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Abstract 

An artificial neural network has been developed for the prediction of the kinematic viscosity 

of ternary, quaternary, and quinary systems. The systems investigated consisted of the 

following components: Heptane, Octane, Toluene, Cyclohexane, and Ethylbenzene at 

atmospheric pressure and temperatures of 293.15, 298.15, 308.15, and 313.15 K.  

The developed model was based on a three-layer neural network with six neurons in the 

hidden layer and a back propagation learning algorithm. The neural network was trained with 

binary systems consisting of 440 data sets and using mole fractions combined with 

temperature as the input. A comparison of the experimental values and the results predicted 

from the neural network revealed a satisfactory correlation, with the overall absolute average 

deviation (AAD) for the ternary, quaternary, and quinary systems of 0.8646%, 1.1298%, and 

4.3611%, respectively.  

The results were further compared to the generalized McAllister model as an alternative 

empirical model. The neural network produced better results than the generalized McAllister 

model. The new approach established in this work helps reduce the amount of experimental 

work required in order to determine most of the parameters needed for other models and 

illustrates the potential of using a neural network method to estimate the kinematic viscosity 

of many other mixtures. 
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Chapter 1 

Introduction 

1.1 Background and Objectives 

The‎viscosity‎of‎liquids‎is‎a‎measure‎of‎a‎liquid’s‎internal‎resistance‎to‎flow.‎This property is 

one of the significant transport properties essential for many scientific studies and practical 

applications. In many chemical applications, such as separation, fluid flow, mass transfer, 

heat transfer, and oil recovery, prior knowledge of thermodynamics and the transport 

properties of multicomponent mixtures are extremely important, especially in the early stages 

of designing a chemical process. However, while extensive data have been published in the 

literature with respect to the thermodynamic and transport properties of binary liquid 

mixtures, far fewer measurements of the kinematic viscosity of ternary, quaternary, and 

quinary liquid mixtures have been reported. It is therefore essential and of significant 

practical value to develop a relatively simple model that can utilize the existing information 

about binary solutions to accurately predicts the kinematic viscosity of ternary, quaternary, 

and quinary solutions. 

The estimation of the viscosities at different temperatures of compounds that have yet to be 

manufactured requires a generalized predictive model with a high level of accuracy. The 

kinetic theory of gases provides a comprehensive explanation of the viscosity of gases. 

However, for liquids, a theoretical explanation is complex because of the wide range of 

intermolecular forces involved, such as hydrogen bonding, attraction, repulsion, electrostatic 

effects, and the high degree of disorder between molecules.  
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Unfortunately, the behavior of the molecules can, in general, limit an accurate prediction of 

the thermodynamic and transport properties of the mixtures. These mixtures are typically 

difficult to model without a large number of data, which are often unavailable for a particular 

mixture. As well, the composition of a liquid mixture generally has a major effect on its 

viscosity. 

Solving chemical engineering problems with traditional techniques has limitations, for 

example, those encountered in the modeling of extremely complex and nonlinear systems. 

Artificial neural networks (ANNs) are general tools that have been proven to be capable of 

estimating, classifying, predicting, modeling and optimizing complex systems and are 

therefore extremely practical in technical applications. ANNs are a division of artificial 

intelligence (AI) that has the goal of replicating the abilities of the human brain. One of the 

main characteristics of neural networks is that they learn from observation and improve their 

performance accordingly; furthermore, they are suitable for complicated phenomena which 

involve experimental data whose relationships are not well understood.  

 

    The objective of this research can be stated as follows: 

 Investigate the validity of artificial neural networks for predicting the kinematic 

viscosity of a multi-component mixture at a variety of temperatures. 

 Develop, train, and implement a set of artificial neural networks in order to predict 

the kinematic viscosity of a multi-component mixture. 

 Compare the results of these neural network models with the results obtained from 

experimental tests.  
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 Evaluate the results produced by the neural networks by comparing them with those 

produced by the generalized McAllister model, which is one of the most reliable 

predictive models reported in the literature. 

1.2 Organization of the Thesis 

Chapter‎ 2‎ of‎ this‎ thesis‎ focuses‎ on‎ the‎ principle‎ of‎ viscosity‎ theory,‎ Eyring’s‎ equation‎ of‎

absolute theory, the McAllister models, the technique developed by Asfour and co-workers 

(Asfour et al., 1991) and the generalized McAllister model, and also introduces the effective 

carbon number (ECN). 

Chapter 3 presents artificial neural networks, including a historical overview; the 

definitions used by a variety of researchers; and their fundamentals, architecture, and type of 

training. 

Chapter 4 is devoted to the development of an artificial neural network for viscosity 

prediction: the research procedure, the methodology, the software used, and the data 

selection, normalization, and post-processing. Also described are the proposed structures and 

design of the ANN, which involve the selection of the network interaction, the number of 

epochs, the transfer function, and the number of neurons utilized. 

Chapter 5 is divided into two parts: the first part presents and discusses the results 

produced by the ANN, and the second provides a comparison of the results from the ANN 

with those produced by the generalized McAllister model.  

Chapter 6 summarizes the accomplishments of the thesis, explains the contributions of the 

research, and provides suggestions for future work. 
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Chapter 2 

Development of the Generalized McAllister Theory 

 

2.1 Introduction 

Viscosity in simplest terms can be defined as the resistance of a fluid to deformation, 

and could also be thought of as the measure of internal fluid frictional forces which 

tend to resist any dynamic transformation in the fluid movement. However, a 

Newtonian fluid has a linear relationship between the shear stress per unit area at any 

point and the velocity gradient that can be illustrated in Figure 2.1, which is called the 

constant‎of‎proportionality‎μ‎and‎also‎known‎as‎the‎dynamic viscosity of the liquid, 

 

 

 

 

 

 

 

 

Figure ‎2.1: The relationship of shear stress and velocity gradient for liquids 
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dy

du
/

                                                                                                               

(2.1) 

where 

τ‎=‎shear‎stress‎per‎unit‎area‎and, du/dy is the Velocity Gradient.  

μ‎has‎the‎dimension‎of (force)(time)/(length)
2
 or, also (mass)/(length) (time). 

The ratio of the dynamic viscosity to the density is called the kinematic viscosity, 

 



                                                                                                                       (2.2) 

with dimension (length)/(time)
2
. 

2.2 Viscosity of Pure Liquids 

The literature addressing liquid viscosity is extremely broad. However, because of the 

limited knowledge of the nature of the liquid state there is no theory, yet, that would 

allow the calculation of liquid viscosities without empiricism despite the many attempts 

to explain theoretically liquid viscosities in terms of temperature or chemical 

constitution. Therefore, one had to rely on empirical estimation techniques  (Pedersen, et 

al., 1984 and Andrade & Da, 1934). Most relations correlate the viscosity of liquids 

with temperature since the viscosity of liquids is not often affected by moderate 

pressure. The viscosity of liquids decreases as temperature increases. Andrade 

correlation (Andrade & Da, 1934)  expresses this and it is the most frequently used 

temperature dependence of the viscosity relationship:  

                                                                                                                                (2.3) 

 

Ae T
B


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where A and B are constants and T is the absolute temperature. The Andrade equation 

was initially considered to be applicable over the whole temperature range between the 

freezing and boiling points. Unfortunately, the equation fails near the freezing 

temperature, because the logarithm of viscosity plotted versus 1/T becomes nonlinear 

near the freezing temperature and the values of A and B are typically found through a 

linear plot. Various approaches were considered to overcome this situation that led to 

many attempts to correlate between A and B in equation (2.3) with latent heat of 

vaporization, vapour pressure or other physical properties (Ewell & Eyring, 1937; 

Nissan et al.,  1940). 

2.3 Eyring Equation-The Absolute Reaction Rate Theory 

Eyring and coworkers (Ewell & Eyring, 1937), (Glasston, et al., 1941) applied the 

theory of absolute reaction rates and proposed a description for the liquid viscosity 

phenomena. They considered the viscous flow as a chemical reaction wherein the 

fundamental process is the movement of an individual molecule from one equilibrium 

position to another crossing a potential energy barrier.  Eyring suggested two layers of 

molecules‎ in‎ a‎ liquid,‎ spaced‎ by‎ λ1, and proposed that a shear among two layers of 

liquid, forces the individual molecule to shift from one equilibrium position to another. 

The movement process needs a hole‎or‎a‎site‎with‎area‎λ2 λ3 which is considered as the 

average area typically occupied by a molecule as shown in Figure 2.2 
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Figure ‎2.2 : Cross section of an idealized liquid illustrating the fundamental rate 

process involved in viscous flow.  (Hirschfelder, Curtiss, & Bird, 1954) 

 

The creation of a hole requires the expenditure of energy given that work must be done 

in pushing around other molecules. Eyring considered these transfer of molecules as 

chemical‎ reactions‎ in‎ which‎ a‎ potential‎ free‎ energy‎ ΔG‎ is‎ needed‎ for‎ such‎ process‎

(Figure 2.2). 
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In the stress-free state, which represents the position of minimum potential energy, 

Eyring suggested that molecules are continuously vibrating with frequency for the 

forward and backward molecules jumps as 








 


KT

G
exp

h

kT
r 0
0                                                                                                 (2.4) 

where k is‎Boltzman’s‎ constant,‎ h is Plank’s‎ constant, and T is absolute temperature. 

