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Abstract

The role of public transportation increases as travel demand increases due to

the growth in population and economics. The importance of providing a balanced

public transportation has increased. In Ontario, Canada, the provincial government

investing more than $17B in transit projects by the year of 2020 [28]. Consequently,

planners and engineers motivated to pay more attention to mode split (mode choice)

models used to estimate transit ridership. In most existing mode choice models,

the likelihood of a trip maker using a transit mode (e.g. transit) is based on the

generalized cost (GC) of using transit mode relative to the generalized cost of all

other available modes.

In conventional generalized cost formulations, transit costs are considered deter-

ministic. It is quite evident, however, that great variability exists in the reliability

of transit service and, as a result, the actual costs experienced by users. Efforts are

ongoing to incorporate the costs of reliability in mode choice models by extending

formulations to include penalties for arriving prior to or later than a desired arrival

time.

Transit operators strive to provide reliable service to retain and attract more

users. Unreliable service can adversely affect the user by arriving late or early

at their destination, waiting longer at their boarding station, and spending more

time than expected in the transit vehicle. Unreliable service will also increase the

user’s anxiety associated with the uncertainty and discomfort. All these factors

should be considered explicitly within the generalized cost (GC) function in order

to accurately capture the GC of transit service relative to other modes and to ensure

that these factors are not incorporated within the mode specific constant.

In this study, a GC model is developed that explicitly represents service relia-

bility. Service reliability is represented in the model as penalties associated with

passengers’ late arrival, early arrival, departure time shifting, waiting time, and

anxiety. Furthermore, a methodology of utilizing field data to capture service reli-

ability is defined. A Monte-Carlo simulation framework has been developed using

the proposed GC function to quantify the impact of transit reliability on transit

user cost.

The proposed framework was applied on the iXpress service in the Regional of

Waterloo in Ontario, Canada, utilizing Automated Vehicle Location (AVL) system

data from the Regional Municipality of Waterloo to estimate service reliability. All
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the coefficients included in the proposed GC are assumed based on the relative

importance of each penalty to scheduled in vehicle time by considering different

passenger classes. In this research, the transit passengers are assumed to belong

to one of three passenger classes based on their risk tolerance. From the results,

it was found that increasing reliability of arrivals at a station can decrease transit

users generalized costs significantly. We further posit that including uncertainty in

the calculation of generalized costs may provide better estimates for mode split in

travel forecasting models.
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Chapter 1

Introduction

1.1 Introduction

Travel demand is increasing with the continued growth in population and the econ-

omy. This leads to additional vehicles, trips, and traffic congestion on the road net-

work. Therefore, the importance of encouraging travelers to shift to other mobility

modes such as public transit is growing. Public transit is an essential component

of a transportation system that can alleviate congestion. It offers mobility and

accessibility for people to perform their daily tasks: work, school and recreational

activities etc. Hence, demand for more efficient and reliable public transit services

is rising. Service reliability has been recognized as one of the most important ser-

vice attributes by transit users and providers. From a service provider perspective,

service reliability is one of the important and determining indications of service

performance. User perceive service reliability as the uncertainty associated with

waiting time, travel time, and arrival time for a given trip.

While improving service reliability attracts more customers, unreliable service

can lead to a reduction in revenue due to passengers who had unpleasant service

experiences shifting to other modes. Generally, transit users are restricted by tim-

ing constraints at their destination (e.g. work, school, or medical appointments.)

Therefore, they can be affected by the consequences associated with arriving late at

their destination (Bates et al. 2001). The trip maker’s decision in transport mode

choice and departing time is influenced by the degree of service reliability and the

trip maker’s willingness to experience delays.

The choice of transport mode prediction (mode choice) is considered as one of
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the most important models in transport planning process [35]. Mode choice models

used to estimate the portion of trips over each of the available transport modes

between different origin-destination (OD) pairs and can be applied at two different

levels: zonal (aggregate) and household (disaggregate) levels. Although Several

models have been developed, the most widely used is the multinomial logit model

[27](Equation 1.1.

Pti =
eUi∑n
i=1 e

Ui
(1.1)

where

Pti Probability of trip maker t choosing mode i

Ui The utility function associated with using the transportation mode i

n The available transport modes

From the previous equation, it can be observed that each mode (i) has a specific

cost and benefits that represented by the utility function of this mode and can be

evaluated by itself. However, the choice of a each mode is based on its utility or

cost relative to the utility or cost of all available modes. As the number of transport

modes increases, the probability of choosing each mode decreases with no changing

on its utility or cost.

The utility function of each transport mode is impacted by several factors such

as trip maker socio-economic factors (income, cars ownership, age, etc.) and mode

attributes factors (in-vehicle time, access time, out of pocket cost, etc.). Generally,

the utility function has a linear form combining all variables considered as mode

attributes and individual characteristics [35](see Equation 1.2).

Ui = β0 + β1X1 + β2X2 + ...+ βaXa + α0 + α1Y1 + α2Y2 + ....+ αbYb (1.2)

where

Ui The utility function associated with using the transportation mode i

X1, X2, Xa Mode attributes

Y1, Y2, Yb Individual’s characteristics

β1, β2, βb Parameters for mode attributes

α1, α2, αa Parameters for individual’s characteristics

Variables included in the utility function have different units. Therefore in

order to estimate the relative importance of each variable included in the utility
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function to others, all the variables are converted to a common unit. This conversion

process results in a linear function of the summation of all converted variables called

generalized cost (GC) function [23]. This generalized cost function replaces the

utility function in Equation 1.2.

As a consequent, it can be stated that the likelihood of a trip maker using

a particular transport mode (e.g. transit) is based on the generalized cost (GC)

of using that mode relative to the generalized cost of all other available modes.

Typically, GC functions include in-vehicle time, out of vehicle time, out of pocket

cost, transfer penalties, and a mode-specific constant (bias). The mode-specific

constant is supposed to represent the factors that are difficult to quantify such as

comfort of ride, reliability, etc. Figure 1.1 demonstrates the out of vehicle time

and in vehicle time through a conceptual deterministic trip by a passenger from an

origin to a destination.

Although some average measures of reliability may be captured within the mode

specific constant, reliability is not explicitly represented in most mode choice mod-

els. Therefore, considering reliability within GC functions will help to accurately

predict transit ridership and to quantify the impact of transit service reliability on

both passengers’ GC and mode choice forecasting.

Figure 1.1: A Space - Time diagram for a Conceptual Trip
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1.2 Motivation

Transit operators strive to provide a reliable service to retain and attract more

users. Unreliable service can adversely affect users by arriving late or early at

their destination, waiting longer at their boarding station, and spending more time

in the transit vehicle than expected. Unreliable service will also increase users’

anxiety associated with the uncertainty and discomfort (Bates et al. 2001). All

these factors should be considered explicitly within the GC function in order to

accurately capture the GC of transit service relative to other modes.

While consideration of service reliability in GC calculation is important, the

challenge is how to quantify reliability. Reliability is commonly represented by

schedule adherence, variation in travel time, and variation in headway. All this

information can be obtained through archived automatic vehicle location system

(AVLS) data. AVLS has been used as one of the intelligent transportation systems

to monitor and improve the service reliability of many transit operators. AVLS

can provide a large amount of data that can be effectively analyzed to improve

reliability.

Recently, studying the effects of travel time reliability (TTR) on travelers’ be-

havior has been given considerable attention. Though some studies consider reli-

ability in a mode choice model, most concentrate on its impacts on route choice

and departure time choice. In addition, most of the results are based on estima-

tions using either stated preference (SP) or revealed preference (RP) data analysis

(Hollander 2005).

In this study, a GC model is developed that explicitly represents service re-

liability. Service reliability is manifest in the model as penalties associated with

passengers’ late arrival, early arrival, departure time shifting, and waiting time.

Furthermore, a methodology of utilizing AVLS data to capture service reliabil-

ity is defined. By considering different passenger behavior, the impact of service

reliability on passenger GC is quantified using a Monte Carlo simulation model

that considers passenger arrival time, bus departure time from origin, passenger

preferred arrival time, and actual arrival time at destination.
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1.3 Goals and objectives

The main goal of this study is to develop a methodology that explicitly incorporates

transit service reliability within the calculation of GC and quantifies the impact that

service reliability has on user GC.

This thesis has the following objectives:

1. Use AVLS data to quantify the degree of transit service reliability in terms

of travel time and schedule adherence;

2. Develop a comprehensive GC function that explicitly considers service relia-

bility;

3. Assess the impact that an unreliable system has on the GC of transit users’

who have different risk tolerance levels;

4. Assess the effects of an unreliable system on passengers’ behavior in choosing

their departure time and how that choice impacts their GC.

All of these objectives should help service providers and planners quantify the

impact of reliability on passengers’ behavior. Subsequently, they can enhance the

service and predict more accurately passengers’ GC and mode split.

1.4 Thesis Organization

Chapter 2 reviews previous research related to reliability within the generalized cost

and utility functions. Chapter 3 presents the proposed GC formulation; discusses

the method used to evaluate the proposed formulation and the analysis needed to

calibrate model inputs to archived AVLS data. Chapter 4 describes the study area

and case study. Chapter 5 demonstrates the results obtained from the simulation

model. Chapter 6 summarizes the conclusions of this study, discusses the study

limitations, and identifies potential future extensions to the work.
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Chapter 2

Literature Review

The previous studies on incorporating service reliability effects on passengers’ cost

are reviewed in this chapter. The chapter, consisting of three main sections, is

organized as follows. First, section 1 introduces the concept of service reliability and

its effects on passengers’ behavior. Section 2 reviews the work that has been done

to incorporate reliability into the calculation of the GC model. Finally, section 3

summarizes the limitations found in these models and identifies the need for further

research.

2.1 Transit Service Reliability Concept

Transit service reliability is an essential service attribute and is a concern for both

transit agencies and users. In a transit service context, reliability has been defined

differently by different researchers. Polus [40] and Abkowitz [1] defined service re-

liability as the consistent and invariable performance of the transportation system

over a period of time. Turnquist and Blume [53] defined reliability as the abil-

ity of the transportation system to adhere to schedule, maintain a regular headway

and provide a consistent travel time. Kimpel [20] agreed with Turnquist and Blume

when he defined reliability as the departure delay, running time variation, and head-

way delay regarding to schedule. While these definitions commonly describe service

reliability, they indicate different perceptions of reliability by transit providers and

passengers.

Transit passengers consider service reliability as one of the important factors

for service quality [37], [49], [50]. From the passenger’s perspective, reliability is
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commonly measured by the delay within the service schedule 1. Lack of reliability

adversely affects transit passengers because of the uncertainty associated with 1)

transit unit departure delay, which results in additional waiting time, and 2) in-

vehicle time, which results in arrival delay ([4], [2]).

As a consequence of service unreliability, the passenger’s anxiety and discomfort

will be aggravated [2]. Therefore, the attractiveness of transit relative to other

modes will decline that in turn will lead to a decrease in transit ridership. A major

weakness of existing GC formulations is the lack of explicit consideration of service

reliability.

2.1.1 Service Reliability and Passenger’s Waiting Time

Waiting time is defined as the difference between the passenger arrival time and

the transit unit departure time at a station. The expected waiting time depends

on the distribution of both the user arrival time and transit unit departure time. It

was found that transit users value the waiting time twice as much as the in-vehicle

time [54]. Hence, waiting time is an important service attribute that can reduce

the attractiveness of transit service.

For frequent service (i.e. short service headway), the expected waiting time is

commonly used in planning application as shown in Equation 2.1.

E[WT ] = 0.5 ∗ h (2.1)

where

E[WT ] Average waiting time

h Scheduled headway

In contrast, for infrequent service, the average waiting time for users is less

than half of the headway. However, for an unreliable service with long headway,

the average waiting time is greater than half of the headway. This occurs because:

1. Passengers tend to arrive earlier to account for the possibility that the TU

will depart earlier than scheduled departure time; and

2. When the TU’s departure is delayed and the headway is large, the waiting

time increases.
1On-time performance: how closely the actual performance is to the schedule
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Osuna and Newell [36] derived the the expected waiting time under the assumption

of random arrival time for passengers as shown in Equation 2.2

E[WT ] = 0.5E[h](1 + CV 2
h ) (2.2)

where

E[WT ] Average waiting time

E[h] Average service headway

CVh Coefficient of variation in headway (standard deviation/mean)

Although Equation 2.2 relates service reliability to users’ average waiting time,

the average waiting time is not the best indicator of a passenger waiting cost.

Additionally, the passengers may not arrive randomly as was assumed.

Many researchers have assumed that passengers are arriving randomly and inde-

pendently of the service schedule at at the station. However, it has been suggested

by some researchers [53], and we concur, that users (under some conditions) tend

to minimize their waiting time by consulting schedules and arriving at a station at

a selected time prior to the TU scheduled departure time.

This relationship between waiting time and unreliability was modeled by Bow-

man and Turnquist [4]. They focused on the effect of schedule deviation in bus

arrival time at a particular station on passengers’ utility function which acts as pas-

senger arrival probability at the same station. Bowman and Turnquist suggested

that with a highly reliable station, the peak of passenger arrival rate is obviously

observed before the transit unit scheduled departure time by a short period (with

a 20-min headway, the peak was at 2.4 min) prior to scheduled departure time. As

the reliability declines, the probability of missing the bus increases; subsequently,

the peak arrival rate shifts earlier from the scheduled departure time and spreads

over the headway.

Figure 2.12 illustrates the calibrated model by Bowman and Trunquist and the

observed passenger arrival time for a 20-min headway service. They suggested that

with the random arrival model, the average waiting time is overestimated. On the

other hand, their developed model (shown in Equation 2.3) represents the observed

average waiting time much better.

E[WT (t)] = [1− P (t)] ∗WT (t) + P (t) ∗WT ′(t) (2.3)

2The source of this figure is reference [53]
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where

E[WT (t)] Expected waiting time for an arrival at t

P (t) Probability of TU arrives prior to time t

WT (t) Expected waiting time given the TU arrives after time t

WT ′(t) Expected waiting time given the TU arrives before time t

However, the authors assume that all users have the same risk tolerance on

perceiving the waiting time. In addition, they have considered that all passengers

are aware of the service schedule.

Figure 2.1: Passenger Arrival Distribution for a 20 min Headway Service

2.1.2 Service Reliability and Travel Time

In-vehicle time is defined as the time needed for a transit unit to travel from a user’s

boarding station to the alighting station. For transit operations in shared rights-

of-way, in-vehicle times are subject to variability caused by many factors: traffic,

route, passengers, and transit operational characteristics [25]. Those factors also

include day-to-day travel demand variation, traffic congestion variation, capacity

of the road, signalized intersections, passenger volume at stop, etc.

Increased total travel time variability (TTV), including both wait time and in-

vehicle time, diminishes the users’ ability to predict accurately their arrival time.

For some passengers, an arrival time either earlier or later than their desired time is
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undesirable consequences. Thus, studies have shown that passengers place a higher

value on TTV than on the in-vehicle time ([30], [18], [2], [39], [41]).

Overall, travel time variability represents the key to service reliability. Varia-

tions in departure time and in arrival time impact passengers’ waiting time and

in-vehicle time, respectively.

2.2 Service Reliability in Discrete Choice Model

Generally, the uncertainty associated with travel time is considered as an extra

cost for the user. However, this cost is not explicitly captured in most of the mode

choice models. This may lead to the overestimation or underestimation of the

model-predicted number of transit passengers.

For several years, many researchers have been studying the effect of service re-

liability on passengers’ behavior. Gaver [16] was the first to include the service

reliability concept within the GC function. He suggested that passengers will mini-

mize the probability of arriving late at their destination by changing their departure

time. The work of Gaver and others can be classified into two different approaches

namely: The Mean-Variance Approach and The Scheduling Approach.

2.2.1 Mean-Variance Approach

The mean variance approach posits that the travel time variability has a direct effect

on the passenger as a source of inconvenience. In this approach, the travel time

variability and mean travel time are explicitly included within the GC function. It

assumes that the passenger has prior experience with the service for a specific trip

(between a specific pair of stations). Thus, passengers estimate the mean and the

variance (or standard deviation) of the travel time for their trip.

In the field of transportation, the first model using this approach was specified

by Jackson and Jucker [19] where the user explicitly considers both the travel time

variability and mean travel time. In their model, the user’s objective is to maximize

the following utility function shown in Equation 2.4:

U = αE[tt] + τV (tt) + δC (2.4)

where
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E[tt] Expected travel time between specific pair stations

V (tt) Variance of travel time

C The cost associated with using the transportation mode

α, τ , δ The parameters that measures the influence of each variable

In a stated preferences survey conducted by Jackson and Jucker, transit passen-

gers were asked to choose between two alternatives they had been given as paired

comparison questions. The parameter τ was used as a surrogate for the passen-

gers’level of risk aversion.

