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Abstract 

Radio frequency (RF) communications are limited to a number of frequency bands scattered over the 

radio spectrum. Applications over such bands increasingly require more versatile, data extensive 

wireless communications that leads to the necessity of high bandwidth efficient interfaces, operating 

over wideband frequency ranges. Whether for a base station or mobile device, the regulations and 

adequate transmission of such schemes place stringent requirements on the design of transmitter 

front-ends. Increasingly strenuous and challenging hardware design criteria are to be met, especially 

so in the design of power amplifiers (PA), the bottle neck of the transmitter’s design tradeoff between 

linearity and power efficiency. The power amplifier exhibits a nonideal behavior, characterized by 

both nonlinearity and memory effects, heavily affecting that tradeoff, and therefore requiring an 

effective linearization technique, namely Digital Predistortion (DPD). The effectiveness of the DPD 

is highly dependent on the modeling scheme used to compensate for the PA’s nonideal behavior. In 

fact, its viability is determined by the scheme’s accuracy and implementation complexity. Generic 

behavioral models for nonlinear systems with memory have been used, considering the PA as a black 

box, and requiring RF designers to perform extensive testing to determine the minimal complexity 

structure that achieves satisfactory results. This thesis first proposes a direct systematic approach 

based on the parallel Hammerstein structure to determine the exact number of coefficients needed in a 

DPD. Then a physical explanation of memory effects is detailed, which leads to a close-form 

expression for the characteristic behavior of the PA entirely based on circuit properties. The physical 

expression is implemented and tested as a modeling scheme. Moreover, a link between this 

formulation and the proven behavioral models is explored, namely the Volterra series and Memory 

Polynomial. The formulation shows the correlation between parameters of generic behavioral 

modeling schemes when applied to RF PAs and demonstrates redundancy based on the physical 

existence or absence of modeling terms, detailed for the proven Memory polynomial modeling and 

linearization scheme. 
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Chapter 1 

Introduction 

1.1 Introduction 

The last decade has seen an exponential growth in mobile and telecommunication services. Consumer 

requirements increased the demand for low-cost, low-power and reduced size and weight equipments. 

Adding to the complexity of designs to meet consumer demands are the stringent operational and 

technical requirements. While wireless usage became more complex demanding wider bandwidths, the 

frequency spectrum allocations available are constant and limited. Therefore an increasingly higher level 

of design and integration is needed to meet these requirements. Recent advances in semiconductor 

technologies (i.e. complementary metal-oxide semiconductor CMOS) allow highly efficient low-

frequency digital signal processing. However the most power consuming and nonideal part in the wireless 

transmission remains the RF front end whose most critical block is the RF Power Amplifier (PA). 

Therefore, improving the PA performance greatly affects the performance of the overall wireless system 

on many levels including linearity and power efficiency. These two mentioned criteria are essential in the 

design of an implementable and operable efficient wireless communication system, in fact it is the trade-

off every communication system, specifically front-end part, is trying to optimize. 

Much effort has been put into improving the physical PA designs in order to achieve higher power 

efficiency in a linear region of operation of the PA. Significant advances in power efficiency have been 

achieved with newer technologies and innovative topologies such as Doherty PA. However, those alone 

were not sufficient to meet the strict requirements of new wideband data extensive communication 

schemes, urging designers to recur to combine physical advancements with adequate PA linearization 

techniques.  

For that end, many linearization techniques have been devised, each presenting its own advantages and 

challenges. Current communication systems operate high frequency, amplitude varying wideband signals 

which, along with advanced digital signal processing (DSP) techniques, sets the Digital Predistortion 

(DPD) linearization method as a viable and applicable linearization solution. Ideally, DPD would distort 

the input signal of the PA in a way to compensate for the system’s nonlinear behavior. 

One tends to assume that synthesizing a digital predistortion scheme is merely a function fitting 

problem, which should be fairly straight forward with the wide availability of fitting and optimization 

algorithms. However, in practice, because of the complexity of the PA behavior, crunching high order 

numbers is extremely computationally expensive and can be unstable. Moreover a less than accurate 



 

 2 

inverse PA model would not only fail to compensate for the spurious PA signal components, but also 

introduce new unnecessary distortions to the system being linearized. 

Most of the models for transistors/amplifiers can be divided into two classes: empirical, black-box 

models and physical, circuit level models. Empirical, black-box models are extracted from measurement 

data, without any information on internal device operation, whereas physical, circuit-level models provide 

information on device operation [1]. 

The Volterra model is recognized as one of the most comprehensive and accurate empirical PA 

modeling schemes. However, that scheme requires a large number of coefficients when modeling high 

nonlinearities making it a non viable solution because of its computational and implementation costs. 

Many attempts have been made to reduce redundant or unnecessary terms from the Volterra scheme, 

leading to the most popular DPD scheme, the Memory Polynomial (M-Polynomial) as introduced in [2]. 

Although the M-Polynomial is a less complex, proven modeling and linearization scheme, authors in [3] 

found redundant parameters in its structure, and were able to reduce the number of parameters compared 

to the full M-Polynomial scheme, as well as improved the scheme’s stability. 

Up to this point, all DPD linearization schemes were based on behavioral modeling of the Device 

Under Test (DUT) which is considered a black box, finding a mathematical model fit that is as accurate 

and efficient as possible to the function presented by the DUT, disregarding any real physical operational 

information behind the behavior observed. However, there’s a physical correlation between the 

coefficients of the behavioral functions or schemes used until now, even the reduced ones where the 

elimination of coefficients has been experimental. Also, an ME formulation can be found based entirely 

on the physical circuit properties of the DUT, setting the link between high level behavioral modeling and 

physical models of the DUT. 

In fact, as presented in this thesis a new close-form ME formulation was found based on circuit and PA 

topology properties. To test the validity of this new formulation, it is first related back to the well 

established Volterra behavioral model; find the similarities between their respective terms. And second, 

the proven reduction from Volterra to M-Polynomial is explained through the terms of the expression. 

The third and last step was to implement a model based on this formulation and test the accuracy of 

simulation of the PA behavior.  

The thesis is divided into five chapters. The first chapter is an introduction laying the background 

information necessary to understand the purpose, the novelty and the contributions of the new work 

presented in the following 4 chapters. A brief summary of the contents of each chapter is presented in the 

following list.  
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Chapter 1 – this chapter serves as an introduction to first situate the scope of the thesis in the wide 

technological advancement, and where the work presented in the following chapters can be considered 

useful. An overview of wireless communications and the operation of Power amplifiers are presented, 

explaining the need for linearization techniques. 

Chapter 2 – the second chapter delves into the various linearization techniques used for RF PAs. The 

techniques are compared against various criteria to demonstrate why digital predistortion was applied for 

the rest of the thesis. Digital predistortion calls for accurate modeling, hence the foundation for behavioral 

modeling is presented with proven models, explaining the reasoning behind the polynomial base that will 

be used in later developments. 

Chapter 3 – as a first step in finding an efficient linearization scheme, this chapter presents 

deterministic approach to define the optimal number of coefficients to be used based on the parallel 

Hammerstein structure. The proposed approach is based on observing the filter impulse responses. The 

resulting model is tested experimentally for both modeling and linearization. 

Chapter 4 – in this chapter, a detailed explanation of memory effects in RF PAs and their physical 

sources leads to a close form formulation of memory effects. The formulation is the basis of the novelty 

presented in this thesis, as a link is established between the behavioral modeling discussed and physical 

circuit properties. A model is proposed based on that formulation, and is compared against the Volterra 

series formulation. 

Chapter 5 – the formulation presented in the previous chapter is explored further to understand the 

applicability of the Memory Polynomial to RF PA modeling. Some underlying assumptions for the 

memory polynomial are detailed, as well as justifying the necessity, or redundancy, of each coefficient in 

that scheme in terms of physical circuit properties.  
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1.2 Wireless Communication Evolution 

1.2.1 Evolution of Standards 

In an attempt to situate the scope of the work presented in this thesis, and where it fits in the wide 

technological developments, let’s start with an overview definition of the different generations of wireless 

networks since their early deployment, summarized in Figure 1.1. 

 

Figure 1.1 - Wireless network evolution and definition 

First generation (1G) wireless networks were targeted primarily at voice and data communications, 

requiring low data rates and hence narrow frequency bandwidth operation, Air interfaces operated in 

narrowband including the Advanced Mobile Telephone System (AMPS) for which the Federal 

Communications Commission (FCC) allocated a total of 40MHz of spectrum from the 800MHz band. 

Looking for mobility and speed, second generation (2G) and third generation (3G) wireless systems were 

developed, operating broadband signals with many added application features. These include mobility to 

networks, multimedia applications, quality of service (QoS) assurance, wideband wireless usage and high 

data transfer rates. New spectrally efficient transmission protocols were developed to achieve these 

parameters as shown in Figure 1.2, raising the complexity level of the schemes and their information 

density. 

GSM

CDMA one

DAMPS

GPRS

CDMA2000 1x

3GPP
Releases 99,4,5,6

UMTS

CDMA2000 3x

TD-SCDMA 

WCDMA

EDGE

3GPP
Release 7

2G 2.5G 3G1G

Voice Messages, Voice over IP

High speed data access HSDA  

Multimedia applications

Voice Voice Short messages

Low speed data

Services

Description

Interfaces

NMT

C-Nets

AMPS

TACS

Enhanced version 

of 2G, in mobility 

and data rates.

First analog 

cellular 

systems 

(1980’s)

First Digital 

cellular systems 

(1990’s)

Latest cellular networks, 

interoperability in 4G, however not 

implemented yet.

4G



 

 5 

 

Figure 1.2 - Wireless interfaces evolution for mobility and speed. [4] 

Third-generation (3G) and beyond (3.5 and 4G) mobile radio networks strive to provide multiple 

multimedia services that require high data transfer rates. User applications require that the transmission 

schemes support services with different data rates and bandwidths. Many wireless transmission schemes 

are evaluated for implementation, namely Wideband Code Division Multiple Access (WCDMA) and 

Worldwide Inter-operability for Microwave Access (WiMAX). Wide band code division multiple access 

(WCDMA) was first developed in Japan and Europe, becoming the leading 3G wireless standard in the 

world today. It is the technology used in the Universal Mobile Telecommunications System (UMTS). It 

can handle high bandwidth applications such as video, data, and image transmission necessary for mobile 

internet. WCDMA can also handle multiple users with variable application bandwidths and data rate 

requirements. It was introduced as framework of standards by the International Telecommunication 

Union (ITU) under the name IMT-2000 which brought high-speed access, support for broadband 

multimedia services, and universal mobility. 

Different air interface are necessary for the emerging (4G) networks, to meet the need for 

interoperability. This has been increasingly recognized by the research community, leading to new 
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developments such as recently multicarrier WCDMA (MC-WCDMA), combining principles of 

Orthogonal Frequency-Division Multiplexing (OFDM) and CDMA transmission. 

In summary, limited resources of frequency spectrum have to accommodate an increasing demand for 

wider bandwidth, high speed data transfer wireless applications. This leads to the development of highly 

complex, wideband schemes, with varying signal envelope levels. Therefore, every new generation 

transmitter has to have the capability of properly and accurately operating instantaneous power variations 

of signals with wide bandwidths, while simultaneously not affecting adjacent channel communications. 

Those are the main requirements behind signal figures of merit, and measurement criteria set forth to 

characterize either the transmitter operating itself or the regulatory requirements of a wireless interface. 

1.2.2 Peak-to-Average Power Ratio 

With high varying signal envelopes of new modulation schemes such as WCDMA and OFDM, Peak to 

Average Power Ratio (PAPR) is a signal parameter that has become increasingly crucial. Schemes 

operating wide modulation bandwidths have fast varying signal envelope amplitude, therefore 

considerably changing the instantaneous power fed to the PA from an average level to high peaks. Even 

though the occurrence of such peaks is low in WCDMA signals’, clipping them is not a solution as it 

reduces information transmitted contained in those signal peaks. The PAPR is a very important issue for 

any OFDM system as well. Since an OFDM transmitter makes use of multiple subcarriers to transmit 

data. The combined signal has a highly varying envelope. An RF power amplifier usually works in a 

saturated status to achieve relatively high power efficiency, and thus it will behave like a hard-limiter, 

which will cut off all useful data information if the dynamic range of the input signal exceeds a certain 

level. As a simple case scenario, if a 10W amplifier is passing a signal with a 10dB PAPR, that PA should 

be able to handle an input power up to a 100W. 

The main concern is that, consequently, the back-off level at which the PA has to be operated at is a 

function of the input signal’s PAPR. The higher the PAPR the higher back off needed for safe PA 

operation, leading to low power-efficiency designs.  

Moreover, distortions from the PA, observed at these high power levels (at and around peaks) should 

be minimal as the effect of these distortions is amplified on performance measures of the transceiver, as 

detailed in the following sections. Therefore higher PAPR values impose higher linearity requirements on 

the PA. As an example, in the case of WCDMA, guidelines determine a maximum of 4.5 dB PAPR for 

handsets and 12 dB for basestation transmission. 
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1.2.3 Transmission Quality Measures 

Every communication front end design is evaluated based on a few key measures set for signal quality. 

Depending on the wireless transmission scheme used, various sets of criteria are set by regulatory bodies 

to evaluate signal linearity and cleanliness to minimize cross talk. The various measures and criteria 

relevant to WCDMA are summarized in the following sections as an example of illustration. 

1.2.3.1 Adjacent Channel Power Ratio 

The adjacent channel power ratio (ACPR) can also be called adjacent channel leakage ratio (ACLR). This 

measure is used by many transmission standards as an important test parameter for the distortion of a 

transmission system, measuring the interference with a neighboring frequency band. Hence, ACPR is one 

of the main criteria set for standards by regulatory bodies. 

The ACPR measures the ratio of power in an adjacent frequency channel (offset) away from the main 

signal, to the inband signal power. Therefore, ACPR is an indication of nonlinear distortions in the 

transmitter hardware especially when modulated signals such as WCDMA are to be transmitted. The 

wider bandwidth, the more spurious out-of-band frequency components are observed otherwise known as 

spectral regrowth. As an example, Table 1.1 details the ACPR requirements for the transmission of 

WCDMA signals. 

