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 Abstract 

Weathering steel is a high-strength, low-alloy steel which has been proven to provide a 

significantly higher corrosion resistance than regular carbon steel. This corrosion 

resistance is a product of the small amounts of alloying elements added to the steel, 

which enable it to form a protective oxide layer when exposed to the environment. The 

main advantage of its use in bridges is that, under normal conditions, it may be left 

unpainted, leading to significantly reduced maintenance and environmental costs. 

Weathering steel has been a material of choice for highway structures for almost half a 

century, and a very large number of structures have been constructed with it. Although its 

use has for the most part been successful, it has also become evident that, in 

circumstances where there is the presence of salt and sulphur oxides, its performance is 

deficient. In these situations the corrosion penetration rate is much higher than expected, 

and the oxide layer forms in thick layers. This presents an added risk, since these layers 

flake off and fall onto the roadway. The degree of corrosion on structures can be very 

different, even if the structural type, location, and climate are similar. 

Therefore the focus of the thesis is on the lifespan of weathering steel highway structures. 

Primarily this research is concerned with the effect of corrosion on the integrity of these 

structures, as well as ways of quantifying corrosion loss and protecting the structure from 

further corrosion. 

In order to determine the lifespan of weathering steel highway structures subject to 

different rates of corrosion, a probabilistic structural analysis program has been 

developed to assess the time-dependent reliability of the structure. This program used 

iterative Monte Carlo simulation and a series of statistical variables relating to the 

material, loading, and corrosion properties of the structure. A corrosion penetration 

equation is used to estimate thickness loss at a selected interval, and the structural 

properties of the bridge are modified accordingly. The ultimate limit states of shear, 

moment, and bearing, and the fatigue limit state of web breathing, are taken into account. 

Three types of structures are examined: simply-supported box and I-girder composite 

bridges, and a two-span box girder bridge. 
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Based on the structural analysis of the corroding bridge structures presented herein, it can 

be seen that corrosion to the weathering steel girders can cause reduced service lives of 

the structures.  I-girder bridges are shown to be more susceptible to corrosion than box 

girder bridges, with continuous box girder bridges showing the best performance. The 

amount of truck traffic does not affect the reliability of the bridge. The short-span and 

high strength steel bridges are more susceptible to corrosion loss, primarily because their 

girders have thinner sections. A two-lane bridge also has better performance than the 

wider bridges because the weight of the barriers and sidewalks is carried by fewer 

girders, so these girders are stockier. The web breathing limit state is less significant than 

the combined ultimate limit states. Lastly, and most importantly, inspection data from a 

highway bridge is used to demonstrate the benefit that can be derived from using field 

data to update the time-dependent reliability. 

The ultrasonic thickness gauge (UTG) is a common tool for thickness measurement of 

steel sections. When used to measure weathering steel, this instrument provides accurate 

data about the depth of corrosion pits, but not their lateral dimensions. The measurement 

does not include the corrosion layer on the opposite side of the plate from the one being 

measured; however, if the corrosion layer is on the measured face, a disproportionate 

increase in the measured thickness can be seen. 

In order to prevent or minimize corrosion loss, the steel is currently painted, a process 

with several environmental and financial disadvantages. Therefore, three novel protection 

methods have been assessed in a cyclic corrosion test: a zinc metallizing, an aluminum-

zinc-indium alloy metallizing, and a zinc tape with a PVC topcoat. All these coatings are 

designed to act not just as barriers, but also as sacrificial anodes. The test was run for 212 

24-hr cycles, over the course of which the all the coatings were proven effective at 

protecting the steel substrate, regardless of steel type and surface roughness and 

pretreatment. 

In conclusion, the threat to all types of weathering steel highway structures by 

contaminant-induced corrosion is significant, but inspection data permits a more accurate 

prediction of time-dependent reliability for a structure, and protective coatings are a 

promising method of slowing the advance of corrosion. 
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CHAPTER 1: INTRODUCTION 

1.1 Background 

Weathering steel is a high-strength, low-alloy steel that has been proven to provide 

significantly more corrosion resistance than regular carbon steel. This corrosion 

resistance is achieved by adding small amounts of certain alloys to the steel that promote 

the formation of a protective oxide layer when the steel is exposed to the environment. 

The main advantage of using weathering steel in bridge applications is that under normal 

conditions it may be left unpainted, leading to significantly reduced maintenance costs. 

This means periodical blast-cleaning and repainting of highway bridges could be avoided, 

which also has significant environmental benefits. 

Weathering steel has been a material of choice for highway structures for almost half a 

century in North America, Europe, and Japan, with a very large number of structures 

being constructed with it. Although its use in bridge applications has frequently been 

successful, a number of cases have been identified more recently where its corrosion 

performance has been worse than expected. In some cases, the reasons for this poor 

performance have been identified. In others, adjacent bridges constructed at the same 

time and subjected to similar environments have performed very differently, making the 

cause of the poor performance difficult to determine conclusively. 

Recently, the Ministry of Transportation of Ontario (MTO) has found that a number of 

their weathering steel highway bridges are corroding at higher-than-expected rates. This 

has led to concerns regarding the safety of these structures. Firstly, this corrosion is 

causing a reduction in the thicknesses of the bridge girder plates. This has structural 

implications that have yet to be examined in depth. Secondly, the corrosion product, in 

addition to being unsightly, has also been seen to spall off of these structures in pieces 

that are sufficiently large to pose a threat to traffic passing underneath.  

As a direct result of these concerns, this thesis project was initiated to examine the 

potential structural safety issues resulting from the corrosion problems observed in 

weathering steel highway bridges in Ontario and the possible mitigation of these 

problems through the application of specialized zinc-based coating systems. 
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In further discussions with MTO engineers at the time that this thesis project was 

initiated, the following additional information was conveyed: 

• In many of the “problem structures”, the regions of poor corrosion performance 

can be related to the “splash zones” caused by trucks passing underneath the 

weathering steel structures. Figure 1.1 shows an example of this. In this figure, 

the region where the corrosion is most severe is the underside of the box girder 

bottom flange, on the side of the girder that faces the oncoming traffic. 

 
Figure 1.1: Underside of highway structure 

• The current practice is to blast-clean the heavily corroded regions over roadways, 

in order to remove the spalled corrosion product in a controlled way, rather than 

having it fall on the roadway gradually over time. However, this procedure is 

costly,  since the corrosion product must be collected and disposed of whenever it 

is removed intentionally in large quantities. 

• With regards to the structural assessment of corroding highway structures, there is 

currently a lack of understanding of how to interpret the plate thickness data 

obtained using ultrasonic thickness gauges (UTGs). A number of possible sources 

of systematic error in ultrasonic thickness measurements need to be examined. 
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1.2 Objectives 

Based on the background presented in the previous section, the main objectives of the 

work conducted for the current thesis project are as follows: 

1. to determine the limitations (if any) of the UTGs commonly used to measure plate 

thicknesses for structural assessment purposes; 

2. to determine the effectiveness of zinc-based protective coatings intended to slow 

or halt the corrosion penetration into the weathering steel element;  

3. to develop analysis tools that are able to predict at what point the structural 

reliability of weathering steel bridges will deteriorate to an unacceptable level due 

to progressive corrosion; and 

4. to use these tools to determine how serious a threat the corrosion problem is to 

weathering steel highway structures with different structural configurations and 

under different corrosive environments. 

1.3 Scope 

The UTG thickness measurement study is limited to the analysis of measurements 

obtained using a single proprietary device thought to be typical of the UTGs commonly 

used by the industry and fabricated by a well known maker of these devices. 

Three different zinc-based coatings are examined: a pure zinc metallizing coating, an 

aluminum-zinc-indium alloy metallizing coating, and a pure zinc tape product with a 

polyvinyl chloride (PVC) top layer. The performances of these three coatings are 

compared with uncoated weathering steel. All steel specimens are exposed to a corrosive 

atmosphere with a high salt content according to [SAE J2334]. 

The focus of the reliability analysis is on short to medium span (30-40 m long) steel-

concrete composite overpass structures. Both box and I-girder structures are considered, 

as is corrosion at typical urban, marine, and rural corrosion rates. The structural analysis 

verifies the ultimate limit states of shear, moment, and bearing. One fatigue limit state 

(web breathing) is also considered. All structural calculations are in accordance with the 

Canadian Highway Bridge Design Code [CAN/CSA-S6-06].  
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1.4 Thesis Organization 

This thesis is organized as follows: first, a literature review is presented, in which the 

latest research is discussed on the nature of weathering steel corrosion, protective anodic 

coatings, and time-dependent reliability assessment of bridges (Chapter 2). Next is an 

explanation of the test procedures employed for the UTG studies and the corrosion 

testing studies of the uncoated and coated steel specimens (Chapter 3). The results of 

these tests are presented in Chapter 4. After this, the theoretical approach employed for 

analysing the time-dependent reliability of corroding highway structures is explained and 

the parameters of the reliability models are described (Chapter 5). The results from the 

analyses of a number of bridges and situations are then discussed in Chapter 6. Finally, 

conclusions and recommendations are presented in Chapter 7. 
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CHAPTER 2: LITERATURE REVIEW 

In the following sections of this chapter, a review of the existing research on the 

corrosion process that attacks weathering steel is first presented. This is followed by a 

summary of the research that has been conducted to date on the effectiveness of 

metallizing and zinc tapes for corrosion protection. Lastly, a number of key structural 

reliability concepts are introduced and a summary is provided of the research done to date 

on predicting the structural reliability of steel-concrete composite bridges.  

2.1 Corrosion of Weathering Steel 

The corrosion reaction for low-alloy steel is identical to that of regular steel; the 

difference can be seen in the effect of the alloys on the formation of the protective layer. 

2.1.1 Corrosion Products 

Misawa et al. [1974] found that the primary products of atmospheric corrosion of regular 

and low-alloy steels are crystalline and amorphous rust (FeOOH) and magnetite (Fe3O4). 

The rust is usually in the form of crystalline �-FeOOH or �-FeOOH and amorphous ferric 

oxyhydroxide FeOx(OH)3-2x. In a marine environment, �-FeOOH is likely to be present as 

well. 

2.1.2 Corrosion Reaction for Steel 

A good explanation of the mechanism of atmospheric corrosion of steel seems to be that 

of Misawa et al. [1974], where corrosion begins with the anodic dissolution of iron into 

ferrous ions (Fe2+). These ferrous ions react with moisture (hydrolysis) on the surface of 

the steel to form FeOH+. The FeOH+ in turn reacts with the oxygen (oxidation) in the 

atmosphere to form �-FeOOH, which crystallizes and precipitates out of the system (the 

rate of crystallization and precipitation is increased if a drying cycle occurs). 

Moisture mixed with pollutants, such as sulphur dioxide SO2, has a relatively low pH. In 

contact with this mixture, the crystalline �-FeOOH dissolves to form the amorphous 

FeOx(OH)3-2x, which precipitates again. Finally, the FeOx(OH)3-2x undergoes a solid state 

transformation (deprotonation with hydroxyl ions from rainwater) to become �-FeOOH. 

This process is shown in Figure 2.1. 
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Figure 2.1: Reaction of overall rusting process [Misawa et al. 1974] 

Kamimura et al. [2006] examined the ratio of �-FeOOH to �-FeOOH in weathering steel 

exposed to industrial and rural environments, and the ratio of �-FeOOH to �-FeOOH, �-

FeOOH and Fe2O3 in weathering steel exposed to marine environments. They found that 

once these ratios achieved a certain value, the corrosion rate remains below 0.01 

mm/year, which is considered a slow rate of corrosion. This finding essentially verified 

the research in [Misawa et al. 1974]. 

It should be noted that the corrosion process is fostered by accessible oxygen, the 

creation of an acidic solution layer by means of sulphur oxides (a product of vehicle 

exhaust, among other things), and a continuous wet-dry cycle. 

2.1.3 Effect of Alloying Elements 

According to Misawa et al. [1974], on a microscopic level, the corrosion layers of regular 

mild steel and weathering steel vary significantly. The layer on mild steel is uneven, with 

cracks and fissures that permit penetration of moisture, oxygen, and pollutants. The layer 

on weathering steel, however, is much more uniform and continuous; it is also found to 

contain relatively high amounts of the alloying elements particular to this type of steel, 

such as copper, chromium, and phosphorus. It appears, therefore, that these elements, 

which are evenly dispersed throughout the steel, enable the formation of a uniform layer 

of the corrosion product.  

The main component of this layer on weathering steel is the amorphous ferric 

oxyhydroxide, FeOx(OH)3-2x; it is the formation of this product that is likely fostered by 

the alloying elements. These elements enable the formation of a uniform layer by first 

promoting uniform dissolution of the steel into �-FeOOH; as this dissolves, the 

FeOx(OH)3-2x forms a uniform layer. This layer is relatively dense and contains a high 
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amount of bound moisture, but is slow to absorb and release water from external sources. 

Furthermore, it is free of fissures or cracks, and so it prevents the penetration of oxygen 

and contaminants that foster corrosion. 

The same wet-dry cycles that cause progressive corrosion to mild (regular) steel are 

required for the formation of this protective layer in weathering steel. Also, according to 

this theory, Fe3O4 is the product of an oxygen-deprived state that exists after a dense 

layer of rust has formed on the steel surface. 

This is one theory; other systems of understanding rust layer formation also exist [Jones 

1996, Albrecht and Naeemi 1984, Wang et al. 1997].  

2.1.4 Effect of Road Salt on Weathering Steel 

It has been noted that weathering steel does not appear to form a protective patina in the 

presence of chlorides, especially de-icing salt [Albrecht & Naeemi 1984, Albrecht & Hall 

2003, Cook 2005]. This is due in part to the hydroscopic qualities of the salt; it attracts 

water, and so keeps the steel moist for longer periods of time and preventing the 

occurrence of dry conditions necessary for the patina formation.  

The other factor is the presence of chloride ions, Cl-. These negatively charged ions 

increase the negative potential of the steel, which accelerates the rate of corrosion of the 

metal (this is also an effect of the SO4
-2, though to a lesser degree). Also, in the presence 

of chloride ions the corrosion reaction results in relatively large amounts of �-FeOOH. 

This oxide does not convert to form FeOx(OH)3-2x, which is the main component of the 

protective oxide layer of weathering steel [Misawa et al. 1974, Albrecht & Naeemi 1984, 

Cook 2005]. 

2.1.5 Corrosion Rate Equations 

Albrecht et al. [1989] provide an envelope for the corrosion penetration of weathering 

steel. The upper bound is described by the equation: 

 ( )50 7.5 1C t= + ⋅ −   (2.1) 

while the lower bound is described by the equation: 

 ( )25 3 1C t= + ⋅ −   (2.2) 
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where C is corrosion penetration in �m, and t is time of exposure in years. These numbers 

are based on the average steady-state corrosion rates for the ISO high and medium 

corrosivity categories. These equations provide an envelope for the ideal behaviour of 

weathering steel subject to environmental corrosion; weathering steels corroding at a rate 

faster than that of Equation 2.1 cannot be expected to develop a protective layer, 

according to Albrecht et al. [1989]. 

 
Figure 2.2: Corrosion penetration data plot [Townsend & Zoccola 1982] 

 
Figure 2.3: Corrosion penetration data plot, log-log scale [Townsend & Zoccola 1982] 
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Townsend and Zoccola [1982] tested specimens of weathering and copper steels in four 

different locations (matching marine, rural, industrial, and urban type environments). 

Figure 2.2 shows the output for the corrosion performance of two copper-steel specimens 

(circle and triangle markers) and a weathering steel specimen (square marker). 

It was noted that the same data, plotted on a log-log graph, is linear (see Figure 2.3). On 

this basis, the standard equation (the logarithmic power model) for section loss due to 

corrosion of weathering steel [Townsend & Zoccola 1982, see also Albrecht & Naeemi 

1984, G101-04] was deduced: 

 BtAC ⋅=   (2.3) 

In its logarithmic form, Equation 2.3 is a straight-line function: 

 tBAC logloglog +=   (2.4) 

where C is the average corrosion penetration determined from weight loss, in units of 

length; t is the exposure time, in years; A is a regression coefficient numerically equal to 

the penetration after one year of exposure; and B is a regression coefficient equal to the 

slope of Equation 2.4 in a log-log graph. Effectively, A is related to the initial reactivity 

of the steel, while B accounts for the change in corrosivity of the steel over time. 

Wang et al. [1997] found that an environment with a high concentration of SO2 could 

cause serious deviation from the logarithmic power model. The two factors that were 

found to have a predominant effect on the performance of weathering steel are the 

corrosivity of the environment and the composition of the weathering steel.  

Legault and Leckie [1974] created a set of equations for three levels of corrosive 

environment, i.e. semirural, marine, and urban; these equations were used to determine 

the corrosion rate of weathering steels based on percentages of their alloying elements. A 

modified form of one of their equations (modified to calculate corrosion resistance index 

rather than rate) is included in [ASTM G 101-04], despite the fact that their 

recommendations have been challenged by McCuen and Albrecht [2004].  

In [McCuen & Albrecht 1994], another type of model is recommended and referred to as 

a composite model. One example of this is the power-linear model, which is composed of 

a pair of equations for calculating corrosion penetration, the first of which is identical to 
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Equation 2.3, and the second of which is linear. At a predetermined time, called an 

intersection time, the corrosion penetration switches from the first equation to the second, 

thus providing a constant rate of corrosion penetration after a certain point in time. 

Nevertheless, the model is less accurate for weathering steels than for other types of steel, 

and no guarantee of better results is made. In its defence, this model gives safer 

predictions (higher thickness loss estimates) over very long periods. 

Another composite model recommended in [McCuen & Albrecht 1994] is the power-

power model, similar to the power-linear model, but in this case both equations are power 

equations. In both of these cases, numeric fitting to data points is recommended, as 

opposed to the logarithmic approach of [Townsend & Zoccola 1982].  

Finally, in [2005], McCuen and Albrecht modify their power-power model to account for 

the variable alloy content of weathering steel, specifically for the metals: copper, 

chromium, phosphorus, silicon, and nickel. This equation compares favourably with 

regards to the Legault and Leckie [1974] equations, but no comparison is made between 

this and the logarithmic power model.  

Although the merits of each of the mentioned models can be argued, Equation 2.3, the 

logarithmic power model, is among the simplest of these and is commonly applied to 

structural problems resulting from corrosion attack. It should be noted that none of the 

models appear to have been experimentally verified for their validity over the long term. 

2.2 Sacrificial Anode Protection of Weathering Steel 

Two novel methods of providing corrosion protection for weathering steel are researched 

herein: metallizing and application of galvanic (zinc) tape to the steel surface. 

2.2.1 Metallizing 

Metallizing is a method of applying a layer of molten metal to a surface. The metal that is 

being sprayed is intended to act as a sacrificial anode. In the civil infrastructure, 

metallizing appears to be more commonly used on concrete for protecting the steel 

reinforcement than structural steel, perhaps because structural steel is more likely to be 

coated by painting to protect it from corrosion [see Sagüés & Powers 1995]. 
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Matthes et al. [2003] tested three metallizing alloys – pure zinc, 85% zinc + 15% 

aluminum, and 12% zinc + 0.2% indium + balance aluminum. Zinc is a good cathodic 

protector of the substrate, while aluminum is more passive and functions primarily as a 

mechanical barrier. Small amounts of indium are introduced to improve galvanic 

efficiencies. Specimens of these alloys (flame-sprayed onto lexan panels) were boldly 

exposed in a rural and a marine environment and their runoff was measured for 

approximately 2.5 years. It was found that the zinc runoff was directly proportional to 

precipitation rate, but also to the amount of zinc in the alloy; interestingly, the higher 

chloride levels of the marine site did not have an effect. 

Another test was reported by Kuroda et al. [2005]. In this case, twelve steel pipes were 

coated with zinc, aluminum, and an 87% zinc + 13% aluminum alloy, and were set 

vertically into seawater at a port in Japan. This test lasted for 18 years; corrosion was 

estimated by measuring the change of thickness of the metallizing. Over the duration of 

the test, most of the metallized specimens performed very well. The amount the coatings 

increased in thickness due to corrosion depended on their location vis-à-vis the water. 

One noted problem was that where the aluminum coating was damaged, red rust 

appeared, which is likely a result of the fact that aluminum has little anodic capacity. On 

the other hand, the zinc-aluminum alloy appeared to corrode at a much slower rate than 

the pure zinc. Kuroda et al. compared their results with those of similar tests, and found 

that they are about as expected.   

2.2.2 Galvanic (Zinc) Tape 

Galvanic (zinc) tape functions by the same fundamental mechanism as metallizing, 

insofar as it provides a sacrificial anode to protect the steel substrate. It is essentially a 

layer of sacrificial material with an adhesive backing; however, this adhesive must 

provide a mechanical and electrical connection to the substrate for the tape to be 

effective. Nevertheless, galvanic tape is a new material for this application, and no 

published research is available quantifying its performance. 
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2.3 Evaluating Corrosion Penetration 

2.3.1 Visual Assessment of Corrosion Damage 

At least one study has been made into the possibility of predicting the amount of section 

loss that has occurred by a visual inspection of the corroded surface [Hara et al. 2006]. It 

appears to be possible to correlate the condition of the attacked surface with the amount 

of section loss that has occurred. The first step is the taxonomy of the corrosion, i.e. the 

classification of the degrees of corrosion. Figure 2.4 shows how this classification was 

done in [Hara et al. 2006]; five stages of corrosion severity have been identified.  

 
Figure 2.4: Taxonomy of rust types [Hara et al. 2006] 
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The specimens in this case were weathering steel test coupons exposed for between 1 and 

18 years under eleven bridges in Japan. All of the specimens were exposed to varying 

degrees of humidity and airborne salt.The thickness loss of these test coupons was 

measured and correlated to the corrosion class. The results of this are shown in Figure 

2.5. 

 
Figure 2.5: Correlation of corrosion stage and section loss over time [Hara et al. 2006] 

The error bars in Figure 2.5 indicate σ⋅± 2  (two standard deviations) relating to the 

variability of the section loss data. Note that indices 1 and 4 did not appear in the short 

term tests, while index 5 did not appear in the longer term tests. 

The appearance of index 1 corrosion indicates the possibility of rapid and progressive 

corrosion. The test results also show the high degree of variation that can be found in 

corrosion rates for a given type of corrosion. Also, the high corrosion rate of index 1 is 

consistent, regardless of the test period. 

2.3.2 Ultrasonic Thickness Testing 

Little research is available on the accuracy of ultrasonic thickness gauges (UTGs) in 

measuring the remaining section of a corroded weathering steel plate. Hara et al. [2007] 

note that corrosion thickness measurements are inaccurate and thus require extended 

periods of data collection (i.e. a minimum of six years) to determine the corrosion rate. 
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The sources of inaccuracy include the instrument itself, as well as the surface of the 

measured plate, which is usually somewhat rough and corroded. For this reason, the 

standard procedure used in industry involves grinding smooth a small area of the steel 

plate [J. Vukotic, personal communication, September 25, 2008]. Nevertheless, ultrasonic 

thickness measurement is recommended for inspection and assessment of corrosion 

degradation in steel bridges [Kulicki et al. 1990]. 