The mean variance approach has been effectively used in problems of portfolio

selection in financial markets. In the transportation field, it has been widely im-

plemented to evaluate the travel time variability on the mode choice model [18].

However, in the presence of scheduling constraints, this approach cannot capture

the behavior of departure time choice due to the lack of arrival delay consideration

within the model.

2.2.2 Scheduling Approach

The scheduling approach is based on capturing the cost associated with arriving

early or late at a destination relative to the passenger’s necessary arrival time and

allowing passengers to optimize their departure time to minimize their own cost

[18]. That represents the concept of the scheduling approach.

Gaver [16] first introduced the idea of the TTV effect on the departure time

choice behavior. Gaver [16], Knight[21], and Pells [38] claim that the travel time

variability effect can be captured through the safety margin (slack time) added by

users as a reaction to travel time variability associated with the trip. They assume

that the trip maker selects a safety margin seeking an optimal trade-off between

early and late arrival penalties that are included in the GC function.

Pells defined the safety margin as the difference between the mean arrival time

and the necessary arrival time at destination such as the work start time [38]. He

calibrated two different choice models by conducting a stated preference survey.

The first model was used to value the slack time and the second was used to value

late arrival time. He found that for trips to work, the cost of TTV is correlated to

the slack time added to the trip as a safety margin. In addition, he observed that,

as the TTV decreases, the slack time allowed by the trip maker also decreased.
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Unlike Pells, Polak [39] defined the safety margin as the difference between the

scheduled travel time and the expected travel time estimated by the trip maker.

He assumed that the passenger has a historical knowledge of expected travel time.

If the expected travel time is equal to the scheduled travel time, the safety margin

will be zero.

Cosslett and McFadden [27] empirically studied the tradeoff between mean

travel time, arrival delay, and the probability of arriving late for the automobile

users going to work. A sample of data from the Urban Travel Demand Forecasting

Project(UTDFP)3 was used. The probability of being late was treated explicitly

within the following utility function:

U(T ) = −αIV T (T )− βADE(T )− γPL(T ) (2.5)

where

U(T ) The utility associated with a passenger’s arrival time T

IV T (T ) In-vehicle time in minutes corresponding to arrival time T

ADE(T ) Arrival delay early time at work in minutes when T < the official

work time

PL(T ) The probability of arriving late if the planned arrival time is T

α The cost per minute of travel time

β The cost per minute of early arrival

γ The cost of probability of late arrival

The passenger’s objective was to maximize the utility function. The probability

of arriving late was estimated by a normal random variable with mean IV T (T ) and

standard deviation σ = a[IV T (T )− IV T (0)], where IV T (0) is the off-peak travel

time and a is a constant.

This study was one of the first studies to model passenger behavior as a function

of TTV . The main contribution of this study is to model the behavior of the auto

drivers for journey to work trips by expressing their trade-off between arriving

earlier than their necessary time, the additional travel time, and the probability of

being late.

Cosselett and McFadden concentrated on the difference of the trip maker sen-

sitivity to the penalty of arriving early and arriving late. However, the method of

3This is a sub-sample of the data compiled by the Urban Travel Demand forecasting Project
conducted by the Institute of Transportation Studies, University of California-Berkeley under the
supervision of McFadden
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estimating the variable represents the lateness penalty, which associated with the

TTV , is inconsistent with the method of estimating the earliness penalty in terms.

In addition, through the developed model, it was implied that the departure time

decision is fully represented within the model by not including a constant within

the model [1].

Based on earlier work by Gaver [16] and Cosselett [27], Small [44] developed a

discrete choice model based on the premise that the passenger will experience some

disutility due to arrival delay either with early or late arrival. He defined the arrival

delay (AD) as the deviation from the passenger necessary arrival time (NAT ) in

minutes rounded to the nearest five minutes. Small’s estimated GC function is

GC(th) = αIV T + βADE + γADL+ θDL (2.6)

where

GC(th) The generalized cost associated with a passenger’s departure time

from home th

th Passenger’s departure time from home

IV T In-vehicle time in minutes

ADE Arrival delay early time in minutes defined as MAX{-AD,0}
ADL Arrival delay late time in minutes defined as MAX{AD,0}
DL Dummy variable equal to 1 if ADL 6= 0 and equal to 0 otherwise

θ The additional discrete penalty due to late arrival

α The cost per minute of travel time

β The cost per minute of early arrival

γ The cost per minute of late arrival

Small claims that the time before the passenger’s necessary arrival time (NAT )

is considered less onerous compared to the time after NAT , which means people

prefer to arrive early rather than arrive late. Thus, in addition to the discrete

lateness penalty, the linear function associated with the penalty of arriving late is

steeper than the one associated with early arrival. Moreover, people prefer grater

travel time rather than arriving late. Consequently, Small measured the coefficients

based on β > α > γ. Figure 2.2 illustrates the arrival delay disutility functions

provided by Small.

As observed, unlike Cosslett, Small’s utility function has consistent definitions

for both early and late arrival penalties. However, the TTV effect is not captured
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Figure 2.2: Small’s Formulation of Arrival Delay Disutility

within the developed model. In addition, it was assumed that the passenger can

be certain to arrive at destination at NAT .

Based on the work of Gaver [16] and Small [44], Noland and Small [32]extended

the model of scheduling choice. They explicitly considered TTV within the GC

function model. Their model is as follow:

E[GC] = αE(IV T ) + βE(ADE) + γE(ADL) + θPL (2.7)

where

E[GC] Expected generalized cost

E[IV T ] Expected In-vehicle time in minutes

E[ADE] Expected arrival delay early time in minutes defined as MAX{-AD,0}
E[ADL] Expected arrival delay late time in minutes defined as MAX{AD,0}
PL The probability of being late

θ The additional discrete penalty due to late arrival

α The cost per minute of travel time

β The cost per minute of early arrival

γ The cost per minute of late arrival

All the terms included in the model are based on the distribution of the travel

time. They introduced IV T as the summation of three components:
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1. Free Flow travel time (Tf ) between home and work and

2. Extra travel time due to recurrent congestion (Tx(th)) that is a function of

departure time from home.

3. Extra travel time due to non-recurrent congestion (Tr(th)) that is a function

of departure time at home.

They assume that Tx can be modeled as the safety margin the passengers allow to

avoid arriving late at their destination and Tr is modeled as a random variable that

is independent of recurrent congestion and departure time. They have evaluated

the model using two different distributions for Tr: an exponential and a uniform

distribution. They have derived the optimal expected costs by replacing the term

Tr by the mean of Tr to indicate the cost associated with travel time variability

(TTV ) within the model as shown in Equation 2.8.

E[GC]∗ = α(Tf + Tx + b) + θP ∗L + b

{
β ln

[
θ + b(β + γ)

b(β − α∆)

]
− θ(β − α∆)

θ + b(β + γ)
− α∆

}
(2.8)

In this case, the probability of being late, P ∗L, is estimated by

P ∗L =
b(β − α∆)

θ + b(β + γ)
(2.9)

where

E[GC]∗ Expected generalized cost

b Mean of Tr

∆ The change in the recurrent congestion profile corresponding to the

departure time (increases as the departure time delays)

P ∗L The optimal probability of being late

Noland and Small compared the result of E[GC]∗ generated by the two assumed

Tr distributions. It was found that the results are not significantly different; the

largest difference was $0.73 when AD=30. In addition, the cost associated with

schedule delay, when a uniform distribution was assumed, had no significant effect

on the E[GC]∗. However, the proportion when exponential distribution was as-

sumed, consistently represented almost a half of E[GC]∗, 46-48%. In both distribu-

tions, as the standard deviation increased, the proportion of cost of the probability

of being late,P ∗L, within the expected cost function decreased due to the greater

safety margin that was allowed by the trip maker to avoid late arrival.
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Noland et al [33] assumed that the TTV itself can be a source of inconvenience

due to the inability of the trip maker to plan accurately. Therefore, based on the

model developed by Noland and Small shown in Equation 2.7, Noland et al [33]

extended the scheduling model by adding a new term called Planning Cost, CP .

Therefore, the total expected cost is given as Equation 2.10, the sum of expected

cost due to arrival delay, E[GC]AD expressed in Equation 2.7 as E[GC] and CP .

E[GC] = E[GC]AD + CP (2.10)

They assume that CP is a function of the standard deviation of the extra travel

time due to non-recurrent congestion, σ(Tr) with δ as a coefficient. Hence, the

model is given as follows:

E[GC] = αE(IV T ) + βE(ADE) + γE(ADL) + θPL + δf(σ) (2.11)

The model in Equation 2.12 implies the consideration of both approaches. Regard-

ing CP , Noland et al evaluated the model by measuring TTV in two different ways.

First, they included the travel time standard deviation within the model and found

δ was statistically significant, but with an illogical sign (positive.) Second, they

included the travel time coefficient of variation (standard deviation/mean) instead

of the standard deviation and found that although the sign was logical, the value

of δ was not statistically significant. In addition, the lateness probability term,

PL, was consistently significant over all the evaluated models. Therefore, when

the model is considering the arrival delay penalties, there is no need to consider a

separate measure of TTV such as travel time standard deviation. The source of

inconvenience and stress due to TTV is effectively represented by the late arrival

and adherence to strict schedules of the trip maker.

Through several hypothetical simulations, Noland et al [33] analyzed the effect

of TTV on trip maker cost and behavior. They found that as the probability of

non-recurrent congestion decreases, the cost associated with early arrival increases,

β. Moreover, as the TTV increases, the cost associated with lateness probability,

θ, increases as well as the cost of expected travel time, α. In contrast, the planning

cost, CP , has a small impact on the total cost by the negligible variation over differ-

ent nonrecurrent congestion probabilities. These findings suggest the importance

of scheduling delay measures in the utility function [31].

Based on the model developed by Noland et al in Equation 2.12, Small et al have
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modified the model in two ways, found to be essential distinctions to the model [45].

The first is suggesting that the GC does not vary linearly with the arrival delay

early (ADE) term. They suggested a quadratic relationship to be included within

the model; thus, the term E(ADE)2 was added as a new variable. The second is to

add another term which represents the probability of extra late arrival,PXL, under

the condition of reported flexible arrival time at work. This term is referring to the

probability of exceeding a time point set by the trip maker as the latest possible

arrival time at work before facing serious consequences of being late. The model

was given as follows:

E[GC] = αE(IV T )+βE(ADE)+γE(ADL)+θ1PL +δf(σ)+β2E(ADE)2 +θ2PXL

(2.12)

The coefficients of schedule delay in the new model followed the expected effect

on trip maker, β > α > γ with positive impact on the total expected general-

ized cost (E[GC]). With regards to the new variables, Small et al found both of

them are statistically significant. The coefficient of the expected arrival delay early

(E(ADE)) has a small negative magnitude and as well as the coefficient E(ADE)2,

but with a positive sign. The model implies that the passengers will be pleased

by arriving a few minutes early (i.e. 3minutes earlier than theirNAT ). However,

as long as the arrival time increasingly deviates from their NAT ,the GC increases.

Like Noland et al [33], Small et al found that the variable measuring the standard

deviation of travel time has a negligible contribution on total expected generalized

cost (E[GC]). In addition, it is not statistically significant and has an illogical

positive sign.

Bates et al [2] and Noland and Polak [31] show that the mean-variance and

scheduling approach are equivalent under some certain assumptions:

1. Travel time variability has an exponential distribution with parameter b,

2. There is no disutility (cost) associated with arriving late (i.e.θ = 0), and

3. The additional in-vehicle time (IV T ) resulting from recurrent congestion

travel time (Tr) is the same for all departure times.

When these three assumptions are made, the GC is a linear function of travel time

standard deviation (b) as shown in Equation 2.13 which is similar to the mean-
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variance approach.

E[GC]∗ = αIV T + b β ln

(
1 +

γ

β

)
(2.13)

where

IV T Average in-vehicle travel time

Under these assumptions, the GC no longer depends on the distribution of

Tr. If all the model coefficients, α, β, and γ, are positive, EC∗ is a increasing

linear function of mean and standard deviation of the total travel time. The three

mentioned simplification assumptions are not likely to occur in reality; however, a

part of this assumption might occur by some modes [31]. For instance, when the

service is running in the dedicated bus lane i.e public transportation, it will not be

affected by non-recurring traffic. Thus, δ = 0 which simplifies the model; however,

the model is not linear in travel time standard deviation [31].

All the previous reviewed scheduling models were proposed for automobile users

and assume continuous departure times. The majority of the studies demonstrate

that the scheduling approach is better than the mean-variance approach in reflecting

the effect of TTV on passengers’ behavior. However, mean-variance models have

been used more widely in practice due to their straight foreword implementation.

2.3 Reliability in Public Transportation

In contrast to the auto-based models discussed in the previous section, departure

times choices for public transportation passengers are discrete (scheduled departure

times). Due to the discreteness of the choice, the optimal departure time is not

necessarily equal to the optimal departure time in the continuous case [13].

Among the previous research findings, the majority concur that the travel time

variability (TTV ) effect can be captured only by the scheduling delay measures

within the utility function. However, Bates et al. [2] disagreed with this argument

when considering public transportation system passengers. They suggest that pas-

sengers may dislike the delay incorporated in the service schedule, to accommodate

this, and therefore they considered two new variables in the E[GC] function namely:

schedule delay early (SDE) and schedule Delay late (SDL).

SD = AAT − SAT (2.14)
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SDE =

{
SD If SD < 0

0 Otherwise
(2.15)

and

SDL =

{
SD If SD > 0

0 Otherwise
(2.16)

where

SD Schedule adherence delay

SAT Schedule arrival time

AAT Actual arrival time

Therefore, the expected utility function is given as

E[GC] = αE(IV T ) + βE(ADE) + γE(ADL) + θPL + β2E(SDE) + γ2E(SDL)

(2.17)

Bates et al [2] have conducted a stated preference survey asking respondents to

choose between two services with different characteristics. The result obtained from

the model revealed some differences when compared to models used for car users.

They found that with the consideration of the mean or the standard deviation of

schedule delay the coefficients were significant and have logical signs.

Bates observed that, for rail services, the distribution of travel time was not ad-

equately represented by standard mathematical distribution which led to incorrect

interpretation [2]. In addition, they found that all coefficients are statistically sig-

nificant and have the right sign, which suggests the importance of the modification

in the model.

In the case of where actual arrival time (AAT ) is later than scheduled arrival

time SAT but earlier than a passenger’s necessary arrival time (NAT ), the expected

arrival delay early penalty (ADE) decreases as the AAT moves towards the NAT .

On the other hand, the disutility associated with schedule adherence delay due to

late arrival (SDL) in regards to scheduled arrival time (SAT ) increases regardless

of NAT [2] i.e. people dislike being later than expected, even if they are not later

than needed. Figure 2.3(a) illustrates the importance of adding the adherence

schedule delay term in the model with such a case.

The model developed by Bates et al [2] based on the earlier work of Noland and

Small [32] shown in Equation 2.17 is the most adequate and comprehensive model

discovered in the review of the literature that can be used to incorporate service
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(a) Case1: When SAT < AAT < NAT

(b) Case2: When AAT < SAT < NAT

Figure 2.3: Adherence Schedule Delay Estimation

reliability within the GC function for public transportation. However, there remain

several weaknesses associated with this model:

1. In some cases, the arrival delay (AD) and schedule delay (SD) will overlap;

in contrast to the previous example, when actual arrival time (AAT ) is earlier

than the scheduled (SAT ) and NAT , the difference between AAT and SAT

will be double counted within the arrival delay and schedule delay penalties

as shown in Figure 2.3(b),

2. The transit passenger’s anxiety associated with deviations from the schedule

of inter station travel times while enroute to the destination station is not

considered within the model, and

3. The waiting time penalty is not incorporated within the model.

2.4 Summary

This chapter has focused on the work that has been directed at understanding the

impact of service reliability on trip makers’ behavior and cost. First, it presented

the different definitions of service reliability provided by researchers which simply

can be defined in the public transit context as transit units (TUs) departing on
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time, having a reasonable travel time, arriving at scheduled arrival time. It has

also addressed the objective and the importance of the explicit consideration of

service reliability within the calculation of GC and the utility functions.

Two different approaches have been pursued by the existing work, namely mean-

variance approach and scheduling approach. Although the mean variance approach

is widely used due to its ease of implementation, most of the authors agree that

the scheduling approach is more representative of travel time variability (TTV ).

A review of existing scheduling models was conducted and discussed. Limitations

associated with the reviewed models were identified. Although the significance of

all the variables included within the different discussed models, the impact of TTV

has not been properly considered through them.

