
The k-best paths in Hidden
Markov Models. Algorithms and
Applications to Transmembrane
Protein Topology Recognition

by

Daniil Golod

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2009

c© Daniil Golod 2009



I hereby declare that I am the sole author of this thesis. This is a true copy of the
thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

Traditional algorithms for hidden Markov model decoding seek to maximize
either the probability of a state path or the number of positions of a sequence
assigned to the correct state. These algorithms provide only a single answer and
in practice do not produce good results. The most mathematically sound of these
algorithms is the Viterbi algorithm, which returns the state path that has the
highest probability of generating a given sequence. Here, we explore an extension to
this algorithm that allows us to find the k paths of highest probabilities. The naive
implementation of k best Viterbi paths is highly space-inefficient, so we adapt recent
work on the Viterbi algorithm for a single path to this domain. Out algorithm uses
much less memory than the naive approach. We then investigate the usefulness
of the k best Viterbi paths on the example of transmembrane protein topology
prediction. For membrane proteins, even simple path combination algorithms give
good explanations, and if we look at the paths we are combining, we can give a
sense of confidence in the explanation as well. For proteins with two topologies,
the k best paths can give insight into both correct explanations of a sequence, a
feature lacking from traditional algorithms in this domain.

iii



Acknowledgements

I would like to thank my supervisor, Daniel G. Brown, for all the help with this
work. I would also like to thank Jakub Truszokowski for helpful discussion. Finally,
I thank my readers Therese Biedl and Pascal Poupart for their helpful comments.

iv



Contents

List of Tables vii

List of Figures viii

1 Introduction 1

2 Background and previous work 3

2.1 Hidden Markov Model . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Viterbi algorithm . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.2 Compressed tree approach to Viterbi algorithm . . . . . . . 5

2.1.3 1-best algorithm . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.4 Forward algorithm and the probability of a labelling . . . . . 8

2.2 Transmembrane proteins and their topology . . . . . . . . . . . . . 9

2.2.1 Phobius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 K-best Viterbi algorithm 13

3.1 Computing the probabilities . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Naive Viterbi path storage . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Tree based path storage . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3.1 Updating the path structure . . . . . . . . . . . . . . . . . . 15

3.3.2 Recovering the paths . . . . . . . . . . . . . . . . . . . . . . 17

4 Coalescence points 18

4.1 Coalescence points in compressed tree . . . . . . . . . . . . . . . . . 18

4.2 Coalescence points in k-best tree . . . . . . . . . . . . . . . . . . . 19

4.2.1 Interval graph representation of k-best tree . . . . . . . . . . 19

4.2.2 Coalescence points detection algorithms in k-best tree . . . . 21

v



5 Experimental results 23

5.1 Prediction accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.2 Performance metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.3 How many paths? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.4 Probability mass of paths and labellings . . . . . . . . . . . . . . . 28

5.5 Random sampling from the model . . . . . . . . . . . . . . . . . . . 29

6 Extracting information from the k-best paths 37

6.1 Connection between correctness and probability mass of paths and
labellings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.2 Gaining confidence in predictions based on agreement in their structure 42

6.3 From many predictions to one prediction . . . . . . . . . . . . . . . 45

6.3.1 Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.3.2 Majority voting . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.3.3 Per-position voting . . . . . . . . . . . . . . . . . . . . . . . 47

6.3.4 Averaging using label wights . . . . . . . . . . . . . . . . . . 47

6.3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.4 Dual topology proteins . . . . . . . . . . . . . . . . . . . . . . . . . 48

7 Conclusion 53

7.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Bibliography 54

Appendix 57

A Agglomeration methods data 58

vi



List of Tables

5.1 Correctness results . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.2 Average proportions of total probabilities . . . . . . . . . . . . . . . 29

5.3 Random sampling, number of attempts for data set I . . . . . . . . 33

5.4 Random sampling, number of attempts for data set I . . . . . . . . 34

5.5 Sampling correctness for data set I . . . . . . . . . . . . . . . . . . 35

5.6 Sampling correctness for data set II . . . . . . . . . . . . . . . . . . 36

5.7 Distribution of correctly sampled proteins . . . . . . . . . . . . . . 36

6.1 Distribution of correct predictions . . . . . . . . . . . . . . . . . . . 43

6.2 Sampling correctness for data set II . . . . . . . . . . . . . . . . . . 44

6.3 Number of locations at which proteins in data set II needed smoothing. 47

6.4 Results of running Phobius on dual topology data . . . . . . . . . . 49

6.5 Results of running Phobius without signal prediction on dual topol-
ogy data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.6 Number of groups predicted for each of the dual topology proteins. 50

6.6 Dual topology group distribution . . . . . . . . . . . . . . . . . . . 51

6.7 Total probability mass of paths and labellings for dual topology pro-
teins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

A.0 Consensus prediction using averaging, data set I . . . . . . . . . . . 60

A.1 Consensus prediction using averaging, data set II . . . . . . . . . . 62

A.2 Consensus prediction using majority voting, data set I . . . . . . . 64

A.3 Consensus prediction using majority voting, data set II . . . . . . . 66

A.4 Consensus prediction using per position voting, data set I . . . . . . 68

A.5 Consensus prediction using per position voting, data set II . . . . . 70

A.7 Consensus prediction using averaging by label weight, data set I . . 71

A.2 Consensus prediction using averaging by label weight, data set II . . 72

vii



List of Figures

2.1 Compressed Tree example . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Examples of different classes of transmembrane proteins. The pic-
tures are taken from [1]. . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Phobius Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 k-best tree construction . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1 Coalescence point illustration . . . . . . . . . . . . . . . . . . . . . 19

4.2 Example of problematic paths removal . . . . . . . . . . . . . . . . 19

4.3 Interval graph based on k-best tree . . . . . . . . . . . . . . . . . . 20

5.1 CPU usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.2 Memory usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.3 Recovered paths distribution . . . . . . . . . . . . . . . . . . . . . . 27

5.4 Total probability for data set I . . . . . . . . . . . . . . . . . . . . . 30

5.5 Total probability for data set II . . . . . . . . . . . . . . . . . . . . 31

6.1 Cumulative probability, Phobius measure for data set I . . . . . . . 38

6.2 Cumulative probability, Phobius measure for data set II . . . . . . . 39

6.3 Cumulative probability, BBM-5 measure for data set I . . . . . . . . 40

6.4 Cumulative probability, BBM-5 measure for data set II . . . . . . . 41

6.5 Majority voting conflict example . . . . . . . . . . . . . . . . . . . . 46

viii



Chapter 1

Introduction

Hidden Markov Models (HMMs) are an analysis tool used in a variety of areas,
including bioinformatics. One of their main uses is assigning annotations to long
sequences to denote features of that sequence. The features of the sequence are
usually encoded into the HMM as labels for states: while every state must have
a single label, some labels may be assigned to multiple states. Usually decoding
algorithms, such as Viterbi [8], posterior decoding [8], and the 1-best algorithm [14],
provide a single (presumably correct) annotation of the sequence.

Here, we explore an alternative way to provide good annotations of sequences:
finding the k-best Viterbi paths and using them to find annotations. We introduce
a memory-efficient algorithm for finding k-best paths in Chapter 3 based on a re-
cent compressed tree approach for the Viterbi algorithm [24]. We implement this
algorithm and run it on a standard HMM model from the transmembrane protein
topology predictor called Phobius [12]. We show that in practice the new algorithm
is significantly more memory-efficient, without incurring a large time penalty (Sec-
tion 5.2). We additionally investigate another way to potentially improve memory
usage, which involves detecting coalescence points. A coalescence point is a point
in the sequence where a given symbol is guaranteed to be emitted from a particular
state. We present algorithms for detecting coalescence points for both one path
and the k-best paths (Chapter 4).

We investigate the amount of information in the k-best paths by looking at how
often the k-best paths contain at least one path that is correct. Such situations
are more common than the number of correct predictions for the original 1-best
algorithm for the Phobius model (Section 5.1). Then we show how to extract good
annotations from groups of predictions in Chapter 6 and conclude that using simple
ways to extract prediction we can do better then Viterbi algorithm, but worse than
the 1-best decoding method.

Finding a good annotations is not the only use of the k-best paths: we can use
them to extract other information about the sequence. Probably the most useful
additional information that we have investigated is the confidence in the predic-
tion. We show that we can access confidence in two different ways. In cases when

1



all of the predicted annotations have the same number of helices we have higher
confidence than in the cases when multiple different numbers of predicted helices
is found. Additionally we show that there is a correlation between the amount
of total probability that the top k-best paths occupy and how often we predict
correctly (Sections 6.2, 6.1). Here, having larger total probability corresponds to
higher confidence.

We also investigate whether different predictions or groups of predictions can
tell us something about correct alternative explanations (Section 6.4) and show
that we sometimes can predict biologically meaningful alternative annotations for
a special subset of transmembrane proteins called dual topology proteins. Dual
topology proteins are the proteins for which it can be shown that they assume
one of two different topologies within a cell. Here, we show that sometime we can
predict both topologies in a meaningful manner.

2



Chapter 2

Background and previous work

Before describing the k-best algorithm and its applications we need to introduce
some background material. We first present Hidden Markov Models (HMMs) to-
gether with some common algorithms designed to be used with them. Next, we give
a short introduction to transmembrane proteins, transmembrane protein topology
and ways to predict this topology using sequence information.

2.1 Hidden Markov Model

HMMs are a probabilistic model for sequences that is often used for recognizing
features of a sequence. HMMs are a common tool in bioinformatics due to their
ease of design and their fast and mathematically-justified training and decoding
algorithms. Here we introduce the overall structure and two decoding algorithms
for HMMs, as well as ways to calculate the probability of a sequence given a model
(called the “forward algorithm”). We also present an algorithm that allows one to
find the probability of a labelling given a model and sequence.

A hidden Markov model is a probabilistic generative automaton that creates a
sequence, over a finite alphabet, Σ, while traversing stochastically through a finite
set of states. Let m be the number of states in the model. An HMM is defined
by a collection of parameters: an initial probability vector I, a set of transition
parameters aij, a set of emission parameters bi, and, potentially, a final probability
vector F . The initial probability vector I identifies the probability of starting in
each state (from 1 to m). The final probability vector F , for each state i, defines
the probability that the HMM will stop emitting during a time step in state i. The
transition probability aij gives the probability that the model is in state j at step
t of its execution if it is in state i at step t − 1, assuming t ≥ 1. The emission
probability bi(e) gives the probability that the model emits the symbol e at steps
when it is in state i. Sometimes when designing an HMM we want to ensure that
two or more states have exactly the same probability distribution for emissions;
such emissions are called tied emissions.

3



Additionally an HMM can have a set of labels L associated with it. In such
cases each state is assigned a label (i.e. there is a function f : (1 . . .m) → L which
returns a label for each state). Sometimes we may use L(v) to denote the label of
state v. A path is a sequence of states through the HMM; for a path π, let π(t)
be the state that emits the t-th symbol of a sequence. A labelling of a sequence
of symbols (emitted sequence) is a sequence of labels, one per symbol. Each path
though the HMM gives a single labelling of a sequence. However, for some HMMs,
a single labelling may be generated using multiple paths.

Without loss of generality, the initial probability vector I can have all of its mass
at a single state, meaning that there is a designated start state in the model. If F
is not defined, then the HMM generates sequences of infinite length. However, if
we want to generate a finite length sequence and define the final probability vector
F , then we can generate an equivalent HMM with a single final state, sometimes
called an end state or final state.

An HMM can be seen as a biased random walk on a directed graph with m
nodes that emit symbols: we set an arc from state i to j when aij is positive, with
weight aij. Let d(i) be the outdegree of state i. The HMM is called dense if the
underlying graph is dense (has Θ(m2) edges), and the HMM is called sparse when
the underlying graph is sparse (just Θ(m) edges). In many biological applications
the HMMs used are sparse [12, 25, 23].

The HMM emits symbols, as described above: the ith symbol emitted has the
probability distribution for state π(i). If we let the model run for n steps, the
output sequence is X = x1x2 . . . xn. Let xu

t be the substring xt . . . xu. For standard
HMMs, the model usually has few states, compared to the lengths of the sequences,
so a runtime that is “linear” is linear in n, not necessarily in m. In practice, HMMs
used for biological sequence analysis might have a couple hundred states [12, 18],
so a runtime or space usage cubic in this parameter may be costly, particularly for
space usage.

2.1.1 Viterbi algorithm

When we decode an HMM, we assign states or labels to the symbols of a sequence
presumed to have been generated by it. The Viterbi algorithm decodes an HMM
by finding the optimal path through the model for a given sequence. It computes
a single path maximizing the joint probability of the state path and the sequence.
The Viterbi algorithm is a straightforward dynamic programming procedure, as
the maximum probability path has maximum probability subpaths. As with any
dynamic programming problem, the Viterbi algorithm has two distinct parts. The
first part involves calculating probabilities v[t, i] of the optimal path for vt

1 ending
in state i. The optimal subpath rule lets us compute this by v[t, i] = maxj(v[t −
1, j]ajiei[xt]). We can either use a full nm-size matrix to store the probabilities
or just store the information about the previous column, using Θ(m) space. The
runtime for this part of the Viterbi algorithm is O(n

∑
i d(i)). The calculation of

4



the probabilities step is the bottleneck step of the whole Viterbi algorithm, making
the Viterbi runtime O(n

∑
i d(i)).

