
 
 
 
 
 
 
 
 

 
Enantioselective Rh(I)-Catalyzed Conjugate Alkynylation of 5-

Benzylidene Meldrum’s Acid with TMS-acetylene 

 
 
 
 
 
 
 
 
 
 

by 
  

Alexander K. Zorzitto 
 

 
A thesis  

 
presented to the University of Waterloo  

 
in fulfillment of the 

  
thesis requirement for the degree of 

  
Master of Science  

in  
Chemistry 

  
Waterloo, Ontario, Canada, 2009 

 
© Alexander K. Zorzitto 2009 

 



ii 
 

 
AUTHOR’S DECLARATION  
 
I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, 
including any required final revisions, as accepted by my examiners. 
 
I understand that my thesis may be made electronically available to the public. 
 
 



iii 
 

Abstract 
 

The Rh-catalyzed conjugate addition of TMS-acetylene to alkylidene Meldrum’s acids 

was developed.  Exceptional ee’s and yields were attained using chiral 3,5-Xylyl-BIPHEP 

ligand.  The scope of the reaction was also shown to be very broad with functionalities 

including phenol, silyl ether, and boronates being tolerated.  The successful deprotection and 

subsequent Sonogashira coupling reaction of the terminal alkyne was also developed. 
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1 - Introduction 
 
 The 1,4-conjugate addition of carbon nucleophiles to α,β-unsaturated carbonyls is one 

of the most widely used methods in organic chemistry for the formation of carbon-carbon 

bonds.1  The unique reactivities of this class of compounds arise from the conjugation of the 

carbon-carbon double bond with that of a carbonyl, forming the resonance structures shown in 

Figure 1.2   

 
Figure 1. Resonance forms of α, β-unsaturated ketones 

 The conjugation of the two π systems works to make the β-carbon of 1 bear a partial 

positive charge, allowing it to react as an electrophile, forming carbon-carbon bonds as in 

Figure 2.  The bond forming step of such a reaction involves the interaction of the HOMO of 

the nucleophile interacting with the LUMO of the electrophile, the enone in this case, thus 

forming the new bond.2 Many different nucleophiles are capable of undergoing such conjugate 

addition reactions including amines, alcohols, and thiols. 

 
Figure 2. Possible mechanisms of 1,4-addition and 1,2-addition of a nucleophile to an enone 

 Many factors affect the regioselectivity of such reactions, as the nucleophile can add in 

either a 1,2- or a 1,4-fashion.  To increase the selectivity towards the 1,4-addition several 

factors can be varied.  One can run such reactions at higher temperatures, favouring the more 
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stable thermodynamic 1,4-addition product.2  Using a less reactive carbonyl group such as an 

ester or amide tends to favour the 1,4-addition product, as the β-carbon is more reactive in such 

species.2  Finally the nature of the nucleophile can be used to favour 1,2- or 1,4-addition.  Such 

reactions tend to follow the hard and soft base guideline.3  That is, a hard nucleophile, such as 

an alkoxide, will tend to favour the 1,2-addition since the carbonyl carbon is a hard 

electrophile.  On the opposite end, a soft nucleophile, such as a thiol, will favour the 1,4-

addition, as the β-carbon is a soft electrophile.2 

 

 

Figure 3. Hard and soft electrophilic positions of enones 

 Metal alkynylides have different properties depending on the metal that is used, and the 

hybridization of the carbon that is being activated.  Harder carbon groups, like alkyl or alkenyl 

will favour the 1,2-addition more so than the softer alkynyl.  Metals from the first columns of 

the periodic table; Li, Mg, or Al for example make for hard nucleophiles.  Transition metals 

like Cu, Rh, or Ru make for softer nucleophiles.3 Thus transmetallation of a hard metal 

alkynylide with a softer metal can be used to favour the 1,4-addition.  This methodology will be 

discussed in more detail in future sections for metals such as Cu and Rh.  
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2 - Literature Review 

2.1 - Conjugate addition of alkynes to α, β – unsaturated ketones 
 
 The addition of alkynes to α, β-unsaturated ketones remains an open area of research, 

despite the fact that these additions provide a ready route to γ, δ-alkynyl ketones.4 These are 

synthetically useful intermediates for the synthesis of 1,4-diketones5, furans6 and pyrroles.7  

This gap in methodology can be attributed to the low reactivity of most copper-alkynyl 

complexes8, which would be the obvious choice to perform such 1,4-additions.  Fisher and 

House8 first reported on this poor reactivity in 1969, after which Corey and co-workers were 

able to use alkynes as so called ‘dummy’ ligands on Cu for the conjugate addition of various 

alkyl groups to cyclohexenone, a reaction that, when performed without a ‘dummy’ ligand, 

meant a maximum of 50% yield based on ligand.9  

 Due to the low reactivity of alkynes in copper-catalyzed conjugate addition reactions, 

other metals have been screened for their usefulness in such reactions.  Success has been 

attained using metals such as aluminium, boron and rhodium.  Many of these reactions have 

now been performed asymmetrically with excellent enantiomeric excess (ee) reported.  As well, 

the low reactivity of alkynyl copper species has been overcome by the use of highly activated 

acceptors like alkylidene Meldrum’s acids.10 

2.2 - Additions Stoichiometric in Metal 
 
2.2.1 - Conjugate addition of alkynylaluminium species to α,β-unsaturated ketones 
 

Up until the early 1970’s there was no direct way to access the γ, δ-acetylenic ketones 

that were desired as synthetic intermediates.4  In an effort to overcome this gap in methodology, 

Hooz11 developed a method based on the Nagata hydrocyanation reaction, where an sp-

hybridized cyano group was successfully added via Michael addition to an enone.12  Hooz 
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reacted diethylalkynylalanes (2) with a range of α, β-unsaturated ketones, to form the desired 

1,4-addition products.  A representative example is shown in Scheme 1.   

Scheme 1. Conjugate addition of alkynylalanes 

 
 

The organoalane was prepared from the Li-acetylide and diethylaluminum chloride to 

give 2.  Though this methodology was a step in the right direction it had many drawbacks, the 

major one being that the reaction requires a ketone that is capable of adopting a cisoid 

conformation.  Ketones that cannot adopt this cisoid confirmation give rise to the 1,2-addition 

product.  A mechanism for this reaction has been suggested (Figure 4) to explain this reactivity 

pattern. 

 

Figure 4. Suggested mechanistic rationale for observed reactivity pattern of organo aluminum alkynes 

 This methodology was quickly adapted by Collins and Pappo13 who used it to form a 

key intermediate (Scheme 2) in their synthesis of prostaglandin analogs.  It is worth noting the 

presence of the directing hydroxyl group, which enables this addition to occur via an 

intramolecular five membered transition state, similar to that depicted in Figure 4. 
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Scheme 2. Synthesis of intermediate for prostaglandin analog 

 
 

The challenge of the direct addition of alkynes to the seemingly simple enone, 

cyclohex-2-ene-1-one (3), remained unmet until 1977 when it was discovered that the use of a 

Ni catalyst in conjunction with the organoalane 2, allowed for the direct addition of the 

acetylene analog 2 to ketone 3.14 Schwartz and co-workers were able to attain yields up to 85% 

with no 1,2-addition product observed.  When the reaction was carried out without the 

reduction of the Ni (II) complex to the Ni (I) complex, the authors noted that dimerization of 

the alkyne was observed.  This was likely a result of a double ligand exchange of alkyne with 

the Ni(acac)2 species followed by a reductive elimination to form the dimerized alkyne and the 

reduced Ni. 

Scheme 3. Ni catalyzed conjugate addition of alkynylalanes 

 

 A variant of this reaction was investigated by Corey and Kwak,15 who in 2004 

developed an enantioselective variant.  Corey and Kwak noted that the use of a Ni (II) species 4 

rather than the Ni (I) species that was used by Schwartz was required to attain high yields and 

ee.  Unlike Schwartz, Corey and Kwak did not note any dimerized alkyne product, suggesting 

that their bisoxazoline ligand was bound more tightly to the Ni than the acetylacetone (acac) 

ligand that Schwartz was using.  This increased affinity for Ni prevented the formation of the 

bisalkynyl Ni (II) complex, thus preventing the formation of dimer.  Using their newly 
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optimized system, Corey and Kwak were able to achieve yields of up to 86%, and ee’s of up to 

88% for cyclohexenone. 

Scheme 4. Chiral Ni catalyzed conjugate addition of alkynylalanes 

 
 
2.2.2 - Conjugate addition of alkynyl-boron species to α,β-unsaturated ketones 
 
 Similar chemistry has been performed using organoboranes.  Pappo and co-workers 

were the first to use organoboranes to transfer terminal alkynes to α,β-unsaturated ketones.16  In 

their quest to synthesize prostaglandin E2 (PGE2) they used a trialkynylboron derivative to 

successfully add in a 1,4 fashion to methyl vinyl ketone, yielding 48 % of the desired product.  

They noted that when the organoalane was used for this reaction, a 1:1 mixture of the 1,2- and 

1,4-addition products was obtained. 

 Brown, Molander and Sinclair17 noted the shortcomings of this methodology, namely 

that in the Pappo transformation only one of the three acetylene groups on the boron are 

transferred, resulting in a maximum yield of 33% with respect to acetylene. This is especially 

critical if the acetylene subunit is a valuable intermediate.  To overcome this drawback they 

developed a procedure in which B-1-alkynyl-9-borabicyclo[3.3.1]nonanes (B-1-alkynyl-9-

BBN, 5) were successfully added to methyl vinyl ketone (6) and related ketones, in a 1,4 

addition reaction (Scheme 5).  
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Scheme 5. Alkynylboranes as alkyne source 

 
Yields of this reaction were generally quite good ranging from 70-100% depending on 

the enone that was used.  One particularly interesting result was attained using mesityl oxide 

(7) as the enone, in which they successfully formed a quaternary carbon centre as in product 

ketone 8. 

Scheme 6. Formation of quaternary centre using alkynylborane 

 
This methodology was expanded by the Suzuki group, used triisopropoxyborane (9) as 

the alkyne transfer reagent (Scheme 7).  They were successful in attaining yields of up to 

86%.18 

Scheme 7. Triisopropoxyborane as the alkyne transfer reagent 

 

 Chong adapted the work done by Suzuki, adding a chiral ligand to the boron, thereby 

performing the first enantioselective 1,4-conjugate addition of alkynyl boronates.19  It was 

found that with chiral ligand 10, depicted in Scheme 8, high yields of up to 99% and 

exceptional ee’s of greater than 98% could be obtained. 
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Scheme 8. Chiral addition of alkynyl boranes 

 

 The Chong group was able to take this methodology one step further, when they applied 

the same general principle, only this time they used an exchangeable chiral ligand, thereby 

making the reaction catalytic in ligand. 20  The general concept is shown in Figure 4, wherein an 

achiral unreactive boronate 11, is made chiral through reaction with ligand 12, forming 

intermediate 13.  This intermediate then undergoes a reaction with enone 14, to generate 

intermediate 15, where the transfer of the alkyne from boron to enone has taken place.  Release 

of the chiral ligand by boron intermediate 15 gives the product, and regenerates the chiral 

ligand, which can now react with the boronic ester starting material to form intermediate 14, 

thereby completing the catalytic cycle. 

 

Figure 4. Proposed catalytic cycle for the 1,4-addition of alkynylboron to enone 

 The key to this proposed chemistry was that the starting alkynyl boronate had to be 

substantially less reactive than ‘activated’ alkynylboronate 13.  It was indeed found that the 



9 
 

starting alkynyl boronate did not provide any of the 1,4-addition product, but in the presence of 

the binaphthol ligand, yields of up to 95% were obtained, with excellent ee’s from 83-96 %.   

