scale can be black (0), gray (0.5) or
white (1), such that any site that is still black or white during down-sampling stays
the same, while anything other than black or white is considered as gray (0.5).
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6.3.2 Measurement Model

The measurement model describes how the information obtained from the mea-
surement is included in the posterior energy function. In fact, the constraint J
in Eq. (3.2) is considered as Jk(Zk;M), at each scale. The measurement, M , is
a low resolution observation, and can be described by a forward model fm(·) such
that for Z at the finest scale

M = fm(Z) (6.8)

In the forward model fm each measured pixel, mI , in M is a representative of a
set of d sites in Z, such that

mI =
1

d

∑
j∈I

zkj (6.9)

where zj is a site in the binary random field Z at the finest scale. In other words,
each mI corresponds to the average of gray values of a set of pixels at the finest
scale. Therefore, since we are considering a binary field at the finest scale (0 for
black and 1 for white), each measured pixel corresponds to the fraction of white
pixels in the corresponding set of pixels at the finest scale.

The forward model fm is able to describe the relationship between the measure-
ment and a simulated random filed Z at the finest scale. Therefore for the non-
hierachical approaches, this type of forward model is sufficient in defining the mea-
surement model in the posterior energy. However, for the hierarchical approaches
the relationship between the measurement and a random field at an intermediate
scale needs to be defined differently.

In contrast to the finest scale, it is not really possible to define such a forward
model directly for the coarse scales. The relationship between the gray values and
the measured pixels at the coarse scales is not pre-defined such as Eq. (6.9), rather
it remains unclear. For example, a value 0.8 in the measurement means 80% of
the pixels of the corresponding set of sites at the finest scale should be white,
while at a given coarse scale, this value does not always mean that much white
in the corresponding set of pixels, since some pixels may be gray at that scale.
Therefore, we can not use the same forward model defined in Eq. (6.9) to describe
the relationship between the measurement and a random field at a coarse scale.
More specifically, the value 0.5 for a site at the coarse scale means a notion of
uncertainty, and can not be counted as a real value in Eq. (6.8). According to the
examples shown in Fig. 6.2, the value 0.5 at the coarse scales does not necessarily
means half white and half black at the fine scale, e.g. we can see that some of the
large white areas, even with small portion of black, correspond to gray at the coarse
scales.
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Coarsest scale

Finest scale

Figure 6.2: Two examples of porous media at different scales. On the left, most
of the gray at the coarse scales contain almost equal number of black and white at
the fine scale , except near large black area. However on the right, the coarse-scale
gray corresponds to mostly white at the fine scale, since the fraction of white at the
finest scale is relatively large. The gray values at the coarse scales do not necessarily
corresponds to an even distribution of black and white at the fine scale.
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Figure 6.3: The relationship between the measurement and the fine and coarse
scales.

The measurement model proposed here originates from studying the fraction of
white and gray at each scale within a measured pixel. The fraction of gray (Gk)
and white (W k) at scale k are defined as

Gk = fkg (Zk), W k = fkw(Zk). (6.10)

The random fields Gk and W k have the same resolution as the measurement M ,
and more specifically, a datum gI in Gk (or wI in W k) is equal to the fraction of
gray (or white) in the corresponding 2k×2k block of pixels in Zk. It is obvious that
at the finest scale ( i.e. when k = n), fnw(Zn) = fm(Zn) and fng (Zn) = 0. Moreover,
the measurement model at the finest scale is defined solely based on the fraction of
white (W ), while at a given coarse scale k, both fraction of gray (Gk) and fraction
of white (W k) are required to be considered in the measurement model, as shown
in Fig. 6.3.

Since we do not have any gray at the finest scale, the constraint Jn at the finest
scale is defined as

Jn(Zn;M) = ‖M − fm(Zn)‖. (6.11)

To define the constraint term for the scales above the finest, we have studied the
relationship between a measured pixel, mI , and the corresponding gIs, for several
pixels, in a set of high resolution training data. Fig. 6.4 (a) shows this relationship
as the scatter plot of gI versus mI at different scales. As can be seen from this
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figure, there is a non-linear and complex relationship between these two variables.
This relationship would be difficult to model.

