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Abstract 

The objective of this work was to understand microbial population density and diversity, both 
spatially and temporally, in wetland mesocosms to gain a better fundamental understanding for 
use in the optimization and design of constructed wetlands (CWs).  

 

A standardized community level physiological profiling (CLPP) data analysis protocol was 
adapted and utilized for CW mesocosms. A new one-dimensional metric was developed to track 
community divergence using BIOLOGTM ECO plate data. The method proved easy to use, did not 
require a background in multivariate statistics, and accurately described community divergence 
in mesocosm systems.  

 

To study mesocosm biofilm-bound bacterial communities an appropriate detachment protocol 
was required. Various shaking protocols were evaluated for their effectiveness in the 
detachment of bacteria from mesocosm pea gravel, with a focus on detachment of viable and 
representative bacterial communities. A protocol based on mechanical shaking with buffer and 
enzymes was identified as an optimal approach and used further in this study. The bacterial 
communities associated with the interstitial water, pea gravel media, and rhizospheric regions 
from both planted and unplanted CW mesocosms were profiled using the CLPP method and 
compared. Vertical community stratification was observed for all mesocosm systems. 
Rhizospheric communities were found to be significantly more active than their gravel-
associated counterparts, suggesting that although rhizospheric bacteria were less abundant in 
the mesocosms they may play a more significant role in the removal and fate of water born 
contaminants.  

 

The start-up dynamics of CW mesocosms was investigated using the CLPP and standard CW 
characterization methods over an eight month period. All mesocosms showed a steep increase 
in interstitial community divergence until day 75-100, at which point a steady-state was 
reached. The interstitial communities were also characterized in terms of similarity based on 
experimental design treatments (planted/unplanted and origin of seeding inoculum). Four 
stages were identified during the start-up consisting of an initial stage where mesocosm 
communities were differentiated based on origin of the inoculum, a period where adjustments 
and shifts occurred in all mesocosm, a time where all mesocosm communities were quite 
similar, and a final state where community differentiations were made based plant presence in 
the mesocosms.  
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Chapter 1: Introduction 

 

1.1 Background 

1.1.1 Constructed Treatment Wetlands 

The ability of wetland ecosystems to improve water quality has been recognized since the 

1970s (Knight et al., 1999). The main principle behind a constructed wetland, used for water 

treatment, is to reproduce a wetland ecosystem with the expectation that contaminated water 

will be treated as it passes through the wetland system. Constructed wetlands have been used 

to treat a number of different contaminated waters including organic farm waste (Cronk, 1996), 

food processing waste (Burgoon et al., 1999), human wastewater (Decamp and Warren, 2000), 

and acid mine drainage (Mitsch and Wise, 1998; Kadlec and Kinight, 1996).  

 

There are three general types of constructed wetland (CW) systems; free surface water (FSW), 

horizontal subsurface flow (HSSF), and vertical flow (VF) constructed wetlands. FSW CWs are 

built by first digging a trench with a slight gradient (1%) from inlet to outlet to allow movement 

of the water by gravity. This trench is then lined with an impermeable polymer, or low a 

permeability soil such as densely packed clay. This lined trench is then filled with the desired 

bed media. Bed media is most often selected based on desired flow patterns, nutrient and 

mechanical support for the chosen plant types, and as a nutrient source required for some 

biologically-mediated treatment processes. In some geographical locations the native soil may 

have a permeability low enough such that no liner is required. In this case the trench can simply 

be dug and filled with the desired bed media. Common media include peat, gravel, sand, soil 

and compost. FWS constructed wetlands contain standing water on the surface of the 

treatment system and can be fed from either below ground or above ground (Figure 1.1).  
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Figure 1.1: Free surface water constructed wetland. 

 

HSSF CWs are similar in construction to FSW CWs, but are typically fed from below ground and 

are designed so the maximum flow rate will not allow surface water formation on top of the 

system (Figure 1.2). 

 

 

Figure 1.2: Horizontal subsurface flow constructed wetland. 

 

VF CWs have a number of construction elements similar to those of HSSF CWs, however are not 

built with a gradient as the water is fed into the top of the wetland system. A large 

impermeable enclosure is built and filled with a substrate, water is then fed into the top of the 

VF CW. Water is usually fed into VF wetlands intermittently allowing for bed aeration and to 
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deter surface water formation (Figure 1.3). All three types of CW systems may contain different 

emerging macrophytes (large aquatic plants rooted to the bed media). In some cases, usually 

for research purposes, macrophytes are not included in the CW design. The two most 

commonly utilized macrophytes in CW designs are Phragmites australis (common reed) and 

Typha species (cattail or bulrush). FSW wetlands can also contain floating plants rather than 

rooted macrophytes; these types of systems do not require substrate and are popular in 

tropical regions. 

 

 

Figure 1.3: Vertical flow constructed wetland. 

 

Currently CW design is based mainly on configuration, size, and flow records from previously 

employed systems. Wetlands are land (area) intensive technologies making implementation, for 

the most part, infeasible in densely populated areas. Although CWs have proven to be an 

effective treatment technology for a variety of contaminants, CW systems will on occasion fail 

due to temperature changes, hydraulic issues (clogging/short circuiting), and other 
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undetermined reasons. Diemont (2006) reported more than 650 full-scale constructed wetland 

systems in place throughout the world. This number although large is perhaps on the low side 

with many wetland scientists projecting as many as 10000 CWs operating throughout the 

world. Although there are many CWs in operation throughout the world, with regards to their 

functionality they are for the most part consistently treated as a black box. The specific 

mechanisms and the underlying fundamental variables affecting the functionality of treatment 

wetlands have been given little attention. This fact can be mainly attributed to the lack of 

feasible testing methods and associated systems (Stottmeister et al., 2003) which has 

hampered confidence and support for the technology. There has long been a fundamental 

inability to make a priori predictions in terms of the effectiveness of a proposed wetland for a 

given flow and input water chemistry (Wieder et al., 1989). 

 

1.1.2 Constructed Wetland Design 

CW systems are complicated in their chemistry, hydraulics, and distribution of specific removal 

mechanisms; therefore, simplified relationships and models for contaminant removal in these 

systems have been sought for ease of design. Contaminant removal in CW systems has been 

shown to correlate well with hydraulic retention time (HRT). Since CW size is proportional to 

HRT, contaminant removal in CWs has been modeled based on volume and different aspect 

ratios. 

 

Hydraulics, kinetics and other design criteria such as minimum depths, maximum superficial 

velocities, minimum HRTs and wetland slopes all need to be accounted for when designing a 

CW system. For general considerations regarding wetland design see Kadlec and Knight (1996). 

Wetland systems are most often modeled as plug flow reactors incorporating both dispersion 

and kinetics into the model (Cronk, 1996). Hydraulics are quantified through hydraulic 

conductivity, porosity, and in some cases, specific values for dispersion. Kinetics are almost 

always accounted for by using first-order rate constants. Other design criteria are based largely 

on past engineering experience and include but are not limited to a maximum superficial 
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velocity of 8.6 m/d to avoid damage to plant root systems (Sauter and Leonard, 1997), a 

minimum specific surface area of 1 m2/population-equivalent for tertiary treatment of 

municipal wastewater in vertical flow systems (Schoenerklee et al., 1997), and a gradient of 1% 

for proper water movement. 

 

1.1.3 Treatment Applications 

Constructed wetlands (CWs) can be used to treat organic farm waste (Cronk, 1996), food 

processing waste (Burgoon et al., 1999), storm water (Kadlec et al., 2008), acid mine drainage 

(Mitsch & Wise, 1998), and many different types of industrial wastewaters (Kadlec et al., 2008). 

However, the majority of CW treatment systems have been built for the treatment of human 

wastewater (Decamp & Warren, 2000), which may include pathogenic organisms. Studies have 

shown effective secondary and tertiary removal of pathogens such as fecal coliforms, 

Cryptosporidium, Giardia (Gerba et al., 1999; Neralla et al., 2000).  

 

The use of CW systems to retrofit existing wastewater treatment plants, as a form of tertiary 

treatment, is becoming increasingly popular. The cost effectiveness of treatment wetlands 

makes them an attractive option for small communities. Conventional methods of wastewater 

and pathogen treatment are both effective and reliable. Activated sludge, trickling filter and 

slow sand filtration are some of the more commonly cited methods. All of these treatment 

methods, when properly used, are effective at removing many different types of pathogens 

with typical removal efficiencies around 99-99.99% (Vymazal, 2005). These processes are most 

often employed in conjunction with a tertiary step for further pathogen treatment. Although 

chlorination is a popular tertiary disinfection step, free chlorine when in contact with a 

significant amount of natural organic matter can form trihalomethanes (THM’s) or other 

organo-chlorine compounds which are known to be carcinogenic (Kadlec & Knight, 1996). This 

possible formation of harmful by-products is the main reason for the development of other 

tertiary (or polishing) conventional-type pathogen treatment methods such as UV and 

ozonation. Low energy non chemical methods of pathogen treatment have been used when 
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receiving waters are non potable or disinfection requirements are relaxed. Constructed 

wetlands have low principle and operating costs making them popular in remote areas and 

developing countries. The wetland concept has become an attractive cost-effective wastewater 

treatment alternative compared to conventional or tertiary treatment processes (Morsy, 2007). 

For an in-depth discussion regarding various CW treatment applications see Kadlec et al. (2008). 

 

1.1.4 Treatment Prediction and Modeling 

Constructed wetland models have been developed for industrial wastewater, agricultural run-

off, human wastewater, and storm water applications to name a few. Constructed wetland 

modeling can be separated into five main categories: rules of thumb, regression equations, first 

order equations, variable order or Monod type equations, and mechanistic or compartmental 

type models. All five model types have positive and negative aspects associated with their use.  

 

1.1.4.1 Rules of Thumb 

Strictly speaking rules of thumb are not a type of modeling technique. Rules of thumb are 

developed to give easy to use design criteria for constructed wetland creation. They are based 

on a broad spectrum of data and resultant designs are quite conservative. Kadlec and Knight 

(1996) and Wood (1995) offer subsurface constructed wetland design criteria based on general 

rules of thumb. In the design of subsurface flow constructed wetlands, Kadlec and Knight (1996) 

suggest designing to achieve a hydraulic loading rate of 8-30 cm/day and a hydraulic retention 

time of 2-4 days.  

 

1.1.4.2  Regression Equations 

The second type of constructed wetland model is based on regression equations. Regression 

equations are created from historical data for numerous contaminants at many different field 

sites. Rousseau et al. (2004) summarizes many different regression equations for BOD, COD, 
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TSS, TN and TP from many sources. The standard regression equation is usually linear and of 

the form: 

 

  0CCi            (1.1) 

where: 

C0   - effluent concentration 

Ci - influent concentration 

α  - treatment coefficient/slope 

β - treatment coefficient/intercept 

 

Some regression equations offered by Kadlec and Knight (1996) for example, contain 

exponential terms. Despite the form of the regression equation, the objective is to fit the data 

with the best possible relationship. Published regression equations summarized by Rousseau et 

al. (2004) have R2 values ranging from 0.02 to 0.97. R2 values of approximately 0.6 are 

commonly found and accepted as appropriate.  

 

Regression equations can provide an estimate of the common removal rates found in wetland 

systems treating similar contaminants; however, the range of different removal efficiencies and 

rates cannot be overlooked. When constructing a wetland many factors play a role in the 

expected removal efficiency. Regression equations are useful for describing removal in a 

specific wetland, however they provide no insight into what design aspect may improve 

contaminant removal in the design. To attain this end a more descriptive mechanistic model is 

needed. 

 



8 

 

1.1.4.3 First Order Equations 

Similar to regression equations, the use of first order equations is another way to describe 

specific contaminant removal in a constructed wetland system. Instead of creating a regression 

equation that best fits the data, a standard first order equation is used and the rate constant is 

adjusted to fit the data. The standard first order equation is of the form: 

 

q

k
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           (1.2) 

where: 

k - first-order rate constant  

q - hydraulic loading rate  

 

This equation is helpful in that it adjusts for the hydraulic loading rate which most regression 

equations do not include. In addition to the simple first order equation another first order 

equation commonly called the k-C* equation is utilized: 
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where: 

C*  - background concentration 

 

Including the background concentration has been shown to improve data fits and better 

describe BOD and COD removal (Noorvee et al., 2005). The rate constant is often adjusted for 

temperature effects by the equation: 
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20

20

 T

T kk             (1.4) 

where: 

k20 - reaction rate coefficient at 20°C 

kT - reaction rate coefficient at temperature (T) 

T - temperature (°C) 

θ - temperature factor 

 

The temperature factor θ is distinct for different contaminants. Kadlec and Knight (1996) show 

the temperature factor θ for TSS and TP to be 1, with θ for TN to be 1.05.  

 

Similar to regression equations, first order equations are useful in describing contaminant 

removal rates in wetland systems; however, they provide no insight into better design or 

optimization.  

 

1.1.4.4  Variable Order and Monod type Models 

First order rate models describe the removal rate as continually increasing as loading increases. 

This description is often found to be limiting as there is usually a maximum removal rate in any 

system. Monod type equations put a ceiling on the reaction rates, better describing actual 

removal rates over varying loading rates. If the loading rates are not high enough to observe 

close to the maximum reaction rate, then first order rate equations can be considered valid. In 

fact, actual loading rates have been shown to be much lower than the maximum loading rates 

in the majority of field cases (Rousseau et al., 2004).  Kemp and George (1997) reported that in 

some cases with low loading rates, Monod type equations have been shown to better describe 

the data.  
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1.1.4.5 Mechanistic Models 

Modeling of constructed wetlands can be said to serve two purposes: understanding the 

underlying mechanisms, and the optimization of existing design criteria (Langergraber, 2003). In 

contrast to the previously discussed contaminant removal models, mechanistic models try to 

include all of the major physical, biological and chemical processes occurring in the wetland 

system. The interdependence of many processes such as oxygen transfer and oxidation of 

organic matter (removal of BOD) is ignored in the single contaminant removal models. 

Mechanistic models offer a framework to compare processes between sites and a basis for 

understanding and optimization of the many processes occurring in the wetland. The range of 

processes included in mechanistic models varies substantially. The number of processes as well 

as the accuracy with which the processes are connected plays a major role in how well a 

mechanistic model will perform.  

 

Mechanistic models often contain several sub-models describing contaminant removal 

processes including sedimentation, filtration, precipitation, sorption, plant uptake, microbial 

decomposition and oxidation. The more advanced mechanistic models contain water and 

oxygen balances, carbon and nitrogen cycles, both heterotrophic and autotrophic 

microorganism models and a plant growth/death model. Of all the mechanistic models 

presented to date, the model of Wynn and Liehr (2001) is perhaps considered the most 

inclusive and complex, although many other models offer improved sub models (McGechan et 

al., 2005; Langergraber, 2003; Giraldo and Zarate, 2001). 

  

1.1.5 Removal Efficiencies 

CW removal efficiencies upwards of 99.99% have been reported for virtually all types of water 

contaminants (Kadlec & Knight, 1996). Configuration has been correlated with different 

efficiencies for specific contaminants. For example, Vymazal (2005) presented removal 

efficiencies and first-order aerial rates recorded for different CW systems in-use at the time of 

the study, for 4 different indicator organisms (pathogen surrogates). Removal efficiencies 
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ranging from 65% to 99% were observed with the highest removal rates observed for hybrid 

systems (more than 1 CW configuration type used), followed by HSSF, and lastly FWS systems. 

VF systems were not included in the survey. Although broad based correlations between 

removal efficiency and configuration have been observed, there still exists significant amounts 

performance variability for similarly designed CW systems.  

 

1.1.6 Pre-Treatment 

Pre-treatment has been cited as a requirement when using CW systems to treat domestic 

wastewater or any other type of contaminated water with a large amount of particulate matter 

(Anderson et al., 1996; Cronk, 1996; Kern and Idler, 1999; Perfler et al., 1999; Peterson, 1998; 

Sauter and Leonard, 1997; Williams et al., 1999). Suspended solids can temporarily or 

permanently clog CW systems (Cronk, 1996; Schoenerklee et al., 1997). Clogged systems are 

subject to short circuiting, creating unwanted flow patterns and reduced contact time between 

the contaminant and the wetland substrate (Tanner et al., 1998). 

 

Sedimentation is cited as the most common method of pre-treatment for CW systems 

(Anderson et al., 1996). Sedimentation can be performed through the use of lagoons, 

equalization basins, ponds, settling tanks or septic tanks (Frostman, 1996; Philippi et al., 1999; 

Sauter and Leonard, 1997). Mechanical aeration can also be used as a pre-treatment process 

(Cronk, 1996); however, utilizing this technology can significantly increase the cost of the 

treatment system in question. Another form of pre-treatment is to use a hybrid “FWS to HSSF 

system”. Processing wastewater first through a FWS CW can effectively reduce the number of 

particles found within the water (Rochfort et al., 1997). Use of a pre-treatment system can also 

help in equalizing flows over long periods of time, reducing the negative effects of low or high 

flows (Frostman, 1996).  
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1.1.7 Constructed Wetland Design and Implementation 

As previously mentioned there are many drawbacks to using first-order decay kinetics when 

sizing a wetland based solely on area and inlet concentrations. These methods are based on the 

assumption that effluent concentrations are directly related to inlet concentrations and flow, 

and that removal efficiency will be based on wetland area and flow rates. As seen with the wide 

range of removal efficiencies for similarly designed CWs, performance cannot be accurately 

described based solely on these variables and doing so can lead to erroneous conclusions 

(Kadlec, 1997; Werker et al., 2000). Simple system changes such as a change in water levels will 

affect the concentrations of contaminants within the system (Kadlec, 1997; Neralla et al., 2000). 

As well, seasonal cycles affecting inlet flows and concentrations, solar radiation, temperature 

(air, soil and water), precipitation, evapotranspiration, and biomass in wetlands will all affect 

system performance (Kadlec, 1999). Other factors to be considered in CTW design include but 

are not limited to local climate, site topography, site geology, loadings, local drainage areas, 

land availability, cost, size and extent of receiving water body and water quality objectives 

(Shutes et al., 1999).   

 

1.1.8 Design Limitations 

1.1.8.1 Hydraulic Challenges 

Channeling or short-circuiting has been shown to impact treatment performance (Rash and 

Liehr, 1999; Sauter and Leonard, 1997; Scholes et al., 1998). As discussed previously, pre-

treatment can greatly reduce the chances of clogging and channeling. As such, there are a 

number of aspects related to hydraulics that should be considered when building CW systems.   

These include:  1) The presence of plant roots has been shown to direct water below the root 

zone in wetland systems (Rash and Liehr, 1999), creating a vertical hydraulic stratification. In 

some cases there is evidence that plants may cause short circuiting, although this may be 

limited to start-up periods (Frostman, 1996); 2) Wetland width can also have an effect on 

channeling as edge effects have been shown to influence CW hydraulics (Tanner et al., 1998) 

and 3) The position of effluent removal has been shown to have an effect on channeling. 
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Collecting effluent from the bottom of the CW system has been shown to result in vertical 

stratification (McNevin et al., 2000). 

 

1.1.8.2 Water Level Maintenance 

Water levels need to be maintained in wetland systems to ensure plant health, consistent 

microbial activity, and consistent microbial ecology within the CW system. A number of design 

considerations have been recommended in the literature to ensure consistent water levels in 

CW systems. These include:  1) Implementation of a preceding system to equalize variable or 

seasonal flows to ensure a CW system does not dry out or overflow (Anderson et al., 1996); 2) 

Continuously flowing water is needed to avoid pipe freezing during winter (Wittgren and 

Maehlum, 1997) and 3) Dry periods in arid geographical regions can effectively dry out CW 

systems through lack of inlet flow and increased evapotranspiration.  

 

As previously discussed use of a pre-treatment system can help to maintain equalized flows 

throughout short and long-term time periods. One simple way to help ensure a CW system 

does not dry-out due to reduced inlet flow is to place the effluent pipe at a height that ensures 

that the minimum necessary water level is maintained. This however may not be possible if 

treating water with a high level of particulate matter as this may result in clogging. 

 

1.1.8.3 Cold Climates 

Cold climates present another challenge for CW design. Decreased microbial activity, plant 

dormancy, and freezing of the water column can all occur due to cold temperature operation 

(Werker et al., 2002). As such, there are a number of considerations when designing CWs for 

cold climates. 1) HSSF systems are often used in cold temperature climates to eliminate free 

water freezing and make use of warmer ground temperatures in the winter (Dusel and 

Pawlewski, 1997; Revitt et al., 1997). 2) Vegetation can be used to help produce an insulating 

layer of mulch on top of the CW system (Smith et al., 1997). Emerging vegetation can also 
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entrap snow, further insulating the system during winter operations (Wittgren and Maehlum, 

1997). 3) CW systems could be made deeper, to avoid surface freezing. This may have a 

disadvantage in cases where higher levels of dissolved oxygen are required as installing deeper 

CW system can hinder treatment performance.  

 

1.1.9 Contaminant Treatment Mechanisms 

Through research studies on small scale systems and insightful characterization and study of full 

scale wetlands, the fundamental variables and mechanisms involved in water treatment can be 

identified to provide a better understanding of CW systems. With a better understanding, 

enhanced design, implementation and monitoring of in-use systems will ensue, potentially 

allowing for improved treatment performance for CWs of all sizes and configurations, and the 

ability to project long-term performance characteristics. 

 

Suggested mechanisms for organic, inorganic and pathogen treatment in CWs include 

sedimentation, natural die-off, inactivation or death related to temperature, oxidation, 

predation, inactivation or death related to unfavorable water chemistry, biofilm interaction, 

mechanical filtration, exposure to biocides, UV radiation, precipitation and biotransformation 

(Kadlec and Knight, 1996; Vymazal, 2005; Borisko et al., 2000; Cronk, 1996; Gerba et al., 2000). 

Table 1 has been generated from a review of the literature and lists removal mechanisms along 

with some suggested design parameters which may have an effect on each respective 

mechanism. Also included are rough estimates of the time required for each mechanism to 

have an effect on contaminant treatment. 
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Table 1.1: Summary of contaminant treatment mechanisms in constructed wetlands 

Removal Mechanism Design Factor Effective Time 

Sedimentation bed media type, configuration minutes-years 

Temperature location, plant presence, microbial activity days 

Oxidation plant presence, configuration hours-days 

Adhesion to biofilm microbial ecology and activity minutes-hours 

Mechanical filtration bed media type, configuration minutes-hours 

UV radiation configuration seconds-minutes 

Biological transformation microbial ecology and activity minutes-hours 

Precipitation bed media type, configuration seconds-minutes 

Pathogen specific mechanisms   

Exposure to Biocides plant type minutes-hours 

Unfavorable water chemistry bed media type minutes-days 

Predation microbial ecology and activity minutes-days 

Natural die off hydraulic retention time days-weeks 

 

1.2 Experimental Research 

Case studies involving large scale in-use wetland systems give practical information for design 

and implementation. Pilot studies involving both the treatment of contaminated waters in 

conjunction with comparison of wetland design orientations aim at understanding the effect of 

different design aspects on treatment performance. When working with in-use constructed 

wetlands there is a lack of practical replication and environmental control, and extended 

response times hinder true comparative or quantitative studies. Most constructed wetlands 

used for water treatment have been installed for non-research purposes (Wieder, 1990); 

therefore, most advances in the field can be attributed to large compilations of case study data. 

True experimental design and subsequent statistical analysis is not achievable for most 

constructed wetland research endeavors. Many case study reports do not take into account 

numerous factors which can vary between wetland systems over the study period due to the 

naturally divergent nature of many uncontrolled variables in wetland systems. These factors 

include microbiological activity, bacterial community changes, hydraulic dispersivity, porosity, 

and evapotranspiration effects. The resulting lack of understanding towards the specific 
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mechanisms and the underlying fundamental variables affecting the functionality of treatment 

wetlands has resulted in a wide variation in reported performance values for similarly designed 

systems (Kadlec and Knight, 1996), with little explanation as to the reasons for this variation. 

 

Several challenges are apparent when designing experiments aimed at the study of CW removal 

mechanisms. 1) Large scale in-use wetland systems offer little control over environmental 

variables. 2) Removal mechanisms do not act independently, rather certain removal 

mechanisms may be correlated or act synergistically. 3) Large-scale in-use treatment wetland 

monitoring data often does not contain useful information regarding the action of specific 

contaminant removal mechanisms. 4) Appropriate statistical analysis is often unattainable using 

in-use wetland monitoring data. 

 

1.2.1 Laboratory Scale Experimental Systems 

Although laboratory scale wetland systems do not completely recreate or represent full scale 

in-use treatment wetland systems they do offer a number of advantages when investigating 

fundamental variables or mechanisms affecting treatment performance. Fundamental 

investigations are often not directed at accurately estimating removal coefficients in large scale 

systems, but rather at gaining an understanding of the quantitative comparison of certain 

variables or mechanisms on overall removal. In other words, trying to understand which 

mechanisms or variables have a significant impact on removal. To develop this understanding, it 

is important to assess factors that may influence these significant variables and mechanisms, 

and how these mechanisms or variables relate to each other. Although overall removal rates 

will not be representative in small scale systems, these systems offer research-related 

advantages not available in large scale-systems. 

 

Laboratory scale treatment wetland systems are often referred to as mesocosms or 

microcosms. Examples of small scale mesocosm system studies can be found in the literature 
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(Kappelmeyer et al., 2001; Prado, 2004; McHenry and Werker, 2005; Werker et al., 2007; 

Weber et al., 2008). Configurations, flow rates, feed entry points, and recycle rates can all be 

varied to achieve different internal system conditions. To reflect the inherently diverse nature 

of in-use CW treatment systems, the experimental conditions investigated within laboratory 

scale mesocosm systems can be varied to suit specific investigations. Figure 1.4 shows an 

example of the type of mesocosm system used for the research described in this thesis. 

 

 

Figure 1.4: Mesocosm schematic (A) and representative picture for the system planted with Phragmites 

australis (B). In (A) water is fed into the mesocosm (b) and allowed to percolate through the pea gravel 

bed to be collected at the bottom (c), where a small centrifugal pump re-circulates the water (a). An 

atmosphere exposed port serves as an injection (d) and sampling (e) point. Drainage ports are located near 

the top to prevent overfilling (f), and near the bottom (g) for mesocosm drainage. 

 

The constructed wetland mesocosm approach was developed as a quantitative method to gain 

insight into wetland performance, and ultimately use this insight to assist in the design and 
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treatment optimization of constructed wetlands by applying principles of tracers, reactor 

theory, modeling, and enzymology, while undertaking experiments to critically assess factors 

that could influence performance and reliability of treatment wetlands (Werker et al., 2004). 

Through system replication, environmental control and shorter response-times, wetland 

mesocosms allow for the implementation of factorial designed experiments and subsequent 

quantitative and comparative statistical analysis. The mesocosm approach has been described 

as a powerful way to test research hypotheses using quantitative experimentation (Perrin et al., 

1992). Several mesocosm studies have recently been used in undertaking a quantitative 

approach to the study of constructed wetland systems (Kappelmeyer et al., 2001; Prado, 2004; 

McHenry and Werker, 2005; Werker et al., 2007; Weber et al., 2008). 

 

1.2.2 The Study of Biologically Related Removal Factors 

It is generally accepted that constructed wetlands contain a biological regime associated with 

the wetland substrate (Truu et al., 2009; Wynn and Liehr, 2001). The role of the biological 

regime, and the related mechanisms associated with contaminant treatment, have been largely 

overlooked in favor of using hydrodynamic and simple first-order removal rate models to 

describe water treatment in constructed wetlands. The role and influence which the biological 

regime has on specific aspects within constructed wetlands has been given little to no 

attention. 

 

The abiotic removal mechanisms in wetland systems can be said to be similar to those in sand 

or gravel filters and are well documented and quantified (Stevik et. al, 2004), but the biotic 

removal mechanisms in wetland systems are what make them unique and more effective. Both 

the planted regions and the internally developed bacterial community within wetlands can be 

considered as biotic or “living” components of the wetland system. These biotic components 

are more difficult to study and quantify leading to a gap in our knowledge surrounding the 

associated removal mechanisms. Of further note is the likely interdependence of abiotic and 

biotic removal mechanisms. For example, physical filtration removal rates are closely related to 
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biofilm type and size, and biofilm type and size will be based on the overall activity of the 

microbial population within the wetland system and the different bacterial species populating 

the media. 

 

Different communities will create different microenvironments including different biofilm 

environments (Faulwetter et al., 2009). As previously discussed the existence of, and general 

integrity and make-up of these biofilms, can have an effect on contaminant removal in 

wetlands (Broadbent et al., 1971; Richardson and Rusch, 2005; Vacca et al., 2005; Larsen and 

Greenway, 2004). The different bacterial communities in wetlands play a vital role in water 

treatment performance and ecosystem health (Parkinson and Coleman, 1991; Aelion and 

Bradely, 1991). Although the bacterial community in CWs has been recognized as having a large 

influence on water treatment performance, little attention has been given to understanding the 

microbial ecology in these systems. 

 

A number of microbial-based pollutant cycles/transformations have been well documented in 

the literature, including organic matter degradation, nitrogen transformations, and sulfur 

removal (Kadlec and Knight, 1996). Understanding how microbial processes can effect these 

cycles and transformations is important to furthering the scientific understanding of 

constructed wetlands (Faulwetter et al., 2009). Realizing the simplicity or complexities behind 

the differing cycles is often the first step in beginning research with regards to microbial-based 

pollutant transformations. For example organics can enter wetland treatment systems in a 

variety of forms; many different types of bacteria are then able to use these organics as either a 

carbon or an energy source, releasing CO2 into the atmosphere. The nitrogen cycle in CWs is 

however more complex; for complete nitrogen removal a number of different bacterial types 

are required. Nitrogen usually enters the wetland system as ammonium. Ammonium is then 

transformed into nitrite by ammonium oxidizing bacteria, and then into nitrate by nitrite 

oxidizing bacteria. These steps are both aerobic and require specific autotrophic bacteria to 

progress. Nitrate can then either be assimilated by plant roots or go through a multistep 
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anaerobic denitrification process producing gaseous N2. Denitrification requires specific 

facultative or anaerobic chemoheterotrophs to occur. Therefore when designing a CW for 

nitrogen removal it is important to understand the different oxygen requirements of the 

bacterial cultures at each step of the nitrogen removal process, and also realize the carbon 

source requirement in the denitrification process.  