Table 1.1 – Minimum ACPR levels required for transmitters using WCDMA signals 

Frequency Offset from 

Carrier Δf 
Minimum ACPR Measurement Bandwidth 

2.5 - 3.5 MHz -35-15*(Δf-2.5) dBc 30 kHz (Note 1) 

3.5 – 7.5 MHz -35 - 1*(∆f-3.5)   dBc 1 MHz (Notes 2 and 3) 

7.5 – 8.5 MHz -39 - 10*(∆f-7.5) dBc 1 MHz (Notes 2 and 3) 

8.5 – 12.5 MHz -49  dBc 1 MHz (Notes 2 and 3) 

Notes: [5] 

1. The first and last measurement position with a 30 KHz filter is 2.515 MHz and 3.485 MHz. 

2. The first and last measurement position with a 1 MHZ filter is 2.515 MHz and 3.485 MHz. 

3. The lower limit shall be -50 dBm /3.84 MHz or whichever is higher. 

1.2.3.2 Error Vector Magnitude (EVM) 

Error Vector Magnitude (EVM) or alternatively known as Signal Vector Error (SVE) is a measure for the 

performance of both transmitter and receiver. EVM requirements can place a more stringent requirement 
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on amplifier linearity than does adjacent channel performance.[5] Vector error can be graphically 

interpreted as shown in the following figure:  

 

Figure 1.3 - Graphical representation of the Error Vector Magnitude (EVM) 

In addition to the power amplifier in transmission, SVE is affected by many factors depending on the 

transmitter architecture. In the case of direct conversion transmitter, two dominant factors have non-

negligible contributions. The first factor is the gain and phase imbalance which results in a distortion in 

the I and Q plane as shown in Figure 1.3. The second factor causing greater EVM values is phase noise of 

a local oscillator which might introduce random distortions on the I-Q plane of the original signal itself.  

Calculating the EVM is given by: 

 (1.1) 

where M is the magnitude of the actual or measured vector, and  is the phase error between measured 

and ideal vectors. [4][6] Similarly, percentage EVM can be defined as: 

EVM %  = �����

���������
*100%  (1.2) 

 where  is the RMS power of the error vector, and  is the RMS power of ideal transmitted 

signal. As an example, for WCDMA transmission, the maximum allowable EVM in its specification is 

7%.Specifying EVM is decibels is also common and is defined as follows: 

EVM dB  = �����

���������
  (1.3) 
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1.3  Wideband Power Amplifiers in RF Communications 

A radio frequency and microwave frequency (RF/MW) transmitter is designed to operate at one or 

multiple carrier frequencies within those bands, with signals of up to a few megahertz of bandwidth. As 

signals evolved from relatively narrowband to wider modulation bandwidth, and highly varying signal 

envelopes especially in 3G, a wideband transmitter and thus power amplifier design is required for the 

transmission of such signals, but also linear to meet the previously mentioned signal quality criteria. A 

typical direct conversion transmitter topology is shown in Figure 1.4. The PA is the most power 

consuming, nonlinear device in a wideband transmitter, thus it is mainly the PA in a transmitter that 

should be linear, over the range of frequencies and amplitudes of signals to be transmitted. 

 

Figure 1.4 – Typical direct conversion RF Transmitter Topology 

RF wireless communications are allocated operation bandwidths in the bands from 800 MHz to 3GHz 

frequency range, and the 10 to 18 GHz for microwave applications. Power amplifiers used for RF 

communications applications are typically differentiated into Classes of operation. Each class has a 

determined mode of operation, efficiency and linearity characteristics. Different approaches have been 

developed to characterize the in terms of linearity and efficiency, the two major design criteria. Both 

criteria can be determined by output power levels achieved, whether it is in terms of device input power, 

or frequency of operation. 

1.3.1 Linearity of RF PAs 

Linearity in power amplifiers across classes can be specified in several ways. In some cases, the classical 

intercept points are the most meaningful characterization. However, when wider bandwidths and higher 

PAPR signal operation is required, adjacent channel power ratio as defined previously, or equivalently, 

two-tone intermodulation levels at full output power are more meaningful.[7]  

1.3.1.1 Intercept Points 

Intercept points can be determined on a simple input output characteristic power curve of a PA, as shown 

in Figure 1.5. 
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1. 1dBcompression Point - 1dB – compression is measure of the level of linearity of a device. As the 

amplitude of the input RF signal increases, the output level should follow linearly. However, for a 

nonlinear device, the output starts to deviate at one point from the linear case, at which the device 

starts to exhibit nonlinear behavior. The 1dB compression point is defined as the point where that 

deviation from the ideal linear output reaches the 1dB level. 

2. Second Order Intercept Point - IP2 – it is the theoretical point on the curve as shown in Figure 

1.5 where the desired output signal and second order products become equal in amplitude.  

3. Third Order Intercept Point - IP3 – the theoretical point on the curve where the desired input 

signal and third-order products become equal in amplitude s the RF input is raised. IIP3 is the 

input referred IP3 which, multiplied by the small signal gain, yields the OIP3, or output referred 

IP3. 

 

Figure 1.5 – The 1 dB Compression and Intercept Points defining the dynamic range of an RF PA 

1.3.1.2 Intermodulation Distortion 

When two sinusoidal frequencies are applied to a nonlinear amplifier, the amplifier nonlinearity generates 

new frequency components called intermodulation products (IMD), located at specific frequencies as 

shown in Figure 1.6. Those spread from baseband to higher harmonics of the input signal.  
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Figure 1.6 - Typical RF PA spectral output under two-tone input signal excitation 

The spurious frequency components that are out of band do not necessarily affect transmission and 

reception of the signal itself but rather the users of the corresponding bands. However, when evaluating 

the linearity of the PA, it is necessary to define the levels of the spurious components that are inband, 

which potentially interfere with the signal itself. These spurious frequencies are the mainly components 

that fall at the 3
rd

 and 5
th
 order intermodulation frequencies (IMD3 and IMD5 respectively). As an 

illustration, Table 1.2 summarizes of the location of these IMD components under a two-tone test 

condition.  

Table 1.2 - Intermodulation product frequency elements from a two-tone test that fall within, or in 

the vicinity of the signal bandwidth. 

Order Intermodulation Products 

1st Order f1 f2 

3rd Order – IMD3 2f1 - f2 2f2 -f1 

5th Order – IMD5 3f1 - 2f2 3f2 -2f1 

The IMD is thus defined as the difference in power levels between the resulting fundamental 

frequencies and the 3
rd

 and 5
th
 order frequencies respectively for IMD3 and IMD5, as shown in Figure 

1.7. 
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Figure 1.7 – IMD3 and IMD5 definition 

Distortion in Power amplifiers can arise from two different phenomena. At low levels, distortion is 

caused by the same nonlinearities that affect small-signal amplifiers. As the amplifier is driven into 

saturation, however, distortion caused by clipping the amplitude peaks of the modulated carrier waveform 

becomes the dominant phenomenon, and the distortion generated in this manner is much greater than the 

small-signal distortion. As a result distortion increases significantly as the amplifier is driven into 

saturation. For all classes of operation, minimizing clipping distortion requires optimizing the load 

impedance. However, in most cases, the optimum output power and efficiency are achieved at 

significantly different load impedance than the impedance that minimizes distortion. At full output power, 

strong distortions are observed. One solution is to operate the amplifier at a lower power level or back-off 

input power which is several decibels below sinusoidal output power, decreasing the Efficiency of the 

PA, as discussed in the following section. 

1.3.2 Efficiency of RF PAs 

The following paragraph defines the main figure of merit for RF PA efficiency, followed by details on the 

efficiency of the various classes of operation of PAs, demonstrating how efficiency and linearity are the 

main tradeoff in the PA’s operation.  

1.3.2.1 Efficiency Figure of merit: Power Added Efficiency 

Power added efficiency (PAE) is a key figure of merit for power amplifiers. It is expressed as the ratio of 

the additional RF power provided by the amplifier to the DC power 
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where RFPin is the power of the RF input signal fed to the PA, RFPout is the RF power measured at the 

output of the PA, and DCP  is the DC power required for the operation of the PA. 

The DC power required for the operation of the PA cannot be overlooked. DC power is usually 

dissipated in the form of heat. PAs with high DC power consumption require large heat sinks, which are 

bulky and costly to design and realize. Therefore, a low PAE implies the need for large DC power 

modules, bulky thermal dissipaters on fixed terminals such as base stations, or consequently short battery 

life for mobile terminals.  

1.3.2.2 The Linear (Continuously Driven) Amplifiers 

Classes A, AB and B are the three main classes of continuously driven amplifiers. Those linear amplifiers 

cannot achieve high efficiencies. In fact, class A is the most linear and least efficient of the three, 

dissipating a great amount of power even under quiescent conditions (not excited). The maximum 

efficiency of a class A amplifier is 50%. Figure 1.8 shows the improvement in efficiency in Class B, 

whose maximum efficiency is 78%, however inherently has lower gain than Class A. Another 

disadvantage of Class B is that it generates a high level of harmonics in the drain current by switching the 

FET on and off during each excitation cycle. 

 

Figure 1.8 - RF output Power as inversely proportional to efficiency of an RF PA. [8] 

RF power amplifiers are rarely operated in purely class A or B, but somewhere in between, creating the 

Class AB which is a compromise between the two classes. This mode of operation is attained either by 

saturating a class A PA or reducing the bias of a Class B, achieving better efficiency than Class A and 

better gain than Class B. Moreover, biasing an amplifier in a particular class depends on the performance 
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required by the application. While the efficiency of the PA increases moving form Class A (50% 

efficiency), towards Class B (87% efficiency) or C (100% efficiency), maximum RF output power 

decreases as shown in Figure 1.8. Moreover, ideally for Class A and B operation there is a linear relation 

between Pout and Pin, while for the intermediate Class AB bias, the linear behavior is obtainable in an 

unsaturated operating condition. In other words, the PA should be operated at a higher output back-off 

power (OBO) to maintain its linear characteristics, thus reducing efficiency of the PA. Hence why, 

linearization schemes are sought to extend the linear region of the PA, and therefore alleviating the major 

efficiency-linearity trade-off, allowing a more efficient and linear operation of the RF PA. Several 

linearization schemes were developed, detailed in section (2.1), all aiming at distorting the input or output 

signals in a manner that compensates for the nonlinear behavior of the amplifier. 

1.3.2.3 The Nonlinear Amplifiers 

These are classes C, D, E, F, G, H, J and S. They are seldom used for RF and microwave applications. 

The efficiency of such amplifiers is high but the magnitude of the fundamental component of a signal is 

greatly reduced, therefore for RF applications, these classes are practically operable only at low power 

where device gain is high. Classes D and E are strongly nonlinear and are operable only where high levels 

of distortion are acceptable, or when the input signal has constant envelope (i.e. in frequency or phase 

modulated signals FM/PM). In classes E, D and S, transistors are used as RF switches, while in classes C, 

G and F, the transistor is still a voltage controlled source. 

1.3.2.4 Load Modulated (Doherty) PAs 

Another solution to alleviate the linearity-efficiency tradeoff of RF PAs was the Doherty amplifier. The 

Doherty power amplifier (DPA) technique proved to be a more efficient alternative to the classical PA 

topology. As shown in Figure 1.9, the DPA consists of two power amplifiers. The “main” amplifier is a 

Class AB which saturates at high input power levels, while the “auxiliary” or second PA is biased in 

Class C. In fact, the auxiliary PA turns ON and starts contributing in the output power at a predetermined 

input power threshold. Thus, the load impedance seen by the transistor varies depending on the input 

power level, which if designed properly, significantly improves the overall performance. In an ideal 

impedance matching case, when both amplifiers are delivering maximum power, they contribute equally 

to the output power. 
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Figure 1.9 – Generic Load Modulated PA – Doherty Amplifier 

The following figure shows the typical improvement in efficiency that the Doherty PA brings about 

compared to a regular class AB PA.  

 

Figure 1.10 - Doherty's Improved efficiency over class AB, while both suffer from low efficiency in 

the linear region. 

With highly modulated signals, the PA has to be operated at a certain back off power to accommodate 

for the high PAPR levels. As outlined in Figure 1.10, the efficiency of the Doherty PA is maintained high 

for a certain range of back off from saturation power, making the DPA a highly desirable topology for 

operating high modulation signals. For this reason, the experimental validation of the work presented in 

this thesis will be carried out based Doherty PA operation. 

In summary, linearity and power efficiency are the two main criteria any PA designer is trying to 

optimize. Improving the linearity of a PA by only changing its mode of operation comes at the expense of 

its efficiency. The Doherty power amplifier brought an attractive improvement in terms of efficiency 

compared to the class AB. However, the linearity of such PAs is not at the level to achieve the 

transmission quality required by the wideband, high varying envelope signals discussed previously. In 
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order to the minimum requirements of such schemes with acceptable efficiency levels, additional PA 

linearization methods are sought as described in the next sections.  
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Chapter 2 

Linearization and Modeling of RF PAs 

2.1 Linearization Techniques of Power Amplifiers 

Linearization techniques for RF PAs are increasingly applied to enhance the main tradeoff of linearity 

versus efficiency and reduce the required power backoff level. Linearization can be performed using three 

basic techniques: feedback, feedforward and predistortion.  

2.1.1 Feedback Technique 

A basic compensation technique for the nonlinear behavior of an RF PA can be achieved through the 

implementation of a feedback loop. This technique, although fairly straight forward to implement, suffers 

from many drawbacks when implemented for an RF PA system. The main drawback of applying this 

technique to high frequency, wideband systems are the inherent gain-bandwidth product limitations and 

the sacrifice of gain for linearity. The block diagram of a generic feedback linearizing system is shown in 

Figure 2.1.  

 

Figure 2.1- Feedback linearization block diagram. [5] 

The Feedback Block determines the type of feedback structure and scheme of a linearizing system. 

These types include Passive RF feedback, Active RF feedback, frequency difference feedback, 

modulation feedback. 

For a Passive RF feedback scheme, the Feedback block of Figure 2.1 reduces the gain of the amplifier 

at RF frequencies, i.e. its function can be simplified into (1/k) and it can be shown that: 

 (2.1) 

In the case where k << A, the output of such system can be simplified as: 

 (2.2) 
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which improves the stability of the system such as the output is independent of PA operational variations, 

i.e. temperature. However, realizing a gain (A) that is much higher at RF frequencies than k is expensive 

both in implementation and operation. Implementing an RF feedback using passive circuitry can be done 

through either shunt or series circuit configurations.  

Alternatively, instead of using a passive circuit, the voltage divider or feedback block can be 

implemented with an amplifier stage. The resulting scheme is called Active RF feedback. The feedback 

amplifier can be adjusted to introduce distortions into the system that would cancel out the main amplifier 

that is being linearized. Another advantage of active RF feedback is that, since the PA introduces power 

to the stage, the power for the feedback path components is not all from the main power amplifier.   

2.1.2 Feedforward Technique 

Feedforward (FFW) linearization method aims to dynamically compensate for the gradual compression of 

the PA characteristic behavior as shown in Figure 2.2. The correction for distortions takes place at the 

output of the main PA, where an error PA (EPA) effectively adds power to the amplified signal from the 

main PA while also compensating for AM-PM distortions present as depicted in Figure 2.2.  

 

Figure 2.2 - Basic Feedforward Linearization 

The most basic feedforward amplifier linearization consists of the blocks shown in Figure 2.3. The 

signal in the top path is amplified by the Main PA, generating all the nonlinearities at its output. In order 

to singularize these nonlinearities, a delayed PA input is subtracted from a sample of its output. The 

resulting signal is essentially formed by the distortions only, and does not contain the original signal. That 

error signal is then linearly amplified by the Error PA (EPA) to a required level, in such a way that, 

coupled in antiphase with the delayed output of the main PA, it will cancel out the distortions produced 



 

 19 

by the main path. The delays in the loops are to account for the amplification time of the respective PAs. 