On the other hand, according to the definition of the forward model fm, given
in Eq. (6.9), a given mI in the measurement, in fact, shows the fraction of white,
wI in the corresponding set of pixels at the finest scale. Therefore, for an estimate
at the finest scale, to obey the measurements, the residual rI = mI − wI (for
all I) should be zero, while at the coarse scale rI can be greater than zero, and
consequently the more gray we have, the greater rI will be. Thus, we propose to
consider the relationship between rI and gI , shown in Fig. 6.4 (b), instead to define
the measurement model at an intermediate scale. This new relationship does not
contain the complexity shown in Fig. 6.4 (a). Thus we end up with a much simpler
model, such that even at the scales close to the finest scale, it can be easily defined
based on a simple linear regression.

The results in Fig. 6.4 (b) are obtained based on multiple runs and different
training samples. At the scales near the measured scale, the relationship between
gIs and rIs gets complex, such that at the two coarsest scales below the measured
scale, (when k = 1 and k = 2), it can not be described with a linear parametric
model. For these scales we propose to consider a non-parametric model.

According to multiple runs for different types of porous media images, the fol-
lowing facts are observed when studying the relationship between rI and gI

• The relationship can be approximated by a linear parametric model for scales
k > 2, as shown in Fig. 6.5

• For the two coarsest scales below the measured scale (k = 1 and k = 2), the
relationship can not be represented by a parametric linear model. Fig. 6.6
showing the estimated linear model for scale k = 1 and k = 2 confirms this
fact.

• In Fig. 6.4 (b) we see that the data are always on the lower triangle of the
space, that is rI = mI −wI ≤ gI . This inequality is always true and indepen-
dent of the pattern of data, according to the following Lemma.

Lemma. For every measured pixel mI , and the corresponding fraction of
white, wkI and fraction of gray, gkI , at an arbitrary scale k, we have
mI − wkI ≤ gkI .

Proof : Suppose that at scale k , the variables wkI and gkI correspond to the
fraction of white and gray in a block of L pixels. Suppose that lw pixels out
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Scale

k = 1

k = 2

k = 4

(a) Fraction of gray versus M (b) Fraction of gray versus M −W

Figure 6.4: (a) and (b) shows the scatter plot of fraction of gray versus the mea-
surement and the fraction of gray versus “measurement minus fraction of white”,
respectively for the Carbonate Rock data shown in Fig. 6.2. Plots in (b) are simpler
to be modeled than those in (a).
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of the L pixels are white and lg pixels are gray. Then we know that

wkI =
lw
L
, gkI =

lg
L
. (6.12)

Each gray pixel, xgj , at scale k corresponds to a block of N pixels, (Bj), at the
finest scale. For every gray pixel we attach a label wgj which is the fraction
of white in Bj. Therefore, a measured value mI can be re-written as

mI =
lw +

∑lg
j=1 wgj

L
(6.13)

Then according to Eq. (6.3.2), we have

mI − wkI =

∑lg
j=1 wgj

L
(6.14)

Since wgj ≤ 1 then we have
∑lg

j=1 wgj ≤ lg, and therefore mI − wkI ≤ gkI .
(Q.E.D.)

6.3.3 Linear parametric measurement model

The parametric model is defined when k > 2. This model is characterized with two
parameters: ak and vk. The parameter ak is the slope of the line obtained by a
linear regression of gI and rI . The variance vk represents the average deviation of
data from the estimated linear model. These parameters are learned from the high
resolution training data. Fig. 6.7 shows the estimated linear model for each scale
k > 2. The measurement is considered to be nine scales coarser than the original
image.

