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Abstract

This thesis deals with the analysis of noise, sensitivity, and distortion of analog

circuits containing externally clocked switches in the frequency domain.

The phasor representation of the network variables of multi-phase periodically
switched linear (PSL) circuits is introduced. Tellegen’s theorem for PSL circuits in
phase domain is derived and the theory of the adjoint network of PSL circuits is
developed. Two novel theorems, namely, frequency reversal theorem and transfer
function theorem are introduced and their usefulness in computing the aliasing
transfer functions of PSL circuits is investigated. The theory of the adjoint network
is applied to noise analysis of PSL circuits and an algorithm that is orders of

magnitude faster than the conventional brute-force method is obtained.

The developed Tellegen’s theorem is further applied to sensitivity analysis of
PSL circuits. The frequency-domain sensitivity of PSL circuits is obtained. The
sensitivity network of PSL circuits is also introduced and its usefulness in sensi-
tivity analysis is compared with that of the adjoint network approach. To analyze
switched nonlinear circuits in frequency domain, time-varying Volterra functional
series is further developed by introducing time-varying network functions and multi-
frequency transforms. The complete spectrum of nonlinear time-varying systems is
obtained. The theory is applied to distortion analysis of multi-phase periodically
switched nonlinear circuits. Both the harmonic and intermodulation distortion are

analyzed.

The theories presented in this thesis have been implemented in three computer
programs that compute the noise and sensitivity of periodically switched linear

circuits, and the distortion of periodically switched nonlinear circuits.

iv
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GLOSSARY

1. Abbreviations

BJT
CAD
CMOS
CCVS
CCCS
DFT
IF
LO
LNA
LTI
LTV
LPTV
MISO
MNA
MOS
MOSFET
MS
NTI
NTV
NPTV
Op amp
PSL
PSN

Bipolar junction transistor
Computer-aided design
Complementary metal-oxide-semiconductor
Current-controlled voltage source
Current-controlled current source
Discrete Fourier transform
Immediate frequency

Local oscillator

Low-noise amplifier

Linear time-invariant

Linear time-varying

Linear periodically time-varying
Multiple-input single-output
Modified nodal analysis
Metal-oxide-semiconductor
Metal-oxide-semiconductor field-effect transistor
Mean-square

Nonlinear time-invariant

Nonlinear time-varying

Nonlinear periodically time-varying
Operational amplifier

Periodically switched linear
Periodically switched nonlinear



PSD
RF
S/H
SC
SCN
SI
SISO

Power spectral density
Radio frequency
Sampled-and-held
Switched capacitor
Switched capacitor network
Switched current

Single-input single-output

SIMO Single-input multiple-output

SLCNAP Switched linear circuit noise analysis program

SLCSAP  Switched linear circuit sensitivity analysis program

SNCDAP Switched nonlinear circuit distortion analysis program

VCVS Voltage-controlled voltage source

VCCS Voltage-controlled current source

Symbols

A; Constant matrix depicting the 2nd-order nonlinearities
A; Constant matrix depicting the 3rd-order nonlinearities
C, Gate-channel capacitance

Ca Gate-channel overlapping capacitance

Cs Gate-substrate capacitance

Cw Source-substrate diffusion capacitance

Ca Drain-substrate diffusion capacitance

Co Depletion layer capacitance at zero-biasing

C.: Gate-channel capacitance per unit area



C: Capacitance matrix in phase k

d Constant vector specifying the output nodes.
E[] Mathematical expectation operator

f frequency (Hz)

Fl.] Fourier transform operator

F1 Inverse Fourier transform operator

Om Gate transconductance

Gmb Substrate transconductance

gDs Channel conductance

gps, Channel conductance at vpg =0

G Conductance matrix in phase k

gk Constant vector specifying the input nodes
h(t,r) First-order impulse response

hy(t, 1) First-order Volterra kernel

hy(t, 7, 72) Second-order Volterra kernel

hs(t, 11,72, 73) Third-order Volterra kernel

ha(t,1,...,7a)  nth-order Volterra kernel

H(t,w) First-order time-varying transfer function
Hy(t,w) First-order time-varying transfer function
Hy(t,w,ws) Second-order time-varying transfer function

Hj(t,w),wz,w3) Third-order time-varying transfer function
H,(t,w,...,wn) nth-order time-varying transfer function
H(wy,ws) Bi-frequency transfer function

Hi(wr,wa) Bi-frequency transfer function
Ha(wy,wa,w3)  Tri-frequency transfer function

Ha(wy, ...wn) multi-frequency transfer function



H(w,w + nw,) Aliasing transfer function, w + nw, = input freq.,w = output freq.
i(t) Branch current

Azy(t) Increment in ,(t)

Iy(w, + nw,) Phasor of #(t) at w, + nw,

Aly(wo + nw,) Increment in Iy(w, + nw,)

Ips Drain-source DC current

2(t) Mean-square value of i(t)

k Boltzmann constant (1.3806226x 10~2® J/K)
K; Flicker noise coefficient

L[] Laplace transform operator

L] Inverse Laplace transform operator

L Channel length of MOS transistor

Leyy Effective channel length of MOS transistor
M; State-transition matrix in phase k

N Quasi-state-transition matrix in phase k

N Original circuit

N Adjoint network of N

M Sensitivity network of A

N Adjoint network of Ny

P, Zero-state response vector in phase k

q Charge on an electron (—1.6021918x10~'® C)



Td
Raz(ts,t2)
Raza(t)

s

Szz(w)
Szz(t, w)
Szz(wy, ws)
Si(w)

So(w)

t

T

T,

s(t)

Vi(wo + nw,)
vn(t)

Vr

UGgs

Ups

vi(t)

vi(nT + oy)

Base resistance

Emitter resistance

Collector resistance

Gate resistance

Source resistance

Drain resistance

Autocorrelation function of z(t)
Average power of z(t)

Laplace variable

PSD of z(t) at w

Time-varying PSD of z(t)
2-dimensional PSD of z(t)

PSD of the input at w

PSD of the output at w

Time variable of the original circuit
Absolute temperature in degrees Kelvin
Clock period

Branch voltage

Phasor of v(t) at w, + nw,

Nodal voltage

Threshold voltage of MOS transistor
Gate-source voltage

Drain-source voltage

Network variable in phase k

vi(t) at t =nT + o



Vi(jw)  Fourier transform of v,(t)

V(jw)

Fourier transform of v(jw)

V)(jw) Fourier transform of the response of the 1st-order Volterra circuit

V@(jw) Fourier transform of the response of the 2nd-order Volterra circuit

V@ (jw) Fourier transform of the response of the 3rd-order Volterra circuit

44
Wess
will(t)
wi(2)(t)
w3 (t)
®

Channel width

Effective channel width

Input vector of the 1st-order Volterra circuit
Input vector of the 2nd-order Volterra circuit
Input vector of the 3rd-order Volterra circuit

Convolution operator

Greek Letters

Hetf

Tk
W,
Wo

&(t)

Surface mobility of carriers in channel
Effective surface mobility of carriers in channel
Time variable of the adjoint network

Width of phase k

Clock frequency

Input frequency

Window function in phase k

Relative difference
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Chapter 1

Introduction

The objective of this research is to develop efficient methods for noise and sen-
sitivity analysis of periodically switched linear circuits, and distortion analysis of
periodically switched mildly nonlinear circuits. In this chapter, a brief review of
the theories and algorithms available for noise, sensitivity, and distortion analysis

of these circuits is presented.

Periodically switched networks are analog circuits containing externally clocked
switches. Switched capacitor networks (SCNs), switched current (SI) networks,
modulators, frequency mixers, etc. are typical examples. These mixed analog-
digital circuits are widely encountered in telecommaunication systems [1]. The trend
towards portable and wireless electronic systems, such as personal communication
systems, note-book computers, wireless networks, etc. has pushed the design of
these circuits towards ultra low power consumption and high degree of integration.
Noise has become a critical issue in the design of these circuits [2-4]. For instance,
the resolution of switched capacitor sigma-delta modulators is limited by the ther-
mal noise generated by the operational amplifiers and MOSFET switches of the
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modulators [5,6]. The minimization of the silicon chip area of switched-capacitor
networks tends to reduce the signal-to-noise ratio (SNR) of the circuits [7]. The
physical dimension and layout of semiconductor devices directly affect the noise of

the devices {8]. An accurate analysis of noise is vital to the design of these circuits.

The performance of electronic circuits is not only affected by the quality of
the circuits at the design stage, it is also affected by the fabrication process in
which the circuits are fabricated and the environment in which the circuits are
operated. Circuits tolerating a large variation in element values are highly desirable.
Sensitivity plays a key role in measuring the robustness of circuit design. This
thesis explores novel theories and efficient algorithms for sensitivity analysis of

PSL circuits in frequency domain.

In addition to noise and sensitivity, distortion is another key factor affecting
the performance of switched analog circuits. The design of most analog circuits is
based on the local linearization of the non-ideal characteristics of electronic devices.
This thesis makes no attempt to address the analysis of general nonlinear switched
circuits. Rather, our attention is focused upon periodically switched analog circuits
containing weak nonlinearities only. This is because a large number of analog cir-
cuits encountered in telecommunication systems are designed to operate at specific

operating points such that the nonlinearities encountered are weak.

1.1 Noise Analysis of PSL Circuits

The noise of linear time-invariant circuits is usually investigated in frequency do-
main and is well understood [9]. A universal way to compute the output noise

power of a given linear time-invariant circuit is to approximate the input noise
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signal within a small frequency range Aw by a sinusoidal excitation whose mean-
square (MS) value is determined by the PSD of the input noise source. The circuit
is analyzed in frequency domain and the MS value of’the response gives the output
noise power of the circuit in Aw. This approach is valid for linear time-invariant

circuits only.

Noise analysis of switched-capacitor networks, a special subset of general PSL
circuits, has received considerable attention since the launch of switched-capacitor
technique in the early 1970s [10]. The early investigations of noise behavior of
switched-capacitor networks were primarily focused upon the techniques that de-
compose the output noise into the so-called direct noise caused by the feed-through
of the noise sources and the sampled-and-held (S/H) noise caused by the noise
sampled by the shunt capacitors in the circuits [11-14]. The behavior of these two
types of noise is best illustrated using an ideal sampler shown in Fig.1.1. The input
noise source is assumed to be white of unity power and the switching frequency f,
is 10 r/s. The PSD of the direct noise, denoted by S%(w) and that of the S /H noise,
denoted by S5/#(w), of the output are given by

Siw) = (F) > sinc’(#)s.-(w—nw.)

n=-oo

S5/H(y) = [Z.T;] sinc [( ) E Si(w — nw,) (1.1)
where w, = 2xf,, T, = 1/f,, Si(w) is the PSD of the input noise source. Fig.1.2
shows the effect of the direct coupling between the input noise source and the
response with the input noise band width 10w,. It is seen that the power of the
direct noise is independent of frequency and is negligibly small as compared with
that of the S/H noise. The power of the S/H noise is frequency-dependent. It rises
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with the decrease in the direct coupling. Fig.1.3 shows the effect of aliasing with
a = 0.37,. It is seen that the power of the S /H noise increases with the increase in

the number of side bands folded over.

LG

Ve (O

i @ c :F l

<V 4 nTs nTsta  (n+1)Ty

o)

ON ON

Figure 1.1: Ideal sampler

Coupling (a) Coupling (»)

Figure 1.2: Effect of coupling. (L) Direct noise, (R) S/H noise

Egs.(1.1) were deduced directly from the autocorrelation function of vo(t). This
approach is often referred to as the analytical approach. The analytical approach
provides a clear insight into the noise behavior of switched-capacitor networks. Its
application, however, is limited to simple circuit configurations for which the ana-
lytical expressions of the response and its autocorrelation function are obtainable

using the pen and paper approach.
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Figure 1.3: Effect of aliasing. (L) Direct noise, (R) S/H noise

Techniques that utilize conventional circuit simulators, such as SPICE, to an-
alyze the noise of switched-capacitor networks, were also investigated [15]. These
techniques are categorized as the equivalent-circuit approach. The essence of this
method is to transform a switched-capacitor network into an equivalent continuous
RC circuit. The output noise power of the switched-capacitor network is obtained
by multiplying that of the RC circuit by the number of side bands that fall in the
noise band width of the network. The method is in favor of many circuit designers
owing to its simplicity. However, due to the difficulty in determining the noise
band width of switched-capacitor networks prior to simulation, an estimated noise
band width is used. Consequently, the obtained output noise power is only an

approximation of the actual value.

With the increase in the complexity of switched-capacitor network configuration,
computationally efficient methods are critically needed. The input-referred noise
generator technique is an elegant approach that is widely adopted in noise analysis

of complex electronic circuits. In this method, a pair of fictitious input-referred
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Figure 1.4: Input referred noise

noise-voltage and noise-current generators are employed at the input of a noisy
circuit (usually two-port) to represent the effect of all the noise sources in the
circuit. The entire circuit is thereby treated as noise-free [16], as shown in Fig.
1.4. To obtain the noise-voltage source, the input is shorted. To compute the
noise-current source, the input is open-circuited. Specifically, to obtain the input-
referred voltage representative of the kth noise source whose MS value is vZ, the
transfer function from the noise source to the output of the noisy network H, x(jw)
and that from the input-referred noise-voltage source to the output of the noise-free

network H,,(jw) are required. The MS values of the input-referred noise sources
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are obtained from

(i) = e > > Hos(j) o}

|Hon(jw)? = (1.2)

o) = (g 2 s

where M is the number of noise sources in the circuit. Eqs.(1.2) are valid only if
all the physical noise sources in the circuit are uncorrelated. The input-referred
noise source approach is very effective in simplifying the noise analysis of complex
circuits, calculating the signal-to-noise ratio and determining the minimum input
signal level. The application of this approach, however, is affected by the following
factors : (a) The input-referred noise sources are, in general, correlated because
they are originated from the same physical noise sources. (b) The power of the
input-referred noise sources is frequency-dependent. This is because the transfer
functions required to derive these noise sources are functions of frequency. They
must be re-calculated every time frequency changes. (c) The power of the input-
referred noise sources is affected by the biasing condition. This is because many
small-signal parameters of integrated devices, such as the transconductances of
MOSFETs and BJTs, are functions of DC biasing currents/voltages. For switched
capacitor networks, it is generally difficult to obtain the input-referred noise sources
due to the folding effect. However, this method can be applied to linear time-
invariant subcircuits in switched-capacitor networks, such as op amps, to greatly

simplify noise analysis.

State-space approach is an effective method widely used in the theoretical study
of electronic circuits. A pioneer work on the noise analysis of switched-capacitor
networks using the state-space approach was carried out by Liou and Kuo [17], and

was also studied by other authors [18-20]. The staté-space approach is not par-
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ticularly convenient for equation formulation of electronic circuits on digital com-
puters [21,22], particularly if the circuits are complex and contain ideal switches.
Modern CAD tools almost exclusively use the modified nodal analysis to formulate

circuit equations [22]

Adjoint network is well known as one of the most efficient methods in computing
the transfer functions from multiple inputs to the single output of linear time-
invariant circuits [23-25]. Its advantages in noise analysis of linear time-invariant
circuits were demonstrated in [26]. The adjoint network theory for linear time-
invariant circuits was also extended to switched-capacitor networks with S/H inputs
[27-29], and its usefulness in noise analysis of switched-capacitor networks was

explored as well [30-32].

The application of SCN-based CAD tools is limited by the following factors :
(i) No current-related elements, such as resistors, current-related controlled sources,
etc. are permitted in the configuration of switched-capacitor networks. This makes
it impossible to analyze the effect of some nonidealities, such as the channel resis-
tance of MOSFET switches, the finite input and output resistances of op amps of
practical switched-capacitor networks. (ii) The analysis of switched-capacitor net-
works is based on the assumption that the charge transfer occurs instantaneously
at switching instants. This assumption is often violated when switched-capacitor
networks are used for high-frequency applications. In this case, the effect of in-
complete charge transfer must be taken into account. (iii) The accurate modeling
of integrated devices, such as MOSFETs and BJTs, requires taking into account
the characteristics of the devices, such as the intrinsic and extrinsic resistances,
contact resistances, the body effect of MOS transistors, the clock feed-through of
MOSFET switches, etc. Modeling of these effects requires the presence of resistors

and current-related controlled sources. Contrary to switched-capacitor networks,
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resistors, inductors, and all types of controlled sources are basic elements of PSL cir-
cuits. Many nonidealities of practical switched-capacitor networks can be handled

conveniently using PSL circuits.

As compared with switched-capacitor networks, noise analysis of general PSL
circuits, however, has received little attention in the past. In [33,34], the output
noise power of PSL circuits was analyzed by discretizing the circuit equation using
the Backward Euler approximation. The accuracy of this method is affected by
the errors introduced in discretization and the assumption that the time-varying
transfer function of PSL circuits is piece-wise constant in each phase. In [35,36], a
noise analysis method for nonideal switched-capacitor networks was proposed. The
method approximates the continuous response of PSL circuits with the sampled-
data response. It yields good approximation only if the clock frequency is much
higher than the signal frequency and may give erroneous results when the two
frequencies become comparable. In (37], a method using the time-varying transfer
functions to compute the noise of RF mixers was proposed. However, the efficiency
of the method is undermined by the DFT operation used to compute the aliasing
transfer functions. Also, no attempt was made in implementing the algorithm
on digital computers. The above review demonstrates that despite the practical

importance, accurate and efficient noise analysis methods for PSL circuits are not

available.

1.2 Sensitivity Analysis of PSL Circuits

In addition to noise analysis, efficient and accurate computational methods for
sensitivity analysis of PSL circuits are needed. Sensitivity plays an essential role

in optimization and tolerance design of electronic circuits [38,39]. It provides a
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mathematical measure in determining the quality of designed circuits. The exact
sensitivity of a given circuit can be obtained if the analytical response of the circuit
is available. This approach is only feasible for simple circuit configurations and be-
comes irrelevant once circuits are complex. Early investigations on computer meth-
ods for sensitivity analysis of linear time-invariant circuits were primarily focused
on perturbation and incremental network techniques [25,40,41]. These methods,
however, suffer from the poor numerical accuracy and the lack of efficiency. The
adjoint network method was introduced as an efficient means for sensitivity analysis
of linear time-invariant circuits [23-25,42] more than a decade after the publica-
tion of the original theorem by B. Tellegen [43], now known as Tellegen’s theorem.
The application of Tellegen’s theorem was later extended to switched-capacitor
networks with S/H inputs (27, 28,31, 44,45] and piece-wise linear circuits [46]. A
careful examination shows the difficulties in extending this approach directly to
sensitivity analysis of PSL circuits. This is because there is no closed-form solu-
tion available for general PSL circuits. Opal and Vlach [47] proposed an accurate
frequency-domain method to compute the sensitivity of general PSL circuits. The
method is capable of handling arbitrary types of input (continuous or S/H) and
the number of the phases in each clock period. However, it is only capable of com-
puting sensitivities of all network variables with respect to one element at a time.
Computation becomes prohibitively expensive if sensitivities of one variable with
respect to a large number of elements are required. Shang and Sewell [36, 48,49
improved the computational efficiency of Opal-Vlach method by considering the
discrete response of PSL circuits only. The method yields a good approximation of
the sensitivity only if the clock frequency is much higher than the signal frequency.
It gives erroneous results if the frequencies of the clock and signal are close. Circuits

of this characteristic can be found in many areas of telecommunications, such as
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mixers in which the frequencies of the carriers and the local oscillator are nearly the
same. Efficient and accurate computer methods for sensitivity analysis of general

PSL circuits are critically needed.

1.3 Distortion Analysis of PSN Circuits

Antennag

Mixer

BPF BPF —F§
RF IF

Saw Fiiter

Lo

Local Osclllator

Figure 1.5: Block diagram of the front end of receiver

Distortion is a key factor affecting the design of switched circuits [50]. Circuits of
superior linearity are highly desirable. Nonlinearities inherent to analog circuits
integrated on silicon chips, such as depletion layer capacitances, the transconduc-
tance of MOS transistors, the slew-rate and saturation of operational amplifiers,
etc. deteriorate the performance of the circuits. An illustrative example is the
front-end of a RF receiver shown in Fig.1.5. The dynamic range of the receiver is
directly affected by the disiortion generated by the low-noise amplifier (LNA) and

the mixer.

Distortion of nonlinear circuits is usually analyzed by carrying out direct numer-
ical integration of the circuit equations in time-domain and post discrete Fourier

transform (DFT) analysis of the steady-state response data of the circuits. These
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methods are referred to as the DFT-based approach. The DFT-based method is
effective and universal in determining both the harmonic and intermodulation dis-
tortion of nonlinear circuits in steady state. It is also capable of handling both
harsh and weak nonlinearities. The application of this approach, however, is often
limited by the excessive cost of computation, particularly, if the circuits contain
periodically operated ideal switches. Many efficient methods, such as shooting
methods [51-53], were developed to accelerate integration process. To speed up
integration, variable step size is always preferred. Since FFT analysis requires
equidistant time points, interpolation is needed [22]. Recently, an elegant method
was proposed by Bedrosian and Vlach [54-56] to speed up the transient analysis
of switched nonlinear circuits. This method makes use of the 2-step algorithm ini-
tially developed by Opal and Vlach ['57-59] to compute the initial conditions of the

states. The overhead caused by small step size is eliminated.

Harmonic balance [60-63] is a well-known method for distortion analysis of non-
linear circuits with periodic excitations in steady state. It is based on the assump-
tion that the steady-state response of nonlinear circuits with periodic excitations is
a linear combination of a set of sinusoidals that are harmonically related. The am-
plitude and phase of the response are obtained by solving the so-called determining
equations using numerical techniques. In principle, the harmonic balance method is
capable of handling arbitrary nonlinearities that in general can not be described ad-
equately by 3rd-order polynomials. However, in order to depict strong nonlinearities
accurately, many sine and cosine functions will be needed. This drastically increases
the cost of computation and memory resource requirement. The situation becomes
formidable once the excitations are multiple tones. A piece-wise harmonic balance
method was proposed by Nakhla and Vlach [62,64] to eliminate this drawback by

decomposing a given nonlinear circuit into linear and nonlinear subcircuits. The
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linear subcircuits are solved using conventional frequency response methods while
the nonlinear subcircuits are solved using the harmonic balance technique. The
results are matched at the junctions of the subcircuits. Because the resulting non-
linear subcircuits are much smaller in scale the burden of excessive computation is
hence reduced. This method is also known as the substitution method [65,66]. The
application of this method is in general limited to circuits containing a few nonlin-
earities. PSN circuits encountered in telecommunication systems, such as mixers,
modulators, etc. are usually driven by inputs of multiple tones. The steady-state
waveforms of these circuits contain many frequency components due to the com-
bination of the fundamental frequencies of the forced inputs and those generated
by the nonlinearities in the circuits. In this case, the harmonic balance method

becomes inefficient as a large set of determining equations must be solved.

Recently, the conventional describing function approach was extended to distor-
tion analysis of nonlinear time-invariant electronic circuits [67]. Describing function
is an extended version of the popular frequency response method used in linear net-
work analysis. It has been used extensively in control system design to predict the
existence of limit cycles [68] and normally only the fundamental frequency com-
ponent is used. The author extended this approach by also including harmonic
components. This method can be used for distortion analysis of circuits containing
soft nonlinearities. Hard nonlinearities with a rapidly decaying harmonic spectrum

can also be analyzed.

In the past decade, much attention was focused upon analytical means to ana-
lyze the harmonic distortion of nonlinear switched capacitor filters [45, 69, 70). In
these approaches, The harmonic components of the output are obtained directly
from the Taylor series expansion of the response of the circuits. This method is

much in favor of IC designers as it provides an insight into the sources of dis-
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tortion. The application of this method, however, is limited to circuits of simple
configurations for which analytical solutions are obtainable using the pen and paper
approach.

Investigations on systematic approaches and computer methods for distortion
analysis of nonlinear switched-capacitor networks were also carried out. The useful-
ness of Volterra functional series in distortion analysis of nonlinear time-invariant
circuits has been investigated extensively. Volterra series-based approach is a gen-
eralization of the well-known power series method [71]. As compared with those
reviewed earlier, this method is a direct frequency-domain approach. Because there
is no numerical integration involved this method is computationally efficient. An
extensive coverage of the theory and applications of time-invariant Volterra func-
tional series can be found in [72-75]. Alper [76,77] and Bush [78] modified the
time-invariant Volterra series by incorporating the characteristics of sampled-data
systems and discrete Volterra series emerged. Discrete Volterra series has been used
in distortion analysis of nonlinear switched-capacitor networks [27,28,79,80]. Be-
cause of the constraints of sampled-data systems, only nonlinear switched-capacitor

networks with S/H inputs can be analyzed.

Distortion analysis of general switched nonlinear circuits has received little at-
tention in the past despite its practical importance. An analytical approach [81,82]
was proposed to compute the harmonic distortion of CMOS Gilbert cell RF mix-
ers [83-85]. The nonlinear characteristic of the transconductances of the amplifying
MOS transistors is identified as the dominant source of distortion. The signal from
the local oscillator (LO) which drives the mixing MOS transistors is represented
by Fourier time series. The output of the mixer is a time-domain product of the
carrier (RF) and LO signals. This approach neglects the effect of the transfer of

the charges stored in the parasitic capacitances between LO states. The effect of
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charge transfer is vital to the analysis of switched circuits, as demonstrated in [47).

As a result, only low-frequency distortion can be predicted.

1.4 Original Contributions

This thesis contains original contributions in noise and sensitivity analysis of pe-
riodically switched linear circuits, and distortion analysis of periodically switched

nonlinear circuits. The major contributions of this thesis are summarized as follows:

(1) Tellegen’s theorem for PSL circuits in phasor domain is developed. It is shown
that Tellegen’s theorem for linear time-invariant circuits is a special case of that

for PSL circuits.

(2) Two novel theorems, namely, the transfer function theorem and frequency
reversal theorem of PSL circuits are introduced. Both rigorous proofs and numerical

verification are given.

(3) The interreciprocity concept of linear time-invariant circuits is extended to PSL
circuits. The theory of adjoint network of PSL circuits is developed. The theory
handles periodically operated multiphase switches and all types of linear elements.

(4) The intrinsic relationship between the original PSL circuits and the correspond-
ing adjoint networks is explored. It is shown that both the state transition matrix
and zero-state response vector of the adjoint network can be obtained directly from
those of the original circuit. It is also shown that the adjoint network of a given
PSL circuit can be solved efficiently provided that the solution of the original PSL

circuit is available.

(5) An adjoint network-based frequency-domain noise analysis algorithm for gen-
eral PSL circuits is developed. The method is exact and is orders of magnitude
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faster than the brute-force method. The algorithm has been implemented in a
computed program. The PSDs of several PSL circuits are analyzed and the results

are in very good agreement with measurements.

(6) The incremental form of Tellegen’s theorem for PSL circuits in phasor domain
is developed. The frequency-domain sensitivity of periodically switched linear cir-
cuits is obtained. The method yields sensitivities of the response of PSL circuits
with respect to all circuit elements in one frequency analysis. It is shown that
frequency-domain sensitivity of PSL circuit is a series summation of the network
variables. Both the base band and side band components contribute to the sen-
sitivity computed in the base band. It is also shown that the sensitivity of linear

time-invariant circuits is a special case of that of PSL circuits.