The research proposed herein is aimed to extend the previous generalized cost

model of Bates et al. This research strives to develop a methodology that can quan-

tify the impact of service reliability on the individual trip maker. The next chapter

outlines the proposed simulation framework using the new extended scheduling

model.

In the next chapter, the proposed GC model that incorporates service reliability

is introduced in addition to the explanation of research methodology.
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Chapter 3

Research Methodology

Passengers’ behavior is influenced by transit service travel time variability (TTV),

as discussed in Chapter 2. In the public transportation field, trip maker’s perception

of TTV depends on previous experience with the transit service. TTV is perceived

as a disutility of a journey by the trip maker in addition to the disutility associated

with travel time itself.

As discussed in the previous chapters, transit service reliability is important

for both transit users and service providers. In general, transit service reliability

affects the users’ behavior and mode choice which consequently has a direct effect

on the service provider.

In this chapter, a simulation framework utilizing AVLS data is illustrated and

explained in two sections. In first section, a new generalized cost model for public

transit users is developed that recognizes a number of the limitations associated

with the existing scheduling models discussed in the previous chapter. Section 2

outlines the simulation model used to quantify the impact of transit reliability on

transit user cost.

3.1 Proposed Generalized Cost Model

As discussed in Chapter 2, the existing scheduling models reviewed have not prop-

erly captured the TTV impact within the generalized cost and utility functions. In

addition, most of these models were developed to be used for car users with only

a few that considered the specific nature of the public transport. In this section,
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based on the seminal work of Small [44], Noland and Small [32], and Bates [2], the

GC model is extended to consider the three limitations discussed in Chapter two:

1. Incorporating the waiting time penalty within the model;

2. Incorporating the schedule delay penalty in an alternative form;

3. Incorporating the transit passenger’s anxiety associated with deviations from

the schedule of inter station travel times while enroute.

The proposed generalized cost function considering reliability (GCR) of transit ser-

vice is as follows

GCR = α1WT +α2SIV T +α3IV TD+α4ADE +α5ADL+ θδ+α6ANX +α7SD

(3.1)

where

GCR The generalized cost considering reliability (minutes)

WT Passenger waiting time at boarding station (minutes)

SIV T The scheduled in-vehicle time between O-D stations (minutes)

IV TD The in-vehicle time delay (minutes)

ADE Arrival delay early time (minutes)

ADL Arrival delay late time (minutes)

θ The additional discrete penalty due to late arrival

δ Late dummy variable equals 1 when ADL > 0 and 0 otherwise

ANX Anxiety penalty of a transit passenger during the trip

SD0.9 Schedule adherence delay penalty (minutes)

αi The relative importance of each variable

In subsequent sections, each of the variables associated with service reliability

included in the proposed GCR model is discussed in detail.

3.1.1 Waiting Time Penalty

The scheduling model developed by Bates et al [2] considered the impact of service

reliability on the arrival time by assuming that the service is reliable at boarding

stations (meaning, the TU always departs on time). In reality, when transit head-

way is long and service is reliable, most transit passengers arrive at their origin

stations shortly prior to the scheduled departure time (SDT ) to minimize their
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waiting time (WT ) [53]. Naturally, this assumes that passengers are aware of the

service reliability.

In the light of unreliability at boarding stations, individual waiting time is ex-

plicitly treated as an additional term within the GCR model. At the individual

transit passenger level, WT is calculated as the difference between TU actual de-

parture time, ADT, and passenger arrival time, PsAT, at a particular station as

expressed in Equation 3.2.

WT = ADT − PsAT (3.2)

In an unreliable transit system, schedule adherence is typically poor and TUs de-

part later (or less commonly earlier) than scheduled departure time (SDT ). When

the TU departs earlier than SDT , the passenger waiting time (WT ) is reduced

unless the TU departs before the passenger arrival time (PsAT ), in this case dra-

matically increased (Figure 3.1(a)). When the TU departs later than SDT, WT

also increased (Figure 3.1(b)).

(a) Case1: PsAT > ADT

(b) Case2: PsAT < ADT

Figure 3.1: Passenger Waiting Time at Boarding Station
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Table 3.1: The three cases that WT Penalty Varies According to them

ADT PsAT WT Penalty
< SDT < ADT Low
> SDT < ADT High
< SDT > ADT Very High

3.1.2 In-vehicle Time

The in-vehicle time IV T term in the proposed model was disaggregated into two

components: the scheduled in-vehicle travel time (SIV T ) and the in-vehicle travel

time delay (IV TD). The SIV T is the service expected travel time between O-

D stations pair. The IV TD term may take on either positive or negative values

depending on the variation in the travel time relative to the the scheduled travel

time (STT ).

IV TD = ATT − STT (3.3)

where

IV TD In-vehicle travel time delay (minutes)

ATT Actual travel time for the trip (minutes)

STT Scheduled travel time for the trip (minutes)

3.1.3 Arrival Delay Penalty and Discrete Lateness Penalty

Transit users face the discreteness of the service departure time. That means pas-

sengers have to comply with the service schedule by adjusting their departure time

in order to arrive at their destination prior to their necessary arrival time (NAT).

It is assumed that NAT is the latest time travelers can arrive at their destination

without being late. Based on the approach introduced by Small [44], passengers will

incur extra cost associated by arriving at their destination earlier or later than their

NAT. For early arrival, the cost decreases as actual arrival time (AAT) approaches

passenger’s necessary arrival time (NAT). On the other hand, if actual arrival time

(AAT) is after passenger’s necessary arrival time (NAT), the cost increases as a

function of arrival delay (AD) in addition to a discrete cost of not arriving on time

as shown in Figure 3.2. In general, early arrival and late arrival are valued by users

depending on the purpose of their trip. Regarding a passenger’s necessary arrival
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time (NAT), arrival delay (AD) is expressed as follow:

AD = AAT −NAT (3.4)

ADE =

{
−AD If AD < 0

0 Otherwise
(3.5)

and

ADL =

{
AD If AD > 0

0 Otherwise
(3.6)

where

AD Arrival delay in minutes

ADE Arrival delay early in minutes

ADL Arrival arrival delay late in minutes

Figure 3.2: Small’s Formulation of Early and Late Arrival Penalties

In the case of arriving later than passenger’s NAT (ADL > 0), the late dummy

variable will be equal to zero and therefore an additional discrete penalty (θ) is

added to the late arrival penalty.

3.1.4 Anxiety Penalty

After transit passengers board the TU, they may experience some anxiety associated

with the possibility of arriving late at their destination. The level of anxiety expe-
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rienced by passengers during the trip varies along the route according to on time

performance of the TU until they arrive at their destination station. Passengers

evaluate the service performance at boarding stations and at each intermediate sta-

tion on the route by estimating the probability of arriving late at their destination

(i.e. estimate the probability of arriving later than their NAT ). Mathematically,

in this research, it is proposed that anxiety can be expressed as the probability of

ADTO +ATTOD > NAT multiplied by the time that this probability of being late

is experienced, which is ATT between O-D pair or ATT between the stop stations

in route during the trip, as shown in Equation 3.7.

ANX(i,i+1) = PLate(i)
× ATT(i,i+1) (3.7)

PLate(i)
=

∫ ∞
NAT−SDTi

f(ATTi−iD) dT. (3.8)

where

i Station number

iD Destination station

ANX(i,i+1) Passenger’s Anxiety between station i and and the following

station, i+ 1

PLate(i)
Passenger’s estimation at station i of probability of arriving late at D

ATT(i,i+1) Actual travel time between station i and the following station, i+ 1

f(ATTi−iD) Actual travel time probability distribution function between

station i and destination station, iD

Graphically, the probability of being late is shown in Figure 3.3 as the hatched

area under the ATTOD distribution curve.

Figure 3.3: The Probability of Being Late depends On TT Distribution
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It can be observed that the passengers’ anxiety is significantly affected by wait-

ing time and the distribution of travel times. When the TU departs the boarding

station late, the probability of arriving late at the destination station increases and

passenger anxiety also increases. Anxiety is also impacted by the enroute interme-

diate stations travel time experienced by TU as this influencing the probability of

arriving late at the destination station.

To illustrate, consider a passenger travel from station O to station D on a

route that passes through station Z (Figure 3.4(a). The TU is scheduled to depart

from station O at SDTO and arrive at station D at SATD. Using the historical

distribution of transit travel time from station O to station D, the probability of the

passenger arriving at the destination station D after NAT is illustrated in Figure

3.4(a). However, the TU is delayed and departs at time ADTO; consequently, the

distribution of the arrival time of TU at station D is given by the travel time

distribution from station O to station D but shifted by the amount of time of

ADTO − SDTO.

Accordingly, the probability of being late increases as shown in figure 3.4(b). At

intermediate station Z, the passenger re-evaluates the performance of the service

and finds that the travel time from station O to station Z has been longer than

scheduled. Using the distribution of travel time from station Z to station D, the

distribution of arrival time at station D can be updated. The anxiety penalty this

passenger experiences on this trip is shown in Equation 3.9 (see Figure 3.5).

ANX = PLate(O)
× ATTO−Z + PLate(Z)

× ATTZ−D (3.9)

where

ANXO−D Passenger’s Anxiety between O and the following station

PLate(O)
Passenger’s estimation at O of probability of arriving late at D

ATT(O−Z) Actual travel time between station O and the intermediate station Z

PLate(Z)
Passenger’s estimation at Z of probability of arriving late at D

ATT(Z−D) Actual travel time between station Z and the destination station Z
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(a) Case1: Scheduled Trip

(b) Case2: Actual Trip

Figure 3.4: Anxiety Penalty Estimation as a Function of TTV and ADT
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Figure 3.5: The probability of Late at Origin Station and Station Z

3.1.5 Schedule Adherence Penalty

There is some evidence [2] suggesting that transit passengers experince a cost as

a result of unreliable service even if their probability of arriving later than their

NAT is zero (i.e. ANX=0). In the scheduling model developed by Bates et al [2],

this penalty is represented by the term SD (schedule adherence delay). However,

as discussed in Chapter 2, this formulation is not suitable for some situations.

The standard deviation is commonly used to measure the dispersion of data

and has been used to represent the level of scheduled adherence. However, arrival

time distributions are typically non symmetrical and skewed to the right. For non

symmetrical distributions, the standard deviation is less meaningful than a stated

percentile.

Thus, the difference between the 90th percentile and 50th is added as a measure

of the service variability regarding schedule adherence at destination as expressed in

equation 3.10. This percentiles are subjectively chosen on the basis of engineering

judgement. Figure 3.6(a) and 3.6(b) illustrates PDF and CDF distribution curves,

respectively, for a particular station from which the schedule delay 90th and 50th

percentiles can be determined.

SD = SD0.9 − SD0.5 (3.10)

where

SD0.9 Schedule delay 90th percentile at destination station

SD0.5 Schedule delay 50th percentile at destination station
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(a) Case1: PDF

(b) Case2: CDF

Figure 3.6: Distribution Showing the 90th and 50th Percentile for a Data Set
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3.2 Simulation Model

By their nature, reliability models are based on probabilistic frameworks. The

approach to applying these models is a Monte-Carlo simulation. A Monte-Carlo

Simulation approach is categorized as a sampling method that generates two or

more random variables as inputs for the model. Those randomly generated variables

are based on probability distributions to simulate a sample from the population.

A Monte-Carlo simulation approach has been used in this research to quantify

the impact of service reliability on user cost. The model is developed at a passenger

level: the cost associated with a single trip for a single passenger is estimated using

the proposed GCR model (equation 3.1). These estimated costs are compared to

costs estimated from conventional GC model formulation which is not considering

service reliability. The Monte-Carlo simulation is also used in the decision process

used by individual transit passenger to select their trip departure time to minimize

their expected GC.

3.2.1 Origin and Destination Stations

The Monte-Carlo simulation assumes that the transit network consists of a single

transit line with n stations. Each station has an equal probability of being chosen

either as an origin or destination station by a passenger.

Thus, the first random variables generated by the simulation are origin and

destination station numbers for the individual trip. Those random variables, RV 1

and RV 2, are integer numbers and uniformly distributed on the interval (1,n) and

they are not equal ( i.e. Origin 6= Destination). The discrete probability density

function is

f(i) =

{
1

n−1
for 1 6 i 6 n

0 Otherwise

Having generated the random variables, the traveler’s trip is identified by origin

station, RV1, and destination station, RV2.
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3.2.2 Trip Maker’s Necessary Arrival Time

Each traveler has a necessary arrival time (NAT), reflecting the latest arrival time

at destination station that satisfies passenger’s trip objectives. Possible NATs are

assumed to be uniformly distributed in the range of the time between two consec-

utive TU scheduled arrival times.

Assuming that the SATTU = 0 and the next TU scheduled arrival time is

SATTU+1 = h, where h is the service headway, a passenger’s NAT is assumed to be

uniformly distributed in the range (0,h). Figure 3.7 illustrates the random variable

distribution that refers to the passenger’s NAT.

Figure 3.7: NAT Uniform Distribution at Destination between Two Consecutive
TUs Arrival Time

The impact of service reliability on traveler cost is essentially based on the

passenger’s NAT. Most of the reliability influenced penalties in the GCR function

are expressed in relation to the passenger’s NAT. Given an NAT, the passenger

selects a departure time to minimize his/her expected GC as described in the next

section.

3.2.3 Departure Time Choice

Having an assigned NAT, the passenger starts to assess trip departure time alter-

natives tD. By evaluating the expected cost of the trip due to the discrete nature of

transit service, the passenger assesses the expected cost associated with the tran-

sit unit (TU) departure time tD that arrives at SDT before and nearest to the

NAT, the previous transit unit TU−1, and the following transit unit TU+1. Then,

the passenger selects the one that provides the lower expected cost (i.e. minimum

E(GC)).

It is assumed that the traveler has experience with the transit service and there-

fore has a knowledge of the departure time and travel time distribution. Within the
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Monte-Carlo simulation, the distributions are obtained from collected field data for

transit units arrival, departure travel times.

The model used to choose departure time alternative ,tD, in this research is

derived from the proposed schedule model(GCR) expressed in Equation 3.1. For all

three tD alternatives associated with a specific trip, it is assumed that the expected

waiting time (E(WT )), expected in-vehicle time (E(IV T )), and schedule adherence

delay penalty(SD) are equal and therefore can be eliminated from the model (this

implies that headways are constant and the distribution of both departure time and

travel time do not change with the three tD alternatives). Thus, the model includes

only the penalties impacted by the NAT and tD by Equation 3.12 and 3.13.

E(GC) = α1E(ADE) + α2E(ADL) + α3ANX (3.11)

where

E(GC) The expected generalized cost

E(ADE) Expected early arrival delay time in minutes

E(ADL) Expected late arrival arrival delay time in minutes

ANX Anxiety penalty of a transit passenger during the trip

αi The relative importance of each variable

Accordingly, for each TU alternative, the expected arrival delay is estimated as

the sum of each of the possible values of AD at a specific schedule delay (SD) value

multiplied by the probability of obtaining that value. Mathematically, for each tD,

this is given as follows

E(ADE) =


n∑

i=1

(AD(AAT )i
P (AAT )i) for 1 6 i 6 i(NAT )

0 Otherwise

(3.12)

E(ADL) =


n∑

i=1

(AD(AAT )i
+ θ)P (AAT )i for i(NAT ) < i 6 n

0 Otherwise

(3.13)

where
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n AAT distribution class intervals number

i The number of the class interval, generated from the field data

AD(AAT )i
Arrival delay penalty corresponding to interval i

AATi The AAT midpoint of interval i

P (AAT )i Probability of arriving at any time time within the interval i

i(NAT ) The number of class interval includes passenger’s NAT

θ Late arrival discrete penalty

Graphically, the expected schedule penalties are presented in Figure 3.8(a) for

three alternatives tD. In Figure 3.8(b), the anxiety penalty is illustrated for the

same three alternatives. The anxiety associated with the previous TU, TU−1 will be

zero because there is no probability of being late at the destination (i.e. PLate = 0).

In contrast for TU+1, the probability of being late is equal to one, which means

that there is certainty that the passenger will be late, and therefore the anxiety

term will have a large value.

(a) Case1: Expected Arrival Delay

(b) Case2: PLate at Destination

Figure 3.8: Expected Schedule Delay Penalties and PL estimation for O-D Three
Departure Time Alternatives
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The E(GC) is calculated for each tD using Equation 3.11 and the tD provides

the minimum cost is chosen by the passenger.

3.2.4 Passenger’s Arrival Time

The next parameter generated in the simulation is passenger arrival time at the

origin station. It was found from the literature review that for transit service with

short headway the passengers arrive randomly throughout the headway. However,

with longer headway service, travelers try to minimize their waiting cost by ad-

justing their arrival time with respect to the schedule departure time (SDT ) [4].