Although the reaction was compatible with many enones, substrates that were not able 

to adopt the required s-cis conformation were unreactive.  As with the organoalane discussed 

earlier, this conformation was required for the reactions to proceed, as a cyclic six membered 

transition state was proposed.  This procedure also required the stoichiometric use of Li to form 

the Li-alkynylide as a key intermediate in the formation of the alkynylboronate.   

2.3 - Additions catalytic in metal 

2.3.1 - Copper catalyzed conjugate addition of alkynes to α,β-unsaturated ketones 
 
 The reactions discussed up to this point have required the addition of a stoichiometric 

amount of at least one metal, that is either aluminium or boron, in order to form the active 

metal alkynylides.  This is not ideal as it is not economical, and many of the alkynyl metal 

intermediates are sensitive to water or air, which makes the protocols less practical.  The 

Carreira group applied methodology they had developed for the reaction of metal alkynylides 

with ketones and imines, and used a similar methodology to perform the conjugate addition to 

Meldrum’s acid acceptors 16.10 They used Meldrum’s acid acceptors for several reasons:  

firstly, Meldrum’s acid derived Michael acceptors are easily prepared, with numerous methods 

being available; second, once the conjugate addition has taken place, the Meldrum’s acid 

moiety can be converted to the corresponding β-alkynyl acid, amine, amide, or ester21 (Figure 

5); lastly the symmetrical nature of the Meldrum’s acid acceptors makes the starting material 

geometry irrelevant. 
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Figure 5. Transformations of Meldrum's acid 

 Carreira used a Cu (II) salt that was converted to the active Cu (I) species in situ using 

sodium ascorbate.22 This was groundbreaking work, because at the time it was thought that Cu-

alkyne complexes were unreactive due to the strength of the Cu-alkyne interaction.  Under 

optimized conditions, they found that the conjugate addition of phenylacetylene (17) was 

general and was applied to numerous Meldrum’s acid acceptors, including aromatic, 

heteroaromatic, branched and unbranched aliphatic alkylidenes, all with good yields.  

Scheme 9. Cu-catalyzed conjugate addition of phenylacetylene 

 

The importance of both Cu (II) and ascorbate was confirmed by control experiments.  

Most interestingly, a preformed Cu (I) alkynylide in degassed water did not add in the absence 

of ascorbate, suggesting that it plays a role in catalyzing the reaction aside from reduction of 
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copper.  They also noted the importance of water as a solvent, as decreasing the amount of 

water in the system coincided with a decrease in conversion. 

Recently the Carreira group was able to extend this chemistry to include alkynes other 

than phenylacetylene (17). 23  In 2007, they developed methodology very similar to that for 

phenylacetylene (17), with the main difference being the use of ethyl propiolate (18) as the 

terminal alkyne nucleophile (Scheme 10). 

Scheme 10. Cu catalyzed conjugate addition of ethyl propiolate 

 
This marked the first time that ethyl propiolate (18) was able to be activated using sub 

stoichiometric amounts of Cu.  It was also the first example of using such propiolates in a 

Michael addition reaction under catalytic conditions.  Of note is the chemoselectivity, as only 

1,4 addition of the alkyne 18 to the Meldrum’s alkylidene was observed, despite the fact that 

the propiolate and the product alkynoate are both good electrophiles.24 One of the major 

drawbacks noted by the authors is the lack of reactivity of Meldrum’s acceptors bearing aryl or 

alkenyl substituents, as efforts to perform such reactions under these standard conditions 

resulted only in recovery of starting material. 
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Figure 6. Ligands tested by Carreira Group 

 An impressive enantioselective variant of this reaction was reported by Carreira, using 

phenylacetylenes as nucleophiles. 25  Many ligand classes were screened during the initial 

experiments including phosphines, such as BINAP, JOSIPHOS, MONOPHOS, and MOP; they 

also screened donors like PYBOX (Figure 6).  All but one of these ligands gave low ee’s with 

the best being tol-BINAP with an ee of 25%.  The only exception was that of QUINAP which 

yielded an ee of 42%.  Due to difficulties in the modification of the QUINAP type ligands a 

new P, N-ligand was developed and termed PINAP (19).26  Being easily accessible in a four 

step sequence (Scheme 11) various structural and electronic modifications on the ligand could 

be examined. 

Scheme 11. Synthesis of PINAP ligands 
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 A ligand, 20, was finally discovered that provided satisfactory yield and ee (Figure 7).  

Surprising was the importance of the seemingly remote chiral amine group, where one 

diastereomer gave a far superior ee to the other (80% to 37%).  This result suggested the 

importance of this chiral amine group and was the starting point for fine tuning of the ligand. 

 

Figure 7. Chiral PINAP ligand 

 Using the optimized procedure (Scheme 12), high yields and ee’s were attained in up to 

94% and 97%, respectively.  The scope of the reaction was examined and found that in the case 

of γ-branched acceptors reactions could be carried out with 10% catalyst loading.  In cases 

where there was no γ-branching, the acceptors required higher catalyst loading of 20%.  

Aromatic groups in the R position were tolerated, but required longer reaction times to reach 

completion. 

Scheme 12. Chiral conjugate addition of phenyl acetylene 

 

 The versatility of the Meldrum’s acid acceptors in further chemistry has been limited by 

the scope of acetylenes that are compatible using this copper chemistry.  It would be desirable 

to develop a method using silyl acetylenes which are easily manipulated by removal of the silyl 

protecting group, allowing for further transformations. 
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2.3.2 - Rhodium catalyzed conjugate addition of alkynes to α,β-unsaturated ketones 
 
 Aside from the copper catalyzed conjugate addition of alkynes to α,β-unsaturated 

ketones few other catalytic methods exist.  One of the more promising metals being studied is 

Rh which is ideal for such reactions for numerous reasons.  Unlike the more common metals 

employed for such reactions, namely Grignard reagents, organolithiums, or diorganozincs, Rh 

has fewer problems associated with chemoselectivity.  This allows for greater substrate 

compatibility, including the use of aryl nucleophiles which are known to be problematic with 

copper catalysis.27  The Rh catalyzed reactions also tend to be more tolerant of water than the 

Li, Zn, and Mg reagents, allowing for the potential of more environmentally friendly chemistry, 

since fewer harmful solvents are required. 

 Interestingly, though Rh is known to activate C-H bonds towards 1,4 additions, few 

examples exist for the activation of alkynes to α,β-unsaturated ketones.  Nikishin and Kovalev 

reported the first such example in 1990.28 They found that RhCl(PMe3)3 was an effective 

catalyst at performing the conjugate addition of  terminal alkynes to unsaturated ketones.  

However, these reactions were extremely slow, requiring two to five days to go to completion.  

Increasing the temperature increased product formation, but also dramatically increased the 

undesired alkyne dimerization side reaction.  The RhCl(PMe3)3 catalyst is not commercially 

available, and its synthesis is difficult and requires the use of trimethylphosphine, a toxic, air 

sensitive reagent. 

 In an effort to make a safer and more stable catalyst, Lerum and Chisholm opted to use 

a precatalyst in their work, Rh(acac)(CO)2 complex.29  This was easily converted to the active 

phosphine containing catalyst by the addition tris-(o-methoxyphenyl)phosphine, which easily 

displaces the CO ligand.  Optimization revealed that temperatures above 50 °C were required, 
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and little difference in yield was noted between solvents such as benzene, toluene and dioxane.  

The reaction was also found to be relatively insensitive to water. 

Scheme 13. Rh-catalyzed conjugate addition of terminal alkyne 

 

 A proposed reaction mechanism is as follows (Figure 8).  Insertion of the Rh catalyst 

into the alkyne C-H bond generates Rh-alkynylide 21.  Complex 21 then coordinates to the 

enone, which is followed by migratory insertion of the alkyne to the olefin.  Complex 22 then 

undergoes reductive elimination regenerating the active catalytic species 23. 

 

Figure 8. Proposed reaction mechanism for the Rh-catalyzed conjugate addition of alkynes to enones 

A noted complication of this methodology is the requirement for high temperatures at 

which Rh-catalyzed dimerization of alkynes can become a competing pathway (Scheme 14).  

Both Kovalev and Lerum noted this tendency and explored various routes of overcoming it, 

none of which worked with great success. 
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Scheme 14. Dimerization as a competing reaction 

 

 Noting that the main problem appears to be the presence of a stoichiometric amount of  

terminal alkyne 25, the Hayashi group began work to overcome this problem.30,31  Since the 

terminal alkyne is more reactive than β-substituted enone 26, formation of product 24 

dominates.  They showed that if they were able to keep the concentration of the alkyne low, 

then the 1,4-addition would be the preferred reaction.30 

 Their approach involved an asymmetric 1,3-rearrangement of alkynyl alkenyl carbinols 

(27).  Though not a true 1,4-addition reaction, it is the synthetic equivalent.  The proposed 

reaction pathway (Figure 9) is as follows: generation of the alkoxyrhodium species 28, from the 

starting alkynyl alkenyl carbinol, this is followed by β-alkynyl elimination to give active 

alkynylrhodium species 29.  This alkynylrhodium species undergoes conjugate addition to the 

newly generated enone, resulting in oxa-π-allyl-rhodium intermediate 30.  Subsequent reaction 

of the Rh with an equivalent of water generated the desired final product and regenerates the 

[Rh]OH catalyst. 

 

Figure 9. Proposed reaction pathway for β-alkynyl elimination 
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The reaction was successfully carried out with high ee’s and yields.  A general 

procedure is shown in Scheme 15.  The starting alkynyl alkenyl carbinol 27 was easily accessed 

by 1,2-addition of the requisite lithium acetylide.  This was followed by treatment with 

[Rh(OH)(cod)]2 (5 mol % Rh), (R)-BINAP (6 mol %), in toluene at 60 °C, affording the desired 

product in up 98% yield and 91% ee. 

Scheme 15. 1,3-alkyne migration 

 

 The second process which the Hayashi group developed to prevent the dimerization of 

the alkyne involves (triisopropylsilyl)-acetylene (TIPS-acetylene, 31) combined with di-tert-

butyl-methoxy-SEGPHOS (DTBM-SEGPHOS, 32) as the chiral ligand.31  This methodology is 

based on the assumption that the sterically bulky silicon, combined with the sterically bulky 

phosphine ligand should hinder dimerization (Figure 10).  

 

 

Figure 10. Rationale for decrease in dimerization of alkynes in presence of bulky ligand 

 Hayashi’s group was successful in the application of this procedure, and obtained yields 

of up to 99% with ee’s of up to 93%.  To demonstrate that the hypothesis for steric bulkiness 

was correct, experiments were performed where the silyl acetylene was mixed with catalyst and 
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ligand.  After reacting for 30 min at 40 °C.  It was found that (R)-BINAP with either 

triethylsilyl-acetylene (TES-acetylene) or TIPS-acetylene (31) gave a high conversion to the 

dimer.  When (R)-DTBM-segphos (32) was used in place of (R)-BINAP conversions to alkyne 

dimer (24) of 25% and 4% were obtained for TES-acetylene and TIPS-acetylene (31), 

respectively.  This confirms that the bulky ligand and acetylene plays an important role in 

preventing dimerization of the alkyne. 

 Their methodology was successful for a number of α,β-unsaturated ketones (Scheme 

16).  For 1-propenyl ketones bearing aryl, alkenyl, or alkyl groups on the carbonyl carbon 

yields of 78-99 % were obtained, with ee’s ranging from 91-95%.  The reaction was also 

tolerant of linear enones possessing a longer alkyl chain at the β-position, providing excellent 

yields.  

Scheme 16. Rh catalyzed  conjugate addition of TIPS-acetylene 

 

 Demonstrating the versatility of the final product, Hayashi and co-workers were able to 

remove the silyl group using tetrabutylammonium fluoride (TBAF), yielding the alkynyl ketone 

without erosion of ee.  This terminal acetylene was subjected to Sonogashira coupling with 

iodobenzene, as well as a copper catalyzed cycloaddition with 1-azido-4-chlorobenzene.  Both 

gave the target compounds in high yields and ee. 