According to this model, the constraint term Jk in the hierarchical posterior
energy function is defined as

Jk(Zk;M) =
‖M −W k − ak Gk‖2

vk + ε
, when 2 < k < n (6.15)

where W k = fkw(Zk) and Gk = fkg (Zk) are the random fields corresponding to
fraction of gray and white respectively, and ε is a small enough number to avoid
dividing by zero in the model.
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Sintered Glass Spheres

Carbonate Rock

(a) k = 6 (b) k = 5 (c) k = 4

Figure 6.5: The relationship between fraction of gray , gI and measurement-minus-
white, rI is estimated with a linear model (red line) for two different types of
samples. The deviation from the linear model increases as we go coarser and coarser.
The deviation from the line can also be considered as a single parameter in the
model.
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Sintered Glass Spheres

Carbonate Rock

(a) k = 2 (b) k = 1

Figure 6.6: The relationship between fraction of gI and rI is estimated by a linear
model (red line). The linear model can not represent the pattern of the data at the
two coarsest scales, since the deviation from the linear model can not be defined
by a single parameter.
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Sintered Glass Spheres

Carbonate Rock

(a) Training data (b) Estimated linear model

Figure 6.7: The linear parametric model for k > 2, for two different examples.The
slopes are almost equal to 0.5 for all scales, which means that at a given intermediate
scale, half of the pixels corresponding to gray in G should turn to white.
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6.3.4 Non-parametric measurement model

The non-parametric model is defined for the two coarsest scales below the measured
scale, i.e when k = 1 and k = 2, since at these scales the relations between gI and
rI can not be modeled with a simple parametric model. The non-parametric model
is defined based on the conditional probability of having a certain fraction of gray
given a measured value in the measurement, or equivalently rI . This conditional
probability can be re-written according to Bays rule, as

P (Gk = G∗|M −W k = R∗) ∝ P (M −W k = R∗|Gk = G∗) P (Gk = G∗). (6.16)

where k = 1, 2. Then Jk is modeled as the logarithm of the conditional and
marginal probabilities defined in (6.16), i.e.

J(Zk;M) = |log(P (M −W k = R∗|Gk = G∗))| + |log(P (Gk = G∗))| (6.17)

where W k = fkw(Zk) and Gk = fkg (Zk), based on the forward models defined in
Eq. (6.10)

Non-parametric estimation of the conditional and marginal probabilities

The conditional probability in Eq. (6.16) can be estimated using a parametric
or non-parametric probability density estimation, However, as can be seen from
Fig. 6.8 in which the normalized histogram of rI for different values of gI are
shown, the data do not follow a smooth shape of well-known probability distribu-
tion functions, therefore a non-parametric probability density estimation approach
is proposed here.

The conditional and marginal probability in Eq. (6.16) can be estimated using
non-parametric probability density function (pdf) methods, such as kernel density
estimation [60, 61]. The kernel estimation methods are based on placing a window
function K, known as the kernel function, at the observations, and then summing
over the kernels to form the probability density function. Given observations xi, i =
1, . . . , n, the probability density is defined

p̂(x) =
1

Nh

N∑
i=1

K(
x− xi
h

) (6.18)

where h is the width of the kernel function, also called smoothing paramter or band-
width. Rather than a fixed smoothing parameter, one can adjust h based on the

101



Sintered Glass Spheres

Carbonate Rock

(a) gI = 0.25 (b) gI = 0.5 (c) gI = 0.75 (d) gI = 1

Figure 6.8: The normalized histogram of rI at scale k = 1 for different fraction of
gray, gI , for the training data shown in Fig. 6.7.

density of the observations, leading to the variable kernel density estimation [61].
Considering dj,s to be the distance from xj to the sth nearest point in the set
comprising the other N − 1 data points, the variable kernel estimate is defined as

p̂(x) =
1

N

N∑
i=1

1

h dj,s
K(
x− xi
h dj,s

) (6.19)

where h is the overall smoothing parameter. The kernel width placed on point xj is
proportional to the density of data around that point, such that the data points in
sparse regions have flatter kernels than the ones in dense regions. Choosing s =

√
n

has proven to be a wise choice [61].