It is expected that the amount of time in advance of the schedule departure time

(SDT ) that passengers arrive is impacted by the service reliability. The num-

ber of passengers arriving at origin stations is increasing gradually in the range

(SDTTU−1, (SDT )TU) until a peak point and then it is decreasing. This can be ex-

plained by passengers trying to optimize their arrival time before SDT by a certain

period; however, at a point of time, the probability of missing the TU because it

departs the station prior to the SDT increases the cost associated with the trip.

Consequently, it is assumed that the distribution of passenger arrival time fol-

lows a triangular distribution. Assuming SDTTU = 0 and the previous TU de-

parture time SDTTU−1 = −h, the passenger arrival time (PsAT ) distribution is

shown in Figure 3.9. The probability of a passenger arriving at time t (PsAT ) is

be estimated as

f(PsAT |a, b, c) =



2(t−a)
(b−a)(b−c)

for a 6 t 6 c

2(t−a)
(b−a)(b−c)

for c 6 t 6 b

0 Otherwise

(3.14)

where

f(t|a, b, c) The probability of a passenger arriving at time t

a, b, c Triangle distribution parameters

For the simulation model, an individual passenger arrival time (PsAT ) is se-

lected randomly from the triangular distribution. Thus, the inverse of the triangu-

lar distribution is used to transform a continuous uniform random variable in the
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Figure 3.9: Assumed Distribution of Passengers Arrival Time

range (0,1) to a variable that follows the triangular distribution in Figure 3.9. The

transforming process is expressed as

PsAT =


a+

√
u ∗ (b− a) ∗ (c− a) for

√
u ∗ (b− a) ∗ (c− a) + a < c

b−
√

(1− u) ∗ (b− a) ∗ (b− c) for
√
u ∗ (b− a) ∗ (c− a) + a > c

(3.15)

where

u Uniformly distributed random number in the range of (0,1)

PsAT Passenger arrival time

a, b, c Triangle distribution parameters

3.2.5 Calculation of GC

Returning to the proposed model GCR in equation 3.1, the GC for a specific trip can

be estimated. First, the waiting time penalty is calculated as explained previously

as the difference between the passenger arrival time (PsAT ) and a transit unit

actual departure time (ADT ). Second, in-vehicle time (IV T ) is randomly selected

from the actual travel time (ATT ) distribution for each O-D station within the

journey. For instance, if the passenger is boarding at station O going to station

D through station Z as illustrated in Figure 3.10, two ATT random variables are

generated. One for the travel time from station O to station Z and the other from

station Z to station D. Third, the arrival delay early (ADE) and late (ADL) are

computed using Equations 3.4, 3.5, and 3.6. Fourth, the anxiety penalty associated

with the trip is estimated using Equations 3.7 and 3.8. Fifth, the schedule delay
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Figure 3.10: Graphical Example for an Individual Traveler Trip

penalty (SD) is calculated based on the actual arrival time (AAT ) distribution

that has been calibrated from field data. The 90th and 50th percentiles of schedule

delay are computed for all station pairs.

Having estimated generalized cost using the proposed model (GCR), the cost us-

ing the conventional generalized cost model (GCC) is also calculated using equation

3.16.

GCC = (α1AT + α2WT + α3IV T )V OT + f (3.16)

where

GCC Generalized cost ($/trip)

AT The access time to the line (minutes)

WT Waiting time (assumed to be equal to half of the headway) (minutes)

IV T In-vehicle time (minutes)

V OT The value of time ($/min)

f The service fare ($)

αi The relative importance of the term

As a result, the GC for an individual passenger for a single trip for a specific O-
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D stations using both GC models (GCR and GCC) are computed. By running the

simulation for a large number of passengers for each pair of stations, the average

GCR can be estimated. By comparing the average GCR to the result obtained

from GCC function for the same O-D pair, the impact of service reliability can be

quantified.

3.2.6 Numerical Example

A hypothetical numerical example for the simulation model is provided to illustrate

the calculation of the GC using the GCR formulation. Assume that the simulation

model generated a passenger traveling from station O to station D through station

Z. The passenger’s generated necessary arrival time (NAT ) is 7:44:00.

The first step is to choose the departure TU that minimizes the E(GC) as

defined in Equation 3.11. The schedule for the three alternatives departure TUs is

shown in Table 3.2. From the table, the scheduled travel time between station O

and station Z is six minutes (i.e. SIV TO−Z=6 min) and the scheduled travel time

from station Z to station D is three minutes (SIV TZ−D=3 min). Therefore, the

total scheduled in-vehicle time for the generated trip is nine minutes (SIV TO−D=9

min).

Table 3.2: The Transit Service Schedule Departure Time for the Three Departure
Time Alternatives

Schedule Dep/Arr Time
Station TU-1 TU TU+1

O 7:15:00 7:30:00 7:45:00
Z 7:21:00 7:36:00 7:51:00
D 7:24:00 7:39:00 7:54:00

Using Equation 3.11, the E[GC] results are calculated and shown in Table 3.3.

Based on the results, the transit unit TU is chosen by the passenger.

Table 3.3: E[GC] for Each Departure Time Alternative

TU-1 TU TU+1
E[GC] 20.50 15.30 35.25

The passenger arrival time at boarding station is generated based on the triangle

distribution assumed to be four minutes prior to the SDTTU (i.e. PsAT = 7:26:00).
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In this case, the parameter C in the triangle distribution is assumed to occurs at

time SDTTU − 3 minutes.

The distribution of TU actual departure times is known and a hypothetical AAT

can be generated. It is assumed to be one minute before the schedule departure time

(SDT ) (i.e. ADT=7:29:00). Similarly, the actual travel time for each segment in

the route is generated using the field data; actual travel time between station O and

Z is eight minutes and the actual travel time between Z and D is three minutes (total

in-vehicle time IV T=11 min). In this case, the actual arrival time at destination

(station D) is calculated (AATD=7:40:00) which is earlier than the passenger’s

NAT . Therefore, there is no late arrival delay penalty (ADL=0) and the early

arrival delay calculated as the difference between AAT and the passenger’s NAT

(i.e. ADE=4 min). The waiting time is estimated as the difference between the

actual departure time and the passenger arrival time (WT=3 min). The probability

of being late is calculated at station O and station Z (PLateO
= 0.001 and PLateZ

= 0)

and therefore the anxiety is calculated as follows

ANX = PLate(O)
∗ IV TO−Z + PLate(Z)

∗ IV TZ−D = 0.008 (3.17)

Finally, the GC using GCR formulation is calculated based on the weighting or the

value of time for each of the variables included within the model.

The next chapter presents an application of the simulation framework using

AVLS data from The Regional Municipality of Waterloo to quantify the impact of

service reliability on passenger cost.
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Chapter 4

Case Study

4.1 The Region of Waterloo

The Regional Municipality of Waterloo, which is located in Southern Ontario, is

one of the fastest growing communities in Canada. It consists of the cities of Kitch-

ener, Waterloo, Cambridge and four rural townships. Currently, the population of

Waterloo Region is approximately 500,000 but this number is expected to reach

730,000 in the next 20 years [34].

In 2001, the Region of Waterloo developed a Regional Growth Management

Strategy (RGMS) to provide direction for long-term growth management within

the region. RGMS was built through extensive consultation with the citizens of

the community by identifying their goals and outlining a plan to achieve them.

One of the basic goals of RGMS is the provision of a suitable transportation sys-

tem that accommodates the future travel demands and has a positive influence on

land use [8]. Grand River Transit1(GRT) is the public transport operator in the

region created by the Region of Waterloo in 2000. GRT replaced city-based service

and provided a synchronized service between the cities of Kitchener, Waterloo and

Cambridge. Since that time, the ridership has improved dramatically. Recently, in

response to community needs, GRT has upgraded their fleet to include buses with

low-floors, wheelchair access, bicycle racks on the front etc. Operationally, one of

the essential enhancements in the region’s transportation system toward providing

transportation alternatives is iXpress, the express bus service.

1A member of the Canadian Urban Transit Association
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4.2 GRT iXpress Service

In 2005, GRT launched a limited stop express bus service running through the

three main cities in the region: Waterloo, Kitchener, and Cambridge. The service,

branded iXpress, has a length of approximately 33 km with 13 bus stations along

the route(Figure 4.1).

Figure 4.1: Grand River Transit iXpress Service Route and Stations

iXpress route stations are located at the major activity centers within the re-

gion serving four downtowns, two universities, five major shopping centers, office

complexes, major hospitals, and two transit terminals (Table 4.1). At the com-

mencement of service, the service operated only from Monday through Friday, from

06:00 to 19:00 with two different headways: fifteen-minute headway service during

morning and afternoon peak periods and thirty-minute headway during the mid-

day. In the last quarter of 2007, the weekday service hours were extended from

05:40 to 23:00; additionally, the service was expanded to operate on the weekends,

Saturdays from 07:30 to 19:30 and Sundays from 10:00 to 18:00.

As part of the service, GRT implemented advanced transit technologies on both

the iXpress fleet and route. Transit signal priority (TSP) has been deployed at

seventeen intersections along the iXpress route to improve reliability of the service.
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Table 4.1: Grand River Transit iXpress Stations and Centers Served

Station # Station Name Description
1 Conestoga Mall A major shopping center in Waterloo
2 McCromic A community center and public facilities
3 R&T Park UW Research and Technology Park
4 U Waterloo University of Waterloo at Davis Center
5 Laurier Wilfrid Laurier University
6 Uptown Waterloo King street beside Waterloo Town Square
7 Grand River Hospital A major hospital in the region
8 Charles Terminal Downtown kitchener bus terminal
9 Ottawa Ottawa St and Charles St intersection
10 Fairview A major shopping mall in Kitchener
11 Smart Centers A major shopping center in Cambridge
12 Cambridge Center A major shopping mall in Cambridge
13 Ainslie Terminal The main terminal in Cambridge

In addition, iXpress stations utilize variable message signs that display real-time in-

formation about the arrival time of the next bus. Most importantly for the purpose

of this research, each iXpress bus is equipped by a Computer-Aided Dispatch Sys-

tem (CAD) and Automated Vehicle Location System (AVLS). The CAD and AVLS

provide and archive real-time temporal and spatial data related to the performance

of the iXpress service.

4.2.1 iXpress Archived AVLS Data Analysis

In the past, transit agencies’ cost were much greater for data collection to monitor,

evaluate and enhance the efficiency of the system. With the introduction of AVLS,

compared to the manual data collection approach which needs a vast human re-

source, transit agencies are able to gather high quality spatial and temporal transit

operation data. These data can be transferred directly to the operation control

center for real-time applications or be archived for off-line analysis as shown in

Figure 4.2 [14]. Spatial data are used for the where query and temporal data are

used for the when query about any TU within a transit fleet in a transit service

network. For a specific transit service route, TUs travel through multiple stations

following a preset plan and schedule. The data captured by AVLS involves a record

that includes the time arriving at or departing from each station along the transit

route. These data are one of the basic components of the proposed framework in

this research.
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Figure 4.2: AVLS Data Collection, Analysis, and Service Evaluation Process

AVLS data collected from iXpress is imported into databases for off-line analysis

to evaluate the performance of the operations. The system is capable of providing

standard daily reports and query request reports from the archived AVLS data. In

addition, the archived data can be exported to a ”.csv” (comma separated values)

file format to be used for further analysis by researchers.

For the purpose of this research, the RMOW provided two months of archived

iXpress AVLS data: Mar 24th to May 24th, 2008 in 6659 data base format (dbf)

files. Each file has archived AVLS data for a particular bus on a particular day.

According to the type of analysis required in this research, all the provided dbf files

were combined into a single database. Approximately 163,500 data records existed

in the database including both Northbound and Southbound directions.

Not all the fields contained in the GRT database were required for the research

analysis. Consequently, the fields that are not required were eliminated. Table 4.2

lists the fields kept in the database and used in this research.

The AVLS data were collected and stored automatically in the database. How-

ever, the data may contain errors. Inaccuracies may occur either as a result of

incorrect location measurement provided by the GPS or an error may occur in the

matching of the appropriate scheduled data. Consequently, preliminary tests for

data quality assurance were conducted before the data were used for analysis. Each

record in the database was checked to determine if the recorded values exceed a

predefined threshold. If it does, then this record was eliminated from the database.

The remaining data were stratified by the a.m. and p.m. peak hours (Table 4.3)
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Table 4.2: Database’s Fields Used for Data Analysis

Field Name (Field Format) Description
Date (Date) The date of the trip
Bus ID(Number) The ID of the bus made the trip
Event (Number) ID given for each activity made by the bus

on the route
Trip Start (Number) ID given for all activities in one complete

direction trip a

Stop (Text) Giving the stop name
Actual Arrival (Time) The bus actual arrival time at the stop
Actual Departure (Time) The bus actual departure time from the stop
Scheduled Arrival (Time) The bus scheduled arrival time at the stop
Scheduled Departure (Time) The bus scheduled departure time from the stop

aOne direction trip: A trip made by a particular bus starts from the first station moving in
the southbound direction to the last station via versa

and were used in this research. Therefore, two Structured Query Language (SQL2)

statements were coded and executed in MS Access to retrieve the data associated

with the peak periods from the original database. The database derived from these

two queries formed the database used in the analysis in this research. The data

were analyzed at two different levels: Station Level and Segment Level.

Table 4.3: A.M. and P.M. Peak Hours

Peak Period Start End
A.M. Peak 07:00 10:00
P.M. Peak 15:00 19:00

4.2.1.1 Station Level Data Analysis

At the station level, schedule adherence delay (SD) distributions were estimated

from the AVLS data by computing the difference in arrival time, DAT , between

the actual and scheduled arrival time at a particular station and the difference in

departure time, DDT , between the actual and scheduled departure time from a

particular station.

DAT = AAT − SAT (4.1)

2SQL is a query language that helps to manage, query, retrieve, and modify databases
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DDT = ADT − SDT (4.2)

where

DAT Difference in arrival time (minutes)

DDT Difference in departure time (minutes)

As observed, each station is servicing two directions, NB and SB. Hence, the

distribution of SD is estimated for each station and direction. Queries written in

SQL were developed to retrieve the data under specific criteria. For instance, if the

distribution of the of the differences of arrival time was required for the Uptown

Waterloo station and the bus is traveling in the SB direction (i.e. the previous

station was Laurier) then the SQL statements are as follow

1. The field TripStartUptown = TripStartLaurier, which reflects that the bus

stoped at the two stations in the same one direction trip

2. The field EventUptown > EventLaurier, which identifies the trip direction

A sample from the previous SQL statements result is given in table 4.4. Similarly,

Table 4.4: A Sample form the Data Retrieved for DAT

Date Bus Num Event TripStart Stop DAT
4/1/2008 2406 1668427 1668403 Laurier -0:02:42
4/1/2008 2406 1668429 1668403 Uptown Waterloo -0:02:20
4/1/2008 2408 1668592 1668568 Laurier 0:00:41
4/1/2008 2408 1668595 1668568 Uptown Waterloo 0:01:13
4/1/2008 2409 1668789 1668768 Laurier 0:00:54
4/1/2008 2409 1668791 1668768 Uptown Waterloo 0:01:26
4/1/2008 2409 1668881 1668856 Laurier -0:01:07
4/1/2008 2409 1668883 1668856 Uptown Waterloo 0:00:15
4/1/2008 2411 1669740 1669718 Laurier -0:00:20
4/1/2008 2411 1669743 1669718 Uptown Waterloo -0:00:28
4/1/2008 2411 1669926 1669902 Laurier 0:00:26
4/1/2008 2411 1669928 1669902 Uptown Waterloo 0:01:50

DDT is estimated by creating SQL statements to retrieve data that meet the cri-

teria. Using the same example, DDT data for Laurier station in SB direction is

needed. Thus, the criteria is as follow

1. The field TripStartUptown = TripStartLaurier, which reflects that the bus

stops at the two stations in the same one direction trip
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2. The field EventLaurier > EventUptown, which identifies the trip direction

Having done the previous process, a csv format file is exported for every station

in each direction. Hence, schedule adherence delay (SD) distribution at any partic-

ular station can easily be found for either departure time or arrival time from data

files as shown in Figure 4.3. In total, there are 96 files for departure and arrival SD

data that are used later in the simulation.