When a shear stress is applied, the total force acting on the molecule is f, and has the 

magnitude‎ of‎ f‎ λ2 λ3. It is suggested that the only mechanical work generated is to 

transfer the molecule to the top of the energy barrier traveling‎a‎distance‎of‎λ/2 where λ‎

is the space separating two molecules. On the other side of the energy barrier it is 

suggested that the molecules lose energy as heat. Therefore the work is given by: 








 


2
fWork 21                                                                                                     (2.5) 

The forward and backward rates are equal when the system is in a steady state. 

However, when there is an outside force, one direction is favoured. The hopping rate in 

the forward direction is rf 

















 












KT

2
fG

h

kT
r

210

f

*

exp                                                                               (2.6) 

and the rate of backward direction rb is: 

















 












KT

2
fG

h

kT
r

210

b

*

exp                                                                               (2.7) 
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for a single  hopping the net rate rnet is rf-rb 
















 








 







 











KT2

f

KT2

f

KT

G

h

kT
r 32320

net
expexpexp

*

                                            (2.8) 

rearranging equation (2.8) yields the following:  


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





 











KT

G

h

f

KT2

f
2

KT

G

h

kT
r 032320

net

**

expexpexp                               (2.9) 

The following equation represents the velocity gradient between two molecular layers 

with‎distance‎λ1 apart. 

Velocity Gradient = 
1

DifferenceVelocity 


                                                            (2.10) 

Velocity Gradient = 
1

secondper  jumps ofnumber  jumpper  distance




              (2.11) 

Velocity Gradient =
1

r




                                                                                           (2.12) 

By definition‎the‎absolute‎viscosity‎η‎is 

 
GradientVelocity 

StressShear 
                                                                                          

(2.13) 

By substituting Equation (2.12) into Equation (2.13) 

r

f 1




                                                                                                                   (2.14) 

And utilising equation (2.9) into equation (2.14) yields 








 






KT

Gh
0

2

32

1

*

exp                                                                                             (2.15) 
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Finally‎assuming‎that‎λ1 and‎λ‎are‎of‎the‎same‎order‎and‎λ1 λ2 λ3 is the volume occupied 

by a single molecule V0, and rewriting equation (2.15) as follows: 








 


KT

G

V

h 0

0

*

exp                                                                                                    (2.16) 

Molar volume Vm is introduced to the equation as follows: 













 


KT

G

V

hN

m

*

exp                                                                                                    (2.17) 

Where N is the Avogadro’s‎number‎and‎ΔG
*
 is the molar activation energy of the 

viscous flow. 

2.4 McAllister Model 

2.4.1 The McAllister Three-body Interaction Model 

McAllister (McAllister, 1960) applied‎ Eyring’s‎ equation (2.4) of shear viscosity to 

develop a model for kinematic viscosity of binary liquid mixtures, 













 


KT

G

M

hN
*

exp                                                                                                    (2.18) 

McAllister assumed for a binary liquid mixture consisting of two types of molecules, 

type 1 and type 2, as molecule 1 shifts over the energy barrier; it may interact mostly 

with type 1, with type 2 or with some combinations of 1 and 2, depending on the 

neighbourhood concentration. Furthermore, McAllister (McAllister, 1960) proposed 

that the interaction could be three-body or four-body interaction.  
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The four-body type is more complicated than the three-body type. The three body type 

interaction is suggested to have six interactions 1-1-1, 1-1-2, 1-2-1, 1-2-2, 2-1-2, and 2-

2-2 as illustrated in Figure ‎2.3. 

 

 

 

 

 

 

(a)                                           (b)                                  (c)                      (d)  

 

 

 

 

 

 

 

     (e)                        (f)                        (g)                                          (h)  

 

Figure ‎2.3 : Types of a three-body model viscosity interactions in a binary mixture.  
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The free energies of activation for viscosity are the summation of the mole fractions 

based on the additional assumption that interactions are dependent on concentration.  

The free energy of activation of the mixture can be expressed in the general form of 

 
  

2

1i

2

1j

2

1k
ijkkji

GxxxG **

                                                                                    (2.19) 

Expanding equation (2.19) would yield the following: 

Gxx2GxxGxx2GxxGxGxG 112

2

21212

2

211122

2

11212

2

12

3

21

3

1 
*******

  (2.20) 

where x represents the mole fraction. 

 More assumptions were made by McAllister, namely: 

GGG 12112121 
***

                                                                                           (2.21) 

GGG 21122212 
***

                                                                                          (2.22) 

Substituting Equations (2.21) and (2.22) into equation (2.20) give the following:  

GxGxx3Gxx3GxG 2

3

221

2

21122

2

11

3

1 
*****

                                             (2.23) 

For each type of activation considered in equation (2.23), a corresponding kinematic 

viscosity can be assigned based on equation (2.19).   

The kinematic viscosity of the mixture 

RTG

m

e
M

hN /*









                                                                                                    (2.24)  

where 
i

iim MxM                                                                                              (2.25)  
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The kinematic viscosity for pure component 1is given by the following equation: 

RTG

1

1

1e
M

hN /*









                                                                                                 (2.26) 

For interactions of type b, c and d in Figure (2.4), ν12 is defined as: 

RTG

1

12

12e
M

hN /*











        

                                                                                     (2.27) 

 

Given that these interactions involve two molecules of type 1 and one of type 2, 

therefore M12 is: 

  3MM2M
2112

/                                                                                               (2.28)  

For interactions of type e, f, and g in Figure (2.4), ν21 is: 

RTG

1

21

21e
M

hN /*









                                                                                              (2.29)

 

Given that these interactions involve two molecules of type 2 and one of type 1, 

therefore M21is 

  3M2MM
2121

/                                                                                               (2.30) 

And for pure component 2 

RTG

1

2

2e
M

hN /*









                                                                                                (2.31) 

Substituting equation (2.23) into equation (2.24) yields  

RTxxx3xx3x

m

GGGG 2
3
221

2
21122

2
11

3
1

e
M

hN /
****








 









                                                (2.32) 
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 

 12
3
212

2
21122

2
1

12212
3
221

2
21122

2
11

3
1

M/Mnx]3)/M/M21n[(xx3)/3]M/M2n[(xx3             

M/Mxxnnx nxx3nxx3nxn









 12
4
2

123
21

122
2

2
1

12
2

3
1

1

2
212

4
22221

3
21

1122
2
2

2
111122

3
11

4
1

M/Mnx
4

M/M31
nxx4       

2

M/M1
nxx6

4

M/M3
nxx4       

M

M
xxnnxnx4x       

nxx6nxaxnxn
















 









 








 
















Taking the natural logarithm of equations (2.26), (2.27), (2.29), (2.31), and (2.32), and 

combining them together to eliminate the free energy of activation and rearranging 

yields the well-known McAllister three-body model: 

 

                                                                                                                               (2.33) 

 

The McAllister model contains two interaction parameters ν12 and ν21 that should be 

determined via experimental work. The equation is cubic and includes the possibility of 

having maximum, a minimum, neither or both. 

2.4.2 The McAllister Four-body Interaction Model 

McAllister followed the same procedure for developing another equation that he called 

a four-body interaction model. This model is applicable when one molecule is much 

larger than the other molecules in the mixture with a ratio greater than 1.5 of the size. 

 

 

 

 

                                                                                                                             (2.34) 

 

The four body model has three interaction parameters ν1112, ν1122, and ν2221 that also 

have to be determined by experimental work. Determination of these interaction  
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parameters experimentally is a major drawback for the McAllister model. Based on 

these interaction parameters, the McAllister models are classified as correlative models 

and not predictive models. Another setback is that the experiments are time consuming 

and expensive to conduct.  

2.5 Asfour et al. (1991) Technique. 

Many researchers regarded the McAllister model as the best correlating technique 

available for liquid binary and ternary liquid systems (Reid et al., 1987). Although 

many realized the importance of the McAllister model,  Asfour et al., (1991) 

acknowledged that the model requires experimental data for the interaction parameters 

and considered that this is a major drawback in the application of McAllister model. 

Consequently, they developed a method for predicting the values of the McAllister 

model interaction parameters utilizing pure component viscosity and molecular 

parameters for binary n-alkane liquid mixtures. Nhaesi and Asfour (1998, 2000a and 

2000b) expanded the method for the binary regular solutions and multi-component 

liquid mixtures. 

Asfour et al. (1991) proposed that to predict the McAllister binary interaction 

parameters in the case of a three-body interaction model it is assumed that: 

𝜐12 ∝  𝜐1𝜐1𝜐2 
1
3                                                                                                  (2.35)       

𝜐21 ∝  𝜐1𝜐2𝜐2 
1
3                                                                                                  (2.36) 
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And by plotting the lumped parameters   ν12 /‎(ν1ν1ν2)
1/3 

versus [(N1-N2)
2
/ (N1N2)

1/3
], 

where N1 and N2 are the number of carbon atoms per molecule of components 1 and 2, 

respectively, a straight line is obtained as shown in Figure 2.4.  

   

   




 

3/1

2
2
1

2
12 NN/NN  

Figure ‎2.4: Variation of the Lumped Parameter   3/1

2
2
112 /  with    





 

3/1

2
2
1

2
12 NN/NN  

(Asfour et al.  1991).  

 

  3/1

2
2
112 /   
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where 

Hexane- Heptane 

Hexane- Octane

Heptane- Octane

Heptane- Decane

Tetradecane-Hexadecane

Octane-Decane
 

For the straight-line shown in Figure 2.4 the following equation is obtained by linear 

fitting  

 
 

  31

2

2

1

2

12

31

2

2

1

12

NN

NN
04401

//
.