The second part of Viterbi involves keeping track of the decisions made. A
classical implementation of the Viterbi algorithm uses a Θ(nm)-size matrix of back
pointers. This matrix gives the predecessor state for each (state, position) pair.
The classical approach is very memory intensive, thus alternative approaches have
been developed to heuristically reduce space without asymptotic runtime decrease.
We present one such approaches now.

It should be mentioned that if one is willing to increase runtine as a trade off
for saving space several approaches are available. Checkpointing can be used to
decrease space to Θ(

√
n) at a cost of doubling the runtime. Further refinement

of checkpointing can decrease space usage to Θ(n1/L) at the cost of factor of L
slowdown [10]. Alternatively one can use the divide and conquer approaches to
achieve Θ(log n) space in exchange for a factor log(n) slowdown.

2.1.2 Compressed tree approach to Viterbi algorithm

The compressed tree approach reduces the space usage required by the back pointers
from the O(nm) worst case closer to O(m log n) in practice (in theory this approach
may not actually reduce space usage). The implementation we describe below has
the same overall effect as the original compressed tree [24], but is simpler in its
data structure and operations.

First we describe the mental construction of the compressed tree, and then we
will talk about efficient data structure and efficient on-line maintenance. We can
think of the compressed tree as a final result of the following operations. First, we
create an m by n grid of nodes where each node corresponds to a cell of the Viterbi
matrix (a position-state pair). We think of each column as m cells corresponding
to the m paths ending at a particular sequence position (one cell per state). Then
we create an edge between node vt of column t and node ut+1 of column t+1 if the
Viterbi path to the position-state pair corresponding to the node (t + 1, ut+1) has
state v at position t. Thus all edges connect consecutive columns (corresponding
to sequence positions) of the grid; we will order the graph so that cells in column t
point to cells in column t− 1. The nodes that correspond to the beginning of the
sequence are at the beginning of the graph, which will be the location of the root of
the tree, and the nodes corresponding to the end of the sequence are the end of the
graph (leaves of the tree). Because there is exactly one previous Viterbi path state
for each position-state pair each node has exactly one parent. Next we remove all
nodes which are not reachable from the end row of the graph. As described before,
we can assume that the HMM has a single start state, so the removal will leave
exactly one node corresponding to the beginning of the sequence, the root of the
tree.

The tree described in the previous paragraph records all the Viterbi paths
though the HMM up to each sequence location. To compress the tree, we compress

5



(a) A sample compressed tree (b) compressed tree in (a) extended by a
level

Figure 2.1: An example of extending compressed tree by one level, showing under-
lying virtual structure. The dotted items are virtual, while solid ones can be found
in actual compressed tree. The node on the extreme left denotes the at before
sequence start. The crossed items indicate nodes removed during processing.

all nodes with exactly one parent. An example of a compressed tree (oriented hor-
izontally) is given in Figure 2.1a. After compression, each node in the compressed
tree corresponds to the sequence of states which emits a particular substring of the
given string, found in a potential Viterbi path. Note that during the process of
construction of the compressed tree, there are always m potential Viterbi paths,
one for each state, which need to be maintained.

Now we will describe a possible implementation of the compressed tree. The
data structure consists of nodes linked to each other using pointers. Each node
stores the sequence of states it corresponds to; linked lists are an appropriate struc-
ture for this, since they can be concatenated in O(1) time. We keep track of m
current children and of the root node. We also need to solve the problem of tying
the probabilities of the path to the actual paths themself. A simple way to do this
is to store pointers to children (there exists only one leaf per state of HMM, thus an
m-sized vector will suffice) as a vector of values and enforce that the index in the
vector of probabilities corresponding to state j is the same as an index of pointer
to node corresponding to state j in the vector of children pointers.

The updating process is done on line as we advance through the sequence X. If
we have created the tree for xt

1, we must update it to include xt+1. This involves
adding leaves to the tree for each possible state at position t + 1, connecting them
with the nodes for their predecessor in the Viterbi path (which are available as the
previous set of leaves), identifying paths in the tree that no longer reach a new leaf,
deleting those paths, and compressing the internal nodes with outdegree 1 in the
updated tree (Figure 2.1b).

First, we identify states at position t that can be found in only one optimal
path ending at position t + 1; these are nodes at level t with exactly one child in
the new level. These nodes are removed, and the state path from the deleted node

6



is prepended to the state of the new leaf.

Then we finish updating the tree. For each leaf from position t which has no
children among the new leaves at position t + 1, in sequence, we delete that node
and examine its parent. If its parent now has only one child, we delete the parent
node, and concatenate (using the O(1) list concatenation method) the paths for
the two joined nodes into its remaining child. Later, we will call a very similar
operation a merge of two nodes. After each update, the only nodes left in the
tree with one child are the parents of leaves from position t that we have not yet
updated. Note that because deleting a child happens on the valid compressed tree
(due to merging) each parent has two or more children, thus removing the case of
cascading deletes.

At the end of this procedure, what remains is a new valid tree: it has m leaves,
corresponding to the m model states, each of which corresponds to a possible value
of π(t+1). The algorithm does at most m node deletions and at most m node merges
(compressions); both require O(1) time, for a total of O(m), so the data structure
update time is asymptotically less than the Viterbi path probability calculation.

The added asymptotic runtime for this procedure, then, is no more than the
Viterbi calculation; in a sparse HMM, they may be on the same order. The algo-
rithm can still require O(nm) space, if the paths do not meet, but experiments by
the original authors [24] suggest that in practice the space requirement is more like
O(m log n) when we do not count the length of the path in the root of the tree.

A variation on this approach was independently presented by Keibler et. al [13];
these authors call it the Treeterbi algorithm. Treeterbi does not perform tree com-
pression (though it still does identify when all paths share a common prefix).

2.1.3 1-best algorithm

The 1-best algorithm is a heuristic decoding algorithm presented by Krogh [14] in
an attempt to address several drawbacks of the Viterbi algorithm. More precisely
Krogh was interested in finding the most probable labelling of a sequence for a
particular HMM. Finding the most probable labelling for a sequence is NP-hard [5],
so the algorithm Krogh presented is a heuristic to approximate it.

The idea behind this approach is for each state to keep a list of labellings which
are consistent with the last symbol of the sequence, so far, being emitted from the
state (the state with this label could have produced last symbol). The probability
of each labelling is kept and updated with each iteration. Let each labelling for each
state be called a hypothesis, and let us denote it with h. Note that zero probability
hypotheses (for example ones where a hypothesis for state v does not have the label
of v as the last symbol) can be disregarded. The algorithm itself (as described by
Krogh) is as follows:

1. Propagate the empty hypothesis forward to all states (sequence position i =

7



1). At this stage number of hypotheses is |L| and their probability for each
state v is I(v)bv(xa) and for all non-zero probability states π1 = v.

2. Propagate the hypotheses forward yielding L (size of the label set) new hy-
potheses for every old one. For each state v the probability of the new hy-
pothesis hY , where h is a preexisting hypothesis and Y is a label.

Pr(hY, πi+1 = v) =

{
(
∑

u auv Pr(h, πi = u))bv(xi+1) if the label of v is Y
0 otherwise

3. In each state, choose the hypothesis with the highest probability. Discard all
hypotheses that were not chosen in any state. If we have not reached the end
of the sequence, go to step 2.

4. Find the final probability for each hypothesis by summing over the states
(that admit the same hypothesis) and return the hypothesis with the highest
probability.

Implemented as described this algorithm does not provide the most probable
labelling in cases when at some location of the sequence the most probable overall
labelling does not correspond to overall best labelling for that state-location pair.
In other words, this algorithm suffers from local maxima. It is worth noting that the
CPU usage (and potentially space usage) for this algorithm is very large. To reduce
the resources used one needs to use threshold to disregard very low probability
hypotheses, which in turn can cause problems with finding a “correct” answer.

2.1.4 Forward algorithm and the probability of a labelling

Finding the most probable path for a given sequence is only one of the possible tasks
that we can perform on an HMM. An alternative task is finding the probability of
the sequence given the model. The dynamic programming algorithm that performs
the task is called the forward algorithm and is described, for example, in [8]. The
main idea behind the algorithm is that for each position, in order, we calculate,
for each state, the probability of emitting the sequence so far and ending in the
particular state. For a single state u, this can be done by adding the forward
probabilities, multiplied by the respective transition and emission probabilities,
for all the possible immediate predecessor states. If a state does not emit the
current symbol in the sequence, the forward probability for the state at the sequence
position is zero.

Another probability which interests us is the probability of a given labelling, λ,
for the sequence. We can find the probability a labelling using a slight variation of
the forward algorithm: for each state u at position i, record the probability if and
only if the label of u is λi, otherwise, zero probability is recorded.

8



(a) α-helical transmem-
brance protein. PDB ID
1VGO

(b) β-barrel membrane pro-
tein. PDB ID 1TLY

Figure 2.2: Examples of different classes of transmembrane proteins. The pictures
are taken from [1].

2.2 Transmembrane proteins and their topology

Transmembrane proteins are a biologically important subset of proteins that com-
poses about a quarter of all proteins in the cell [20]. As the name implies, trans-
membrane proteins are proteins which have domains spanning a membrane. The
reason for the abundance of transmembrane proteins is fairly simple: in the cell the
membrane is used as a semi-permeable barrier which serves the dual function of
keeping everything inside of the cell in and protecting a cell from outside influence,
and, in eukaryotes, to separate parts of the cell from each other. However, the cell
needs to communicate and exchange chemicals with the outside world (potentially
between compartments), and transmembrane proteins are used for that purpose.
Transmembrane proteins are involved in signal transduction, ion transmission and
bioenergetics, and many other processes.

There are two types of transmembrane proteins: α-helices and β-barrels (Fig-
ure 2.2). The difference between two classes can be reduced to the way that their
transmembrane domains are structured: α-helices use hydrophobic helices to tra-
verse the membrane, while β-barrels use β-sheets woven in a pore like manner for
membrane traversal. Due to their structure, the signals that can be used to predict
β-barrel proteins are non-local, making prediction significantly harder [2, 3]. For
the rest of the thesis we will be talking about α-helical proteins exclusively, unless
otherwise specified. Thus any mention of a transmembrane protein will refer to
an α-helical transmembrane protein, and a transmembrane helix, or just a “helix”,
will refer to a membrane-spanning α-helix of such a protein.

The term transmembrane protein topology refers to the number of the transmem-

9



brane segments, their location, and their sidedness (which side of the membrane
each non-membrane amino acid segment is on). There are several ways in which
knowing transmembrane protein topology can help. First, knowing protein topol-
ogy can be used as a stepping stone to prediction of the three dimensional structure
of the protein. Second, knowing transmembrane protein topology can help to pre-
dict protein function, as knowing which side of the protein active domains (or even
simply long non-membrane segments) are can provide clues to protein function.

Multiple features of transmembrane proteins can be used to help recognize their
topology; let us talk about some of them. The first, and the most prominent
feature, are the transmembrane helices themselves. Each transmembrane helix is a
sequence of 15 to 30 [20] consecutive hydrophobic amino acids. In globular (non-
transmembrane) proteins such long stretches of hydrophobic residues are very rare,
therefore seeing such a stretch gives a good indication that this particular proteins
is transmembrane. The second distinguishing characteristic of a transmembrane
helix is the gradient of hydrophobicity among its residues. The amino acids closer
to the centre of the helix are much more likely to be strongly hydrophobic then ones
closer to the borders of the helix [11]. The third feature of transmembrane proteins,
one that helps to pinpoint the locations of the transmembrane helix boundaries,
is called the aromatic ring property: transmembrane helices often have aromatic
amino acids at the boundaries of the helix (the areas where transmembrane domain
ends and non-membrane domain starts) [20]. The fourth feature is the positive-
inside rule: there is a propensity to have high concentration of positively charged
Lysines (K) and Arginines (R) on the inside (cytoplasmic side) of the protein. Using
the positive-inside rule helps to determine the sidedness of the protein: which non-
membrane segments are inside or outside of the cell? For more in-depth discussion of
the features mentioned and some other characteristics of transmemebrane proteins
one should consult Rapp [20].

Since transmembrane proteins are very hard to crystallize, computational meth-
ods are often used for topology prediction. There are several different protein topol-
ogy predictors which should be mentioned. Some of them use neural networks like
TOPPRED [6], MEMSAT [16], and PHDhtm [22]. Some use HMMs as their tool
of choice, like TMHMM [15], HMMTOP [27], and Phobius [12]. More recently, a
combined method SPOCTOPUS [28] was introduced.

There is a very large variability in the definitions of correctness for predicting
topology of the transmembrane proteins. In some cases, predicting the right num-
ber of helices and sidedness is considered correct. In other cases the correctness
takes into account the overlap between the correct and predicted helix locations,
and sometimes the locations of the borders are used as a correctness criteria. Fi-
nally, sometimes the per-residue correctness is judged: what fraction of residues
are correct? Such variability, coupled with the fact that the data set of transmem-
brane proteins with known 3D structures is relatively small, results in wide variety
estimates of overall correctness rates of predictions. On some data sets, with lax
correctness measures, accuracy can reach 95% [15, 17, 7]. On the other hand,
when small data set is taken into account and correctness is measured strictly, the

10



estimates can fall to 50% [20, 7] or even lower.

Of the predictors mentioned above, Phobius can be distinguished as one HMM
based predictor which tries to be good at separating transmembrane proteins from
globular ones.