 

The interaction between plants and the bacterial communities found in the wetland substrate is 

another major factor affecting bacterial community dynamics in wetland systems. Aquatic 

plants, such as Phragmites australis, have the ability to transfer oxygen from their aerial tissues 

and release it into the rhizosphere region (Karathanasis and Johnson 2003; Batty et al., 2000). 

Plant root systems also provide mechanical support and perform many roles including the 

synthesis, accumulation, and secretion of compounds (Flores et al., 1999). The chemicals 

secreted into the surrounding rhizosphere by roots are referred to as root exudates. Plants 

have been shown to exude 5-21% of all photosynthetically fixed carbon into the surrounding 

rhizosphere as root exudates (Walker et al., 2003; Marschner, 1995). Through this exudation, 

roots can often influence the microbial community structure within the surrounding 

rhizosphere (Walker et al., 2003; Nardi et al., 2000). Recent work has gone so far as to take 

advantage of this bacteria-rhizosphere interaction to help promote plant growth using 

engineered bacteria (Reed et al., 2005). 

 

Biotic factors can be difficult to quantify in wetland systems. Two factors which can be studied 

with relatively little difficulty are microbial activity and microbial community structure. The 

activities of different bacterial species and the overall community structure affect treatment 

performance of constructed wetland systems. By gaining better insight into bacterial 

community activity and diversity, improvements to existing wetland models should be possible. 
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1.2.2.1 Microbial Activity 

Constructed treatment wetlands are used to treat any number of different wastewaters. In 

treating these wastewaters a number of mechanisms are at work. However, it has long been 

recognized that the treatment of the majority of water born contaminants in CWs is largely due 

to microbial processes of transformation and degradation (Faulwetter et al., 2009). Therefore 

the rate at which these microbial-based transformations occur is of fundamental importance in 

understanding treatment efficiencies in constructed wetlands. If fundamental research can 

uncover the relationships between treatment efficiency and the activity of bacteria in CWs, 

perhaps the large performance differences between similarly designed CWs could be better 

understood. With a greater understanding in hand, further work into the study of specific 

bacterial “functional groups” responsible for specific pollutant transformations would represent 

a natural progression of the science (Faulwetter et al., 2009). 

 

One of the most commonly utilized microbial activity measures is the 5 day biochemical oxygen 

demand (BOD5). Other more easily applied methods include carbon utilization measures 

(Weber et al., 2008; Tietz et al., 2008), and microbial-related enzymatic activity measures based 

on the conversion of FDA to FL (Schnürer and Rosswall, 1982; McHenry and Werker 2005; 

Weber et al., 2008).  

 

1.2.2.2 Microbial Community Assessment 

Another important factor in wetland systems which has recently received attention is the 

bacterial community structure (Vacca et al., 2005; Hallberg and Johnson, 2005; Weber et al., 

2008). Both the genetic diversity and functional adaptation of bacterial communities in wetland 

systems allow for improved long term treatment performance (Kadlec and Knight, 1996). 

Genetic diversity can give an idea of the number and distribution of species within a community 

while the study of the functional response or functional diversity, takes a more holistic 

approach, and yields an idea of the overall community response or function without cataloging 
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specific species. A brief look at some of the more commonly used bacterial community 

assessment methods follows.  

 

1.2.2.2.1 Non-Molecular Methods 

1.2.2.2.1.1 Light Microscopy 

Traditional non-molecular methods include microscopy and culture based identification. 

Microscopy has advantages due to its ease of use and quick assessments, making microscopy a 

convenient and dependable method when monitoring communities of fixed or similar species 

distribution. Light microscopy allows for qualitative-heavy identification based on morphology 

however it is not possible to distinguish between living and dead organisms (Madigan et al., 

2002). Other drawbacks include the need for specialized expertise and the fact that different 

organisms can share similar morphology (Ferris et al., 1996; Duineveld et al., 2001). 

 

1.2.2.2.1.2 Traditional Microbial Plating 

Culture-based identification can be used to identify some microorganisms. By using previously 

developed expertise, species identification can be accomplished through sequential plating 

with different nutrient sources (Cullimore, 2000). These methods require a large amount of 

time, resources, and expertise. As well, many organisms may not be cultureable under plating 

conditions (Amman et al., 1995); it has been suggested that plate count techniques account for 

a meager 0.1-20% of the original population (Muyzer et al., 1993). 

 

1.2.2.2.1.3 Community Level Physiological Profiling 

Community level physiological profiling (CLPP) is an approach used to characterize microbial 

community function based on sole carbon source utilization patterns (CSUPs). CLPP can be used 

as an indicator of the metabolic characteristics and overall stability of a specific microbial 

community over time. Recent work in the area of microbial soil ecology has utilized BIOLOG™ 
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plates as a tool for CLPP. BIOLOG™ plates consist of 96 wells, each well containing a different 

carbon source and a redox dye indicator (tetrazolium violet) which changes colour in response 

to carbon utilization. Garland and Mills (1991) were the first to use BIOLOG™ plates for 

characterizing heterotrophic soil bacteria communities through principle component analysis 

(PCA). A number of subsequent studies are discussed in Konopka et al., (1997). Most recently 

Weber et al. (2008) successfully used BIOLOG™ ECO plates to profile the interstitial bacteria in 

constructed wetland mesocosms. In contrast to the original BIOLOG™ plates with 96 different 

carbon sources, ECO plates by the same manufacturer are based on 31 different carbon sources 

with built-in triplicates allowing for better replication. CLPP has advantages over both classic 

cell culturing techniques and molecular level RNA/DNA amplification techniques as these other 

techniques are time consuming and require specialized expertise (Garland, 1997). 

 

Limitations pertaining to the CLPP approach using BIOLOGTM ECO plates have been discussed in 

the literature (Garland, 1997; Konopka et al., 1998; Preston-Mafham et al., 2002). Limitations 

and pitfalls pertaining to data analysis have also been recently described (Weber et al., 2007). 

Some of the most pertinent limitations include the bias in the technique toward rapidly growing 

bacteria, the need to ensure similar sample sizes, the need to reduce time between sampling 

and inoculation of the BIOLOGTM microplates, and difficulties with meaningful data analysis and 

interpretation. 

 

The CLPP approach has not been used widespread within either CW or natural wetland 

systems. Only 3 different CLPP studies can be found within the literature. Hadwin et al. (2006) 

studied the effect of different naphthenic acid treatments on CW resident communities in the 

Athabasca oil sands of Alberta, Canada. However using the CLPP method no definite trends 

could be seen. Hench et al. (2004) performed a study looking at the bacterial community of 

pilot scale planted and unplanted HSSF CW treatment systems over several seasons using the 

CLPP method. It was found that the bacterial communities in the CW systems were variable 

over the different seasons, and that a distinct difference in the bacterial communities of 
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planted and unplanted systems could be observed. Weber et al. (2008) used the CLPP method 

in the study of resident communities within laboratory scale wetland mesocosms and found 

distinct differences between the communities found within unplanted and planted mesocosms. 

This same study was also able to track community divergences and recovery trends based on an 

AMD perturbation. To the best knowledge of the author no studies applying the CLPP method 

to natural wetland bacterial communities have been published. However, based on personal 

communications at the 2nd International WETPOL conference (Tartu, Estonia) some scientists 

have attempted to apply the CLPP method to natural wetland communities, but have had only 

limited success. This lack of success could be due to the nature of the systems, or could also be 

due to data analysis difficulties as described by Weber et al. (2007). The CLPP method is a 

powerful method which has yet to be truly tested on either CW or natural wetland systems. 

Therefore there are still many questions surrounding the methods utility and feasibility in these 

systems. 

 

1.2.2.2.2 Molecular Methods 

With the advent of the polymerase chain reaction (PCR) and a growing library of genetic 

information on bacterial species, molecular identification methods have become increasingly 

popular in the field of bacterial community analysis. Although many of the molecular 

techniques developed for community analysis could be used to study the bacterial community 

in wetlands, only a small number of molecular-based community studies have been performed 

(Vacca et al., 2005; Hallberg and Johnson, 2005; Faulwetter et al., 2009).  

 

1.2.2.2.2.1 Denaturing Gradient Gel Electrophoresis (DGGE) 

DGGE separates PCR amplified bacterial community rDNA gene segments by electrophoresis on 

a denaturing gradient gel. PCR is a method of DNA or RNA amplification using a heat stable 

polymerase, an excess of nucleotide bases (dNTPs), and an excess of 2 (20-base pair or smaller) 

primers (Tozeren and Byers, 2004). These 2 primers match highly conserved regions on the 

DNA, most commonly in the gene encoding bacterial 16s ribosomal RNA (rRNA). The primers 
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are selected with some a priori knowledge of what bacterial species may be expected in the 

samples. PCR has been shown to have a number of limitations including contaminants present 

in the samples, suboptimal reaction conditions, lack of primer specificity, and differential 

annealing (Suzuki and Giovannoni, 1996). 

 

To perform a DGGE analysis, PCR amplified rDNA segments are run on a gel containing urea and 

formamide. The urea and formamide denatures the rDNA as it runs on the gel, completely 

restricting its movement in the gel at a specific location based on the original sequence. 

Therefore different proportions of nucleotides in the original species sequence will allow rDNA 

to move a characteristic distance unique to the original sequence (species). Each band present 

on the gel is then said to be representative of a specific bacterial species in the original sample 

(Nadarajah, 2007). 

 

1.2.2.2.2.2 Terminal-Restriction Fragment Length Polymorphism (TRFLP) 

Either one or both of the primers used in the PCR amplification is labeled with a fluorescent 

marker. These primers are again most often targeted at the 16s rRNA encoding region of the 

DNA, which has a highly conserved length (50-200 bp). A restriction enzyme is then added 

which cleaves the rDNA at a specific site dependant on the species sequence. The lengths of the 

fluorescently labeled fragment can then be determined using capillary electrophoresis (Dunbar 

et al., 2001). Two electropherograms are then generated with two sets of colour peaks, usually 

blue for TRFs created from the 5’ end and green created from the 3’ end (Osborn et al., 2000; 

Nadarajah, 2007). The resulting fingerprint gives a measure of phylogenetic diversity (Liu et al., 

1997). Biases for TRFLP originate from the same limitations discussed for PCR. 

 

1.2.2.2.2.3 Fluorescent In-Situ Hybridization (FISH) 

A library of fluorescently labeled probes is designed based on the expected 16s ribosomal RNA 

sequences of the bacterial species in the sample (MacDonald and Brozel, 2000). These single 
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stranded probes bind with the denatured DNA of the respective species within the samples. 

Fluorescence is then detected using fluorescence microscopy. FISH allows the visualization of 

the spatial distribution of organisms in a sample (Karp, 1999). FISH limitations include problems 

with cell permeability, target site accessibility, and a possible lack of a priori knowledge 

regarding species within a sample. 

 

1.2.3 Experimental Design 

When trying to ascertain the quantitative contributions of different mechanisms, design 

factors, or operating variables on system performance, a well designed experiment is of crucial 

importance. Many experimental regimes are based on single factor experiments where one 

variable is varied while all other controllable variables are kept constant. This method allows for 

the quantification of the effect a single independent variable has on a dependant variable, such 

as a system removal rate.  In wetland systems many variables which may at first seem to be 

independent may in fact be interdependent or act synergistically. Therefore it is important to 

allow for the quantification of both single factor and synergistic variable effects on system 

performance. 

 

One such experimental design method which allows for the quantification of both single factor 

and the interdependent effects of variables on the final dependant variable (system 

performance) is the factorial design. An xn factorial design is performed at x number of levels 

for n number of variables. For example, an experimental design could be performed at 2 levels 

looking at the effect of plant presence and bed media type on overall pathogen removal 

performance in constructed wetland mesocosms. The 2 levels for the plant presence could be   

-1 for “no plants present”, and +1 for “plants present”. The two levels for the bed media could 

be -1 for sand, and +1 for gravel. This experimental regime would require 4 different mesocosm 

setups, and would require duplication for statistical analysis purposes giving a total of 8 

experiments. Subsequent analysis is analogous to performing a multiple linear regression. 
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Statistical analysis of the results for a 22 factorial design experimental regime yields an equation 

of the form:  

 

Y = α0 + α1x1 + α2x2 + α3x1x2         (1.5) 

     

where:  Y = dependent variable (removal performance) 

α = coefficient 

x = independent variable  

 

This equation once attained is not for use in predicting removal performance in the studied 

systems, rather it is simply used to quantitatively compare the magnitudinal effect of each 

studied independent variable (xi) on the dependent variable (Y). The size of the |α| signifies the 

magnitude of that variable’s effect on the dependent variable. The α terms can be positive or 

negative depending on the effect each independent variable has on the dependent variable. 

One of the numerous benefits of using a factorial design is the final “cross” term that is 

attained. The α3x1x2 in the final general linear equation signifies any synergistic or “cross” 

effects the two independent variables may have on the dependent variable (Y). Quantifying this 

cross term can significantly increase the fit of data and should be considered in wetland system 

experiments due to the synergistic nature of the inherent variables. Although quantifying the 

cross term does not give information as to the nature of the synergistic effect it does allow 

research to be directed in the proper direction. For example, if a cross term is found to be quite 

large in comparison to the single factor terms, perhaps more consideration in design and 

further research into the nature of this synergistic effect is needed. 
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Many statistical packages offer extensive analysis options for factorial experiments. Model fit 

evaluation and error propagation analysis are both needed to evaluate the validity of the 

general linear model. Data transformations may be needed for proper statistical analysis. For 

further details regarding factorial experiments and experimental design see Montgomery 

(2001). Other statistical methods such as multivariate analysis have been shown to be useful in 

evaluating microbial ecology in CW systems (Weber et al., 2007) and could be similarly utilized 

in looking at other large CW data sets.  

 

Through the use of small scale systems, active and inactive tracers, proper experimental design 

and statistical analysis, investigations regarding the fundamental mechanisms and variables 

affecting overall contaminant removal performance in CW systems can be performed. Biotic 

variables such as microbial activity and microbial community structure should be evaluated as 

these variables may have a large influence on removal performance. Greater research effort 

into understanding microbial population density and diversity, both spatially and temporally, 

would help to further optimize design of constructed treatment wetland systems (Faulwetter et 

al., 2009). Including these variables in constructed treatment wetland research studies could 

perhaps help to better characterize and explain the large performance variations reported for 

similarly designed wetland systems.  

 

1.3 Objectives 

The overall objective of this work was to study the temporal and spatial bacterial community 

dynamics in wetland mesocosms. Several study objectives were identified to achieve this end: 

 

A) Develop and apply the CLPP method using BIOLOGTM Eco plates for the characterization 

of bacterial communities in constructed wetland mesocosms  

B) Develop a metric for tracking community divergence using CLPP data 

C) Develop a method for the detachment of viable bacteria from wetland gravel 
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D) Investigate fixed film bacterial communities associated with both wetland mesocosm 

gravel media and root systems at varying subsurface depths 

E) Monitor changes in the interstitial bacterial communities in wetland mesocosms 

following the simultaneous start-up of multiple systems 

F) Appraise the significance of plants and microbial seeding community origin on bacterial 

community development in CW mesocosms  

  

1.4 Thesis Organization 

This thesis consists of a five manuscript series preceded by an introduction (Chapter 1) and 

post-ceded by conclusions (Chapter 7). Each chapter includes a short introduction 

complementing the general introduction for the thesis. 

 

Chapter 2 describes the community level physiological profiling (CLPP) method that was 

adapted and developed for CW mesocosms, and which is used throughout the post-ceding 

chapters to characterize the bacterial communities found within the experimental wetland 

mesocosms. This chapter has been published in Methods in Molecular Biology:  Bioremediation 

(Weber & Legge, 2009).  

  

Chapter 3 describes the development of a metric used to measure bacterial community 

divergence based on carbon source utilization patterns (CSUPs) gathered using BIOLOGTM ECO 

plates via the CLPP method as described in Chapter 2. This chapter is currently in print in the 

Journal of Microbiological Methods (2009). 

 

Chapter 4 summarizes a study describing the development of a technique for the detachment 

of viable bacteria from wetland mesocosm gravel media. This method was newly developed as 
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no previously published method for the detachment of viable bacteria from gravel or similar 

substrate was available in the literature.  

 

Chapter 5 describes an investigation of the bacterial communities residing within both the 

interstitial water and within the mesocosm bed media of planted (Phragmites australis) and 

unplanted systems. Bacterial communities at various depths, associated with the plant roots 

and the bed media were characterized using the CLPP method to garner an understanding of 

spatial bacterial community dynamics in the CW mesocosm systems. Six mature mesocosms 

were sacrificed for the purpose of this investigation.  

 

Chapter 6 describes the temporal bacterial community dynamics of 8 new mesocosm systems 

during the first 8 months following the start-up. The effect of initial microbial seeding 

population and plant presence on bacterial community development was studied by seeding 

the mesocosms with an initial bacterial inoculum from either A) the Waterloo wastewater 

treatment plant or B) a dairy farm wastewater holding tank. Half of the mesocosms were left 

unplanted with the remaining mesocosms planted with Phragmites australis.  

 

Chapter 7 is a summary of the principle outcomes from the work presented. Future work and 

recommendations are also presented in this final chapter. 

 

Appendix A summarizes the abbreviations and nomenclature used throughout the thesis. 

 

Appendix B summarizes common tap characteristics for the region of Waterloo. 
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Appendix C is the contributor’s agreement for Chapter 2. 

 

Appendix D is the journal publishing agreement for Chapter 3. 

 

Figure 1.5 recounts the research regime summarized in this thesis.  

 

 

Figure 1.5: Research timeline.  
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Chapter 2:  Community Level Physiological Profiling 

 

Overview 

Community level physiological profiling (CLPP) is a technique which offers an easily applied 

protocol yielding information regarding mixed microbial community function and functional 

adaptations over space and time.  Different communities can be compared and classified based 

on sole carbon source utilization patterns (CSUPs) gathered using BIOLOG™ microplates.  One 

of the most challenging aspects associated with the CLPP method is in the data analysis. This 

chapter describes the relatively simple CLPP laboratory protocol and provides a detailed 

description of different data analysis techniques. A quick reference guide to the method is 

provided at the end of the chapter. 

 

Keywords: community level physiological profiling (CLPP), BIOLOG™, carbon source utilization 

pattern (CSUP), microbial community, microbial ecology, multivariate analysis, principle 

component analysis (PCA)  

 

 

 

 

This invited chapter was coauthored with Dr. Raymond Legge and is currently in press as a 

contribution to “Methods in Molecular Biology - Remediation” (Cummings, S.P. ed), The 

Humana Press Inc., New Jersey. The Methods in Molecular Biology textbook series focuses on 

cataloging popular molecular biology protocols, with an emphasis on practical application 

through the incorporation of author NOTES into the final publications. See Appendix C for the 

contributor’s agreement. 
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2.1 Introduction 

The term community level physiological profiling (CLPP) was first coined by Lehman et al. (1995) 

to describe the characterization and classification of heterotrophic microbial communities 

based on sole carbon source utilization patterns (CSUPs).  Although CLPP is considered a broad 

term which could cover many different types of studies undertaken using a number of different 

assays, currently the term CLPP is used almost exclusively in reference to data collected using 

BIOLOG™ microplates.  BIOLOG™ microplates are 96 well plates where each well contains a 

different carbon source and a redox dye indicator, most often tetrazolium violet.  When a 

mixed microbial community sample is inoculated into each of the wells the production of NADH 

via cell respiration reduces the tetrazolium dye to formazan, resulting in a colour change within 

each individual well, which can be detected photometrically. 

 

There are a number of different microplates manufactured by BIOLOG™ for CLPP use with the 

three most popular being the GN2, GP2 and EcoPlates. The GN2 plate is the most recent version 

of the GN plate and is suitable for characterizing or identifying Gram-negative bacteria.  The 

GP2 plate is the most recent version of the GP plate, and is suited to characterizing or 

identifying Gram-positive bacteria. The GN2 and GP2 plates both contain 95 different carbon 

sources with one of the 96 wells serving as a blank.  Both the GN2 and the GP2 plates were 

originally developed for species identification (Insam, 1997) but are now commonly used for 

CLPP.  The BIOLOG™ EcoPlate contains 31 different carbon sources and a blank in triplicate.  

Use of triplicates allows for increased confidence in statistical analysis of the resulting plate 

data.  The EcoPlate was developed for environmental applications, which dictated the selection 

of carbon sources, with at least nine substrates considered constituents of plant root exudates 

(Campbell et al., 1997; Preston-Mafham et al., 2002).  

 

BIOLOG™ offers a number of other plates suitable for CLPP studies. SF-N and SF-P microplates 

are alternatives to the GN2 and GP2 plates, as they provide the same corresponding substrates, 



34 

 

but without the tetrazolium dye. Turbidity or a different metabolic indicator can be added to 

assess activity. MT microplates contain the same redox chemicals as the GN2 and GP2 plates 

but do not contain any substrates. These plates allow for the creation of customized plates by 

adding suitable substrates for specific ecological studies. FF plates, which have been recently 

introduced by BIOLOG™ for the study of fungi and yeasts, contain a unique set of carbon 

sources and use both turbidity and/or reduction of tetrazolium as activity indicators. The GN 

plate and its corresponding successor, GN2, have been favored in CLPP studies although other 

plates may offer greater relevance and analytical options (Preston-Mafham et al., 2002).     

 

Garland and Mills (1991) were the first to use BIOLOG™ plates for characterizing heterotrophic 

soil bacterial communities and a number of studies have since followed [see Preston-Mafham 

et al.  (2002), and Konopka et al. (1998) for examples].  The advantage of CLPP over both classic 

cell culturing and molecular level RNA/DNA amplification-based techniques is its relatively 

simple protocol and ease of use. Both classic cell culturing and molecular level RNA/DNA 

amplification-based techniques can be time consuming and require specialized expertise 

(Garland, 1997).  

 

Limitations pertaining to the CLPP approach using BIOLOGTM microplates have been discussed 

in the literature (Preston-Mafham et al., 2002; Konopka et al., 1998; Garland, 1997). Limitations 

and pitfalls pertaining to data analysis have also been recently described (Weber et al., 2007).  

Some of the most pertinent limitations include the bias in the technique toward rapidly growing 

bacteria, the need to ensure similar inoculum sample sizes in the wells, the need to reduce time 

between sampling and inoculation of the microplates, and difficulties with meaningful data 

analysis and interpretation.  

 

Some of the limitations surrounding the CLPP method pertain to the long incubation times, the 

indirect measurement of microbial activity, and the use of high substrate concentrations. The 
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use of lower substrate concentrations would allow for less selective enrichment within the 

wells as growth and incubation conditions would be more akin to those from which the sample 

originates. To allow for the use of decreased substrate concentrations, more sensitive and 

direct activity measurements would then be required. Newly developed CLPP methods include 

those of Degens et al. (2001) and Garland et al. (2003).  Degens et al. (2001) developed a 

method for the detection of CO2 generation from mixed microbial communities utilizing a range 

of carbon substrates.  Although Degens et al. (2001) refer to their measurements as microbial 

catabolic diversity; the basis behind the study is similar to that of CLPP.  Garland et al. (2003) 

developed a fluorescent-based method of measuring O2 consumption for mixed microbial 

communities utilizing a range of carbon substrates.  Using this method Garland et al. (2003) 

found that incubation times could be reduced to less than 24 hrs, and the substrate 

concentrations could be reduced by a factor of 10-100 when compared to BIOLOG™ plates.  

Currently the term CLPP almost exclusively refers to the use of BIOLOG™ microplates. Studies, 

such as those conducted by Garland et al. (2003) and Degens et al. (2001), point to the 

expanding usage of the term CLPP.  Improvements to the CLPP method both with and without 

the use of BIOLOG™ plates will no doubt lead to the evolution and changing and/or broadening 

of the term CLPP and its associated methods in the future. 

  

CLPP is a technique which offers an easily applied protocol yielding large amounts of 

information regarding mixed microbial community function and functional adaptations over 

space and time. Carrying out the CLPP laboratory protocol is a relatively simple process, which 

has lead to its recent increase in popularity.  However, the data analysis aspect associated with 

CLPP can be challenging, often requiring a background in multivariate analysis methods.  

Following is a description of the CLPP laboratory protocol and an in depth description of the 

data analysis procedure.    
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2.2 Materials 

1. Suspended mixed microbial community sample 

2. BIOLOG™ microplate(s) 

3. Microplate Reader equipped with a 590 nm filter 

 

Optional: 

1. Buffer solution – May be needed if a) performing a detachment protocol from a 

sediment sample to generate a suspended microbial community sample or b) 

performing serial dilutions before plate inoculation (see Section 2.3.2). 

2. Incubator – May be needed if incubating samples at a temperature other than room 

temperature (see Section 2.3.3). 

 

2.3 Methods 

2.3.1 CLPP Protocol - General Description 

Each well of the BIOLOG plate is inoculated with 150 μL of the sample of interest and 

incubated at temperatures generally ranging from 20-30°C.  Absorbance readings (590-600 nm) 

are performed as necessary using a microplate reader over an incubation period ranging from 

10-200 hrs.  The sample should be a uniform suspension, so if sampling sediment or biofilm, an 

appropriate detachment and/or homogenization protocol is necessary.  

 

2.3.2 Inoculation 

150 μL of a suspended mixed microbial community sample is inoculated into each of the 96 

wells of the BIOLOG™ microplate.  An undiluted sample is recommended as dilution of samples 

containing a mixed population has been shown to affect the resulting CLPPs (Franklin et al., 

2001; Garland et al., 2001). Analytical methods for dealing with small differences in inoculation 

densities are discussed later, however it is important to ensure similar cell densities of the 
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samples to reduce any error in the CLPP analysis (see Note 1).  Although not recommended in 

all cases, if cell densities in the original samples are exceedingly high, serial dilutions may be 

needed before microplate inoculation.  If the plates are inoculated at high cell densities, colour 

development may proceed at a rate where capturing meaningful data is difficult. It has been 

suggested that formazan production does not occur until cell densities between 105 - 108 

cells/mL are reached (Konopka et al., 1998; Garland et al., 2001). Lastly, the time between 

sampling and inoculation should be kept to a minimum in order to reduce cell death or 

structural community changes of the sample prior to plate inoculation.  

 

2.3.3 Incubation 

Plates can be incubated over a range of temperatures with room temperature being the most 

common. Incubation periods tend to range between 10-200 hrs; and standard incubation 

temperatures between 20-30° C. Incubation temperatures similar to those from which the 

sample was collected are ideal. There is some debate surrounding the effect that incubation 

temperature has on the resulting CLPPs.  Christian and Lind (2006) showed that temperature 

had an effect on the calculated CSUPs whereas Classen et al. (2003) showed CLPPs to be 

relatively insensitive to incubation temperature.  Room temperature incubation has not been 

criticized in the literature, as the resulting CLPPs have proven useful and reasonable for most 

published studies. 

  

The plates do not need to be agitated during incubation due to the relatively long incubation 

times. Stationary incubation at room temperature is the most common method, although 

shaking is required prior to plate reading to ensure uniform distribution of the formazan.  

Incubation periods will vary for different studies but generally range from 10 to 200 hrs 

depending on the study and the inoculation density. Choice of a specific incubation time is not 

obvious, and is largely dependent on the subsequent data analysis (see Section 4). Figure2.1 is a 

picture of a BIOLOG™ EcoPlate after a 20 hr incubation period following inoculation with 

interstitial water from a wetland mesocosm (Weber et al., 2008). 
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Figure 2.1: BIOLOG™ EcoPlate 20 hr after inoculation with interstitial water from a wetland mesocosm 

system. Plate used in the study of Weber et al. (2008). 

 

2.3.4 Data Collection 

Absorbance readings (590 nm) for all 96 wells are collected throughout the incubation period to 

reveal the kinetic profiles for each of the carbon sources. Reading frequency will vary based on 

the nature of the inoculum and the type of metric chosen for analysis (see Note 2), if data 

analysis does not require the fitting of kinetic profiles and a single time point is used for analysis 

(see Section 2.4), less frequent readings are reasonable.  Plates should be agitated before each 

reading to ensure sufficient colour distribution in each well. 

 

An example of the type of data that can be collected when following the described protocol is 

provided in Figure 2.2.  Colour development for individual wells for a single set of EcoPlate 

replicates is presented (31 different carbon sources and 1 blank); colour development curves 

show a general sigmoidal shape.  
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Figure 2.2: Individual well colour development curves for a single set of EcoPlate replicates (31 carbon 

sources and 1 blank).  Data from Weber et al. (2008). 

 

2.3.5 Anaerobic Protocol 

A small number of earlier studies indicated that formazan is not produced in regular aerobic-

usage BIOLOG™ plates incubated under anaerobic conditions (Preston-Mafham et al., 2002; 

Winding and Henrikson, 1997). However, a number of recent studies have shown formazan 

production does occur under anaerobic conditions (Christian and Lind, 2006; Mills and Garland, 

2002; Beaumont, 2007). BIOLOG™ manufactures an AN microplate for identification of 

anaerobic bacteria although a number of anaerobic CLPP studies have favoured the use of GN 

or ECO microplates as these plates have been previously shown to be suitable for ecological 

and exploratory CLPP studies for mixed microbial systems.  The anaerobic CLPP protocol is 

identical to the aerobic protocol described here with a few changes focusing on minimizing the 

exposure to oxygen throughout the procedure (see Note 3). This can be accomplished through 

any number of standard anaerobic culturing and testing techniques.  
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2.4 Data Analysis 

A large amount of data can be collected with a single BIOLOG™ plate; when numerous plates 

are used the amount of data can then become overwhelming.  To deal with the large amount of 

data and large number of variables to be processed, some form of multivariate analysis is 

required. Data analysis will be largely discussed with direction towards the use of principle 

component analysis (PCA) as this is the most commonly and easily used method for analyzing 

and visualizing the CLPP data. A number of other techniques will also be discussed later.  

