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Abstract

Using the AdS/CFT correspondence, we study the anisotropic transport properties of
both supersymmetric and non-supersymmetric matter fields on (2+1)-dimensional defects
coupled to a (3+1)-dimensional N = 4 SYM “heat bath”.

We address on the one hand the purely conformal defect where the only non-vanishing
background field that we turn on is a “topological”, parameter parametrizing the impact
on the bulk. On the other hand we also address the case of a finite external background
magnetic field, finite net charge density and finite mass.

We find in the purely conformal limit that the system possesses a conduction threshold
given by the wave number of the perturbation and that the charge transport arises from
a quasiparticle spectrum which is consistent with an intuitive picture where the defect
acquires a finite width in the direction of the SYM bulk. We also examine finite-coupling
modifications arising from higher derivative interactions in the probe brane action.

In the case of finite density, mass and magnetic field, our results generalize the con-
formal case. We discover at high frequencies a spectrum of quasiparticle resonances due
to the magnetic field and finite density and at small frequencies a Drude-like expansion
around the DC limit. Both of these regimes display many generic features and some fea-
tures that we attribute to strong coupling, such as a minimum DC conductivity and an
unusual behavior of the “cyclotron” and plasmon frequencies, which become correlated to
the resonances found in the conformal case. We further study the hydrodynamic regime
and the relaxation properties, in which the system displays a set of different possible tran-
sitions to the collisionless regime. The mass dependence can be cast in two regimes: a
generic relativistic behavior dominated by the UV and a non-linear hydrodynamic behav-
ior dominated by the IR. In the massless case, we also extend earlier results [49] to find
an interesting duality under the transformation of the conductivity and the exchange of
density and magnetic field.

Furthermore, we look at the thermodynamics and the phase diagram, which reproduces
general features found earlier in 3+1 dimensional systems and demonstrates stability in
the relevant phase [45].
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Quasi-chronological History of String Theory

String theory can be described in terms of various dual descriptions, depending on the limit
from which we “probe” the theory. From a point of view of constructively trying to refute
the theory, at least based on its theoretical consistency, it can be described as a Hydra –
each time we try to decapitate it, i.e., each time it seems to run into an inconsistency, two
new heads grow back, and furthermore, one head is immortal. From a sociological point
of view, however, it is best described as a plant belonging to the family of the Poaceae,
in particular the subgroup of the Bambusodae, which grow their many culms from a vast
underground network of roots at a high speed in a short period and display huge mass
flowerings spaced over a timescale of decades.

It was conceived in the early 1970s as a phenomenological model to explain the cross-
sections observed in hadron scattering experiments, as it could successfully explain the
“Regge trajectory” behavior [1]. In one form, it is based on the action of a string at
tension T , that is essentially given by the volume of a string embedded in a d-dimensional
spacetime with embedding coordinates Xµ in terms of the induced metric on the string
“world-volume” Gab = ∂aX

µ∂bXµ,

SNG = −T
∫
d2σ
√
− detG , (1.1.1)
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referred to as the Nambu-Goto action. As this turns out to be hard to quantize, one can
alternatively try to use the 2-dimensional sigma model action (“Polyakov action”, invented
by Brink, Deser and Howe [2])

SP = −T
2

∫
d2σ
√
− dethhab∂aX

µ∂bXµ , (1.1.2)

which is obviously invariant under the choice of the “auxiliary” metric h on the string.
It is equivalent on the classical level as it gives the same equations of motion; and it was
quantized by Polyakov in [3]. The string tension is usually expressed in terms of the Regge
slope α′ or the string length ls as T = 1

2πα′
= 1

2πl2s
.

However, the brief period of flowering died off and activity slowed down when it turned
out that string theory was in contrast with experiment and it was finally terminated by
the discovery of quarks, QCD and asymptotic freedom [4]. The latter could successfully
and accurately explain the observations, and later became a corner-stone of the immensely
successful standard model of particle physics.

It was re-incarnated shortly after, when it was re-considered as a theory of quantum
gravity because of its massless spin-2 states [5]. However, it was discovered that the
theory possesses a 2d-conformal anomaly, unless one assumes the critical dimensionality
of spacetime, d = 26 [6]. Then, it turns out that the spectrum of the theory contains a
tachyon of mass-squared m2 = −1/α′. Furthermore, the spectrum was lacking fermions,
which are a necessary constituent of a grand unified theory.

The latter shortcoming was fixed first by Ramond, and Neveu and Schwarz by adding
to the d scalars Xµ of the worldsheet theory d fermions ψµ – the so-called RNS formalism
[7]. In 1981, it was alternatively demonstrated in the Green-Schwarz, or “superspace”,
formalism that one can add fermions by extending the d-dimensional spacetime to include
also Grassmann-odd coordinates [9]. This made the theory much more attractive. It
turns out that the critical dimension, at which it becomes anomaly-free is then d=10
[10]. Furthermore, it was discovered by Gliozzi, Scherk and Olive that the theory can
be restricted to a spacetime-supersymmetric sector using the so-called GSO projection,
that defines a “G-parity” and projects out G-positive or G-negative states [8]. This had
the important result of projecting out the tachyon, making the theory well-behaved and
consistent. In some sense, this is one of the “miracles of supersymmetry” in the same
spirit as the fact that the supersymmetric extension of the standard model ensures the
cancellation of radiative corrections to the Higgs mass.

Eventually, it turns out that there are 5 different consistent string theories in 10 di-
mensions: Type II string theory contains oriented closed strings. The two type II theories,
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type IIA and type IIB, differ only in the choice of the GSO projection. The consequence of
this is that they share the same so-called NS-NS sector that contains at the massless level
a scalar φ, the symmetric tensor G and a 2-form gauge potential B. They differ, however,
in the so-called R-R sector that contains in the case of type IIA a 1- and a 3-form gauge
potential C(1) and C(3), and in the case of type IIB string theory a scalar, 2- and a 4-form
C(0), C(2) and C(4). Here and below, it is understood that there is further the appropri-
ate set of superpartners. Type I string theory contains both unoriented open and closed
strings. Its massless spectrum, as in type II string theory, consists of the dilaton, graviton
and three-form, and additionally of the gauge field (1-form) from the open string sector.
Furthermore, there are two kinds of “heterotic” string theories. Heterotic sting theories are
unoriented string theories that contain the left-moving sector of the 26 dimensional bosonic
string theory, and the right-moving sector of the 10 dimensional super string theory. At the
massless level they display E8×E8 symmetry or SO(32) symmetry and are called E8×E8

heterotic string theory or SO(32) heterotic string theory, accordingly. Heterotic string
theories are of great interest to string-phenomenology, but not relevant for this thesis. In
addition, one also considers the low-energy limit of 11 dimensional supergravity to belong
to this set of theories.

It turns out that, mysteriously, all 6 theories are linked by a set of dualities: S-duality
– a strong-weak coupling duality and T-duality. If we suppose that one of the dimensions
has the topology of a circle with radius R, T-duality exchanges R ↔ l2s/R. If a string in
such a background had n “winding” modes and m “Kaluza-Klein” [12] (essentially periodic
harmonic) modes, this duality will further exchange m ↔ n. Furthermore, these theories
are related by taking orbifolds and orientifolds – spacetime parity operations.

Also, it was shown that the low-energy limit of the theories is 10-dimensional super-
gravity, at the example of type IIB string theory, the bosonic part is:

SSUGRA =
2π

(2πls)8

∫
dx10
√
−G

(
e−2φ

(
R + 4(∇φ)2 − 1

2
|H(3)|2

)
(1.1.3)

−1

2
|F (1)|2 − 1

2
|F̃ (3)|2 − 1

4
|F̃ (3)|2

)
− π

(2πls)8)

∫
C(4) ∧H(3) ∧ F (3) ,

where H(3) = dB(2), F (n+1) = dC(n), F̃ (3) = F (3) − C(0)H(3) and F̃ (5) = F (5) − 1/2C(2) ∧
H(3) + 1/2B(2) ∧F (3). The vacuum expectation value of eφ is commonly referred to as the
string coupling gs. For more information , the reader is referred e.g. to [11].

At this stage, however, the theory is not even remotely close to describing observations
of nature. This is because we are living in 3+1 macroscopic dimensions, and also our
spectrum of fundamental particles is not the one naively obtained from string theory. This
problem was later addressed in two ways.
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One way was to compactify the spacetime by assuming that the spacetime is a product
manifold of the type R(d,1)×Σ9−d, where the Σ-manifold is assumed to be compact with a
small radius, such that the corresponding Kaluza-Klein excitations in the compact direc-
tions have high energies. Then, the symmetry group of that compact manifold is observed
as a symmetry group of the fundamental particles from the view of the d+ 1 dimensional
spacetime. Certainly, the concept of having the particle theory encoded in the geometry
of spacetime, and probed by strings sounds appealing.

However, it turned out that such compactifications are generically unstable as one can
naively visualize by considering a winding mode of a string trying to minimize the radius
of a compact direction. This shortcoming was solved through “moduli stabilization” in so-
called flux compactifications shortly after the turn of the millennium by adding a magnetic
flux to the compact dimension (e.g. in [13, 14]). These models were not only able to
stabilize moduli and generate a particle spectrum, but also to break supersymmetry and
induce a small positive cosmological constant for the flat directions [15].

Soon it was discovered though, that such flux compactifications give rise to a large
number of different consistent string theory backgrounds (“vacua”) [16] and that the inverse
problem of obtaining the vacuum “construction” from “observable” parameters is an NP-
hard problem [17]. This raised worries that the theory might not be predictive. On
the other hand, it was noted, however, that similar “landscapes” are not uncommon in
physics. Furthermore, this “landscape of string theory” gave rise to statistical studies of
string theory vacua (see e.g. [18]), to models of cosmological selection mechanisms and
eternal inflation [19]. From another point of view, those results moved string theory from
being a candidate for a unique theory of nature, depending only on the string coupling
towards being a mathematical framework, that allows the construction of a large set of
different consistent theories – just like quantum field theory.

Another way how the above-mentioned problem can be addressed is through D-branes,
that arise naturally as follows. The string spectrum contains two kinds of strings: Open
strings which have boundary conditions at their end points and closed strings, that have
periodic boundary conditions. For the open strings, there are two kinds of boundary
conditions that we can give to each scalar in the sigma model, i.e. to each spacetime
dimension: Dirichlet boundary conditions, which we fix the value of the scalar i.e. the
position of the string endpoint (i.e. such that its time derivative to zero), and Ramond-
Ramond boundary conditions, which correspond to freely moving endpoints and require
the derivative of the scaler along the string length to vanish. It was discovered in 1995
by Polchinski [20] that it turns out that assigning hypersurfaces in spacetime to Dirichlet
boundary conditions of strings, i.e. attaching strings to them, causes these Hypersurfaces
gain dynamics: They become physical objects, called “D-branes”. They can be described
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by the Born-Infeld action [21] in terms of the induced metric G and the gauge field strength
F

SBI = −TDp
∫
Dp

√
− det(Gµν + 2πl2sFµν) , TDp =

1

gs(2πls)p ls
. (1.1.4)

In the case of superstring theory, the action still takes the same form, however spacetime
supersymmetry can be incorporated by an appropriate definition of F and G, in which
case the action is referred to as the Dirac-Born-Infeld action1. This form of the action is
natural, because in the absence of a gauge field, the action is just the volume of the brane
that can be written neatly as

∫
dV times the brane tension. Furthermore, it was discovered

that in a supergravity background, there is the so-called Wess-Zumino term

SWZ = Tp

∫
Dp

(∑
n

C(n)e2πl2sF

)
(1.1.5)

through which D-Branes interact directly with the n-form gauge fields of supergravity. It
is understood that only the terms that do appropriately pull back to the brane volume
are considered. D-Branes turned out to be very interesting objects. For example the
gauge field on the D-Branes is sourced by the endpoints of strings ending on the brane.
Reviving the concept of assigning quantum numbers, so-called Chan-Paton factors, to the
end points of strings unveiled an interesting structure of symmetry groups associated to
configurations of branes. String end-points of oriented strings can now be interpreted as
quark-antiquark pairs. Since the endpoints are charged under the corresponding U(1)’s,
making them degenerate, i.e. considering n coincident branes, enhances the gauge group to
a U(n) symmetry. Furthermore, considering the massless spectrum of strings living at the
intersection of branes in an intersecting brane configurations make it possible to associate
products of symmetry groups to such configurations. This allowed the use of branes not
only to reduce the dimensionality of spacetime to 3+1 dimensions in “braneworld scenarios”
but also to address the hierarchy problem [22] and to attempt to reproduce the standard
model gauge group (see e.g. [23]). The factor of 1

gs
in the brane tension compared to

the string tension implies that at weak coupling, D-branes are very heavy objects. It also
turns out that Dp-branes, i.e. p+1 dimensional D-branes are sources for p+2-form flux
of supergravity with one “unit” p-form charge. Consequentially, even-p branes can only
be present in type IIA supergravity and odd-p branes in type IIB supergravity. These
properties make them also very interesting in a gravitational context. For example, a stack
of N D-branes may form a black p-brane solution, a black hole solution that looks roughly
similar to a Myers-Perry black hole with a p-dimensional horizon – more precisely with the

1In common abusive notation also the BI action is referred to as DBI action.
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solution

ds2 = Z−1/2
(
−Kdt2 + d~x2

p

)
+ Z1/2

(
K−1dr2 + r2dΩ2

8−p
)

C(p+1) = g−1
s (Z−1 − 1)dx0 ∧ . . . ∧ dxp , e2φ = g2

sZ
3−p

2 (1.1.6)

Z = 1 + αp

(rp
r

)7−p
, K = 1−

(rH
r

)7−p

where αp =

√
1 +

r14−2p
H

4r14−2p
p
− r7−p

H

2r7−p
p

and rp is parametrically r7−p
p ∼ gsNl

2
s (see e.g. [24, 25, 26]).

Special cases are D3-branes for which F (5) = ?F (5) and D7-branes whose solution has a
conical deficit angle. Furthermore we get an extremal solution with AdSp+2 × S8−p near-
horizon geometry in the extremal limit αp = 1.

One interesting limit of D-brane solutions is the so-called decoupling limit ls → 0. This
essentially corresponds in the black brane solution to dropping the “1” in Z and gives us
an AdS black hole. From looking at the DBI action, we also see that this corresponds to
decoupling the gravitational modes from the field theory modes, hence the name. In this
limit, the solution is only stable at black hole temperatures above the Hawking-Page phase
transition [27]. In contrast to Schwarzschild black holes the temperature of these solutions
is proportional to rH/L

2
AdS, rather than proportional to 1/rH .

D-branes are furthermore used for aspects in cosmology [28] or to construct “black
objects”; for example for comparing the black hole entropy to the microscopic entropy
obtained from the degeneracy of states first done in [29]. Hence, D-branes are an important
part of most of recent attempts to put string theory in the context of physics2.

1.1.2 AdS/CFT

D-branes also turned out to be necessary for the discovery and implementation of the
gauge-gravity duality in string theory. The Holographic principle, i.e. the concept that the
information for a d-dimensional theory of quantum gravity is specified on a d-1 dimensional
hypersurface was was first suggested by ’t Hooft in [31] and was followed-up by Susskind
[32], which, however, received initially limited interest. That was changed when Maldacena
conjectured the first implementation of a gauge-gravity duality in string theory [33]. His
conjecture claims that type IIB string theory in an AdS5 × S5 background with Nc units
of 5-form flux be dual to a supersymmetric N = 4 SU(Nc) Yang-Mills theory, i.e. a
supersymmetric SU(Nc) gauge theory with 4 supercharges defined on the boundary of the

2Physics is considered here to be a scientific theory by Karl Popper’s definition [30].
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AdS spacetime, in the case of Poincaré coordinates ∂ AdS5 = R(3,1). In principle, in its
strongest form, the duality is supposed to hold at all values of gs and ls.

On the one hand, this can be motivated by the fact that the isometries of the AdS5,
SO(4, 2), and the S5, SO(6), give precisely the conformal group and the R-symmetry group
of the field theory, respectively. The fact that the AdS isometries yield the conformal sym-
metry of the gauge theory led to the generalized concept of the AdS/CFT correspondence,
associating d-dimensional conformal field theories of various types with string theory con-
figurations in a spacetime that has an AdSd+1 factor. For a comprehensive review of such
generalizations and most other aspects see [34]. On the other hand, one can see motiva-
tion in the fact that this background is the asymptotic solution in the decoupling limit
of Nc coincident D3 branes, and the field theory induced by open strings ending on the
branes is an SU(Nc). This allows a very physical interpretation in which one considers
strings extending into the spacetime from infinity to probe the spacetime. More precisely,
the correspondence relates the operators O of the SYM to the boundary values φ0 of the
fields φ in the string theory by equating the partition function of the CFT to the partition
function of the string theory, evaluated under a set of boundary conditions:

ZCFT =
〈
e
R
∂AdS φ0O

〉
= Zstring(φ|∂AdS = φ0) . (1.1.7)

Numerically, the correspondence furthermore relates the Yang-Mills coupling to the string
coupling by g2

YM = 4πgs and the AdS length and the size of the sphere to the rank of the
gauge group, L4

AdS5
= L4

S5 = 4πgsNcl
4
s . The motivation for the latter can be seen from the

fact that these lengths are precisely obtained from the supergravity solution for a stack
of Nc D3-branes. This becomes very interesting from the point of view of the effective
coupling in the field theory. The ’t Hooft coupling is given by λ = g2

YMNc, which is in
terms of gravity parameters λ = L4

l4s
, implying that at large radius of curvature, i.e. weak

effective gravitational coupling, the field theory is strongly coupled.

This makes the AdS/CFT correspondence, provided it holds, an interesting computa-
tional tool in limits where conventional field theory methods fail. However, this makes it
also difficult to verify, or even prove, the correspondence because in converse, the weak
coupling limit in the field theory corresponds to highly curved spacetimes in string theory
– and even the next-to-leading corrections to supergravity are not all known [36]. Hence,
generically a check requires a non-perturbative formulation of either of the theories, and
to date successful checks have concentrated on quantities that are “protected” by super-
symmetry like n-point functions of chiral primary operators [37] and specific limits like the
planar limit of finite λ, but still N →∞ and gs → 0 [38]. However, there is a vast amount
of activity going beyond those cases e.g. using the Bethe Ansatz [39].
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At large Nc, the partition function on the gravity side can be approximately expressed in
terms of the supergravity action Ssugra, obviously evaluated with the appropriate boundary
conditions, as Zstring ∼ e−Ssugra . This provides for the straightforward computation of field
theory correlators [35] and also for the association of background properties or parameters
in the field theory with parameters in the gravity theory. Subsequently, this method
was further developed and extended to various different contexts. For example, it was
extended from the decoupling limit of D3-branes to general Dp-branes where obviously the
field theory is modified compared to the D3/N = 4 SYM case [40].

The common intuition is that the radial direction of the AdS spacetime corresponds to
the energy in the field theory, as can be seen from the fact that a conformal transformation
in the field theory corresponds to an isomorphism in the radial coordinate in the AdS
spacetime. Placing the asymptotic boundary at some finite radius corresponds then to
integrating out the degrees of freedom at high energies. Similarly a finite temperature can
be introduced by introducing a black hole horizon at some radius rH , i.e. considering a
stack of black D-branes. The temperature of the thermal field theory is then just given by
the temperature of the dual stack of D3 branes, in the case of D3 branes T = rH

πL2
AdS

.

For practical applications in an experimental context, one of the limitations of the above
was the fact that the fields on the field theory side transform in the adjoint representation of
the U(Nc). To introduce matter in the fundamental representation and make the duality
more relevant for the only fundamental strongly coupled field theory in nature, QCD,
the approach of using probe branes was introduced. This was first done by introducing
a small number of Nf “probe” D7-branes into the background, covering all of the AdS
directions [41, 42]. Fields on the probe brane are then dual to operators in the fundamental
representation of the SU(Nc), and the U(Nf ) symmetry of the stack of probe branes
corresponds to the flavor symmetry. This model is a good example of how one can guess
the dual field theory from the massless level of the string spectrum in the gravity setup,
as the massless level of the open string spectrum at the intersection in this case contains
a hypermultiplet that transforms under the fundamental representation of the SU(Nc). If
one considers the so-called “quenched limit” of Nf � Nc, this setup is further simplified by
the fact that the backreaction of the probe branes on the D3 background can be ignored
at leading order. Obviously this setup is still significantly different from the standard
model QCD, but studying the physical properties of both this model and the T-dual D4-
D6 setup have received great interest [43, 44]. Particular activity has been related to the
thermodynamics and the phase structure [45] and the “meson spectrum” [46].

From an experimental point of view, certainly the hydrodynamics have been most
interesting due to the similarity to recent heavy ion collision experiments at RHIC [47]
(and in the future also at the LHC) that study properties of the quark-gluon plasma - the
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phase of matter at high temperatures and high densities in which quarks and gluons are in
a superfluid phase, that is supposed to have existed a few tens of micro seconds after the
big bang. Despite the very different details of the theory, some generic properties about
this phase of matter may be predicted by AdS/CFT. The most celebrated result may have
been the universal ratio of the shear viscosity to the entropy density of η/s = 1/(4π), that
applies to a large class of theories. In fact, including higher order terms on the gravity side
suggests that this is a minimum bound [48], and experiments suggest that this bound is
closely saturated in QCD [47].

Another very recent area in which the AdS/CFT correspondence has received great
interest for its applications is condensed matter physics. In that context, initial interest
has been on the transport properties of 2 + 1 dimensional field theories, obtained from a
dual M2-brane setup with AdS4× S6 spacetime [49], which found a very interesting result
for the isotropic conductivity that turned out to be frequency independent. Subsequent
research for example obtained the DC Hall conductivity from a dyonic blackhole setup
[50], studied the Nernst effect [51] and other issues [52, 53]. Most interest has received
the construction of gravitational setups whose field theory duals show the phase transition
of a superconductor. These constructions were initially based on black holes with “scalar
hair” and SU(2) backgrounds outside string theory, but later setups were also constructed
within string theory [54]. It is interesting to see how closely they reproduce effects observed
in experimental condensed matter physics, as it was discovered for example that also
the holographic constructions possess a critical magnetic field and the magnetic field is
quantized in vortices [55]. Another recent branch has been the construction of gravitational
setups, whose dual field theories are non-relativistic and have the conformal symmetry
reduced to Schrödinger symmetry [56]. There is hope that this may yield the construction
of a wide range of gravitational duals to field theories in condensed matter physics, which
are in most cases non-relativistic.

The hope that AdS/CFT may prove useful in condensed matter physics is on the one
hand supported by the fact that it not only can potentially provide insight and observable
properties for some strongly coupled theories that may be similar to those in condensed
matter physics, but also that it provides those results in a very uniform and general fashion
in just one calculation, rather than deriving different approximate solutions in different
limits as it is the case with current ordinary field theory methods [57, 58]. On the other
hand, condensed matter physics provides an interesting playground for AdS/CFT, because
there is a large number of 2+1 dimensional systems that display conformal behavior, i.e.
there are potentially many different strongly coupled CFTs of relevance to experiment as
we line out in the next subsection and there is a vast number of 3+1 dimensional AdS vacua
in string theory that may be used to construct gravitational duals [57, 58]. In contrast to
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this, there is only one QCD.