(7) The sensitivity networks of PSL circuits are introduced. It is demonstrated
that the sensitivities obtained from adjoint network approach are identical to those

from sensitivity network technique.

(8) A general theory of time-varying Volterra functional series for nonlinear time-
varying system is developed. High-order time-varying transfer functions and multi-
frequency transforms are introduced to characterize the behavior of nonlinear time-
varying systems. The network variable theorem of periodically switched nonlinear
circuits is introduced and the complete spectra of the systems to both single-tone

and double-done inputs are obtained.

(9) A Volterra series-based frequency-domain method for distortion analysis of
periodically switched nonlinear circuits is developed. It is shown that the behavior
of a periodically switched nonlinear circuit can be characterized by a set of intrinsi-
cally related PSL circuits. It is also shown that the fold-over effect, a phenomenon

encountered in noise analysis of PSL circuits, also exists in distortion analysis of
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periodically switched nonlinear circuits. The cost of computation for distortion
analysis can be minimized by using the adjoint network theory of PSL circuits.
The distortion of several practical circuits are analyzed and the results are in an

excellent agreement with SPICE simulation.

1.5 Scope of The Thesis

This thesis deals with the analysis of noise, sensitivity, and distortion of switched

analog circuits in frequency domain.

Chapter 2 investigates the stochastic behavior of linear periodically time-varying
systems. The PSD of these systems with uncorrelated stationary inputs is derived.

This chapter lays a theoretical foundation for noise analysis of general PSL circuits.

Chapter 3 is devoted to the development of the adjoint network of PSL circuits.
The network variable theorem of PSL circuits is developed. Tellegen’s theorem for
PSL circuits in phasor domain, transfer function theorem, and frequency reversal
theorem are introduced. The relationship between the original PSL circuits and
the adjoint networks is investigated. The effectiveness of these theorems is assessed

using numerical examples.

In chapter 4, noise sources inherent to switched analog integrated circuits are
investigated. The equivalent circuits of integrated devices are presented. An adjoint
network-based noise analysis algorithm for general PSL circuit is developed. The
output noise power of a number of practical switched-capacitor networks is analyzed

and the results are compared with measurements.

In chapter 5, the incremental form of Tellegen’s theorem for PSL circuits in

phasor domain is introduced and the frequency-domain sensitivity of PSL circuits
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is obtained. The sensitivity networks of PSL circuits are also introduced and a
comparison with the adjoint network approach is made. The sensitivities of a

number of PSL circuits are computed and the results are compared with those

from other CAD tools.

In chapter 6, a theory of time-varying Volterra series is introduced. The time-
varying network function and bi-frequency transform initially introduced by Zadeh
for linear time-varying (LTV) systems are extended to nonlinear time-varying (NTV)
systems. The network variable theorem of periodically switched nonlinear circuits
is derived and the complete spectra of these circuits to both single-tone and double-
tone inputs are obtained. Also developed in this chapter is a Volterra series-based
frequency-domain method for distortion analysis of periodically switched nonlinear
circuits. Both harmonic and inter-modulation distortion of are analyzed. The dis-

tortion of several practical circuits is analyzed and the results are compared with
SPICE simulation.

Chapter 7 summarizes the important results obtained from this research. It
also outlines the areas that the results of this thesis can be directly extended to.
Finally, a brief review of numerical Laplace inversion is suffixed to make the thesis

self-contained.



Chapter 2

Noise of LPTV Systems

Periodically switched linear circuits are linear periodically time-varying (LPTV)
systems. This chapter investigates the noise behavior of LPTV systems. Some
useful concepts of stochastic processes and linear time-varying systems, which are
to be used throughout the thesis, are reviewed in Sections 2.1 and 2.2. The average

PSD of LPTV systems with stationary noise input is obtained in Section 2.3.

2.1 Basic Concepts

Noise is a random signal with zero mean. The behavior of a noise signal is char-
acterized by its autocorrelation function in time domain and power spectral density
in frequency domain. The autocorrelation function of a noise signal z(t), denoted

by Rze(t1,t2), is the joint moment of z(t;) and z*(;) [86]

R“(tl, tz) = E[Z(h)z.(tz)] (21)

19
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where E[.] is the expectation operator, the asterisk denotes complex conjugation,
t; and ¢, are two time instants. R..(t;,%;) quantifies the connection between z(ty)
and z(t;) statistically. If ¢; = ¢, = ¢, then R,.(t,t) = E[|z(t)|?], which is the mean-
square (MS) value, or average power of z(t). The autocovariance of z(t), denoted by
Czz(t1,12), is defined as the joint moment of z(t,) — E[z(t,)] and z*(t3) — E[z"(t2)]

and it relates to the autocorrelation function by
Czz(t1,t2) = Raz(t1,ta) — E[z(t1)] E[z"(t2)). (2.2)

z(t,) and z(t;) are said to be uncorrelated if C.-(¢;,£2) = 0. A stochastic process
is said to be stationary in the strict sense if all of its statistical properties are
time-invariant. It is stationary in the wide sense if its mean is constant and its

autocorrelation function satisfies
Rzz(t1,t2) = Rez(7) (2.3)

where 7 = t; — t;. Note that the wide-sense stationarity involves only the 1st
and 2nd-order moments. Because it is generally difficult to evaluate the high-order
moments of a given stochastic process, the wide-sense stationarity is of practical
usefulness. If both the mean and autocorrelation function of a wide-sense stationary
noise signal are periodic in time, the noise signal is said to be wide-sense cyclo-

stationary.

In frequency domain, the PSD of a noise signal z(t), denoted by S.(w), depicts
the spectrum of the noise power. It is defined as the Fourier transform of the
autocorrelation function of z(t). S;.(w) and R..(r) relate to each other via the
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pair of transforms

Szz(w) = /;: Rez(T)e " dr

oo : . (2.4)
Rea(r) = % /_  Sua(w)edu

Eq.(2.4) is also known as Wiener-Khintchine theorem [88]. If S,.(w) = A, where A
is a constant, then R..(7) = Ad(r). Processes of such are said to be white. For a

wide-sense process z(t), if 7 =0, i.e. t; =t; = t, then

Rea(0) = Ella(t)] = o / Sea(w)duw. (2.5)

Eq.(2.5) reveals that the area under S,.(w)/27 specifies the MS value of z(t). If
Szz(w) is band-limited and has a constant value A within [w;,w,] and zero outside

the interval, then

E[le(0)] = 2 Aw (2.6)

where Aw = w;—wy, Eq.(2.6) reveals that once S,.(w) is known, the power of z(t) in
[w1,wy] is determined. The PSDs of noise sources encountered in integrated devices
have been investigated extensively and are readily computable. Noise analysis is
often a task of how to compute the output noise power of a given circuit containing

a large number of noise sources.

2.2 Time-Varying Transfer Functions

In steady state, the characteristics of a linear time-varying system in time domain

are described by the impulse response of the system h(t,), which is a function of
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both the ezcitation time T at which the impulse is launched and the observation
time ¢ at which the response is measured. The input z(¢) and output y(t) of the

system are related to each other in time domain by
y@®) = [ hit,r)e(r)dr. (2.7)
The time-varying transfer function H(t,w) is defined as [89]

H(t,w) = / ” h(t,r)e;j”("')dr. (2.8)

~—Q0

The impulse response can be derived from H(t,w) using

h(t,T) = 2% [7 Bt @), (2.9)

-0

Substituting (2.9) into (2.7) gives

oo

y(t) = 51; /_ _ H(tbw)X (w)e™dw (2.10)

where X (w) is the Fourier transform of z(t). Eq.(2.10) indicates that once H(¢,w)

is known, the time domain response of the system is defined completely.

If a system is linear periodically time-varying (LPTV), then it can be shown
that H(t,w) is also periodic in ¢ [87]. Assume that H(t,w) satisfies Dirichlet-Jordan

criterion *. Due to its periodicity, H(¢,w) can be represented by the Fourier series

H(t,w) = f: H,(w)ei™st (2.11)

n==-00

lie. H(t,w) is bounded, piecewise continuous, and has at most a finite number of minima,

maxima, and discontinuities per period.
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where w, = 21 /T,. The coefficients of the Fourier series are determined from

Ha(w) = Tl /0 i H(t,w)e~imtdy, (2.12)

The Frequency response of the output, denoted by Y(w), is obtained by taking

Fourier transform of (2.10)
_l e Qe ~jwt
Y(w) = o /_w /_oo H(t, Q)X (2)e?™ et dQdt. (2.13)

Further making use of (2.11), (2.13) becomes

Y(w) = % nj; /_ : HA(2)X(Q) [ [ : e‘f(“““"“‘")‘dt] dQ. (2.14)
Because
/_ : it = 9n8(w — Q - nw,) (2.15)
therefore
V)= 3 Halw—nw)X(w - nw,) (2.16)

n=-00

Eq.(2.16) reveals that H,(w — nw,) represents the aliasing transfer function of the
LPTV system with the input at frequency w — nw, and the response at frequency
w. Aliasing transfer function is a generalization of the traditional transfer function.
If the input signal has a broad-band spectrum, then the response at w consists of
the contributions of both the base band (n = 0) and side bands (n#0) components
of the input. It is worth noting that if the system is LTI, then (2.16) is simplified
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Y(w) = Hy(w)X(w). (2.17)

a well-known relation of linear time-invariant systems. Clearly, for linear time-
invariant systems, there is a one-to-one mapping between the input and output
frequency components whereas for LPTV systems, the mapping is multiple-to-one,

as illustrated in Fig.2.1.

Hy(w)

(a) Linear time-invariant system

H_[ @ - ms)

INPUT '.
X(w - ws)
X(w)

X(w+as)

(b) Linear periodically time-varying system

Figure 2.1: Input-output mappings of LTI and LPTV systems
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2.3 PSD of LPTV Systems

If the input of a LPTV system z(¢) is a stochastic process, then the response of the
system y(t) is also a stochastic process. From (2.10), the autocorrelation function

of the response is given by [86]

Ru(ti,ts) = Efy(t)y ()]
= T H ) BLX @)X (@) H (e ) e e,
(2.18)

The 2-dimensional PSD of z(t), denoted by S;z(w;,w:), is defined as the 2-dimensional

Fourier transform of the autocorrelation function of z(t) [86]

Slwrwn) = [ [ Realts, ta)emiteintndtydry
= /°° /°° E[.’B(tl)x-(tz)]e—j‘”lhCjwtzdtldtz
= E[X(w)X"(ws)] (2.19)

where X(w;) and X(w;) are the Fourier transform of z(¢;) and z(t,), respectively.

Substituting (2.19) into (2.18) gives

Rw(tla t2) = —-1 = [ H(tl,w‘)S,_.,(wl,wg)H'(tz,wz)ej“‘“e‘j“”"dwlduz.
41r2 —00 J—~00
(2.20)

Using (2.11), (2.20) is further simplified to

Rultnt) = 15 8 2 [0 [7 Halon)Sealonn) Hy(en)

N==00 M=--00
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glwrtnwaty g —ilwatmunlta gy, oo (2.21)
Thus

Spl(wr,wg) = /°° /°° Ry (b1, t2)e ™11 eit2 it dt,
- “2 MDD / / [,,(91 Saa(Q, Q2) HE (D)

n=—0o0 mMm=-00

/00 e_j(m_nl_nu,)tldtl /°° ej(“z-ﬂn—mw.)t:dtz dﬂldﬂz
-0 -Q0

(2.22)

Because

[ f0)6( - tdt = £t.) (229)

therefore

o0

Syy(wy,wq) = Z f: Hp(wy — nw,)Sez(wr — nw,, ws — mw,) H;, (wy — mw,).

n=—00 M=-—-00

(2.24)

Eq.(2.24) is valid for general LPTV systems regardless of whether the input is
wide-sense stationary or not. If z(t) is wide-sense stationary, then R..(t;,t;) =

Rzz(t1 — t3). Consequently

Sealwr, wn) = /_ : /: : Realts — tr)e 1t eintads dt,. (2.25)
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Let t; — t; = 7, then

Szz(wr,we) = [/;: Rn(r)e‘j"’"dr] [/w ej(““”‘)"dtg]

-—00

= 288zz(w1)d(wy — wy). (2.26)
Consequently
Saz(wW) — nw,, wy — Mw,) = 208z (w1 — 1w, )d[wy — w, — (n — mlw,].  (2.27)
Substituting (2.27) into (2.24) yields

Spy(wr,wp) =27 i i Hy(wy — nw,)Sez(wy — nw, ) H,, (w2 — muw,)

N=—00 M=-—00

8wy — wy — (n — m)w,]. (2.28)

The time-varying PSD of the response S(t,w) is obtained by taking the inverse
transform of the 2-dimensional PSD Sy, (w1, ws) with respect to the frequency vari-

able corresponding to the excitation time

S, (t,w) = 51; [ Su(@.w)e-ran, (2.29)

Therefore

Sy(t,w) = i i /-°° H,(Q — nw)Sz:(Q — nw)H,,, (w — mw,)
8 - w - (n — m)w,]e” @40
= f: f: Hﬂ(w - mwl)szz(w - W.)H;‘(w - W.)ej(m‘“)wo‘.

(2.30)
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Define

Sma(w) = Ho(w — nw,)Szz(w — nw,) H, (w — mw,) (2.31)
then

Syy(t,w) = fj f: Smn(w)ed Mt (2.32)

n=—000 m=-—0oo

As can be seen that S, (w,t) is periodic in ¢ with period 27 /w,. Fig.2.2 illustrates

the sampling of a stationary random input using a sample-and-hold mechanism.

) ¥ J Heid

3
) 1
) ]
[} '
] )

x() ¥o R R
t mTs mTgrt (m+DTy t
Stochastic stochastic Cyclo-stationary stochastic

process to 50 process

' ........

mTs mTert (m+ )T, t

Scmplinj function

Figure 2.2: Sampling of stationary random signal

The average PSD of the response over a period, denoted by S, (w), is computed

from

Spw) = Tl / ™ St w)dt
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1 &= ) T, .
= ".I—’: -z—: _z_: Smn(w) /0 efn—mwat gy (2.33)
Because
T, . T. if n=m
/ ein—mlnt gy (2.34)
o 0 otherwise
we obtain
Spy(w) = Z [Ho(w — nw,) |2 Szz(w — nw,). (2.35)

Eq.(2.35) characterizes the PSD of the response of LPTV systems with station-
ary inputs. Because periodically switched linear circuits are LPTV systems and
noise sources encountered in these circuits are stationary, Eq. (2.35) can be used
to compute the output noise power of general periodically switched linear circuits.

A few comments in regard to (2.35) are made.

(1) If the power spectrum of the input noise is broad-band, Nyquist sampling
theorem is violated. As a result, the side band components of the input noise are
folded back to the base band. A pictorial illustration is given in Fig.2.3. In this
example, the band width of the input noise is 10w,, the band width of the circuit is
assumed to be infinite and the gain is unity. Due to the aliasing effect, the output
noise power is 11 times that of the input noise. The power folded over from the
side band components of the input noise sources clearly dominates the total output

noise power.
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Figure 2.3: Aliasing effect of band-limited noise signals

(2) If there is no switching in the circuits, i.e. n=0, Eq.(2.35) simplifies to the

familiar expression for linear time-invariant circuits.

Sy (w) = | Hy(w)[*Sz2(w). (2.36)
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It is evident that even though the input noise is broad-band, the side band
components of the noise signal, however, do not affect the output noise power in

the base band.

(3) If there are a total of M uncorrelated noise sources in a linear time-invariant

circuit, the output noise power is obtained from

M

Sp(w) = 3 |HD(w)[*SQ(w) (2.37)

i=1

where H{)(w) is the transfer function from the ith noise source to the output at w,

S (w) is the PSD of the ith noise source at w. Eq.(2.37) can also be written as

Sy(w) = HT[S|H" (2.38)

where H = [Hy H, ... Hy|",H" = [H} H; ... Hy;|” and [S] = diag[S)) 8P ... S(M)).
[S] is called the noise matrix [88]. If correlation among the noise sources exists, [S]

will contain cross-PSD terms.

If it is a periodically switched linear circuit, then the output noise power is

computed from

S

o0

Sww) = 3 ¥ 1HO(w - nw,) S (w - nw,)

=1 n=-~o0c

M N
~ 3 X HD (W~ nw,)*SY(w - nw,)

i=1 n==-N

(2.39)

where | HY} (0t Nw,) S8 (wtNw,) <maz{| HO (w—nw,)?SE) (w—nw,),n = 0, £1, ...}.

It is seen that the computational cost in noise analysis of periodically switched lin-
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ear circuits arises from (a) a large number of noise sources and (b) the aliasing
effect. Methods that compute the output noise power directly from (2.39) is often
referred to as the Brute-force method. This is because not only the contribution
of each noise source needs to be computed separately, the contribution of every

sideband component of the same noise source must also be calculated separately.

2.4 Summary

The PSD of LPTV with stationary input noise sources was derived using the time-
varying transfer function and 2-dimensional Fourier transform. It is seen that both
the base band and side band components of the input noise sources contribute to
the output noise power in the base band. The cost of computation in noise analysis
arises due to a large number of noise sources and the aliasing effect. In the next
chapter, novel theorems and efficient computational methods will be developed to

speed up noise analysis.



Chapter 3

Adjoint Network of PSL Circuits

This chapter presents the theory of the adjoint network of periodically switched
linear circuits [91]. The application of the theory to noise, sensitivity, and distortion
analyses of switched circuits will be given in chapters that follow. In Section 3.1,
we introduce the network variable theorem of PSL circuits. Tellegen’s theorem for
PSL circuits in phasor domain is developed in Section 3.2. In Sections 3.4 and
3.5, frequency reversal theorem and transfer function theorem are derived. The
relationship between the original PSL circuit and its adjoint network is investigated
in Section 3.6. The theory is assessed in Section 3.7 with the help of numerical

examples. Finally, the chapter is summarized in Section 3.8.

3.1 Network Variable Theorem

It was shown in Chapter 2, the characteristics of a linear time-varying system are
described by the impulse response h(t,7) and the time-varying transfer function
H(t,w) of the system. If the input of the system is an exponential function of time,

33
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then

z(t) = evwot (3.1)

where w, is the frequency of the input, because X (w) = 27é(w — w,), using (2.10),

we obtain the response of the system

y(t) = H(t,w,)e?™ . (3.2)

If the system is further LPTV then H(t,w,) can be represented in the Fourier series
given in (2.11) with w replaced by w,. Substituting the corresponding results into
(3.2) gives '

yt)= 3 Hoellortno (33)

n=-—00

where H,, is the coefficient of the Fourier series given by (2.12). The above result
reveals that the response of the LPTV system contains an infinite number of fre-
quency components even though its input is a single tone. Also, H, specifies the
magnitude of y(¢) at frequency w, + nw, in the complex plane. It is the phasor
representation of y(t) at w, + nw,. Eq. (3.3) establishes the relationship between
the time and frequency domain quantities of the network variable. The application

of the above result to PSL circuits leads to the following theorem

Theorem 3.1 (Network Variable Theorem of PSL Circuits) In steady-state,
the network variables of a PSL circuit with clock frequency w, and input et con-
tain an infinite number of frequency components. They can be represented by the

Fourier series

v(t) = i Va(wo + nw, )ed@otrnunlt (3.4)

n=-0o
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where Vi(wo + nw,) is the phasor of vy(t) at w, + nw,.

Corollary 3.1.1 The network variable of a PSL circuit, vy(t), satisfies vy(t) = 0 Vt
if and only if Vy(w, + nw,) =0 Vn.

3.2 Tellegen’s Theorem for PSL Circuits in Pha-

sor Domain

Tellegen’s theorem, introduced by B. Tellegen almost half a century ago is a funda-
mental law for lumped electrical networks [43]. It has found applications in many
areas of electrical engineering [92,93]. Tellegen’s theorem is based on Kirchoff’s cur-
rent law (KCL) and voltage law (KVL) for lumped LTI circuits. In time-domain,
it is given by 5

bZ;vb(t)ib(t) =0 (3.5)

where v;(t) and 4;(t) denote the branch voltages and currents of the LTI circuit,
respectively. B is the number of branches in the circuit. Eq.(3.5) also holds for any
two LTI circuits A" and N having the same topology

B B
Sulthsr) =0, Yi(t)in(r) = 0 (3.6)
b=1 b=1

where 1,(r) and ,(7) denote respectively the branch currents and voltages of NV, ¢

and T are the time variables of A" and N, respectively.

PSL circuits differ from LTI networks by including externally clocked switches.
A switch is modeled as either a short or open circuits, depending upon the state of

the switch. The topology of the circuits remains unchanged during switching. For
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a given PSL circuit N, we can construct another network A of the same topology
as that of N irrespective of switching. As a result, Eqgs.(3.6) also hold for PSL
circuits. Subtracting the equations in (3.6) yields

B

> [ss(®)istr) — is®)in(r)]| = 0. (3.7)
b=1

Eqs.(3.6) and (3.7) are respectively the strong and weak forms of Tellegen’s theorem
for PSL circuits in time domain. The weak form of Tellegen’s theorem incorporates
the branch voltages and currents of N’ and N. It is of particular usefulness in
characterizing the relationship between A and .

As is well known, in AC steady state, LTI circuits can be analyzed conveniently
in phasor domain. Consequently, Tellegen’s theorem for LTI circuits also holds in

phasor domain and is given by [25]

B
> (WG (o) - b)) = 0 (3.8)

b=1

where V;(jw) and Iy(jw), Vb(jw) and Jy( Jjw) are the voltages and currents of the
vs(t) and ip(t), Ds(7) and 1p(7), respectively. Recall that Theorem 3.1 establishes
a bridge between the time and phasor domain quantities of PSL circuits. To find
out the relationship between the phasors of the network variables of two distinct
PSL circuits N’ and N/ having the same topology, let the clock frequency of N be
identical to that of A'. Representing each variable in (3.7) using (3.4)

B o oo
Y ¥ [Vb(wo + 1w, ) y(wo + mw,) — Ty(wo + new, ) V(wo + mw,)]

b=1n==00 m=~-00

eju,(t-i»r) ejw.(nt+m‘r) =0 (3.9)
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where Vi(w, + nw,) and Iy(w, + nw,) are respectively the phasors of vy(t) and 4(2)
at w, + nw,, Vi(ws + mw,) and fb(wo + mw,) are the phasors of i3(7) and ;b(‘r) at
w, + mw,, respectively. Note in (3.9), there are two time variables, namely, ¢ and
7. To extract the relationship between the phasors of the network variables of A/

and N from (3.9), we first eliminate 7 by imposing the constraint
t+r=0 (3.10)

on N and then integrate (3.9) with respect to ¢ from 0 to T,

B o )
Z Z Z [‘/b(wo + nwl)ib(wo + mwo) - Ib(wo + nwa)f/b(wo + mw.)

=] N=—00 M=-—00

T, .
/0 eivsln=megy _ g, (3.11)

Using the results of (2.34), we obtain

B oo
T [V,,(wo + 1) Fo(wo + nwy) ~ To(wo + nws)Vh(wo + nws)] = 0. (3.12)

b=1n=-c0

Following the similar procedures, it can also be shown that

B oo

Z Z ‘/b(wo + nwl)ib(wo + nwc) =0

b=1 n=-w0
B

Y Y h(we + nw,)Vi(wo + nw,) =0 (3.13)
=1 n=-00

Eq.(3.12) bears a resemblance to (3.8). It incorporates the phasors of A" and A in

a single notation.
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Theorem 3.2 (Tellegen’s Theorem for PSL Circuits in Phasor Domain)

In steady state, for a given lumped PSL circuit, there ezists another lumped PSL
circuit having the same topology, switching frequency, and reversed time. The weak
and strong forms of Tellegen’s theorem in phasor domain are given by (8.12) and

(8.18), respectively.

A few comments are made prior to further development. (a) The phasors of the
branch voltages and currents of both A and A in (3.12) and (3.13) are evaluated
at the same frequency. Its necessity will become evident when we derive the adjoint
network of PSL circuits in the next section. (b) The constraint imposed on the time
variable r of A in (3.10) reveals that the time of N proceeds in the reverse direction,
as compared with that of V. Conséquently, the switching clock sequence of A is
also reversed. To be specific, consider a PSL circuit with five non-overlapping clock
phases shown in Fig.3.1. The width of the kth phase is denoted by 7. In addition,
oy is defined as

k
ok = er k=1,2..5. (3.14)

i=1

By definition, g, = 0 and o5 = T,. The width of each clock phase of N equals to
that of the corresponding phase of N

(c) The difference between Tellegen’s theorems for PSL and LTI circuits is the
extra summation over n for PSL circuits. This summation represents a fundamental
characteristic of PSL circuits. Also note if n=0, Eq.(3.12) simplies to Tellegen’s

theorem for LTI circuits in phasor domain.
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Figure 3.1: Time reversal of adjoint network

3.3 Adjoint Network of PSL Circuits

3.3.1 Interreciprocity and Adjoint Network

()] Or@nol circuit

A B A B
—O . + O—q A
ii® CE: N\ Vo) vi () Nz :ﬁ) io(t)
——0 — —_— O
) y he -

(b) Adjoint network

Figure 3.2: Configuration of LTI circuit and its adjoint network

The adjoint network of LTI circuits is based on the concept of interreciprocity
[25,94,95]. In AC steady state, the interreciprocity of LTI circuits can also be
defined in phasor domain. Consider two LTI network A" and N shown in Fig. 3.2.
N is said to be interreciprocal to A if for L(jw) = I,(jw), we have V,(jw) = Vi( jw).
It was shown in [25] that if each element in A and its counterpart in A satisfy

Vi(jw) Iy(jw) — L(jw)Vh(jw) = 0

(3.15)
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then N and N are interreciprocal to each other. It can be shown that two inter-
reciprocal LTI circuits satisfy Tellegen’s theorem [25]. However, two LTI circuits
satisfying Tellegen’s theorem might not be interreciprocal. Tellegen’s theorem is

not a sufficient but rather a necessary condition of interreciprocity.

In the preceding section, it was shown that if two PSL circuits A" and A have the
same topology, clock frequency, and their time variables are related via (3.10), then
they satisfy (3.12). We now determine both the type and value of the elements of
N by further imposing the constraint of interreciprocity. Analogous to LTI circuits,

for each element in N and its counterpart in A, we impose

o0

2 [Vb(wo + nw,)fb(wo + nw,) — Iy(w, + nw.)ffb(w‘, +nw,)| =0 (3.16)

n=-0oo

or equivalently
up(t)in(T) — b(t)is(7) = 0. (3.17)

Note (3.17) must be satisfied for ¢, 7€(—o0, 00). This is because (3.16) was derived
using Fourier transform. For multi-branch elements, such as controlled sources, the
network variables of all the branches of the elements must be included in evaluating
(3.16) or (3.17). Elements that satisfy (3.16) or (3.17) are said to be interreciprocal.
The network N constructed in this way is called the adjoint network of N. Clearly,
N and N satisfy the Tellegen’s theorem. The adjoint network constructed in this
way manifests its advantages in deriving the aliasing transfer function of A, as will

be seen shortly.

Since the aliasing transfer functions of a PSL circuit is only concerned with the
inputs and outputs of the circuit, it is advantageous to partition the branches of
the circuit into (a) the internal branches associated with all interreciprocal elements

and (b) the input/output branches. Substituting (3.16) into (3.12) for all internal
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branches results in
B X
Y [vb(t)ib(r) - ib(t)ﬁb(r)] =0 (3.18)
b=1

where B, is the number of input/output branches in the circuit. In the following

subsections, we derive the adjoint networks of PSL circuits.