2.4 Structural Reliability Evaluation 

In most modern structural design codes, the safety of a structure is measured (either 

directly or indirectly) in terms of its reliability index.  

2.4.1 Probability of Failure and Reliability  

The concept of structural reliability is bound to that of the limit states design process 

[Walbridge 2005]. Limit states are defined as the conditions of a structure or component 

beyond which it ceases to fulfill the function for which it was designed. Three types of 

limit state are identified in [Commentary on CAN/CSA-S6-00], namely fatigue, 

serviceability, and ultimate limit states. Fatigue cracking of a structure occurs at the 

fatigue limit state, while the serviceability limit state coincides with the occurrence of 

excessive vibrations or static deformations, sufficient to affect the usability or durability 

of the structure. Total failure of the structure by any suitable mechanism (i.e. fracture, 

buckling, overturning) is considered to be an ultimate limit state. Limit states may be 

described by limit state functions, ( )G z , which take the following form: 

( ) 0G z >  means that the limit state is satisfied, so failure does not occur,  (2.5) 

( ) 0G z <  means that the limit state is surpassed and failure occurs, and  (2.6) 

( ) 0G z =  is the so-called “failure surface”.  (2.7) 

Where z  is the vector of statistical variables, zi, which take into account the various 

sources of uncertainty associated with the limit state function.  
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In [Melchers 2002] the basic reliability problem is described as having two competing 

statistical variables: the resistance, R, and the applied load, S. The corresponding limit 

state function and expression for the probability of failure, pf, is as follows: 

( )( ) ( )0 0fp P G z P R S= < = − <   (2.8) 

The probability density functions (PDF) for S, R, and ( )G z  are plotted in Figure 2.6. In 

this figure, the bold symbols are vectors, and therefore: G(z) = ( )G z . 

 

Figure 2.6: Probability curves [Walbridge 2005] 

The pf is the area under the PDF of ( )G z  for which ( ) 0G z < . If the distributions for S 

and R are both normal, then the pf can be calculated as follows: 
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where �S and �R are the means, and �S and �R are the standard deviations of the load and 

resistance variables, and ()Φ  is the cumulative density function for the standard normal 

distribution. Often, reliability is expressed by structural engineers in terms of the 

reliability index, �. As follows from Equation 2.9, 

( )fp1−Φ−=β   (2.10) 
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As can be seen in Figure 2.6, this index can be understood as the distance between the 

mean of the ( )G z distribution and the origin, divided by the standard deviation, 

( )( )G zσ . The pf for a more general case can be expressed as follows: 

( )( ) ( )
( ) 0

0 ...f

G z

p P G z f z dz
<

= < = � �   (2.11) 

In other words, given a limit state function, ( )G z , containing n statistical variables, zi, 

the pf is equal to the volume in n-dimensional space under the portion of the joint PDF, 

( )f z , for which ( ) 0G z < . In order to solve the integral in Equation 2.11, one of two 

approaches is usually applied: numerical methods such as Monte Carlo simulation (MCS) 

or analytical methods such as the First Order Reliability Method (FORM) [Walbridge 

2005].  

2.4.2 Reliability in the Bridge Code 

The safety philosophy of the [CAN/CSA S6-06] is to have a consistent level of risk to life 

for each bridge element. The level of risk is equal, by definition, to the probability of 

failure multiplied by the cost of failure. In [CAN/CSA S6.1-00] (see also Figure 2.7), the 

cost of failure of a bridge element is related to the likelihood of the element failure 

leading to loss of life. A consistent level of risk is maintained if a higher probability of 

failure is accepted in the elements whose failure will not result in a loss of life, or a lower 

probability of failure is accepted in the elements whose failure might result in a loss of 

life. Likewise, a structural element that receives frequent inspections, shows warning 

signs if approaching failure, or is capable of redistributing its load to other elements will 

be less likely to cause loss of life. 
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Figure 2.7: Relationship between risk and probability of failure [CAN/CSA S6.1-00] 

In the [CAN/CSA S6-06]-recommended procedure for bridge evaluation, the level of 

safety is measured using the reliability index, �, which is inversely related to the notional 

probability of failure. The notional probability of failure is calculated using the life safety 

criterion of CSA S408-1981: 

 
nW

AK
Pf =   (2.12) 

Where Pf is the probability of failure, A is an activity factor taking into account the risk 

involved in activities associated with the structure, K is a calibration factor, W is a 

warning factor, and n is an importance factor. For determining a structure’s capacity to 

carry vehicle trains, two-unit vehicles, and single-unit vehicles, in normal traffic, A is 3.0, 

K is 10-4, W is 1.0, and n is 10. Together, these give a Pf of 9.5 x 10-5; this is the target Pf 

for a structure. Table 2.1 relates the values of the reliability index to the notional 

probability of failure values, based on a probability distribution where the probability of 

failure is normally distributed [CAN/CSA-S6.1-00]. Using Table 2.1 or Equation 2.10, a 

probability of failure, Pf of 9.5 x 10-5 corresponds with a reliability index of 3.73. 
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Table 2.1: Notional probability of failure for various reliability indices, based on the normal 

probability curve [CAN/CSA-S6.1-00] 

Reliability Index, � Notional Probability of Failure, Pf 

2.00 2.3 x 10-2 or 1:44 

2.25 1.2 x 10-2 or 1:81 

2.50 6.2 x 10-3 or 1:160 

2.75 2.8 x 10-3 or 1:360 

3.00 1.4 x 10-3 or 1:740 

3.25 5.6 x 10-4 or 1:1800 

3.50 2.3 x 10-4 or 1:4300 

3.75 8.8 x 10-5 or 1:11,000 

4.00 3.2 x 10-5 or 1:31,500 

4.25 1.1 x 10-5 or 1:93,500 

4.50 3.4 x 10-6 or 1:294,000 

2.5 Structural Analysis Models of Corroding Steel Bridges 

Several studies have been performed over the last two decades that examined the effects 

of progressive corrosion on bridge reliability. All of the studies mentioned here focus on 

the time-variant reliability of simply-supported composite I-girder bridges, but they look 

at different aspects of the structures and how progressive corrosion affects their 

reliability. They also consider different girder regions that can be affected by corrosion. 

2.5.1 Research of J.R. Kayser 

In [Kayser 1988, Kayser & Nowak 1989], the examined structures are two-lane bridges 

with five I-girders, ranging from 12.2 m to 30.5 m in length. A cross section of the 

examined bridge type is shown in Figure 2.8. 
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Figure 2.8: Steel I-girder bridge cross section [Kayser 1988] 

The bridge has a composite section, with a 190 mm thick, 27.6 MPa concrete slab. Since 

the number of girders is constant, the girder size is varied with the bridge length, from 

W610x113 for the 12.2 m bridge to W920x345 for the 30.5 m bridge. The girders are 

hot-rolled and composed of 250 MPa steel. Kayser apply the standard equation (see 

Equation 2.3) in his corrosion penetration models. Regarding the assumed corrosion 

location, for the majority of the span, general thickness loss is assumed to occur to the top 

of the bottom flange and the bottom quarter of the web (Figure 2.9). However, at the 

supports, the web is assumed to corrode over its entire depth. 

 
Figure 2.9: Typical corrosion locations assumed by [Kayser 1988] 

Kayser [1988] consider the effect of corrosion on the flanges and webs of the girders, but 

not on the connections or secondary members such as cross-bracing. They also ignore the 

problem of corrosion fatigue. The failure modes considered include shear, moment, and 

bearing, since they have the greatest effect for single-span I-girders. 
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In Kayser [1988], it is found that bearing and shear usually govern at high levels of 

corrosion since the resistances are dependent upon the web, which is thinner and more 

sensitive to thickness loss due to corrosion. Also, elements in compression are more 

sensitive since they become more susceptible to buckling. 

Figure 2.10 shows the reliability predictions for a 12.2 m long bridge. 

 
Figure 2.10: Reliability of a 12.2 m long bridge [Kayser 1988] 

Figure 2.11 shows the reliability predictions for a 30.5 m long bridge. 

 
Figure 2.11: Reliability of a 30.5 m long bridge [Kayser 1988] 

As can be seen from these figures, the shorter span bridge is more susceptible to capacity 

loss over time; this is a direct result of the fact that bearing stiffeners are not required for 

the shorter bridge, but if the bridge is thus unfitted, it becomes susceptible to failure in 

the bearing mode in a relatively short amount of time. 
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It was also found that the thickness loss exponent B is the most influential parameter in 

the corrosion rate model. The variation of B had a significant effect on the reliability 

fraction, �/�0, of a bridge, far more so than A, as is shown in Figure 2.12. 

 
Figure 2.12: Sensitivity study of model parameters [Kayser & Nowak 1989] 

Also presented in this figure are the effects of varying the shear distribution parameter 

(SF) and the bearing plate coefficient (k). Figure 2.13 shows the reliability performance 

of an 18 m long span in different corrosion environments.  

 
Figure 2.13: 18 m long span in different environments [Kayser & Nowak 1989] 

The bridge reliability is not significantly affected by the rural corrosion rate, but the 

effects of the urban and marine corrosion rates are significant. Note that the reliability 

analyses in this study were performed for regular carbon steel girders. 
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2.5.2 Research of A.A. Czarnecki 

[Czarnecki 2006, Czarnecki & Nowak 2006] looked at bridges from 12.2 m to 42.7 m in 

length, supported by four to six steel I-girders. Cross-sections are shown in Figure 2.14. 

 

 

 
Figure 2.14: Steel I-girder bridge cross sections [Czarnecki & Nowak 2006] 

Czarnecki examined bridges of the three cross sections shown for six different lengths 

ranging between 12.2 m to 42.7 m. For each section type and span, he also used different 

girder sizes to create structures with reliability indices under, over, and equal to the target 

reliability index (�T). 

Regarding the corrosion penetration rate equation, in [Czarnecki & Nowak 2006] the 

modelling is done assuming painted carbon steel, and so the corrosion penetration line is 

essentially divided into concave and convex parts to take into account, first, the 

degradation of the coating, and after this, the progression of corrosion penetration. This is 

shown in Figure 2.15. 
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Figure 2.15: Corrosion rates for research of [Czarnecki & Nowak 2006] 

The corrosion penetration curves in Figure 2.15 were selected based on both field 

observations and the data in [Albrecht & Naeemi 1984]. The high corrosion rate 

represents an industrial or marine environment or one where de-icing salts are used, while 

the low corrosion rate is for dry areas with little chemical contamination. 

Regarding the locations on the bridge subject to corrosion, Czarnecki thought the 

approach used in [Kayser 1988, Kayser & Nowak 1989] was too refined; basically, there 

are too many variables that determine corrosion spread and penetration, and so the 

prediction is not realistic, he argues. Preferring a more general approach, [Czarnecki 

2006] supposes surface loss due to corrosion over the entire web and top of the bottom 

flange for the whole bridge span, as shown in Figure 2.16. 

 
Figure 2.16: Corrosion location [Czarnecki 2006] 
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Czarnecki’s work examined the effects of corrosion on the reliability of the system as a 

whole rather than any part of it. Depending on the configuration of the structure, 

considering system behaviour can result in a more reliable structure due to the fact that 

when a member is stressed beyond its capacity it is not removed from the structure; 

rather, the excess loads are distributed elsewhere. The type of computation required for 

this analysis is considerably complex; in this case, bridge models were built using a 

dedicated structural engineering program. A nonlinear model was applied to account for 

stress and load redistribution that occurs when a member progresses from the state of 

local yielding to ultimate, and from there to where the bridge fails.  

Three limit states were checked: member failure, total bridge collapse, and a 

serviceability limit state (i.e. excessive deflection equal to 0.0075 of the span length). 

Analyses were performed for ultimate limit states (moment and shear) and serviceability 

(deflection), and structural performance was measured in terms of the reliability index.  

It was found that reliability models provide a real benefit by facilitating estimations of the 

time-dependent bridge deterioration. While the low corrosion rate had a negligible effect 

on the bridge performance, a high corrosion rate significantly reduced the bridge capacity 

over time. It was further found that bridge reliability decreases much more rapidly for 

shorter spans compared to longer ones. Figure 2.17, Figure 2.18, and Figure 2.19 show 

the decreasing system reliability of bridges as their spans become shorter. 

 
Figure 2.17: System reliability for long span bridge [Czarnecki & Nowak 2006] 



 25 

 
Figure 2.18: System reliability for medium span bridge [Czarnecki & Nowak 2006] 

 
Figure 2.19: System reliability for short span bridge [Czarnecki & Nowak 2006] 

A sensitivity analysis was also performed by Czarnecki, which showed that the statistical 

parameters related to the structural steel had a more noticeable effect on the structural 

behaviour than those parameters related to the concrete slab. 

2.5.3 Research of M.S Cheung and W.C. Li 

Cheung and Li [2001] looked at bridges of varying lengths with five rolled steel or built-

up I-girders. Figure 2.20 below shows the arrangement of the girders and concrete slab. 
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Figure 2.20: Structural arrangement [Cheung & Li 2001] 

The same corrosion model (i.e. corrosion rate and location) as the one used by Kayser 

was applied here. The finite strip method was used in [Cheung & Li 2001] to determine 

the effect of corrosion on the serviceability of the structure, i.e. based on its deflection. 

The finite strip method uses beam eigenfunctions to express the longitudinal variation of 

displacements. This method requires the creation of a finite element model of the bridge 

cross-section in order to develop a stiffness matrix for the section as a whole. Figure 2.21 

shows a typical finite strip model of the bridge section. As an analysis method, the finite 

strip method is more universal and more accurate than beam theory, and requires much 

fewer calculations than a full finite element model.  

 

 
 

Figure 2.21: Finite strip model [Cheung & Li 2001] 

In [Cheung & Li 2001], the A and B corrosion parameters, the thickness of the slab, and 

the moduli of elasticity of steel and concrete were varied in order to determine their effect 

on the time-dependent bridge reliability. Based on this work, it was found that, even if the 

nominal corrosion rate was low, corrosion still had a profound effect on the bridge 

serviceability, due to the fact that some corrosion rates had a large variance, so it was still 

possible to have high rates of corrosion penetration on occasion. 
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2.5.4 Research of P. Laumet 

Laumet [2006] focussed on the deflection limit state of composite girder bridges. As with 

the above studies, the structures were single-span, I-girder bridges. Bridges with span 

lengths between 15.3 and 39.7 m, and girder spacing between 1.83 and 3.66 m, were 

considered. His models take into account nonlinear behaviour of the structural materials, 

i.e., the creep and shrinkage of the concrete slab and plastification of the steel girders. In 

[Laumet 2006] the logarithmic power model (see Equation 2.3) is used to predict the 

corrosion penetration. Only general corrosion is considered. 

It is found that corrosion has a significant effect on the reliability of the bridge. 

Interestingly, it is also suggested that the deflection limit state should not be considered 

as a reliability limit state; on the other hand, steel yield is a valid reliability limit state, 

according to this reference. The reason for this is that the deflection limit state (L/800 is 

used here) does not correspond to any actual structural state, and since the bridge will 

frequently experience traffic loads that are larger than those predicted by the design 

codes, the structure’s reliability index will show negative values.  

2.5.5 Research of C.H. Park 

The purpose of the research done by Park [1999] was to determine the effects of time 

dependent loads and corrosion on bridge reliability. The structures examined in this 

reference were composite I-girder bridges, between 10 and 30 m long, 12 m wide, and 

supported by a varying number of girders. The bridge structures were also examined as 

systems to determine their safety reserves as such. The model used in [Park 1999] is 

shown in Figure 2.22. 

 
Figure 2.22: Corrosion locations [Park 1999] 
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As a preliminary part of his research, Park varied the ��L value (shown in Figure 2.22) 

between 1.0 and 3.0 m, and found that doing so did not affect the reliability of his bridge 

model. The same corrosion model is used here as in [Czarnecki & Nowak 2006] (see 

Figure 2.15). Failure due to shear was found to be a more immediate threat to the 

structure than that due to moment. In fact, for short-span bridges, shear buckling is the 

governing failure mode at the maximum lifetime of the bridge. Sections with thinner 

webs are obviously more susceptible to web failure, and so it is recommended that web 

stiffeners be used. Importantly, it was found that the reliability of the bridge as a system 

was significantly higher than that of the individual components. 

2.5.6 Other Research 

Included in this section are structural reliability studies that either did not consider the 

effects of corrosion or did not examine the bridge structure as a whole. 

Research of Sarveswaran et al. 

Sarveswaran et al. [1998] also looked at the effect of corrosion penetration on component 

reliability: rather than considering composite I-girder structures, the research examined 

steel members alone. However, interval probability theory was used to determine the 

system reliability. In [Sarveswaran et al. 1998] only structures with known amounts of 

section loss due to corrosion are considered, due to the difficulty and uncertainty of 

predicting future corrosion penetration. For the general model, section loss occurs to the 

entire steel section, but at an advanced rate for the bottom ¼ of the web and the flange. 

Corrosion was also expected to attack both the top and bottom surfaces of the flanges. A 

diagram of the resulting beam section is shown in Figure 2.23. 
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Figure 2.23: Beam section [Sarveswaran et al. 1998] 

The findings of [Sarveswaran et al. 1998] are that the most critical failure mode affecting 

the beam is lateral-torsional buckling, due in part to beam coping. This is followed by 

shear, since the loss of material affects the bottom quarter of the web most directly, and 

then by moment, since section loss to the compression flange is less significant. 

Research of Eamon and Nowak 

Eamon and Nowak [2004] attempted to evaluate the effect of secondary elements, such as 

sidewalks and barriers, on the system reliability of girder bridges, assuming these 

elements participate in resisting live loads due to truck traffic, but also contribute to the 

dead load on the span. The effect of corrosion penetration over time was not considered. 

The study considered two-lane structures with varying numbers of I-girders and varying 

in length from 10 to 50 m. The results of [Eamon & Nowak 2004] show that the 

secondary elements did affect the reliability of the bridge structural systems. The effects 

varied with bridge span and girder spacing. Short-span structures showed the largest 

increases in reliability index, due to the additional capacity provided by the edge-

stiffening elements. Figure 2.24 shows the effect of span length on reliability. 
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Figure 2.24: Reliability data for varying spans with 2 m girder spacing [Eamon & Nowak 2004] 

Girder spacing was also found to influence reliability, but to a lesser degree. Since the 

number of girders affects system redundancy, structures with more, or more closely-

spaced, girders had the highest reliability indices. Figure 2.25 shows these results. 

 
Figure 2.25: Reliability data for 50 m span [Eamon & Nowak 2004] 

2.6 Summary 

2.6.1 Corrosion of Weathering Steel 

As mentioned earlier, there are some differing views on the exact nature and mechanism 

of corrosion penetration in weathering steel. Nevertheless, there is a consensus that its 

alloy content enables weathering steel to form a dense, uniform layer, which protects it 

from ingress of air, moisture, and pollutants that cause corrosion and lead to section loss.  
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2.6.2 Sacrificial Anode Protection of Weathering Steel 

There has been research performed on the effectiveness of zinc and zinc-aluminum alloy 

metallizing as protective coatings for steel and concrete. These studies find that both are 

successful at protecting the substrate, even though they work in different ways. The zinc 

metallizing apparently wears down faster than the alloy alternative. However, no studies 

have been conducted that compare the effectiveness of these coatings on corroded, pitted 

weathering steel with the precision allowed by laboratory conditions. Also, no research 

on the effectiveness of zinc tape on a steel substrate was found. 

2.6.3 Structural Reliability Evaluation 

A significant amount of research has been carried out on the effects of corrosion on the 

time-dependent structural reliability of single-span I-girder bridges, including the 

consideration of system effects. However, no research has been done comparing I-girder 

bridges to box-girder bridges, or single-span bridges to two-span bridges. And, while the 

effects of span length and the number of girders have been researched with sensitivity 

studies, other factors, such as girder yield strength, the number of lanes, and the amount 

of traffic the bridge carries have yet to be considered. 
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CHAPTER 3: TESTS AND PROCEDURES 

This chapter describes the laboratory tests conducted to assess and evaluate the accuracy 

of UTG measurements of corroded bridge plates and the benefit of metallizing and zinc 

tape as a means of reducing the rate of corrosion.  

3.1 Ultrasonic Thickness Measurements 

3.1.1 Background 

Ultrasonic thickness (UT) measurement is the most common method of measuring the 

thickness of steel plate on a structure. The technique is as follows: a transducer is put in 

contact with the surface of the material being measured. The quality of the contact can be 

increased by the use of a couplant, usually a gel. The transducer emits ultrasonic waves 

that pass from a transmitter (T) through the material and reflect off the opposite wall and 

back to a receiver (R), providing there are no discontinuities or cracks that might first 

intercept the waves [Antaki 2005]. Figure 3.1 shows a diagram of this. 

 

Figure 3.1: Explanation of ultrasonic thickness measurement 

The main advantage of this system (versus the use of callipers, for example) is that it 

needs access to only one side of the plate being measured. However, there is significant 

uncertainty about what is actually being measured when the probe is placed on a heavily 

pitted surface or if there is a corrosion layer between the probe and the steel. 

The goal of the research into ultrasonic thickness measurements performed for the current 

study was to determine the effectiveness and accuracy of UTGs when being applied to 

corroded steel plate. The effect of corrosion products (on either side of the plate) on the 

thickness measurement was studied, specifically whether the corrosion product was 

included in the thickness measurement of the steel. Also, the effect of pitting on the 

measurements was examined. As shown in Figure 3.2, it was necessary to design a test to 
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examine the effect of pitting, not only on the face being measured (thereby denying the 

UTG a smooth working surface), but also on the opposite face, in order to determine 

whether the distance to the pit or to the opposite face is what is being measured. 

Likewise, clear information could not be found in the existing literature on the effect of 

corrosion product (rust) on the reported thickness measurement. 
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Figure 3.2: Explanation of uncertainty in ultrasonic thickness measurement. 

3.1.2 Equipment 

The Nova Eclipse TG110DL was the UTG used for this study; Figure 3.4 is a photograph 

of this instrument. The TG110DL has a built-in microprocessor for calculating the 

thickness of the material and a liquid crystal display for the visual interface. It is a 

handheld unit with the transmitter and receiver contained together in the probe that is 

applied to the material being tested (Figure 3.3). 