                                                                            (2.37) 

The McAllister model interaction parameter 12 can be determined from Equation 

(2.37), where only the number of carbon atoms and the viscosities of pure components 

are required. Furthermore, Asfour et al. (1991) also demonstrated that the interaction 

parameter, 21, can be determined with the help of the following equation: 

3/1

1

2
1221 
















                                                                                       

             (2.38) 

where 1 and 2 are the kinematic viscosities of components 1 and 2 respectively and 

12 could be estimated from equation (2.37). 

    Asfour et al. (1991) stated that the McAllister four-body model should be employed 

for better outcome when the difference between the carbon numbers of the two 

components in a binary mixture  is equal to or larger than 4 4NN 12  . Therefore, 
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the same mechanism is followed to create an equation for the prediction of the 

McAllister four-body model. 

 
 

  3/1

2
2
1

2
12

3/1

2
2
1

1122

NN

NN
03.01







                                                                              (2.39) 

Where based on Asfour et al. (1991): 

  41

2

3

11112

/

                                                                                                       (2.40) 

  412

2

2

11122

/

                                                                                                         (2.41) 

  413

212221

/

                                                                                                         (2.42) 

in the same way, the following equations were suggested: 

31

1

2

11221112

/















                                                                                                     (2.43) 

31

1

2

11222221

/













                                                                                                     (2.44) 

Asfour et al. (1991) fitted new data into the models collected from literature that have 

not been used to develop this model, and concluded that the new model outperformed 

the existing techniques. 
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2.6 The Generalized McAllister Three-Body Model 

Nhaesi and Asfour (2000b) proposed a generalized McAllister three-body interaction model 

for multi-component liquid mixtures. They also reported a method for predicting the ternary 

interaction parameters of the McAllister’s‎ model. Utilizing only pure compounds 

information, the generalized model allows the user to predict the viscosity of liquid mixtures 

of any number of components. This extends the applications of the model beyond the typical 

binary and ternary systems. 

Assuming three-body interactions and that the free energies of activation for viscous flow 

are additive on the basis of a mole fraction, Nhaesi and Asfour (2000b) reported the 

following equation for the activation energy of a multi-component system 

   
     

n

1i

n

1i

n

1j

n

1i

n

1j

n

1k
ijkkjiijj

2

ii

3

im
Gxxx6Gxx3GxG                                          (2.45) 

where n is the number of components in the mixture. 

Furthermore, the following additional assumptions were made: 

Giji = Giij = Gij                                                                                                 (2.46) 

Gjij = Gijj = Gji                                                                                                 (2.47) 

For each type of activation energy, substituting the above expressions into equation 

(2.45) a corresponding Arrhenius type kinematic viscosity equation is obtained. The 

kinematic viscosity of the mixture is as follows: 

 RT/G

avg
m

me
M

hN 
                                                                                            (2.48) 
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where  






n

1i

iiavg MxM                                                                                                      (2.49) 

The kinematic viscosity of pure component I is: 

 RTG

i

i

ie
M

hN /
                                                                                                        (2.50) 

The kinematic viscosity of the binary interactions parameters is: 

 RT/G

ij
ij

ije
M

hN 
                                                                                                  (2.51) 

Where Mij is represented by the following equation: 

Mij = (2Mi + Mj)/3                                                                                                  (2.52) 

and, the kinematic viscosity of the ternary interactions parameters are:  

 RT/G

ijk
ijk

ijke
M

hN 
                                                                                             (2.53) 

where 

Mijk = (Mi + Mj + Mk)/3                                                                                          (2.54) 

In order to eliminate the free energies of activation in equation (2.43), we take the 

logarithms of equations (2.48), (2.50), (2.51), and (2.53) and substitute them into 

equation (2.45) to get the‎ following‎ form‎ of‎ the‎ McAllister’s‎ three-body interaction 

model for n-component (multi-component) liquid mixtures ( Asfour 2000b): 
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   

   avg

n

1i

n

1j

n

1k

ijkijkkj
2
i

n

1i

n

1j

ijijj
2
i

n

1i

ii
3
im

MnMnxxx6           

Mnxx3Mnxn













  

 

ji 

kji 

 

 

                                                                                                                               (2.55) 

 

Equation (2.55), can predict the kinematic viscosity of n-component mixtures by 

employing the values of binary and ternary interaction parameters  only. As mentioned 

earlier, the kinematic viscosity of the pure components and their molecular parameters 

determine the values of binary and ternary interaction parameters. For the estimation of 

the number of binary and ternary parameters needed for a particular n-component 

mixture system, Nhaesi and Asfour (2000b) proposed the following equation for the 

number of the binary interaction parameters: 

)!2n(

!n
N2


                                                                                                           (2.56) 

where n is the number of components in the mixture. The following equation is for the 

number of ternary interaction parameters: 

)!3n(!3

!n
N3


                                                                                                        (2.57) 

 For the ternary interaction parameters, Nhaesi and Asfour (2000b) reported the 

following equation for the prediction of the ternary interaction parameters: 

 
 

j

2
ik

3/1
kji

ijk

N

NN
0313.09637.0







                                                              (2.58) 
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Consequently, Nhaesi and Asfour (2000b), in addition to extending the McAllister 

model to multi-component mixtures, also converted the model into a predictive 

technique‎that‎requires‎only‎pure‎components’‎kinematic‎viscosities‎and‎their‎molecular‎

parameters. 

2.6.1 Effective Carbon Number (ECN) 

Nhaesi and Asfour (1998) extended the Asfour et al. (1991) technique to regular binary 

liquid solutions. In order to achieve this, they developed a technique to calculate the 

“effective‎carbon‎numbers”‎(ECN)‎of‎compounds‎other‎than‎n-alkanes. They prepared a 

semi-log plot of the kinematic viscosities of pure liquid n-alkane hydrocarbons at 

308.15 K against their carbon numbers (Nhaesi and Asfour, 1998).  

A straight-line is obtained as illustrated in Figure 2.5. The line is represented by the 

following equation: 

   ECN19309431n ..                                                                                    (2.59) 

where  in Centistokes (cSt). 
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Figure ‎2.5: Experimental kinematic viscosity for n-alkanes versus the effective carbon number 

(Nhaesi & Asfour, 1998). 

 

    Nhaesi and Asfour (1998) pointed out that utilizing equation (2.59) and employing 

the kinematic viscosity of any regular compound at 308.15 K could determine the 

effective carbon number (ECN) of that compound. This allowed them to develop an 

equation similar to the equation they had developed earlier for n-alkane systems. The 

equation is as follows:  

 
 

  3/1

2
2
1

2
12

3/1

2
2
1

12

ECNECN

ECNECN
0715.08735.0







                                                         (2.60) 
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Chapter 3 

Artificial Neural Networks 

3.1 Introduction 

An Artificial Neural Network (AAN) is a computation process that attempts to mimic 

some of the basic information processing methods of the human brain. The study of 

neural networks attracted many researchers from a wide variety of disciplines such as 

biology, engineering and mathematics. AAN consists of many simple processing 

elements called neurons. The neurons are interconnected in layers and simultaneously 

execute computations in parallel. Models of artificial neural networks have been under 

development for many years in a variety of scientific fields, the objective is to obtain 

meanings from complicated data sets and to build forecasting. In this chapter , artificial 

neural networks are introduced as a process modeling tool. In particular their 

applications in chemical engineering modeling and more specifically in physical 

properties modeling are briefly reviewed. Artificial neural networks represent an 

alternative approach to physical modeling; furthermore they are frequently utilized for 

statistical analysis and data modeling, in which their role is perceived as an alternative 

to standard nonlinear regression or cluster analysis techniques (Cheng and Titterington, 

1994). Artificial neural networks can deal successfully with non-linearity, handle noisy 

or irregular data, correlate hundreds of variables or parameters, and provide generalized 

solutions (Jasper, 1972). 
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3.2 Historical overview of ANNs 

In 1943, McCullough and Pitts launched the first mathematical model of a single 

idealized neuron. Drawing inspiration from the human brain, they have proposed a 

general theory of information processing based on networks of neurons. They showed 

that a network like neural networks of liner threshold elements could compute any 

logical function. Fundamentally, this paper had a more pronounced effect on computer 

science than on neural networks (Rabaey, 1995). Canadian neuroscientist Donald Hebb 

in 1949 produced a major study on learning and memory that suggested neurons in the 

brain actually change strength through repeated use, and therefore a network 

configuration could learn. In 1957, Frank Rosenblatt built  a hardware neural net called 

Perceptron that was capable of visual pattern recognition. In 1960, Widrow-Hoff 

described a more robust learning procedure called ADALINE (ADaptive LINear 

Element). This is an acronym for adaptive linear element that also commonly known as 

the Least Mean Square (LMS) learning method (Widrow, 1960). In 1969, Minsky and 

Papert published a book entitled Perceptron (Minsky and Papert 1969), wherein the 

authors showed a number of major limitations of the networks. These limitations were 

widely believed to apply to neural networks in general and not just to the specific type 

of “Perceptron”‎currently‎known‎as‎one-layer perceptrons. Because of this publication, 

neural‎ network‎ research‎ thought‎ to‎ be‎ a‎ “dead‎ end”,‎ and‎ funding‎ stopped‎ almost‎

completely.  
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In spite of the setback caused by Minsky and Papert book, few researchers continued 

their efforts in the field of artificial neural networks. Fukushima (1975) developed the 

cognitron; Grossberg (1987) pioneered the basics for his Adaptive Resonance Theory 

(ART), and the most notable Teuvo Kohonen (1988), who investigated nets that used 

topological features. It was nearly a decade later before it was widely recognized that 

the valid criticism of perceptrons by Minsky and Papert did not apply to more 

complicated neural network models. 