Figure 4.3: Distribution of the Difference Between Actual and Scheduled Departure
Time

4.2.1.2 Segment Level Analysis

At the segment level, the distribution of the difference between the scheduled and

actual travel times is calculated for each pair of stations. The actual travel time is

calculated as the difference between the actual arrival time at a destination station

and the actual departure time from the origin station (Equation 4.3). The scheduled

travel time is computed the same way using the scheduled time. This calculation

needs to be done under certain conditions as follow:
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1. The field TripStartD = TripStartO, which reflects that the trip is made

between the O-D stations in the same one direction trip

2. The field EventD > EventO, which identifies the trip direction

ATTO−D = AATD − ADTO (4.3)

where

ATTO−D Actual arrival time between station O and D

AATD Actual arrival time at station D

ADTO Actual departure time from station O

Having done the previous calculation, the difference between the actual travel

time (ATT) and scheduled travel time (STT) is calculated for each pair of stations

and exported to csv file format. From these data, the distribution of the difference

in travel time (DTT ) can be developed for use in the simulation. In total, the

number of possible pair of stations is 156 pairs (13× 12) generated in separate files

including DTT.

4.3 Passengers Travel Time and Reliability Per-

ceptions

It was discussed previously that each passenger has a cost function depending on

different variables such as travel time, necessary arrival time, arrival delay etc.

Each passenger chooses the departure time of the bus that minimizes his/her GC

function associated with the trip. It is reasonable to expect that the consequences

of being late or early at the destination vary according to the purpose of the trip

and passenger characteristics.

Consequently, in this research, travelers are classified into three classes according

to the cost they incur as a result of arriving at their destination later or earlier than

their necessary arrival time (NAT):

1. Risk Averse Passengers (RAP). These are passengers who incur a high cost

when late and therefore usually are willing to accept only a small likelihood

of being late;
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2. Risk Moderate Passengers(RMP). Passengers who incur moderate cost when

late and therefore are willing to accept a greater likelihood of being late;

3. Risk Neutral Passengers (RNP). Passengers who incur low cost when late and

therefore are wiling to accept the greatest likelihood of being late.

The impact of poor service reliability on each passenger class varies according to the

different relative weighting of each penalty associated with the passengers’ trips.

The impact of poor service reliability on RAP class is grater than RPP class which

in turn grater than RNP class. These different weightings are reflected through the

use of class specific coefficients in the GCR model.

A value of one is assigned to scheduled in-vehicle travel time (SIV T ) coefficient.

The importance of each of the other variables in the GCR function is set relative

to SIV T (Equation 4.4).

GCR = α1WT + SIV T + α2IV TD+ α3ADE + α4ADL+ θδ+ α5ANX + α6SD0.9

(4.4)

It was recommended by many studies that waiting time is weighted two to three

times the in-vehicle time [26] [54]. However, there are no studies in the literature

that distinguish the waiting time coefficient by passenger type. Consequently, in

this study it is assumed that risk-averse passengers assign a higher weight to waiting

time than risk-moderate passengers who assign a higher weight than risk-neutral

passengers (Figure 4.4). Table 4.6 lists the waiting time coefficient assumed for

each passenger class.

The in-vehicle travel time delay (IV TD) is assumed to be perceived differently

in two ways according to actual arrival time (AAT ) by different passenger classes.

If AAT is later than passenger’s necessary arrival time (NAT ), the travel time will

be considered as a cause of being late; thus, it will be weighted more than the case

when AAT is prior to NAT , which results in early arrival, as shown in Table 4.5.

Table 4.5: The Weight of Late Penalty, α1, for Different Passengers Classes

α2 IVTD Coefficient
Passenger Class AAT<NAT AAT>NAT

RAP 1.25 2.5
RPP 1.25 2
RMP 1.25 1.5
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Figure 4.4: Graphical Representation of Waiting Time Penalty

Regarding the arrival delay (AD) either early or late, the penalties for each of the

three classes of passenger types were derived from Small’s arrival delay formulation

[44]. For risk-averse passengers, it is assumed that the cost of being early is lower

than the cost of being late; that the cost of arriving early is the lowest of the

three passenger classes; and that the cost of arriving late is the highest of the three

passenger classes. The discrete lateness penalty (θ) varies as a function of the service

headway (h) according to the passenger class. The AD penalties for the three classes

of passengers is illustrated in Figure 4.5. Table 4.6 provides the assumed values

for AD coefficients and the discrete lateness penalties for the different passengers

classes.

Studies in the literature suggest that the waiting time due to the uncertainty of

bus arrival time increases the customer’s anxiety [29] and therefore the perception of

waiting time was found to be 1.15 times the actual waiting time. Since the waiting

time is weighted as 2 to 3 times the in-vehicle time, it is assumed that the anxiety

coefficient should be weighted 2.3 to 3.45 times the in-vehicle time (SIV T ). It is

assumed that the schedule adherence delay penalty (SD) has the same weight as

the anxiety penalty. Similar to other coefficients, the risk-averse passenger class has

a higher weighting on these penalties than the other two passenger classes. Table
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Figure 4.5: Graphical Representation of Schedule Delay Penalties for Passengers
Classes

4.6 lists the assumed coefficient values for all variables and all passenger classes.

Table 4.6: GCR Model Coefficients for Different Passenger Classes

GCR model coefficients
Passenger Class α1 α3 α4 α5 α6 θ

RAP 3.5 0.25 1 2 2 0.5 h
RPP 2.85 0.3 0.5 1.5 1.5 0.25 h
RNP 2 0.35 0.35 1 1 0

All the coefficients in the GCR model have been subjectively chosen within

reasonable ranges. Calibrating values for these coefficients using empirical data

needs to be done; however, this is considered outside of the scope of this thesis. Most

studies that calibrate coefficients of the GC model use either revealed preference

(RP) or stated preference (SP) data [18].

Revealed preference data is collected by observing the choices that people ac-

tually make in real-world conditions. Stated preference data is collected through

experimental or survey situations based on hypothetical situations. The respon-

dents are provided with a set of hypothetical choice options and they are asked

to indicate what choice option they would select. The evaluation of passengers’
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behavior can be extracted through the choices they made based on the trade-off

between the variables within the GC function.

There are some drawbacks and limitations associated with each technique. First,

RP mirrors the reality of people’s behavior. In contrast, SP data lack reality, which

means that people’s choices are not necessarily what they actually do. However, SP

survey is beneficial when introducing new policies or situations that do not yet exist

and therefore cannot be obtained via an RP survey. In this research context, the

most challenging aspect of designing a SP survey is how to illustrate the reliability

terms in a clear manner that allows respondents to intuitively understand them.

4.4 Monte-Carlo Simulation

As discussed in Chapter 3, a Monte-Carlo simulation approach has been adapted

for the purpose of this research. The simulation model has been developed in

Matlab 2009 software to quantify the impact of service reliability on the passengers’

generalized cost. The simulation generates 10,000 passenger trips for each possible

O-D pair stations in the iXpress network.

4.4.1 Inputs into Simulation Model

Passengers are equally likely to belong to each of the three passengers classes. The

passenger arrival time distribution is different for each passenger class. For risk-

averse passengers, it is assumed that the passengers are likely to arrive earlier than

the other passenger classes as they wish to reduce the likelihood of missing the bus

and incurring a very high penalty for being late (Figure 4.6.) As observed in the

figure, there is a possibility that a passenger arrives before the departure time of

the bus (TU-1) prior to the target bus(TU). In this case, the passenger will select

to ride the previous bus (TU-1). The peak passengers arrival time for different

passengers classes have been subjectively specified as shown in Table 4.7.

Furthermore, it is assumed that not all the passengers are aware of the advertised

scheduled departure time (SDT ). Thus, a portion of each passenger class will arrive

randomly at boarding station. It is assumed that the portion of passengers who

are not aware of SDT is smaller for the risk-averse passengers than the other two

passenger classes (Table 4.7).
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Figure 4.6: Peak Passengers Arrival Time for Different Passengers Classes

Table 4.7: Inputs into Simulation Model Related to Passengers Characteristics

Passenger aware of SDT Peak PsAT (C)
Passenger Class % (min)

RAP 98 3.5
RPP 95 2
RNP 93 1

4.4.2 Output of Simulation Model

The simulation models each individual passenger trip. The model consists of four

main steps:

1. Passenger generation;

2. Departure time alternatives evaluation;

3. Penalties estimation;

4. Calculation of GC.

The last step in the simulation model is estimating both GC functions: the GCR

and GCC . At a passenger’s trip level, the GCC function for each O-D pair stations

is deterministic and equal for all passengers. However, most of the variables within

the GCR model are stochastic and therefore the GC of a trip between a given pair

of stations varies from one passenger to another even when the passengers have

the same class. Thus, the average of the GCR model for each passengers class is
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estimated and compared to the GCC . Table 4.8 summarizes the different variables

considered by GCC and GCR.

Table 4.8: Comparison of the Variables Included in GCC and GCR

Variables GCC GCR

WT 0.5 h f(ADT − PsAT )
IV T SIVT f(SIV T, IV TD)
ADE Not considered f(AAT −NAT )
ADL Not considered f(NAT + AAT ) + θ
Anxiety Not considered f(PLate, DTT )
SD Not considered f(90th − 50th)

In the next chapter, results from the simulation are presented, discussed, and

interpreted.
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Chapter 5

Results and Discussion

In this chapter, results from the Monte-Carlo simulation are presented and dis-

cussed. The first section provides general statistical results from the simulation

model. In Section 2, the conventional GC (GCC) and the GC considering service

reliability (GCR) estimations are presented. Section 3 discusses the reliability mea-

sure used in this research. Finally, the relationship between the estimated GCR

with the service reliability measure is demonstrated.

5.1 Results

A total number of 156,000 passenger trips (10,000 between each O-D pair) were

generated by the simulation over the entire iXpress network. One third of the

passengers traveling between each O-D pair were of each of the three types namely

risk-averse passengers (RAP), risk-moderate passengers (RMP), and risk-neutral

passengers (RNP). All these passengers were modeled to select a particular bus for

their trip that minimized their expected generalized cost.

Regarding the departure time evaluation process in the model, the results indi-

cate that 68.64% of passengers selected the target bus (i.e. TU); 30.67% selected

the previous bus (i.e. TU-1); and 0.69% selected the bus following the target bus

(TU+1). Figure 5.1 demonstrates the portion of each passenger class that selected

the different departure time alternatives.

As shown in Figure 5.2, almost all passengers (99.27%) that select the previous

bus (TU-1) arrive prior to their necessary arrival time (NAT ).On the other hand,

between 3.7 and 7.2% of passengers who choose the target bus (TU) arrive late.
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Figure 5.1: Selection of Departure Time Alternatives

Figure 5.2: Fraction of Passengers Arriving Late at Destination

Between 24 and 70% of passengers who select the following bus (TU+1) arrive after

their NAT . As expected, risk-neutral passengers are more likely to arrive late than
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other passenger classes because they incur the lowest penalty for doing so.

5.2 Generalized Cost Calculation Results

5.2.1 Conventional Generalized Cost(GCC)

The conventional generalized cost formulation does not consider variability (relia-

bility) of service. Consequently, it is useful to compare values obtained from the

conventional generalized cost formulation (GCC) with these obtained from the pro-

posed reliability generalized cost formulation (GCR). Therefore, the GCC has been

estimated for each stations pair. In the GCC , it is assumed that for a given O-D

pair, all passengers have the same average waiting time and experience the exact

scheduled travel time (STT ). Consequently, all passengers making a trip between

the given O-D pair stations have the same generalized cost regardless of their actual

waiting time, travel time, and risk tolerance characteristics. This is not a realistic

assumption as is illustrated later.

In Figure 5.3, a random sample of 30 simulated passengers having the same risk

aversion characteristics traveling from Conestoga Mall station to Uptown Waterloo

station have been chosen as an example. This trip has a scheduled travel time

(STT ) of 20 minutes and a service headway (h) of 15 minutes. Hence, GCC can be

estimated as follows

GCC = 2.5WT + SIV T

WT = 0.5(h)

∴ GCC = 2.5(7.5) + 20 = 38.75minutes

This cost value, as mentioned before, is assumed to be experienced by all passengers

traveling over this section. However, as illustrated by the sample data shown in

figure 5.3, there is a large variation in actual in-vehicle travel time and passenger

waiting time compared to the values used with the GCC calculation. Those vari-

ations are not captured by GCC . Consequently, GCC have been estimated for all

possible O-D stations along the iXpress as a first step to be compared with GCR

to quantify the impact of travel time variability on users’ generalized cost.
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Figure 5.3: Passenger’s Actual Waiting Time and In-vehicle Time compared to the
Expected Values Considered in the GCC

5.2.2 Generalized Cost Considering Service Reliability (GCR)

When the travel time variability is considered in the GCR calculation, it is observed

that the GCR varies from one passenger’s trip to another. The variations associated

with GCR result from the variability of passenger arrival time at boarding station,

service reliability, passenger’s necessary arrival time (NAT ), and passenger aversion

characteristic.

Considering the same trip as in the previous section (i.e. Conestoga Mall to

Uptown Waterloo), the distribution of GCR for each passenger class was calculated.

Figure 5.4(a) illustrates the the distribution of GCR for risk-averse passengers;

Figure 5.4(b) illustrates the distribution for risk-moderate passengers; and Figure

5.4(c) illustrates the distribution for risk-neutral passengers.

The results show that the distribution of GCR is not symmetric and therefore

standard measures of dispersion such as the standard deviation and coefficient of

variation are not adequate descriptors. Consequently, the variation in the gener-

alized cost is quantified by computing the difference between the 90th percentile

58



(a) Case 1: Risk-Averse Passengers

(b) Case 2: Risk-Moderate Passengers

(c) Case 3: Risk-Neutral Passengers

Figure 5.4: Distribution of GCR for Each Passenger class (Trip from Conestoga
Mall to Uptown Waterloo)
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and 50th percentile (Table 5.1). The results show that risk-averse passengers are

the most sensitive to service reliability as they experience both the highest aver-

age cost and the largest variation. In contrast, risk-neutral passengers are least

sensitive to variations service reliability.

Table 5.1: Passenger Class GC Sensitivity to Variability in Transit Service (Con-
estoga Mall to Uptown Waterloo)

GCR

Passenger Class 90th % 50th % 90th− 50th
Risk-averse (RAP) 59.11 39.69 19.42
Risk-moderate (RMP) 50.73 33.16 17.57
Risk-neutral (RNP) 39.44 26.58 12.86

5.3 Measure of Reliability

In Chapter 2, we noted that the literature has defined service reliability in several

different ways. The most important reliability measures are those that reflect the

passengers’ perspective. Accordingly, a reliable system can be measured as the

ability of service to adhere to scheduled departure time, scheduled travel time, and

scheduled arrival time. All three of these measurements are influenced by travel

time variability (TTV). Also, most of the variables included in the GCR model

such as arrival delay (AD), in-vehicle travel time delay (IV TD), and Anxiety

(ANX) penalties are impacted by travel time variability. Consequently, we choose

to classify transit service reliability in terms of the variability in travel time.

Statistically, TTV can be quantified in several ways: variance, standard devi-

ation, coefficient of variance, etc. Alternatively, for non-symmetric distributions,

the difference between two percentiles can give an indication of the spread of the

data in addition to a good description of the distribution shape [10]. In the context

of this research, three principle approaches have been used as reliability measures

[17][12]:

1. Standard deviation or variance of travel time distribution;

2. The difference between the 90th percentile and 50th percentile of travel time

distribution;
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3. Scheduling delay: arriving earlier or later than NAT.

The relationship between GCR and each of the service reliability measures above

has been tested using regression analysis. The second reliability measure mentioned

above provided the best relationship with GCR model. Thus, the service reliability

is identified by the difference between the 90th and 50th percentile of the difference

in travel time (DTT) between actual (ATT) and scheduled travel time (STT). For a

given trip, as the transit service becomes less reliable, the difference between DDT

90th and 50th percentile increases.

The difference between the DTT 90th and 50th percentile can be estimated as

follows

1. Sort the difference in travel time data in ascending order, N is the number of

records.

2. Specify the appropriate percentile pth,

3. Calculate the rank (n) of the value corresponding to the pth percentile

n =
N

100
p+

1

2
(5.1)

4. Take the value corresponds to rank n.

5.4 Reliability Impact on User’s GC

It is desirable to understand the relationship between transit users’ generalized cost

and the reliability of transit service. The knowledge of this relationship permits the

evaluation of initiatives or policies that impact service reliability. GCR is influenced

by service reliability as well as trip specific characteristics. Therefore, the nature

of the relationship between service reliability and GCR is first examined separately

for each O-D pair.

Field data for the iXpress service provides only a single level of service reliability

for each O-D pair. Therefore, a simulation model was developed to estimate users’

GCR corresponding to different service reliability levels. The service reliability levels

of each O-D pair are controlled by multiplying the empirical data of the difference

in travel time (DTT ) by a factor. For example, to simulate a service that is more
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reliable than the field observed level, the field data is multiplied by a factor smaller

than one. On the other hand, the data is multiplied by a factor greater than one

to make the service less reliable than the field observed level.