2.2.1 Phobius

Phobius [12] is an HMM-based transmembrane topology predictor. As stated above
it is designed to reduce the amount of false positives, while still predicting structure
well. This is achieved by incorporating the prediction of the signal peptide into
topology prediction. A signal peptide is a segment of a protein (always located at
the beginning of the protein), which indicates that the amino acids following it are
to be located on the outside of the membrane. In its structure, a signal peptide is
similar to a structure of transmembrane helix, so they may be confused with each
other. However, if the signal peptide is predicted correctly, it helps to predict the
sidedness of the transmembrane protein, as the model knows where to place the
first non-signal amino acid of the protein.

Now let us describe the Phobius model. It is a concatenation of two well known
HMM models for topology prediction (TMHMM) and signal peptide recognition
(Signal-P). It consists of 188 states, the exact topology of which can be found in
Figure 2.3. The model has a very large number of tied emission parameters, at
least partially with the purpose of avoiding overfitting. In the original paper the
1-best algorithm (Section 2.1.3) is used for decoding of the sequences.

11



Figure 2.3: Phobius Model, taken from (Kall et al.) [12]. States with labels n, h,
c, and C correspond to signal peptide prediction. States with labels o, O, M , and
i correspond to transmembrane topology prediction.

12



Chapter 3

K-best Viterbi algorithm

Here we will describe algorithms and data structures necessary for computing the
k-best paths in an HMM. The Viterbi algorithm and the procedures for finding the
k-best paths consist of two different calculations: computing the probabilities of
the best path (or k paths) to every state for every prefix xi

1 of a given sequence X,
and also storing the back pointers necessary to reconstruct those paths. We will
first describe how to compute probabilities for the k-best Viterbi path. Next, we
will present two different ways to store back pointers.

3.1 Computing the probabilities

Consider the computation of the k-best probabilities to each state at position i.
The key observation is that the k highest probability paths for si

1 that end in state
vi all have to be from the k-best paths to each of the states for the sequence from s1

to si−1. Suppose this were not true, and π, one of the k-best paths for s1 . . . si ended
in state vi and was in state vi−1 at the previous position, but was not among the
k-best paths to state vi−1. Then all of the k-best paths to state vi−1, concatenated
with vi would have higher probabilities than π, contradicting that π was one of the
k-best paths for si

1 ending in vi. The k-best probabilities can be found by finding
all possible ways to get to state v (there are at most k ∗Pred(v) of them) and then
picking k with highest probability.

Alternatively, with the same result, we keep a sorted list of the k-best path
probabilities to each state at position i − 1. Then, if we are considering a state
a whose possible predecessors in the HMM are Pred(a), we can find the k-best
probabilities for state a at postion i by performing an operation very similar to the
first k steps of a |Pred(a)|-way merge sort. The Viterbi probability of the `th best
path to state v is:

max
c∈Pred(v)

(
max

path k to c not used in l−1 best paths
(Pr(k)acvbv(si)))

)
.

13



By keeping index of the last path used in the prediction, for each list of the k most
probable paths for each possible predecessor state to v, we can easily compute the
k-best paths probabilities in O(km) time. It is an interesting algorithmic question
whether this can be sped up heuristically, since all paths to state v that were in
state c at position i−1 will have their probabilities multiplied by the same constant,
acvbv(si).

This calculation, then, takes k times the cost of a standard Viterbi calculation
(a naive implementation might require k2 times the cost), and Θ(mk) space. We
note that this approach has been used by speech recognition experts as long ago as
1993 [19].

3.2 Naive Viterbi path storage

There is a natural way to extend the classical (matrix based) Viterbi implementa-
tion to finding the k-best paths in the HMM: store the k highest-scoring paths for
each state-position pair. This observation leads to a Viterbi-like algorithm whose
runtime is k times the runtime of the Viterbi algorithm, and which requires Θ(kmn)
storage for the backtracking matrix and Θ(km) storage for the moving probabil-
ity front. Unfortunately, the space requirements of this method make it infeasible
for finding the k-best paths for large values of k on substantial HMMs for long
sequences; see the experimental results in Chapter 5.

3.3 Tree based path storage

Now we will describe different data structure used to store the k-best paths. First,
we will give a basic idea behind the data structure and, after that, we will describe
how to implement it efficiently. We can mentally construct a k-best path tree by
the following algorithm. For each state-position pair create one node, which we
will call a vertex level node. We can arrange the vertex level nodes in a grid, with
rows corresponding to positions in the sequence, in a way very similar to how the
compressed tree was constructed. We define beginning and end vertex level nodes
according to the sequence positions. In each vertex level node, we create k nodes
representing the k-best paths to that vertex level node, and we call those nodes the
path level nodes. For convenience, we store path level nodes in order of the sorted
probabilities of their path, which allows for easy mapping between path level nodes
and the k-best paths probabilities. We have already shown that only k probabilities
for each position of the previous row are needed to calculate k best paths, therefore
k path level nodes are sufficient at each vertex level node.

Next, add an edge between a path level node va in vertex level node v and a
path level node ub in vertex level node u, if u is on the column previous to v (u and
v correspond to consecutive symbols in the string, with u corresponding to position

14



(a) Before any cleansing. (b) After path level nodes
are removed.

(c) After vertex level nodes
are removed.

(d) Final data-structure (af-
ter node merging) .

Figure 3.1: K-best tree construction visualization. The solid lines represent path
level nodes and edges, while dotted lines represent vertex level nodes and edges.

before v) and the a-th best path to the position-state pair (i, v) goes though the
b-th best path for (i−1, u) (Figure 3.1a). Note that always a ≤ b. An edge between
two vertex level nodes exists if any of their path level nodes are connected by an
edge.

Next we describe how to make the storage of this structure more efficient by
removing and merging nodes. First, we remove all the path level nodes that cannot
be reached from the path level nodes in the vertex level nodes corresponding the the
last position in the sequence (Figure 3.1b). Then, we remove all vertex level nodes
which do not have path level nodes associated with them (Figure 3.1c). Finally, we
merge all vertex level nodes that have a single vertex level edge connecting them in
their row levels (Figure 3.1d). The exact conditions in which vertex merges happen
are described in the next section.

3.3.1 Updating the path structure

For each path level node, we need to store the pointer to its vertex level node, a
parent pointer, which links to the path node exactly one step closer to the root,
and the number of children the path node has, as non-leaf path nodes should be
deleted when they have zero children. The vertex level node stores the list of states
associated with it (which is the actual state path through the model for that vertex
level node), the list of at most k path nodes that it includes, pointers to its children,
and the number of vertex nodes that are its parents. When needed, we can find
the parents of a vertex node by traversing though its associated path nodes and
requesting their parent’s vertex nodes. A vertex level node is deleted if it has no

15



path level nodes associated with it. It is merged with another vertex node if that
node is its only parent and it is the only child of its parent; here, all paths that
include the sequence of states πi . . . πj for the subsequence si . . . sj are followed
by the same set of states πj+1 . . . πk for sj+1 . . . sk, so we can merge the subpaths
together.

On-line maintenance of path structure

This data structure is perhaps easier to understand when explained in terms of how
it is maintained.

Suppose we are about to incorporate a sequence letter, si. We will describe
how to find the k-best paths for a vertex node at the next sequence position,
corresponding to the position-state pair (i, c). Recall that in each vertex node, the
path nodes are stored in sorted order by probability, and the way we calculate the
k-best paths probabilities for (i, c) is similar to first k steps of an (at most) m-way
mergesort.

For the `th path node, corresponding to the `th best path probability ending
at state c, we calculate the probability. Suppose that this probability was derived
from the probability associated with vertex node v at position b. Then the `th path
node of the current vertex node that we are building the child of the bth path node
of the the vertex node a, updating all counters and potentially adding a vertex level
child pointer to b, in case b is a new child for a.

After performing this set of operations for all the new vertex nodes correspond-
ing to sequence position si (at all possible model states), we need to prune the
data structure of the path nodes which currently do not form part of one of the
k-best paths to a leaf, and we must then delete vertex nodes with no path nodes
associated with them. We also need to merge appropriate vertex nodes.

This set of deletions and merges can be done by creating a list of all the path
nodes with zero count (meaning they are never used on paths to a leaf). Note that in
the very beginning the “removal list” will consist only of the paths nodes associated
with vertex nodes which were leaves in the previous iteration, thus making them
easy for find; this is because we started from a valid k-best tree. For each path node
in this removal list, we remove the path node from its vertex node, and update the
appropriate counters. If its parent’s child counter reaches zero, then the parent is
moved to the removal list as well, as this corresponds to the case where the parent
corresponds to a path subsection that is never used in one of the k-best paths to a
leaf.

There are several interesting cases that could happen to the vertex nodes of the
removed path nodes. If a path node removed was the last path node for that vertex
node, then the vertex node is removed. Alternatively, if a vertex node becomes the
only child of a vertex node with a single parent, then they are merged. We perform
these operations until the removal list is empty, meaning that all path level nodes

16



remaining are those that actually participate in one of the k-best paths to a leaf.
The number of nodes touched depends only on the length of the removed paths
which are unique to those paths, which is not necessarily proportional to the length
of the sequence or the length of the paths removed.

In effect, this structure allows us to store the DAG of the k-best paths in the
most efficient way possible, by focusing on regions of the sequence where we reuse
the same states for the same symbols. In the worst case, the algorithm can still
use Ω(kmn) space, but in practice, the space usage is dramatically lower, as seen
in our experimental results in Chapter 5.

3.3.2 Recovering the paths

Once we have produced the final structure, we must extract the k paths with highest
probability. At the end of the traversal, the k path probabilities in each of the m
leaves are the probabilities of the best paths to those states. From these km paths,
we must select the k with the highest probability. Again, done as a first k steps
of the merge operation in the m-way mergesort (we have m lists of probabilities in
the sorted order) this operation will take O(km) time, and we can construct the
k-best paths then in O(kn) time after the merging by following the back pointers.

A surprising fact is that we may have computed more than the k-best paths
while trying to produce the top k. That is, suppose that the discovered k-best
paths do not all terminate at a single state. Then if we continue with the mergesort
operation, the next-highest probability of a path, which we will discover next, must
be the actual k + 1-st best path probability; this is because we technically are
merging the top k + 1 paths to each node, yet the actual mergesort operation does
not need to know what the k+1-st best path probability to any state is. Specifically,
we can continue the merging operation until we reach the end of any of the m lists
of k probabilities. After that point, we have no guarantee of having the proper
probability for the next path. This procedure, of course, does not work when we
have a designated final state: there, the mergesort is actually a 1-way merge.

17



Chapter 4

Coalescence points

In practical applications additional saving of space in tree-based approaches can
be achieved through the use of coalescence points [24, 13]. Note that here by
space we mean RAM, the resource which is commonly limiting when attempting
to perform calculation. A coalescence point is a point in the sequence where it can
be guaranteed that in every potential Viterbi path the symbol at that location is
emitted from a single known state. For example, in an HMM with a fixed start
state, the location before the first emitted symbol is a coalescence point (Figure
4.1a), albeit not an interesting one.

4.1 Coalescence points in compressed tree

In the Viterbi path, fixing the state at position i in the sequence also fixes the
states from positions 1 to i−1 (since the optimal path is unique). This allows us to
identify the Viterbi path up to coalescence points with a guarantee that it will not
get modified by the further steps of the algorithm. In a compressed tree, detecting
a coalescence point is an easy task. Assuming a fixed start state the root of the tree
is a coalescence point. By the compression property we know that the root node
has at least two children. If a node has at least two children this means that there
are at least two distinct paths which diverge at the location indicated by the end
of the node. But a coalescence point guarantees that there will be unique path left
after it. Therefore, the root of the compressed tree is the only coalescence point of
the tree.

A simple example of a coalescence point is a state which emits a unique symbol
(the symbol is emitted in that state and that state only). After encountering such
a symbol in the sequence, all Viterbi paths (and, indeed, all valid paths) use the
state thus forcing a coalescence point at the location immediately previous to leaves.
Figures 4.1a and 4.1b illustrate how a compressed tree with such a coalescence point
would look like right before and right after encountering such a uniquely emitted
symbol.

18



Coalescence point

(a) A compressed tree be-
fore uniquely emitted sym-
bol incorporation.

Coalescence point

(b) The compressed tree in (a) af-
ter uniquely emitted symbol incor-
poration.

Figure 4.1: A schematic illustration of the coalescence point. The uniquely emitted
letter is incorporated into the compressed tree resulting in root node encompassing
all the states safe leaves. In part (b) circles correspond to leaves. Note that the
location on the start node was moved to improve presentation.

Figure 4.2: An example of the case where paths can be removed after a coalescence
point. Each solid line represents a path, the dotted lines signal the removal of either
vertexes or edges.

4.2 Coalescence points in k-best tree

Coalescence points for the k-best Viterbi algorithm do not provide the same level
of guarantees as in 1-path Viterbi: the paths may diverge before a coalescence
point. Moreover, with k-best paths, there is no guarantee that one of the paths
before the coalescence point will not get removed after some later modification to
the tree structure; see Figure 4.2 for an example. In the k-best tree coalescence
points provide hints in decoding. Overall the problem of finding the coalescence
points in the k-best tree strikes us as interesting.

4.2.1 Interval graph representation of k-best tree

The algorithms for detecting coalescence points in the k-best tree are most readily
explained when we represent the data structure as an interval graph (either explic-
itly or implicitly). We use the interval graph as a tool to help us think about the

19



I II III IV

A

B

C

(a) A k-best tree.