Obviously, there are many other equally fascinating applications of the AdS/CFT cor-
respondence, such as studies of extremal black holes via the AdS2/CFT

1 correspondence
[59] or entropy counting for 3 dimensional black holes [60].

1.1.3 Some hard problems in condensed matter physics

Of particular interest for applications of AdS/CFT has become the so-called quantum crit-
ical phase of condensed matter systems. Most commonly, a phase transition is understood
to be happening at finite temperature, when the temperature moves from a regime fa-
voring one state of a system towards a regime favoring another state. There are however
also phase transitions at zero temperature, which occur if one tunes a generalized “cou-
pling” constant J , e.g. the pressure or the background magnetic field of a system, so-called
“quantum phase transitions”. These quantum phase transitions occur whenever there is a
level crossing of the ground state of the Hamiltonian with the lowest excited state. Most
commonly however, level crossings will be “avoided” in finite size systems. For large sys-
tem sizes though, there is a limiting case in which the ground state and first excited state
become infinitely close in energy at one point in phase space, which does also become a
quantum phase transition. Examples are phase transitions in antiferromagnets and some
superconductor-insulator transitions.

The system becomes scale invariant as the coupling is tuned to the quantum critical
point, just like the diverging correlation length as one approaches the critical temperature of
a second order phase transition. Hence, it has conformal symmetry and can be described by
a conformal field theory. While it was known for a long time that at finite temperature, the
quantum critical phase transition does not always continue into a single phase transition
between the finite-temperature extensions of the two phases and may show some cross-
over phase, this area in phase space received not much interest until recently. It turns out
that the phase at the quantum critical point extends into the finite temperature regime,
where there is a “quantum critical phase” in which the only length scale is given by the
temperature. This is shown in fig. 1.1, where we show a generic quantum phase transition
between some ordered and some unordered phase.

While scale invariance is a key feature of phase transitions in condensed matter physics,
also at finite temperature, this case is special, as there is a whole region of finite volume
in phase space that can be described by a conformal field theory. As an example, the
conductivity in the quantum critical phase is thought to be controlled by a universal
function Σ that depends on the ratio ω/T and some dimensional temperature scaling,
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σ(ω) = Q2(T/c)d−2Σ(ω/T ) for some microscopically determined velocity c. Obtaining Σ
however is a difficult task and can only be done in certain limits. For instance, for large
frequencies, one expects σ ∼ ωd−2 [58].
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Figure 1.1: Left: A generic quantum critical phase transition and quantum critical phase.
Right: A generic surface phase diagram.

Defect field theories are basically field theories in which matter that is confined to some
hypersurface interacts via a field theory in the bulk. While there is some review literature
in a soft condensed matter context related to aspects like the statistical mechanics of
crystal defects in the context of melting behaviors, defects in polymers or flux tubes in
superconductors (for a review see [61]), there seems to be not much review literature
related to the defects and their aspects that we are interested in. Hence, a motivated guess
may be that they have many properties in common with surfaces, which have been studied
extensively.

To illustrate their properties, we can look at a generic surface phase diagram in fig.
1.1, of some system described by a bulk coupling Jb and a surface coupling, Js – for a
review on the subject see [62]. There, we see that over most of the parameter range, the
surface and the bulk are in the same phase, and display a simultaneous “ordinary” phase
transition. As we tune the surface coupling beyond a “special point”, which is some critical
multiple of the bulk coupling, the phase transitions on the surface and in the bulk separate
into a surface phase transition and an “extraordinary” phase transition in which there is
a phase transition only in the bulk. It is obvious from the ratio Js/Jb in this regime that
the ordered phase on the surface extends to higher temperatures than the ordered phase
in the bulk. However it is quite interesting that this splitting of phase transitions typically
occurs as Js becomes greater than Jb and hence there is no “mirror symmetric” version of
this plot.
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1.2 This thesis

1.2.1 Context

As outlined above, most research in AdS/CFT applied to condensed matter physics studies
2+1 dimensional systems, in particular purely 2+1 dimensional systems. Since our world
however is 3+1 dimensional, all 2+1 dimensional systems are strictly speaking defects. In
some cases this fact may be less relevant and in other cases more relevant.

Hence, in this thesis, we are studying the physics of a 2+1 dimensional defect of charged
matter (“quarks”) interacting in a 3+1 dimensional N = 4 SU(Nc) SYM background,
based on the transport properties of this matter along the defect. In that sense we will be
put sometimes in the perspective of an experimentalist, trying to interpret our results. To
identify the characteristics that are due to having a defect rather than just a plain 2+1
dimensional field theory, a major theme in this research is the inclusion of a parameter
that is related to a difference in the level of the gauge group Nc → δNc between both sides
of the defect.

Also, we will try to link the properties obtained in different regimes rather than studying
only one particular limit or one particular effect. In this spirit, we will study all frequency
and wavenumber scales, from the hydrodynamic limit (the “collision-dominated” regime at
small frequencies and small wavenumbers) up to the quasiparticle limit (the “collisionless”
regime at large frequencies) – and we will demonstrate in several cases how a length scale
obtained in one regime, direction or context will govern some properties also in another
regime. Furthermore, we will be interested how effects from ordinary weakly coupled free
electron gas type physics that we are familiar with will manifest themselves in this strongly
coupled system, as we turn on various condensed matter parameters, i.e. the net baryon
number density, background magnetic field and “quark” mass. Certainly, since we are
working at finite temperatures, there will aways be a finite total “quark” density, and the
net baryon number density in some sense corresponds to the difference of the number of
“quarks” and “anti-quarks”. While those quantities may move us away from the quantum
critical point in the defect field theory, the bulk theory will still remain N = 4 SYM. In
terms of the phase diagram of surface phase transitions, this would move us along the
direction of surface coupling towards the extraordinary phase transition.

One interest is furthermore to explore what happens to the result of the constant
conductivity due to electromagnetic duality in [49] in this defect setup, at finite background
quantities and in the presence of higher order corrections in the gravity side i.e. finite
coupling in the field theory side.
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Our defect CFT is realized by inserting Nf probe D5- or D7-branes into the background
of a black stack of D3-branes. In either construction, the difference δNc in the level of the
gauge group of the 3+1 SYM will be introduced by an additional flux on the probe brane
in the compact sphere. The defect CFT constructed with the D5-branes is certainly well
known [41, 63, 64]. Certain aspects of the D7-brane construction have also been studied
previously [65, 66] but we should note that the internal flux introduced here is essential
to remove an instability that would otherwise appear in this construction. The finite
magnetic field and net density are introduced using the well-known duals of a magnetic
field and an electric field, respectively, in the world-volume of the probe brane. The finite
quark mass will be obtained by a deformation of the embedding in the compact sphere in
the same way in which it was done in the duals for 3+1 dimensional QCD-like systems
[45, 67, 68, 44]. To obtain the transport properties, we will use linear response theory to
study the conductivity on the defect at finite frequency, temperature and wave-number,
i.e., the conductivity of an anisotropic current.

1.2.2 Outline

The outline of this Thesis is as follows: In chapter 2, we study the properties of the defect in
the absence of any of the background quantities, only considering a finite difference in the
level of the gauge groups. In section 2.1, we review the holographic framework, in particular
the embedding of the probe D-branes in the AdS5 × S5 background. In section 2.2, we
obtain the basic results for the spectral functions, starting with a review of the methodology
and then the computation of the transverse and longitudinal conductivities in section 2.2.1.
Here we also calculate the diffusion constant for charge transport in subsection 2.2.1.3 and
comment on the agreement with the diffusion-dominated conductivity in the hydrodynamic
regime, i.e., in the regime at small frequency and wave-number ω, q � T . This is followed
by a discussion of the collisionless, (q >∼ T ), regime using analytical approximations in
section 2.2.2, for both the insulating case (at small frequencies) and the optical regime (at
large frequencies). Using those results, we study the spectrum of quasinormal modes in
section 2.3. In section 2.4, we examine the effect of stringy corrections to the gauge theory
on the probe branes, which describes the behavior of the dual currents on the defect. In
particular, electromagnetic duality is lost when these α′-corrections are included, which has
interesting implications for the conductivity at strong but finite ‘t Hooft coupling. Finally,
we consider the computation of a topological Hall conductivity in section 2.5. Some details
of our analysis of this chapter are relegated to appendices: In Appendix A, we demonstrate
the regularity of the probe brane at the horizon. Appendix B presents some details of the
analysis including certain α′ corrections in the D5-brane worldvolume action. In appendix
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C, we do an analytical study of a slightly simplified model of the defect, which gives further
qualitative insight, and aids the numerical computation of the quasinormal modes.

In chapter 3, we consider the effects of finite background parameters, the (net) baryon
number density, background magnetic field and finite quark mass. In section 3.1.2, we
describe how to introduce the background quantities in the defect system and describe
several problems that arise in the D3-D7 setup - which motivate us not to pursue the
massive D7 case. We then show in section 3.2, how we generalize the methods of section
2.2.1 in this case, and also demonstrate the effects of electromagnetic duality at finite
density and magnetic field. In section 3.3, we then review some basic properties of weakly
coupled systems in order to introduce the terminology and remind the reader of some
intuition. In section 3.4, we derive analytic results in various limits, first in the isotropic
DC limit ω → 0 and in the small frequency expansion beyond the DC limit. Then, we
consider the small temperature limit small frequencies q � 1 � ω in various regimes of
the density and magnetic field and finally we obtain the diffusion constant and “electric”
permittivity and consider the hydrodynamic regime (ω, q � 1). The numerically-obtained
full spectral curves are presented in section 3.5, where we also later present and discuss
the purely dissipative poles that we obtain numerically and study the quasiparticle poles
in the correlator that we obtain numerically both directly and from the spectral curves.
We present the explicit form of the induced metric on the brane in appendix D, and in
appendix E, we discuss the contribution of the defect to the thermodynamics and its phase
structure.

Previously published material

The research presented in chapter 2 and in the related appendices has been published in :
R. C. Myers and M. C. Wapler, “Transport Properties of Holographic Defects,” JHEP
0812, 115 (2008) [arXiv:0811.0480 [hep-th]].

The research presented in chapter 3 and appendix E will soon be posted on the arXiv and
subsequently submitted to scientific journals.

14



Chapter 2

Bare Defects

2.1 Defect Branes

The AdS/CFT correspondence is most studied and best understood as the duality between
type IIb string theory on AdS5×S5 and N = 4 super-Yang-Mills theory with U(Nc) gauge
group. In this context, all fields in the SYM theory transform in the adjoint representa-
tion of the gauge group. One approach to introducing matter fields transforming in the
fundamental representation is to insert probe D7-branes into the supergravity background
[42]. However, this approach can also be used to construct a defect field theory, where the
fundamental fields are only supported on a subspace within the four-dimensional space-
time of the gauge theory. In particular, we will consider constructing a (2+1)-dimensional
defect by inserting Nf Dp-branes, with three dimensions parallel to the SYM directions
and p − 3 directions wrapped on the S5. In the following, we work with both probe D5-
and D7-branes. If we consider the supergravity background as the throat geometry of Nc

D3-branes, our defect constructions are described by the following array:

0 1 2 3 4 5 6 7 8 9
background : D3 × × × ×

probe : D5 × × × × × ×
D7 × × × × × × × ×

(2.1.1)

The D5-brane construction is supersymmetric and the dual field theory is now the
SYM gauge theory coupled to Nf fundamental hypermultiplets, which are confined to a
(2+1)-dimensional defect. Note that the supersymmetry has been reduced from N = 4 to
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N = 2 by the introduction of the defect. In the D7-brane case, we have lost supersymme-
try altogether and the defect supports Nf flavours of fermions, again in the fundamental
representation [65]. One should worry that the lack of supersymmetry in the latter case
will manifest itself with the appearance of instabilities. However, we will explicitly show
below in section 2.1.2 that this problem can be avoided. In the limit Nf � Nc, the D5- and
D7-branes may be treated as probes in the supergravity background, i.e., we may ignore
the gravitational back-reaction of the branes.

As we commented above, a similar holographic framework has been used extensively
to study the properties of the N = 2 gauge theory constructed with parallel D7- and
D3-branes, i.e., the fundamental fields propagate in the full four-dimensional spacetime
– e.g., see [44, 43, 45]. If a mass Mq is introduced for the hypermultiplets, it was found
that the scale Mfun ∼ Mq/

√
λ plays a special role in this theory. First, the “mesons”,

bound states of a fundamental and an anti-fundamental field, are deeply bound with their
spectrum of masses characterized by Mfun [46]. Next at a temperature T ∼Mfun, the system
undergoes a phase transition characterized by the dissociation of the mesonic bound states
[45]. The analogous results can be verified for the defect theories considered here. That is,
the meson spectrum is characterized by the same mass scale Mfun [70, 71] and these states
are completely dissociated in a phase transition at T ∼ Mfun as we show in appendix E.
However, these results are tangential for this chapter, as we will only consider the conformal
regime with Mq = 0 and concentrate instead on exploring the defect-specific nature of the
system.

Common to both of our constructions is the supergravity background dual to N = 4
SYM at finite temperature. This background is a planar black hole in AdS5, corresponding
to the decoupling limit of Nc black D3-branes [72]:

ds2 =
r2

L2

(
−h(r)dt2 + dx2 + dy2 + dz2

)
+
L2

r2

(
dr2

h(r)
+ r2dΩ2

5

)
, C

(4)
txyz = − r

4

L4
(2.1.2)

where h(r) = 1−r4
0/r

4. The gauge theory directions correspond the coordinates {t, x, y, z}.
The radius of curvature L is defined in terms of the string coupling constant gs and the
string length scale `s as L4 = 4π gsNc `

4
s . The holographic dictionary relates the Yang-

Mills and string coupling constants as g2
YM = 4πgs and so we may write L4 = λ `4

s where
λ = g2

YMNc is the ’t Hooft coupling. As usual, we work in the supergravity approximation,
ignoring the effects of string loops or higher derivative terms suppressed by powers of `s

(except in section 2.4 and appendix B). Hence, we are working in the limit where both
Nc, λ→∞. The background (2.1.2) contains an event horizon at r = r0. The temperature
of the SYM theory is then equivalent to the Hawking temperature:

T =
r0

πL2
. (2.1.3)
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2.1.1 D5-branes

Introducing D5-branes as in (2.1.1) was the original application of probe branes for the
holographic construction of a defect CFT – e.g., see [41, 63]. The worldvolume action
which will determine the embedding of the probe D5-branes has the usual Dirac-Born-
Infeld (DBI) and Wess-Zumino (WZ) terms:

I5 = −Nf T5

∫
d6σ
√
−det (P [G] + 2π`2

sF ) +Nf T5

∫
C(4) ∧ 2π`2

sF . (2.1.4)

Implicitly we have assumed that the Nf D5-branes are all coincident. Hence, in principle,
their worldvolume supports a U(Nf) gauge theory, however, implicitly above and in the
following, we only consider the gauge field in the diagonal U(1) of this U(Nf). We choose
coordinates on the five-sphere in (2.1.2) such that

dΩ2
5 = dψ2 + cos2 ψ

(
dθ2 + sin2 θ dφ

)
+ sin2 ψ dΩ2

2 . (2.1.5)

The D5-branes wrap the two-sphere parameterized by {θ, φ} above, fill three of the gauge
theory directions {t, x, y} and extend in the radial direction r. We also introduce a flux of
the worldvolume gauge field on the two-sphere:

Fθφ =
q

2Nf

sin θ . (2.1.6)

One may verify that this flux corresponds to dissolving q D3-branes into the worldvolume
of the Nf D5-branes along the {t, x, y, r} directions, since the branes with flux sources C(4)

through the WZ term in (2.1.4).

Now in general, the D5-brane embedding would be specified by giving its profile in both
the angular direction ψ(r) and the D3-brane direction z(r). These embeddings all have
translational symmetry in the {t, x, y}-space, as well as invariance under SO(3) rotations
on the internal two-sphere. In the following, we consider only the embeddings with ψ = 0,
i.e., where the D5-brane wraps a maximal two-sphere in the internal space. One can easily
verify this choice corresponds to a solution of the worldvolume embedding equations. This
choice also corresponds to setting the mass of the fundamental fields to zero, i.e., Mq = 0,
and so as we will describe below, this choice also ensures that the dual field theory with
the defect remains conformal.

Hence in our analysis, we must determine the profile z(r). The induced metric on the
D5-branes is now described by

ds2 =
r2

L2

(
−h(r)dt2 + dx2 + dy2

)
+

(
L2

r2h(r)
+
r2

L2
∂rz

2

)
dr2 + L2

(
dθ2 + sin2 θ dφ

)
.

(2.1.7)
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We can integrate over the two-sphere directions to produce a factor of∮
S2

d2σ
√
detS2 (P [G] + 2π`2

sF ) = 4π
(
N2

f L
4 + π2`4

s q
2
)1/2

= 4πNfL
2
√

1 + f 2 (2.1.8)

where

f ≡ π`2
s

L2

q

Nf

=
π√
λ

q

Nf

(2.1.9)

in the DBI part of the action (2.1.4). The full D5-brane action then becomes

I5 = −4πNf T5

√
1 + f 2

∫
d3x dr r2

(
1 +

r4

L4
h(r)∂rz

2

) 1
2

− 4πNf T5
f

L2

∫
d3x dr r4 ∂rz .

(2.1.10)

To simplify the analysis, we introduce the following coordinates:

u =
r0

r
, χ =

r0

L2
z . (2.1.11)

With this new notation, h(u) = 1 − u4 and so the horizon is now at u = 1 while the
asymptotic region is reached when u→ 0. The worldvolume action can now be written as:

I5 = −4πr3
0Nf T5

∫
d3x

du

u4

[√
1 + f 2

(
1 + h(u)χ′2

) 1
2 + f χ′

]
, (2.1.12)

where χ′ ≡ ∂uχ. This expression is independent of χ, such that the variation with respect
to χ′ yields a constant of motion:

1

u4

[√
1 + f 2

h(u)χ′

(1 + h(u)χ′2)1/2
+ f

]
= C . (2.1.13)

To avoid singular behavior at the horizon, we need to fix the integration constant to be
C = f . In this case, (2.1.13) yields

χ′ = − f√
1 + f 2u4

. (2.1.14)

Given this expression, the profile χ(u) can be expressed in terms of an incomplete elliptic
integral. However, in the following, it will sufficient to have a closed form expression for
χ′. We illustrate a typical profile in figure 2.1.
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In terms of our original coordinates, we have

∂z

∂r
=

L2 f√
r4 + f 2 r4

0

. (2.1.15)

Here we may consider the supersymmetric limit with r0 = 0, in which case (2.1.15) sim-
plifies to z = −L2f/r. In this case, one can confirm that the induced metric (2.1.7) corre-
sponds to AdS4 × S2 with an AdS radius of curvature of LAdS4 = L

√
1 + f 2 [41]. Hence

the system inherits SO(2,3) symmetry from the AdS4 geometry, which reflects the fact
that the dual field theory remains conformal in the presence of the defect. This conformal
invariance can also be shown directly by an analysis of the field theory [73]. Subsequently,
the construction of the fully back-reacted geometries corresponding to the D5-branes em-
bedded in AdS5×S5 demonstrate that the preservation of the SO(2,3) symmetry is a fully
nonperturbative result [64].

One may note that with the supersymmetric profile, z = −L2f/r, there are an addi-
tional q =

√
λNf f/π D3-branes stretching from z = 0 to −∞, assuming f > 0. Hence

if one were to include back-reaction, the asymptotic five-form flux would be shifted from
Nc → Nc + q units on this side of the space. The same will apply at a finite temperature.
Even though the brane falls through the horizon at a finite distance in this case, continuity
at the horizon dictates that the background will carry Nc + q units of flux out to z = −∞.
In either case, the natural interpretation is that the dual CFT has a U(Nc +q) gauge group
in the region z < 0, while the gauge group remains U(Nc) for z > 0.

It is interesting to pursue the interpretation of the above brane configuration in the
dual CFT further. A detailed AdS/CFT dictionary has been developed for this defect
system [63, 73]. In particular, one finds that the defect lagrangian contains potential
source terms for the adjoint scalars in the SYM theory [63, 74]. The D5-brane carrying
flux f corresponds to producing a noncommutative configuration of adjoint scalars in a
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U(q) subgroup of the U(Nc + q) in the z < 0 region [70]. In fact, in this supersymmetric
configuration, the profile of the D5-branes can be precisely matched to the scalar profile
using noncommutative geometry [75]: r2 = (2π`2

s )2 1
Nf

Tr(Φ2) where 1
Nf

Tr(Φ2) = q2

4N2
f

1
z2 .

As the D5-brane wraps a maximal two-sphere inside the S5, one might worry about the
stability of this configuration. Indeed the worldvolume field, corresponding to fluctuations
in the angle ψ, is found to be a tachyon with [41]

m2
ψ = − 2

L2(1 + f 2)
= − 2

L2
AdS4

> − 9

4L2
AdS4

. (2.1.16)

However, the last inequality indicates that the ψ-mode satisfies the Breitenlohner-Freedman
bound [76] in the asymptotically AdS4 geometry induced on the D5-brane worldvolume.
Hence this field does not in fact produce an instability.

Another concern may arise in considering the intersection of the D5-branes with the
event horizon in (2.1.2). There we note that

χ′|u=1 = − f√
1 + f 2

(2.1.17)

or in terms of original coordinates

∂z

∂r

∣∣∣∣
r=r0

=
L2 f

r2
0

√
1 + f 2

. (2.1.18)

Since the D5-brane enters the event horizon at an angle, one might worry that the induced
geometry is singular [68]. However, one can verify that this intuition is incorrect and that in
fact, the D5-brane geometry remains smooth as it crosses the horizon. Hence the induced
metric (2.1.7) describes a smooth ‘black hole’ geometry on the D5-brane worldvolume. A
related question is: what is the surface gravity or the temperature of the induced horizon?
It is a simple exercise to show that the relevant temperature matches that of the bulk
geometry, i.e., that given in (2.1.3). Of course, this reflects the fact that the defect and
bulk fields will be in thermal equilibrium, as expected.

We address one other potential concern related to the internal flux (2.1.6). Throughout
the paper, we will be considering finite values of f , typically of O(1). Hence according to
(2.1.9), we are introducing q ∼ O(

√
λ) D3-branes and so one might worry about whether

it is reasonable to consider the probe brane limit, i.e., to ignore the gravitational back-
reaction of the branes. Of course, this is not a problem since the overall tension of the
D5-branes is not significantly modified by the flux, as can be seen from (2.1.10). The
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essential point is that the D3-branes are distributed on the D5-branes over the internal
two-sphere which has an area of order L2 ∼

√
λ and so the density of D3-branes remains

small, i.e., the density is O(f).

2.1.2 D7 probes

The case of D7 probe branes is similar to the previous section with D5-branes. The main
difference lies in the internal part of the geometry. In particular, the D7-branes wrap
a(n equatorial) four-sphere in the internal S5. As before, we consider D3-branes dissolved
into the probe branes. In the present case, the D7-branes source the three-brane charge
through in the appropriate term in the WZ action: 1

2
(2π`2

s )2T7

∫
C(4) ∧ F ∧ F . Hence,

considering a stack of Nf coincident D7-branes with a U(Nf) gauge symmetry, we introduce
a nonvanishing second Chern class on the internal four-sphere: q7 = 1

8π2

∮
S4 TrF ∧ F .