The result is an amplified version of the input signal, clean of distortions.  

 

Figure 2.3 - Basic Feedforward Linearizer Block Diagram [5] 

2.1.2.1 Implementation and Operation 

Feedforward correction is a technology for cellular and base station applications to achieve the high 

linearity levels of -75 dBc and better. It can be employed for wideband applications; however, the 

practical realization of such a technique is quite complicated. Due to the many components required by 

such schemes, they are expensive to implement and operationally power consuming. One major concern 

in FFW loop design is the power addition which invariably involves power losses in power-combining 

devices shown in Figure 2.3.  

Multiple feedforward loops can be implemented as a single operational block. That is, instead of having 

one feedforward loop, distortions are compensated for multiple times in sequence. Having multiple 

feedforward loops will improve the performance of the scheme on many levels; the ideal case assumes 

that the error amplifier is linear. However, in reality it will introduce some distortions of its own, whose 

effect will be reduced through additional loops. Also, if one loop fails to function, the remaining ones will 

still compensate for the errors perceived, therefore creating a fail-proof system. Moreover, in the 

amplifiers of the feedforward loops do not need to be high power amplifiers like the one amplifying the 

signal itself, and therefore can be designed to handle low power at a higher linearity level. 

Advantages of the Feedforward Linearization: 

1. Does not reduce amplifier’s gain contrary to feedback systems.  

2. Gain-Bandwidth is conserved within the bandwidth of interest, contrary to feedback systems 

which require high feedback bandwidths to provide the required levels of correction.  
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3. Correction is independent of Amplifier delays, unlike feedback where the system can potentially 

become unstable for high amplifier delays.  

4. The correction is based on only current events, disregarding past ones which feedback is based 

upon. 

5. The basic feedforward configuration is an unconditionally stable system. 

6. Adding loops to the basic configuration incurs more costs but provides more reliability as in fault 

tolerance and accuracy, and a lower noise figure if needed for the application.  

Disadvantages of the Feedforward Linearization: 

1. Device characteristics are assumed to be constant over time, i.e. temperature effect is neglected, 

as is variation of device properties with time as it is an open-loop implementation. 

2. Matching between the circuit elements must be maintained to high level of correction, over a 

wide bandwidth of operation. 

3. Adding loops adds accuracy but also implementation size and cost. 

4. A DSP control scheme can be added to monitor all loops of a feedforward system, keeping the 

reference and operational levels of the linearizer constant. However these control loops are fed 

with DC voltages that will fluctuate with time, changing yet again the reference voltages of a 

feedforward linearizer (long-term effect). This has been cited as objection to the practical use of 

feedforward by some system operators.[5] 

2.1.3 Digital Predistortion (DPD) 

Predistortion technique is the simplest form of power amplifier linearization. The concept of predistortion 

is similar to that of the feedforward linearization in that linearization is done by cancelling 

intermodulation products at the output of the amplifier. However, unlike the feedforward method, signals 

are predistorted before being amplified. There are three main types of predistortion, namely RF, 

intermediate frequency IF, and Baseband predistortion. The three techniques are discussed hereafter, RF 

and IF being in one section for they are highly similar. 

The basic function of a predistorter is depicted in Figure 2.4. To achieve a power level A at the output 

of the amplifier, the input power level should be Vin of point B. Therefore Vp should be equal to Vin (B). 

Hence the concept of DPD linearization is to reverse the behavior of the amplifier by feeding it with the 

signal that would yield the ideal desired output given certain input conditions.  



 

 21 

To synthesize the inverse function of the PA designated as F(x) in Figure 2.4, behavioral modeling 

schemes can be used as introduced in literature. With the growing demand in signal bandwidth, these 

modeling schemes evolved from simple memoryless [9][5][7], to more advanced schemes such as the 

Volterra series, which are more commonly used in the form of their simpler derivations: memory 

polynomials (M-Polynomial), Hammerstein [10] and Wiener models [11] as well as other non-polynomial 

based schemes such as Neural Networks [12]. These schemes used to model the PA, are now 

compensating for its non ideal behavior by simulating its inverse function. The performance evaluation of 

such models is not limited to their linearization capability, which is related to their modeling accuracy. 

The implementation complexity of the DPD is a major consideration for the practical implementation of 

the scheme, and is directly related to its number of coefficients and the complexity of their identification. 

 

Figure 2.4 - Basic Operation of Digital Predistortion (DPD) 
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2.1.3.1 RF / IF Predistortion 

The fundamental advantage of RF and IF predistortion is its ability to linearize the entire bandwidth of an 

amplifier or system simultaneously, making it ideal for wideband amplifier linearization such as base 

station or satellite amplifiers.  

 

Figure 2.5 - Operation of: (a) IF predistorter requiring an LO, and (b) RF predistorter. 

For these two types of predistortion, the predistorter operates at high frequencies (either IF or RF), the 

operation of such predistorters is summarized in the Table 2.1.  

Table 2.1 - Operational Characteristics of IF/RF Predistortion  

Implementation Complexity 
Fairly simple implementation with a few number of 

components required. 

Stability Open loop scheme which makes it Unconditionally stable 

Linearization Bandwidth Very wide bandwidth, comparable to a feedforward system. 

Linearization Capability 
Modest, requires a high order of modeling which encumbers 

the ease of implementation and scheme viability. 
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2.1.3.2 Baseband Predistortion 

Recent advances in DSP technologies have made it increasingly available, cheaper and more versatile. 

Operational power consumption was significantly reduced, and more importantly, higher computation 

rates allowed for wider bandwidth operation, making digital baseband predistortion a viable and 

competitive solution for PA compensation. In digital predistortion, the baseband signal is predistorted 

before it is converted to the analog domain, frequency translated to RF and amplified. The block diagram 

in Figure 2.6 shows a basic adaptive baseband predistortion implementation. 

 

Figure 2.6 – Adaptive Baseband Digital Predistortion Block Diagram 

The DPD-Digital to RF-PA path can be implemented on its own. However, an advantage of baseband 

predistortion is that it can be adaptive, that is to adapt the synthesizing function of the predistorter to the 

current amplifier behavior. The PA characteristic behavior can vary significantly with time where dc bias 

levels fluctuate, or with temperature changes, transistor degradation. Predistortion in such schemes takes 

place in the DSP part of the predistorter. A small fraction of the PA output is fed back and converted from 

RF to baseband. An adaptation algorithm compares this signal with the output of the predistorter. 

Different approaches exist: namely Direct- and Indirect Learning. However, in the scope of this thesis, 

adaptation has not been applied in the DPD process. 

2.1.3.3 RF / IF versus Baseband 

The choice of a proper high efficiency approach or linearity correction scheme depends on performance 

tradeoff as well as manufacturing capabilities [13]. Many factors are to be considered as shown in the 

comparison of Table 2.2, summarizing and comparing all main three techniques: feedback, feedforward 

and predistortion. 

The most traditional linearization technique is the feedback one; however it is hard to implement it for 

RF frequencies. Conversion of the output RF spectrum down to the baseband frequency, whereupon the I 

and Q signals are picked out and fed back to the input of the amplifier as correction signals (Johansson et 

al. 1993). The method's cancellation performance is good, but the bandwidth is narrow, making the 

technique unsuitable for very wideband systems. Feedforward, on the other hand, can be employed for 
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wideband linearization, but unfortunately the system is extremely complicated, resulting in great power 

waste and a large physical size. This technique entails comparison of the input and output spectra, and 

errors are corrected after amplification [5]. 

Table 2.2 - Performance comparison of the 3 main Linearization techniques. 

Technique Cancellation Performance Bandwidth PAE Size 

Feedback Good Narrow Medium Medium 

Feedforward Good Wide Low Large 

Predistortion Medium Medium High Small 

When comparing a non-linearized to linearized system, the efficiency of the latter should be 

significantly higher than that of non-linearized system operated at a backoff level, and demonstrating the 

same linearity levels in terms of IMD or SVE [5]. Predistortion is therefore a useful efficiency 

enhancement technique where linearity is an issue in a system specification.  

For the rest of the thesis, and based on the comparisons, digital baseband predistortion will be 

considered as the predistortion scheme used for Linearizing RF PAs. The thesis focuses on synthesizing 

the most accurate predistortion function, i.e. one that would best complement the PA behavior, with the 

least amount of complexity whether in synthesis or implementation and operation.  

2.2 Behavioral Modeling of Nonlinear RF Systems  

Linearization is necessary and crucial for adequate operation of a wideband RF PA. The efficiency of a 

DPD linearization depends largely on the accuracy of the modeling scheme used to compensate for the 

PA’s nonideal behavior. The slightest inaccuracies in a PA model could fail to compensate for the 

spurious PA signal components, but also introduce new unnecessary distortions to the system being 

linearized. 

2.2.1 Behavioral modeling 

There are various levels of abstraction when modeling an RF PA. Great amount of research has been 

geared towards device modeling of PAs in order to understand the physical mechanisms behind the 

resultant complex behavior observed. On the other hand, behavioral modeling is at a much higher level of 

modeling, where the PA system is considered as a black box, from which the only information used in 

modeling are the input and output signals. 

The most common method to capture that information (input and output signals) is through the 

envelope simulation approach, graphically summarized in Figure 2.7. It has in fact been the most 
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commonly used technique for the last decade for RF PA characterization [8]. The resulting output signal 

from this simulation can be processed to obtain behavioral characteristic information such as EVM and 

ACPR mentioned previously, as well as used to model the RF PA system. 

Characterizing an RF PA consists of measuring and evaluating its behavior under certain input 

conditions and constraints. As shown in Figure 2.7, the characteristics of the RF PA are obtained from the 

desired continuous wave input signal and its corresponding output [8]. From this information, all signal 

and PA characteristics can be obtained.  

 

Figure 2.7 - Time domain characterization of a PA[8] 

A useful representation of the characteristics of a PA is through AM/AM and AM/PM curves, which, 

respectively correspond to plotting the amplitude and phase of the output signal with respect to the 

amplitude of its input signal. As shown in Figure 1.5, linearity of the PA can be determined from the AM-

AM plot. 

Before discussing the models used for RF PAs, it is worth noting that the accuracy of any behavioral 

modeling scheme, since it uses only input/output data, is largely dependent on the characterization or 

measurement technique used. The envelope simulation described earlier is used for all experiments in the 

later sections of this thesis. This time domain characterization simplifies the task by making three major 

assumptions [8]: 

1. The response of the device under test is assumed to be quasi-static. 

2. Signals are assumed to have narrow bandwidths with respect to the RF spectral domain, The 

time-scale on which perceptible changes in the RF envelope occur is very slow in comparison to 

the RF time domain;  

A

AM-AM

|y(t)| = Aamp |x(t)|

AM-PM

Φy(t) = Aphase|x(t)|

t

x(t)

t

y(t)



 

 26 

3. The measurement, hence simulation, bandwidth is restricted to a narrow frequency band by 

suitably filtering the immediate vicinity of the signal itself. 

2.2.2 The Polynomial as a Basis for PA models 

A narrowband PA is considered as a static, instantaneous or memoryless nonlinear input-output system, 

which can be modeled by a polynomial: 

1

( ) ( )
M

i

i

i

y t a x t
=

= ∑
  (2.3) 

where y(t) is the output of the amplifier in the time domain, x(t) its input, ai is the complex coefficient of 

the i
th 

power, and M is the highest input power required to model the PA. 

This simple expression has been used as the basis of many nonlinear models for amplifiers, In his book 

on “Advanced Techniques of Power Amplifiers”, Steve Cripps states that: “in radio frequency 

applications, there is fundamental justification for staying with a polynomial approach. The frequency 

domain, with its sinewave generators, bandpass filters, and spectrum analyzers gives integral polynomial 

powers and coefficients tangible and measurable reality.”[8] 

Moreover, “the fact that some kinds of device may have characteristics that are more readily modeled 

by some other mathematical function is only of intermediate use if the final characteristic is to be 

transformed in the frequency domain, the FFT process itself infers a set of polynomial coefficients in the 

determination of harmonic frequency components.” 

To illustrate the behavior described, let us consider a two-tone test applied to a PA modeled with a 

polynomial. The two-tone test is another characterization technique which uses an input signal consisting 

of two equal amplitude sinusoids at two different frequencies. The separation between the two tones is 

equivalent to the signal bandwidth when the DUT is excited by a real world modulated signal. Following 

the models presented in the above sections, the resulting output of the nonlinear network is expressed as 

follows: 

 

∞

∑
 (2.4), 

i.e. the output is composed of a very large number of mixing terms involving all possible combinations of 

. Assuming signal bandwidth is significantly lower than the RF center frequency, harmonic 

bands can be observed, each centered around multiples of the two tones, equivalently the carrier in real 

world RF signals as shown in the first row of Figure 2.8. All these newly generated components are called 
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intermodulation distortions (IMD), or equivalently spectral regrowth. The amplitudes of these IMDs and 

their respective phase angles depend on the characteristic behavior of the amplifier under the specific 

conditions of operation, including the bandwidth and power levels of the input signal. The second row of 

Figure 2.8 shows the spurious spectral components that are created by a memoryless nonlinearity, i.e. the 

response of an RF PA modeled with simple polynomial when excited with a clean two tone signal. The 

AM/AM characteristic of the DUT shows nonlinearity with no dispersions. The Frequency domain 

equivalent of the output signal is composed of the fundamentals 1f  and 2f , as well as a set of spurious 

elements spread around the main signal bandwidth. The ones shown in the figure correspond to a 

maximum of 5 orders of nonlinearities, which spread over the following frequencies: 

1 2 1 2 2 1 1 2 2 1, , 2 , 2 , 3 2 3 2f f f f f f f f and f f− − − − . At this point it is worthwhile to note the 

following three concepts:  

1. The spurious elements follow the principle of superposition. Every arrow at the various 

frequencies shown in Figure 2.8 is the resultant of spurious elements generated by many orders of 

nonlinearity.  

2. The baseband and higher harmonics are eliminated when measuring the signal in the envelope 

domain, making it impossible to find the exact amplitude for each order of nonlinearity.  

3. Only odd orders lie within the measurement bandwidth. Even orders do affect the amplitude and 

phase of those inband components, however for modeling purposes and when the characterization 

of the DUT is based on envelope time domain, it is sufficient to include odd orders in the model 

used and capture all nonlinearities within the band of interest, however those nonlinearities are 

formed or the individual contributions from even and odd orders to form the resultants observed. 