3.3.2 Ideal Switches

Ideal switches are essential components of PSL circuits. An ideal switch has, at
most, two distinct states : OPEN and CLOSED, depending upon the clock signal.
In the OPEN state, the current throﬁgh the switch is zero and the voltage across the
switch is determined by the rest of the circuit. An OPEN switch is characterized
by #(t) = 0 and vy(¢t) = arbitrary. Substituting these conditions into (3.17), we
obtain #4(r) = 0. So the counterpart of an OPEN switch in A is also an OPEN
switch in /. In the CLOSED state, the switch is characterized by w(t) = 0
and i(t) = arbitrary. Substituting these conditions into (3.17) yields 9»(7) = 0.
The counterpart of a CLOSED switch in A is a also CLOSED switch in N'. We
conclude that an OPEN/CLOSED ideal switch in A maps to an OPEN/CLOSED
ideal switch in N.

3.3.3 LTI Resistors

The phasors of the voltage and current of a LTI resistor in a PSL circuit are related

to each other by Vp(w, + nw,) = RIp(w, + nw,), Yn, where R is the resistance of
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the resistor. Substituting this relationship into (3.16) for a specific n, we obtain

Ip(wo + nw,) [Va(wo + nw,) — Rip(w, + nw.)] =0 (3.19)

where Va(w, + nw,) and Ip(w, + nw,) are the phasors of the voltage and current of
the counterpart of the resistor in A, respectively. To have (3.19) hold for arbitrary

Ip(w, + nw,), clearly

Va(wo + nw,) = Rip(w, + nw,) (3.20)

The element characterized by (3.20) is a LTI resistor. We conclude that the coun-

terpart of a LTI resistor in NV is also a LTI resistor in V' of the same resistance.

3.3.4 LTI Capacitors and Inductors

Consider a LTI capacitor in a PSL circuit. Representing the voltage and current
of the capacitor using (3.4) and substituting them into the constitutive equation of

the capacitor give

Y Io(wo + nw,)eet™n)t = 3" j(w, + nw,)C Vo (w, + nw,)e? @t (3,21)

n=-00 n=-00

Using the identity of orthogonality of exponential series, we obtain

Ie(wo + nw,) = j(wo + nw,)CVe(w, + nw,) Vn. (3.22)

Eq.(3.22) is the phasor-domain representation of the constitutive equation of LTI

capacitor in PSL circuits. Clearly, if n=0, it becomes the phasor domain relation of
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capacitors in LTI circuits. Substituting the voltages and currents of the capacitor

into (3.16) for a specific n, we obtain

Vo (wo + nw,) [I‘C(w,, +n,) — (wo + nws) CVe(we + nw,)] 0. (323

To validate (3.23) for arbitrary Vo (w, + nw, ), the following must be true

fc(wo + nw,) — j(wo + nw,)Cf/c(wo + nw,) =0 (3.24)

Elements characterized by (3.24) are LTI capacitors. We conclude that the coun-
terpart of a LTI capacitor in N is a LTI capacitor of the same capacitance in .
In a very like manner, one can also show that a LTI inductor in N maps to a LTI

inductor of the same inductance in N.

3.3.5 Controlled Sources

Consider a voltage-controlled voltage source (VCVS) with voltage gain a. Let
the network variables of the controlling branch of the VCVS be identified with
the subscript "1” and those of the controlled branch with "2”. Because 7,(t) =
0,v2(t) = gv1(t)Vt, using Corollary 3.1.1, we have, Ii(wo +nw,) = 0, Va(wo +nw,) =
aVi(w, + nw,) Vn. Substituting these variables into (3.16) for a specific n gives

Vi(wo + nw,) [fl(wo + nw,) + afz(wo + nw, )| — Ip(w, + nw,)f/Q(wo + nw,) =0.
(3.25)



CHAPTER 3. ADJOINT NETWORK OF PSL CIRCUITS 44

To have (3.25) hold for arbitrary V;(w, + nw,) and I(w, + nw,), we set

{ Va(wo + nuy) =0 (3.26)

fl(wo + nw,) = —afz(wo + nw,) .

The element characterized by (3.26) is a current-controlled current source (CCCS).
The controlling and controlled branches of the CCCS are interchanged as compared
with those of the VCVS. The current gain of the CCCS has the same magnitude
as that of the voltage gain of the VCVS but the opposite sign. The counterparts
of other controlled sources in the adjoint network were also derived in a similar

manner and the results are given in Fig 3.3.

3.3.6 Operational Amplifiers

Operational amplifiers are building blocks of PSL circuits. They are usually mod-
eled using either single-pole or multi-pole macro models, depending upon the speed
and accuracy of simulation [39,96]. These macro models are essentially LTI circuits
consisting of resistors, capacitors and controlled sources. Their adjoint networks
are constructed element by element. Fig.3.3 summarizes the elements that are often

encountered in PSL circuits and their counterparts in the adjoint network.

3.3.7 Complex Devices

The adjoint networks of complex devices, such as BJTs and MOSFETs, are obtained
by first replacing these devices with appropriate equivalent circuits and then finding

out the adjoint networks of these equivalent circuits.
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ELEMENT IN ORIGINAL CIRCUIT ELEMENT IN ADJOINT NETWORK
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Figure 3.3: Elements and their counterparts in the adjoint network

3.4 Frequency Reversal Theorem

In this section, we make use of the characteristics of PSL circuits and the cor-

responding adjoint networks to develop a novel theorem. Further, we will show
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Figure 3.4: Frequency reversal theorem

that the computational cost of the noise analysis of PSL circuits can be reduced

dramatically by making use of the theorem.

Consider a single-input single-output (SISO) PSL circuit A" shown in Fig. 3.4.
Its adjoint network is also shown in the figure. Eq. (3.18) can be written as

[v,,(t)i',,(r) _ io(t)ﬁo(r)] + [v,-(t);'.-(r) —iit)o(r)] =0 (3.27)

where the subscripts o and 7 identify the network variables of the output and input

branches, respectively. Because i,(t) = 0,Vt and 9;(7) = 0, Y7

Vo(t)io(T) + vi()is(r) = 0 (3.28)

Representing the responses of A" and N using (3.2), substituting the inputs of N
and N into (3.28), and making use of the time reversal characteristic of N, we
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obtain

H(t,w, + nw,) + H(—t,w,) = 0. (3.29)

Note H(t,w, + nw,) and H(~t, w,) contain an infinite number of frequency compo-
nents due to their periodicity in ¢. To find out the relationship between the response
of N at w, and that of N at w, +nw,, we have noticed that the bi-frequency transfer
function of linear time-varying systems introduced by Zadeh [89] incorporates the
input and output of the systems at different frequencies in a single notation. The

bi-frequency transfer function is defined as

H@w) = [ ® H(t,w)e-iO-v)tgy (3.30)
where {} and w are the output and input frequencies of the system, respectively. It
is easy to verify that H(Q,w) is the 2-dimensional Fourier transform of h(t, 7). The

time-varying transfer function is obtained from the bi-frequency transfer function

through the inverse transform

(<]

H(t,w) = % / . H(Q,w)e! @) dn (3.31)

It can be shown that the Fourier transform of the output of the system is computed

from

Y(Q) = 51; [7 H@.0) X (@) (3.32)

Eq.(3.32) establishes the frequency-domain relationship between the output y(t)
at frequency Q and the input z(¢) at frequency w of linear time-varying systems.
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Its counterpart in the time-domain is given by (2.7). A graphical representation is

given in Fig.3.5. Because

Vi(w) = Flus(t)] = 2m8(w — wo — nw,) (3.33)

where F[.] denotes taking Fourier transform. Making use of (3.32), we obtain the
output of N at w,

1 00
Valwo) = o= /_ Hyry (Wo, w)Vi(w)dw = Hyy (woy wo + nwy). (3.34)
x(t) — htt ) ™ y@ X@) —= HQw —™ YQ)
(@) Time domain (b) Frequency domain

Figure 3.5: Impulse response and transfer function of linear time-varying system

where Hyy(w,,w, + nw,) is the aliasing transfer function from the voltage input
at w, + nw, to the voltage output at w,. Further representing H(w,,w, + nw,) in

(3.34) using (3.30) gives

<)

Vi(ws) = / _ H(t o+ na)e™tdt. (3.35)

Similarly, since

I,(w) = Fli,(r)] = 2n6(w — w,). (3.36)
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therefore

f;(wo + nw,) = 2% /w ’flu(wo + nw.,w)fo(w)dw = ﬂ;l(wo + nw,,w,).  (3.37)
where Hrr(wo + nw,,w,) denotes the aliasing transfer function from the current
input at w, to the current output at w, + nw,. Using (3.30) and the time reversal

characteristic of A/, we can further simplify (3.37) as

Ii(wo + nw,) = /w H(~t,w,)e™™ dt. (3.38)

Summing up (3.38) and (3.35) and making use of (3.29) yield
Vo(wo) = —Ii(wo + nw,). (3.39)
Consequently

HVV(wm wo + nwn) = "7'211(“’0 + ana)' (340)

Eq.(3.40) reveals that the magnitude of the aliasing transfer function of N from
the input at w, + nw, to the output at w, is equal to that of N from the input at
W, to the output at w, + nw,. Similar results were also obtained for circuits with
other input/output configurations and are tabulated in Table 3.1. The variables in
the table are defined graphically in Fig. 3.2. These relationships are fundamental
characteristics of PSL circuits. Although the above derivation was done for SISO

circuits, it can readily be extended to multiple-input single-output (MISO) circuits.

Theorem 3.3 (Frequency Reversal Theorem of PSL Circuits) The magni-
tude of the aliasing transfer functions from multiple inputs at frequency w, + nw,
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Table 3.1: Frequency reversal theorem

Original Adjoint Aliasing

Input Output Input Output transfer function
i;(t) = eflwotnwilt |y (1) | (1) =T | #(1) | Val(wo) = Vi(wo + nw,)
vi(t) = efloetmunlt | yo(t) | iy(r) = e | ii(r) | Vo(wo) = —Fiwo + nw,)
ij(t) = efwatnwalt |4 (1) | B,(7) = T | §5(7) | Lo(wo) = —Vi(wo + nw,)

v.-(t) = gi(wotnw,)t to(t) ﬁo(r) = gIwoT ;',-(‘r) Io(“-’o) = f.-(wo + nw,)

to the single output at frequency w, of a PSL circuit is equal to that of the aliasing
transfer functions of the adjoint network from the single input at w, to the multiple

output at w, + nw,.

The significance of the frequency reversal theorem consists in the fact that the
computation of the aliasing transfer functions from inputs at w, + nw, to the out-
put at w, of N requires solving the circuit at multiple frequencies w, + nw,,n =
0, £1,+2,..., which requires repetitive numerical integration of the circuit equa-
tions. This amounts to an excessive amount of computation. With the frequency
reversal theorem, these aliasing transfer functions can be obtained by solving the
adjoint network A at w, only. A significant reduction in CPU time is achieved. The
frequency reversal theorem was not known before. It is one of the contributions of

this research.

The frequency reversal theorem is visualized in Fig.3.6. The upper portion of
the diagram illustrates the aliasing transfer functions from the input at multiple
input frequencies w, + nw,, n = 0,£1,..., to the output at a single frequency w,
of N' whereas the lower portion depicts those of N from the input at the single

frequency w, to the output at multiple frequencies w, + nw,.
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Figure 3.6: Frequency reversal theorem

3.5 Transfer Function Theorem

A special case of the frequency reversal theorem is when the frequencies of the

inputs and output are the same, i.e. n is zero. In this case, (3.39) simplifies to

Vo(wo) = —Ii(wo) (3.41)
Consequently
uVV(wovwo) = —ﬁII(wmwo) (3-42)

where Hyvy(w,,w,) and 'ftu(wo, w,) are the transfer functions of A and N at fre-
quency w,, respectively. Similar results were also obtained for circuits with other
input/output configurations and are given in Table 3.2.
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Table 3.2: Transfer function theorem

Original Adjoint Transfer function

Input Output Input Output
() = €7t | v,(t) | do(T) =T | Bi(r) | Vi(wo) = Vi(wo)
vilt) = etet | wo(t) | do(T) = e | (7)) | Vilwo) = —Ji{wo)
() = et | do(t) | Do(T) = e | (1) | Lo(we) = —Vi(we)

vlt) = et | i(t) | Do(r) =€ | di(r) | L(wo) = fiwo)

Theorem 3.4 (Transfer Function Theorem of PSL Circuits) The magnitude
of the transfer functions from multiple input sources to the single output of a PSL
circuit at frequency w, s equal to that of the transfer functions of the adjoint net-

work from the single input to multiple outputs at w,.

The efficiency gained from employing the transfer function theorem is evident.
With the transfer function theorem, we need to solve the adjoint network at the
frequency at which the transfer functions from multiple inputs to the single output
of the original circuit are to be evaluated only once to yield all the transfer functions
of the original circuit. For circuits in which a large number of input sources exist, a
tremendous amount of computation can be saved. It is worth noting that a similar

result exists for LTI circuits [25].

It is also interesting to note that the transfer function theorem bears a resem-
blance to the characteristics of controlled sources. For instance, the relationship
between i;(t) to vo(t) in Fig.3.7 can be considered as a CCVS with the trans-
impedance to be the transfer function. Using the fact that the adjoint network of a
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CCVS is also a CCVS with the same trans-impedance, we obtain the desired adjoint

network. Similar comparison can be made for other input/output configurations.

A A
+ 9

N0 @: c 0] c

A —3, . o N .

B M Vo(f) B M Io(r)

+ —o" a

X0 c () c

B B

(a) Voitage output
A A

+ 9
N0 dé;: c % N e
S A .
8 N } io() 8 :E\,) Vo (1)
+ ~
vi(H é: < iy (r){ ' c
8 8

(b) Current output

2>

Figure 3.7: Inputs and outputs of original and adjoint networks

3.6 Solution of The Adjoint Network

The implementation of both the frequency reversal theorem and transfer function
theorem requires the solution of the adjoint network. In this section, we show that
the adjoint network of a given PSL circuit can be solved efficiently by utilizing the

intrinsic relationship of these two circuits.
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Figure 3.8: Clock phase

Without losing generality, let the input of a multi-phase PSL circuit A be an
exponential signal w(t) = e?“<t. Let there be a total of K non-overlapping clock
phases in a clock period, as shown in Fig.3.8. The widths of the phases are arbitrary.
The adjoint network A of A is constructed accordingly. The frequency domain
analysis of PSL circuits was developed by Opal and Vlach in [47]. We make use of
some of the essential results here without further explanation. In steady state, the

constitutive equation of A in time domain is given by

dv(t
Grvie(t) + Cvakt(l = gew(t)€i(t)
+ CeViar(nT +0f_,)8(t — nT —o}f_,)
— Cuvi(nT + 0;)d(t — nT — of)

-0 <t<oo, n=0,+1,42,... (3.43)

where v,(t) is the network variable vector. G, and C}, are conductance and capaci-

tance matrices, respectively. w(¢) is the input and g is a constant vector specifying
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the location of the input. €.(t) is the kth window function defined as

{ 1 nT + oy < t<nT + o

&(t) = (3.44)

0 elsewhere

The Dirac delta terms at ¢t = nT' + o{_, and ¢t = nT + o represent the injection of
the initial conditions and the extraction of final conditions. The frequency response

of the circuit is obtained by taking Fourier transform of (3.43)

Te(jw)Vi(jw) = Flgrw(t)ée(t)]
+ CuFVies(nT + of_)b(t — T — a,)]
— CuF[vi(nT +07)8(t — nT — o7 )|
n=0,+1,+2,.. (3.45)

where Ti(jw) = Gy + jwCi. The Fourier transform of the first term on the
right hand side of (3.45) can be computed analytically for both continuous and
S/H input and is readily available {47]. The other two terms are obtained using

numerical integration as follows :

During each clock phase, the circuit is essentially linear time-invariant. The LTI

circuit in phase k is characterized by

dvk(t)

Givi(t) + Ce = gee™”,  Vi(t)|e=nT+oroy = Vi-1. (3.46)

Taking Laplace transform

Vk(s) T, 1(3)Ckvk_1 + Ty l(.9) (3.47)

J“’o
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where T (3) = Gi + sCi. The superscript ”-1” denotes matrix inversion. Because

Ty (o) e ! [T (o) 0ue (3.48)

where ® denotes convolution, £~1[.] is inverse Laplace transform operator and <=
denotes convolution theorem. The response of the circuit at ¢ = nT + o, denoted

by vy, is obtained from (3.47) by taking inverse Laplace transform
Vi = N Crvie_; + Pkej“°("T+'t-l) (3.49)
where

N, = £~ [T;l(s)]

t:nT+o:

P, = eiwon [ [ > Nk(r)e"""“df] - (3.50)

It becomes clear that N.C; is the state transition matrix and P is the zero-
state response of the circuit at ¢ = nT + o with the input at t = nT + of_,.
The state transition matrix is solely determined by the topology of the circuit. It
is independent of the input and frequency. Pi, however, is input and frequency
dependent. Fourier transform of (3.49) gives the last two terms on the right hand
side of (3.43).

The computational cost of frequency analysis of PSL circuits mainly consists
of the cost for computing (a) Nj matrix, (b) P; vector and (c) LU-factorization
of Ti(jw). Gi and C, matrices are formulated using the modified nodal analysis.
When taking into account the time reversal characteristic of the adjoint network,
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it can be shown that Gy and C; of N relate to those of N by

ék = Gﬂ—k-{—l
ék = C%-k+1
Ti(s) = Thouri(9)

‘f'k = TK-k+1 (351)

where G, and Cj are the conductance and capacitance matrices of N, 'i‘k(.s) =

Gi + sCr. The superscript T denotes matrix transpose. Since (A~!)7 = (AT),
T

where A is a non-singular square matrix, also because £~! ([]T) = (ﬁ‘l[.]) , We

have
- 1 . . T
Tt ) = [Talunlio)] - (352)

Therefore, the LU-factorization of T¢(jw) can be obtained directly from that of

Ti(jw) without additional computation. Also, because

Nu(r) = £ ['i‘,:l(s)]

= £ ([rReat)] )
= (L:“[T,}‘_,,“(s)])T

= NI_..(®). (3.53)

The state transition matrix of N can also be obtained from that of N’ without

numerical integration.
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The zero-state response Py is input-dependent. It is the solution of (3.46) at
t = nT + o), when the input is applied at ¢ = nT + o}_, and the initial condition
is zero. Using numerical Laplace inversion of order 19 [97-99] !, it can be shown

that P, is computed from

Pr = Qu(7k)8r (3.54)

where

10 )
Qi(m) = —%E KTy} (':—;) . (3.55)

PP
i=1 T JWo

K; and z are two sets of precomputed complex numbers readily available (39].

Because
Tk:(;-;) = Tﬁ_kﬂ',—(rxiﬁ) (3.56)
we obtain
Q= Qk_un (3.57)
Consequently
Pe=Qf b (3.58)

where g; is a constant vector specifying the input location of V. It is obtained from

g = di, where d, is a constant vector specifying the output location of N. The

1A brief review of numerical Laplace inversion is presented in Appendix A.
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Table 3.3: Relation between original and adjoint networks

Original circuit Adjoint network

Gi ék = G%—k+1

Ci ék = C%—H—l
Tr(jw) Ti(jw) = T i4a(jw) .
ToGe) | B) = (TR i)

N N, = N%—k+1

Qx Q. = Q% iy

P, I“'Ie = Q%—kﬂdk

ds de = gk

8k g =d:

above analysis shows that the zero-state response of N can be obtained efficiently

from that of A without numerical integration.

In summary, the adjoint network A of N can be solved with little extra compu-
tation given that the solution of N is available. The intrinsic relationship between
N and N is summarized in Table 3.3

3.7 Numerical Examples

In this section, the theory developed in this chapter is assessed with the help of

numerical examples.
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Table 3.4: Parameter values of SC integrator

Parameter | Numerical value | Unit Remark
C, 0.01592 uF
C, 10 uF
Cs 1 pF
Rs 100 Q
R, 22.74 kQ
Ro 100 Q
Ron 3.5 kQ Channel resistance
fo 889 Hz Input frequency
fs 100 . kHz Clock frequency
fr 700 kHz | Unit-gain frequency of op amp
T 0.488T, Second Width of phase 1
T 0.512T, Second Width of phase 2
a 1 Simen Transconductance
g2 4.398x10% Simen | Transconductance

3.7.1 Parasitic-insensitive Switched-capacitor Integrator

Consider a parasitic-insensitive switched-capacitor integrator in Fig. 3.9. The
schematic of its adjoint network is also shown in the figure. The circuit is not sen-
sitive to the parasitic capacitances between the top/bottom plates of the capacitor
and the substrate, as shown in the figure [100,101]. The op amp is modeled as a
single-pole device with unity-gain band width 700 kHz and output resistance 100
{2. The schematics of the equivalent circuits of op amp and its adjoint network are

shown in Fig. 3.10 [39]. The dominant pole is determined by R3Cs whereas the
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Figure 3.9: Parasitic-insensitive switched-capacitor integrator and its adjoint net-

work

open-loop gain is determined by the second VCCS. Note we have assumed infinite
differential input impedance and common-mode input resistances. Other nonideal-
ities, such as finite slew rate, finite CMRR, etc. are also neglected for simplicity.
More advanced models [96,101] can also be employed, however, with a cost of in-
creasing circuit complexity and simulation time. The MOSFETs are modeled as an
ideal switch in series with a LTI resistor with resistance 3.5 kQ. All intrinsic and
parasitic capacitances associated with MOSFETs are neglected. The parameters
of the circuit are given in Table 3.4. The magnitude of the inputs of both circuits

is unity. The circuits were solved using Watsnap [47] and the results are presented
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Figure 3.10: Models of op amp and its adjoint network

in Table 3.5. It is seen that the transfer function and aliasing transfer functions of

the integrator match those of its adjoint network exactly.

3.7.2 Switched-capacitor Band pass Filter

Consider a second-order switched-capacitor band pass filter with two non-overlapping
clock phases. The schematics of the filter and its adjoint network are shown
Figs.3.11 and 3.12, respectively. It is a stray-insensitive switched-capacitor realiza-
tion of the classic Tow-Thomas band pass filter [102]. The value of the parameters
of the circuit is given in Table 3.6. The pass-band center frequency is 1 kHz. The
models of MOSFETSs and op amp are the same as those in the previous example.
The magnitude of the inputs of both circuits is unity. The circuits were solved

using Watsnap and the results are presented in Table 3.7. It is seen that both the
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Table 3.5: Responses of switched-capacitor integrator and its adjoint network

Original Circuit (output at f,) Adjoint Network (input at f,)
Input Output
freq. Output freq. Output
A 2.68218x10~2 — 8.02467x10~2i A 2.68218x10~2 — 8.02467x10~2i

fot+ fo | 5.29485x1072+1.6045x107% | f,+ f, | 5.29485x10~2 + 1.6045x10~2{
fo+2f, | —9.60776x10* +2.04816x1073% | f, + 2f, | —9.60776x10~4 + 2.04816x10~3;
fo+3f, | 1.7885x1072 + 3.83242x1073%¢ | f,+3f, | 1.7885x10~2 + 3.83242x10~3i
fo+4f, | —-5.77075x107% + 2.07626x1073% | f, +4f, | —5.77075x10~* + 2.07626x10~%;
fo+5f | 1.07444x1072 4+ 1.43950x107% | f,+5f, | 1.07444x10~2 + 1.43950x10~3
fo+6f, | —3.42938x107% + 2.08695x10~3 | f, +6f, | —3.42938x10~* + 2.08695x10~3;
fo+7f, | 7.59345x107° + 4.25669x107% | f,+7f, | 7.59345x10~2 + 4.25669x10~ 4
fo+8f, | —1.47032x107* +2.08153x1073% | f, +8f, | —1.47032x10~* + 2.08153x10~3;
fo+9f | 5.77376x1073 — 1.21182x1074¢ | f,+9f, | 5.77376x10~3 — 1.21182x10~4;

transfer function and aliasing transfer functions of the original circuit match those

of the adjoint network exactly.

3.8 Summary

In this chapter, Tellegen’s theorem for PSL circuits in phasor domain was intro-

duced and a general theory of the adjoint network of multiphase PSL circuits was

developed. Two novel theorems, namely, frequency reversal theorem and transfer

function theorem, were also introduced and rigorous proofs were given. The theory

derives the transfer functions and aliasing transfer functions from the multiple input
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Table 3.6: Parameter value of Switched-capacitor band pass filter

Parameter | Numerical value | Unit Remark

C, 0.434567 pF
C, 20 pF
Cs 0.434567 pF
Cs 20 pF
Cs 20 pF
Ce 0.108642 pF
Cr 0.295097 pF

Ron 3.5 kQ Channel resistance
fo 889 Hz Input frequency
fs 20 kHz Clock frequency
fr 700 kHz | Unit-gain frequency of op amp
T 0.488T, Second Width of phase 1
T 0.5127T, Second Width of phase 2

sources to the single output at the base band frequency of a given PSL circuit by
solving its adjoint network at the base band only once. The relationship between
PSL circuits and the corresponding adjoint networks was investigated. It is shown

that the adjoint network can be solved efficiently.
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Table 3.7: Responses of Switched-capacitor band pass filter and its adjoint network

Original Circuit (output at f,) Adjoint Network (input at f,)
Input Output
freq. Output freq. Output
A 5.08187x10™2 + 4.46942x10~2 A 5.08187x10"2 + 4.46942x10~2{

fot+ [ | —2.94092x10~% + 3.57741x10°% | f,+ f, | —2.94092x10~2 + 3.57741x10~2%;
fo+2f, | —2.60379x1072 — 2.61331x107% | f,+2f, | —2.60379%x10~3 — 2.61331x10~3;
fo+3f, | —8.02836x107° + 1.21848x1073% | f, + 3f, | —8.02836x10~3 + 1.21848x103;
fo+4f, | —2.13732x10~3 — 1.46881x1073¢ | f, +4f, | —2.13732x10~3 — 1.46881x10-3{
fo+5fs | —4.12177x1072 + 7.45969%x1073% | f,+5f, | —4.12177x10~3 + 7.45969x10~3
fo+6f, | —1.97140x10™% —1.07077x107% | f,+ 6f, | —1.97140x10~2 — 1.07077x10~3;
fo+7f, | —2.46157x10~3 +5.38513x1073%i | f, + 7f, | —2.46157x103 + 5.38513x10~3;
fo+8f, | —1.89279x1073 —8.23294x107% | f, + 8f, | —1.89279x10~3 — 8.23294x10~%;
fo+9f, | —5.77376x107° +1.21182x10~% | £, +9f, | ~5.77376x10~2 + 1.21182x10~4;




Chapter 4

Noise Analysis of PSL Circuits

This chapter deals with noise analysis of periodically switched linear circuits [103].
Noise sources and the equivalent circuits of integrated devices are investigated.
An adjoint network-based noise analysis algorithm is developed. The output noise
power of a number of PSL circuits is analyzed and the results are compared with

measurements.

4.1 Noise Sources

The most commonly encountered types of noise in silicon integrated circuits are
thermal noise, shot noise, and flicker noise. These noise sources are inherent to
silicon devices. Clock jitter is another source of fluctuation that generates random

errors in network variables. It is unique to clocked circuits.