 
Figure 3.3: UTG probe head 
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Figure 3.4: UTG and couplant 

A variety of probes are available for use with this gauge, but for this project the Standard 

Probe (TG506) was the only one used. The gauge functions by sending a short ultrasonic 

pulse into the material and measuring the amount of time it takes for the signal to return 

after echoing off the back surface of the material. In calculating the material thickness, 

the gauge takes into account the characteristic ultrasonic velocity of the material. The 

gauge user’s manual recommends a longitudinal ultrasonic velocity of 5.9 mm/�s for 

mild steel, and this is the value that is used for all measurements. The UTG results 

compared well with those provided by digital callipers and the Coordinate Measuring 

Machine described below. The couplant used was Sonotech Ultragel II, an ultrasonic 

couplant with a temperature range of -20° to 150° C. 

A Mitutoyo BHN305 Coordinate Measuring Machine (CMM) was used to obtain 

measurements of the plate thickness with which the ultrasonic thickness measurements 

could be compared. The CMM (Figure 3.5) is a computer controlled measurement device 

used to measure the dimensions of three dimensional objects.  
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Figure 3.5: Coordinate Measuring Machine 

It uses a needle-like probe to mechanically determine the x-, y- and z-coordinates of a 

point on the surface of the specimen. The probe can be manipulated directly by the user, 

or it can be directed to measure the object at a series of set locations or in a preset grid. It 

is programmable, so the user can enter a grid and let it run automatically.  

The CMM does point measurements only, and not a continuous scan along a line. It is 

calibrated by measuring specimens of known dimensions. The surface profile 

measurements obtained with the CMM can be directly translated into thickness 

measurements if one side of the specimen is polished flat. 

By comparing the UTG measurements with the physical measurements made using the 

CMM, it is possible to determine the level of accuracy provided by the UTG and, in 

particular, to determine the effects of pitting and corrosion product (on the front or back 

surfaces of the plate) on the measurements recorded by the UTG probe. 
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3.1.3 Tests 

Machined Groove Thickness Measurement Test 

Prior to measuring the thicknesses of corroded plate specimens, it was decided to test the 

ultrasonic gauge on a machined groove of known geometry. The steel used in this test 

was the taken from the “new weathering steel” sample provided by Algoma, as discussed 

in Section 3.3, with the corrosion product removed and all of the surfaces of the specimen 

machined smooth. For this test, the weathering steel specimen was first machined to a 

constant thickness. A groove (depth = 1.854 mm, radius = 3.175 mm) was then cut across 

the specimen to simulate a deep pit in the steel (Figure 3.6).  

 
Figure 3.6: Steel specimen with groove 

The specimen was then mounted onto an electronic height gauge that permitted vertical 

translation while measuring the change in vertical position to the hundredth of a 

millimetre. The UTG probe head was mounted on a three-prong swivel clamp and a 

magnetic clamp stand, allowing the sensor to be in contact with the specimen at all times. 

The full test setup can be seen in Figure 3.7. 
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Figure 3.7: Machined groove thickness measurement test setup 

To record the data, an arbitrary initial point above the groove was chosen and the 

thickness was recorded. The specimen was then moved across the UTG probe head and 

the position and the thickness value recorded at each location. This process was repeated 

until a complete line including the machined groove was measured. This test was run 

with the UTG probe head mounted in two orientations, termed “parallel” and 

“perpendicular” (see Figure 3.8). The results of this test are presented in Chapter 4. 

 
Figure 3.8: Parallel (left) and perpendicular (right) orientations of probe head 

Specimen 

UTG probe 

Height gauge 

Swivel clamp 

UTG 
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For this test, a circular irregularity was measured because it approximates the expected 

shape of a corrosion pit; however, for the purposes of the structural research, the shape of 

the pit is not as important as its depth. 

Corroded Specimen Thickness Measurement Tests 

The objective of the next series of tests was to determine the accuracy and limitations of 

the UTG when used to measure heavily corroded piece of weathering steel, specifically in 

view of the concerns discussed in Section 3.2.1. 

For these tests, two types of specimens were considered, those with heavy corrosion and 

those with light corrosion. Figure 3.9 and Figure 3.10 are photos of typical specimens. 

Note that the heavily corroded specimens were “old steel” coupons cut from a larger 

sample taken from the Big Otter Creek Bridge; the lightly corroded specimens were “new 

steel” coupons cut from a sample provided by Algoma. The specimens were machined to 

a length of 90 mm and a width of 45 mm. The top, more heavily corroded, surface was 

initially left untouched, while the bottom surface was milled smooth. 

 
Figure 3.9: “Old steel” specimen with heavy corrosion (old steel) 
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Figure 3.10: “New steel” specimen with light corrosion (new steel) 

The UTG was used to perform a 5 x 7 grid of thickness measurements from both sides of 

the specimen. Special templates, shown in Figure 3.11, were used to control the location 

of each of the measurements to ensure repeatability. These plastic templates contained 

holes slightly larger than the probe head and a lip so that they would fit snugly over the 

90 x 45 mm specimens, as is shown in Figure 3.12. 

 
Figure 3.11: Templates 
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Figure 3.12: UT measurements with templates 

Once the UT measurements were complete, the CMM was used to collect a 5 x 7 grid of 

thickness measurements at the center of each UTG measurement point. After these 

measurements were taken, the corrosion product was removed from each specimen by 

“pickling” as per [ASTM G1-03]. The clean specimens (Figure 3.13 and Figure 3.14) 

were examined under a microscope to ensure that the corrosion product was fully 

removed. Once cleaned, the UTG and CMM measurements were repeated. 

 
Figure 3.13: Pickled specimen with heavy corrosion (old steel) 
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Figure 3.14: Pickled specimen with light corrosion (new steel) 

In addition, the CMM was used to collect a data set in a 13 x 13 grid with a spacing of 

1.5 mm between each measurement; the centre of this grid was located at the centre of 

the specimen. The results of this series of tests are also summarized in Chapter 4. 

3.2 Corrosion Testing 

3.2.1 Background 

The objective of the corrosion testing performed for the current study was to examine the 

corrosion resistance of three different coating products. The test program was also 

designed to examine the effect of varying the level of sandblasting, the steel type, and the 

degree of corrosion damage to the surface prior to the coating.  

3.2.2 Test Program 

The test matrix for the corrosion testing is shown in Table 3.1. Five specimens of each 

type were used to ensure statistical viability. 
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Table 3.1: Corrosion test matrix 

Group Material Corrosion Treatment Coating Count 

1 Old steel Heavy Full sandblast None 5 

2 New steel Light Full sandblast None 5 

3 New steel Light Full sandblast Aluminum alloy metallizing 5 

4 Old steel Heavy Full sandblast Zinc metallizing 5 

5 New steel Light Full sandblast Zinc metallizing 5 

6 Old steel Heavy Half sandblast Zinc metallizing 5 

7 New steel Light Half sandblast Zinc metallizing 5 

8 Old steel Heavy Full sandblast Zinc tape 5 

9 New steel Light Full sandblast Zinc tape 5 

10 Old steel Heavy Half sandblast Zinc tape 5 

11 New steel Light Half sandblast Zinc tape 5 

The test regimen chosen for the corrosion test was [SAE J2334]. This test regimen was 

originally designed for testing the corrosion resistance of automobile parts; however, it 

was used in the current study because of its known ability to induce significant corrosion 

thickness loss over a relatively short test duration, and due to the smaller area of steel 

required for the specimens. According to this regimen, this test follows a 24-hour cycle, 

as shown in Figure 3.15. 
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Figure 3.15: Test cycle [SAE J2334] 

The composition of the [SAE J2334] immersion solution is as follows: 

• 0.5 wt% NaCl 

• 0.1 wt% CaCl2 

• 0.075 wt% NaHCO3 

Each of these constituents was obtained in solid (powder) form and dissolved in the 

distilled water that comprised the remainder of the solution. 

Conductivity and pH were tested on a weekly basis to ensure the quality of the solution. 

An Orion Model 710A pH/ISE meter was used to test the pH of the solution; a Hach 

conductivity/TDS meter was used to monitor its conductivity. 

3.2.3 Test Equipment 

The test regimen was imposed by placing the specimens in an Ascott Cyclic Corrosion 

Test Chamber (model CC450). The system, which has a 450 L capacity, has two 

components: a corrosion chamber and a solution reservoir (Figure 3.16 and Figure 3.17).  

Humid cycle 
50 �C & 100% RH 

6 hours 

Immersion cycle 
Ambient temp and RH 

15 minutes 

Dry cycle 
60 �C & 50% RH 

17 hours & 45 minutes 
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Figure 3.16: Corrosion chamber 

 
Figure 3.17: Solution reservoir 

The Ascott system is programmable through a touch screen, and automatically adjusts the 

temperature, humidity, and immersion of the specimens. Its capacity for automatic 

operation means that it could operate continuously. 

Test racks for the specimens were cut from black ABS plastic tubing. Figure 3.18 shows 

a diagram of the test rack (dimensions are in mm). The specimens were placed in a 

random order on the racks inside the corrosion tester. Once per week they were removed 

to be weighed and photographed (this was reduced to once per two weeks at the 120-

cycle mark); they were then returned to the machine in a different order to ensure that 

their location inside the tester would not be a factor in their corrosion rate. 



 45 

 
Figure 3.18: Test rack diagram 

3.2.4 Specimens 

Steel for the corrosion specimens came from two sources. The “old steel”, provided by 

the MTO, came from a splice plate from the Big Otter Creek Bridge on King’s Highway 

No. 3 near Tillsonburg, Ontario. Figure 3.19 shows a photo of the old steel in its “as 

received” state. 

 
Figure 3.19: Old steel sample provided by MTO 

The bridge drawings specify CSA G40.11 Grade 50A (yield strength, Fy = 345 MPa) 

atmospheric corrosion resisting steel. Inspections indicated this I-girder bridge, which is 

near Tillsonburg, Ontario, was experiencing very high corrosion rates and, as part of the 

repair procedure, some of the splice plates, as well as parts of the I-girder, were removed 

and replaced. This steel was observed to be heavily pitted and had lost some of its 

section. The section loss could be deduced because the steel under the bolt holes was not 

corroded, and the steel around them was much less thick. Figure 3.20 shows a photo of 

the profile of a pickled specimen cut from the old steel splice plate. 
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Figure 3.20: Bolt hole specimen (old steel) 

Figure 3.21 shows an old steel (50 x 50 mm) specimen after sandblasting. As can be seen 

in this figure, the steel was heavily pitted as a result of its exposure and use. 

 
Figure 3.21: Old steel specimen 

The “new steel” used in this study was provided by Algoma Steel. It is a weathering steel 

grade that is used in modern bridge construction, grade CSA 350 AT. Figure 3.22 shows 

1 cm 
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a photograph of the steel sample. The new steel was exposed outdoors to approximately 

six months of cold and wet environment with road salt and snow prior to testing. The 

effect of this exposure was a small amount of corrosion of the steel surface. 

 
Figure 3.22: New steel sample provided by Algoma 

Figure 3.23 is a close-up of a new steel specimen after sandblasting. The surface of the 

new steel specimen shows some texture, but is not pitted like the old steel specimen. 

The chemical composition of each steel type was ascertained by testing in accordance 

with [ASTM D-1976 M] and [ASTM E-1019]. Testing was performed by Bodycote 

Testing Group of Burlington, Ontario. The results are summarized in Table 3.2, and the 

data are presented in a graphical manner in Figure 3.24. The current specifications for 

weathering steel according to [CAN/CSA G40.21] are summarized in Appendix A. 
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Figure 3.23: New steel specimen 

 
Figure 3.24: Percent composition of alloying elements 

1 cm 
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Table 3.2: Steel compositions, wt% 

Element Old Steel, % New Steel, % 

Al 0.05 0.03 

C 0.15 0.06 

Ca < 0.005 < 0.005 

Cr 0.31 0.49 

Cu 0.30 0.24 

Mn 0.87 1.16 

Mo 0.02 0.01 

Nb < 0.005 < 0.005 

Ni 0.32 0.29 

P 0.005 0.011 

S 0.024 0.006 

Si 0.15 0.40 

V 0.012 0.053 

The old and new steels have a chemical composition that would qualify them as 350A or 

350 AT steels (see Appendix A, Table A.1). The new steel contains significantly larger 

amounts of chromium, manganese, silicon and vanadium, but smaller amounts of carbon, 

aluminum, copper, and sulphur. The effects of these alloying elements are summarized as 

follows [Kulak & Grondin 2006, Albrecht & Naeemi 1984]: carbon increases the steel’s 

strength and hardness, but tends to decrease its ductility and toughness. Manganese 

increases strength and hardness in a similar manner, except that it also increases the 

toughness. Chromium, copper, nickel, and silicon all serve to increase the corrosion 

resistance of the steel; manganese likewise has a beneficial effect on the corrosion 

resistance. Silicon and aluminum may also be present as deoxidizers, while vanadium is 

an effective precipitation strengthener. Phosphorus and sulphur are considered to be 

impurities and should be minimized if possible. 



 50 

3.2.5 Pre-treatment 

The old and new steel specimens were pretreated by sandblasting performed by a 

licensed contractor: Reitzel Brothers Sandblasting of Ontario. Thirty-five of the 55 total 

samples were sandblasted to a level compliant with [SSPC-SP 5/NACE No. 1]. The 

remainder of the samples were sandblasted to approximately half this level. The intent of 

this was to simulate an improperly sandblasted piece of steel in order to test the effect of 

sandblasting on coating effectiveness. In addition, it was thought that, if both specimen 

types performed equally well, then perhaps a lower cleaning criterion could be permitted, 

thereby reducing the preparation cost for the coating procedure. 

3.2.6 Coatings/Treatment 

As indicated in Table 3.1, three different coating products were applied to the weathering 

steel specimens. Each of these products operates as a sacrificial anode. All of the tape and 

metallizing products and procedures used for the current study were supplied and applied 

by Vector Corrosion Technologies. 

Galvanic (Zinc) Tape 

The tape product tested was Galvanode® ZincTape, and is comprised of three layers: the 

first (outer) layer is a topcoat of PVC, followed by a layer of high purity zinc (min. 

99.99% zinc). The third is a layer of electro-conductive, pressure sensitive adhesive (the 

electrical conductivity is required to produce an electrical contact between the surface of 

the steel and the zinc tape). The adhesive is advertised to be capable of resisting a 

continuous temperature of 120°C, so there was no reason to expect a thermal breakdown 

of the adhesive to have an effect on the tape’s performance. 

The application of the tape is a straightforward process. Care has to be taken to prepare 

the surface correctly, either by scrubbing with a steel brush or sandblasting. Thin strips of 

tape have to be applied at the edges of the steel first, before the wider strips of tape can be 

used to cover up large, flat spaces between the edge strips. 

Metallizing 

Two metallizing products were examined in this study: zinc and aluminum alloy (see 

Table 3.1). The zinc metallizing product, like the zinc tape, is composed of high purity 
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zinc (min. 99.99 wt%). The aluminum alloy metallizing product is aluminum, 5.0 

wt% zinc, 0.05 wt% indium, with additional small amounts of iron, silicon, copper, and 

manganese [D. Whitmore, personal communication, April 14, 2009]. 

3.2.7 Specimen Casing 

Once the specimens were coated by Vector, they were subsequently encased on all but 

their top surfaces with epoxy to confine the exposure to the face of the specimen only. 

The epoxy used was the flowable two-stage SikaFloor® 261 system. 

3.2.8 Control Tests 

A control test was run in addition to the coated and uncoated steel specimens. This other 

test also took place under the [SAE J2334] test regimen. Four epoxy blanks of varying 

masses were tested in order to ascertain the effect (if any) of weight change associated 

with the casing material. 
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CHAPTER 4: TEST RESULTS AND INTERPRETATION 

In this chapter the results of the tests made with the ultrasonic thickness gauge (UTG) are 

presented and analysed. Also presented are the results of the corrosion test which was 

performed with uncoated, metallized, and taped steel specimens. 

4.1 Ultrasonic Thickness Measurement Tests 

4.1.1 Machined Groove Test 

In the machined groove test, the UTG was tested on a steel specimen with a machined 

semicircular groove. The test was run with the probe head in two different orientations, 

with the transmitter and receiver aligned parallel and perpendicular with respect to the 

gauge travel direction (see Figure 3.8). 

Results 

Figure 4.1 shows the thickness measurements made by the UTG with the probe in the 

parallel and perpendicular orientations, in comparison with the physically measured 

dimensions of the groove.  

 
Figure 4.1: Machined groove test results compared with theoretical groove data. 

The curve representing the physical measurements is based on thickness measurements of 

the specimen, measurements of width and depth of the groove, and an assumed circular 

cross section of the groove (the groove was drilled, so this assumption is expected to be 

realistic). The maximum depth and width measurements are presented in Table 4.1. 
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Table 4.1: Groove test measurements. 

Measurement device Depth (mm) Top width (mm) 

Physical 1.85 5.61 

Parallel 1.85 8.22 

Perpendicular 1.87 13.70 

The UTG accurately measures the depth of the groove, regardless of the orientation of the 

probe; however, the measured width of the groove varies substantially and is not 

accurate. 

Interpretation 

The UTG works by transmitting and receiving ultrasonic pulses (see Section 3.2.1). 

These pulses, in the form of waves, return to the probe after reflecting from a 

discontinuity in the transmitting medium. They return at different intervals, depending on 

the distance travelled (assuming the transmitting medium is continuous); the UTG 

displays the calculated thickness based on the first wave to return. Once the distance to 

the edge of the groove is shorter than the distance to the opposite side of the specimen, 

this is the distance that is reported as the specimen thickness. Based on this assumption, a 

theoretical probe reading can be calculated for a given probe position. However, only 

surfaces perpendicular to the direction of the wave are able to reflect it back to the UTG 

receiver. Figure 4.2 shows the direct (A) and angular (B) paths. 

 
Figure 4.2: Ultrasonic wave paths 

The shortest distance between the UTG and the opposing surface is the one used for the 

shortest distance assumption. Two lines based on the calculated or theoretical probe 

reading, based on the shortest distance assumption, are presented in Figure 4.2. 
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The theoretical UT values that were calculated were based on this “shortest distance” 

assumption. As can be seen from Figure 4.1, there is a noticeable similarity between the 

measurement made with the probe head in the perpendicular orientation and the 

theoretically shortest distance. The difference between the parallel and perpendicular 

orientation output is probably due to the fact that the instrument cannot register a weak 

return signal in the parallel orientation. Other factors that may have had an influence on 

both the parallel and perpendicular data are (1) the distance between the transducer and 

receiver and (2) the shape of the ultrasonic beam produced by the transducer, which, due 

to the shape of the transducer, is probably somewhat irregular.  

Based on this study, it can be concluded that, the UTG output is reliable if it is being used 

to measure the thickness of a metal plate that is subject to general corrosion; however, the 

UTG is not well-suited for locating and measuring individual pits. 

4.1.2 General Corrosion Measurement Test  

In the general corrosion measurement test, the UTG was tested on steel specimens with 

varying degrees of corrosion. The specimens were first measured with the corrosion 

product present, and then again with the corrosion product removed by pickling. Each 

specimen was measured at 35 locations, and measurements were made three times to 

confirm their accuracy. 

Old Steel Results 

For the old steel, it proved impossible to measure the thickness from the corroded face of 

the specimen due to the heavy pitting; a relatively smooth surface is required for the UTG 

to take a reading. Thus, UTG readings were taken only from the back of the specimen 

only, which had been milled flat. CMM measurements were taken on the corroded face, 

which only measures the surface profile. However, if the side of the specimen sitting on 

the CMM table is perfectly flat, then the profile measurements can be equated to 

measurements of thickness. A summary of the statistical data for each of the readings is 

provided in Table 4.2.  
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Table 4.2: Old steel specimen thickness measurement data 

Condition Tool Value Spec. 3 (mm) Spec. 4 (mm) Spec. 5 (mm) 

As received UTG 
Average 

Std. dev. 

14.12 

0.22 

14.21 

0.11 

14.35 

0.18 

Pickled UTG 
Average 

Std. dev. 

14.10 

0.22 

14.26 

0.11 

14.38 

0.18 

As received CMM 
Average 

Std. dev. 

14.33 

0.26 

14.54 

0.29 

14.73 

0.31 

Pickled CMM 
Average 

Std. dev. 

14.14 

0.22 

14.34 

0.20 

14.45 

0.23 

Figure 4.3 is a histogram showing the statistical distributions of the readings made with 

the UTG, taken before the corrosion product had been removed by pickling.  

 
Figure 4.3: Histogram of as received old steel specimen thicknesses, by UTG 

There is some variation in the data, which is probably due to the fact that the different 

specimens had experienced varying degrees of corrosion. Figure 4.4 is a histogram of the 

data collected with the UTG applied to the same three specimens after pickling. 
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Figure 4.4: Histogram of pickled old steel specimen thicknesses, by UTG 

Once again, there is a significant amount of variability between the individual specimens, 

but there is also a clear similarity between Figure 4.3 and Figure 4.4. The CMM was used 

to measure the same old steel specimens before and after pickling. Figure 4.5 shows a 

histogram of the plate thicknesses measured with the CMM from the corroded face of the 

old steel specimen before pickling. The data in Figure 4.5 collected with the CMM are 

more scattered than the UTG data. 

 
Figure 4.5: Histogram of as received old steel specimen thicknesses, by CMM 

Figure 4.6 is a histogram of the data collected with the CMM from the corroded face of 

the old steel specimen after pickling. 
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Figure 4.6: Histogram of pickled old steel specimen thicknesses, by CMM 

Old Steel Data Interpretation 

Table 4.3 contains the results of the average thickness before pickling (tas received) minus 

the average thickness after pickling (tpickled), as measured with the UTG and CMM. 

Table 4.3: Comparison of old steel specimen thickness measurements 

�t Spec. 3 (mm) Spec. 4 (mm) Spec. 5 (mm) 

 tas received, UTG – tpickled, UTG, mm 0.01 -0.05 -0.01 

 tas received, CMM – tpickled, CMM, mm 0.19  0.20 0.28 

The CMM found 0.2 to 0.3 mm of corrosion product on the face of the corroded steel 

specimens on average. With the UTG, however, thickness measurements made from the 

uncorroded face before and after pickling are precise to within 0.02 mm on average, 

which is an acceptable error for this application. From this, it can be concluded that the 

UTG does not include the corrosion product in its measurements. 

New Steel Results 

The new steel, lightly corroded specimens were also measured with the UTG and CMM, 

both before and after pickling; however, in this case, the UTG probe was applied to the 

corroded face of the steel. Due to the relatively small amount of rust present, the UTG 
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was still able to measure the specimen thickness from the corroded side. A summary of 

the measurement data for the new steel specimens is available in Table 4.4. 

Table 4.4: New steel specimen thickness measurement data 

Condition Tool Value Specimen 3 Specimen 4 Specimen 5 

As received UTG 
Average 

Std. dev. 

15.47 

0.02 

15.55 

0.05 

15.51 

0.05 

Pickled UTG 
Average 

Std. dev. 