2.2.3 Wideband PA behavior 

In reality, a single complex polynomial can only capture the distortions brought about by the nonlinear 

component of the behavior of an RF PA. However a PA exhibits a more complex behavior as shown by 

the AM-AM distortions of the 3
rd

 row of Figure 2.8. It is clear that for one input power level, many values 

of output power can be expected at the output of the DUT, implying that the instantaneous output signal is 

not only dependent on the instantaneous input. In fact, for wideband PAs, current output depends on 

current input but also on past occurrences of that input, defining that physical phenomenon as memory 

effects. The wider the bandwidth, the more pronounced the dispersions or memory effects are, and 

therefore should be taken into consideration by the modeling scheme.  
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Figure 2.8 – Time and Frequency Domain Interpretation of a typical RF PA response in real time 

domain and RF envelope time domain – 1) Real time physical behavior of the PA with frequency  

components spanning from baseband to higher carrier harmonics – 2) Measured or simulated 

signal in the envelope time domain, with carrier band down converted to baseband, and 3) 

Baseband equivalent signal showing memory effects. 

2.2.3.1 The Volterra Series 

The Volterra series is one of the most comprehensive schemes for modeling nonlinear systems with 

memory. It is a generic modeling scheme that can be used to model an arbitrarily nonlinear system; it has 

been used for modeling biological (physiological) systems, nonlinear satellite links, multiple input 

devices such as mixers, and microwave circuits. Under suitable linearity conditions, the Volterra models 

with truncated nonlinearity order and memory can be used to represent nonlinearities of any order, to an 

arbitrary accuracy, over a given input amplitude range [14]. 

A Volterra series can be described as a ‘Taylor series with Memory’, defining the distorted output 

signal y(t) as an infinite series:  
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= ∑
 (2.5) 

where Dk(t) is the k
th
 order response of the system, formed from an k-fold convolution of the input signal 

x(t) with the n
th
 order nonlinear impulse response of the system 1( ,..., )k kh τ τ , known as the Volterra 

Kernels [5]: 

1 1 1( ) ... ( ,..., ) ( )... ( ) ...k k k k kD t h x t x t d dτ τ τ τ τ τ
∞ ∞

−∞ −∞
= − −∫ ∫  (2.6) 

The Volterra series model is expressed in a matrix form as  

[ ] ( ) ky n f D=
 (2.7) 

where f is a nonlinear system function with memory and the vector Dk is given by:  

 ( [ ] , [ 1] , [ 2],..., [ 1])kD D n D n D n D n M= − − − +
    (2.8)    

M is the memory duration of the nonlinear system and d[n] is the output of the Volterra model 

Predistorter defined as:
 

[ ] . [ ]TD n h X n= , where, the superscript T denotes the transpose of the matrix, h 

is the Volterra kernel vector, and X[n] is the input vector.  

The Volterra series presents the advantage of modeling each component separately, however, its main 

disadvantage is it has poor convergence properties. To characterize applications with a saturating 

behavior, it therefore requires a large number of terms, i.e. 5k ≥  for power amplifier modeling [15]. The 

extraction of higher order kernels (k>2) is practically and computationally ineffective, causing the 

Volterra series to be non-viable for modern communication circuit modeling.  

2.2.3.1.1 Power Series 

The Voltera series is a time-domain representation of the output of a nonlinear system. An equivalent 

frequency-domain power series representation can be found and the result is a much more efficient series, 

which can deal with severe nonlinearites. The input signal can be described as:  

  (2.9) 

where are the magnitudes of the individual frequency components, . The output signal from the 

nonlinear system, y(t), can then be expressed as a generalized power series: 
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 (2.10) 

where i is the order of the power series, coefficients ai and bn are complex and real respectively, and ,n iτ  

is a time delay term which depends upon frequency and the order of the power series.  

This technique has better modeling efficiency than the Volterra series because of its operation in the 

frequency-domain. However it is unclear how to generate the above coefficients from tabulated measured 

data. The inclusion of frequency-dependence of the time delay terms and the use of complex coefficients 

in the model allows a very wide range of nonlinearities to be characterized. This is therefore potentially a 

powerful modelling method, assuming that the relevant coefficients can be obtained.  

2.2.3.1.2 Derivations from the Volterra series: The Memory Polynomial 

The Memory polynomial as introduced by Kim et. Al. [2] is derived from the Volterra series formulation 

in an attempt to reduce the latter’s complexity and take advantage of its modeling capability. The terms 

eliminated from the Volterra series are all the cross terms of samples of x(n). Thus, considering the matrix 

formulation of the Volterra series, the remaining terms are the diagonal terms, corresponding to pure 

powers of the input signal samples. The memory polynomial formulation can be expressed as:. 

 (2.11) 

In this formulation, yMP(n) and x(n) are the output and input signals respectively, T is considered the 

memory length and M the highest order of nonlinearity of the polynomials. A Least square algorithm can 

be used to find the coefficients cm,i of that equation, with the following problem formulation: 
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 (2.12) 

The input data points are constructed as an nx(M+K) matrix A, multiplied by the coefficient vector C, 

where . The conditioning of Matrix A is an important figure 

in the evaluation of the stability of the modeling schemes.  

Whether one looks at the M-Polynomial as a derivation from the Volterra, or a simple expansion of the 

single polynomial described in the memoryless modeling in a way to include past input samples in current 
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output, the M-Polynomial remains one of the most commonly used behavioral modeling scheme. Its 

proven modeling capability, along with its relatively lower complexity, makes it a gold standard model 

against which to evaluate the performance of other schemes. 

2.2.3.2 Non-Polynomial based behavioral models 

A few other behavioral models have been successful at capturing the PA’s characteristics. These include 

Look up Tables (LUT), neural networks [16] and genetic algorithms. Other types of models are the two-

box models known as Wiener or Hammerstein models, shown in Figure 2.9. These use a cascade of a 

nonlinear function and a linear filter to model dynamic nonlinear systems. The first box of the 

Hammerstein scheme accounts for the PA’s static nonlinear behavior, while the second captures its 

memory effect. The static nonlinear part of the Hammerstein/Wiener model is implemented using 

polynomial functions, the LUT, and Neural Networks [16]. Parallel Hammerstein/Wiener models have 

also been suggested [17] to address the limited capability of traditional schemes to account for memory 

effects. 

 

Figure 2.9 – Hammerstein and Weiner Model Diagrams. 

2.3 Experimental Validation of Models 

Models developed in this thesis, or procedures proposed are tested experimentally to verify their validity. 

The following paragraphs outline the experimental setup used, the device under test, and testing 

procedures for the accuracy and efficiency of the various PA modeling and linearization schemes 

presented. 

2.3.1 Experimental Setup 

The diagram of Figure 2.10 represents the setup used for measurement tests. Tests signals are first 

synthesized with Advanced Design System (ADS) software by Agilent, which controls the signal 

generator via GPIB (General Purpose Interface Bus). Signals generated are fed into the PA, which is 

described in the next paragraph as the device under test, whose output is captured by the Spectrum 

Analyzer. The latter communicates information back to ADS and the vector software analyzer.  

Memoryless 

Nonlinearity
FIR

OutputInput Memoryless 

Nonlinearity
FIR

OutputInput

a) Hammerstein model b) Weiner model 
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Figure 2.10 – Experimental Setup 

2.3.2 Device Under Test (DUT)  

Experimental validation of the results presented through the thesis is performed on a PA lineup that 

consists of three PAs all implemented using Laterally-Diffused Metal Oxide Semiconductor Field Effect 

Transistor (LDMOS-FET) technology: 

1. 5 Watt IC driver (Freescale MHV5IC2215N) 

2. 100 Watt class AB driver (Freescale MRF6S21100H) 

3. 400 Watt Doherty PA (2x Freescale MRF7S21170H).  

The output spectrum of the PA lineup is measured in both forward and reverse modeling scenarios. The 

construction of the dynamic AM/AM and AM/PM characteristics of the PA from this data, as well as that 

of the inverse function of these characteristics is then performed in MATLAB®.  

A four-carrier WCDMA test signal, with a Peak to Average Power Ratio (PAPR) of 8.30dB, 

synthesized in Agilent Design System (ADS) was used as a test signal, as shown in Figure 2.11. 

 

Figure 2.11 – Typical DUT Input and output spectra of a 4-carrier WCDMA signal. 
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2.3.3 Forward and Reverse Model Validation Tests 

These tests go farther than just evaluating a model’s accuracy. A model can be mathematically accurate, 

consisting of a function that theoretically ‘fits’ the input output response of the DUT. However, modeling 

this response consists of capturing the real physical, desired and spurious elements present in that 

response. 

2.3.3.1 The Forward Validation Test 

The Forward Validation test investigates the capability of the model to capture the memory effects 

observed in the behavior of the PA. In a typical PA, the nonlinear memory effects are perturbations, 

usually much smaller than the memoryless nonlinearities. Consequently, assessing the fidelity of the 

model by comparing the complete model and DUT signal spectra will emphasize the accuracy of the 

memoryless part of the model, and make it difficult to assess the accuracy of memory modeling because 

of these effects are relatively small perturbations. The test is based on the application of a memoryless 

predistorter as described in [17]. The objective of this test is to highlight the memory effects in the PA 

behavior, by eliminating the memoryless components of the nonlinear behavior. A memoryless 

predistorter is constructed and applied to the DUT and its simulated model, leaving only memory effects 

as distortions in the output. The two output signals, one from the linearized DUT and the other from the 

linearized model, are then compared, showing the extent of the model’s capability in reproducing the 

small perturbations present in the DUT. 

2.3.3.2 The Reverse, or DPD, Validation Test 

The DPD implementation of a model requires the synthesis of the inverse function of that model. For 

several schemes, including the Volterra series, an analytical formulation of the inverse model can be 

obtained. However, a more direct method is to simply reverse the input and output data, since the reverse 

of a model that transforms A to B, is another model that transforms B to A. Therefore, a scheme that is 

considered accurate in forward mode, need not necessarily handle the reverse data accurately enough, 

thereby the necessity of testing a model in reverse, or DPD mode. 
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Chapter 3 

A Deterministic Approach for Behavior Model Optimization 

Many behavioral schemes are used to model RF PA systems, and are thereafter implemented as DPD 

schemes for front end linearization. Complexity of the behavioral models is an essential criterion in 

determining a scheme’s viability. It determines the feasibility of the scheme’s implementation as it greatly 

affects, among others, its synthesis (identification) complexity and numerical stability, and its execution 

burden (number of multiplications and additions). 

3.1 The Memory Polynomial: Trial and error structure optimization 

The M-Polynomial is the most popular model, combining the comprehensive nonlinear modeling 

properties of the Volterra series, from which it was derived, with lower complexity. As described in 

paragraph (2.2.3.1.2) it retains the diagonal terms of the Volterra series while ignoring its cross terms, and 

is therefore formulated as: 

 (3.1) 

where x(n) and yMP(n) are the complex input and output envelope signals respectively. T is the memory 

length of the system, equivalent to the number of polynomial branches. M represents the polynomial 

order of the branches and  designates the m
th
 polynomial coefficients of the i

th
 branch. The structure of 

the M-Polynomial is shown in Figure 3.1, where  

 (3.2) 

 

Figure 3.1 – Structure of the Memory Polynomial model 

The design process aims at determining the optimal number of parameters in that structure, such that it 

has the least complexity while not compromising its modeling or linearization accuracy levels. Moreover, 

even the M-Polynomial has been found to have redundant parameters [3], and the real challenge presented 

to RF designers is to single those out. The current procedure to determine the optimal structure consists of 

performing a series of experimental measurements. Each measurement is done using a specific 
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combination of parameters in the DPD. As implied by the term combination, this trial and error process is 

extremely time consuming, sometimes not even feasible if the designer does not have direct access to an 

experimental measurement setup.  

3.2 The Parallel Hammerstein Model 

To remedy to the inefficiency of that procedure, a systematic approach in determining the optimal 

modeling structure of RF PAs is proposed based on the parallel Hammerstein scheme described in [18]. 

The formulation of the parallel Hammerstein consists of the same terms as the M-Polynomial. In fact, the 

dispersion characteristics of the observed PA output, ( )y n in terms are defined in terms of the input

( )x n and its samples over time as follows: 

 (3.3) 

where M is the maximum nonlinearity, Tm being the number of taps of the FIR filter corresponding to the 

m
th
 nonlinear order. 

The terms of that equation are nonlinear recombination of the input and its past samples, and it is clear 

that the terms constituting the M-Polynomial model are all found in the Parallel Hammerstein 

formulation. In fact, the M-Polynomial’s (m,i) terms are the same as the (i,m) terms of the parallel 

Hammerstein. However, the repartition of these terms in a structure that is useful in modeling is shown in 

Figure 3.2 as the Parallel Hammerstein diagram. 

However, the major difference between the two resides in their respective structures. The parallel 

Hammerstein’s structure groups the nonlinear terms based on their order into a separate FIR filter for each 

nonlinear order, as shown in Figure 3.2.  

 

Figure 3.2 – Parallel Hammerstein Block Diagram 

The advantage of the parallel Hammerstein resides in its structure: first, it allows for direct model 

extraction without the need for many iterations, or an optimization loop; second, a systematic 

determination of the optimal structure and number of coefficients is only made possible by visualizing the 
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FIRs of each nonlinear order as shown in the following sections; and third, identification of the sources of 

distortions in order to mitigate them from the power amplifier design stage when possible. 

Extracting the model’s coefficients consists of identifying the FIR filter taps from the PA input/output 

envelop records available from measurements. The measured output can be re-written in matrix form as 

y CA=  (3.4) 

where C  a complex matrix is constructed based on 
1

( ) ( )
m

x n i x n i
−

− −  values and A is the set of 

filter coefficients to be extracted. Since the model is linear in
mta , the coefficients identification algorithm 

uses the least square (LS) Error optimization method. This method first inverts matrix C, then extracts A 

using the pseudo inverse function (pinv) that involves the singular value decomposition (SVD), as 

( )A pinv C y=  (3.5). 

The calculation complexity of the LS algorithm is proportional to the cube of the number of unknowns, 

which significantly improves with a lower number of model coefficients to be extracted.  The accuracy 

and stability of the results are directly related to the numerical conditioning of the matrix C [19]. 

3.3 Initial Model Construction and Verification 

The parallel Hammerstein model is constructed and validated experimentally using two approaches: 

forward and reverse (DPD) mode validations. The largest order of nonlinearity M and the memory order 

Tm were set to achieve a high accuracy prediction of the response of the circuit under test. The DUT used 

was detailed in section (2.3.2), and the validation tests in the following sections.  

