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Abstract

The context-workflow relationship is often poorly defined or forgotten entirely. In workflow

systems and applications context is either omitted, defined by the workflow or defined

based on a single aspect of a contextual dimension. In complex environments this can

be problematic as the definition of context is useful in determining the set of possible

workflows. Context provides the envelope that surrounds the workflow and determines

what is or is not possible.

The relationship between workflow and context is also poorly defined. That context can

exist independently of workflow is often ignored, and workflow does not exist independently

of context. Workflow representations void of context violate this stipulation. In order for

a workflow representation to exist in a contextual dimension it must possess the same

dimensions as the context.

In this thesis we selected one contextual dimension to study, in this case the spatial

dimension, and developed a comprehensive definition using building data models. Building

data models are an advanced form of representation that build geometric data models into

an object-oriented representation consisting of common building elements. The building

data model used was the Industry Foundation Classes (IFC) as it is the leading standard

in this emerging field.

IFC was created for the construction of facilities and not the use of facilities at a

later time. In order to incorporate workflows into IFC models, a zoning technique was

developed in order to represent the workflow in IFC. The zoning concept was derived from

multi-criteria layout for facilities layout and was adapted for IFC and workflow.

Based on the above work a zoning extension was created to explore the combination of

IFC, workflow and simulation. The extension is a proof of concept and is not intended to

represent a robust formalized system. The results indicate that the use of a comprehensive

definition of a contextual dimension may prove valuable to future expert systems.
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Chapter 1

Introduction

1.1 Background Information

1.1.1 Workflow

The word workflow has been used to describe many types of objects. Workflows describe

the allocation and use of resources as repeatable processes. The basic building blocks of

a workflow are resources, processes and routes. Resources such as actors, activities and

entities, are objects related to a workflow that interact with the processes in a workflow as

it advances along specified routes.

As objects, workflows are commonly represented using flowcharts, process maps, graphs

and other 2-dimensional figures. These examples are static representations of activity,

commonly referred to as classic workflow representation techniques. Classic workflow rep-

resentation techniques are able to represent resources and activities but do not adequately

capture other elements associated with the workflow (Covvey et al., 2007) such as the

relationship between the workflow and organizational context.

1.1.2 Defining Context

Context is the environment in which workflows exist and can be both tangible and intan-

gible. Figure 1.1 visualizes this interpretation of context as a multi-dimensional entity.

1



2 Representing a Workflow Contextual Dimension With Bulding Data Models

Context is not one element, but a collection of any number of elements that combine

together to form a description of the environment that workflows exist in.

Figure 1.1: Visualization of Workflow Context

The contextual dimensions of a workflow can include the physical limits imposed by a

facility, government regulations, financial limitations and organizational goals. This is not

an exhaustive list but represents the common dimensions (Covvey et al., 2007).

The dimensions can be broken down into sub-contexts (or sub-dimensions) to provide

the required amount of granularity in the description of the environment. We will be

retaining a macro definition of contextual dimensions to avoid confusion with respect to

the enumeration of sub-contexts.

The nature of the relationship between context and workflow is not fully understood.

We know that workflows exist in a context and inherit its dimensional characteristics, but

the details of how the two interact are unclear. Examining this relationship from the

perspective of all the contextual dimensions related to workflow is a challenging problem.

At this stage we will select one contextual dimension and its interaction with workflow to

study in detail.

1.1.3 The Selection of a Contextual Dimension

Some dimensions vary over time, while others remain largely static. This distinction be-

tween the two is referred to as the “consumability” of a dimension. With consumable
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dimensions such as money, the workflow requires the availability of the portion of a re-

source, and on completion of a process, will remove it from the available pool permanently.

A non-consumable dimension such as a hallway for transportation purposes may require

the availability of the resource but does not remove it permanently from the available pool

on completion.

In a study of the relationship between workflow and context, a tangible non-consumable

dimension is a desired starting point. The spatial dimension meets these criteria as it is

the 3-space geometric representation of a workflow. It will also facilitate visualizations of

the workflow and the environment.

1.2 Problem Statement and Objectives

The nature of the relationship between context and workflow is not explicitly defined. By

performing an in depth examination of one contextual dimension as it relates to workflow,

we arrived at a better understanding of the relationship between the two. The first step in

this process was to analyze existing workflow systems and their definitions of context. The

information from this study was used to determine if systems exist to provide a contextual

representation of workflow. None were found, so we used the results to create an outline for

the construction of a system that provided the framework to study the interaction between

workflow and context.

The ability to study this interaction is defined by the system’s ability to visualize work-

flows, the contextual dimension under study and their relationship to one another. The

key measure of such a system is the level of detail and flexibility it provides in their repre-

sentations as workflows and contextual dimensions can be complex and require significant

amount of information to describe them properly. Given the lack of precedent in this re-

search, the creation or modification of an existing spatial model was required. With this in

place we determined what information is available on the interaction between workflow and

context and if it can be applied for future research. If successful this research is intended

to be used as a template for future study of other dimensions in the workflow-context

relationship.

The primary focus of this work is in the representation and visualization of the workflow
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and determining if a suitable system can be created to study this relationship. Once this

was established we moved on to address some of the major concerns in previous workflow

representations. One concern that exists with the use of classic workflow representation

techniques is the difficulty in analyzing their effectiveness; otherwise known as the process of

workflow evaluation. Through the creation of a new method of representation for workflows,

we began the discussion on whether or not the inclusion of contextual information can lead

to improvements in workflow evaluation. The discovery of links between the environment

and workflow evaluation software provide evidence that performance improvements are

possible, but the limits of this improvement are unknown.

1.2.1 Contributions

The primary contributions of this thesis are outlined in this section to provide an overview

of the new material covered.

1. An analysis of the existing workflow representations with respect to at least one

contextual dimension (Chapter 2).

2. Discovery of a means to visualize a workflow within a contextual environment using

building data models (Chapter 3).

3. Created the concept of de-coupled workflow descriptions to describe the barriers in

creating systems to relate workflow to the contextual environment (Chapter 4).

4. Development of a zoning technique to describe/visualize workflow in a contextual

environment (Chapter 4).

5. Developed a prototype system to combine description of contextual environment with

a workflow simulation application (Chapter 5).

6. Found that this single application combination provided some exciting avenues for

future research, but was inconclusive in its current format (Chapter 5).
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1.3 Thesis Organization

This thesis consists of 6 chapters and 5 appendices. Chapter 2 examines the literature

related to this study including current techniques for representing and visualizing work-

flows. It then analyzes these techniques as they relate to their expressiveness of work-

flow contextual elements. Chapter 3 will detail the model development and the adop-

tion/implementation of the Industry Foundation Classes (IFC) for representing the con-

textual environment. It will also analyze its pros and cons of its adoption for workflow.

The chapter will conclude with an initial solution and an analysis of its limitations with

respect to the representation of workflow and context.

Chapters 4 and 5 are the focal points of this project as they discuss the combination

of workflow and IFC. Chapter 4 consists a discussion on the visualization of workflow

with IFC models based on the results of chapter 3. Chapter 4 concludes with a zoning

technique to create a coupled workflow system. A prototype design for combining the

contextual information derived from an IFC representation with workflow and simulation

is discussed in chapter 5 to build on the work from chapter 3.

This prototype was found to be limited and required additional research to create a more

robust solution. This paper concludes with conclusions and directions for future research in

chapter 6. Appendices A-E appear after chapter 6 and include a discussion on the structure

of a sample IFC facility, a reference of workflows used in prototype implementations, an

explanation of the zoning concept, a glossary of terms and a complete list of references.



Chapter 2

Representations of Workflows and

Context

The literature reviewed included studies of workflow, workflow management systems as

well as other systems that utilize workflow in their implementations. The goal was to

understand the philosophical motivations of each and to develop an understanding of the

relationship between context and workflow. This placed the emphasis on the structure

of the various implementations and not on measuring their end performance or technical

specifications.

2.1 Workflow and Context

Classic workflow representations typically do not include contextual information. One

theory as to why this occurs is that workflows have evolved from a description of the flow

of paper and have since been abstracted for use in multiple domains (Sauer and Maximini,

2006). As activity-centric descriptions of work, workflows were created independently of

context.