 

2.4.1 Standard Analysis Method when using Principle Component Analysis 

Before reaching the point of performing a multivariate analysis technique (such as PCA), a 

number of steps should be followed: 

1. Decide what metric will be used for the data analysis 

2. Standardization of the data 

3. Assess heterogeneity, normality, and the underlying factor structure of the data  

4. Perform a data transformation if required 

 

2.4.1.1  Selecting a Metric 

First a metric needs to be selected and extracted from the BIOLOG™ plate data to represent 

activity in each well. The 3 most commonly utilized metrics are: 

 

A. An absorbance value for each well for a specific incubation time point 

B. An absorbance value for each well taken from a time point representing a specific 

average well colour development (AWCD) for that plate 

C. Some type of logistic curve fitting value such as lag, maximum utilization rate (slope), 

area under the curve, or an asymptote value 
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2.4.1.1.1 Selecting a Specific Incubation Time-Point  

To evaluate all plate data within a study, a specific incubation time point can be chosen as a 

metric, but choosing this time point may not be obvious.  An increase in the differences (or 

variation) between well absorbance values indicates an increase in the amount of information 

contained within the data set. Using absorbance values taken early in the incubation time 

would yield little information, for at early stages of growth (for the example 10 hrs in Figure 2.2) 

the difference between well absorbance values is too small to yield useful information.  Using 

absorbance values taken later during the incubation can provide more information regarding 

the CLPP of the microbial inoculum as long as the values are not above a value of 2.  As seen in 

Figure 2 there is an increase in the dispersion of (or differences between) well absorbance 

values as the incubation proceeds. This dispersion of well absorbance values can be 

represented as the standard deviation calculated at each time point (Table 2.1).   
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Table 2.1: Calculated AWCD, number of values above an absorbance of 2, and standard deviations for 

absorbance values over the 168 hr incubation time for the plate shown in Figure 2. Data from Weber et al. 

(2008). 

Incubation time (hrs) AWCD 
# values above 

absorbance of 2 
Standard 
Deviation 

0 0.00 0 0.01 
4 0.01 0 0.02 
6 0.01 0 0.02 
9 0.01 0 0.02 

13 0.01 0 0.02 
18 0.00 0 0.02 
24 0.00 0 0.02 
28 0.01 0 0.02 
34 0.02 0 0.04 
38 0.04 0 0.09 
43 0.06 0 0.14 
48 0.09 0 0.20 
53 0.12 0 0.25 
57 0.16 0 0.29 
62 0.19 0 0.33 
66 0.24 0 0.37 
70 0.27 0 0.40 
75 0.31 0 0.40 
80 0.37 0 0.43 
84 0.42 0 0.45 
89 0.47 1 0.46 
93 0.53 1 0.49 
98 0.57 1 0.50 

101 0.60 1 0.52 
135 0.85 2 0.59 
168 0.99 2 0.63 

 

Absorbance readings above 2 contribute to measurement error as they are outside the linear 

absorbance range.  An appropriate time point will be the time point that preserves the greatest 

variance between well responses while retaining the maximum number of wells within the 

linear absorbance range.  For example, for the data in Table 2.1, Weber et al. (2008) chose to 

use absorbance data from the 84 hr time point for subsequent multivariate analysis (see Note 

4). This study included a number of BIOLOG™ plates comparing a number of different microbial 

samples. The data from all plates was considered before a time point was chosen.  When using 

this simplified method of choosing a specific time point for all analyses, similar inoculation 

densities for all plates is essential (Garland et al., 2001).  
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2.4.1.1.2 Selecting a Time-Point Related to a Specific AWCD Reference Value 

As recommended by Garland et al. (2001) a specific AWCD value can also be chosen as a 

reference point for all plates analyzed. Absorbance values used for subsequent multivariate 

analysis are extracted from each set of plate data at the specific time point where the reference 

AWCD occurs. Garland (1997) showed that using AWCD reference values between 0.25-1.0 

yields relatively similar CLPPs for use in community classification (see Note 5).  

 

2.4.1.1.3 Kinetic Analysis 

Kinetic analysis can also be performed on the well colour development data (for examples see 

Preston-Mafham et al., 2002; Garland et al., 2001; Haack et al., 1995; Mondini and Insam, 

2003).  A number of different metrics can be chosen for use in multivariate analysis.  Factors 

such as lag time, maximum utilization rate (slope), area under the curve, or asymptote values 

have been used.  A large amount of data needs to be acquired for a logistic curve to fit the data, 

and not all data are suited to a logistic fit. Deviation in absorbance readings and non-

characteristic responses in some wells can have a large effect on curve fitting making some data 

unfit for kinetic analysis. 

 

Kinetic approaches have great potential, as a more detailed understanding of the nature of the 

color responses can be theoretically attained (Preston-Mafham et al., 2002; Garland et al., 

2001). However, a general lack of understanding regarding physiological or ecological bases for 

differences in the derived kinetic parameters limits the amount of information that can be 

extracted when using a kinetic approach (Garland et al., 2001).  If the objective is to classify 

different microbial populations, using data from a single absorbance point reading may be more 

useful. Garland et al. (2001) found that using a single absorbance point reading corrected by 

the AWCD was more successful than using kinetic parameters for classifying different soil 

bacteria populations, and remarked that the use of kinetic parameters for CLPP may provide 

some additional information, but only if the influence of inoculum density is carefully 

considered (see Note 6). 
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The overall incubation time for any one study is dependent upon what type of metric will be 

used and cannot be easily determined.  It is preferable to run a number of test plates 

inoculated with microbial community samples similar to those to be characterized in the overall 

study before starting an experimental regime.  Using these test plates, careful determination of 

which type of metric will be used and the resulting incubation time can be assessed. 

 

2.4.1.2 Standardization of the Data 

When performing a CLPP analysis numerous plates are often used to study different mixed 

microbial communities in space or over time.  As recommended by Garland (1997) if the choice 

of metric is to use a single time point absorbance, and not perform a kinetic analysis of the 

data, an initial standardization of the data helps to reduce any bias due to inoculum density 

differences between samples. Standardization of the data involves correcting each absorbance 

value by its corresponding blank and then dividing by the AWCD for that time point. The 

standardized absorbance for well k can be calculated as:  
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         (2.1)  

 

where Ai represents the absorbance reading of well i and A0 is the absorbance reading of the 

blank well (inoculated, but without a carbon source). Where there is very little response in a 

well, negative values of standardized absorbance may occur and, since this is physically 

meaningless, they are coded as zeros for further analysis. Standardization of the data may not 

be needed when performing certain types of kinetic analyses.  
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2.4.1.3 Assess the Suitability of the Data Set for Multivariate Analysis 

Efficient and meaningful statistical methods for dealing with a large number of 

interdependently correlated variables is needed when evaluating CSUPs from BIOLOG™ plates; 

most researchers have turned to some form of multivariate technique and, in particular, 

principal component analysis (PCA) (Glimm et al., 1997). In performing PCA, each plate (p 

number of plates) is considered an object, with n variables (31 for EcoPlates, 95 for GN2 or GP2 

plates) giving a matrix with p rows and n columns. The transformation of BIOLOG™ plate data is 

an important aspect of multivariate analysis techniques such as PCA. Weber et al. (2007) 

provide an in depth study on data preparation techniques briefly described in the following 

section.  

 

Many multivariate analysis techniques assume two fundamental properties of a data set: 

normality and homoscedasticity (that is, homogeneity of variance: all variables are assumed to 

have the same variance).  In PCA, the dimensionality of the data set is reduced by extracting an 

orthogonal set of principal components (PCs) made up of linear subsets of the original 

ordinates; the extraction is designed so that the maximum amount of variance is concentrated 

in the first PC, with the second largest amount of variance contained in the second PC, and so 

on. This analysis technique is most powerful if the data have an underlying factor structure; 

that is, it is dependent on linear correlations between the different variables (Legendre and 

Legendre, 1998).  Weber et al. (2007) concluded that if homoscedasticity, normality and the 

number of linear correlations within a data set are not evaluated and the possibility of 

transforming the data is not considered, erroneous analysis and misleading conclusions may 

arise when performing multivariate analysis on microplate data (see Note 7).  Following is a 

short summary of useful data transformation techniques and data assessment methods used 

when working with BIOLOG™ microplate data.  
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2.4.1.3.1 Normality  

Normality of BIOLOG™ microplate data can be evaluated through formal statistical tests.  The 

kurtosis and skewness of each variable can be calculated and the standard errors found 

according to Equations (2.2) and (2.3) for kurtosis and skewness, respectively: 

 

n
SEkurtosis

24


          (2.2) 

n
SEskewness

6


          (2.3) 

 

where SEkurtosis and SEskewness are the standard errors for kurtosis and skewness, respectively, 

and n is the number of observations. The corresponding z values can also be calculated as: 

 

kurtosis

kurtosis
SE

kurtosis
z 

          (2.4) 

skewness

skewness
SE

skewness
z 

          (2.5) 

 

Either z value may be used in a formal statistical test of a null hypothesis that the data is 

normally distributed versus an alternative that it is not. A two-tailed test is used and the null 

hypothesis rejected with 95% confidence if |z| > 1.96. 

 

Normality according to Weber et al. (2007) can be assessed using both kurtosis and skewness, 

by calculating the mean value of the statistics across all variables as well as testing the 
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individual variables. Note that the 95% significance level applies to the individual tests and not 

to the global set of tests of all variables; therefore, the number of significant results is 

considered to be indicative of the number of significantly non-normal variables tested. For a 

more detailed example see Weber et al. (2007). 

 

2.4.1.3.2 Homoscedasticity  

Homoscedasticity is perhaps best assessed by a scatter plot of pairs of variables (a characteristic 

oval appearance will result for homoscedastic pairs); however, this is not feasible for so many 

variables and instead a variance ratio can be calculated: 

 

variancelowest    

variancehighest   
ratio  variance 

        (2.6) 

 

This is adapted from the concept that a lesser degree of variation in separate variances 

contributed by many variables will constitute a lower ratio between the highest variance of any 

one variable and the lowest variance of any one variable in that data set (Lo and MacKinlay, 

1998).  This cannot be tested formally and should only be considered indicative of the relative 

homogeneity of variance between data sets (lower values being relatively more homogeneous). 

 

2.4.1.3.3 Underlying Factor Structure - Linear Correlations  

The number of linearly correlated variables within a data set can be calculated by obtaining the 

correlation matrix and counting the number of correlation coefficients greater than Pearson’s 

critical r value for the specified number of observations. This corresponds to a pairwise formal 

test of the null hypothesis of no correlation between variables versus an alternative of (positive 

or negative) correlation at a 95% confidence level.  Again, in making multiple comparisons the 

global confidence level of the test (over all pairs) is lower than the nominal pairwise level but 
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the number of significant results can, for the sake of this assessment, be interpreted as an 

indicator of the suitability of the data for PCA.  If a transformation significantly reduces the 

number of linear correlations between variables, then it can be suspected that this may cause a 

problem in subsequent analysis. 

 

2.4.1.3.4 Perform a Data Transformation if Required  

As presented in Weber et al. (2007) two transformations commonly employed in ecological 

data analysis can also be used for BIOLOG™ microplate data: the Taylor power law 

transformation and the logarithmic transformation. The Taylor transformation (Taylor, 1961) is 

commonly used to stabilize variances and make data conform to the assumptions of parametric 

analysis such as normality (Legendre and Legendre, 1998).  It is based upon the assumption 

that: 

 

22 yaS             (2.7) 

 

where, S is the standard deviation of a sample variable, y  is the mean of a sample variable and 

a is the sampling factor. This leads to: 

 

22 logloglog ybaS           (2.8) 

 

where the slope, b, may be obtained by linear regression of the data for all variables. This leads 

to the conditional transformation: 
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ii yy              for b = 2         (2.10) 

 

where yi' is the value of the transformed variable. 

 

A logarithmic transformation can also often serve to normalize skewed data (Legendre and 

Legendre, 1998). A common logarithmic transformation used in ecological data analysis is of 

the form: 

 

)1ln('  kAA            (2.11) 

 

where A' is the value of the transformed variable. 

 

These two simple data transformation examples are given to provide a starting point for 

utilizing transformations when performing multivariate data analysis of microplate data. Many 

other data transformations exist and may be more suitable for specific data sets. See Legendre 

and Legendre (1998), and Montgomery (2001) for detailed discussions regarding different data 

transformation techniques.  

 



50 

 

2.4.1.4  Perform PCA on the Data Set  

Principle component analysis (PCA) is the most commonly employed multivariate analysis 

technique when working with BIOLOG™ microplate data.  PCA is based on an eigenanalysis of 

an R-mode (between variables) variance-covariance matrix (Legendre and Legendre, 1998). In 

short, PCA is able to take a high dimensional space (32 dimensions in this case) and ordinate 

samples (objects) on a two dimensional plane while preserving the maximum allowable amount 

of variance within the data set.  PCA is most commonly used to visualize data plotted on the 

first two principle component (eigenvector) axes for interpretation.  Common uses include the 

study of ecological shifts over time and space (Legendre and Legendre, 1998).  PCA analysis can 

preserve varying degrees of the original variance within the first two axes; values from 40% to 

80% are commonly achieved.  PCA ordinations allow the CSUPs from the bacterial community 

samples to be grouped and differentiated.  PCs are most commonly extracted from the 

covariance matrix of the data.  Use of the covariance matrix preserves scale.  

 

PCA has been widely adopted for analyzing CLPPs based on CSUPs generated using BIOLOG™ 

microplates.  As outlined in previous sections, attention needs to be paid to the distribution of 

the underlying variables and the possibility of applying a transformation to the data to improve 

the analysis.  One of the significant advantages of PCA is that it is robust and analyses remain 

valid even if the assumptions of normality and homoscedasticity are not met; however, the 

analysis can be improved if the data can be transformed to meet these assumptions.  Recent 

CLPP example studies utilizing PCA analysis of BIOLOG™ microplate data include Weber et al. 

(2008), He et al. (2008), and Farnet et al. (2008). 

 

Attached at the end of this chapter is a “Quick Reference Guide”, which attempts to briefly 

summarize the steps in the CLPP protocol within a single page for laboratory use.  

 

 



51 

 

2.4.3 Other Analysis Methods 

In addition to PCA a number of other analysis methods have been successfully utilized in 

garnering information from BIOLOG™ plates. Some of the more common methods include: 

1) Clustering Analysis  

2) Diversity Indices – substrate diversity, substrate richness, substrate evenness 

3) Alternative Methods - factor analysis, PCoA, DCA, NMDS, DA, CCorA, RDA 

 

2.4.2.1 Clustering Analysis 

As recommended by Legendre and Legendre (1998), clustering analysis is often performed to 

verify and validate results obtained using PCA. Clustering analysis allows for the CSUP 

similarities to be visualized in a dendogram for any given number of plates. An unweighted pair-

group method using arithmetic averages (UPGMA) clustering analysis is often recommended. 

See Weber et al. (2008), He et al. (2008), and De Paolis and Lippi (2008) for recent examples of 

clustering analysis using CSUPs from BIOLOG™ microplates.  

 

2.4.2.2 Substrate-Related Diversity Indices 

BIOLOG™ plates have also been used, in a more traditional ecological sense, to calculate 

diversity indices based on CSUPs (Zak et al., 1994). The Shannon index or what is often called 

“diversity” is a common ecological metric used to track and understand shifts in communities 

over space and time. Using the CSUP gathered from a single BIOLOG™ plate, substrate diversity 

(H) can be calculated as: 

 

 )ln( ii ppH
          (2.12) 
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where: 

     H  - substrate diversity 

  ip  - ratio of the activity of a particular substrate to the sums of activities of all                        

substrates  

      activity - chosen metric for analysis (absorbance value, kinetic parameter, etc.) 

 

Two other parameters associated with substrate diversity which can be calculated using CSUPs 

are substrate richness (S) and substrate evenness (E).  Substrate richness is a measure of the 

number of different substrates utilized by a microbial population. Substrate evenness is defined 

as the equitability of activities across all utilized substrates; substrate richness is calculated as 

the number of wells with a corrected absorbance greater than 0.25.  Substrate evenness is 

calculated as: 

 

max/ HHE             (2.13)  

 

Recent examples of studies utilizing the Shannon index include Weber et al. (2008), He et al. 

(2008), and Farnet et al. (2008). 

 

2.4.2.3 Multivariate Analysis Methods 

Although PCA is the most popular approach, with proper data treatment essentially any 

multivariate analysis technique can be used to analyze the data matrix attained when applying 

the CLPP protocol to any number of mixed microbial community samples.  A short list of 

reference studies utilizing some of the less popular and/or more recently introduced 

multivariate methods either examining or relating BIOLOG™ data to other data sets include: 
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factor analysis (Nikilinska et al., 2005), principle coordinates analysis (PCoA) (Hackett and 

Griffiths, 1997), detrended correspondence analysis (DCA) (Houlden et al., 2008; Garland, 

1996), non-metric dimensional scaling (NMDS) (Classen et al., 2003), discriminant analysis (DA) 

(Mondini and Insam, 2003), canonical correlations analysis (CCorA) (Leriche et al., 2004), and 

redundancy analysis (RDA) (Farnet et al., 2008).  For an in-depth description of the mentioned 

multivariate methods, see Legendre and Legendre (1998). 

 

2.5 Notes 

1. Using a minimum inoculation density of 105 cells/mL is the best way to reduce lag times 

although smaller inoculation densities can be used. True cell densities can be difficult to 

determine, therefore an alternative inoculation approach is to dilute the sample to an optical 

density if ~0.2 at 420 nm for the suspended mixture. This inoculation approach may lead to 

inoculation density differences, but from a practical perspective is more easily controlled and 

implemented.  

 

2. Reading frequencies can vary quite widely. For the data seen in Figure 2, a reading frequency 

of 4 hours was used. This reading frequency provided enough data to decipher the sigmoidal 

shape of the colour development curves. However, if a larger inoculum density was used a 

faster response would be observed, and therefore more frequent readings would be required in 

order to properly decipher and/or model the sigmoidal shape of the colour development 

curves. Preliminary trial runs using inoculum densities and bacterial communities similar to 

one’s study samples is always a good idea. They can help one determine inoculum dilutions, 

reading frequencies and metric choices which are essential in gathering meaningful data. 

 

3. Following anaerobic inoculation, plates can be covered with non-slit silicon plate seal, or 

simply sealed around the edges with a generous amount of parafilm and masking tape. Both 

procedures have been proven effective. Microplate absorbance readings are then periodically 
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taken without removing the plate lids. In the author’s experience, overall profiles and readings 

have been shown to not be significantly affected by leaving the lid on during plate readings. 

Some plate readers require that the lids to be removed before absorbance readings can be 

taken. These plate readers unless equipped with or situated in a nitrogen purging area would 

not be suitable for anaerobic samples. 

 

4. Each metric contains associated positives and negatives. Use of a single time point reading 

often guides the user towards using data points in an area where almost all carbon source 

utilization curves are in a stationary (steady-state) phase. This can be useful when comparing 

plates over extended time-periods as the basis for comparison is relatively stable. However, in 

interpreting this type of data, one should be aware that the activity levels of the community on 

specific carbon sources is not emphasized due to the carbon utilization curves being in the 

stationary phase.  

 

5. When choosing to use a reference AWCD one should be aware that the carbon utilization 

curves can be in the lag, exponential growth, or the stationary phase. Therefore this method, 

although based on a fixed reference point, may not give stable comparison results over an 

extended time period for community monitoring studies. However, in comparison to a fixed 

time point, this method does emphasize activity in each well which may be of interest to the 

user. It should also be mentioned that using an AWCD reference point may not be appropriate 

in studies where some plates contain a large number of unresponsive wells. 

 

 6. Kinetic analysis allows one to compare many different aspects of the carbon utilization 

curves, allowing the user to tune the analysis to emphasize a specific aspect of the community. 

However, in modeling the data sometimes poor-fit can occur, and in many instances kinetic 

analysis is not feasible due to time or instrument constraints. 
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7. The authors have found that with larger data sets (100+ objects) normality, homoscedasticity 

and the underlying factor structure of the data do not have as large an effect on PCA results 

and subsequent data interpretation when compared to smaller data sets. However, it should be 

emphasized that assessing the data set for normality, homoscedasticity and the underlying 

factor structure, and considering an initial data treatment are necessary steps in the data 

analysis procedure. If a large difference between PCA results from transformed and 

untransformed data is not observed the data set was likely already suited for PCA or was of a 

size where a data transformation did not have a large effect on the PCA results. 
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CLPP Protocol - Quick Reference Guide 
 

I - Inoculation 
→ 150uL of a suspended mixed microbial sample into each of the 96 wells 
  
NOTES: Time between sampling and inoculation should be minimized. Keep inoculation 
densities similar between plates.  
 

II - Incubation 
→ Incubate at room temperature on the desktop 
 
NOTES: Incubation period selected based on type of metric to be used for data analysis (Step 
IV-A-1). Common incubation times between 10-200 hrs. Common incubation temperatures 
between 20-30° C. 
 

III - Data Collection 
→ Periodic absorbance (590nm) readings taken for all wells during incubation period 
 
NOTES: Plates should be shaken before each reading. 
 

IV - Data Analysis 
 
A) PCA Analysis 
 
1) Choose a metric  

i)  An absorbance value for each well from a specific incubation time point 
ii) An absorbance value for each well taken from a time point representing a 

specific AWCD for that plate 
iii) Some type of logistic curve fitting value such as lag, slope, area under the curve, 

or an asymptote value. 
2) Standardization of data if not performing a kinetic analysis 
3) Check data set for  

i)  Normality  
ii)  Homoscedasticity  
iii)  Underlying factor structure - liner correlations 

4) Perform a data transformation if required 
5) PCA Analysis 
 
B) Other Analysis Methods 
 
1) Clustering Analysis 
2) Diversity Indices – substrate diversity, substrate richness, substrate evenness 
3) Alternative Methods - factor analysis, PCoA, DCA, NMDS, DA, CCorA, RDA 
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Chapter 3: One-Dimensional Metric for Tracking Bacterial Community 

Divergence using Sole Carbon Source Utilization Patterns 

 

Overview 

Community level physiological profiling (CLPP) has become a popular method to characterize 

and track changes in heterotrophic bacterial communities. Although the CLPP method is a 

straight forward laboratory protocol which yields large amounts of functional information 

regarding bacterial communities, due to the large amount of data attained, some type of 

multivariate analysis method is required to allow ordination and interpretation of the data.  

Multivariate analysis can be challenging as it requires a significant statistics background along 

with an understanding of the inferences and biases each multivariate analysis method incurs. 

This paper presents and evaluates a new approach to analyzing sole carbon source utilization 

data.  A method is described which provides a one-dimensional metric derived from standard 

CLPP data (Biolog™ EcoPlate data).  The one-dimensional community metric was developed 

using normalized Euclidean distances and is compared against 1) PCA results, and 2) shifts in 

the carbon source guild grouping utilizations.  The one-dimensional community metric did not 

provide all of the information of PCA or guild grouping analysis; however, it was found to be 

more easily implemented and interpreted when analyzing the plate data. Validation of this 

approach is demonstrated using data acquired to track the divergence of bacterial communities 

in wetland mesocosm systems after an experimentally controlled disturbance. If the objective is 

to investigate community shifts over time the one-dimensional community divergence metric 

can be a useful tool.   

 

Keywords: Euclidean distance; mesocosm; Phragmites australis; community level physiological 

profiling (CLPP); principle component analysis (PCA), BIOLOG™ EcoPlate 
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3.1 Introduction 

Full characterization of microbial communities requires complete identification and 

enumeration of all organisms.  Although identification can be useful it can also be exceedingly 

time intensive and in many cases yield information that, from an engineering context, may not 

be very useful.  If one is looking only to extract an indicator of the metabolic characteristics and 

overall stability of a specific microbial community, community level physiological profiling 

(CLPP) may be attractive.  Recent studies on microbial soil ecology have employed BIOLOG™ 

plates as a CLPP tool.  Garland and Mills (1991) were the first to use BIOLOG™ plates for 

characterizing heterotrophic soil bacteria communities through principle component analysis 

(PCA).  Zak et al. (1994) suggested simplifying CLPP data by grouping the different carbon 

sources into a smaller number of guilds (groupings). Both analysis methods reduce the 

dimensionality of the data for subsequent analysis and interpretation. Recent work has 

continued to utilize these analysis methods. Weber et al. (2008) successfully used this approach 

to profile constructed wetland mesocosms.  

 

Methods are well developed for measuring aggregate community variates such as total biomass 

or total density (Collins et al., 2000); however, more information is often needed to fully 

understand bacterial community dynamics. Community composition, and possibly ecological 

processes, may be altered without detectable changes in aggregate community variates (Collins 

et al., 2000; Frost et al., 1995; Micheli et al., 1999). Different bacterial species will respond to 

disturbances in different ways and to varying degrees of success based on the metabolic and 

physiological characteristics of that species (Nester et al., 1983).  It follows that in situations 

where perturbations occur, the original community structure can influence the magnitude and 

direction of the resulting shift. For example, the way in which wetland bacterial communities 

respond to perturbations can affect water treatment performance and long term ecosystem 

health. Large performance variations exist for similarly designed wetland treatment systems 

(Kadlec & Knight, 1996).  Information regarding both long term and short term bacterial 
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community stabilities could help in understanding and predicting some of the these large 

performance variations. 

 

Community variations can occur in many different ways. Variations can be cyclic, directional, 

stochastic, or chaotic (Collins et al., 2000). Understanding the type of variation occurring in a 

community can be useful in determining the underlying mechanisms involved in generating or 

alleviating the variation. A simple metric that would provide an indication of how similar or 

dissimilar a community is to its original state would be useful for understanding and analyzing 

the effect of perturbations on bacterial communities.  One such method, first proposed by 

Collins et al. (2000), is to plot a similarity (or distance) measure over time to understand how 

the community is changing. The Euclidean distance between different communities can be 

calculated using species abundance data. In the same fashion Euclidean distances between 

carbon source utilization patterns for different bacterial communities can be calculated. 

Plotting a Euclidean distance measure with respect to the original community composition over 

time could give pertinent information regarding both bacterial community dynamics and 

robustness. Although this approach seems relatively straight forward it has not been attempted 

using carbon source utilization data.  

 

The purpose of this study was to assess a proposed one-dimensional community divergence 

metric for analyzing standard CLPP data. Wetland mesocosm interstitial water was 

characterized using BIOLOG™ EcoPlates during a recovery period following an acid mine 

drainage (AMD) perturbation. The community divergence metric was compared to PCA and a 

guild grouping analysis methods.  All three methods were employed using the carbon source 

utilization data to understand both overall community similarities and community shifts for 

planted and unplanted mesocosms 29 days following an AMD perturbation.  Differences in the 

perturbation response patterns for each of the three different divergence tracking methods and 

the observed differences between planted and unplanted mesocosm bacterial communities is 

discussed. 
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3.2 Materials and Methods 

3.2.1 Constructed Wetland Mesocosms – Experimental Regime 

The experimental regime described here closely followed that described in Weber et al. (2008). 

The experimental set-up and operation of the mesocosms was as previously described (Weber 

et al. (2008); Werker et al. (2004, 2007)).  The interstitial water of seven constructed wetland 

mesocosms was characterized using BIOLOG™ EcoPlates prior to treatment with simulated acid 

mine drainage water (day 0). After this initial characterization an AMD treatment consisting of 

draining and filling all 5 mesocosms with simulated AMD of pH of 3, [Fe+2] of 100 mg/L and a 

[SO4
-2] of 350 mg/L was implemented. Following AMD treatment the interstitial water was 

circulated for 24 h, after which all mesocosms were again characterized (day 1). Water was 

circulated with periodic topping-up to maintain a constant volume for a 4 week period.  The 

mesocosms were sampled on days 8, 15 and 29.  

 

Five mesocosms in total were studied:  two mesocosms (2 and 6), were planted with 

Phragmites australis obtained from a local marsh and two mesocosms were unplanted (1 and 

4).  These four, unplanted and planted, mesocosms were seeded initially with activated sludge 

from a local municipal sewage treatment plant 3 years prior to the beginning of this study. Each 

of four six mesocosms contained a biotic regime associated with the pea gravel substrate. The 

seventh mesocosm (8) was kept abiotic by regular treatment with 0.0525 % w/v sodium 

hypochlorite, and subsequent flushing with 0.5 % w/v Na2S2O3. 

 

3.2.2 BIOLOG™ EcoPlates 

BIOLOG™ EcoPlates (Biolog Inc., Hayward CA., USA) consisting of 96 wells, with 31 different 

carbon sources and a blank in triplicate, were used for CLPP analysis. The assay was conducted 

by adding 150 L of interstitial water to each well followed by incubation under aerobic 

conditions at 25 °C.  Absorbance readings were taken at 590 nm with a plate reader (Multiscan 
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Ascent, Labsystems) every 4 h for 168 h. As previously described (Weber et al., 2008; Weber & 

Legge, 2009), a single time point at 84 h was used for well comparisons.  

 

3.2.3 BIOLOG™ EcoPlate Data Preparation and Principle Component Analysis 

The transformation of the BIOLOG™ EcoPlate data is an important aspect of multivariate 

analysis techniques such as principle component analysis (PCA). Weber et al. (2007) describes 

the data preparation technique employed in this study and the approach for PCA.  In total, data 

for 27 plates was collected.  All five mesocosms (1, 2, 4, 6 and 8) were characterized on days 0, 

1, 8, 15 and 29. 