15.35 

0.02 

15.29 

0.02 

15.28 

0.03 

As received CMM 
Average 

Std. dev. 

15.30 

0.03 

15.29 

0.03 

15.26 

0.04 

Pickled CMM 
Average 

Std. dev. 

15.24 

0.02 

15.22 

0.02 

15.21 

0.03 

Figure 4.7 is a histogram of the data collected with the UTG on the three new steel 

specimens prior to pickling. The data in Figure 4.7 are quite closely grouped. 

 
Figure 4.7: Histogram of as received new steel thicknesses, by UTG 

Figure 4.8 is a histogram of the data collected with the UTG on the new steel specimens 

after they have been pickled. 
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Figure 4.8: Histogram of pickled new steel thicknesses, by UTG 

Once again, it is a tight group of data; however, the data are now significantly lower than 

what was collected with the rust still attached to the specimens. Figure 4.9 is a histogram 

of the data collected by CMM on the new steel specimen with the corrosion product still 

attached. 

 
Figure 4.9: Histogram of as received new steel thicknesses, by CMM 

Once again the data are quite tightly grouped, and the values are generally lower than 

those presented in Figure 4.7. Figure 4.10 is a histogram of the data collected with the 

CMM on the pickled new steel specimens. 
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Figure 4.10: Histogram of pickled new steel thicknesses, by CMM 

Again the data are quite tightly grouped, and in the lower range of values for these 

specimens. Comparing Figures 4.9 and 4.10, it can be seen that the average thickness, 

measured by the CMM, is slightly lower after the specimens are pickled. 

New Steel Data Interpretation 

Table 4.5 contains the average thickness before pickling minus the average thickness 

after pickling, as measured with the UTG and CMM, for specimens 3, 4, and 5. Note that 

in this case, all of the measurements have been made from the corroded side. 

Table 4.5: Comparison of new steel specimen thickness measurements 

�t Spec. 3 (mm) Spec. 4 (mm) Spec. 5 (mm) 

 Tas received, UTG – tpickled, UTG, mm 0.13 0.26 0.23 

 Tas received, CMM – tpickled, CMM, mm 0.06 0.07 0.05 

It would appear from the data in Table 4.5 that the UTG overestimates the thickness of 

the steel by as much as 0.2 mm, approximately four times the thickness of the corrosion 

layer. This inaccuracy is caused by the rust coating on the specimen, through which the 

ultrasonic waves must pass twice in order for the plate to be measured. The rust layer is 

thin enough that the UTG still registers the returning energy, but is significantly less 

dense than the steel and, therefore, transmits the energy at a slower rate. Table 4.6 shows 
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the differences between the measurements made with the UTG and CMM on the pickled 

old steel and new steel specimens. 

Table 4.6: Comparison of measurements taken with UTG and CMM on pickled specimens 

tpickled, UTG – tpickled, CMM, mm Specimen 3 Specimen 4 Specimen 5 

Old steel -0.04 -0.08 -0.08 

New steel 0.11 0.07 0.07 

In the measurements made on the old steel specimen, the UTG returned data that are on 

average 0.07 mm smaller than the CMM. However, in measurements made on the new 

steel specimen, the UTG data are on average 0.08 mm larger than the CMM data. There 

are two possible sources of error, which are given below.  

With the old steel specimen, the CMM would have had to both find the pits and then have 

its needle fit into them; since the UTG was measuring from the smooth back of the 

specimen and uses a dispersive method of locating the shortest distance, the UTG 

measurements are smaller than those of the CMM. Using a microscope, numerous pit 

depths in excess of 1 mm were located on old steel specimens; pit measurement was 

accomplished by focussing on the rim and bottom of the pit and recording the difference 

between them. This is a probable source of difference for the old steel measurements. 

Another possible source of error is with the UTG measurements of the new steel 

specimens. Since these measurements were being made from the corroded face, it is 

possible that the surface texture made it necessary for the ultrasonic waves to pass 

through a thicker layer of the gel couplant, which would increase the return time for the 

waves and result in an overestimation of the plate thickness. 

4.2 Corrosion Tests 

In this section the results of the corrosion test are presented. First a summary is made of 

any anomalies that were observed during the preparation and execution of the tests. The 

test results are then presented, and interpretations and conclusions are drawn from the 

data. 
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In order to distinguish the specimens, a shorthand system of nomenclature was 

developed, which is used throughout this section. Each specimen is labeled by three 

letters, followed by a number. The first letter denotes the type of steel (N or O, for new 

and old, respectively). The second letter is for the type of coating (Z, T, I, and 0, for zinc 

metallizing, zinc tape, aluminum alloy metallizing, and uncoated, respectively). The third 

letter is for the type of pre-treatment (W or R, for specimens sandblasted to a white or red 

condition, respectively). The number is for the individual specimen, ranging from 1 to 5. 

This code is used to identify the results on all the graphs in this section. 

4.2.1 Test Preparation 

The sandblasted samples were left exposed to ambient (laboratory) conditions after 

sandblasting and prior to coating. Within 24 – 48 hours, the steel samples sandblasted to 

white metal condition had lost their shine and began to show an orange tinge. The 

samples sandblasted to half-white condition also showed a low level of atmospheric 

corrosion. No attempt was made to re-clean the specimens. 

Metallizing of specimens took place within a week of their being sandblasted. The zinc 

tape samples were taped approximately one month after the sandblasting was performed, 

while there were approximately six weeks between the sandblasting of the uncoated 

samples and the beginning of the corrosion test. During this time the uncoated samples 

developed a thin, dark orange layer due to atmospheric corrosion. 

4.2.2 Test Execution 

The full duration of the main corrosion testing program was 212 cycles. 

Some unplanned events occurred during the corrosion test. First, at the 26 cycle mark, the 

corrosion tester partially shut down due to an equipment error, leaving the specimens in 

the tester for approximately four days with the atmosphere being adjusted normally 

(between 50°C/100% RH and 60°C/50% RH), but without being submerged. 

Second, after some time, corrosion product was observed to have developed between the 

uncoated specimens and their epoxy casings, cracking the epoxy. This occurred on the 

sides and back of the specimens, and required removal of the epoxy and re-encasing of 

the specimens. This was performed after 47 cycles in the corrosion tester. After 82 
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cycles, the uncoated specimens were removed from the test. This was done because there 

was no reason to continue testing them; instead, the corrosion products were removed 

from four specimens (two new and two old) to measure the progress of the corrosion. 

At regular intervals the corrosion tester had to be paused so that maintenance could be 

performed and specimens could be measured and examined. On these occasions, the 

chamber was opened and the specimens were exposed to ambient temperature and 

humidity for a short period of time. 

4.2.3 Test Results 

Figure 4.11 shows the mass gain/loss data collected through the full duration of the test. 

Each curve in this figure represents an average of the five specimens of each type. Graphs 

with the data for individual specimens are presented in Appendix B. 

 
Figure 4.11: Corrosion test mass change results – general 

The specimens immediately separated into three groups according to their coating type. 

The first group, the uncoated specimens, showed a dramatic increase in mass over the 

duration of the test. The second group, the metallized specimens, at first showed a slight 

increase in mass, but this was followed by a downward trend, which lasted to the end of 

the test. The third group is the taped specimens; these showed an immediate downward 

trend, which continued until the end of the test. The test results for each of these groups 

are discussed in detail below.  
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Uncoated Specimens 

Figure 4.12 shows the weight gain of the uncoated specimens during the corrosion test. 

The uncoated specimens began corroding immediately. After 82 cycles they were 

removed from the corrosion chamber, due to the deterioration of the epoxy casings. 

 
Figure 4.12: Corrosion test mass change results - uncoated specimens 

In Figure 4.12, the mass change slope becomes steeper for both samples at the 35 cycle 

mark, and again at the 70 cycle mark. This may be due to the progression of corrosion 

through the sides and back of the uncoated specimens. Nevertheless, there is no 

indication from the data gathered that the corrosion would level off at some point in the 

future. Also, when the specimens were autopsied, it was discovered that most of the 

corrosion occurred on the exposed face rather than on the sides and back of the specimen. 

Figure 4.13 shows two examples of the uncoated specimens prior to the start of the test. 
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Figure 4.13: Specimens N0W3 (left) and O0W1 (right), prior to test start 

As can be seen from these figures, already at the start of the test (after blast cleaning) a 

small amount of atmospheric corrosion had occurred. 

Figure 4.14 is a photo of the specimens after their removal from the corrosion chamber. 

   
Figure 4.14: Specimens N0W3 (left) and O0W1 (right), after test conclusion 

In Figure 4.14, the surfaces of the specimens are heavily corroded. The epoxy casings 

were removed from four of the uncoated specimens, which were then pickled in order to 

remove the corrosion products. However, it was discovered that once an uncoated 

specimen had been removed from the tester and left aside for a few days, the corrosion 

layer would come off as a single piece. Interestingly, this corrosion piece was very 

similar in appearance to the large flakes of corrosion product that can be found on and 

under a heavily corroded weathering steel structure. Figure 4.15 shows a specimen with a 

detached corrosion layer. 
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Figure 4.15: Specimen O0W1, after removal from tester, with rust layer detached 

Raman and x-ray diffraction (XRD) tests were performed on corrosion samples from the 

old and new steel specimens in order to identify the components of the corrosion. Figure 

4.16 shows the results from the Raman test performed on the rust layer of an old steel 

specimen.  

 
Figure 4.16: Raman test results for old steel rust 

The main products are iron oxides and iron oxide-hydroxides. Calcium carbonate 

(CaCO3) also appears as a deposit from the test solution. Figure 4.17 shows the Raman 

test results for the corrosion product of the new steel specimen. 
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Figure 4.17: Raman test results of new steel rust 

The results of the Raman test of the new steel rust are very similar to those of the old 

steel rust. Interestingly, �-FeOOH is not found among the corrosion products of either 

steel, in spite of the fact that it is supposed to result from corrosion that occurs in 

proximity to salt water, according to [Misawa et al. 1974]. 

Figure 4.18 shows the results of x-ray diffraction (XRD) tests on the corrosion products 

of the old and new steel specimens and a sample of corrosion taken from a weathering 

steel bridge situated on Highway 402 between London and Sarnia in Ontario. The results 

of all three tests showed a very large amorphous component; however, the data were 

reduced to provide the following graph (Figure 4.18). 
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Figure 4.18: XRD results for new, old, and bridge steel rust 

The only iron oxide identified with certainty was magnetite (Fe3O4). This iron oxide 

formed mostly on the old and new steel specimens, possibly as a result of their regular 

immersion in a salt solution. The results of the XRD test seem to indicate a greater 

similarity between the old steel rust and the rust from the overpass than that of the new 

steel.  

The results of the weight measurements of corrosion products from four of the uncoated 

specimens can be found in Table 4.7. For these specimens, the weight of the rust layer 

was compared with the weight of all corrosion products combined. It was found that the 

rust layer comprised approximately 75% of the total weight of the corrosion product on 

average, so the total weight lost was multiplied by this factor to estimate the weight of 

steel lost from the face of the sample. 
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Table 4.7: Uncoated specimen mass and section loss 

 wo (g) wpickle (g) Wloss (g) tloss (mm) 

O0W1 354.6 339.0 15.6 0.57 

O0W4 316.0 301.9 14.1 0.60 

N0W1 375.6 359.6 16.0 0.59 

N0W4 377.8 362.4 15.3 0.56 

The thickness loss values were calculated based on the area of the exposed top surface 

and a steel unit density of 7.85 mg/mm3. From the results shown in Table 4.7, it can be 

inferred that the old steel corrodes at a slightly slower rate than the new steel, confirming 

the trend shown in Figure 4.12; however, more tests are needed to establish this 

conclusively. 

Metallized Specimens 

Figure 4.19 is a graph of the mass change to the metallized specimens over the duration 

of the corrosion test. 

 
Figure 4.19: Corrosion test mass change results - metallized specimens 

The metallized specimens essentially experienced three stages. The first, which lasted 

from the start of the test to about the 15th cycle, showed the specimens increasing in 

mass. In the second phase, from the 15th cycle to about the 110th, the specimens’ mass 
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dropped rapidly, and the third, from approximately the 110th cycle to the end, showed the 

specimens had ceased to increase or decrease significantly in mass.  

The specimen mass increase, which occurred at the start of the test, most likely is the 

result of the metallizing product forming an adherent corrosion layer. The specimen 

weight loss likewise occurs when the corrosion product washes off or detaches from the 

specimen. 

Figure 4.20 shows two of the metallized specimens prior to the start of the corrosion test. 

Both specimens began the test with a coating of shiny metallizing product. 

   
Figure 4.20: NIW3 (left) & NZR4 (right), prior to test start 

Figure 4.21 shows the specimens after the test was completed. Both specimens lost their 

shine shortly after the start of the test. 

   
Figure 4.21: NIW3 (left) & NZR4 (right), after test conclusion; orange regions circled 

Orange regions in the specimens in Figure 4.21 should not be construed as evidence of 

corrosion; under a microscope it is evident that they are in fact the result of rust particles 

that have washed onto the specimens from other sources in the corrosion chamber. 
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Autopsies of the metallized specimens showed that no steel corrosion was present due to 

invasion of salt solution along the sides and back of the specimens. 

Figure 4.22 is a photomicrograph of a section of a zinc-coated steel specimen. 

 
Figure 4.22: Photomicrograph of NZR5 section 

In some locations, the zinc metallizing appears to have either been subject to pitting or 

else had some cavities as a result of the metallizing process. Nevertheless, in no location 

has the salt solution penetrated through the coating to the steel substrate. Figure 4.23 is 

photograph of an aluminum alloy-coated specimen section. The metallizing is difficult to 

see in part because the alloy is darker and less reflective than the zinc metallizing. 
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Figure 4.23: Photomicrograph of NIW2 section 

In at least one location the metallizing was found to be absent, either because an uneven 

layer of product was applied or it had corroded away during the test; in any case, 

corrosion to the steel had yet to occur at this location. 

The aluminum alloy coated specimens appeared, on average, to show a greater amount of 

corrosion product than the specimen coated with pure zinc, especially around the edges of 

the specimen. Also, these specimens showed a greater amount of mass loss than the 

specimens metallized with pure zinc. Together, this suggests that the aluminum alloy 

metallizing product is less effective than the pure zinc product when subjected to a high-

chloride environment. However, it should be noted that one reported benefit of the 

aluminum alloy coating is its resistance to sulphur oxides, which was not examined in 

this test.  

There was no indication that the mass loss rate would either increase or reverse at a later 

point in the test. Furthermore, there was no indication from the corrosion test that the 

degree of sandblasting had any effect on the protective ability of the metallizing. The old 

steel specimens did lose less mass than the new steel specimens on average by the end of 

the test, but the difference is minor and their behaviour was otherwise very similar. 

Figure 4.24 shows the XRD output for the zinc metallizing prior to pickling. 
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Figure 4.24: XRD output for zinc metallizing 

The compounds found on the zinc metallizing were predominantly zinc (Zn) and zinc 

oxide (ZnO). Also found was an amount of calcium carbonate (CaCO3) and hematite 

(Fe2O3). The former is a component of the salt solution, so it is not surprising to see it 

collected on the coating surface; as for the iron oxide, since no complete penetration of 

the coating was visible, it is assumed that it washed onto the surface from one of the 

uncoated specimens during the test.  

Figure 4.25 shows the XRD output for the Al-Zn-In metallized coating after the 

completion of the test but prior to pickling. 

 
Figure 4.25: XRD output for Al-Zn-In metallizing 
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Most prominent in the results is the presence of aluminum (Al), although some zinc and 

zinc oxide are present as well. As with the zinc metallized coating, this coating shows the 

presence of calcium carbonate (CaCO3). 

Taped Specimens 

The overall behaviour of the taped specimens for the duration of the corrosion test is 

shown in Figure 4.26.  

 
Figure 4.26: Corrosion test mass change results - taped specimens 

The taped specimens began with a steep loss in overall mass that gradually began to level 

off. As with the metallized specimens, the taped specimens all behaved similarly, 

regardless of the steel composition, degree of sandblasting, and surface roughness of the 

specimens. 
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Figure 4.27 shows two examples of taped specimens prior to the start of the test. 

   
Figure 4.27: NTR1 (left) and OTR1 (right), prior to start of test 

Figure 4.28 shows the same specimens after they had been removed from the corrosion 

chamber after 212 cycles. 

   
Figure 4.28: NTR1 (left) and OTR1 (right), after end of test 

As can be seen from Figure 4.28, little appears to have happened to most of the taped 

specimens during the corrosion test. There are some exceptions: on specimen NTR1, a 

blister had formed in the right-hand side of the tape. Figure 4.29 was taken after the 

specimen had been sectioned and the PVC layer had been cut and removed from the zinc 

tape with a scalpel. 
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Figure 4.29: Specimen NTR1, after sectioning and PVC layer removal 

As can be seen from this figure, a significant amount of powdery white corrosion 

product, thought to be zinc oxide (ZnO), had collected under the PVC coating. 

The source of the mass loss is difficult to determine. As mentioned in Section 3, the tape 

is a layer of pure zinc covered with a layer of PVC. For an oxidation reaction to occur, 

the salt solution has to penetrate the layer; for mass loss to occur, the reaction products 

have to escape the PVC layer again. However, most of the tape specimens do not appear 

to have experience significant amounts of corrosion. Figure 4.30 shows another taped 

new steel specimen with its PVC layer removed; very little corrosion product is visible. 

 
Figure 4.30: Specimen NTR4 with PVC cover removed 
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The zinc layer in the specimen in Figure 4.30 is still shiny; when the zinc layer corrodes, 

it becomes darker and duller. It is possible that some part of the mass loss is due to the 

degradation of the PVC topcoat of the tape. 

Figure 4.31 is a photomicrograph of a section taken from a tape-coated new steel 

specimen. 

 
Figure 4.31: Photomicrograph of NTR5 section 

The PVC coating is not visible because it had peeled back during the sanding process. No 

locations were found where the corrosion had penetrated the zinc layer. 

Figure 4.32 is a photomicrograph of a taped new steel specimen which was subject to salt 

solution penetration; the corrosion product forms little bumps on the zinc which are 

visible through the PVC layer. 

200 �m 

Zinc metallizing 

Base metal 

Adhesive layer 
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Figure 4.32: Photomicrograph of NTR5 surface 

Figure 4.33 shows the XRD results for a taped specimen after the PVC layer was 

removed with a scalpel. It was possible to visually ascertain that the PVC coating had 

protected the zinc layer since the zinc was still bright and little corrosion product was 

visible. 

 
Figure 4.33: XRD results for zinc tape with PVC layer removed 

The only compounds found on the zinc tape specimen were zinc and, to a much smaller 

degree, zinc oxide. This is consistent with what was expected for this specimen. 

200 �m 
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4.2.4 Supplementary Tests 

Calibration Test 

Additional uncoated specimens were fabricated and placed in the corrosion tester to 

measure more precisely the section loss to corrosion that occurs over time. The reason for 

this was to estimate how a cycle or series of cycles in the corrosion tester related to a 

given period of corrosion in the real world. A total of twelve plates of the same type of 

steel as the “new steel” were introduced into the corrosion tester, with three being 

removed, pickled and weighed every two weeks. These specimens were relatively thin 

(approximately 3.6 mm thick on average) and had a large surface area. Figure 4.34 is a 

chart with the specimen corrosion penetration plotted alongside the corrosion penetration 

curve (± 1 standard deviation) of Equation 2.3. 

 
Figure 4.34: Steel plate section loss comparison 

Using the method of least squares to match the section loss of the specimens with the 

corrosion penetration curve for weathering steel in marine environment (because of the 

additional environmental factors required for the other corrosion rates, only marine 

corrosion rate was used to calculate the equivalent test duration), it can be estimated that 

a single cycle is equivalent to approximately 70 days; as such, the uncoated specimens 

were tested for the equivalent of 15 years, and the coated specimens were tested for the 

equivalent of 40 years. However, it must also be noted that the section loss on the plate 

specimens shown in Figure 4.34 was considerably smaller than that found on the 

uncoated specimens exposed for a similar period. Using the average thickness loss in 

Table 4.7 and the corrosion equation with the values for the marine corrosion rate, it 
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would appear that the specimens were in the corrosion machine for the equivalent of 120 

years. This disparity is inexplicable. 

Epoxy Test 

Four epoxy blanks were also introduced into the corrosion machine in order to test their 

behaviour under the test conditions. The four blanks were cast in the same forms but had 

varying masses, so that their surface area was largely the same but their volumes and 

masses varied substantially. Table 4.8 contains the masses of the blanks at the start of the 

test. 

Table 4.8: Blank masses 

Blank # Mass (g) 

1 121.53 

2 92.23 

3 83.75 

4 47.95 

The results of the test are shown in Figure 4.35 and Figure 4.36. 

 
Figure 4.35: Mass loss over time for blank specimens 
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Figure 4.36: Percentage mass loss over time for blank specimens 

Over the course of the first 20 cycles the epoxy blanks increased in mass; after this, the 

rate of mass gain either slowed or, in the case of the smallest, thinnest specimen, reversed 

into mass loss. In any case, this test clearly indicates that the mass loss in the taped and 

metallized specimens is not a result of mass loss on the part of the epoxy. 
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CHAPTER 5: STRUCTURAL ANALYSIS OF CORRODING BRIDGE GIRDERS 

5.1 Introduction 

In order to assess the reliability of the corroding highway structures, it was necessary to 

create analytical models that take into account the following four factors: 

1. the capacity of the structure;  

2. the loading the structure must sustain; 

3. the effects of progressive corrosion on the structural capacity; and  

4. the statistical variations associated with factors 1 – 3.  

Programs that consider these structural and statistical issues were written in Microsoft 

Excel, with Visual Basic for Applications (VBA) employed where appropriate. The 

following two program types were created: 

1. Deterministic analysis programs to perform deterministic structural design checks 

of the structures. The output, in each case, is a table of deterministic design ratios 

(strength/resistance) for various limit states and locations along the bridge span. 

2. Probabilistic or reliability analysis programs to determine the probability of 

failure associated with the various limit states and locations along the bridge span 

versus the number of years in service. 

Variants of these programs were created for analyzing the following structure types: 

1. simply supported box girder bridges; 

2. simply supported I-girder bridges; and 

3. two-span continuous box girder bridges. 

5.2 Deterministic Analysis Programs 

5.2.1 General 

All of the structural analysis programs written for the current study follow the procedures 

and principles of the [CAN/CSA-S6-06] Canadian Highway Bridge Design Code. 

Specifically, they include the ultimate limit state calculations outlined in Section 10 of 
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this code; likewise, the loading, load factors, and load distribution are taken from 

Sections 3 and 5 of [CAN/CSA-S6-06]. 