There are several types of systems that have been developed that extend the workflow

concept beyond classic representations. Workflow management systems (WfMS) are sys-

tems used to automate processes by coordinating and controlling the flow of information

and work among participants (Stohr and Zhao, 2001).

6
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Maus identifies the need for context in order to automate processes but asserts that

modern WfMS do not contain a comprehensive representation for workflow context (Maus,

2001). In his work he includes a definition of context and a break down of the contextual

information required into three sources; workflows, organizational memory and contextual

knowledge (Fig. 2.1).

Figure 2.1: The Dimensions of the Workflow Context Space (Maus, 2001)

The context is defined by the workflow or expert knowledge and is utilized in further

iterations but is not explicitly defined; in this system the workflow defines the context.

Maus discusses possible classifications of context with respect to workflow but does not

provide information on usable ontologies.

2.2 Simulation Studies

Simulation studies are concerned with the process of workflow evaluation. They examine a

set of processes, or a workflow, typically represented using classical techniques and provide

output data based on the model created by the designer.
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In some applications, simulations may include contextual information. Examples in-

clude adding object travel time between process elements or relating the process map to a

diagram of the layout of the facility.

With respect to the spatial dimension, overlaying the process map onto the facility floor

plan creates a relationship between the workflow and the context. In simulation programs

with visualization engines this allows stake-holders to view the simulation in progress in

a visual setting, creating an implied relationship between the two. Figure 2.2 includes an

example of a 2-D simulation study that utilizes a layout of the facility.

Figure 2.2: A Healthcare Simulation Using a Facility Layout (Systems Model-

ing Corp., 2002)

This method of representation uses a simple method to relate workflow to context. The

projection of the workflow onto the layout creates a visual correlation that allows us to

create connections between the two, but the relationship between the two is not formalized.
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The contextual dimension, in this case the facility, is an image of the facility and possesses

no properties aside from geometric relations. The act of placement of workflow elements

on the image does not allow the workflow to inherit the dimensional properties of the

contextual environment.

This visually superimposed layout is a de-coupled system between workflow and context.

Altering the floor plan would not affect the simulation of the workflow since the floor plan

is just an image of the facility. In this type of system the context and the workflow are

only superficially related to one another. De-coupled representations are not suitable for

our investigation given that we are attempting to develop a comprehensive understanding

of the relationship between context and workflow.

Within a de-coupled system, interpretation of simulation output data can be subjective.

The expected length of a queue may be meaningless without knowledge of what impact it

has on the operation of other processes in the facility. This type of analytical operation may

be performed by humans, but requires detailed knowledge of the context of the workflow in

order to interpret it. Without the prior definition of this contextual information, evaluation

of workflows is challenging.

In a coupled system, context and workflow would begin as separate definitions. It

would also represent the contextual properties of the environment in order to link them

to workflow. The simulation studies uncovered have no capacity for this due to a lack of

complexity in the representation of the facility/context.

2.3 Facilities/Architectural Layout

Automated Facilities Layout (AFL) originated in the 1960’s as a means to apply operations

research techniques to improve facility design efficiency as the demand for computerized

planning and management increased (Liggett, 2000). It has been used in multiple domains

including VLSI design, hospital layout and service center layout (Yeh, 2006). AFL uses

throughput to create a relationship between the workflow and the facility as the relative

location of departments is critical to reducing bottlenecks and minimizing total travel time

for processes in a facility (Elshafei, 1977).

Discovery of an optimal layout is accomplished by assigning the departments to an
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orientation within the facility based on an algorithm and input parameters. The assignment

can be done in terms of 1-1 assignment, space as an area (many-1) or space as an area and

a varying shape (Fig. 2.3).

AFL problems are typically formulated as a quadratic assignment problem which is an

np-hard problem. The complexity of the problem has led to the use of heuristic techniques

such as simulated annealing in order to generate solutions for large-scale problems (Yeh,

2006).

Figure 2.3: Example of AFL (Liggett, 2000)

The most recent example uncovered was from 2006 (Yeh, 2006). This paper stated

that a more powerful solution technique using genetic algorithms had been applied to

successfully solve larger scale problems. In the problem formulation, penalty factors are
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adjusted for departments on separate floors. No evidence is provided to describe how these

penalty coefficients were established. In the conclusions, they point out that the choice

of penalty coefficients has a significant impact on the optimal layout of a facility but that

further research is required in order to understand what this choice of penalty factors

should be.

Failings similar to these are discussed in Liggett’s review of AFL. It reviews the solution

techniques available at the time of publication and develops a road map for future research

in the field. Liggett states that the future of AFL is in advanced systems that will feature

the following 4 design characteristics:

• The ability to handle large scale problems

• A modern interactive interface

• Support for an iterative design process

• Links to CAD and FM databases

Further research was unable to uncover systems or applications built on these principles.

It was able to discover systems that utilized some of the elements of Liggett’s proposal.

2.4 Joint Systems

Joint systems fall into two general categories: comprehensive and expert systems. Com-

prehensive systems combine multiple OR solution techniques together to form iterative

applications. Expert systems are defined as systems that incorporate models of contextual

information in an attempt to account for all influences in the process of layout design

(Azadivar & Wang, 2000).

2.4.1 Comprehensive Systems

An example of a comprehensive system is the SimStock application (Dawood & Marasini,

2002). This application was developed in order to generate the optimal layout of a stock-

yard using CAD models, workflow simulation and a knowledge database. The structure of

the application can be found in figure 2.4.
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Figure 2.4: Simstock Data Model (Dawood & Marasini, 2002)

An iterative design process is used to determine the optimal assignment for product

storage in the stockyard and the delivery routes utilized. Improved designs are generated

by taking the simulation output data and using it to re-solve the problem using genetic

algorithms. The system uses the integration of production and dispatch schedules as its

knowledge base to provide additional information for iterative solutions.
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A CAD model of the facility is used to define the geometric layout of a stockyard and the

transportation pathways. During the solution process the orientation of the layout remains

unchanged; it is the assignment of product to available lots that varies. This comprehensive

system is de-coupled as the representation of the facility provides no additional contextual

information aside from the geometric orientation of the lots.

2.4.2 Expert Systems

Early expert systems were conceived in the late 80’s as a combination of a database,

a knowledge base, an inference engine and a priority base used in the layout process to

improve solutions (Malakooti & Tsurushima, 1989). Together they presented a combination

of contextual information and rule systems to assist in the design process.

A more recent example of an expert system (Azadivar & Wang, 2000) developed an

implementation that involved the combination of simulation and facilities layout techniques

to improve solutions and solution times. While the paper demonstrated that this technique

improved the time required to solve problems, it did not identify the definition of context

utilized.

2.4.3 Joint Systems Summary

Joint systems are a step towards the coupled systems that we seek as they take elements of

the contextual environment into account. They typically include advanced user interfaces,

improved solution techniques to handle larger scale problems, an iterative design process

and links to external information sources. This is a positive step towards addressing the

criticisms outlined in Liggett’s AFL review.

Among the joint systems studied, none were found that embodied the characteristics

of a coupled system. Specifically they lacked a comprehensive representation of spatial

contextual information aside from geometric properties available in a CAD model. All

these representations have described facilities as a collection of geometric objects with no

associated contextual information. In order to find a highly detailed representation that

would focus on the properties and definition of the space, we turned to civil engineering

and architecture literature.
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2.5 Architecture, Engineering, Construction (AEC)

Domain

Data models, in any domain, describe the attributes and entities of the domain as well as

the relationships that exist between the entities in that domain (Khemlani, 2004). Within

the AEC literature there are two data models used for the representation of space; geometric

data models and building data models . Geometric data models define space in terms of

geometric entities such as lines, points and polygons. Spatial representations that use CAD

layouts are examples of Geometric data models. Geometric data models are problematic as

contextual information contained within a facility extends beyond its geometric attributes;

the size and shape of a wall does not indicate if it is load bearing and what impact its

removal would have on the facility.

In response to this criticism, the AEC community has begun to develop object-oriented

building data models. Building data models describe a space as a collection of common

building objects with multiple properties. Figure 2.5 displays the difference between the

geometric and building data models using an example of a room consisting of 4 walls and

a space.

As demonstrated in Figure 2.5, a room is more than two rectangles when building

data models are used; it is a collection of objects with pre-existing properties including a

definition of the unused space in the room. The common building objects create a source

of contextual information that defines the relationships between the entities.