The D7-branes are fixed to wrap a maximal four-sphere while the embedding in the
AdS5 is described by z = z(r). The induced metric on the D7-branes becomes

ds2 =
r2

L2

(
−h(r)dt2 + dx2 + dy2

)
+

(
L2

r2h(r)
+
r2

L2
z′2
)
dr2 + L2dΩ2

4 . (2.1.19)

Since the present configuration contains a nontrivial nonabelian gauge field, the worldvol-
ume action requires a nonabelian extension of the DBI action [77]

I7 = −T7

∫
d8σ STr

√
−det (P [G] + 2π`2

sF ) +
1

2
T7(2π`2

s )2

∫
Tr
(
C(4) ∧ F ∧ F

)
. (2.1.20)

This action uses the proposal of a maximally symmetric gauge trace, denoted by ‘STr’
[78]. To be precise, the trace includes a symmetric average over all orderings of Fab – and
implicitly any appearances of the nonabelian scalars as well [79] but the latter will not be
relevant in the present analysis. This prescription correctly agrees with the string action to
fourth order in the field strength [78] but is known to miss certain commutator terms which
begin to appear at sixth order [80]. However, the contribution of such terms is typically
suppressed by factors of 1/Nf and so they can be safely neglected for sufficiently large Nf

[75, 81].

As before, we integrate over the internal space in the DBI action. Here the internal S4

carries an nonabelian gauge field giving the instanton number q7. This configuration was
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extensively studied in [81] and hence using their results, we find∮
S4

d4Ω STr
√
detS4 (P [G] + 2π`2

sF )

=

∮
S4

d4Ω
√
gS4

√
L8 +

1

2
L4(2π`2

s )2FabF ab +
1

64
(2π`2

s )4(εabcdF abF cd)2

=
8π2

3

(
Nf L

4 + 6π2`4
s |q7|

)
. (2.1.21)

In the latter, we use (anti-)self-duality for the instanton configuration: Fab = (−)1
2
εabcdF

cd

for q7 > 0 (q7 < 0). Implicitly, we are also assuming that the instanton number is uniform
on the four-sphere, which limits q7 ≤ Nf(N

2
f − 1)/6 [81]. Substituting (2.1.21) and the

embedding (2.1.19) into (2.1.20), the action for the background configuration becomes

I7 = −8π2Nf

3
L4(1 + |Q|)T7

∫
d3σdr

r2

L2

√
1 +

r4

L4
h(r) − 8π2Nf

3
L4QT7

∫
d3σdr

r4

L4
z′ ,

(2.1.22)

where we defined for convenience Q = 6π2 `
4
s

L4
q7
Nf

= 6π2

λ
q7
Nf

. Now, the computations analogous

to those in section 2.1.1 yield an identical embedding χ(u) as in (2.1.14) but the constant
f is replaced by

f7 ≡
Q√

1 + 2|Q|
. (2.1.23)

The microscopic interpretation of the D7-brane configuration in the dual CFT is not as
clear in the present case. However, as before, the gauge group in the region z < 0 will be
enhanced to U(Nc +q7) assuming q7 > 0. There should be source terms on the defect which
excite a noncommutative configuration of the adjoint scalars in the transverse space. The
latter can be interpreted in terms of noncommutative geometry as giving the profile of the
D7-branes, at least to leading order in 1/Nf [81].

An important difference between the present case and that in the previous section with
D5-branes is that in the mass of the tachyonic mode ψ corresponding to the S4 part of
the D7-branes “slipping off” the maximal S4 in the internal space. A simple calculation
reveals that

m2
ψ = − 4

L2(|Q|+ 1)
= − 4

L2
AdS4

|Q|+ 1

2|Q|+ 1
. (2.1.24)

Recall that the BF bound requires m2 > − 9
4L2

AdS4

[76] and hence is only satisfied for

|Q| > 7
2
. Hence one can trust the results in the following sections for the D7-branes only
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for f 2
7 > 49/32 and we might think of the internal flux on the S4 as creating some pressure

that stabilizes the size of the S4. However, we should caution the reader that what we
have shown is that the most obvious instability is removed for sufficiently large Q. While
suggestive, this does not prove the D7-brane configuration is absolutely stable.

Beyond this crucial difference, the analysis of these two systems (i.e., defects con-
structed with D5- or D7-branes) is completely the same. Hence in the following, we focus
on the first case of D5-branes and only comment on differences in coefficients that may
arise for D7-branes where appropriate.

2.2 Correlators

In this section, we obtain examine various correlators of the currents dual to the world-
volume gauge field Aµ. First we review the basic form of the correlators below, following
[49]. Then we numerically compute the spectral functions in 2.2.1 and then examine the
dependence of the correlators on the temperature and the flux f in 2.2.2.

In the following, we use holographic techniques to calculate the retarded Green’s func-
tion for a conserved current Jµ(x) on the defect. The defect degrees of freedom form a
(2+1)-dimensional CFT which restricts the form of the correlators:

Cµν(x− y) = −i θ(x0 − y0) 〈 [Jµ(x), Jν(y)] 〉 , (2.2.25)

where translation invariance is assumed. The correlator can be Fourier transformed to
Cµν(p) with pµ = (ω,~k).1 Now current conservation and rotational invariance (full Lorentz
invariance is lost with T > 0) restrict the form of the Fourier transform of this correlator
to be [49]

Cµν(p) = P T
µν ΠT (p) + PL

µν ΠL(p) . (2.2.26)

where the transverse and longitudinal projectors can be written as

P T
ij = δij −

ki kj
k2

, P T
0µ = 0 ,

PL
µν = ηµν −

pµ pν
p2
− P T

µν . (2.2.27)

If we take into account that the conformal dimension of the current Jµ(x) is 2, the com-
ponents ΠT,L in (2.2.26) take the form:

ΠT,L(p) =
√
p2KT,L(ω/T,~k/T ) . (2.2.28)

1We work with the mostly positive signature so that ηµν = diag(−1,+1,+1).
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In the limit of T = 0, we have ΠT (p) = ΠL(p) = Π(p) and recover the Lorentz invariant
correlator

Cµν(p) =

(
ηµν −

pµ pν
p2

)
Π(p) . (2.2.29)

In order to produce physical observables, and to interpret our results from a condensed
matter point of view, we will calculate the conductivity from the Kubo formula

σij =
i

ω
Cij . (2.2.30)

2.2.1 Spectral functions

In this section, we compute spectral functions for excitations of fundamental fields on
the defect by studying fluctuations of the worldvolume fields on the D5-brane probes. In
particular, we focus on correlators of the the worldvolume vector Aµ, which is dual to the
conserved current Jµ corresponding to the diagonal U(1) of the global flavour symmetry
on the defect. The worldvolume gauge field gives rise to several types of modes, one of
which is a vector with respect to the Lorentz group in the (2+1)-dimensional defect. These
modes are characterized as having only A0,1,2 nonzero while the components on the internal
two-sphere are vanishing [71]. Further the radial component Ar can consistently be set to
zero because we only study modes which are constant on the internal space [71].

While the full action for the gauge fields on the D5-branes receives contributions from
both the Dirac-Born-Infeld (DBI) action plus a Wess-Zumino term, since our gauge field
fluctuations have vanishing radial and S2 components, only the DBI portion of the action is
relevant in determining their dynamics. Since we only study linearized fluctuations about
the background, the gauge field action is only needed to quadratic order, which is simply

Igauge = −4πL2
√

1 + f 2Nf T5

∫
d3σ dr

√
−g (2π`2

s )2

4
F 2 = − 1

4g2
4

∫
d3σ dr

√
−g F 2 .

(2.2.31)
Here we have integrated over the internal S2 as in (2.1.8) and use gµν to denote the induced
metric (2.1.7) in the AdS5 directions. Above, we also defined the effective gauge coupling
for the four-dimensional Maxwell field:

1

g2
4

≡ 16π3`4
sL

2
√

1 + f 2Nf T5 =
√

1 + f 2
2

π

Nf Nc√
λ

. (2.2.32)

For the D7 case, this becomes

1

g2
4

≡ 32π4Nf

3
`4

sL
4(1 + |Q|)T7 = (1 + |Q|)Nf Nc

3π2
. (2.2.33)
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Note that the gauge field action (2.2.31) corresponds to the standard Maxwell action in
a four-dimensional curved spacetime. Hence, these gauge fluctuations will exhibit elec-
tromagnetic duality, which was shown to play and interesting role in the physics of the
conformal field theory in [49]. We will explore this point further in section 2.4. Of course,
Maxwell’s equations follow as

∂a
(√
−g F ab

)
= 0. (2.2.34)

Using these equations of motion, the Maxwell action (2.2.31) becomes a total derivative
and following the standard prescription, we obtain the desired correlator from the resulting
boundary term. To proceed, let us first give the explicit metric on the brane,

ds2 =
L2

u2

[
r2

0

L4

(
− h(u)dt2 + dx2 + dy2

)
+

du2

h(u)

(
1 + h(u)χ′2

)]
, (2.2.35)

in terms of the dimensionless radial coordinate u, as given in (2.1.11). Then the action
(2.2.31) becomes

Igauge= − 1

2g2
4

∫
d3σ du ∂a

[√
−g Ab F ab

]
= − 1

2g2
4

∫
d3σ

[√
−ggaaguuAa∂uAa

]u→1

u→0
(2.2.36)

= − 1

2g2
4

r0

L2

∫
d3σ

[
1

(1 + h(u)χ′2)1/2
(h(u)Ax∂uAx + h(u)Ay∂uAy − At∂uAt)

]u→1

u→0

.

The usual AdS/CFT prescription tells us that we will only need the contribution at the
asymptotic boundary u → 0 [82]. Following [83], we take the Fourier transform of the
gauge field,

Aµ(σ) =

∫
d3k

(2π)3
eik·σAµ(k, u) , (2.2.37)

to write the boundary action as

Igauge = − 1

2g2
41

1

(2π)3

∫
d3k

[√
−ggµµguuAµ(u,−k)∂uAµ(u, k)

]u→1

u→0

= − r0

2g2
4L

2

1

(2π)3

∫
d3k

[
(1 + h(u)χ′2)−1/2 (h(u)Ax(u,−k)∂uAx(u, k)

+h(u)Ay(u,−k)∂uAy(u, k)− At(u,−k)∂uAt(u, k))]u→1
u→0 (2.2.38)

with a single sum of µ being implicit in the first line.

Looking at the asymptotic behavior of the fields, we write

Aµ(k, u) = Aµ0(k)
Aµ(k, u)

Aµ(k, u0)
, (2.2.39)
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where u0 is a UV regulator and it is understood that eventually the limit u0 → 0 will be
taken. We can then derive the flux factor for, say, Ay by taking variations with respect to
Ay0 [82]:

Fyy = −ε0

2

[
h(u)

(1 + h(u)χ′2)1/2

Ay(u,−k)∂uAy(u, k)

Ay(u0,−k)Ay(u0, k)

]
, (2.2.40)

where ε0 = r0
g2
4L

2 = π T
g2
4

— we will show later how ε0 relates to the charge permittivity.

The flux (2.2.40) should be conserved, i.e., be independent of the radius u. The usual
AdS/CFT prescription tells us to evaluate it at the asymptotic boundary, while applying
infalling boundary conditions at the horizon (u = 1), to find the retarded Green’s function
(2.2.25) for the current Jµ in the defect CFT [82]:

Cyy = −2Fyy = ε0

[
h(u)

(1 + h(u)χ′2)1/2

Ay(u,−k)∂uAy(u, k)

Ay(u0,−k)Ay(u0, k)

]
u,u0→0

=
ε0√

1 + f 2

[
∂uAy(u, k)

Ay(u, k)

]
u→0

. (2.2.41)

The other correlators Cµν follow in general by rewriting (2.2.39) asAµ(k, u) = Aν0(k)Mν
µ(u, k)

[49] and making the variation δ2

δAµ0 δAν0
. In our case the t, t and x, x correlators are given

by (2.2.41) with the indices appropriately replaced:

Cxx =
ε0√

1 + f 2

[
∂uAx(u, k)

Ax(u, k)

]
u→0

and Ctt = − ε0√
1 + f 2

[
∂uAt(u, k)

At(u, k)

]
u→0

. (2.2.42)

In order to evaluate the spectral function, we must solve the equations of motion
(2.2.34). It is convenient to introduce dimensionless coordinates by rescaling the defect
coordinates as

t̃ =
r0

L2
t , x̃ =

r0

L2
x , ỹ =

r0

L2
y . (2.2.43)

Without loss of generality, we also assume the fluctuations only carry momentum in the x̃
direction, i.e., k̃µ = (ω̃, q̃, 0) — note that, e.g., ω̃ = L2/r0 ω = ω/π T . We note that given

the Fourier transform (2.2.37), the vector potentials vary as eik̃µx̃
µ

in the gauge theory
directions.
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Now the explicit equations of motion simplify to

b = u : 0 = ω̃A′t̃ + q̃ hA′x̃ , (2.2.44)

b = t̃ : 0 = A′′t̃ −
H ′

2H
A′t̃ −

H

h

(
q̃2At̃ + ω̃q̃Ax̃

)
, (2.2.45)

b = x̃ : 0 = A′′x̃ +

(
h′

h
− H ′

2H

)
A′x̃ +

H

h2

(
ω̃2Ax̃ + ω̃q̃At̃

)
, (2.2.46)

b = ỹ : 0 = A′′ỹ +

(
h′

h
− H ′

2H

)
A′ỹ +

H

h2
(ω̃2 − h q̃2)Aỹ , (2.2.47)

where ‘prime’ denotes ∂u and
H(u) ≡ 1 + h(u)χ′2 . (2.2.48)

Before proceeding further, we make the following convenient definition for the conductivi-
ties

σ̃ij ≡
i

ω̃
Cij = πTσij . (2.2.49)

Comparing to (2.2.30), here we are simply dividing by the dimensionless frequency ω̃,
rather than ω.

2.2.1.1 Transverse correlator

Let us look carefully at the ỹ equation (2.2.47). We see firstly, that in the limit u→ 0, it
reduces to

0 = A′′ỹ + (1 + f 2)(ω̃2 − q̃2)Aỹ . (2.2.50)

The solution of interest is then Aỹ = Aỹ0 e
−i
√

(1+f2)(ω̃2−q̃2)u, where the sign in the exponen-
tial is chosen so that the solution corresponds to an infalling wave. Given this solution, if
one now calculates the correlator with (2.2.41) and applies (2.2.30), the resulting conduc-
tivity is

σ̃yy = ε0

√
1− q̃2/ω̃2 . (2.2.51)

The cut in the conductivity at ω̃ = q̃ may be surprising and we return to this point in section
2.3.2. We will refer to this simple result as the low temperature approximation, reasoning as
follows: The result applies for large dimensionless “frequencies”, i.e., |(1+f 2)(ω̃2−q̃2)|1/2 �
1 to be precise. However, recalling that e.g., ω̃ = ω/πT , if we fix the dimensionful quantities
{ω, q}, then eq. (2.2.51) should apply in the limit of very low temperatures.
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To solve for the full spectral functions, we must proceed with numerical calculations.
First, we impose infalling boundary conditions at the horizon — recall that the time-
dependence of the potentials is e−iω̃t̃. If we expand about 1−u→ 0+, we find an appropriate
description of the field to be

Aỹ ' (1− u4)iω̃/4 (1 + β(1− u) + · · · ) (2.2.52)

where

β =
i

4
ω̃

3 + 5f 2

1 + f 2
+

q̃2

ω̃2 + 4

(
1− i ω̃

2

)
. (2.2.53)

In order to implement the infalling boundary condition and to ensure numerical stability,
we choose the Ansatz

Aỹ = (1− u4)iω̃/4e−βuF(u) , (2.2.54)

and solve for F(u), which is nonsingular at the horizon, with ∂uF(u) = 0 at u = 1. As the
second boundary condition, we fix the asymptotic normalization: Aỹ|u=1 = 1.
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Figure 2.2: The normalized transverse conductivity Re σ̃yy(ω̃)/ε0 at q̃ ∈ {1, 2, 3, 4} for
various values of the flux f . The low temperature approximation (2.2.51) is shown as the
dotted line for each q̃.

Figure 2.2 shows Re σ̃yy(ω̃)/ε0 for various values of q̃ and f 2. We see that at f = 0 the
spectral functions are similar to those in [49]. However, as f increases, they approach the
low temperature limit (2.2.51) more closely, and show some oscillatory behavior at ω̃ > q̃.
We will discuss aspects of this behavior in section 2.2.2.
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2.2.1.2 Longitudinal correlator

Now, let us consider the tt equation (2.2.45). It is easy to see that (2.2.44-2.2.46) are not
independent, and we cannot produce a second order equation involving At̃ only. However,
we can produce one for A′

t̃
:

0 = A′′′t̃ −
( h
H

(H
h

)′
+
H ′

2H

)
A′′t̃ +

( h
H

H ′

2H

(H
h

)′− (H ′
2H

)′)
A′t̃ +

H

h2

(
ω̃2− q̃2h

)
A′t̃ , (2.2.55)

which simplifies to

0 =

(
A′
t̃√
H

)′′
+

(
h′

h
− H ′

2H

) (
A′
t̃√
H

)′
+
H

h2
(ω̃2 − h q̃2)

A′
t̃√
H

, (2.2.56)

and hence is the same as (2.2.47) for Aỹ replaced by A′
t̃
/
√
H. Let us set A′

t̃
= c
√
H Aỹ with

some constant c to be determined. Now, to find ∂uAt̃(u, k)/At̃(u, k) at u = 0, we employ
(2.2.45) and A′′

t̃
= c
√
H
(
A′ỹ + H′

2H
Aỹ
)

as in [49]. It follows then from h′|u=0 = 0 = H ′|u=0

that

c =

√
1 + f 2

A′ỹ|u=0

(
q̃2At̃0 + ω̃q̃Ax̃0

)
. (2.2.57)

Hence, we can read off
[
∂uAt̃(u,k)

At̃(u,k)

]
u→0

and
[
∂uAt̃(u,k)

Ax̃(u,k)

]
u→0

from

A′t̃ =

√
1 + f 2

√
HAỹ

A′ỹ|u=0

(
q̃2At̃0 + ω̃q̃Ax̃0

)
. (2.2.58)

Finally as in [49], we find

Ctt = −ε2
0 q̃

2/Cyy and Cxx = −ε2
0 ω̃

2/Cyy . (2.2.59)

Applying (2.2.49), these results yield interesting relations for the corresponding con-
ductivities. In particular, (2.2.59) yields

σ̃xx = ε2
0/σ̃yy . (2.2.60)

We can also consider a low temperature limit as above. However, this is most easily derived
by combining (2.2.51) and (2.2.60) to find

σ̃xx =
ε0√

1− q̃2/ω̃2
. (2.2.61)
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Again, we will return to discuss the cut appearing in the conductivity at ω̃ = q̃ in section
2.3.2; and the conductivity can only be found in general from numerical calculations. Some
typical results for (the real part of) σ̃xx are shown in figure 2.3. We note that again that
as the flux f increases, our results approach the low temperature approximation (2.2.61),
together with some “oscillatory” behavior similar to that found in the transverse case. In
contrast to the results in the previous section, the conductivity here diverges as ω̃ → q̃, as
can be anticipated from (2.2.61).
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Figure 2.3: The normalized longitudinal conductivity Re σ̃xx(ω̃)/ε0 at q̃ ∈ {1, 2, 3, 4} for
various values of the flux f . The low temperature approximation (2.2.61) is shown as the
dotted line for each q̃.

2.2.1.3 Diffusion constant on the defect

The worldvolume gauge field corresponds to a conserved current on the defect in the dual
CFT. In the hydrodynamic regime, one then expects to see the diffusion of the conserved
charge according to Fick’s law:

∂t j
0 = D ~∇2j0 . (2.2.62)

This expectation can be confirmed in a holographic context [101, 102, 103] and, in fact, the
computation of the diffusion constant D can be performed in a number of different ways.
In the following, we use the membrane paradigm approach.

The computation of the diffusion constant via the membrane paradigm was discussed
in [101] where explicit formulae for various transport coefficients in terms of metric com-
ponents for a wide class of backgrounds were derived. There, the authors considered per-
turbations of a black brane background and a formula for the diffusion constant (eq. (2.27)
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in [101]) resulted from a derivation of Fick’s law. An analogous computation can be per-
formed for the D5-branes’ vector field for black hole embeddings considered here, with the
result

D =

√
−g√
h

1

gxx
√−gttgρρ

∣∣∣∣
ρ=1

∫
dρ

(
−gtt gρρ

√
gint√
−g

)
=

(1 + f 2)1/2

πT

∫ 1

0

du√
1 + f 2u4

≡ (1 + f 2)1/2

πT
I(f) . (2.2.63)

In the first expression above, the metric g is the induced metric on the D5-branes (2.1.7)
and gint is the determinant of the metric on the internal two-sphere (with unit radius). The
integral can be evaluated analytically yielding a hypergeometric function:

I(f) = 2F1(
1

4
,
1

2
;
5

4
;−f 2) (2.2.64)

Figure 2.4 shows a plot of I(f).
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Figure 2.4: The integral I(f): The solid line
is the exact result as given in eq. (2.2.64).
The upper dashed (lower dotted) line cor-
responds to the first term (first two terms)
in the large f expansion in eq. (2.2.70).

This same integral in eq. (2.2.63) reappears at various points in our analysis and so it
is useful to gain some better intuition for this expression. First, let us rewrite the integral
as

I(f) = f−1/2

∫ f1/2

0

ds√
1 + s4

. (2.2.65)

Now, we find that we can expand the integrand around s = 0 as

1√
1 + s4

∼ 1 − 1

2
s4 +

3

8
s8 + . . . (2.2.66)
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and around s =∞
1√

1 + s4
∼ 1

s2

(
1 − 1

2
s−4 +

3

8
s−8 + . . .

)
. (2.2.67)

At s = 1, the convergence of both sequences goes as 1
n!

and a more precise approximation
is

1√
1 + s4

∼ 1√
2

(1− (s− 1) + . . .) . (2.2.68)

Combining (2.2.65) with these expansions, we can find the integral in various approxima-
tions

f � 1 : I(f) ∼ 1 − 1

10
f 2 +

3

72
f 4 + . . . (2.2.69)

f � 1 : I(f) ∼ c∞f
−1/2 − f−1 +

1

10
f−3 − 3

72
f−5 + . . . (2.2.70)

f ∼ 1 : I(f) ∼ f−1/2
(
c1 +

1√
2

(
(f 1/2 − 1) − 1

2
(f 1/2 − 1)2 + . . .

))
(2.2.71)

where c1 =
∫ 1

0
ds√
1+s4

= 2π−1/2Γ2
(

5
4

)
and c∞ =

∫∞
0

ds√
1+s4

= 2c1 ' 1.854. Further, we note
that the expansion about s = 0 is just the expansion of the hypergeometric function as a
hypergeometric series.