I II III IV

A

C

B

(b) Intervals associated with
(a)

I II III IV

A

C

B

(c) Interval graph associ-
ated with (a)

Figure 4.3: A k-best tree, the interval representation implied by it and its interval
graph.

problem. Interval graphs are a family of graphs which can represent intervals on
the real line: each interval corresponds to a vertex, and there is an edge between
vertices if the corresponding intervals intersect. More information about interval
graphs can be found in [9]. The k-best tree lands itself naturally to an interval
graph representation, if we consider only the vertex level nodes. Each vertex node
corresponds to a sequence of state position pairs annotating a sub-sequence xj

i of
the input sequence. If we consider each vertex node that annotates xj

i to be the
interval [i, j] (see Figure 4.3), we can construct the interval graph representation.

The k-best tree has several operations which need to be incorporated into the
interval graph as adjustments during its maintenance. There are three operation
that we perform on the k-best tree. For the purpose of this discussion, we will
assume that the operation of adding leaves to an interval graph and then using
the node merge operation (when required) is done consecutively, thus there is no
need to worry about merging leaves as a separate operation. Addition of leaves is
an operation of adding a clique of size m to the graph, and this clique is discon-
nected from the rest of the interval graph. All new leaves share the same location
initially (their corresponding vertices intersect); this will change during merging
and pruning, but is originally true due to our assumption that all operations are
done consecutively. Deletion corresponds to the removal of a vertex in the interval
graph.

The most interesting change to the interval representation happens during the
node merge operation. Understanding of the node merge operation in the interval
graph requires understanding of two distinct constraints: the constraint on the in-
terval graph due to the fact that it represents a valid k-best tree and the constraint

20



that the conditions of the node merge operation impose on the corresponding in-
terval graph operation. The fact that an interval graph is a representation of the
k-best tree ensures several things. The first of those is that no two isolated nodes
(nodes without siblings) whose representations are consecutive intervals can occur:
such nodes would have been merged. The second is that for every end of an interval
(except for the leaves) the next position has at least one start of the interval, as
a path needs to exist between adjacent intervals. The conditions leading to node
merging require that a node merge can occur only to the vertices that correspond
to intervals that are exactly one position apart. During the node merge no new
sequence locations are included in the interval and no locations are lost. In terms of
the interval graph this means that the set of neighbours of the new (merged) node
is a union of the sets of neighbours of the nodes on which merging was performed.

In this interval graph the coalescence point corresponds to a vertex with no
neighbours.

4.2.2 Coalescence points detection algorithms in k-best tree

The naive way to detect coalescence points in the k-best tree is to explicitly con-
struct the interval graph described above. Then we can check if a particular vertex
has no neighbours and thus detect coalescence points. Unfortunately, these interval
graphs are dense and non-trivial to maintain explicitly, meaning that this approach
is very expensive both in terms of memory and run time.

Alternatively one can represent the interval graph implicitly, by storing a list of
endpoints of the intervals. The idea behind this approach was given by Wang [29].
We store the end points of the intervals in the order we encounter them when going
from the start of the sequence to the end of the sequence. This list, L, will have twice
as many elements as the number of vertex level nodes. A coalescence point can be
easily detected as a location in the list where the start of the interval is immediately
followed by the end of the interval. Our interval graph is a representation of the
k-best tree, so we are guaranteed that there will be no intervals which will either
start or end at the same points in the sequence as the coalescence interval, as nodes
which are children and parents of vertex node in question (there are at least two of
each unless one is a root node) have corresponding intervals start or end locations
at adjacent sequence positions.

The list L is easily maintained. We start with the list containing two elements,
start of the root node and the end of the root node. For each new set of leaves we
first append start points for all the leaf vertex level nodes to the list followed by the
end points for the leaf nodes(ensuring that starts and ends are inserted in the same
order). Every time a particular vertex level node is deleted we delete the start
and end points associated with this vertex level node. Note that deletion is the
only operation which can lead to a formation of a coalescence point (in node merge
the interval still exists and if a location is not singly covered it will not be singly
covered after node merge). After node deletion, we check the neighbours of the

21



deleted start and end points for creation of a coalescence point. In this structure,
the node merge operation is not complex. Suppose we are merging vertex level
nodes u and v, and u is the one that we want to retain (because it is closer to the
root of the tree). We remove the end point of u from the list, remove the start
point of v from the list, and substitute the end point of v by the end point of u.

22



Chapter 5

Experimental results

We implemented our space-efficient k-best HMM paths algorithm in C++ to see if
it was, in fact, substantially more space-efficient than the more naive Θ(knm)-space
algorithm, and to see how fast it is compared to naive approach.

We were also very interested to see how much we could learn by exploring the
k-best paths through an HMM for moderate or large values of k. In particular,
we studied the effect of examining k paths in the prediction of transmembrane
protein topology, a problem where Viterbi-style decoding has not, traditionally,
been especially successful. Our hypothesis is that while the best HMM path may
not always be an especially good decoding of a sequence, somewhere in the best 10
or 100 or 1000 paths might lurk a very good analysis of the sequence. We begin
with this analysis.

5.1 Prediction accuracy

We have used the recent membrane topology prediction software Phobius [12] to
test the usefulness of finding k-best Viterbi paths. The original decoding algorithm
for Phobius is the 1-best algorithm [14], developed precisely because the Viterbi
algorithm does not provide satisfactory decodings. We used the data set presented
by the same paper as Phobius [12] as the data source for our experiments. The two
data sets used here are 45 transmembrane proteins which have a signal peptide tag
(data set I) and 247 transmembrane proteins which do not (data set II).

Topology prediction is somewhat imprecise because the actual boundary of the
membrane-spanning segments is itself a bit inexact, but the boundaries of the
membrane-spanning regions can be identified to within a residue or so based on
solved protein structures [26]. The original quality measure used by the authors of
the Phobius paper describes a prediction as correct if that prediction identifies the
correct number of helices, the correct sidedness, and if each true helix overlaps with
corresponding predicted helix in at least five positions. Given that helical regions
tend to be around twenty two residues long, this measure is lax.

23



We have additionally studied a different correctness measure, which we call
the border boundary measure. This measure has a parameter τ : in the border
boundary measure (BBM-τ), a prediction is correct if the sidedness and number of
helices are both correct, and if the predicted boundaries of helical regions are all no
more than τ residues away from the true boundary. (This measure can also be used
to find a distance between two annotations, which is the smallest τ for which the
prediction is correct; for predictions with the wrong sidedness or number of helices,
this measure is infinite.) Note that the border boundary measure is strict: if even
one helix boundary is shifted by τ + 1 residues, while everything else is correctly
predicted, the prediction fails.

When evaluating predictions we are evaluating labellings of the sequence. Mul-
tiple paths can lead to the same labelling, which means that evaluating 100 paths
is not the same as evaluating 100 different predictions. We will mention some dif-
ferences between the two when talking about relative probability masses of paths
and labellings in Section 5.4.

When dealing with more than one predicted path we need to define what do we
mean by saying that prediction passes (is correct). Until stated otherwise, predic-
tion is considered to be correct if at least one path evaluated is correct by a given
measure. This is an indication that some post-processing could have potentially
extracted the correct result from the returned result set. Of course, this is an inter-
esting and challenging task, which we will explore in Chapter 6. For now, however,
we are interested in whether the information is to be found at all.

Our results for the two data sets are shown in Tables 5.1a and 5.1b. From
the results it is clear that, especially for tighter quality measures, the k-best paths
contain more information than the 1-best prediction. However, when the strictness
of quality measures is relaxed the difference between methods is dropping, as the
slackness in the quality measure covers up the difference in the results. The results
may be an artifact of the fact that in Phobius emission parameters are tied in a way
which makes it hard for the model to recognize transmembrane helix boundaries.
Additionally both Phobius and TMHMM, from which their transmembrane topol-
ogy model was taken, were designed to be evaluated using the 1-best algorithm,
which has a potential to skew the results. The training of the Phobius model was
performed using complex variant of Baum-Welch training, which should ensure no
biases for either method.

Still, we do note the interesting result that choosing the best prediction from
the first ten is often much better than the 1-best algorithm’s results, particularly
for the more stringent measures of quality.

5.2 Performance metrics

Now we want to present some performance metrics associated with the algorithm
as a validation of our assumption of memory usage reduction. The runtime and

24



BBM-0 BBM-1 BBM-2 BBM-3 BBM-4 BBM-5 Phobius
Vit. 1 3 9 12 19 26 28 32
Vit. 10 11 15 18 26 28 29 33
Vit. 100 14 21 23 30 33 33 37
Vit. 1000 18 24 25 33 35 37 39
1-best 4 14 17 26 32 39 41

(a) Data set I results, containing 45 members.

BBM-0 BBM-1 BBM-2 BBM-3 BBM-4 BBM-5 Phobius
Vit. 1 2 11 19 27 46 59 137
Vit. 10 9 21 33 44 67 83 157
Vit. 100 34 52 64 85 110 129 198
Vit. 1000 46 66 89 123 143 168 214
1-best 4 18 26 38 62 79 166

(b) Data set II results, containing 247 members.

Table 5.1: Prediction correctness measures. ‘Vit. k’ stands for k-best Viterbi paths,
‘1-best’ stands for 1-best algorithms used originally for decoding Phobius model.
Two correctness measures are presented: BBM-τ is a Border Boundary Measure
and Phobius is a Phobius correctness measure. The numbers shown is the absolute
number of correct predictions produced. The total number of proteins evaluated
for each data set is provided in the caption under the respective tables.

memory usage for data set I are found in Figures 5.1 and 5.2 respectively. The
runtime figure shows the total runtime over the whole data set, while the memory
figure shows the maximum memory usage. The maximum memory usage for the
execution is reached when evaluating the longest sequence contained in the data
set. There are three different implementations presented: our tree-based approach,
the naive matrix-based approach, and Viterbi without backtracking at all, where
we only compute the probabilities of the paths, not their component paths.

Our implementation uses much less memory, while roughly doubling the run-
time. There is almost no difference in the runtimes of the matrix implementation
and the implementation which does not keep backtracking information at all. Note
that one can slightly reduce the absolute memory of the matrix and tree based
implementations. However, this will not change the pattern: the typical rate of
growth as a function of k is much smaller for our algorithm than the naive one.

5.3 How many paths?

Our next set of experimental results concerns the number of paths recovered after
a single run attempting to retrieve k paths. Recall from Section 3.3.2 that the way
the k-best paths are revealed was a search through the space of mk probabilities

25



Figure 5.1: Runtimes of different k-best Viterbi implementations on data set I. The
solid line represents the naive (matrix) representation, the dashed line represents
our tree-based approach, and the dotted line represents no backtracking.

Figure 5.2: Memory usage of of different k-best Viterbi implementations on data
set I. The solid line represents our tree-based approach, the dashed line represents
naive (matrix) representation, and the dotted line represents no backtracking.

26



(a) Distribution of actual number of best paths which can be
retrieved for data set I.

(b) Distribution of actual number of best paths which can be
retrieved for data set II.

Figure 5.3: Cumulative distribution of number of recoverable paths. Dashed line
represents ten searched paths, dotted line represents hundred searched paths, and
solid line represents thousand searched paths. For example in part (b), the star in
the figure shows that for 80% of proteins we found at most 300 available best paths,
when 100 best paths were requested; for the other 20%, we have found more.

27



for the k largest ones. We noted there that we could continue the merging process
until we finished looking at all k paths terminating in a single state; this process
can result in far more than k paths, though the actual number is unpredictable.
Figures 5.3a and 5.3b present the distributions of the number of path which one
can recover for both of our data sets, respectively.

Our findings show that, at least for this application, we should expect to find
exactly k paths when we execute the procedure that searches for k paths: in a large
fraction of our tests, that is exactly what we found. However, if the number of path
is not the same as we requested than it can vary wildly: the minimum is of course
k, but the maximum can be far larger; this is an example of a distribution where
the standard deviation exceeds the mean.

For a better understanding of the absolute numbers it should be noted that
number of states which constitute a valid end state (for reasonably long sequences)
in Phobius is 139, so if we are looking for the k-best paths, in practice, we can
retrieve at most 138k paths. Naturally, this phenomenon depends heavily on the
structure of the HMM being analyzed.

5.4 Probability mass of paths and labellings

For each path generated by the k-best algorithm we can easily find both the absolute
probability of the path given the model (Viterbi probability), and the total proba-
bility of the labelling corresponding to that path. We also can compute the relative
probabilities of both, in the space of all paths given the model and the sequence, by
calculating the probability of the sequence given the model (forward probability)
and then finding the fraction of that probability that the Viterbi probability of the
path or probability of the labelling represents.

The data resulting from this analysis can be found in Tables 5.2a and 5.2b
for data sets I and II respectively. It is interesting to see just how much of the
probability mass the first paths or labellings are occupying. Each sequence admits
an exponential number of both paths and labellings, yet on average, the first one
thousand paths occupy 15% and 28% of all probability space in proteins with and
without signal peptides respectively. For labellings the situation is even more con-
centrated (as expected, since the probability of a labelling is always at least as high
as the probability of the path having this labelling). On average, more than a fifth
of the total probability mass for proteins with a signal peptide and more than a
third of all probability mass for proteins without a signal peptide is allocated to
the labellings admitted by one of the one thousand best paths.