2.6 Chapter Summary

The first stage of our study is complete. We have reviewed the pertinent literature in order

to outline a path for future work. We revealed that there should be a definition of context

with respect to workflow and that this definition should be independent of workflow. An

examination of existing workflow applications revealed that they typically use a de-coupled

representation in which the relationship between context and workflow is not formalized

and contextual information was created on an as needed basis. Recent literature revealed

a move towards joint systems that incorporate contextual information and attempt to
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Figure 2.5: Data Model Comparison (Khemlani, 2004)

develop a coupled system. None of the joint systems studied were found to include an

explicit definition of context aside from a geometric facility representation.

The detailed representations available in architecture/civil engineering provided the

most appropriate representations for contextual information found in a facility. Geometric

data models were presented as the typical models used in de-coupled systems. The alter-
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native to geometric models is building data models which use an object oriented approach

to define a facility in terms of common building objects.

Building data models offer the possibility of rich models of the environment unavailable

in previous applications. The compatibility between them and workflow analysis applica-

tions remains unclear. Building data models were developed for the design of facilities, not

necessarily for their future use by its occupants.



Chapter 3

IFC and Model Development

Building data models will be discussed at length in this chapter with respect to their ap-

plicability to our study of workflow representation and evaluation. Of the existing building

data models, the Industry Foundation Classes (IFC) model was found to be a leading can-

didate for our use. We will conduct a detailed study of IFC in relation to workflow to

determine if it is a suitable means of representation. The chapter will conclude with a dis-

cussion on a prototype for combining a building data model with a workflow and comparing

it to our original research objectives.

3.1 Introduction to IFC

3.1.1 History of IFC

Software applications have been making use of building data models for over 20 years.

Examples of architectural design applications that use building data models include Archi-

CAD, Bentley Architecture and Autodesk Architectural Desktop. Widespread adoption of

each has not been gained as each vendor used proprietary implementations. The lack of

a common standard hampered interoperability between these applications and the others

used in the design process.

Increased interoperability could lead to significant economic gains for AEC firms: it

has been estimated that building owners could save $15.8 billion a year through the better

17
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coordination of electronic data (Phair, 2006). This is not to suggest that the adoption of

a standard would necessarily lead to savings of this magnitude, but that interoperability

has some economic backing.

The International Alliance for Interoperability (IAI) was formed in 1994 as a coalition

of various members of the AEC community to seek means to extract economic value from

the interoperability of AEC software. In 1997, IAI released IFC 1.0 as the first iteration

of their building data model. During the development of IFC, the IAI expanded from a

consortium of 12 US companies to a global partnership.

In order to achieve interoperability, IFC outlined a strategy to create a building data

model that would include all objects and entities associated with the process of constructing

a facility. This would include all the physical and abstract entities. To date, IFC does not

include a definition of all these entities, though it does intend on including the remainder

in future revisions.

3.1.2 Criticisms of IFC

IFC has been criticized in academic and commercial forums. Chief among the criticisms is

that it is too complex and too detailed for most applications (Ozel et al., 2003). Another

concern is that it possesses a significant learning curve and many of the applications based

on the standard are still in the early stages of their development and are not suitable for

large-scale projects.

One response to this line of criticism has been the creation of several competing stan-

dards such as AECxml and BMxml. These competing standards are simplified versions

of IFC that are less cumbersome for designers. This is accomplished by containing fewer

elements in the definition or using abstract definitions that are instantiated as required.

The second option is analogous to our research in expert systems: the knowledge base is

not defined explicitly and is defined on an as required basis.

Another source of criticism is that IFC does not include all building objects in its latest

definition, thereby reducing its functionality (Ma et al., 2005). Without completeness in

the definition, it may not be fully interoperable with all design applications.

We are looking for a representation that is highly detailed in order to provide a separate

description of the contextual environment. We have not established which elements of the
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context are relevant to workflows, and as such will not limit ourselves at this stage with

a simplified representation. The presence of criticisms suggest that IFC is being used and

reviewed.

3.1.3 Applications of IFC

IFC is not an application but a data model that applications may be built on. In order to

provide context on the use and relevance of IFC we will discuss current applications that

utilize IFC.

Academic Applications

One example of IFC being used in academic research is in the domain of facility and

architectural simulation. These include spatial, lighting, airflow and energy use simulations,

but not workflow related simulations (Bazjanac and Crawley, 1997). The detailed model

of the environment provides enough data to allow for vizualizations and calculations of the

planned facility. An example of a stress test simulation can be found in figure 3.1.

Another example of IFC related research is a paper from the First International Confer-

ence on Semantics, Knowledge and Grid describing the process of converting IFC to OWL

(Schevers and Drogemuller, 2005). The purpose of which is to create meaning in the un-

derlying expert knowledge in IFC to improve with computer-assisted decision-making and

design. The paper mentions that the conversion is possible but would require a modified

definition of IFC in order to take advantage of the full feature set of OWL.

Commercial Applications

Since the launch of IFC, several of the applications, that used proprietary building data

models, have become compatible with IFC. Applications that are now IFC compliant in-

clude Nemetschek’s Allplan, Graphisoft’s ArchiCAD, Bentley’s Architecture, Autodesk’s

Revit, Tekla’s Structures, Archimen’s Active3D, and Solibri’s Model Checker Architectural

Desktop.
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Figure 3.1: Stress and Displacement Simulation Caused by Vertical Loads (van

Treeck et al., 2003)

Government Applications

There is some evidence to suggest IFC is being adopted by government agencies in smaller

projects (PM4D, 2002) but none that any nation is adopting it as a regulated standard.

One example of its use by a government agency is the US military’s Fort Future program

(Fort Future, 2003). The mission of this program to provide a group of tools to support

sustainable planning using simulation at a national, regional and installation level. Several

applications are used to achieve this goal, one of which is an IFC based facility composer

application. The facility composer provides tools to allow designers to quickly and effi-

ciently design a facility based on army requirements, and to compute its estimated cost.

Version 1.0 of this toolset was released in October 2004, and version 2.0 was slated for

release in October of 2007 but has been delayed. The existence of a second release suggests

it has been found to be beneficial, but evidence to quantify this benefit could not be found.
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3.1.4 Section Summary

Based on IFC’s continual revisions, presence in the literature and use in applications we

have found it to be a widely adopted standard for building data models. With this evidence

in hand we will proceed in examining the structure of IFC.

3.2 IFC Architecture

The structure of IFC is closely related to STEP (ISO 10303). STEP is a standardization

initiative started in order to provide an independent means of describing product data

throughout its life cycle. In recent revisions of IFC, the specification has included an xml

format for applications instead of the EXPRESS modeling language in order to make it

interoperable with additional applications.

In IFC all facility components are referred to as entities. The latest specification con-

tains 623 entity definitions, categorized into classes based on their shared characteristics.

The entities are not all equal and are divided into 4 layers to provide a hierarchical mean-

ing: entities of a given level may only reference entities on the same level or a lower level

but not higher level entities. The 4 layers of the specification are the domain layer, the

interoperability layer, the core layer and the resource layer. Classes and entities from the

IFC architecture will be italicized for the duration of the thesis. An architecture diagram

listing the major classes of IFC can be found in figure 3.2.

Domain Layer: The domain layer is the most specific layer in the IFC specification.

The schemas of the domain layer are tailored to individual industries/domains. To date,

none of these specifications have been approved as part of the IFC platform.

Interoperability Layer: This layer contains building elements which are common to

multiple domains. These include beams, doors, walls, roofs and windows and their associ-

ated properties and enumerations. Of the five classes in the interoperability layer it is the

Shared Building Elements which contain the physical objects of a facility; the other four

contain abstract objects. Shared Facilities contains entities for asset listing and service

scheduling, Shared Management is concerned with cost elements, Shared Components pro-

vides the ability to represent various accessories and fasteners and Shared Building Service

contains entities for fluid flow, energy and sound properties of the facility.
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Figure 3.2: IFC Architecture Diagram (IFC Model Guide, 2004)

Core Layer: The core layer consists of definitions of the abstract concepts that are

required to define the higher level entities. These abstractions are not industry specific

and represent concepts such as actor, process, task and relationship. This layer consists of

3 extensions and a kernel which represents the most general constructs available in IFC.
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Technically the core layer is separate from the kernel, but this is a distinction that is rarely

made. The kernel was created to provide a bridge between the resource layer and AEC/FM

specific constructs which exist on a different hierarchical layer. Of the 3 extensions, the

product extension (50 entities) contains the facility abstractions IfcBuilding, IfcSpace and

IfcSite. The other two extensions are less complex and contain a total of 11 entities

including procedure, task and work plan entities.