To estimate the conditional probability in Eq. (6.16) variable kernel density esti-
mation defined in Eq. (6.18)is considered. When k = 1, the variable gI corresponds
to a 2 × 2 block in Z1, so the state space for gI is the set { i

4
|i = 0, 1, . . . , 4} =

{0, 0.25, 0.5, 0.75, 1}, and when k = 2, it is the set { i
16
|i = 0, 1, . . . , 16}. There-

fore, we estimate five probabilities at scale k = 1 and 17 probabilities at scale
k = 2, using variable kernel pdf estimation method. The estimated pdfs are also
normalized to form a probability distribution function. Fig. 6.9 shows examples of
the conditional probability distribution for different values of gI at scale k = 1, and
for two types of porous media examples, shown in Fig. 6.7 (a).
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Sintered Glass Spheres Carbonate Rock

Figure 6.9: The conditional probability distribution of M − W given a certain
fraction of grey, in one scale below the measured scale, k = 1, for two different
samples. The probabilities are learned non-parametrically from the high resolution
training data in Fig. 6.7

The marginal probability of gray P (Gk) is estimated using the histogram proba-
bility estimation method [61]. However, rather than considering bins with a specific
width, the histogram is calculated at a given value of gI , since gI is a discrete vari-
able. Fig. 6.10 shows the marginal probability distribution of gray at scale k = 1, 2,
for two different images.

6.4 Hierarchical Sampling

The reconstruction task is done by Gibbs sampling from the posterior probability
distribution [34]. The hierarchical sampling used here is a top-down approach based
on Gibbs sampler along with simulated annealing, as proposed in [6, 18, 42]. We
initialize at the measurement scale, k = 0, based on the measurement such that
every pixel in Z0 stays white/black if the measurement is white/black otherwise it
is considered as gray. For the noisy measurement we can start with purely gray Z0.
Then Z0 is projected to the next scale, k = 1. At this scale the black or white pixels
in the projected random field are frozen while we anneal only over the gray pixels,
using the flat annealing approach proposed in Chapter 3 and 4. This procedure
continues until the finest scale is reached. The sample generated at each scale is
consistent with the prior model at that scale and the measurement. Fig. 6.11 shows
the reconstruction based on the proposed modeling and sampling approach. The
reconstructed image and the original image does not need to be exactly the same,
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Sintered Glass Spheres Carbonate Rock

Figure 6.10: The estimated marginal probability distribution of the fraction of
gray, G, at scale k = 1, for two different samples. The probabilities are learned
non-parametrically from the high resolution training data in Fig. 6.7. The image
used to generate (a) consists of small black/white structures, therefore large fraction
of gray (gI > 0.5) are more probable to happen than the small ones at the coarse
scales, while the image used to generate (b) has large areas of white and black and
even at a very coarse scale we do not expect to see lots of gray.

since we are generating random samples from the model, rather they need to obey
the same statistics.

In order to evaluate the performance of the proposed measurement model, we
have compared the proposed model with another model, we call it as average model,
in which the gray value 0.5 is directly considered in the measurement model, such
that

Jk(Zk;M) = ‖M − fkm(Zk)‖ (6.20)

where fkm is similar to the down-sampling forward model defined in Eq. (6.8) and
Eq. (6.9), but with different down-sampling parameter, such that d = 2k. The
comparison results are shown in Fig. 6.12. Since the measurement values are very
close to zero in Fig. 6.12 the measurement energy defined based on Eq. (6.20)
likes to change most of the pixels to black. Therefore, the results have insufficient
white areas. Comparing the results in (a) with (b), we observe that the proposed
measurement model is able to provide more accurate assertion for the fraction of
black, gray and white at each scale.