Significant breakthroughs came in the 1980s, when Hopfield (1982), assembled many 

of the ideas from previous researches and established neural network model the so -

called‎“Hopfield‎network”,‎based‎on‎fully‎interconnected‎binary‎units.‎The‎unit‎has‎two‎

states 0 or 1, and all units connected to each other with the exception that no unit has 

any connection with itself. During the 1980s, Rumelhart, et. al.(1986), popularized the 

back propagation algorithm for training feed-forward networks which was also 

independently developed by Paker (1985). Later on, it was discovered that Werbos 

(1974) had developed this algorithm. 

3.3 Definition of Artificial Neural Network 

The current literature shows that there is no generally approved definition among the 

researchers of what neural network is. According to the DARPA Neural Network Study 

(Network, 1988), 
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“A neural network is a system composed of many simple 

processing elements operating in parallel whose function is 

determined by network structure, connection strengths, and 

the processing performed at computing elements or nodes .” 

Aleksander and Morton (1990) state that: 

“Neural computing as, the study of adaptable nodes which, 

through a process of learning from task examples, store 

experiential knowledge and make it available for use” 

Zurada (Zurada, 1992) defined artificial neural networks as following: 

“Artificial neural systems, or neural networks, are physical 

cellular systems which can acquire, store, and utilize 

experiential knowledge.” 

The following statement is from Haykin (Haykin, 1994) defining neural network as 

follows: 

“A neural network is a massively parallel distributed 

processor that has a natural propensity for storing 

experiential knowledge and making it available for use. It 

resembles the brain in two respects, knowledge is acquired 

by the network through a learning process, and interneuron 
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connection strengths known as synaptic weights are used to 

store the knowledge.” 

     Fausett (Fausett, 1994) defines an artificial neural network as: 

“An information processing system that has certain 

performance characteristics, such as adaptive learning, 

and parallel processing of information, in common with 

biological neural networks.” 

From the above definitions, we can conclude that most of the researchers agreed on 

the following: the artificial neural network is a network that consists of many simple 

processing elements called neurons, each neuron possibly having small amount of local 

memory. The neurons have high degree of interconnections and arranged for parallel 

computations. The links between units have weights (scalar values) associated with it, 

which could be modified during training. 

3.4 Artificial Neural Network Fundamentals 

Artificial neural networks are a large number of parallel and distributed computational 

structures composed‎ of‎ simple‎ processing‎ units‎ called‎ “neurons”‎ interconnected‎ via‎

unidirectional signal channels called weights (Figure 3.1). The network consists of 

three main elements. First, the connection links that represent weights (w ij), the second 

element is an adder that sums up the weighted input (wij*xj), and the third is a transfer 

function that generates the output yj. The output yj may be used as an input to the 

neighboring neuron in the next layer. 
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The neuron is a simple mechanism that represents the function of a biological brain 

cell. In an artificial neural network, the neuron processes many functions such as input 

signal assessment, addition of signals and evaluation of threshold values to compute the 

output value. In addition, because of the parallel structure of the system a number of 

neurons can perform their computation concurrently.  

Every neuron could accept many input signals simultaneously, however thee neuron 

would produce only one output value, which relies mainly on the input signals, weights 

and threshold for that particular neuron. Several network models have an additional 

input called bias. Elkamel (1998) defined the bias, as a neuron that connected to all 

neurons in the hidden layers and the output layers in addition its function is to supply 

an invariant output. 

Neurons are typically categorized into three types based on their inputs and outputs: 

input neurons, output neurons, and hidden neurons. The input neurons are those that 

receive input signals from outside the system, whereas the output neurons are those that 

fire the signal out of the system. Hidden neurons have their inputs and outputs within 

the system; as illustrated in Figure ‎3.1 in reference to a three-layer perceptron.  
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Figure ‎3.1: Artificial Neural Network 

 

The transfer function is the process of converting the input signals to output signals 

for each neuron. The first step is to create the net input value for a neuron. Frequently, 

some inputs may be more significant than others, so there is a corresponding weight  

associated with each input introduced to a neuron. These weights represent the strength 

of the interconnections between neurons, and in general, are symbolized in terms of 

vectors such as wj = (wj1,wj2,….,wjn). Once a neuron receives all the input signals, it 

determines the total input received from its input paths according to their weights. The 

most frequently applied technique is utilizing the summation function:  

 


n

1i
bjiiji

wxwnet                                                                                        (3.1) 
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where neti is the net weighed input accepted by the neuron i, wij is the weight value in 

the interconnection from neuronj to neuroni and xi is the input signal from neuronj, and 

finally wbj represents the weight value from the bias. 

 

 

 

 

 

Figure ‎3.2 :  The basic model of a neuron 

 

Generating the activation value for each neuron is the second step of the process and 

it employs transfer functions. The transfer function can be a simple linear function or  a 

more complex function such as a sigmoid function. Other functions used are threshold 

logic, step function, or the hyperbolic tangent function. The transfer function is 

continuous and non-linear. The most frequently used transfer function is the sigmoid 

function shown in Figure 3.2, which is bordered within a specific range, such as (0,1) 

and has a continuous first derivative. This function is expressed mathematically as:  
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The transfer function creates the activation value for each neuron into its output 

value. The output of the neuron is determined by comparing it with the threshold value. 

The neuron will produce the output signal if the net weighed input is greater than it s 

threshold value, or else the neuron will not produce any signal. 

                         f (sumi)       if      sumi > θi 

Outputi = 

0 otherwise 

where θi is the threshold value corresponding to each neuron .  

3.5 Artificial Neural Network Architectures 

Artificial neural network architectures can be classified into three categories: feedback, 

feed forward, and self-organizing neural networks. 

Feed forward is the second category of neural networks. In this architecture the 

signals go in only one direction; hence there are no loops in the network as illustrated in 

Figure ‎3.1. Linear feed forward is the earliest neural network model. Anderson (1972) 

and Kohonen (1972) independently and simultaneously each published an article in 

1972 introducing the same model. 

Feedback network is the network where the output signals of neurons directly feed back 

into neurons in the previous or the same layers, as illustrated in Figures: 3.3 and 3.4. This is 

called feedback network  and also denoted as recurrent network, because the way neurons 

interconnect with each other, they could send signals to the previous layer as an  
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input signal. Williams and Zipser (1989) developed a fully recurrent neural network. The 

fully recurrent network is illustrated in Figure 3.3 (Williams and Zipser Network) and 

consists of many fully connected neurons with a sigmoidal activation function.  

 

 

Figure ‎3.3: Fully Recurrent Network (Williams and Zipser Network) 

 

 

Elman (1990) and Jordan (1986) proposed a partially feedback networks based on feed 

forward multilayer perceptrons and containing an additional so-called context layer as 

shown in Figure 3.4. 
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The neurons in these layers serve as internal states of the model. The main 

characteristic of the partial feedback network is that the hidden or the output layer are 

respectively fed to the context units. 

 

Figure ‎3.4: Partly Recurrent network (Elman Network) 

 

Currently the most common utilized networks are nonlinear feed forward models. The 

current feed forward network architecture performs better than the current feedback 

architecture for a number of reasons. First, the capacity of feedback network is 

unimpressive. Secondly, feed forward networks are faster since they need to make only 

a single pass through the system to find the solution; on the other hand, feedback 

networks, need to loop repeatedly until a solution is found.  

The third category in artificial neural network architecture is self-organized neural 

networks. Kohonen in 1982 introduced self-organizing neural networks, which are also 

known as Kohonen networks. 
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 A Kohonen network has two layers: an input layer and a Kohonen layer. The input 

layer consists of neurons that distribute the input pattern values to each neuron in  the 

Kohonen layer via links as shown in Figure ‎3.5. The Kohonen layer is a collection of 

neurons arranged in a tabular format. Once the network is exposed to samples, it begins 

to generate self-organizing clusters. Eventually, the Kohonen network will organize 

clusters and could be used for further operations where no output or dependent variable 

is known. Each link between the neurons maintains a specific value weight that is 

modified during the training process. 

 

 

Figure ‎3.5: Kohonen Network 
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3.6 Training of Artificial Neural Network 

The artificial neural network has the ability to learn from data during the training 

process and demonstrates an intelligent capability. A neural network consists of 

individual neurons that are interconnected with each other; as computation is 

progressing neurons signal to each other these signals carried through the connections. 

The connections have uneven magnitude; each connection is assigned a unique 

connection weight. If there is no connection between two neurons, then their connection 

weight is zero. These weights are what establish the output of the neural network; 

accordingly, it can be said that the weights form the memory of the neural network. 

Once network architecture structured for a particular application, the network is ready 

to be trained. Most of the literature agrees on two main approaches for artificial neural 

network training: supervised and unsupervised. There are two terminologies used in the 

literature‎for‎describing‎the‎process‎“training”‎and‎“learning”;‎therefore,‎both‎terms are 

used in this section. A trained network is expected to remember and generalize well. 

However, the ability to generalize can be determined by evaluating the performance of 

the network classification on new data beyond the training data sets. Most of the 

networks currently utilize supervised training. Unsupervised training is employed to 

determine some initial characterization of inputs. 

3.6.1 Supervised Training 

In supervised training, the network is provided with an input data and the expected 

output. The resulted output of the network is compared with the expected output and the  
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difference between these two values is considered as an error. The network then 

computes and propagates the error back through the system and adjusts weights 

accordingly. The weights are adjusted constantly by updating them at each step of the 

learning process. This process continues over several iterations until a desired output is 

computed with minimal error. The training is terminated when the performance goal is 

achieved. 