Resource Layer: The entities of the resource layer contain support objects that are

not facility specific. These include definitions such as geometry, quantity, date and time.

All the information contained in a geometric data model is found in the resource layer.

These resources are generic to objects and provide support information to higher level

objects, some of which were adapted from the STEP standard.

Due to the large number of entities in IFC it is difficult to provide a simple and complete

example of an IFC model of a facility. Appendix A features a more detailed explanation of

an IFC model and the basics on how geometric properties are associated with the facility

entities. Our discussion will now turn to an examination of the benefits of building data

models over geometric data models.

3.2.1 IFC Sample

To demonstrate the hierarchical nature of the IFC architecture and the entities we will

discuss an example of a small facility. The small facility is the one room example from

figure 2.5 and has been represented using IFC entities in Figure 3.3. The figure utilizes a

simplified EXPRESS-G notation to represent the entities.

The facility begins with the abstract entities of the core layer and moves to the interop-

erability layer to create more specific objects. The objects between the root and the wall

represent the abstract concepts required to instantiate a wall object and provide the set of

properties that the wall will inherit when it is created.

In this example we can observe that even in the case of a small facility numerous entities

must be present. Contextual information is available but must be linked to the entities

accordingly to provide meaning.
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Figure 3.3: IFC Structure Example (Khemlani, 2004)



IFC and Model Development 25

3.2.2 Relationships and Property Sets

Hierarchical relationships are the relationships between the entities in the IFC architecture.

Relationship entities are objects used to create relationships between building elements

outside of the hierarchical relationships. In the example from the figure 3.2, the wall and the

space are not hierarchically related, they are related through the use of a relationship entity.

The IfcRelContainedInSpatialStructure entity is introduced to provide that relationship.

The indirect nature of this relationship implies that the objects can be combined in multiple

configurations for different applications.

The properties associated with an object fall into two categories, property sets and

attributes. Attributes are properties common to all instances of an entity. Property sets

are optional associations that may or may not be associated with an object; they are

included in order to represent specific requirements such as local regulations. Property

sets provide additional flexibility as the user may include required property sets or define

their own to meet non-platform requirements.

3.3 IFC and Workflow

The combination of IFC and workflow presents some challenges as workflow is not a core

component of the specification. There are elements that appear similar to workflow con-

cepts in the IFC specification, but they are project management elements used in the

construction process, not in the future use of the facility by its occupants. In order to

ascertain how workflow can be combined with IFC, the existing entities are discussed to

determine if they are applicable. The first extension we will examine as a suitable candidate

for representing a workflow in IFC is the process extension.

3.3.1 The Process Extension

The process extension elements were created in order to define a construction schedule task

list. It contains 7 entities and 2 entities whose descriptions are summarized in table 3.1 as

taken from the IFC model guide (IFC, 2004).

The abstract entities may appear suitable for workflow representations, however they
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Table 3.1: IFC Process Extension
Entity Description

IfcProcedure Identifiable step to be taken within a process that is
considered to occur over a non-measurable period of time

IfcRelAssignsTasks Relationship class that assigns an IfcTask to an
IfcWorkControl

IfcScheduleTimeControl Captures the time-related information about a process

IfcTask Identifiable unit of work to be carried out independently of
any other units of work in a construction project

IfcWorkControl Abstract supertype which captures information that is
common to both IfcWorkPlan and IfcWorkSchedule

IfcWorkPlan Represents work plans in a construction or a facilities
management project

IfcWorkSchedule Represents a task schedule in a work plan, which in turn
can contain a set of schedules for different purposes

IfcProcedureTypeEnum Defines the range of different types of procedure that
can be specified

IfcWorkControlTypeEnum enumeration data type that specifies the types of work
control from which the relevant control can be selected

provide no means for physically representing the workflow in the model. They may still

be used at a later date for storing workflow information, but our focus is on entities with

physical representations.

3.3.2 Model Development

Although there is a large pool of possible entities available in IFC there is only a small

number that are suitable for use in representing the physical components of a workflow.

The context of the workflow contains many dimensions each with their own set of unique

properties that should be catalogued separately. At this stage there is no set of unique IFC

entities that can be used to accurately describe the contextual requirements of a workflow;

there are elements in different layers that can be used but this is a patchwork solution.
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Using IFC to fully define context would require the creation of a new group of building

data elements. The barriers to this approach include the alteration of a data standard with

non-standard elements and the lack of enumeration of all the information that relate the

two entities. This is partially due to the lack of a formal description of all the contextual

dimensions as they relate to workflow.

At this point we are examining the relationship between the spatial contextual dimen-

sion and the workflow which requires IFC entities that describe the 3-space geometric

components of the workflow and space. We are operating under the assumption that any

additional contextual information is stored in either the definition of the workflow on the

context and the the geometric components are sufficient for relating the two.

IfcSpace and IfcPath are entities with physical representations that may be used for

workflow. IfcSpace can specify the activity center of the workflow and the pathways be-

tween activity centers are specified using IfcPath. They are also abstract and can be

applied to describe the contents of the facility in which workflows occur.

3.4 Prototype Modeling

The facility used for the prototype was the floor-plan of the reception area at the diagnostic

imaging department at Grand River Hospital (GRH) as shown in Figure 3.4. It was selected

in part because it has been previously studied: the workflows involved in the inpatient

booking process and had been well documented.

The workflows consist of a series of process maps (Appendix B) that were created by

a former student Weizhen Dai and were discussed in his thesis (Dai, 2005). Our extension

will be to create the workflows as objects in an IFC model and to tag the elements of the

workflow to corresponding IFC entities. Each workflow entity will be assigned to a specific

space or path entity on a one-to-one relationship.

The facility layout was privided as a CAD file, not an IFC model. In IFC, geometric

information is associated with building elements first through abstract facility objects in

the core layer, and then the instantiable elements in the interoperability layer. This makes

direct conversion from geometric information impossible. Therefore the inpatient booking

area was replicated with ArchiCAD in order to replace the CAD layout with IFC entities.
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Figure 3.4: GRH Diagnostic Imaging Layout

The ArchiCAD 2D and 3D models are shown in Figure 3.5.

Figure 3.5: IFC Model of DI Reception in 2-D and 3-D

In our new layout, the activity centers of the workflows are marked as IfcSpaces and the

routes with IfcPath entities. Each space is treated as an activity center with paths used as
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connecting routes between the centroids of the spaces. The paths between activity centers

are straight lines that may pass through physical objects such as walls. At this stage we

are using manually generated workflows, therefore we also use manual reconfiguration of

the pathways to solve this problem.

The IfcPath entity is defined as a topological entity consisting of an ordered collection

of oriented edges (IFC, 2004). Using this definition a single workflow route can be an

IfcPath element that would comprise of multiple edges. As a collection of edges, the routes

are 1-dimensional entities that are to be used to describe the transport of 3-dimensional

objects. This does not agree with our definition of a coupled system as the dimensions of

the routes and contextual dimension differ.

3.5 Chapter Summary

IFC was introduced as a building data model and a means of representing the physical

environment. It provides a more detailed representation of the facility than geometric

data models. Based on these findings we discussed an initial model for the integration of

workflows and IFC.

In this implementation, the workflow routes are represented as sub-elements of the

space; the routes between the activity centers (IfcPath entities) are 1-dimensional objects

in a 3-dimensional space. It followed an approach that contradicted the analysis provided

earlier in this thesis. In our problem statement, we noted that workflows are defined within

a context and inherit its dimensions. The IfcSpace element as a representation of workflow

activities has the same dimensions as the 3-space of the spatial contextual dimension, but

the IfcPath does not. The transport component of a workflow between activity centers,

such as patient transport, exists in 3-space with objects of various sizes and speeds.

In our search for a workflow representation we adapted existing classical techniques to

provide a candidate solution. Given that this solution is not adequate we will be re-visiting

our workflow representation within IFC.