3.3.1 Forward Validation of the parallel Hammerstein 

The accuracy of the model is first tested in forward mode, as described in section (2.3.3). The DUT is 

linearized using a memoryless predistorter; the output signal spectrum from the predistorted DUT will 

then contain only the nonlinear memory effects. This spectrum is shown as (A) in Fig. 2. Next, the DUT 

behavior is modeled using a Parallel Hammerstein model containing both nonlinear memoryless and 

memory components. This Parallel Hammerstein model is then linearized using the same memoryless 

predistorter that was used to linearize the actual DUT. The predistorted output spectrum from this model 

is shown as curve (B) in Fig. 2.  Because we have removed the identical memoryless nonlinear effects 

from the DUT and model spectra, we can observe how well the model captures the DUT memory effects 

more clearly.  As can be seen in Fig. 2, the spectra (A) and (B) are effectively superimposed, indicating 

that the Parallel Hammerstein model is very effective in recreating the slightest perturbations in the 

signal, seen here as the memory effects. Finally a 3rd test is implemented:  a memoryless model of the 
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DUT is extracted, capturing only the memoryless nonlinearity, and linearized using the same memoryless 

predistorter as previously. The output spectrum from the predistorted memoryless model is shown as 

curve (C) in Fig. 2: it is a clean signal without any perturbations. This implies that the spectral 

perturbations observed in both spectra (A) and (B) are essentially the memory effects present in the DUT. 

 

Figure 3.3 - Forward Parallel Hammerstein Validation Spectra: (A) Memoryless linearization of 

the actual DUT compared with (B) the memoryless linearization of simulated DUT Parallel 

Hammerstein, and (C) memoryless linearization of the memoryless Parallel Hammerstein extracted 

from the DUT. 

3.3.2 Predistortion Validation of the parallel Hammerstein  

The signal quality at the output of the test circuit is measured when a Parallel Hammerstein DPD is added 

in the signal chain. Figure  shows the raw, non linearized output spectrum from the DUT, and the 

linearized output spectrum using a Parallel Hammerstein DPD scheme that employs a 10th order 

nonlinearity and memory length of 10.  The DUT is driven with a 4-carrier WCDMA signal. The 

excellent linearization ability of the Parallel Hammerstein is clearly demonstrated through the reduction 

in the out-of-band spectrum emission of about 20dB, demonstrated in the output signal spectrum of 

Figure 3.4 and the adjacent channel power ratio, higher than 50dBc, shown in Table 3.1. 
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Table 3.1 – ACPR of Measurements for Linearization Validation of Parallel Hammerstein  

DPD Configuration 
ACPR (dBc) 

1st Lower 2nd Lower 3rd Lower 

Parallel Hammerstein DPD 

Nonlinear Order 10, FIRs length 10 
-49.60 -52.06 -53.65 

 

Figure 3.4 – Output spectrum of the linearized DUT using the Parallel Hammerstein based DPD 

(reverse validation) 

3.4 Parallel Hammerstein Model Complexity Reduction: 

3.4.1 Even Order Omission 

As previously mentioned, the viability of models depends on their computational and implementation 

complexity. Advantageous and sound DPD design aims at lowering the required number of coefficients 

and operation (multiplication and addition). In this section, the omission of even order terms from the 

Parallel Hammerstein model is discussed for practical WCDMA signal linearization.  While the omission 

of the even-order products from consideration is often done from considerations of the primary spectral 

components of the distortion, the following paragraphs present theoretical reasons for excluding these 

components, and then its effect on linearization based on the conditioning number and stability of the 

resulting DPD model. 
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3.4.1.1 Theoretical Explanation of Even Order Omission 

In a simple two-tone test, even order distortions (i.e. 2 1f f− , 12 f , 2 1f f+ , 2 12( )f f+ …) generated by a 

transistor are not physically present in the operation bandwidth of the amplifier. Moreover, unless the 

original signal input power is high, the recombined components have a minor effect on the resultant 

signal distortion, as their power is further reduced through the mixing process. The intermodulation 

distortions that fall in the vicinity of the carrier are the result of only odd order distortions of the input, i.e. 

components resulting from 3 5( ), ( ), ( ), ...x t x t x t . Components produced from even order distortions such 

as 2 4( ), ( ),...x t x t all fall either in the baseband region or higher harmonic signal bands, and it is only after 

they recombine with odd order components that their effect is observed within the carrier band. 

Therefore, although the even order products affect the resulting carrier band segment, none of them is 

physically present within this section.  

Distortions around the carrier band consist of odd-only nonlinear terms. Therefore, for an efficient low 

pass equivalent modeling and predistortion purposes, it is necessary and sufficient to use only the odd 

orders to capture the “status” of the pass band, whether this information is originating from purely odd 

orders, or from the recombination of these with even orders. It is sufficient to capture the effects of such 

even nonlinearities on the output signal envelope. Accounting for only odd order nonlinearities would 

yield a satisfactory linearization and greatly simplify the model. Modeling RF PA with only odd order 

terms has proven to be an efficient complexity reduction method for the M-Polynomial model [3]. The 

following paragraphs present experimental results that show similar impact when the parallel 

Hammerstein model is reduced. 

3.4.1.2 Impact on Signal Linearization  

This complexity reduction strategy is first evaluated based on its effect on the DUT linearizability. The 

figure of merit used to measure the quality of signal is again the ACPR of the linearized signal, indicating 

the linearization capability of the odd-only parallel Hammerstein.  

Table 3.2 - ACPR comparison for Even order omission strategy 

Parallel Hammerstein 

DPD Configuration 

ACPR (dBc) 

1st Lower 2nd Lower 3rd Lower 

Order 9 Even Odd FIRs: 10 All -48.30 -49.80 -50.50 

Order 9 Odd Only FIRs: 10 All -49.15 -50.85 -52.38 
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The spectra of the test signals used are shown in Figure 3.5. It is clear that the linearization capability 

of the parallel Hammerstein is not reduced when even order terms are omitted from the DPD scheme.  

 

Figure 3.5 – Output spectrum of the linearized DUT using parallel Hammerstein (order 10) with 

and without even order parameters.  

3.4.1.3 Impact on the numerical Stability of Model Extraction 

The outcome of the even order omission is also evaluated based on its effect on model implementability. 

The main criteria to estimate ease of implementation are first, the numerical stability of the model 

extraction, second, the number of coefficients required by the model and third the number of operations 

needed. 

The stability of the model extraction algorithm is a major issue that has been addressed for the memory 

polynomial models. The least squares algorithm is used to extract the coefficients of the filter taps. For 

high nonlinearity orders, the regressor matrix in the least squares coefficient estimation is ill-conditioned 

and causes the computations to be highly numerically unstable. Many attempts have been made to 

improve the Memory polynomial’s conditioning number, one of which was to use orthonormal basis. In 

the case of the parallel Hammerstein, the conditioning number indicates a much better performance than 

the M-Polynomial. While it is observed that indeed the magnitude of this number is mainly affected by 

the highest nonlinearity order used in the model, it is not the only factor that comes into play. As shown 

in Table 3.3, for the same nonlinearity order, the conditioning number is reduced by almost 3 orders of 
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magnitude when only odd-order nonlinearities are used. Also, a high conditioning number suggests a 

correlation between the data from the different nonlinearity orders, or that the different data samples are 

correlated. Since the same data is used in the comparison of Table 3.3, the main factor behind the 

reduction in the condition number is that the nonlinearity orders are not correlated when odd orders only 

are used. Therefore, omitting the even nonlinearities avoids the redundancy in the data used by the model, 

keeping only the pertinent information that can be modeled by the odd order nonlinearities only, as shown 

in the spectrum correction of Figure 3.5. 

Table 3.3 - Conditioning Fumber as a measure of  Stability  

Parallel Hammerstein DPD Configuration Conditioning Number 

Order 9 FIR 10 Even + Odd 2.40E+07 

Order 9 FIR 10 Odd Only 1.70E+04 

From this point on, all the DPD schemes used employ only the odd nonlinearities.  

3.4.2 Empirical Optimization of The Parallel Hammerstein’s Structure 

3.4.2.1 Determining the Optimal Model Structure  

So far, the construction of the parallel Hammerstein scheme employed the same number of taps in the 

different FIR filters associated to the various order of nonlinearity. Furthermore, determining the memory 

length or equivalently the number of filter taps that is required for an efficient PA linearization is usually 

done by trial and error. The best DPD configuration is chosen based on figures of merit, such as 

Normalized Mean Square Error (NMSE) using an iterative and lengthy process. Therefore, the process of 

determining the memory length required is a sequential optimization process of simulation results 

followed by experimental checks. Conversely, in this section, the visualization of the impulse response of 

every digital filter in the parallel Hammerstein structure will be used to elaborate a deterministic way for 

finding the optimal FIR filter lengths of each nonlinearity order. This will also yield the smallest number 

of taps in each filter that maintains the modeling/linearization capability. 

Starting from the coefficients of the parallel Hammerstein scheme, constructed in previous section with 

an order of nonlinearity of 9 and a memory order of 10, the different filters’ coefficients are visualized in 

Figure 3.6. FIR filters visualized are FIR1, FIR3,… FIR9 corresponding to the nonlinearity orders of 1, 

3,…9. For a better visualization of the actual behavior of each FIR filter of Figure 3.6, the frequency 

domain responses of each was synthesized from its FIR taps and are shown in Figure 3.6.One can easily 

detect a generic trend in the amplitude of the filter taps. They all tend to converge to a certain range that is 
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much lower than the first tap, while the rate of change between taps becomes minimal. This implies that 

the signal samples corresponding to those memory levels do not affect the output of the model, or 

equivalently the corresponding DPD. Therefore, eliminating those taps would reduce the complexity of 

the model without compromising its accuracy and linearization efficiency.  

 

Figure 3.6 - Individual FIR Filter Coefficients Plots for a Parallel Hammerstein DPD employing 

Odd Only nonlinearities of maximum order 9 and FIR filter length of 10.  

The FIR visualization of Figure 3.6 indicates that in this case, using a uniform filter length of 10 taps is 

over estimating the memory effects of the DUT. In fact, the comparison of the spectra of Figure 3.8 

shows similar linearization capability of the Parallel Hammerstein when using filter lengths of 10 for all 

the FIR filters of the model, and the case where the lengths used were reduced for each order. The second 

measurement uses FIR filter lengths of 4, 6, 3, 3, 4 for filters FIR1, FIR3, FIR5, FIR7 and FIR9 

respectively. These lengths were determined by looking at the last significant filter tap on the 

visualization of Figure 3.6, and chopping off the taps after the change in amplitude trend, in other words, 

after the drop in tap amplitudes. Since the first tap of each filter corresponds to the purely nonlinear, 

memoryless response, its amplitude is much higher compared to the rest of the taps that correspond to the 

perturbations of smaller amplitude associated with memory effects. Hence, for a closer visualization of 

the FIRs in Figure 3.6, the first tap is left out, showing only the rest of the filter, i.e. taps 2 to 10, as shown 

in Figure 3.7. Common for all the filters responses, an increase in tap amplitude is observed followed by a 

relatively sharp decrease, most obvious in FIR3. Filters 5,7 and 9 clearly show that the taps following the 

sharp change in amplitude follow a mathematical fitting for the problem formulation of the model rather 

than a physical explanation for the existence taps. 
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Figure 3.7 - Zoomed in View of the FIR response: Taps 2 to 10 -- the Arrows indicate where the 

amplitude suddenly decreases after a constant increase from tap 2. 

Therefore, for every filter, cutting the response length to the last significant tap produced similar results 

as having an over fitted problem. Both full model and complexity reduced model achieve similar 

linearization results, demonstrated in Figure 3.8 as well as Table 3.4 which shows the ACPRs for the PA 

output signal when the PA is linearized using both DPD schemes. One can clearly observe similar 

linearization capability in both cases although the number of coefficients was substantially reduced. 
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Figure 3.8 – Power Amplifier Output Spectra obtained using a 9
th

 order parallel Hammerstein 

linearization with uniform and Optimized FIR Filter lengths 

Table 3.4 - ACPR of Linearization schemes 

Parallel Hammerstein  

DPD Configuration 

ACPR (dBc) 

1st Lower 2nd Lower 3rd Lower 

Order 9 Even+Odd FIRs: 10 All -48.30 -49.80 -50.50 

Order 9 Odd Only FIRs: 4 6 3 3 4 -49.90 -51.20 -52.10 

It is interesting to note that the NMSE and conditioning number of the two schemes are very similar as 

shown in Table 3.5, suggesting that it is impossible for a designer to determine an optimal DPD structure 

without having the advantage of the Parallel Hammerstein’s filter visualization.   

Table 3.5 - FMSE and Conditioning Fumber of parallel Hammerstein schemes 

Parallel Hammerstein DPD Configuration NMSE (dBm) Conditioning Number 

Order 9 Odd Only FIR 10 -36.08 1.70E+04 

Order 9 Odd Only FIR: 4 6 3 3 4 -36.11 1.16E+04 

The complexity of the model is directly dependent on the number of coefficients to be extracted for that 

model. The complexity reduction is not only essential in model implementability, but also in model 
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extraction. Table 3.6 shows the reduction in the number of coefficients required for linearization. The first 

Parallel Hammerstein linearization configuration consists of the original Parallel Hammerstein scheme 

with no improvements, i.e. 9
th
 order considering both even and odd orders with a common FIR filter 

length of 10. The 2
nd

 scheme is the optimized Parallel Hammerstein consisting of only the odd orders 

coupled with optimal filter lengths of 4, 6, 3, 3 and 4 for the orders 1, 3, 5, 7 and 9 respectively.  

Table 3.6 – Total Fumber of Coefficients reduction achieved 

DPD Configuration Total Number Of Coefficients 

Order 9 Even and Odd FIR 10 90 

Order 9 Odd Only FIR 10 50 

Order 9 Odd Only FIR: 4 6 3 3 4 20 

With only one set of measurements, the number of coefficients required for implementation was 

reduced by a factor of 4.5. The simplification is even more significant with regards to model extraction 

whose complexity is proportional to the cube of the number of coefficients. The reduction is not only 

achieved when comparing Parallel Hammerstein to Parallel Hammerstein, but also in comparing the 

optimal scheme to M-Polynomial linearization which would use the same number of coefficients as the 1
st
 

scheme in Table 3.6.  

3.4.2.2 Proving the non-Flatness at Baseband 

Many models assume that the circuit under test has a flat gain across the signal baseband, implying a 

memoryless distortion of the inband frequency components. However, the frequency response of the first 

order filter as shown in Figure 3.6, shows indeed that the gain of the baseband FIR filter ( 1FIR ) is not 

flat for all frequencies. Refuting the assumption of flatness at baseband is strengthened by experimental 
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measurements. The spectra of two DPD schemes devised for this test are compared in 

 

Figure 3.9, and their respective ACPRs in Table 3.7. The two DPDs have the same maximum nonlinearity 

order of 9, and use the same FIR filter lengths configurations except for the baseband filter, 1FIR that was 

changed from 1 tap (memoryless) to 3 taps (with memory at baseband). 
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Figure 3.9 –Comparison of linearized spectra showing distortions arising from baseband 

distortions. 