Hence, at small and very large f , we have for the diffusion constant

DT →
{

1
π

with f → 0 ,
c∞
π

√
f with f →∞ .

(2.2.72)

We note that the f = 0 result is different from but close to the value found for M2-brane
hydrodynamics [104]: DT = 3/4π. Also note that in the limit of large f , the diffusion
constant grows as

√
f .

2.2.1.4 Low Frequency Limit and Permittivity

We can find the permittivity ε from the hydrodynamic limit T � ω, q [84],

− Im Ctt =
εD ωq2

ω2 + (Dq2)2
=

ε πDT ω̃q̃2

ω̃2 + (πDT q̃2)2
. (2.2.73)

In this regime, the spectral function is dominated by the diffusion pole ω̃ = −iπ DT q̃2, as

dictated by Fick’s law (2.2.62). The diffusion constant is D =

√
1+f2

πT
I(f), as we calculate
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Figure 2.5: −Im C̃tt(ω̃)
ε0q̃2 for f ∈ {0, 4} and

q̃ ∈ {0.1, 0.2}. The solid lines correspond
the approximate result (2.2.73) with only
the diffusion pole appearing in the hydro-
dynamic limit.

in section 2.2.1.3, where we also define the function I(f). Comparing to our numerical
results for the spectral functions as shown in figure 2.5 for various values of f and q̃ � 1,
we find ε = ε0

I(f)
. We can verify the latter from the definition of the permittivity [85, 86]

ε = lim
ω̃,q̃→0

Ctt , (2.2.74)

which is in perfect agreement with the numerical result.

2.2.2 Temperature and f dependence

In the previous sections, we found an interesting dependence of the conductivity on the
temperature and the flux f . These properties characterize the nature of the defect, as
shown more in detail in figure 2.6. There we see that at low T or large f , there is a
conduction threshold at ω = q. We can interpret this as the energy required to excite
a collective excitation of the conducting mode. In the regime ω < q, the conductivity
appears exponentially suppressed as one might expect with a chemical potential q. That
is, this exponential suppression in the low-temperature “DC limit” might be interpreted
as the Boltzmann tail of some thermal distribution function. Examining this behavior in
more detail in the next section suggests the introduction of an effective temperature, which
seems to play an interesting role in the subsequent analysis. Examining the conductivity
at low T or large f also reveals “oscillations” in the spectral curves. The frequency of
this oscillations has a non-trivial dependence on f and seems to depend inversely on the
temperature, as one might expect from the general scaling properties. Their amplitude
is roughly independent of f , but depends on some positive power of the temperature
and decreases with increasing ω̃

q̃
. In the following, we will also extract some quantitative

approximation to this pattern.
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Figure 2.6: On the left, we plot the normalized transverse conductivity Re σ̃yy(ω)/ε0 for
q = 1 and f = 2 at various temperatures, in terms of the frequency ω. On the right:
Re σ̃yy(ω)/ε0 for q = 1 and T = 2 for various values of f . In both plots, the T → 0 limit
(2.2.51) is shown with the narrow black curve.

First, we study these two effects analytically as a perturbation around the zero tem-
perature limit. Next, we will show how they arise from poles in the spectral functions that
can be interpreted in the field theory as the quasiparticle states of the resonances on the
defect and arise on the gravity side through the quasinormal modes of the vector field.
Finally, we will demonstrate the latter by reconstructing the location of the poles in the
complex frequency plane from the data on the real axis and also by analytically solving a
toy model that is very similar to our present problem.

2.2.2.1 Effective temperature

First let us study the temperature dependence of the DC limit. This can be easily done by
finding an approximate solution in the q � T limit. For simplicity, we will also take ω � T .
We will concentrate on the transverse correlators, but we will see that the conductivity is
obtained from a small perturbation around a large background, such that by (2.2.59), a
similar behavior applies to the longitudinal correlator in the limit that we will consider.
Before proceeding, it is useful to recall here that h(u) ≡ 1 − u4 while H(u) is given by
(2.2.48), so that asymptotically as u → 0, H →

√
1 + f 2 while near the horizon where

u→ 1, H → 1.

Let us first re-express (2.2.47) in terms of the Ansatz Aỹ = Aỹ0 e
R u ζ , such that Cyy =
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ε0√
1+f2

limu→0 ζ:

ζ ′ + ζ2 +

(
h′

h
− H ′

2H

)
ζ +

H

h

(
ω̃2

h
− q̃2

)
= 0 . (2.2.75)

We see that for large q̃ (i.e., q � T ), this equation is dominated by the second and last

terms, such that an approximate solution is ζ = ±ζ0, ζ0 ≡ q̃
√

H
h

. Implicitly, here we have

chosen the branch corresponding to Aỹ decaying near the horizon. Further, as we will see
below, this also corresponds to an infalling boundary condition at the horizon. The terms
that we ignored are then of the order q̃h−3/2, such that the approximation is valid in the
region 1− u� q̃−2. The subleading terms in ζ are of the order q̃0u3h−1.

Next, we study the linearized equation for a small perturbation ζ → ζ0 + ε:

ε′ + ε

(
h′

h
− H ′

2H
− 2ζ0

)
+
ω̃2H

h2
− ζ ′0 +

(
h′

h
− H ′

2H

)
ζ0 ≡ ε′ − εα(u) − β(u) (2.2.76)

with the general solution

ε = e
R u
0 dū α(ū)

(
ε0 +

∫ u

0

dú e−
R ú
0 dū α(ū)β(ú)

)
. (2.2.77)

In the limit that we considered for ζ0 this reduces simply to ε = ε0e
2
R u
0 dū ζ0 because of

the exponential suppression in the last term in (2.2.77). As one would have physically
expected, this perturbation grows as one approaches the horizon, and decays away near
infinity. The subleading terms from the part of α(u) that we ignored in the integral in the
exponent is again of order q̃0u3h−1.

To find ε0, fix the ω dependence and further constrain the subleading terms, we proceed
by considering an approximate solution in the region h = 1 − u4 � 1, which has overlap
with h� q̃−2. The equation we need to solve is now

4∂hζ − ζ2 +
4

h
ζ +

q̃2

h
− ω̃2

h2
= 0 , (2.2.78)

which has a general analytic but not very illuminating solution in terms of Bessel functions,
allowing for a combination of infalling and outgoing waves at the horizon u = 1. Choosing
an infalling boundary condition leaves us with

ζ = −
q̃2h 0F1

(
2 + i ω̃

2
; q̃2 h

16

)
− 16i ω̃

2

(
2 + i ω̃

2

)
0F1(2 + i ω̃

2
; q̃2 h

16
)

8h
(
2 + i ω̃

2

)
0F1

(
1 + i ω̃

2
; q̃2 h

16

) , (2.2.79)

35



where 0F1(a;x) is the confluent hypergeometric limit function [90]. To match with the
h � 1 regime of the asymptotic solution, we begin by expanding to first order in ω̃ and
then do an expansion around q̃2h� 1, which gives us

ζ ∼ − q̃√
h

+
1

h
+ · · · − iω̃q̃

16π√
h
e−q̃
√
h + · · · . (2.2.80)

Hence the full solution for h� q̃−2 is:

ζ = −q̃
√
H

h
+

1

h
+ A(u, q̃, f) − iω̃q̃

16π√
h
e−2q̃

R 1
u

√
H
h

(
1 +B(u, q̃, f)

)
, (2.2.81)

where A(u, q̃, f) is some function that behaves away from the horizon as ≤ O(u3, q̃0) and
B(u, q̃, f) behaves as ≤ O(u0, q̃0). Near the horizon, i.e., for h� q̃−2, the solution behaves
as ζ ∼ −i ω̃

h
− 2−iω̃

8+2ω̃2 + · · · . As a consistency check in the region 1 � h � q̃−2, it is easy
to verify that the (small) imaginary and (dominating) real parts do indeed satisfy (2.2.77)
when taking into account the next-to-leading terms.

From (2.2.81), we find that the leading term in the conductivity is

σyy ∼ 16πε0q̃ e
−2q̃

R 1
u

√
H
h . (2.2.82)

Inspired by a Boltzmann factor, and by the zero-temperature conduction threshold ω0 = q,
we can interprete the exponential factor as exp[−q/Teff ] where

Teff =
π

2
T

(∫ 1

0

du

√
H(u)

h(u)

)−1

. (2.2.83)

We note that the integral is finite since the integrand converges as h1/2 at u → 1. There
are two limits in which we can evaluate this integral analytically: f = 0 and f � 1. In
these limits one finds

f = 0 : Teff = T

√
π

2

Γ
(

3
4

)
Γ
(

5
4

) ∼ 1.198T (2.2.84)

f � 1 : Teff '
Γ (3/4)2

√
π

T√
f

(
1 +

(
4Γ(3/4)2

π3/2
− 1√

2

)
1√
f

)
(2.2.85)

∼ 0.847
T√
f

(
1 + 0.372/

√
f
)
.
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Figure 2.7: Ratio of the “effective temper-
ature” derived from the temperature and q̃
dependence at q̃ � 1� ω̃ to the blackhole
temperature as a function of the flux f . We
show the exact expression derived from the
q̃ →∞ limit and the numerical estimate at
finite q̃.

Comparing these results with the numerics, we find good convergence in a consistent
manner of both the profile of Ay(u) and the effective temperature with increasing q̃. Since
the approximation that gave us the integrand in (2.2.83) is valid up to roughly h & q̃−2,
we expect that Teff/T measured at finite q̃ has a relative accuracy of roughly q̃−1. A
simple way to estimate the effective temperature from the conductivity is to compute
∂q̃ log σ̃yy

q̃
∼ π

Teff
at large values of q̃. The factor of q̃−1 that we have included here ensures

that the convergence to the actual value of Teff is faster than logarithmic in q̃. In figure
2.7, we show the comparison to the numerical estimate computed at q/Teff ∼ 47, that is
the best numerically stable estimate, and demonstrate how the estimates converge to the
exact results.

As illustrated in figure 2.7, our new effective temperature does not match the actual
temperature of the system, except for f ' 0.85. At this point, we emphasize that, as
discussed in section 2.1, the degrees of freedom on the defect are in equilibrium with the
thermal bath of adjoint fields with temperature T . Of course, Teff is still a scale that
seems to play an interesting role in the defect conformal field theory, as we will see in
the following. Again, the reason that we assign this scale the appellation of “effective
temperature” is that it appears to play the role of a temperature when the conductivity
(2.2.82) is interpreted as a Boltzmann distribution. It would be interesting if one could also
give a physical interpretation to the pre-factor 16πq̃ in front of the exponential in (2.2.82).

2.2.2.2 Resonances on the defect

Next, we study the oscillatory behavior of the spectral functions at ω̃ > q̃, using two
different methods. Our results for the transverse correlator Cyy obviously can also be
translated to give us the longitudinal correlators Cxx, Ctt using (2.2.59). Hence we will
only discuss the former case.
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We begin with the WKB-like expansion that gave (2.2.76), which was the starting point
for the effective temperature above. Now however, we do not have the scale h ∼ q̃2 where we
can match the near-horizon approximation to the asymptotic approximation. Furthermore,

the dominant solution for ε is now oscillatory since ζ ∼ ζ0 = i
√
H
h
ω
√

1− h q̃2

ω̃2 , rather than

exhibiting the exponential decay found above. The latter also reduces the validity of the
approximation that led to (2.2.76) and further we have to worry about the logarithmically
diverging integral

∫
ζ0 ∝ lnh as u→ 1. So let us take the solution (2.2.77), but now with

ζ0 = i

√
H

h
ω

√
1− h q̃

2

ω̃2
, α = 2ζ0 −

(
ln

h√
H

)′
, β = ζ ′0 +

(
ln

h√
H

)′
ζ0 (2.2.86)

and match this in the limit u→ 1 to the appropriate expansion of (2.2.79):

ζ ∼ − iω̃
h

+
iq̃2

2ω̃ − 4i
+O(h) = −ζ0 +

q̃2

ω̃2 + 2iω̃
+ O(h) . (2.2.87)

Now, we see that the divergent oscillations from the e
R
α terms in (2.2.77) must cancel, and

the approximation ε � ζ0 should be valid near the horizon. Taking the limit limu→1 ε =
q̃2

ω̃2+2iω̃
≡ εH of (2.2.77), and solving for ε0 gives us then

ε|u=0 = ε0 = εHe
−
R 1
0 duα(u) +

∫ 1

0

duεHe
−
R u
0 dũα(ũ)β(u)

= εH −
∫ 1

0

du h

√
1 + f 2

H
e−2

R u
0 dũζ0

(
εHα−

1

2
ζ0

h′q̃2/ω̃2

1− hq̃2/ω̃2

)
.(2.2.88)

It turns out that the O(h−1) divergent terms in εHα+ β in (2.2.88) do indeed cancel, such
that the integral converges with the integrand ∝ h2hiω̃/2 as u→ 1. Unfortunately, we were
not able to evaluate this integral analytically, even in the limits where various quantities
involved getting large or small. We show this approximate result (2.2.88) compared to the
full numerical result in figure 2.9.

Because of the rapid convergence as u→ 1, we see however that most of the contribution
to the integral comes from regions where h ∼ 1, in particular for large f . Hence as a very
crude approximation, we can set h = 1 and hence β = 0, which allows us to compute the
integral analytically:

ε0 ∼ εH
√

1 + f 2e−2iω̃
√

1+f2I(f)
√

1−q̃2/ω̃2
. (2.2.89)

While we do not expect this latter expression to give us the correct phase and amplitude
information, we still anticipate that this result gives a good approximation for the frequency
of the oscillations, 2

√
1 + f 2I(f)

√
1− q̃2/ω̃2.
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There is an alternative way of seeing more physically from the bulk point of view, how
the finite temperature effects arise by casting the equation of motion for Ay (2.2.47) in the
form of the Schrödinger equation, as suggested in [91]:

(
−∂ 2

ρ + h q̃2
)
Ay = ω̃2Ay where ρ =

∫ u

0

dũ

√
H

h
. (2.2.90)
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Figure 2.8: The effective Schrödinger po-
tential V (ρ) = q̃2h for the gauge field on
the brane. We set q̃ = 1 in the plot.

In terms of this new radial coordinate, the horizon gets mapped to ρ → ∞, and we
see that ρ is rapidly varying only for u . f−1/2 and for h � 1. This suggests that
for large f we can approximately split the problem in two regions: An asymptotic one
where h ∼ 1 and ρ ∼ ρ∞(u) =

∫ u
0
dũ
√
H and the near-horizon region, where h � 1 and

ρ ∼ ρH(u) = ρ0− 1
4

ln(h) for some ρ0. Going even further in our approximation, we assume

a square potential V = q̃2 for ρ < ρ∞(1) =
√

1 + f 2I(f) and V = 0 for ρ > ρ∞(1), which
is displayed in figure 2.8, where we see that this approximation is indeed justified. At this
point, we might also observe that the effective Schrödinger potential appearing here is very
similar in structure to that found for supergravity modes [92] and for mesonic modes, as
discussed in [93].

With the square potential, it is trivial to find the solution for infalling boundary con-
ditions at the horizon:

Ay ∼


A0 2

√
1− q̃2/ω̃2e−iω̃(ρ−

√
1+f2I(f)) : ρ <

√
1 + f 2I(f)

A0

((
1 +

√
1− q̃2/ω̃2

)
e−iω̃
√

1−q̃2/ω̃2(ρ−
√

1+f2I(f))

−
(
1−

√
1− q̃2/ω̃2

)
eiω̃
√

1−q̃2/ω̃2(ρ−
√

1+f2I(f))
)

: ρ >
√

1 + f 2I(f)

.
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Keeping in mind the change of coordinates, this gives us in terms of the Ansatz that we
used for the perturbative treatment

ζ|u=0 = −iω̃
√

1 + f 2 ×


1−q̃2/ω̃2

1− q̃2

ω̃2 cos2
(
ω̃
√

1+f2I(f)
√

1−q̃2/ω̃2
) : ω̃ > q̃

1−q̃2/ω̃2

cosh2
(
ω̃
√

1+f2I(f)
√
q̃2/ω̃2−1

)
−q̃2/ω̃2

: ω̃ < q̃
.

The solution for ω̃ > q̃ has the same location of the maxima as (2.2.89), up to a small
shift because of the overall slope of the curve, but it is missing an exponential suppression
factor (for increasing frequencies) in the amplitude because we approximated the smooth
potential by a discontinuous one. For ω̃ � q̃, we also find the exponential suppression that
leads to the effective temperature computed at ω̃ → 0, (2.2.81). Hence, we can clearly see
how both effects arise from a resonant mode on the width of the defect, and from tunnelling
through the defect region, respectively. In appendix C, we approximate the potential by a
hyperbolic tangent, for which we can find an analytic solution, and find that is very closely
reproduces the exact result with a significant deviation only at frequencies |1− q̃2/ω̃2| � 1
where the spectral function is most sensitive to the details of the potential.

We show a comparison of the conductivity obtained from the different approximations
in figure 2.9. As expected, the perturbative approximation in (2.2.88) gives a very close

approximation for small perturbations around the T → 0 result,
∣∣∣Cyy−limT→0 Cyy

limT→0 Cyy

∣∣∣ � 1,

but deviates significantly wherever the finite temperature effects become important. The
analytical result (C.1.7) from the approximate tanh potential (C.1.3) however, provides a
good fit for small q̃ and all values of ω̃. For larger q̃ & π and ω̃ > q̃, there is a significant
phase shift proportional to the separation of the resonances but their amplitudes, separation
and the tailoff for ω̃ < q̃ fit very closely. This is because the phase φ is sensitive to absolute
changes in the integral of the potential, δφ ∝

∫
δV ∝ q̃2, such that already small deviations

in V/q̃2 may have a big effect.

2.3 Quasinormal modes and quasiparticles

In general, the thermal correlators will have poles in the lower half of the complex frequency
plane — e.g., see discussion in [91] or [93]. The positions of these poles characterize the
energy and lifetime of various excitations in the system. When one of these poles is close
to the real axis, the spectral function will show a distinct peak and the corresponding
excitation can be interpreted as a quasiparticle. That is, the excitation satisfies Landau’s
criterion for a quasiparticle that the lifetime is much greater than the inverse energy. As
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Figure 2.9: Comparing the conductivity obtained from the numerics, from the approxi-
mation (2.2.89), from the approximation using a tanh potential (C.1.7) and from the sum
of residues obtained from its poles (C.2.16). Here we focus on the oscillatory behavior by

plotting ∆σ̃yy ≡ Re
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σ̃yy(ω̃)− ε0

√
1− q̃2/ω̃2

)
, i.e., we subtract off the low temperature

limit (2.2.51). Left: f ∈ {0, 4} and q̃ = 2. Right: q̃ ∈ {2, 4} and f = 4.

illustrated in figures 2.2 and 2.3, which essentially plot the spectral function, the defect
theory is developing metastable quasiparticles in the large f regime. Hence it is of interest
to examine the pole structure of the correlators and the spectrum of quasiparticles in the
defect conformal field theory. This gives us not only more information on the defect field
theory, but also allows us to speculate more on the nature of the defect.

In principle, we could always find the poles in the thermal correlators by simply numer-
ically computing them over the entire complex frequency plane. Of course, such a brute
force approach would present an enormously challenging problem at a technical level. How-
ever, since the correlators should be meromorphic, we can alternatively try to extract this
information by fitting along the real axis, the spectral function derived from an approx-
imate analytical solution of poles and positive powers – an approach similar in spirit to
that followed in [93]. To do so, we use the complex “rest frame” frequency ν̃ =

√
ω̃2 − q̃2

which maps [0, q̃]→ [iq̃, 0] and [q̃,∞[→ [0,∞[. The motivation to do so is the fact that the
resonance pattern is most suitably characterized by ω̃

ν̃
σ̃yy − 1 as a function of ν̃, as shown

in figure 2.10. There we see that even at finite temperature this quantity varies only slowly
with varying q̃. Certainly, in the low temperature limit, we expect Lorentz invariance to
be restored and then correlators will naturally depend on the combination ω̃2 − q̃2, as is
implicit in (2.2.51) and (2.2.61).
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σ̃yy(ν̃) for q̃ ∈ {π/4, π} and

f ∈ {0, 4}. This form of the spectral func-
tion is very similar for different values of q̃.

2.3.1 Finding the Ansatz

The strategy that we will take to find the poles is to take a suitable Ansatz for the lo-
cation of the nth pole in the complex frequency plane, ν̃n = ±ν̃0(n) − iγ̃0(n), and for
the corresponding residue, and allow for the parameters to vary slowly. If the Ansatz is
good enough, and the parameters vary slowly enough, then we can fit the conductivity
resulting from a sequence with constant parameters (ν̃0, γ̃0) to the numerical result using
only the data in the region around the nth “resonance”. This data can be parametrized
by the amplitude of the resonance around the background and by the gap between the
resonances. The resulting parameters (ν̃0(n), γ̃0(n)) then give the location of the pole ν̃n,
and it’s residue.

A suitable guess for the full Ansatz is

Cyy = −ε0

∑
n≥1

1

π

(
n(ν̃0 + iγ̃0)2

ν̃ + n(ν̃0 + iγ̃0)
− (ν̃0 + iγ̃0) +

n(ν̃0 − iγ̃0)2

ν̃ − n(ν̃0 − iγ̃0)
+ (ν̃0 − iγ̃0)

)
,

(2.3.91)
where the constant terms were introduced to cancel the otherwise divergent behavior of the
series, since the pole terms do not decay for large n. The condition that allows us to locally
treat the sum as an infinite series with constant {ν̃0, γ̃0} is now ∂n log{ν̃0(n), γ̃0(n)} � 1

and ∂n log{ν̃0(n), γ̃0(n)} � ν̃2
0

n2γ̃2
0
. Rewriting (2.3.91) in a more suggestive form, we find for

ν̃ ∈ R, i.e., ω̃ > q̃

Im Cyy = ε0 Im ν̃ cot

(
π

ν̃

ν̃0 + iγ̃0

)
= ε0 Im ν̃

sin 2πν̃ν̃0

ν̃2
0+γ̃2

0
− i sinh 2πν̃γ̃0

ν̃2
0+γ̃2

0

cosh 2πν̃γ̃0

ν̃2
0+γ̃2

0
− cos 2πν̃ν̃0

ν̃2
0+γ̃2

0

, (2.3.92)
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such that we get the conductivity

σ̃yy = ε0
ν̃

ω̃

sinh 2πν̃γ̃0

ν̃2
0+γ̃2

0

cosh 2πν̃γ̃0

ν̃2
0+γ̃2

0
− cos 2πν̃ν̃0

ν̃2
0+γ̃2

0

, (2.3.93)

which turns out to be finite at ν̃ → 0. These exponentially suppressed resonances are
characteristically what we expect and we can, in principle, fit the parameters ν̃0 and γ̃0 to
the resonance pattern.