Chapter 4

Workspace Design

Chapter 3 concluded with concerns over the representation of workflow’s in IFC models

using the space and path entities. In chapter 4 we will be addressing these issues and

developing a new representation of workflow in IFC.

4.1 Defining a Solution Space

The use of IfcSpace and IfcPath was due to the lack of workflow primitives available

in the IFC specification and mirrored classic workflow representation techniques. Before

applying a different set of entities to represent workflows we will consider the cause for the

incompatibility. As stated in chapter 1, a workflow exists within a context and inherits its

dimensional characteristics. The characteristics of the spatial dimension is 3-space and the

workflow representation should possess similar dimensions.

4.1.1 The Concept of Work Available Space

In our study of workflow context we stated that context did not define the workflow, but

that it provided an environment in which the set of possible workflows existed. In the

spatial dimension the contextual boundary is the physical objects and the space in which

workflows occur is all the unused space. The space defined by the contextual boundary of

a facility will be referred to as the work available space and is the projection of the unused

30
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space in a facility onto an abstract 3-space. Figure 4.1 uses a test facility to demonstrate

the principle of work available space.

Figure 4.1: Work Available Space Example

This is a philosophical departure from prior definitions. The IFC entities that represent

solid objects are no longer the focus. They provide contextual boundaries for the workflows

in the space, but are not a part of the workflow description except through inheritance and

relationship entities.

4.1.2 The Concept of Work Space

In order to create a dimensionally comparable entity to work available space we take spatial

requirements of a workflow and place them onto an abstract 3-space. Projecting it preserves

the workflow as a multi-dimensional entity and utilizes the components that are relevant to

the spatial layout. This abstract 3-space can be visualized as a blank canvas with objects

based on the size requirements of process activities: this is the workflow’s workspace.

Figure 4.2 is an example of extracting the workspace from a workflow. The spatial

requirements reflect the minimum amount of space required for each process element. The

orientation at this point is arbitrary, as the workflow is not bounded by any physical

constraints. At the projection stage, the workflow can be visualized as what it would look

like in a real world setting without the limitations imposed by a facility. Activity centers

are defined based on 3-dimensional geometry, and transport is also defined using the same
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Figure 4.2: Work Space Example

characteristics. In the workspace of the workflow, the routes are dimensionally equivalent

to the activity centers.

4.1.3 Understanding the Projections

Our study of workflows and facilities is now the study of projections of their physical

components onto a subspace. Representations of a workflow in a facility becomes the

assignment of one or multiple workspaces to a work available space. Our next challenge

is to determine how to combine the two projections together to form a single cohesive

representation. This will be defined as the zoning process. An example of the combination

between work available space and workspace and their projections can be found in figure

4.3.

4.2 Zoning

In this section we will be generating a zoning method that works with our definition of

workspace and work available space. Zoning is the process that we utilized tacitly through

the application of IfcSpace and IfcPath. The facility was zoned into functional and non-

functional blocks to represent the workflow and unused space. In this section we will take

a workflow and an associated space for the process and combine them to form a workspace-

workflow entity.
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Figure 4.3: Relation of Projections

4.2.1 Work Available Space

The work available space is defined as the unused space of a facility, a concept with which

we are already familiar with in IFC. Zoning work available space using IFC elements is

done with the IfcSpace and IfcZone entities. The unused space in rooms is defined as an

object using the IfcSpace entity based on functional blocks of space.

The IfcZone element is a macro object that is defined in the IFC specification as a

collection of IfcSpaces. Work available space in IFC can be defined by combining the

IfcSpaces into IfcZones. For the duration of this work, reference to a representation of

work available space will be referencing an IfcZone entity. The use of the word zoning

refers to the type of workflow activity that occurs in a space, not the IfcZone element.



34 Representing a Workflow Contextual Dimension With Bulding Data Models

4.2.2 Workspace

There was little direction present in the literature for defining the zone types for workflows.

One example was found in a paper on multi-criteria layout planning (Jacobs, 1987). This

paper discussed the division of space in facilities layout problems based on the variable do-

main array method. This method divided the office space/facility into equally sized blocks

and defined the space in terms of available space, dead space, solid space and circulation

space. The analogy to our method is available space represents the work available space

and dead space is the boundaries defined by the facility solid objects. Solid space and

circulation space are the space utilized by the workflow. A discussion on the merits of this

approach and the concerns with respect to workflow is available in appendix C.

At this stage we will maintain that space can be assigned as either activity, transport,

waiting or unused space for workflows. Dead space is defined by IFC building objects

and is outside our definition of work available space. A workspace is defined in IFC by

assigning a type of zone to each space and linking it to a workspace element. Each activity

or process element is assigned to a unique work available space object. Multiple routes can

be assigned to each transportation space as they are shared between workspaces.

4.3 Chapter Summary

In this chapter we examined the nature of the representation of workflow in the spatial

contextual dimension. The concepts of workspace and work available space were defined

in order to created workflow and context outside of the framework of the facility.

The zoning process was created to combine the projections together. The functional

blocks of space from the facility were assigned to workspace elements based on the type of

activity that occurs in the zone. We can now revisit our example from Chapter 3 and to

include the zoning process.



Chapter 5

Prototype Design

In this chapter we will be building on the prototype discussed in chapter 3 by including

the zoning process developed in chapter 4. Extensive testing of this model would have

required the creation of an expert system to test the effects of applying this contextual

knowledge in the design process. Creating such a system would require the formalization

of the links between the workflow and the environment to determine what information is

applicable. Pursuing this avenue of research proved to be extremely challenging, as such

the scope of this work was limited. This is intended as an analysis of the methods of

representing context and workflow, and understanding the need for a philosophical shift

in their definitions. The next step is to define a method that would be far more detailed

than previous efforts and understanding how it could be combined with workflow to create

a new model for analyzing this interaction.

5.1 Prototype System Design

From a system perspective, we have an IFC model that contains the contextual description

of the environment, and workflow information stored separately. There are currently no ap-

plications available that can be used to combine simulation and IFC workflow information,

therefore we were required to find a way to combine the two.

The IFC model was kept in its standardized data format, although the XML definition

was used to create a version of the data more accessible to other applications. We are

35
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operating under the assumption that facility is not subject to change at this point and

that the IFC model is read-only data. Workflows can be stored in many formats, many

of which were described in Chapter 2, but for our sake we will be storing them within a

database.

Figure 5.1: Prototype System Diagram

Figure 5.1 is a system diagram relating the components of the prototype system and

the associated data sources. The control database was created to store the information

required for the data sources to interact. This includes the information attained from the

zoning process that links the workflow to the IFC model.

5.2 Zoning Implementation

We build on our example from Chapter 3 by zoning the space using the rules described in

Chapter 4. The reception area was divided into functional blocks of space based on the

requirements of the workflow (Fig. 5.2).

The work-available spaces are defined in the IFC model as IfcSpace objects. What is

not stored in the IFC model is the information on the zoning of these spaces, which exists

outside the current IFC definition. This information is stored in the control database as
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each space is zoned with each workflow activity and transport connection linked to one of

these spaces.

Figure 5.2: Reception area divided into IfcSpaces

The routes between activities have a many-to-one relationship with space; spaces may

be associated with multiple routes and routes may pass through multiple spaces. Space

is designated by default as unused space and is zoned as waiting space as required. Infor-

mation such as the occupancy of the waiting space is stored in the IFC model and is not

re-listed.

Workspace is defined by assigning a zoning type to each of our spaces. In this example

we use the same workflows and spatial division used in our example from chapter 3. The

difference being that some of the spaces were divided into sub spaces to reflect the different

zoning requirements. Using this method spaces are not by default assigned as activity space,

but are zoned based on workflow requirements. In figure 5.3 the space has been zoned and

colour coded according to the zone types. The workflows associated with inpatient booking

are all related to 3-dimensional spaces.
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Figure 5.3: Zoned reception area

5.3 Implementation Procedure

With the development of a method of representation we can now turn to visualizing the

workflow in action. The visualization process will ideally allow us to step through the

workflow and determine how it interacts with the environment. To achieve these goals we

will be utilizing a simulation application.