Limit State Equations 

A total of five failure modes are considered at several points along the span; each failure 

mode or “limit state” is identified and quantified by [CAN/CSA-S6-06], as follows: 

1. shear ( 0.1≤rf VV ); 

2. moment ( 0.1≤rf MM ); 

3. shear + moment ( 0.1455.0727.0 <+ rfrf VVMM ); 

4. bearing ( 0.1≤rf BB ); and 

5. web breathing or fatigue effects in the web ( ygFwh 3150≤ ); 

where V, M, and B are shear, moment, and bearing, respectively. The subscript f denotes 

the factored load effect and the subscript r denotes the resistance of the girder. Also, h is 

the web height, w is the web thickness, and Fyg is the yield stress of the girder. 

Failure modes 1 to 4 are considered to be ultimate limit states, meaning that their 

violation would result in structural failure. Mode 5 may be considered as a serviceability 

limit state, since its violation is not expected to result in immediate structural failure.  

For the calculation of shear resistance, the following formula is applied: 

 swsr FAV φ=  where tcrs FFF +=  and:   (5.1)  

  when ygv Fkwh 502≤ , ygcr FF 577.0=  and 0=tF  

  when ygvygv FkwhFk 621502 ≤< , 
wh

Fk
F

ygv

cr

290
=  and  

   [ ] ( )[ ] 2121866.05.0
−

+−= haFFF crygt  

  when ygv Fkwh 621> , ( )2

180000

wh

k
F v

cr =  and  
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   [ ] ( )[ ] 2121866.05.0
−

+−= haFFF crygt  

  where ( )2

34.5
4

ha
kv +=  when 1<ha   

  and ( )2

4
34.5

ha
kv +=  when 1≥ha  

In Equation 5.1, sφ  is the resistance factor for steel, Aw is the area of the web, and Fs is 

the shear strength at the ultimate limit state; a is the horizontal spacing between vertical 

web stiffeners, Ft is tension field component of post-buckling stress, Fcr is the shear 

buckling stress, and kv is the shear buckling coefficient. For the calculation of positive 

moment resistance of the composite box girder bridge, the girder is assumed to behave 

plastically. Figure 5.1 to Figure 5.3 show the assumed distribution of stresses across the 

girder depth for various neutral axis locations. 

 
Figure 5.1: Plastic section analysis - neutral axis in the slab 
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Figure 5.2: Plastic section analysis - neutral axis in upper web 

 
Figure 5.3: Plastic section analysis - neutral axis in lower web 

In Figure 5.1 to Figure 5.3, the tension in the lower part of the steel girder (Ts) in each 

case is counterbalanced by the compression in the top part of the steel girder (Cs), the 

concrete slab (Cc), and the reinforcement (Cr). The moment resistance is a function of 

these forces and the eccentricities between them (es, ec, and er). f’c is the assumed 

nominal concrete compressive strength, fyr is the assumed nominal yield strength of the 

rebar, and Fyg is the assumed nominal yield strength of the weathering steel girder. 

When the neutral axis is in the slab (Figure 5.1), the moment resistance is: 

 rrccr eCeCM +=  (5.2) 

When the neutral axis is in the web (Figure 5.2), but less than ygFw850  below the top 

of the web, the moment resistance is: 
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 ssrrccr eCeCeCM ++=  (5.3) 

When the neutral axis is more than ygFw850  below the top of the web (Figure 5.3), 

the moment resistance is: 

 ssrrccr eCeCeCM ++=  (5.4) 

Equations 5.3 and 5.4 differ in that, when the neutral axis becomes further than 

ygFw850  from the bottom of the top flange, part of the web in compression ceases to 

contribute in compression (see Figure 5.3). For the calculation of bearing resistance at the 

abutments, the following formula is applied: 

 

( )
�
	



�
�

 +

+=
sygbe

ygbe
yssr EFw

FtNw
MINFAB 260.0

,4
50.1 φ

φ
φ  (5.5) 

Equation 5.5 is in two parts, of which the first calculates the bearing resistance of the 

stiffeners and the second calculates the bearing resistance of the web. However, the 

bearing resistance of the stiffeners is taken as zero if ygFtb 200> , where b and t are 

the width and thickness of the stiffener, respectively. Figure 5.4 is a depiction of the 

bearing arrangement for the box and I-girder bridges. 

�

� �

�

 
Figure 5.4: Bearing stiffener arrangement for box and I-girder 
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In Equations 5.1 – 5.5, the φ  factors are material resistance factors for the concrete ( cφ ), 

rebar ( rφ ), and steel ( sφ ). The factor beφ  is a special resistance factor for beam end web 

bearing. The values for the factors are contained in Table 5.2. 

Table 5.1: Resistance factors [CAN/CSA-S6-06] 

Element Factor 

Structural steel, sφ  0.95 

Reinforcing steel, rφ  0.90 

Concrete, cφ  0.75 

Bearing (at abutment), beφ  0.75 

The resistance factors are applied at the ultimate limit state to account for variability of 

material properties and dimensions, as well as quality of work, type of failure, and the 

uncertainties associated with these parameters [CAN/CSA-S6-06]. These factors are only 

applied in the deterministic programs; in the probabilistic programs, they are all set to 1.0 

and statistical “bias factors” are used to modify the resistances. 

Loading Analysis 

Only dead and live (traffic) loads are considered in the current analysis, since these 

typically dominate the design of short- and medium-span bridges. Two types of dead load 

are taken into account. The superimposed dead load refers to the sidewalk and wearing 

surface, while the dead load itself refers to the slab and steel girder self weight. 

The slab, wearing surface, sidewalks and barriers were treated as uniformly distributed 

loads (UDL); their gravity loads per metre were summed and divided by the number of 

girders. The self-weight of the girder was likewise treated as a UDL.  

 The unit weights assumed to calculate the dead loads are given in Table 5.2. 
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Table 5.2: Unit weights of structural components [CAN/CSA-S6-06] 

Component Weight 

Bituminous wearing surface 23.5 kN/m3 

Concrete 24.0 kN/m3 

Steel 77.0 kN/m3  

As prescribed in [CAN/CSA-S6-06], the live load (LL) is taken as the greater of a five-

axle truck load and a truck-plus-lane load, as shown in Figure 5.5 and Figure 5.6. 

 
Figure 5.5: CL-625 ONT axle load 

 
Figure 5.6: CL-625 ONT lane load 

Factors 

Table 5.3 shows the factors applied for ultimate limit state verification under the dead 

plus live load combination (load combination ULS1 [CAN/CSA-S6-06]). These factors 

assume that the dead load will always be detrimental. In the probabilistic programs, these 

factors are set to a value of 1.0 and their effect is accounted for statistically. 
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Table 5.3: Load factors [CAN/CSA-S6-06] 

Load type Factor 

Live load (traffic) 1.70 

Superimposed dead load (wearing surface) 1.50 

Cast-in-place dead load (concrete deck) 1.20 

Manufactured dead load (steel girder) 1.10 

Along with the live load factor, the live (traffic) load effects are multiplied by an 

additional factor, which takes into account the dynamic component of the live load, 

called the dynamic load allowance (DLA). The value of the DLA varies with the number 

of axles of the CL-W truck used in the analysis. Axle numbers are as per the drawing in 

Figure 5.5. The DLA values are contained in Table 5.4. 

Table 5.4: Dynamic load allowances [CAN/CSA-S6-06] 

Axle(s) used DLA 

Only one axle 0.40 

Any two axles, or axles 1 to 3 0.30 

Any three axles, except for axles 1 to 3, or more than three axles 0.25 

In the statistical programs, the axle load (but not the lane load) is multiplied by (1 + 

DLA). In the probabilistic programs, the DLA is treated as a statistical variable. 

In certain cases, there is also a modification factor for multi-lane loading (by which the 

live load effects may be multiplied), to take into account the likelihood of having more 

than one lane loaded at any given time. These values are contained in Table 5.5. 
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Table 5.5: Modification factor for multi-lane loading [CAN/CSA-S6-06] 

Number of loaded design lanes Factor 

1 1.00 

2 0.90 

3 0.80 

4 0.70 

For multi-girder bridges, there is also a live load amplification factor (LLAF) that may be 

applied to the live load to account for the transverse sharing of these loads between the 

girders. The LLAF for the moment on a single-span bridge is: 

 05.1

100

≥

�
�

�
�
�

�
=

f
m C

F

SN
F

µ
 (5.6) 

Where Fm is the amplification factor to account for the transverse variation in the 

maximum longitudinal moment intensity, as compared to the average longitudinal 

moment intensity, S is the centre-to-centre girder spacing, and N is the number of girders. 

The values for F, the width dimension that characterizes the load distribution for the 

bridge, and Cf, the correction factor used to adjust the F value for longitudinal moment 

and longitudinal vertical shear, are contained in Table 5.6. 
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Table 5.6: F and Cf values for moment [CAN/CSA-S6-06] 

 Box girder I girder 

Lanes F Cf F Cf 

2 8.5 – 0.3� 16 – 2� 
6.80 – (3/L)* 

7.20 – (14/L)** 
10 – (25/L) 

3 11.5 – 0.5� 16 – 2� 
8.70 – (4/L)* 

9.60 – (21/L)** 
10 – (25/L) 

4 14.5 – 0.7� 16 – 2� 
10.00 – (5/L)* 

11.20 – (22/L)** 
10 – (25/L) 

* For external girder        ** For internal girder 

The values in Table 5.6 assume a bridge span of at least 10 m. The lane width 

modification factor, �, is calculated with the following equation: 

 0.1
6.0

3.3
≤

−
= eWµ  (5.7) 

where We is the width of the design lane. For the box girders, the � parameter is taken as: 
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where B and L are the bridge width and length respectively; Dx is the total bending 

stiffness (equal to the modulus of elasticity times the moment of inertia) of the bridge 

cross-section divided by the width of the bridge, and Dxy is the total torsional stiffness 

(equal to the shear modulus times the torsional inertia) of the bridge cross-section divided 

by the width of the bridge. The LLAF for the shear is: 

 
F

SN
Fv =  (5.9) 

where the S and N values are the same as above. The F value is tabulated in [CAN/CSA-

S6-06]; Table 5.7 summarizes the relevant values for box and I-girders. 
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Table 5.7: F values for shear [CAN/CSA-S6-06] 

Lanes Box girder I-girder 

2 7.20 6.10 

3 9.60 8.20 

4 11.20 9.50 

The procedure described above for the application of the LLAF is a simplified, and 

conservative, approach; other, more laborious means of calculating this factor exist, such 

as by finite element modelling. For its valid application, certain requirements are laid out 

in [CAN/CSA-S6-06]. These requirements are listed in Table 5.8. 

Table 5.8: LLAF requirements 

Box girder (multispine) bridges I-girder bridges 

• bridge has constant width 

• support conditions are closely 
equivalent to line support at the ends of 
the bridge  

• overhang is not more than 1.80 m and 
does not exceed the spacing of the two 
outermost adjacent webs 

• at least two longitudinal girders of 
approximately equal flexural rigidity 
and spacing 

• each spine has only two webs 

• number of lanes is larger than or equal 
to the number of spines 

• bridge’s length is greater that its width 

• bridge has constant width 

• support conditions are closely 
equivalent to line support at the ends of 
the bridge 

• overhang is not more than 1.80 m and 
does not exceed 60% of the spacing 
between the girders 

• at least three girders of approximately 
equal flexural rigidity and spacing 

5.2.2 Simply Supported Structures 

In the deterministic and probabilistic analysis programs for simply supported structures, 

the span of the structure is divided into ten sections, with the relevant limit states being 

calculated at the beginning and end of each section (eleven locations along the span). 
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Also, up to seven different sections can be specified for the span; each of these sections 

can have its own length, girder geometry, corrosion rate, and corrosion scenario. 

To calculate the live (truck) loading, the axle loads are moved along the length of the 

bridge (at the specified axle spacing) at 1 m increments, and the maximum shear and 

moment resultants at each of the eleven locations along the span are kept for the analysis 

procedure. Both dead and live load effects are calculated with closed form equations in 

the VBA program as a preliminary stage to the bridge analysis. 

5.2.3 Two-Span Continuous Structures 

The program for analyzing two-span continuous bridges is similar to the single-span 

program in many respects; however, the two-span program is necessarily more complex. 

Because a two-span continuous structure is statically indeterminate, it was necessary to 

build a finite element model to perform the analysis. Due to the regularity of the problem 

and in order to more easily integrate the structural analysis into a single program with the 

resistance verification, a finite element code was written in VBA for this purpose. 

The finite element model is composed of beam elements, which have four degrees of 

freedom each, representing the vertical displacement, q1 and q3, and the rotation, q2 and 

q4, of the two nodes. A typical element is depicted in Figure 5.7. 

 

 

 

 

Figure 5.7: Free body diagram of beam element 

The two-span continuous model is composed of two spans of ten elements each, for a 

total of twenty elements and twenty-one nodes. As such, the girder of each span can be 

broken up into segments with different cross-sectional geometries. It is not necessary that 

the two spans are identical. The element stiffness matrix is as follows: 

q1 q3 

q4 e 

�e 

q2 
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As with any finite element program, the individual element stiffness matrices are 

combined into a global stiffness matrix and joined with the global force matrix to solve 

for displacements and reactions. 

Loading Analysis 

The loading cases for a two-span continuous structure are the same as for a simply 

supported structure. The live load due to the CL-625 ONT truck is again assumed; and 

again, both the axle and lane variants of this loading are considered. However, for the 

two-span continuous bridge the truck is moved across only eleven locations on each span, 

and the centre of gravity of the truck is used to locate it. 

Limit State Equations 

Since the negative moment puts a significant portion of the web into compression, the 

structural resistance to negative moment is calculated using the elastic section modulus. 

Furthermore, different sections are considered for different stages of loading: the load of 

the girder plus the slab is compared against the resistance of the girder alone, while the 

load of the girder, slab, wearing surface, and rails is compared against the resistance of 

the composite section before creep, and the live load is compared against the resistance of 

the composite section after creep. The purpose of this is to simulate the loads introduced 

into the system at each stage of the construction sequence.  

Three different limit states are considered with respect to moment: the stresses in the 

reinforcement (1) and the top fibre of the top flange (2) must not exceed the yield stress, 

and the bottom flange (3), which is in compression, must not buckle. Therefore, three 

equations are required to verify the moment limit state: 

 For the bottom flange: ( ) crsflfsdfd FSMMSM φ≤++ '  (5.11) 
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where the elastic section moduli are calculated with respect to the bottom fibre, for the 

steel girder alone and for the composite section respectively. Figure 5.8 shows how the 

stresses are calculated and the section is checked for overload.  

 
Figure 5.8: Elastic section analysis – negative moment [CAN/CSA-S6-06] 

Mfd is the factored bending moment due to dead load (the self-weight of the girder and 

slab), Mfsd is the factored bending moment due to superimposed dead load (sidewalks, 

barriers, and wearing surface), and Mfl is the factored bending moment due to the live 

load (traffic). S and S’ are the elastic section moduli of the steel girder alone and the 

girder plus reinforcement respectively. Fcr is the buckling stress of the compression 

flange.  

The value for Fcr is found as follows [CAN/CSA-S6-06]: 

1. when ygFtb 510≤ , ygscr FF φ=  

2. when ygyg FtbF 1100510 ≤< , ��

�
��

� +=
2

sin687.01592.0
C

FF ygcr

π
, where 

( )
590

1100 ygFtb
C

−
=  

3. when ygFtb 1100> , 
( )2

51024.7
tb

Fcr

×=  

where Fyg is the yield strength of the girder, and b and t are the thickness and width of the 

bottom flange respectively. 

 For the top flange: ( ) ygsflfsdfd FSMMSM φ≤++ '  (5.12) 
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where the elastic section moduli are calculated with respect to the top fibre of the steel 

section, for the steel girder alone and for the composite section respectively. 

 For the top layer of reinforcement: ( ) yrrflfsd FSMM φ≤+ '  (5.13) 

where the elastic section modulus is calculated with respect to the centroid of the top 

layer of slab reinforcement for the composite section. 

In [CAN/CSA-S6-06] a girder section is defined by its class, which is determined by the 

width-to-thickness ratios of its component members. Class 1 and 2 sections are capable of 

achieving the full plastic moment capacity; Class 3 sections only have elastic moment 

capacity (as such, only the outermost fibre of the girder may undergo yield stress), while 

Class 4 sections would experience local buckling below this applied moment level [Kulak 

& Grondin 2006]. Due to the fact that the webs and bottom flanges of the box girder 

section lose section as time progresses in the program, either one or both may become 

Class 4 members. [CAN/CSA-S6-06] requires that either the web or the flange be a Class 

3 member, but in the context of this research this requirement was thought to be overly 

restrictive. In order to take into account the additional reduction in the resistance due to 

member slenderness of the continuous box girder under negative moments, the box girder 

section is treated as a stiffened plate girder: in the case where ygc Fwd 19002 > , the 

negative moment resistance is multiplied by the following factor: 
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where dc is the depth of compression portion of web in flexure, w is the web thickness, 

Acf is the area of the compression flange, and Aw is the area of the web. 

For the calculation of bearing resistance at the midspan, the following formula is applied 

[CAN/CSA-S6-06], which is similar to Equation 5.5 for end bearing: 
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The value for biφ  is 0.80. Again, the first part of the equation is the contribution of the 

stiffeners, which is taken as zero if ygFtb 200> , 

Factors 

The load and resistance factors for a two-span continuous structure are the same as for a 

simply supported structure. For the LLAF, the positive and negative section lengths are 

calculated according to Figure 5.9. 

 
Figure 5.9: Section lengths for multi-span bridge [CAN/CSA-S6-06] 

5.3 Probabilistic Analysis Programs 

5.3.1 General 

The basic methodology employed in developing the probabilistic (reliability) analysis 

programs can be described as an iterative analysis procedure (Monte Carlo simulation) 

built around a corrosion rate equation. Corrosion penetration is calculated at a set time 

interval, and the geometrical and, consequently, structural properties of the bridge are 

modified accordingly. When the resistance of the section becomes less than the load 

effect, i.e. when a limit state is “violated”, the program records the year, location along 

the bridge span, and mode of failure.  

The corrosion model is intended to simulate general corrosion, so the thickness loss is for 

the structural plate as a whole. The program was written such that the section loss can be 

set to occur to the web and flange, together or separately, and on one or both sides of the 

corroding structural plate. Figure 5.10 shows the locations that corrosion can be set to 

occur in the probabilistic programs. 
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Figure 5.10: Assumed corrosion locations 

The steel surfaces with a bold line in Figure 5.10 can be made subject to corrosion in the 

programs. These surfaces include the exposed surfaces of the web and bottom flange of 

the box girder, and both sides of the web and bottom flange of the I-girder. Note that, in 

Chapter 6, a number of analyses are presented for the case of an I-girder with only the top 

of the bottom flange corroding (rather than both the top and bottom), to simulate a 

particular corrosion scenario that has been observed in some jurisdictions (including 

Ontario) [Albrecht & Naeemi 1984, Albrecht et al. 1989]. 

The program is set to operate for a predetermined number of runs and stores the output of 

each one. The program employs a basic Monte Carlo simulation algorithm to consider the 

statistical variability in the various input parameters [Melchers 2002]. 

5.3.2 Simply Supported Structures 

Figure 5.11 shows a flow chart of the operation of the probabilistic (reliability) analysis 

program for the simply supported case. 
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Figure 5.11: Probabilistic program flowchart – simply supported structures 

5.3.3 Two-Span Continuous Structures 

The two-span continuous program is considerably more complex as the load effects are 

dependent on the cross-section properties for this indeterminate structural system. 

Likewise, it has a significantly longer run time. Because the cross section of the girder 

diminishes with each passing increment of time, causing a redistribution of the loading, it 

is necessary to analyze the structure anew at each time increment. Figure 5.12 shows the 

probabilistic program flowchart for the two-span continuous structure analysis. 
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Figure 5.12: Probabilistic program flowchart – two-span continuous structures 
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5.3.4 Statistical Variables 

For the probabilistic analysis, the uncertainties associated with various deterministic 

model parameters can be considered by multiplying them by appropriate statistical 

variables or “bias factors”. These parameters include the material strengths, calculated 

resistances, and dead and live loads and effects. The assumed statistical distributions for 

the corresponding bias factors are listed in Table 5.9.  

Table 5.9: Statistical variables and assumed distributions 

Bias Factor 
Input Parameter 

Dist. Type Mean Std. Dev. 

Compressive strength of concrete (f’c) Lognormal 0.805 0.150 

Yield strength (Fyg) of girder Lognormal 1.101 0.092 

Yield strength (Fyr) of rebar Lognormal 1.115 0.100 

Moment resistance (Mr) factor Normal 1.098 0.096 

Shear resistance (Vr) factor Normal 1.178 0.103 

Manufactured components DL Normal 1.030 0.080 

Cast-in-place components DL Normal 1.050 0.100 

Superimposed DL Normal 1.030 0.300 

LL analysis factor Normal 0.930 0.120 

Dynamic factor (DLA) Normal 1.100 0.072 

LL shear and moment factor Gumbel See Table 5.10 

The source for all these values is [CAN/CSA-S6-00 Calibration], except for the values 

for f’c and Fyr, which both come from [Cheung & Li 2002] 

The values for the mean and standard deviation of the bias factors associated with the 

concrete compressive strength, f’c and rebar yield strength, fyr were derived from 

available test data in [Tabsh & Nowak 1991]. The values used are in the lower end of the 

range of values found in relevant works; nevertheless, they were thought to be 

appropriate due to the difficult nature of the work (i.e. bridge vs. normal construction), 
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the problems associated with placing concrete in certain conditions. The values for the 

mean and standard deviation of the girder yield stress, Fyg, bias factor originate from the 

work of Kennedy & Baker [1984] on the subject of resistance factors for steel highway 

bridges. The factors for steel and concrete take into account three sources of error: 

material, geometrical, and manufacturing/construction. 

The factors modifying the dead load of the manufactured and cast-in-place structural 

elements (the steel girder and concrete slab) were originally from the work done by 

Nowak and Grouni for calibrating the Ontario Highway Bridge Design Code, which was 

subsequently verified by other sources for [CAN/CSA-S6-06]. The factor modifying the 

superimposed dead load, meaning the asphalt wearing surface, is based on field data 

reported in [CAN/CSA-S6-00 Calibration]. 

The live load (LL) analysis factor is recommended by the Canadian Highway Bridge 

Design Code Subcommittee on Analysis; the live load distribution methods of 

[CAN/CSA-S6-06] are considered to have an intrinsic conservatism, and this factor is 

required as a result. Two options are given, depending on the level of sophistication of 

the analysis method. 

The dynamic loading factor (DLA) is based on field measurements, performed in 

Ontario, of a variety of bridges. Trucks requiring special permits were not distinguished 

since a lower rate of travel is required, thus bringing their contribution in line with those 

of the regular traffic. 