For each segment (O-D pair stations), 31 different reliability levels were simu-

lated by multiplying the field DTT data by factors ranging from 0 to 3.0 in incre-

ments of 0.1. The difference between the 90th and 50th percentile of the difference

in travel time was calculated as a reliability measure. At each reliability level, 5000

passengers were simulated to estimate the average of GCR.

A regression analysis was conducted with the average of GCR as the dependent

variable and the reliability measure as the independent variable. Consider the

results for trips from Conestoga Mall to Uptown Waterloo in Figure 5.5. The data

are best represented by an exponential relationship in the following form

GCR = a eb (RM) (5.2)

where

RM The reliability measure (90th − 50th percentile of DTT )

a Constant

b Reliability measure coefficient

The coefficients of all three regressions are statistically significant and the re-

gressions explain more than 98% of the variation observed in the data (Table 5.2).

As expected, risk-averse passengers have a higher GCR than other passengers for

all levels of service reliability. Figure 5.5 also shows the conventional generalized

cost (GCC) for this trip which is constat for all levels of service reliability. At the

observed service reliability obtained from the empirical data, it was found that the

GCC underestimates the GCR cost for all passengers types (38% for risk-averse;

20% for risk-moderate; and less than 1% for risk-neutral).

A similar analysis was done for a longer trip, from Conestoga Mall to Ainslie

Terminal (Figure 5.6 and Table 5.3). The expected travel time for this trip is 78

min. From these results, it can be observed that the GCC cost underestimates the

GCR cost for both risk-averse and risk-moderate passengers by around 12% and

3.5%, respectively. However, for risk-neutral passengers, the GCC cost overesti-

mates the GCR by approximately 5%. These results show that the level of over

or underestimation of user costs (relative to GCR) depends on the level of service

reliability and passenger class.
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Figure 5.5: The Average of GCR with Different Reliability Level for the trip From
Conestoga Mall to Uptown Waterloo for the each Passenger Class

Table 5.2: Regression Analysis Coefficients for the Trip from Conestoga Mall to
Uptown Waterloo

Passenger Class Coefficients t-value p-value
RAP Constant (a) 39.49 83.821 0.000

Reliability Measure (b) 0.112 49.552 0.000
RMP Constant (a) 35.4 88.157 0.000

Reliability Measure (b) 0.101 47.158 0.000
RNP Constant (a) 31.36 106.703 0.000

Reliability Measure (b) 0.076 42.901 0.000

Table 5.3: Regression Analysis Coefficients for the Trip from Conestoga Mall to
Ainslie

Passenger Class Coefficients t-value p-value
RAP Constant (a) 80.274 61.923 0.000

Reliability Measure (b) 0.041 33.076 0.000
RMP Constant (a) 77.592 73.903 0.000

Reliability Measure (b) 0.034 32.942 0.000
RNP Constant (a) 75.822 115.363 0.000

Reliability Measure (b) 0.022 33.118 0.000
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Figure 5.6: The Average of GCR with Different Reliability Level for the trip From
Conestoga Mall to Ainslie Terminal for the each Passenger Class

It is observed from the results above that passengers are sensitive to service

reliability according to their characteristics. In addition, GCR varies as a function of

service reliability, passengers characteristics, and trip length. Therefore, a multiple

linear regression analysis was implemented of each passenger class using the results

from the simulation to model the relationship between the GCR, reliability level,

and trip length as follows

GCR = a+ b (RM) + c (SIV T ) (5.3)

where

RM The reliability measure (90th − 50th percentile of DTT )

SIV T Scheduled in-vehicle time

a Intercept

b Reliability measure coefficient

c Scheduled in-vehicle time coefficient

The regression analysis results are provided in Table 5.4. The three models

obtained were statically significant and the signs of coefficients were logical. As

observed, the risk-averse passengers are the most sensitive to service reliability
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because of the high weighting penalties incurred as shown in the last two figures.

From Table 5.4, it is found that they are more sensitive to service reliability than

risk-moderate passengers by around 31%. In contrast, the risk-neutral passengers

are the least sensitive passengers to service reliability.

Table 5.4: The GCR Models’ coefficients as a Function of Reliability Level and Trip
length

Passenger Class Coefficients t-value p-value
RAP Intercept (a) 37.90 47.20 0.000

Reliability Level (b) 1.80 44.63 0.000
SIVT (c) 0.32 12.14 0.000

RMP Intercept (a) 30.37 50.14 0.000
Reliability Level (b) 1.37 45.11 0.000
SIVT (c) 0.44 22.30 0.000

RNP Intercept (a) 20.99 63.57 0.000
Reliability Level (b) 0.79 47.52 0.000
SIVT (c) 0.63 57.68 0.000

In conclusion, the usage of conventional generalized cost GCC function in mode

split process is likely to be underestimating the generalized cost of transit mode.

From the results obtained, the GCC underestimates GCR for 100% of the risk-averse

passengers, around 75% of the risk-moderate passengers, and around 25% of the

risk-neutral passengers. These underestimations mislead planners to make effective

and right decisions. In contrast, the usage of the proposed GCR formulation reflects

the actual cost of the unreliable transit service. Unlike GCC , the GCR formulation

has a significant relationship with service reliability as shown in the results that can

be used to evaluate the benefits from the enhancement of service reliability versus

the infrastructure investments.
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Chapter 6

Conclusion and Future Research

6.1 Conclusion

This research has focused on quantifying and understanding the impact of service

reliability on transit user cost. A review of previous studies that incorporated the

service reliability effects on passenger’s generalized cost models was conducted and

limitations were found in these models. Based on the seminal work of Small [44],

Noland and Small [32], and Bates [2], a generalized cost model was proposed by

extending the existing models to address the limitations identified in the existing

models.

Based on the assumed generalized cost model (GCR) in this research, a Mont-

Carlo simulation model has been developed to quantify the impact of service reli-

ability on the user cost. The simulation model was developed at a passenger level

by considering the distribution of bus departure time from origin, actual arrival

time at destination, and actual in-vehicle travel time between O-D pair stations.

These distributions are based on data obtained from AVLS in the iXpress service at

the Regional Municipality of Waterloo. All passengers were assumed to fall in one

of three passenger classes according to their assumed risk tolerance characteristics

namely risk-averse, risk-moderate, or risk-neutral.

After running the simulation, for each given O-D stations pair, the generalized

cost calculated by the proposed generalized cost formulation (GCR) varies from one

passenger to another due to the variation in travel time. With regard to the three

passenger classes, the results showed that the risk-averse passengers are the most

sensitive to service reliability. They were found to experience the highest (GCR)
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among the three classes. In contrast, the risk-neutral passengers were the least

sensitive to variation in service reliability.

The variation in passenger waiting time and in-vehicle time were not captured

by the conventional generalized cost model which assumes constant values for these

two parameters for all passengers. Therefore, the generalized cost was the same for

all passengers regardless of their characteristics.

The relationship between the generalized cost including both GCC and GCR

with different reliability levels for two different trips (short and long) has been

studied. This relationship for GCC is known to be linear with a slope of zero

between GCC and the reliability. The regression analysis results between the GCR

and the reliability level showed a statistically significant exponential relationship

which indicates that the GCR was impacted by the variation in service reliability.

The GCR was increasing as the service unreliability increases.

Generally, it appears that the GCC is more likely to underestimate the gener-

alized cost. These magnitudes of underestimations of user cost relative to GCR

depends on the level of service reliability and passenger class. The GCR provides

the actual user cost that reflects the impact of the service unreliability based on

the research assumptions.

It is recommended that planning studies for the purpose of evaluating the impact

of transit service changes have on ridership should make use of GC that considers

service reliability in order to predict more accurate estimates of ridership. More

accurate ridership estimates help to more effectively evaluate the infrastructure

investments in the transportation system.

6.2 Future Research

While this research sought to analyze comprehensively and synthesize the impact

of service reliability on users cost, further research in this area is needed. Regard-

ing the proposed generalized cost model, the parameters coefficients have to be

calibrated to field data. In addition, further investigation and more attention have

to be given to test and validate the technique used in valuing the anxiety term

included in the model.

It was assumed in this research that the passengers are fall in one of three

different classes with same fraction of total passengers. However, this assumption
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has to be studied and investigated in addition to calibrating the specific passenger

class coefficients of each parameter within the GCR model. Moreover, the peak

of passenger arrival time distribution of different passenger classes needs to be

considered as a function of the variation of service departure time. Finally, a more

robust measure of reliability has to be investigated.
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Appendix A

Data Analysis Results

Table A.1: Number of Passengers Who rid TU-1 and arrived either Earlier or Later
than their NAT

Station TU-1 (ontime) TU-1 (Late)
From To RAP RMP RNP RAP RMP RNP

1 2 404 219 0 0 0 0
1 3 393 270 43 0 0 1
1 4 186 54 0 0 0 0
1 5 748 673 481 0 0 0
1 6 1025 946 689 2 0 3
1 7 962 902 759 2 0 1
1 8 1427 1314 1073 1 2 0
1 9 1771 1595 1461 0 5 3
1 10 1874 1756 1591 5 3 3
1 11 2122 1749 1394 3 8 3
1 12 2307 2076 1836 6 5 6
1 13 3322 3290 2833 7 4 4
2 1 526 97 0 2 3 0
2 3 179 0 0 0 0 0
2 4 0 0 0 0 0 0
2 5 479 350 93 0 0 0
2 6 692 564 241 1 0 1
2 7 710 599 321 1 1 0
2 8 1106 972 680 2 1 4
2 9 1374 1324 1118 1 1 4
2 10 1552 1446 1181 4 1 4
2 11 1692 1523 1071 5 6 6
2 12 1965 1739 1661 3 5 6
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Station TU-1 (ontime) TU-1 (Late)

From To RAP RMP RNP RAP RMP RNP

2 13 3341 3144 2605 4 10 4

3 1 465 109 0 6 0 0

3 2 455 0 0 7 0 0

3 4 0 0 0 0 0 0

3 5 483 350 82 1 1 1

3 6 788 586 242 2 1 1

3 7 755 615 352 1 3 2

3 8 1154 972 773 1 2 3

3 9 1535 1363 1160 3 5 3

3 10 1710 1472 1268 2 6 10

3 11 1675 1554 1148 3 2 2

3 12 2054 1890 1666 6 6 5

3 13 3277 3293 2496 6 9 9

4 1 558 212 0 7 0 0

4 2 418 0 0 5 0 0

4 3 474 0 0 1 0 0

4 5 357 263 0 4 1 0

4 6 602 429 104 2 1 2

4 7 736 552 287 2 2 3

4 8 1060 955 650 3 6 4

4 9 1372 1325 1145 5 3 4

4 10 1586 1411 1191 4 6 9

4 11 1778 1429 1083 10 8 6

4 12 2107 1809 1558 7 8 11

4 13 3364 3097 2299 8 9 11

5 1 710 426 23 3 7 0

5 2 464 221 0 1 3 0

5 3 511 339 32 5 3 0

5 4 627 292 0 3 6 0

5 6 242 64 0 0 0 0

5 7 308 170 0 0 0 0

5 8 691 446 160 3 2 1

5 9 1014 884 661 1 5 2

5 10 1137 1014 793 3 2 5
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Station TU-1 (ontime) TU-1 (Late)

From To RAP RMP RNP RAP RMP RNP

5 11 1158 997 674 2 8 1

5 12 1565 1342 1207 2 6 2

5 13 3114 2702 1915 3 4 7

6 1 775 393 0 7 0 0

6 2 467 231 0 4 3 0

6 3 633 286 0 5 2 0

6 4 661 279 0 6 3 0

6 5 477 72 0 5 0 0

6 7 179 0 0 0 0 0

6 8 331 244 0 0 2 0

6 9 623 558 343 2 4 4

6 10 831 710 423 1 1 2

6 11 1176 985 443 7 2 2

6 12 2059 1298 952 2 3 7

6 13 2795 2675 1635 6 9 4

7 1 894 515 43 8 5 0

7 2 608 330 5 8 4 0

7 3 731 443 78 12 6 0

7 4 631 364 32 5 6 0

7 5 430 165 0 6 4 0

7 6 668 235 0 6 6 0

7 8 357 212 0 0 3 0

7 9 792 626 406 1 9 2

7 10 839 790 562 5 10 3

7 11 959 796 461 5 12 7

7 12 1290 1167 921 6 7 11

7 13 2688 2292 1724 13 11 18

8 1 1381 1120 692 10 11 2

8 2 1051 839 562 6 7 6

8 3 1111 897 637 7 9 6

8 4 1120 895 572 12 9 8

8 5 742 551 286 5 5 2

8 6 822 644 320 9 8 4

8 7 676 536 77 6 9 2
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Station TU-1 (ontime) TU-1 (Late)

From To RAP RMP RNP RAP RMP RNP

8 9 265 191 0 0 0 0

8 10 395 299 97 0 1 1

8 11 710 443 139 3 2 1

8 12 978 799 653 4 2 3

8 13 2387 2037 1207 5 5 8

9 1 1625 1168 741 15 15 9

9 2 1140 899 584 9 8 9

9 3 1208 986 598 10 17 7

9 4 1215 913 637 13 16 15

9 5 833 698 305 11 9 2

9 6 924 723 394 9 9 10

9 7 753 612 331 6 12 7

9 8 393 156 0 5 2 0

9 10 49 0 0 0 0 0

9 11 399 172 0 3 1 0

9 12 715 557 416 2 2 2

9 13 2049 1562 876 6 6 5

10 1 1906 1425 1013 18 9 8

10 2 1349 1129 858 18 9 16

10 3 1459 1240 928 15 13 21

10 4 1364 1188 925 22 17 23

10 5 1110 845 554 11 10 10

10 6 1060 948 714 16 12 11

10 7 982 829 639 8 19 10

10 8 622 412 181 3 3 2

10 9 517 304 70 2 3 1

10 11 179 0 0 0 0 0

10 12 611 468 263 1 1 0

10 13 1907 1345 762 8 6 4

11 1 2935 2400 1772 26 25 18

11 2 2232 1853 1609 34 25 22

11 3 2501 2011 1680 32 38 36

11 4 2276 2047 1523 30 21 27

11 5 1824 1599 1291 25 27 23
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Station TU-1 (ontime) TU-1 (Late)

From To RAP RMP RNP RAP RMP RNP

11 6 1873 1659 1379 37 27 40

11 7 1818 1521 1180 35 23 38

11 8 1765 1254 799 24 19 24

11 9 1329 1105 726 15 18 14

11 10 1259 825 163 15 13 4

11 12 77 0 0 1 0 0

11 13 1201 768 244 11 13 7

12 1 2801 2616 1877 16 20 19

12 2 2648 2114 1613 16 23 14

12 3 2503 2325 1678 18 19 15

12 4 2430 2159 1618 26 23 17

12 5 2144 1827 1226 15 9 5

12 6 2157 1799 1363 16 24 23

12 7 2066 1678 1305 16 18 20

12 8 2053 1630 916 19 12 9

12 9 1818 1262 725 12 14 10

12 10 1605 1122 477 17 11 10

12 11 342 112 0 1 0 0

12 13 632 293 0 6 5 0

13 1 3231 2861 2387 11 15 18

13 2 2723 2586 2009 10 17 16

13 3 2917 2544 2091 19 15 22

13 4 2922 2654 1946 17 18 19

13 5 2560 2189 1624 16 20 21

13 6 2593 2309 1849 23 25 22

13 7 2636 2194 1618 32 28 24

13 8 2740 2183 1372 12 20 14

13 9 2528 1890 1189 9 13 17

13 10 2381 1687 1060 14 10 9

13 11 704 432 122 2 0 0

13 12 467 179 0 2 0 0
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Table A.2: Number of Passengers Who rid TU and arrived either Earlier or Later
than their NAT

Station TU (ontime) TU (Late)
From To RAP RMP RNP RAP RMP RNP

1 2 2942 2852 3006 89 163
1 3 2847 2959 3072 79 123
1 4 3131 3203 3014 54 84
1 5 2577 2586 2784 36 45
1 6 2330 2327 2580 28 20
1 7 2350 2408 2546 16 19
1 8 1946 1987 2201 15 9
1 9 1548 1705 1860 16 15
1 10 1388 1578 1762 12 9
1 11 1197 1594 1882 11 10
1 12 1026 1251 1451 10 9
1 13 0 0 537 0 0
2 1 2639 2987 2689 152 282
2 3 2991 3079 2541 105 249
2 4 3087 3017 2783 62 79
2 5 2789 2858 3159 43 64
2 6 2665 2687 2951 44 56
2 7 2563 2717 2964 28 39
2 8 2175 2328 2626 27 31
2 9 1992 1960 2159 13 23
2 10 1816 1842 2084 21 20
2 11 1561 1797 2270 15 15
2 12 1365 1488 1726 8 14
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Station TU (ontime) TU (Late)