5.3.1 IFC and Simulation

IFC simulation applications exist, however as outlined in chapter 3, they are not suitable for

workflow simulations. Arena, an existing workflow simulation application was selected to

provide a means for simulating the workflow. Workflows are created in Arena as processes

with each process element defined quantitatively (arrival time, waiting time, etc.) in order

to create a simulation to demonstrate the expected behaviour of the system. The results
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of these simulations can then be used to examine workflows in action and help determine

if there are any process inefficiencies present in the system.

Arena was selected for simulation purposes for several reasons. It is a robust simu-

lation application with MSDA standard scripting capabilities and the ability to import

visual layouts from several applications. Arena is composed of two primary engines, a

simulation engine and a visualization engine. The workflow and its elements are entered

in the simulation engine and the IFC layout into the visualization engine.

Arena requires that the workflow process elements are defined separately from the

visualization component. The basic process and link Arena object blocks are adequate

representations of the standard workflow activity and route objects used in our workflow

descriptions. These are simulation elements; they do not visualize the workflow, they are

used to provide a description of the worfklow.

At this stage the workflows exist in a classical process map representation in the Arena

simulation engine. The workflow is de-coupled from the facility and is a representation of

the process elements.

5.3.2 Facility Input

Arena allows for visual layouts to be imported directly in several formats including DXF

and image file formats, however IFC models are not one of them. The facility representation

was imported into Arena utilizing a script to redraw the basic building objects. The first

step was to parse the IFC code to extract the basic 2-D layout information based on

geometric relations.

Once the IFC model had been parsed for the geometric components of the walls as

basic structural elements, they were re-drawn in Arena. Creating the workflow in the

visualization engine requires some additional steps. This was accomplished by associating

the centroid of each IfcSpace with a station object from Arena. The station and route

objects in Arena are utilized as the workflow elements in the visualizations to tie the two

engines together. Once associated with a process, the station object acts as an anchor for

graphic objects in the visualization engine. The routes are set from centroid to centroid of

the spaces in between process elements in order to connect the stations together.

At this stage we have defined the workflow within Arena in what appears to be a de-
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Figure 5.4: Arena Workflow

coupled system. Through the use of a control database and the zoning process we have the

ability to link the workflow information and the simulation data to the IFC model. The

next phase of our study is to understand how to leverage this step towards the creation of

a coupled system.

5.3.3 System Analysis

At this stage, Arena provides the capability to visualize a workflow, but does not provide

a coupled system. The approach of re-drawing the facility is no different from previous

implementations. The path to a coupled system lies in the creation of links between the

simulation objects and the IFC model. In order to determine the possible links between

the workflow and the environment we will discuss properties and objects that relate the

two.

One property in IFC that can be associated with a space is its occupancy limit, a value

that may be based on regulations (fire code, etc.) or room size. The occupancy limit is
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stored in the IFC model of the space as the Pset SpaceOccupancyRequirements which is a

property set definition applicable to the IfcSpace and IfcZone classes.

Upon completion of several simulation runs of the workflow under study, one can extract

the maximum and expected occupancy of a room from Arena by examining the maximum

and average queue size of a process. When the simulation is run, statistics are kept with

respect the limit values of the queue for each process element. Using our example of

occupancy of a room, we could compare a queue size for a process (e.g. reception waiting

room) with the simulation values in order to determine if a violation can be expected to

occur.

In this example we are extending the simulation data to relate it to the design-aspects

of the facility. It is taking the simulation data and utilizing the properties and attributes

specified in the IFC model, a data set that was not previously available.

5.4 Chapter Summary

The use of the zoning strategy has not lead to a representation of workflows in which

the workflow elements possess the same dimensions as the contextual environment. A

prototype was developed to demonstrate that simulation data could be related to the

facility to create a coupled system. This information, although gained manually, is available

in a machine interpretable format.

The creation of a coupled system is the combination of the workflow, IFC and simulation

into a single joint system. Only one example of coupling between the context and the

workflow was presented. Information on identifying and describing these links in a machine

interpretable format is unavailable at this stage. What it does present is an example moving

towards a coupled system that may take advantage of the links to contextual information

available in an IFC model.



Chapter 6

Conclusions and Discussion

6.1 Conclusions

Classic workflow representation techniques provide the ability for a designer to step through

workflows. This commonly manifests itself in the ability to traverse flowcharts or process

maps. In reality workflow occurs in a spatial environment that has definable properties

(room capacity, hallway flow rate, etc.) that can impact its execution. This information

is not available in current representation techniques, and would be of use in analyzing

workflow execution via simulation (e.g., to determine queue lengths and relate it back to

room capacity) in order to optimize it.

Given this, we analyzed the existing means of workflow representations to determine if

any systems met the above criteria. Existing systems were found to be de-coupled systems

where the workflow and the description of environment were tacitly connected.

We developed an approach where workflow descriptions are projected into a coupled

spatial environment. This has involved the selection of a leading object-oriented repre-

sentation of spatial environments (IFC). The introduction of IFC provided a means for

the inclusion of contextual information into workflow representations and visualizations.

The objects and the unused space in a facility are well defined with associated property

sets. The relationship between the workflow and the contextual environment is formed

by assigning the workflow to a discrete spatial object. Once it is assigned it inherits the

properties of that space.
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We then created a zoning process to visualize the workflow with the spatial environment.

We identified the types of space utilized by workflow, the relationship between space and

workflow and the properties unique to workflow. The spaces defined in IFC represented

the work available space, and the assignment specified by the workflow corresponded to

the workspace concept. This guideline was used as a method to combine workflow within

the visual IFC model of the facility.

In order to test this coupled system concept and the zoning process a prototype was

created using and IFC model and a workflow simulation application. It demonstrated that

the two can be combined, but that there are several complications in this implmentation.

It requires a better understanding of the all the relationships between workflow and the

contextual environment. The complete list of these relationships are not a part of this

work and are required for proceeding further with this approach.

6.1.1 Limitations of this Work

The focus of the work was on a proof of concept work for the representation and visualiza-

tion of workflow, not on developing a full-scale application. The zoning process provides

a means for 3-dimensional representations of workflows, but the extensions of the buffer

concept and bandwidth of a transportation space require further discussion.

These limitations are due to a lack of formalization. The work is rooted in an analysis

of the nature of context and workflow and the prototype is an attempt to put the theory

into practice. The flaws in the small scale model provide a platform for future work in this

field.

6.2 Suggestions for Future Research

6.2.1 Implementation on a Larger Scale

In its current form, the workflow definition is a database version of a process map. This ap-

proach allowed for modifications required by workspace and work available space. A larger

scale implementation would likely require a standardized workflow database interoperable

with IFC as well as other workflow applications.
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We have yet to create a coupled system, we have been building on the concept of a

joint system with a more detailed independent definition of the contextual environment.

The next step would be to formally develop a joint system that makes use of IFC for the

evaluation of workflows to determine the benefits gained from this new approach.

6.2.2 IFC and Simulation

From a simulation perspective there is some interest in determining a more complete list

of relationships between simulation/workflow objects and the environment. The example

used was constructed and formalizing these relationships may require considerable work.

Relating the maximum queue size to the occupancy of a room is one concept, but under-

standing how to codify the relationships is a separate matter. One of our objectives was

to improve the machine processing capabilities of workflows and in order to do so, these

relationships need to be formalized.

The integration of IFC and Arena was forced at best. It would be ideal to create a 3-D

workflow simulation application that could work directly with IFC models. At this time

there is no evidence that such an application is under development.

6.2.3 IFC and Facility Design

The literature review identified facilities layout as an example of the combination of ex-

isting research of contextual properties and workflow. Further discussion was omitted

from the prototype model that instead focused on the impact of simulation and contextual

information.

It also remains to be seen whether or not this representation of a contextual dimension

would be suitable for expert systems that combine multiple solution techniques. The use of

the IFC building data model offers an explicit definition of context that has not been used

in existing expert systems. Determining if this data could be leveraged may be valuable

in further research.
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6.3 Final Thoughts

We have yet to discuss definitions of context and the creation of coupled systems for

the other contextual dimensions. If the contextual dimensions are related to one another

we may need to define them prior to formalizing the relationships between workflow and

context. Using our waiting room example, the size of the room may be affected by orga-

nizational goals or procedures which may create a limit on its capacity.

The concept of a coupled system is an intriguing one that would appear to unify dif-

ferent avenues of research. By combining them together we could leverage their benefits

to improve facility design and workflow evaluation. The use of building data models to

represent workflows and a contextual dimension provide a stepping stone towards this

goal.