 

Two different PCA ordinations were created for this investigation. The first ordination examined 

the data for day 0 (before the AMD perturbation) and day 1 (after the AMD perturbation). As 

only 5 mesocosms were characterized on day 1, only the data for 5 mesocosms (1, 2, 4, 6 and 8) 

was used for either day giving a total of 10 plates. Each plate contains 3 internal triplicates 

giving a total of 30 objects. Objects were then ordinated on a factor plane consisting of the first 

2 extracted principle components following a PCA of the logarithmic transformed data. A 

second ordination involving the data from day 0 and 29 was also investigated.  The data for 5 

mesocosms (1, 2, 4, 6 and 8) was again used for either day giving a total of 10 plates and 30 

objects. PCA of the Taylor transformed (b=0.9441) data was performed.  

 

3.2.4 Guild Grouping 

As described by Zak et al. (1994) BIOLOG™ EcoPlate data can also be analyzed by first grouping 

the different carbon sources into groups or “guilds”. Zak et al. (1994) proposed organizing data 

from a 96 well (95 carbon source) GN plate into 6 guilds: 1) carbohydrates, 2) carboxylic acids, 

3) amino acids, 4) amines and amides, 5) polymers and 6) miscellaneous. In this study the 31 

carbon sources were organized into groups 1-5 as described by Zak et al. (1994). Carbon 
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sources originally grouped as miscellaneous by Zak et al. (1994), or those new to the BIOLOG™ 

EcoPlate, were grouped into one of the other five categories (Table 3.1).  

 

Grouping the data into 5 guilds compresses a 31 dimensional data set into 5 dimensions, 

significantly reducing the complexity of the data and subsequent interpretation. To interpret 

any community shifts occurring in the mesocosms due to the AMD perturbation, the carbon 

source utilization % for each guild from each plate was plotted over the 29 d study. Observing a 

shift in the % utilization in the guild groupings signifies a functional shift in the mesocosm’s 

bacterial community.  
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Table 3.1: BIOLOG™ EcoPlate carbon source guild groupings 

Well No.  ID C-Source  Grouping (Guild) Classification 

Well1 C0 Water (Blank)   
Well2 C1 Pyruvic Acid Methyl Ester *Carbohydrate 
Well3 C2 Tween 40 Polymers 
Well4 C3 Tween 80 Polymers 
Well5 C4 Alpha-Cyclodextrin Polymers 
Well6 C5 Glycogen Polymers 
Well7 C6 D-Cellobiose Carbohydrates 
Well8 C7 Alpha-D-Lactose Carbohydrates 
Well9 C8 Beta-Methyl-D-Glucoside Carbohydrates 
Well10 C9 D-Xylose Carbohydrates 
Well11 C10 i-Erythritol Carbohydrates 
Well12 C11 D-Mannitol Carbohydrates 
Well13 C12 N-Acetyl-D-Glucosamine Carbohydrates 
Well14 C13 D-Glucosaminic Acid Carboxylic & Acetic Acids 
Well15 C14 Glucose-1-Phosphate *Carbohydrate 
Well16 C15 D,L-alpha-Glycerol Phosphate *Carbohydrate 
Well17 C16 D-Galactonic Acid-Gamma-Lactone Carboxylic & Acetic Acids 
Well18 C17 D-Galacturonic Acid  Carboxylic & Acetic Acids 
Well19 C18 2-Hydroxy Benzoic Acid Carboxylic & Acetic Acids 
Well20 C19 4-Hydroxy Benzoic Acid Carboxylic & Acetic Acids 
Well21 C20 Gamma-Hydroxybutyric Acid Carboxylic & Acetic Acids 
Well22 C21 Itaconic Acid Carboxylic & Acetic Acids 
Well23 C22 Alpha-Ketobutyric Acid Carboxylic & Acetic Acids 
Well24 C23 D-Malic Acid Carboxylic & Acetic Acids 
Well25 C24 L-Arginine Amino acids 
Well26 C25 L-Asparagine Amino acids 
Well27 C26 L-Phenylalanine Amino acids 
Well28 C27 L-Serine Amino acids 
Well29 C28 L-Threonine Amino acids 
Well30 C29 Glycyl-L-Glutamic Acid Amino acids 
Well31 C30 Phenylethylamine Amines/Amides 
Well32 C31 Putrescine  Amines/Amides 

*Addition or change from original groupings by Zak et al. (1994) 
 

3.2.5 Dissimilarity Measure 

The objective of the approach being proposed here is to decrease the complexity of the CLPP 

data set and provide a simple, single one-dimensional metric for comparative purposes. Such a 

metric would reduce the need for expertise in complex multivariate analysis methods and 

perhaps be more useful for engineering design, performance or modelling applications. 
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The approach adopted is similar to Collins et al. (2000) where a dissimilarity measure was 

plotted against a time lag. Collins et al. (2000) recommended using the Euclidean distance for 

community data due to the clear geometric properties of the metric. The Euclidean distance 

measure was used in this study as a measure of dissimilarity of the bacterial communities 

within a specific mesocosm over the 29 d time period following AMD perturbation. The 

Euclidean distance can be calculated in n dimensions, where in theis study n=31 (31 differnet 

carbon source utilization responses). Given the two points:  

         (3.1) 

         (3.2) 

 

The Euclidean distance can be calculated as: 

 

     (3.3) 

 

The approach taken here is different to that of Collins et al. (2000) in that carbon source 

utilization data for bacterial communities was used as opposed to direct species counts. As well, 

where Collins et al. (2000) used regression analysis to look at community relationships from 

three unrelated data sets; the objective in this study was to compare the different recovery 

trends of similar mesocosm systems under the same experimental conditions. The Euclidean 

distance for any one mesocosm was also divided by the largest distance calculated for the time 

course of that mesocosm, giving values between 0 and 1 during the 29 d following the AMD 

perturbation. A normalized Euclidean distance of 1 means that the community within the 

respective mesocosm on that day is the most dissimilar to day 0, a normalized Euclidean 

distance of 0 means that the community on that day is exactly the same as the community on 

day 0 for the given mesocosm. The normalized Euclidean distance measure here does not give 

information as to how similar the communities in different mesocosms are, rather how similar 

the community in any one mesocosm is in comparison to the community in that mesocosm on 
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day 0. As the bacterial community within any 2 mesocosms is not entirely the same, 

normalizing the Euclidean distance helps in visualizing and comparing the bacterial community 

responses for different mesocosm systems following the AMD disturbance. 

 

3.3 Results and Discussion 

The intent of this study was to develop and assess a new metric for interpreting bacterial 

community shifts using BIOLOG™ EcoPlate data. Several methods are presented and discussed 

for comparison purposes. The first method uses PCA to assess for a shift in the bacterial 

communities. This method was presented in Weber et al. (2008) and serves as the basis point 

for comparing the different methods of assessing bacterial community shifts. The second 

method involves grouping the 31 carbon sources into 5 guilds and assessing changes in the % 

guild utilizations over the study period. Fundamentally this method compresses the 31 

dimensional space of any one plate into 5 dimensions. The last method is a 1 dimensional 

metric which has not previously been utilized to assess for bacterial community shifts using this 

type of data. This method involves calculating normalized Euclidean distances for a set of 

BIOLOG™ plates for any 1 system (a constructed wetland mesocosm in this case) over a time 

period of interest. This method basically compresses the 31 dimensional space of any one plate 

into a single dimension for simple plotting and interpretation.  

 

3.3.1 Principle Component Analysis 

Figure 3.1A shows a PCA ordination determined as previously presented by Weber et al. (2008) 

for 5 mesocosms on day 0 before an AMD perturbation. The ordination shows the CLPP’s for 

the interstitial bacterial communities of the planted mesocosms (2 and 6) to be quite similar 

forming a tight grouping. The unplanted mesocosm CLPP’s (1 and 4) are seen to be different 

than the planted mesocosm objects but also dissimilar from each other. The abiotic mesocosm 

(8) CLPP is shown to be different than either the planted or the unplanted mesocosms.  Figure 

3.1B shows an ordination of the same 5 mesocosms on day 1 after the AMD disturbance. On 
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day 1 the mesocosm objects aggregate on the ordination plane and no discernable groupings 

can be made.  

 

Figure 3.1: CLPP of the logarithmic transformed BIOLOG™ EcoPlate data before (A) and 24h after 

exposure to AMD (B) of 5 mesocosms, planted (2 and 6), unplanted (1 and 4), and abiotic (8), in  

triplicate (A–C). Output generated using Statistica 7.1 
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The defined groupings from day 0 shifted on the ordination plane to aggregate in a similar area 

on day 1 after the AMD disturbance (Figure 3.1). The shift of objects on the ordination plane is 

due to the mesocosm bacterial communities having different carbon source utilization patterns 

on day 1 as compared to day 0. Weber et al. (2008) showed evidence that detachment of the 

fixed biological regime may be occurring as a result of AMD treatment in the same mesocosm 

systems, lending support to the idea that a different bacterial community species structure may 

be populating the interstitial water after an AMD perturbation.  

 

The differences in the community structure between the planted and the unplanted 

mesocosms, on day 0, is likely due to the relationship between the plant root system and the 

associated bacterial community, collectively called the rhizosphere. The role of reeds, such as 

Phragmites australis have been proven to be fundamentally influenced by the periphyton 

communities developing on the underwater surfaces of aquatic macrophytes (Acs et al., 2003; 

Albay & Akcaalan, 2003; Gross et al., 2003; Lakatos & Bartha, 1989; Neely & Wetzel, 1995).  In a 

similar fashion the bacterial communities within the rhizosphere region will also be affected by 

plant activities.  It is possible that the carbohydrates and other metabolites exuded by the plant 

roots into the rhizosphere provide an added and consistent food source for the bacterial 

community within the planted mesocosms (Walker et al., 2003; Nardi et al., 2000) and as a 

result affect their structure and sensitivity to disturbances. 

 

Figure 3.2 presents PCA ordinations of the studied mesocosms on day 0 and day 29. Figure 3.2A 

portrays an ordination very similar to that presented in Figure 3.1A. The carbon source 

utilization patterns for bacterial communities of the planted mesocosms (2 and 6) form a tight 

grouping; whereas the unplanted mesocosm objects (1 and 4) are seen to be different than the 

planted mesocosm objects and also dissimilar from each other. The abiotic mesocosm object is 

again shown to be different than either the planted or unplanted mesocosms.  
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Figure 3.2: CLPP of the Taylor transformed (b=0.9441) BIOLOG™ EcoPlate data before (A) and 29days 

after exposure to AMD (B) of 5 mesocosms, planted (2 and 6), unplanted (1 and 4), and abiotic (8), in 

triplicate (A–C). Output generated using Statistica 7.1 
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Figure 3.2B presents an ordination of the 5 mesocosms after the 29 day period following the 

AMD perturbation. In this ordination it can be seen that the planted mesocosms (2 and 6) did 

not shift an appreciable distance on the ordination plane in comparison to their original 

positions (Figure 3.2A). As well, the planted mesocosms still form a tight grouping, meaning the 

carbon source utilization patterns of the planted mesocosms are still quite similar at day 29. 

Figure 2B shows mesocosm 4 to have shifted from its original position on day 0 (Figure 3.2A). 

Mesocosm 1 also shifted from day 0 to day 29 but to a greater extent than did mesocosm 4. 

The unplanted mesocosm communities diverged to a greater extent than did the planted 

mesocosm communities after the 29 day recovery period, and the divergence shown by 

mesocosm 1 was greater than that shown by mesocosm 4.  

 

Plant root systems are known to provide mechanical support for bacterial communities and 

perform many roles including the synthesis, accumulation, and secretion of compounds (Flores 

et al., 1999). Through the exudation of compounds, roots systems have been shown to regulate 

the microbial community structure within the surrounding rhizosphere (Walker et al., 2003; 

Nardi et al., 2000). This may suggest that the plant root exudates in the interstitial water of the 

planted mesocosms help buffer the bacterial community from the AMD disturbance. The added 

carbohydrates and other metabolites exuded by the roots in the planted mesocosms are 

present before, during and after the AMD perturbation. This consistent source of nutrition 

would reduce a structural change in the community. In addition, the larger amount of organic 

matter from dead root matter (Kadlec & Knight, 1996) within the planted mesocosms may have 

helped buffer the fixed biological regime within the planted mesocosms from any initial low-pH 

stress associated with the AMD perturbation.   

 

Recounting the main points extracted from the PCA analysis of the data thus far:  

1) There is a definite shift from day 0 to day 1 as a result of the AMD perturbation in all 

mesocosms 
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2) The planted mesocosms seemed to recover to a state (Day 29) more similar to their original 

structure (Day 0) than did the unplanted mesocosms  

3) The planted mesocosms are found to be quite similar to each other both before and after 

the recovery period  

4) The unplanted mesocosms are found to be similar to each other before the disturbance, 

however are seen to be somewhat different from each other after the 29 day recovery 

period 

 

3.3.2 Guild Grouping 

Figure 3.3 presents the % of total carbon source utilization for each guild (see Table 3.1 for guild 

groupings) over the 29 day study period. As can be seen for the unplanted mesocosms, both 

mesocosm 1 (Figure 3.3A) and mesocosm 4 (Figure 3.3B) show a large shift in the guild 

utilization from day 0 to day 1. After day 1 the guild utilizations for both unplanted mesocosms 

do not seem to follow any set pattern; however, by day 29 the guild utilizations again begin to 

look somewhat similar to the pattern seen on day 0. 
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Figure 3.3: Percent of total carbon source utilization response, tracked over the 29 day study period, for 

the different guilds – amines and amides (A&A), amino acids (AA), carboxylic and acetic acids (C&AA), 

carbohydrates (Carb), and polymers (Poly). Four different mesocosm systems shown: (A) mesocosm 1 

[unplanted], (B) mesocosm 4 [unplanted], (C) mesocosm 2 [planted], (D) mesocosm 6 [planted]. 

 

When looking at the guild shifts for the planted mesocosms, mesocosm 2 (Figure 3.3C) and 

mesocosm 6 (Figure 3.3D) also show an initial shift in the guild utilization patterns, however the 

shifts seen for planted mesocosms seems to show a pattern that is a dynamic “response” to the 

perturbation. At day 29 the planted mesocosm guild utilization patterns appear to be quite 

similar to the patterns seen on day 0.  

 

Comparing the guild utilizations at day 0 and day 29 for the planted mesocosms (2 and 6) the 

guild utilizations are quite similar (Figures 3.3C and 3.3D) for the two different mesocosms, 
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suggesting that the bacterial communities of the planted mesocosms are quite similar to each 

other.  However, comparing the guild utilizations of the unplanted mesocosms at day 0 (Figure 

3.3A) guild utilizations are similar for day 0, however not quite as similar as was seen for the 

planted mesocosms.  It also is also evident that the unplanted mesocosms are quite different 

from each other at day 29 (Figure 3.3B), suggesting that these bacterial communities are not as 

stable or robust as they are not able to recover to as great a degree as the planted mesocosm 

communities.  These conclusions are the same as those made using the PCA method.  

 

3.3.3 One Dimensional Relative Divergence Metric 

Figure 3.4 provides the relative divergence (normalized Euclidean distance) of the mesocosms 

for 2 planted (2 and 6) and 2 unplanted (1 and 4) mesocosms over the 29 day period. The 

general trend for all 4 mesocosm systems can be said to be quite similar over the period 

following the AMD perturbation. After the initial AMD disturbance (day 0) the relative 

community divergence for all mesocosms was observed to increase (day 1) and remain high for 

the first 15 days followed by a decrease by day 29. Although the initial community divergence 

appears to be followed by a recovery phase, the mesocosm communities at day 29 do not 

completely recover to the day 0 state suggesting a possible long-term permanent community 

shift in response to the AMD perturbation. 

 



74 

 

 

Figure 3.4: Relative community divergence (normalized Euclidean distance) of 4 mesocosms, planted (2 

and 6), unplanted (1 and 4), for 29 days following an AMD perturbation (day 0).  

 

In distinguishing the recovery trends for the planted and unplanted mesocosms several 

observations can be made.  The initial slope of the divergence parameter for the unplanted 

mesocosms is approximately twice that of the planted mesocosms, suggesting that the initial 

divergence of the unplanted mesocosms is greater than that of the planted mesocosms. It is 

also evident that there is a difference in the recovery trend between the planted and unplanted 

mesocosms; the planted mesocosms recovered to a greater degree than the unplanted 

mesocosms. The unplanted mesocosms recovered to a relative divergence of 0.7 and 0.81, 

where the planted mesocosms recovered to a relative divergence of 0.41 and 0.54.  

 

A difference between the response trends of the planted and unplanted mesocosms was seen 

at day 15 (Figure 4).  The planted mesocosms reached a maximum relative divergence on day 
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15, whereas the unplanted mesocosms reached a maximum relative divergence on day 1. As 

well, the 2 unplanted mesocosms were quite different at day 15.  The difference in the 2 

unplanted mesocosms (1 and 4) may be due to different communities within the 2 mesocosms.  

The unplanted mesocosms were discerned to be slightly different on day 0 (Figure 3.1A). It is 

probable that the different trends shown by the 2 unplanted mesocosms around day 15, as 

seen in Figure 4, is a result of the differences in the initial communities and their ability to 

return to a comparable structure following the AMD perturbation. 

 

These results are in agreement with the analysis presented using both PCA and the guild 

grouping methods. The relative divergence measure showed that: 

1) There is a definite shift from day 0 to day 1 as a result of the AMD perturbation in all 

mesocosms 

2) The planted mesocosms seemed to recover to a state (Day 29) more similar to their original 

structure (Day 0) than did the unplanted mesocosms  

 

However the relative divergence measure was not able to definitively show that: 

3)  The planted mesocosms are found to be quite similar to each other both before and after 

the disturbance and recovery period  

4)  The unplanted mesocosms are found to be somewhat similar to each other before the 

disturbance, however are seen to be somewhat different from each other after the 29 day 

recovery period 

 

This method was not able to compare the similarities of different mesocosms. Rather the 

relative divergence metric presented here was suitable for comparing the divergence responses 

of the different mesocosms.  Instead of gathering information regarding the community 
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population in a static state, this method reveals information regarding the community response 

or divergence over time.  In this case the method was used to monitor community divergence 

in response to an AMD perturbation in several mesocosm systems. However, this method could 

be used on a broader basis to monitor communities during a start-up phase, for possible failure 

monitoring, or to gather information regarding community shifts in response to unknown 

environmental factors such as pollution.   

 

The relative divergence measure is quite useful in that it requires limited knowledge of 

multivariate statistics to perform. As shown by Weber et al. (2007) when performing 

multivariate methods such as PCA, an in depth knowledge of the assumptions and biases of the 

method being utilized is required to analyze a multivariate data set. The relative divergence 

measure is also easy to interpret. As a one dimensional metric, the divergence measure can be 

used with any number of classical plotting or statistical methods. However, if performing any 

kind of advance statistics on data such as the relative divergence data as shown here, use of 

non-normalized data should be considered and may be preferred. Data herein was normalized 

in order to compare the divergence trends of different communities and to also compare the 

method to other widely used analysis methods. If monitoring a single system over time, use of 

non-normalized data may prove more useful. 

 

3.4 Conclusions 

The BIOLOG™ EcoPlate method yielded useful data regarding differences in communities and 

differences in the divergence trends shown by planted and unplanted mesocosms systems over 

a 29 day time period following an AMD perturbation. Using all three of the described analysis 

methods, PCA, guild utilization, and the proposed relative divergence measure, a number of 

interesting observations were made from the data: 1) There was a definite shift in the bacterial 

communities in all mesocosms in response to the AMD perturbation; 2) The planted 

mesocosms were able to recover to a state more similar to their original structure than did the 
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unplanted mesocosms; 3) The planted mesocosm bacterial communities were found to be quite 

similar to each other both before and after the 29 day recovery period and 4) The unplanted 

mesocosms bacterial communities were found to be similar to each other before the 

disturbance, however were seen to be somewhat different from each other after the 29 day 

recovery period. In comparing the three different analysis methods it was found that in using 

either the PCA or guild utilization methods, both methods yielded the same conclusions. The 

proposed relative divergence measure was able to support points 1 and 2, however not points 

3 and 4. The relative divergence measure cannot by definition yield information regarding 

communities in a static state; rather this method reveals information regarding the community 

response or divergence over time. The community divergence method as presented is easy to 

use as it does not require a background in multivariate statistics as does PCA. This metric is also 

one dimensional, which makes the divergence trend over time easy to interpret and provides 

an opportunity for standard curve evaluation and statistical methods. If looking to monitor 

community shifts over time the community divergence method does not provide all of the 

information that PCA or guild grouping analysis does, however is a more easily implemented 

and interpreted evaluation method when analyzing BIOLOG™ EcoPlate data, and could be 

considered a useful addition to the toolbox of scientists and engineers interested in bacterial 

community divergence.  
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Chapter 4 - Method for the Detachment of Viable Bacteria from Wetland 

Gravel 

 

Overview 

The study of bacterial communities in microbially mediated water treatment systems is 

becoming increasingly popular. Aquatic bacterial communities are often found in fixed film 

environments, residing within a matrix of extracellular polymeric substances often referred to 

as a biofilm. To either enumerate or characterize these bacterial communities a method for 

detaching the biofilm is required. Bacterial detachment methods include scraping, swabbing, 

shaking, sonication, blending, and digestions. Herein, various shaking technique protocols are 

evaluated for effectiveness in the detachment of viable bacterial communities from the biofilm 

surrounding pea gravel from constructed wetland mesocosms. Three different shaking 

technique protocol factors were investigated via a triplicated 23 factorial design in an attempt 

to find the most effective detachment protocol. Factors studied include: the use of either tap 

water or phosphate buffer as the shaking/detachment solution; the use of either manual-

shaking at room temperature or mechanical shaking at 30°C, and the addition of either no 

enzyme to the shaking solution or the addition of lipase, β-galactosidase and α-glucosidase 

(maltase). Resulting suspensions from the different protocols were characterized for organics, 

inorganics, viable bacteria, community level physiological profile (CLPP) and several BIOLOG™ 

ECO plate substrate related diversity indices. Using these metrics for the evaluation of the 

differing protocol treatments the most effective protocol was found to be the use 10 mM pH 7 

phosphate buffer solution with mechanical shaking for 3 hr at 30°C and the addition of the 

enzymes lipase, Β-galactosidase and α-glucosidase to the detachment solution. 
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4.1 Introduction 

Bacteria can attach to solid surfaces by creating an adhesive biofilm to promote irreversible 

adhesion to particles (Bockelmann et al., 2003). This biofilm primarily consists of extracellular 

polymeric substances (EPS), which are composed mainly of polysaccharides, proteins, lipids and 

nucleic acids (Flemming and Wingender, 2001; Bockelmann et al., 2003). For general 

characterization and study of bacterial communities, various methods have been developed to 

detach bacteria from this EPS biofilm. Bacterial detachment methods include scraping, 

swabbing, shaking, sonication, blending, and various digestion approaches.  

 

Several studies have been performed to compare the effectiveness of different bacterial 

detachment techniques. Camper et al. (1985) studied homogenization, blending and sonication 

as bacterial detachment methods using bacterial biofilms grown on granular activated carbon 

(GAC). Results showed that sonication killed cell cultures on all sonicator settings. Due to heat 

of mixing problems blending was shown to only be effective if used for less than 3 min (up to 

temperatures of 45 °C).  Where, homogenization (stomacher method) was shown to be the 

best method for bacterial detachment maintaining almost 100% cell viability after detachment. 

Gagnon and Slawson (1999) evaluated scraping, swabbing and a stomacher method for 

detachment of bacteria from polycarbonate coupons. This study found stomaching at room 

temperature for 2 min was most effective. Grove et al. (2004) found that shaking biofilter peat 

in a buffer solution for 3 hr at room temperature to be an effective method for the detachment 

of representative bacterial communities. 

 

Another recent study also looked at the effect of adding specific enzymes during the 

detachment procedure to facilitate the breakdown of the EPS matrix entrapping attached 

bacteria. Bockelmann et al. (2003) performed a bacterial detachment study using sonication in 

a sodium pyrophosphate buffer preceded by an enzymatic digestion of the bacteria/biofilm 
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matrix with α-glucosidase, β-galactosidase and lipase. Results showed the enzymatic digestion 

improved cell detachment, presumably due to the EPS destabilization and degradation.   

 

The study of bacterial communities in wetland systems is still fairly new. Most studies have 

been restricted to the interstitial bacterial communities (Hadwin et al., 2006; Hench et al., 

2004; Stoeckel and Miller-Goodman, 1998; Weber et al., 2008).  This is likely due to difficulties 

with sampling wetland sediments and the lack of published bacterial detachment methods 

focusing on wetland sediments/supports.  

 

A number of bacterial community profiling techniques exist. Some of the more popular 

molecular methods include denaturing gradient gel electrophoresis (DGGE), terminal restriction 

fragment length polymorphism (TRFLP), and fluorescent in situ hybridization (FISH). Non 

molecular techniques include microscopy-based identification, culture-based identification, and 

community level physiological profiling using BIOLOG™ plates. Community level physiological 

profiling (CLPP) is an approach used to characterize microbial community function based on 

sole carbon source utilization patterns (CSUPs). CLPP can be used as an indicator of the 

metabolic characteristics and overall stability of a specific microbial community over time. 

Recent work in the area of microbial soil ecology has utilized BIOLOG™ plates as a tool for CLPP 

(Hadwin et al., 2006; Hench et al., 2004; Weber et al., 2008). BIOLOG™ plates consist of 96 

wells, each well containing a different carbon source and a redox dye indicator, tetrazolium 

violet, which changes colour in response to carbon utilization. Garland and Mills (1991) were 

the first to use BIOLOG™ plates for characterizing heterotrophic soil bacteria communities 

through principle component analysis (PCA).  A number of subsequent studies are discussed in 

Konopka et al., (1997).  Most recently Weber et al., (2008) successfully used BIOLOG™ ECO 

plates to profile the interstitial bacteria within constructed wetland mesocosms. In contrast to 

the original BIOLOG™ plates with 96 different carbon sources, ECO plates by the same 

manufacturer are based on 31 different carbon sources with built-in triplicates allowing for 

better replication (see Section 3.2.4 for the specific carbon sources). CLPP has advantages over 
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other molecular and non molecular techniques as it is relatively rapid, does not require 

specialized expertise, and allows for functional community characterization. In characterizing 

bacterial communities in constructed wetland systems used for water treatment, functional 

characterization is often more useful than a characterization based on either a full or partial 

species identification. Functional characterization yields information regarding substrate 

consumption which in the case of bacterial communities in treatment wetlands, can be directly 

related to the treatment of the organics contained in wastewater.  

 

The fixed bacterial communities and the interstitial community in constructed wetland systems 

are assumed to be at least partially related; however, this hypothesis has not yet been 

extensively tested. Development of an efficient and effective bacterial detachment technique 

would help verify this assumption. Weber et al. (2008) investigated bacterial community 

dynamics in the interstitial water of wetland mesocosms; this study showed that the bacterial 

community within the constructed wetland mesocosms shifted, based on CLPP analysis using 

BIOLOG™ ECO plates, in response to acid mine drainage exposure. It was not clear from this 

study whether the interstitial community underwent an ecological shift in response to the AMD 

disturbance, or whether a detachment of the fixed biological regime occurred thus altering the 

bacterial community species distribution in the interstitial water. Study of the attached bacteria 

in the EPS structure surrounding the mesocosm sediment, in addition to the CLPP of the 

interstitial water, would have given a more encompassing picture of the mesocosm community 

profiles. 

 

To further study bacterial communities in wetlands a detachment method would be valuable.  

The objective of this study was to develop a method for the detachment of viable bacterial 

communities from pea gravel from constructed wetland (CW) mesocosms.  Focus was given to 

the detachment of representative and viable bacteria that would enable use of the CLPP 

method for bacterial community characterization. Based on the results of Camper et al. (1985), 

Gagnon and Slawson (1999), Grove et al. (2004) and Bockelmann et al. (2003) this study 
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investigated a shaking technique. The simple shaking technique was chosen as it has shown 

promise in previous studies (Grove et al., 2004) and can be used with little expertise and does 

not require specialized equipment. Three different shaking technique factors were investigated 

via a triplicated 23 factorial design.  Factors studied included: the use of either tap water or 

phosphate buffer as the detachment solution, the use of either 5 second manual-shaking at 

room temperature or 3 hr mechanical shaking at 30°C, and the addition of either no enzyme or 

the enzymes lipase, β-galactosidase and α-glucosidase (maltase) to the shaking solution. 

Resulting suspensions from the different shaking technique protocols were characterized for 

organics, inorganics, viable bacteria, community level physiological profile (CLPP), and several 

BIOLOG™ ECO plate substrate related diversity indices to identify the most suitable method.  

 

4.2 Materials and Methods 

4.2.1 Experimental Design 

Variations of a simple shaking method for the detachment of viable bacteria from constructed 

wetland mesocosm pea gravel were performed on replicate sediment samples to study the 

effect of 3 different variables associated with the detachment method on the total 

effectiveness of the detachment protocol. The effect of:  A) type of shaking solution, B) shaking 

time, and C) enzyme addition on the effectiveness of the technique using a triplicated 23 

factorial design was assessed (see Table 1). The overall effectiveness of the different shaking 

protocols were quantified using a number of different methods. All methods were applied to 

the resulting biomass suspensions following the different shaking treatments. Methods used for 

suspension characterization included organic content (volatile solids), inorganic content (ash 

content), colony forming units (CFUs), community level physiological profile (CLPP), and several 

diversity related metrics calculated using the CSUPs from BIOLOG™ ECO plates.  
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Table 4.1: Experimental Design - Bacterial Detachment Method 

 

 

4.2.2 Mesocosm Systems and Sampling 

The type of mesocosm used to develop the detachment method protocol is described in 

Chapter 1, Section 1.2.1, Figure 1.4. Samples were taken from 10 cm below the mesocosm 

surface in all cases and lightly mixed to produce representative samples for protocol 

development. See Figure 4.3 for a picture of the pea gravel media.  