To be more precise however, we need to go back to the original “physical” frequency
ω̃. Keeping the location of the poles and the residue fixed, the sum becomes now

Cyy = ε0
ω̃

π
log

(
ν̃0 − iγ̃0

ν̃0 + iγ̃0

)
+ (2.3.94)

ε0

∑
n≥1

1

π

(
n(ν̃0 − iγ̃0)(

q̃2 + n2(−ν̃0 + iγ̃0)2
)1/2

(
n(ν̃0 − iγ̃0)2

ω̃ −
(
q̃2 + n2(ν̃0 − iγ̃0)2

)1/2
+

n(ν̃0 − iγ̃0)2(
q̃2 + n2(ν̃0 − iγ̃0)2

)1/2

)

− n(ν̃0 + iγ̃0)(
q̃2 + n2(ν̃0 + iγ̃0)2

)1/2

(
n(ν̃0 + iγ̃0)2

ω̃ +
(
q̃2 + n2(ν̃0 + iγ̃0)2

)1/2
− n(ν̃0 + iγ̃0)2(

q̃2 + n2(ν̃0 + iγ̃0)2
)1/2

))
,

where the term ω̃
π

log ν̃0−iγ̃0

ν̃0+iγ̃0
cancels the unphysical negative DC conductivity in the q̃ �

ν̃0, γ̃0 limit that would arise otherwise. Note there is still a logarithmic divergence in the
real part, that we are not interested in. This sequence does not sum to any known analytic
expression, but the integral approximation can be computed straightforwardly analytically,
such that in order to eventually study the sequence numerically, we will only sum the first
few hundred poles and add a small “background” contribution from the rest of the poles
using the integral.

Following the same considerations, we also find an Ansatz for the longitudinal correla-
tor,

Cxx = ε0

∑
n≥1

1

(n− 1
2
)π

(
(n− 1

2
)(ν̃0 − iγ̃0)(

q̃2 +
(
n− 1

2

)2
(ν̃0 − iγ̃0)2

)1/2

1

ω̃ −
(
q̃2 +

(
n− 1

2

)2
(ν̃0 − iγ̃0)2

)1/2

−
(n− 1

2
)(ν̃0 + iγ̃0)(

q̃2 +
(
n− 1

2

)2
(ν̃0 + iγ̃0)2

)1/2

1

ω̃ +
(
q̃2 +

(
n− 1

2

)2
(ν̃0 + iγ̃0)2

)1/2

)
, (2.3.95)

which converges and needs no regularization or terms with positive powers of ω̃. In terms
of ν̃, the poles are located at (n − 1/2)(±ν̃0 − iγ̃0), with residues 1

n−1/2
, as we expect by

(2.2.59) from the ansatz for Cyy.
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In order to finally obtain the location of the poles and their residue, we split the spectral
function at the minima into segments around each maximum and simply fit them to our
Ansatz giving us a set of parameters that we attribute to the local properties of the sequence
at the most nearby pole, as described in the beginning of the section. We obtain both ν̃0

and γ̃0 and an overall factor (1 + εR) (or (1 + εR)? on the negative branch) for the residues.
The latter is needed because the resonance pattern is exponentially suppressed already
for reasonably small ν̃ & π, such that the background of the fitted sequence needs to be
adjusted to in precise agreement with the background of the data, in order to extract the
relevant information which is contained in the resonances. As it turns out that |εR | � 1,
we will not comment about its value for the rest of the paper, because it is irrelevant
for both the quantitative and the qualitative discussions. In principle, one can introduce
more parameters, such as an overall shift in the frequency, but this would not improve the
results, since in practice, it simply introduces extra degeneracy in parametrizing the fit.

2.3.2 Quasiparticles from the collisionless regime

Given the Ansatz for the transverse and longitudinal correlators above, we will now discuss
the results for determining the positions of the poles. The results are only displayed for
Re ν̃ > 0 but as shown in (2.3.91), there is a corresponding set of poles with Re ν̃ < 0.
In this section, we focus on the collisionless or short-wavelength regime with ω̃ � 1 and
q̃ >∼ 1.

As a first test, we compare the fitted location of the poles to their exact location for
the tanh potential in appendix C.2. We expect that this gives us a good estimate for the
quality of the fit for the actual spectral functions. Some typical results are shown in the
first plot of figure 2.11. We find that for f = 0, the fit is very poor, with the q̃ = π/4
result being worse than the q̃ = π case, and there is a small deviation for f = 4 at large
ω̃, again with a slightly better fit for larger q̃. Apart from that, i.e., for large f or large
q̃ and small ω̃, the fit is very good. This is just what we would have expected from our
conditions for the validity of the Ansatz as smaller q̃ imply more rapidly varying ν̃0, γ̃0 at
least for the first few poles and both small f and q̃ and large ω̃ move the poles further
away from the real axis. Furthermore, for large ω̃, the amplitude of the resonance pattern
becomes quickly suppressed and so it is subject to systematic deviations and noise.

Now, let us look at the qualitative behavior. We see that, as anticipated with the
Ansatz, the poles lie roughly equally spaced on a straight line, i.e., they are resonances in
a region of fixed width with fixed “mass” to inverse lifetime ratio. With increasing f , both
the separation of the poles and the slope of the line of poles decreases, i.e., the poles are
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moving closer to the real axis. Of course, these changes are reflected by the appearance of
distinct peaks in the previous plots of conductivity at large f . This behavior is roughly
independent of q̃, and there is an overall shift depending on q̃, that is larger for smaller
values of f . One might expect both the decreasing energy gap and the increasing mass to
width ratio since the length scale due to the width of the defect increases and the shape of
the step in the potential is approximately fixed. The deviation of the poles from a straight
line is stronger for large q̃ and reflects the fact that the shallow potential at small q̃ is
fully probed at small ν̃, whereas at large q̃, the resonances at small ν̃ are only sensitive
to the details of the top of the potential, and only probe the steeper regions at higher
n. This effect is obviously more visible at large f because of the closer spacing of the
resonances. We also see that the poles of the transverse correlator lie roughly half-way
between the poles of the longitudinal correlator, as anticipated in (2.2.59). Comparing the
various approximations to the location of the poles of the actual spectral function, we see
the behavior that we saw in figure 2.9 encoded in a different way. Here, we see the shift of
the poles of the tanh potential that is more significant for larger q̃.

As an aside, let us briefly return to the cuts that appeared in the the transverse and
longitudinal conductivities, in (2.2.51) and (2.2.61), with the limit T → 0. Given the
present analysis, it is natural to conclude that this cut arises through an accumulation of
poles near ω̃ ∼ q̃. Assuming the locations of the poles in the ν̃ plane, ν̃n, to be roughly
independent of q̃, we find that for q̃ � 1 we get ω̃n =

√
ν̃2
n + q̃2 ∼ q̃ + ν̃2

n/q̃. This then
leads to an infinite number of poles accumulating near ω̃ = q̃ as T → 0 and resulting in a
cut.

While the Ansatz (2.3.91) fixes the poles along a straight line with a fixed spacing,
i.e., ν̃ = n(ν̃0 − iγ̃0) in the Re ν̃ > 0 region, we fit the parameters locally to each peak
of the spectral function and so the fitted poles deviate slightly from this simple Ansatz.
Keeping in mind the limitations, let us try to extract some quantitative information on
these deviations. In particular, at large n, the poles approach a straight line of the form
ν̃n = δν̃+ iδγ+n(ν̃0 + iγ̃0) (ν̃n = δν̃+ iδγ+(n−1/2)(ν̃0 + iγ̃0) in the longitudinal case). To
extract this information, we use different techniques in different regimes, which we outline
to forewarn the reader about the validity of the results. For large f , where we have at
least the first 5 well-fitted poles, we ignore the first 0-3 poles, leaving us at least 5 poles,
such that we can fit the asymptotic lines plus a decaying exponential to Re ν̃n and Im ν̃n
and still get information about the accuracy. For some cases, the exponential fit fails, and
we resort to fitting a straight line and estimate the accuracy from the second derivative in
the location of the poles.

The assumption of an exponential deviation from a straight line may seem somewhat
arbitrary, but it turns out to be the right choice, as it is the only natural candidate whose
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Figure 2.11: Left: Comparing the exact location of the poles of the transverse correlator
to the fit, using the approximate tanh-potential of appendix C, at values f ∈ {0, 4, 25}
and q̃ = 1. Right: Comparing the poles of the transverse correlator with the ones of the
longitudinal correlator at f ∈ {0, 4, 25} and q̃ ∈ {1, 4}. The lines are only shown to guide
the eye as to which poles correspond to the same values of f, q̃.

results are independent within errors from the particular choice of the number of poles
used for the regression. The location of the poles from the tanh potential, for example,
contains by this criterion an O(lnn) term as expected from (C.2.10).

In the borderline case, where there are 4 poles, we extract the uncertainties by fitting
the last 3 poles to the asymptotic line with the deviation estimated by the fit with 4 points.
For 3 poles only, we still get a rough estimate for the asymptotic limit (from the last 2
points) and for the accuracy by including the first point. For f = 0, we always find only
the first two poles, so we can give only an order of magnitude guess for the rest of the
sequence. Finally, we estimate the uncertainties from the errors in the fit of the sequence
of poles and from the deviation of the estimated location of poles to their exact location
in the case of the tanh potential. We use the latter also to add a shift to try to correct for
systematic errors in the fit of the Ansatz (2.3.94, 2.3.95) to the numerical data. We are
somewhat sloppy with the uncertainties in the sense that we do not distinguish between
random and systematic errors. So we assume that the accuracy of the fits is limited by
systematic uncertainties in the convergence towards the asymptotic straight line, which
may result in a slight overestimating of uncertainties in the averaged data that we present
below. As expected, the results from the transverse and longitudinal poles are identical
within the errors and so we average over them.

Let us now examine some of the results of our fitting in figure 2.12. In the first two
plots, we show results for the energy gap between the quasinormal modes, ν̃0. In particular
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for large f , we see that the asymptotic behavior of π/ν̃0 matches a simple straight-line
fit: π/ν̃0 = c1

√
f + c0 with c1 ' 1.821 and c0 ' −0.539. In the first plot, this behavior

seems to match well with the asymptotic behavior of πT/(2Teff ) and πD(f)T . Note,
however, that the second plot shows that upon closer examination, the deviation between
π/ν̃0 and the curves set by these scales in the large f regime seems to be beyond the
errors expected for our numerical fit to ν̃0. Note that large f behavior in (2.2.85) gives
πT/(2Teff ) ' 1.854

√
f −0.690, while (2.2.72) yields πDT ' 1.854

√
f −1. The asymptotic

behaviors for these quantities have precisely the same slope and the difference is in the
constant term (and the subleading 1/

√
f terms), as can be seen in figure 2.12. This slope

is only a fair match for that found in our straight-line fit. We expect that this is because
of subleading 1/

√
f terms and that we would see better convergence at larger values of f .

In any event, it seems then that ν̃0 is closely related to other characteristic scales in the
defect theory. Note that here since ν̃0 appears to be independent of q̃ within the errors
(see figure 2.13), the data in figure 2.12 is averaged over q̃ ∈ π/2, π, 2π.

We also show the overall shift δγ̃ and the ratio γ̃0/ν̃0 separately in figure 2.12 for the
cases q̃ ∈ π/2, π, 2π. In each case, these parameters show a 1/

√
f falloff for large f .

In particular, this means that the width γ̃0 is falling as 1/f and so we see the origin of
the quasiparticle peaks in the spectral curves. In each plot, we also show πT/(2Teff ) for
each case and see there is good agreement within the estimated errors of the numerical
results. This is just what we expect, since the detailed shape of the step in the effective
Schrödinger potential and hence the ratio between the two modes in the asymptotic region
of the potential, is to a good approximation independent of f . The slowly varying part
of this ratio gives rise to the finite shift and the exponential suppression factor gives rise
to γ̃0/ν̃0, which are in the limit of large ω̃ proportional to the inverse of the width of the
asymptotic region of the potential. This can be more easily seen from the expressions in
appendix C.2. From the boundary point of view, it comes at no surprise that the overall
shift of the poles is proportional to the overall energy scale, and that the quasiparticle
excitations become more stable with increasing f , which is proportional to the width of
the potential step. One could make a similar plot of δν̃ but we do not show the results
here. While on the whole the trends appear similar to those for δγ̃, the values are typically
smaller by a factor of roughly 2 while the relative errors are larger by a similar factor.
Hence at least for the smaller values of q̃, the results are consistent with zero shift.

Now let us turn to the q̃ dependence of the quasinormal modes. Because of the good
agreement of the f dependence with Teff/T , we improve the accuracy of our results by
taking a (weighted) average over the suitably scaled values of the characteristic quantities
for f ∈ {9, 16, 25, 36}. In figure 2.13, we show the q̃ dependence of the same quantities
as in figure 2.12. First, we see that ν̃0, which is supposed to depend only on the width of
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the potential, is within the uncertainties independent of q̃. Any change in q̃ however scales
only the height of the potential step.

From the results in appendix C.2, we would expect that varying q̃ changes only the
overall shift of the poles, but we know already that the full result has fundamentally
different characteristics coming from the shape of the potential step because of the absence
of a significant O(lnn) term. In general, however, ν̃0 should not change significantly, since
we consider here only f ≥ 9, so the potential is already so wide that small details of
probing the potential step should not change the the quasinormal modes too much. Both
the shift, and the deviation from the linear Ansatz conspire to give us both the right “low
temperature background” with approximately symmetric oscillations around it as in figure
2.10. From the fact that this behavior resembles that in the resulting conductivity from
(2.3.92), one should assume that there are small shifts and deviations for small q̃. One also
expects the shift to grow not faster than ∝ ln q̃, provided that the ratio of the two modes
in the asymptotic region depends at most on some power of the height of the step in the
potential.

In figure 2.13, we find roughly this behavior of the shift, with small δν̃, γ̃ at small
q̃ and an indication of some converging or slowly growing behavior at large q̃. We also
find a small drop in γ̃0/ν̃0 with some converging behavior at large q̃. In principle, we
could try to use this information to try to reverse engineer the calculations in appendix
C.2, i.e., to reconstruct the ratio of the incoming and outgoing modes. For example, the
absence of a significant O(lnn) term tells us that there is no significant ν̃ dependence,
the approximately constant (in f) ratio δν̃/δγ̃ shows us that the ratio of the modes has a
complex phase (and also its value) but there is nothing really interesting to learn from this.
A somewhat interesting point though is that the change in γ̃0/ν̃0 tells us that at small q̃,
the potential “appears smoother” than at large q̃.

2.3.3 Poles in the hydrodynamic regime

In this section, we focus on the hydrodynamic regime where ω̃, q̃ � 1. In this regime, the
diffusion pole (2.2.73) dominates the structure of the correlators. One might wonder, why
we have not included the diffusion pole into the sum for Cyy, as in (2.3.91). As we will show
below, this is because the diffusion pole disappears at a critical value of the wave-number,
q̃c, which is below the values of q̃ that we have considered to this point. Below q̃c there
are two poles on the imaginary axis in the ω̃ plane, one of them being the diffusion pole,
and the other one at larger absolute imaginary values of ω̃, which decreases slowly as q̃
grows, as shown in figure 2.14. While the diffusion pole is in perfect agreement with what

49



2. 4. 6. 8. 10. 12. 14. q�

2.02

2.04

2.06

2.08

2.1

2.12

2.14
Ν
�

0
T

�����������������������

Teff  HfL

2. 4. 6. 8. 10. 12. 14. q�

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Γ0
����������
Ν0

T
�����������������������
Teff  HfL

2. 4. 6. 8. 10. 12. 14. q�
0.

0.5

1.

1.5

2.

2.5

 ∆Γ
� T

�����������������
Teff HfL

2. 4. 6. 8. 10. 12. 14. q�

0.

0.2

0.4

0.6

 ∆ Ν
� T

�����������������
Teff HfL

Figure 2.13: Average over quantities appropriately scaled with Teff (f)/T for f ∈
{9, 16, 25, 36}: Top left: (In)dependence of ν̃0 on q̃. Top right: γ̃0/ν̃0. Bottom: The
complex shift δν̃ and δγ̃.

50



we expected, the second pole, corresponding to rapid (i.e., on thermal scales) decay of
long-range modes, is somewhat puzzling. In particular, it has a non-trivial f dependence
at small values of q̃. It seems that for large f , the lifetime of those modes is not anymore
proportional to the length scale of the defect, but increases less rapidly.

At q̃c, there is a branch cut, and the poles move away from the imaginary axis out into
the complex plane to turn into the first quasiparticle poles, i.e., the n = 1 poles in (2.3.91).
Hence at this point, the transport changes from the collision dominated phase to the
collisionless phase. This is a good example of the interplay between various length scales.
We can interpret this on the one hand as the height of the effective potential being smaller
or larger than the inverse length scale of the defect (and hence the effective temperature)
and on the other hand as separating between between modes smaller and larger than the
size of the defect. From a hydrodynamic viewpoint, however this branch cut gives us
approximately the mean free path, which is in strongly coupled systems proportional to,
and of the same order as, the temperature scale, and we see an approximate scaling of q̃c
with the effective temperature.
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Figure 2.14: Left: The location of the poles on the imaginary axis below qc, rescaled by the
diffusion constant. The dashed line is what one expects for the diffusion pole. Right: The
critical values qc at which the purely dissipative poles disappear, multiplied with several
length scales.

On the right in figure 2.14, we compare q̃c with the various length scales in the problem,
as we did before for the spacing of the quasiparticle masses in figure 2.12. Since we are in the
completely opposite regime in terms of length scales of the perturbations, it is no surprise
that there is significant disagreement between the scaling of q̃c and ν̃0, but the disagreement
is surprisingly small. In addition to the opposite limit of the size of the perturbations, the
data in figure 2.12 contains only frequencies, which one can interpret as being related
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directly to the width of the defect, whereas here we consider the f -dependence of relevant
values of q̃, which measure scales along the defect. Overall, it seems that in the limit of
large f , q̃c ' 2/(3D) or q̃c ' 4Teff/3. The relative factor between these two expressions
is not surprising given that, in the previous section, we noted that D = 2/Teff as f →∞.
Further, given our previous expressions for D and Teff , we note that q̃c ∝ T/

√
f for large

f , i.e., q̃c decreases as f grows. Then as the plot shows, up to an overall numerical factor,
most features of the f -dependence of q̃c can be related to either of these other physical
scales.

In principle, the decreasing residue of the poles with increasing n allows us to track
the location of the first few poles of the longitudinal correlator even further, directly by
fitting a sequence of Lorentzians, but we will not bother about such a detailed discussion
of the hydrodynamic regime in this paper. It is interesting to see however, how the small-q̃
limit of the shift δν̃+ iδγ̃ shown in figure 2.13 qualitatively agrees with a shift towards the
bifurcation point.

It is interesting to note that this pairing of the diffusion pole with a fast dissipative
mode was also recently found in the quasinormal mode spectrum of black holes in AdS4

[94]. However, an infinite number of pairs of poles were identified there, appearing along
the imaginary axis. In that case, the critical wave-number at which the higher pairs meet
at smaller and move off into the complex plane decreases for pairs higher up along the
imaginary axis. We looked for similar higher dissipative modes in the present framework
but it seems that the diffusion mode and its partner are the only modes appearing on the
imaginary frequency axis.

2.4 Electromagnetic duality and perturbative correc-

tions

At the outset of our analysis, we set Mq = 0 which maintains conformal invariance in
the defect system. In the brane construction, this means the internal geometry is fixed
and the low energy effective action on the effective four-dimensional brane reduces to
Maxwell theory (2.2.31) with a fixed coupling (independent of the radius).2 Hence resulting
equations of motion are invariant under electromagnetic duality, which has interesting
implications for the transport coefficients, as emphasized in [49].

2In the D5-brane embeddings for Mq 6= 0, the size of the internal S2 varies and so the effective coupling
of the Maxwell theory (2.2.31) depends on the radius. As explained in [49], the gauge field equations are
no longer duality invariant and as a result the correlators discussed here are independent.
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Given the Maxwell action (2.2.31), the gauge field equations can be expressed as

∇µFµν = 0 , ∇µF̃µν = 0 with F̃µν =
1

2
εµνρσF

ρσ . (2.4.96)

Hence we have electromagnetic duality with Fµν and F̃µν satisfying the same equations of
motion. Implicitly, we used this duality in deriving the relation between the transverse
and longitudinal correlators (2.2.59), i.e., the key step was demonstrating the At̃ and Aỹ
equations, (2.2.45) and (2.2.47), could be put in the same form. As in [49], this result
(2.2.59) subsequently restricts the transport coefficients to satisfy

ΠT (ω̃, q̃) ΠL(ω̃, q̃) = −ε2
0(ω̃2 − q̃2) . (2.4.97)

Since with q̃ = 0, we have ΠT (ω̃, 0) = ΠL(ω̃, 0), it follows that:

σ̃(ω̃) = i
Π(ω̃, 0)

ω̃
= ε0 = πD T ε or σ(ω) = D ε . (2.4.98)

That is, σ(ω) is independent of frequency and temperature. One can show that this
remarkable result is consistent with the Einstein relation,3 as noted already in [49]. This
is also remarkable from the point of view that at q̃ = 0, the conductivity at all frequencies
obeys the diffusion behavior, which is not what one would generically expect.

However, as for any low energy action in string theory, we must expect that there are
higher derivative interactions correcting the Maxwell action (2.2.31). In fact, the action
(2.1.4) implicitly captures an infinite set of these stringy corrections, as would be illustrated
if we expanded the DBI term in powers of F . This expansion would also demonstrate that
these higher order terms are suppressed by factors of α′ = `2

s . In terms of the dual CFT, the
contributions of these α′ interactions will provide corrections to the leading supergravity
results for a finite ’t Hooft coupling. However, none of the higher order terms coming from
the DBI action will modify the two-point correlators in the planar limit, i.e., in the large
Nc limit, because these interactions all involve higher powers of the field strength. One
must keep in mind though that, as already alluded to in section 2.1.2, the DBI action does
not capture all of the higher dimension stringy interactions. The full low-energy action
includes additional terms involving derivatives of the gauge field strength [95, 96], as well
as higher derivative couplings to the bulk fields, e.g., curvature terms [97, 98]. In principle,
any such interaction, which is quadratic in F , has the potential to make finite λ corrections
to the correlators which we have studied above.

3See e.g. [85], section 7.4 for a suitable discussion of the Einstein relation.

53



In appendix B, we identified a particular higher derivative term which makes a quadratic
correction (B.0.2) to the four-dimensional low energy action. This term makes the leading
correction to the correlators, at least when the internal flux is nonvanishing. Including this
term, the vector equations of motion become

∇µFµν = ξ L2∇µ2Fµν , ∇µF̃µν = 0 with ξ =
ζ(3)

2π
√
λ

f 2√
1 + f 2

. (2.4.99)

We can recognize the higher derivative term as a string correction by recalling that L2/
√
λ =

`2
s . Clearly these equations are no longer invariant under the replacement: Fµν → F̃µν . One

could attempt an α′-corrected electromagnetic duality by defining X̃µν = (1− ξ L22)Fµν .
Formally treating ξ as a small expansion parameter, one can rewrite (2.4.99) as

∇µXµν = −ξ L2∇µ2Xµν , ∇µX̃µν = 0 . (2.4.100)

Hence an exchange Fµν → Xµν does not quite leave the equations of motion invariant either,
i.e., the sign of the ξ term changes between (2.4.99) and (2.4.100). This then confirms the
initial intuition that the α′-corrected low energy theory describing the four-dimensional
dynamics of the vector field is no longer invariant under electromagnetic duality. Hence we
can longer expect (2.4.97) and (2.4.98) to apply when finite λ corrections are taken into
account for the defect CFT.