It is also interesting to investigate how the proportion of the probability mass
allocated changes with the number of paths. A very interesting trend is showing:
the probability mass used is about the same for first ten, the next ninety, and the
next nine hundred paths; a similar finding seems to hold for labels. This suggests
that the proportions of mass taken by paths and labels decreases exponentially

28



1 path 10 paths 100 paths 1000 paths
Total probability of
paths

0.01 0.05 0.10 0.15

Total probability of la-
bels for paths

0.03 0.09 0.16 0.22

(a) Average proportion of total probability mass for data set I

1 path 10 paths 100 paths 1000 paths
Total probability of
paths

0.02 0.09 0.19 0.28

Total probability of la-
bels for paths

0.04 0.14 0.28 0.37

(b) Average proportion of total probability mass for data set II

Table 5.2: Average proportion of total paths probabilities and total probability of
labels encounted among paths, conditioned on each sequence. For example, the
number 0.28 in part (b) means that in data set II, the total probability of the top
1000 paths on average occupies 28% of all the probability mass for the sequences.

with the depth of the search, though we have no theory to support this; it would
be fascinating to study this further.

The next question which arises is how the total probabilities of paths and
labellings are distributed. The cumulative distribution plots for the probability
masses for paths and labels can be found in Figure 5.4 for data set I and Figure 5.5
for data set II. The probability mass of most of the proteins in both data sets is
relatively low. However, there are several proteins for which the probability mass
of the paths calculated nears 1.

The labelling total probability follows the same general pattern, as the path
probabilities. One interesting thing to note is that the graph for the thousand
paths. In data set I and especially in data set II there is a non-negligible number
of cases with the total probability close to 1. One other interesting detail is the
steepness of the curves, especially in the case of 1000 paths. This indicates that
the number of proteins in the range between 0.2 and 0.8 is small, which is strange
considering that this range represents 60% of all the probability space. We do not
have a theory to explain this observation.

5.5 Random sampling from the model

In the previous section, we have shown that sometimes the top paths take a very
large proportion of the probability mass. Later, in section 6.1, we will show that
there is a correlation between having a high proportion of the probability mass

29



(a) Distribution of total probabilities of top 1, 10, 100, and 1000
paths

(b) Distribution of total labelling probabilities found in top 1,
10, 100, and 1000 paths

Figure 5.4: Distribution of total probabilities for data set I. For example, 10 proteins
have the total probabilities of their top 100 paths total 10−4 or less. Note: the scales
of the two graphs are different.

30



(a) Distribution of total probabilities of top 1, 10, 100, and 1000
paths

(b) Distribution of total labelling probabilities found in top 1,
10, 100, and 1000 paths

Figure 5.5: Distribution of total probabilities for data set II.

31



in the top paths and getting the prediction right. In this section, we will look at
a similar problem: evaluating how well paths randomly sampled form the model
(while respecting the sequence) behave. We have sampled paths from the probabil-
ity distribution of all consistent paths, where the probability of picking a particular
path is its relative probability in the space of all consistent paths.

The algorithm for the sampling procedure is fairly simple. For each location in
the sequence we calculate the probability of each state given a sequence before that
position (the forward probability) and the probability of each state such that the
remainder of the sequence is emitted starting from it (the backward probability [8]).
Given these probabilities, we can calculate the probability of taking each edge at
each position at the sequence. The paths are constructed by randomly taking
edges (according to this stated probability distribution). This way of calculating
edge probabilities is also used in the Baum-Welch training algorithm [8].

We sampled paths without replacement, which lead to an interesting phe-
nomenon. In some cases, when the relative probability of the top paths is high,
more than k tries are required to return k distinct paths. To make the computation
tractable we have limited the amount of attempts to 100k in cases when k random
paths are requested. The number of attempts that were required to produce a
requested number of paths can be found in Tables 5.3 and 5.4 for data set I and
II respectively. In many cases for data set II, the limit on the amount of attempts
is reached and fewer then k paths are returned. For that data set a significant
proportion of proteins have most of their probability mass in their top paths (see
Figure 5.5).

Next, we look at how well the sampling performed as a predictor. The results
of those experiments can be found in Tables 5.5 and 5.6. These results indicate
that in data set I there are some proteins that are relatively easy to predict, while
the rest have a much more even distribution of probabilities of paths between alter-
native predictions. In this data set, the probability of the top paths is distributed
comparatively evenly (see Section 5.4) and the correlation between the total of the
top k-best paths probabilities and prediction correctness is much less prominent
than in data set II (see Section 6.1), therefore an even distribution of probability
between alternative explanations is not surprising.

For data set II, the number of correct predictions is growing steadily with the
number of paths sampled, while starting from a relatively high initial number of
correct samples. This, again, corresponds well with the distribution of total proba-
bilities, which indicates that there is a fair fraction of easily predicted proteins with
a high total probability mass in the top paths (see Figure 6.2). Still, the overall
number of correct predictions is very low for sampling, making this approach not
useful for prediction.

Next we wanted to verify that if the samples that are counted as correct (for
the Phobius correctness measure) are more likely to come from the proteins with
high probability in their top k-paths. We sorted all proteins in the sample in the
order of the probability of their top paths (with larger probability being higher)

32



Number of attempts Trial one Trial two Trial three
10 37 40 39

11-100 8 5 6
Total 45 45 45

(a) 10 paths requested

Number of attempts Trial one Trial two Trial three
100 32 31 32

101-1000 11 12 11
2001-3000 0 1 0
3001-4000 1 1 2
4001-5000 1 0 0

Total 45 45 45

(b) 100 paths requested

Number of attempts Trial one Trial two Trial three
1000 27 30 28

1001-10000 15 12 14
20001-30000 1 1 1

100001 2 2 2
Total 45 45 45

(c) 1000 paths requested

Table 5.3: Number of attempts needed to sample random paths without replace-
ment for data set I. The results for three trial runs are given to provide more
evidence that results are not outliers. For example in part a) the number 37 means
that in 37 out of 45 cases random sampling produced 10 distinct paths after ex-
actly 10 attempts. There was a limit on the number of attempts: a new sample
was requested no more than 100 times the number of paths that we where trying
to output.

33



Number of attempts Trial one Trial two Trial three
10 194 193 201

11-100 49 49 40
101-200 1 1 3
201-300 1 0 0
301-400 0 0 1
401-500 0 1 0
601-700 0 1 0

1001 2 2 2
Total 247 247 247

(a) 10 paths requested

Number of attempts Trial one Trial two Trial three
100 137 134 137

101-1000 91 94 91
1001-2000 2 2 2
2001-3000 1 1 0
3001-4000 0 0 1
9001-1000 0 0 1

10001 16 16 15
Total 247 247 247

(b) 100 paths requested

Number of attempts Trial one Trial two Trial three
1000 91 87 89

1001-10000 113 117 115
10001-20000 10 10 10
20001-30000 2 2 2
30001-40000 1 1 1
40001-50000 1 2 1
50001-60000 2 1 2

100001 27 27 27
Total 247 247 247

(c) 1000 paths requested

Table 5.4: Number of attempts needed to sample random paths without replace-
ment for data set II. There was a limit on the number of attempts: a new sample
was requested no more than 100 times the number of paths that we where trying
to output.

34



BBM-0 BBM-1 BBM-2 BBM-3 BBM-4 BBM-5 Phobius
1 path 0 0 0 0 2 3 6

10 paths 0 0 0 3 5 5 7
100 paths 0 0 2 6 6 6 7
1000 paths 0 1 5 6 6 6 7

(a) Trial one

BBM-0 BBM-1 BBM-2 BBM-3 BBM-4 BBM-5 Phobius
1 path 0 0 1 1 1 2 6

10 paths 0 0 2 4 5 6 7
100 paths 0 0 1 5 6 6 7
1000 paths 0 1 4 6 6 6 7

(b) Trial two

BBM-0 BBM-1 BBM-2 BBM-3 BBM-4 BBM-5 Phobius
1 path 0 0 0 0 1 2 5

10 paths 0 0 1 2 5 5 7
100 paths 0 0 1 5 6 6 7
1000 paths 0 1 4 6 6 6 7

(c) Trial three

Table 5.5: Sampling results for the data set I. Each number indicates the number
of proteins (out of 45) for which at least one sampled paths provided the correct
explanation. The data for 3 different random paths trials is provided. For example,
in the first sample, when 100 paths were requested 6 proteins where correct by
BBM − 4 correctness measure.

and identified the indexes of the proteins correctly predicted by sampling. The
data for 100 sampled paths, for the data set II (in particular trial two), is in
Table 5.7. Correct samples are overrepresented among the proteins with the highest
probability mass of their top paths. This is consistent with the conclusion for
Section 6.1, on correlation between probability mass of top paths and prediction
correctness, that correct predictions tend to have higher mass for the top paths.

35



BBM-0 BBM-1 BBM-2 BBM-3 BBM-4 BBM-5 Phobius
1 path 0 1 1 3 4 6 34

10 paths 0 2 3 6 9 14 38
100 paths 0 4 6 9 12 16 42
1000 paths 0 5 7 10 17 20 43

(a) Trial one

BBM-0 BBM-1 BBM-2 BBM-3 BBM-4 BBM-5 Phobius
1 path 0 0 2 4 5 6 31

10 paths 0 1 3 7 10 13 39
100 paths 0 3 5 9 12 18 41
1000 paths 0 5 6 11 15 19 43

(b) Trial two

BBM-0 BBM-1 BBM-2 BBM-3 BBM-4 BBM-5 Phobius
1 path 0 0 0 1 4 6 33

10 paths 0 2 3 6 10 16 39
100 paths 0 4 6 9 13 17 40
1000 pahts 0 5 6 9 16 19 44

(c) Trial three

Table 5.6: Sampling results for the data set II. Each number indicates the number
of proteins (out of 247) for which at least one sampled paths provided the correct
explanation. The data for 3 different random paths trials is provided.

Top third Mid third Bottom third
1-best probability 20 11 9
10-best probabilities 20 12 8
100-best probabilities 22 10 8
1000-best probabilities 22 9 9

Table 5.7: Distribution of correctly sampled proteins among the indexes of all
proteins sorted by total probability of their top paths. For example number 20
in row with label “10-best probabilities” and column “Top third” indicates that
among 40 proteins which sampling predicted correctly 20 where among one third
of the most probable (with indexes between 1 and 82) in the list of proteins sorted
total probabilities for their top 10 paths.

36



Chapter 6

Extracting information from the
k-best paths

What do multiple high-probability paths show us? To study this, we broke pre-
dictions (labellings) into groups based on their proposed topology. Each group
(cluster) has a distinct number of transmembrane helices and sidedness.

6.1 Connection between correctness and proba-

bility mass of paths and labellings

Here we investigate the relation between the probability mass that predicted paths
occupy and whether they give a correct prediction. In other words we are looking
at the degree of confidence in the prediction, based on the total probability mass
of the top k-paths. We have graphed the relation between probability mass and
correctness in a series of plots, presented in Figures 6.1, 6.2, 6.3, and 6.4. In each
plot cumulative probabilities of paths and labellings for cases of both correct and
incorrect predictions are shown. The figures themselves vary on the number of
paths (1, 10, 100, and 1000), the correctness measure used ( Phobius in Figures 6.1
and 6.2, BBM-5 in Figures 6.3, and 6.4), and the data set (I in Figures 6.1 and 6.3
and II in Figures 6.2 and 6.4).

Data set I is smaller, which leads to it being more prone to random variation.
Also, in this data set, the number of correct predictions is very high, making com-
parison between correct and incorrect predictions hard. For data set I, most of the
patterns discussed below are less vivid and noticeable. It is also harder to judge the
significance of the patterns seen. Data set II, on the other hand, has 247 members,
and often has a significant proportion of the predictions incorrect. The pattern
seen in this data set are more trustworthy.

The most interesting comparison is in the difference between the correctness
measures used. The more lax Phobius correctness measure leads to less difference

37



(a) 1 path. 32 Correct; 13 Incorrect. (b) 10 paths. 33 Correct; 12 Incorrect.

(c) 100 paths. 37 Correct; 8 Incorrect. (d) 1000 paths. 39 Correct; 6 Incorrect.

Figure 6.1: Cumulative total probability distribution separated by correctness.
Here the Phobius correctness measure is used on the data set I. Larger percent
of correct predictions at lower probability (line is closer to righthand lower corner)
indicates that high probability mass is correlated with correct predictions. Note
that the scales are different for the graphs.

38



(a) 1 path.137 Correct; 110 Incorrect. (b) 10 paths. 157 Correct; 90 Incorrect.

(c) 100 paths. 198 Correct; 49 Incorrect. (d) 1000 paths. 214 Correct; 33 Incorrect.

Figure 6.2: Cumulative total probability distribution separated by correctness.
Here the Phobius correctness measure is used on the data set II. Note that the
scales are different for the graphs.

39



(a) 1 path. 28 Correct; 17 Incorrect. (b) 10 paths. 29 Correct; 16 Incorrect.

(c) 100 paths. 33 Correct; 12 Incorrect. (d) 1000 paths. 36 Correct; 9 Incorrect.

Figure 6.3: Cumulative total probability distribution separated by correctness.
Here the BBM-5 border boundary measure is used to identify correct predictions
on data set I. Note that the scales are different for the graphs.

40



(a) 1 path. 59 Correct; 188 Incorrect. (b) 10 paths. 83 Correct; 164 Incorrect.

(c) 100 paths. 129 Correct; 118 Incorrect. (d) 1000 paths. 168 Correct; 79 Incorrect.