67
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4.1.1 Thermal noise

Thermal noise, often referred to as Johnson noise in recognition of the first observa-
tion of the phenomenon by J. B. Johnson [104], is generated by the random thermal
agitation of mobile carriers. It is due to the random departure and return of mobile
charges in thermal equilibrium. The power of thermal noise is directly proportional
to temperature. The band width of thermal noise at room temperature is around
6000 GHz. Time samples separated by 0.17 ps are uncorrelated [105]. In almost all
cases, thermal noise is treated as a stationary process. The distribution of thermal
noise is Gaussian. The PSD of the thermal noise generated by a resistor is given

by Nyquist law

S(w) = 2kTR -0 < w < 0o (4.1)

where R is the resistance, k is Boltzmann constant, T is the absolute temperature
in degrees Kelvin. Eq.(4.1) was first derived by Nyquist [106] from an argument
based on thermodynamics and the exchange of energy between resistive elements

in thermal equilibrium.

4.1.2 Shot noise

Shot noise is caused by the random combination of electron-hole pairs and the
random diffusion of minority carriers across depletion regions in semiconductor
devices [107]. This phenomenon is depicted by a stochastic process Y'(t), which

represents the sum of a large number of independent events occurring at random
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time instants at an average rate \
Y(t)=3 vt -t) (4.2)

where 7(t) is a pulse shape function and ¢; is the time at which the pulse occurs.
Note y(t) is causal. The distribution of Y (t) is Poisson. The PSD of Y (¢) is given
by Curson’s theorem [108, 109]

Sy (w) = 2AP(w)/? (4.3)

where I'(w) is the Fourier transform of 4(t). The band width of shot noise is in-
versely proportional to the transit time required by the carriers to cross the deple-
tion regions. It is in the high gigahertz range [105]. Shot noise is therefore treated
as a stationary white process. In the extreme case where (t) is approximated by
Dirac impulse function 4(t), because |['(w)| = 1, we have the following Schottky’s
theorem for PN-junction [88]

S(w) =2qIp (4.4)

where Ip is the average forward bias current of the pn-junction and q is the charge
on an electron. It should be noted that the above result is only valid for f <
fr =1/(277), where 7 is the transit time for mobile carriers to cross the potential

barriers.
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4.1.3 Flicker noise (1/f noise)

Flicker noise, also known as 1/f noise, exists in both active devices and passive
resistors. The mechanism of 1/f noise has been studied extensively. Numerous
papers tend to converge to two basic 1/f noise theories : (1) the mobility fluctu-
ation model [110], which is based on the scattering of mobile carriers due to the
collision with the crystal lattice of silicon and impurities, and (2) the carrier density
fluctuation due to the trapping and de-trapping of the mobile carriers in the traps
located in the surface of silicon-oxide interface and within the gate oxide [111].
For MOS transistors, it was found that the mobility fluctuation model only holds
when the devices are operated in the triode region where the inverse layer can be
approximated by a homogeneous resistor. The density fluctuation theory, on the
other hand, predicts 1/f noise accurately in all regions of MOS transistors. Flicker
noise is always associated with a direct current and is often modeled as a stationary

process with PSD given by [16]

K,I°
fb

S(w) = (4.5)
where [ is the average current, K is a process and temperature dependent constant,
a and b are constants in the ranges of 0.5 < a < 2and 0 < b < 2, and f is frequency.
For most electronic devices, flicker noise surpasses thermal and shot noise at low
frequencies. Extensive experiments show that there is no change in the shape of
the PSD of flicker noise even at extremely low frequencies [112]. The upper limit of
flicker noise is difficult to detect as it is usually masked by the floor of thermal noise.
The corner frequency, defined as the frequency at which the PSDs of thermal/shot

and flicker noise intercept, is often used as the upper bound of flicker noise.
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4.1.4 Clock Jitter

Clock jitter, also known as timing jitter, is caused by the random error in the time
of the occurrence of the sampling clock. The cause of clock jitter is mainly due
to the phase noise generated in the reference oscillator and the associated circuits
in the clock generator [113]. The fluctuation of the oscillator output causes the
comparator to detect zero-crossing instants with a random time jitter [114]. Exper-
imental results show that the distribution of clock jitter tends to be Gaussian [115]
although uniform distribution is also often used in analyzing jitter effect [6]. The
effect of clock jitter on the operation of MOSFET switches are two-fold. Both the
amplitude and phase fluctuations of the clock signal affect the ON/OFF instants
of MOSFET switches. Among them, the phase fluctuation is dominant as the am-
plitude fluctuation is usually small. In [116], the effect of timing jitter in sampling
systems was investigated. It was shown that for a given signal sampled with a
jittered clock, the Fourier transform of the expectation of samples is obtained from
mean, variance and high-order moments of the jitter. In [117], an investigation
on the effect of clock jitter on the performance of switched-capacitor networks was
carried out using a deterministic approach. Time-domain simulation of clock jitter
of PSL circuits and sigma-delta converters was also carried out [118]. It was shown
that the fluctuation caused by the clock jitter is buried by the floor of the thermal
noise of the circuit if the clock frequency is much higher than the signal frequency.
However, it becomes the dominant fluctuation source if the frequencies of the clock
and signal are comparable. For most switched-capacitor and switched-current net-
works, the clock period is usually much larger than the charging/discharging RC
constants, the effect of the clock jitter is therefore insignificant. Investigation on
frequency-domain methods for the analysis of clock jitter effect of general PSL

circuit is left as a future research project.
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4.2 Equivalent Circuits

The equivalent circuits of integrated devices with noise sources included are pre-
sented in this section. These equivalent circuits are used in noise analysis of elec-

tronic circuits, including PSL circuits.

4.2.1 Resistors

Physical resistors such as diffusion resistors, polysilicon resistors, etc., generate
thermal noise. At low frequencies, a resistor can be modeled as a hypothetical noise-
free resistor in series with a random voltage generator or a noise-free conductor in
parallel with a random current generator, as shown in Fig. 4.1. At high frequencies,
the parasitic capacitances associated with the resistors must also be taken into

account in accurate modeling of the resistors.

2= 2&TG Af

v2= 2KTRAf
R
o @ AN ——o
Noiseless Noiseless
@) ®)

Figure 4.1: Equivalent circuits of resistors. (a) Norton equivalent, (b) Thevenin
equivalent
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4.2.2 Bipolar Junction Transistors

Bipolar junction transistors (BJTs) are widely used for high-frequency and high-
speed applications due to their large fr. There are four main noise sources asso-
ciated with a BJT : (1) thermal noise generated by the base resistance, (2) shot
noise in the base current, (3) flicker noise in the base current, and (4) shot noise in

the collector current.

Flicker noise of BJTs arises mainly due to the generation/recombination pro-
cesses in the emitter-base depletion region and the trap/de-trap of carriers by the
oxide located above the emitter-base junction. The former usually predominates
over the later [120]. As compared with MOS transistors, 1/f noise of BJTs is much
smaller and manifests itself in frequency regions several decades lower [119]. The
base resistance consists of the intrinsic and extrinsic base resistances. The intrinsic
base resistance is usually larger than the extrinsic [120]. However, due to the effect
of current crowding {16], the intrinsic resistance and the associated thermal noise
can be reduced by a large collector current. The extrinsic base resistance is made
up of the bulk and contact resistances. It can be reduced by increasing the number
of contacts in the base and reducing the lateral distance between the emitter and
base contacts. The thermal noise generated by other parasitic resistances, such as
emitter and collector bulk resistances, also constitute the overall noise of the de-
vice. However, because the emitter is heavily doped, the associated thermal noise
is small [121]. The thermal noise originating from the collector resistance is often
surpassed by the noise of high collector loads. A small-signal equivalent circuit of
BJTs biased in the forward active region is given in Fig. 4.2. When a BJT is op-
erated in ON/OFF modes, its equivalent circuit can also be obtained by including

the above identified noise sources in the large-signal equivalent circuit of BJTs.
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Figure 4.2: A high-frequency small-signal equivalent circuit of BJTs biased in for-

ward active region

4.2.3 MOS Transistors

MOS transistors are building elements of SC and SI circuits. Recent advances in
CMOS technology have also made CMOS a viable technology choice for high-speed
and RF applications. Noise generated by the intrinsic part of a MOS transistor
consists of (1) shot noise in the gate leakage current, (2) thermal noise due to the
random thermal motion of mobile carriers in the inversion layer and (3) flicker noise
due to channel charge density fluctuation caused by the traps at the oxide-silicon
interface [122]. The shot noise of gate leakage current is usually neglected. To
ensure stable operation, MOS transistors are usually biased in strong inversion.

The power of the flicker noise originating in the channel is given by [119]

7 _ Kios _ _ Kqiqp,
™~ Cul’f ~ 2uCLWLS

(4.6)
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where Ipg is the drain-source quiescent current. W and L are the width and length
of the channel, respectively, g, is the gate transconductance. MOS transistors
exhibit the highest 1/ f noise among all active integrated devices [119]. As compared
with BJTs, the corner frequency of the flicker noise of MOS transistors could extend
to mega Hertz ranges [16]. The thermal noise generated by a strongly inverted MOS
transistor in saturation is mainly due to the fluctuation in the drift current in the
channel [123]. The fluctuation in the diffusion current is negligible as the drift
current predominates over the diffusion current in strong inversion. The thermal

noise of the drift current is given by [124]

= 2
Zznps = 2kT§(gm + gmb)Af (47)

where gn, and g, are the gate and substrate transconductances, respectively.
Eq.(4.7) is valid only in the saturation region. It gives erroneous results in the
triode region because as vps—0, zero thermal noise is predicted !. In [125,126],
gps, the channel conductance, was added to (4.7) to represent the thermal noise

generated by the device in ohmic region.

2ups = 2kTa(gm + gms + gps)Af (4.8)

where & = 1 — vps/(3Vpssar) if vps < Vpssar and 2/3 if vps > Vps,sar-
Vbs,sar = ves — Vr. Note a varies with vpg linearly from 1 at vps = 0 (where
gm=~0) to % at vps = Vpssar (where gps is small). The validity of (4.8) was
questioned in [127] because it differs from the theoretical results given in [123,128].

1n the triode region, since ips = pC.,,-"{-[(vas —Vr)vps - %VD’ shgm = g—:g: = uC,,,%’-vps.

AB vps—)o, 9m —’0.
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Moreover, the noise power predicated by (4.8) deviates notably from SPICE simu-
lation when different levels of MOSFET models are used. It was shown in [123] that
under quasi-static condition, the power of the thermal noise originating from the

drift current in the channel of a strongly inverted MOS transistor is given by [123]
ips = 2kTygps,Af (4.9)

where v = % if vps > Vps,sar and (1 - A+ 1\2/3)/(1 — A/2) if vps<Vps sar. Here
A = vps/vps,sar and gps, is the channel conductance when vps = 0. When the

first-order approximation [129] is used, it is obtained from

: w
gps, = v——i = anT(vc;s -Vr) (4.10)

vps=0
It should be noted that (4.9) is only valid for long channel devices. In [130], the
modulation of channel length and the degradation of surface mobility due to the

high lateral field were also included in modeling the noise of MOS transistors and

more complex results were obtained.

Switches in PSL circuits are realized using NMOS transistors operated in the
triode region to minimize vps and the subthreshold regions. CMOS pass-transistor
gates with complementary clock are also used extensively to maximize signal dy-
namic range, minimize ON-resistance and reduce clock feed-through [101,131]. In
the triode region, because vps is small, the channel can be approximated by a

homogeneous conductor with conductance given by

W
9os = #Cux (95 ~ Vi) — vps] (4.11)
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The thermal noise generated by the channel is computed in the same way as that
of LTI resistors. When the transistor is in subthreshold region, we follow the same
treatment as that in CSIM [129], BSIM [132], and set ips = 0. Consequently, the
associated noise is zero. A low-frequency equivalent circuit of MOSFET switches
is given in Fig. 4.3. This model has been used widely due to its simplicity [11,12,
14,15)].

i,fds =2kIgps Af

)

/ R
s —od

Figure 4.3: A low-frequency equivalent circuit of MOSFET switch

Noise generated by the extrinsic part of the device includes the thermal noise
originating from the source and drain bulk resistances, and polysilicon gate resis-
tance. Among them, the thermal noise of the polysilicon gate predominates. To
analyze the noise behavior of MOS transistors at high frequencies, both the in-
trinsic and parasitic capacitances must be included. A high frequency small-signal
equivalent circuit of MOS transistors with noise sources included is given in Fig.
4.4. At very high frequencies, the thermal noise generated by substrate resistance
should also be taken into consideration as it contributes nearly 20% of the total
noise of MOS transistors [133].

It is also worth noting that the so-called gate-current fluctuation [88,122,134] is
due to the thermal noise originating in the channel and coupled via the gate-channel
capacitance at high frequencies. It should not be considered as an independent nor

a correlated noise source.
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Figure 4.4: A high-frequency small-signal Equivalent circuit of MOS transistor

4.2.4 Operational Amplifiers (Op amp)

Noise generated by an operational amplifier is mainly due to the noise generated
in the differential input stage. Noise generated in the following stages is usually
negligible. To model the noise of the differential input stage in either open- or short-
circuited cases, two pairs of noise-current and noise-voltage generators are needed at
the inputs of the op amp and the op amp is thereby treated as a hypothetical noise-
free device, as shown in Fig. 4.5(a) in which i2, and i2, are current-noise generators,
v2; and v3, are voltage-noise generators [90]. Because 2, and 2, represent common-
mode signals, they produce virtually no differential output if CMRR of the op amp
is high. Consequently, they can be removed from the equivalent circuit without
introducing large errors [16]. Also, because the two voltage-noise generators are in
series with the input, they can be combined into a single voltage-noise generator, i.e.
vZ = v3, + v3,, given the correlation is small. This leads to a simplified equivalent
circuit of the op amp shown in Fig. 4.5(b) [135-137]. If the op amp is realized
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using BJTs, then v2 consists of the thermal noise of the base resistances, shot noise
in base current and the input-referred noise originating in the collector currents
of appropriate transistors in the differential stage. If the input stage is realized
using MOS transistors, then v2 is made of the input-referred thermal and flicker
noise originating in the inversion layer of the appropriate MOS transistors in the
stage. It should be noted that when the op amp is operated at low frequencies,
v2 is independent of frequency. However, at high frequencies, since the gain of the
differential input stage varies with frequency, the input-referred noise source also

changes with frequency. Consequently, v2 is frequency-dependert.

Noiseless Noiseless

@ ©

Figure 4.5: Equivalent circuits of operational amplifier. (a) Complete equivalent
circuit, (b) Simplified equivalent circuit.

4.3 Noise Analysis of PSL Circuits

The noise behavior of PSL circuits differs from that of LTI circuits due to periodic
switching. The band width of noise signals encountered in PSL circuits usually
exceeds the clock frequency by orders of magnitude. The under-sampling of the



CHAPTER 4. NOISE ANALYSIS OF PSL CIRCUITS 80

wide band noise results in strong aliasing effect. The noise power folded over from
the side band components of the noise sources dominates the output noise power.
In Chapter 2, it was shown that the response of PSL circuits with stationary inputs

is cyclo-stationary. Its average PSD is time-independent and is computed from

M o
So(w) = z_; ; [Hi(w, w + nw,)|*Si(w + nw,) (4.12)

where S;tw + nw,) is the PSD of the ith noise at w + nw,, Hi(w,w + nw,) is the
aliasing transfer function from the ith noise source at w + nw, to the output at w,
M is the number of noise sources. Revealed by (4.12) is that the computational
cost of noise analysis of PSL circuits arises from a large number of noise sources
and the aliasing effect. Both the transfer and aliasing transfer functions from the

noise sources to the output are needed in computing the output noise power.

It was shown in Chapter 3 that these transfer and aliasing transfer functions
can be computed efficiently by using the adjoint network technique. For a given
PSL circuit N having K non-overlapping clock phases in each clock period, we first
replace all noisy elements in the circuit with their corresponding equivalent circuits
given earlier and then define a set of constant vectors g;, i = 1,2,.., M, to specify
the nodes to which these noise sources are connected. Further, the output of N’
is specified by a constant vector d, i.e. V,(jw) = d7V(jw), where V(jw) is the
response of . The adjoint network A" of N is constructed in accordance with
the guidelines given in Chapter 3. The circuit equations of N, in particular, the
conductance matrices G and capacitance matrices Cg, k = 1,2, ..., K, are formu-
lated using the modified nodal analysis. The system matrices of N are obtained as
detailed in Chapter 3. Using Theorem 3.4, the transfer function from the ith noise
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source to the output of N at w, denoted by H;(w,w), is obtained from
Hi(w,w) = g7V (w) (4.13)

where V(w) is the response of A at w with an input of unity amplitude at w. The
location of the input of N is specified by d. Further from Theorem 3.3, the aliasing
transfer function from the ith noise source at w + nw, to the output at w, denoted

by Hi(w,w + nw,), is obtained from

-

Hi(w,w + nw,) = g V(w + nw,) Vn (4.14)

where V(w +nw,) is the nth order fréquency component of the response of . The
transfer and aliasing transfer functions from other noise sources to the same output
of N can be obtained by substituting appropriate g; vectors into (4.13) and (4.14),
respectively. Since all noise sources are uncorrelated, the total output noise power

of N is obtained by summing up the contributions of all noise sources.

M o
Sow) = Y Y 187V (w + nw,)|*Si(w + nw,) (4.15)

i=1 n=-00

Eq.(4.15) reveals that for a given PSL circuit, once the location and type of the
noise sources are known, the PSD of the output of the circuit at a given base band
frequency can be computed efficiently by solving the adjoint network. The above
algorithm has been implemented in a computer program SLCNAP (Switched Linear
Circuit Noise Analysis Program). An algorithm using the brute-force method has

also been implemented for the purpose of comparison.
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Table 4.1: Parameter values of SC low-pass

Parameter | Numerical value | Unit Remark
C 51 pF
C, 45 pF
Ron, 14.2 kQ Channel resistance of M1
Ron, 18.4 k2 | Channel resistance of M2
fs 5 kHz Clock frequency
T, 1/f1, Second Clock period
5 0.25T, Second Width of phase 1
T2 0.25T, Second Width of phase 2
T3 0.25T, Second Width of phase 3
T4 0.25T, Second Width of phase 4

82

4.4 Numerical Examples

In this section, the average output noise power of several PSL circuits is analyzed

using SLCNAP and the results are compared with measurements.

4.4.1 Noise of SC Low-pass

The schematic of a SC low-pass is shown in Fig. 4.6, and the parameters are
given in Table 4.1. Only the thermal noise of MOSFET switches is considered. Five
different input noise band widths, 250 kHz, 500 kHz, 1 MHz, 5 MHz ,and 10 MHz
were considered. This corresponds to 50, 100, 200, 1000, and 2000 side bands to
be folded over. The output noise power was calculated and the results are plotted
in Fig. 4.7, together with the measurement data extracted from [12]. It is seen
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Figure 4.6: SC low-pass

that the output noise power increases initially with the increase in the number of
side bands folded over. It eventually converges to a finite power irrespective of any
further increase in the number of side bands. This observation reveals the existence
of a finite band width of this circuit. The band width of the circuit is due to the
low-pass mechanism formed by the channel resistance of the MOSFET switches
and the shunting capacitances. It is the finite band width that results in a finite
output noise power. It is also seen that simulation results agree very well with the

measurements.

4.4.2 Noise of SC Integrator

The second example investigated is a SC integrator with four non-overlapping
Phases of equal width [13]. The schematic of the integrator is shown in Fig. 4.8,
with the parameter values given in Table 4.2. The thermal and shot noise of the
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Figure 4.7: PSD of SC low-pass

op amp are represented by an equivalent noise-voltage generator v2, = 2kT R, Af.
The flicker noise of the op amp and MOSFET switches is neglected. The model
of the noise-free op amp is the same as that given in Chapter 3. The output noise
power was calculated with input noise band width of 250 kHz, 500 kHz, 1 MHz,
5 MHz, and 10 MHz. This translates to 25, 50, 100, 500, and 1000 side bands
that need to be folded over. The results are plotted in Fig. 4.9, together with the
measurement data extracted from [13]. It is seen that the converged output noise

power matches the measurements very well.

The efficiency of the proposed algorithm is demonstrated by comparing the CPU
time of our algorithm with that of the brute-force method. Fig. 4.10 shows the
CPU time of the proposed algorithm on computing the output noise power of the



CHAPTER 4. NOISE ANALYSIS OF PSL CIRCUITS 85

Table 4.2: Parameter values of SC integrator

Parameter | Numerical value | Unit Remark

C, 10 pF

C, 10 pF

Ron 3.5 kQ Channel resistance

R, 1.55 MQ | Equivalent resistor of op amp
R, 100 Q Output resistance of op amp
fs 10 kHz Clock frequency

fr 700 kHz | Unit-gain frequency of op amp
T, 1/f. Second Clock period
) 0.25T, .Second Width of phase 1
T2 0.25T, Second Width of phase 2
T3 0.25T, Second Width of phase 3
T4 0.25T, Second Width of phase 4

SC integrator with (a) only the noise of M1 considered and (b) all noise sources
(noise of M;, M, and op amp) considered. As can be seen that the amount of
time spent in both cases is nearly the same. This observation validates our earlier
statements on the advantages of using the transfer function theorem. Also observed
that the cost of computation is linearly proportional to the number of side bands

folded over.

The efficiency gained from the frequency reversal theorem over the brute-force
method is not as intuitive as that from the transfer function theorem. To investigate
the efficiency, the noise sources of M; and the op amp are turned off, and only the

noise source of M, is activated. The output noise power of the integrator was
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Figure 4.8: SC integrator

computed using both methods. Fig. 4.11 gives the quotient of the CPU time of our
method to that of the brute-force with various step sizes used in computing P} and
Ni. It is seen that the speedup obtained using the frequency reversal theorem is
significant. Also, the speedup is step size dependent. It increases dramatically with
the decrease in the step size. These results are expected since the lack of efficiency
of the brute-force method is due to the repetitive calculation of P, at both the
base band and side band frequencies 2. Also, the accuracy of the computation
of Py is inversely proportional to the step size whereas the computational cost is
directly proportional to the step size. The deficiencies of the brute-force method are
eliminated completely once the frequency reversal theorem is employed. For every

base band frequency, the adjoint network is solved only once at the frequency. In

2N, is input-independent and is computed only once.
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Figure 4.9: PSD of SC integrator

other words, one calculation of Py of the adjoint network per base band frequency is
required. The corresponding high-order frequency components are obtained using
LU-factorization and forward/backward substitutions. The computation required
for LU-factorization is much less than that of Py, significant speedup is therefore
achieved. For instance, at step size T,/200 and with 100 sidebands considered, the
adjoint network-based method is 15 times faster than the brute-force method when
only one noise source is considered. For circuit containing 100 noise sources (which
is quite a small circuit), the adjoint network-based method will be 15x100 = 1500

times faster !

Also observed is that with the in the number of sidebands to be folded over, the
speed up plot in Fig. 4.11 flats. This is because the cost of LU-decomposition of

Gy + jwC, start to dominate the total cost of computation.
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Figure 4.10: CPU time

4.4.3 Noise of SC Band-pass Filter

To further assess the effectiveness of the proposed algorithm, the noise of a SC
band-pass filter was investigated. The schematic of the filter is shown in Fig.3.11.
The MOSFET switches are modeled as a noisy linear resistor (R, = 808 ) in series
with an ideal switch. The input-referred thermal noise generated by the op amp
is assumed to be 20 nV/v'Hz . The flicker noise of the op amp is neglected for
simplicity. The equivalent circuit of the filter with the noise sources included is
shown in Fig.4.12. The MS value of noise sources is given by i3, = 2kT/R..A f,
k =1,2,...,16. The output noise power of the band-pass filter is computed using the
proposed algorithm and the results are plotted in Fig. 4.13, together with the simu-

3We have used the same data as those in [19] in order to compare with their results.
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Figure 4.11: Speedup

lation results extracted from [19]. As can be seen that both results are comparable.
It should be noted that in [19], a state-space approach was employed to compute
the PSD of the band-pass. The excellent agreement once again demonstrates the

effectiveness of the algorithm.

4.5 Summary

An efficient algorithm for noise analysis of multiphase periodically switched linear
circuits was developed. The algorithm is exact and is orders of magnitude faster
than the conventional brute-force method. The numerical results obtained using
the proposed algorithm are compared with measurements and published results.

An excellent agreement is observed.
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Chapter 5

Sensitivity Analysis of PSL

Circuits

Tkis chapter investigates the frequency domain sensitivity of PSL circuits [138].
The incremental form of Tellegen’s theorem for PSL circuits in phase domain is in-
troduced. The frequency-domain sensitivity of PSL circuits is derived using the ad-
Jjoint network approach. The sensitivity networks of PSL circuits are introduced and
the sensitivity of PSL circuits is obtained using the sensitivity network approach.
The theory is assessed using numerical examples and the results are compared with

those from other CAD tools.

5.1 Introduction

Sensitivity is a mathematical measure that helps in understanding the effect of
parameter variation on the response of electrical networks. It plays an essential

role in circuit optimization and tolerance design [38]. Sensitivity considered in this

92
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thesis is the change of the response of PSL circuits due to small variation in the
element value of the circuit. Changes caused by external sources, such as clock

Jitter, are excluded. The normalized small-change sensitivity is defined as [39]

A Vo(w)

Sko(w) = ‘/()(w) aA

A, Vo(w)#0 (5.1)

where V,(w) is the response, or other design objectives, such as the zeros or poles
of the transfer function of a given circuit, A is usually a circuit element to which
the sensitivity is evaluated. Sensitivity to parasitic elements can also be defined in
a similar but modified manner [39]. In practice, particularly in filter design, the
normalized sensitivity of the magnitude of the response to circuit elements is often

needed. This sensitivity is computed from

Wolp v _ A O|Vo(w)|
where
V() _ o, . 1 aVy(jw)
o = Vi) Re s = (5.3

To determine the quality of a designed circuit, the sensitivities of one variable with
respect to a large number of the elements are usually required. An issue essential

to sensitivity analysis is how to compute these sensitivities efficiently.

As reviewed in Chapter 1, various methods have been developed for sensitivity
analysis of electronic circuits. Each has its pros and cons. The adjoint network
approach has been proven to be one of the most efficient methods in computing

sensitivities of the responses of linear time-invariant and Switched-capacitor circuits
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with respect to all circuit elements. Its applications to sensitivity analysis of PSL
circuits, however, have seldom been explored. This is mainly due to the fact that
closed-form solutions exist for switched-capacitor networks while the solution of
general PSL circuits rely upon numerical integration. In this chapter, we make
use of the Tellegen’s theorem for PSL circuit developed in Chapter 3 to facilitate
sensitivity analysis and show that the sensitivity of PSL circuits can be represented

by a summation of infinite series.