 

 

 



19 
 

3 - Research Proposal 

3.1 - Work of the Fillion Group 

 The Fillion group at Waterloo has focused on the unique reactivities of Meldrum’s acid 

derivatives in conjugate addition reactions to develop new synthetic methodologies.  One of the 

first examples of this type of methodology from our group was published by Fillion and Wilsily 

in 2006.32   

 They found that in the presence of the commercially available phosphoramidite ligand 

33, Cu(OTf)2 catalyzed the addition of dialkylzinc reagents to disubstituted alkylidene 

Meldrum’s acids in excellent yields and ee’s (Scheme 17).  Most important about this work was 

the ability to form all-carbon quaternary centres, a structural motif found in many natural 

products, but at that time understudied in the literature.  This was attributed to the increased 

electrophilicity of the Meldrum’s acid derivatives, allowing for the electrophile to overcome the 

sterically unfavourable environment associated with the formation of quaternary centres.  More 

recently this work has been expanded to include other acceptors33, as well the conjugate 

addition of dimethylzinc reagents to form quaternary all-carbon centres.34 

Scheme 17. Conjugate addition of organozincs to alkylidene Meldrum’s acids 

 

 With this lead example in hand our group investigated the conjugate addition of other 

nucleophiles to alkylidene Meldrum’s acids.  In 2008 Fillion et al. published results in which 
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Rh catalyzed the conjugate addition of vinylstannanes 34 onto Meldrum’s acid acceptors as 

shown in Scheme 18.35 

Scheme 18. Rh catalyzed conjugate addition of vinyltributyltin to alkylidene Meldrum’s acids 

 

Since excellent yields were obtained under mild conditions, this once again 

demonstrated the superior reactivity of Meldrum’s acid acceptors to conjugate addition.  The 

substrate scope was investigated, and found to be quite broad.  Along with benzylidene 

acceptors it was found that ethylidene Meldrum’s acid was tolerated giving the desired 1,4-

addition product in good yield.  In conjunction with the benzyl and ethyl substituents halo, 

cyano, nitro, and methyl ester substituents were also compatible.  It was also noted that the 

addition of (Z)-stannyl acetate to Meldrum’s acceptors afforded the corresponding 1,4-addition 

product with retention of the double-bond geometry.   

Further examples from the Fillion group of conjugate addition on to alkylidene 

Meldrum’s acids have more recently been published.36  Dumas and Fillion were able to 

successfully add allyl tributyl and triphenyl tin reagents to numerous alkylidene Meldrum’s 

acids under Sc(OTf)3 catalyzed conditions to form both the tertiary and quaternary centres 

(Scheme 19).  Yields for this reaction were generally quite good, with numerous substrates 

being tolerated including thiophene, furyl, and alkyl substituents. 

 

 

 



21 
 

Scheme 19. Conjugate addition of allyl tin to alkylidene Meldrum's acid 

 
3.2 - Proposed Work 

 It was hypothesized that if one could apply the methodologies described above (1,4-

addition onto alkylidene Meldrum’s acids) in conjunction with a silyl protected 

 system similar to that of Hayashi and co-workers, it would be possible to perform the Rh 

catalyzed conjugate addition of alkynes onto alkylidene Meldrum’s acids (Scheme 20) under 

mild conditions to form the propargylic stereocenter.  The use of the silyl protected alkyne 

would present a handle for which further chemistry could be employed, a possibilty that was 

not viable with work performed by Carreira and co-workers (Scheme 12, page 13). 

Scheme 20. Proposed general reaction 
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4 - Results and Discussion 

4.1 ‐ Development and Optimization of Reaction Conditions 

4.1.1 ‐ Optimization of Alkyne and Solvent 
 
 The first two aspects of the reaction to be optimized were solvent and silyl acetylene.  

The initial conditions, adapted from the work Hayashi had done previously involving the Rh 

catalyzed intramolecular rearrangement of alkynyl alcohols, were as follows; using 

[RhOH(COD)2]2 as the catalyst, and (R)-tol-BINAP as the ligand, various silyl acetylenes and 

solvent combinations were investigated, and are listed in Table 1. 

Table 1. Optimization of alkyne and solvent.  Conversion determined using mesitylene as internal standard 

 

 
 

 Solvent 
Conversion ee Conversion ee Conversion ee 

PhMe 39 % 78 % 23 % 69 % 15 % 14 % 
THF 41 % 66 % 26 % 62 % 23 % 3 % 

1,4 Dioxane 30 % 67 % 23 % 66 % 20 % 38 % 
DME 54 % 87 % 23 % 73 % NR N/A 

       
 Under the described conditions it was found that regardless of solvent the conversions 

seemed to increase with decreasing size of the silyl group present on the alkyne.  That is to say 

that TIPS-acetylene gave the lowest conversions followed by tert-butyldimethylsilyl-acetylene 

(TBDMS-acetylene), while trimethylsilyl-acetylene (TMS-acetylene) gave the highest level of 

conversion.  This is opposite to the trend noted by Hayashi, who required a bulky alkyne to 

reduce the amount of dimerization taking place.  In the system described herein the conditions 
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are much milder (rt vs 80 °C) and dimerization though still present is not as important as the 

competing pathway. 

In looking at the various solvents, DME was found to give both the best conversion 

after 24 h, with 54%, and the best ee of 87%, when the TMS-acetylene was used as the alkyne 

source.  The use of DME as solvent is in accord with previous results our group had attained for 

the conjugate addition of dimethylzinc to various alkylidene Meldrum’s acids.32 

4.1.2 ‐ Determination of equivalents of reagents 
 

Having determined an appropriate alkyne and solvent for the conjugate addition 

reaction, the various equivalents of each component were next investigated.  The equivalents of 

the alkyne and Meldrum’s alkylidene were found to have a major effect on the observed 

conversion of the reaction (Table 2).   

Table 2. Effect of equivalents of alkyne versus alkylidene on conversion 

 
MA:Alkyne 7:1 5:1 3:1 2:1 1:1 1:3 1:5 1:7 
Conversion 86% 79% 78% 45% 45% 66% 69% 64% 
Conversion determined using internal mesitylene standard 

It was found that having higher equivalents of S35 tended to give higher conversion to 

product 35, with a maximum of 86 % conversion being observed when 7 equivalents of S35 

were used.   On the opposite end of the spectrum, having an excess of alkyne 36, gave lower 

conversions (relative to first three entries in Table 2), with a maximum of 69 % obtained when 

1 equivalent of S35, and 5 equivalents of 36 were used.  Though giving lower conversions 

relative to reactions where excess alkylidene was used, it was decided that the ease of 
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purification of these reactions, outweighed any potential loss in conversion, and TMS-acetylene 

(36) was used in 5-fold excess for all subsequent reactions.   

It is worth noting that, in all the cases where excess alkyne was used, a significant 

amount of the dimerization product (described earlier in Scheme 14) was observed.  Numerous 

efforts were made to decrease its formation, but in all cases dimerization persisted.  Decreasing 

the concentration, as well as slow addition of the alkyne did not result in any appreciable 

decrease in amount of dimer being formed, and in both cases resulted in a decreased 

conversions.  An additive of styrene was used in an effort to decrease the extent of dimerization 

that was occurring.  The hypothesis was that having a second site where the alkynyl-Rh species 

could complex would decrease the frequency with which the alkynyl-Rh came in contact with 

TMS-acetylene (36), and would thus decrease the amount of dimerization.  In cases where this 

additive was investigated, no difference in either conversion to product or dimer was observed. 

4.1.3 ‐ Effect of various ligands on conversion and ee 
 
 With general conditions available, the effect of various ligands were next investigated.  

Starting with a broad scope of ligands conversions and ee’s were determined under the general 

reaction conditions shown in Figure 11. 
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Figure 11. Initial ligands screened 

 Use of such a broad ligand scope allowed some general conclusions to be made about 

the conjugate addition reaction.  It appeared that there were two general structural features of 

the ligand that were required if the conjugate addition reaction were to occur.  Firstly, is the 

presence of a biphenyl backbone, as all ligands such as BozPhos and TangPhos, which do not 

have the biphenyl backbone did not give any conversion to product and only starting materials 

were recovered.  The hypothesis is that the dialkylphosphine ligand is too basic and inhibited 

the catalyst.  The second requirement appears to be the need for a biphosphine moiety.  The 

MOP did not give any conversion, though it contains a biphenyl backbone.  The ligands which 

contained both the biphenyl backbone and were bidentate gave conversion.  While plain 

BINAP gave only 25% conversion, both Tol-BINAP and 3,5-Xylyl-BINAP gave conversions 

of 62 and 71% and ee’s of 87 and 86%, respectively.  The DTBM-Segphos, containing both the 

biphenyl backbone, and the biphosphine, also gave a good conversion of 85% and enantiomeric 
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excess of 88%.  This result hinted at the importance of the ethereal oxygens on the backbone of 

the ligand.  With this in mind we opted to investigate the BiPHEP family of ligands in detail 

due to the presence of the ethereal oxygens, biphenyl backbone, bidentate lignad and a 

relatively large number of commercially available derivatives. (There are nine BiPHEP 

derivatives and only three SEGPHOS derivatives commercially available). 

 After investigating all commercially available BiPHEP derivatives, some further 

general conclusions could be drawn (Figure 12).  Overly bulky variants such as 37, 38, 39 give 

little to no conversion, as do electron rich derivatives such as 39.  The furyl substituted variant 

41, also gave low conversion and ee.  Somewhat surprisingly the isopropyl derivative, 42, gave 

a relatively high ee 82% and modest conversion of 68%.  It was the phenyl substituted 

derivatives 43, 44, 45 that gave the best results in terms of ee.  The plain phenyl derivative 43 

gave 50% conversion and 83% ee after 24 h, while the 4-Me derivative (44) gave even better 

results with a conversion of 66% and ee of 88%.  The 3,5-xylyl (45) gave the best result of the 

series with a still modest conversion of 70%, and high ee of 94%.  Having investigated 18 

ligands, we were satisfied with the results obtained with the 3,5-xylyl derivative, and  selected 

this as the ligand for all future reactions 
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Figure 12. Biphep ligands investigated 

4.1.4 ‐ Effect of temperature on conversion 
 
 With a modest conversion of only 70% for the partially optimized conditions steps were 

undertaken to increase the conversion.  Increasing the temperature as a means of increasing 

conversion was quickly ruled out as an option since this leads to increased dimerization of the 

alkyne. 

4.1.5 ‐ Effect of time and catalyst loading 
 
 The effects of reaction time and catalyst loading to further increase conversion were 

also investigated.  Both were found to be crucial if complete conversions were going to be 

obtained.  Results are summarized in Table 3, with the optimal conditions being 15% catalyst 

loading, and a reaction time of 72 h.  With virtually complete conversions now obtained, the 

scope of the reaction could be investigated. 
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Table 3. Effect of time and catalyst loading 

Catalyst loading Conversion After 24h Conversion After 48h Conversion After 72h 
5% 50% 60% N/A 
10% 63% 70% 75% 
12% 67% 76% 80% 
15% 68% 79% >95% 
20% N/A N/A >95% 

4.2 ‐ Substrate Preparation 
 
 All alkylidene Meldrum’s acids were prepared according to the literature procedure 

developed by our group37 (Scheme 21).  Meldrum’s acid is simply stirred with the desired 

aldehyde in the presence of a catalytic amount of pyrrolidinium acetate (prepared in-situ) in 

benzene for 24 h at rt or 50 °C.  Once the reaction is complete benzene is removed and simple 

recrystallization from methanol yields the alkylidene Meldrum’s acid as a bench stable 

crystalline solid. 