Reinforcement learning is a less commonly used form of neural network learning and 

is occasionally considered as a special case of supervised learning (Pal and Srimani , 

1996). It allows a network to learn the input-output mapping through trial and error, 

with the aim of maximizing a performance. The network will be told if it produced the 

desired result or not (true or false). If an action has been successful then the weights are 

altered to reinforce that behavior otherwise that action is discouraged in the 

modification of weights. The weights are updated based on these results and only the 

input vector is utilized for weight correction. Reinforcement learning lies between the 

supervised learning and the unsupervised learning. 

3.6.2 Unsupervised Training 

Unsupervised learning, also known as self-organization, takes place when the desired 

output data is not available and the network relies only upon local information during 

the learning process. A typical unsupervised network consists of an input layer and a 

competitive layer. Since the desired output is unknown, error information is not 

employed to improve the network behavior. Neurons on the competitive layer compare  
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with each other via a simple competitive learning rule to represent a given input pattern. 

During the learning process, the network updates its parameters and this process is 

commonly known as self-organization. A self-organizing network also known as self-

organizing map (SOM), or Kohonen network, is the most common algorithm used  in 

unsupervised neural networks (Kohonen, 1982). 

3.7 Strengths and Limitations of Artificial Neural Networks 

As many other artificial intelligent methods, artificial neural networks have strengths 

and limitations. Some of the major strengths of the artificial neural network technique 

are as follows: the ability of learning to recognize patterns or to approximate functions 

by identifying weight values. An artificial neural network can generate an organization 

based on the input and output data received through training. Artificial neural networks 

function in parallel rather than in serial, therefore faulty units or connections result in 

graceful degradation rather than a sudden collapse (Kohonen, 1988b). The most 

important strength of an artificial neural network is the ability of a suitable 

configuration to extend its forecasting capability beyond the set of calibrated data. 

Artificial neural networks have some limitations that should be taken into account 

when considering their applications. One such limitation is that artificial neural 

networks still require a sound understanding of scientific principles to interpret the data 

created in an effective and efficient manner; otherwise, the neural network becomes a 

black box. A second limitation is that there are no guidelines or procedure for selecting 

the number of hidden layer nodes, number of training iterations, and preprocessing of  
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data. A third limitation of artificial neural networks is that the quality and scatter of the 

data set used to train the network can affect the ability of the neural network model to 

generalize and accurately predict the response factors (Kesavan, 1996). 

Justifications for using artificial neural networks are based on the following 

properties: the ability of the neural network to learn through a repetitive training 

process that enables the network to improve its performance (McClelland & Rumelhart, 

1986). The network could generalize what it learned consequently enabling it to 

respond to unexpected situations (Denker, et al., 1987), and finally the artificial neural 

network architecture allows massive parallel processing simultaneously.   
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Chapter 4 

Development of Artificial Neural Network Model for  

Viscosity Prediction 

4.1 Introduction 

The objective of this chapter is to develop an ANN model for viscosity prediction of liquid 

mixtures. The issues investigated in this chapter are viscosity data, data normalization, 

development of the network, training, validation, ANN predicted viscosity, performance 

evaluation, and the selection of an optimal ANN. The criteria for choosing the parameters 

and conditions are also addressed. The best ANN configuration is sought as explained in the 

sequel. 

4.2 Research Procedure and Methodology 

Obtaining experimental data for viscosity composition at different temperatures is a very 

laborious work that requires intensive effort and time. Reducing the laboratory work using 

reliable predictive models is of great deal of importance since it saves such efforts. The aim 

of this work is to use ANNs to predict viscosity of multi-component liquid mixtures using 

only binary data that is widely available in the literature and compare its predictions with the 

generalized McAllister Model. 

The modeling methodology used in the present work is illustrated by the flowchart 

depicted in Figure 4.1. Details of the methodology are explained in order. 

 



 

41 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Methodology for developing an ANN Architecture 

 

4.3 Why Artificial Neural Network 

Neural networks take a different approach to problem solving than that of conventional 

techniques such as computers. Conventional techniques use an algorithmic approach, i.e. the 

computer follows a set of instructions to solve a problem. An algorithm can solve a problem 

only if the specific steps needed to be followed are specified in detail. The problem solving 

in such a case is therefore restricted to problems that we already understand and know how to 

solve. Neural networks, on the other hand, with their remarkable ability to derive meaning  
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from complicated or imprecise data, can be used to extract patterns and detect trends that are 

too complex to be noticed by either humans or other computer techniques. The ability of 

neural networks to learn by example, make them suitable for tasks that cannot be solved 

algorithmically or for values with unknown correlation. One of the distinct strengths of 

neural networks is their ability to generalize. The network is said to generalize well when it 

sensibly interpolates input patterns that are new to the network. Neural networks provide, in 

many cases, input-output mappings with good generalization capability. It can be said that 

neural networks behave as trainable, adaptive, and even self-organizing information systems 

(Schalkoff,  1997). 

4.4 Type of Software Utilized 

The programming needed for this research was done with the Matlab programming language. 

Matlab is a matrix based computer language developed by the Mathworks Company. Matlab 

stands for Matrix Laboratory and was originally written to provide easier user access to the 

powerful LINPACK and EISPACK mathematical libraries. It is interpreted, meaning there is 

no separate compile step before run. The user can type commands in a terminal window and 

have them executed immediately. The syntax is simple to learn yet the language is very 

powerful, chiefly due to the large amount of toolboxes, or user contributed code extensions. 

Matlab is used in many contexts, within algorithm development, data analysis, graphical 

visualization, simulation, engineering and scientific computation, and application 

development. Matlab is used extensively in education institutes and industry applications 

allowing for an iterative improvement cycle. 
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4.5 Selection of Data 

Numerous researchers have measured viscosity for many different liquids. Asfour Group is 

one of the few groups who published viscosity data at different temperatures and they are the 

only group, to our knowledge, who reported experimental data for quinary systems. Viscosity 

data were collected at different temperatures and concentrations. The data sets which consist 

of Heptane, Octane, Toluene, Cyclohexane, and Ethylbenzene included the viscosity values 

for binary, ternary, quaternary, and quinary liquid mixture.The viscosity data are categorised 

as systems and subsystems as listed in Table 4.1 

Artificial Neural Networks, like other empirical models, could be completed with 

databases of any size; however generalization of these models to data from outside the model 

development domain will be negatively affected. Since Artificial Neural Networks are 

essential to generalize for unseen cases, they must be utilized as an interpolator. Training 

data should be satisfactorily large to cover the possible known variation in the problem 

domain. Models developed from data generally depend on database size; however more data 

also helps when noise is present in the datasets.  

The data set of the system consisting of Heptane, Octane, Toluene, Cyclohexane, and 

Ethylbenzene was separated into a training set and testing sets to validate the network 

performance. The training set contained the binary data for the system. All ten binary 

combinations were used in the training. The testing datasets contained the ten ternary sub-

systems: the five quaternary sub-system and one quinary system as listed in Table 4.1. 
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In addition, the McAllister predictive capability represented by the percent absolute 

average derivation (%AAD) is also given and will be used for comparison purposes with the 

ANN predictions. The %AAD is defined as: 









n

1i
i

pred

ii

n

100
AAD

exp

exp

                                                                                           (4.1) 

where n is the number of data points.
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Table 4.1 The data of the system and subsystems of kinematic viscosities 

System 
Temperature 

(K) 

McAllister 

Model 

%AAD 

Data Source 

Heptane-Octane 293.15-313.15 0.23 Al-Gherwi, 2005 

Heptane-Cyclohexane 293.15-313.15 1.83 Al-Gherwi, 2005 

Heptane-Toluene 293.15-313.15 1.46 Al-Gherwi, 2005 

Heptane-Ethylbenzene 293.15-313.15 1.88 Al-Gherwi, 2005 

Octane-Cyclohexane 293.15-313.15 1.71 Al-Gherwi, 2005 

Octane-Toluene 293.15-313.15 2.31 Al-Gherwi, 2005 

Octane-Ethylbenzene 293.15-313.15 2.33 Al-Gherwi, 2005 

Cyclohexane-Toluene 293.15-313.15 3.09 Al-Gherwi, 2005 

Cyclohexane-Ethylbenzene 293.15-313.15 2.96 Al-Gherwi, 2005 

Toluene-Ethylbenzene 293.15-313.15 0.33 Al-Gherwi, 2005 

Heptane-Cyclohexane-Ethylbenzene 293.15-313.15 4.89 Cai, 2004 and El Hadad, 2004 

Heptane-Octane-Cyclohexane 293.15-313.15 2.49 Cai, 2004 and El Hadad, 2004 

Heptane-Octane-Ethylbenzene 293.15-313.15 3.93 Cai, 2004 and El Hadad, 2004 
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Heptane-Octane-Toluene 293.15-313.15 3.37 Cai, 2004 and El Hadad, 2004 

Heptane-Toluene-Cyclohexane 293.15-313.15 5.12 Cai, 2004 and El Hadad, 2004 

Heptane-Toluene-Ethylbenzene 293.15-313.15 2.59 Cai, 2004 and El Hadad, 2004 

Octane-Cyclohexane-Ethylbenzene 293.15-313.15 2.88 Cai, 2004 and El Hadad, 2004 

Octane-Toluene-Cyclohexane 293.15-313.15 2.98 Cai, 2004 and El Hadad, 2004 

Octane-Toluene-Ethylbenzene 293.15-313.15 3.4 Cai, 2004 and El Hadad, 2004 

Toluene-Cyclohexane-Ethylbenzene 293.15-313.15 3.66 Cai, 2004 and El Hadad, 2004 

Heptane-Octane-Cyclohexane-Ethylbenzene 293.15-313.15 2.83 Cai, 2004 and El Hadad, 2004 

Heptane-Octane-Toluene-Cyclohexane 293.15-313.15 3.35 Cai, 2004 and El Hadad, 2004 

Heptane-Octane-Toluene-Ethylbenzene 293.15-313.15 2.15 Cai, 2004 and El Hadad, 2004 

Heptane-Toluene-Cyclohexane-Ethylbenzene 293.15-313.15 3.83 Cai, 2004 and El Hadad, 2004 

Octane-Toluene-Cyclohexane-Ethylbenzene 293.15-313.15 2.72 Cai, 2004 and El Hadad, 2004 
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4.6 Weight Initialization 

The weights and bias are generated with random values. The most common weight and bias 

initialization function used in the Matlab is “rands”. This is a symmetric random weight/bias 

initialization where the weights are generated with small random values between -1 and 1. 