In the following, we examine in more detail the effect of this leading finite λ correction.
For simplicity,4 we focus on the modifications to the transverse conductivity σ̃yy. Here
we simply present the results of our numerical calculations. The preliminary analysis
determining the analytic form of the transverse correlator is given in appendix B. There
are two distinct contributions to the modification of the correlator. First, since the bulk
action contains an additional term, there are new surface terms (B.0.8) which must be
evaluated in the holographic calculation. Remarkably, as described in the appendix, the
net effect of this contribution is to shift the permittivity

ε0 → ε0

(
1− 1√

λ

f 2 ζ(3)

π(1 + f 2)3/2

)
= ε0

(
1− 2 ξ

1 + f 2

)
. (2.4.101)

The second modification of the correlator arises because the bulk equations of motion
have been corrected, as in (2.4.99). Hence the solutions for the vector are modified and
this change of the solution alone leads to changes in the correlator coming from the leading

4Similar considerations apply to the longitudinal conductivity but the calculations are somewhat more
involved.
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Figure 2.15: The modification of ε0 ≡
σ̃(ω̃ →∞) as a function of f from the 1/

√
λ

corrections.

supergravity expression (2.2.41). Now, we have some ambiguity in how we might define
ε0 in the theory with finite-λ corrections. Recall that this quantity originally appeared in
(2.2.40) but above was simply related to the conductivity (2.4.98) found in the infinite λ
limit. Hence a convenient choice, which we adopt at finite λ, is: ε0 ≡ σ̃(ω̃ → ∞). Then
our numerical results indicate that this second finite-λ correction also shifts ε0 precisely
as in (2.4.101) except for a factor of −3/2. The total shift is shown in figure 2.15 and the
result seems to match precisely −1/2 times the shift given in (2.4.101).

Given that the invariance under electromagnetic duality is lost at finite λ, the frequency
independence of the conductivity σ̃(ω̃) = σ̃yy(ω̃, q̃ = 0) found in (2.4.98) is also lost as
shown in figure 2.16. Note that here we are plotting the change arising from the inclusion
of the finite λ corrections, i.e., δσ̃(ω̃) = σ̃(ω̃)−ε0 where our subtraction includes the finite-

λ correction to ε0, as described above. Note that in the figure, the factor 1/ξ ∝
√

1+f2

f2 is
included to cancel the f dependence coming from the factor in front of the higher order
term in (B.0.4). While the resulting conductivity shows an oscillatory behavior, we note
that the DC conductivity, i.e., at ω̃ = 0, is generally smaller than at high frequencies, i.e.,
for ω̃ →∞. The net difference is plotted in figure 2.16, as a function of f . As shown, the
numerical results are very well fit with a simple analytic form proportional to f 2/(1 + f 2).
Note that the first few points in this plot (including where the difference becomes positive)
are not reliable, because of the high sensitivity to errors in δε0, which was only computed
approximately in a numerical calculation.

One of the interesting features that figure 2.16 seems to exhibit is that the oscillations
of σ̃(ω̃)/(ξε0) for various values of f are all contained within some universal envelope, that
is decaying with ω̃. In fact, this same envelope also applies for the conductivity at finite
values of q̃, as illustrated in figure 2.17. In this figure, we are showing δσ̃yy/(ε0ξ) for f ∈
{1, 4, 9, 16} and q̃ ∈ {0, π/4, π/2, π, 2π}, where δσ̃yy ≡ σ̃yy(ω̃, q̃) − σ̃yy(ω̃ → ∞, q̃). Again,
the factor 1/ξ is included in the figure to cancel the f dependence explicitly appearing in
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Figure 2.16: Left: The finite-λ correction to the conductivity δσ̃(ω̃) for various values of
f . Right: σ̃(ω̃ = 0) − σ̃(ω̃ → ∞), the change in conductivity from ω̃ = 0 to ω̃ → ∞ at
finite λ.

the higher order term in (B.0.4). In particular, we see here that the envelope appears to
be independent of q̃. However, as shown in figure 2.17, for sufficiently small f (f = 1/4
in the figure), there exists a critical value of q̃, above which the conductivity is no longer
bounded by this universal envelope. Note that for the same values of f , the curves below
the critical value of q̃ are still bounded by the envelope. However, note that both ξ, ε0 ∝ f
for large f and so the amplitude of oscillations in σ̃(ω̃) alone is actually growing with f .

At finite q̃, the leading order result (for infinite λ and Nc) for σ̃yy also exhibited similar
damped oscillations which were confined within a certain envelope, as discussed in 2.2.2.2.
Comparing this previous envelope with that for δσ̃yy (for large f & 2), we see that the
previous one does not depend only on ω̃, in contrast to the behavior found above. The
exponential decay of the amplitude at large ω̃ is also slower than here than with the
envelope for the leading infinite-λ result. This would imply that the finite-λ corrections
become more and more significant at large ω̃, while they become less significant with
increasing q̃.

The “frequency” of the oscillations is approximately the same for the leading term and

the finite-λ correction. Figure 2.18 shows this in more detail by plotting
√
λ
ε0
δσ̃yy in terms

of
√
ω̃2 − q̃2 and also for comparison the oscillations of the infinite-λ or “zero’th order”

result.

We find that there is a phase shift of between π/2 and π in the oscillations, implying
that they will shift towards larger ω̃ and decrease in amplitude. We can also see that there
is some tendency for a smaller phase shift (i.e. less/no decrease in amplitude, less shift) as
f and ω̃ increase. In terms of the location of the poles, this implies a shift towards larger
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real and imaginary frequencies and an increased spacing between the quasinormal modes,
again more significant for large f , small q̃ and large ω̃. Another point to view this is that
there is a finite-λ behavior, that becomes important for the higher resonances. In principle
one could quantify this more precisely by doing a perturbative treatment of the methods
used in section 2.3, but we will not discuss this here. The shift ε0 can be absorbed into
the residue. In terms of the potential, this implies that the potential becomes narrower,
especially at small f and small q̃ (or large T ), which simply means that the length scale
that we attributed to the strong coupling decreases and disappears. The ω̃ dependence
also implies that the potential becomes smoother at finite coupling.
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Figure 2.19: Left: log δσ̃yy(ω̃ = 0)/ξ (modulo a constant shift) and q̃
Teff (f)

for q̃ = π/2.

The accuracy of the last two points are very sensitive to possible errors in δε0. Right:
log δσ̃yy(ω̃ = 0) and q̃

Teff (f)
for f = 4. log δσ̃yy(ω̃ = 0)/q̃2 is shown to demonstrate the

slow convergence due to polynomial factors of q̃.

For ω̃ − q̃ < 0, the finite-λ correction becomes quickly negative and exponentially
suppressed with increasing f and q̃, roughly as described by the “effective temperature”,
such that the exponential suppression does not get broken but is possibly modified. We
show the shift δσ̃yy(ω̃=0)

ε0ξ
as a function of f for q̃ = 0 and a function of q̃ for f = 1 in figure

2.19. Recall that figure 2.16 shows the same results for q̃ = 0.

The form of δσ̃yy for f . 2 is more similar to the resonances associated with the infinite-
λ result for σ̃yy, as the amplitude seems to decay exponentially with ν̃ and depends only
polynomially on q̃, as we show in figure 2.17. Just as for the large f , the decay is slower
than the one in the 0th order term. This demonstrates that the effects of finite λ are more
significant for small f , where the length scales are still dominated by the f = 0 length
scale, that we can attribute to the strong coupling. Further it shows that the length scale
due to the “width” of the defect has a tendency to persist.
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2.5 Topological Hall Effect

The conductivity in section 2.2 is diagonal reflecting the parity invariance of the defect
theory. Recently AdS/CFT techniques were applied to study Hall conductivity in the three-
dimensional conformal field theories dual to an AdS4 background [50, 69]. The construction
in [50] involved breaking the parity invariance by introducing a background magnetic field,
and this is along the lines that we will do in chapter 3. However, it turns out that there
is an alternative way a Hall effect may arise – in an entirely “conformal” manner. In [69],
parity invariance is broken by the introduction of an auxiliary gauge field with a nonzero θ-
term. This construction is closely related to the following where we produce an off-diagonal
conductivity by the addition of a topological θ-term to the four-dimensional SYM action
[99]. A related model of the quantum Hall effect based on a probe brane construction
appears in [66].

To introduce an xy component to the conductivity, we begin by considering the Chern-
Simons part of the D5-brane action. In particular, the latter includes the following term:

∆I =
(2π`2

s)
3

3!
Nf T5

∫
C [0] F ∧ F ∧ F (2.5.102)

where C [0] is the RR scalar. Now the background (2.1.2) remains a consistent solution of
the type IIB supergravity equations if we set this scalar to some arbitrary constant, i.e.,
C [0] = a. Of course, this choice corresponds to adding a topological θ-term to the action
of the dual SYM theory [99]. Now if we recall the magnetic flux (2.1.6) on the internal S2,
the above contribution (2.5.102) reduces to the following four-dimensional action

∆I = (2π)4`6
s T5 2π a q

∫
F ∧ F , (2.5.103)

where q is the magnetic flux quantum number (2.1.6), indicating the number of D3-branes
dissolved into the D5-brane. Thus upon integrating out the S2 part of the probe brane
geometry, this term (2.5.102) has become a topological theta-term for the four-dimensional
worldvolume gauge fields. Since it is a topological term, it does not modify the equations
of motion (2.2.44–2.2.47) for the gauge field. However, it does produce an additional
boundary term,

∆I = 2(2π)4`6
s T5 a q

∫
d3σ [Ay (∂tAx − ∂xAt)]u→0+ , (2.5.104)

which will modify the correlators. Note that we have simplified the above expression
by assuming that in the cases of interest (as in previous sections) the gauge fields are
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independent of y. Introducing the Fourier transform (2.2.37), this boundary term becomes

∆I = −i4π`6
s T5 a q

∫
d3k [Ay(−k, u) (ω Ax(k, u) + kxAt(k, u))]u→0+ . (2.5.105)

Now following the same steps as in section 2.2.1, we arrive at the following off-diagonal
contributions to the retarded Green’s function:

Cxy = i8π(2π`2
s)

3T5 a q ω , Cty = −i8π(2π`2
s)

3T5 a q kx . (2.5.106)

Note that in the T = 0 limit, we expect this contribution to the Green’s function can be
assembled in the Lorentz invariant expression:

∆Cµν = i α εµνρ k
ρ , (2.5.107)

where α is the dimensionless constant:

α = 8π(2π`2
s)

3T5 a q =
2 a q

πgs

=
8 a q

g2
YM

. (2.5.108)

The corresponding analysis in the D7 framework gives

α7 = 16π2(2π`2
s)

4T7 a q7 =
2a q7

πgs

=
8 a q7

g2
YM

. (2.5.109)

While in principle, this form (2.5.107) need not be preserved at finite temperature, our
results (2.5.106) calculated at finite T indicates that in fact the form is preserved. Of
course, this independence of the temperature is undoubtedly related to the topological
nature of the θ-term which is responsible for this off-diagonal contribution. It is amusing
to note that since q (and q7) is an integer, (2.5.108) and (2.5.109) take just the form of
the integer quantum Hall effect, i.e., σxy = n e2

2π
with n ∈ Z. By this analogy, we would

associate e2 = 4a/gs.
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Chapter 3

Dressed Defects

3.1 Turning on the Condensed Matter Background

3.1.1 D3 = (N=4 SYM) background

Let us remind ourselves of the super Yang-Mills background outlined in section 2.1. We
start off with the well-known AdS5 × S5 background of Nc D3 branes corresponding to
an N = 4 SYM theory on the boundary [33, 35, 34]. We work in the limit of Nc → ∞,
at Yang-Mills coupling g2

YM = 2πgs → 0 in the field theory, such that we consider the
large t’Hoft coupling limit λ = g2

YMNc → ∞ and we can use the supergravity limit as
L4 = 4πgsNcl

4
s →∞. At finite temperature T = r0

πL2 , the background metric is written as

ds2 =
r2

L2

(
−h(r)dt2 + d~x2

3

)
+
L2

r2

(
dr2

h(r)
+ r2dΩ2

5

)
, C

(4)
0123 = − r

4

L4
, (3.1.1)

which we used in section 2.1 to obtain the brane embedding z(u). Considering only T > 0
allows us to go to dimensionless coordinates u = r0

r
, t̃ = r0t

L2 , ~̃x = ~x r0
L2 :

ds2 =
L2

u2

(
−(1− u4)dt̃2 + d~̃x2

3 +
du2

1− u4
+ u2dΩ2

5

)
. (3.1.2)
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3.1.2 Introducing the defect

In the supergravity limit, the D5 brane action of the U(1) subgroup of the SU(Nf ) is just
the DBI action plus a Chern-Simons term

S = −T5Nf

∫
D5

√
−det(P [G] + 2πl2sF ) + T5Nf

∫
D5

C(4) ∧ 2πl2sF , (3.1.3)

where the factors of Nf arise from taking the trace over the flavor degrees of freedom,
arising from the stack of Nf coincident branes. To simplify things further, we work in the
quenched approximation Nf � Nc, such that we can ignore the backreaction of the probe
branes.

Preserving translational invariance in the flat directions and rotational invariance on
the sphere, together with the choice of the embedding (2.1.1) dictates the induced metric
on the D5 brane to be of the form

ds2 =
L2

u2

(
−(1− u4)dt̃2 + d~̃x2

2 +

(
1 + (1− u4)

(
z′(u)2 + u2 Ψ′(u)2

1−Ψ(u)2

))
du2

1− u4

+u2(1−Ψ(u)2)dΩ2
2

)
. (3.1.4)

In chapter 2, we chose the trivial solution F = 0 for the U(1) background in the flat
directions and for the S2 radius Ψ = 0. Even though Ψ has a tachyonic mode, corresponding
to shrinking to zero size, it’s mass lies above the Breitenlohner-Friedmann bound mΨ =
−2

L2
AdS4

> −9
L2

4AdS4

[76], such that it does not cause an instability. The discussion of the

setup was limited to the case of vanishing “quark” mass for the matter on the defect,
vanishing net density of matter and antimatter on the defect (net baryon number density)
and vanishing external magnetic field applied to the defect, but a flux F = q

Nf
dΩ2 on the

compact sphere was turned on. This corresponds on the gravity side to having an extra
set of q D3 branes pulling on the D5 from one side of the defect and on the field theory
side to having an extra number of colors, δNc = q on that side of the defect. Both from
the embedding geometry z(u), and from the resulting quasiparticle spectrum in the field
theory, it was argued that this flux also introduced a finite width, ∆z, of the defect. The
embedding was found to be

z(u)′ =
−f√

1 + f 2u4
, (3.1.5)

which has in principle some analytical solution. Here, as everywhere in this thesis, we use
the notation (·)′ := ∂u(·).
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3.1.3 AdS/CMT Dictionary (Supersymmetric Case)

Now the situation is slightly more non-trivial, as we wish to introduce finite values for
the mass, baryon density and magnetic field. Using the AdS/CFT dictionary in [34] in
analogy with the 3 + 1 dimensional system, e.g. [67, 110, 50], we find the gravity dual of
the baryon density

ρ0 = −2π2 δS

δFtr
= 2π2(πT )2ε0 lim

u→0
A′(u) =: −2π2(πT )2 lim

u→0
E(u) (3.1.6)

and magnetic field B to be related to a non-trivial U(1) background on the brane:

F |u→0 = −E(u)dt ∧ dr +Bdx ∧ dy =: FE + FB. (3.1.7)

We can also define the (asymmetric) background metric

G = g + F . (3.1.8)

By analogy with the 3 + 1 dimensional D3−D7 system, we can repeat the arguments
in [45, 67, 68, 44], and associate a non-trivial embedding Ψ(u) with a finite quark mass
Mq and dual condensate C. This condensate has on the one hand an interpretation as a
chemical potential for Mq and on the other hand is considered in QCD contexts considered
as the order parameter of chiral symmetry breaking.

We can parametrize the S5 as dΩ2
5 = dψ2 + cos2 ψ dΩ2

2 + sin2 ψ dΩ2
2 and put the D5

on the first S2, such that sinψ =: Ψ gives us a suitable scalar describing the size of the
sphere. In the parametrization (3.1.7) the DBI-CS action becomes then

S = 4πL2T5

∫
dσ4

(√
− detG

√
(1−Ψ2)2 + f 2 + fu4∂uz

)
(3.1.9)

= 4πL2T5

∫
dσ4

(√
− detG

√
1 + F 2

E

√
1 + F 2

B̃

√
(1−Ψ2)2 + f 2 + fu4∂uz

)
,

and one trivially finds the background solution

B = const. (3.1.10)

E(u) =
ρ̃
√

1 + f 2
√

1−Ψ2(u) + u2h(u)Ψ′(u)2√
1−Ψ(u)2

√
1 +

(
f 2 + (ρ̃2 + B̃2)(1 + f 2)

)
u4 + (1 + B̃2u4)Ψ(u)2(Ψ(u)2 − 2)

∂uz =
−f
√

1−Ψ2(u) + u2h(u)Ψ′(u)2√
1−Ψ(u)2

√
1 +

(
f 2 + (ρ̃2 + B̃2)(1 + f 2)

)
u4 + (1 + B̃2u4)Ψ(u)2(Ψ(u)2 − 2)
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for all the physically relevant fields, except for Ψ(u), because that one enters the action
both directly and with one derivative. As a reminder, our notation is h(u) = 1 − u4.
For convenience, we defined the dimensionless parameters ρ̃ := ρ0

2π2(πT )2ε0
and B̃ = B

(πT )2 .

We see that the width of the defect from the brane picture, zmax := limu−>1 z(u), de-
creases as we increase B and ρ0 as they appear only in the denominator. This may appear
somewhat counter-intuitive from a weakly coupled point of view, but it is what we should
expect, as the system is strongly coupled, or the correlation length diverges, and hence the
“contractive force” scales with the total number of particles.

The equation of motion for Ψ(u) becomes

2(1 + B̃2u4)(1−Ψ2)3 + u2(1− u4)
(
1− (f 2 + (ρ̃2 + B̃2)(1 + f 2))u4 + (1 + B̃2u4)Ψ2(Ψ2 − 2)

)
Ψ′2

u4(1−Ψ2)
√

(1−Ψ2)
(
1−Ψ2 + (u2− u6)Ψ′2

)(
1 + (f 2+ (ρ̃2+ B̃2)(1 + f 2))u4 + (1 + B̃2u4)Ψ2(Ψ2− 2)

)
= ∂u

Ψ′
1− u4

u2

√
1 + (f 2 + (ρ̃2 + B̃2)(1 + f 2))u4 + (1 + B̃2u4)Ψ2(Ψ2 − 2)

(1−Ψ2)(1−Ψ2 + (u2 − u6)Ψ′2)

 ,(3.1.11)

which has no analytical solution, except for some limiting cases. For u → 0, it is easy to
see that the solution becomes

Ψ ∼ m̃ u + c̃ u2 , (3.1.12)

where m̃ and c̃ are dimensionless free parameters that are determined by the boundary
conditions. Now, we see that the argument of the T-dual case of the D3-D7 system with
3 + 1 intersecting directions [45, 67, 68, 44] also applies to our case, and the quark mass
Mq and condensate C are given by

Mq =
r0 m̃

23/2πl2s
=
√
λ
T

23/2
m̃ and C =

√
24π2c̃ r2

0Nf l
2
sT5 =

1

4π
c̃T 2NfNc . (3.1.13)

This can be straightforwardly obtained from the results in [45], but also in our case we see
that this relates to the length of a string spanning on the sphere from the D3 branes to
the D5 branes. In appendix E, eq. (E.1.7), we do indeed verify that C is the dual chemical
potential to the mass. In order to find the solution for the full geometry for a given mass
however, we need consider the equation near the horizon, where (3.1.11) reduces to first
order,

Ψ′|u→1 =
1

2

(1 + B̃2)Ψ0(1−Ψ2
0)2

(1−Ψ2
0)2 + f 2 + ρ̃2 + B̃2

(
1 + (1−Ψ2

0)2
) , (3.1.14)

effectively relating m̃ and c̃. The only remaining boundary condition at the horizon is
then Ψu→1 = Ψ0. Because this boundary condition is dictated to us by the equation of
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motion, which becomes first order at this point, and hence is determined by the other
boundary condition Ψ|u=0 = 0, we use m̃ instead as a boundary condition, but we have
to find recursively Ψ0 for a given value of m̃. This is because implicitly, on-shell, c̃ is a
function of m̃ and starting to integrate at u = 0 with some random combination of c̃ and
m̃ means the equations of motion cannot be on-shell as we approach the horizon.

At vanishing density ρ0 and vanishing compact flux f , we find again that the black
hole embedding which gives us free quarks limits Mq < Mcrit. At Mcrit, we have the 2 + 1
analogue of the phase transition that was found for the 3+1 system in [45, 44]. It turns out
that the critical mass decreases as we turn on the magnetic field in the 2 + 1 field theory.
This is discussed in detail in appendix E. This phase transition disappears (at least in our
case where we consider only the U(1) background) as we turn on either a finite baryon
density ρ0, or as we choose the compact magnetic flux f to be non-zero. Essentially, this
happens because the charge can only be supported by the blackhole embedding and the
action becomes singular when Ψ(u) = 0 at finite flux just as in the 3 + 1 dimensional case
in [45].

Some of our studies of the effects of finite masses will have be done at finite ρ0 or f ,
to allow for sufficiently large masses. In the limit of very large masses (i.e. Ψ → 1− near
the horizon), one can see that over u ∈]0, 1], the equation of motion for Ψ is also solved by
Ψ ∼ 1 – to see this in eq. (3.1.11), one needs to take Ψ′ → 0 first. This demonstrates how a
new length scale arises for large masses, m̃� 1 as the profile splits approximately into two
parts - one with u > um ∼ 1

m̃
and Ψ ∼ 1 for some value um and one given approximately by

the asymptotic solution (3.1.12). Around um, Ψ′′ diverges. It would be interesting to see
whether this limit has any relation to the recent discussion of non-relativistic AdS/CFT
[56].

A more thorough discussion of the thermodynamics and the phase structure can be
found in appendix E.

3.1.4 Non-supersymmetric D3−D7 intersection

The non-supersymmetric case is very similar to the D5 case as it differs in the massless
case only by the geometry and field configuration in the S5 factor. Now we parametrize
the S5 in the bulk space as dΩ2

5 = dψ2 + cos2 ψ dΩ2
4, such that we have the induced metric

ds2 =
L2

u2

(
−(1− u4)dt̃2 + d~̃x2

2 +

(
1 + (1− u4)

(
z′(u)2 + u2 Ψ′(u)2

1−Ψ(u)2

))
du2

1− u4

+u2(1−Ψ(u)2)dΩ2
4

)
. (3.1.15)
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and we set up an instanton on the S4 instead of the magnetic charge on the S2. The
coupling to the five-form flux comes now via the Chern-Simons term

(2πl2s)
2

2
T7Nf

∫
D7

C(4) ∧ F ∧ F . (3.1.16)

This CS term however also causes the D7 setup to differ from the D5 setup in the massive
case, as can be seen most easily by integrating this term by parts to give us (modulo a
total derivative)

(2πl2s)
2

2
T7Nf

∫
D7

F (5) ∧ A ∧ F → 8T7Nf
π5l4s
L4

∫ 1

0

du
Ψ′√

1−Ψ2

∫
R(2,1)

A ∧ F . (3.1.17)

The term on the right hand side with the factor Ψ′ arises from the fact that the deformed
embedding of the S4 inside the S5 causes the dual F 5 on the sphere to pull back to the
brane worldvolume. Integrating out the S4 of the worldvolume gives us then the right hand
side, which is just a Chern-Simons term with radius-dependent coupling. This was used
in [69] to obtain a Hall effect. This term will obviously modify the two-point functions,
and will be interesting to consider in further work, but there are some problems with the
massive D7 case that we will outline below, so we will here only consider the massless D7
defect.