 
Scheme 21. Preparation of alkylidene Meldrum's acids 

4.3 - Scope of reaction 

With a broad range of starting materials available, the scope of the reaction was 

investigated.  All reactions were compared to the general case of the phenyl alkylidene 

Meldrum’s acid (S35), which was used for the initial optimization reactions.  In general the 

reaction was found to be sensitive to electronics, as electron donating groups (EDG) 

deactivated the alkylidene to addition and electron withdrawing groups (EWG) activated the 

alkylidene to generally give higher conversions. 

4.3.1 ‐ Effect of halogen substitution 
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The effect of halogen substitution was investigated for the substrates listed in Figure 13.  

Conversions of 66% and 60% were observed for the 4- and 3-fluoro substituted benzylidene 

Meldrum’s acids (S46 and S47), respectively.  This appears to be in contradiction to the 

activation that each substituent would have on the alkylidene.  Based on published38 σ-values 

one would expect the 3-F (σ = 0.34) to be more activating and thus give higher conversions 

compared to the 4-F (σ = 0.06).  This was not the case, and the discrepancies in conversion may 

be due to differences in solubility of each substrate.  The low conversion of the 2-F substrate 

S48 can likely be attributed to steric factors, as a substituent in the ortho position of the phenyl 

ring would likely cause steric interference on the approaching nucleophile. 

 In terms of ee the results suggested that F substitution in the 2- and 3- positions had 

little effect and good ee's of about 90% were achieved in each case.  Substitution with fluoride 

in the 4-position on the other hand deteriorates the ee relative to the 2- and 3- substituted 

variants, with a maximum ee of 83% being observed. 

 
Figure 13. Effect of halogen substitution on conversion 

All of the 4-Cl (σ = 0.23), 3-Cl (σ = 0.37), and the 4-CF3 (σ = 0.54) S49 – S51 gave 

lower conversions than their σ values would suggest.  In all three cases this can likely be 
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attributed to the low solubility of the starting material, which slows the reaction, and results in 

less conversion. 

4.3.2 ‐ Effect of phenol and protected phenols substitution 
 
 It was with the various protected and unprotected phenols that the effect of electronics 

was most pronounced (Figure 15).  The 4-phenol and its protected variants, S52 and S53 

(Figure 15) have σ values38 of -0.27, and -0.37, respectively.  Values in this range suggest that a 

large amount of electron donation is occurring (shown in Figure 14).  This electron donation 

may be increasing the electron density at the electrophilic site of the Meldrum’s acid, thereby 

decreasing its reactivity towards nucleophiles.  This decrease in reactivity can be seen in the 

conversions of the para-substituted phenol derivatives, which in all cases gave less than 20% 

conversion. 

 

Figure 14. Effect of resonance on reactivity of Meldrum's alkylidene 

 Simply moving the phenolic oxygen from the para to the meta position drastically 

changed the observed conversions from under 20% to over 98% in all cases investigated.  This 

drastic increase in conversion can be rationalized through the σ values38 (0.12) of the meta-

phenols (S54 – S56).  When the phenolic oxygen is moved from the 4- to the 3- position, the 

electrons cannot be delocalized into the Meldrum’s alkylidene through resonance, and the 

inductive effects of the oxygen dominate.  This results in less electron density about the 

alkylidene; increasing its reactivity to nucleophiles and resulting in higher conversions.  In the 

cases of the S54, S55 and S56 high ee’s were obtained regardless of protecting group, though 
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the unprotected phenol gave the highest ee of 97%, followed by the MeO with an ee of 91% 

and the OTIPS with an ee of 89%. 

 
Figure 15. Phenolic substrates and the effect of substitution 

The pivaloate-protected phenols, S57 and S58 gave complete conversion in both the 

meta and para positions.  A similar reasoning to that above can be used to rationalize the 

conversion of the meta-pivaloate-protected phenol S58.  Interestingly the para-Piv protected 

phenol S57 gives complete conversion.  This can be attributed to the new resonance form 

available (Figure 16).  This change in resonance pattern decreases the amount of electron 

density present at the reacting carbon on the alkylidene Meldrum’s acid, thereby increasing its 

electrophilicity and thereby the conversion. 
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Figure 16. Resonance forms of Piv protected phenol 

 In conjunction with all of the various phenols, the meta- and para-substituted methyl 

esters, S59 and S60, gave complete conversions and ee’s of 85% and 84%, respectively.  The 

reaction was also compatible with meta-boron substituent S61, but no reaction was observed 

for the para-substituted analogue S62.  This further supports the electronics argument made 

previously (page 30).  The mild reaction conditions allow for numerous substituents to be 

tolerated, from unprotected phenol, to silyl substituents to boronic ester.  High conversions and 

ee’s were typically attained when groups were present in electron withdrawing positions.  

Groups that can be considered electron donating to the reaction centre (para-substituted phenol 

derivatives) gave low conversions. 

4.3.3 ‐ Effect of carbon substitution 

 Under the standard conditions various alkylidene Meldrum’s acids containing carbon 

substituents were investigated (Figure 17).  The reaction was tolerant of the 2-naphthyl 

substituent S63, yielding 80% conversion and an exceptional ee of 99%.  1-Naphthyl, S64, on 

the other hand gave no conversion, and only starting material was observed.  The lack of 

conversion can likely be attributed to the increased steric bulk that would be found at the 
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reacting centre of the alkylidene Meldrum’s acid.  The less than optimal conversion of S63 

(which is similar in size and electronics to the plain phenyl) can be attributed to low solubility 

of the starting material.  The reaction was also compatible with 3- and 4-methyl substituted 

benzylidene Meldrum’s acids, S65 and S66.  The difference in conversion between the two 

substituents can’t be fully rationalized, other than to say that based on other results the system 

appears to be more tolerant of substitution in the meta- position.  Both S55 and S56 have 

excellent ee’s of 98%, suggesting that the ligand can easily differentiate between both 

substituents regardless of the position of the substitution.  Unlike the fluoro derivatives, the 

ortho-methyl substituent S67, did not give any conversion, and only starting material was 

observed.  This was precedented by other work in our group, where it was found that ortho 

substitution decreases conversion.32 This is presumably due to the increased sterics that are 

present at the reaction centre of the electrophile, making it inaccessible to the approaching 

nucleophile.  The reaction was also very tolerant of the 4-t-butyl substitution S68, which gave 

nearly complete conversion, and excellent ee of 94%.  It was surprising to find that substrate 

S69, gave conversions of only 50%, as one would expect similar reactivities to those of the 

plain phenyl and naphthyl substrates. 



34 
 

 

Figure 17. Effect of Carbon Substitution 

4.3.4 ‐ Non-aryl substituted alkylidenes 

 With the exception of the isopropyl alkylidene S70, it was found that non-aryl 

substituted alkylidenes (Figure 18) gave little to no conversion, and in most cases resulted in 

recovery of starting materials.  The isopropyl derivative S70 gave a conversion greater than 

95%, with a modest ee of 74%.  The furyl and thiophenyl alkylidenes likely have higher 

electron densities at the electrophilic centre of the alkylidene decreasing their reactivity (see 

ref. 36 for other examples), and as such resulted  in no conversions. 
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Figure 18. Non-aryl containing alkylidenes 

4.3.5 ‐ Quaternary carbon centres 
 
 At the outset of the project it was hoped that the highly activated nature of the 

alkylidene Meldrum’s acid would allow for the conjugate addition of the Rh-alkynilides to 

yield quaternary carbon centres.  In the past, our group has had success with similar additions, 

wherein diethyl32 and dimethyl34 zinc was successfully added to disubstituted alkylidene 

Meldrum’s acids.  It was decided that quaternary alkylidenes that were successful for the 

diethylzinc reactions would be tried under these conditions (Figure 19). 

 
Figure 19. Attempts at the formation of quaternary carbon centres 

 As can be seen in Figure 19, regardless of the alkylidene, no conversion to any product 

was observed.  It seems that the sterics or electronics of the alkylidene were too demanding for 

the Rh-alkynye to add. 
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4.4 ‐ Changing the terminal alkyne 
 
 In conjunction with investigating the scope of the reaction with respect to various 

alkylidene Meldrum’s acids, the investigation of various terminal alkynes was also undertaken.  

Using standard conditions and phenyl alkylidene Meldrum’s acid as the standard substrate, 

several terminal alkynes were investigated and the results are summarized in Figure 20. 

 
Figure 20. Scope of the source of terminal alkyne 

Unfortunately, regardless of the terminal alkyne tested, none gave appreciable 

conversion.  Using ethyl propiolate or TMS-propyne as terminal alkyne gave no conversion, 

and only starting material was observed.  Slightly better conversion was observed for the less 

electron rich variants yielding products 71, 72, and 73 all in less than 20% conversion.  It can 

thus be concluded that only the silyl acetylene variants give appreciable conversion.   
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4.5 ‐ Transformations of products 

4.5.1 ‐ Deprotection of alkyne 
 
 With a broad scope of substrates investigated the next step was to investigate whether 

the alkynyl Meldrum’s product 35 could be deprotected to yield the unprotected terminal 

alkyne.  The deprotection was easily achieved (Scheme 22), by simply stirring the product with 

10 eq of TBAF to yield deprotected product, 75 in 83% yield. 

 
Scheme 22. Deprotection of alkyne 

4.5.2 ‐ Sonogashira coupling 
 
 With a simple and effective method for the deprotection of the TMS-alkyne in hand, 

chemistry was undertaken to use the newly formed terminal alkyne as a handle for further 

chemistry.  Standard Sonogashira conditions using high temperature and amine solvent yielded 

decomposition of the starting Meldrum’s alkylidene with no sign of the coupled product.   

 As it is well known within our group, the products of the conjugate addition tend not be 

heat stable, and as such a low temperature variant of the Sonogashira coupling was needed.  By 

slightly modifying a known literature procedure for low temperature coupling39, the coupled 

Sonogashira product was successfully isolated in modest yield and without loss of ee (Scheme 

23). 
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Scheme 23. Low temperature Sonogashira coupling 

 This transformation also allowed for the determination of the absolute stereochemistry 

of the products, as chiral product 76 is a known compound.25  It was found that the ‘S’ 

enantiomer of the ligand gives the ‘R’ enantiomer of the product. 

4.6 ‐ Potential commercial application 
 
 The control of diseases such as diabetes and dyslipidemia is of major interest to 

pharmaceutical companies.  Recently Amgen has released several patents for small molecules 

(Figure 21) known to be effective at binding to GPR-40 receptor, giving potential drug targets 

of high importance.40 

 

Figure 21. GPR-40 antagonists patented by Amgen in past 4 years 

The current synthesis of these products is shown in Scheme 24, with a key step being 

the chiral resolution of the racemic mixture to yield the desired enantiomer.  These chiral 
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resolutions are not desirable as they result in the loss of 50% of product thus increasing cost 

and waste.   

 

Scheme 24. Amgen synthesis of GPR-40 receptor analogue 

It is being proposed that the chemistry discussed in this thesis could be applied to form 

the product illustrated in Figure 21, without the need for chiral resolution.  A proposed 

synthesis is shown in Scheme 25.  The main difference for this pathway would be the need to 

deprotect the silyl-protected alkyne followed by subsequent methylation of the newly formed 

terminal alkyne. 
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Scheme 25. Proposed synthesis of GRP-40 receptors 



41 
 

 

5 - Conclusion 
 
 The successful development and optimization of the first chiral conjugate addition of 

TMS-acetylene (36) was performed.  The scope of the reaction was investigated and found to 

be general for substrates containing electron neutral or electron withdrawing groups.  Further 

transformations were performed on the chiral products and the absolute stereochemistry was 

determined.  A family of recently patented biologically active compounds was also identified 

for which this chemistry may be of substantial use. 
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Figure 22.  Starting materials used 
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6 - Experimental Section 
 
General Considerations: 
Reactions: 
All reactions were performed in flame- or oven-dried glassware under a nitrogen 

atmosphere unless indicated otherwise. DME was distilled from Na/benzophenone and stored 

in a Schlenk flask in a nitrogen glove box.  THF was obtained from a solvent purification 

system based on the published procedure.41 Molecular sieves were activated by heating in an 

oven overnight (135 °C, 16h), and stored in a glove box.  Known alkylidene Meldrum’s acids 

were prepared by Knoevenagel condensation of the corresponding aldehydes with Meldrum’s 

acid.42 Unless indicated otherwise, all other reagents were used as received from commercial 

sources. Reactions were monitored by thin-layer chromatography and visualized by UV and/or 

by staining with ceric ammonium molybdate. 