5.2 Incremental Form of Tellegen’s Theorem in

Phasor Domain

In steady state, let there be perturbations in the element values of a PSL circuit
N. The corresponding change of a network variable v(¢) of N is obtained from
(3.4)

Avy(t) = f: AViy(w, + nw, )edwetnwslt (5.4)

n=-00

where AVy(w, + nw,) is the variation of the phasor of vy(t) at w, + nw,. The

summation of (3.4) and (5.4) gives

uy(t) + Avy(t) = f; [v,,(w,, + nw,) + AVy(w, + nw, )| efWetnwelt, (5.5)

Thus, vy(t) + Avs(t), a perturbed network variable in time domain, is echoed with
Vo(wo+nw,) +AVy(wo +nw,),n = 0,1, %2, ..., a set of perturbed phasors in phasor
domain. Substituting (5.5) into (3.12)

EB: f: {[‘fb(wo + nw,) + AVb(‘l’o + nwl)]ib(wo + n(lh)

b=1n=-00
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—  [Iy(wo + nw,) + Aly(wo + nw, )] Va(wo + nw,)} =0. (5.6)
Utilizing (3.12), we have

D> [Av,,(w,, + 110, Fy(wo + nws) — Aly(wo + 1) Vi (wo + nw,)] —0. (5.7)

b=1n=-00

Similarly, one can also show

Z i AVy(w, + nw, ) ly(w, + nw,) =0

o

=] n=-~-o0c

B
3 Aly(wo + nw, ) Vi (wo + nw,) = 0. (5.8)

=1 n=-00

o

Egs.(5.8) and (5.7) characterize the relation between the incremental changes of the
phasors of the network variables of A" and N'. Note that in the above derivation,

the adjoint network A is not perturbed. The perturbation occurs in A only.

Theorem 5.1 (Incremental Form of Tellegen’s Theorem for PSL Circuits)
For a given PSL circuit with input e™* and clock frequency w,, the incremental form

of Tellegen’s theorem for PSL circuit in phasor domain is given by (5.7) and (5.8).

5.3 Frequency-Domain Sensitivity of PSL Circuits

For the purpose of illustration, let a PSL circuit A consist of linear resistors (R),
inductors (L), capacitors (C), ideal switches and VCVSs. Further, let the input
of N be an ideal voltage source, v;(t) = e/“**/(27), and the output be the voltage
across an open branch. The adjoint network N of N is constructed in accordance

with the guidelines given in Chapter 3, as shown in Fig. 5.1.
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Figure 5.1: Sensitivity analysis of PSL circuits

5.3.1 Resistors

Consider a LTI resistor R in A'. Using Ohm’s law, together with Theorem 3.1,

and the identities of exponential series, we obtain the constitutive equations of the
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resistor and its adjoint network in phasor domain

ittt SR

Vg(wo + nw,) = ng(wo -+ nw,)

Let there be a perturbation AR in R. The corresponding voltage variation is

obtained by using Taylor series exapnsion

_ A A o"Vr . O"Vr "
~ IpAR+ RAIR. (5.10)

Note we have neglected all high-order terms as we are only interested in small-

change sensitivity. Making use of (5.9) and (5.10), we obtain

oo

Y. |AVa(w, + nw,) Ip(wo + nw,) — Alp(w, + nw,) Va(wo + nw,)
~ Y In(wo + nw,)lr(wo + nw,)AR. (5.11)

5.3.2 Capacitors and Inductors

Consider a LTI capacitor in M. The phasor-domain representation of the constitu-
tive equation of the capacitor is given by (3.22). The first-order approximation of

the variation of the capacitor current due to a perturbation AC in C gives

_i [AVc(wo + nw,) lo(wo + nw,) — Alc(wo + nw,) Ve (wo + nw,)
R S (we + ) Ve (wo + nuwa) Ve (wo + nuws)AC. (5.12)

n==00
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In a like manner, one can show that for LTI inductors

a0

Y. |AVi(w. + nw,) I (wo + nw,) — AlL(wo + nw,)Vi(wo + nw,)
Y j(wo + nw,) IL(wo + nw, )1 (wo + nw,)AL. (5.13)

5.3.3 Controlled Sources

Consider a VCVS with voltage gain a. Let the network variables of the controlling
and controlled branches of the VCVS be identified with the subscripts "1” and "2”,
respectively. The adjoint network of the VCVS is a CCCS with controlling and
controlled branches interchanged. The current gain of the CCCS is —a. Because
i1(t) = 0,92(7) = 0,v2(t) = avy(t), and 2,(7) = —ai(7), V¢, 7, using Corollary 3.1.1,
we obtain, I;(w, + nw,) =0, Vz(wo + nw,) =0, Va(w, + nw,) = aVj(w, + nw,), and

fl(wo +nw,) = —aiz(wo + nw,),Vn. As a result

S [AVi(n + )i+ nw,) — AL (o + 1) i o + )

n=-—0o0

4 AVa(wo + nws)Fa(wo + mw,) — Aly(w + nws) Va(wo + nw.)]

~ E lfl(wo+nw,)fg(wo+nw.)Aa. (5.14)

n=-—0o0

Expressions for other types of controlled sources can be derived in a similar manner.

5.3.4 Ideal Switches

Let there be a perturbation in the element values of N such that the voltage
across and current through an ideal switch, denoted respectively by v,(t) and i,(t),
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vary from v,(t) to v,(t) + Av,(t) ,and i,(t) to 7,(t) + Ai,(t), respectively. If the
switch is CLOSED at ¢, then, v,(t) = 0 and v,(t) + Av,(t) = 0, irrespective of the
perturbation. Moreover, since its counterpart in A is als a CLOSED switch at T,

we have 7,(r) = 0. As a result

Av,(t)i,(T) — Ai,(t)d.(r) = 0. (5.15)

Similarly, one can show that (5.15) also holds if the switch is OPEN. We conclude
that (5.15) is valid Vt,7. We are therefore in the position to represent (5.15) using
(3.4) and (5.4). This gives

i [AV.(w,, + nw,) I, (wo + nw,) — Al (wo + nw, )V, (w, + nw,)] =0. (5.16)

n=--oo

5.3.5 Input and Output

Because the input of A is an ideal voltage source and the corresponding branch in
N is a short-circuit, Avi(t) = 0,%:(r) = 0,Vt,7. From Corollary 3.1.1, AVi(w, +
nw,) =0, f/,-(wo + nw,) = 0,Vn. As a result

E AVi(wo + nwc)ii(wo + nwn) - AI:'(wo + nw,)f/.-(wo + nw,) =0. (5.17)

The output branch of N is an open-circuit, i,(¢) = 0, Vt. This results in Al,(w, +

nw,) = 0,Vn. Further, because the input of A is a single tone of unity strength at

Wo
fn=0

. 1
I(wo + nw,) = { .
otherwise
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Thus
> AVo(wo+nw,)fo(wo+nw.)—AIo(wo+nw.)‘z,(wo+nw,)J = AV, (w,). (5.18)

Substituting (5.11), (5.12), (5.13), (5.14), (5.16), (5.17) and (5.18) into (5.7), we

obtain

AVy(wo)x= —

.NM

F i In(wo + nw,) [p(ws + nw.)] AR

Z J(wo + nw,)Ve(w, + nw.)Vc(w,, + nw,)] AC

L N=-—00

i j(wo + nwl)IL(wo + nw.)fL(wo + nw,)] AL

L n=—00

[ 3 w(w,,+nu.)i,(wo+nw.)JAa. (5.19)
VCVS Ln=~

+
|QM

!
=[]

Representing the variation of the output of N at w, using Taylor series expansion

gives
AVywo) = S |5 Z% ARy +Z +2 Yoiary
ovte = |4 orr ac oL
"V,

+ Aa)"]
vovs da” -

~ Eg‘;’AR+Z AC+2 +Z%V°Aa (5.20)
R R Ca

We have neglected the high-order terms in simplifying (5.20) for the reason given
earlier. Comparing (5.19) with (5.20), we obtain the sensitivities of the response of

the circuit with respect to the elements. The results are given in Table 5.1.
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Table 5.1: Sensitivity of PSL circuits

101

Element | Value Sensitivity
Resistor | R a‘f;(;?) = - f: In(wo + nw,) Ip(wo + nw,)
Capacitor | C 0‘;(64:1,,) i F(wo + 1w, ) Ve (wo + 1w, ) Ve (wo + nw, )
Inductor | L avg([‘,%) =- i 3(wo + nw,) I (wo + nw,) I (wo + nw,)
VCVS a aL;,(:ﬂ—: - i Vilwo + nw,) hy(w, + nuw,)
veos | g ) - 5 Vi(w + ) Vil + )
CCVS r 19%’_"—) = _Z I(wo + nw, ) I(wo + nw,)
ccos | 8 elee) S S o+ Vi + )

A few comments are made with respect to Table 5.1 : (a) Once the frequency
response of N, denoted by V(w, + nw,) and that of N , denoted by V(wo + nw,),
are available, the sensitivity of the response with respect to a element A of A’ whose

location is specified by a constant vector g, is obtained from

av, (w.,)
oA

Z K (wo + nw,)gT V(wo + 1w, ) VT (w, + 1w, ) g (5.21)

n=-=0oo

where K (w,+nw, ) is an element-type dependent parameter. For different elements,
only gx and K)(w, +nw,) need to be changed. Also, only one frequency analysis of
N and N at W, is required. The method is much more efficient as compared with
the brute-force method in which the circuit must be solved each time the element

to which the sensitivity is evaluated changes. (b) Both the base band and side band
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components of the network variables contribute to sensitivity evaluated in the base
band, as illustrated in Fig. 5.2. This is a unique characteristic of PSL circuits. (c) If
there is no switching, i.e. n=0, Table 5.1 will simplify to the familiar sensitivities of
LTI circuits. (d) For practical PSL circuits, the convergence of sensitivity is ensured
by the effect of the parasitic capacitances at high frequencies because the amplitude
of network variables decreases asymptotically with frequency, and eventually dies

off. The above development is summarized in the following theorem.

Theorem 5.2 (Sensitivity Theorem of PSL Circuits) For o given PSL cir-
cuit with input e’ /(2x) and clock frequency w,, the sensitivities of the response

with respect to circuit elements at a base band frequency w, are given by Table 5.1.

,,,,,,,,,

.....
ha

Wy~ 30 Wg- 2 wy- Ws 0w, Wg+ B Wy +20g Wo+3 W

- -
- -~

.
.
.
‘\

m°+3 0)3

ya ya /

- 300 Wy~ 20 Qg O

Figure 5.2: Fold-over effect in sensitivity analysis of PSL circuits
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5.4 Sensitivity Analysis of PSL Circuits Using
The Sensitivity Network Approach

5.4.1 Sensitivity Networks of PSL Circuits

In the preceding section, the sensitivity theorem of PSL circuits was developed
rigorously. In this section, we show that the same results can also be obtained
in a more illustrative manner by using a technique known as sensitivity network
initially developed by Trick for LTI circuits [25] and Davis for switched-capacitor
networks [27,28]. The essence of this approach is as follows : The fundamental laws

governing a lumped circuit N are KCL and KVL [39]

{ Aift) =0 (5.22)

ATv,(t) = vs(t)

where A is the incidence matrix, is(¢) and v,(t) are the branch current and voltage
vectors, respectively, v,(t) is the nodal voltage vector. Differentiating (5.22) with

respect to a circuit element A, gives

Tis(t)

A 0
AT n = b( )
o\ o\

Eqs.(5.23) are the governing equations of a derived network N, whose network
variables are the derivatives of those of A’ with respect to A\;. N, is called the
sensitivity network of A,. Clearly, the solution of N, gives the sensitivity of N with
respect to A;. Note that by changing the element ), to Az, we obtain the sensitivity

network of A;. Continuing this process, one can derive all sensitivity networks.
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Important to note that these sensitivity networks have the same topology as that
of N. As an illustration, consider a capacitor C. Since i¢(t) = C d—"dcéﬂ, to derive
the sensitivity network of the capacitor, we differentiate the above expression with

respect to C

(5.24)

d’ic(t) _ Ci d‘vc(t) + d'vc(t)
dC ~ T dt\ dC dt

The variables associated with the capacitor in the corresponding sensitivity network
are the sensitivity current '%9 and sensitivity voltage d"—;c-.@. The capacitance
remains the same. The constitutive equation of the capacitor in the sensitivity
network is the same as that in the original circuit. An ideal current source d—'ﬁ(ﬂ is
added in parallel with the capacitor. Tt is the input of the corresponding sensitivity
network. The substitution for the capacitor in the corresponding sensitivity network

is given in Fig. 5.3. Similarly, one can derive the substitutions for other basic

elements in the corresponding sensitivity networks.

5.4.2 Sensitivity Analysis of PSL Circuits Using The Sen-
sitivity Network Approach

The sensitivity network concept of LTI circuits can be extended to general PSL
circuits. To compute the sensitivity of the response of a PSL circuit A’ with respect
to a capacitor C, the corresponding sensitivity network N¢ is needed. The input
of Nc is a current source of value duc(t)/dt connected in parallel with C. From
Theorem 3.1,

ve(t) = Y. Ve(w, + nw,)edwetnwet (5.25)

n=-0
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therefore

ORIGINAL CIRCUIT SENSITIVITY NETWORK
va(OR?
s [
w0 R -a<
+ Vn(l) - + dvg(l) /dR -
dv, (t/de
) c di(t/dC
i c
toww - +  dvouec -
o L diyfwdL | di (ide
I
g § 5 VDN o N <+|) °
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o— o— 0
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Qe -~
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Figure 5.3: Sensitivity networks of basic elements

dvc(t) &
dt

n=-—o0

- Z j(wo + W.)Vc(wo + nw.)ej(“‘o"'w.)t

105

(5.26)
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Figure 5.4: Sensitivity network of PSL circuits (a) PSL circuit N, (b) Sensitivity
networks Ngi, k = 0,1, ..., (c) Adjoint network of N

This is equivalent to have an infinite number of current sources of value j(w, +
1w, )Ve (wo + nw,)ed@etmanlt n = 0 41,42, ..., connected in parallel with the ca-
pacitor, as depicted in Fig. 5.4. Each of these current sources generates an output

that also contains an infinite number of frequency components. The complete out-
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put of N¢ at w, is obtained by summing up the contributions of all of the added

current sources at w,

avs(cwo) = Y Helwo,wo + 1w, )j(wo + nw,) Ve (w, + nw,). (5.27)

n=-oo

where He(w,, w, + nw,) is the aliasing transfer function from the current source at
wo + nw, to the output of Ng at w,. A careful inspection shows that there exist
two difficulties in solving (5.27). First, to obtain Hc(w,,w, + nw,), N¢ has to
be solved at w, + nw,,n = 0,%1,.... Secondly, if the sensitivities of the response
with respect to M elements are required, then a total of M sensitivity networks
have to be constructed and solved. This amounts to excessive computation. To
avert these difficulties, we notice that these sensitivity networks are topologically
identical. This suggests that only one common adjoint network A'c needs to be
constructed for all sensitivity networks. In the above capacitor case, the magnitude
of He(wo,w, + nw,) is equal to that of the nth-order frequency component of the
capacitor voltage in the adjoint network N, provided that the input of Ny is of
unity strength. This is the result of Theorem 3.3. Because the adjoint network of

N is the same as that of A/, we have

He(wo, wo + nw,) = Ve (wo + 1w, ). (5.28)

where f/c(wo + nw,) is the nth-order frequency component of the voltage of the
capacitor in . Substituting (5.28) into (5.27) gives
av:) (] — . )
3(: ) = Z I (wo + nw,) Ve (wo + nw, ) Ve (w, + nw,). (5.29)

n=-00
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Note (5.29) is identical to the result given in Table 5.1. The above analysis reveals
that the sensitivities of PSL circuits developed using the adjoint network approach
can also be derived using the sensitivity network technique. The differences between
the sensitivity networks of LTI and PSL circuits also become apparent. For each
element of a LTI circuit, there is only one corresponding sensitivity network. How-
ever, for each element of a PSL circuit, there are an infinite number of sensitivity

networks.

5.5 Numerical Examples

In this section, the sensitivities of the responses of several PSL circuits are analyzed
using SLCSAP (Switched Linear Circuits Sensitivity Analysis Program, a computer
program developed as a part of this research work) and the results are compared

with those obtained from other CAD tools.

5.5.1 Sensitivity of Stray-insensitive Switched-capacitor In-

tegrator

Consider a stray-insensitive switched capacitor integrator. The schematic of
the integrator is shown Fig. 5.5, and the parameter values are given in Table 5.2.
The models for MOSFET switches and the op amp are the same as those given in
Chapter 3. The sensitivity of the output with respect to C; was computed using
the proposed method and the results are plotted in Figs.5.6 and 5.7. As observed
that both the real and imaginary parts of the sensitivity converges rapidly. For
the purpose of comparison, the same sensitivity was computed using Watsnap [47]

and the result is given here : 9V,/8C, = —5.4817x10° + j1.5158x10%. To assist
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Table 5.2: Parameter values of stray-insensitive Switched-capacitor integrator

Parameter | Numerical value | Unit Remark
c, 0.01592 uF
C, 10 uF
Ron 3.5 kQ Channel resistance
R, 100 Q Source resistance
R, 100 Q Output resistance of op amp
fa 100 kHz Clock frequency
T, 1/f, Second Clock period
fr 700 kHz Unit-gain freq. of op amp
n 0.488T, Second Width of phase 1
T 0.512T, Second Width of phase 2
C2
R, 1 C, f.l_ WIE
v g
vs(® 0 42 N Vol®
s 4
o1y 92
[ov ] =i
nTs  nTe+7 t nTs nTs+t  (@+DTs *

Figure 5.5: Stray-insensitive Switched-capacitor integrator
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Figure 5.6: Sensitivity of the response of integrator to C1 (Real part)

analysis, we define the relative difference e between the sensitivities computed from

Watsnap and the proposed method as follows

_ 0Vo/ aCWagmp - a‘/o/ aCPropoaed
€= a‘/o/aCWaunap (530)

For this example, the relative difference is -62.38 dB with only base band compo-
nents considered and -92.48 dB with one side band component considered. The
normalized sensitivity of the magnitude of the response to C; is shown in Fig. 5.8.
Clearly seen is that the normalized sensitivity converges as well. To further illus-
trate the convergence of sensitivity, the voltages of C, in both the integrator and
its adjoint network are shown in Figs. 5.9 and 5.10 (20 side bands), respectively.
It is seen that the voltages decrease rapidly with frequency. As a result, only a few

side bands are needed to yield a converged sensitivity.
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Figure 5.7: Sensitivity of the response of integrator to Cl1 (Imaginary part)
5.5.2 Sensitivity of Switched-capacitor Band pass Filter

Consider a switched capacitor band pass filter. The schematic of the filter is shown
in Fig. 3.11. The sensitivity of the response with respect to C; at 1 kHz was
computed using the proposed method and the results are plotted in Figs. 5.11 and
5.12. It is seen that both the real and imaginary parts of the sensitivity converge
with the increase in the number of side bands considered. The rate of convergence is
clearly slower as compared with the previous example. The normalized sensitivity
of the magnitude of the response to C; is shown in Fig. 5.13. The relative difference
€ versus the number of side bands considered in sensitivity analysis is plotted in
Fig. 5.14. It is seen that the relative difference decreases with increase in the
number of side bands monotonically. The convergence of the sensitivity can be
further observed from the voltages of C; in both the band pass filter and its adjoint
network as shown in Figs. 5.15 and 5.16 (100 side bands), respectively. The peaks
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Figure 5.8: Normalized sensitivity of the response of integrator to C1

at the center of the plots represent the responses at 1kHz. As observed, the voltages
decrease slowly with frequency. As a result, more side bands are needed to yield a

converged sensitivity.

5.6 Summary

The frequency-domain sensitivity of multiphase PSL circuits was derived using the
incremental form of Tellegen’s theorem for PSL circuits in phasor domain. The
theory yields sensitivities of the response of the circuit with respect to all circuit
elements in one frequency analysis. It is shown that the sensitivity of PSL circuits is
a series summation of the network variables of the element to which the sensitivity
is evaluated. Both the base band and side band frequency components of the

network variables contribute to the base band sensitivity. It is also shown that the
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Figure 5.9: Voltage of C1 of Switched-capacitor integrator

sensitivity of LTI circuits is a special case of that of general PSL circuits. The
sensitivity networks of PSL circuits were introduced. It is demonstrated that the
sensitivities obtained using the adjoint networks are identical to those derived from
the sensitivity networks. The theory is assessed using numerical examples and the

results were compared with those from other CAD tools. An excellent agreement

is observed.
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Figure 5.10: Voltage of C1 of the adjoint network of Switched-capacitor integrator
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Figure 5.11: Sensitivity of the response of band pass to C2 (Real part)
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Figure 5.15: Voltage of C2 of band pass filter



CHAPTER 5. SENSITIVITY ANALYSIS OF PSL CIRCUITS 117

3
T

Ve2 in adjoint circuit {08)
8 3
L}

g

401

20 L L A L
=15 -10 -5 0 5 10 15
Frequency (MHz|
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Chapter 6

Distortion Analysis of PSN

Circuits

This chapter presents the original work on the theory of Volterra series for nonlinear
time-varying (NTV) systems and its application to distortion analysis of periodi-
cally switched nonlinear circuits [139]. We first review Volterra functional series for
nonlinear time-invariant and nonlinear time-varying systems. Time-varying net-
work functions and multi-frequency transforms are then introduced to characterize
the behavior of nonlinear time-varying systems. The network variable theorem of
PSN circuits is introduced and the complete spectrum of PSN is obtained. The the-
ory is applied to distortion analysis of PSN circuits. Both harmonic distortion and
intermodulation distortion are analyzed. The effectiveness of the theory is assessed

using numerical examples and the results are compared with SPICE simulation.

118
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6.1 Volterra Series of

Nonlinear Time-Invariant Systems

In steady state, the response of a LTI system y(t) and its input z(t) are related by

00
y(t) = / hy(r)2(t — 7)dr (6.1)
—00
where hy(2) is the impulse response of the system. This approach can be generalized
to nonlinear time-invariant systems. The steady-state response of a nonlinear time-
invariant system relates to its input by the Volterra functional series [73,75]

y(t) = /w hy(t)z(t — 7)dr

—Q0

+ °° /°° hz(‘l’l, Tz)z(t - Tl)z(t - Tz)dﬁdfg

+ /_m /_._oo /:_w ha(r1, 72, T3)2(t — 71 )2(t ~ T2)T(t — 73)dr1dTodTs
+ .. 62)

where h,(7,...,7,) is the nth-order Volterra kernel. Note ha(71,...,7) is casual for
any n. The Fourier transform of the response of nonlinear time-invariant systems
can be obtained using multi-dimensional Fourier transform [73]. It should be noted
that (6.2) is only valid for nonlinear time-invariant systems. Volterra series have
been used extensively in distortion analysis of time-invariant electromic circuits

[74,140] and has been integrated in many CAD tools, such as HSPICE (142].
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6.2 Volterra Series of

Nonlinear Time-Varying Systems

If nonlinear systems are time-varying, then (6.2) is of no avail. A special sub-
set of nonlinear time-varying systems are nonlinear sampled-data systems, such as
SCNs with S/H inputs. Alper [76,77] and Bush [78] modified the conventional
Volterra series for nonlinear time-invariant systems by incorporating the character-
istics of nonlinear sampled-data systems in the early 1960s and discrete Volterra
series emerged. The response of a sampled-data system y(mT,) relates to the input

z(mT,) by

y(mT,) = i hy(mT,)z[(ky — m)T,]
ha(k\ T, ko T, )z[(m — ky)T,)z[(m — ka)T,]

i ha(kiT,, ko Ty, ksT,)z[(m — Ky ) T)z[(m — ko) T |z[(m — ks)T)

+ o (6.3)

where T, is the sampling period. Discrete Volterra series has been employed suc-

cessfully in distortion analysis of SCNs with S/H inputs [27,28,79,80].

If the input of SCNs is continuous or if the nonidealities of SCNs, such as chan-
nel resistances of MOSFET switches, are considered, then the circuits are no longer
of piece-wise constant nature. Consequently, discrete Volterra series is nullified. A
typical example is a Gilbert cell RF mixer shown in Fig.6.1 in which the mixing
transistors M3-M6 are operated in ON/OFF modes whereas the amplifying transis-
tors M1-M2 are biased in saturation and operated in the small-signal mode [83,84].
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Distortion generated by the mixer is mainly due to the nonlinear characteristic of

the channel currents of M1 and M2 [82].

> Voo
0 <.
+ vgh —

—[ms ma [ M5 w6 ]l

VLo(f)

Vee)

Vss

Figure 6.1: Gilbert-cell RF mixer

In [143], the response of linear time-varying systems (Eq.(2.7)) was extended to
general nonlinear time-varying systems and time-varying Volterra functional series
emerged. The steady-state response of a nonlinear time-varying system relates to

the input by

+ ‘/;: /L: hz(t, T "’3)z(’rl)z(‘rz)d‘rld'r2

+ /: - hs(t, 11,72, T3)2(11)2(T3)2(T3)dT1dT2dTs

=00 J =00

ut) = [ mtr)e(rdr
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+ ..
= Hy[z(t)] + Ha[z(t)] + Hs[z(t)] + ... (6.4)

in which
H,[z(t)] = /_ : /_ : hat, 71, oo Ta)2 (1) (7o) dry... dTe (6.5)

is called the nth-order Volterra operator, hn(t,7y,...,7,) is the kernel of the nth-
order Volterra operator. If z(t) is replaced with ez(t), where ¢ is a nonzero constant,

then
H,[ez(t)] = €"H,[z(t)]. (6.6)
Consequently

y(t) = Hy[z(t)|e + Ha[z(t)]€ + Hs[z(t)]® + ... (6.7)

The right-hand side of (6.7) is a power series in €. The convergence of y(t) is ensured

by an appropriate choice of the value of e.

6.3 Frequency Response of

Nonlinear Time-Varying Systems

6.3.1 Time-Varying Transfer Functions

In Chapters 2 and 3, the time-varying transfer function of linear time-varying sys-

tems H;(t,w) was used in noise analysis of PSL circuits. Note we have added the
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subscript 1”7 to emphasize that linear time-varying systems are first-order systems.
If the systems to be analyzed are nonlinear time-varying, then a set of time-varying
Volterra kernels, hi(t,71), ha(t,71,72), ..., are needed to characterize the systems
in time domain. To depict the behavior of the systems in frequency domain, we
extend the definition of the time-varying transfer function for linear time-varying
systems to nonlinear time-varying systems by defining a set of time-varying transfer

functions, H,(t,w), Ha(t,w,ws), ..., as follows

Q0 0 N N
H,(t,wy,...,wy) = / / ho(t, T1, ..., To)e 3t (E-T) | g=dun(t=mn)gr  dr
-0 —00

n=1,2,.. (6.8)

The corresponding Volterra kernel is obtained via the inverse transform

) [ [ Haltswns ey wn) e ), inltm) . s
n=12,.. (6.9)

1
ho(t, 71y Tp) = (ﬂ

The usefulness of these time-varying transfer functions is best demonstrated if the

input of the system is z(t) = e?“*. In this case, the response of the system becomes

y(t) = Hl(t,wo)ej“’“ + Hy(t, w,, wo)ejz‘“‘ + Hi(t, wo,wo,wo)eja""" +... (6.10)

Clearly seen is that once Hy(t,w,...,w,),n = 1,2, ..., are known, the time-domain

response of the system y(t) will be defined.
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6.3.2 Multi-Frequency Transform

It was demonstrated in Chapter 3 that the bi-frequency transform #,(Q,w) fully
characterizes the behavior of PSL circuits in frequency domain. Again, the sub-
script "1 was used to emphasize that the transform is first-order. Analogous to
Hy(t,w1), Ha(t,w1,ws),..., defined in the preceding section, a set of multi-frequency
transforms, in addition to the bi-frequency transform, are defined to characteristize
nonlinear time-varying systems in frequency domain. To begin with, we define the

tri-frequency transform H,(Q, wy,ws) and its inverse Hy(t,wy,w,) as follows

m -
Hz(t, Wy, Wy )C-J(n-wl _u’)‘dt
oo

Hz(ﬂ,wl,wz) =/

Ha(t,on,ws) = 5 [ Ha(@, 0, up)ei@ -t

(6.11)

The high-order transforms are defined similarly

m I3
'Hn(ﬂ, w1, ...,wn) = / Hn(t,wl, ...,w,.)e"(ﬂ-“"""--“'n)‘dt
o

Hn(t, Wi,y ...y wn) = 2i1r /m Hﬂ(Q, Wiy ooy w")ej(ﬂ—wl—...-wn)tdﬂ (6-12)

n=12,..