Table 3.7 – ACPR measurements showing the linearization losses incurred by Memoryless 

Baseband Linearization  

Parallel Hammerstein 

DPD Configuration 

ACPR (dBc) 

1st Lower 2nd Lower 3rd Lower 

Order 9 Odd Only FIRs: 4 6 3 3 4 -49.90 -51.20 -52.10 

Order 9 Odd Only FIRs: 1 6 3 3 4 -45.40 -48.35 -50.12 

Summarizing the chapter, the viability of linearization schemes is greatly dependent on their 

implementation complexity in real context. The main strength of the parallel Hammerstein scheme is 

explored through a proposed empirical approach that allows RF designers to systematically and reliably 

determine an optimal DPD/modeling structure. The minimal number of required coefficients was 

identified using a deterministic approach based on filters’ impulse response visualization, testing the 

linearization on a 400Watt Doherty PA. The reduction of the number of coefficients was by a factor of 

about 4.5, implying substantial computation complexity reduction and numerical stability improvement, 

without compromising the linearization/modeling capability.  

Furthermore, the examination of the Parallel Hammerstein’s individual filter impulse response helped 

to identify certain memory effects contributors in the DUT circuit that can be mitigated at an early design 

stage. As an example, the non flat gain response of the PA under test, around the carrier, was detected by 

the simple visualization of the corresponding filter’s impulse response. 
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Chapter 4 

Interpretation of the Mechanisms of Memory Effects and their Close-

Form Model Formulation 

MEs are a major component in both the performance and linearization of wideband PAs, Understanding 

them and modeling them accurately will therefore allow designers to counteract their observed effects 

effectively. While behavioral models have proven to accurately model and effectively linearize PAs, they 

are mainly based on the input and output characteristics of the PA behavior without any linkage to the 

source of disturbances in that behavior. There is no closed form, solid and theoretical explanation of the 

rationale behind the applicability or non-applicability of these modeling schemes to model and linearize 

wideband PAs. To establish that link between theoretical modeling and physical behavior, it is essential to 

interpret electrical MEs not only as spurious frequency components at the output of the PA, but 

explaining their physical sources, then linking their characteristics in magnitude and phase to the physical 

properties of these sources. The latter sections suggest a model based on the physical characterization of 

the PA behavior, which will be shown to link back to the theoretical models previously introduced. 

4.1 PA Building Blocks 

Memory effects can be discriminated into two categories: Short term memory effects (STM) and Long 

term memory effects (LTM), depending on their frequency band location. Within the scope of this 

formulation, only STM are studied as they dominate the sources of ME when the PA is driven with 

wideband signals, i.e. the PA’s response is considered quasi-static. The following paragraphs will explore 

the main sources of short term memory effects exhibited by a PA and discuss the key figures that 

determine the contribution of each of these physical sources on the overall characteristic of the circuit 

behavior.  

Figure 4.1 is an illustration of a typical PA circuit and the connection of its main building blocks. The 

transistor on its own can be considered a quasi-memoryless nonlinear device providing that the signal 

bandwidth is relatively narrower than the carrier frequency. The transistor’s output matching and biasing 

networks are subject to all the nonlinearities present at the output of the transistor. Depending on the 

nonlinearity order of the transistor, the spectra of such signals can span from baseband to high orders of 

the carrier harmonic frequencies. 
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Figure 4.1 – Physical dominant sources of Short Term Memory Effects in a PA. 

The output matching and biasing networks shown in Figure 4.1 are each characterized by their 

reflection coefficients, ( )M fΓ and ( )B fΓ respectively. These networks are typically designed to operate 

at a specific frequency or range of frequencies and their responses vary considerably when operating over 

a different or wider range of frequencies. Thus variations over the frequency range are observed in the 

amplitude and phase characteristic of their reflection coefficients. 

A general approach to model inherent nonlinearities in the behavior of an RF transistor is through 

polynomial approximation of the transfer curves (AM/AM and AM/PM), where the time domain function 

( )trH t defines the instantaneous output ( )y t as a function of the instantaneous input ( )x t  
as detailed in the 

following equation: 

2

1 2

( ) ( ( ))

( ) ( ) ... ( )

tr

9

9

y t H x t

p x t p x t p x t

=

= + + +
  (4.1) 

The order of nonlinearity (9) is dependent on the physical characteristics of the transistor and its mode 

of operation, i.e. class, input power level, operation bandwidth. From this equation, the spectrum ( )Y f  

of the time domain output ( )y t can therefore be written as:  

1 2( ) ( ) ( ) ( ) ...Y f p X f p X f X f= + ⊗ +
  (4.2) 

where ( )X f is the frequency domain transform of the input signal ( )x t . The spread of newly generated 

frequency components is determined by the order (9). Memoryless distortion of a signal does not alter the 

phase information of its components but only their amplitude. A new range of IMD frequencies is 

generated at the transistor output thus at the input ports of both the output matching network and biasing 

network as shown in Figure 4.1. These networks being non-ideal over all the frequency range reflect 
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spurious components back into the transistor which initiates the STM effects as will be explained in the 

following sections.  

4.2 Physical Explanation of Memory Effects 

The two-tone test is used to illustrate the behaviors described in this section. Note that the spread of the 

frequency bands designated as baseband, carrier band, and harmonics bands, depends mainly on the order 

of nonlinearity considered (9) and the frequency separation of the two tones
2 1f f f∆ = − , i.e. signal 

bandwidth. The following paragraphs show in detail how the bandwidth determines the behavior of the 

amplifier circuit, and the effect of each source of dispersion on the overall memory effects observed at the 

output of the PA. 

4.2.1 Sources of Memory Effects 

4.2.1.1 Output Matching Network 

The matching network at the output of the transistor is a linear device but contributes to the overall 

memory effects by reflecting several frequency components present at its input back into the transistor. 

This is governed by two key physical parameters of that network: its reflection and transmission 

coefficients. The reflection coefficient at the input port of the matching network ( ( )M fΓ ) is 

characterized by its amplitude and phase that vary with frequency. Although the design of such a network 

aims at a minimal and constant reflection factor, physical constraints of the design impose that this 

criterion cannot be maintained over the very wide range of frequencies observed at that node. Thus, the 

frequencies affected by the reflection coefficient of the output matching network are reflected back into 

the transistor thereafter recombining with the input signal’s frequency components, with spurious 

elements falling back into baseband as shown in Figure 4.2. 

 

Figure 4.2 - Contribution of the Matching Fetwork to the overall Memory Effects. 

f0f=0 2f0

( ) ( )M trf Y fΓ
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4.2.1.2 Biasing Network 

( ) ( )M trf Y fΓ The biasing network affects the lower range of frequencies. Its reflection coefficient is 

designed to be minimal across the baseband section. Typically, baseband components range from DC to 

2 1( )f f−  and 
2 12( )f f− . Both amplitude and phase of these components are altered by the reflection 

coefficient ( )B fΓ , as shown in Figure 4.3. 

 

Figure 4.3 - Contribution of the Biasing Fetwork to the overall Inband Memory Effects. 

4.2.2 Overall Memory Effects 

Although the carrier band is not directly affected by ( )M fΓ which effect is observed at higher frequency 

bands, the remix of frequencies from those harmonic bands relates the high frequency response back into 

the carrier band. The distorted components are remixed with the carrier band frequencies to form 

components that fall within this carrier band, i.e.
 2 1 2 2 1(3 ) 2f f f f f− − = − . 

Similarly, the biasing network ( )B fΓ  response is most critical at lower frequencies. However, those 

remix with other frequencies and fall back into the carrier band, i.e. 2 1 2 2 1( ) 2f f f f f− + = − . 

Consequently, the effect of ( )M fΓ  and ( )B fΓ over the carrier band can be seen as an equivalent filter 

which consists of not only ( )M fΓ around f0, but also ( )M fΓ across the subsequent harmonic bands 

only now centered at f0 instead of those higher harmonics (i.e. 2f0, 3f0). Therefore, when considering the 

RF signal, the contribution of the overall dispersions observed in the signal at the carrier frequency is 

effectively ( )fΓ , which represents the resultant response of the networks. It is an equivalent filter that 

affects the carrier band through the recombination of baseband reflected signals and the carrier band 

frequencies. Considering both reflection effects from biasing and matching networks, their resultant ( )fΓ  

is such that 

 
( )( ) ( ), ( )M Bf f fΓ = Γ Γ

 

f0

( ) ( )B trf Y fΓ



 

 52 

In fact, the biasing and matching networks, including the package effects, are seen by the transistor die 

as an analog filter which has  as reflection coefficient and  as a transmission coefficient. 

Once the overall reflection coefficient is defined, the spectrum of reflected frequencies can be formulated 

as:  

R

1 1 2 2 2 1 2 1

( ) ( ). ( )

( ). ( ) ( ). ( ) ( ). ( ) ...

trY f f Y f

f X f f X f f f X f f

= Γ

= Γ +Γ +Γ − − +
 

where ( )trY f  
is the spectrum of frequencies at the output of the transistor as defined in (4.2), part of which 

will be reflected as R ( )Y f . Figure 4.4 shows the spectrum of the reflected frequencies as distorted in 

amplitude and phase by the resultant ( )fΓ . 

 

Figure 4.4 – Resulting Inband Reflected Spectrum (memory dispersions) 

Defining ( )tγ  as the equivalent time-domain impulse response of ( )fΓ , then the time domain 

formulation of the reflected signal ( )RY f is: 

( ) ( ) ( )Ry t t y tγ= ⊗  (4.5)  

Hence, ( )Ry t , which incorporates the frequency dependent response of the matching and biasing 

networks, can be considered as an extra input that will be remixed with the actual input signal as a result 

of the transistor’s nonlinearity. Therefore, new frequency dependent inter-modulation distortion vectors 

(e.g. 212 ff −  as a result of the mix between the reflected 21 ff − component and 1f ) will appear at the 

transistor output. These new vectors which originate not only from the input samples but also from its 

combination with the reflected signal ( )Ry t to result in frequency dependent overall inter-modulations 

distortion vectors, usually used to detect the memory effects. The spectrum of the resulting memory 

effects is shown in Figure 4.5. The distortions shown are the ones that are around the carrier only or in-

band distortions.  
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Figure 4.5 - Overall Carrier band Memory Effects 

The overall IMDs are the addition of the memoryless distortion with the memory IMD. Although the 

transistor characteristic response does not involve phase distortions, the resulting signal components are 

altered both in amplitude and phase according to the resultant between Memoryless and Memory IMDs. 

The following section explores the time domain equivalent of such memory effects in an attempt to 

construct a comprehensive scheme capable of accurately modeling these effects based on the physical 

aspects explained and the instantaneous samples of input and output signals in the time domain. 

4.3 Physical Wideband PA Model Derivation 

4.3.1 Time Domain Model Formulation 

The continuous function, (t), which represents the time domain equivalent reflection coefficient of the 

biasing and matching networks can be transformed into discrete form as: 

[ ]1 2( )
T

Mnγ γ γ γ= L
 (4.6) 

where M designates the highest significant order of the discrete impulse response, i.e denotes the memory 

depth considered. Therefore, the time-domain discrete reflected signal can be expressed as:  

1

( ) ( )
M

R i

i

y n y n iγ
=

= −∑
 (4.7) 

The output signal ( )y n  formed by the recombination of nonlinearities ( ( )y n ) and reflections ( ( )Ry n ) 

can be derived, from the previous equation, as: 

( ) ( )

( ) ( ) ( ) ( )( )
1

1 2

( )

1 2 ...

M

tr i

i

tr M

y n H x n y n i

H x n y n y n y n M

γ

γ γ γ

=

 
= + − 

 

= + − + − + + −

∑

 (4.8) 
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A more general formulation of y(n) as a function of the past samples of y and the current input x would 

be: 

1

( ) ( ) ( )tr i

i

y n k H x n k y n k iγ
=

 
− = − + − − 

 
∑

 (4.9) 

For simplification purposes, the highest nonlinear order considered in the equation expansions is 5. All 

the equations can be very easily generalized to higher orders. Let us now define s(n) within the argument 

of the previous equation as: 

( )( ) ( )
1

( ) ( ) ( )
M

tr j

j

y n H x n s n where s n y n jγ
=

= + = −∑
 (4.10) 

Thus having the y(n) expanded in the form of: 

[ ]
[ ]

2 3 4 5

1 2 3 4 5

2 3 4

1 2 3 4 5

2 2 3

2 3 4 5

3 2

3 4 5

4

4 5
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( ) ( ) ( ) ( ) ( ) ( )

( ) 2 ( ) 3 ( ) 4 ( ) 5 ( )

( ) 3 ( ) 6 ( ) 10 ( )

( ) 4 ( ) 10 ( )

( ) 5 ( )

( )

y n p x n p x n p x n p x n p x n

s n p p x n p x n p x n p x n

s n p p x n p x n p x n

s n p p x n p x n

s n p p x n

s n p

= + + + +

 + + + + + 

 + + + + 

 + + + 

+ +

+
  (4.11) 

Notice that the rearrangement the terms in equation (4.11) yields to the following implementable 

formulation of y(n): 

(1)

2 (2)

3 (3)

( ) ( ( ))

( ) ( ( ))

1
( ) ( ( ))

2!

1
( ) ( ( ))

3!

tr

tr

tr

tr

y n H x n

s n H x n

s n H x n

s n H x n

=

 +  

 +  

 +  

 (4.12) 

Where the terms  are the derivatives of the function Htr defined as: 
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( ) ( ( ))
( ( ))

( ( ))

i
i tr

itr

H x n
H x n

x n

∂=
∂

. (4.13) 

The model diagram that would implement expression (4.12) is outlined in Figure 4.6. The main 

memoryless nonlinearity of the transistor is represented as Htr , whose output is fed to the overall model 

output, and to an FIR filter representing the reflections causing memory effects. In fact, since 

( )
1

( )
M

j

j

s n y n jγ
=

= −∑ , then the FIR’s response is essentially [ ]1 2( )
T

Mnγ γ γ γ= L , in the time domain 

, equivalent to the overall reflections ( )fΓ . 

 

Figure 4.6 - Physical Model Block Diagram where the only unknown parameters are Htr and FIR. 

It is extremely interesting to note a few observations about this model, all explainable through physical 

effects: 

1. If the FIR is nulled, in other words the memory effects were not taken into consideration in 

modeling, the model reduces to Htr, which essentially capture the distortion arising from the 

memoryless nonlinearity in the system. 

2. There is only one source of nonlinearity in the PA. Multiple completely separate polynomials add 

redundancy to the modeling scheme, as each polynomial represents a source of nonlinearity. 

3. As shown clearly in the model block diagram of Figure 4.6, the model extraction process consists 

of identifying only two blocks: The unknown coefficients of that model are only those of Htr and 

Htr

FIR

X(n) yphys(n)
+

Htr
(1) x

x x x
s s2 sN

+
Htr

(2) x

Htr
(N) x

1

1/2!

1/N!
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FIR, for a total of (9+M) coefficients to be extracted. The subsequent derivative blocks use the 

same coefficients as Htr. 

4. Although the model accounts for the reflections and their recombination within the transistor with 

the current input, it is formulated as a forward model, where no feedback is necessary. 