 

4.2.3 Detachment Protocol 

The basis for the detachment protocol used was adapted from methods employed by Grove et 

al. (2004). For each 25 g sample of mesocosm pea gravel 100 mL of shaking solution was added 

in a 250mL Erlenmeyer flask and shaken at ~100 rpm for either 3 h at 30°C or manually for 5 

sec. Manual shaking for 5 sec can be essentially described as re-suspension and is therefore 

referred to herein as “no shaking”. The different shaking solution treatments included: tap 

water without enzymes, phosphate buffer without enzymes, tap water with enzymes and 

phosphate buffer with enzymes added. The phosphate buffer solution (PBS) was 10 mM with a 

pH of 7 and 8.5 g/L NaCl made up from autoclaved deionised water. Tap water was also 

autoclaved before the detachment protocol applied. The enzyme mixture included: lipase (50 

units/g pea gravel), β-galactosidase (10 units/g pea gravel), and α-glucosidase (2 units/g pea 

gravel) [Sigma-Aldrich®]. Average tap water characteristics in the region of Waterloo are 

summarized in Appendix B. The tap water used had an average hardness of ~350 (mg/L as 
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CaCO3), and a pH of 7.6. Additional experiments were also performed as standards for the 

organic content and inorganic content characterization methods. Figure 4.1 summarizes the 

experimental regime followed.  

 

 

Figure 4.1: Experimental regime.  

 

4.2.4 Total Solids, Organic and Inorganic Content 

Total solids (TS) was determined as the dry weight of a sample after drying in ceramic crucibles 

at 105°C for 24 hr. Following the drying, samples were then characterized for organic and 

inorganic content. Organic content (volatile solids) of a sample was determined as the amount 

of sample weight lost after muffle furnace treatment at 550°C for 15 min. Inorganic content 
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(ash content) was then calculated as the weight of sample remaining after 15 min, 550°C 

treatment (Eaton et al., 1995).  

 

Two different types of samples were characterized for TS, organic and inorganic content: solid 

wetland pea gravel media samples taken directly from the mesocosm systems, and suspension 

samples acquired post detachment protocol treatment. Pea gravel sample size was ~10 g, 

suspension sample size was 10 mL. For calculating % organics detached for any one detachment 

technique the amount of organics found in the suspension was divided by the amount of 

organics found to be on a representative sample of wetland pea gravel media.  

 

4.2.5 Colony Forming Units 

Viable bacterial counts in the post detachment suspensions were quantified by enumeration of 

colony forming units (CFU). Serial dilutions of the suspensions were grown on 2 % agar plates 

with 1/10 LB-broth. Plates were incubated at 30°C and colonies counted 7 days after inoculation. 

Samples were prepared in triplicate; enumeration counts between 20 and 200 were considered 

for analysis. LB media was used to capture a population pertaining to a large number of species 

from the mixed mesocosm cultures. 1/10 LB-broth was used as the mesocosms are operated 

under low nutrient loads, and therefore the bacterial populations were acclimatized to 

‘environmental’ sample nutrient conditions rather than standard laboratory culture nutrient 

conditions. 1/10th LB media has been shown to gather a broad species spectrum by allowing 

slow growing bacteria to reproduce at a rate similar to the nutrient-hindered fast growing 

bacteria. Although R2A is a popular media used for environmental samples, 1/10th LB media is 

often used in harvesting or isolating bacteria in environmental water samples (Bollmann et al., 

2007). 
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4.2.6 Community Level Physiological Profiling 

The community level physiological profiling (CLPP) laboratory protocol was performed using the 

methods outlined in Chapter 2. BIOLOG™ ECO plates were inoculated with 150 L of a 100 X’s 

diluted post-detachment protocol suspension, and incubated at room temperature. As 

recommended by Weber et al. (2009) inoculates of this dilution step gave an OD of ~0.19. The 

BIOLOG™ ECO plates were then read at an absorbance of 590 nm after an 84 hr incubation 

period.    

 

4.3 Data Analysis 

4.3.1 Community Level Physiological Profiling 

The community level physiological profiling (CLPP) data analysis was performed using the 

methods outlined in Chapter 2. Absorbance readings (590nm) at 84 hrs were identified as the 

metric of choice for further CLPP data analysis. BIOLOG™ ECO plates (Biolog Inc., Hayward CA., 

USA) consist of 96 wells. The wells contain 31 different carbon sources, and a blank in triplicate. 

2 plates were used for each of the 8 experimental design points (see Table 1). For each plate 3 

replicate carbon source utilization patterns (CSUPs) were attained giving a total of 48 objects 

(data sets) used for data analysis. 

 

The absorbance values at 84 hr were initially standardized by first correcting by the 

corresponding blank value and then dividing by the average well colour development (AWCD) 

for that time point. Assessment of normality, homoscedasticity and linear correlations within 

the data set according to Weber et al. (2007), yielded a recommended Taylor transformation 

(b=1.171) for subsequent PCA. PCA was completed using Statistica 8.1 (StatSoft, Tulsa, OK).  
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4.3.2 Substrate Related Diversity Indices 

BIOLOG™ plates can also be used, in a more traditional ecological sense, to calculate diversity 

indices based on carbon source utilization patterns (CSUPs). The Shannon index or what is often 

called “diversity” is a common ecological metric used to track and understand shifts in 

communities over space and time. Using the CSUP gathered from a single BIOLOG™ plate, 

substrate diversity (H) can be calculated as: 

 

 )ln( ii ppH
          (4.1) 

 

where: 

     H  - substrate diversity 

  ip  - ratio of the activity of a particular substrate to the sums of activities of all              

substrates  

      activity - chosen metric for analysis (absorbance value (590 nm) at 84 hr) 

 

Two other parameters associated with substrate diversity which can be calculated using CSUPs 

are substrate richness (S) and substrate evenness (E).  Substrate richness is a measure of the 

number of different substrates utilized by a microbial population. Substrate evenness is defined 

as the equitability of activities across all utilized substrates; substrate richness is calculated as 

the number of wells with a corrected absorbance greater than 0.25.  Substrate evenness is 

calculated as: 

 

max/ HHE             (4.2)  
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Substrate diversity, evenness and richness we calculated using the average response from the 

three replicates on any one plate to give a single result for each plate. Recent examples of 

studies utilizing the Shannon index calculated from CSUPs gathered using BIOLOG™ plates 

include He et al. (2008), Farnet et al. (2008), and Weber et al. (2008). 

 

4.3.3 Multiple Linear Regression 

Multiple linear regression was performed using the software package Design Expert® 7.1 (Stat-

Ease, Minneapolis, MN) to identify the significant factors (p<0.01) affecting a number 

evaluative metrics when using the shaking technique. The regression equations given herein 

were used for analysis purposes only and are not to be construed as suitable for design 

purposes. A description of similar experimental design approaches and the use of coding for 

quantitative analysis can be found in Montgomery (2001). All factors were coded as -1 for low 

levels and +1 for high levels as given in Table 4.1. Low levels of the three controlled variables 

were the use of tap water for “shaking solution” type, 5 sec manual shaking for “shaking time” 

and no enzymes present for “enzyme addition”. High levels of the three controlled variables 

were the use of phosphate buffer for “shaking solution” type, 3 hr shaking at 30°C 100 rpm for 

“shaking time” and enzymes present for “enzyme addition”.  

 

General linear models were generated to ascertain the relationship between the 3 controlled 

(dependant) variables, and the detachment method performance based on: % organic 

detachment, inorganic detachment, viable bacteria detachment, substrate diversity, substrate 

evenness, substrate richness, and average well colour development (AWCD). The general linear 

models were generated through a backward step-wise method, keeping only variables with 

p<0.05. Two and three factor interactions were included in the model estimation method. Final 

model results were verified by performing the same analysis using a forward step-wise method. 

No statistical outliers (i.e. studentized residual greater than 2.5) were found within any of the 

seven data sets. 
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4.4 Results and Discussion 

The simple shaking technique used for the detachment of viable bacteria from CW mesocosm 

pea gravel was effective in all cases. Even in the case of a simple 5 sec manual shaking a large 

amount of solid matter was detached from the pea gravel, creating a brown coloured 

suspension. Due to the brown colour of the suspensions no discernable difference in any of the 

different protocol treatments could be seen with the naked eye. Figure 4.2 shows 4 

representative sample suspensions following the detachment protocol.  Some differences in the 

amount of detached solids could be discerned if the sample were allowed to settle for 

approximately 1 hr following the detachment protocol treatment. Figure 4.3 shows 2 different 

suspensions samples after a 1 hr settling period.  

 

 

Figure 4.2: Sample suspensions – post detachment protocol.  
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Figure 4.3: CW mesocosm pea gravel - post detachment protocol – following1 hr settling.  

 

Following a 550°C oven treatment for organic and inorganic determinations for each sample, it 

was qualitatively obvious that the different treatments yielded different results based on 

sample colours in the ceramic crucibles. Figure 4.4 shows 21 dishes post 550°C treatment used 

for organic and inorganic determinations.  

 

 

Figure 4.4: Spectrum of resulting samples in ceramic crucibles - post 550°C oven treatment. 
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4.4.1 Organic, Inorganic and Viable Bacteria Detachment Data 

Using the data collected, the effect of the 3 different experimental design variables on the 

overall success of the detachment protocol was evaluated through several general linear 

models (GLMs) as described in section 4.3.1. Figure 4.5 summarizes the results found for the % 

of organics detached from the CW mesocosm pea gravel via the various detachment protocol 

treatments.  

 

 

Figure 4.5: Results - organics detached. A) tap water vs. phosphate buffer; B) unshaken vs. shaken; C) no 

enzymes vs. enzymes present; D) general linear model. 

 

The equation given in Figure 4.5D quantitatively compares and summarizes the effect of buffer 

use, shaking time and enzyme addition on the % organics detached.  As can be seen from Figure 

4.5A using phosphate buffer seems to have a positive influence on the amount of organics 
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detached from the pea gravel. Figure 4.5B shows that shaking the pea gravel samples for 3 hr 

has a negative effect on the amount of organics detached, while Figure 4.5C shows that there is 

essentially no difference in the amount of organics detached when enzymes are added to the 

shaking solution. Equation 4.5D shows the average amount of organics detached to be ~17.6% 

of the total available organics. This equation also shows that shaking had a large negative effect 

on overall organic detachment with a coefficient of -1.62591. Use of a buffer solution had a 

large positive effect on organic detachment yielding a coefficient of 1.30473 in the GLM.  The 

effect of enzymes use on organic detachment was found to be insignificant (p=0.6471), 

however the cross effect between enzymes and shaking was found to be significant and 

therefore enzyme use was included into the GLM. The cross effect between enzymes and 

shaking yielded the largest coefficient (-1.65284) suggesting that the use of enzymes in 

conjunction with shaking had the greatest negative effect on organics detached of all the terms 

included in the GLM. All other 2 factor and 3 factor interactions were found to be insignificant 

at the 95% confidence level. 

 

The equation given in Figure 4.6D quantitatively compares and summarizes the effect of buffer 

use, shaking time and enzyme addition on the amount of inorganics detached.  The amount of 

inorganics detached is quite low with the average amount equal to about 0.17% of the total pea 

gravel weight. As can be seen from Figure 4.6A, 4.6B and 4.6C only the addition of enzymes to 

the detachment solution significantly changes the amount of inorganics detached. All other 

single factor, 2 factor and 3 factor interactions were found to be insignificant at the 95% 

confidence level. 
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Figure 4.6: Results - inorganics detached. A) tap water vs. phosphate buffer; B) unshaken vs. shaken; C) 

no enzymes vs. enzymes present; D) general linear model. 

 

The equation given in Figure 4.7D quantitatively compares and summarizes the effect of buffer 

use, shaking time and enzyme addition on the number of viable bacteria (CFUs) detached via 

the shaking protocol. As can be seen from Figure 4.7A, 4.7B and 4.7C the use of a phosphate 

buffer,  shaking for 3hrs and adding enzymes to the detachment solution all significantly 

increased the number of viable bacteria detached from the CW mesocosm pea gravel. Equation 

4.7D shows the average number of CFUs detached to be ~1.7x106 CFUs/g pea gravel. The 

coefficients associated with enzyme use, the use of a weak phosphate buffer, and shaking for 3 

hours were 0.95, 0.86 and 0.73 respectively showing  the use of enzymes to have the largest 

effect and the 3hr shaking time to have the smallest effect (although only slightly). The cross 

effect between shaking and enzyme use was also shown to be significant with an associated 
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coefficient of 0.68. All other 2 factor and 3 factor interactions were found to be insignificant at 

the 95% confidence level. 

 

 

Figure 4.7: Results - colony forming units (CFUs) detached. A) tap water vs. phosphate buffer; B) 

unshaken vs. shaken; C) no enzymes vs. enzymes present; D) general linear model. 

 

4.4.2 BIOLOG™ ECO Plate Data and Community Level Physiological Profiling 

A number of metrics related to the CSUPs gathered using the BIOLOG™ ECO plates were also 

calculated and the effects of the 3 experimental design variables (ie. buffer use, shaking time, 

enzyme addition) on the different metrics determined in the same fashion as for % organics 

detached, inorganics detached, and CFUs detached. Average well colour development as 

described in Section 4.3.2, in addition to substrate diversity, evenness and richness as described 
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in Section 4.3.3, were all used as independent variables to measure the effectiveness of the 

different detachment protocols.  

 

It was found that of all three experimental design variables studied none had a significant effect 

on AWCD, richness or evenness as measured using the CSUPs from the BIOLOG™ ECO plates 

(data not shown). It was found however that all three of the experimental design variables 

studied had a positive influence on the substrate-related diversity measure.  

 

The equation given in Figure 4.8D quantitatively compares and summarizes the effect of buffer 

use, shaking time and enzyme addition on the diversity of substrates utilized by the detached 

bacterial community based on the BIOLOG™ ECO plate response at 84 hrs.  As can be seen from 

Figure 4.8A, 4.8B and 4.8C the influence of phosphate buffer, shaking for 3hrs and adding 

enzymes to the detachment solution all significantly increased the diversity of the substrates 

utilized by the detached bacterial community. Equation 4.8D shows the average substrate 

diversity to be 3.112. The coefficients associated with enzyme use, the use of a weak phosphate 

buffer, and shaking for 3 hrs were 0.022, 0.015 and 0.013 respectively showing  the use of 

enzymes to have the largest effect and the 3 hr shaking time to have the smallest effect 

(although only slightly). All other 2 factor and 3 factor interactions were found to be 

insignificant at the 95% confidence level. 
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Figure 4.8: Results - substrate diversity based on BIOLOG™ ECO Plate Response at 84 hrs. A) tap water 

vs. phosphate buffer; B) unshaken vs. shaken; C) no enzymes vs. enzymes present; D) general linear 

model. 

 

Table 4.2 summarizes the results obtained from the 23 factorial design study. This study was 

designed to investigate and develop a protocol for the detachment of viable bacteria from CW 

mesocosm pea gravel for enumeration and community profiling, therefore the two most 

important metrics considered, CFUs detached and community diversity, should be emphasized 

in Table 4.2. The number of CFUs detached gives an indication of the number of viable bacteria 

being detached. Community diversity is often used as an ecological surrogate measure for 

overall community health. Diversity measures are a mixed measure including both number of 

species (or responsive wells in this case) and overall evenness distribution of all species in the 

community (i.e. similarity of well responses in this case). A population with a higher diversity is 

able to more readily handle acute disturbances and positively adapt to changing environmental 

conditions. A larger community diversity, from a water treatment perspective, also increases 
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the chance that any one waste constituent will be degraded within a treatment wetland due to 

the increased functional (or metabolic) diversity associated with bacterial community.  

 

Table 4.2: Summary of experimental outcomes (+ positive effect, - negative effect, / no significant effect). 

Significant effect measured at the 95% confidence level. 

 

 

The first row in Table 4.2 summarizes the effect of using phosphate buffer (as opposed to tap 

water) for the detachment solution on the different metrics used for evaluation. The use of 

phosphate buffer had a positive effect on the amount of organics detached, the number of 

viable bacteria (CFUs) detached and sustained, and the resulting community diversity. The use 

of phosphate buffer is therefore recommended for the detachment protocol.    

 

This result was not completely unexpected. Although the mesocosms were filled with tap water 

and run using a nutrient-solution/tap-water mix the presence of limestone in the mesocosms 

was likely important.  Even though tap water is used as the bulk solution in the mesocosm 

systems, limestone dissolution occurs, which likely increases the salt concentrations seen by 

the bacterial communities in the biofilm surrounding the support matrix. Therefore it is not 

surprising that a salt infused buffer seems to help in detaching and sustaining viable bacteria. 

 

The second row of Table 4.2 summarizes the effect of adding a 3 hr shaking step (as opposed to 

a 5 second manual shake) on the different metrics used for evaluation. Adding the 3 hr shaking 
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step had a negative effect on the amount of organics detached, a positive effect on the number 

of viable bacteria (CFUs) detached, and a positive effect on the resulting community diversity.  

 

Organic content of suspensions is a commonly used metric to evaluate detachment efficiency 

(Eaton et al., 1995). As can be seen for the results for the 3 hr shaking in Table 4.2, organic 

detachment may not always be the most appropriate measure to evaluate detachment 

efficiency. Adding a 3hr shaking step to the detachment protocol was found to decrease the 

amount of organic material detached. As the bacteria residing in the biofilm are closely 

associated with the organic EPS matrix, one would then expect the number of viable bacteria 

being detached to have also decreased when adding a 3hr shaking step. However, this was not 

the case. Adding a 3hr shaking step was found to increase the number viable bacteria (CFUs) 

detached from the pea gravel media. If the goal of the detachment method used is to detach 

organic material, and cell viability is not of concern organic detachment may be an appropriate 

metric for measuring overall detachment efficiency. However, if detachment of viable cells for 

enumeration or community profiling is required, as shown here, organic detachment may not 

be the most suitable metric as an evaluation criteria.  

 

All suspended samples yielded a brown suspension mixture similar to the samples shown in 

Figure 4.2 and it was for this reason the “no shaking” (i.e. 5 second manual shake) was studied 

in the experimental design. A simple manual-shaking resuspension seemed to detach a large 

amount of solid material from the pea gravel media. It is proposed that the during the 3 hr 

mechanical shaking period the bacterial population may have utilized some of the detached 

organic material, accounting for both a measured decrease in organics detached and a possible 

increase in the number of bacteria enumerated. This explanation is however theoretical, to 

verify this statement further experimentation would be required.  
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As this study is focused on the detachment of viable bacteria it can be said that the positive 

influence of adding the 3hr shaking step outweighs the observed negative influence the shaking 

step had on organic detachment. For further use of this method it is recommended that a 3hr 

shaking step be included in the protocol.   

 

The third row in Table 4.2 summarizes the effect of adding enzymes to the detachment solution 

(as opposed to no enzymes added) on the different metrics used for evaluation. Adding 

enzymes had a positive effect on the amount of organics detached, the number of viable 

bacteria (CFUs) detached, and the resulting community diversity. Therefore, the addition of 

enzymes to the detachment solution is recommended for the detachment of viable bacteria 

from CW mesocosm pea gravel.    

 

The use of enzymes was studied in an effort to examine the capacity for increased EPS 

destabilization and degradation via enzymatic activity. Increased EPS destabilization and 

degradation should allow for a greater number and broader profile of bacterial species being 

detached from the substrate (Bockelmann et al., 2003).  

 

Bacterial biofilms are most often heterogeneous in nature (Noguera et al., 2004), with different 

bacterial species residing in different areas of the biofilm. As the biofilm develops over time, so 

does the bacterial community profile in the biolfilm. As biofilms grow in size around particles 

the amount of oxygen and nutrients available to the bacterial species residing in the biofilm 

interior is reduced, creating a nutrient profile, which in turn creates a heterogenous bacterial 

species profile in the biofilm. If the inclusion of enzymes in the detachment solution allows for 

greater EPS destabilization and degradation, the bacterial species residing within the interior 

biofilm space are more likely to detach. The observations from Figures 4.5C, 4.7C and 4.8C 

support this hypothesis, as the increased amount of organics detached, and the increased 

number of viable bacteria detached can both be explained by a greater EPS matrix 
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destabilization and degradation in response to enzymatic activity associated with the added 

enzymes. 

 

4.4.3 Community Level Physiological Profiling 

In addition to the mentioned diversity related metrics calculated using the CSUPs, PCA analysis 

was also performed. All 48 CSUPs (objects) were ordinated on the same plane using the first 2 

principle component axes. As described in section 4.3.1 the data was subjected to a Taylor 

transformation (b=1.171) prior to ordination to better meet the data restrictions associated 

with PCA.   

 

Figure 4.9 shows a PCA ordination of the CSUPs gathered using BIOLOG™ ECO plates.  As can be 

seen from the ordination there is a significant amount of grouping seen for each protocol 

treatment type. First, groups 1 and 2 which were protocols performed without enzyme addition 

can be found on the right hand side of the ordination, while groups 3 and 4 which contained 

enzymes are found on the left hand side of the ordination. Similarly, groups 1 and 3 which were 

protocols performed in tap water can be found in the bottom half of the ordination, where 

groups 2 and 4 which used phosphate buffer can be found in the top half of the ordination. The 

effect of 3 hr shaking on the CLPP results shown in Figure 4.9 are not as apparent, and 

therefore the effect of shaking seems to have less of an effect on the resulting CSUPs when 

viewed on a 2D ordination plane.  
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Figure 4.9: PCA of the CSUPs gathered using BIOLOG
TM

 ECO plates. Detachment protocol treatments 

shown in triplicates (i, ii, iii). Output generated using Statistica 7.1. 

 

CSUPs gathered using BIOLOG™ ECO plates are a metabolic fingerprint of the bacterial 

community inoculum. Samples with different CSUPs are regarded to have a different 

community structure. It is apparent from Figure 4.9 that the use of phosphate buffer changes 

the CSUPs suggesting that a different community is gathered when using PBS rather than tap 

water. As previously discussed this can likely be explained due to the increased salt 

concentrations within the CW mesocosm systems due to limestone dissolution. 
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Tap water appears to detach and sustain a different community structure than did the 

phosphate buffer solution. This could be due to differences in the bacterial species being 

detached or differences in the bacterial species sustained in solution. Keeping in mind the 

results seen in Figures 4.5 and 4.6, a larger portion of the community is being detached and 

sustained in the PBS solution. The results in Figure 4.7 also illustrate differences in the species 

surviving the detachment protocol when using the different shaking solutions. When PBS was 

used, a more functionally diverse bacterial community with a greater number of viable bacteria 

was attained.  

 

Figure 4.9 shows the use of enzymes in the detachment protocol gives different CSUPs. This 

could be due to different bacterial species being detached from the biofilm or possible 

enzymatic activity within the wells of the BIOLOG™ ECO plate, degrading some carbon sources, 

which could in turn allow for preferential growth and metabolic activity of some bacterial 

species in select wells. 

 

The use of enzymes was studied in an effort to examine the capacity for increased EPS 

destabilization and degeneration via enzymatic activity. Increased EPS destabilization and 

degeneration should allow for a greater number and broader profile of bacterial species being 

detached from the wetland substrate. The results in Figure 4.9, illustrates the different CSUPs 

obtained when adding enzymes to the detachment mixture. In trying to decipher whether the 

different CSUPs are due to different bacterial species being detached from the biofilm or 

possible enzymatic activity within the wells of the plate, a comparison of samples 3A,B with 

samples 3D,E can be made in Figure 4.9; from this it is quite clear that the two groups are 

distinctly different. Samples 3A and 3B use tap water, contain enzymes in the detachment 

solution, and are unshaken (i.e. 5 second manual-shake). Samples 3D and 3E use tap water, 

contain enzymes in the detachment solution, and are shaken for 3 hrs.  As the detachment 

solutions are used as the inoculants for the BIOLOG™ ECO plates, the enzymatic mixture is 

present in all of the 3 series (i.e. 3A, 3B, 3C, 3D) samples. The only difference is the shaking 
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time. Time is required for the enzymes to destabilize and/or degenerate the EPS matrix, 

therefore in the case of samples 3A and 3B the enzymes will have had no time to cleave any of 

the molecular bonds within the EPS matrix. Therefore, samples 3A and 3B are essentially 

standards in this comparison allowing a clear view of what effect the enzymes had in the 

BIOLOG™ ECO plate wells. As the 3A,B group is quite different from the 3D,E group it could be 

concluded that the difference in the CSUPs gathered can be explained due to a larger breadth 

and number different bacterial species being detached from the EPS matrix due to enzymatic 

degradation of the EPS matrix.  

 

However, it should also be noted that the differences between the CSUPs for samples with 

enzymes compared to samples without, is in part due to enzymatic cleavage of carbon sources 

in the BIOLOG™ plates. This is shown through the CSUP dissimilarities between samples 1A,B 

and samples 3A,B. Samples 1A and 1B use tap water, do not contain enzymes in the 

detachment solution, and are unshaken (i.e. 5 second manual-shake). Samples 3A and 3B use 

tap water, contain enzymes in the detachment solution, and are unshaken (i.e. 5 second 

manual-shake). The only difference between the samples is the addition of enzymes to the 

detachment solution for samples 3A and 3B. All samples are unshaken, therefore enzymatic 

cleavage of the EPS structure is non-existent in all samples. The only difference between 

samples is the presence of enzymes in the BIOLOG™ ECO plates for samples 3A,B. As can be 

seen in Figure 4.9, samples 1A,B form a distinctly different grouping than samples 3A,B. If the 

presence of enzymes within the BIOLOG™ plate had no effect on the final CSUPs, then these 

two groups should overlap; however, as seen in Figure 4.7 this is not the case. Therefore it can 

be assumed that the enzymes used in the detachment protocol solution also affect the CSUPs 

gathered using BIOLOG™ ECO plates.   
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4.5 Conclusions 

A 23 factorial experimental design proved useful in evaluating the effectiveness of the different 

detachment protocols for the development of a biofilm detachment method for CW mesocosm 

pea gravel media. Several factors were evaluated for their effectiveness in detaching organics, 

inorganics, and viable bacteria. Further consideration was given to the bacterial community in 

the resulting suspension. CSUPs gathered using BIOLOG™ ECO plates were evaluated for AWCD, 

evenness, richness and diversity. Using these metrics for the evaluation of each protocol the 

following detachment protocol is recommended: 

1. The use of a 10 mM pH 7 phosphate buffer solution for biofilm detachment and 

suspension 

2. The inclusion of a  3 hr, 30°C, 100 rpm shaking period    

3. The addition of lipase (50 units/g pea gravel), ß-galactosidase (10 units/g pea gravel), 

and α-glucosidase (2 units/g pea gravel) into the detachment solution 

PCA analysis and subsequent 2D ordination of the CSUPs from the suspension samples showed 

that the inoculation of the BIOLOG™ ECO plates with the enzyme mixture significantly affected 

the resulting community level physiological profile. However, due to the structure of the 

experimental design employed in the study, it could also be confidently concluded that the use 

of the enzyme mixture in the detachment solution helped detach a functionally different and 

more diverse bacterial community. 
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Chapter 5: Bacterial Community Stratification in the Substrate of 

Constructed Wetland Mesocosms 

 

Overview 

The community level physiological profiling (CLPP) method was used to study and compare the 

bacterial communities in the substrate of planted and unplanted wetland mesocosm systems. 

Bacterial community samples associated with the pea gravel bed media taken from the top (10 

cm depth), middle (30 cm depth), bottom (60 cm depth) of all mesocosms were profiled and 

compared. Interstitial water communities were also profiled and compared to the pea gravel-

associated bacterial communities from all depths. The study of both planted and unplanted 

mesocosms enabled the comparison of the respective bacterial communities. Root associated 

(rhizospheric) bacterial communities were also gathered from varying depths within the 

planted mesocosm systems and compared to the media-related and interstitial community 

profiles.  Activity determinations suggested that the communities within the lower depths of 

the bed media were less active than those near the mesocosm surface. Also, the activities of 

the root-associated (rhizospheric) bacterial communities were seen to be much higher than the 

activities seen for the gravel-associated bacterial communities. A decrease in community 

substrate richness and diversity values was seen with increasing mesocosm depth. A general 

difference in mesocosm bacterial communities based on plant presence/absence was seen 

from the interstitial water and all gravel samples at various depths suggesting that when trying 

to decipher general community differences between mesocosm systems via the CLPP method, 

interstitial water samples provide representative information of the intrinsic microbial 

population and that the presence of roots within at least part of the mesocosm system does 

not only have a localized effect on the attached bacterial population but on attached bacteria 

from all depths within the mesocosms. Differences in the bacterial community structure, as a 

function of gravel depth were seen for all mesocosm systems supporting the notion of vertical 

community structure stratification.  
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5.1 Introduction 

It is generally accepted that constructed wetlands contain a biological regime associated with 

the wetland substrate (Truu et al., 2009), and that microorganisms play a major role in 

ecosystem health and in the degradation of contaminants in the environment (Parkinson and 

Coleman, 1991; Aelion and Bradley, 1991; Wynn and Liehr, 2001; Faulwetter et al., 2009). The 

role of the biological regime and the related mechanisms associated with contaminant 

treatment in wetland treatment systems is, however, not fully understood.  Research into 

understanding microbial population density and diversity, both spatially and temporally, would 

help to further understand these systems and would be useful in the optimization and design of 

constructed treatment wetland systems (Faulwetter et al., 2009). 