The usefulness of these multi-frequency transforms will become evident in the next

section where the frequency response of nonlinear time-varying systems is derived.
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6.3.3 Frequency Response of
Nonlinear Time-Varying Systems

When time-varying Volterra functional series is used, the time-domain response of

a NTV system is obtained from
y(t) = y™(t) (6.13)

n=1

where y™\(t) = H,[z(t)]. The complete spectrum of the response is obtained by

taking Fourier transform

Y(Q) = fjw")(sz) (6.14)

n=1

It was shown in Chapter 3 that the Fourier transform of the lst-order response

y()(t) is given by

YOQ) = Fiy®e)

1 L -]
= -2-;.[-00 HI(Q,wl)X(wl)dUb (6’15)

The Fourier transform of y(®)(t) is obtained by making use of the tri-frequency

transform introduced earlier

Y®(Q) = Fly®()
N (%) 2 /;: /:: Ha(Q, w1, wa) X (w1) X (wz)dwrdw;.  (6.16)
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Similarly, one can show that

Yo Q) = Fly™()]

= (2%)" [ [ Ha(@n, ) X)X ().
(6.17)

Substituting these results into (6.14) gives

Y(Q) = %/m Hi(2, w1 ) X (wy)dwy

+ (i“) /Z/_: Ha(Q, w1, w) X (w1) X (w)dw duw,

¢ (%) [ Ml 1, 05) X K ) K ) dandor

+

= HL[X(Q)] + Ho[X(Q)] + Ha[X(Q)] + ... (6.18)
in which

H,[X(Q)] = (51;)" [ [ Ha(@0n, s w0) X (1) X (wn)don. .. (6.19)

Eq.(6.18) is a frequency-domain representation of the time-varying Volterra series.
Analogous to the time-domain representation of time-varying Volterra series given
by (6.4), (1/27)"Hn(Q, w1, ...,ws) can be considered as the kernel of the nth-order
frequency-domain Volterra series. Clearly seen is that once H,(Q,w,...,wn) are
known, the spectrum of the response of nonlinear time-varying systems will be

defined completely. For example, if z(t) = e/“**, because X (w) = 2#x8(w —w,), then

Y () = Hi(R, wo) + Ha(R, wo,wo) + Ha(R, wo, wo, wo) + .. (6.20)
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Eq.(6.18) provides a general means to characterize the behavior of nonlinear
time-varying system in frequency domain. It is, however, generally difficult to
compute Hn(wy, ...,wy) if the nonlinear time-varying system is arbitrary. In the
next section, we will focus upon a special subset of nonlinear time-varying systems

- nonlinear periodically time-varying (NPTV) systems.

6.4 Nonlinear Periodically Time-Varying Systems

It was shown in Chapter 3 that due to the periodic nature of linear periodically
time-varying systems, the time-varying transfer function H,(t,w) is periodic in ¢.
Consequently, H(t,w) can be represented using Fourier series and the network vari-
able theorem for PSL circuits was deduced. In this section, we extend this result to
NPTV systems. Because of the periodically time-varying nature of NPTV systems,
the time-varying network functions of NPTV systems, H(t,w), Hy(t,wy,wr), ...,
are periodic in ¢ with the same period T,. Due to the periodicity, these time-varying

network functions can be represented using Fourier series

Ha(t,wyy o) = Y H, pe*oet n=12.. (6.21)

k=-0c0

where

1 (T e
Hok = / Hot, @i, ..., wa)e~ ot dt n=1,2,.. (6.22)
s VO
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If the input of the NPTV system is z(t) = e?“¢, then by making use of (6.10),
(6.21) and (6.22), we obtain

y(t) =), Y Hppedmwotho)t (6.23)

n=1 k=~oc0

Consequently

Y@Q) = 7Y i Ho8(Q — nw, — kw,) (6.24)

n=1 k=-oco

The bi-, tri-,... frequency transforms can be determined by comparing (6.24) with
(6.20).

Ho(Q w1y ooywn) =21 Y Hpxb(Q — nw, — kw,) (6.25)

k=-o00

A few comments regarding (6.23) are made prior to further development.

(1) Eq. (6.23) is a generalization of the network variable theorem for PSL circuits
derived in Chapter 3. Hyx, Hyx, Ha, ... are the phasor representations of y(t) at
wo + kw,, 2w, + kw,, 3w, + kw,, ..., respectively. Eq.(6.23) represents a fundamental
characteristic of NPTV systems.

Theorem 6.1 (Network Variable Theorem for PSN Circuits) In steady state,
the network variables of a periodically switched nonlinear circuit with input et and
clock frequency w, contain an infinite number of frequency components. They can

be represented by

v(t) =Y Y V,peilnwethunt (6-26)

n=1 k=-coc
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where Vi k, Va i, Vak, ... are the phasors of v(t) at w, + kw,, 2w, + kw,, 3w, + kw,, ...,

respectively.

(2) If the system is LPTV, then the corresponding H,(¢,wy,ws), Ha(t,w;, ws,ws),...
are identically zero. As a result, Theorem 6.1 simplifies to Theorem 3.1.

(3) The complete spectrum of a NPTV system to a single-tone input z(t) = e#<* is
given by (6.24). In the base band where n = 0, the fundamental component is given
by H,o whereas the 2nd-, 3rd-, ..., harmonic components are given by H,g, Hag,

..., respectively. The similar pattern repeats in side bands (n#0).

(4) To obtain the harmonic components of the response of nonlinear time-varying

systems to a sinusoidal input z(t) = Acos(wot), note cos(w,)t = (et + e~3wot) /2,

we have
- A2
y(t) = ?Hz(t’ Wo, _wo) + ...]

- 3

+ gH;(t,wo) + :—;-Isi-Ha(t, Wo, Wo, —Wo) + ] gIwot
. 3

+ -2431(& —wo) + 3—:—Hs(t, Woy —Wo, —Wo) + ...]e"""‘"
A2 , A? .

+ THz(tv wovwo) + ] gl wet + [—4-Hz(t, —Wo, —-wo) + ] e~ J2wot
A3 : A3 _
—S—Hs(t, Woy Wo, Wo) + ] gIdwot | [-E-Ha(t, —Woy —Wo, —Wo) + ] g~ I3wet

(6.27)
Note we have assumed symmetrical kernels in the above derivation. The 2nd- and

3rd-order harmonic distortion are computed from

“%Hg(t, Woy Wo) + ...
%Hl (t, wo) + %Ha(t, Woy Woy —Wo) + ... )

HDs(t) = (6.28)
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A Hi(t, wo, wo, wo) + -
%Hl(t,wo) + 342 Hs(t Woy Wo, wo) + ..

HDa(t) = (6.29)
The harmonic distortion is a function of time. Note the similarity between (6.28),
(6.29) and those of nonlinear time-invariant systems given in [74]. If the system is
nonlinear time-invariant, then (6.28) and (6.29) simplify to the familiar expressions

of HD; and HDj of nonlinear time-invariant systems.

If the system is NPTV, then using Theorem 6.1 and neglecting terms whose
order is higher than 3 in (6.27), we have

y(t) =

2
3 3
;Hl.k + %H k] eJ(wo-cho)t + Z [_Hl e+ &Hs k] e](—wc-f-kw.)t

k=—

+ Z TH” Ledwotkwit 4 z TH“CJ( 2wotkw, )t

k=-00 k=—o00

o2} A3 )
+ Y 2 Z Hy e/ @uwetkunlt o Z 5 Hakeg(-:!uo-i—kw.)t

k=-00 k=—-o0c

(6.30)

The complete spectrum of the response is obtained by taking Fourier transform on
(6.30) and is given in Fig.6.2. Note that only up-to 3rd-order terms are considered
and plotted in the figure. The 2nd-order and 3rd-order harmonic distortion in the

base band are computed from

A
2

£ Hyo
AHIO + —Hao

Hao|

HD, = Hol

(6.31)
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Figure 6.2: Spectrum of PSN circuits with input z(t) = Acosw,t

(5) If the input of a nonlinear time-varying system contains two different frequen-
cies, i.e. z(t) = A(coswt+coswat), w;Fws, the spectrum of the response can also be

obtained in a similar manner. It can be shown that the 3rd-order intermodulation
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distortion is computed from

%Ha(ta Wy, w, _w2) + ..

IM,y(t) = ]
() 4H (t,w) + 9_‘nga(t’ wi, Wy, —w1) + ...

(6.33)

If the system is further NPTV, then it can be shown that the spectrum of the
response is given in Fig.6.3. The 3rd-order intermodulation distortion at 2w; — ws,

in the base band is computed from

Hjq
Hyp

34}

=-Hjp
A 943
sHio+ 2% -Hsp

34

IM3= 4

. (6.34)

provided that ’Q—Ings'o < ‘;—Hm

6.5 Distortion Analysis of PSN Circuits

Having developed the general theory of Volterra series for nonlinear time-varying
systems, in this section we make use of this theory to compute the distortion of

PSN circuits.

6.5.1 Nonlinear Elements

Nonlinear elements considered in this thesis are time-invariant weak nonlinearities.
The characteristics of these nonlinearities can be modeled sufficiently using a trun-
cated Taylor series expansion (usually up-to the 3rd-order). Such a limitation is
justified as a large number of nonlinearities encountered in switched analog circuits

fall into this category. In this section, the equivalent circuits of nonlinear controlled
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Figure 6.3: Spectrum of PSN circuits with input z(t) = A(cosw,t + coswst)
sources and nonlinear capacitors in switched circuits are derived. The equivalent
circuits of other nonlinear elements can be derived similarly.

Nonlinear Controlled Sources Nonlinear controlled sources are used extensively

in modeling many types of nonlinear elements. For the purpose of illustration,
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only nonlinear VCVSs are investigated here. Let a VCVS in a switched circuit be
modeled by

v2(t) = arv1a(t) + azv] (2) + a3v k(t) k=12,.,K (6.35)

where vy x(t) and vz (t) are the controlling and controlled voltages of the VCVS
in phase k, respectively. a1, az, and a; are constants. Representing the voltages of
both the controlling and controlled branches of the VCVS in Volterra series of the

input w(t) and substituting the results into (6.35) gives

2
[vgl,z(t) - alv&),(t)]e + [vgz,z(t) - alvm(t) —a, (vm(t)) ]ez

3
+ [vf‘,ﬁ(t) - alv{?,z(t) - Zazv{'l,l(t)vf,l(t) — a3 (v{l,z(t)) ]e:’ +...=0. (6.36)

Since a power series equals to zero if and only if all the coefficients of the power

series are identically zero, we obtain

vR(t) = awl)(t)
vin(t) = arw(t) + aol)(t)]? | (6.37)
via(t) = aro{)(t) + 2a20{)(t)o(t) + agloli)(t)]®

Eq.(6.37) reveals that the nonlinear VCVS can be represented equivalently by three
linear VCVSs as shown in Fig.6.4. These three linear VCVSs are termed respec-
tively as the 1st, 2nd, and 3rd-order Volterra circuits of the nonlinear VCVS.

Nonlinear Capacitors Nonlinear capacitors encountered in periodically switched
nonlinear circuits are mainly the depletion layer capacitances, such as the base-
collector junction capacitance of BIT, the source-substrate, and drain-substrate

junction capacitances of MOS transistors. These capacitances are nonlinear func-
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Figure 6.4: Equivalent circuits of nonlinear VCVS

tions of the junction voltages [16] and are modeled as voltage-controlled charge

sources

q(t)=Cyv(t) + Cav?(t) + Csv®(t). (6.38)

where ¢(t) and v(t) are the AC components of the charge stored in the capacitor
and the reverse biasing voltage of the capacitor. C;,Cs, and Cj are constants. Note
C\ is the incremental capacitance. When these capacitors are in switched circuits,

the effect of the initial conditions of these capacitors must be considered. To assist
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analysis, we first review the technique used in dealing with linear capacitors in
switched circuits. We will then extend this approach to nonlinear capacitors in

switched circuits.

Consider a LTI capacitor with initial voltage v(0*) at ¢ = 0*. Because i(t) =
o ﬂ';tﬂ, where i(t) and v(t) are the current and voltage of the capacitor, respectively.

Laplace transform of this relation gives

I(s) = sCV{(s) - Cv(0) (6.39)

where I(s) and V(s) are the Laplace transform of i(t) and w(t), respectively.

Eq.(6.39) can be written equivalently in time domain as

du(t)

i(t)=C 7

— Cv(0*)4(t) t>ot (6.40)

Now, consider a LTI capacitor in a PSL circuit. Let there be a phase k specified
by nT + 641 < t<nT + oi)(see Fig. 3.8). The voltage of the capacitor at ¢t =
nT + gf_, is given by ve_y(nT + o_,). Making use of the result in (6.40), we
obtain

dv(t)
dt

i(t)=C — Cvp—1 (vT + ot_,)0(t — nT — o)

t>nT +o}, (6.41)

To ensure that #(t) is zero for £ > nT + oy, the effect of the charge on the capacitor
at ¢ = nT + o, must be considered. This is achieved by subtracting Cvi(nT +
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o )o(t — nT — a;) from i(t). As a result

in(t) = dvk(t)

— Cuy(nT + af_,)8(t — nT — of_,)
+ Cuw(aT + o7 )d(t — nT — o) (6.42)

where

(L T _1 < t<nT
ik(t)={’() nE+ Oy <tznl 4 o (6.43)

0 elsewhere

An equivalent circuit of the capacitor in phase k is shown in Fig. 6.5(a). The
formulation of capacitors in PSL circuits is exclusively based on (6.42), as was

shown in [47].

If capacitors are nonlinear, the characterizing variable is the charge g(t), rather
than the voltage v(t), of the capacitors. Consider a nonlinear capacitor with an
initial charge q(O"’) at ¢t = 0%. The current of the nonlinear capacitor is obtained

from i(t) = %Y. Laplace transform gives
I(s) = sQ(s) — q(0%) (6.44)

where Q(s) = L[q(t)]. This equation can be written equivalently in time domain as

i(t) = ﬂl q(0%)a(t) t>o0f (6.45)

Now consider a nonlinear capacitor in a switched circuit. In phase k, let the
charge of the capacitor at ¢t = nT +0;_; be given by gi— (T +0{_,). When taking

into consideration of the initial charge on the capacitor, the current of the capacitor
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is obtained from

. dq(t
i) =BG g T +01)6(t 2T ~ o)

t>nT +at_, (6.46)

Analogous to LTI capacitors in PSL circuits, to ensure that ¢(t) vanishes for ¢ >
nT + oy, the effect of the charge on the capacitor at the end of the phase must be
considered. This is realized by subtracting gi(nT + o )6(t — nT — o) from i(t).
As a result

in(t) = 228

i ge-1(nT +af_,)8(t — nT - ai_))

+ @(nT +0.)é(t—nT —oy) (6.47)

Eq.(6.47) is illustrated in Fig.6.5(b). The formulation of the capacitor in switched
circuits is based on (6.38) and (6.47). The system matrices of the nonlinear capac-

itor in phase k are given in Fig.6.6.

Nonlinear inductors can be analyzed in a similar manner. The formulating

variable is the magnetic flux of the inductor.

6.5.2 Volterra Series Representation of Network Variables

Periodically switched nonlinear circuits are NPTV systems. The network variable of
a periodically switched nonlinear circuit v(t) can be represented by a time-varying

Volterra series of the input.

ot) = 3 vm(t) | (6.48)

m=1
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Figure 6.5: Equivalent circuits of linear and nonlinear capacitors in phase k. (a)

Linear capacitor, (b) Nonlinear capacitor

where v(™)(t) = H,,[w(t)], w(t) is the input of the circuit. Multiplying (6.48) by
the window function §i(t) defined in (3.44) gives

u(t) = ¥ o™(2) k=1,2,... K (6.49)
m=1

where

t T + op-y < t<nT
vk(t)={v() nEF e <tznlt o (6.50)

0 elsewhere
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Figure 6.6: Stamps for nonlinear capacitors

(m) <
o™(t) = {v (t) T +ory <t<nT + 0y (6.51)
0 elsewhere
If w(t) is replaced with ew(t), then
wn(t) = Y v (t)e™ k=1,2,...K (6.52)

m=1
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Further multiplying (6.52) by a Dirac delta function §(t — nT — oy) gives

w(nT +o;) =) v,(:")(nT + oy )e™ k=12,.,K (6.53)

m=1
where v (T + o} ) is the network variable v(t) at ¢ = nT + o (final condition),
o) (aT + o7), v (nT + ot ), -.. are the 1st, 2nd,...,-order terms of Volterra series
expansion of v (nT + o). Note wv(t), v,(,l)(t), v,(:)(t),... , and v,(‘l)(nT + a;),
v,(,z)(nT +0;), ... are defined in the entire time domain. Fourier transform of (6.49)

gives

Vi(jw) = Y V™ (jw) k=12 ...K (6.54)
m=1
Writing (6.54) for all phases and summing up the resultant equations give the

complete response of the periodically switched nonlinear circuit

o0

V(ijw) = Y V™ (jw) (6.55)

m=1

6.5.3 Distortion Analysis of PSN Circuits

In the analysis of PSL circuits, the difficulties associated with periodically time-
varying topology are overcome by decomposing the circuits into a set of LT circuits
connected via the initial and final conditions of the network variables [47]. Anal-
ogously, in distortion analysis of PSN circuits, a PSN circuit can be considered as
a set of nonlinear time-invariant circuits connected via the initial and final condi-
tions of the network variables of the circuits, as shown in Fig.6.7. Assume that the
nonlinearities encountered can be modeled sufficiently by the third-order Taylor

series expansions of their constitutive equations. Further assume that the network
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Figure 6.7: Block diagram of PSN circuits. IC - initial condition, FC - final condi-
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variables of PSN circuits can be represented by the 3rd-order Volterra series of
the input. It can be shown that when one-graph formulation method is used, the

nonlinear time-invariant circuit in phase k is characterized by
dvi(t)

Gka(t)-i-CkT = wil(t)&(t)

+ Cevi1(nT +0i_,)é(t —nT - of_,)
- Cpvi(nT + 07 )é(t — nT — o)
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+ Agvi(t) + Asvi(t) (6.56)

where &(t) is the kth window function defined earlier in Chapter 3. A useful
identity of the window function £ (t) is that

& (8) = &(2) (6.57)

where n is any positive integer. Eq.(6.57) can be readily verified. wvi(t) is the
network variable vector consisting of nodal voltages, some branch currents, charges
of nonlinear capacitors and fluxes of nonlinear inductors of the circuit, G, and C;
are the conductance and capacitance matrices, w(!)(¢) is the input, A; and A; are
constant matrices depicting respectively the 2nd, 3rd-order nonlinearities of the
circuits. The elements of the vectors vZ(t) and vi(t) are the square and cube of the
corresponding elements of vi(t), respectively. Note we have employed scalar-like

conventions here for their self-explanation feature.

If the input is changed from w(t) to ew(t), then using (6.52) and (6.53) with
only up-to the 3rd-order terms considered, Eq.(6.56) becomes

3. mdvi™(t)

3
G Y emviMit) + G Y e " ew ()& (t)
m=1 m=1
3
+ C. Y v (nT + ot_,)b(t — nT - of,)
m=1
3
- C ) e"v{™(nT + 0. )8(t —nT —oy)
m=1

+ Az[ie"‘v,(,"')(t)]z+Aa[f:e”‘v,(‘"')(t)]a (6.58)

m=1 m=1
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Eq.(6.58) is essentially a power series in €. Following the same arguments as those

in deriving (6.37), we obtain the following set of linear differential equations

( )
Gl + C 2 R U0
+ Ckvk_,(nT +of_,)é(t —nT — oi_,)
— Cov(nT + 07 )é(t — nT — a7). (6.59)
(2)
a0+ G TE < wg)
+ Civi® (nT + of_,)8(t —nT — o))
— CovP(nT + 07)d(t — T - o7). (6.60)
dv®
a?)+ Gl - woma
+ Cuvd (aT +af_,)8(t — nT - of_,)
— Cuvi(aT + o7)b(t — nT — o}) (6.61)
where
wi(t) = A,[v)(2))? (6.62)
w®(t) = 2A,v(2)v®)(t) + Ag[v)(2)]® (6.63)

v(3)(¢) and v(®)(¢) are the complete responses of the PSL circuits characterized by
(6.60) and (6.61), respectively. Note v()(¢)v(®)(t) and [v(?)(¢)]® are vectors whose
dimensions are the same as v{!)(t). The elements of v(*)(£)v(®)(t) are the products
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of the corresponding elements of v(!)(t) and v(?)(t) whereas those of [v(!)(¢)}® are
the cube of the corresponding elements of v(!)(t). Fourier transform of (6.59)-(6.61)

gives

(G +jwC) VI (jw) = Flw®(t)éu(t)]
+ CLFvidy(nT + o}t,)8(t — nT — o},)]
— CFvI (T + o7)6(t —nT —a7)].  (6.64)

(Ge + jwC) VP (jw) = FlwD(t)e(t)]
+ CuF[v®,(nT + oi,)d(t — nT ~ af_,)]
— CFVI(nT + 07)6(t —nT —07)].  (6.65)

(Ge + jwC VI (jw) = Flw(t)éu(t)]
+ CoFvi,(nT + of_,)d(t — nT — of,)]
— CuFvIT + 67)6(t —nT —07)].  (6.66)

Eqs.(6.64)-(6.66) reveal that the behavior of a PSN circuit can be characterized
by three intrinsically related PSL circuits. The input of the circuit characterized
by (6.65) is obtained from the solution of (6.64) whereas that of the circuit de-
picted by (6.66) is from the solutions of (6.64) and (6.65). These PSL circuits are
solved in a sequential order. The circuits characterized by (6.64)- (6.66) are termed
respectively as the 1st-, 2nd-, and 3rd-order Volterra circuits of the PSN circuit
and are denoted by N, N@ and N®), respectively. It should be noted that
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because the frequency components of NV, N(3)| and N® differ from each other,
LU-decomposition of (Gy + jwCp) has to be performed each time the output fre-
quency changes. The implementation of the theory in computing the harmonic and

intermodulation distortion of PSN circuits are detailed in the following sections.

6.6 Harmonic Distortion of PSN Circuits

The harmonic distortion of a PSN circuit is obtained by finding the harmonic
components of the response of the circuit to a sinusoidal input. When Volterra
series-based approach is employed, it is obtained by solving N V), A'®) and N

of the circuit.

6.6.1 The First-order Volterra Circuit NV

Let the input of a PSN circuit be w(t) = Acosw,t = A(e?“et + e~wt)/2. The
input signal contains two distinct frequency components at w, and —w,. Using
Theorem 3.1 and the principle of superposition, it can be shown that the complete
response of N'!), denoted by v(!)(t), contains frequency components +w, + kw,, k =

0,+1,+£2,..., and can be represented by

o) = 3 Vi (wo + kun)ed et 4 Y VO (—w, + kuy)eilothelt(6.67)

k=—00 k=—o0

where Vp(,i)(wo + kw,) and V,,(;‘)(—m.vo + kw,) are the phasors of v(})(¢) at frequencies
wo + kw, and —w, + kw,, respectively. The subscripts p and n specify respectively
the positive and negative base band frequencies. The contribution of NV to the

fundamental component at w, is given by V*(w,) = V. (w,).
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6.6.2 The Second-order Volterra Circuit N

The input of N'?, denoted by w(?)(t), is given by (6.62)

’W(z)(t) = 2 W;s,zk)(m‘-’o + kw.)ej(z"'°+k“" )¢ + E W,('z,c)(kw,)eﬂ‘“"‘

k=—oco k=-o00
+ Y WE(—2w, + kuw,)eil-2etkualt (6.68)
k=-00

where W;_z,‘)(2wo + kw,), W,('z,c)(kw,), and W,(,?,Z(—2wo + kw,) are phasors of w(®)(t) at
2w, + kw,, kw,, and —2w, + kw,, respectively. The subscript z specifies zero base
band frequency. Among the frequency components of w(?)(¢), only those at 2w,+kw,
contribute to the 2nd-order harmonic !. The 2nd-order harmonic V?)(2w,) of the
output is obtained by summing up the response of N'(?) at frequency 2w, with input

at frequencies 2w, + kw,,k =0, £1....

VO(2w,) = Y H®N(2w,, 2wo + kw,) WP (2w, + kw,) (6.69)

k=-00

where H?)(2w,, 2w, + kw,) is the aliasing transfer function of N'®). Further from
Theorem 3.1, the complete solution of A, denoted by v(?)(t), with inputs given
by (6.68) is given by

vA(@) = Y V(2w + kw, )Pttt 1 S YD (R, )kt

k=-co k=—00
o

+ Y VO (2w, + kw,)eil-2wethuelt (6.70)
k=-o00

In saying so, we have assumed that —2w, + kw, and kw, will not be multiples of 2w, for any
k. This is often the case in reality as w, is usually much higher than w,.
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where Vp('i)(2wo + kw, ), Vz(i) (kw,), and V,f'zk)(-—2wo + kw,) are the phasors of v(?)(t) at
2w, + kw,, kw,, and —2w, + kw,, respectively. These phasor quantities are needed

in solving N'®), as will be shown in the sequel.

6.6.3 The Third-order Volterra Circuit N/

The input of N'® is given by (6.63). Let us examine these two inputs in more
detail. v((t)v(®)(t) contains frequency components +3w, + kw, and *w, + kw,.
Among them, only those at 3w, + kw, contributes to the third-order harmonic. The
input at w, + kw,, however, affects the fundamental. Note that it was assumed that
~wo + kw, and —3w, + kw, will not be multiples of either w, or 3w, for any k. N'®
only needs to be solved with (a) the input at 3w, + kw, and the output at 3w, for
its contribution to the 3rd-order harmonic and (b) the input at w, + kw, and the

output at w, for its contribution to the fundamental.

Important to note that in computing the input of N'®), the solutions of NV at
wo + nw, and N at 2w, + nw, are needed. N'1) and N'? therefore need to be
solved at all relevant side band frequencies with output at these frequencies. N'©®,
however, needs only to be solved at specific frequencies because only the responses
at w, and 3w, are of concern. The output of N® at w, due to v(V)(t)v?)(¢) is

obtained from

VR (Wwo) = Y H®O (wo,wo + k) W(wo + hw,) (6.71)
k=-00
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where H®)(w,,w, + kw,) is the aliasing transfer function of N® with input at

W, + kw, and output at w,, Wﬁ) (wo + kw,) is computed from

Wi (wo + kw,) = > VR (~we+ kw )V (2w + B,
ky kg =—00;k1 #k3
o0
+ Y VR (we + kw ) VE (kaw,) (6.72)
ky .k2=—oo;k| #ky

The third-order harmonic component generated by v(})(t)v(?)(t) is obtained from

VBwe) = 3 HO (3w, 3w + kwo) W (3w, + kw,) (6.73)
k=-—-00
where
WhBwe +kw) = Y V(o + k) VR (2w, + k) (6.74)
ky Jky=—o0sk) #kz

and H®)(3w,, 3w, + kw,) is the aliasing transfer function of N® with the input at
3w, + kw, and output at 3w,. The other input of N'©®), [v(!)(¢)]?, also contributes to
both the fundamental and third-order harmonics. Its contribution can be computed
in a similar manner as that of v()(¢)v(?)}(t). Let its contribution to the base band

and the 3rd-order harmonic be denoted by Vo(;)(wo) and ‘{,(;)(30;0), respectively.