5. The model creates cross-terms at the level where the output of the FIR is mixed with the 

derivative blocks. As a matter of fact, in a physical circuit, the cross terms are the results of the 

multiple reflections reappearing at the input of the transistor and mixing , not only with the 

current signal, but with older reflections as well.  

4.4 Validation of results 

The previous section presented a physical model that accounts for the reflection mechanism, on which the 

memory effects. Although that mechanism intuitively translates into a feedback loop, equation analysis 

and circuit observations translated these complex mechanisms into simply a forward model. This reduces 

implementation costs and shortens synthesis procedures as the coefficients of such model can be extracted 

directly. The model is entirely based on the physical properties and mechanisms observed in typical RF 

PA circuits. The analysis of these also led to linking the theoretical behavioral close form expression of 

the MP model to the new physical model’s close form expression. To test the validity of the physical 

model presented, it is imperative to perform appropriate measurements to test the performance of the 

model in its capability to capture the characteristic behavior of the RF PA circuit. 

4.4.1 Experimental Validation 

4.4.2 First Forward Validation: Capturing the PA’s Overall Behavior 

The first test aims to validate the model’s ability to mimic the behavior of the PA circuit under test. This 

includes the memoryless nonlinearity coupled with memory effects. As shown in Figure 4.7, the PA 

introduces significant distortions to the clean WCDMA signal applied at its input. A significant imbalance 

is observed at the output of the DUT suggesting the presence of strong memory effects. For the theory 

presented in the previous sections to hold, and for the physical model’s validity, the output of the physical 

model should match that PA Output observed. Indeed, when the physical model was synthesized and then 

driven by the same input signal as the actual PA, the output of that model matched very closely the PA’s 

response as shown in the spectra of Figure 4.7.  
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Figure 4.7 - Validation Test 1: Output of the PA when fed with a WCDMA signal, and that of the 

Physical Model. 

The structure of the Physical Model implemented to attain the results of Figure 4.7 consists of a 5
th
 

order memoryless polynomial for the Htr nonlinear block of and an FIR filter length of 8. The main 

advantage of that structure is that the total number of coefficients solved for was 13, (8+5) coefficients.  

4.4.3 Second forward Validation: Capturing the PA’s Memory Effects 

Up until this point, the model’s ability to capture the mechanisms of the PA circuit was tested on the 

combined nonlinearity and memory effects observed in the PA characteristic response. However, the 

distortions caused by the nonlinearity on its own are most significant in the overall response, and the 

memory effects represent small scale perturbations to that response. Therefore, a more rigorous test for 

the modeling accuracy can be achieved by linearizing the PA and the model with a memoryless DPD, and 

comparing their respective output spectra. First a memoryless DPD is constructed and applied at the input 

of both PA and model of PA. The remaining signal distortions are the minor ME perturbations, as shown 

in Figure 4.8. 



 

 58 

 

Figure 4.8 - Output of the Actual PA and that of the Model when linearized with a memoryless 

DPD. 

The remaining perturbations are the memory effects of the DUT, which are very accurately captured by 

the physical model, implying the model’s ability to closely reproduce the DUT’s behavior. 

4.5 Low Complexity of the Physical Model 

The complexity of the model extraction algorithm depends mainly on the order of nonlinearity required 

and the number of coefficients to be extracted. The proposed physical model requires the extraction of 

only one nonlinear block (Htr) of order N, and a set of FIR filter coefficients (P coefficients in total , 

where P = (M+1) / 2, where  is the memoryless order of nonlinearity). Therefore, the order of 

nonlinearity required is N, and the number of coefficients is (9+P). With the implementation scheme 

suggested, the model is demonstrating excellent modeling capabilities while requiring a minimal number 

of coefficients. 

In fact, to obtain a comparable performance using a M-Polynomial scheme, one would need to identify 

a structure of M nonlinearities (M branches), each being a nonlinearity of order 9. The total number of 

coefficients required to extract would be (9xM), compared to (9+P) in the case of the proposed model. 

In the reduced MP scheme, as recent papers present it [1], the number of coefficients was reduced by a 

factor of 2.6. However, the reductions achieved would not yield a requirement of lower than 9+P 

coefficients.  
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Therefore, a significant reduction in the number of coefficients to be extracted is achieved with the 

physical model as only 9+P instead of 9xM coefficients are required. This reduction significantly 

reduces implementation costs most importantly in terms of model extraction complexity and stability. If 

the LSE algorithm is used to extract the model’s coefficients, the complexity of that algorithm is 

proportional to the cube of the number of coefficients to be extracted. The physical model requiring only 

9+P instead of 9xM coefficients is very advantageous in that aspect. 

Table 4.1 - Coefficient Requirements of M-Polynomial versus Physical Model. 

Scheme Structure Number of Coefficients 

Full M-Polynomial NxM 

Reduced M-Polynomial NxM/2.6 

Physical Model N+P 

 

4.6 Linking physical Model to Volterra Series 

The Volterra series is a functional Taylor expansion expressed as: 

 (4.14) 

where  is the i
th 

order kernel defined as: 

 (4.15) 

which is similar to the formulation of the model in equations (4.7) and (4.8).  

Moreover, considering that the formulation of the physical model included both frequency and time 

domain considerations, let us examine a similar theoretical model, the power Series, as defined in section 

(Power Series2.2.3.1.1). The power series is a more powerful derivation of the Volterra series, defined as 

in equation (2.7) as: 

 (4.16) 

The problem with using the power series is the identification of its coefficients. however, they are 

similar to those expressed in the early problem formulation of the physical model, which was stated in 

equation (4.5) as:  
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( )( ) ( )
1

( ) ( ) ( )
M

tr j

j

y n H x n s n where s n y n jγ
=

= + = −∑
 (4.17) 

which carries the same terms as the terms in the power series formulation. Therefore, the physical model 

formulation filled the gap between the generic theoretical formulation of nonideal systems with memory 

and the physical characteristics of that nonideal behavior. Coefficients of the generic schemes are 

correlated when modeling an RF PA. There is one source of nonlinearity in the system, and that is the 

transistor memoryless function. The rest of the nonideal behavior stems from network reflections. This 

implies a correlation between the coefficients of the theoretical formulations, which is shown by the 

physical model. Also, the terms of the theoretical formulation are given a physical explanation by 

interpreting the physical mechanisms behind their presence.  

Therefore, the newly developed close-form expression of ( )y n , to the authors’ knowledge, for the first 

time creates a valuable bridge between the behavioral modeling and the physical properties of the circuit 

that was missing in the previously published behavioral models. It offers an extra dimension of analysis 

that complements the behavior modeling. Indeed, the numerous parameters of theoretical models can now 

be extracted more easily, and used to relate the overall behavior of the device under test with its topology 

and blocks’ characteristics (matching and biasing networks). 
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Chapter 5 

Systematic Complexity Reduction of the Memory Polynomial based 

on the Physical Formulation of Memory Effects 

5.1 Memory effects analytical formulation 

The previous chapter presented an explanation for the mechanism of memory effects, based on physical 

circuit properties of RF PAs. Subsequently, a close-form formulation of MEs was derived based on 

physical properties of a typical PA circuit. This chapter will build on that theory to first define the concept 

behind the formulation in a higher level of abstraction, where the networks and their reflections are 

considered as finite impulse response (FIR) filters. The formulation will then be applied and expanded 

into linking it with the very well established M-Polynomial behavioral model. 

5.1.1 Theoretical Close-Form Physical Expression of Memory Effects  

A concurrent model is that presented in [20] and shown in Figure 5.1. It is a model for the RF PA 

circuitry equivalent to what was described in the previous chapter. The close-form expression 

encompasses a static nonlinear function G, to account for the memoryless nonlinear behavior of the PA, 

along with FIRin, FIRout,and FIRfb filters to capture the frequency-dependent mechanism behind the 

memory effects. FIRin and FIRout have a negligible contribution to the PA memory effects as the signal 

bandwidth is kept relatively small enough compared to the carrier frequency. Hence, only the feedback 

filter, representing the total reflections from biasing and matching networks, is retained in the simplified 

model to be used as depicted in Figure 5.2. 

 

 

Figure 5.1 - Physical Model of the PA 

 

Figure 5.2 - Simplified Physical Model of the PA 

FIRin G(.)

FIRfb

+
x(n) y(n)
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The static nonlinear behavior of the transistor on its own is a memoryless nonlinear function, which as 

discussed in earlier sections, is characterized by G defined as: 

2
1 2( ( )) ( ) ( ) +... ( )9

9G x n p x n p x n p x n= + +
 (5.1) 

 where 9 is the memoryless order of nonlinearity of the transistor. Consequently, as shown in Figure 5.2, 

the discrete output signal y(n) of the RF PA circuit is expressed in terms of the discrete input x(n) and its 

past samples as follows: 

( ) ( ( ) ( ))

M

j

j

y n G x n y n jγ= + −∑
  (5.2) 

where jγ  
is the j

th
 instance of the discrete time domain representation of the feedback FIR filter, FIRfb, 

that captures the dispersive behavior of the biasing and matching networks at the signal’s envelope and 

harmonic frequencies.  

Expanding the previous expression of y(n), the following formulation is obtained: 

2

1 2

1

( ) ( ( ) ( ))

( ) ( ) ( ( ) ( ))

... ( ( ) ( ))

M

j

j

M M

j j

j j

9
M

9 j
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y n G x n y n j

p x n y n j p x n y n j

p x n y n j

γ

γ γ

γ

−

= + −

    
   = + − + + −        

  
  + + + −  
   

∑

∑ ∑

∑
  (5.3) 

Equation (5.3) suggests that if the memory effects are not taken into account, i.e. γj=0, the model 

reduces to memoryless nonlinear transistor expression G.  

5.1.2 Elimination of Multiple Reflections Terms 

Up to this point, the derivations are no different from the ones in the previous chapter. However, it is 

important at this stage to examine the summation of reflected signals in equation (5.3) which are the terms 

expressed as: . Expanding each term of that summation expression yields to the following 

expression in terms of the input signal x(n): 
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In the previous equation, terms similar to 

2

1

( )j k

k

y n j kγ γ

=
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 − −  
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 (5.5) 

Those terms represent the 2
nd

 , 3
rd

 and higher stage reflections, which become minimal when taken to a 

total order that is higher than one, in other words when past samples of the input are multiplied by a factor 

of ( )a b
j kγ γ where 1a b+ > . Such terms can consequently be omitted from the calculations and the 

previous expression of ( )j y n jγ −  is simplified to: 

2
1 2

3
3

( ) ( ) ( )

( )

j j j

j

y n j p x n j p x n j

p x n j

γ γ γ

γ

− = − + −

+ −

  (5.6) 

Subsequently, expression (5.4) can be rewritten as: 
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5.1.3 Elimination of Cross-terms  

The previous expression of y(n) in equation (5.7) suggests the need for cross-terms to be present in the 

modeling scheme as x(n)x(n-j) elements are observed. However, in most RF PA linearization setups, the 

discrete input signal x(n) is relatively well oversampled compared to Nyquist theoretical minimum 

sampling limit. In other terms, the input signal is usually oversampled by a factor higher than 2. 

Therefore, for this type of discrete signals, it is safe to assume that: 

2( ) ( ) ( ( ))
2

i j
x n i x n j x n floor

+
− − = −

  (5.8) 

This assumption is safe up to a certain limit of separation in the input signal samples, i.e. (i-j). 

Applying this assumption within this limit to the close-form expression y(n) detailed in the previous 

section, all the cross-terms are assimilated into pure terms and the close form expression becomes: 

1

0 1

( ) ( ) ( )
kPM

j

ij

i j

y n a x n i x n i
−

= =

= − −∑∑
  (5.9) 

Where the coefficients aij are function of the memoryless polynomial coefficients (pi) and the discrete 

coefficients of the feedback FIR filter coefficient (
jγ ) of expression (1), and kP  is an integer that varies 

between 0 and 2N-1 as will be explained later. The expression of these coefficients in terms of pi and γj 

differs depending on the order of memoryless nonlinearity (9) and memory depth (M) specified. Varying 

9 and M led to observing two general key trends common to all values of aij as will be detailed in the next 

two sections. As an illustration of equation (5.9), Table I suggests the detailed expressions of the close-

form expression coefficients aij and their repartition for the particular case where 9=5 and M=8. It is 

worth mentioning that although the initial memoryless nonlinearity was equal to 5, Table I reveals an 

order of nonlinearity equal to 9 in the close form expression. Hence, hereafter, the nonlinear order will be 
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designated with P and will be equal to the order of the nonlinearity obtained when memory effects were 

included in the model, i.e. P is equal to 9 when N is set to 5. 

The examination of equation (5.9) and the expressions of aij coefficients will serve later in the 

development of a systematic approach for the complexity reduction of the M-Polynomial model 

especially when used to construct a DPD as will be detailed in the remainder of this paper. 

5.2 Similarity with M-Polynomial Formulation 

The M-Polynomial is a comprehensive modeling scheme, introduced by Kim et al. [2], which is derived 

from the Volterra model so that fewer coefficients are required while preserving its capability of 

capturing memory and nonlinearity effects. It is defined as: 

1

,

0 1

( ) ( ) ( )

K P
p

MP p k

k p

y n c x n k x n k
−

= =

= − −∑∑
  (5.10) 

where x(n) and yMP(n) are the complex envelope signals at the input and output, respectively. K is the 

memory length of the system, equivalent to the number of polynomial branches.  represents the 

polynomial order of the branches and  designates the p
th
 polynomial coefficients of the k

th
 branch. The 

M-Polynomial scheme has proven PA modeling and linearization performance although it ignores the 

cross-terms of the original Volterra series from which it was derived.  

Comparing yMP(n) expression (5.10) with the expression (5.9) y(n), it is clear that the output in both is 

affected by similar combinations of input samples. Therefore, setting both equations equal will yield the 

following relationship between the coefficients of each: 

,ij p ka c=   (5.11) 

Hence, a direct relationship is established between the coefficients of the physical formulation and the 

ones of the M-Polynomial scheme. The following section will further analyze the physical formulation to 

understand the implications of that direct relationship on the M-Polynomial scheme. 
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Table 5.1 - Expressions of the aij coefficients for F=5 and M=8 (P=9, M=8). 
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5.3 Analysis of M-Polynomial Formulation 

In this section, a systematic complexity reduction of the M-Polynomial scheme will be established 

based on the analytical formulation of the previously presented ME formulation. It will also be 

proven that the actual PA’s memoryless nonlinearity order is not the order of the 1
st
 polynomial in an 

M-Polynomial scheme, but a direct relationship between these two orders will be determined 

hereafter. 