Appendix A

IFC Six Room Example

This appendix will discuss the IFC code for a six room facility as shown in figure A.1.

The full IFC/ifcXML code for this example has not been included in its entirety due to

its length. Printouts of the code were 144 and 1290 pages respectively for the IFC and

ifcXML code.

Figure A.1: Six Room Facility

Part of the reason for this length is the volume of entities required for the definition of a

simple facility as outlined in the criticisms in the literature of IFC. Prior to the instantiation

of a given object all the super-entities need to defined. These super-entities are defined by
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an inheritance graph for each IFC object. The inheritance graph for the IfcSpace is listed

below:

ENTITY IfcSpace;

ENTITY IfcRoot;

GlobalId :IfcGloballyUniqueId;

OwnerHistory:IfcOwnerHistory;

Name:OPTIONAL IfcLabel;

Description:OPTIONAL IfcText;

ENTITY IfcObjectDefinition;

INVERSE

HasAssignments:SET OF IfcRelAssigns FOR RelatedObjects;

IsDecomposedBy:SET OF IfcRelDecomposes FOR RelatingObject;

Decomposes:SET [0:1] OF IfcRelDecomposes FOR RelatedObjects;

HasAssociations:SET OF IfcRelAssociates FOR RelatedObjects;

ENTITY IfcObject;

ObjectType:OPTIONAL IfcLabel;

INVERSE

IsDefinedBy:SET OF IfcRelDefines FOR RelatedObjects;

ENTITY IfcProduct;

ObjectPlacement:OPTIONAL IfcObjectPlacement;

Representation:OPTIONAL IfcProductRepresentation;

INVERSE

ReferencedBy:SET OF IfcRelAssignsToProduct FOR RelatingProduct;

ENTITY IfcSpatialStructureElement;

LongName:OPTIONAL IfcLabel;

CompositionType:IfcElementCompositionEnum;

INVERSE

ReferencesElements:SET OF IfcRelReferencedInSpatialStructure FOR

RelatingStructure;

ServicedBySystems:SET OF IfcRelServicesBuildings FOR RelatedBuildings;

ContainsElements:SET OF IfcRelContainedInSpatialStructure FOR
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RelatingStructure;

ENTITY IfcSpace;

InteriorOrExteriorSpace:IfcInternalOrExternalEnum;

ElevationWithFlooring:OPTIONAL IfcLengthMeasure;

INVERSE

HasCoverings:SET OF IfcRelCoversSpaces FOR RelatedSpace;

BoundedBy:SET OF IfcRelSpaceBoundary FOR RelatingSpace;

END_ENTITY;

It begins with a header which contains file metadata including description, name and

schema as specified by the ISO-10303 definition. The IFC entities are listed in the DATA

section which upon termination represents the end of the file. An abbreviated version of

the the six room example has been included below as an example of the format of the data.

backslash

ISO-10303-21;

HEADER;

FILE\_DESCRIPTION((’ArchiCAD 10.00 Release 1 generated IFC file.’,’Build

Number of the Ifc 2x2 interface: 55377 (14-11-2006)X0A’),’2;1’);

FILE\_NAME(’C:\\ Documents and Settings\\Dave\\My Documents\\ex\\code

\\IfcTest.ifc’,’2007-08-24T00:37:23’,(’Architect’),(’Building Designer

Office’),’PreProc - EDM 4.5.0033’,’Windows System’,’The authorising

person’);

FILE\_SCHEMA((’IFC2X2_FINAL’));

ENDSEC;

DATA;

#1= IFCORGANIZATION(’GS’,’Graphisoft’,’Graphisoft’,$,$);

#5= IFCAPPLICATION(#1,’10.0’,’ArchiCAD 10.0’,’ArchiCAD’);

#6= IFCPERSON($,’Undefined’,$,$,$,$,$,$);

#8= IFCORGANIZATION($,’OrganizationName’,$,$,$);

#12= IFCPERSONANDORGANIZATION(#6,#8,$);
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#13= IFCOWNERHISTORY(#12,#5,$,.NOCHANGE.,$,$,$,1187930241);

#14= IFCSIUNIT(*,.LENGTHUNIT.,.MILLI.,.METRE.);

...

...

#12356= IFCRELAGGREGATES(’1kwdRMVkHAp8OmeACSlerA’,#13,

’ProjectContainer’,’ProjectContainer for Sites’,#42,(#51));

ENDSEC;

END-ISO-10303-21;

IFC in the EXPRESS syntax is defined by a sequence of lines of code in which each

line represents an IFC entity. Each line will reference other lines of code by line number

to establish a relationship. Exceptions to this rule do exist for highly granular objects,

such as IfcCartesianPoint, and highly abstracted entities such as IfcOrganization which is

a root object.

We will use an example to explain the hierarchy of objects for an IfcSpace. The spaces

are defined for each room and the hallway as the usable space of the facility. The space

under examination is the space represented in the upper left room and is the rectangular

area defined by the interior of the room. Please note that the EXPRESS syntax is similar

to Pascal and the $ operator represents an unset value. The entity is defined using the

following line of code:

#546= IFCSPACE(’1Lx_Ye9VL2kAdmzAWRNyPX’,#13,’001’,$,$,#543,#537,’Office’,

.ELEMENT.,.INTERNAL.,$);

Of these values 001 and Office represent the name given and the type of space as defined

in its creation in ArchiCAD. The first value is its unique ID while the remaining set values

describe its relation to the rest of the facility. #13 is a reference to the IfcOwnerHistory

entity which is used to define the owner, creator and last known person to modify the

element. #543 and #537 are used to represent the geometric properties of the space

stored in separate lines of the data file. Lines #543 and #537 are included below for

reference purposes:
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#537= IFCPRODUCTDEFINITIONSHAPE($,$,(#526,#533));

...

#543= IFCLOCALPLACEMENT(#72,#542);

The geometric definition of the object is divided into two components, the definition

of its shape and the placement with respect to the other objects. In our definition of the

space for this example we did not associate it with other facility elements (walls etc.) or

specify any property sets. The placement of the space is defined by the following lines of

code:

#28= IFCDIRECTION((1.,0.,0.));

#30= IFCDIRECTION((0.,1.,0.));

#32= IFCDIRECTION((0.,0.,1.));

...

#540= IFCCARTESIANPOINT((1960.0584,13679.234,0.));

#542= IFCAXIS2PLACEMENT3D(#540,#32,#28);

In this definition the placement of the space defined as a cartesian point on the layout

and the reference directions. The definition of the product shape is more complex then that

of the placement. The definition of the geometry the space is divided into two components:

the boundaries on the total space, and the use of the space.

The boundary of the space is defined by a bounding box. A bounding box is a box

used to limit the dimensions of a solid object. The parameters of the bounding box are

a corner and a length definition in each of the 3 axes. An example of a bounding box is

found in the following lines of code:

#530= IFCCARTESIANPOINT((0.,-5389.4768,0.));

#532= IFCBOUNDINGBOX(#530,3916.1964,5389.4768,2700.);

#533= IFCSHAPEREPRESENTATION(#144,’IAI’,’BoundingBox’,(#532));

In this example the space in question has dimensions equal in size to the bounding box,

if this were not the case the other half of the definition would apply. For shapes that are

not cuboid they still fit in a bounding box but can be defined as a sub-entity of the space

defined by the bounding box.
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This concludes our example on the representation of a instantiated IFC entity with

respect to its geometric properties. This example will be referenced later in the discussion

on the extraction of geometric properties from an IFC model.



Appendix B

Workflow Examples

These workflows of the inpatient booking process at Grand River Hospital were developed

by Weizhen Dai in 2004. They were created as a part of his graduate research into query-

based workflow process dependancy.

These workflows have been used as samples in conjunction with the layout of the facility

provided. They contain several steps that occur in the same spatial location. We combined

groups of activities together if they were found to occur in the same space.
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Figure B.1: Workflow: Page 1
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Figure B.2: Workflow: Page 2
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Figure B.3: Workflow: Page 3
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Figure B.4: Workflow: Page 4



Appendix C

The Zoning Concept

C.1 Activity Space

Activity space is analogous to process elements; it is the space zoned for defined activi-

ties. The classical definition of workflow made a tacit statement that the boundaries of

an activity space cannot be violated. The activity took place in the defined space, and

could not overlap with other activities. Using this assumption, there is no information on

what effect overlapping processes may have on each other. We maintain the use of this

assumption for our current definition.