The weight initialization improvement is very crucial for a large number of hidden neurons 

used with complicated desired outputs and when training time is required to be reduced 

significantly from days to hours. The above mentioned parameters and conditions do not 

apply to our network, therefore, random weight initialization was chosen.  

4.7 Normalization of Data 

The input and output data of neural networks should be normalized to have the same order of 

magnitude. Normalization is a very significant step in the process. If the input and the output 

variables are not of the same order of magnitude, some variables may override other 

variables and appear to have more significance than they actually do. The training algorithm 

has to balance for order of magnitude differences by adjusting the network weights, which is 

not very successful with many of the training algorithms (i.e., back propagation algorithms). 

There is no universal standard procedure for normalizing inputs and outputs.  The method 

utilized throughout this research is the Min-Max Normalization Method.  

Expanding the normalization range so that the minimum value of the normalized variable, 

xi, norm, is set at zero (0) and the maximum value, xi, norm is set at one (1). We define the 

normalized variable xi, norm by using the minimum and maximum values of the original 

variable, xi, min and xi, max, respectively, i.e. 
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                                                           (4.2) 

where Lmax and Lmin are the upper and lower limits of the new output range (0,1).  More 

complex techniques for normalization are given by Masters (1994), Swingler (1996), and 

Dowla & Rogers (1995). The Min-Max Normalization Method is ideal for this model 

because it could correspond to the entire range of the transfer function utilized in this 

research (0, 1), and every input value in the data set has a similar distribution range.              

A Matlab code was developed and integrated into the main program to perform the data 

normalization. 

 

4.8 Post Processing 

Typically the output of the neural network is a set of unitless values on a scale between 0 to 1 

or -1 to 1. The data must be renormalized to the desired data range, because most of the 

applications have data ranges outside of the neuron outputs. The output values represent a 

continuous scale and need to be interpreted as real-world amount with units.  Therefore 

renormalizing the output linearly using Equation (4.3) will achieve this goal,  
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
                                                  (4.3) 

where yi represents the output and yi, renorm represent the rescaled output. 

4.9 Development of the Neural Network Architecture 

The ultimate objective of the neural network investigation is to construct networks that 

present optimal generalization performance. The researchers desire the network to perform 
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well on data that are not integrated in the training set. There are many approaches described 

in the literature that attempt to accomplish this. The following subsections explain the steps 

carried out to achieve the optimal neural network architecture for this particular research.  

Throughout training, the weights and biases of the network are repeatedly updated and 

altered to optimize the network performance. The performance function utilized for the 

feedforward networks is the mean square error (MSE) that is the average squared error 

between the predicted outputs and the experimental outputs, i.e. 

 
2n

1
erimentalpredeicted

1n

1
MSE  


 exp

                                                                         (4.4)
   

4.9.1 Network Interconnection 

There are many different types of interconnection between neurons and the layers for 

instance feed-forward, bi-directional, fully-connected and partially-connected. The 

feedforward neural network is utilized in this research; where the neurons in a single layer 

send their signals forward to the next layer. During this process the neurons never receive 

signals from the layers to the front of them. Multi Layer Perceptron (MLP) is the frequently 

used network and it has been broadly analyzed for which numerous learning algorithms have 

been reported. The MLP is used in this research because they are flexible, general-purpose, 

nonlinear models made up with many neurons that are structured into parallel layers. The 

number of neurons and layers establish the complexity of the MLP network therefore it is 

very essential to optimize the network structure.  
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4.9.2 Number of Epochs  

Another parameter that needs to be optimized is the number of epochs. The epoch is defined 

as a sequence of training data sets presented to the network between weight updates. For 

enhanced training, the optimum epoch size should be determined because the epoch size is a 

function of the data in the back propagation training and furthermore an additional 

motivation for obtaining the optimal number of epochs is that the neural networks can easily 

overfit causing the error rate of testing to be much larger than the error rate of the training. 

Therefore, determining the number of epochs is a very significant step. One of the 

performance measures used is the Mean Square Error (MSE), which calculates the average 

squared error between the network outputs and the desired output (Demuth, Beale, & Hagan, 

2007). During training the MSE decreases in the early epochs of the back propagation but 

after a while it begins to increase. The point of minimum MSE is a good indicator of the best 

number of epochs.  For training the network, the binary datasets are used. The neural network 

run‎twelve‎(12)‎sessions‎at‎100‎epochs‎interval‎between‎each‎session‎(100,‎200,‎…‎and‎1200)‎‎

and the MSE of each single run was recorded as presented in Table 4.2. The performance 

values (MSE) of the entire training dataset are plotted against the number of epochs as shown 

in Figure 4.2. 
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Table 4.2: Number of Epochs and Mean Square Error of the Neural Networks 

 Number of Epochs Mean Square Error 

ANN1 100 1.21E-05 

ANN2 200 9.73E-06 

ANN3 300 8.79E-06 

ANN4 400 7.87E-06 

ANN5 500 8.87E-06 

ANN6 600 8.92E-06 

ANN7 700 8.61E-06 

ANN8 800 9.63E-06 

ANN9 900 8.77E-06 

ANN10 1000 8.96E-06 

ANN11 1100 7.93E-06 

ANN12 1200 8.50E-06 

 

From Table 4.2 and Figure 4.2 the lowest MSE value occurs at 400 epochs; therefore, it can 

be concluded that the network should be “early‎stopped”‎at‎400‎epochs.‎This‎criterion will be 

implemented throughout this research. 
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Figure 4.2: Mean Square Error versus Number of Epochs 

4.9.3 Transfer Function 

The transfer function fundamentals were addressed in Chapter 3. The most common transfer 

functions are sigmoid, hyperbolic tangent and radial-bias functions. The sigmoid function is 

used in this research because it is a non-linear transfer function that produces signals within 

the desired range (0, 1). The non-linearity characteristic is an important factor, because in the 

case of a linear transfer function each input to the neuron is multiplied by the same 

proportion throughout the training. This might force the whole system to "drift" during 

training. Therefore a non-linearity in the system assists in isolating specific input pathways 
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(Anderson, 1995; Nelson & Illinworth, 1990). Furthermore the non-linear units have a higher 

representational power than ordinary linear units. Researchers have shown that a network 

with a single hidden layer consisting of a sufficient number of non-linear units can 

approximate any continuous function (Hornik et al., 1989). The back-propagation algorithm 

used in this work requires continuous and differentiable transfer functions so it allows for 

weight update adjustments. 

4.9.4 Number of Neurons  

The number of neurons must be determined to achieve the optimal neural network. The input 

and output neurons correspond to the input parameters which are the mole fraction and the 

temperature and the desired output of the network in this research is kinematic viscosity. 

However, the determination of the number of neurons in the hidden layer(s) depends mainly 

on the application of each specific network. Currently, there is no rule of thumb to determine 

the optimal number of hidden layers or the number of neurons. Therefore the process is 

approached with an intensive trial and error technique. During this approach many models 

are created with different number of hidden neurons while the input and output neurons are 

fixed. Each network model run and stopped at 400 epochs. The MSE was recorded and a 

graph of the number of neurons versus performance mean square error MSE was plotted as 

shown in Figure 4.3.  It is obvious that the more hidden neurons used in the network the 

superior the performance of the training. In this case the higher performance is not the only 

criteria required because the network might be overtrained and memorize the training data. 

For this reason choosing the highest number of neurons based on the MSE criteria might not 

be an ideal approach for the generalization characteristic of the network.  
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An additional step should be taken into account to determine the optimal number of the 

hidden neurons where new network models with 2, 4, 6, 8, 10, 12, 14, 16, and 18 hidden 

neurons were developed using only one (Heptane-Cyclohexane-Ethylbenzene) data set. The 

early stopping technique of 400 epochs was applied throughout these networks. At the end of 

each run, the percent absolute average deviation %AAD was recorded as shown in Table 4.3 

and plotted against the number of the hidden neurons as illustrated in Figure 4.4.   

Table 4.3: Number of Neurons in the hidden layer versus MSE and %AAD 

 Number of Neurons Mean Square Error %AAD 

ANN13 2 0.000329 1.779747 

ANN14 4 1.62E-05 0.540537 

ANN15 6 1.11E-05 0.511355 

ANN16 8 1.06E-05 0.59711 

ANN17 10 9.42E-06 0.52258 

ANN18 12 6.26E-06 1.224757 

ANN19 14 5.25E-06 1.369473 

ANN20 16 4.82E-06 0.86078 

ANN21 18 4.11E-06 1.3111 
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Figure 4.3: Number of Neurons in the hidden layer versus MSE 

 

Figure 4.4: Number of Neurons in the hidden layer versus %AAD 
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Figure 4.4 shows clearly that six neurons in one hidden layer produces the optimal values for 

the data set that has never been introduced to the network during training. Therefore this 

network has the highest generalization performance and any further training beyond six 

neurons might lead to overfitting. 