 

The role of plants in constructed wetlands is still a debatable issue for some scientists. Certain 

studies have shown that plants help to effectively remediate contaminated waters (House et 

al., 1994), whereas other studies have shown plants to have no effect on treatment 

performance (Gray et al., 2000). Aquatic plants, such as Phragmites australis (the common 

reed), have the ability to transfer oxygen from their aerial tissues and release it into their 

rhizosphere (Karathanasis & Johnson 2003; Batty et al., 2000).  Plant root systems also provide 

mechanical support and perform many roles including the synthesis, accumulation, and 

secretion of compounds (Flores et al., 1999).  The compounds secreted into the surrounding 

rhizosphere by roots are referred to as root exudates. Plants have been shown to exude 5-21% 

of all photosynthetically fixed carbon into the surrounding rhizosphere as root exudates 

(Walker et al., 2003; Marschner, 1995). Through this exudation of compounds, roots can often 

regulate the microbial community structure within the surrounding rhizosphere (Walker et al., 

2003; Nardi et al., 2000). Study of the differences between rhizospheric and bed media 

associated bacterial communities in wetland systems has not yet been given significant 

attention (Faulwetter et al., 2009).  
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With the growing use of community level physiological profiling (CLPP) (Weber et al., 2009), 

along with advent of PCR and associated bacterial identification and community 

characterization methods, a number of recent studies have taken a general look at bacterial 

communities in wetland systems (Hadwin et al., 2006; Hallberg and Johnson, 2005; Hench et al., 

2005; Weber et al., 2008; Sleytr et al., 2009). Most studies have tended to focus on the 

interstitial bacterial communities, operating under the assumption that changes in the 

interstitial community are related to changes in the media related biofilm bound bacterial 

communities. Although this assumption holds merit in many ways, this assumption has yet to 

be tested for mesocosm systems.  

 

Attaining sediment bacterial samples or biofilm bound bacterial community samples can be a 

difficult task, and often results in a destructive disturbance to the wetland system being 

studied. Therefore, only a few studies have been performed looking at bacterial communities 

associated with the bed media in wetland systems (Sleytr et al., 2009; Truu et al., 2005). Several 

questions arise when considering bacterial communities in wetland systems. Do spatial 

bacterial community variations exist within wetland bed media? In what way are the 

rhizospheric communities related to the biofilm bound or media associated bacterial 

communities?  If spatial community variations in the wetland bed media exist, what effect do 

plants have on the community variations? 

 

The objective of this study was to spatially investigate bacterial community in wetland 

mesocosm systems. Community level physiological profiling (CLPP) was used to study and 

compare bacterial communities in three planted and three unplanted mesocosm systems. 

Bacterial community samples associated with the pea gravel bed media taken from the top (10 

cm depth), middle (30 cm depth), bottom (60cm depth) of all mesocosms are profiled and 

compared. Interstitial water communities are also profiled and compared to the pea gravel 

associated bacterial communities from all depths. The use of both planted and unplanted 

mesocosms enabled the comparison of the respective bacterial communities. Root associated 
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(rhizospheric) bacterial communities were also gathered from varying depths within the 

planted mesocosm systems and compared to the media-associated and interstitial community 

profiles.      

 

5.2 Materials and Methods 

5.2.1 Experimental Design 

This study was carried out to evaluate the spatial distribution of bacterial communities in 

planted and unplanted mesocosm wetland systems. The study required sacrificing six mature 

and functional mesocosms. Of the mesocosms sacrificed, three were planted and three were 

unplanted (Table 5.1). 

 

Table 5.1: Experimental Design – mesocosm designations 

 Unplanted Planted 

Mesocosm 

Designation 

1,4,6 2,5,7 

 

Each mesocosm was constructed of schedule 80, polyvinylchloride (PVC) columns (90 cm by 25 

cm Ø) filled to ~ 80 cm with pea gravel (80% limestone) and filled to 70 cm with water (Figure 

5.1A). Water was circulated through the mesocosm with a 1/200 HP, 3200 rpm, March 

(Glenview, Illinois) series 1 (1A-MD 1/2) centrifugal pump.  
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Figure 5.1: Mesocosm schematic (A) and photograph of a planted mesocosm (B).  In (A) water (a) was 

circulated through the mesocosm via a small centrifugal pump and allowed to  (b) percolate through the 

pea gravel bed to be collected at the bottom (c). An atmosphere exposed port served as an injection (d) 

and sampling (e) point.  Drainage ports were located near the top to prevent overfilling (f), and near the 

bottom (g) for mesocosm drainage. 

 

The six mesocosms studied contained a biotic regime associated with the pea gravel media.  

These six biotic mesocosms were originally seeded with activated sludge from the Waterloo 

Sewage Treatment Plant (Waterloo, ON) 5 years prior to the study. During the first 2 years the 

mesocosms underwent pathogen removal experimentation. The following year included AMD 

treatment experiments, with the last 2 years being a non-experimental years where simple 

operation and nutrient feeding occurred.  

 

All six biotic mesocosms were fully developed microbiologically. Mesocosm maintenance and 

operation, prior to sacrificing, consisted of draining and refilling each mesocosm weekly with a 

d 

c 

f 

a 

e 

b 

g 

A B 
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nutrient/water solution. The mineral nutrient solution used was according to Hoagland’s and 

Arnon (1938). Nutrient solutions were mixed in regular tap water and fed to the unit wetlands 

giving interstitial concentrations of 28.75 mg/L NH4H2PO4; 151.5 mg/L KNO3; 236 mg/L 

Ca(NO3)2·4H2O; 123.25 mg/L MgSO4·7H2O; 9.175 mg/L FeNaEDTA; 0.715mg/L H3BO3; 

0.4525mg/L MnCl2·4H2O; 0.055mg/L ZnSO4·7H2O; 0.0125mg/L CuSO4 and 0.005mg/L 

(NH4)6Mo7O24·4H2O. 

 

Water was circulated at approximately 2.4 L/min, giving an average cyclic hydraulic retention 

time of approximately 4 minutes. All mesocosms were exposed to artificial illumination (14,000 

lumens) with a 15 hour photoperiod. The mesocosms were housed in an indoor laboratory and 

subjected to common office room temperatures (20-25°C). Plants were sprayed daily with 

water to reduce drying 

 

Wetland gravel samples were taken from a depth of 10 cm (top-T) (Figure 5.2A), a depth of 30 

cm (middle-M) (Figure 5.2B), and a depth of 60 cm (bottom-B) (Figure 5.2C) in order to 

investigate the attached (fixed) bacterial communities associated with the wetland bed media 

in the top middle and bottom of all mesocosms. In the case of the planted mesocosms, 

representative root samples were also taken from depths of 10 cm, 30 cm and 60 cm although 

not all planted mesocosms had root mass at all depths. Mesocosm 2 contained root mass 

throughout the system, mesocosm 5 contained root mass to a depth of ~15 cm, and mesocosm 

7 contained root mass to a depth of ~30 cm. Triplicate samples were taken from all regions. 

After collection, all samples were subjected to a detachment method in order to detach the 

bacterial community from the gravel or root samples for subsequent characterization. 
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Figure 5.2: Mesocosm 2 gravel collected from depths of 10 cm (A) 30 cm (B) and 60 cm (C), with 

representative gravel and root samples (D). Mesocosm gravel was removed using a small gardening 

shovel and placed into large plastic buckets (E). 

 

5.2.2 Detachment Method Protocol 

The detachment protocol was performed using the method developed in Chapter 4.  Each 25 g 

gravel sample of mesocosm pea gravel media was processed with 100 mL of shaking solution 

and shaken at 100 rpm in a 250 mL Erlenmeyer flask for 3 hr at 30°C. The shaking solution 

consisted of a 10mM phosphate buffer solution (PBS) at pH of 7 (1.547 g Na2HPO4·7H20 (BDH); 

0.584 g NaH2PO4·H20 (Sigma)) and 8.5 g NaCl (BDH) per liter of water. Shaking solution was 

made using an autoclaved deionized water. An enzyme mixture was also added that included 

lipase (50 units/g pea gravel), β-galactosidase (10 units/g pea gravel) and α-glucosidase (2 

units/g pea gravel).  

 

5.2.3 Total Solids, Organic and Inorganic Content 

Total solids (TS) were determined as the dry weight after drying in ceramic crucibles at 105°C 

for 24 hours. Organic content (volatile solids) was determined based on the sample weight lost 

after muffle furnace treatment at 550°C for 15 min.  Organics detached were determined for all 
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gravel and root samples. In general 25 g of gravel was used for the media samples; however, in 

most cases only 2-5 g of root mass was available for the root samples. Organic detachment is 

reported as a normalized value to the original sample weight of the gravel or root mass used [g 

organics detached/g of original sample (gravel or root mass)].  

 

5.2.4 Community Level Physiological Profiling 

The community level physiological profiling (CLPP) laboratory protocol was performed on all 

samples (detached and interstitial) using the methods outlined in Chapter 2. BIOLOG™ ECO 

plates were inoculated with 150 L of mesocosm interstitial water and incubated at room 

temperature. The inoculants were set to an OD of ~0.19 as described by Weber et al. (2009). 

The BIOLOG™ ECO plates were then read at an absorbance of 590 nm after an 84 hr incubation 

period at room temperature.    

 

5.3 Data Analysis 

5.3.1 Community Level Physiological Profiling 

The community level physiological profiling (CLPP) data analysis was performed using the 

methods outlined in Chapter 2 (Weber et al., 2009). Absorbance readings (590nm) at 84 hrs 

were identified as the metric of choice for further CLPP data analysis. BIOLOG™ ECO plates 

(Biolog Inc., Hayward CA., USA) consist of 96 wells. The wells contain 31 different carbon 

sources, and a blank in triplicate. One plate was used for each interstitial water sample (6), for 

each wetland gravel sample from each of the three depths from all mesocosms (18), and for 

each root sample where appropriate (6), giving a total of 32 plates. Each plate represents 

triplicate samples, yielding a total of 96 objects used for analysis. 

 

The absorbance values from 84 hr were initially standardized by first correcting by the 

corresponding blank value and then dividing by the average well colour development (AWCD) 
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for that time point. Assessment of normality, homoscedasticity and linear correlations within 

the entire data set was performed according to Weber et al. (2007), and yielded a 

recommended natural logarithmic transformation for subsequent PCA. At each step some 

points were designated as outliers and removed in order to analyze the remaining data. A 

maximum of 2 of the 96 objects were removed for any single analysis. Outliers occurred due to 

excessively high readings for blanks yielding negative responses for all wells. Negative well 

responses were coded as zeros during data treatment, and therefore the outlier data sets were 

simply removed from the analysis rather than keeping the discussed 0 response plates. PCA was 

completed using Statistica 8.1.  

 

5.3.2 Clustering Analysis 

UPGMA clustering analysis, based on the Euclidean distances, was performed on the 

logarithmic transformed BIOLOG™ ECO plate data in accordance with Legendre and Legendre 

(1998). 

 

5.3.3 Substrate Related Diversity Indices 

As first suggested by Zak et al. (1994), BIOLOG™ plates can also be used in a more traditional 

ecological sense, to calculate diversity indices based on carbon source utilization patterns 

(CSUPs). The Shannon index or what is often called “diversity” is a common ecological metric 

used to track and understand shifts in communities over space and time. Using the CSUP 

gathered from a single BIOLOG™ plate, substrate diversity (H) can be calculated as: 

 

 )ln( ii ppH
          (5.1) 

 

where: 
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     H  - substrate diversity 

  ip  - ratio of the activity of a particular substrate to the sums of activities of all              

substrates  

      activity - chosen metric for analysis (absorbance value (590nm) at 84hrs) 

 

Two other parameters associated with substrate diversity which can be calculated using CSUPs 

are substrate richness (S) and substrate evenness (E).  Substrate richness is a measure of the 

number of different substrates utilized by a microbial population. Substrate evenness is defined 

as the equitability of activities across all utilized substrates; substrate richness is calculated as 

the number of wells with a corrected absorbance greater than 0.25.  Substrate evenness is 

calculated as: 

 

max/ HHE             (5.2)  

 

Substrate diversity, evenness and richness were calculated using the average response from the 

three replicates on any one plate to give a single result for each plate. Recent examples of 

studies utilizing the Shannon index calculated from CSUPs gathered using BIOLOG™ plates 

include He et al. (2008), Farnet et al. (2008), and Weber et al. (2008). 

 

5.4 Results and Discussion 

Figure 5.3A provides the results for the amount of organics detached from the gravel samples 

from the top (10 cm), middle (30 cm) and bottom (60 cm) sections for each mesocosm. There 

does not appear to be a difference in the organic content from the different depths of the 

mesocosms (Figure 5.3A). However, it appears that there is a general decrease in organics 
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detached from 10 cm to 30 cm; this was not the case for all systems. No statistically significant 

(95% CL using a t-test at each depth) difference or qualitative (visual) difference was apparent 

between the amount of organics in the planted and unplanted systems (Figure 5.3A).  

 

Figure 5.3: (A) Depth profiles for detached organic matter for all planted (P) and unplanted (UP) 

mesocosm systems. (B) Depth profiles for detached organic matter for all gravel (G) and root (R) samples 

for the three planted mesocosm systems. 

 

A summary of the amount of organics from the root and gravel samples from different depths is 

presented in Figure 5.3B.   Here a definite trend can be seen. The root samples from the lower 

depths showed a higher organic content than the root samples from the top. This is most likely 

due to a difference in the root types found at the different mesocosm depths. The lower 

sections tended to consist of a larger amount of fibrous roots where the upper sections 

consisted mostly of larger root stalks with less fibrous root material. The fibrous material 

possesses a substantially larger surface area than the larger root stalks, likely accounting for the 

greater organic detachment observed. There was also a large difference in the organics 

detached from the roots compared to the gravel samples. This may be due to the biofilm 

surrounding the root structures and a generally larger surface area due to the root structures 

associated with the samples.   

 

Figure 5.4A summarizes the average well colour development (AWCD) collected via BIOLOG™ 

ECO plates from the top (10 cm) middle (30 cm) and bottom (60 cm) section gravel samples for 
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each mesocosm. AWCDs for gravel and root samples were normalized by the original sample 

weight used. No normalization was performed for the interstitial water samples. Figure 5.4B 

summarizes the AWCDs found for the gravel and root samples for the planted mesocosms at all 

depths. 

 

 

Figure 5.4: (A) Depth profiles for average well colour development (AWCD) for all planted (P) and 

unplanted (UP) mesocosm systems. Left axis (primary) corresponds to the interstitial water samples, right 

axis (secondary) corresponds to the gravel and root samples. (B) Depth profiles for average well colour 

development (AWCD) for all gravel (G) and root (R) samples for the three planted mesocosm systems. 

Zero cm represents the interstitial water.  

 

A couple of trends were evident. The normalized AWCD generally decreased for all mesocosm 

gravel samples with increasing depth (Figure 5.4A). It is often found that the area of high 

microbial activity is found within the top 10 cm of laboratory wetland systems (Truu et al., 

2009; Tietz et al., 2007). These findings agree with this general trend. It should be noted 

however that although the top 10 cm gravel samples had the highest reported activities, all 

depths within the mesocosm were relatively similar. 

 

A marked difference in the AWCDs for the gravel and root samples was observed (Figure 5.4B). 

The root samples had much higher normalized AWCDs than the gravel samples, and the AWCDs 

for the root samples increased with increasing depth. The root samples likely have higher 
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AWCDs again due to the nature of the root environment. This result is an agreement with 

several other studies which have also shown densities and activities of bacterial populations to 

be higher in the plant rhizosphere regions (Collins et al., 2004; Gagnon et al., 2007). The 

favorable environment offered by increased oxygen and carbohydrates exudates associated 

with the plant roots are perhaps directly responsible for enhanced bacterial development in 

root environments (Karathanasis & Johnson 2003; Walker et al., 2003; Batty et al., 2000; 

Marschner, 1995). 

 

Substrate richness values from the top, middle and bottom sections for each mesocosm are 

presented in Figure 5.5A.  Figure 5.5B summarizes the richness values found for the gravel and 

root samples for the planted mesocosms at all depths. Richness results are essentially very 

similar for all mesocosm and sample types. There is a trend of decreasing richness with 

increasing depth which suggests that the number of bacterial species inhabiting the mesocosm 

media/biofilm environment is decreasing with depth in the system.   

 

Also noteworthy (Figure 5.5) is the greater substrate richness for the gravel and root samples in 

comparison to the interstitial water samples.  This suggests that there is a greater diversity of 

bacterial species in the fixed biofilm environment when compared to the interstitial water of 

the mesocosms.  
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Figure 5.5: (A) Depth profiles for substrate richness for all planted (P) and unplanted (UP) mesocosm 

systems. (B) Depth profiles for substrate richness for all gravel (G) and root (R) samples for the three 

planted mesocosm systems. Zero cm represents the interstitial water. 

 

Figure 5.6A summarizes the substrate evenness values for the top, middle and bottom sections 

from each mesocosm. Figure 5.6B summarizes the evenness values for the gravel and root 

samples for the planted mesocosms at all depths. Evenness results are essentially very similar 

for all mesocosm and sample types. A trend showing a slight decrease in evenness with depth is 

apparent for all mesocosm systems and all sample types. Figure 5.6 also shows the evenness of 

all interstitial water samples to be within the range found for the gravel and root samples.  

 

 

Figure 5.6: (A) Depth profiles for substrate evenness for all planted (P) and unplanted (UP) mesocosm 

systems. (B) Depth profiles for substrate evenness for all gravel (G) and root (R) samples for the three 

planted mesocosm systems. Zero cm represents the interstitial water. 
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Figure 5.7A summarizes the substrate diversity values collected via BIOLOG™ ECO plates from 

the top, middle and bottom sections for each mesocosm. Figure 5.6B summarizes the diversity 

values found for the gravel and root samples for the planted mesocosms at all depths. Diversity 

can be explained as a mixture of richness and evenness, and is often used as a surrogate 

measure for community health. Communities with greater diversities are often able to better 

adapt to changing and/or non ideal situations or environments.  

 

 

Figure 5.7: (A) Depth profiles for substrate diversity for all planted (P) and unplanted (UP) mesocosm 

systems. (B) Depth profiles for substrate diversity for all gravel (G) and root (R) samples for the three 

planted mesocosm systems. Zero cm represents the interstitial water. 

 

The diversity trend results found here are essentially very similar for all mesocosm and sample 

types. In general, the diversity values for the different gravel and root samples decrease with 

increasing depth, suggesting that the health of the attached bacterial communities within the 

mesocosm systems is decreasing with increasing depth. This result is supported by the 

discussion regarding the trend of decreasing richness and evenness with increasing depth, and 

is in agreement with the results of Truu et al. (2005), who also found a decrease in bacterial 

diversity with increasing bed depth. Diversity results of the interstitial water samples tend (in 

most cases) to be equal to about that of the middle depth gravel samples.  

In addition to the substrate diversity related information, the CSUPs derived from the plate 

data were also used to generate a number of different PCA ordinations. PCA is most often used 



120 

 

to investigate difference between objects. For example, the CSUPs from the top gravel samples 

of all mesocosms could be compared to the CSUPs of the middle gravel samples for all 

mesocosms. Alternatively, the top gravel samples from the planted mesocosms could be 

compared to the top gravel samples of the unplanted mesocosms, or to the middle gravel 

samples of either the planted or unplanted mesocosms. One needs to generate separate PCA 

ordinations for each type of comparison. The number of PCA ordinations which could be 

generated from this data set is extremely large and therefore not all ordination combinations 

will be presented here. A select number of representative ordinations and dendograms will be 

presented which underline the main relationships found after examining a total of 50 PCA 

ordinations and dendograms.  

 

Figure 5.8 displays a PCA ordination of the interstitial water samples taken from all mesocosms 

before being sacrificed. As can be seen, the bacterial communities within the mesocosm 

interstitial waters can be separated into two groups: communities from planted mesocosms 

and communities from unplanted mesocosms. This separation is apparent although some 

overlap between groups does exist. This finding agrees with previous findings (Weber et al. 

2008) and can be explained by the oxygen concentration and carbohydrates exuded into the 

rhizospheric space of the planted mesocosms affecting the resident bacterial communities.   
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Figure 5.8: PCA ordination of the interstitial water (W) sample CSUPs gathered via BIOLOG
TM

 ECO 

plates for all mesocosms (1,4,6 - unplanted), (2,5,7 - planted). a, b, c - triplicate sample designations. 

Ovals represent manual groupings. Output generated using Statistica 8.1. 

 

Figures 5.9, 5.10, and 5.11 display PCA ordinations of the top, middle, and bottom gravel 

samples for all mesocosms, respectively. Similar to the interstitial water ordination, the 

bacterial communities at each depth can be separated into two groups: communities from 

planted mesocosms and communities from unplanted mesocosms. Again this separation is 

apparent although with some overlap between groups in each ordination. This finding is 

significant in a number of ways. First, it can be said that the general difference in mesocosm 

bacterial communities based on CSUPs is similar in the interstitial water and at all depths in the 

mesocosm based on the analysis of detached communities from the gravel samples. This 

suggests that when trying to decipher community differences between mesocosm systems via 
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the CLPP interstitial water samples can give the same type of information that gravel associated 

community samples can. Deciphering community differences using interstitial water samples 

has a number of advantages over the use of sediment/gravel samples; interstitial water 

samples take less time to gather, interstitial water sampling is non-disruptive and/or non-

destructive, and interstitial water samples do not require any further processing such as a 

detachment protocol. Second, the general separation based on plant presence is found 

throughout the entire depth of the mesocosm gravel media; this observation holds despite the 

fact that the roots in mesocosms 5 and 7 did not visibly penetrate to the bottom of the 

mesocosm. This suggests that the presence of roots within at least part of the mesocosm 

system does not only have a localized effect on the attached bacterial population but on 

attached bacteria from all depths within the mesocosms. This may in part be due to the small 

size of the mesocosm, allowing for a relatively even distribution of plant exudates. This finding 

does suggest that the presence of plants in constructed wetland mesocosms, and perhaps in 

larger scale constructed wetland systems, may have a more profound influence on the bacterial 

populations than previously assumed.  
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Figure 5.9: PCA ordination of the 10 cm depth (top-T) sample CSUPs gathered via BIOLOG
TM

 ECO 

plates for all mesocosms (1,4,6 - unplanted), (2,5,7 - planted). a, b, c - triplicate sample designations. 

Ovals represent manual groupings. Output generated using Statistica 8.1. 
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Figure 5.10: PCA ordination of the 30 cm depth (middle-M) sample CSUPs gathered via BIOLOG
TM

 

ECO plates for all mesocosms (1,4,6 - unplanted), (2,5,7 - planted). a, b, c - triplicate sample 

designations. Ovals represent manual groupings. Output generated using Statistica 8.1. 
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Figure 5.11: PCA ordination of the 60 cm depth (bottom-B) sample CSUPs gathered via BIOLOG
TM

 

ECO plates for all mesocosms (1,4,6 - unplanted), (2,5,7 - planted). a, b, c - triplicate sample 

designations. Ovals represent manual groupings. Output generated using Statistica 8.1. 

 

Figure 5.12 presents the PCA ordination results for the interstitial water (IW), and the top (T), 

middle (M), and bottom (B) gravel samples for all mesocosms. This ordination contains a large 

amount of data, perhaps too much data to make multiple grouping statements, however one 

thing is clear, the interstitial water samples form a separate group from all of the gravel 

samples. This suggests that although the type of comparative information imparted by 

comparing either IW or gravel community samples is the same, the interstitial water samples 

are different from the gravel/sediment samples. Therefore, although the bacterial communities 

in the planted mesocosm media are different from the communities found in the unplanted 

mesocosm media, the difference between the interstitial water samples and the generalized 
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media samples for all mesocosms is more profound. These findings were expected as certain 

bacteria are found to prefer free water existence while other types of bacteria often prefer to 

live in an attached or “biofilm” environment (Faulwetter et al., 2009).   

 

 

Figure 5.12: PCA ordination of the top (T), middle (M), bottom (B) and interstitial water (W) sample 

CSUPs for all mesocosms (1,4,6 - unplanted), (2,5,7 - planted). a, b, c - triplicate sample designations. 

Ovals represent manual groupings. Output generated using Statistica 8.1. 

 

As previously discussed and as shown with the PCA ordinations, a definite difference in the 

bacterial communities can be seen in the mesocosm interstitial waters and at all depths based 

on plant presence.  This study also looked to define if any spatial community differences 

occurred with depth in each mesocosm, therefore several unweighted pair-group average 
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(UPGMA) dendograms based on the Euclidean distances between CSUPs were generated. 

Figure 5.13 summarizes the similarities of the CSUP samples taken for mesocosm 1 (unplanted). 

Figure 5.13 shows the top gravel samples, to be most similar to the middle gravel samples, 

which are then clustered with the bottom samples. The sediment samples are then grouped 

with the interstitial water samples. This finding suggests that differences in the bacterial 

communities occur with depth; with the top samples being more similar to the middle samples 

(in comparison to the bottom samples). As well, the interstitial water samples are found to be 

clustered last with the larger media sample groupings, which supports the findings gleaned 

from Figure 5.12.   
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Figure 5.13: UPGMA clustering analysis dendogram for top (T), middle (M), bottom (B) and interstitial 

water (W) samples CSUPs for mesocosm 1 (unplanted). a, b, c - triplicate sample designations. Output 

generated using Statistica 8.1. 
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Figure 5.13 summarizes the vertical community gradient for an unplanted mesocosm, to see if 

the same type of relationship exists in a planted mesocosm Figure 5.14 is presented. Figure 

5.14 summarizing the results for a planted mesocosm, mesocosm 2.  The results summarized in 

Figure 5.14 are very similar to those found for the unplanted mesocosm summarized in Figure 

5.13; the top gravel samples are found to be most similar to the middle gravel samples, which 

are then clustered with the bottom samples. The sediment samples are then lastly grouped 

with the interstitial water samples. This finding again suggests that differences in the bacterial 

communities occur with depth; with the top samples being more similar to the middle samples 

(in comparison to the bottom samples), and the same vertical relationship exists for both 

planted and unplanted mesocosms   
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Figure 5.14: UPGMA clustering analysis dendogram for top (T), middle (M), bottom (B) and interstitial 

water (W) sample CSUPs for mesocosm 2 (planted). a, b, c - triplicate sample designations. Output 

generated using Statistica 8.1. 
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For the sake of brevity, dendograms for all mesocosms are not recounted here; however, it 

should be noted that the vertical community stratification summarized in Figures 5.13 and 5.14 

is seen for all mesocosms studied.  

 

Figure 5.15 summarizes the data in Figure 5.14, however also includes the root samples. Figure 

5.15 shows the gravel and interstitial samples to be grouped in the same way as seen in Figure 

5.14. The added root samples do not seem to follow any simplified trend. The root samples did 

not seem to correlate with their corresponding depth gravel samples, and the root samples did 

not seem to show any clear vertical gradient. The bottom root samples grouped well with the 

gravel samples, however were also shown to be similar to the top (T) root samples. One of the 

top (T) root samples and the middle (M) root samples were dispersed throughout the gravel 

sample groupings. This suggests that no clear vertical trend and no clear root-sample-to-gravel-

sample correlation can be made for mesocosm 2.   
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Figure 5.15: UPGMA clustering analysis dendogram for top (T), middle (M), bottom (B) and interstitial 

water (W) sample CSUPs for mesocosm 2 (planted) gravel and root (R) samples. a, b, c - triplicate sample 

designations. Output generated using Statistica 8.1. 

 

Figure 5.16 presents a dendogram for only the root zone samples of mesocosm 2. Similar to 

Figure 5.15, no defined groupings based on sample depth could be found. This finding suggests 

that perhaps all of the root samples within mesocosm 2 were in fact quite individually defined 

due to localized environments created in the rhizospheric zone.  

 



131 

 

Tree Diagram f or  12 Cas es

Unw eighted pair -group av erage

Euc lidean dis tanc es

Inc lude c as es : 37:39,49:57

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

Linkage Dis tanc e

2RTc

2RTb

2RBb

2RBa

2RMc

2RBc

2RMb

2RMa

2RTa

2W b

2W c

2W a

 

Figure 5.16: UPGMA clustering analysis dendogram for top (T), middle (M), bottom (B) and interstitial 

water (W) sample CSUPs for mesocosm 2 (planted) root (R) samples. a, b, c - triplicate sample 

designations. Output generated using Statistica 8.1. 

 

Figure 5.17 summarizes the results for all samples gathered for mesocosm 7 (planted). 

Mesocosm 7 did not have root mass in the lower depths (i.e. 35cm+) however did have 

considerable root mass in the top and middle sections of the bed media. Figure 5.17 is different 

from the results shown in Figure 5.15 and 5.16 for mesocosm 2, in that definite similarities 

between root samples and their corresponding depth gravel samples can be seen.  

 

As previously discussed the results from Figure 5.2 showed variable organic detachment with 

depth, perhaps the fact that these mesocosms have been used for a number of research 
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endeavors, including pathogen removal and acid mine drainage treatment experiments, could 

partially account for the conflicting results seen for the root samples from these two planted 

mesocosms. Perhaps, the varied experimental programs and uses which each individual 

mesocosm underwent over their 5 year life time created the individualized profiles observed 

within each system. 
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Figure 5.17: UPGMA clustering analysis dendogram for top (T), middle (M), bottom (B) and interstitial 

water (W) sample CSUPs for mesocosm 7 (planted) root (R) samples. a, b, c - triplicate sample 

designations. Output generated using Statistica 8.1. 
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5.5 Conclusions 

No trend could be seen between organics detached from the gravel media with depth, 

suggesting the mesocosms systems to have been well developed with evenly distributed 

organic deposition and biofilm networks throughout the mesocosm systems. The amount of 

organics detached from the root samples increased with an increase in bed depth. This was 

likely due to an increase in the fibrous nature of the roots deeper in the bed. 