The instanton solution was found in [75, 81] and outlined in section 2.1.2 and yields

1

8π2

∮
S4

TrF ∧ F =: q7 ∈ Z (3.1.18)

and the S4 factor ∮
S4

d4Ω =
8π2

3

(
Nf L

4(1−Ψ2) + 6π2`4
s |q7|

)
, (3.1.19)

such that the Ansatz (3.1.7) puts the action into the form

S =
8π2

3
Nf L

4T7

∫
dσ4

(√
detG((1−Ψ2) + |Q|) +Qu4∂uz

)
(3.1.20)

where we remind ourselves of the definition Q = 6π2 `
4
s

L4
q7
Nf

= 6π2

λ
q7
Nf

. In the general case

(Ψ 6= 0), this action gives different solutions than (3.1.10), however in the case Ψ = 0
the solutions are given precisely by (3.1.10), provided we replace the flux parameter with
f7 ≡ Q√

1+2|Q|
.
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In section 2.1.2 it was found that the mass of the tachyonic mode of the S4 radius of the
D7 probe brane satisfies the BF bound only for f 2 > 49/32, and a quick calculation shows
that this also happens to apply in this background – independent of ρ̃ and B̃. This, we will
see, is reflected in the asymptotic behavior of Ψ(u). We will not bother the reader with
the lengthy form of the equations of motion for Ψ, however, we note that the asymptotic
solution takes the form

Ψ(u) ∼ uα± , α± =
3

2
±

√
4Q2 − 7− 12Q

2 + 4Q
(3.1.21)

which implies that above the BF bound, the solution will be a power law, and below the BF
bound it will be oscillatory – indicating the instability. Above the BF bound, we could,
in principle, identify those two modes with a “mass-like” operator (and a “condensate”
operator) of non-integer conformal dimension, motivated by the fact that this is related to
the separation of the D3 and D7 branes in the sphere. Possibly one could interpret this
behavior with a “running” mass. However, there is a very significant problem that may be
more worrying than the instability at vanishing mass: A solution of N7 D7 branes causes
an asymptotic deficit angle of

Nf
12

from backreaction (see e.g. [26]). At the necessary finite
f7, and hence q7 of order λ, we need at stack of D7 branes as determined by the limit
Nf (N2

f−1)

6
≥ q7 for spherically symmetric solution from [81]. In order to still have the same

kind of field theory with the same symmetries, we require Nf � 12, which implies that the
solution cannot connect to an asymptotic space-time. Note that this was exactly the S4

factor which broke supersymmetry, and this factor would be highly modified for solutions
with q7 below this bound. Below the BF bound the oscillatory asymptotic solution is non-
physical in our setup and furthermore the corresponding operator would have complex
conformal dimension. It seems that there are some non-standard ways to interpret the
f7 = 0 case in the context of the quantum Hall effect [66], but we will not pursue the
Ψ 6= 0 case in the rest of this thesis. It is a noteworthy curiosity, that in the absence of the
pullback of the CS term to the flat directions, the resulting spectral functions are identical
to the D5 case under an appropriate identification of the mass-like operators.

3.2 Computing the Conductivity

As in chapter 2, we will compute the conductivity using linear response theory, i.e. applying
the Kubo formula

π−1T σ̃ij = σij =
i

ω
Cij or for convenience σ̃ij := πTσij =

i

ω̃
Cij , (3.2.22)
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that gives the conductivity for currents resulting from small perturbations in terms of the
retarded Green’s function, which is given in terms of the correlator as

Cij(x− y) = −i θ(x0 − y0) 〈 [Ji(x), Jj(y)] 〉 . (3.2.23)

We define for later convenience σ̃ = σ
πT

. Since the baryon number current Ji is dual to the
gauge field of the U(1) subgroup of the U(Nf ), Ai, the correlator is given by the variation
of the on-shell action

Cij =
δ2S

δA?i,0δAj,0
, (3.2.24)

where A0 is the boundary value of the gauge field at the asymptotic boundary u = 0. The
action for the gauge field becomes to second order

S = − 1

4g2
4

∫
d4x

√
(1−Ψ2)2 + f 2√

1 + f 2

√
− det G

(
FαβG

αγFγδG
δα − 1

2
FαβG

αβFγδG
γδ

)
,

(3.2.25)
where G is the asymmetric combined metric (3.1.8), and g2

4 is defined as

1

g2
4

= 4π(2πl2s)
2L2
√

1 + f 2T5 =
√

1 + f 2
2

π

Nc√
2λ

. (3.2.26)

In some sense, there is now a radius dependent coupling

√
(1−Ψ2)2+f2√

1+f2
, that always goes to

unity asymptotically or obviously everywhere in the massless case. Surprisingly, the gauge
field background dies off sufficiently fast asymptotically, such that as u → 0, the action
just becomes the Maxwell action with coupling g4 and in a suitable gauge Au = 0 the
correlator is still given by the asymptotic mode function

Cij =
ε0√

1 + f 2

δ (∂uAj)

δAi

∣∣∣∣
u→0

, (3.2.27)

where ε0 is defined as ε0 = πT
g2
4

.

3.2.1 Electromagnetic duality

In this background, we see that the effective action for the gauge field is not invariant

under electromagnetic duality F → ?F . Hence, the relation Cxx = − ε20ω
2

Cyy
that was found

in [49] does not apply in this case. Since the DBI action at constant coupling, i.e. in
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the massless case, however still obeys this duality, one would expect that it survives in
some form under the exchange of the magnetic and electric charges on the probe brane, i.e.
under the exchange of the density and magnetic field in the field theory side. To quantify
this further, let us look at the transformations under F → ?F of the Fourier-transformed
gauge field in the gauge Au = 0 that led to (3.2.27), obviously at Mq = 0. The relevant
components are at asymptotic infinity:

(?F )tx|u=0 = −
√

1 + f 2Fuy|u=0 and (?F )ty|u=0 =
√

1 + f 2Fux|u=0 , (3.2.28)

such that the variation w.r.t. the gauge field becomes in terms of the transformed gauge
field, denoted in abusive notation as ?A:

∂

∂Ax

∣∣∣∣
u=0

=−
√

1 + f 2

iω̃

(
∂A′y
∂Ax

∂

∂(?A)x
− ∂A′x
∂Ax

∂

∂(?A)y

)
u=0

=
∂

ε0

(
σ̃xy

∂

∂(?A)x
− σ̃xx

1

∂(?A)y

)
u=0

(3.2.29)

∂

∂Ay

∣∣∣∣
u=0

=−
√

1 + f 2

iω̃

(
∂A′y
∂Ay

∂

∂(?A)x
− ∂A′x
∂Ay

∂

∂(?A)y

)
u=0

=
∂

ε0

(
σ̃yy

1

∂(?A)x
+ σ̃xy

∂

∂(?A)y

)
u=0

.(3.2.30)

Rewriting the conductivity obtained from (3.2.24) then in terms of the transformed fields
gives us

σ̃xx =
1

ε2
0

(σ̃xyσ̃xy[?σ̃]xx + σ̃xxσ̃xx[?σ̃]yy) (3.2.31)

σ̃yy =
1

ε2
0

(σ̃yyσ̃yy[?σ̃]xx + σ̃xyσ̃xy[?σ̃]yy) (3.2.32)

σ̃xy =
1

ε2
0

(σ̃xyσ̃yy[?σ̃]xx + σ̃xxσ̃xy[?σ̃]yy + (σ̃xyσ̃xy − σ̃xxσ̃yy)[?σ̃]xy) (3.2.33)

where we used (3.2.27) and S[F ] = S[?F ], and defined [?σ]µν = δ2S[?F ]
δ[?A]i,0δ[?A]j,0

. Since F ↔ ?F

exchanges the electric and magnetic charges on the probe brane defined at infinity – i.e.
exchanges density and magnetic field in the field theory side – ?σ is just the conductivity
and the exchange of ρ̃ and B̃. Finally, we can solve for ?σ and obtain

σ[B̃, ρ̃]ab =
(
?σ[ρ̃, B̃]

)
ab

=
1

ε2
0

((
σ̃[ρ̃, B̃]

)−1
)
cd

εcaε
d
b (3.2.34)

where a, b ∈ {x, y}.

This result is remarkable, since it relates the transport properties under the exchange
of two quantities that are completely distinct in nature from the condensed matter point
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of view. Furthermore, it applies to a whole class of strongly coupled 2 + 1 dimensional
systems, whose gravity dual obeys the electromagnetic duality. Hence, such a relation
is a generic prediction from AdS/CFT for a quantum critical 2-dimensional system. For
theories not obeying (3.2.27), there may be potentially additional terms in (3.2.34). It
seems that this is an implication of the “particle-vortex duality” found in [100, 99].

This duality holds always in the massless case to numeric accuracy. Hence it is not
possible to visually “compare” the result in a plot.

3.2.2 Explicit Computations

To proceed further let us start by writing out the equations of motion explicitly:

Ay : 0 = (
√
−GGyyGuuA′y)

′ +
√
−GGyy(Gxx∂2

x +Gtt∂2
t )Ay

+
(√
−GGtuGxy

)′
(∂xAt − ∂tAx) (3.2.35)

Au : 0 = Gtt∂tA
′
t + Gxx∂xA

′
x (3.2.36)

At : 0 = (
√
−GGttGuuA′t)

′ +
√
−GGttGxx

(
∂2
xAt − ∂t∂xAx

)
−
(√
−GGtuGxy

)′
∂xAy(3.2.37)

Ax : 0 = (
√
−GGxxGuuA′x)

′ +
√
−GGttGxx

(
∂2
tAx − ∂t∂xAt

)
+
(√
−GGtuGxy

)′
∂tAy .(3.2.38)

For convenience of the reader, we stick here to the concise notation in terms of G and
summarize the exact form of the components G in appendix D. Also, in this expression, and
for the rest of this thesis, we absorbed the radius-dependent coupling into the determinant
of the metric, in somewhat abusive notation:√

(1−Ψ2)2 + f 2√
1 + f 2

√
− det G →

√
−G . (3.2.39)

Finally, we also remind ourselves that Gyy = Gxx, so while keeping them distinctively
for didactic reasons in most places, in some places they will be interchanged to simplify
expressions.

As in section 2.2.1.2, it can be easily verified by using the equation for Au, that the
equations for At and Ax are degenerate. Hence, we will again as in 2.2.1.2 eliminate At
from the equation for Ax and produce an equation for A′x, by multiplying (3.2.37) with
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√
−GGyyGuu and differentiating with respect to u. This gives us:

0 =
(√
−GGyyGuuA′y

)′
+
(√
−GGyyGxx∂2

x +
√
−GGyyGtt∂2

t

)
Ay (3.2.40)

+

((√
−GGtuGxy

)′)2

√
−GGttGxx

Ay +

(√
−GGtuGxy

)′
√
−GGttGxx

A′x

0 =
(√
−GGyyGuuA′x

)′
+
(√
−GGyyGxx∂2

x +
√
−GGyyGtt∂2

t

)
Ax (3.2.41)

− (−GGttGuuGxxGyy)
′

√
−GGttGxx

A′x + (−G)GttGuuGxxGyy

((√
−GGtuGxy

)′
√
−GGttGxx

Ay

)′
,

where Ax =
√
−GGuuGxxA′x

iω̃
. These equations separate at vanishing density or vanishing

magnetic field – as they should, because we do not expect a Hall effect in this case.

Using (3.2.38), we can recover Ax|u=0 = −i A′x
ω(1+f2)

, which will allow us to compute the
conductivity tensor. Near the horizon, the solutions become approximately

Ay = (1−u)iω/4
(
A(0)
y + A(1)

y (1− u)
)
, Ax = (1−u)iω/4

(
A(0)
x +A(1)

x (1− u)
)
, (3.2.42)

where A
(0)
y and A

(0)
x are arbitrary constants and A

(1)
y and A

(1)
x are determined straightfor-

wardly in terms of ρ0, B, Ψ0, A
(0)
y and A(0)

x , but somewhat lengthy and without physical
insight and hence omitted here. To compute the conductivity, we could then fix the bound-
ary conditions for Ay ∈ {1, 0} and Ax ∈ {1, 0} at u→ 0 and enforce the leading behavior
of (3.2.42) as a boundary condition at u→ 1 as done in section 2.2.1.1. This is however a
numerically non-trivial boundary value problem. Hence, it is more reliable and less time-
intensive to simply enforce (3.2.42) for two independent choices of {A(0)

y , A
(0)
x }, labeled a

and b, to obtain {Ay(a), A′y(a),Ax(a),A′x(a)} and {Ay(b), A′y(b),Ax(b),A′x(b)} at u → 1
and then use the linearity of the problem to compute the variation in (3.2.27) exactly. Fur-
thermore, this strategy is very suitable from a computational point of view, as it allows us
to naturally the parallelize solving the equations of motion, i.e. the most time consuming
step, on a dual-core processor.

Putting everything together, we finally obtain:

σ̃ = ε0

 −i√1 + f 2ω̃ Ax(a)Ay(b)−Ax(b)Ay(a)

Ax′(a)Ay(b)−Ax′(b)Ay(a)
− 1√

1+f2

Ax(b)Ax′(a)−Ax(a)Ax′(b)
Ax′(a)Ay(b)−Ax′(b)Ay(a)

−
√

1 + f 2 Ay(b)Ay′(a)−Ay(a)Ay′(b)

Ax′(a)Ay(b)−Ax′(b)Ay(a)
i√

1+f2ω̃

Ax′(a)Ay′(b)−Ax′(b)Ay′(a)

Ax′(a)Ay(b)−Ax′(b)Ay(a)


u→0

.

Formally, this is asymmetric, such that the (anti)symmetry of the numerical result is a
check for the consistency and the accuracy of the numerical solutions for Ax and Ay. We
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also note that in the limit of {ρ0, B,Ψ} = 0, we just recover the equations that were found
in section 2.2.1. In principle, the duality from 3.2.1 suggests that there may exist a field
redefinition for Ay and Ax, such that the asymptotic solutions for the resulting fields are
exchanged under ρ̃ ↔ B̃. However, there is no guarantee that this redefinition can be
written analytically.

3.3 Weak-Coupling Condensed Matter Physics

Even though we are interested in the strong coupling regime which one expects to be
quite different from the free electron gas picture, some intuition and generic properties
can be learned from this very straightforward limit and it can serve as a phenomenological
description. Hence, we remind the reader of the very basic model, which can be found in
standard textbooks [87].

3.3.1 Metals

In the Drude model, we assume a gas of non-interacting charge carriers with finite (effec-
tive) mass meff and charge e, which we will write out explicitly. Eventually, it will turn
out, however, that using the coefficients that do not involve meff is a suitable parametriza-
tion also in the relativistic case. To obtain the conductivity, one then considers a small
electromagnetic background field, to which the charge carriers are coupled classically via
the Lorentz force meff (∂t~p − τ−1~p) = e ~E + e~v × ~B. As the charge carriers are massive,
they have a finite net velocity ~v, which is assumed to be neutralized on the time scale of
a relaxation time τ . Classically, one has then a mean velocity ~v = e τ

meff
~E =: µ~E, where

we defined the charge carrier mobility µ. The charge carrier mobility is related to the
Diffusion constant by the Einstein relation

D =
µT

e
. (3.3.43)

Further, for our massive case, the magnetic field can be rewritten in terms of the cyclotron
frequency as ωc = B e

meff
= µB/τ . Now, let us consider two species of charge carriers with

equal mass and relaxation time, but opposite charge ±e, such that we have a total density
of charge carriers n = n+ + n− and a net charge density ∆n = n+− n−. This is relevant in
our case, since even at vanishing net baryon number density, ρ0 = 0, at finite temperature
T & Mq we will always have a finite total baryon density.
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To obtain the conductivity, one then assumes an oscillatory electric field ~E = ~E0e
−iωt

and current ~j = ~j0e
−iωt, but constant magnetic field ~B and obtains the diagonal conduc-

tivity

σ‖ =
enµ(1− iωτ)

(1− iωτ)2 + ω2
cτ

2
=

enµ

1 + ω2
cτ

2

(
1 + iωτ

1− ω2
cτ

2

1 + ω2
cτ

2
− ω2τ 2 1− 3ω2

cτ
2

(1 + ω2
cτ

2)2

)
+O(ωτ)3 .

(3.3.44)
Taking into account the positive and negative charges, the Hall conductivity becomes

σ⊥ =
e∆nµωcτ

(1− iωτ)2 + ω2
cτ

2
=

e∆nµωcτ

1 + ω2
cτ

2

(
1 +

2iωτ

1 + ω2
cτ

2
− ω2τ 2 3− ω2

cτ
2

(1 + ω2
cτ

2)2

)
+O(ωτ)3 .

(3.3.45)
The dissipative part of the conductivity is then

Re σ‖ = enµ
1 + ω2τ 2 + ω2

cτ
2

(1 + ω2
cτ

2 − ω2τ 2)2 + 4ω2
cτ

2
and (3.3.46)

Re σ⊥ = e∆nµωcτ
1− ω2τ 2 + ω2

cτ
2

(1 + ω2
cτ

2 − ω2τ 2)2 + 4ω2
cτ

2
. (3.3.47)

The DC conductivity at B = 0 is commonly referred to as the Drude conductivity, and
at small frequencies it is also called the Drude peak, due to the small value of τ in metals
at room temperature. Similarly, the fact that the DC conductivity is suppressed at finite
magnetic fields is referred to as the magnetoresistance effect.

It is also interesting to notice that at the magnetic resonance around ωc, the Hall
conductivity changes sign, and this turns into a pole at large τ , i.e. in practice at very
small temperatures or in very “clean” semiconductors.

We can also observe a few generic properties of the frequency dependence. For example,

at B = 0, ∂2
ωσ
‖

σ‖
= 2

τ2 and, provided the relaxation time is independent of the magnetic

field, the behavior at large frequencies is ∂2
ωσ
‖

σ‖
= − 6

ω2
cτ

4 . An interesting relation is also
∂2
ωσ
‖ σ⊥

σ‖ ∂2
ωσ
⊥ = 1

3
at vanishing magnetic field and 3 at large magnetic fields. Also, the magnetic

field at which ∂2
ωσ
σ

changes sign is τ 2ω2
c = 1

3
for σ‖ and 3 for σ⊥. The fact that the quadratic

term changes sign implies that the Drude peak moves away from the real axis and becomes
a magnetic resonance.

We already see a limitation of the free electron gas picture, because – as we will see in
section 3.3.3 – the quantum mechanical treatment implies that the first magnetic resonance
is at 1

2
ωc and taking into account a finite coupling implies that there will be plasma density

resonances.
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3.3.2 Semiconductors

Semiconductors are somewhat less generic than the Drude model of conductivity, i.e. we
must assume that we are dealing with fermions, but the discussion obviously carries over to
any system of charge carriers with an excitation gap. In a semiconductor, we assume that
the valence and conduction bands are separated, Ev < Ec, where the valence band is, as
the name says, filled such that the chemical potential lies between the bands Ev < µ < Ec.

At small temperatures, the dissipative conductivity will be dominated by n, such that
we are most interested in obtaining the density of conduction “electrons” nc and valence
“holes” nv assuming some density of states gc and gv:

nc =

∫ ∞
Ec

dE gc(E)
1

e(E−µ)/T + 1
(3.3.48)

and

nv =

∫ Ev

−∞
dE gv(E)

(
1− 1

e(E−µ)/T + 1

)
=

∫ Ev

−∞
dE gv(E)

1

e(µ−E)/T + 1
. (3.3.49)

Assuming that we are dealing with low temperatures Ec − µ � T and µ − Ev � T , we
can re-write this as

nc(T ) = Nc(T )e−(Ec−µ)/T , nv(T ) = Nv(T )e−(µ−Ev)/T (3.3.50)

where we defined the edge densities of states as

Nc(T ) :=

∫ ∞
Ec

dE gc(E)e−(E−Ec)/T , Nv(T ) :=

∫ Ev

∞
dE gv(E)e−(Ev−E)/T . (3.3.51)

Using those definitions, we can combine the equations (3.3.50) to write down the “law
of mass action”

ncnv = NcNve
−(Ec−Ev)/T = ni(T )2 (3.3.52)

which determines the charge carrier density of an intrinsic (undoped) semiconductor, ni =
nv = nc. This small charge carrier density implies (together with the purity of the crystal)
that τ may diverge at small temperatures, as it is usually (in a metal or metallic phase with
high charge carrier density) dominated by the charge carriers and their thermal motion
(independent of the purity). Hence semiconductors may show, for example, a finite Hall
conductivity even if the material is effectively an insulator.
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The chemical potential can then be obtained from the edge densities of state

µ =
Ev + Ec

2
+

1

2
T ln

Nv

Nc

. (3.3.53)

One can see that in practice in an intrinsic semiconductor at Ec − Ev � T , the edge
density of states has only a very small influence on the chemical potential, and hence on
the conduction threshold and the suppression of the conductivity.

3.3.3 Resonances

In the “optical” regime at larger frequencies, we are interested in quasiparticle resonances,
in particular in Landau levels and plasmons. In the case of massive charged particles,
the derivation of Landau levels is straightforward. Assuming coordinates {t, x, y, z} with
the magnetic field in the z direction, the gauge potential can be written as A = B xdy.
Substituting this into the Schrödinger equation gives rise to a quantum harmonic oscillator
with a frequency ωc = eB

m
, with the solution

En = E
(z)
kin. + ωc(n−

1

2
) , n ∈ Z+ . (3.3.54)

Obviously, our charge carries are constrained to the z = 0 plane, so E
(z)
kin. = 0. Using the

same naive strategy for a scalar in the Klein-Gordon equation, we find that

E2
n = p2

z + m2 + ω2
M(2n− 1) , ω2

M = eB , (3.3.55)

putting the Landau levels in the massless case at En = ±ωM
√

2n− 1. In either case, one
can apply a simple argument by assuming a finite sample size to derive the density of states
(per unit area) of

NLan.

A
= eB . (3.3.56)

In a similar fashion, Landau levels can also be obtained from the Dirac equation (see [89]
and references therein): For massless chiral fermions e.g in graphene, the result is [89]

En = ±ωM |vF |
√
|n| , n ∈ Z (3.3.57)

where vF is the Fermi speed (vf = 1 for a “real” relativistic system) and for a system of
chiral fermions with finite effective mass, as in multi-layered graphene, [89]

En = ±ωc
√
|n|(|n|+ 1) , n ∈ Z . (3.3.58)
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The zero-energy, field-independent Landau level is unique to chiral fermions, which makes
them very easy to identify [89].