Figure 6.4: Cumulative total probability distribution separated by correctness.
Here the BBM-5 border boundary measure is used to identify correct predictions
on data set II. Note that the scales are different for the graphs.

41



between correct and incorrect predictions in terms of probability mass. On the
other hand, our BBM-5 correctness measure makes a very clear distinction. It is
very likely that the paths which are correct using this measure have a high relative
probability mass, even in the cases of the low number of paths.

The overall trend is that a high percentage of the probability mass indicates
higher confidence in the prediction. Proteins that have a high percentage of their
probability mass allocated to the top path are easy to predict. This is emphasized by
the difference between the correctness measure where the correlation between high
mass and correct predictions is especially clean for the stricter BBM-5 correctness
measure.

6.2 Gaining confidence in predictions based on

agreement in their structure

In this section, we present the relationship between the number of paths investi-
gated and the confidence in our prediction. All the predictions naturally fall into
two distinct (and compliementary) categories: one where all of the predictions have
the same number of helices (class one) and one where at least two different helix
numbers whre predicted (class two). The natural assumption is that a more con-
sistent class, one where all the predicted helix numbers are the same, would give
better predictions. We now present the data for these two classes.

We first analyze the case where all of the predicted paths have the same number
of helices: these form the content of Tables 6.1b and 6.2b. In both cases the trend
is very clear: if more and more paths predict the same number of helices, it is more
probable that the prediction is correct. At the same time, the total number of such
proteins naturally decreases with number of paths predicted. As even a single path
with a number of predicted helices distinct from the majority forces the proteins
out of this class, the decrease in the total number of proteins in it with the growth
of the number of paths produced is not surprising.

The number of correct predictions found in this class is high: these are the
easy-to-predict proteins (this is similar to a relation between the proportion of the
probability mass occupied by the k-best paths and the correctness of the prediction,
described in Section 6.1). As the number of paths increases, the size of this class
shrinks, and at the same time our confidence that the prediction is correct increases.

The second class that we investigate are all the cases where there are at least two
different predicted helix numbers. This class is complementary to the one described
previously: together, they cover the whole range of predictions. In this class, there
are multiple groups which we can use for prediction; here we investigate the largest
and the heaviest (highest probability) clusters as potentially predictive. The results
for this class can be found in Tables 6.1c and 6.2c. The overall size of the class
is rising as the number of predicted paths increases, as it is more likely that at

42



Number of paths Class 1 Class 2
10 39 6
100 28 17
1000 21 24

(a) Number of potentially correct predictions

Type of correctness 10 paths 100 paths 1000 paths
(n = 39) (n = 28) (n = 21)

Number of helices 31 (79.49%) 24 (85.71%) 19 (90.48%)
Overall topology 30 (76.92%) 24 (85.71%) 19 (90.48%)

(b) Distribution of correct predictions when all predicted paths have the same
number of helices (class 1 from part (a)).

Type of correctness 10 paths 100 paths 1000 paths
(n = 6) (n = 17) (n = 24)

Number of helices in
largest cluster 5 (83.33%) 12 (70.59%) 18 (75.00%)
Number of helices in
heaviest cluster 5 (83.33%) 12 (70.59%) 18 (75.00%)
Overall topology
in largest cluster 4 (66.67%) 10 (58.82%) 17 (70.83%)
Overall topology
in heaviest cluster 4 (66.67%) 10 (58.82%) 17 (70.83%)

(c) Distribution of correct predictions when two different helix counts were
predicted (class 2 from part (a)).

Table 6.1: The distribution of the correct predictions in different classes of predic-
tions for data set I.

43



Number of paths Class 1 Class 2
10 189 58
100 120 127
1000 64 183

(a) Number of potentially correct predictions

Type of correctness 10 paths 100 paths 1000 paths
(n = 189) (n = 120) (n = 64)

Number of helices 156 (82.54%) 107 (89.17%) 58 (90.63%)
Overall topology 123 (65.08%) 93 (76.67%) 56 (87.50%)

(b) Distribution of correct predictions in cases when all predicted paths have the
same number of helices (class 1 in part (a)).

Type of correctness 10 paths 100 paths 1000 paths
(n = 58) (n = 127) (n = 183)

Number of helices in
largest cluster 28 (48.28%) 82 (64.57%) 125 (68.31%)
Number of helices in
heaviest cluster 32 (55.17%) 81 (63.78%) 130 (71.04%)
Overall topology
in largest cluster 16 (27.59%) 54 (42.52%) 97 (53.01%)
Overall topology
in heaviest cluster 19 (32.76%) 51 (40.16%) 93 (50.82%)

(c) Distribution of correctness for in cases when two different helix counts were
predicted (class 2 in part (a)).

Table 6.2: Distribution of correct predictions in different classes of predictions for
the data set II.

44



least two paths that have different number of predicted helices are encountered.
Also, the number of correct predictions is rising with the number of paths, as more
proteins which where previously in class one are moved to this class. The absolute
numbers of correct predictions is small when the number of paths is small: these
are the hardest proteins to predict. In no case is the prediction accuracy as large
as the one for the case when all predicted paths have the same number of helices.
Our confidence in the prediction is lower than in the cases when all paths have the
same number of helices. Such pattern indicates that we have identified the cases
hardest to predict in this class at the low number of paths predicted.

As the results of the patterns we see above we can talk about a confidence
scale for the predictions based on the distribution of the k-best paths into these
two groups. If the prediction has at least two distinct number of helices in the
top ten paths, we have very little confidence in its correctness; these seem to form
the hardest proteins. If the first one thousand paths all have the same number of
predicted transmembrane helices, this indicates a high confidence in the prediction;
these seem to be the easy ones. Overall, the moment at which the second value
for the number of helices appears seems to indicate the degree of confidence in the
prediction.

6.3 From many predictions to one prediction

In this section we will persent several different ways to agglomerate a cluster into
a single prediction. The heaviest cluster is the one on which the agglomeration is
performed, as there does not seem to be a significant difference between using the
largest and heaviest clusters, based on the results of experiments in Section 6.2. The
paths in the cluster are agglomerated using a method, and then we apply different
correctness measures to evaluate the resulting prediction. There is a natural upper
bound on the amount of cases in which agglomeration can succeed: if the heaviest
cluster predicts the wrong sidedness or helix number, our agglomeration methods
are sure to fail. The numbers can be found in Tables 6.1 and 6.2. For example,
for data set II, predicting 100 paths, for the case when all paths predicted the
same number of helices, 93 proteins can potentially be predicted correctly using
agglomeration.

All of the experiments described in this section involve two types of cases. The
first type does not take into account the probabilities associated with each of the
path and all such experiment instances are called unweighted. In such cases the
number of the proteins that can be found in a group will be referred to as the
size of the group. In the second type, which we call weighted, we incorporated the
probabilities of paths into the agglomeration. In such cases, the probability of the
path is its weight and sometimes, for a single group, it will be referred as its mass.

45



Predicted helix One

Predicted helix  Two

(a) Majority voting conflict

Resolved helix One Resolved helix  Two

(b) Majority voting conflict resolution

Figure 6.5: Example of a conflict created by majority voting and its resolution.
The distance between two helices in the resolved case (b) is exactly one amino acid.

6.3.1 Averaging

This method of agglomerating paths in a cluster into a single prediction involves
averaging the positions of the start and the end of each transmembrane helix. We
used two types of averages: an unweighted average off all starts and ends and the
weighted average. A major advantage of this way of agglomerating is that it is
guaranteed not to lead to inconsistent results: start and end location positions
naturally balance out, and helices never end before they begin. The results of the
experiment on both data sets I and data set II can be found in Tables A.0 and A.1
respectively.

This method is fairly good at retrieving the information that is contained in the
cluster. For the Phobius measure, at most three (of 93) proteins (data set II, at one
thousand paths in the case when at least two different helices are predicted) were
missed. It is striking how much the quality of prediction depends on the correctness
measure used, which we have already observed in the Section 5.1, on the existence
of information in predictions in the first place.

6.3.2 Majority voting

This agglomeration method involves keeping track of the start position and length
for each helix. The values encountered most often are used for the prediction; in the
weighted cases, we count paths with weight equal to their probability. The results
for the unweighted and weighted majority voting agglomeration can be found in
Tables A.2 and A.3 respectively.

One drawback of majority voting is that in some cases it can produce incon-
sistent results. This happens, for example, when there are two helices that are
predicted close to each other have weak signals for their start and end positions.
This may lead to the agglomeration predicting a pair of overlapping helices, as
in Figure 6.5a. In our data set this happend only once, to the protein SecD. We
smoothed the prediction by creating two helices with equal length; these helices

46



10 paths 100 paths 1000 paths
Weighted 1 4 1
Unweighted 1 5 3

Table 6.3: Number of locations at which proteins in data set II needed smoothing.

cover the same positions as the prediction, except for one amino acid in the exact
middle (Figure 6.5b).

The results produced by the majority voting are practically the same as the
ones predicted by the average voting scheme. Again, for the Phobius measure, we
have have predicted correctly either all of the proteins for which the biggest cluster
could yield correct results, or almost all of them. As before, incorporating weight
into prediction did not influence the results noticeably.

6.3.3 Per-position voting

In our per-position voting scheme, at each position, the agglomeration is given the
value of the most common label at that position among the set of paths. The values
for predictions of the data set I can be found in Table A.4, while the values for the
data set II can be found in Table A.5. The per position voting scheme inherently
produces inconsistent results due to lack of accounting for global information. We
check the resulting prediction for consistency and smooth it when needed.

In the data sets used, only four proteins, out of almost three hundred, required
any smoothing of this sort. They were PgdR, Quinoprotein glucose dehydrogenase
(DHG ECOLI), SecD, and Mec4. Some of these need to be adjusted in more than
one location: the distribution of the number of changes for data set II can be found
in Table 6.3. In data set I a single prediction requires smoothing, which is a single
unweighted agglomeration of one hundred paths. There seems to be an increase in
the number of predictions requiring smoothing in the case of one hundred paths.
Perhaps, when the number of predicted paths is small, there are fewer distinct,
conflicting predictions trying to influence the final result, while when the number
of paths is large, similar predictions outvote the outliers. In the middle, which 100
paths represents, the outliers influence the final prediction.

The absolute numbers for per position voting are very similar to both average
and majority voting. Both the weighted and unweighted cases follow this pattern.

6.3.4 Averaging using label wights

Next we want to investigate weather using label probabilities instead of path prob-
abilities will influence the results. We have performed the average agglomeration
using label probabilities instead of paths probabilities as weight, with the results

47



shown in Tables A.7 and A.2 for data sets I and II respectively. When dealing
with label probabilities one needs to be careful to avoid double counting, as there
may be fewer labels in the data then there are paths. The first step of agglomera-
tion is creating a list of unique labels, with attached probabilities. Then weighted
averaging was performed using label probabilities as weights.

As can be seen for the data, there is no significant difference between label
probabilities and path probabilities for the agglomeration.

6.3.5 Summary

The three methods described give comparable results on both data sets. This seems
to indicate that inside of one predictive cluster predicted results are very similar
to each other. Moreover, it seems that there is no noticeable difference between
the weighted, weighted by labelling probabilities, and the unweighted cases, again
indicating the inner cluster results similarity. The Averaging method has an added
advantage of always producing consistent results, thus is likely to be a method of
choice if a predictor is implemented. As compared to other decoding algorithms,
agglomeration performs better than the Viterbi algorithm, but not as well as the
1-best decoding.

6.4 Dual topology proteins

Dual topology proteins form an interesting subset of transmembrane proteins.
These proteins have two different topologies they can assume. The difference be-
tween the two topologies is the sidedness. The existence of dual topology proteins
was first confirmed by Rapp et al. in 2006 [21]. In their paper Rapp et al. men-
tion five proteins which they confirm have dual topologies. Those five proteins are
EmrE, SugE, CrcB, YdgC, and YnfA. All five proteins are very short, have four
transmembrane helices and a very weak sidedness signal. As we stated in Section
2.2, the signal for the sidedness of the protein is the amount of the positive amino
acids which tends to appear on the inside of the protein (‘positive inside’ rule). In
the dual topology proteins, there is no significant difference in positive amino acids
on different sides of the transmemebrane helices. Here, we would like to investigate
how the k-best predictions in the Phobius model perform on those proteins. The
most interesting question is if the model can recognize the duality of the topology.

The results for the correctness prediction of Phobius on the five dual topology
proteins can be found in Table 6.4. A correct prediction in this case is defined
as the prediction that can be found in Uniprot [4], which is only one of the two
topologies. Because this data set contains only five proteins and all of the proteins
have small length, we calculated up to ten thousand paths. Often, the information
about the correct topology can be found within the first ten thousand paths, but it
is not readily available in the most probable, Viterbi, prediction. Moreover, looking

48



1 path 10 paths 100 paths 1000 paths 10000 paths
BBM-0 0 0 0 0 0
BBM-1 0 0 0 0 0
BBM-2 0 0 0 2 2
BBM-3 0 1 1 2 3
BBM-4 0 2 2 3 4
BBM-5 1 2 2 3 4
Phobius 1 2 2 3 4

Table 6.4: Results of running Phobius on dual topology data

1 path 10 paths 100 paths 1000 paths 10000 paths
BBM-0 0 0 0 0 0
BBM-1 0 0 0 0 1
BBM-2 0 0 0 3 4
BBM-3 1 1 2 4 5
BBM-4 2 4 4 4 5
BBM-5 3 4 4 4 5
Phobius 3 4 4 4 5

Table 6.5: Results of running Phobius without signal prediction on dual topology
data

at the first one hundred paths only shows the correct prediction for two proteins,
which is a lower percentage than we would expect based on previously seen data.