4.10 Training Methodology 

One of most important features that make an ANN accomplish generalization through past 

experiences is the use of the connections between the neurons. The power of the connection 

and the bias between two neurons can increase or decrease the signal weight that passes 

between the neurons. Therefore, the significant inputs should be assigned more weight value 

and the less significant connections are assigned less weight. The training process achieves 

the optimal weight and bias for each of the connections between the neurons. Such algorithm 

is employed in the process which is defined as a procedure for adjusting the weights and 

biases of the network. The training algorithm is applied to train the network to perform some 

specific task. The back propagation training algorithm (Rumelhart et al., 1986) is the most 

common algorithm used with MLP. 

In this research, a variety of training algorithms were tested. The Levenberg-Marquardt 

training algorithm was used due to its ability to expedite the convergence of the network 

training. The back-propagation training technique involves the matching of the predicted 

output from the network with the experimental/desired output. The weights and biases are 

optimized by iteratively minimizing the output error.  
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After training, the network is described as generalized and retains information of the 

relationship between the inputs and the outputs and a particular input can produce a suitable 

output. With the stable weights and biases established through training, the network has the 

ability to produce a predicted output from a particular input for data that has never been 

introduced to the network. 
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Chapter 5 

Results and Discussion 

5.1 Results  

This chapter will present the results obtained from the neural network models employed to 

predict the kinematic viscosity of a multi-component mixture and will also compare the 

results produced by the neural network model with those from the generalized McAllister 

model. 

The generalized parameters obtained from the neural network models are plotted against 

the experimental values as shown in Figures 5.1 to 5.16. The systems utilized in this work 

were 10 ternary subsystems, five quaternary subsystems, and the main quinary system. The 

plots show the efficiency of the neural network model in predicting kinematic viscosity. For 

both the training and the testing data sets, the neural network model performed extremely 

well for most of the systems. When the results produced by the neural network were 

validated against testing data that was not integrated throughout the course of the training, 

the model showed excellent generalization ability and was able to predict with a satisfactory 

level of accuracy the kinematic viscosity at the entire temperature range.  

Tables 5.1 to 5.10 show the predictive performance of the neural network as a %AAD for 

the ternary subsystems; on average, the neural network was capable of representing the 

kinematic viscosity as summarized in Table 5.17. It is thus evident that the generalized neural 

network model predicts the kinematic viscosity of the majority of the test points of the 

ternary subsystems with an AAD of less than 1.5%; furthermore, an overall AAD of 

0.8646% was also achieved, as illustrated in Figure 5.20. 
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Tables 5.11 to 5.15 show the predictive performance of the neural network as a %AAD of 

the kinematic viscosity for the quaternary subsystems. In general, five subsystems were 

utilized for this work, which had a min AAD of 0.49160% and a max AAD of 1.78264%. 

The overall AAD for the quaternary subsystems is 1.1298%. 

The quinary system used in this work consisted of only one system, and the minimum and 

the maximum values were therefore unavailable. The performance of the neural network for 

the quinary system had an AAD of 4.3611%. Because the initial values for the quinary 

system were relatively higher than those for the other systems, an additional approach was 

employed, as explained in detail in section 5.2. 
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Figure ‎5.1: Validation plot of experimental versus predicted values of kinematic viscosity with 

“Heptane - Cyclohexane - Ethylbenzene” for the entire temperature range 298 K - 313 K data 

set.  

 

 

Table ‎5.1: The predictive performance of neural network for “Heptane – Cyclohexane - 

Ethylbenzene” system. 

%AAD  %AAD (Max) %AAD (Min) R
2
 

1.26010         6.83172              0.03552              0.99398 
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Figure ‎5.2: Validation plot of experimental versus predicted values of kinematic viscosity with 

“Heptane - Octane - Cyclohexane” for the entire temperature range 298 K - 313 K data set.  

 

 

 

Table ‎5.2: The predictive performance of neural network for “Heptane - Octane - 

Cyclohexane” system. 

%AAD  %AAD (Max) %AAD (Min) R
2
 

0.69556         2.4363 0.00122          0.99757 
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Figure ‎5.3 Validation plot of experimental versus predicted values of kinematic viscosity with 

“Heptane - Octane - Ethylbenzene” for the entire temperature range 298 K - 313 K data set.  

 

 

 

Table ‎5.3: The predictive performance of neural network for “Heptane - Octane - 

Ethylbenzene” system. 

%AAD  %AAD (Max) %AAD (Min) R
2
 

0.65752         1.96910              0.02201              0.99338 

 

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

P
re

d
ic

te
d

Experimental



 

63 

 

Figure ‎5.4: Validation plot of experimental versus predicted values of kinematic viscosity with 

“Heptane - Octane - Toluene” for the entire temperature range 298 K - 313 K data set.  

 

 

 

Table ‎5.4: The predictive performance of neural network for “Heptane – Octane - Toluene” 

system. 

%AAD  %AAD (Max) %AAD (Min) R
2
 

0.74127         1.58725              0.02201              0.99289 
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Figure ‎5.5: Validation plot of experimental versus predicted values of kinematic viscosity with 

“Heptane - Toluene - Cyclohexane” for the entire temperature range 298 K - 313 K data set.  

 

 

 

Table ‎5.5: The predictive performance of neural network for “Heptane - Toluene - 

Cyclohexane” system. 

%AAD  %AAD (Max) %AAD (Min) R
2
 

0.92114         2.34120              0.01658              0.99773 
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Figure ‎5.6: Validation plot of experimental versus predicted values of kinematic viscosity with 

“Heptane - Toluene - Ethylbenzene” for the entire temperature range 298 K - 313 K data set.  

 

 

 

Table ‎5.6: The predictive performance of neural network for “Heptane – Toluene - 

Ethylbenzene” system. 

%AAD  %AAD (Max) %AAD (Min) R
2
 

0.25856         1.47412              0.01483              0.99928 
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Figure ‎5.7: Validation plot of experimental versus predicted values of kinematic viscosity with 

“Octane - Cyclohexane - Ethylbenzene” for the entire temperature range 298 K - 313 K data 

set. 

 

 

Table ‎5.7: The predictive performance of neural network for “Octane - Cyclohexane- 

Ethylbenzene” system. 

%AAD  %AAD (Max) %AAD (Min) R
2
 

1.82863         4.98058              0.02201              0.98175 
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Figure ‎5.8: Validation plot of experimental versus predicted values of kinematic viscosity with 

“Octane - Toluene - Cyclohexane” for the entire temperature range 298 K -313 K data set.  

 

 

 

Table ‎5.8: The predictive performance of neural network for “Octane – Toluene - 

Cyclohexane” system. 

%AAD  %AAD (Max) %AAD (Min) R
2
 

1.43718         3.70471              0.02201              0.99237 
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Figure ‎5.9: Validation plot of experimental versus predicted values of kinematic viscosity with 

“Octane - Toluene - Ethylbenzene” for the entire temperature range 298 K -313 K data set.  

 

 

 

Table ‎5.9: The predictive performance of neural network for “Octane – Toluene - 

Ethylbenzene” system. 

%AAD  %AAD (Max) %AAD (Min) R
2
 

0.43444         2.52300              0.00770              0.99551 
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Figure ‎5.10: Validation plot of experimental versus predicted values of kinematic viscosity with 

“Toluene - Cyclohexane - Ethylbenzene” for the entire temperature range 298 K -313 K data 

set.  

 

 

 

Table ‎5.10: The predictive performance of neural network for “Toluene – Cyclohexane - 

Ethylbenzene” system. 

%AAD  %AAD (Max) %AAD (Min) R
2
 

0.41207         6.16943              0.00088              0.99734 
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Figure ‎5.11: Validation plot of experimental versus predicted values of kinematic viscosity with 

“Heptane- Octane - Cyclohexane - Ethylbenzene” for the entire temperature range 298 K -    

313 K data set.  

 

 

 

Table ‎5.11: The predictive performance of neural network for “Heptane – Octane – 

Cyclohexane - Ethylbenzene” system. 

%AAD  %AAD (Max) %AAD (Min) R
2
 

1.31412         3.38938              0.02201              0.99366 
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Figure ‎5.12: Validation plot of experimental versus predicted values of kinematic viscosity with 

“Heptane – Octane – Toluene - Cyclohexane” for the entire temperature range 298 K -313 K 

data set.  

 

 

 

Table ‎5.12: The predictive performance of neural network for “Heptane – Octane – Toluene - 

Cyclohexane” system. 

%AAD  %AAD (Max) %AAD (Min) R
2
 

1.40294         5.36505              0.02201              0.99301 
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Figure ‎5.13: Validation plot of experimental versus predicted values of kinematic viscosity with 

“Heptane - Octane – Toluene - Ethylbenzene” for the entire temperature range 298 K - 313 K 

data set.  

 

 

 

Table ‎5.13: The predictive performance of neural network for “Heptane – Octane -Toluene - 

Ethylbenzene” system. 

%AAD  %AAD (Max) %AAD (Min) R
2
 

0.49160         1.38247              0.02201              0.99739 
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Figure ‎5.14: Validation plot of experimental versus predicted values of kinematic viscosity with 

“Heptane – Toluene – Cyclohexane - Ethylbenzene” for the entire temperature range 298 K -    

313 K data set.  

 

 

 

Table ‎5.14: The predictive performance of neural network for “Heptane - Toluene - 

Cyclohexane - Ethylbenzene” system. 