Characterization: 

1H and 13C NMR spectra for all compounds were obtained in CDCl3 at 300 MHz and 75 MHz, 

respectively. Chemical shifts are reported in parts per million (ppm, δ). Proton spectra were 

calibrated to residual CHCl3 (7.24 ppm); carbon spectra were calibrated to CDCl3 (77.0 ppm).  

Carbon multiplicities (C, CH, CH2, CH3) were determined by combined DEPT 90/135 

experiments.  Prior to measurement, some adducts were converted into the corresponding 

anilides: 5 mg of adduct was heated in 0.55 ml of DMF/aniline (10:1) at 100 °C for 1 h, cooled 

to 23 °C, the reaction mixture was extracted with Et2O and washed three times with 1 M HCl, 

the organic phase was filtered through a plug of silica gel, eluted with hexane/EtOAc 4:1 to 

give the pure anilide.25  Chiral HPLC analyses were performed using a Chiralcel ODH, or AD-
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H column. High resolution mass spectrometry was performed at the University of Waterloo 

Mass Spectrometry facility. Melting points are uncorrected. 

Preparation of Alkylidene Meldrum’s Acids – General Procedure A.  All known and 

unknown alkylidene Meldrum’s acids were prepared according to the literature  procedures.42  

Into a flamed dried round-bottom flask (RBF) equipped with magnetic stir bar was added the 

desired aldehyde (30.0 mmol, 1.2 equiv.), Meldrum’s acid (3.6 g, 25.0 mmol, 1 equiv.) and dry 

benzene (distilled from Na/benzophenone, 125 mL, 0.2 M).  To this solution was added 2.5 mL 

of a 0.5 mM solution of pyrrolidinium acetate in benzene (prepared by dropwise addition of 

AcOH to pyrrolidine in benzene, 2.5 mmol, 10 mol %) at room temperature.  The RBF was 

capped with a rubber septa and placed in a preheated oil bath at 50 °C for 24 h.  After 24 h, the 

RBF was removed from the heat and the suspension was filtered eluting with MeOH.  The 

precipitate was discarded, and the mother liquor was concentrated to dryness in vacuo.  The 

resulting solid was purified by recrystallization from MeOH. 

Conjugate Addition of TMS-acetylene to Alkylidene Meldrum’s Acids – General 

Procedure B.  In a glove box, a 3 mL oven dried conical vial equipped with a magnetic spin 

vane was charged with hydroxy(1,5-cyclooctadiene)rhodium(I) dimer (7.5 mol % Rh), (S)-(-)-

2,2'-Bis[di(3,5-xylyl)phosphino]-6,6'-dimethoxy-1,1'-biphenyl (16 mol %), and dry DME 

(distilled from Na/benzophenone, 125 µL, 0.6 M).  This solution was then heated in a 50 °C oil 

bath for 5 min.  In a glove box, to the resulting red-orange solution was added 6 mg of 4 Å 

molecular sieves, alkylidene Meldrum’s acid (0.075 mmol, 1.0 equiv.), and TMS-acetylene (53 

µL, 0.325 mmol, 5 equiv.).  The conical vial was capped and removed from the glove box and 

stirred at room temperature for 66 h.  Concentration and purification by flash chromatography 

on silica gel gave the pure products. 
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Preparation of racemates.  To a flame dried RBF equipped with a magnetic stir bar was added 

5 mL of dry THF under a nitrogen atmosphere.  The THF was cooled to -78 °C, and TMS-

acetylene (80 µL, 0.56 mmol, 1.1 equiv.) was added followed by the slow addition of n-BuLi 

(2.5 M solution, 0.2 mL, 0.51 mmol, 1.0 equiv.).  This was allowed to stir at -78 °C for 5 min 

and a solution of the desired alkylidene Meldrum’s acid (0.51 mmol, 1.0 equiv.) in 5 mL of dry 

THF was added dropwise.  The mixture was allowed to stir from -78 °C to -10 °C for 4 hours.  

The reaction was diluted with EtOAc (5 mL), and quenched with aqueous NH4Cl (5 mL, 

saturated).  The organic phase was washed 2x with water and 1x with brine.  The organic phase 

was then concentrated, and the resulting solid purified either by recrystallization from MeOH 

or by flash chromatography. 

Starting materials used that were not previously characterized 

2,2-Dimethyl-5-(2-methylbenzylidene)-1,3-dioxane-4,6-dione (S67) 

 

Following general procedure A, alkylidene Meldrum’s acid was purified by recrystallization 

from methanol to give 54% (3.3 g) of S67 an off white solid. M.p. 133-136 °C; 1H NMR (300 

MHz, CDCl3)  8.68 (s, 1H), 7.67 (d, J = 7.8 Hz, 1H), 7.37 (t, J = 7.4 Hz, 1H), 7.26-7.19 (m, 

2H), 2.40 (s, 3H), 1.80 (s, 6H); 13C NMR (75 MHz, CDCl3)  162.6 (C), 159.4 (C), 157.2 (CH), 

139.2 (C), 132.4 (CH), 131.4 (C), 130.5 (CH), 130.2 (CH), 125.7 (CH), 116.2 (C), 104.7 (C), 

27.7 (CH3), 20.2 (CH3); HRMS (EI) m/z calcd for C14H14O4 (M+): 246.0892.  Found: 246.0896. 
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2,2-Dimethyl-5-(3-methylbenzylidene)-1,3-dioxane-4,6-dione (S65) 

 

Following general procedure A, alkylidene Meldrum’s acid was purified by recrystallization 

from methanol to give 85% (5.2 g) of S65 an off white solid. M.p. 72-73 °C; 1H NMR (300 

MHz, CDCl3)  8.36 (s, 1H), 7.83-7.80 (m, 2H), 7.34 (d, J = 4.2 Hz, 2H), 2.37 (s, 3H), 1.78 (s, 

6H); 13C NMR (75 MHz, CDCl3)  163.2 (C), 159.7 (C), 158.3 (CH), 138.4 (C), 134.5 (CH), 

134.0 (CH), 131.6 (C), 130.7 (CH), 128.5 (CH), 114.5 (C), 104.4 (C), 27.5 (CH3), 21.2 (CH3); 

HRMS (EI) m/z calcd for C14H14O4 (M+): 246.0892.  Found: 246.0891. 

2,2-Dimethyl-5-(4-(triisopropylsilyloxy)benzylidene)-1,3-dioxane-4,6-dione  

 

Following general procedure A, alkylidene Meldrum’s acid was purified by recrystallization 

from methanol to give 70% (2.3 g) of a yellow solid. M.p. 67-69 °C; 1H NMR (300 MHz, 

CDCl3)  8.34 (s, 1H), 8.16 (d, J = 8.8 Hz, 2H), 6.92 (d, J = 8.8 Hz, 2H), 1.76 (s, 6H), 1.25 

(septet, J = 7.3 Hz, 3H), 1.09 (d, J = 7.2 Hz, 18H); 13C NMR (75 MHz, CDCl3)  164.1 (C), 

162.2 (C), 157.9 (CH), 137.7 (CH), 124.9 (C), 120.2 (CH), 110.6 (C), 104.1 (C), 27.4 (CH3), 

17.8 (CH), 12.7 (CH); HRMS (EI) m/z calcd for C22H32O5Si (M+): 404.2019.  Found: 404.2024. 
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3-((2,2-Dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)methyl)phenyl pivalate (S58) 
 

 
 

Following general procedure A, alkylidene Meldrum’s acid was purified by recrystallization 

from methanol to give 56% (2.8 g) of S58 an off white solid. M.p. 86 - 90 °C; 1H NMR (300 

MHz, CDCl3)  8.36 (s, 1H), 7.86–7.83 (m, 2H), 7.47 (t, J = 8.2 Hz, 1H), 7.25 (d, J = 9.1 Hz, 

1H), 1.78 (s, 6H), 1.33 (s, 9H); 13C NMR (75 MHz, CDCl3)  176.8 (C), 163.0 (C), 159.4 (C), 

156.6 (CH), 151.0 (C), 132.8 (C), 131.1 (CH), 129.5 (CH), 126.8 (CH), 126.0 (CH), 115.5 (C), 

104.6 (C), 39.0 (C), 27.5 (CH3), 27.0 (CH3); HRMS (EI) m/z calcd for C18H20O6 (M+): 

332.1260.  Found: 332.1271. 

4-((2,2-Dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)methyl)phenyl pivalate (S57) 
 

 
 

Following general procedure A, alkylidene Meldrum’s acid was purified by recrystallization 

from methanol to give 42% (4.2 g) of S57 a pale yellow solid. M.p. 88 - 90 °C; 1H NMR (300 

MHz, CDCl3) 8.35 (s, 1H), 8.13 (d, J = 8.8 Hz, 2H), 7.17 (d, J = 8.7 Hz, 2H), 1.77 (s, 6H), 1.34 

(s, 9H); 13C NMR (75 MHz, CDCl3) 176.1 (C), 163.2 (C), 159.7 (C), 156.8 (CH), 155.2 (C), 

135.6 (CH), 128.9 (C), 121.8 (CH), 114.1 (C), 104.4 (C), 39.1 (C), 27.5 (CH3), 26.9 (CH3); 

HRMS (EI) m/z calcd for C18H20O6 (M+): 332.1260.  Found: 332.1259. 
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Methyl 3-((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)methyl)benzoate (S60) 

 

Prepared with slight modification of general procedure A.  Reaction was performed on a 3.0 

mmol scale and alkylidene Meldrum’s acid was purified by aqueous workup with saturated 

sodium bicarbonate followed by recrystallization from methanol to give 15% (0.13 g) of S60 

off white solid. M.p. 108-109 °C; 1H NMR (300 MHz, CDCl3)  8.50 (s, 1H), 8.38 (s, 1H), 8.19 

(d, J = 7.9 Hz, 1H), 8.13 (d, J = 7.8 Hz, 1H), 3.89 (s, 3H), 1.76 (s, 6H); 13C NMR (75 MHz, 

CDCl3)  165.8 (C), 162.6 (C), 159.3 (C), 156.5 (CH), 136.6 (CH), 134.2 (CH), 133.8 (CH), 

131.8 (C), 130.6 (C), 128.7 (CH), 116.0 (C), 104.7 (C), 52.3 (CH3), 27.6 (CH3); HRMS (EI) 

m/z calcd for C15H14O6 (M+): 290.0790.  Found: 290.0795. 

2,2-dimethyl-5-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzylidene)-1,3-dioxane-
4,6-dione (S62)  

 

Following general procedure A, but performed on a 10 mmol scale, alkylidene Meldrum’s acid 

was purified by recrystallization from methanol to give 85% (3.0 g) of S62 an off white solid. 

M.p. 94-95 °C; 1H NMR (300 MHz, CDCl3)  8.45 (s, 1H), 8.31 (d, J = 8.0 Hz, 1H), 8.24 (s, 

1H), 7.95 (d, J = 7.2 Hz, 1H), 7.47 (t, J = 7.6 Hz, 1H), 1.79 (s, 6H), 1.33 (s 12H); 13C NMR (75 

MHz, CDCl3)  163.2 (C), 159.7 (C), 158.4 (CH), 140.8 (CH), 139.8 (CH), 135.2 (CH), 131.1 
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(C), 128.1 (CH), 114.7 (C), 104.5 (C), 84.2 (C), 27.6 (CH3), 24.8 (CH3); HRMS (EI) m/z calcd 

for C19H23BO6 (M+): 358.1588.  Found: 357.1628. 