From To RAP RMP RNP RAP RMP RNP

2 13 0 0 886 0 0 6

3 1 2657 2970 2754 162 248 331

3 2 2764 2873 2492 164 340 323

3 4 3073 2925 2770 103 84 111

3 5 2854 2850 3032 68 90 188

3 6 2484 2619 3015 37 66 159

3 7 2572 2656 2858 37 49 100

3 8 2123 2309 2550 17 41 55

3 9 1790 1924 2125 16 25 51

3 10 1594 1880 1976 17 24 41

3 11 1566 1788 2161 22 22 57

3 12 1236 1393 1681 16 19 28

3 13 0 80 816 0 1 13

4 1 2614 2972 2727 125 193 285

4 2 2761 2947 2682 132 295 347

4 3 2617 2862 2689 211 375 435

4 5 2834 2860 2289 158 235 439

4 6 2633 2792 2870 91 150 324

4 7 2577 2666 2868 64 72 171

4 8 2202 2321 2577 49 57 116

4 9 1903 1994 2078 35 55 81

4 10 1743 1861 2062 22 35 70

4 11 1498 1849 2218 22 33 66

4 12 1205 1511 1698 18 31 37

4 13 0 193 1001 0 1 17

5 1 2436 2853 2940 114 171 317

5 2 2691 2912 2864 166 257 397

5 3 2673 2722 2716 197 285 517

5 4 2542 2617 2423 190 385 618

5 6 3002 3035 2733 123 198 260

5 7 2875 3004 3046 101 144 175

5 8 2637 2749 2964 59 93 195

5 9 2277 2398 2551 53 71 83

5 10 2144 2217 2539 40 46 60
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Station TU (ontime) TU (Late)

From To RAP RMP RNP RAP RMP RNP

5 11 2108 2358 2530 40 39 85

5 12 1709 1974 2101 23 39 30

5 13 293 615 1322 1 8 16

6 1 2483 2771 3103 85 142 202

6 2 2758 2909 3028 111 189 238

6 3 2619 2816 2923 135 211 358

6 4 2517 2851 2794 130 267 459

6 5 2736 2868 2780 135 270 346

6 7 3108 3049 2516 119 168 161

6 8 2842 2916 3067 109 162 294

6 9 2646 2559 2810 106 128 217

6 10 2408 2623 2720 60 70 151

6 11 2060 2335 2791 34 55 110

6 12 1276 2013 2272 13 29 76

6 13 524 685 1619 2 7 39

7 1 2377 2630 3108 82 123 215

7 2 2618 2874 3021 103 160 269

7 3 2483 2752 2891 108 184 312

7 4 2561 2706 2914 144 225 412

7 5 2757 2987 2718 130 234 305

7 6 2489 2732 2556 150 344 550

7 8 2844 2854 2775 144 241 380

7 9 2395 2515 2746 113 153 242

7 10 2345 2564 2521 71 96 194

7 11 2342 2409 2663 71 103 172

7 12 1957 2092 2308 56 77 108

7 13 540 1002 1628 5 24 55

8 1 1947 2071 2485 58 91 132

8 2 2199 2404 2607 80 99 140

8 3 2123 2274 2565 83 117 171

8 4 2084 2376 2559 93 99 173

8 5 2542 2599 2802 107 130 229

8 6 2489 2435 2656 123 166 324

8 7 2496 2602 2632 160 203 601
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Station TU (ontime) TU (Late)

From To RAP RMP RNP RAP RMP RNP

8 9 2889 2957 2396 141 214 347

8 10 2889 2945 2988 67 103 215

8 11 2505 2837 3099 45 77 139

8 12 2263 2422 2722 42 48 64

8 13 903 1316 2057 7 17 51

9 1 1634 2101 2354 69 98 171

9 2 2164 2271 2517 106 101 192

9 3 2006 2221 2456 123 141 227

9 4 2071 2136 2427 116 162 279

9 5 2340 2539 2634 128 184 317

9 6 2213 2381 2423 216 244 454

9 7 2280 2395 2465 273 335 531

9 8 2692 2825 2591 248 365 473

9 10 3167 3039 2914 144 190 210

9 11 2842 3055 3049 67 109 149

9 12 2627 2670 2818 52 66 73

9 13 1296 1731 2378 9 16 66

10 1 1457 1756 2192 39 69 108

10 2 1878 2061 2345 81 92 164

10 3 1758 1988 2252 82 90 154

10 4 1842 2002 2194 99 121 203

10 5 2247 2176 2566 104 149 218

10 6 2128 2150 2365 151 186 259

10 7 2155 2225 2383 197 236 317

10 8 2538 2742 2755 179 224 339

10 9 2559 2760 2909 191 263 421

10 11 3061 3060 2856 105 171 156

10 12 2657 2790 2992 60 68 89

10 13 1358 1971 2503 15 42 79

11 1 369 900 1426 12 29 88

11 2 984 1342 1674 41 69 115

11 3 753 1163 1551 40 69 126

11 4 933 1317 1570 40 83 133

11 5 1395 1539 1889 93 117 178
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Station TU (ontime) TU (Late)

From To RAP RMP RNP RAP RMP RNP

11 6 1252 1491 1801 92 144 205

11 7 1354 1617 1888 105 173 248

11 8 1450 1927 2203 89 160 286

11 9 1819 2034 2283 138 216 303

11 10 1949 2189 2728 140 236 479

11 12 3028 2992 2819 216 288 329

11 13 1976 2354 2820 103 198 305

12 1 513 664 1374 13 16 71

12 2 686 1117 1632 18 39 80

12 3 755 1000 1570 17 39 61

12 4 845 1081 1630 31 44 96

12 5 1159 1433 1946 36 75 125

12 6 1083 1540 1711 38 87 159

12 7 1171 1515 1838 73 119 181

12 8 1154 1649 2258 37 79 184

12 9 1436 2014 2327 60 117 205

12 10 1693 2030 2561 78 154 242

12 11 2872 3037 2884 104 178 237

12 13 2551 2778 2810 159 228 327

13 1 122 388 930 2 10 25

13 2 450 848 1274 10 15 42

13 3 381 736 1205 6 17 47

13 4 335 693 1293 15 34 54

13 5 827 1038 1560 21 41 83

13 6 627 929 1482 24 39 78

13 7 630 991 1684 22 42 99

13 8 555 1097 1864 15 30 98

13 9 788 1290 2101 20 51 104

13 10 947 1583 2116 22 62 109

13 11 2580 2818 2963 76 126 177

13 12 2761 2941 2838 107 234 257
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Table A.3: Number of Passengers Who rid TU+1 and arrived either Earlier or
Later than their NAT

Station TU+1 (ontime) TU+1 (Late)
From To RAP RMP RNP RAP RMP RNP

1 2 0 0 1 0 0 11
1 3 0 0 0 0 0 0
1 4 0 0 110 0 0 47
1 5 0 0 0 0 0 0
1 6 0 0 0 0 0 0
1 7 0 0 0 0 0 0
1 8 0 0 0 0 0 0
1 9 0 0 0 0 0 0
1 10 0 0 0 0 0 0
1 11 0 0 0 0 0 0
1 12 0 0 0 0 0 0
1 13 0 0 0 0 0 0
2 1 0 0 110 0 0 175
2 3 0 18 72 0 36 513
2 4 90 188 253 24 96 234
2 5 0 0 0 0 0 0
2 6 0 0 0 0 0 0
2 7 0 0 0 0 0 0
2 8 0 0 0 0 0 0
2 9 0 0 0 0 0 0
2 10 0 0 0 0 0 0
2 11 0 0 0 0 0 0
2 12 0 0 0 0 0 0
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Station TU+1 (ontime) TU+1 (Late)

From To RAP RMP RNP RAP RMP RNP

2 13 0 0 0 0 0 0

3 1 0 0 147 0 0 151

3 2 0 40 85 0 71 386

3 4 90 168 230 33 109 304

3 5 0 0 0 0 0 0

3 6 0 0 0 0 0 0

3 7 0 0 0 0 0 0

3 8 0 0 0 0 0 0

3 9 0 0 0 0 0 0

3 10 0 0 0 0 0 0

3 11 0 0 0 0 0 0

3 12 0 0 0 0 0 0

3 13 0 0 0 0 0 0

4 1 0 0 151 0 0 156

4 2 0 50 90 0 54 219

4 3 0 0 58 0 5 273

4 5 0 0 12 0 0 548

4 6 0 0 0 0 0 0

4 7 0 0 0 0 0 0

4 8 0 0 0 0 0 0

4 9 0 0 0 0 0 0

4 10 0 0 0 0 0 0

4 11 0 0 0 0 0 0

4 12 0 0 0 0 0 0

4 13 0 0 0 0 0 0

5 1 0 0 0 0 0 0

5 2 0 0 5 0 0 19

5 3 0 0 0 0 0 0

5 4 0 0 16 0 0 281

5 6 0 0 75 0 0 268

5 7 0 0 87 0 0 90

5 8 0 0 0 0 0 0

5 9 0 0 0 0 0 0

5 10 0 0 0 0 0 0
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Station TU+1 (ontime) TU+1 (Late)

From To RAP RMP RNP RAP RMP RNP

5 11 0 0 0 0 0 0

5 12 0 0 0 0 0 0

5 13 0 0 0 0 0 0

6 1 0 0 22 0 0 17

6 2 0 0 39 0 0 23

6 3 0 0 5 0 0 7

6 4 0 0 8 0 0 25

6 5 0 0 67 0 0 244

6 7 0 21 112 0 42 525

6 8 0 0 19 0 0 14

6 9 0 0 0 0 0 0

6 10 0 0 0 0 0 0

6 11 0 0 0 0 0 0

6 12 0 0 0 0 0 0

6 13 0 0 0 0 0 0

7 1 0 0 0 0 0 0

7 2 0 0 0 0 0 0

7 3 0 0 0 0 0 0

7 4 0 0 0 0 0 0

7 5 0 0 72 0 0 192

7 6 0 0 23 0 0 241

7 8 0 0 60 0 0 130

7 9 0 0 0 0 0 0

7 10 0 0 0 0 0 0

7 11 0 0 0 0 0 0

7 12 0 0 0 0 0 0

7 13 0 0 0 0 0 0

8 1 0 0 0 0 0 0

8 2 0 0 0 0 0 0

8 3 0 0 0 0 0 0

8 4 0 0 0 0 0 0

8 5 0 0 0 0 0 0

8 6 0 0 0 0 0 0

8 7 0 0 0 0 0 0
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Station TU+1 (ontime) TU+1 (Late)

From To RAP RMP RNP RAP RMP RNP

8 9 0 0 19 0 0 581

8 10 0 0 0 0 0 0

8 11 0 0 0 0 0 0

8 12 0 0 0 0 0 0

8 13 0 0 0 0 0 0

9 1 0 0 0 0 0 0

9 2 0 0 0 0 0 0

9 3 0 0 0 0 0 0

9 4 0 0 0 0 0 0

9 5 0 0 0 0 0 0

9 6 0 0 0 0 0 0

9 7 0 0 0 0 0 0

9 8 0 0 26 0 0 224

9 10 0 16 75 0 38 158

9 11 0 0 109 0 0 45

9 12 0 0 0 0 0 0

9 13 0 0 0 0 0 0

10 1 0 0 0 0 0 0

10 2 0 0 0 0 0 0

10 3 0 0 0 0 0 0

10 4 0 0 0 0 0 0

10 5 0 0 0 0 0 0

10 6 0 0 0 0 0 0

10 7 0 0 0 0 0 0

10 8 0 0 0 0 0 0

10 9 0 0 0 0 0 0

10 11 0 48 202 0 18 144

10 12 0 0 0 0 0 0

10 13 0 0 0 0 0 0

11 1 0 0 0 0 0 0

11 2 0 0 0 0 0 0

11 3 0 0 0 0 0 0

11 4 0 0 0 0 0 0

11 5 0 0 0 0 0 0
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Station TU+1 (ontime) TU+1 (Late)

From To RAP RMP RNP RAP RMP RNP

11 6 0 0 0 0 0 0

11 7 0 0 0 0 0 0

11 8 0 0 0 0 0 0

11 9 0 0 0 0 0 0

11 10 0 0 0 0 0 0

11 12 0 14 109 0 7 120

11 13 0 0 0 0 0 0

12 1 0 0 0 0 0 0

12 2 0 0 0 0 0 0

12 3 0 0 0 0 0 0

12 4 0 0 0 0 0 0

12 5 0 0 0 0 0 0

12 6 0 0 0 0 0 0

12 7 0 0 0 0 0 0

12 8 0 0 0 0 0 0

12 9 0 0 0 0 0 0

12 10 0 0 0 0 0 0

12 11 0 0 90 0 0 143

12 13 0 0 140 0 0 71

13 1 0 0 0 0 0 0

13 2 0 0 0 0 0 0

13 3 0 0 0 0 0 0

13 4 0 0 0 0 0 0

13 5 0 0 0 0 0 0

13 6 0 0 0 0 0 0

13 7 0 0 0 0 0 0

13 8 0 0 0 0 0 0

13 9 0 0 0 0 0 0

13 10 0 0 0 0 0 0

13 11 0 0 0 0 0 0

13 12 0 0 86 0 0 128
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Table A.4: Average GCR and GCC of each stations Pair for each Passenger Class

Station GCR (minutes) GCC (minutes)
From To RAP RMP RNP

1 2 39.83 33.07 24.79 24.75
1 3 41.78 35.46 27.03 27.75
1 4 41.71 35.52 28.22 31.75
1 5 48.75 42.00 34.83 34.75
1 6 52.75 46.15 38.28 38.75
1 7 55.98 48.65 41.25 41.75
1 8 61.13 54.51 46.66 46.75
1 9 62.88 56.57 49.52 53.75
1 10 66.26 60.63 54.65 60.75
1 11 78.66 72.44 66.26 75.75
1 12 84.60 79.34 72.76 81.75
1 13 103.98 96.59 87.54 92.75
2 1 48.06 40.23 28.75 25.75
2 3 35.90 28.77 20.53 21.75
2 4 35.47 29.15 21.76 25.75
2 5 42.21 36.27 28.06 28.75
2 6 46.69 40.30 31.99 32.75
2 7 50.29 43.00 34.69 35.75
2 8 55.49 48.71 40.84 40.75
2 9 57.18 50.52 42.90 47.75
2 10 60.06 54.97 48.65 54.75
2 11 72.16 66.70 60.26 69.75
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Station GCR (minutes) GCC (minutes)

From To RAP RMP RNP

2 12 79.00 73.26 66.88 75.75

2 13 98.27 91.13 81.58 86.75

3 1 51.11 42.23 31.58 28.75

3 2 42.46 34.90 23.66 21.75

3 4 32.67 26.28 19.04 22.75

3 5 39.88 33.47 25.45 25.75

3 6 43.10 37.33 29.75 29.75

3 7 46.69 40.27 32.01 32.75

3 8 52.72 45.83 37.94 37.75

3 9 54.04 47.66 40.74 44.75

3 10 57.59 51.81 46.01 51.75

3 11 68.67 63.95 57.56 66.75

3 12 76.14 70.58 64.13 72.75

3 13 94.90 87.62 78.95 83.75

4 1 54.57 45.81 33.79 31.75

4 2 46.16 37.82 26.99 24.75

4 3 44.60 36.08 24.58 21.75

4 5 37.43 30.82 23.24 21.75

4 6 41.05 34.28 26.75 25.75

4 7 44.39 37.05 29.33 28.75

4 8 50.00 43.31 35.20 33.75

4 9 51.06 44.88 37.71 40.75

4 10 54.50 48.82 43.24 47.75

4 11 66.81 61.33 54.73 62.75

4 12 72.48 68.00 61.53 68.75

4 13 92.09 84.69 75.91 79.75

5 1 57.45 49.65 37.91 34.75

5 2 50.23 41.57 30.97 27.75

5 3 49.14 39.76 29.32 24.75

5 4 47.18 37.98 27.37 21.75

5 6 37.10 30.05 22.21 22.75

5 7 40.59 33.43 24.78 25.75

5 8 45.00 38.75 30.57 30.75

5 9 47.03 40.47 32.84 38.75
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Station GCR (minutes) GCC (minutes)