The additional live load (LL) shear and moment factors (see Table 5.10) are also taken 

from data specific to Ontario, where a survey of trucks was performed in 1995. Only 

normal traffic, as opposed to traffic operating with a special permit, was considered. 

Trucks with an average axle weight � 4.0 T were screened out, but the total number of 

trucks (N = 13391) was used as the sample size. Models of a number of these vehicles 

were driven over bridges of varying lengths in order to determine their shear and moment 

resultants. These data were combined to generate load-effect histograms. 

In [CAN/CSA-S6-00 Calibration], a Gumbel distribution is used to represent the extreme 

annual statistics for different load effects (i.e. shear, moment) and bridge spans / 

configurations. A methodology for doing this is presented in this reference, along with 
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the resulting load effect extreme value distributions for a Class A highway over a one 

year time period. The methodology can be summarized as follows: Since the actual 

distribution of load effects is generally not perfectly normal, a representative normal 

distribution (RND) had to first be established; this was done by focussing on the tail end 

of the distribution, which was assumed to have properties similar to that of the RND tail. 

First, a load effect sample was generated, by simulating the passage of a limited number 

of actual measured trucks (~10,000) over a load effect influence line for a particular 

bridge span / configuration. Next, two assumptions were made, regarding the resulting 

sample: first, that the highest value in the sample load effect distribution is an extreme 

value in the Gumbel distribution for that sample size, and second, that this highest value 

is three standard deviations above the mean in the Gumbel distribution. If the highest 

value was significantly larger than the next highest value, the former was used in order to 

prevent the distribution from being affected by suspect measurements. As such, values 

for mean and standard deviation of the RND can be derived, and from them the Gumbel 

distribution for the extreme load effect events corresponding with a certain period of time 

(for a given traffic volume). By following the same method as that presented in 

[CAN/CSA-S6-00 Calibration] herein, it was possible to develop bias factor mean and 

variance values for any time period / highway class. 

In [CAN/CSA-S6-06], four different classes of highway (A to D) are defined by their 

average daily truck traffic (ADTT) rates (see Table 5.10). 

Table 5.10: Highway classes [CAN/CSA-S6-06] 

Highway class ADTT (per lane) 

A 1000 – 4000 

B 250 – 1000 

C 50 – 250 

D < 50 

Traffic rate variations are only considered for the 40 m simply supported bridge analyzed 

herein. The bias factor values still change, however, for different spans / configurations, 

since the influence lines are different. Table 5.11 contains these values. The means and 
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coefficients of variation in this table reflect the different load effect sample distributions 

for shear (V) and moment (M). The extreme value distributions presuppose a certain time 

interval, which is likewise provided in Table 5.11. 

Table 5.11: LL shear and moment bias factors (based on 10 year extreme event statistics) 

Highway class Structure type Span (m) Interval (yr) Mean CoV 

A Simply 
supported 40 10 

1.503 (V) 

1.461 (M) 

0.033 (V) 

0.033 (M) 

B Simply 
supported 40 10 

1.446 (V) 

1.405 (M) 

0.036 (V) 

0.036 (M) 

C Simply 
supported 40 10 

1.386 (V) 

1.346 (M) 

0.040 (V) 

0.040 (M) 

D Simply 
supported 40 10 

1.312 (V) 

1.273 (M) 

0.045 (V) 

0.045 (M) 

A Simply 
supported 30 10 

1.541 (V) 

1.542 (M) 

0.032 (V) 

0.032 (M) 

A Simply 
supported 35 10 

1.543 (V) 

1.501 (M) 

0.032 (V) 

0.033 (M) 

C Two-span 
continuous 40 8 

1.097 (V) 

1.290 (M) 

0.040 (V) 

0.042 (M) 

Along with the statistical variables listed in Table 5.9, two additional parameters are 

statistically varied in the reliability program, namely the A and B factors of the corrosion 

penetration equation (Equation 2.3). The means and standard deviations of these factors 

for the rural, marine, and urban environments are given in Table 5.12.  

Kayser [1988] calculated numerical values for the A and B variables using experimentally 

obtained corrosion data for rural, industrial, and marine environments compiled in 

[Albrecht & Naeemi 1984]. These results were assembled in order to come up with 

values for each corrosion rate, as well as their statistical distributions. 
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Table 5.12: Corrosion rate parameters 

Environment Variable Mean CoV 

A 33.3 0.34 
Rural 

B 0.498 0.09 

A 40.2 0.22 
Marine 

B 0.557 0.10 

A 50.7 0.30 
Urban 

B 0.567 0.37 

The above data are based upon corrosion of weathering steel specimens in the United 

States, the United Kingdom, and Germany. Noteworthy is the relatively high coefficient 

of variation of the urban corrosion rate’s B variable, because as the power variable, it 

introduces a high degree of variability into the corrosion penetration results. A lognormal 

distribution is assumed for each of these statistical variables. 

5.3.5 Statistical Programming 

Monte Carlo Simulation 

Monte Carlo simulation (MCS) enables the statistical analysis of a complex structural 

system by repeating the loading and resistance calculations until a statistically significant 

number of “trials” has been collected. Rather than solving a single, highly complex 

equation, which would take into account the interaction of a number of statistical 

variables, Monte Carlo simulation enables the calculation to be performed numerous 

times with randomly selected values (generated anew each time) for the various statistical 

variables. The probability of failure is then calculated from the following equation: 

 
( )( )

t
f N

zGn
p

0≤=  5.15 

where Nt is the total number of trials, and ( )( )0≤zGn   is the total number of trials for 

which the limit states were violated (ref. Equations 2.8 to 2.10). 
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Random Number Generation 

Random numbers (between 0 and 1) are generated herein in Microsoft Excel. These 

numbers, which are uniformly distributed, must be transformed into corresponding trial 

values for each statistical variable using the specified probability distribution. The 

manner in which this is accomplished is shown in Figure 5.13. In this figure the 

probability density function (PDF) of the uniform distribution is shown in quadrant III. 

The corresponding uniform cumulative density function (CDF) is shown in quadrant II. 

In quadrant I is the CDF that is specified for the statistical variable, and in quadrant IV is 

the resulting PDF of the variable [Ang & Tang, 1984]. 

 
Figure 5.13: Monte Carlo Simulation – relation between u and z [Walbridge 2005] 

In Figure 5.13, two random numbers, ui, have been generated for two statistical variables, 

zi, one for the load (or solicitation, S) and the other for the resistance (R). In order to 

transform the two random numbers into two trial values, they must be multiplied by 

( )zF 1−  or the inverse CDF for the specified distribution, which can be thought of as 

reflecting the random value onto the CDF ( ( )zF ) as depicted in Figure 5.13. Note that 

the distributions shown in quadrant II have different means and standard deviations. In 

the example “trial” shown in Figure 5.13, failure does not occur since the sample 

resistance is larger than the sample solicitation [Walbridge 2005]. 

Statistical Distributions 

As shown in Table 5.9, three different types of distribution, namely normal, lognormal, 

and Gumbel, were used herein to represent the uncertainties associated with various 
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deterministic model parameters. The equations for the PDF and CDF for each distribution 

type  are given in Table 5.12. 

Table 5.12: Statistical distribution equations [Melchers 2002] 

Distribution Equation 

Normal 
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Gumbel 

PDF: ( ) ( ) ( )[ ]uy
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CDF: ( ) ( )[ ]uy
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α
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The normal distribution is a basic distribution that can be used to describe any variable 

that groups about a mean value, e.g., the standard bell curve. This distribution is used for 

most of the load factors. Figure 5.14 shows an example of normal, lognormal, and 

Gumbel distribution PDFs. Note that the mean and standard deviation of each of the 

PDFs shown in Figure 5.14 are 1.0 and 0.5 respectively. 
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Figure 5.14: Normal, Lognormal, and Gumbel distribution PDFs 

In a lognormal distribution, the natural logarithm of a randomly generated value between 

0 and 1 has a normal distribution, rather than the number itself. It is a single-tailed 

distribution; this is why it is commonly used for material strengths and corrosion rates 

(and other parameters for which a negative trial value is not admissible).  

Gumbel distribution is an extreme value distribution. It is commonly used to model the 

distribution of the extreme values from a number of samples. Like the normal distribution 

PDF, negative values are possible, but values significantly larger than the mean are more 

likely. 

5.3.6 Reliability 

A procedure for determining an appropriate target reliability index, �target, for a given 

bridge is laid out in Chapter 14 of [CAN/CSA-S6-06]. The categories of the structural 

system (S), the element (E) under consideration, and the inspection level (INSP) of the 

structure are considered in deciding the �target value. 

System Behaviour 

If the structural system under consideration would totally collapse as a result of failure of 

the element under consideration, the system category is S1. If element failure probably 

will not result in total collapse, the system category is S2, while if it will lead to local 

failure only, the system category is S3. 

5.0
0.1

=
=

x

x

σ
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Element Behaviour 

If the element under consideration fails suddenly, with little or no warning, the element is 

classified as E1. If the failure is sudden and not preceded by a warning, but retains some 

post-failure capacity, then the element category is E2. If the element under consideration 

fails gradually, with warning of its impending failure, it is E3. 

Inspection Level 

If the element under consideration is not inspectable, it belongs to the INSP1 category. If, 

however, the inspection is performed to the satisfaction of the evaluator and the results of 

the inspection are available to him, it is INSP2. Finally, if the evaluator has directed the 

inspection of every critical component and evaluation calculations, it is INSP3. 

Category Values 

The values for the categories described above are provided in Table 5.13. 

Table 5.13: Target reliability index, �target, for normal traffic [CAN/CSA-S6-06] 

Inspection level System 
behaviour 
category 

Element 
behaviour 
category INSP1 INSP2 INSP3 

S1 

E1 

E2 

E3 

4.00 

3.75 

3.50 

3.75 

3.50 

3.25 

3.75 

3.25 

3.00 

S2 

E1 

E2 

E3 

3.75 

3.50 

3.25 

3.50 

3.25 

3.00 

3.50 

3.00 

2.75 

S3 

E1 

E2 

E3 

3.50 

3.25 

3.00 

3.25 

3.00 

2.75 

3.25 

2.75 

2.50 

For a highway structure like the ones being considered herein, �target, ranges from 2.75 to 

3.25. The structural system category for bridges with multiple girders is S2, the elements 

are in the E3 category, and the inspection level can vary according to the means of the 

owner and the apparent condition of the structure. 
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CHAPTER 6: STRUCTURAL ANALYSIS RESULTS AND INTERPRETATION 

In this chapter, the deterministic and reliability models developed in Chapter 5 are used 

to: 1) examine the decline in the structural performance over time due to corrosion for 

different structure types, 2) perform sensitivity studies to determine the significance of 

various parameters on the structural performance, and 3) estimate the remaining service 

lives of two existing structures for which inspection results have been made available by 

MTO. Steps 1) and 2) are performed on hypothetical structures, designed using the 

deterministic models from Chapter 5, as explained in the following section.  

6.1 Bridge Designs 

In order to examine the effects of various parameters on the performance of different 

structure types, it was necessary to first design a number of hypothetical weathering steel 

highway bridges with the key structural parameters varied within suitable ranges. The 

parameters that are the focus of this study are summarized as follows: 

1. Corrosion Scenario. For the box and I-girder structures, both corrosion to the web 

and flange, and to the flange-only, are examined. For the I-girder structures, 

corrosion to the top of the bottom flange-only is considered as well. 

2. Highway Class. Bridges with traffic volumes matching the maximums of those of 

Highway class A – D (see Table 5.10) are examined.  

3. Girder Strength. Bridges with three different girder yield strengths (300, 350, and 

480 MPa) are examined. 

4. Bridge Span. Bridges with spans of 30, 35, and 40 m are examined. 

5. Number of Lanes. Two- and four-lane bridges are examined herein.  

Of these five parameters, numbers 3, 4, and 5 each require a new bridge design. Table 6.1 

contains a list of the resulting bridge designs and their designations. 
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Table 6.1: Bridge designs used for sensitivity studies 

Bridge number Girder strength (MPa) Span (m) Number of lanes 

I-1 & B-1 350 40 4 

I-2 & B-2 300 40 4 

I-3 & B-3 480 40 4 

I-4 & B-4 350 30 4 

I-5 & B-5 350 35 4 

I-6 & B-6 350 40 2 

Bridge B-1 is the standard bridge for this study. Its geometry is based on typical highway 

overpass structures currently used by the MTO. Similar box and I-girder designs are also 

analysed to extend the results to other jurisdictions and bridge structures passing over 

waterways (MTO currently allows the use of I-girders in this case). 

6.1.1 Design Criteria 

The following criteria (or in some cases, “rules of thumb”) have been applied for the 

design of the single-span box and I-girder bridges: 

• All of the plate sizes and girder dimensions are converted from imperial nominal 

dimensions, to reflect the reality at the time of construction of these structures, as 

well as the current structural steel supply in Canada.  

• A girder-plus-slab span-to-depth ratio of between 24:1 and 25:1 is assumed, based 

on a review of bridge designs with similar structural configurations. 

• The thickness of the bottom flange is never less than the web thickness.  

• The slab is 191 mm thick, with a 76.2 mm thick wearing surface.  

• Lane widths of 4200 mm and sidewalk and barriers dimensions are assumed as 

per the existing MTO highway structure designs on hand. 

• As per [CAN/CSA-S6-06], the minimum web thickness is taken as 10 mm. 
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• As per [CAN/CSA-S6-06], the inclination of the web plates for box girders is not 

allowed to exceed 1 horizontal to 4 vertical (� 76.0°). 

• For box girder bridges, the number of girders is set to equal the number of lanes. 

For I-girder bridges, the number of girders is twice the number of lanes. 

Based on a review of several actual highway bridges, the structures herein have been 

designed not to be in excess of 80% of their factored capacity (factored load divided by 

factored resistance). This design approach was implemented to make the analysis bridges 

similar to those in the field, all of which showed a significant structural reserve. One 

source of this supplementary capacity in real structures is the additional plate thickness 

required by [CAN/CSA-S6-06] for steel structures in corrosion environments. The MTO 

practice is to add 1 mm to the minimum required section to account for section loss due 

to corrosion. Figure 6.1 shows the effect of the additional millimetre on design B-1.  

For Figure 6.1 and all following figures, M refers to moment failure mode, V refers to 

shear failure mode, M+V refers to the combined moment and shear failure mode, and B 

refers to the bearing failure mode. In this figure, the “resistance fraction” is the factored 

load divided by the factored resistance. A resistance fraction < 1.0 therefore represents a 

“safe” design. The continuous lines show the resistance fraction of the bridge with the 

additional millimetre, while the dashed lines show the bridge without it. Also, as 

mentioned in Chapter 5, the performance of the single-span and two-span bridges is 

measured at equidistant points along their lengths; the results of this are what is shown in 

the figures below.  

 
Figure 6.1: Bridge B-1, effect of 1 mm additional thickness 
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For the simply-supported bridges, the spans were divided into four sections of equal 

length; different plate sizes were chosen for the abutment and midspan portions. For the 

two-span continuous bridges, the bridge was divided into three sections, of which the first 

and the last are the same; 70% of the span length is for the abutment span, while 30% of 

both spans, for a total of 60% of the span length, is for the pier span. As with the single-

span bridge, different plate sizes were chosen for the different spans. 

6.1.2 Box Girder Bridge Designs 

Table 6.2 and Table 6.3 contain the resulting geometrical data for the abutment and 

midspan segments of the simply-supported box girder bridges, respectively. Figure 6.2 is 

a drawing showing the notation of the plate girder elements.  

 
Figure 6.2: Plate geometry dimensions 
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Table 6.2: Box girder bridge geometry - abutments 

Element Dim. B-1 B-2 B-3 B-4 B-5 B-6 

b 406 406 406 406 406 406 

T
op

 
fl

an
ge

 

t 19.1 19.1 12.7 12.7 19.1 19.1 

h 1370 1370 1370 998 1196 1370 

w 12.7 12.7 12.7 11.1 12.7 14.3 

W
eb

s 

Ø 79.3° 79.3° 79.3° 79.4° 79.5° 79.3° 

b 1830 1830 1830 1980 1905 1830 

B
ot

to
m

 
fl

an
ge

 

t 15.9 14.3 12.7 12.7 12.7 15.9 

Box height 1350 1350 1350 965 1170 1350 

Table 6.3: Box girder bridge geometry - midspan 

Element Dim. B-1 B-2 B-3 B-4 B-5 B-6 

b 406 406 406 406 406 406 

T
op

 
fl

an
ge

 

t 25.4 25.4 15.9 19.1 25.4 25.4 

h 1370 1370 1370 998 1196 1370 

w 11.1 11.1 11.1 11.1 11.1 12.7 

W
eb

s 

Ø 79.3° 79.3° 79.3° 79.4° 79.5° 79.3° 

b 1830 1830 1830 1980 1905 1830 

B
ot

to
m

 
fl

an
ge

 

t 20.6 25.4 12.7 15.9 17.5 22.2 

Box height 1350 1350 1350 965 1170 1350 

In contrast with the design of the shear and moment carrying main girder elements, the 

design of the bearing stiffeners at the abutments is complicated somewhat by the fact that 

the design bearing resistance drops suddenly to zero if a slenderness limit is exceeded. In 

all of the box girder designs, the end plate thickness, w (see Equation 5.5), has been made 

the same thickness as the girder web, and the bearing length, N, has been set to equal 305 
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mm. The bearing stiffener designs for the box girder bridges are summarized in Table 

6.4. 

Table 6.4: Box girder geometry – bearing stiffeners 

Element Dim. B-1 B-2 B-3 B-4 B-5 B-6 

b 152 152 152 152 152 152 

B
ea

ri
ng

 
st

if
fe

ne
r 

t 17.5 17.5 20.6 17.5 17.5 17.5 

The following diagrams show the resistance fractions for all of the girder designs. These 

are based on the limit state equations described in Section 5.2.1. The resistance fractions 

of the box girder bridges are shown in Figure 6.3 through Figure 6.8. 

 
Figure 6.3: Bridge B-1 (base case) resistance fractions 

 
Figure 6.4: Bridge B-2 (300 MPa girder yield strength) resistance fractions 
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Figure 6.5: Bridge B-3 (480 MPa girder yield strength) resistance fractions 

 
Figure 6.6: Bridge B-4 (30 m span) resistance fractions 

 
Figure 6.7: Bridge B-5 (35 m span) resistance fractions 
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Figure 6.8: Bridge B-6 (2 lanes) resistance fractions 

Looking at the above figures, it can be seen that the general trends are similar. The 

resistance fraction for the maximum shear is frequently substantially lower than the 

maximum moment resistance fraction. This is because the web is typically a relatively 

slender section, so the addition or subtraction of 1/16” (the smallest increment of 

thickness change considered herein) is more noticeable. Also, the calculation for shear 

resistance, Vr, is nonlinear, i.e. an increase of section or yield strength does not result in a 

linearly proportional increase in shear resistance (see Equation 5.1). 

6.1.3 I-Girder Bridge Designs 

Table 6.5 to Table 6.7 contain the geometrical data for the abutment and midspan bridge 

girder segments and the bearing stiffeners of the simply-supported I-girder bridges, 

designed using the deterministic model from Chapter 5. 

Table 6.5: I-girder geometry - abutments 

Element Dim. I-1 I-2 I-3 I-4 I-5 I-6 

b 406 406 406 406 406 406 

T
op

 
fl

an
ge

 

t 17.5 22.2 14.3 20.6 20.6 22.2 

h 1370 1370 1370 965 1170 1370 

W
eb

 

w 14.3 14.3 14.3 11.1 12.7 14.3 

b 406 406 406 406 406 406 

B
ot

to
m

 
fl

an
ge

 

t 17.5 22.2 14.3 20.6 20.6 22.2 
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Table 6.6: I-girder geometry - midspan 

Element Dim. I-1 I-2 I-3 I-4 I-5 I-6 

b 610 610 610 508 508 508 

T
op

 
fl

an
ge

 

t 28.6 34.9 17.5 27.0 30.2 34.9 

h 1370 1370 1370 965 1170 1370 

W
eb

 

w 12.7 12.7 12.7 11.1 11.1 12.7 

b 610 610 610 508 508 508 

B
ot

to
m

 
fl

an
ge

 

t 28.6 34.9 17.5 27.0 30.2 34.9 

Table 6.7: I-girder geometry - bearing stiffeners 

Element Dim. I-1 I-2 I-3 I-4 I-5 I-6 

b 152 152 152 152 152 152 

B
ea

ri
ng

 
st

if
fe

ne
r 

t 17.5 17.5 19.1 17.5 17.5 17.5 

Similarly to the box girder designs, in all of the I-girder designs, the bearing length was 

set to equal 305 mm. The resistance fractions for the simply-supported I-girder bridges 

are presented in Figure 6.9 to Figure 6.14. 

 
Figure 6.9: Bridge I-1 (base case) design margin 
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Figure 6.10: Bridge I-2 (300 MPa girder yield strength) design margin 

 
Figure 6.11: Bridge I-3 (480 MPa girder yield strength) design margin 

 
Figure 6.12: Bridge I-4 (30 m span) design margin 
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Figure 6.13: Bridge I-5 (35 m span) design margin 

 
Figure 6.14: Bridge I-6 (2 lane) design margin 

6.1.4 Two-Span Continuous Bridge 

Only a single two-span continuous box girder bridge geometry is examined in the current 

study for the following practical reasons: 

1) Only the values for the LL shear and moment bias factors, and not the basic live 

load effect sample histograms, are available in [CAN/CSA-S6-00 Calibration] for 

two-span continuous bridge girders.  

2) The reliability model for two-span continuous bridge analysis is much slower by 

at least an order of magnitude, since the load effect distributions are dependent on 

the cross section geometry, which changes as the corrosion progresses. 

Specifically, using the developed model, a single probabilistic analysis of a two-

span bridge for a 100 year service life took around x hours (for MCS with x trials) 

on a single PC, thus limiting for practical reasons the extent to which this 

structure type could be reanalyzed in the parametric study. 
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The two-span bridge model (referred to as T-1 henceforth) is only used to examine the 

effects of the corrosion scenario for this structure type. Only a structure with two 40 m 

spans is considered, and only for a single, typical traffic volume (a Class C highway). 

The two-span continuous bridge girder geometry is described in Table 6.8. 

Table 6.8: Two-span girder geometry - general 

Element Dim. Abutment segment Pier segment 

b 457 610 

T
op

 
fl

an
ge

 

t 25.4 34.9 

h 1370 1370 

w 12.7 12.7 

W
eb

s 

Ø 79.3° 79.3° 

b 1830 1830 

B
ot

to
m

 
fl

an
ge

 

t 12.7 34.9 

Box height 1350 1350 

Regarding the bearing flange geometry, the same was assumptions are made here as for 

the simply-supported box girder: i.e. the girder end plates are set to be the same thickness 

as the adjacent web. The bearing plate arrangement is summarized in Table 6.9. 