2,2-dimethyl-5-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzylidene)-1,3-dioxane-
4,6-dione (S61) 

 

Following general procedure A, alkylidene Meldrum’s acid was purified by recrystallization 

from methanol to give 72% (2.8 g) of S61 an off white solid. M.p. 167-169 °C; 1H NMR (300 

MHz, CDCl3) 8.41 (s, 1H), 7.93 (d, J = 7.9 Hz, 2H), 7.86 (d, J = 7.6Hz, 2H), 1.79 (s, 6H), 

1.33(s, 12H); 13C NMR (75 MHz, CDCl3)  163.8 (C), 159.4 (C), 157.9 (CH), 134.8 (CH), 133.8 

(C), 132.0 (CH), 115.5 (C), 104.6 (C), 84.2 (C), 27.6 (CH3), 24.8 (CH3); HRMS (EI) m/z calcd 

for C19H26BO6 (M+): 358.1588.  Found: 357.1625. 

5-(biphenyl-4-ylmethylene)-2,2-dimethyl-1,3-dioxane-4,6-dione (S69) 

 

Following general procedure A, alkylidene Meldrum’s acid was purified by recrystallization 

from methanol to give 53% (4.1g) of S69 a yellow solid. M.p. 141 - 146°C; 1H NMR (300 

MHz, CDCl3)  8.44 (s, 1H), 8.16 (d, J = 8.4 Hz, 2H), 7.70 (d, J = 8.4 Hz, 2H), 7.63 (d, J = 7.0 

Hz, 2H), 7.49 – 7.39 (m, 3H), 1.80 (s, 6H); 13C NMR (75 MHz, CDCl3)  163.3 (C), 159.9 (C), 

157.5 (CH), 146.4 (C), 139.3 (C), 134.5 (CH), 130.5 (C), 128.9 (CH), 128.5 (CH), 127.2 (CH), 
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114.0 (C), 104.4 (C), 27.5 (CH3); HRMS (EI) m/z calcd for C19H16O4 (M+): 308.1049.  Found: 

308.1044. 

5-(3-fluorobenzylidene)-2,2-dimethyl-1,3-dioxane-4,6-dione (S47) 
 

 
 

Following general procedure A, alkylidene Meldrum’s acid was purified by recrystallization 

from methanol to give 64% (4.8 g) of S47 a white solid. M.p. 117 - 119 °C; 1H NMR (300 

MHz, CDCl3)  8.34 (s,1H), 7.88 (d, J = 10.0 Hz, 1H), 7.68 (d, J = 7.8 Hz, 1H), 7.47-7.39 (m, 

1H), 7.27 – 7.21 (m, 1H) 1.79 (s, 6H); 13C NMR (75 MHz, CDCl3) 162.9 (C), 162.3 (d, J = 

246.2 Hz, C), 159.3 (C), 156.3 (d, J = 2.5 Hz, CH), 148.3 (C), 133.4 (C), 130.2 (d, J = 8.2 Hz, 

CH), 129.7 (CH), 120.5 (d, J = 21.2 Hz, CH), 119.3 (d, J = 23.3 Hz, CH), 116.1 (C), 104.8 (C), 

27.7 (CH3); HRMS (EI) m/z calcd for C13H11FO4 (M+): 250.0641.  Found: 250.0639. 

5-(4-fluorobenzylidene)-2,2-dimethyl-1,3-dioxane-4,6-dione (S46) 
 

 
 

Following general procedure A, alkylidene Meldrum’s acid was purified by recrystallization 

from methanol to give 58% (4.4 g) of S46 a white solid. M.p. 139 - 140 °C; 1H NMR (300 

MHz, CDCl3)  8.36 (s, 1H), 8.17 – 8.11 (m, 2H), 7.14 (t, J = 8.6 Hz, 2H) 1.78 (s, 6H); 13C 

NMR (75 MHz, CDCl3) 165.7 (d, J = 257.5 Hz, C), 163.2 (C), 159.8 (C), 156.7 (CH), 136.8 (d, 

J = 9.4 Hz, CH), 128.0 (d, J = 3.1 Hz, C), 116.1 (d, J = 21.8 Hz, CH), 114.1 (C), 104.6 (C), 

27.6 (CH3); HRMS (EI) m/z calcd for C13H11FO4 (M+): 250.0641  Found: 250.0649. 
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Product Specific Information 

(R)-2,2-Dimethyl-5-(1-phenyl-3-(trimethylsilyl)prop-2-ynyl)-1,3-dioxane-4,6-dione (35) 
 

 
 

Prepared according to general procedure B.  Purification by flash chromatography (1:4 then 1:1 

EtOAc:hexanes) gave 89% (22 mg) of 35 as an off white solid. M.p. 92 – 94 °C (racemate), 

102 – 105 °C (chiral);  1H NMR (300 MHz, CDCl3)  7.51 (d, J = 7.3 Hz, 2H), 7.35-7.23 (m, 

3H), 4.90 (d, J = 1.7 Hz, 1H), 3.86 (d, J = 2.4 Hz, 1H), 1.70 (s, 3H), 1.62 (s, 3H), 0.17 (s, 9H);  

13C NMR (75 MHz, CDCl3) 163.9 (C), 163.0 (C), 136.8 (C), 128.5 (CH), 128.4 (CH), 127.7 

(CH), 105.2 (C), 102.4 (C), 90.7 (C), 52.7 (CH), 37.4 (CH), 28.4 (CH3), 27.9 (CH3), -0.17 

(CH3); An enantiomeric excess of 98% (R) was measured by chiral HPLC (AD-H, 1% i-

PrOH/hexanes, 0.75 mL/min, tR1 = 18.0 min (minor), tR2 = 22.3 min (major)). HRMS (EI) m/z 

calcd for C18H22O4Si (M+-acetone): 272.0947.  Found: 272.0869. 

5-(1-(2-fluorophenyl)-3-(trimethylsilyl)prop-2-ynyl)-2,2-dimethyl-1,3-dioxane-4,6-dione 
(48) 

 
 

Purification by flash chromatography (1:3 EtOAc:hexanes) gave 31% (8.1 mg) of 48 a white 

solid. M.p. 119 - 120 °C (racemate), 113 – 116 °C (chiral);  1H NMR (300 MHz, CDCl3)  7.85 

(t, J = 7.2 Hz, 1H), 7.29-7.17 (m, 2H), 7.03 – 6.97 (m, 1H), 5.12 (d, J = 2.4 Hz, 1H), 3.93 (t, J 

= 2.4 Hz, 1H), 1.76 (s, 3H), 1.72 (s, 3H), 0.17 (s, 9H) 13C NMR (75 MHz, CDCl3) 164.2 (C), 

162.5 (C), 159.8 (d, J = 243.3 Hz, C), 132.0 (d, J = 3.4 Hz, CH), 129.5 (d, J = 8.3 Hz, CH), 

124.2 (d, J = 3.2 Hz, CH), 124.0 (C), 114.8 (d, J = 21.1 Hz, CH), 105.1 (C), 100.6 (C), 91.8 
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(C), 50.6 (d, J = 2.3 Hz, CH), 32.1 (d, J = 2.9 Hz, CH), 28.5 (CH3), 27.7 (CH3), -0.18 (CH3) ;  

Enantiomeric excess of 90% was determined, after conversion into the corresponding anilide 

following a litterateur procedure25, using chiral HPLC (OD, 10% i-PrOH/hexanes, 1.0 mL/min, 

tR1 = 7.61 min (major), tR2 = 10.52 min (minor)).  HRMS (EI) m/z calcd for C18H21FO4Si (M+ - 

methyl): 348.1193.  Found: 333.0958. 

5-(1-(3-fluorophenyl)-3-(trimethylsilyl)prop-2-ynyl)-2,2-dimethyl-1,3-dioxane-4,6-dione 
(47) 
 

 
 
Purification by flash chromatography (1:3 EtOAc:hexanes) gave 51% (13.3 mg) of 47 a white 

solid. M.p. 108 - 110 °C (racemate), 115 – 117 °C (chiral);  1H NMR (300 MHz, CDCl3)  7.29 

– 7.24 (m, 3H), 6.96 – 6.94 (m, 1H), 4.92 (d, J = 2.4 Hz, 1H), 3.86 (d, J = 2.6 Hz, 1H), 1.71 (s, 

3H), 1.67 (s, 3H), 0.17 (s, 9H); 13C NMR (75 MHz, CDCl3) 163.7 (C), 162.9 (C), 162.7 (d, J = 

244.6 Hz, C), 139.3 (d, J = 7.4 Hz, C), 129.9 (d, J = 8.1 Hz, CH), 124.0 (d, J = 2.9 Hz, CH), 

116.0 (d, J = 22.7 Hz, CH), 114.7 (d, J = 20.9 Hz, CH), 105.3 (C), 101.7 (C), 91.2 (C), 52.6 

(CH), 37.0 (CH), 28.4 (CH3), 27.8 (CH3), -0.19 (CH3); An enantiomeric excess of 85%  was 

measured by chiral HPLC (AD, 1.0% i-PrOH/hexanes, 1.0 mL/min, tR1 = 17.7 min (major), tR2 

= 19.9 min (minor)).  HRMS (EI) m/z calcd for C18H21FO4Si (M+ - acetone): 290.0774.  Found: 

290.0772. 
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5-(1-(4-fluorophenyl)-3-(trimethylsilyl)prop-2-ynyl)-2,2-dimethyl-1,3-dioxane-4,6-dione 
(46) 
 

 

Purification by flash chromatography (1:3, 1:1 EtOAc:hexanes) gave 54% (14.1 mg) of 46 a 

yellow solid. M.p. 104 -105 °C (racemate), 98 -102 °C (chiral);  1H NMR (300 MHz, CDCl3)  

7.51 – 7.46 (m, 2H), 7.00 (t, J = 8.6 Hz, 2H), 4.91 (d, J = 2.4 Hz, 1H), 3.83 (d, J = 2.7 Hz, 1H), 

1.70 (s, 3H), 1.64 (s, 3H), 0.17 (s, 9H); 13C NMR (75 MHz, CDCl3) 163.6 (C), 163.1 (C), 162.2 

(d, J = 245.3 Hz, C), 132.5 (d, J = 3.2 Hz, C), 130.5 (d, J = 8.1 Hz, CH), 115.3 (d, J = 21.4 Hz, 

CH), 105.2 (C), 102.4 (C), 90.8 (C), 52.8 (CH), 36.7 (C), 28.4 (CH3), 27.8 (CH3), -0.17 (CH3) ;  

An enantiomeric excess of 85%  was measured by chiral HPLC (AD, 1.0% i-PrOH/hexanes, 

1.0 mL/min, tR1 = 16.8 min (major), tR2 = 18.7 min (minor)).  HRMS (EI) m/z calcd for 

C18H21FO4Si (M+ - acetone): 290.0774.  Found: 290.0776 

(R)-5-(1-(3-Hydroxyphenyl)-3-(trimethylsilyl)prop-2-ynyl)-2,2-dimethyl-1,3-dioxane-4,6-
dione (54) 

 
 

Prepared according to general procedure B.  Purification by flash chromatography (1:3 

EtOAc:hexanes) gave 85% (22 mg) of 54 as a yellow oil;  1H NMR (300 MHz, CDCl3)  7.18 (t, 

J = 8.1 Hz, 1H), 7.03–7.01 (m, 2H), 6.74 (dd, J = 7.9, 2.0 Hz, 1H), 5.10 (very broad s, OH), 

4.88 (d, J = 2.5Hz, 1H), 3.87 (d, J = 2.6 Hz, 1H), 1.70 (s, 3H), 1.63 (s, 3H) 0.17 (s, 9H) 13C 