The focus of this chapter is on how to incorporate the continuous-valued mea-
surement with a discrete-valued unknown at an intermediate coarse scale in the
hierarchical model, and more specifically how to define a posterior energy func-
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Sintered Glass Spheres Carbonate Rock

Measurement Original Measurement Original

scale k = 1 scale k = 2 scale k = 1 scale k = 2

scale k = 4 Reconstruction scale k = 4 Reconstruction

Figure 6.11: Reconstruction of two different porous media samples at different
scales using the proposed hierarchical approach.
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(a) Measurement

scale k = 1 scale k = 2

(b) Original data at the intermediate scales

(c) Reconstruction using average measurement model

(d) Reconstruction using proposed measurement model

Figure 6.12: Comparing the performance of the proposed model with a simple
averaging model described in Eq. (6.20). The simple averaging model does not
have any information on the fraction of gray at each scale and treats the gray
pixels as 0.5 in the measurement model, leading to large fraction of black in the
reconstructed samples.
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tion at each level of the hierarchy. The studies in [6] and [18] show a significant
improvement in the time required to generate large reconstruction using hierar-
chical approaches. One can study and evaluate the performance of the proposed
model in terms of different aspects, such as the resolution of the measurement,
the consistency with the training data in terms of statistical features, and also the
computational time. However, this chapter’s emphasis is on how to define a mea-
surement model for the hierarchical approach, and such evaluations can also be
visited in future research directions.

6.5 Summary

Reconstructing binary random images of porous media becomes intractable when
the size of the images increases. Due to the computational complexity of the non-
hierachical porous media reconstruction approaches, we have proposed a hierarchi-
cal posterior model in which the continuous-value measurement is related with a
discrete-value unknown at each scale. Based on the relationship between the mea-
surement and the fraction of grey at each scale, we define a parametric and non-
parametric model. The parametric measurement model is used for the fine scales
where the relationship can be described with a linear model. The non-parametric
measurement model is defined for the coarse scales, where the relationship is diffi-
cult to be described with a simple linear model. Comparing with a simple averaging
model, the proposed model is more powerful in generating meaningful strautures
at each scale [62].
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Chapter 7

Conclusions and Future Directions

This chapter contains a summary of research contributions developed in the thesis
and also potential research directions for future work.

7.1 Summary and Conclusion

In this thesis a statistical data fusion framework is proposed in order to fuse the
information obtained from porous media images at different resolutions. Based
on the proposed framework, a constrained sampling approach is introduced for
porous media reconstruction purposes. Despite the current estimation /optimiza-
tion methods in super-resolution, image registration and multi-resolution analysis,
the proposed approach is developed for fusing image data obtained from the same
porous material but different scenes. Based on the proposed approach typical sam-
ples of porous media are generated which are consistent with the measurement and
the prior model. The main contributions and findings of the thesis are as follows,

• Statistical fusion of different types of measurements with the prior model for
two-scale porous media reconstruction

In two-scale porous media reconstruction, only the large scale structures are
resolved by the low resolution measurement. In this thesis a statistical data
fusion approach is proposed based on posterior sampling for two-scale porous
media reconstruction. In the proposed approach the statistical model learned
from the high resolution data is fused with the measurements to construct a
posterior model. We have considered two types of measurement: low resolu-
tion local porosity and surface-to-volume ratio (S/V ) measurement. Since the
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low resolution local porosity measurement can only resolve large scale struc-
tures, we propose to add surface-to-volume ratio measurement in the model
as well. The S/V measurement provides information on the size of structures
at different scales. The proposed statistical fusion approach provides samples
which are more correlated and consistent with the real porous media samples,
as compared to the similar methods in the literature.

• Constrained sampling using simulated annealing

The stochastic reconstruction of porous media implies using MCMC methods
along with simulated annealing to generate samples from the prior model.
However porous media encompass variable structures at different scales, and
annealing over a single model without any particular constraints does not
provide samples with desired variability of the structures at different scales.
We have proposed a constrained sampling approach by which an additional
information is added into the prior model as the constraint. The proposed
constrained sampling approach allows annealing down to a finite temperature
while generating more reliable structures, as compared to annealing down to
a zero temperature. The variability of the samples generated by the proposed
method is greater than the unconstrained annealing down to zero temper-
ature. The proposed method is able to generate samples which are more
consistent with porous media images, comparing with similar methods in the
literature.