 

A decrease in the substrate richness and diversity values was seen with increasing depth in the 

mesocosm. A decrease in the activities of the detached communities (measured as normalized 

AWCD) was also seen with increasing depth, suggesting the communities in the lower depths of 

the bed media to be less active than those near the mesocosm surface. Also, the activities of 

the root associated (rhizospheric) bacterial communities were much higher than the activities 

seen for the gravel associated bacterial communities. This may imply that the rhizospheric 

bacteria, although less abundant in the mesocosm, perhaps play a disproportionally large role 

in the removal and fate of water born contaminants.     

  

It was shown that the information obtained on the general differences in mesocosm bacterial 

communities based on CSUPs is similar in the interstitial water and at all depths in the 

mesocosm.  This suggests that when trying to decipher general community differences between 

mesocosm systems via the CLPP method, interstitial water samples may give the same type of 

information that would be obtained if one were to analyze the fixed microbial regime. 

 

Not all planted mesocosms developed root systems throughout the entire bed depth. The fact 

that a general differences in the communities from planted and unplanted mesocosms was 

found at all depths, suggests that the presence of roots within at least part of the mesocosm 

system does not only have a localized effect on the attached bacterial population but on 

attached bacteria at all depths within the mesocosms.  
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Differences in the bacterial community structure, measured via the CLPP method, as a function 

of gravel depth was seen for all mesocosm systems. A vertical community-structure 

stratification was observed in all cases. A stratification was seen for the root samples in 

mesocosm 7, however no such trend was seen in mesocosm 2. Similarly the root sample 

communities within mesocosm 7 were shown to group well with their respective gravel depth 

samples; however, this trend was not seen in mesocosm 2. These conflicting results could 

perhaps be a consequence of the differing experimental histories of each mesocosm from their 

5 year operational period.  
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Chapter 6: Bacterial Community Profiling and Hydrological 

Characterization of Constructed Wetland Mesocosms during Start-up 

 

Overview 

Understanding and explaining the large performance variations seen in similarly designed 

treatment wetland systems is a crucial step in moving constructed treatment wetland systems 

from its current description as an “alternative” treatment option to a more widely accepted 

technology. The objective of this study was to track bacterial community and hydrological 

changes in wetland mesocosms during an 8 month start-up period. Eight mesocosms were 

studied based on a duplicated 22 factorial design looking at the effect of plant presence and 

inoculum origin on mesocosm start-up dynamics. The mesocosms were characterized using 

standard methods for evapotranspiration (ET), porosity, dispersion coefficient, and overall 

microbial activity during the start-up period. The interstitial bacterial communities of the 

mesocosms were also characterized using BIOLOGTM ECO plates via the CLPP method for 

average well colour development (AWCD), substrate richness, substrate evenness, substrate 

diversity, over-all community, and community similarities. It was found that mesocosm 

porosities decreased over time as a result of media related biofilm development. This biofilm 

development also contributed to a substantial increase in the dispersion coefficient (mixing 

properties) in the mesocosms over the entire start-up period. Dispersion coefficient values in 

planted systems reached values of ~50-55 cm2/min where values in the unplanted systems 

reached values of ~30-35 cm2/min. The general divergence trend in the mesocosm systems was 

quantified using a Euclidean-based divergence metric. All mesocosms showed a steep increase 

in community divergence until day 75, at which point a steady-state was reached. The 

interstitial communities were also characterized in terms of similarity based on the 

experimental design treatments. A four phase progression was seen that can be summarized 

as: a state of initial difference based on original bacterial sludge inoculum community profiles 

[day 0-6], a period where adjustments and shifts in the bacterial community occurred in all 

mesocosms [day 11-26], a time where all mesocosm interstitial CLPPs were quite similar [day 
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38-73], and a final shifting towards unplanted and planted mesocosm CLPP groupings [day 100-

232]. The final convergence of similarly designed mesocosm systems observed in this study 

lends credence to the ideas behind the distinct experimental and environmental control 

created in the laboratory mesocosm wetland systems, suggesting these small-scale systems are 

appropriate for fundamental research endeavors. 
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6.1 Introduction 

Although constructed treatment wetland systems have been proven as an effective water 

treatment technology, several challenges still plague the science behind this technology. 

Perhaps the most difficult challenge facing constructed wetland (CW) science is in 

understanding and explaining the large performance variations seen in similarly designed 

treatment wetland systems.   

 

It is generally accepted that CWs contain a biological regime associated with the wetland 

substrate (Wynn and Liehr, 2001), and that microorganisms play a major role in ecosystem 

health and in the degradation of contaminants in the environment (Parkinson and Coleman, 

1991; Aelion and Bradley, 1991). The role of the biological regime and the related mechanisms 

associated with contaminant treatment have been largely overlooked in favor of using 

hydrodynamic and simple first order removal rate models to describe constructed wetland-

based treatment. The role and influence which the biological regime has on specific aspects in 

CWs has been given little to no attention. Furthermore, little is known regarding temporal 

bacterial community dynamics in CW systems. Bacterial community “seeding” cultures are 

often used to kick start pollutant degrading bacterial communities within CW systems, however 

little is known regarding their initial or long term development within CW systems. Seeding 

cultures are often gathered from waste water treatment plants and assumed to contain an 

appropriate seeding culture. For this and many other reasons, a greater effort into 

understanding microbial population density and diversity, both spatially and temporally, would 

be useful for design and optimization of CW systems (Faulwetter et al., 2009). 

 

One of the most frequently used models to describe CWs is the plug flow with dispersion 

(advection dispersion) equation (Werner and Kadlec, 2000). Contributing to the physical and 

hydrological processes in CWs are soils, microorganisms, plants and plant litter (Werner and 

Kadlec, 2000). Although microorganisms are quite often mentioned as a contributing factor to 
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the mixing characteristics in CWs, studies have not comparatively quantified the effect of both 

the microbiological and plant regimes on CW mixing properties. Mixing properties can become 

increasingly important as CW systems age. Preferential water flows can reduce the contact time 

seen by entering water pollutants, thus reducing the overall treatment performance of the CW 

system. If preferential flows can be mitigated and mixing promoted long term performance 

should be improved. 

 

Both evaporation and transpiration in CWs can be extremely variable depending on the design 

of the system. Separate models have been developed to describe evaporative losses from the 

substrate (Liu et al., 1997), and transpiration losses from plant leaves (Tuchscherer, 2003). The 

concurrent study of both microbiological and hydrological parameters in CWs has been given 

little attention. Heat generation and temperature have been found to be directly related to 

evaporation rates of water in mesocosm wetland systems (Weber, 2006), therefore heat 

generated by the microbial community in CWs should remain an ongoing area of study with 

respect to water balances.  

 

The role of plants in CWs is a highly debated issue. Certain studies have shown that plants help 

to effectively remediate contaminated waters (House et al., 1994), whereas other studies have 

shown plants to have no effect on treatment performance (Gray et al., 2000). One aspect of 

subsurface CWs, which has been given some attention, is the rhizosphere or root zone. The 

rhizosphere can be described as containing a mixture of bacteria and plant root mass. The role 

of reeds in the management of water quality is fundamentally influenced by the periphyton 

communities on the underwater surfaces of aquatic macrophytes (Acs et al., 2003; Albay & 

Akcaalan, 2003; Gross et al., 2003; Lakatos et al., 1991; Neely & Wetzel, 1995). The effect of this 

relationship between the biological and plant regimes on the water balance and hydrodynamics 

of CWs has not been quantitatively or concurrently studied.  
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As rhizospheric bacteria have been shown to affect plant growth, so have aquatic plants been 

shown to affect microbiological development in wetland media. Aquatic plants, such as 

Phragmites australis (the common reed), have the ability to transfer oxygen from their aerial 

tissues and release it into their rhizosphere (Karathanasis & Johnson 2003; Batty et al., 2000).  

Plant root systems also provide mechanical support and perform many roles including the 

synthesis, accumulation, and secretion of compounds (Flores et al., 1999).  The compounds 

secreted into the surrounding rhizosphere by roots are referred to as root exudates. Plants 

have been shown to exude 5-21% of all photosynthetically fixed carbon into the surrounding 

rhizosphere as root exudates (Walker et al., 2003; Marschner, 1995). Through this exudation of 

compounds, roots can often regulate the microbial community structure in the surrounding 

rhizosphere (Walker et al., 2003; Nardi et al., 2000). 

 

Over the past 5 years there has been an increase in research focusing on the study of bacterial 

communities in wetland systems. With the advent of PCR-based methods and the ever growing 

use of community level physiological profiling (CLPP), bacterial community studies have 

become easier to design and perform.  Although a number of static bacterial community 

studies have been performed [Hench et al., (2004); Hallberg et al., (2005); Hadwin et al., (2006); 

Sleytr et al. (2009)] there have been very few studies looking at temporal bacterial community 

dynamics in CW systems. Community variations can occur in many different fashions. Classic 

variations can be described as cyclic, directional, stochastic, or chaotic (Collins et al., 2000). 

Weber et al. (2008) used the CLPP method to track changes in mesocosm wetland interstitial 

water communities in response to acid mine drainage exposure, however apart from this single 

study very little work has been done to study the temporal trends with respect to bacterial 

community changes in CW mesocosms. This study looks to initiate work into uncovering this 

scientific void. 

 

The objective of this study was to investigate the bacterial community and hydrological changes 

in wetland mesocosms during an 8 month start-up period. Eight mesocosms were studied 
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based on a duplicated 22 factorial design. In order to study the effect of plants on mesocosm 

start-up dynamics, 4 mesocosms were planted with Phragmites australis, with 4 mesocosms 

left unplanted. The study of bacterial culture inoculum differences on mesocosm start-up 

dynamics was undertaken using 4 mesocosms inoculated with bacterial sludge from a waste 

water treatment plant (WWTP) with the other 4 being inoculated with bacterial sludge from a 

dairy farm wastewater holding tank (DF). All 8 mesocosms were characterized using standard 

methods for evapotranspiration (ET), porosity, dispersion coefficient, and overall microbial 

activity. The interstitial bacterial communities of the 8 mesocosms were also characterized 

using a CLPP method based on BIOLOGTM ECO plate data using average well colour 

development (AWCD), substrate richness, substrate evenness, substrate diversity, over-all 

community divergence from day 0 using a Euclidean distance measure, and community 

similarities based on experimental design treatments. With an understanding of how the 

different design treatments (i.e. plant effects, and inoculum origin effects) affect mesocosm 

start-up dynamics and ultimate development, perhaps a better understanding of the origin of 

the large performance variations in full scale treatment systems can be garnered.  It is also 

hoped that this information may be useful for optimization and improved design of full scale 

wetland systems.  

 

6.2 Materials and Methods 

6.2.1 Experimental Design 

A duplicated 22 factorial design was used to study the effect of plants (Phragmites australis), 

and inoculum origin on the development of wetland mesocosms during the start-up phase 

(Table 6.1). Inoculi were gathered from 1) the aerator and anaerobic digester of the Waterloo 

waste water treatment plant, these were mixed and referred to as the WWTP sample, and 2) 

sludge from a waste-water holding tank at a dairy farm (DF) outside of Ilderton, ON. Both 

inoculum types were of a mixed sludge/water type, and could be easily poured.  
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Table 6.1: Mesocosm Designs – based on a duplicated 2
2
 factorial design 

 

 

The mesocosms were of a similar design to those studied in Chapters 3, 4 and 5 with the major 

difference being the configuration of the water inlet. Whereas the water in the earlier studies 

(Chapter 5) entered from the top of the mesocosm, the water in the newly constructed 

mesocosms entered at about 65 cm from bottom of the mesocosm systems (approximately 5 

cm below the water level). The mesocosms were constructed of the same material and were to 

the same dimensions as those in Chapters 3, 4 and 5. 

 

Each mesocosm was comprised of schedule 80, polyvinylchloride (PVC) columns (90 cm by 25 

cm Ø) filled to ~ 80 cm with pea gravel (80% limestone) and operated to 70 cm with water 

(Figure 6.1). Water was circulated with a 1/200 HP, 3200 rpm, March (Glenview, Illinois) series 1 

(1A-MD 1/2) centrifugal pump. The water inlet was situated about 5 cm below the water level 

(Figure 6.1). Seeding was completed by adding fresh limestone in steps and pouring in ~160mL 

of inoculum at depths of 10 cm, ~40 cm and 65 cm. Plants (Phragmites australis) were collected 

from a local marsh, cultured in pots with peat moss and transferred to the mesocosms with a 

small amount of peat moss in the top section. Root depth was ~30 cm in all cases. The 

Phragmites australis used was of the native non-invasive type. 
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Figure 6.1: Mesocosm schematic: Water was circulated via a small centrifugal pump (a) in the mesocosm 

(b) and allowed to percolate through the pea gravel bed and collected at the bottom (c). An atmosphere 

exposed port served as an injection (d) and sampling (e) point.  Drainage ports were located near the top 

to prevent overfilling (f), and near the bottom (g) for mesocosm drainage. 

 

The mesocosms were completely drained once per week. After draining, the mesocosms were 

then refilled with mineral nutrient solution according to Hoagland’s and Arnon (1938) as well as 

a simulated wastewater solution based on the descriptions of Droste (1996) and solutions used 

by Kargi and Karapinar (1995) and Wang et al. (2008). The nutrient solution was mixed in 

regular tap water and fed to the unit wetlands giving interstitial concentrations of 28.75 mg/L 

NH4H2PO4; 151.5 mg/L KNO3; 236 mg/L Ca(NO3)2·4H2O; 123.25 mg/L MgSO4·7H2O; 9.175 mg/L 

FeNaEDTA; 0.715mg/L H3BO3 ; 0.4525mg/L MnCl2·4H2O; 0.055mg/L ZnSO4·7H2O; 0.0125mg/L 

CuSO4 and 0.005mg/L (NH4)6Mo7O24·4H2O. The simulated wastewater consisted of ~1g/L 

molasses, 0.049 g/L urea, 0.0185 g/L NH4H2PO4, yielding a glucose concentration of ~5.878g 

from the molasses, a COD of ~500mg/L and a COD:N:P ratio of ~100:5:1. Water was circulated 

at approximately 2.4 L/min, giving an average cyclic hydraulic retention time of approximately 4 
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min. All mesocosms were exposed to artificial illumination (14,000 lumens) with a 15 hr 

photoperiod.  Plants were sprayed daily with water to reduce drying. 

 

6.2.2 Community Level Physiological Profiling 

The community level physiological profiling (CLPP) laboratory protocol was performed using the 

methods outlined in Chapter 2. Samples were gathered approximately every 3days for the first 

2 weeks, every week for the following 3 weeks, bi-monthly for the next month, and monthly for 

the last 6 months. BIOLOG™ ECO plates were inoculated with 150 L of mesocosm interstitial 

water and incubated at room temperature. Inoculi were controlled to an OD of ~0.19 (Weber et 

al., 2009). The BIOLOG™ ECO plates were then read at an absorbance of 590 nm after an 84 hr 

incubation period.    

 

6.2.3 Evapotranspiration 

A study of the mesocosm water budget was performed spanning the 8 month start-up period. 

Water loss was measured by topping up the mesocosms until the overflow point was reached. 

Water loss was then evaluated as the amount of water needed to fill the mesocosm to the 

overflow point. Water loss was equated to be entirely due to evapotranspiration, as no other 

outputs existed. 

 

6.2.4 Dispersion Coefficient 

The internal hydraulic performance of aquatic systems can be quantified using inert, soluble 

chemical tracers (Dierberg et al., 2005; Kadlec, 1994). NaBr tracer tests were conducted on the 

eight mesocosms over the 8 month period. Similar tracer studies have been previously and 

successfully applied on these mesocoms by Weber (2006), McHenry (2003) and Van Loon 

(2003). 2 mL aliquots of a 200g/L NaBr stock solution was injected into the mesocosms through 

the inlet port, a handheld conductivity meter was then inserted into the same port, measuring 

the conductivity of the circulating water. Conductivity readings were taken until stable values 
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were reached (typically 20-45 min). Data were then fit to a 1D advection dispersion equation as 

seen in Equation 1, using Aquasim v.1.0.0.1 (Eawag Institute, Switzerland, 1995).  

 

1D advection dispersion equation 
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Average flow rate and apparent cross sectional area were manually entered based on porosity 

and flow rates measured before starting the tracer test. The dispersion coefficient (D) was then 

determined using the parameter estimation function via both the simplex (Nelder and Mead, 

1965) and secant methods (Ralston and Jennrich, 1978). Sample model and measured data are 

presented in Figure 6.2.  

 

 

Figure 6.2: Br- tracer modelling – Aquasim 1.0.0.1 (1995) sample output 
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Mixing properties and the dispersion coefficient D can also be represented as a dimensionless 

wetland dispersion number (Kadlec and Knight, 1996): 

 

PevL

D
W

1
            (6.2) 

where:  W = wetland dispersion number, dimensionless 

 v  = velocity (cm/min) 

   L  = length of reaction zone (cm) 

              Pe = Peclet number  

 

Unfortunately a number of data sets spanning days 0 to 60 following initial start-up were lost 

due to file corruption; however, as later discussed, a sufficient amount of data was available so 

that the monitoring data was not compromised.  

 

6.2.5 Porosity 

Porosity can be defined as: 
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p

V
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           (6.3) 

 

where:  Vp is the non-solid volume (pores and liquid)  

  Vm is the total volume of material 
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Overall mesocosm porosity was calculated by determining the total volume of material (Vm) and 

the non-solid volume (Vp). Vm was calculated as the cylindrical volume of the mesocosm from 

the bottom to the overflow point. Vp was calculated by completely draining and then measuring 

the volume of water required to refill the column to the overflow point.  

 

6.2.6 Microbiological Activity 

The overall microbiological activity (MA) of the mesocosms was assessed using an indirect 

measurement of enzymatic activity associated with the fixed microbiological regime. In 

accordance with Schnurer and Rosswall (1982), the overall activity of the biomass in a complex 

sample can be correlated with the presence of esterases, lipases, and proteases, which catalyze 

the transformation of fluorescein-diacetate (FDA) to fluorescein (FL). This assay was used to 

assess the total biological activity in the mesocosm and has previously been applied to 

mesocosm biofilters (Weber et al. 2008; McHenry and Werker, 2005). One mL of a 5 mM FDA 

stock solution in acetone (Aldrich Chemical, Milwaukee, WI) was added to the mesocosm 

wetland. Samples of 2 mL were then drawn for a 1 hr period every 30 sec for the first 10 min, 

once every min for the following 20 min and every 2 min for the final 30 min. Fluorescein was 

then measured using a handheld fluorometer (Turner Designs, PicofluorTM, 490nm excitation, 

520nm emission). Readings were normalized with respect to the maximum observable FL 

concentration based upon the FDA aliquot and mesocosm volume. The FDA utilization rate was 

determined for all time increments between 8 and 15 min. The final FDA utilization rate was 

calculated as the average of these 10 incremental slopes. Averaging of incremental utilization 

rates was performed to reduce error due to fluctuations in fluorescence readings. The final 

value was then multiplied by 1000 and for the purpose of this study and is called the 

microbiological activity (MA). 

 

The MA as measured here has been shown to be attributed to the fixed biological regime of the 

mesocosm (Weber, 2006). MA measurements determined for interstitial water from the 

mesocosm units were found to be negligible; therefore, all MA measurements were interpreted 
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to be representative of the fixed microbiological regime in the mesocosms. Interstitial microbial 

activity can be associated with the measured AWCD calculated using the BIOLOG™ ECO plates. 

 

6.3 Data Analysis 

6.3.1 Community Level Physiological Profiling 

Analysis of the community level physiological profiling (CLPP) data was performed using the 

methods outlined in Chapter 2. Absorbance readings (590nm) at 84 hrs were identified as the 

metric of choice for further CLPP data analysis. BIOLOG™ ECO plates (Biolog Inc., Hayward CA., 

USA) consist of 96 wells. The wells contain 31 different carbon sources, and a blank in triplicate. 

One plate was used for each time point (15 time points in all) for each mesocosm requiring a 

total of 120 plates over the 8 month period. For each plate 3 replicate carbon source utilization 

patterns (CSUPs) were collected giving a total of 360 objects (data sets). Each data set 

represents 31 variables piece giving a total of 11160 data points for analysis. 

 

The absorbance values from 84 hr were initially standardized by first correcting by the 

corresponding blank value and then dividing by the average well colour development (AWCD) 

for that time point. Assessment of normality, homoscedasticity and linear correlations in the 

entire data set according to Weber et al. (2007), yielded a recommended natural logarithmic 

transformation for subsequent PCA. At each step some points were designated as obvious 

outliers and removed in order to analyze the remaining data. A maximum of 4 of the 32 points 

were removed for any single analysis. Outliers occurred due to excessively high readings for 

blanks yielding negative responses for all wells. Negative well responses were coded as zeros 

during data treatment, and therefore the outlier data sets were simply removed from the 

analysis rather than keeping the discussed 0 response plates. PCA was completed using 

Statistica 8.1.  
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6.3.2 Community Divergence Measure 

The reason for the use of this new measure in interpreting CLPP data is to greatly decrease the 

complexity of the CLPP data set and make interpretation based on a single simple metric. The 

Euclidean distance measure was used in this study as a measure of dissimilarity of the CSUPs 

gathered for any one mesocosm at any point over the monitoring period. The Euclidean 

distance can be calculated in n dimensions, where in theis study n=31 (31 differnet carbon source 

utilization responses). Given the two points:  

         (6.4) 

         (6.5) 

 

The Euclidean distance can be calculated as: 

 

     (6.6) 

 

The reference point used for all Euclidean distance calculations was the original CSUP of any 

single mesocosm gathered at day 0. Therefore 8 separate Euclidean distance trends (one for 

each mesocosm) were calculated to fully represent the divergence of the interstitial bacterial 

communities in the mesocosm systems. For an in-depth description on the development of this 

metric refer back to Chapter 3, however note that for this study the Euclidean distances were 

not normalized to fall within the values of 0 and 1. Rather, as all of the mesocosms started from 

a similar point in this study, use of the non-normalized Euclidean distance measures was 

maintained.   
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6.3.3 Substrate Related Diversity Indices 

As first suggested by Zak et al. (1994), BIOLOG™ plates can also be used in a more traditional 

ecological sense, to calculate diversity indices based on carbon source utilization patterns 

(CSUPs). The Shannon index or what is often called “diversity” is a common ecological metric 

used to track and understand shifts in communities over space and time. Using the CSUP 

gathered from a single BIOLOG™ plate, substrate diversity (H) can be calculated as: 

 

 )ln( ii ppH
          (6.7) 

 

where: 

     H  - substrate diversity 

  ip  - ratio of the activity of a particular substrate to the sums of activities of all              

substrates  

      activity - chosen metric for analysis (absorbance value (590nm) at 84 hrs) 

 

Two other parameters associated with substrate diversity which can be calculated using CSUPs 

are substrate richness (S) and substrate evenness (E).  Substrate richness is a measure of the 

number of different substrates utilized by a microbial population. Substrate evenness is defined 

as the equitability of activities across all utilized substrates; substrate richness is calculated as 

the number of wells with a corrected absorbance greater than 0.25.  Substrate evenness is 

calculated as: 

 

max/ HHE             (6.8)  
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Substrate diversity, evenness and richness we calculated using the average response from the 

three replicates on any one plate to give a single result for each plate. Recent examples of 

studies utilizing the Shannon index calculated from CSUPs gathered using BIOLOG™ plates 

include He et al. (2008), Farnet et al. (2008), and Weber et al. (2008). 

 

6.3.4 Time course Data 

Most of the data collected for this study is represented as time course data. The average of 4 

mesocosms for either planed/unplanted or WWTP/DF curves are shown in the different plots. 

Error bars are only shown if a significant difference between points was observed. This was not 

the case for most trends and therefore error bars are omitted in most cases for ease of 

visualization and interpretation. Separate repeated measures analysis of variance (ANOVA) 

tests were completed for each time course data set. Analysis was completed using JMPIN 4.0.2, 

2000 (SAS Institute Inc.). 

 

6.4 Results and Discussion 

6.4.1 Hydraulic Parameters 

Figure 6.3 shows the evapotranspiration (ET) data collected over the 8 month start-up period. 

In general, although the ET rates did fluctuate, no significant increase or decrease in 

evapotranspiration rates can be seen over the 8 month period. Using a repeated measures 

ANOVA analysis, differences between ET rates for planted/unplanted and WWTP/DF were non-

significant at the 95% confidence level (see Table 6.2). However, visually it can be seen that 

perhaps the planted mesocosm ET rates were higher than the unplanted mesocosm ET rates 

after day 100 (Figure 6.3A). This would be expected as the plants add a transpiration rate to the 

base evaporation rate of all mesocosms.  
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Figure 6.3: Evapotranspiration data (L/day) collected over the 8 month monitoring period for A) planted 

and unplanted; B) waste water treatment plant (WWTP) inoculum and dairy farm (DF) inoculum. 

 

Table 6.2: Summary of p-values for the respective mesocosm treatments generated via a repeated 

measures analysis of variance. Significant results (at the 95% confidence level) are highlighted in grey. 

Analysis completed using JMPIN 4.0.2, 2000 (SAS Institute Inc.). 

 

 

Using a repeated measures ANOVA analysis no significant difference, at the 95% confidence 

level, in the ET rates of the WWTP and DF mesocosms was observed (see Table 6.2); although 

through visual inspection it appears that the ET rates in the WWTP mesocosm systems were 

slightly higher than the ET rates of the DF systems.  
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Significant variability in the overall ET rates over the 8 month course was also observed. This is 

likely due to changing temperatures as, over the 8 month start-up period, uncontrollable 

temperature fluctuations occurred within the laboratory where the mesocosms were housed 

(20-25°C). 

  

It was observed that the overall porosity in all mesocosm systems decreased over the 8 month 

start-up period (Figure 6.4). Using a repeated measures ANOVA analysis significant differences 

at the 95% confidence level were seen between WWTP and DF treatments (see Table 6.2). It is 

observed that the porosities of the mesocosms receiving the DF inoculums are lower than those 

in the mesocosms receiving the WWTP inoculums. This may be due to the differing adaptive 

natures of the differing seeding cultures, with species found in the DF inoculum developing a 

biofilm environment more quickly than the WWTP inoculums. This may be useful during the 

initial start-up phase, however may also lead to clogging in the future. Further investigation and 

tracking would be needed to assess this possibility. Table 6.2 also reveals an interaction 

between the plants and the inoculums type confirming the presence of significant interaction 

between resident bacteria and the plant root zone in CW systems. 

 

The consistent decrease in porosity in all mesocosms was expected. The decrease in porosity 

can be explained by an increase in developed biofilm volume and associated biomass and 

organic material in the bulk and pore space of the mesocosm media (Kadlec et al., 2008). As the 

bacterial communities in the original inoculum begin to develop and attach to the bed media 

much of the void volume in the mesocosm systems becomes filled. Weber (2006) reported 

mesocosm systems of similar size and design (flow rates, pea gravel substrate, etc.) with 

porosities as low as 0.2895 in fully developed mesocosm systems. The porosities seen in Figure 

6.4 seem to be approaching relatively similar levels. The porosity of clean sand or gravel in full 

scale systems is often found to be in the range of 0.3-0.45 (Kadlec et al., 2008). 
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Figure 6.4: Porosity data collected over the 8 month monitoring period for A) planted and unplanted; B) 

waste water treatment plant (WWTP) inoculum and dairy farm (DF) inoculum. 

 

Figure 6.5 provides the dispersion coefficient values for the mesocosms over the monitoring 

period. As expected, the dispersion coefficient values increased over time. This is again likely 

due to the increased biomass volume, and decrease in porosity within the mesocosms which, in 

effect, help promote mixing (measured as a dispersion coefficient). No significant differences 

between WWTP and DF design treatments (Figure 6.5B) were observed (see Table 6.2) although 

a distinct difference in the dispersion coefficients between planted and unplanted mesocosm 

systems was seen (Figure 6.5A, Table 6.2). Although the amount of organic matter being 

deposited in each mesocosm seems relatively similar from the porosity trends summarized in 

Figure 6.4, the addition of plants to the mesocosm design appears to promote an increase in 

the dispersion coefficient after ~day 100. This can be explained by the development of the plant 

root zone in the wetland media, which adds a complicated physical network of roots into the 

wetland media.  
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Figure 6.5: Dispersion coefficient (cm
2
/min) data collected over the 8 month monitoring period for A) 

planted and unplanted; B) waste water treatment plant (WWTP) inoculum and dairy farm (DF) inoculum. 

 

Kadlec and Knight (1996) reported HSSF dispersion number of 0.3 ± 0.03. For comparison 

purposes the results found here can be converted into dimensionless wetland dispersion 

numbers giving 0.33 ± 0.12. The mixing characteristics found here are comparable to full scale 

operation values. A larger breadth of values is reported here as a number of different wetland 

designs were characterized over a period of initial development. 

 

6.4.2 Microbiological Parameters 

Figure 6.6 summarizes the microbiological activity data for the monitoring period. As can be 

seen the general trend is for the MA to increase over time. As previously discussed, this initial 

start-up period is a time where the bacterial communities are adapting and attaching to the 

mesocosm media. Using a repeated measures ANOVA analysis no significant differences in the 

MA for the experimental-design treatments was observed at the 95% confidence level, 

however visual inspection does suggest that the MA in the planted mesocosms was slightly 

higher than in the unplanted mesocosm systems (Figure 6.6A). Although this observation is not 

statistically significant perhaps the plant-root/substrate interaction zone referred to as the 

rhizosphere is creating an environment allowing for accelerated bacterial community 

development.  
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Figure 6.6: Microbial activity (MA) data collected over the 8 month monitoring period for A) planted and 

unplanted; B) waste water treatment plant (WWTP) inoculum and dairy farm (DF) inoculum. 

 

Similarly, visual observation would suggest that the DF inoculated mesocosm systems have an 

increased MA in comparison to the WWTP mesocosms (Figure 6.6B). The p-value for this effect 

was actually quite small (0.0586, see Table 6.2) reinforcing this suggested observation. It can be 

seen that on day 0 when the inoculum was new to the mesocosm the DF bacterial communities 

showed much higher MAs. It could be that the visual observational trend showing the DF MAs 

as larger than the WWTP MAs may be due to the differing starting bacterial populations. 