NMR (75 MHz, CDCl3)  163.9 (C), 163.2 (C), 155.6 (C), 138.6 (C), 129.7 (CH), 120.7 (CH), 

115.7 (CH), 114.8 (CH), 105.5 (C), 102.3 (C), 90.8(C), 52.6 (CH), 37.2 (CH), 28.4 (CH3), 27.8 
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(CH3), -0.13 (CH3);  Enantiomeric excess of 97% was determined, after conversion into the 

corresponding anilide25, using chiral HPLC (OD-H, 10% i-PrOH/hexanes, 1.0 mL/min, tR1 = 

10.5 min (major), tR2 = 13.9 min (minor)).  HRMS (EI) m/z calcd for C18H22O5Si (M+): 

346.1237.  Found: 346.1241. 

(R)-5-(1-(3-Methoxyphenyl)-3-(trimethylsilyl)prop-2-ynyl)-2,2-dimethyl-1,3-dioxane-4,6-
dione (55) 

 
 

Prepared according to general procedure B.  Purification by flash chromatography (1:3 

EtOAc:hexanes) gave 83% (22 mg) of 55 as a yellow solid. M.p. 101-105 °C (racemate), 100 - 

103 °C (chiral);  1H NMR (300 MHz, CDCl3)  7.29-7.26 (m, 1H), 7.16 (s, 1H), 7.09 (d, J = 7.6 

Hz, 1H), 6.84 (d, J = 8.1 Hz, 1H) 4.94 (d, J = 2.2 Hz, 1H), 3.91 (d, J = 2.6 Hz, 1H), 3.83 (s, 

3H), 1.73 (s, 3H), 1.67 (s, 3H), 0.21 (s, 9H);  13C NMR (75 MHz, CDCl3) 163.8 (C), 162.9 (C), 

159.4 (C), 138.3 (C), 129.3 (CH), 120.6 (CH), 114.2 (CH), 113.3 (CH), 105.1 (C), 102.3 (C), 

90.7 (C), 55.1 (CH3), 52.7 (CH), 37.4 (CH),  28.3 (CH3), 27.9 (CH3), -0.24 (CH3);  

Enantiomeric excess of 95% was determined, after conversion into the corresponding anilide25, 

using chiral HPLC (OD-H, 10% i-PrOH/hexanes, 1.0 mL/min, tR1 = 9.2 min (major), tR2 = 12.6 

min (minor)).  HRMS (EI) m/z calcd for C19H24O5Si (M+): 360.1393.  Found: 360.1389. 
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(R)-2,2-Dimethyl-5-(1-(3-(triisopropylsilyloxy)phenyl)-3-(trimethylsilyl)prop-2-ynyl)-1,3-
dioxane-4,6-dione (56) 
 

 
 

Prepared according to general procedure B.  Purification by flash chromatography (1:3 

EtOAc:hexanes) gave 77% (29 mg) of 56 as a clear oil;  1H NMR (300 MHz, CDCl3)  7.16–

7.12 (m, 2H), 6.96 (d, J = 7.5 Hz, 1H) 6.77 (d, J = 7.8 Hz, 1H) 4.88 (s, 1H), 3.86 (d, J = 2.2 Hz, 

1H), 1.69 (s, 3H), 1.61 (s, 3H), 1.21 (septet, J = 7.1Hz, 3H), 1.09 (d, J = 7.1 Hz, 18H), 0.16 (s, 

9H); 13C NMR (75 MHz, CDCl3)  163.8 (C), 163.0 (C), 156.0 (C), 138.1 (C), 129.2 (CH), 

120.7 (CH), 120.4 (CH), 119.3 (CH), 105.1 (C), 102.5 (C), 90.4 (C), 52.6 (CH), 37.3 (CH), 

28.4 (CH3), 27.9 (CH3), 17.9 (CH3), 12.6 (CH), -0.19 (CH3);  Enantiomeric excess of 89% was 

determined, after conversion into the corresponding anilide25, using chiral HPLC (OD-H, 10% 

i-PrOH/hexanes, 1.0 mL/min, tR1 = 4.8 min (major), tR2 = 5.9 min (minor)).  HRMS (EI) m/z 

calcd for C27H42O5Si2 (M+): 502.2571.  Found: 502.2580. 

(R)-3-(1-(2,2-Dimethyl-4,6-dioxo-1,3-dioxan-5-yl)-3-(trimethylsilyl)prop-2-ynyl)phenyl 
pivalate (58) 

 
 
Prepared according to general procedure B.  Purification by flash chromatography (1:3 

EtOAc:hexanes) gave 83% (27 mg) of 58 a yellow oil;  1H NMR (300 MHz, CDCl3)  7.40 (d, J 

= 7.8 Hz, 1H), 7.31 (t, J = 7.9 Hz, 1H), 7.19 (s, 1H), 6.96 (d, J = 7.9 Hz, 1H), 4.90 (d, J = 2.3 
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Hz, 1H), 3.89 (d, J = 2.6 Hz, 1H), 1.69 (s, 3H), 1.65 (s, 3H), 1.33 (s, 9H), 0.16 (s, 9H); 13C 

NMR (75 MHz, CDCl3) 176.9 (C), 163.8 (C), 162.8 (C), 150.9 (C), 138.5 (C), 129.2 (CH), 

125.8 (CH), 121.7 (CH), 120.9 (CH), 105.2 (C), 101.9 (C), 91.0 (C), 52.5 (CH), 39.0 (C), 37.0 

(CH), 28.4 (CH3), 27.7 (CH3), 27.0 (CH3), -0.24 (CH3);  Enantiomeric excess of 94% was 

determined, after conversion into the corresponding anilide25, using chiral HPLC (OD-H, 10% 

i-PrOH/hexanes, 1.0 mL/min, tR1 = 5.1 min (major), tR2 = 6.2 min (minor)).  HRMS (EI) m/z 

calcd for C23H30O6Si (M+-acetone): 372.1393.  Found: 372.1389. 

(R)-4-(1-(2,2-Dimethyl-4,6-dioxo-1,3-dioxan-5-yl)-3-(trimethylsilyl)prop-2-ynyl)phenyl 
pivalate (57) 

 
 

Prepared according to general procedure B.  Purification by flash chromatography (1:3 

EtOAc:hexanes) gave 86% (28 mg) of 57 a yellow oil;  1H NMR (300 MHz, CDCl3)  7.52 (d, J 

= 8.6 Hz, 2H), 6.99 (d, J = 8.6 Hz, 2H), 4.91 (d, J = 2.5 Hz, 1H), 3.87 (d, J = 2.6 Hz, 1H), 1.69 

(s, 3H), 1.63 (s, 3H), 1.32 (s, 9H), 0.16 (s, 9H); 13C NMR (75 MHz, CDCl3) 176.9 (C), 163.6 

(C), 162.9 (C), 150.5 (C), 134.0 (C), 129.8 (CH), 121.3 (CH), 105.1 (C), 102.3 (C), 90.5 (C), 

52.6 (CH), 39.0 (C), 36.7 (CH), 28.3 (CH3), 27.6 (CH3), 27.0 (CH3),  -0.22 (CH3);  

Enantiomeric excess of 93% was determined, after conversion into the corresponding anilide25, 

using chiral HPLC (OD-H, 10% i-PrOH/hexanes, 1.0 mL/min, tR1 = 7.6 min (major), tR2 = 8.5 

min (minor)).  HRMS (EI) m/z calcd for C23H30O6Si (M+-acetone): 372.1393.  Found: 

372.1397. 
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(R)-Methyl 4-(1-(2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-yl)-3-(trimethylsilyl)prop-2-
ynyl)benzoate (59) 
 

 
 
Prepared according to general procedure B.  Purification by flash chromatography (1:3 

EtOAc:hexanes) gave 80% (23 mg) of 59 as a white solid. M.p. 122 - 125 °C (racemate), 115 - 

120 °C (chiral);  1H NMR (300 MHz, CDCl3)  7.99 (d, J = 8.3 Hz, 2H), 7.59 (d, J = 8.3 Hz, 

2H), 4.98 (d, J = 2.5 Hz, 1H), 3.88 (app. s, 4H), 1.71 (s, 3H), 1.68 (s, 3H), 0.17 (s, 9H); 13C 

NMR (75 MHz, CDCl3) 166.6 (C), 163.5 (C), 162.7 (C), 141.9 (C), 129.6 (CH), 129.4 (C), 

128.5 (CH), 105.2 (C), 101.4 (C), 91.4 (C), 52.4 (CH), 52.0 (CH3), 37.2 (CH), 28.3 (CH3), 27.7 

(CH3), -0.29 (CH3);  An enantiomeric excess of 85%  was measured by chiral HPLC (AD-H, 

10% i-PrOH/hexanes, 1.0 mL/min, tR1 = 7.5 min (minor), tR2 = 8.3 min (major)).  HRMS (EI) 

m/z calcd for C20H24O6Si (M+-MeOH): 357.1158.  Found: 357.1156. 

(R)-Methyl 3-(1-(2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-yl)-3-(trimethylsilyl)prop-2-
ynyl)benzoate (60) 

 

Prepared according to general procedure B.  Purification by flash chromatography (1:3 

EtOAc:hexanes) gave 74% (22 mg) of 60 as an off white solid M.p. 105-106 °C (racemate), 

105-108 °C (chiral);  1H NMR (300 MHz, CDCl3) 8.12 (s, 1H), 7.94 (d, J = 7.8 Hz, 2H), 7.81 

(d, J = 7.8 Hz, 2H), 7.42 (t, J = 7.8 Hz, 1H), 4.97 (d, J = 2.4 Hz, 1H), 3.89-3.88 (m, 4H), 1.72 

(s, 3H), 1.70 (s, 3H), 0.18 (s, 9H); 13C NMR (75 MHz, CDCl3) 166.7 (C), 163.8 (C), 162.7 (C), 
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137.4 (C), 133.3 (CH), 130.2 (C), 129.2 (CH), 128.8 (CH), 128.5 (CH), 105.2 (C), 101.5 (C), 

91.6 (C), 52.5 (CH), 52.1 (CH3), 37.1 (CH), 28.4 (CH3), 27.7 (CH3), -0.29 (CH3);  

Enantiomeric excess of 84% was determined, after conversion into the corresponding anilide25, 

using chiral HPLC (OD-H, 10% i-PrOH/hexanes, 1.0 mL/min, tR1 = 5.2 min (major), tR2 = 13.7 

min (minor)).  HRMS(ESI) m/z calcd for C20H24O6Si (M+H)+: 389.1420. Found: 389.1412. 