From our definition, the work available space for an activity must be of a size large

enough to accommodate its minimum spatial requirements of the workspace element.

C.1.1 The Concept of Buffer Space

The buffer space concept is derived from the circulation space defined in the multiple

criteria layout example (Jacobs, 1987). Circulation space is defined as space reserved for

movement within the layout adjacent to solid/activity space. Buffer space is based on an

activity having an ideal spatial requirement that exceeds the minimum required activity

space. An example of this concept is the placement of a pool table in a room. The pool

table can be placed in a work available space that is equal to the size of a the pool table

with a foot of space around the table for player movement based on the minimum spatial
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requirements of the object. While it would be possible to play a game in that setting, it

is far from ideal. The ideal case would be that a buffer would exist around the activity

space in which other activities would not occur in order to allow a comfortable experience

for the players. The same argument applies in the discussion of workflows. Using our

previous description of activity space with one activity per room, the buffer space is the

work available space outside of the minimum activity space. The walls/work available

space provide the limit on the available buffer space, and the space can be calculated

as the difference between the space in the room, and the minimum activity space of the

workflow element.

The impact of the size of the buffer space is varied. If not enough buffer space is

available, it will have a negative impact on the ability of the players in completing their

game. On the other hand, there are no penalties to the performance of the activity if all

activities possessed an infinite buffer space. The penalty would then lie in the transport

time required between activities. As the buffer size increases the performance penalty

decreases, until large increases in buffer size offer little to no performance benefit.

The penalty associated with violated buffer space is subjective and that has not been

formally defined at this time. More research is required to understand the limitation of

varying the size of an activity space as well as defining an appropriate buffer space size.

Using this approach, the fitting of activities to existing spaces will take on a new degree

of variability. Current approaches treat the sizes of all activities as static objects. Activity

space is now a variable entity, and placing an activity in rooms with varying buffers, may

have a noticeable effect on the performance of the workflow. For the moment we will utilize

the static treatment of activity space under the assumption that a realistic buffer space is

built into the definition of its workspace.

C.2 Transport Space

Activity space tacitly includes some transport space into its specification via the buffer

concept. In order to enter or exit the activity space, some transportation space is required.

An example is in a cubicle for a worker: there will be a portion of that space that is used

to enter and exit the cubicle, but that space is not used by other coworkers as transport
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space. We will be applying a definition of transport space, as space that is not also used

for activities, but is used to travel to or from an activity space.

The vectors from our IfcPaths are still used to describe the path between activity

centers, but we are attributing additional properties to the pathway. In most settings,

there will be different objects that travel between activity centers. In a hospital this could

include patients in wheelchairs, patients in gurneys, and ambulatory individuals traveling

at various speeds. The transport space required for each object may vary in terms of both

size and speed.

C.2.1 Properties of Transportations Space

Using an amalgamated view for transport space, the route between activity centers becomes

a sequence of zones. For a sample workflow, the transportation object travels from start

to finish as passes through zones a set of adjacent zones. As it passes through the zones it

will affect the use of that zone for all workflows that also pass through that zone.

Unlike activity space, transportation space can be shared with other transport spaces at

different temporal instants. The limits on sharing transportation space is equivalent to the

bandwidth of the hallway. This concept of transportation space bandwidth is speculative

must be treated accordingly. For the purposes of this thesis, the main point of interest is

that multiple transportation spaces can be assigned to the same transportation pathway.

C.3 Waiting Space

Waiting space is not defined as activity or transport, and may be separate from undeclared

space. The concept of waiting space arises from the simulation concept of queues and the

impact they can have on workflows in a space. If we take the example of a waiting room,

as the patients wait to travel to the next activity center they will take up space. If system

performance is poor, the number of people waiting for service may be significant. If the

number of patients waiting exceeds the waiting capacity of the room then the overflow

may affect other workflows. As an example, the patients may be forced to wait in adjacent

hallways, which would affect the ability of other workflows to pass through the hallway.
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This diverges from our original specification of workflows as activity and routes. If we

define workflows in terms of activity and transport space then depending on our definition

waiting may occur in either space. A queue at a bank demonstrates that the queue may

be included as either a part of the activity or the transport space. Waiting occurs in

this example due to an interaction between the workflow and the workspace. Choosing

to include it as transport would violate our definition of transport space in that it is the

unimpeded transport between activity centers. Including it among activity space implies

that waiting is a part of the activity and not a consequence of the interaction between the

workflow and the space or other elements of the workflow.

C.3.1 Waiting as a component of workflow

Before we proceed, it is important to note the difference between procedural and conse-

quential waiting. Procedural waiting is defined as a part of a process (e.g. catheterization).

Consequential waiting is the waiting that occurs due to discontinuities in service availabil-

ity. We will be treating procedural waiting as an activity due to its relationship to other

contextual dimensions. We will be defining waiting space as a sub-set of activity space,

similar to buffer space.

C.4 Undeclared/Storage Space

Undeclared space may be separate from waiting space depending on the allocation of

activities; it is unlikely that all available space in a facility will be designated for either

activity, transportation or waiting. While not tied to a workflow it still has properties that

may still provide contextual information for the workflow.

In our specification, activities will be assigned to a room and the space surrounding the

activity space within the confines of the room will be treated as buffer space or waiting

space. Undeclared space will consist of spaces devoid of activities or route assignments.
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Glossary of Terms

AEC Short for Architecture, Engineering and Construction, a domain of research and

expertise concerned with the design and construction of facilities.

Arena A simulation application owned by Rockwell Automation.

AFL Automated Facilities Layout. A solution technique originally developed in the 1960’s

to provide optimal floor plans for facilities.

Classic workflow representation Techniques A collection of representations such as

flowcharts, process maps and various forms of graphs. These are representation

techniques for static workflows.

Context A term used to represent the collection of contextual dimensions associated with

a workflow.

Contextual Dimensions/Contextual Elements The separate entities that collectively

define the context of a workflow. The use of dimensions and elements is used inter-

changeably.

DI Short form for Diagnostic Imaging, a department at Grand River Hospital.

EXPRESS A modeling language used in IFC. It is the data modeling language of STEP.
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EXPRESS-G EXPRESS-G is the graphical notation developed within STEP and used

for the IFC definition. EXPRESS-G is a subset of the EXPRESS language; all objects

drawn in EXPRESS-G can be defined in EXPRESS, but the converse argument is

not true.

FM Short form for Facilities Management. The term is used interchangeably to describe

applications and processes involved designed for the management of facilities as well

as the literature domain with respect to this topic

IAI The International Alliance for Interoperability is a consortium of organizations that

collectively seek to improve the productivity and efficiency of the AEC and FM

communities. The IAI are the creators of IFC.

IFC The Industry Foundation Classes are a neutral data model created by the IAI. It is

based on an object-oriented design based on the use of a building data model. The

latest release is version 2.3.

IFCxml The XML specification of the IFC standard. IAI developed an XML specification

for use with IFC to improve its interoperability with outside applications.

OR Short form for Operations Research.

Static Workflow Workflows in which the sequence of events remains static over time.

Classical workflow representation techniques are based on static workflows.

STEP (ISO 10303) The Standard for the Exchange of Product model data: an ISO

standard for the computer-interpretable representation and exchange of industrial

product data.

VLSI Very-large-scale integration is the process of combining a large number of transistor

based circuits onto a single chip to form an integrated circuit.

Workflow A representation of a repeatable sequence of events that can be documented

and learned. It is enabled by the organization of resources and defined entities.
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Workspace A concept developed in this thesis to describe the projection of a workflow

on 3-space. The workspace of a workflow contains only 3-dimensional entities and is

dimensionally equivalent to the work available space.

Work Available Space A concept developed in this thesis to describe the projection of a

facility on 3-space. The work available space of a facility contains only 3-dimensional

entities and is dimensionally equivalent to the workspace. It is the free space in a

facility that is used by workflow.

XML A general purpose markup language known as the Extensible Markup Language.

XML allows users to define their own tags in order to facilitate the sharing of data

across multiple information systems.
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