• Hierarchical posterior sampling of porous media images

Hierarchical methods in image analysis are able to decrease the computa-
tional complexity, specifically caused by simulated annealing and MCMC
approaches. The research interest in hierarchical sampling of binary im-
ages [6, 18] is limited to the case where the measurements are not involved.
Based on the hierarchical ternary representation proposed in [18], we have
proposed a hierarchical posterior model in which the measurement is related
with an unknown at each scale. A new measurement model is proposed for
each scale of the hierarchy based on the relationship between the continuous-
value measurement and the discrete-value ternary random field at that scale.
Comparing the result with the case in which a simple averaging measurement
model is defined, we have observed that the proposed measurement model
provides reliable and valuable information on the samples at the coarse scale.
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7.2 Future Research Directions

The proposed approach in this thesis provides a general framework for fusing differ-
ent types of information obtained from porous media images. A variety of promising
results obtained based on the proposed approach suggest future research directions
in 3D reconstruction of porous media. In addition to the 3D reconstruction, anneal-
ing with constraint can be re-visited again in order to derive other types of criteria
to study the variability of the samples. Also the method can be extended to in-
clude the measurement as well. Collaborative work with other colleagues in using
hierarchical methods in porous media reconstruction [63] provides possible research
directions in extending the hierarchical methods to more complicated prior models
and also considering other types of measurements in the model. Moreover, the si-
multaneous annealing strategy over multiple scales in the hierarchical framework is
a new research idea which requires an extensive study and development. Possible
future research directions are as follows:

• 3D reconstruction of porous media is a crucial step in studying different prop-
erties of porous materials. Based on the proposed framework for data fusion,
the reconstruction task can be generalized into 3D space. However, defining
a 3D prior model and relating the model with the 3D samples requires more
elaborations and is a potential future research opportunity.

• Annealing with constraints can be generalized into more complex situations
in which the measurements and other types of prior models are also involved.
In such cases, defining other types of constraints in the energy function and
choosing a suitable annealing strategy to satisfy different constraints is still an
open problem and requires more elaborations. Moreover, more sophisticated
criteria than standard deviation can be developed to study the variability of
the samples.

• The hierarchical model can be generalized to handle complex non-stationary
models as well as other types of measurements such as surface-to-volume mea-
surement. Involving surface-to-volume ratio measurement requires defining
different measurement models, which can be considered as a future research
direction.

• The simultaneous annealing strategy in the hierarchical framework, proposed
very briefly in the thesis is a new research area which can influence the opti-
mization strategies used in the hierarchical frameworks significantly.
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Appendix A

Matlab Code for Computing the
Correlation

This MATLAB code, written by Dr. Paul Fieguth, computes the correlation be-
tween an original binary data and also a set of reconstructed samples are generated
across different scales.

% the passed matrices f is original
% matrices m1, m2, m3, ... are compared against
% all matrices are of the same size and binary

% numruns indicates how many times the code is to be run, providing
% error bars on the returned values

% the ’per’ flag is for periodic fields, which are then
% randomly shifted for better averaging; set to zero for non-periodic

% ’maxscale’ indicates the greatest scale at which to test; points within
% maxscale of the boundary for non-periodic images will not be used

% scalestep controls fineness of scale sampling

% numpass allows a specifying of number of random shifts in learning scales
% set to zero or negative or [] to get default