(R)-2,2-Dimethyl-5-(1-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-3-
(trimethylsilyl)prop-2-ynyl)-1,3-dioxane-4,6-dione (62) 

 

Prepared according to general procedure B.  Purification by flash chromatography (1:3 

EtOAc:hexanes) gave 84% (29 mg) of 62 a clear oil; 1H NMR (300 MHz, CDCl3) 7.80–7.78 

(m, 2H), 7.70 (d, J = 7.3 Hz, 1H), 7.37 (t, J = 7.9 Hz, 1H), 4.93 (d, J = 2.3 Hz, 1H), 3.88 (d, J = 

2.6 Hz, 1H), 1.70 (s, 6H), 1.32 (s, 12H) 0.17 (s, 9H);  13C NMR (75 MHz, CDCl3)  164.3 (C), 

162.7 (C), 136.4 (C), 134.0 (CH), 133.9 (CH), 132.0 (CH), 127.9 (CH), 105.1 (C), 102.1 (C), 

91.3 (C), 83.8 (C), 52.8 (CH), 37.5 (CH), 28.5 (CH3), 27.9 (CH3), 24.9 (CH3), 24.9 (CH3), -

0.17 (CH3);  Enantiomeric excess of 92% was determined, after conversion into the 

corresponding anilide25, using chiral HPLC (OD-H, 10% i-PrOH/hexanes, 1.0 mL/min, tR1 = 

5.2 min (major), tR2 = 6.3 min (minor)).  HRMS(ESI) m/z calcd for C24H33BO6Si (M+H)+: 

457.2218. Found: 457.2216. 
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(R)-2,2-Dimethyl-5-(1-(naphthalen-2-yl)-3-(trimethylsilyl)prop-2-ynyl)-1,3-dioxane-4,6-
dione (63) 
 

 
 

Prepared according to general procedure B.  Purification by flash chromatography (1:3 

EtOAc:hexanes) gave 70% (20 mg) of 63 as a pale yellow solid. M.p. 127 – 129 °C (racemate), 

120 – 121 °C (chiral);  1H NMR (300 MHz, CDCl3)  7.98 (s, 1H), 7.83-7.81 (m, 3H), 7.65 (d, J 

= 8.4 Hz, 1H), 7.46 (d, J = 4.5 Hz, 1H), 7.45 (d, J = 2.4 Hz, 1H), 5.11 (d, J = 2.2 Hz, 1H), 3.97 

(d, J = 2.4 Hz, 1H), 1.69 (s, 3H), 1.63 (s, 3H), 0.21 (s, 9H);  13C NMR (75 MHz, CDCl3) 163.9 

(C), 163.0 (C), 134.2 (C), 133.1 (C), 132.7 (C), 128.0 (CH), 127.8 (CH), 127.5 (CH), 126.2 

(CH), 126.1(CH), 105.2 (C), 102.5 (C), 90.2 (C), 52.7 (CH), 37.5 (CH), 28.4 (CH3), 27.8 

(CH3), -0.10 (CH3) (2 overlapping carbons);  An enantiomeric excess of 99% was measured by 

chiral HPLC (AD-H, 1% i-PrOH/hexanes, 1.0 mL/min, tR1 = 21.0 min (major), tR2 = 24.2 min 

(minor)). HRMS (EI) m/z calcd for C22H24O4Si (M+): 380.1444.  Found: 380.1440. 

(R)-2,2-Dimethyl-5-(1-m-tolyl-3-(trimethylsilyl)prop-2-ynyl)-1,3-dioxane-4,6-dione (65) 
 

 
 

Prepared according to general procedure B.  Purification by flash chromatography (1:3 

EtOAc:hexanes) gave 72% (19 mg) of 65 as an off white solid. M.p. 103 - 105 °C (racemate), 

107 – 109 °C (chiral);  1H NMR (300 MHz, CDCl3)  7.33–7.29 (m, 2H), 7.24 – 7.19 (m, 1H), 

7.07 (d, J = 7.4 Hz, 1H), 4.90 (d, J = 2.4 Hz, 1H), 3.86 (d, J = 2.7 Hz, 1H), 2.32 (s, 3H), 1.70 

(s, 3H), 1.63 (s, 3H), 0.17 (s, 9H);  13C NMR (75 MHz, CDCl3) 164.0 (C), 163.0 (C), 138.0 (C), 
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136.7 (C), 129.1 (CH), 128.4 (CH), 128.3 (CH), 125.6 (CH), 105.1 (C), 102.5 (C), 90.6 (C), 

52.7 (CH), 37.4 (CH), 28.4 (CH3), 27.9 (CH3), 21.4 (CH3),  -0.17 (CH3);  An enantiomeric 

excess of 98% was measured by chiral HPLC (AD-H, 10% i-PrOH/hexanes, 0.5 mL/min, tR1 = 

17.1 min (minor), tR2 = 23.8 min (major)). HRMS (EI) m/z calcd for C19H24O4Si (M+-acetone): 

286.1025.  Found: 286.1022. 

(R)-2,2-Dimethyl-5-(1-p-tolyl-3-(trimethylsilyl)prop-2-ynyl)-1,3-dioxane-4,6-dione (66) 
 

 
 

Prepared according to general procedure B.  Purification by flash chromatography (1:3 

EtOAc:hexanes) gave 65% (17 mg) of 66 as a white solid. M.p. 110 - 112 °C (racemate), 114 - 

115 °C (chiral);  1H NMR (300 MHz, CDCl3)  7.39 (d, J = 7.9 Hz, 2H), 7.13 (d, J = 7.9 Hz, 

2H), 4.90 (d, J = 2.3 Hz, 1H), 3.86 (d, J = 2.7 Hz, 1H), 2.31 (s, 3H), 1.69 (s, 3H), 1.63 (s, 3H), 

0.17 (s, 9H);  13C NMR (75 MHz, CDCl3) 163.9 (C), 163.0 (C), 137.3 (C), 133.7 (C), 129.1 

(CH), 128.4 (CH), 105.1 (C), 102.7 (C), 90.3 (C), 52.7 (CH), 37.1 (CH), 28.3 (CH3), 27.8 

(CH3), 21.0 (CH3),  -0.15 (CH3);  An enantiomeric excess of 98%  was measured by chiral 

HPLC (AD-H, 10% i-PrOH/hexanes, 0.5 mL/min, tR1 = 20.9 min (major), tR2 = 23.8 min 

(minor)). HRMS (EI) m/z calcd for C19H24O4Si (M+-acetone): 286.1025.  Found: 286.1018. 
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(R)-5-(1-(4-tert-Butylphenyl)-3-(trimethylsilyl)prop-2-ynyl)-2,2-dimethyl-1,3-dioxane-4,6-
dione (68) 
 

 
 

Prepared according to general procedure B.  Purification by flash chromatography (1:3 

EtOAc:hexanes) gave 73% (21 mg) of 68 as a yellow solid. M.p. 91 - 96 °C (racemate), 93 - 95 

°C (chiral);  1H NMR (300 MHz, CDCl3)  7.43 (d, J = 7.4 Hz, 2H), 7.34 (d, J = 7.7 Hz, 2H), 

4.90 (s, 1H), 3.85 (s, 1H), 1.69 (s, 3H), 1.59 (s, 3H), 1.28 (s, 9H), 0.17 (s, 9H);  13C NMR (75 

MHz, CDCl3) 163.9 (C), 163.0 (C), 150.5 (C), 133.7 (C), 128.1 (CH), 125.4 (CH), 105.1 (C), 

102.7 (C), 90.3 (C), 52.7 (CH), 37.0 (CH), 34.4 (C),  31.2 (CH3), 28.4 (CH3), 27.8 (CH3),  -0.15 

(CH3);  An enantiomeric excess of 94%  was measured by chiral HPLC (AD-H, 1% i-

PrOH/hexanes, 1.0 mL/min, tR1 = 9.4 min (minor), tR2 = 10.6 min (major)).  HRMS (EI) m/z 

calcd for C22H30O4Si (M+-acetone): 328.1495.  Found: 328.1488. 

(S)-2,2-Dimethyl-5-(4-methyl-1-(trimethylsilyl)pent-1-yn-3-yl)-1,3-dioxane-4,6-dione (70) 
 

 
 
Prepared according to general procedure B.  Purification by flash chromatography (1:3 

EtOAc:hexanes) gave 85% (18 mg) of 70 as an off white solid. M.p. 70 – 74 °C (racemate), 72 

– 74 °C (chiral);  1H NMR (300 MHz, CDCl3)  3.59 (d, J = 2.8 Hz, 1H), 3.04 (dd, J = 10.4, 2.8 

Hz, 1H), 2.37 (octet, J = 6.6 Hz , 1H), 1.78 (s, 3H), 1.73 (s, 3H), 1.12 (d, J = 6.6 Hz, 3H),  0.97 

(d, J = 6.6 Hz, 3H) 0.09 (s, 9H);  13C NMR (75 MHz, CDCl3) 165.7 (C), 163.7 (C), 105.2 (C), 

104.3 (C), 89.0 (C), 47.3 (CH), 41.3 (CH), 30.1 (CH), 28.7 (CH3), 28.2 (CH3), 21.7 (CH3), 20.2 
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(CH3), -0.17 (CH3); Enantiomeric excess of 74% was determined, after conversion into the 

corresponding anilide following a literature procedure25, using chiral HPLC (OD-H, 10% i-

PrOH/hexanes, 1.0 mL/min, tR1 = 7.4 min (major), tR2 = 9.9 min (minor)). HRMS (EI) m/z 

calcd for C15H24O4Si (M+- CH3): 281.1209.  Found: 281.1212. 

 
(R)-2,2-Dimethyl-5-(1-phenylprop-2-ynyl)-1,3-dioxane-4,6-dione (71) 

 

 
 

To an RBF equipped with a magnetic spin vane was added phenyl alkylidene Melrum’s acid 

(240 mg, 0.72 mmol, 1.0 equiv.) and THF (100 mL, 0.0072M).  The solution was cooled in an 

ice bath and tetra-n-butylammonium fluoride (1.0 M solution, 7.2 mL, 7.2 mmol, 10 equiv) was 

added.  The mixture was allowed to warm to rt, and stirred for 2 h.  The crude mixture was 

diluted with ether and the organic phase washed with aqueous NH4Cl (20 mL, saturated), 

followed by water (3x 20 mL) gave a crude yellow oil.  Purification by flash chromatography 

(1:3 EtOAc:hexanes) gave  83% (154 mg) of 71 as a white solid. M.p. 117-121 °C (racemate), 

118 - 120 °C (chiral);  1H NMR (300 MHz, CDCl3)  7.54 (d, J = 7.3 Hz, 2H), 7.36 – 7.24 (m, 

3H), 4.94 (t, J = 2.5 Hz, 1H), 3.92 (d, J = 2.6 Hz, 1H), 2.42 (d, J = 2.6 Hz, 1H), 1.71 (s, 3H), 

1.59 (s, 3H);  13C NMR (75 MHz, CDCl3) 163.5 (C), 162.8 (C), 136.2 (C), 128.5 (CH), 128.4 

(CH), 127.9 (CH), 105.2 (C), 80.8 (C), 73.4 (CH), 52.5 (CH), 35.8 (CH), 28.2 (CH3), 27.4 

(CH3); HRMS (EI) m/z calcd for C15H14O4 (M+-acetone): 200.0998.  Found: 200.0466. 
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(R)-5-(1,3-Diphenylprop-2-ynyl)-2,2-dimethyl-1,3-dioxane-4,6-dione (72) 
 

 
 

Prepared by modification of literature procedure.43  Under an argon atmosphere, an oven dried 

resealable Schlenk tube was charged with iodobenzene (40 µL, 0.38 mmol, 1.0 equiv.), cuprous 

iodide (22 mg, 0.11 mmol, 0.28 equiv.), tetra-n-butylammonium iodide (280.7 mg, 0.76 mmol, 

2 equiv.), phenol (71.5 mg, 0.76 mmol, 2.0 equiv.), DMF (4 mL, 0.1 M), diisopropylamine (0.2 

mL) were added.  The mixture was degassed by three freeze pump thaw cycles.  Then 

Pd2(dba)3·(CHCl3) (9.8 mg, 0.009 mmol, 2 mol %) was added and the mixture was stirred at 

room temperature for 5 min.  The mixture was cooled to -5 °C, and the deprotected alkylidene 

Meldrum’s acid (72) (98 mg, 0.38 mmol, 1 equiv) was added, and stirring continued at -5 °C 

for 1 h.  The reaction was then quenched with aqueous NH4Cl (2 mL, saturated), and the 

organic materials were extracted twice with EtOAc.  The combined organic extracts were 

washed with brine, dried over MgSO4, and concentrated in vacuo.  Purification by silica gel 

chromatography gave 64 % (81.2 mg), of 72.  All spectroscopic data are in accord with that 

found in literature.25  Enantiomeric excess of 97% was determined, after conversion into the 

corresponding anilide25, using chiral HPLC (OD-H, 10% i-PrOH/hexanes, 1.0 mL/min, tR1 = 

9.2 min (major), tR2 = 12.6 min (minor)). 
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