%AAD  %AAD (Max) %AAD (Min) R
2
 

0.65777         2.19162              0.01532              0.99868 
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Figure ‎5.15: Validation plot of experimental versus predicted values of kinematic viscosity with 

“Octane - Toluene – Cyclohexane - Ethylbenzene” for the entire temperature range 298 K -   

313 K data set.  

 

 

 

Table ‎5.15: The predictive performance of neural network for “Octane – Toluene – 

Cyclohexane - Ethylbenzene” system. 

%AAD  %AAD (Max) %AAD (Min) R
2
 

1.78264        12.91999              0.01296              0.98004 
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Figure ‎5.16: Validation plot of experimental versus predicted values of kinematic viscosity with 

“Heptane - Octane –Toluene – Cyclohexane - Ethylbenzene” for the entire temperature range    

298 K - 313 K data set.  

 

 

 

Table ‎5.16: The predictive performance of neural network for “Heptane – Octane –Toluene – 

Cyclohexane - Ethylbenzene” system. 

%AAD  %AAD (Max) %AAD (Min) R
2
 

4.36113        21.77939              0.01296              0.88951 
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5.2 Comparison of results 

With the goal of thoroughly evaluating the ANNs developed in this work, other models with 

identical multi-component systems were selected as a basis of comparison. The generalized 

McAllister model was preferred as an alternative model for comparison because of its many 

advantages: it has been widely investigated in the literature, it has been classified as a 

predictive model, and its predictive results have been superior to those from other models, as 

indicated by its percent absolute average deviation (%AAD). In order to compare the results 

from the developed neural network model and those from the generalized McAllister model, 

Equation 4.1 was used to calculate the average absolute deviation (AAD). 

For the 10 ternary subsystems, Table 5.17 and Figure 5.17 show the results of the 

comparison of the %AAD of the neural network versus the generalized McAllister model. 

The minimum AAD of the neural network and of the Generalized McAllister model are 

0.25856% and 2.49%, respectively. Furthermore, the maximum AAD is 1.82863% for the 

neural network and 5.12% for the generalized McAllister model. In general, the neural 

network outperformed the generalized McAllister model with respect to the ternary 

subsystems: the overall AADs are 0.864647% and 3.531% respectively. These results are 

shown in Figure 5.20 and Table 5.20.  

The results of the comparison of the %AAD of the neural network versus those of the 

generalized McAllister model for the five quaternary subsystems are displayed in Table 5.18 

and Figure 5.18.  
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The minimum AAD of the neural network and of the generalized McAllister model are 

0.49160% and 2.15%, respectively. The maximum AAD is 1.78264% for the neural network 

and 3.83% for the generalized McAllister model. In general, the neural network 

outperformed the generalized McAllister model with respect to the quaternary subsystems 

also: the overall AADs are 1.1298% and 3.176%, respectively. These results are presented in 

Table 5.20 and Figure 5.20.  

  The quinary system used in this work was only one system consisting of 44 test points. 

The literature contained limited data for training, which constrained the development of the 

model and produced less than excellent prediction results for the quinary system. For the 

quinary system, the neural network had greater %AAD than that produced by the generalized 

McAllister model: the overall AADs were 4.3611% and 1.18%, respectively. These results 

are shown in Table 5.19 and Figure 5.19. Since the kinematic viscosity data of quinary 

mixtures are rarely available in the literature, an additional approach was considered in order 

to further validate the predictive performance of the neural network model. A new neural 

network model with identical parameters and conditions was utilized, and the data used for 

training and testing was produced with a new technique: all the datasets were grouped 

together and divided into two sets. The first set was the testing set, which was randomly 

selected and made up of 15% of the total dataset, and the second set was made up of the 

remaining 85% of the dataset, and were used as the training set. The results of this model are 

presented in Table 5.21 and Figure 5.21: the overall AAD is 0.77892%.  
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When this result is compared with the combined %AAD of generalized McAllister model for 

the Ternary, Quaternary and Quinary systems that is 2.629% , it is clear that the neural net 

work outperformed the generalized McAllister model 

Table ‎5.17: Comparison of ternary subsystems %AAD of Neural Network versus Generalized 

McAllister Model. 

System 
Temperature 

(K) 

Neural 

Network 

%AAD 

McAllister 

Model 

%AAD 

Heptane-Cyclohexane-Ethylbenzene 
293.15-313.15 1.26010 4.89 

Heptane-Octane-Cyclohexane 
293.15-313.15 0.69556 2.49 

Heptane-Octane-Ethylbenzene 
293.15-313.15 0.65752 3.93 

Heptane-Octane-Toluene 
293.15-313.15 0.74127 3.37 

Heptane-Toluene-Cyclohexane 
293.15-313.15 0.92114 5.12 

Heptane-Toluene-Ethylbenzene 
293.15-313.15 0.25856 2.59 

Octane-Cyclohexane-Ethylbenzene 
293.15-313.15 1.82863 2.88 

Octane-Toluene-Cyclohexane 
293.15-313.15 1.43718 2.98 

Octane-Toluene-Ethylbenzene 
293.15-313.15 0.43444 3.40 

Toluene-Cyclohexane-Ethylbenzene 
293.15-313.15 0.41207 3.66 
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Figure ‎5.17: The %AAD of the Neural Network and General McAllister Models for Ternary Systems (293.15 - 313.15 K) 
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Table ‎5.18: Comparison of quaternary subsystems %AAD of Neural Network versus 

Generalized McAllister Model. 

System 
Temperature 

(K) 

Neural 

Network 

%AAD 

McAllister 

Model 

%AAD 

Heptane-Octane-Cyclohexane-Ethylbenzene 
293.15-313.15 1.31412 2.83 

Heptane-Octane-Toluene-Cyclohexane 
293.15-313.15 1.40294 3.35 

Heptane-Octane-Toluene-Ethylbenzene 
293.15-313.15 0.49160 2.15 

Heptane-Toluene-Cyclohexane-Ethylbenzene 
293.15-313.15 0.65777 3.83 

Octane-Toluene-Cyclohexane-Ethylbenzene 
293.15-313.15 1.78264 3.72 
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Figure ‎5.18: The %AAD of the Neural Network and General McAllister Models for Quaternary systems (293.15 - 313.15 K)
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Figure ‎5.19: The %AAD of the Neural Network and General McAllister Models for Quinary 

System (293.15 K - 313.15 K). 

 

Table ‎5.19: Comparison of quinary subsystems %AAD of Neural Network versus Generalized 

McAllister Model. 

System 
Temperature 

(K) 

Neural 

Network 

%AAD 

McAllister 

Model 

%AAD 

Heptane-Octane-Toluene-Cyclohexane-

Ethylbenzene 
293.15-313.15 4.3611 1.18 
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Figure ‎5.20: Overall %AAD of Neural Network and General McAllister Models for the 

Ternary, Quaternary and Quinary systems 

 

 

Table ‎5.20: Comparison of %AAD of Neural Network versus Generalized McAllister Models 

for Ternary, Quaternary and Quinary systems. 

System 
Temperature 

(K) 

Neural 

Network 

%AAD 

McAllister 

Model 

%AAD 

Ternary 293.15-313.15 0.864647 3.531 

Quaternary 293.15-313.15 1.1298 3.176 

Quinary 293.15-313.15 4.3611 1.18 
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Figure ‎5.21: Validation plot of experimental versus predicted values of kinematic viscosity 

utilizing 15% of the dataset for testing “Heptane - Octane - Toluene - Cyclohexane - 

Ethylbenzene” for the entire temperature range 298 K - 313 K data set. 

 

 

 

Table ‎5.21: The predictive performance of neural network for “Heptane - Octane - Toluene - 

Cyclohexane - Ethylbenzene” system, utilizing 15% of the dataset for testing. 

%AAD  %AAD (Max) %AAD (Min) R
2
 

0.77892     14.10920         0.00452              0.99216 
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Chapter 6 

Conclusion 

This work has demonstrated that artificial neural networks with moderately simple 

architecture can be used as a prediction technique in order to determine the kinematic 

viscosity of multi-component mixtures from the known viscosity of their binary mixture.  

The 16 systems examined in this work were composed of Heptane, Octane, Toluene, 

Cyclohexane, and Ethylbenzene and were categorized as binary, ternary, quaternary, and 

quinary systems. A neural network with six hidden neurons and one output neuron was 

utilized, and experimental data collected from the literature were used to train and test the 

network. The overall AADs for the ternary, quaternary, and quinary systems examined in this 

research were 0.8646%, 1.1298%, and 4.3611%, respectively.  A comparison with the results 

produced by the generalized McAllister model showed that the neural network model 

produced more accurate results in 15 of the 16 systems investigated. The quinary system was 

the only system that had a higher AAD with the neural network, and for which the 

generalized McAllister model outperformed the ANN model. An additional model was 

developed in order to revalidate the performance of the neural network, with the data 

employed for the new model consisting of all the datasets combined and divided into two 

sets: 85% for training and 15% for testing. This approach produced remarkably improved 

results: the overall AAD with the new network was 0.77892%. 
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It can be concluded that the deviation from ideality represented by the ANN method 

provides a good estimate for predicting kinematic viscosity. The validity of the model was 

proved at temperatures of 293.15, 298.15, 308.15, and 313.15 K.   

The ANN overcame the limitations of other prediction models, particularly the 

generalized McAllister model. This is mainly because the ANN technique can be developed 

without including the assumptions and estimation of variables which are essential in deriving 

the generalized McAllister model.  

It is suggested that the developed neural network model for predicting kinetic 

viscosity to be retrained when more experimental data are available for quinary systems at a 

variety of temperatures.  
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