Perhaps the original community from the DF has an innately higher activity potential than the 

WWTP community therefore propagating to a higher MA in the mesocosms over time. The 

initial decrease in MA for the DF mesocosms may be due to a reduced ability to adapt to the 

new environment.  

 

In addition to tracking the overall MA of the bacterial community in the mesocosm systems 

BIOLOGTM ECO plates were also used to characterize the mesocosm interstitial communities. As 

described in Section 6.3.3 a number of standard ecological parameters can be calculated using 

the BIOLOGTM ECO plate data. Figures (6.7-6.10) summarize these parameters over the 

monitoring period.  
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Figure 6.7 summarizes the AWCD determined for the mesocosm interstitial water over the 

monitoring period. Similar to many of the hydrological parameters previously summarized, no 

significant difference could be seen between the AWCD values for any of the experimental-

design treatments (see Table 6.2); however a general trend could be seen. The AWCD in all 

mesocosms decreased until about day 100, where a pseudo steady-state value was reached.  

This initial decrease is likely due to initial die-off of bacterial species which could not adapt to 

the mesocosm conditions, and a general migration of bacteria from the free-water to the 

biofilm.  

 

 

Figure 6.7: Average well colour development (AWCD) data collected over the 8 month monitoring period 

for A) planted and unplanted; B) waste water treatment plant (WWTP) inoculum and dairy farm (DF) 

inoculum. 

 

Figure 6.8 summarizes the substrate richness found for the CLPPs of the mesocosm interstitial 

waters over the monitoring period. Similar to the AWCD results no significant difference could 

be seen between the richness values for any of the experimental-design treatments (see Table 

6.2), however a general trend could be seen. The richness in all mesocosms decreased until 

about day 100, where a pseudo steady-state value was reached.  Substrate richness is a 

measure of the number of species in a sample.  
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Figure 6.8: Substrate Richness data collected over the 8 month monitoring period for A) planted and 

unplanted; B) waste water treatment plant (WWTP) inoculum and dairy farm (DF) inoculum,. 

 

Figure 6.9 summarizes the substrate evenness for the CLPPs of the mesocosm interstitial waters 

over the monitoring period. Similar to the AWCD and richness results no significant difference 

could be seen between the evenness values for any of the experimental-design treatments (see 

Table 6.2), however a general trend could be seen. The evenness in all mesocosms decreased 

until about day 100, where a pseudo steady-state value was reached.  This result can be 

explained as the interstitial bacterial community becoming more consistent and adapted after 

an initial acclimation period.  

 

 

Figure 6.9: Substrate evenness data collected over the 8 month monitoring period for A) planted and 

unplanted; B) waste water treatment plant (WWTP) inoculum and dairy farm (DF) inoculum. 
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Figure 6.10 summarizes the substrate diversity for the CLPPs for the mesocosm interstitial 

water over the monitoring period. Similar to the AWCD, richness and evenness results no 

significant difference could be seen between the diversity values for any of the experimental-

design treatments (see Table 6.2), although a general trend was evident. The diversity in all 

mesocosms decreased until about day 100, where upon a pseudo steady-state value was 

reached. Similar to the AWCD and richness results, this initial decrease is likely due to initial die-

off of bacterial species which cannot survive under the new conditions in the mesocosm and 

movement of bacteria from the free-water into the fixed biofilm.   

 

 

Figure 6.10: Substrate diversity data collected over the 8 month monitoring period for A) planted and 

unplanted; B) waste water treatment plant (WWTP) inoculum and dairy farm (DF) inoculum. 

 

BIOLOGTM ECO plates were also used to characterize the divergence trends in the mesocosm 

interstitial bacterial communities. From Figure 6.11 it can be seen that community divergence 

occurs from the start (day 0). Community divergence is measured as the Euclidean distance 

between the CSUPs gathered as described in section 6.3.2, with reference to the day 0 CSUP. 

See Chapter 3 for an in-depth description of this community divergence metric.  
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Figure 6.11: Community divergence calculated as the Euclidean distance of each respective monitoring 

day CSUP with respect to the day 0 CSUP, over the 8 month monitoring period for A) planted and 

unplanted; B) waste water treatment plant (WWTP) inoculum and dairy farm (DF) inoculum. 

 

As can be seen in Figure 6.11, no significant differences in the divergence trends between 

experimental-design treatments was observed (see Table 6.2 for statistical results). The general 

divergence trend is as expected; the communities rapidly diverge from day 0 to about day 50. 

This is likely due to some of the bacterial species associated with the different inoculi not 

surviving in the new mesocosm environment or on the nutrients and simulated waste-water 

provided. After approximately 75-100 days the community divergence appears to reach a 

steady-state. This is likely due to the bacterial communities establishing a more hospitable 

atmosphere in and around the wetland media to form a stable biofilm. By day 75 it is likely that 

the bacterial species from the original inoculum were well adapted to growing in the “new” 

mesocosm environment. This finding is in agreement with Truu et al. (2009) who also found 

that it can take up to ~100 days for bacterial communities to stabilize in CW systems.  

 

The similar divergence trends seen by the different experimental-design treatments was 

interesting. It was expected that the different treatments would have an effect on the 

divergence trends, however as it seems from the data, the experimental conditions (i.e. well 

controlled laboratory environment), similar wetland media, same feed water composition, flow 

rates and temperatures etc., likely helped drive and reduce differences in all divergence trends. 
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CLPP characterization of the interstitial waters was conducted over the entire monitoring 

period.  Each day that a CLPP was performed can be represented by a PCA ordination for that 

particular mesocosm.  PCA ordinations show similarities of differing objects, in this case CSUPs 

from the BIOLOGTM ECO plates, on a 2D plane. Information extracted from PCA ordinations can 

be extensive with the most common use being to classify different CSUPs into differing groups 

based on their proximity on the PCA ordination. For this study 15 different ordinations could be 

shown to represent each day, however as many of these plots show similar results, and for the 

sake of brevity, only a select number of PCA ordinations generated throughout the  monitoring 

period will be shown. An attempt to summarize all of the PCA ordinations into a single table will 

be given following the PCA ordination discussion. 

 

Figure 6.12 shows the PCA ordination for day 0 of the monitoring period. What can be seen are 

two relatively distinct groupings. The CSUPs representing the interstitial communities from the 

WWTP mesocosms are found as a group on the right side of the chart, with the DF mesocosm 

CSUPs on the left. This result was expected and highlights the fact that the inoculi came from 

different sources. 
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Figure 6.12: Day 0 PCA ordination based on the CSUPs for planted WWTP inoculated mesocosms (1 and 

2), planted DF inoculated mesocosms (3 and 4), unplanted WWTP inoculated mesocosms (5 and 6), and 

unplanted DF inoculated mesocosms (7 and 8). Each mesocosm CSUP (object) is shown in triplicate (A, 

B, C). Output generated using Statistica 8.1. 

 

Figure 6.13 shows the PCA ordination for day 4 of the monitoring period. Here the CSUPs 

representing the interstitial communities from the WWTP mesocosms are again found on the 

right side of the chart, however are broken up into 2 separate groups. These sub groups 

represent the planted and unplanted WWTP interstitial communities. The DF mesocosm CSUPs 

can be found on the left side of Figure 6.13. These results were as expected, as the mesocosm 

interstitial communities did not have a large amount of time to adjust or adapt to the new 

environment and therefore can be grouped much the same as seen on day 0. It was however 

interesting to see a community shift due to the presence of plants in the WWTP mesocosms 
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and supports the idea that different inoculi may be more suited and may more rapidly adapted 

to producing a CW that has early treatment potential. 

 

 

Figure 6.13: Day 4 PCA ordination based on the CSUPs collected via BIOLOG
TM

 ECO plates, for planted 

WWTP inoculated mesocosms (1 and 2), planted DF inoculated mesocosms (3 and 4), unplanted WWTP 

inoculated mesocosms (5 and 6), and unplanted DF inoculated mesocosms (7 and 8). Each mesocosm 

CSUP (object) is shown in triplicate (A, B, C). Output generated using Statistica 8.1. 

 

Figure 6.14 shows the PCA ordination for day 38 of the monitoring period. No defined group in 

this ordination presents itself. This is likely due to the development of similar communities 

composed of similar species for all mesocosm system inoculi. Although the inoculi came from 

different sources, the sources were similar in a number of respects (i.e. mammalian sewage 
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treatment systems). Perhaps the types of species that were able to survive and flourish in the 

mesocosms are found in both inoculi, therefore accounting for the similarity in CSUPs after an 

initial adjustment period. Nitrifiers, denitrifiers, and aerobic carbon degrading bacterial strains 

commonly exist in microbially-mediated sewage treatment facilities, and are likely found in 

both inoculi used here (Curtis and Sloan, 2006).  

 

 

Figure 6.14: Day 38 PCA ordination based on the CSUPs for planted WWTP inoculated mesocosms (1 

and 2), planted DF inoculated mesocosms (3 and 4), unplanted WWTP inoculated mesocosms (5 and 6), 

and unplanted DF inoculated mesocosms (7 and 8). Each mesocosm CSUP (object) is shown in triplicate 

(A, B, C). Output generated using Statistica 8.1. 

 

Figure 6.15 shows the PCA ordination for day 168 of the monitoring period. Although this 

ordination is not definitively clear it can be seen that the planted mesocosm objects are mostly 

found on the left side of the ordination, with the unplanted systems found on the right. There is 

some overlap within the centre of the ordination though, and therefore discussion should be 
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taken with caution. With this said, this result was expected. Phragmites australis is known to 

secrete both oxygen and carbohydrates into the rhizospheric zone of wetland systems 

(Karathanasis & Johnson 2003; Walker et al., 2003; Nardi et al., 2000). This added carbohydrate 

source and slightly increased local dissolved oxygen is likely to have allowed for a distinct shift 

in the resident bacterial communities in the mesocosm systems. These results are in agreement 

with Weber et al. (2008) who found interstitial bacterial communities in similarly designed 

planted and unplanted mesocosm systems to be distinctly different.  

 

 

Figure 6.15: Day 168 PCA ordination based on the CSUPs collected via BIOLOG
TM

 ECO plates, for 

planted WWTP inoculated mesocosms (1 and 2), planted DF inoculated mesocosms (3 and 4), unplanted 

WWTP inoculated mesocosms (5 and 6), and unplanted DF inoculated mesocosms (7 and 8). Each 

mesocosm CSUP (object) is shown in triplicate (A, B, C). Output generated using Statistica 8.1. 
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Figure 6.16 shows the PCA ordination for day 232 of the monitoring period. This ordination is 

quite similar to Figure 6.15, with perhaps a clearer separation of groups. In general the planted 

mesocosm systems can be found on the right side of the ordination, with the unplanted 

systems found on the left. However, there is one exception, and that is for mesocosm 5 

(unplanted, WWTP) which is found to group well with the planted mesocosms. Therefore, 

although the planted and unplanted systems seem to be distinctly different for the most part at 

day 232, there may perhaps still be some on-going community-development/divergence 

occurring in the systems during this time.  

 

 

Figure 6.16: Day 232 PCA ordination based on the CSUPs collected via BIOLOG
TM

 ECO plates, for 

planted WWTP inoculated mesocosms (1 and 2), planted DF inoculated mesocosms (3 and 4), unplanted 

WWTP inoculated mesocosms (5 and 6), and unplanted DF inoculated mesocosms (7 and 8). Each 

mesocosm CSUP (object) is shown in triplicate (A, B, C). Output generated using Statistica 8.1. 
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Table 6.3 summarizes the PCA groupings from the 15 separate analyses completed over the 

monitoring period. It can be quite challenging to summarize mega-datasets such as this, 

especially when trying to summarize 15 different 2D ordinations into a singular tabular format, 

therefore there are limitations with regards to comparing the data as presented in the table. 

Grouping patterns are to be only compared for each specific day (row). For example even 

though a similar symbol is used to describe mesocosms from different days, M5 at day 0 is not 

in any way similar to, and was not at all compared to M1 at day 4. Comparison of patterns in 

either the vertical (column) direction or any diagonal directions cannot be done using this 

summary table.  

 

Table 6.3: Summary of PCA groupings for the CSUPs gathered for the interstitial mesocosm bacterial 

communities. [+++] Grouping 1, [///] Grouping 2, [---] Grouping 3 or undecipherable grouping.  

 Planted Planted Planted Planted UP UP UP UP 

 WWTP WWTP DF DF WWTP WWTP DF DF 

         Day M1 M2 M3 M4 M5 M6 M7 M8 

0 +++++++ +++++++ ////////// ////////// +++++++ +++++++ ////////// ////////// 

4 +++++++ +++++++ ////////// ////////// ------------ ------------ ////////// ////////// 

6 +++++++ ------------ ////////// ////////// +++++++ +++++++ ////////// ////////// 

11 ------------ ------------ ////////// ////////// +++++++ +++++++ ////////// ////////// 

14 +++++++ ------------ ////////// ////////// +++++++ +++++++ ////////// ////////// 

23 ------------ ////////// +++++++ ------------ ////////// +++++++ ////////// ////////// 

26 +++++++ ////////// ////////// ////////// +++++++ +++++++ ////////// ////////// 

38 ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ 

54 ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ 

73 ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ 

100 +++++++ ------------ ////////// +++++++ ------------ ////////// ////////// ////////// 

137 +++++++ +++++++ +++++++ +++++++ ------------ ////////// ////////// ////////// 

168 +++++++ +++++++ +++++++ +++++++ ////////// ////////// ////////// ////////// 

203 +++++++ +++++++ +++++++ +++++++ +++++++ ////////// ////////// ////////// 

232 +++++++ +++++++ +++++++ +++++++ +++++++ ////////// ////////// ////////// 

 

Table 6.3 can be broken up into 4 different sections. First, the groupings from day 0-6 can be 

said to be largely based on inoculum differences.  Second, the time period of day 11-26 seems 

to be an adjustment period where the loose groupings between WWTP and DF can be seen, 

however many shifts do occur within this period, making those distinct groupings difficult to 
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decipher using any single PCA plot. Third, the time period between days 38-73 appears to be a 

time where no distinct groupings can be made based on the experimental design treatments. 

This is a time after the initial adjustment period where the bacterial communities in all of the 

mesocosm systems seem to be quite similar. Lastly, the time period from 100-232 days appears 

to be a time where the mesocosm interstitial CLPPs can be grouped into planted and unplanted 

community groupings. This progression can be summarized as moving from a state of initial 

difference based on input community profiles, to a period where adjustments and shifts occur 

in all mesocosms, to a time where all mesocosm interstitial CLPPs are quite similar, to a final 

shift towards unplanted and planted mesocosm CLPP groupings. This progression is 

summarized in Figure 6.17.  

 

 

Figure 6.17: Progression of the bacterial community groupings measured over the 8 month start period. 

 

Different types of community divergences have been previously observed in similar small scale 

bioreactor systems. Nadarajah (2007) saw chaotic development in small scale bioreactor 

systems, where Weber et al. (2008) saw convergence of similarly designed mesocosm wetland 

systems based on the presence or absence of plants. The results found here support those of 

Weber et al. (2008), and can be described as intuitive from an ecological perspective.  
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6.5 Conclusions 

A number of trends could be observed in the mesocosm systems over the start-up period. A 

decrease in the porosity of all mesocosms was seen. This was likely the result of the 

development of a biofilm. This hypothesis was supported by an observed increase in overall 

mesocosm microbial activity. This biofilm development contributed to a substantial increase in 

the dispersion coefficient (mixing properties) in the mesocosms over the entire start-up period. 

Differences in the dispersion coefficient values in the mesocosms could be explained by the 

presence/absence of plants. Dispersion coefficient values in planted systems reached values of 

~50-55 cm2/min where dispersion coefficients in the unplanted systems reached values of ~30-

35 cm2/min.  

 

A general divergence trend in the mesocosms was observed based on a Euclidean divergence 

metric developed in Chapter 3. All mesocosms showed a steep increase in community 

divergence until day 75-100, at which point a steady-state was reached. The interstitial 

communities were also characterized in terms of similarity based on the experimental design 

treatments.  Four phases were identified during mesocosm development that can be 

summarized as:  

1) A state of initial difference based on inoculum community profiles [day 0-6] 

2) A period where adjustments and shifts occur in all mesocosms [day 11-26] 

3) A time where all mesocosm interstitial CLPPs are quite similar [day 38-73] 

4) A final shift towards unplanted and planted mesocosm CLPP groupings [day 100-232]  

 

A number of different types of community divergences have been previously observed in 

similar small scale bioreactor systems. The results found here can be described as intuitive from 

an ecological stand point and have relevance with respect to CW optimization and engineering.  
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Chapter 7 – Principle Outcomes and Recommendations 

 

7.1 Principle Outcomes 

The overall objective of this work was to study the temporal and spatial dynamics of the 

bacterial community in wetland mesocosms. The specific sub-objectives were: 

A) Develop and apply the CLPP method using BIOLOGTM Eco plates for the characterization 

of bacterial communities in constructed wetland (CW) mesocosms  

B) Develop a metric for tracking community divergence using CLPP data 

C) Develop a method for the detachment of viable bacteria from wetland gravel 

D) Investigate fixed film bacterial communities associated with both wetland mesocosm 

gravel media and root systems at varying subsurface depths 

E) Monitor changes in the interstitial bacterial communities in wetland mesocosms 

following the simultaneous start-up of multiple systems 

F) Appraise the significance of plants and seeding community origin on bacterial 

community development in wetland mesocosms  

 

Figure 7.1 summarizes the research presented in this thesis.  
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Figure 7.1: Research timeline.  

 

7.1.1 Community Level Physiological Profiling – (Thesis Objective A) 

Chapter 2 outlined the developed CLPP method. Although the CLPP method can be considered 

a technique which offers an easily applied protocol yielding information regarding mixed 

microbial community function and functional adaptations over space and time, the data 

analysis involved can be quite challenging. Much of the effort devoted in this thesis was 

directed towards multivariate methods of data analysis in order to interpret the CLPP data 

gathered using BIOLOGTM ECO plates. Being able to bring together a standardized CLPP 

laboratory protocol and data analysis methodology was a significant cornerstone and resulted 

in a textbook chapter contribution to Methods in Molecular Biology: Bioremediation [in press].   

 

7.1.2 One-Dimensional Metric for Tracking Bacterial Community Divergence using 

Sole Carbon Source Utilization Patterns – (Thesis Objectives A & B) 

Chapter 3 outlines the use of the CLPP method for tracking bacterial community divergence in 

constructed wetland mesocosms in response to a perturbation. Two commonly employed data 

analysis methods, 1) PCA and 2) guild analysis were used to reduce the dimensionality of the 
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CLPP data for subsequent interpretation. These two methods proved useful in tracking 

community divergence in the interstitial water of CW mesocosms, proving the CLPP method to 

be feasible and useful in this context.  The main goal and significant outcome from this chapter 

was in the development of a new one-dimensional metric which can be used to track 

community divergence using the CLPP BIOLOGTM ECO plate method. In comparison to the PCA 

and guild analysis methods, this one-dimensional divergence metric was shown to accurately 

describe community divergence in the mesocosm systems. The one-dimensional divergence 

metric cannot by definition yield information regarding community similarities or differences in 

a static state, however proved suitable for tracking community divergence over time. The 

community divergence method as presented is easy to use and does not require a background 

in multivariate statistics. It is suggested that this community divergence metric could be 

considered a useful addition to the toolbox for scientists and engineers interested in bacterial 

community divergence. Chapter 3 which describes the development and use of this proposed 

divergence metric has been submitted to the Journal of Microbiological Methods [June, 2009]. 

 

7.1.3 Method for the Detachment of Viable Bacteria from Wetland Gravel - (Thesis 

Objective C) 

One of the major objectives of this thesis (Objective D) was the use of the CLPP method to 

characterize of the biofilm-associated bacterial communities in wetland mesocosms. Using the 

CLPP method to characterize biofilm-associated bacterial communities CW has not been 

previously done; as such an appropriate biofilm detachment protocol needed to be developed. 

As the CLPP method is a metabolic-based community characterization method, viable bacteria 

are required for analysis. The need for viable cells discounted a number of previously 

developed biofilm and bacterial detachment methodologies including scraping, swabbing, 

sonication, blending, and digestions. Variations of a simple shaking technique were evaluated 

for their effectiveness in the detachment of viable bacterial communities from biofilm 

surrounding constructed wetland mesocosm pea gravel media. Suspensions from the different 

shaking technique protocols were characterized for organics, inorganics, viable bacteria, 
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community level physiological profile (CLPP) and several BIOLOG™ ECO plate substrate related 

diversity indices. Using these metrics for the evaluation of the different protocols the most 

effective protocol was found to include the use of phosphate buffer solution with mechanical 

shaking and the addition of various enzymes to the detachment solution.  

 

7.1.4 Bacterial Community Stratification in the Substrate of Constructed Wetland 

Mesocosms – (Thesis Objective D) 

Bacterial community samples associated with the pea gravel bed media were taken from the 

top (10 cm depth), middle (30 cm depth), bottom (60cm depth) of all mesocosms, profiled using 

the CLPP method, and compared. Interstitial water communities were also profiled and 

compared to the pea gravel-associated bacterial communities from all depths. The use of both 

planted and unplanted mesocosms enabled the comparison of the respective bacterial 

communities. Root associated (rhizospheric) bacterial communities were also gathered from 

varying depths within the planted mesocosms and compared to the media and interstitial 

community profiles.  

 

Organic deposition was found to be homogeneous throughout the mesocosms. Bacterial 

communities closer to the surface of the mesocosms were found to have slightly higher 

activities. Rhizospheric communities were found to be significantly more active than their 

gravel media associated counterparts, suggesting that rhizospheric bacteria, although less 

abundant in the mesocosm systems, perhaps play a larger role in the removal and fate of water 

born contaminants.     

 

A decrease in the substrate richness and diversity values was seen with increasing mesocosm 

depth. This result coupled with the similar trend seen for activity suggests that the bacterial 

communities in the lower depths of the mesocosm systems are perhaps less healthy and robust 

than their bacterial counterparts closer to the bed surface. This may have implications in terms 
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of contaminant treatment. With the lower depth bacterial communities being less active, less 

healthy, and less robust it is likely that the bacterial communities closer to the bed surface will 

play a greater role in long term water treatment operation.   

 

Differences in the bacterial community structure as a function of gravel depth were seen for all 

mesocosm systems.  Vertical community stratification was observed in all cases.  

 

It was shown that the general differences in mesocosm bacterial communities at all depths in 

the mesocosm systems were similar to the differences interstitial water communities. This 

suggests that when trying to decipher general community differences between mesocosms 

interstitial water samples are an accurate reflection of these differences. 

 

Not all planted mesocosm systems had developed root systems throughout the entire bed 

depth. The fact that differences in the communities from planted and unplanted mesocosms 

were found at all depths suggests that the presence of roots within at least part of the 

mesocosm system does not only have a localized effect on the attached bacterial population 

but on attached bacteria from all depths within the mesocosms.  

 

7.1.5 Bacterial Community Profiling and Hydrological Characterization of 

Constructed Wetland Mesocosms during Start-up - (Thesis Objectives E & F) 

Eight newly created CW mesocosm systems were characterized using standard methods for 

evapotranspiration (ET), porosity, dispersivity, and overall microbial activity during an 8 month 

start-up period. The interstitial bacterial communities of the 8 mesocosms were also 

characterized using BIOLOGTM ECO plates via the CLPP method for average well colour 

development (AWCD), substrate richness, substrate evenness, substrate diversity, over-all 
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community, and community similarities based on experimental design treatments (plant 

presence, and seeding inoculum origin).  

 

It was found that mesocosm porosities decreased over time as a result of media related biofilm 

development. This biofilm development also contributed to a substantial increase in the 

dispersion coefficient (mixing properties) in the mesocosms over the entire start-up period. 

Dispersion coefficient values within planted systems reached values of ~50-55 cm2/min where 

values within the unplanted systems reached values of ~30-35 cm2/min.  

 

The general divergence trend in the mesocosm systems was quantified using the Euclidean 

divergence metric developed in Chapter 3. All mesocosms showed a steep increase in 

community divergence until day 75-100, at which point a steady-state was reached. The 

interstitial communities were also characterized in terms of similarity based on the 

experimental design treatments. A four phase progression for all mesocosm was observed that 

can be summarized as: 1) a state of initial difference based on original bacterial sludge 

inoculum community profiles [day 0-6], to 2) a period where adjustments and shifts within the 

bacterial community occur within all mesocosms [day 11-26], to 3) a time where all mesocosm 

interstitial CLPPs are quite similar [day 38-73], to 4) a final shifting towards unplanted and 

planted mesocosm CLPP groupings [day 100-232].  

 

7.2 Recommendations 

The studies described herein all dealt with understanding fundamental microbiological 

processes or distributions within constructed wetland mesocosms. The CLPP method proved 

useful in obtaining information regarding both spatial and temporal bacterial community 

dynamics. Results also showed that plants have a significant effect on the bacterial 

communities found both within the rhizosphere region and in the general CW bed media. Three 
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main recommendations are made here, all of which aim at bringing the field of CW engineering 

to a platform of greater confidence with respect to design and control.  

 

Recommendations for future work include: 

1) Application of the methods developed here to the pilot and/or full scale setting. 

Understanding bacterial community dynamics in full scale systems would perhaps allow 

for increased performance predictions and enhanced performance control, making CW 

treatment systems a more viable and reliable water treatment technology. 

 

2) Correlation of A) the differences in resident CW bacterial communities, and B) general 

bacterial community characteristics such as community diversity and activity, with CW 

treatment performance. This can initially be accomplished at the lab scale using 

mesocosm systems, however over time should also be extended to large scale systems. 

 

3) Further validation and connectivity of the mesocosm approach to both pilot scale and 

large scale CW treatment systems. This can be accomplished through comparison of 

standard characteristics such as evapotranspiration, porosity, and dispersivity; however 

should also be expanded to microbiological parameters such as CLPP comparisons, 

community diversity, community evenness, community richness, and overall microbial 

activities. The use of mechanistic models could also be employed in the validation 

process through concurrent model calibrations to both large scale and mesocosm scale 

treatment systems, use of microbial activity and some type of community divergence 

metric could be included into future models. Comparison of calibrated parameters could 

then give an idea of how well the mesocosm systems represent full scale systems, and in 

what ways some of the mechanistic treatment processes are biased at the mesocosm 

scale. 
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Appendices 

Appendix A – Abbreviations 

 

A    - wetland area [m2] 

ALD  - anoxic limestone drain 

AMD  - acid mine drainage 

AWCD  - average well colour development 

BOD  - biological oxygen demand 

Β  - treatment coefficient/intercept 

C    - concentration [#/m3] 

C*    - background concentration 

C0    - effluent concentration 

CCorA  - canonical correlations analysis 

CFU  - colony forming units  

Ci  - influent concentration  

CLPP  - community level physiological profiling 

COD  - chemical oxygen demand 

CSTR  - completely stirred tank reactor 

CSUP  - carbon source utilization pattern 

CW   - constructed wetland 

DA  - discriminant analysis 

DCA  - detrended correspondence analysis 

DF  - dairy farm 

DGGE  - denaturing gradient gel electrophoresis 

DNA  - Deoxyribonucleic acid 

DO   - dissolved oxygen 

DOC  - dissolved organic carbon 

DON  - dissolved organic nitrogen 

E  - substrate evenness 
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EPS  - extracellular polymer substances 

FDA  - fluorescein diacetate 

FISH  - fluorescent in situ hybridization 

FL  - fluorescein 

FWS  - free water surface 

h    - water depth [m] 

H  - substrate diversity 

HLR  - hydraulic loading rate [mass/time] 

HRT   - hydraulic retention time 

HSSF  - horizontal subsurface flow 

k  - first-order rate constant  

K  - half saturation constant 

k/q    - Da (Damkőhler number) 

k1   - first-order, zero background aerial rate constant [m/d] 

k20  - reaction rate coefficient at 20ºC 

kT  - reaction rate coefficient at temperature (T) 

kv1    - volume-based, first-order decay rate [1/d] 

LB  - Luria-Bertani 

MA  - microbiological activity 

NMDS  - non metric dimensional scaling 

NOM  - natural organic matter 

Pe  - peclet number, dimensionless 

PC  - principal component 

PCA  - principal component analysis 

PCoA  - principle coordinates analysis 

PCR  - polymerase chain reaction 

PGPR  - plant growth promoting bacteria 

POC  - particulate organic carbon 

PON  - particulate organic nitrogen 
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PVC  - polyvinyl chloride 

q  - hydraulic loading rate  

R    - death rate [#/day] 

RDA  - redundancy analysis 

rRNA  - ribosomal ribonucleic acid 

S  - substrate richness 

STP  - sewage treatment plant 

T  - temperature (°C) 

TC   - total coliform 

THM  - trihalomethane 

TN  - total nitrogen 

TOC  - total organic carbon 

TP  - total phosphorus 

TRFLP  - terminal restriction fragment length polymorphism 

TSS  - total suspended solids 

u  - growth rate 

umax   - maximum growth rate 

UPGMA - unweighted pair group method using arithmetic mean 

UV   - ultra violet 

v  - velocity (cm/min) 

V    - wetland water volume [m3] 

VF   - vertical flow 

W  - wetland dispersion number, dimensionless 

WWTP  - waste water treatment plant 

ε    - volume fraction of water 

θ  - temperature factor 

τ   - nominal detention time [days] 
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Appendix B – Waterloo Region Tap Water Characteristics 

 

 

Data taken from the regional municipality of Waterloo website: 
http://chd.region.waterloo.on.ca/WEB/Region.nsf/0/57F555069B5A60AA85256C06005F8596/$
file/Table%2027.pdf?openelement (last accessed August 20, 2009) 
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