% returned matrix fn gives an image of the learned scales in f
% returned array se gives error std dev, only if numruns > 1
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% Paul Fieguth
% February, 2008

function [sr,sc,fn,se] = scalecorr( numruns, f, per, maxscale, scalestep, ...
numpass, m1, m2 ,m3, m4, m5, m6, m7, m8 )

if (numruns>1),
mstr = ’’;
for m=1:nargin-6, mstr = [mstr ’, m’ int2str(m)]; end;
for i=1:numruns,

eval( [’[sr,sc,fn] = scalecorr( 1 , f, per, maxscale, scalestep,...
numpass’ mstr ’);’] );

num2str(sc)
if (i==1),
scs = sc; scss = sc.^2;

else,
scs = scs + sc; scss = scss + sc.^2;

end;
end;
sc = scs/numruns;
se = sqrt( scss/numruns - sc.^2 );
return

end;

sr = 1:scalestep:(1+floor(log(maxscale)/log(2)));
nonpersiz = floor((size(f)-maxscale) ./ (2^(max(sr)-1)))*(2^(max(sr)-1));
nonpershift = size(f)-nonpersiz;
if length(numpass)>0,
if numpass<=0, numpass = []; end;

end;
if length(numpass)==0,
numpass = round(sqrt(max(size(f))));

end;

sc = 0*sr;
si = 0*sr;
sr = [sr inf];

fsave = f;

117



for m=1:nargin-6,
f = fsave;
eval([’g = m’ int2str(m) ’;’]);

% get both f and g to +/- 1 values
fl = find(f<min(f(:))+0.5); fh = find(f>min(f(:))+0.5);
f(fl) = -1; f(fh) = 1;
gl = find(g<min(g(:))+0.5); gh = find(g>min(g(:))+0.5);
g(gl) = -1; g(gh) = 1;

fn = 0*f;
if (per > 0),
% compute scale over random rotations if periodic
for i=1:numpass,

ro=1+floor(size(fn,2)*rand);
co=1+floor(size(fn,2)*rand);
f=[f(:,(1+ro):end) f(:,1:ro)];
f=[f((1+co):end,:); f(1:co,:)];
g=[g(:,(1+ro):end) g(:,1:ro)];
g=[g((1+co):end,:); g(1:co,:)];
fn=[fn(:,(1+ro):end) fn(:,1:ro)];
fn=[fn((1+co):end,:); fn(1:co,:)];
a=f;
okmaskp = 0*f+1;
okmaskn = 0*f+1;
kronmask = 1;
while (min(size(a))>2 & rem(size(a),2)==0),
fn = fn + okmaskp .* (f>0.5) + okmaskn .* (f<-0.5);
a = downsamp(a,[1 2],1.5);
kronmask = kron( kronmask, ones(2) );
okmaskp = okmaskp .* kron( a>0.5,kronmask );
okmaskn = okmaskn .* kron( a<-0.5,kronmask );

end;
end;
fn = fn / numpass;

else,
% compute scale over random shifts if not periodic
fc = 0*f;
for i=1:numpass,

ro = 1+floor(nonpershift(1)*rand);
co = 1+floor(nonpershift(2)*rand);
rr = ro:(ro+nonpersiz(1)-1);
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cr = co:(co+nonpersiz(2)-1);
ft = f(rr,cr);
fc(rr,cr) = fc(rr,cr) + 1;
a = ft;
okmaskp = 0*a+1;
okmaskn = 0*a+1;
kronmask = 1;
while (min(size(a))>2 & rem(size(a),2)==0),
fn(rr,cr) = fn(rr,cr) + okmaskp .* (ft>0.5) + okmaskn .* (ft<-0.5);
a = downsamp(a,[1 2],1.5);
kronmask = kron( kronmask, ones(2) );
okmaskp = okmaskp .* kron( a>0.5,kronmask );
okmaskn = okmaskn .* kron( a<-0.5,kronmask );

end;
end;
fcg = find(fc>=numpass);
fn(fcg) = fn(fcg) ./ fc(fcg);
fn(find(fc<numpass)) = 0;

end;

for s=1:length(sr)-1,
i = find(fn>=sr(s) & fn<sr(s+1));
if length(i)>0,

sc(s) = sc(s)+mean(f(i).*g(i));
si(s) = si(s)+1;

end;
end;
end;

sc = sc ./ si;
sr = sr(1:(end-1)) - 1;
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