From To RAP RMP RNP

5 10 50.59 44.92 38.96 44.75

5 11 63.09 56.41 50.65 59.75

5 12 68.79 63.31 56.64 65.75

5 13 88.54 81.26 71.23 76.75

6 1 62.28 53.42 41.89 39.75

6 2 54.62 45.81 34.94 32.75

6 3 53.52 44.17 33.43 29.75

6 4 52.02 42.33 31.27 26.75

6 5 46.34 36.56 25.83 23.75

6 7 35.62 28.84 20.54 21.75

6 8 41.56 34.73 27.12 26.75

6 9 43.26 36.99 29.07 33.75

6 10 46.54 40.94 34.95 40.75

6 11 58.56 53.07 46.55 55.75

6 12 65.10 59.58 53.16 61.75

6 13 84.78 77.26 67.59 72.75

7 1 66.69 56.76 45.50 42.75

7 2 58.07 49.52 38.77 35.75

7 3 57.29 47.96 36.68 32.75

7 4 56.02 46.33 34.65 29.75

7 5 49.31 40.10 29.33 26.75

7 6 46.81 37.62 25.36 21.75

7 8 39.39 32.65 24.99 23.75

7 9 40.32 34.46 27.90 30.75

7 10 43.95 39.29 32.86 37.75

7 11 55.38 51.36 45.34 52.75

7 12 62.64 57.76 51.49 58.75

7 13 82.11 75.67 65.88 69.75

8 1 68.57 60.06 49.94 46.75

8 2 60.92 52.77 42.28 39.75

8 3 59.23 51.34 40.85 36.75

8 4 58.47 49.71 38.56 33.75

8 5 51.80 43.64 33.76 30.75

8 6 49.56 41.01 30.40 25.75
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Station GCR (minutes) GCC (minutes)

From To RAP RMP RNP

8 7 46.17 37.27 27.70 22.75

8 9 35.77 28.63 21.52 21.75

8 10 38.05 32.81 26.73 28.75

8 11 51.04 44.37 38.37 43.75

8 12 57.25 50.73 45.10 49.75

8 13 76.24 68.83 59.30 60.75

9 1 74.72 65.50 54.11 54.75

9 2 67.72 58.81 48.00 47.75

9 3 66.30 57.56 46.09 44.75

9 4 64.40 55.29 43.61 41.75

9 5 58.64 49.44 38.96 38.75

9 6 56.73 45.90 35.49 33.75

9 7 53.41 43.09 32.22 30.75

9 8 46.97 37.39 26.44 22.75

9 10 34.84 29.83 22.74 25.75

9 11 46.98 41.64 34.77 40.75

9 12 54.01 47.79 41.32 46.75

9 13 73.10 65.26 55.94 57.75

10 1 80.76 72.23 61.71 61.75

10 2 73.31 65.03 54.72 54.75

10 3 71.90 63.05 52.84 51.75

10 4 70.73 62.54 50.76 48.75

10 5 64.80 56.32 45.42 45.75

10 6 61.94 53.40 42.54 40.75

10 7 60.63 50.25 39.55 37.75

10 8 53.48 45.22 34.29 29.75

10 9 49.50 41.21 30.30 25.75

10 11 40.95 35.15 28.60 31.75

10 12 46.97 41.67 35.00 37.75

10 13 67.11 59.10 49.45 48.75

11 1 95.69 87.85 76.94 77.75

11 2 89.42 80.84 70.31 70.75

11 3 86.60 79.03 68.07 67.75

11 4 86.29 76.99 66.61 64.75
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Station GCR (minutes) GCC (minutes)

From To RAP RMP RNP

11 5 81.66 71.89 61.37 61.75

11 6 78.15 69.57 58.31 56.75

11 7 74.88 66.62 55.11 53.75

11 8 69.26 60.61 50.25 45.75

11 9 66.58 58.43 46.42 41.75

11 10 57.30 48.51 38.08 32.75

11 12 37.47 33.03 24.77 24.75

11 13 57.16 50.13 40.75 35.75

12 1 100.42 92.47 82.50 84.75

12 2 93.13 85.31 75.25 77.75

12 3 92.06 83.08 73.81 74.75

12 4 90.73 82.51 71.49 71.75

12 5 84.90 76.82 66.31 68.75

12 6 81.87 73.80 63.74 63.75

12 7 78.57 70.90 60.53 60.75

12 8 73.40 65.67 55.34 52.75

12 9 70.23 61.69 51.36 48.75

12 10 61.12 53.18 43.50 39.75

12 11 44.06 35.80 26.37 25.75

12 13 49.55 42.74 31.92 29.75

13 1 109.93 101.58 91.66 94.75

13 2 101.98 94.27 84.47 87.75

13 3 101.00 92.72 82.65 84.75

13 4 98.94 91.16 80.66 81.75

13 5 93.92 85.65 75.89 78.75

13 6 91.95 83.07 72.50 73.75

13 7 88.31 80.24 69.72 70.75

13 8 83.32 74.77 64.85 62.75

13 9 79.50 71.84 60.86 58.75

13 10 70.90 62.75 52.97 49.75

13 11 53.78 45.89 36.34 35.75

13 12 46.56 38.87 29.23 28.75
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Table A.5: Statistical Dispersion Measures of DTT data of each Stations Pair

Station Data Dispersion Measures (minute)
From To Mean St Deviation COV 90th% 50th% 90th − 50th

1 2 0.57 1.10 1.92 1.70 0.48 1.22
1 3 0.33 1.20 3.68 1.58 0.27 1.31
1 4 -1.06 1.74 -1.64 0.42 -1.10 1.52
1 5 1.35 2.29 1.69 3.17 1.37 1.80
1 6 1.50 3.35 2.23 4.25 1.23 3.03
1 7 1.43 2.77 1.94 4.07 1.30 2.77
1 8 2.09 3.62 1.73 5.68 1.97 3.71
1 9 3.09 4.49 1.45 6.81 2.69 4.11
1 10 2.89 4.64 1.61 7.15 2.33 4.82
1 11 1.80 4.88 2.71 6.26 1.51 4.75
1 12 3.46 5.87 1.69 8.12 3.50 4.62
1 13 4.04 7.27 1.80 10.90 3.37 7.54
2 1 -0.88 2.08 -2.37 0.38 -1.20 1.58
2 3 -0.59 0.67 -1.13 -0.23 -0.60 0.37
2 4 -1.97 2.08 -1.05 -1.20 -2.04 0.84
2 5 0.49 1.35 2.76 2.11 0.43 1.67
2 6 0.65 2.45 3.77 2.96 0.27 2.69
2 7 0.55 1.96 3.54 2.96 0.47 2.50
2 8 1.24 2.74 2.22 4.38 1.01 3.37
2 9 2.26 3.62 1.60 5.77 2.25 3.52
2 10 2.09 3.81 1.82 6.11 1.78 4.32
2 11 1.09 4.29 3.92 4.98 1.02 3.96
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Station Data Dispersion Measures (minute)

From To Mean St Deviation COV 90th% 50th% 90th − 50th

2 12 2.81 5.16 1.84 7.09 3.10 3.99

2 13 3.41 6.65 1.95 9.94 3.12 6.82

3 1 -1.33 2.40 -1.80 0.07 -1.64 1.71

3 2 -0.80 0.87 -1.08 -0.43 -0.82 0.38

3 4 -1.54 1.63 -1.06 -0.95 -1.63 0.68

3 5 0.95 1.46 1.54 2.33 0.87 1.47

3 6 1.09 2.55 2.35 3.63 0.85 2.78

3 7 1.02 2.05 2.01 3.26 0.92 2.34

3 8 1.70 2.91 1.71 4.71 1.47 3.24

3 9 2.73 3.87 1.42 6.01 2.58 3.42

3 10 2.57 4.03 1.57 6.32 2.27 4.05

3 11 1.59 4.37 2.75 5.45 1.48 3.97

3 12 3.29 5.37 1.63 7.43 3.51 3.92

3 13 3.90 6.86 1.76 10.38 3.65 6.73

4 1 -1.86 2.90 -1.56 -0.18 -2.20 2.02

4 2 -1.33 1.68 -1.26 -0.65 -1.45 0.80

4 3 -0.67 1.14 -1.69 -0.18 -0.77 0.58

4 5 1.26 1.43 1.14 2.08 1.20 0.88

4 6 1.32 2.45 1.85 3.07 1.12 1.95

4 7 1.25 1.98 1.59 3.11 1.15 1.96

4 8 1.85 2.89 1.56 4.60 1.75 2.85

4 9 2.76 3.84 1.39 5.82 2.60 3.22

4 10 2.55 4.02 1.58 6.12 2.33 3.78

4 11 1.50 4.37 2.91 5.37 1.43 3.93

4 12 3.02 5.27 1.74 7.20 3.33 3.88

4 13 3.48 6.72 1.93 9.89 3.24 6.65

5 1 -0.66 2.33 -3.51 1.40 -0.87 2.26

5 2 -0.08 1.01 -12.99 1.23 -0.17 1.39

5 3 0.59 1.06 1.79 1.79 0.50 1.29

5 4 0.79 1.05 1.33 1.74 0.67 1.07

5 6 -0.33 1.66 -5.04 0.96 -0.65 1.61

5 7 -0.29 1.11 -3.83 1.15 -0.43 1.58

5 8 0.31 1.92 6.20 2.80 0.20 2.60

5 9 1.23 2.70 2.20 4.20 1.17 3.03
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Station Data Dispersion Measures (minute)

From To Mean St Deviation COV 90th% 50th% 90th − 50th

5 10 1.05 3.03 2.89 4.44 1.00 3.44

5 11 0.02 3.88 172.37 3.58 -0.05 3.63

5 12 1.61 4.61 2.86 5.45 1.88 3.57

5 13 2.11 6.15 2.92 8.41 2.02 6.39

6 1 -1.57 2.97 -1.89 0.85 -1.88 2.73

6 2 -0.98 1.66 -1.69 0.68 -1.13 1.81

6 3 -0.37 1.36 -3.66 1.12 -0.48 1.61

6 4 -0.18 1.11 -6.24 1.18 -0.32 1.50

6 5 -1.29 1.49 -1.15 -0.52 -1.37 0.85

6 7 -0.55 0.76 -1.38 0.07 -0.55 0.62

6 8 0.10 1.34 12.74 1.38 0.03 1.35

6 9 0.73 2.08 2.87 2.72 0.85 1.87

6 10 0.64 2.34 3.67 3.31 0.87 2.45

6 11 0.16 4.52 27.76 3.04 -0.22 3.25

6 12 2.00 6.19 3.09 4.79 1.92 2.88

6 13 2.19 6.95 3.18 8.76 1.92 6.85

7 1 -1.52 3.11 -2.05 1.25 -1.83 3.08

7 2 -0.99 1.89 -1.90 1.08 -1.12 2.20

7 3 -0.39 1.65 -4.24 1.60 -0.58 2.18

7 4 -0.21 1.40 -6.67 1.52 -0.35 1.87

7 5 -1.36 1.75 -1.28 -0.04 -1.47 1.42

7 6 -0.37 0.75 -2.03 0.57 -0.50 1.07

7 8 0.34 1.21 3.57 1.62 0.23 1.38

7 9 1.19 2.27 1.91 3.53 1.27 2.27

7 10 1.03 2.57 2.50 3.76 1.08 2.67

7 11 0.00 3.51 1063.06 2.86 -0.12 2.97

7 12 1.54 4.21 2.74 4.55 2.05 2.50

7 13 2.08 5.63 2.70 7.48 2.33 5.15

8 1 0.64 3.13 4.93 4.38 0.42 3.96

8 2 1.16 2.39 2.06 3.79 1.07 2.72

8 3 1.75 2.74 1.56 4.38 1.67 2.72

8 4 1.93 2.73 1.42 4.34 1.87 2.47

8 5 0.81 1.88 2.33 2.92 0.75 2.17

8 6 1.80 2.26 1.26 3.55 1.70 1.85
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Station Data Dispersion Measures (minute)

From To Mean St Deviation COV 90th% 50th% 90th − 50th

8 7 1.85 2.08 1.13 3.03 1.82 1.21

8 9 0.76 1.09 1.42 1.65 0.68 0.97

8 10 0.61 1.60 2.64 2.18 0.48 1.70

8 11 -0.38 2.95 -7.65 1.94 -0.90 2.84

8 12 1.10 3.34 3.05 3.46 1.42 2.04

8 13 1.74 4.75 2.73 6.27 1.60 4.67

9 1 -0.54 3.83 -7.15 3.85 -0.70 4.55

9 2 -0.06 2.86 -47.68 3.50 0.11 3.39

9 3 0.51 2.95 5.75 4.12 0.81 3.31

9 4 0.70 2.81 4.04 4.05 0.86 3.19

9 5 -0.46 2.59 -5.67 2.80 -0.50 3.30

9 6 0.53 2.34 4.38 3.28 0.47 2.82

9 7 0.60 2.05 3.43 3.27 0.48 2.79

9 8 -0.16 0.95 -5.77 0.93 -0.32 1.25

9 10 -0.51 1.26 -2.45 0.42 -0.67 1.08

9 11 -1.51 3.26 -2.16 0.64 -1.85 2.49

9 12 -0.04 3.08 -78.56 2.38 -0.02 2.40

9 13 0.61 4.29 7.05 4.67 0.48 4.18

10 1 0.16 4.00 24.79 5.10 0.11 4.99

10 2 0.64 3.13 4.85 4.39 0.80 3.59

10 3 1.21 3.33 2.74 5.15 1.43 3.71

10 4 1.39 3.22 2.32 5.05 1.65 3.40

10 5 0.24 2.71 11.41 3.68 0.36 3.32

10 6 1.21 2.73 2.26 4.22 1.43 2.79

10 7 1.27 2.45 1.92 3.82 1.44 2.37

10 8 0.51 1.39 2.74 2.07 0.42 1.65

10 9 0.51 0.87 1.72 1.40 0.48 0.92

10 11 -1.34 2.65 -1.98 0.35 -1.82 2.17

10 12 0.12 2.89 23.88 2.36 0.02 2.34

10 13 0.68 4.20 6.16 4.77 0.37 4.40

11 1 0.87 5.69 6.52 7.50 0.92 6.58

11 2 1.54 5.01 3.26 6.92 2.05 4.87

11 3 2.09 5.25 2.51 7.65 2.58 5.07

11 4 2.23 5.10 2.29 7.32 2.82 4.50
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Station Data Dispersion Measures (minute)

From To Mean St Deviation COV 90th% 50th% 90th − 50th

11 5 1.02 4.58 4.48 6.20 1.38 4.82

11 6 2.21 4.93 2.24 6.78 2.62 4.16

11 7 2.23 4.66 2.09 6.23 2.62 3.61

11 8 1.33 4.16 3.14 5.43 1.15 4.28

11 9 1.41 3.81 2.70 4.73 1.05 3.68

11 10 0.38 3.93 10.33 4.90 -1.03 5.93

11 12 -0.33 0.98 -2.97 0.73 -0.40 1.13

11 13 0.17 3.06 17.80 3.50 -0.40 3.90

12 1 0.80 5.81 7.23 7.73 0.80 6.93

12 2 1.52 5.07 3.34 6.91 1.92 5.00

12 3 2.07 5.30 2.57 7.60 2.57 5.03

12 4 2.19 5.14 2.34 7.22 2.65 4.57

12 5 0.89 4.64 5.19 5.88 0.97 4.91

12 6 2.11 5.04 2.39 6.61 2.23 4.38

12 7 2.13 4.76 2.24 6.14 2.15 3.99

12 8 1.11 4.41 3.96 5.42 0.85 4.57

12 9 1.16 4.02 3.46 4.69 0.83 3.86

12 10 0.18 4.31 23.76 5.02 -0.88 5.90

12 11 -0.88 1.43 -1.62 0.10 -1.00 1.10

12 13 -0.94 2.78 -2.96 1.87 -1.58 3.45

13 1 1.73 6.67 3.86 9.07 1.43 7.64

13 2 2.60 5.63 2.16 8.04 2.68 5.37

13 3 3.17 5.92 1.87 8.53 3.32 5.22

13 4 3.30 5.83 1.76 8.45 3.42 5.04

13 5 1.94 5.16 2.66 6.90 1.64 5.26

13 6 3.15 5.75 1.83 7.95 2.83 5.12

13 7 3.16 5.53 1.75 7.30 2.73 4.57

13 8 2.00 5.20 2.60 7.22 1.53 5.68

13 9 2.00 4.81 2.40 6.13 1.29 4.84

13 10 1.00 5.02 5.03 6.96 -0.17 7.13

13 11 -0.19 2.38 -12.40 1.81 -0.45 2.26

13 12 -0.84 2.29 -2.73 0.99 -1.18 2.18
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(a) Case1: Risk-Averse Passengers

(b) Case1: Risk-Prone Passengers

(c) Case2: Risk-Neutral Passengers

Figure A.1: The Relationship Between Estimated GCR for Each Passengers class
and DTT 90th − 50th percentile
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