In summary, the fundamental component of the complete response of the circuit
is obtained by summing up the contributions of A’} and N'® at w,. The 2nd-order
harmonic component of the complete response is solely determined by the solution
of N® ag 2w,. The 3rd-order harmonic is obtained by summing up the contribution
of N® with inputs v()(¢)v®)(t) and [v)(2)]°. The 2nd-order harmonic distortion
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is computed from

P = \ @ Vo(:)( ) (6.75)
Vo ("’0) + Vo.l (wo) + Vo.2 (“’0)
and the 3rd-order harmonic distortion
D, =. Vo (Buwo) + V3 (3wo) (6.76)
Vi (o) + VP (wo) + V.2 (o)

6.6.4 The Fold-over Effect

Eqs.(6.69), (6.71) and (6.73) demonstrate that the high-order side band components
of the inputs of N'®) and N'® contribute to the distortion in the base band. This is
analogous to the fold-over effect encountered in noise analysis of PSL circuits. The
folding effect in computing V{*)(3w, ) is illustrated in Fig.6.8. The frequency reversal
theorem can be employed to minimize the cost of computation in calculating these

aliasing transfer functions.

&) _ L))
H (B, 3(’:2 }2{)‘ N 9{(3)(3(1)0 , 30o) . <X X ~(3°’m 3wo+3wg)
- "' ,.-;:~.\\ I" \\ /'-;-~‘ ™ S
| | | V 1 I I -
304- 30 3w,- 2g 3W,- g 0 3w, 30, + W 3Wg+20)g 3Wo+3 Mg

Figure 6.8: Fold-over effect in distortion analysis
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6.7 Intermodulation Distortion of PSN Circuits

Intermodulation distortion arises when the input of a PSN circuit contains two sinu-
soidal signals of different frequencies. For example, in a RF receiver, the frequency
difference between two adjacent channels is very small. Due to the nonlinearities in
the receiver, frequency components other than those of the carriers are generated.
The harmonic components in the output of the mixer are usually not of concern in
this case as they will be filtered out by a downstream loop filter. The third-order
intermodulation components, however, are critical because their spectra fall so clcse
to those of the carriers that the loop filter fails to eliminate them. The analysis of

the third-order intermodulation distortion is of practical importance.

6.7.1 The Solution of N1V

Let the input of a PSN circuit be

w(t) = A(coswyt + coswat) = g—[ej“‘“ + e7int  gdurt  gmiunt] (6.77)

From Theorem 3.1 and the principle of superposition, the complete response of A1)
of the PSN network, denoted by v(!)(t), contains frequency components +w; + kw,
and tw; + kw,,k =0,£1,+2, ..., and can be represented by

v = 3 Vigklon + k) g 3 Vs (e + ket
k=~

k

[V]s '.'[V]a

[+ <]
+ Z Vzpl.k(wz + kw,)ei(w:+ku.)c + z(':)k (~wz + kwa) pil-unthw,)t

k=-00

T

—0Q0

(6.78)
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where Vl(pl'},(wl + kw,), ‘G(,:'),c(—wl + kw,), V,(;'L(wz + kw,), and V,(,:'),‘(—wz + kw,) are
the phasors of v()(t) at w; + kw,, —w + kw,, w; + kw,, and —w; + kw,respectively.

6.7.2 The Solution of N?

The input of N® contains frequency components +2uw; + kw,, +2w; + kw,, kw,,
(w1 xwy) + kw, and (w2tw,) + kw,, k = 0,%1, +2,.... Consequently, the output of
N consists of frequency components +2uw; + kw,, 2wz + kw,, kw,, (w; tws) +kw,,
(wetw, )+kw,. Further analysis shows that the input of N'?) at +(w; +w2)+kw, and
kw, do not contribute to the 3rd-order intermodulation. As a result, the output of
N at these frequencies is not required. The output at other frequencies, however,

must be computed.

6.7.3 The Solution of N

The input of N'® consists of v(*)(t)v?)(t) and [v(")(¢)]®. It can be shown that
among the frequency components of v(*)(t)v(?)(t), only those at (2w; — w2) + kw,
and (2w; —wy) + kw, contribute to the 3rd-order intermodulation whereas those at
w; +kw, and wy+kw, contribute to the fundamentals at w, and wa, respectively. A3
therefore needs to be solved with (a) input at (2wy —w,) + kw, and (2w; —w;) + kw,,
and outputs at 2wy —w; and 2wy —w,, respectively; (b) input at wy +kw, and wy+kw,

and output at w; and ws, respectively.

Note the amplitude of the inputs at these frequencies must be calculated prior
to solving N'®. Similarly, Among the frequency components of [v()(t)]3, only (a)
(2wy —wy) + kw, and (2w —wy) + kw,, (b) w; + kw, and w; + kw, are of concern as
they contribute to the third-order intermodulation. The frequency reversal theorem

can be used in both cases to minimize the cost of computation.
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The 3rd-order intermodulation distortion at 2w; — w; is computed from

VD (w — wa) + V3 2wy — wy)
VO + VR (w1) + V()

IM; = (6.79)

where Vﬁ) (2w; — wp) and Vo(‘:;)(2w1 — w;) are the contributions of v(*)(t)v(?)(t) and
[v()(2)]® at 2wy — w,, respectively. Vo(g)(wl) and Vo(_g)(wl) are the contributions of

v(t)v(d(2) and [v(1)()]® at wy, respectively.

6.8 Numerical Examples

The above algorithms for harmonic and intermodulation distortion analysis of PSN
circuits have been implemented in a computer program SNCDAP (Switched Non-
linear Circuits Distortion Analysis Program). In this section, the harmonic and
intermodulation distortion of several PSN circuits are analyzed using SNCDAP
and the results are compared with SPICE simulation.

6.8.1 Harmonic Distortion of Modulator

+ Va1 — G
iR , 1/
A j
Ry
+ o)

- oM
v (t)@ . 2 7~ Ra§ Vo) ‘
2

0  odsery T, t

ON ON

o

~z

Figure 6.9: Modulator
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Table 6.1: Parameter values of modulator

Parameter Numerical value Unit Remark

C\ 2200 pF

C, 80 pF

R, VR = 206.95935ig; + 10043,

Ry 35 Q

Ry 300 Q

f 8 kHz | Clock frequency
T 0.488T, Second | Width of phase 1
Ta 0.512T, Second | Width of phase 2

154

Consider a modulator shown in Fig.6.9 with the parameter values given in Ta-

ble 6.1 [146]. The resistor R, is modeled as a nonlinear current-controlled voltage

source. The circuit was solved using SNCDAP and results are shown in Table 6.2.

Results from HPSICE simulation are also shown in the table. Care was taken in

choosing the step size in transient analysis, collecting steady-state response data,

and selecting the number of data points and windows in FFT analysis [147-149).
As observed that the results from SNCDAP and HSPICE compare well. To demon-

strate the fold-over effect in distortion analysis, the 2nd-order harmonic components

at 1 kHz from SNCDAP are plotted versus the number of side bands considered in

Fig.6.10. As can be seen that the 2nd-order harmonic component converges rapidly.

6.8.2 Harmonic Distortion of

Stray-insensitive SC Integrator
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Table 6.2: Harmonic distortion of modulator

Frequency HSPICE (dB) SNCDAP (dB)
(kHz) | Fundamental | Second-order | Fundamental | Second-order
1 -53.90 -166.9 -53.91 -167.0
2 -47.88 -160.4 -47.89 -160.8
3 -44.36 -157.2 -44.38 -157.1
4 -41.87 -154.2 -41.87 -154.3
5 -39.93 -152.2 -39.93 -151.9
6 -38.35 -149.9 -38.35 -149.8
7 -37.01 -147.7 -37.02 -147.9
8 -35.86 -145.8 -35.86 -146.0

Table 6.3: Parameter values of stray-insensitive SC integrator

Parameter | Numerical value [ Unit Remark
Cy 0.015926 uF
C, 10 uF
Ron 3.5 kQ
fi 100 kHz | Clock frequency
T 0.488T, Second | Width of phase 1
| ™ 0.512T, Second | Width of phasi

Consider a stray-insensitive switched capacitor integrator shown in Fig.6.11 with
parameters given in Table 6.3. MOSFET switches M;, M3, and M, are modeled as -
a linear resistor with resistance 3.5k{ in series with an ideal switch. M, is mod-

eled as a nonlinear resistor in series with an ideal switch. The nonlinear resistor is
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Figure 6.10: Convergence of 2nd-order harmonic of modulator

characterized by vp = 3500ip + 500i%. The model of the op amp is the same as
those used in Chapter 4. The circuit was solved using SNCDAP and the results are
shown in Table 6.4, together with HSPICE simulation results. To ensure that the
second-order harmonic components are free of numerical errors, several HSPICE
simulations with different step sizes used in transient analysis were conducted. The
absolute errors between the harmonic components obtained from using different
step sizes in transient analysis are less than 0.2 decibels. It is seen that the SNC-
DAP gives good prediction of both the fundamental and the second-order harmonic
components. The 2nd-order harmonic component at 1 kHz is plotted in Fig.6.12
versus the number of side bands considered. It is seen that the 2nd-order harmonic
converges with the increase in the number of side bands. Also observed that the

rate of convergence is slower as compared with the modulator.
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Figure 6.11: Stray-insensitive SC integrator

Table 6.4: Harmonic distortion of stray-insensitive integrator

Frequency | HSPICE (dB) SNCDAP (dB)

(kHz) | Fund. | 2nd-order | Fund. | Second-order
1 -27.87 | -99.85 | -27.87 -100.4

2 -31.89 | -99.57 |-31.89 -101.1
3 -34.42 | -100.4 | -34.42 -101.9
4 -36.17 | -103.7 |-36.17 -102.4
5
6

-37.38 { -102.0 |-37.39 -102.4
-38.22 | -1024 |-38.22 -102.2

To further demonstrate the effectiveness of the proposed method, another non-
linear switched capacitor integrator shown in Fig.6.13 with parameters given in

Table 6.5 was analyzed. The only nonlinearity is the amplifier modeled by v,(t) =
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Figure 6.12: Convergence of 2nd-order harmonic of stray-insensitive SC integrator

Table 6.5: Parameter values of stray-insensitive SC integrator

Parameter | Numerical value | Unit Remark
C\ 10 nF
C, 1.0 nF
Ron 3.5 kQ
fs 100 kHz | Clock frequency
n 0.57, Second | Width of phase 1
T2 0.5T, Second | Width of phase 2

ayv1(t) + a2v3(t) + asv(t). Two tests were carried out for two sets of coefficients

(a1, a3,a3) = (100,0,10) and (a,, a;, a3) = (100, 10, 10). The harmonic components
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of the output were computed using SNCDAP and the results are tabulated in Table
6.6 for the first set of coefficients and Table 6.7 for the second set. HSPICE simula-
tion results are also shown in the tables. It is seen that the results from SNCDAP
are in good agreement with HSPICE simulation. Also, in Table 6.6, since a; = 0,
zero second-order harmonic is predicted by SNCDAP as both the first- and third-
order PSL circuits do not contribute to the 2nd-order harmonic. This agrees with
HSPICE simulation. HSPICE results for (a,, a,,as) = (100, 10, 10) are plotted in
Figs. 6.14 and 6.15 *. By comparing these plots with Fig.6.2, it is evident that
the theory gives accurate prediction of the fundamental second-, and third-order
harmonic components of the response. Since only third-order Volterra series expan-
sion was considered in our implementation, SNCDAP is not capable of predicting

high-order harmonics.

The CPU time used by SNCDAP (implemented in MATLAB) for computing
the distortion at a single frequency is 4.1 minutes while HSPICE consumed 2.78

hours. The efficiency gain from using the proposed method is evident.

To demonstrate the efficiency gain obtained from using the frequency reversal
theorem in distortion analysis of PSN circuits, the same circuit was solved using
SNCDAP with frequency reversal theorem implemented and without (brute-force).
The results are tabulated in Table 6.8. It is seen that the results from both methods
agree well. The marginal differences are mainly due to the numerical errors caused
by the differences of the two algorithms. The efficiencies of the two algorithm are
also compared via their CPU time. It was observed that the method with the

2The estimated time constant due to the sampling capacitor and channel resistance of MOSFET
switches is about 1 us. To ensure the establishment of the steady state, the first 1000 samples
were discarded from DFT analysis. Also the number of samples used in DFT analysis was 6dk.
Rectangular window was employed.
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Figure 6.13: SC integrator

frequency reversal theorem implemented is 3 times faster than those without. The
speedup is less than those in noise analysis shown in Chapter 4. This is because
the frequency reversal theorem was only employed in solving N'® because N2
needs to be solved at all relevant side band frequencies. Our experience shows that

a significant portion of the CPU time was spent on solving N'(?).

The intermodulation distortion of the circuit with (a,, a3, a3) = (100, 10, 10) was
also investigated. The input consists of two sinusoidals with frequency difference of
100 Hz. The third-order intermodulation components were computed using SNC-
DAP and the results are tabulated in Table 6.9, together with HSPICE simulation
results. A good agreement is observed. HSPICE simulation results for f; = 1.0
kHz and f; = 1.1 kHz are plotted in Figs.6.16 and 6.17. A careful comparison of
these plots with Fig.6.3 reveals that all major beats of the response predicted by
the proposed method match HSPICE simulation.
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Table 6.6: Harmonic distortion of stray-insensitive integrator (a; = 100,a; =

0, as = 10)

Frequency HSPICE (dB) SNCDAP (dB)
(kHz) | Fund. | 2nd-order | 3rd-order | Fund. | 2nd-order | 3rd-order
1.0 2762 | -135.0 -20.65 | 27.64 —00 -20.38
2.0 26.45 | -137.1 -28.09 | 26.46 —00 -27.83
3.0 25.02 | -132.3 -35.28 | 25.03 —o0 -35.16
4.0 23.61 -161.4 -41.77 | 23.61 —00 -41.85
5.0 22.30 | -145.0 -47.53 | 22.31 —00 -47.83
6.0 21.12 -127.9 -52.54 | 21.13 —00 -53.13
7.0 2007 | -140.0 | -56.97 | 20.07 —00 -57.82
8.0 19.12 | -105.0 -60.95 | 19.13 ~00 -61.93

To demonstrate the analysis of harmonic distortion due to the existence of non-
linear capacitors, the circuit in Fig.6.11 is considered. The only nonlinear element
is capacitor C; modeled by C; = 10x107° +5x10~%v¢, +1.5x10~%v}, while C; re-
mains unchanged. The switching frequency is 100 kHz with two equal clock phases.
To avoid numerical difficulties, the circuit is impedance scaled by 10* and frequency
scaled by 100. As a result, the ON-resistance of MOSFET switches is changed from
3.5 kQ to 0.35 Q. The capacitance of C; is changed from 1.0x10~° F to 103 F.
C; becomes C; = 10x107° + 5x107%v¢, + 1.5x107%v% . The clock frequency is
changed from 100 kHz to 1000 Hz. The operational amplifier is modeled as an ideal
VCVS with gain 1000. The distortion of the output at frequency 100 Hz was ana-
lyzed. For the purpose of comparison, it was also computed using HSPICE. Both
results are tabulated in Table 6.10. As can be seen that the results obtained using
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Table 6.7: Harmonic distortion of stray-insensitive integrator (a; = 100,a; =

10, a3 = 10)

Frequency HSPICE (dB) SNCDAP (dB)
(kHz) | Fund. | 2nd-order | 3rd-order | Fund. | 2nd-order | 3rd-order
1.0 27.62 | -6.738 -21.14 | 27.63 | -6.525 -20.87
2.0 26.44 | -11.91 -29.14 | 2645 | -11.65 -28.92
3.0 25.02 | -17.23 -36.63 | 25.03 | -17.03 -36.59
4.0 23.61 | -22.10 -43.28 | 23.61 | -21.99 -43.47
5.0 22.30 | -26.42 -49.14 | 22.31 | -26.42 -49.58
6.0 21.12 | -30.23 -54.20 | 21.13 | -30.33 -54.98
7.0 2007 | -33.61 | -58.67 | 2007 | -33.79 -59.74
8.0 19.12 | -36.60 -62.69 | 19.13 | -36.87 -63.90

the proposed method are in good agreement with those from HSPICE simulation.
HSPICE simulation results are also plotted in Fig.6.18 for verification purpose.

6.9 Summary

A Volterra series-based frequency-domain method for distortion analysis of general
PSN circuits with mild nonlinearities was developed. It is shown that the behavior
of these circuits can be characterized by a set of intrinsically related PSL circuits.
The complete spectrum of the PSN circuit is obtained by summing up those of
these PSL circuits. The analysis of PSL circuits is exact. The only approximation
made is the truncation of the Volterra series expansion of network variables. The

proposed method is a generalization of the multilinear theory for NTI circuits [150)
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Figure 6.14: Harmonic distortion of SC integrator

and nonlinear SCNs [27,80]. It unifies distortion analysis of nonlinear nonlinear
time-invariant circuits and general PSN circuits, including nonlinear SCNs in a

single algorithm.
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Figure 6.15: Harmonic distortion of SC integrator

Table 6.8: Harmonic distortion using adjoint network and brute-force methods

Frequency Brute-force(dB) Adjoint Network(dB)
(kHz) Fund. | 2nd-order | 3rd-order | Fund. | 2nd-order | 3rd-order
1.0 27.628 | -6.525 -20.994 | 27.633 | -6.525 -20.873
2.0 26.450 | -11.645 | -29.003 | 26.454 | -11.645 | -28.921
3.0 25.025 | -17.027 | -36.608 | 25.028 | -17.027 | -36.588
4.0 23.611 | -21.988 | -43.413 | 23.613 | -21.988 | -43.473
5.0 22.304 | -26.415 | -49.433 |22.305 | -26.415 | -49.577
6.0 21.215 | -30.328 | -54.765 |21.126 | -30.328 | -54.975
7.0 20.070 | -33.791 | -59.512 | 20.07 | -33.791 | -59.737
8.0 19.126 | -36.874 | -63.760 | 19.127 -36.8:1}_ -63.897
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Table 6.9: Intermodulation distortion

Frequency (kHz) HSPICE (dB) SNCDAP (dB)
f f Fund. | Fund. | Intermod | Intermod | Intermod | Intermod
h 2 [ 2fi-fai|2i-h |2h-F2 | 2N
10| 11 |27.85 2776 | -8.894 | -9.304 | -8475 | -8.860
20| 21 | 2658|2644 | 1380 | -1437 | -1318 | -13.74
30| 31 |2500|2495| -1949 | -2000 | -18.87 | -19.47
40| 41 | 2365|2351 | -25.00 | -2565 | -24.56 | -25.12
50| 51 |2232|2220| -3027 | -30.78 | -2084 | -30.36
60| 61 |2114|21.02| -3495 | -35.42 | -34.64 | -35.10
70| 71 | 2008|1998 | -30.17 | -39.50 | -38.94 | -39.36
80| 81 |1913|19.04 | -4295 | -4335 | -42.80 | -43.18

Table 6.10: Harmonic distortion of stray-insensitive integrators with nonlinear ca-

pacitors

Frequency (Hz) | HSPICE (dB) | SNCDAP (dB)
100 14.95 14.92
200 -27.60 -27.64
300 -45.60 -46.52
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Chapter 7

Conclusions

This thesis dealt with the analysis of the noise and sensitivity of general periodi-
cally switched linear circuits, and the distortion of periodically switched nonlinear

circuits in frequency domain.

Using the characteristics of LPTV systems, we derived the Tellegen’s theorem
for PSL circuits in phase domain. The theory of the adjoint network of PSL circuits
was developed. The frequency reversal theorem and transfer function theorem,
were also developed. The adjoint network theory provides a powerful means in
reducing the computational cost associated with the noise analysis of PSL circuits
in two aspects : (i) It derives the transfer functions from multiple inputs to the
single output of PSL circuits at a given frequency by solving its adjoint network at
the same frequency only once. (ii) It computes the aliasing transfer functions by
evaluating the corresponding high-order frequency components of the response of

the adjoint network.

In noise analysis, an adjoint network-based algorithm was developed and im-

plemented in a computer program to compute the output noise power of general

168
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PSL circuits. Several PSL circuits were analyzed. The numerical results obtained
using the proposed algorithm are compared with measurements and an excellent
agreement is observed. The algorithm is exact and is orders of magnitude faster

than the brute-force method.

In sensitivity analysis, the incremental form of Tellegen’s theorem for PSL cir-
cuits in phase domain was introduced, and the frequency-domain sensitivity of PSL
was obtained. The theory yields sensitivities of the response with respect to all cir-
cuit elements in one frequency analysis. The sensitivity networks of PSL circuits
were introduced. It is demonstrated that the sensitivities obtained using the adjoint
network technique are identical to those from the sensitivity network approach. The
sensitivities of several PSL circuits were analyzed. The numerical results obtained

using the proposed methods match those obtained from other CAD tools.

In distortion analysis, the time-varying Volterra series initially proposed by
Yu et al. [143] was further developed. The time-varying network functions and
multi-frequency transforms were introduced to characterize the behavior of NTV
systems in frequency domain. The network variable theorem for PSN circuits was
introduced and the complete spectrum of PSN was obtained. The theory was
applied to frequency-domain distortion analysis of general PSN circuits. It is shown
that the behavior of PSN circuits can be characterized by a set of intrinsically
related PSL circuits. The complete frequency-domain spectrum of the response of
the PSN circuit is obtained by summing up the spectra of the corresponding PSL
circuits. These PSL circuits are solved using exact frequency-domain method, the
only approximation made is the truncation of the Volterra series expansion of the

network variables.

The work reported in this thesis can be extended in many areas. Suggestions

for further research include :
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e Extending the adjoint network theory of general periodically switched circuits
to general periodically switched nonlinear circuits. This extension could be

used to speed up noise and sensitivity analysis of general PSN circuits.

o Extending the theories of noise and sensitivity analysis of general PSL circuits
developed in this thesis to general PSN circuits. This extension is of practical
significance as there is no efficient and accurate method currently available

to compute both noise and sensitivity of general PSN circuits.

¢ Extending the noise analysis of PSL circuits to include the effect of clock
jitter. The available methods on the analysis of the effect of jitter timing are
mostly time-domain approaches which requires Monte Carlo analysis. Such

an analysis is time-consuming.

o Extending the frequency-domain analysis of PSL and PSN circuits to include
the effect of clock signal. Specifically, the gate-source and gate-drain capaci-
tances, as well as parasitic capacitances of MOSFET switches, will be included
in modeling MOSFET switches. This will not only allow us to directly an-
alyze the effect of clock feed-through, it will also extend the application of
the theories of PSL and PSN circuits to circuits operated at intermediate and

high frequencies, such as RF mixers and modulators.

e Extending the frequency-domain analysis of general switched circuits to per-
mit rising and falling time of sampling clock. Most of the CAD tools currently
available for analysis of PSL circuits and SCNs are based on the assumption
of a square-wave clock signal. This assumption neglects the effect of finite ris-
ing and falling slopes of the clock signal. The operation of MOSFET switches

can hence not be described accurately.



Appendix A

Numerical Inversion of Laplace

Transform

In computing the frequency response of PSL circuits, numerical integration of the
circuit equation is required to yield the quasi-state-transition matrix N; and the
zero-state response vector P.. There are many integration methods available. We
have used numerical inversion of Laplace transform because it is equivalent to high-
order numerical integration. It gives very accurate results with absolute numerical
stability [97,98]. More importantly, computation is performed in frequency domain
where impulse functions can be handled with ease. This appendix reviews the
fundamentals of this technique. A detail description can be found in {39,97,98].

Consider a LTI circuit depicted by

Gv(t) + cd"d—?) = w(t) v(t)]e=o = ¥(0%) (A.1)

171
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where G and C are conductance and capacitance matrices formulated using the
modified nodal analysis. w(t) is the input vector and v(t) is the network variable

vector. Laplace transform of v(t) is obtained from
V(s) = (G + sC) ' [W(s) + v(0%)) (A.2)

The time domain solution of v(t) is obtained from the inverse Laplace transform

of V(s)

_ 1 c+joo ot

v(t) = 317 /;_joo V(s)e*ds (A.3)

with ¢ > |Re(s;)|, where s; are the poles of V(s). Replacing s with a new complex
variable s = z/t, t#0 in (A.3) leads to

)= = [ v(2)ed A4

vie) = 2w gt /c‘.:-joo (;)e # (A-4)

The key of numerical inversion of Laplace transform is to approximate e* term in

(A.4) with a special rational complex function - the Pade function, denoted by

Evm(2)

et~ aa(z) = 52’,((3 (A5)

where Py(z) and @u(z) are polynomials in z of orders of N and M, respectively.
The Pade function matches the first M + N term of e* exactly. The values of M
and N are selected carefully such that all poles of the Pade function are simple and
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are in the right half of the complex plane. Thus

M K.'

EMn =)

i=1 zZ2—2z

(A.6)

where z; are the poles of {yn(2) and K; is the residue of &y n(z) at z;. The
integral in (A.5) can be evaluated using the Residue theorem by closing the path
of integration along an infinite arc around the poles z; in the right half plane. The

resultant time domain response is given by

" 14 2
()= -7Y K,-V(?) (A7)
i=1
where t is the step size used in numerical integration. It is observed that the
computation of the time-domain response involves frequency-domain evaluation of
the network function at frequencies z;/t. Since £ x is independent of the network

and time, the values of z; and K; can be precomputed and stored.



Bibliography

(1] Y. Tsividis, Mized analog-digital VLSI devices and technology : An introduc-
tion, New York : McGraw-Hill, 1996.

[2] P. V. A. Mohan, V. Ramachandran, and M. N. S. Swamy, Switched capacitor
filters, theory, analysis and design, Hertfordshire, UK : Prentice-Hall Interna-
tional, 1995.

[3] H. M. Wey and W. Guggenbuhl, “Noise transfer characteristics of a correlated
doubling sampling circuits,” IEEE Trans. Circuits Syst., vol. 33, pp. 1028-1031,
October 1986.

[4] J. M. Pimbley and G. J. Michon, “The output power spectrum produced by
correlated double sampling” IEEE Trans. Circuits Syst., vol.38, pp. 1086-1090,
September 1991.

[5] V. F. Dias, G. Palmisano, and F. Maloberti, “Noise in mixed continuous-time
switched capacitor sigma-delta modulators,” IEE Proc.- Circuits Devices Syst.
vol. 139, pp. 680-684, December 1992.

(6] V. F. Dias, G. Palmisano, P. O’Leary, and F. Maloberti, “Fundamental lim-
itations of switched capacitor sigma-delta modulators,”” IEE Proc.- Circuits
Devices Syst. vol. 139, pp. 27-32, February 1992

174



BIBLIOGRAPHY 175

[7] K. Nakayama and Y. Kuraishi, “Present and future applications of switched-
capacitor circuits,” IEEE Circuits and Devices, pp. 10-21, September 1987.