Table 6.9: Two-span girder geometry - bearing 

Element Dim. Abutment bearing Pier bearing 

b 152 152 

B
ea

ri
ng

 
st

if
fe

ne
r 

t 17.5 25.4 

Here, as with the simply-supported bridges, a bearing length of 305 mm is used. Figure 

6.15 is graph of the resistance fractions for the moment, shear, and bearing failure modes. 
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Figure 6.15: Bridge T-1 (base case) design margin 

For the two-span continuous bridge, the shear + moment failure mode is not considered 

since out-of-phase effects were not calculated. The shear + moment case combines the 

maximum values at a given location; however, because out-of-phase effects were not 

calculated, the values which are given do not actually occur concurrently. These values 

do not occur simultaneously with respect to the moving truck load. Rather, the maximum 

shear and moment values at a given location are caused by the live load acting at different 

points along the bridge length. This effect is less significant for the single-span bridge, 

because the maximum values for shear and moment do not occur at the same location; 

maximum shear occurs at the abutments, and maximum moment occurs at midspan. For 

the two-span bridge, however, the maximum shear and moment values both occur at the 

pier. Therefore, shear and moment calculations which ignore the phase effects return 

overly conservative results for the shear + moment case. On the other hand, it is likely 

that the results of an accurate calculation of the shear + moment case would be relatively 

minor as compared to the results of shear and moment separately, since the truck cannot 

cause maximum shear and moment loading from a single location along the bridge span. 

Therefore, it has been deemed safe to omit this failure mode. 

6.2 Base Case Analysis 

The following sections contain the results of the base case analyses for each bridge type 

(Bridges B-1, G-1, and T-1). After this, a comparison of the results is presented. For the 

simply-supported bridge base cases, corrosion occurs to the web and flange, and a Class 

A traffic rate is assumed. The two-span bridge is also subjected to web + flange 

corrosion, but a Class C traffic rate is assumed in this case.  
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For evaluating the structural performances of the various bridge types, it should be 

remembered that, according to [CAN/CSA-S6-06], the target reliability for highway 

structures ranges from 2.75 to 3.25, depending on the inspection level. Also according to 

[CAN/CSA-S6-06], the minimum design life of a bridge structure is 75 years. 

6.2.1 Simply-Supported Box Girder Bridge Base Case 

The following are the results for the 40 m simply-supported box girder bridge (B-1), the 

“standard” used for comparison purposes in the sensitivity studies presented herein. 

Figure 6.16 to Figure 6.18 show the results for this bridge subjected to the corrosion 

penetration rates for urban, marine, and rural environments, respectively. For all the base 

case reliability graphs, the grey dashed lines indicate � = 2.75 and 3.25. In these figures, 

separate curves are shown for each individual ultimate limit state. A “total” curve is also 

added, representing the reliability for all of the limit states combined. 

 
Figure 6.16: Bridge B-1, urban corrosion rate 

 
Figure 6.17: Bridge B-1, marine corrosion rate 



 124 

 
Figure 6.18: Bridge B-1, rural corrosion rate 

Based on these figures, the following comments can be made regarding the structural 

performance of the simply-supported box girder bridge base case (B-1): 

• At the urban corrosion rate, the structure is so affected by the section loss that all 

of the failure modes are capable of causing the reliability index to drop below the 

minimum level of 2.75 before the planned service life is reached (75 years).  

• At the marine and rural corrosion rates, none of the failure modes (alone or in 

combination) bring the structure to a reliability of less than 3.25 within the 100 

year analysis period.  

• Corrosion at the assumed urban rate causes an initially steep rate of decline in 

reliability for all of the failure modes examined; however, this decline almost 

immediately begins to level off. 

• For the marine and rural corrosion rates, the reliability curves for all of the failure 

modes have an approximately constant rate of decline; however, the rural rate of 

decline is less than the marine. 

• For every corrosion rate, the first mode of failure (at time = 0 years) is bearing. It 

is later surpassed by shear and moment failure modes. How much later depends 

on the assumed corrosion rate (urban, marine, or rural). 

• For the marine and rural corrosion rates, the shear failure mode has the steepest 

rate of decline; the bearing failure mode has the flattest. 

• In all cases, shear eventually becomes the definitive failure mode of the structure. 
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• The shear + moment failure mode only ever occurs in the bridge subjected to the 

urban corrosion rate. 

The eventual preponderance of the shear failure mode is due to the relatively thin section 

of the web as compared to the flange. The bearing reliability, on the other hand, does not 

appear to be affected by corrosion occurring at the assumed marine and rural rates. An 

investigation of the input parameter values that resulted in bearing failures showed that 

the bearing failures that do occur are the result of a combination of a higher-than-

expected girder yield strength (which essentially causes the slenderness limit in the 

bearing formula to “trip” earlier) and high dead or live load effect bias factors.  

6.2.2 Simply-Supported I-Girder Bridge Base Case 

Figure 6.19 to Figure 6.21 show the output for the I-1 simply-supported I-girder bridge.  

 
Figure 6.19: Bridge I-1, urban corrosion rate 

 
Figure 6.20: Bridge I-1, marine corrosion rate 
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Figure 6.21: Bridge I-1, rural corrosion rate 

For the simply-supported I-girder bridge base case (Bridge I-1). 

• At the urban corrosion rate, all four examined ultimate limit states can cause the 

reliability of the I-girder structure to drop below the minimum allowable level of 

2.75 before the planned service life is reached (75 years). 

• For all three corrosion rates, at year zero, the critical mode of failure is moment.  

• Over time, at all three corrosion rates, the critical failure mode shifts to bearing.  

• The shear + moment case has little or no influence on the combined (total) 

reliability curve for any of the assumed corrosion rates.  

For the I-girder, the bearing failure mode has a greater effect over the long term because 

all of the bearing flanges are exposed to corrosion, unlike for the box girder bridge where 

half of them are sealed inside the girder. In this case, it is the thickness loss that causes 

the slenderness ratio to “trip”. Moment resistance is provided primarily by the bottom 

flange, which has a thicker section; it is less affected by progressive corrosion 

progression, so its reliability degradation is slower. 

6.2.3 Two-Span Continuous Box-Girder Bridge Base Case 

Figure 6.22 to Figure 6.24 show the output for the two-span bridge base case. 
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Figure 6.22: Bridge T-1, urban corrosion rate 

 
Figure 6.23: Bridge T-1, marine corrosion rate 

 
Figure 6.24: Bridge T-1, rural corrosion rate 

For the two-span continuous box girder bridge (Bridge T-1): 

• Only at the urban corrosion does the reliability of the structure drop to 2.75 or 

lower within the analysis period of 100 years. 

• At the urban corrosion rate, shear is the dominant failure mode.  
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• At the marine and rural corrosion rates, moment is the dominant failure mode. 

Shear only appears in the rural case, and failures are rare. 

• The structure’s performance at the marine and rural corrosion rates is similar. 

The appearance of the shear failure mode in the rural corrosion rate graph, and not in the 

marine corrosion rate graph, is likely due to the randomness of the problem, since the 

marine corrosion rate should be slightly higher. 

6.2.4 Base Case Comparison 

Figure 6.25 is a comparison of the reliability versus time curves for the three base cases 

presented in the previous sections under the three assumed corrosion rates, where all ULS 

failure modes are considered together. 

 
Figure 6.25: Base case summary, combined failure modes, all corrosion rates 

Figure 6.26 is a comparison of the reliability versus time curves for the base cases under 

the three assumed corrosion rates, where only moment failure mode is considered. 

 
Figure 6.26: Base case summary, moment failure mode, all corrosion rates 
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Figure 6.27 is a comparison of the reliability versus time curves for the base cases under 

the three assumed corrosion rates, where only shear failure mode is considered. 

 
Figure 6.27: Base case summary, shear failure mode, all corrosion rates 

When the base cases for the three bridge types are compared, it can be seen that: 

• The I-girder bridge is the most susceptible to corrosion, followed by the box 

girder bridge and the two-span continuous box-girder bridge, in that order. 

• For corrosion rates other than urban, only the I-girder bridge has a reliability level 

that ever drops below 2.75 within the planned service life (75 years). 

The I-girder bridge is more susceptible to corrosion than the other bridges because both 

surfaces of the girder web and flange, as well as the bearing flanges, experience corrosion 

penetration. Since both types of bridges were designed with a 20% reserve in their 

structural capacity, this confirms the [CAN/CSA-S6-06] ordinance stating that steel 

members should have additional thickness for each surface exposed.    

The continuous box girder fares better than the single-span box girder in part because the 

critical failure mode, i.e. bending moment at the midspan, is counteracted by a relatively 

thick steel element (the midspan bottom flange) that is relatively resistant to corrosion. It 

is possible that the hyperstatic nature of the two-span continuous bridge also plays a role, 

as with this structure type, as thinning of the bottom flange may simply lead to a transfer 

of moment from the midspan to the interior support. 

As noted in Section 5.2.1, according to [CAN/CSA-S6-06] the bearing stiffeners only 

contribute to bearing resistance when ygFtb 200≤ , where b and t are the width and 
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thickness of the stiffener and Fyg is the yield strength of the plate. According to [CISC 

2006], the width-thickness limits are not related to the class of section, but are a function 

of other considerations, i.e., the edge conditions and residual stresses of the component. 

Because this slenderness ratio is a function of the yield stress of the girder, it introduces a 

non-rational element into the bearing reliability calculations. For example, where the 

yield strength is higher, a thicker plate is required for the bearing stiffener, even though 

its maximum bearing stress (as opposed to overall resistance) is higher (see Equations 5.5 

and 5.15). Where the use of higher strength steel should result in a smaller required 

section, here the opposite is the result. Also, because steel strength is one of the statistical 

variables, higher strength bearing plates result in immediate failure of the bridge, a result 

which, again, is non-rational. Because of misconceptions which may result from this, the 

bearing failure mode is not considered in the sensitivity studies. 

6.3 Sensitivity Studies 

6.3.1 Corrosion Scenario 

Simply-Supported Box Girder Bridge 

Figure 6.28 to Figure 6.30 show the shear and moment failure mode output for the B-1 

box girder bridge subjected to the three corrosion rates and several different corrosion 

“scenarios”. In these figures, the W+F corrosion scenario refers to corrosion of the web 

and the flange together, while the F scenario refers to corrosion of the flange-only (see 

Figure 5.10 for a diagram of the corrosion locations). Regarding the moment failure, the 

first corrosion scenario can be thought of as a “worst case” scenario. The second was 

considered herein as it was believed to be more representative of the corrosion observed 

on overpass structures, in the splash zones of trucks passing underneath (see Figure 1.1). 
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Figure 6.28: Bridge B-1, urban corrosion rate, corrosion scenario varied 

 
Figure 6.29: Bridge B-1, marine corrosion rate, corrosion scenario varied 

 
Figure 6.30: Bridge B-1, rural corrosion rate, corrosion scenario varied 

Based on Figure 6.28 to Figure 6.30, the following observations are made: 

• At all corrosion rates, corrosion to the flange-only leads to a noticeable increase in 

the reliability due to moment failure. However, there is a very significant increase 

in the reliability relating to the shear resistance. The moment values are relatively 

similar, but the shear values are very different. 
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• At the urban corrosion rate, the effect of web corrosion is noticeable; this is less 

true for the marine corrosion rate, and not true for the rural corrosion rate. 

• At the urban corrosion rate, the uncorroded web more than triples the service life 

of the structure (15 years vs. 55 years). 

I-Girder Bridge 

Figure 6.31 to Figure 6.33 present the results of a similar set of analyses on the simply-

supported I-girder structure (Bridge I-1). In this case, however, three corrosion scenarios 

are examined: corrosion to the web and both surfaces of the flange (W+F), corrosion to 

both surfaces of the flange (F), and corrosion to the top of the flange-only (TOF) (see 

Figure 5.5 for a diagram of the corrosion locations). 

Shear failure, being consequent upon corrosion of the web, only occurred in the web + 

flange corrosion scenario, so this is the only one to appear on the following figures. 

 
Figure 6.31: Bridge I-1, urban corrosion rate, corrosion scenario varied 

 
Figure 6.32: Bridge I-1, marine corrosion rate, corrosion scenario varied 
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Figure 6.33: Bridge I-1, rural corrosion rate, corrosion scenario varied 

Based on Figure 6.31 to Figure 6.33, the following observations are made: 

• At all corrosion rates, corrosion to the web and the flange together cause the 

greatest decline in reliability; however, it is only at the urban corrosion rate that 

this decline differs substantially from the other scenarios. 

• At the urban corrosion rate, there is a significant difference in the results for the 

different corrosion scenarios; however, at the lower corrosion rates the difference 

diminishes to the point that it becomes negligible. 

• At the marine and rural corrosion rates, the I-1 bridge does not drop below 3.25 

over the 100 year analysis period. 

The reason for the similarity between the reliability lines at the marine and rural 

corrosion rates is that the web in fact contributes a relatively small amount to the moment 

resistance. 

Two-Span Continuous Box-Girder Bridge 

Figure 6.34 to Figure 6.36 show the effect of progressive corrosion on the two-span 

continuous box-girder bridge. In this case, both moment and shear failures occur. 
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Figure 6.34: Bridge T-1, urban corrosion rate, corrosion scenario varied 

 
Figure 6.35: Bridge T-1, marine corrosion rate, corrosion scenario varied 

 
Figure 6.36: Bridge T-1, rural corrosion rate, corrosion scenario varied 

Based on the data in Figure 6.34 to Figure 6.36, the following observations are made: 

• At the urban corrosion rate, the reliability curves for the moment failure mode 

with and without corrosion to the web are very similar.  
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• At the urban corrosion rate, the effect of the shear failure modes is vastly 

increased if the web is included in the corrosion scenario. 

• At the marine and rural corrosion rates, the T-1 bridge does not drop below 3.25 

over the 100 year analysis period, regardless of the corrosion scenario. 

It should be noted that most of the moment failures for the two-span continuous bridge 

are at the pier where negative bending occurs; the failures are a result of the flange failing 

to provide sufficient compression resistance. This suggests again that the web does not 

contribute significantly to the negative moment resistance. 

Comparison 

Based on the above results, the following observations are made: 

• When only the flange is corroding, none of the bridge types has a shear reliability 

value below 3.25 over a 100 year service life. 

• Regarding moment resistance at the urban corrosion rate, the two-span bridge 

appears to benefit least from flange-only corrosion, followed by the single-span 

box girder and I-girder, respectively. 

6.3.2 Highway Class 

Box Girder Bridge 

Figure 6.37 to Figure 6.39 show the reliability results for 40 m long box bridge, subject to 

the various corrosion rates, and with different ADTT values (see Table 5.11 for these 

values). The ADTT is related to the live load shear and moment bias factors.  

 
Figure 6.37: Bridge B-1, urban corrosion rate, highway class varied 
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Figure 6.38: Bridge B-1, marine corrosion rate, highway class varied 

 
Figure 6.39: Bridge B-1, rural corrosion rate, highway class varied 

I-Girder Bridge 

The results of a similar study are presented below for the 40 m long I-girder bridge.  

 
Figure 6.40: Bridge I-1, urban corrosion rate, highway class varied 
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Figure 6.41: Bridge I-1, marine corrosion rate, highway class varied 

 
Figure 6.42: Bridge I-1, rural corrosion rate, highway class varied 

Comparison 

Based on these figures, it can be concluded that the highway class is not an important 

factor for either girder type. This can be explained by the fact that as the traffic volume 

increases, the mean of the bias factor for the extreme live load effect tends to increase. 

However, the standard deviation tends to decrease (see Table 5.11). 

6.3.3 Girder Yield Strength 

Box Girder Bridges 

Figure 6.43 to Figure 6.45 show the results for bridges where the girders are composed of 

steels with various yield strengths. The bridges being compared here are B-1 (Fyg = 350 

MPa), B-2 (Fyg = 300 MPa), and B-3 (Fyg = 480 MPa). Note that the analysis in this 

section assumes that all of the steel grades corrode at the same rate. 
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Figure 6.43: Bridges B-1, B-2, B-3, urban corrosion rate. 

 
Figure 6.44: Bridges B-1, B-2, B-3, marine corrosion 

 
Figure 6.45: Bridges B-1, B-2, B-3, rural corrosion 

For the simply-supported box girder bridges with varying steel strengths: 

• The reliability of the structures drops below 2.75 only in the case of urban 

corrosion rate. At the marine and rural corrosion rates, the reliability does not 

drop below 3.25 over the 100 year time frame.   
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• At the urban corrosion rate, the time-dependent reliability with respect to the 

moment resistance of Bridge B-3 (Fyg = 480 MPa) drops faster than the other two 

structures, but only by a small amount. 

• Otherwise, there are no significant differences among the results for the three 

bridges. The failure modes are tightly grouped for each corrosion rate. 

Bridges B-1, B-2, and B-3 all have the same web thickness at the abutments and midspan 

(12.7 mm and 11.1 mm respectively). As a result of this, the effect of steel yield strength 

on the shear failure mode is not distinguishable. However, the flange thicknesses for B-1, 

B-2, and B-3 are different (20.6 mm, 25.4 mm, and 12.7 mm respectively), and, at least at 

the urban corrosion rate, the structure with the highest yield strength and thinnest bottom 

flange also has the lowest reliability, if only by only a small margin. 

I-Girder Bridges  

Figure 6.46 to Figure 6.48 compare the reliability curves for the simply supported I-

girder bridges I-1 (Fyg = 350 MPa), I-2 (Fyg = 300 MPa), and I-3 (Fyg = 480 MPa). 

 
Figure 6.46: Bridges I-1, I-2, I-3, urban corrosion rate. 
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Figure 6.47: Bridges I-1, I-2, I-3, marine corrosion rate 

 
Figure 6.48: Bridges I-1, I-2, I-3, rural corrosion rate 

For the I-girder bridges with various girder steel strengths: 

• At the urban corrosion rate, the difference between the shear and moment failure 

modes for the various bridges is negligible; however, at the other corrosion rates, 

it is more significant, though at no point does the reliability drop below 2.75.  

• At all three corrosion rates, the moment and shear bands are closely grouped. 

• At the marine and rural corrosion rates, the lower reliability values of Bridge B-2 

(Fyg =300 MPa) is a result of its lower reliability at year 0. 

Regarding the moment failure, the results are counterintuitive: the bridge composed of 

the lowest strength steel should be the most reliable, by virtue of its thicker section; 

however, the results here suggest otherwise. The reason for this is that the high strength 

steel has a higher initial reliability, and this advantage perdures through the test life; 

however, at high corrosion rates the difference between the bridges is negligible. 
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Comparison 

In general, these results favour high strength steel, since less steel is required and the self-

weight of the bridge is lower. While B-2 girder weighs approximately 3.5% more than 

that of B-1, the B-3 girder weighs 19.8% less than that of B-1. The same is true for the I-

girder bridge: the I-2 girder weighs 5.9% more than the I-1 girder, while the I-3 girder 

weighs 18.7% less than the I-1 girder. Thus there are potential savings to be made in the 

reduced material used as the girder yield strength is increased, without causing a 

significant reduction in the time-dependent reliability of the structure. 

6.3.4 Bridge Span 

Box Girder Bridges 

Figure 6.49 to Figure 6.51 show the effect of girder span on the reliability of simply-

supported box girder bridges. The bridges being compared are B-1, B-4, and B-5, which 

have 40 m, 30 m, and 35 m spans respectively.  

 
Figure 6.49: Bridges B-1, B-4, B-5, urban corrosion 

 
Figure 6.50: Bridges B1, B4, B5, marine corrosion rate. 



 142 

 
Figure 6.51: Bridges B-1, B-4, B-5, rural corrosion rate. 

For the simply-supported box girder bridges of varying lengths: 

• At the urban corrosion rate, there is a noticeable difference between the shear 

failure mode reliability curves of the different bridges, but the moment failure 

reliability curves are very similar.  

• There is also a substantial difference between the shear failure mode reliability 

curves in the marine and rural corrosion rates. 

• Bridge B-5 (35 m span) outperforms B-1 (40 m span) with respect to the shear 

failure mode; this is due to the fact that they both have the same web thickness, 

but B-1, being longer, has the larger shear values. 

I-Girder Bridges 

Figure 6.52 to Figure 6.54 relate to the simply-supported I-girder bridges of varying 

lengths. I-1, I-4, and I-5 are 40 m, 30 m, and 35 m long, respectively. 
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Figure 6.52: Bridges I-1, I-4, I-5, urban corrosion rate. 

 
Figure 6.53: Bridges I-1, I-4, I-5, marine corrosion rate. 

 
Figure 6.54: Bridges I-1, I-4, I-5, rural corrosion rate. 

For the simply-supported I-girder bridges with varying span lengths: 
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• The moment failure reliability curves of the three bridges are quite similar. 

• Shear failure reliability, on the other hand, is quite varied at all corrosion rates.  

• The reliability of all three bridges drops below the 2.75 mark prior to the end of 

the 75 year planned service life at the urban corrosion rate. 

• At the marine corrosion rate, the shear failure mode of Bridges I-4 and I-5 drop 

below the 2.75 mark at 60 and 100 years respectively. 

• At the rural corrosion rate, the shear failure mode of Bridge I-4 drops to the 2.75 

mark at 100 years. The other bridges stay above 3.25. 

The variability of the shear reliability modes is due to the varying thicknesses of the web. 

Bridges I-1, I-4, and I-5 all have differing web thicknesses at the abutment (14.3 mm, 

11.1 mm, and 12.7 mm respectively), where the shear forces are the highest. 

Comparison 

For the simply-supported box- and I-girder bridges of varying lengths: 

• At the urban corrosion rate, the box girder bridges perform better than the I-girder 

bridges at all span lengths. 

• For the I-girder bridges, the shortest span shows the largest decrease in reliability. 

This is trend is not apparent for the box girder bridges. 

6.3.5 Number of Lanes 

Box Girder Bridges 

Figure 6.55 to Figure 6.57 are for the reliability of the structures with two lanes only 

(Bridge B-6), as compared to those that have four lanes (Bridge B-1).  
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Figure 6.55: Bridges B-1 & B-6, urban corrosion rate 

 
Figure 6.56: Bridges B-1 & B-6, marine corrosion rate 

 
Figure 6.57: Bridges B-1 & B-6, rural corrosion rate 

For the box girder bridges with two or four lanes: 

• At all corrosion rates, the four-lane bridge is more susceptible to shear and 

moment failure modes.  

• At the marine and rural corrosion rates, the two-lane bridge does not fail in shear. 
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The reason for the relative susceptibility of the four-lane bridge may be that the web and 

flange sections of the four-lane bridge are less thick than those of the two-lane bridge. 