It is worth mentioning that the reformulation, analysis and complexity reductions will be tested and 

validated experimentally in reverse mode (DPD). Indeed, assessing the capability of the reduced 

complexity M-Polynomial scheme in constructing the accurate DPD for the DUT was preferred to 

conventional validation approach (forward mode) that relies on the capacity of predicting its output 

spectrum as it offers a rigorous modeling accuracy metric. From this point on, the spectra in figures 

will be designated by the ‘PxM’ notation where P corresponds to the nonlinearity order and M to the 

memory depth of the linearizing scheme. 

5.3.1 Systematic M-Polynomial Complexity Reduction  

Based on Table 5.1, the first key trend that was observed in the reduction of the y(n) expression is that 

the coefficients of high order terms of the subsequent polynomials are equal to zero. In other words, 

modeling the effect of older input samples on y(n) requires a lower nonlinearity order than the 1
st
 

polynomial of the M-Polynomial structure. Therefore, a reduction in the order of the subsequent 

polynomials can be applied to the M-Polynomial scheme without any loss of its modeling or DPD 

capability. Each Cell of Table I represents a M-Polynomial coefficient, where each row designates a 

polynomial branch of the scheme. In other words, the cells of the 1
st
 row in table are the coefficients 

of the 1
st
 polynomial, Cell 1 being the coefficient of the term x(n), cell 2 being the coefficient of the 

term x(n)
2
 up to Cell 9, coefficient of x(n)

 9
. Same for the subsequent rows where for example cells of 

row 2 are the coefficients of x(n-1), x(n-1)
2
, and x(n-1)

9
. The order of the 1

st
 four polynomials 

remained unchanged; however, the order of the fifth to eighth was reduced from 9
th
 order to 

successively 8
th
, 6

th
, 5

th
 and 5

th
, by having null coefficients in the high orders of the subsequent 

branches of the M-Polynomial. The scheme will be denoted as 99998655, the numbers being in 

reference to the order of each branch. 
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It is essential to note that the reduction of the scheme eliminates only redundant terms, keeping the 

scheme’s full modeling capabilities. In order to validate this fact, the first step was to find the M-

Polynomial-DPD scheme that was most efficient in linearizing the lineup behavior. That is to 

maintain the best ACPR attained with the least number of coefficients. A high order, large number of 

branches M-Polynomial is used as a starting point. The complexity of this initial DPD is lowered by 

reducing the order of the M-Polynomial and the number of branches. It was found that a 9th order 

MP-DPD with memory depth of 8 was the most efficient linearization scheme when using all the M-

Polynomial coefficients. A 7th order DPD did not achieve the same linearization performance, and 

orders higher than 9 do not improve the spectrum linearized with a 9th order and designated in Figure 

5.3 as ‘Full MP-DPD 9x8’. Similarly, it was found that a 8th as memory depth is a good 

configuration for the M-Polynomial as 9
th
 order does not improve its linearization capability and 7

th
 

order somewhat compromises it. 

 

Figure 5.3 - Spectra of DUT response without any DPD applied (Output without DPD), and 

linearized with a full polynomial scheme of order 9 and memory length of 8 (Full DPD MP 9x8) 

and the reduced MP scheme 99998655. 
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As shown in the spectra of the Fig. 2 and the ACPR values of Table 5.2, the linearization 

performance is maintained when the higher orders of subsequent polynomial branches are replaced 

with zeroes according to the scheme suggested by the cross-term reduction of the physical equation. 

Hence, so far the number of coefficients was reduced by 12 without any degradation in linearization 

performance. 

Table 5.2 – First Step of M-Polynomial DPD Order Reduction 

DPD Used 
ACPR (dBc) 

Conditioning of A 
Total # 

of Coeff 1
st

 OB 2
nd

OB 3
rd

OB 

Full MP 9x8 -47 -50.7 -57.7 1.405e10 72 

Reduced MP 99998655 -47.6 -51.3 -58.3 1.186e10 60 

5.3.1.1 Elimination of the 5th order Terms in M-Polynomial  

To further reduce the complexity of the M-Polynomial scheme without trading any of its linearization 

capability, the contribution of the 5
th
 order nonlinearities, p5, of the transistor static nonlinearity to the 

memory effects is investigated here. 

When considering the effect of the 5
th
 order nonlinearities on the envelope of the signals being 

modeled, it can be said that although it might be present through recombination, the effect is minimal 

due to scaling factors and the multiple recombination needed for the 5
th
 order to reappear in the 

fundamental band. Based on that, the coefficients of Table 5.1 were further reduced by nulling p5 in 

all the subsequent branches of the MP while keeping it in the 1
st
 branch as it is essential in capturing 

the memoryless part. This step led to a new DPD structure defined as: 97776544. 

The resulting DPD is implemented with the indicated orders, and compared with the one from the 

full M-Polynomial scheme as shown in Figure 5.3. Table 5.3 gives the ACPR values for the 3 M-

Polynomial configurations. 

Table 5.3 - Second Step of M-Polynomial Order Reduction 

DPD Used 
ACPR (dBc) 

Conditioning of A 
Total # 

of Coeff 1
st

 OB 2
nd

OB 3
rd

OB 

Full MP 9x8 -47 -50.7 -57.7 1.405e10 72 
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Reduced MP 99998655 -47.6 -51.3 -58.3 1.186e10 60 

Reduced MP 97776544 -47.6 -50.7 -58 1.175e10 49 

5.3.1.2 Even Order Elimination 

As previously discussed, when modeling the envelope of the RF signal, only odd orders are needed to 

capture the effects of both even and odd nonlinearity products that fall within the pass-band. As noted 

in Figure 5.4, the spectrum of the DPD does not deteriorate when the even orders are removed from 

the reduced scheme. Not only is ACPR maintained to the levels of a full MP-DPD scheme, but the 

number of coefficients is now reduced by a factor of 2.6, as shown in Table 5.4. 

Table 5.4 - Third Step of M-Polynomial DPD Order Reduction. 

DPD Used 
ACPR (dBc) 

Conditioning of A 
Total # 

of Coeff 1
st

 OB 2
nd

OB 3
rd

OB 

Full MP 9x8 -47 -50.7 -57.7 1.405e10 72 

Reduced MP 97776544 -47.6 -50.7 -58 1.175e10 49 

Reduced MP 97776544 

Odd Only 
-47.5 -50.6 -57.4 2.853e7 27 
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Figure 5.4 – Response of DUT linearized with full polynomial scheme: order 9 and memory 

length of 8 (Full MP 9x8), and the reduced MP schemes 97776544 after even order elimination 

5.3.1.3 Overall Complexity Reduction of the MP scheme 

The previous three subsections presented reduction and simplification strategies of the physical model 

which proved that in the full M-Polynomial scheme; some coefficients are redundant for the modeling 

of an RF PA behavior. In fact, as shown in Table 5.4, the complexity of the M-Polynomial was 

significantly reduced: the number of coefficients required by the scheme was reduced from 72 to 27 

coefficients, or a factor of 2.6. Also, the stability of the model extraction is improved as the 

conditioning number of the scheme is reduced by 3 orders of magnitude.  

These reductions, all based on circuit and device  properties of the DUT, were achieved without 

any loss in the scheme’s linearization performance, as shown by the spectra of Figure 5.4 and ACPRs 

of Table 5.4 presented in the previous sections.  

To evaluate the effect of the DPD on the overall system’s operational costs, the PAE was measured 

in the case where no DPD was applied to the signal and where the complexity reduced M-Polynomial 
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DPD was used to linearize the PA lineup. Applying an M-Polynomial DPD achieved a PAE of 32%, 

which is a significant improvement on the 15% PAE achieved where no DPD was applied. 

Table 5.5 combines all the reduction steps, including the even order omission compared to the 

reduction presented in Table 5.1: 

Table 5.5 – Final Reduction of the M-Polynomial for F=5, M=8 (equivalent to P=9, M=8). 

 

5.3.2 Memoryless Order vs. Order of MP scheme 

It is widely believed that the memoryless nonlinear polynomial, that is necessary to model the 

memoryless nonlinear part of the behavior of the PA, is equivalent to the first polynomial of the M-

Polynomial scheme. However, the expressions of coefficients obtained from the physical model do 

not reflect that fact. 

For the purpose of illustrating the concept, and since a minimum order of 9 was required for the 

MP-DPD as shown in the previous subsections, let us consider a 9x8 M-Polynomial structure, and 

examine the expression of its coefficients  shown in Table 5.1. In the previous subsections, it was 

found that a minimum nonlinearity order of 9 in the first branch of the M-Polynomial was necessary 
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in order to capture both nonlinearity and memory effects of the PA. However, if the memory effects 

need not be accounted for, the reflection filter coefficients ( jγ ) are nulled. Its implication on the M-

Polynomial coefficients can be seen through the expression of the coefficients presented in Table 5.1. 

Each row of that table represents the coefficients of a branch of the M-Polynomial, where columns 

indicate the order of the polynomial elements multiplied by that cell. For example, the coefficient of 

row 1, column 1 is equivalent to c11 in M-Polynomial expression (5.10).  

It is evident that once jγ =0, the effect of all subsequent branches of the M-Polynomial (Poly2 to 

Poly8) is nulled as all their coefficients become equal to zero too. 

The observation of interest is the effect on the 1
st
 branch polynomial (Poly1). The coefficients of 

orders higher than 5 in this case will be cancelled as well due to the fact that a jγ  factor multiplies all 

the elements of the expression. As expected, the coefficients of orders lower than 5 will be reduced to 

the transistor’s characteristic expression G defined in the previous section. In other words, if the 

feedback FIR filter was not taken into consideration in the physical model, the memoryless nonlinear 

part would have been simply a 5
th
 order polynomial.  

The 9x8 structure was used only to clarify explanations, but these observations in the coefficients 

are general trends that apply to every combination of memory and nonlinearity orders. The 

nonlinearity order needed in the 1
st
 branch of the M-Polynomial scheme is equal to P1=29-1, where 9 

is the actual memoryless nonlinear order of the system being modeled. 

The fact that only (P1+1)/2 order of nonlinearity is needed to capture the memoryless behavior was 

tested in 2 ways. The first one is to assess the modeling capability of the 9
th
 and 5

th
 polynomial 

functions in capturing the static nonlinearity of the PA. As shown in Figure 5.5, both polynomials 

perform similarly in capturing the memoryless nonlinear part of the AM/AM and AM/PM 

characteristics. 

Furthermore, the 5
th
 order model was tested experimentally for linearization capability. As shown 

in Figure 5.6, the DPDs of both 9
th
 and 5

th
 order have the same linearization capabilities. This 

suggests that even though the 9
th
 order was essential in linearizing the model with memory effects, it 

is over modeling the memoryless behavior and only a 5
th
 order is needed to capture its memoryless 

characteristics 
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Figure 5.5 - AM/AM and AM/PM curves of the measured PA response, modeled with both 9th 

and 5th order memoryless polynomials. 

 

Figure 5.6 - Spectra of DUT response without any DPD applied (Output without DPD), and 

linearized with a memoryless DPD of order 9 and 5. 
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5.4 Approach Summary 

A close form deterministic approach to M-Polynomial complexity reduction was presented. The 

reduction is based on the proposed close –form analytical expression of its coefficients, obtained from 

a physical PA model. Three main reduction steps were applied to the expression obtained from the 

physical model, namely: cross-term elimination, elimination of high order nonlinearities from 

memory effects, and even order elimination. The number of coefficients required by the M-

Polynomial was reduced by a factor of 2.6, reducing complexity and costs of implementation of the f 

the scheme without losing any of its proven linearization capabilities as shown through experimental 

validations of results. Applying the reductions suggested by the analytical analysis of the coefficients 

guarantees that no losses will be observed in the linearization performance of the reduced scheme 

compared to that of the full M-Polynomial scheme.  

Another concept that was proposed and verified, both in simulation and experimentally, was the 

fact that the order of the memoryless nonlinearity of the RF PA was almost half the order required by 

the 1
st
 branch polynomial of the M-Polynomial scheme. Additionally, a PAE of 32% was achieved 

when employing the DPD scheme, which is an improvement on the PAE of the system with no DPD 

(15%). 
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Chapter 6 

Conclusions and Future Work 

6.1 Conclusion 

The work presented in this thesis aimed mainly at understanding and improving the behavior of RF 

PAs, mainly measured by the linearity-efficiency tradeoff. The main contributions from this work can 

be summarized in three main points. First, a deterministic approach for parallel Hammerstein 

reduction was proposed. The proven parallel Hammerstein structure is used to demonstrate a 

deterministic approach where optimal filter lengths of the structure can be determined with one set of 

measurements. The reduced scheme using this method is shown to perform comparably to the full, 

unreduced schemes. 

Another main point is the interpretation and close form formulation of memory effects. A link has 

been established between behavioral and physical models of RF PAs. This link is essentially a close 

form formulation for memory effects that is based entirely on physical PA circuit properties. The 

origin of memory effects is explained as reflections from networks back into the nonlinear transistor.  

The last point is linking behavioral modeling to physical close form formulation. The physical 

formulation is linked back to behavioral models in two steps. The first step is linking the Volterra 

model to the physical model, showing the correlation between the theoretical Volterra coefficients 

when applied to model RF PAs. The second step is to explore assumptions and subtle reductions in 

the physical formulation presented that yields identical terms to those of the M-Polynomial. From that 

point, the necessity or redundancy of each coefficient in the memory polynomial is justified based on 

physical properties of the DUT. 

6.2 Future Work 

Many topics, presented in detail or mentioned briefly during this thesis, are worth further 

investigation. Here are a few directions of possible future research:  

1. When exploring the FIR filter response for the Parallel Hammerstein reduction, it might be 

interesting to consider the omission of a few taps that are within the range of interest. 

Sampling rates used could be high compared to required rates for certain orders. Just as an 
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illustration, even if the FIR length has to be 6 to cover the physical time constant response of 

the PA, it is possible that the 2
nd

 and 4
th
 taps are not necessary in that filter. 

2. The physical formulation gives a definition for the coefficients of the behavioral models in 

terms of physical circuit properties, namely reflection coefficients of networks in the PA 

circuit. These reflection coefficients are not measurable quantities, but would, if quantified, 

give great insight to PA designers as to where, and at what frequencies to improve their 

design. When finding numerical values for behavioral models, they can be linked back to 

identify the value of those reflection coefficients so that modeling is now quantifying non-

measurable operation criteria of the PA components. 

 

3. Sampling Rate / PA time constant 

The required sampling rate of signals has been the subject of extensive computational 

research in this field. The required sampling rate in this case is an essential factor to be 

determined as it determines the frequency at which DPD computations take place, therefore 

keeping the sampling rate to a minimum would save computational power for the DPD 

scheme operation. It is interesting to explore an optimal sampling rate which accurately 

covers the PA time constant. Then the term ``Memory depth`` of the PA would be 

comparable from experiment to experiment, since for now it is the number of sample points 

that cover the time constant, but only relative to a specific sampling rate. 

 

4. Testing the M-Polynomial shortcomings based on the assumptions made in the transition 

from physical model to M-Polynomial model, as for example the extent to which it will still 

perform accurately with a low sampling rate. 
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