[8] D. J. Allstot and W. C. Black, JR., “Technological design considerations for
monolithic MOS switched-capacitor filtering systems,” Proc. IEEE, vol. 71,
pp- 967-985, August 1983.

[9] B. P. Lathi, Signals, systems and commaunication, New York : John Wiley and
Sons, 1965.

[10] D. L. Fred, “Analog sampled-data filter,”, IEEE J. Solid-State Circuits, vol.
7, August 1972.

[11] C. A. Gobet and A. Knob, “Noise analysis of switched capacitor networks,”
IEE Electronics Letters, vol. 16, pp. 734-735, 1980.

[12] C. A. Gobet and A. Knob, “Noise generated in switched capacitor networks,”
in Proc. IEEE Int’l Symp. Circuits Syst., Chicago, Illinois, pp. 856-859, July
1981.

[13] C. A. Gobet and A. Knob, “Noise analysis of switched capacitor networks,”
IEEE Trans. Circuits Syst., vol. 30, pp. 37-43, January 1983.

[14] B. Furrer and W. Guggenbuhl, “Noise analysis of sampled-data circuits,” in
MOS sampled-capacitor filters : analysis and design, edited by G. S. Moschytz,
IEEE Press, pp. 142-146, 1984.

[15] J. H. Fischer, “Noise sources and calculation technique for switched capacitor
filters,” IEEE J. of Solid-State Circuits, vol. 17, pp. 742-752, August 1982.

[16] P. R. Gray and R. G. Meyer, Analysis and design of analog integrated circuits,
3rd-edition, New York : John Wiley and Sons, 1993.



BIBLIOGRAPHY 176

[17] M. L. Liou and Y. L. Kuo, “Exact analysis of switched capacitor circuits with
arbitrary inputs,” IEEE Trans. Circuits Syst., vol. 26, pp. 213-223, April 1979.

[18] J. Gobette and C. A. Gobet, “Exact noise analysis of SC circuits and an
approximate computer implementation,” IEEE Trans. Circuits Syst., vol. 36,
pp. 508-521, April 1989.

[19] L. Toth and K. Suyama, “Exact noise analysis of ideal SC networks,” in Proc.
IEEE Int’l Symp. Circuits Syst., pp. 1585-88, New Orlean, May 1996.

[20] L. Toth and K. Suyama, “Efficient noise analysis of ideal switched-capacitor
networks with experimental verification,” in Proc. IEEE Int’l Symp. Circuits

Syst., Hong Kong, pp. 1054-1057, June 1997.

[21] D. O. Pederson, “A historical review of circuit simulation,” IEEE Trans. Cir-
cutts Syst., vol. 31, pp. 103-111, January 1984.

[22] J. Vlach and A. Opal, “Modern CAD methods for analysis of switched net-
works,” IEEE Trans. Circuits Syst. I, vol. 44, pp. 759-762, August 1997.

[23] S. W. Director and R. A. Rohrer, “The generalized adjoint network and net-
work sensitivity,” IEEE Trans. Circuit Theory, vol. 16, pp. 318-323, August
1969.

[24] A. K. Seth, “Comments on time-domain network sensitivity using the adjoint

network concept,” IEEE Trans. Circuit Theory, vol. 19, pp. 367-370, July 1972.

[25] T. N. Trick, Introduction to circuit analysis, New York : John Wiley and Sons,
1977.



BIBLIOGRAPHY 177

[26]

[27]

(28]

[29]

[30]

[31]

(32]

[33]

R. Rohrer, L. Nagel, R. Meyer, and L. Weber, “Computationally efficient
electronic-circuit noise calculations,” IEEE J. of Solid-State Circuits, vol.6,
Pp- 204-213, August 1971.

R. D. Davis, Computer analysis of switched capacitor filters including sensitiv-
ity and distortion effects, Ph.D. dissertation, University of Illinois at Urbana-
Champion, 1981.

R. D. Davis, “Distortion analysis of switched capacitor filters”, in Proc. I[EEE
Int’l Symp. Clircuits Syst., Chicago, Illinois, pp. 876-879, April 1981.

R. D. Davis, “A derivation of the switched-capacitor adjoint network based
on a modified Tellegen’s theorem,” IEEE Trans. Circuits Syst., vol.29, pp.
215-220, April 1982.

J. Vandewalle, H. De Man, and J. Rabaey, “The adjoint switched capacitor
network and its applications,” in Proc. IEEE Int’l Symp. Circuits Syst., Hous-
ton, Texas, 1031-1034, June 1980.

J. Vandewalle, H. J. De Man, and J. Rabaey, “The adjoint switched capacitor
network and its application to frequency, noise and sensitivity analysis,” Int’l

J. of Circuit Theory Appl., vol. 9, pp. 77-88, 1981.

C. F. Lee, R. D. Davis, W. L. Jenkins, and T. N. Trick, “Sensitivity and
nonlinear distortion analysis for switched capacitor circuits using SCAPN,”
IEEE Trans. Circuits Syst., vol. 31, pp. 213-221, February 1984.

M. Okumura, H. Tanimoto, T. Itakura, and T. Sugawara, “Noise analysis
method for nonlinear circuits with two frequency excitations using the com-'
puter,” Electronics and Communications in Japan, Part 3, vol.3, pp. 41-50,

1991.



BIBLIOGRAPHY 178

(34] M. Okumura, H. Tanimoto, T. Itakura, and T. Sugawara, “Numerical noise
analysis for nonlinear circuits with a periodic large signal excitation including
cyclo-stationary noise sources,” IEEE Trans. Circuits Syst. I, vol. 40, pp. 581-
589, September 1993.

[35] Z. Q. Shang and J. I. Sewell, “Efficient noise analysis methods for large non-
ideal SC and SI circuits,” in Proc. IEEE Int’l Symp. Circuits Syst., pp. 565-68,
Piscataway, NJ, 1994.

[36] Z. Q. Shang and J. I. Sewell, “Development of efficient switched network and
mixed-mode simulators,” IEE Proc. - Circuits Devices Syst., vol. 145, pp. 24-
34, February 1998.

[37] C. Hull and R. G. Meyer, “A systematic approach to the analysis of noise in
mixers,” [EEE Trans. Circuits Syst. I, vol. 40, pp. 909-919, December 1993.

[38] R. Spence and R. S. Soin, Tolerance design of electronic circuits, London :

Imperial College Press, 1988.

[39] J. Vlach and K. Singhal, Computer methods for circuit analysis and design,
2nd edition, New York : Van Nostrand Reinhold, 1994.

[40] L. O. Chua and P. M. Lin, Computer-aided analysis of electronic circuits -
algorithms and computational techniques, Englewood Cliffs, NJ : Prentica-Hall,
1975.

[41] S. W. Director, Circuit theory - a computationel approach, New York : John
Wiley and Sons, 1975.



BIBLIOGRAPHY 179

[42] C. W. Ho, “Time-domain sensitivity computation for networks containing
transmission lines,” IEEE Trans. Circuits Syst., vol.18, pp. 114-121, January
1971.

[43] B. D. H. Tellegen, “A general network theorem and applications,” Philip Res.
Rept., 7, pp. 259-269, 1952.

[44] J. G. Ye and O. Wing, “Sensitivity analysis of SCN’s with arbitrary inputs,”
in Proc. IEEE Int’l Symp. Circuits Syst., pp.56-59, 1983.

[45] K. L. Lee and R. G. Meyer, “Low-distortion switched-capacitor filter design
techniques,” IEEE J. Solid-State Circuits, vol.20, pp. 1103-1112, February
1984.

[46] Y. Elcherif and P. M. Lin, “Transient analysis and sensitivity computation in
piecewise-linear circuits,” IEEE Trans. Circuits Syst., vol. 38, pp. 1525-1533,
December 1991.

(47] A. Opal and J. Vlach, “Analysis and sensitivity of periodically switched linear
networks,” IEEE Trans. Circuits Syst., vol. 36, pp. 522-532, April 1989.

[48] Z. Q. Shang and J. L. Sewell, “Efficient sensitivity analysis for large non-ideal
switched capacitor networks,” in Proc. IEEE Int’l Symp. Circuits Syst., vol. 2,
pp.1405-1407, May 1993, New York.

[49] L. B. Wolovitz and J. I. Sewell, “General analysis of large linear switched
capacitor networks,” IEE Proc. Circuits, Devices Syst., vol. 135, pp. 119-124,
June 1988.

[50] L. E. Larson, editor, RF and Microwave circuit design for wireless communi-

cations, Boston : Artech House, 1996.



BIBLIOGRAPHY 180

[51] T. J. Aprille and T. N. Trick, “Steady-state analysis of nonlinear circuits with
periodic inputs,” Proc. IEEE, vol. 60, pp. 108-114, January 1972.

(52] T. J. Aprille and T. N. Trick, “A computer algorithm to determine the steady-
state response of nonlinear oscillators,” IEEE Trans. Circuit Theory, vol. 19,
pp. 354-360, July 1972.

[53] F. Colon and T. N. Trick, “Fast periodic steady-state analysis of large-signal
electronic circuits,” IEEE J. Solid-State Circuits, vol. 8, pp. 260-269, August
1973.

[54] D. Bedrosian and J. Vlach, “Analysis of switched networks,” Int’l J. of Circuit
Theory and Applications, May-June 1992, vol. 20, pp. 309-325.

[55] D. Bedrosian and J. Vlach, “Time-domain analysis of networks with internally
controlled switches”, IEEE Trans. on Circuits Syst. I, vol. 39, March 1992, pp.
199-212.

[56] J. Vlach and D. Bedrosian, “Switched networks,” The IMA Volumes in Math-
ematics and its Applications, vol. 58, Semiconductors Part I, Springer Verlag,

pp. 147-154, 1994.

[57] A. Opal and J. Vlach, “Consist initial conditions of linear switched networks,”
IEEE Trans. Circuits Syst., vol.37, pp. 364-372, March 1991.

[58] J. Vlach, J., M., Wojciechowski, and A. Opal, “Analysis of Nonlinear networks
with inconsistent initial conditions,” IEEE Trans. Circuits Syst. I, vol. 42, 195-
200, April 1995.

(59] A.Opal and J. Vlach, “Consistent initial conditions of nonlinear networks with
switches,” IEEE Trans. Circuits Syst., vol. 78, pp. 698-710, July 1991.



BIBLIOGRAPHY 181

(60] W. J. Cunningham, Introduction to nonlinear analysis, New York : McGraw-

Hill, 1958.
[61] J. K. Hale, Oscillations in nonlinear systems, New York : McGraw-Hill, 1963.

(62] K. Gopal, M. S. Nakhla, K. Singhal, and J. Vlach, “Distortion analysis of
transistor networks,” IEEE Trans. Circuits Syst., vol. 25, pp. 99-106, February
1978.

[63] K. S. Kundert and A. Sangiovanni-Vincentelli, “Simulation of nonlinear cir-
cuits in the frequency domain,” IEEE Trans. Computer-Aided Design, vol.5,
pp. 521-535, October 1986.

(64] M. S. Nakhla and J. Vlach, “A piecewise harmonic balance technique for de-
termination of periodic response of nonlinear systems,” IEEE Trans. Circuits

Syst., vol. 23, pp. 85-91, February 1976.

[65] L.O. Chua, Introduction to nonlinear network theory, New York : McGraw-
Hill, 1969.

[66] A. Ushida and L. O. Chua, “Frequency-domain analysis of nonlinear circuits
derived by multi-tone signals,” IEEE Trans. Circuits Syst., vol.31, pp. 766-777,
September 1984.

[67) H. Flogerg and S. Mattisson, “Symbolic distortion analysis of nonlinear ele-
ments in feedback amplifiers using describing functions,” Int’l J. Circuit Theory
and Application, vol. 23, pp. 345-356, 1995.

[68] J. J. Slotinex and W. Li, Applied Nonlinear Control, London : Prentice-Hall
International, 1991.



BIBLIOGRAPHY 182

[69] A. T. Behr, M. C. Scheneider, S. N. Filho, and C. G. Montoro, “Harmonic
distortion caused by capacitors implemented with MOSFET gates,” IEEE J.
Solid-State Circuits, vol. 27, pp. 1470-1475, October, 1992.

[70] M. C. Schneider, C. Galup-Montoro, and J. C. M. Bermudez, “Explicit formula
for harmonic distortion in SC filters with weakly nonlinear capacitors,” IEE

Proc.- Circuits Devices Syst. vol. 141, pp. 505-509, December 1994.

[71] D. O. Pederson, Analog integrated circuits for communications : principle,

stmulation and design, Boston : Kluwer Academic, 1991.

[72] D. D. Weiner and J. E. Spina, Sinusoidal analysis and modeling of weakly
nonlinear circuits with application to nonlinear interference effects, New York

: Van Nostrand Reinhold, 1980.

(73] M. Schetzen, The Volterra and Wiener theory of nonlinear systems, New York
: John Wiley and Sons, 1981.

(74] P. Wambacq and W. Sansen, Distortion analysis of analog integrated circuits,
Boston : Kluwer Academic, 1998.

[75] L. O. Chua and C. Y. Ng, “Frequency domain analysis of nonlinear systems :
general theory,” Electronic Circuits Syst., vol. 3, pp. 165-185, July 1979.

[76] P. Alper and D. C. J. Poortvliet, “On the use of Volterra series representation
and higher order impulse responses for nonlinear systems,” Revue, vol. 6, pp.

19-33, January 1964.

[77] P. Alper, “A consideration of the discrete Volterra series,” IEEE Trans. Auto-
matic Control, vol. 10, pp. 322-327, July 1965.



BIBLIOGRAPHY 183

[78] A. M. Bush, “Some techniques for the synthesis of nonlinear systems,” Tech-
nical Report 441, Research Laboratory of Electronics, Massachusetts Institute
of Technology, Cambridge, Mass., 1966.

[79] J. Rabaey, A unified computer-aided design technique for switched capacitor
systems in the time and the frequency domain, Ph.D. dissertation, Katholieke

Universiteit Leuv, 1981.

[80] J. Vandewalle, J. Rabaey, W. Vercruysse, and H. J. De Man, “Computer-aided
distortion analysis of switched capacitor filters in the frequency domain,” IEEE
J. Solid-State Circuits, vol.18, pp.324-332, June 1983.

[81] C.D. Keys, Low-distortion mizers for RF communications, Ph.D. Dissertation,

Department of Electrical Engineering and Computer Science, University of

California at Berkeley, 1994.

(82] S. Sen, The design of sampling mizer and A/D converter for high IF digitiza-
tion, Ph.D. Dissertation, Department of Electrical and Computer Engineering,

University of Waterloo, 1997.

[83] B. Gilbert, “A high-performance monolithic multiplier using active feedback,”
IEEE J. Solid-State Circuits, vol. 9, pp. 364-373, December 1974.

[84] P. J. Sullivan, B. A. Xavier, and W. H. Ku, “Low voltage performance of a
microwave CMOS Gilbert cell mixer,” IEEE J. of Solid-State Circuits, vol.32,
pp. 1151-1155, July 1997.

(85] K. Kimura, “Some circuit design techniques using two cross-coupled emitter-
coupled pairs,” IEEE Trans. Circuits Syst. I, vol. 41, pp. 411-423, May 1994.



BIBLIOGRAPHY 184

[86] A. Papoulis, Probability, random variables and stochastic processes, New York
: McGraw-Hill, 1965.

[87] H. Dangelo, Linear time-varying systems : analysis and synthesis, Boston :

Allyn and Bacon, 1970.

[88] A. van der Ziel, Noise, sources, characterization, measurement, Englewood

Cliffs, NJ : Prentice-Hall, 1970.

[89] L. A. Zadeh, “Frequency analysis of variable networks,” Proc. IRE, vol. 32,
pp- 291-299, March 1950.

{90] M. E. Brinson and D. J. Faulkner, “A SPICE noise macromodel for operational
amplifiers,”, IEEE Trans. Circuits Syst. I, vol. 42, pp. 166-168, March 1995.

[91) F. Yuan and A. Opal, “Adjoint network of periodically switched linear cir-
cuits”, in Proc. IEEE Int’l Symp. Circuits Syst., vol. 6, pp. 298-301, Monterey,
CA, May 1998.

[92] P. Penfield, R. Spence, Jr., and S. Duinker, Tellegen’s theorem and electrical
networks, Research monograph No. 58, Cambridge : MIT Press, Mass, 1970.

[93] G. W. Robert and A. S. Sedra, “Adjoint networks revisited,” in Proc. IEEE
Int’l Symp. Circuits Syst., vol. 1, pp. 540-544, 1990.

[94] J. L. Bordewijk, “Interreciprocity applied to electrical networks,” Applied Sci.
Res., B6, pp. 1-74, 1956.

[95] L. A. F. Schwarz, Computer-aided design of microelectronic circuits and sys-
tems : fundamentals, methods and tools, vol.1, London : Academic Press,
1987.



BIBLIOGRAPHY 185

[96] S. Porta and A. Carlosena, “On the experimental methods to characterize the
opamp response : a critical view,” IEEE Trans. Circuits Syst. I, vol. 43, pp.
245-249, March 1996.

[97] J. Vlach, “Numerical method for transient responses of linear networks with
lumped, distributed or mixed parameters,” J. Franklin Institute., vol. 288, pp.
99-113, August 1969.

(98] K. Singhal and J. Vlach, “Computation of time domain response by numerical
inversion of the Laplace transform,” Technical Report No. 74.6, 1974, Univer-
sity of Waterloo.

[99] R. Piessens, “On a numerical method for the calculation of transient response,”

J. of Franklin Institute, vol. 292, pp. 57-65, July 1971.

[100] K. Martin and A. Sedra, “Stray-insensitive switched-capacitor filters based
on bilinear z-transform,” IEE Electronic Letters, vol. 15, pp. 356-366, June
1979.

(101] P. E. Allen and E. Sanchez-Sinencio, Switched capacitor circuits, New York :
van Nostrand Reinhold, 1984.

(102] L. Huelsman, Active and passive analog filter design, New York : McGraw-
Hill, 1993.

(103] F. Yuan and A. Opal, “Noise analysis of periodically switched linear circuits”,
in Proc. 1998 IEEE Canadian Conf. on Electrical and Computer Engineering,
vol. 1, pp. 153-156, Waterloo, Ont., May 1998.

(104] J. B. Johnson, “Thermal agitation of electricity in conductors,” Nature, vol.
119, pp. 50-51, 1927.



BIBLIOGRAPHY 186

[105] W. A. Gardner, Introduction to random processes with applications to signals
and systems, 2nd edition, New York : McGraw-Hill, 1990.

[106] H. Nyquist, “Thermal agitation of electric charge in conductors,”, Physical
Review, vol. 32, pp. 110-113, 1928.

[107] A. G. Jordan and N. A. Jordan, “Theory of noise in metal oxide semiconduc-
tor devices,” IEEE Trans. Electron Devices, pp. 148-157, March 1965.

[108] S. O. Rice, “Mathematical analysis of random noise,” Bell Syst. Tech. J., vol.
23, 1944, pp. 282-332.

[109] S. O. Rice, “Mathematical analysis of random noise,” Bell Syst. Tech. J., vol.
24, 1945, pp. 46-156. '

[110] F. N. Hooge, “1/f noise,”, Physica, 83B, pp. 14-23, 1976.

[111] A. L. McWhorter, “1/f noise and related surface effects in germanium,”
R.L.E. 295 and Lincoln Lab Tech Rep. 80, M.I.T., 1955.

[112] M. A. Caloyannides, “Microcycle spectral estimates of 1/f noise in semicon-
ductors,” J. of Applied Physics, vol. 45, pp. 307-310, 1974.

[113] B. Razavi, “A study of phase noise in CMOS oscillators,” IEEE J. Solit-State
Circuits, vol. 31, pp. 331-343, March 1996.

[114] B. E. Jonsson, “Sampling jitter in high-speed SI circuits,” in Proc. Int’l Symp.
Circuits Syst., pp. 1-524-526, 1998.

[115] M. Shinagawa, Y. Akazawa, and T. Wakimoto, “Jitter analysis of high-speed
sampling system,” IEEE J. Solid-State Circuits, vol. 25, pp. 22-224, February
1990.



BIBLIOGRAPHY 187

[116] T. M .Souders, D. R. Flach, C. Hagwood, and G. L. Yang, “The effects of
timing jitter in sampling systems,” IEEE Trans. Instrumentation and Measure-

ment, vol. 39, pp. 80-85, February 1990.

[117] A. A. Beex and M. P. Fargues, “Analysis of clock jitter in switched-capacitor
systems,” IEEE Trans. Circuits Syst. I, vol. 39, pp. 506-519, July 1992.

[118] Y. Dong and A. Opal, “Fast time-domain noise simulation of sigma-delta
converters and periodically switched linear networks,”, in Proc. Int’l Symp.

Circuits Syst., New York, vol. 6, pp. 114-117, 1998.

[119] Z.Y. Chang and W. M. C. Sansen, Low-noise wide-band amplifiers in bipolar
and CMOS technologies, Boston : Kluwer Academic, 1991.

[120] R. C. Jaeger and A.J. Brodersen, “Low-frequency noise source in bipolar junc-
tion transistor,” IEEE Trans. Electron Devices, vol. 17, pp. 128-136, February
1970,

(121] W. M. C. Sansen and R. G. Meyer, “Characterization and measurement of
the base and emitter resistances of bipolar transistors,”, IEEE J. Solid-State

Circuits, vol. 7, pp. 492-498, December 1972.

[122] C. D. Motchenbacher, J. A. Connelly, Low-noise electronic system design,
New York : John Wiley and Sons, 1993.

[123] Y. Tsividis,Operation and modeling of the MOS transistor, New York :
McGraw-Hill, 1987.

[124] S. Christensson and L. Lundstrom, “Low frequency noise in MOS transistors,”

Solid-State Electronics, vol. 11, pp. 813-820, 1968.



BIBLIOGRAPHY 188

[125] G. Nicollini, D. Pancini, and S. Pernici, “Simulation-oriented noise model for

MOS devices,” J. Solit-State Circuits, vol. 22, pp. 1209-1212, December 1987.

[126] P. Bolcato and R. Poujois, “A new approach for noise simulation in transient

analysis,” in Proc IEEE Int’l Symp. Circuits Syst., pp. 887-890, 1992.

[127] R. M. Fox, “Comments on circuit models for MOSFET thermal noise,” J.
Solid-State Circuits, vol. 28, pp. 184-185, February 1993.

[128] A. van der Ziel, Noise in solid-state devices and circuits, New York : Wiley,
1986.

[129] S. Liu and L. W. Nagel, “Small-signal MOSFET models for analog circuit
design,” IEEE J. Solide-State Circuits, vol. 17, pp- 983-998, December 1982.

[130] B. Wang, J. R. Hellums, and C. G. Sodini, “MOSFET thermal noise modeling
for analog integrated circuits,” J. Solid-State Circuits, vol. 29, pp. 833-835,
July 1994.

[131] R. Unbehauen and A. Cichocki, MOS switched-capacitor and continuous-time
integrated circuits and systems : analysis and design, Berlin : Springer-Verlag,

1989.

[132] B. J. Sheu, D. L. Scharfetter, P. K. Ko, and M. C. Jeng, “BSIM:Berkeley
short-channel IGFET model for MOS transistors,” J. Solid-State Circuits, vol.
22, pp. 558-566, August 1987.

[133] R. P. Jindal, “Distributed substrate resistance noise in fine-line NMOS field-
effect transistors,” IEEE Trans. Electron Devices, vol. 32, pp. 2450-2453,
November 1985.



BIBLIOGRAPHY 189

[134] T. Manku, “Microwave CMOS - device Physics and design,” IEEE J. Solid-
State Circuits, vol. 34, pp. 277-285, March 1999.

[135] J. C. Bertails, “Low-frequency noise consideration for MOS amplifiers de-
sign,” IEEE J. of Solid-State Circuits, vol.14, pp. 773-776, August 1979.

(136] S. Letzter and N. Webster, “Noise in amplifiers,” IEEE Spectrum, vol.7, pp.
67-75, June 1970.

[137] Y. Netzer, “The design of low-noise amplifiers,” Proc. IEEE, vol. 69, pp.
728-742, 1981.

(138] F. Yuan and A. Opal, “Sensitivity analysis of periodically switched linear
circuit using an adjoint network technique”, IEEE Int’l Symp. Circuits Syst.,
Orlando, Florida, May 1999 (in press).

[139] F. Yuan and A. Opal, “Distortion analysis of periodically switched nonlinear
circuits” in Proc. IEEE Int’l Symp. Circuits Syst., Orlando, Florida, May 1999

(in press).

[140] Y. L. Kuo, “Distortion analysis of bipolar transistor,” IEEE Trans. Circuits
Theory, vol.20, pp. 709-716, 1973.

[141] R. G. Mayer, M. J. Shensa, and R. E. Schenbach, “Cross modulation and
intermodulation in amplifiers at high frequencies,” IEEE J. of Solid-State Cir-
cuits, vol.7, pp. 16-23, February 1972.

(142] Hspice user’s manual, Meta-Software Inc. , 1992

(143] W. Yu, S. Sen, and B. Leung, “Time varying Volterra series and its applica-
tions to the distortion analysis of a sampling mixer”, in Proc. 40th Midwest
Symp. Circuits Syst., vol. 1, pp. 245-248, Sacramento, CA. August 1997.



BIBLIOGRAPHY 190

[144] M Bialko and S. Krawczyk, “Influence of nonlinear switch resistance on non-
linear distortion in switched-capacitor circuits,” in Proc. European Conf. Cir-

cuits Syst., pp. 780-783, 1987.

[145] S. Lachowicz and S. Krawczyk, “Influence of MOS switch ON resistance and
parasitic capacitances on harmonic distortion of SC filters,” in Circuit Theory

and Design 87, edited by R. Gerber, Amsterdam : North-Holland, 1987.

[146] M. L. Liou, “Exact analysis of linear circuit containing periodically operated
switches with applications,” IEEE Trans. Circuit Theory, vol. 19, pp. 146-154,
March 1972.

[147] G. W. Roberts, “Calculating distortion levels in sampled-data circuits using
SPICE,” in Proc. IEEE Int’l Symp. Circuits Syst., pp. 2059-2062, 1995.

[148] P. Crewley and G. W. Roberts, “Predicting harmonic distortion in switched-
current memory cell,” IEEE Trans. Circuits Syst. I, vol. 41, pp. 73-86, Febru-
ary 1994.

[149] F. J. Harris, “On the use of windows for harmonic analysis with the discrete

Fourier transform,” Proc. IEEE, vol. 66, pp. 51-83, January 1978.

[150] M. Schetzen, “Multilinear theory of nonlinear networks,” J. of The Franklin
Institute, vol. 320, pp. 221-247, November 1985.

[151] F. M. Klaassen, “On the influence of hot carrier effects on the thermal noise
of field-effect traunsistors,” IEEE Trans. Electron Devices, vol. 17, pp. 858-862,
October 1970.

[152] A. Demir, E. W. Y. Liu and L. Sangiovanni-Vincentelli, “Time-domain non-

Monte Carlo noise simulation for nonlinear dynamic circuits with arbitrary



BIBLIOGRAPHY 191

excitations,” IEEE Trans. Computer-Aided Design of Integrated Circuits Syst.,
vol. 15, pp. 493-505, 1996.