The additional thickness is required because of the weight of the sidewalks and barriers is 

distributed to fewer girders, and the two-lane bridge has a higher modification factor for 

live loading (0.9 to 0.7, see Table 5.5). 

I-Girder Bridges 

Figure 6.58 to Figure 6.60 show a similar comparison for the I-girder bridges. 

 
Figure 6.58: Bridges I-1 & I-6, urban rate 

 
Figure 6.59: Bridges I-1 & I-6, marine corrosion rate 
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Figure 6.60: Bridges I-1 & I-6, rural corrosion rate 

For the I-girder bridges with two or four lanes: 

• At all corrosion rates, the two-lane bridge (I-6) is more susceptible to the shear 

failure mode than the four-lane bridge (I-1). 

• At all corrosion rates, the four-lane bridge (I-1) is more susceptible to the moment 

failure mode than the two-lane bridge (I-6) 

Comparison 

For the shear failure mode, the two-lane box girder bridge (I-6) is less susceptible than 

the four-lane box girder bridge (I-1); however, this trend is reversed in the I-girder 

bridges. The reason for this is that the initial reliability of the four-lane I-girder bridge (I-

6) with respect to shear failure is considerably higher than that of the two-lane bridge (I-

1). This initial structural advantage remains throughout the duration of the analysis. 

6.3.6 Web Breathing Failure Mode 

The base case bridges (B-1 & I-1) were also analysed for their resistance to the web 

breathing limit state (see Section 5.2.1).  

Box Girder Bridge 

Figure 6.61 shows the results of these tests, for all three corrosion rates, where the 

comparison is made between the total failure due to the combined ultimate limit states 

(U) versus the web breathing limit state (WB) on its own. 
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Figure 6.61: Bridge B-1, ULS vs. WB, all corrosion rates 

For the box girder bridge: 

• The web breathing limit state is never more critical than the ultimate limit states 

for the box girder bridge.  

• The fatigue limit state is likely to affect structural performance only at the urban 

corrosion rate. 

I-Girder Bridge 

Figure 6.62 shows a similar comparison for an I-girder bridge. 

 
Figure 6.62: Bridge I-1, ULS vs. WB, all corrosion rates 

For the I-girder bridge: 

• The ULS cases cause a more significant decline in reliability than web breathing. 

• Only at the urban corrosion rate is there an unacceptable risk of a web breathing 

“failure” occurring during the lifespan of the structure. 
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Comparison 

Figure 6.63 compares the web breathing behaviour of the box and I-girder bridges. 

 
Figure 6.63: Bridges B-1 and I-1, web breathing comparison, all corrosion rates 

For the girder type comparison of the web breathing limit state: 

• The web breathing behaviour of the I-girder bridge is in all cases slightly worse 

than that of the box girder bridge. 

While the webs are 1/16” thicker on the I-girder bridge (I-1) than the box girder bridge 

(B-1), they are also attacked from both sides by corrosion, and this makes them more 

susceptible over time to web breathing failure mode. 

6.3.7 Sensitivity Study Summary 

General 

Two trends in the sensitivity studies are worth noting. First, the idea of a statistical 

“noise” should be understood. In the probability program, 14 different parameters are 

varied statistically. Some of these parameters have a more significant impact than others. 

For example, the corrosion rate has a significant impact, while the highway class does 

not. The reason that no difference is visible in the highway class variation data (see 

Figure 6.37 to Figure 6.42) is that, with the numerous parameters being varied 

simultaneously, a change of one value may be overridden. 

The other trend worth noting is the effect of using plate that comes in 1/16” (1.6 mm) 

increments. This led to a certain “coarseness” in the design of some bridges, which in 

turn is visible in the reliability data that the analyses produce. One such example of this is 
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in the comparison of the box girder bridges composed of varying steel strengths, B-1, B-

2, and B-3. All of these bridges have the same web thickness at the abutment, as was 

required by the design; as a result, however, the effect of corrosion on the shear 

resistance of the bridge (the abutments being points of maximum shear) is less visible.  

Corrosion Scenarios 

Figure 6.64 and Figure 6.65 show the calculated reliability indices failures due to shear, 

moment, and shear + moment for the B-1 and I-1 bridges at 0, 25, 50, and 75 years, for 

the following corrosion scenarios (as illustrated in  Figure 5.10): web + flange (W+F), 

flange-only (F), and top-of-flange-only (TOF). Class A highway traffic volumes are 

assumed in all cases. The dashed grey lines indicate the 2.75 and 3.25 reliability index 

levels. 

   
Figure 6.64: Reliability fractions for corrosion scenario bridges at 0 years (left) and 25 years (right) 

 
Figure 6.65: Reliability fractions for corrosion scenario bridges at 50 years (left) and 75 years (right) 
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Figure 6.64 and Figure 6.65 show that the greatest degradation of the reliability level 

occurs at the I-girder bridge that experiences corrosion to its web and both sides of its 

bottom flange. However, this is closely followed by the web + flange corrosion to the box 

girder; this is interesting because the I-girder is being attacked from both sides of its web 

and bottom flange, while the box girder is attacked on one side only. This result is 

mirrored by the flange-only corrosion to the B-1 and I-1 bridges. Not surprisingly, the I-1 

bridge with corrosion occurring to its top flange-only fares the best. 

Bridge Types 

Figure 6.66 to Figure 6.69 are bar charts of the reliability indices for the twelve bridge 

types at 25, 50, and 75 year spans, respectively. They correspond with combined failure 

due to shear, moment, and shear + moment. All the bridges being considered here are 

assumed to experience web + flange corrosion and Class A highway traffic volumes. 

Again, the dashed grey lines are at the 2.75 and 3.25 levels. 

 
Figure 6.66: Reliability fraction of bridge types at 0 years 
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Figure 6.67: Reliability fraction of bridge types at 25 years 

 
Figure 6.68: Reliability fraction of bridge types at 50 years 

 
Figure 6.69: Reliability fraction for bridge types at 75 years 

Of all the bridges, the one that fares the worst from corrosion is the 30 m long I-girder 

bridge (I-4), with the 35 m I-girder bridge (I-5) coming next. These bridges have a low 
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reliability because their shorter length enabled the use of thinner plate for their webs; 

since corrosion progresses at the same rate regardless of the thickness of the steel, these 

bridges experienced the fastest degradation. 

Except for the I-4 and I-5 bridges, all the bridges maintain a reliability level above 3.25 

up to the 75 year mark at the marine and rural corrosion rates. Thus, it can be assumed 

that if a bridge only shows a normal patina and does not give evidence of significant 

corrosion, it will perform adequately for the duration of its service life. 

6.4 Case Study 

Design and maintenance data has been made available for two box girder bridges along 

Highway 402, between London, Ontario and Sarnia, Ontario. Both bridges are four-lane, 

four-girder highway overpasses. Both are 83.0 m long, divided into two equal, simply-

supported composite box girder spans. However, girder plate thicknesses, slab widths, 

sidewalk dimensions, etc, are different. Their truck traffic is estimated to be that of Class 

C structures. Figure 6.70 and Figure 6.71 show the resistance fractions of the two bridges, 

henceforth labelled A and B. 

 
Figure 6.70: Bridge A resistance fractions 
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Figure 6.71: Bridge B resistance fractions 

Figure 6.72 and Figure 6.73 are the reliability output for both bridges at the urban 

corrosion rate, with the bridge geometry taken from their respective structural drawings. 

For all analyses of these bridges, it was assumed that corrosion to the web and flange 

occur for 3.0 m from each abutment, and corrosion to the flange-only occurs over 

approximately 15.0 m centred at the midspan section. This is in accordance with what 

was noted during site visits to both bridges.  

 

Figure 6.72: Bridge A, urban corrosion rate 
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Figure 6.73: Bridge B, urban corrosion rate 

An inspection performed 26 years after their construction; as part of this inspection, 

readings were taken of the material thicknesses at the web and flange of the girders. 

Inspections were performed at midspan and both abutments for every girder. A series of 

five readings were taken from side to side of each member. Figure 6.74 shows the points 

where thickness measurements were taken at all abutment and midspan locations. 
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Figure 6.74: Inspection thickness measurement locations 

This data can be used to recalculate the reliability, as is shown in the following figures. In 

Figure 6.75 and Figure 6.76, the time-dependent reliability of the bridges was 

recalculated using the average measured plate thicknesses for the web and flange at the 

abutments and midspan, but keeping the urban corrosion rate (which was in keeping with 

the high level of corrosion on the structures). The plate thicknesses recorded were almost 

all larger than expected, and even larger than designed; this is the reason for the increase 

in reliability in these figures. 
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Figure 6.75: Bridge A with plate thicknesses measured at 26 years 

 
Figure 6.76: Bridge B with plate thicknesses measured at 26 years 

Another method of analysis of the bridge data involved using the average plate thickness 

from the bridge inspection data, but with a normally-distributed variation to account not 

only for the variation in thickness of the plate itself (due to differences in manufacturing 

and corrosion), but also for issues with measuring plate thicknesses on corroded, in situ 

steel. 

Assuming a standard deviation of 1.5 mm, the following results may be obtained (Figure 

6.77 and Figure 6.78). 
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Figure 6.77: Bridge A w/plate thickness variation 

 
Figure 6.78: Bridge B w/plate thickness variation 

It was also possible to determine the corrosion rate and variability from the data. The 

corrosion rate was found by calculating the difference between the average thickness of a 

member type and the average of the maximum thicknesses (for each set of five readings) 

of the member type. The standard deviation of the plate thicknesses was also calculated. 

Then, Equation 2.3 was used to calculate batches of values for corrosion penetration for 

the inspection interval (26 years). The mean and standard deviation of the B variable 

were manipulated so that mean and standard deviation of the corrosion values produced 

matched those of the inspection report. The new values for the mean and standard 

deviation of B were then input into the reliability program, along with the average plate 

sizes, and the bridge reliability was recalculated. Figure 6.79 and Figure 6.80 are the 

results of these calculations. 
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Figure 6.79: Bridge A with measured plate thicknesses and corrosion rates 

 
Figure 6.80: Bridge B with measured plate thicknesses and corrosion rates 

Figure 6.81 and Figure 6.82 show a summary of the total failures due to ULS for both 

bridges. For these figures, Method 1 refers to the unmodified reliability analysis, Method 

2 refers to the analysis with the updated plate thicknesses only, Method 3 refers to the 

updated plate thicknesses plus the statistical variation of the thicknesses, and Method 4 

refers to the updated plate thicknesses plus the substitution of recalculated corrosion rates 

and variances. 
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Figure 6.81: Bridge A, summary of reliability calculation modes 

 
Figure 6.82: Bridge B, summary of reliability calculation modes 

Table 6.10 shows the percentage benefit gained by collecting and analysing data from the 

plate girder bridges. The data below compares the original amount of time it took the 

bridge to reach a reliability of 2.75, against the recalculated amount of time to reach this 

level. 

Table 6.10: Recalculated bridge service lives 

 Bridge A Bridge B 

Method 2 91% 95% 

Method 3 82% 66% 

Method 4 No failure 166% 

 



 160 

CHAPTER 7: CONCLUSIONS AND RECOMMENDATIONS 

7.1 Conclusions 

The conclusions presented in this chapter are divided into the three main areas of the 

research work: those resulting from (i) the ultrasonic thickness gauge (UTG) studies, (ii)  

the protective coating corrosion testing studies, and (iii)  the development of the 

structural analysis models and the analytical studies performed with these models. 

7.1.1 UTG Thickness Measurement Studies 

Regarding the use of the UTG for the inspection of steel plate experiencing section loss 

due to corrosion, the following conclusions are drawn: 

• The instrument is not capable of measuring from a heavily pitted surface, even if 

the rust layer has been removed (e.g. by sandblasting or chemical wash), because 

the surface is too uneven to provide a sufficiently uniform contact between the 

steel and the UTG probe head. 

• When the measurements are made of a weathering steel plate with corrosion 

product on the opposite side, the UTG does not include the thickness of corrosion 

product in the measured plate thickness and, therefore, will provide values 

suitable for service life prediction. 

• When measurements are made of a weathering steel plate with corrosion product 

on the same side then, if a measurement is possible at all, the measured thickness 

includes the corrosion layer, and this layer appears thicker than it actually is. 

Therefore the data cannot be used in service life predictions without further 

analysis to correct for the effect of the corrosion product. 

• The UTG measures the shortest distance to an opposing surface; as such, it can be 

expected to measure the distance to a pit on the opposite side of the plate. In order 

to accurately determine the lowest plate thickness measurement, however, the 

UTG probe head must be directly over the pit. 
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7.1.2 Protective Coating Corrosion Testing Studies 

The following conclusions are drawn from the corrosion test studies presented herein of 

uncoated, metallized, and zinc-tape coated weathering steel specimens, and the 

subsequent analyses of the corroded specimens: 

• All the protective coatings tested, including pure zinc and aluminum-zinc-indium 

alloy metallizing and PVC-coated zinc tape, were successful in preventing 

corrosion of the weathering steel specimens in the period of the accelerated test 

which was estimated to be equivalent to 40 years of natural exposure. 

• The surface roughness of the specimen did not have any detectable influence on 

the effectiveness of the metallizing or zinc tape protective coating. 

• The effectiveness of the metallizing and zinc tape protective coatings was not 

reduced by the degree of sandblasting performed on the structure. More 

specifically, the results indicate that sandblasting the structure to a sub-white 

metal condition was not necessary for effective performance of these coatings.  

• The metallizing and tape coatings had equal success at protecting the steel from 

structures constructed 40 years ago and the steel available for structures today. 

7.1.3 Modelling of Corroding Weathering Steel Highway Structures 

The following conclusions are drawn as a result of the development of the structural 

models for assessing the remaining service lives of corroding weathering steel highway 

structures and the analytical studies performed using these models: 

• Corrosion occurring at the urban rate to weathering steel structures is capable of 

significantly reducing their service life. The reliability of the standard box girder 

bridge analysed herein drops below the acceptable level of 2.75 in approximately 

15 years, rather than the 75 years required by [CAN/CSA-S6-06]. Likewise, the 

reliability of the I-girder bridge is below 2.75 after 13 years, and the two-span box 

girder bridge is below 2.75 after 22 years. Marine and rural corrosion rates do not 

pose a challenge to highway structures, except in the case of short-span, simply 

supported (� 35 m) I-girder bridges. These bridges are threatened because, unlike 

the box girder bridges, their girder webs are both thinner than those of the longer 
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spans, and attacked from both sides by corrosion. In all other cases, the bridge 

reliability does not drop below 2.75 over a 75 year service life. 

• The two-span box girder bridge has a reliability of 1.77 after 75 years at the urban 

corrosion rate, as compared with the simply-supported box girder and I-girder 

bridges which have reliabilities of 1.42 and 1.24 at this point,. 

• The bearing failure mode is problematic for time-dependent reliability calculation 

according to the equations provided in [CAN/CSA-S6-06] because of the 

slenderness equation, which displays a non-rational bias against high-strength 

steel. 

• Web + flange corrosion causes a more rapid degradation to the box and I-girder 

bridges than flange-only corrosion. For the web + flange corrosion scenario, shear 

is the predominant failure mode, while for the flange-only corrosion scenario it is 

moment. For the box girder bridge at the urban corrosion rate, corrosion to the 

flange-only results in a reliability of 2.55 after 75 years, compared with 1.42 if 

both the web and the flange are subject to corrosion; this difference is 

substantially less at the other corrosion rates. For the I-girder bridge at the urban 

corrosion rate, the reliability at 75 years is 2.37 for the scenario where both sides 

of the flange corrode and 2.70 where only the top of the flange corrodes, 

compared with 1.24 where web + flange corrosion is occurring. For the two-span 

box girder bridge at the urban corrosion rate, corrosion to the flange-only results 

in a reliability of 2.07 after 75 years; corrosion to the web and flange together 

results is a reliability of 1.76. 

• The difference between the effects of web + flange corrosion for the box and I-

girder bridges is relatively minor. The same is true for flange-only corrosion for 

these bridges. Nevertheless, the I-girder bridges are more sensitive to corrosion 

than box-girder bridges at both types of corrosion. 

• Over the long term, shear failure mode is critical because of the relative 

slenderness of the plate. The amount of time required for this to occur depends on 

the corrosion rate. 
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• The use of high strength steel for the bridge girder does not have a significant 

impact on the service life of the highway structure. While it was expected that 

higher strength steel would result in thinner sections that are more susceptible to 

corrosion, this is not seen in the analysis results. After 75 years at the urban 

corrosion rate, a box girder bridge with 480 MPa yield strength has a reliability of 

1.48, as opposed to 1.42 for a girder with 350 MPa yield strength. For the I-girder 

bridge, the 480 MPa bridge’s reliability is 1.23, as opposed to 1.24 for the 350 

MPa bridge. The use of low strength steel likewise does not have a significant 

impact. After 75 years at the urban corrosion rate, a 300 MPa yield strength box 

girder bridge has a reliability of 1.50, compared with 1.42 for the 350 MPa box 

girder structure. For the I-girder structure, the 300 MPa bridge has a reliability of 

1.25 after 75 years, while the 350 MPa bridge has a reliability of 1.24. 

• For the box girder structures, shorter spans do not result in a significantly 

different reliability after 75 years at the urban corrosion rate. The 30, 35, and 40 

m long box girder bridges have reliabilities of 1.47, 1.65, and 1.42, respectively. 

The difference in these values is more a result of the initial reliability of the 

bridges. For the 30, 35, and 40 m long I-girder bridges, the reliability values are 

0.84, 1.08, and 1.24, respectively. This shows the effect of thinner webs which 

undergo corrosion on both exposed faces. 

• The number of lanes appears to have an impact on the time-dependent reliability 

of the structure, insofar as a structure with fewer lanes will have larger girders, 

which will in turn be more resistant to corrosion penetration. The box girder 

bridge at the urban corrosion rate has a reliability of 1.74 at the 75 year mark, 

while the four-lane bridge has a reliability of 1.42. However, for the I-girder 

bridge, this effect is not visible due to the relatively low initial reliability of the 

two-lane bridge design.  

• The traffic amount does not have a significant impact on the time-dependent 

reliability of a bridge. At 75 years, the bridge supporting a Class A highway 

performs marginally worse than those supporting Class B, C, and D highways (at 

the urban corrosion rate, 1.42 to 1.51, 1.52, and 1.52, respectively). For the I-
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girder bridge, after 75 years at the urban corrosion rate the Class A highway 

bridge reliability is 1.24, while the Class B, C, and D highway structures are 1.25, 

1.27, and 1.29. 

• The fatigue limit state of web breathing does not have a more decisive impact 

than the ultimate limit states. After 75 years at the urban corrosion rate, the 

reliability is 1.47 for this fatigue limit state for the box girder, and 1.33 for the I-

girder bridge, as compared to 1.42 and 1.24 for the structures at the shear, 

moment, and shear + moment limit states. 

• Very significant gains to the predicted service life (ranging from a 66% increase 

to no predicted failure whatsoever) can be made by integrating data from a 

particular bridge into a reliability analysis. 

7.2 Recommendations for Future Work  

7.2.1 Protective Coating Corrosion Testing Studies 

The following recommendations are made based on the corrosion testing studies 

presented herein of uncoated, metallized, and zinc-tape coated weathering steel 

specimens, and the subsequent analysis of the corroded specimens: 

• Additional test parameters, such as the effect of sulphur oxides and scoring on the 

metallized specimen performance, should be explored. 

• The effect of a seam in the zinc tape, especially where the where the surface being 

covered is uneven, should be studied by further corrosion testing. 

• A life-cycle cost comparison of painting versus metallizing or zinc taping would 

be beneficial. This comparison should take into account the maintenance costs of 

each coating method as well as the environmental impacts/costs. 

• Field trials of the metallizing and zinc tape coatings are recommended. 

7.2.2 Modelling of Corroding Weathering Steel Highway Structures 

The following recommendations are made as a result of the development of the structural 

models for assessing the remaining service lives of corroding weathering steel highway 

structures and the analytical studies performed using these models: 
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• Further research on the effects of corrosion on bridge deflection and other service 

limit states, as well as the fatigue limit state, is recommended. 

• More data are required about the corrosion rates of weathering steel. A good place 

to get this data would be from a detailed survey of weathering steel bridges, for 

example. 

• Additional research should be done into two-span bridges, which appear to offer a 

considerable benefit over the simply-supported bridges with respect to time-

dependent reliability.  
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APPENDIX A: CANADIAN WEATHERING STEEL SPECIFICATIONS 
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For Canadian construction, the relevant codes are [CAN/CSA G40.20] and [CAN/CSA 

G40.21]. [CAN/CSA G40.21] lists three types of weathering steel:  

1. Type R – Atmospheric corrosion-resistant steel  

2. Type A – Atmospheric corrosion-resistant weldable steel  

3. Type AT – Atmospheric corrosion-resistant weldable notch-tough steel. 

Table 1.1 contains the chemical compositions for some of the weathering steels provided 

in [CAN/CSA G40.21-04].  

Table A.1: Chemical composition of weathering steels, % [CAN/CSA G40-21] 

Element 350R 350A 350AT 

C 0.16 max 0.20 max 0.20 max 

Mn 0.75 max 0.75-1.35 0.75-1.35 

P 0.05-0.15 0.03 max 0.03 max 

S 0.04 max 0.04 max 0.04 max 

Si 0.75 max 0.15-0.50 0.15-0.50 

Cr 0.30-1.25 0.70 max 0.70 max 

Ni 0.90 max 0.90 max 0.90 max 

Cu 0.20-0.60 0.20-0.60 0.20-0.60 

The number 350 refers to the yield strength of the steel in MPa. 350R steel is atmospheric 

corrosion-resistant steel for light uses such as siding and light structural members. 350A 

steel is similar to 350R, except that is may be used for more critical structural elements 

such as the compression members in bridges. 350AT differs from the other two in that it 

is suitable for welded construction where notch toughness at low temperature is a design 

requirement [CISC 2006]. 
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APPENDIX B: INDIVIDUAL SPECIMEN MASS LOSS DATA 
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Figure B.1: Uncoated old steel specimens 

 

Figure B.2: Uncoated new steel specimens 

 
Figure B.3: Aluminum alloy metallized, fully-sandblasted, new steel specimens 
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Figure B.4: Zinc metallized, fully-sandblasted, old steel specimens 

 
Figure B.5: Zinc metallized, fully-sandblasted, new steel specimens 

 
Figure B.6: Zinc metallized, partially-sandblasted, old steel specimens 
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Figure B.7: Zinc metallized, partially-sandblasted, new steel specimens 

 
Figure B.8: Zinc taped, fully-sandblasted, old steel specimens 

 
Figure B.9: Zinc taped, fully-sandblasted, new steel specimens 



 178 

 
Figure B.10: Zinc taped, partially-sandblasted, old steel specimens 

 
Figure B.11: Zinc taped, partially-sandblasted, old steel specimens 