Having looked at the data manually to find out the reason for such poor show-
ing of top paths, we found that the main reason for such poor prediction was that
Phobius predicted a signal peptide instead of the first transmembrane helix. This
is not entirely surprising: these dual topology proteins have a very small distance
before the start of the first transmembrane helix, have small length and have a weak
inside/outside signal (as they can be in two topologies). The lack of predictive sig-
nals can easily lead to misprediction of the first helix. We have tried predicting
dual topology proteins after disabling signal prediction in Phobius, with the results
presented in Table 6.5. Without the signal prediction, the Phobius model is equiv-
alent to TMHMM’s membrane protein topology model. The correct prediction is
seen much earlier in this case, and, for the laxer quality measures, even the single
highest probability path gives a prediction that is correct in 3 of 5 cases. Moreover,
somewhere within the first ten thousand best paths we can find a correct solution
for all five proteins, for one of the two topologies of each protein.

The next step is to investigate the properties of the k-best paths. In cases
when the two top groups correspond to the two different correct topologies for the
protein, using k-best paths gives an easy way to predict the dual topology. We

49



10 paths 100 paths 1000 paths
EmrE 2 3 5
YnfA 1 2 2
YdgC 1 2 3
CrcB 1 4 5
SugE 2 3 4

Table 6.6: Number of groups predicted for each of the dual topology proteins.

number % weight % helices

EmrE largest 0.8 0.79 3
2nd largest 0.2 0.21 4

YnfA largest N/A
2nd largest N/A

YdgC largest N/A
2nd largest N/A

CrcB largest N/A
2nd largest N/A

SugE largest 0.6 0.59 4
2nd largest 0.4 0.41 4

(a) 10 paths

number % weight % helices

EmrE largest 0.61 0.68 3
2nd largest 0.27 0.26 4

YnfA largest 0.63 0.77 4
2nd largest 0.37 0.23 4

YdgC largest 0.87 0.92 4
2nd largest 0.13 0.08 3

CrcB largest 0.83 0.89 4
2nd largest 0.09 0.05 4

SugE largest 0.49 0.57 4
2nd largest 0.50 0.43 4

(b) 100 paths.

50



number % weight % helices

EmrE largest 0.5 0.62 3
2nd largest 0.24 0.25 4

YnfA largest 0.52 0.63 4
2nd largest 0.48 0.37 4

YdgC largest 0.79 0.88 4
2nd largest 0.19 0.12 3

CrcB largest 0.72 0.80 4
2nd largest 0.13 0.09 4

SugE largest 0.57 0.51 4
2nd largest 0.32 0.42 4

(c) 1000 paths

Table 6.6: Information about two largest predicted groups for each of the dual
topology proteins. ’N/A’ signifies that only a single group has been predicted.
Number of helices gives an indication of the topology. When the top two groups
both have 4 helices, both valid topologies are predicted (as there only two valid
topologies with 4 transmembrane helices).

break the resulting predictions into groups having same sidedness and number of
helices, the number of the groups along with several statistics about the two largest
groups can be found in Table 6.6. For one thousand paths and one hundred paths,
in three out of the five cases, the two top clusters actually show the two different
topologies. Unfortunately, the relative difference between the masses or sizes of
the groups does not seem to be a predictor. For example for EmrE the two largest
clusters are more balanced then in CrcB, but its largest cluster predicts the number
of helices incorrectly.

The last intersting question we want to address is the distribution of probability
mass in the dual topology proteins. The results of this experiments can be found in
Table 6.7. The probability mass of the predictions is very high. This is likely due
to strong transmembrane signals and the fact that all of the dual topology proteins
used are of a very short length, allowing for only small variation in the length of
between helix distance.

Overall, in cases when one is looking to find topologies for the dual topology
proteins, is seems that k-best paths provides a simple way to find both topologies.
However, due to the small sample size the conclusion is preliminary.

51



1 path 10 paths 100 paths 1000 paths 10000 paths
EmrE 0.040 0.16 0.38 0.66 0.88
YnfA 0.017 0.091 0.26 0.57 0.87
YdgC 0.047 0.19 0.44 0.74 0.93
CrcB 0.021 0.081 0.23 0.49 0.76
SugE 0.0039 0.034 0.15 0.40 0.73
Avg 0.026 0.11 0.29 0.57 0.83

(a) paths

1 path 10 paths 100 paths 1000 paths 10000 paths
EmrE 0.061 0.20 0.44 0.71 0.90
YnfA 0.017 0.091 0.27 0.59 0.89
YdgC 0.047 0.19 0.47 0.76 0.95
CrcB 0.021 0.090 0.25 0.52 0.78
SugE 0.0039 0.046 0.18 0.46 0.78
Avg 0.030 0.12 0.32 0.61 0.86

(b) labels

Table 6.7: Total probability mass of paths and labellings for dual topology proteins.

52



Chapter 7

Conclusion

This thesis consists of two major parts: algorithmic and experimental. In the
algorithmic part we describe a new algorithm for finding the k-best paths in an
HMM, as well as several algorithms for finding coalescence points in tree based
approaches to the Viterbi paths storage. In the experimental part of this thesis,
we describe what information can be extracted from the k-best paths, including
extraction of the correct prediction, confidence in the prediction and alternative
explanations.

The naive extention of the Viterbi algorithm to finding k-best paths in the
HMM is very memory inefficient. We present a new, tree based, k-best algorithm
that keeps minimum required information for the k-best paths. We show that this
algorithm achieves significant space savings at the cost of approximately doubling
the runtime.

We also present a theoretical way to further improve space efficiency by finding
coalescence points. We present several algorithms for finding coalescence points in
the k-best tree and argue that the algorithm based on simple storage of end points
of the intervals of annotation is both simple and very efficient.

In the experimental section we first look at the quality of the predictions of the
k-best paths. We conclude that for the Phobius model for transmembrane topology
prediction, k-best paths contain more information, for high values of k, than the
native 1-best decoding. However, when we attempt to extract this information
using groupings of paths the results are not encouraging. The largest and the
heaviest groups do not perform better then 1-best algorithm, independent of the
agglomeration method used on them. Additionally we find that within a single
group the paths are very similar to each other, thus agglomeration method is used
to find consensus prediction does not influence the results significantly.

The k-best paths contain more information then the prediction itself. We show
that we can also use them to judge our confidence in the prediction, moreover we
show two distinct ways to do that. We show that the probability mass that top
paths occupy helps to estimate confidence. As expected, on average, more of the

53



probability mass is allocated to the top paths with correct predictions than to paths
giving the incorrect predictions. The second way to estimate confidence is to look
at the composition of the top paths. In cases when all of the top paths, for large
values of k, predict the same number of helices the prediction is likely to be correct.
For this method of confidence estimation the key point is the number of paths that
predict the same number of helices. We show that the moment when the first path
with the different number of predicted helices appears indicates the degree of the
confidence in the prediction provided by these top paths.

We also explore the ability of the k-best paths to provide alternative explana-
tions. To achieve this we look at the results for the dual topology proteins, known
for their ability to assume two different topologies on the membrane. We show
that, in cases when we are specifically looking for the alternative explanations, we
fairly often do find them in the two largest groups. However, the data set for these
experiments is very small, resulting in low confidence in the pattern.

7.1 Future work

There are several interesting extensions to this work. The most promising one is the
creation of new tree based decoding algorithms for the General HMMs (GHMMs).
General HMMs are HMMs with arbitrary probability distribution allowed in the
states. Due to arbitrary distribution in states they have O(n2) run time in the worst
case. However, in the most common use of GHMMs, gene finding, the decoding
“usually” takes O(n) time. O(n) decoding implies that the general states on average
“touch” constant number of previous positions, meaning that a tree-based approach
likely will work well.

One reason the k-best paths for gene finding is so interesting is the alternative
explanations that k-best paths can provide. In gene finding, alternative explana-
tions could correspond to alternative splicing of a gene. Alternative splicing [30], a
process which leads to creation of different proteins form a single peace of DNA, has
a large role in providing protein variability and specificity, making their prediction
a very practical and important problem.

On the theoretical side, we have presented different algorithms for coalescence
point detection. An interesting question is to study this probabilistically: what
is the expected distance between coalescence points? It is easy to show that the
location of coalescence points depends on all the components of HMM decoding:
the HMM structure, its transition probabilities, its emission probabilities and the
sequence itself. It is interesting to study the dependence of coalescence point loca-
tion on each of these, as well as developing a method which, given an HMM, would
compute the expected distance between coalescence points for the average sequence
emitted by this HMM.

54



Bibliography

[1] Orientations of Proteins in Membranes (OPM) database.
http://opm.phar.umich.edu/?images=all.

[2] P.G. Bagos, T.D. Liakopoulos, and S.J. Hamodrakas. Evaluation of meth-
ods for predicting the topology of β-barrel outer membrane proteins and a
consensus prediction method. BMC Bioinformatics, 6(1):7, 2005.

[3] P.G. Bagos, T.D. Liakopoulos, I.C. Spyropoulos, and S.J. Hamodrakas. A
Hidden Markov Model method, capable of predicting and discriminating β-
barrel outer membrane proteins. BMC Bioinformatics, 5(1):29, 2004.

[4] A. Bairoch, R. Apweiler, C.H. Wu, W.C. Barker, B. Boeckmann, S. Ferro,
E. Gasteiger, H. Huang, R. Lopez, M. Magrane, et al. The universal protein
resource (UniProt). Nucleic Acids Research, 33(Database Issue):D154, 2005.

[5] B. Brejova, D.G. Brown, and T. Vinar. The most probable labeling problem in
HMMs and its application to bioinformatics. In Proceedings of WABI, pages
426–437, 2004.

[6] M.G. Claros and G. von Heijne. TopPred II: an improved software for mem-
brane protein structure predictions. Bioinformatics, 10(6):685–686, 1994.

[7] J.M. Cuthbertson, D.A. Doyle, and M.S.P. Sansom. Transmembrane helix
prediction: a comparative evaluation and analysis. Protein Engineering Design
and Selection, 18(6):295–308, 2005.

[8] R. Durbin, S.R. Eddy, A. Krogh, and G. Mitchison. Biological sequence anal-
ysis. Cambridge University Press, Cambridge, UK, 1998.

[9] M.C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic
Press, 1980.

[10] J.A. Grice, R. Hughey, and D. Speck. Reduced space sequence alignment.
Bioinformatics, 13(1):45–53, 1997.

[11] T. Hessa, H. Kim, K. Bihlmaier, C. Lundin, J. Boekel, H. Andersson, I.M.
Nilsson, S.H. White, and G. von Heijne. Recognition of transmembrane helices
by the endoplasmic reticulum translocon. Nature, 433:377–381, 2005.

55



[12] L. Kall, A. Krogh, and E.L.L. Sonnhammer. A combined transmembrane
topology and signal peptide prediction method. Journal of Molecular Biology,
338(5):1027–1036, 2004.

[13] E. Keibler, M. Arumugam, and M.R. Brent. The Treeterbi and Parallel
Treeterbi algorithms: efficient, optimal decoding for ordinary, generalized and
pair HMMs. Bioinformatics, 23(5):545–554, 2007.

[14] A. Krogh. Two methods for improving performance of a HMM and their
application for gene finding. In Proceedings of ISMB, pages 179–186, 1997.

[15] A. Krogh, B.E. Larsson, G. von Heijne, and E.L.L. Sonnhammer. Predicting
transmembrane protein topology with a hidden Markov model: application to
complete genomes. Journal of Molecular Biology, 305(3):567–580, 2001.

[16] L.J. McGuffin, K. Bryson, and D.T. Jones. The PSIPRED protein structure
prediction server. Bioinformatics, 16(4):404–405, 2000.

[17] S. Moller, M.D.R. Croning, and R. Apweiler. Evaluation of methods for
the prediction of membrane spanning regions. Bioinformatics, 17(7):646–653,
2001.

[18] K. Munch and A. Krogh. Automatic generation of gene finders for eukaryotic
species. BMC Bioinformatics, 7(1):263, 2006.

[19] L. Rabiner and B.H. Juang. Fundamentals of speech recognition. PTR Prentice
Hall, 1993.

[20] M. Rapp. The Ins and Outs of membrane proteins. PhD thesis, 2006. Stock-
holm University, Faculty of Science, Department of Biochemistry and Bio-
physics Stockholm.

[21] M. Rapp, E. Granseth, S. Seppaa, and G. Von Heijne. Identification and
evolution of dual-topology membrane proteins. Nature structural and molecular
biology, 13(2):112–116, 2006.

[22] B. Rost, P. Fariselli, and R. Casadio. Topology prediction for helical trans-
membrane proteins at 86% accuracy. Protein Science, 5(8):1704–1718, 1996.

[23] E.L.L. Sonnhammer, S.R. Eddy, and R. Durbin. Pfam: a comprehensive
database of protein domain families based on seed alignments. Proteins: Struc-
ture, Function, and Genetics, 28(3):405–420, 1997.

[24] R. Sramek, B. Brejova, and T. Vinar. On-line Viterbi algorithm for analysis
of long biological sequences. In Proceedings of WABI, pages 240–251, 2007.

[25] M. Stanke, R. Steinkamp, S. Waack, and B. Morgenstern. AUGUSTUS: a web
server for gene finding in eukaryotes. Nucleic acids research, 32(Web Server
Issue):W309, 2004.

56



[26] G.E. Tusnady, Z. Dosztanyi, and I. Simon. Transmembrane proteins in the Pro-
tein Data Bank: identification and classification. Bioinformatics, 20(17):2964–
2972, 2004.

[27] G.E. Tusnady and I. Simon. Principles governing amino acid composition of
integral membrane proteins: application to topology prediction. Journal of
Molecular Biology, 283(2):489–506, 1998.

[28] H. Viklund, A. Bernsel, M. Skwark, and A. Elofsson. SPOCTOPUS: a com-
bined predictor of signal peptides and membrane protein topology. Bioinfor-
matics, 24(24):2928–2929, 2008.

[29] C.S. Wang and R.S. Chang. Parallel maximal cliques algorithms for interval
graphs with applications. Proceedings of ISPAN, pages 89–96, 1994.

[30] J. D. Watson, T. A. Baker, S. P. Bell, A. Gann, M. Levine, and R. Losick.
Molecular Biology of the Gene (6th Edition). Benjamin Cummings, 2007.

57



Appendix A

Agglomeration methods data

58



Correctness 10 paths 100 paths 1000 paths
measure (of possible 30) (of possible 24) (of possible 19)
0-off 1 1 1
1-off 8 8 8
2-off 14 13 11
3-off 19 18 13
4-off 23 20 15
5-off 25 21 16
Phobius 29 23 18

(a) Distribution of correct consensus in cases when all predicted paths have the
same number of helices. Unweighted average

Correctness 10 paths 100 paths 1000 paths
measure (of possible 30) (of possible 24) (of possible 19)
0-off 2 0 0
1-off 10 9 8
2-off 13 14 11
3-off 18 16 13
4-off 22 19 15
5-off 25 21 16
Phobius 29 23 18

(b) Distribution of correct consensus in cases when all predicted paths have the
same number of helices. Weighted average

Correctness 10 paths 100 paths 1000 paths
measure (of possible 4) (of possible 10) (of possible 17)
0-off 1 0 0
1-off 2 2 6
2-off 3 4 9
3-off 4 6 12
4-off 4 7 14
5-off 4 8 15
Phobius 4 10 17

(c) Distribution of correctness in cases when two different helix counts where
predicted. Unweighted average.

59



Correctness 10 paths 100 paths 1000 paths
measure (of possible 4) (of possible 10) (of possible 17)
0-off 1 0 0
1-off 2 2 6
2-off 3 3 8
3-off 4 6 13
4-off 4 7 14
5-off 4 8 15
Phobius 4 10 17

(d) Distribution of correctness for in cases when two different helix counts where
predicted. Weighted average.

Table A.0: For data set I, generating a consensus prediction using averaging. “Of
possible” indicates the number of proteins for which the information is available,
meaning the number of cases where the overall number of helices and their sidedness
matches the correct ones.

60



Correctness 10 paths 100 paths 1000 paths
measure (of possible 123) (of possible 93) (of possible 56)
0-off 3 2 1
1-off 7 6 2
2-off 15 11 3
3-off 20 18 5
4-off 40 29 12
5-off 54 40 22
Phobius 122 92 55

(a) Distribution of correct consensus in cases when all predicted paths have the
same number of helices. Unweighted average

Correctness 10 paths 100 paths 1000 paths
measure (of possible 123) (of possible 93) (of possible 56)
0-off 3 2 1
1-off 8 5 2
2-off 15 11 3
3-off 19 17 6
4-off 38 29 12
5-off 59 41 20
Phobius 122 92 55

(b) Distribution of correct consensus in cases when all predicted paths have the
same number of helices. Weighted average

Correctness 10 paths 100 paths 1000 paths
measure (of possible 19) (of possible 51) (of possible 93)
0-off 0 1 1
1-off 2 9 11
2-off 7 12 22
3-off 8 15 30
4-off 10 23 44
5-off 11 29 59
Phobius 17 49 90

(c) Distribution of correctness for in cases when two different helix counts where
predicted. Unweighted average.

61



Correctness 10 paths 100 paths 1000 paths
measure (of possible 19) (of possible 51) (of possible 93)
0-off 0 2 2
1-off 4 9 13
2-off 8 12 21
3-off 8 15 29
4-off 9 22 45
5-off 10 29 57
Phobius 17 49 90

(d) Distribution of correctness for in cases when two different helix counts where
predicted. Weighted average.

Table A.1: For data set II, generating a consensus prediction using averaging. “Of
possible“ indicates the number of proteins for which the information is available,
meaning the number of cases where the overall number of helices and their sidedness
matches the correct ones.

62



Correctness 10 paths 100 paths 1000 paths
measure (of possible 30) (of possible 24) (of possible 19)
0-off 2 1 1
1-off 8 8 8
2-off 11 11 10
3-off 17 15 13
4-off 23 19 15
5-off 25 21 16
Phobius 29 23 18

(a) Distribution of correct consensus in cases when all predicted paths have the
same number of helices. Unweighted average

Correctness 10 paths 100 paths 1000 paths
measure (of possible 30) (of possible 24) (of possible 19)
0-off 2 2 1
1-off 8 8 8
2-off 10 10 10
3-off 16 14 13
4-off 23 19 15
5-off 25 21 16
Phobius 29 23 18

(b) Distribution of correct consensus in cases when all predicted paths have the
same number of helices. Weighted average

Correctness 10 paths 100 paths 1000 paths
measure (of possible 4) (of possible 10) (of possible 17)
0-off 1 1 2
1-off 2 2 4
2-off 3 3 7
3-off 4 6 11
4-off 4 7 13
5-off 4 8 15
Phobius 4 10 17

(c) Distribution of correctness in cases when two different helix counts where
predicted. Unweighted average.

63



Correctness 10 paths 100 paths 1000 paths
measure (of possible 4) (of possible 10) (of possible 17)
0-off 4 10 17
1-off 1 1 4
2-off 2 2 6
3-off 3 3 7
4-off 4 6 12
5-off 4 7 14
Phobius 4 8 15

(d) Distribution of correctness for in cases when two different helix counts where
predicted. Weighted average.

Table A.2: For data set I, generating a consensus prediction using majority voting
for the start and length of the segment. “Of possible” indicates the number of
proteins for which the information is available, meaning the number of cases where
the overall number of helices and their sidedness matches the correct ones.

64



Correctness 10 paths 100 paths 1000 paths
measure (of possible 123) (possible 93) (of possible 56)
0-off 0 2 1
1-off 4 3 1
2-off 11 8 3
3-off 20 13 4
4-off 40 29 13
5-off 51 35 15
Phobius 122 93 55

(a) Distribution of correct consensus in cases when all predicted paths have the
same number of helices. Unweighted average

Correctness 10 paths 100 paths 1000 paths
measure (of possible 123) (possible 93) (of possible 56)
0-off 1 2 1
1-off 5 4 1
2-off 12 8 3
3-off 19 12 4
4-off 38 29 13
5-off 49 35 15
Phobius 122 92 55

(b) Distribution of correct consensus in cases when all predicted paths have the
same number of helices. Weighted average

Correctness 10 paths 100 paths 1000 paths
measure (of possible 19) (of possible 51) (of possible 93)
0-off 2 1 4
1-off 4 8 10
2-off 7 13 17
3-off 8 14 24
4-off 10 20 38
5-off 11 25 49
Phobius 17 49 91

(c) Distribution of correctness in cases when two different helix counts where
predicted. Unweighted average.

65



Correctness 10 paths 100 paths 1000 paths
measure (of possible 19) (of possible 51) (of possible 93)
0-off 2 1 2
1-off 5 7 11
2-off 8 14 20
3-off 8 15 24
4-off 10 20 40
5-off 12 26 51
Phobius 17 50 91

(d) Distribution of correctness in cases when two different helix counts where
predicted. Weighted average.

Table A.3: For data set II, generating a consensus prediction using majority voting
for the start and length of the segment. “Of possible” indicates the number of
proteins for which the information is available, meaning the number of cases where
the overall number of helices and their sidedness matches the correct ones.

66



Correctness 10 paths 100 paths 1000 paths
measure (of possible 30) (of possible 24) (of possible 19)
0-off 2 2 1
1-off 8 8 8
2-off 11 11 10
3-off 17 16 13
4-off 23 20 15
5-off 25 21 16
Phobius 29 23 18

(a) Distribution of correct consensus in cases when all predicted paths have the
same number of helices. Unweighted average

Correctness 10 paths 100 paths 1000 paths
measure (of possible 30) (of possible 24) (of possible 19)
0-off 2 2 1
1-off 8 8 8
2-off 11 11 10
3-off 17 15 13
4-off 23 20 15
5-off 25 21 16
Phobius 29 23 18

(b) Distribution of correct consensus in cases when all predicted paths have the
same number of helices. Weighted average

Correctness 10 paths 100 paths 1000 paths
measure (of possible 4) (of possible 10) (of possible 17)
0-off 1 1 2
1-off 2 2 6
2-off 3 3 8
3-off 4 5 12
4-off 4 6 13
5-off 4 8 15
Phobius 4 10 17

(c) Distribution of correctness for in cases when two different helix counts where
predicted. Unweighted average.

67



Correctness 10 paths 100 paths 1000 paths
measure (of possible 4) (of possible 10) (of possible 17)
0-off 1 1 2
1-off 2 2 5
2-off 3 3 6
3-off 4 5 11
4-off 4 6 13
5-off 4 8 15
Phobius 4 10 17

(d) Distribution of correctness for in cases when two different helix counts where
predicted. Weighted average.

Table A.4: For data set I, generating a consensus prediction using per position
voting. “Of possible” indicates the number of proteins for which the information
is available, meaning the number of cases where the overall number of helices and
their sidedness matches the correct ones.

68



Correctness 10 paths 100 paths 1000 paths
measure (out of 189, (out of 120, (out of 64,

of possible 123) of possible 93) of possible 56)
0-off 0 3 1
1-off 6 6 1
2-off 12 8 3
3-off 19 13 5
4-off 39 28 13
5-off 53 39 19
Phobius 122 92 55

(a) Distribution of correct consensus in cases when all predicted paths have the
same number of helices. Unweighted average

Correctness 10 paths 100 paths 1000 paths
measure (out of 189, (out of 120, (out of 64,

of possible 123) of possible 93) of possible 56)
0-off 1 2 1
1-off 7 5 1
2-off 13 8 3
3-off 19 14 5
4-off 39 29 13
5-off 2 39 18
Phobius 122 92 55

(b) Distribution of correct consensus in cases when all predicted paths have the
same number of helices. Weighted average

Correctness 10 paths 100 paths 1000 paths
measure (out of 58, (out of 127, (out of 183,

of possible 19) of possible 51) of possible 93)
0-off 1 1 2
1-off 4 8 13
2-off 6 13 20
3-off 8 14 27
4-off 10 20 42
5-off 12 27 53
Phobius 17 49 91

(c) Distribution of correctness in cases when two different helix counts where
predicted. Unweighted average.

69



Correctness 10 paths 100 paths 1000 paths
measure (out of 58, (out of 127, (out of 183,

of possible 19) of possible 51) of possible 93)
0-off 1 1 1
1-off 4 7 12
2-off 7 12 18
3-off 8 15 27
4-off 10 19 39
5-off 12 26 51
Phobius 17 49 90

(d) Distribution of correctness in cases when two different helix counts where
predicted. Weighted average.

Table A.5: For data set II, generating a consensus prediction using per position
voting. “Of possible” indicates the number of proteins for which the information
is available, meaning the number of cases where the overall number of helices and
their sidedness matches the correct ones.

70



Correctness 10 paths 100 paths 1000 paths
measure (of possible 30) (of possible 24) (of possible 19)
0-off 1 1 1
1-off 8 8 8
2-off 15 13 12
3-off 19 18 13
4-off 23 20 15
5-off 25 21 16
Phobius 29 23 18

(a) Distribution of correct consensus in cases when all predicted paths have the
same number of helices.

Correctness 10 paths 100 paths 1000 paths
measure (of possible 4) (of possible 10) (of possible 17)
0-off 1 0 0
1-off 2 2 7
2-off 3 4 9
3-off 4 6 12
4-off 4 7 14
5-off 4 8 15
Phobius 4 10 17

(b) Distribution of correctness for in cases when two different helix counts where
predicted.

Table A.7: For data set I, generating consensus using averaging on the weights of
the labels. “Of possible” indicates the number of proteins for which the information
is available, meaning the number of cases where the overall number of helices and
their sidedness matches the correct ones.

71



Correctness 10 paths 100 paths 1000 paths
measure (of possible 123) (of possible 93) (of possible 56)
0-off 3 2 1
1-off 6 5 2
2-off 14 11 3
3-off 19 18 5
4-off 42 29 12
5-off 54 40 22
Phobius 122 92 55

(a) Distribution of correct consensus in cases when all predicted paths have the
same number of helices.

Correctness 10 paths 100 paths 1000 paths
measure (of possible 19) (of possible 51) (of possible 93)
0-off 0 1 2
1-off 2 7 9
2-off 7 12 23
3-off 8 15 32
4-off 10 23 44
5-off 11 29 58
Phobius 17 49 90

(b) Distribution of correctness for in cases when two different helix counts where
predicted.

Table A.2: For data set II, generating a consensus prediction using averaging on
the weights of the labels. “Of possible” indicates the number of proteins for which
the information is available, meaning the number of cases where the overall number
of helices and their sidedness matches the correct ones.

72