The other quasi-particles that we are interested in are plasmons. These are collective
excitations resulting from density perturbations of the (electron) gas. They can be derived
in several ways. Classically it can be derived simply from the continuity equation∇·~j = ∂tρ
and from Gauss’ law ∇ · ~E = 4πρ. Using σ‖ ~E = ~j, we can arrive with an equation for ω,
4πnµτ−1 = ω(ω+ iτ−1). Another classical derivation is to assume a neutral gas of positive
and negative charges in which the charges are displaced in, say the x direction, leaving
two strips of density ±∆n with a width d that obeys the classical equation of motion

∂2
t d = −4πe2|∆n|

m
. Finally, a proper derivation is based on computing the Green’s function

in a gas of weakly interacting fermions (of equal charge in magnitude and sign) with the
Coulomb potential. A very instructive derivation can be found in [88] and yields

ωp =
8π

3

k3
F

m
=

4πe2n

m
. (3.3.59)

where kF is the momentum corresponding to the Fermi energy. The Green’s function is at
small momenta |q| � |ω|

D =
4π

q2

1

1− ω2
p

(ω+iτ−1)2

. (3.3.60)

The derivation follows with only small changes also in the massless case, where we find ωp =
k2
F 8π/3 . Plasmons are usually (i.e. in weakly coupled systems) observed through optical

scattering, where one can observe spectra from multiple plasmon excitations. Studying
plasmons and surface plasmons in various materials an using them for photonic devices
seems to be a very active field of research.

3.4 Analytic results

3.4.1 Isotropic perturbations with small frequencies

3.4.1.1 DC Limit

One limit of obvious interest is the isotropic DC limit (i.e. ω̃, q̃ � {1, f−1, b−1, ρ̃−1}). To

analyze this case, we define a new radial coordinate s, ∂s
∂u

=
(√
−GGyyGuu

)−1
and study
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the original equations of motion. Now, they just read

Ay : 0 = ∂2
sAy +

√
−GGyyGuu(

√
−GGyyGxx∂2

x +
√
−GGyyGtt∂2

t )Ay

+
√
−GGyyGuu

(√
−GGtuGxy

)′
(∂xAt − ∂tAx) (3.4.61)

Au : 0 = Gtt∂t∂sAt + Gx∂x∂sAx (3.4.62)

At : 0 =
Gtt

Gyy
∂2
sAt +

√
−GGyyGuu

(
Gtt

Gyy

)′
∂sAt + (−G)GyyGuuGttGxx

(
∂2
xAt − ∂t∂xAx

)
−
√
−GGyyGuu

(√
−GGtuGxy

)′
∂xAy (3.4.63)

Ax : 0 = ∂2
sAx + (−G)GyyGuuGttGxx

(
∂2
tAx − ∂t∂xAt

)
+
√
−GGyyGuu

(√
−GGtuGxy

)′
∂tAy . (3.4.64)

First, we consider the equations in the limit u → 1. In this limit, we have ∂s
∂u

=
1+B̃2+F 2q

(1+f2)B̃2(f2+(1−Ψ2
0)2)+(1+f2)2(f2+ρ̃2+(1−Ψ2

0)2)
1

(1−u4)
+ O(1) =: 4cs

(1−u4)
+ O(1), such that s ∼

−cs ln(1 − u4) or (1 − u4) ∼ e−
s
cs . Note that in this coordinate, the horizon is located at

s→∞ and asymptotic infinity is at s = 0. Now, the equations of motions reduce to

0 = ∂2
sAy,x + (1 + f 2)

B̃2 (f 2 + (1−Ψ2
0)2) + (1 + f 2)(ρ̃2 + f 2 + (1−Ψ2

0)2)

(1 + B̃2 + f 2)2
∂2
tAy,x(3.4.65)

0 = ∂sAt , 0 = ∂2
sAt , (3.4.66)

up to order e−
s
cs . This has the solution

At = A0
t , Ax,y = A0

x,ye
iνs ; (3.4.67)

ν = ω̃
√

1 + f 2

√
B̃2 (f 2 + (1−Ψ2

0)2) + (1 + f 2)(ρ̃2 + f 2 + (1−Ψ2
0)2)

1 + B̃2 + f 2
.

Then, we consider the region of s ∈ [0,O(1) × cs]. To obtain the diagonal and Hall
conductivities, we set e.g. Ax = 0 and At = 0 at s = 0, and study the linear dependence
of ∂sAy and ∂sAx on Ay. Combining the equations (3.4.61) to (3.4.64), we find that

∂2
sAy . O

(
(ω̃2 + q̃2)(1 + f 2 + B̃2 + ρ̃2)

)
Ay, such that the change in ∂sAy over this region

is δ(∂sAy) . O
(

(ω̃2 + q̃2)cs(1 + f 2 + B̃2 + ρ̃2)
)
Ay. Hence, we have to leading order

∂sAy = iνAy , (3.4.68)
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which gives us the isotropic DC diagonal conductivity and also allows us to obtain the Hall
conductivity.

Looking at Ax, we find that to leading order in ω̃, q̃, we have

0 = ∂u∂sAx + iω̃Ay∂u

(√
−GGtuGxy

)
or (3.4.69)

0 = ∂2
sAx + iω̃Ay

√
−GGuuGyy∂u

(√
−GGtuGxy

)
,

and hence A0
x is a consistent solution near the horizon at large s. In the asymptotic region

at small s and in the limit of ω̃ � 1 the first integral of u can be done analytically, such
that we obtain

∂sAx = −iω̃A0
y

[√
−GGtuGxy

]u=u

u=1
(3.4.70)

since we should have by consistency ∂sAx → 0 as s → 0. Hence Ax|u=0 ∼ Ay × O(ω̃) �
Ay|u=0

Finally, we note that ∂s
∂u

= 1 as u→ 0, such that we can write down the DC conductivity
tensor

σ̃DC = ε0


q
B̃2(f2+(1−Ψ2

0)2)+(1+f2)(ρ̃2+f2+(1−Ψ2
0)2)

1+B̃2+f2

B̃ρ̃

1+B̃2+f2

− B̃ρ̃

1+B̃2+f2

q
B̃2(f2+(1−Ψ2

0)2)+(1+f2)(ρ̃2+f2+(1−Ψ2
0)2)

1+B̃2+f2

 .

It is straightforward to verify that at Ψ0 = 0, i.e. Mq = 0, this expression obeys the duality
under exchange of σ̃ ↔ 1

ε0
σ̃−1, x ↔ y, ρ̃ ↔ B̃. Obviously, to obtain the full dependence

at finite mass, we have to invert Mq(f, ρ̃, B̃,Ψ0), in order to obtain Ψ0 as a function of
{Mq, f, ρ̃, B̃} – but this is not possible in closed-form. At small masses m̃ � 1 and small
f , ρ̃ and B̃, however, one can use m̃ ∼ Ψ0, and at large quark mass m̃� 1 at finite ρ̃ and
f , we have Ψ0 ∼ 1 and the result becomes independent of the quark mass.

If we compare this result with the Drude conductivity (3.3.44), we find that this is

qualitatively what one would expect. We can identify B̃√
1+f2

= ωcτ , µ∆n = ε0
πT
ρ̃ and µn =

ε0
πT

q
B̃2(f2+(1−Ψ2

0)2)+(1+f2)(ρ̃2+f2+(1−Ψ2
0)2)

1+f2 . The fact that the expression for µn is somewhat
complicated is not surprising, since it results from the density of quark-antiquark pairs in
thermal equilibrium. What is somewhat surprising is the fact that at finite f , there is only
very limited dependence on the quark mass Mq – because one might have thought that (at
vanishing ρ0) n is strongly suppressed at large Mq – but one should not interpret too much
into this result. What comes as expected though is the fact that µn ∝ ρ̃ at large ρ̃.
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3.4.1.2 Small frequencies

Next, let us try to extract the subleading terms in the conductivity at small frequencies.
To do so, we perturb the equations of motion for Ay and Ax (3.4.61),(3.4.64) around the

DC solution by taking Ax,y → A0
x,ye

iνs + A
(1)
x,y. The equations of motion for A

(1)
x,y becomes

then at q̃ = 0

∂2
sA

(1)
x = δ

(
GtuGuy

)
ω̃2A(0)

x eiνs + iω̃Guy
(
G⊥
)′
Aye

iνs , (3.4.71)

∂2
sA

(1)
y = δ

(
GtuGuy

)
ω̃2A(0)

y eiνs − iω̃Guy
(
G⊥
)′
Axe

iνs , (3.4.72)

Guy :=
√
−GGyyGuu , Gty :=

√
−GGyyGtt , G⊥ :=

√
−GGxyGtu ,

δ(·) := (·)− (·)u→1 .

We also write out the symbols G in appendix D. For simplicity, we choose as above s|u=0 =
0, and we use u as a variable to work with. Before proceeding, we look at the correction
to the conductivity:

σ̃yy = −ε0
i

ω

δA′y
δAy

∣∣∣∣
u→0

∼ σ̃DCyy

(
1 +

1

iν

∂sA
(1)
y

A
(0)
y

− A
(1)
y

A
(0)
y

)
u→0, A

(0)
x =0

.

Primarily, we are interested in the O(ω2) corrections to the real part of the conductivity,
so we need to keep track of A(1) up to O(ω2) and ∂uA

(1) up to O(ω3), which coincides with
the accuracy of the first perturbation, as the natural expansion parameter is ω2. In the
case of ρ0B = 0, only the diagonal term in the equations of motion contributes, so we find
to the relevant order

∂sA
(1)
y = −ω̃2A(0)

y

∫ 1

u

dũ(1 + iνs(ũ))
δ (GtuGuy)
Guy

(3.4.73)

A(1)
y = ω̃2A(0)

y

∫ 1

u

dû
1

Guy

∫ 1

û

dũ
δ (GtuGuy)
Guy

. (3.4.74)

We remind ourselves that s(u) =
∫ u

0
1
Guy , such that s(u) and the first integral of

δ(GtuGuy)
Guy

can be easily computed analytically at Mq = 0 and expressed in terms of hypergeometric
functions. The second integrals however have to be computed numerically even in the
massless case. To demonstrate convergence, we note that any combination of the form√
−GGµνGαβ is finite at u→ 0 and at u→ 1 we have s ∝ − ln(1− u4), Guy ∝ (1− u4) ∝

δ (GtuGuy). The convergence of
∫
du ln(1− u4) is also the reason why we could expand the

exponential at sufficiently small ω.
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Including the case of B × ρ0 6= 0 is slightly more tedious. First, we compute Ax up to
O(ω2) under the condition that Ax|u=0 = 0. To do so, we first need to integrate ∂u(∂sAx)

in (3.4.64). The condition Ax|u=0 = 0 implies then that ∂sAx|u=1 ∼ iν
∫ u=1

u=0
∂sAx, such

that we can, in the limit of small ω̃, use ∂sAx|u=1 = 0. Hence, we get:

Ax = iω̃A(0)
y

∫ u

0

dũ
δ
(
G⊥
)

Guy
− ω̃νA(0)

y

∫ u

0

dû

(
s(û)

δ
(
G⊥
)

Guy
− 1

Guy

∫ û

0

dũ
δ
(
G⊥
)

Guy

)

− νω̃A(0)
y

∫ 1

0

du
δ
(
G⊥
)

Guy
. (3.4.75)

Here, as in the rest of this section, we performed the integration by parts in order to limit
the number of consecutive integrals to two integrals. Now, we can compute the additional
contribution to A

(1)
y , which can still be written in terms of double integrals, with the first

one computable analytically at Mq = 0:

δ∂sA
(1)
y = ω̃2A(0)

y

[G⊥ ∫ û

0

dũ
δ
(
G⊥
)

Guy

]1

û=u

−
∫ 1

u

dũ
G⊥δ

(
G⊥
)

Guy

 (3.4.76)

− iω̃2νA(0)
y

[G⊥ ∫ ū

0

dû

(
s(û)

(
δ
(
G⊥
)

Guy
+

∫ 1

0

du
δ
(
G⊥
)

Guy

)
− 1

Guy

∫ û

0

dũ
δ
(
G⊥
)

Guy

)]1

ū=u

−
∫ 1

u

dûG⊥
(
s(û)

(
δ
(
G⊥
)

Guy
+

∫ 1

0

du
δ
(
G⊥
)

Guy

)
− 1

Guy

∫ û

0

dũ
δ
(
G⊥
)

Guy

))

δA(1)
y = ω̃2A(0)

y

∫ 1

u

dū
1

Guy

[G⊥ ∫ û

0

dũ
δ
(
G⊥
)

Guy

]1

û=ū

−
∫ 1

ū

dũ
G⊥δ

(
G⊥
)

Guy

 . (3.4.77)

The integral for δA
(1)
y might seem divergent to the reader, but by close inspection it is

apparent that the integrand is finite as u → 1. Finally, we can write the correction to
the diagonal conductivity which simplifies significantly after some simple algebra: After
setting u = 0, we can eliminate the first term in the first line and all of the second line in
(3.4.76) and then it turns out that most of the terms in A

(1)
y and ∂sA

(1)
y are pairwise equal,
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such that we obtain

σ̃yy = σ̃DCyy

(
1− ω̃2

(
2

∫ 1

0

d u s(u)
δ (GtyGuy)
Guy

− 2

∫ 1

0

du s(u)
δ(G⊥)2

Guy

− 2

∫ 1

0

du
δ(G⊥)

Guy

∫ u

0

dũ
δ
(
G⊥
)

Guy
−
∫ 1

u

duG⊥ s(u)

∫ 1

0

du
δ
(
G⊥
)

Guy

))

+ iε0ω̃

(∫ 1

0

d u
δ (GtyGuy)
Guy

+

∫ 1

0

dũ
δ(G⊥)2

Guy

)
. (3.4.78)

For completeness, we can also compute the contribution to the Hall conductivity. To
do so, we again consider a pertubation that keeps Ax|u=0 = 0. The Hall conductivity will
then be to order ω2

σ̃xy = σ̃DCxy

(
1− A

(1)
y

A
(0)
y

∣∣∣∣∣
u→0

+
∂sA

(1)
x

∂sA
(0)
x

∣∣∣∣∣
u→0

)
. (3.4.79)

We already know
A

(1)
y

A
(0)
y

, so we only need to compute ∂sA
(0)
x . There will be two contributions,

from the diagonal and off-diagonal terms in the equation of motion for Ax. Using as zeroth
order the first term

A(0)
x = iω̃A(0)

y

∫ 1

0

dũ
δ
(
G⊥
)

Guy
(3.4.80)

from (3.4.75), we find that the contributions from the diagonal term in (3.4.71) is

∂sA
(1)
x = iω̃3A(0)

y

∫ 1

u

dū
δ (GtyGuy)
Guy

∫ ū

0

dũ
δ
(
G⊥
)

Guy
− ω̃νA(0)

y

∫ 1

0

dũ
δ
(
G⊥
)

Guy
, (3.4.81)

where the second term comes from the oscillatory behavior towards the horizon at large s.

In the off-diagonal term, let us first write the O(ω2) term

δ∂sA
(1)
x = ω̃νA(0)

y

(
G⊥s(u)−

∫ 1

u

dũ
G⊥

Guy

)
(3.4.82)

δA(1)
x = ω̃νA(0)

y

∫ u

0

dũ

Guy

(
G⊥s(ũ)−

∫ 1

dũ

dū
G⊥

Guy

)
, (3.4.83)

giving rise to an O(ω3) term

δ1∂sA
(1)
x = 2iω̃ν2A(0)

y

∫ 1

0

du
G⊥s(ũ)

Guy
. (3.4.84)
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Using the fact that G⊥|u=0 = 0, the direct O(ω3) contributions from the cross-term are
read off from (3.4.73) and (3.4.77):

δ2∂sA
(1)
x = iω̃ν2A(0)

y G⊥s(u)2 + 2

∫ 1

u

dũ
G⊥

s
(ũ)Guy

− iω̃3A(0)
y

(
G⊥
∫ 1

u

dũ
1

Guy

∫ 1

ũ

dū
δ(GtxGuy)
Guy

+

∫ 1

u

dũ
G⊥

Guy

∫ 1

ũ

dū
δ(GtxGuy)
Guy

− G⊥
∫ 1

u

dũ

Guy

(
δ(G⊥)

∫ ũ

0

dū
δ(G⊥)

Guy
−
∫ ũ

0

dū

(
δ(G⊥)

)2

Guy

)

+

∫ 1

u

dũ
G⊥

Guy

(
δ(G⊥)

∫ ũ

0

dū
δ(G⊥)

Guy
−
∫ ũ

0

dū

(
δ(G⊥)

)2

Guy

))
(3.4.85)

We can note that the first term in each line vanishes if we take u → 0. In this case, also
the contribution from (3.4.77) and the last two “sub-terms” all combine into one term,
the contributions from (3.4.84) and the first line are equal, as are the second line and the
contribution from (3.4.81). Hence, we see that the result can be written as :

σ̃xy = ε0
ρ̃B̃

1 + f 2 + B̃2
+ 2iνε0

∫ 1

0

dũ
δ
(
G⊥
)

Guy
(3.4.86)

+ ω̃2ε0

∫ 1

0

du
δ(GtuGxy)− δ(G⊥)

Guy

∫ u

0

dũ
δ(G⊥)

Guy
− ν2ε0

∫ 1

0

du s(u)
δ(G⊥)

Guy

∫ u

0

dũ
δ(G⊥)

Guy
.

Let us now look at the fruits of this algebra.

In figure 3.1, we show the behavior of quadratic term in relation to the magnetic field.
We see that it behaves approximately as in the simple Drude conductivity picture outlined
in section 3.3.1, with a few differences in the details. Essentially the second order terms
for the diagonal and Hall conductivities start off at B → 0 (In practice B̃ = 10−5) at
some negative value that is approximately proportional to the density and represents the
relaxation time τ−2 – where we notice the diverging relaxation time at ρ0 = 0 = B that
gave rise to the constant DC conductivity of (2.4.98). At larger magnetic fields, it rises
∝ B2 and becomes positive and then tails off after some maximum. The coefficient for the
diagonal conductivity approaches a constant at large magnetic fields and the one of the
Hall conductivity tails off approximately ∝ B−1 whilst the expectation from the Drude
picture at constant τ would have been ∝ B−2 – indicating at least a B-dependence of
relaxation time. The most striking feature is the “node” at which the correction term
becomes independent of the density. In the Drude model, this would be the value of ωcτ at
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Figure 3.1: The quadratic factor in the small-frequency expansion of the conductivity
∂2
ω̃σ

2σ

as a function of the magnetic field for various values of the density. Left: f = 0. Right:
f = 2.
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Figure 3.2: The quadratic factor in the small-frequency expansion of the conductivity
∂2
ω̃σ

2σ

as a function of the magnetic field for various values of f . Left: ρ̃ = 0. Right: ρ̃ = 2.
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which the quadratic term vanishes. Looking in fig. 3.2 at how f shifts those curves, we find
that at small B̃, in the negative region in the case of finite ρ̃, that they are shifted towards
0 for increasing f , implying that the relaxation time increases, whereas for large values of
B̃, they are shifted to larger values – which is simply an implication of the observation
that ωcτ ∼ B̃√

1+f2
.

Going a step further, we can check the generic predictions from section 3.3.1. In fig.

3.4, we see that the ratio ∂2
ωσ
‖ σ⊥

σ‖ ∂2
ωσ
⊥ at B̃ → 0 approaches precisely the prediction value 1

3

at large densities with a convergence rate that decreases with increasing f – even though
we are in a completely different, i.e. strong coupling, regime. This also indicates that
at large net densities and small f , we approach the classical Drude behavior, whereas for
small densities or large f , we are in a completely different “phase”. At large magnetic
fields, however, this ratio does not become constant and depends significantly on f , but

at least it seems that always ∂2
ωσ
‖

σ‖
> ∂2

ωσ
⊥

σ⊥
. Furthermore, we can look at the location of

the node, B̃crit, which indicates the B̃ value where ∂2
ωσ
2σ

= 0, i.e. where the peak turns

into a minimum. For the diagonal conductivity, we find that
B̃2
crit

1+f2 ≈ 0.342 at f = 0 which

converges to
B̃2
crit

1+f2 ≈ 0.397 at large f. For the Hall conductivity, the value starts at 3.15, has
a maximum of 3.90 around f ∼ 80 and then converges to 3.88. The variation in the ratio
of those critical B̃2 values is even smaller - between 9.18 and 9.84. If we were to associate
τωc = B̃√

1+f2
as suggested from the DC conductivity in section 3.4.1.1, this is reasonably

close to the values from the Drude model of 1
3
(ωcτ)2 and 3(ωcτ)2.

Looking in figure 3.3 at the quadratic term of σxx at B̃ = 0, where
∂2
ω̃σ

2σ
becomes

∂2
ω̃σ

2σ
= −τ−2, we find in fig. 3.3, that τ−2 is approximately proportional to the density,

with a coefficient of τ−2 ≈ 2.6ρ̃. From another perspective, this means that the relaxation
time is approximately proportional to the mean distance between “quarks”, τ ∝ ρ

−1/2
0 ,

but not the naive geometric mean free path in a system of weakly coupled particles. The

proportionality coefficient is approximately τ ∼ 2.6π
√

2ε0
ρ0

. The f -dependence is not sur-

prising, as increasing f appears to increase the relaxation time, which is consistent with
a decreasing effective temperature that was a recurring theme throughout chapter 2. It is
interesting though that at large densities, the effect of f is only to shift the curves in fig.
3.3 and leaves the proportionality factor constant.

Looking at the coefficients as a function of f in fig. 3.5 shows our observations from a
different perspective. Essentially, the effect of f is to increase the relaxation time, and to
decrease ωcτ at fixed B̃. The most striking feature is the observation that we had above,
that the coefficient in the Hall conductivity is proportional to f in regimes where it is
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Figure 3.3: The ratio of the quadratic factors in the small-frequency expansion of the

diagonal and Hall conductivities. Left: ∂2
ωσ
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σ‖ ∂2
ωσ
⊥ at B̃ = 10−5 as a function of ρ̃ for various

values of f . Right: ∂2
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⊥ σ‖
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‖ at large magnetic fields as a function of B̃ for ρ̃ = 10 and

various values of f . The density ρ̃ changes only the behavior at small magnetic fields and
leaves the large-B̃ tail unchanged.
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Figure 3.5: The quadratic factor in the small-frequency expansion of the conductivity
∂2
ω̃σ

2σ

as a function of f . Top left: The coefficient of the diagonal conductivity for various values
of the density and the magnetic field, right: For various values of the magnetic field at
ρ̃ = 1. Bottom left: The coefficient of the diagonal conductivity for various values of the
density at B̃ ∈ {2, 4}, right: The coefficient of the Hall conductivity for various values of
the density at B̃ ∈ {0.5, 4}.
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negative, i.e. the “Hall peak” becomes narrower.
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Figure 3.6: The quadratic factor in the small-frequency expansion of the conductivity
∂2
ω̃σ

2σ

as a function of m̃. Top left: The coefficient of the diagonal conductivity for various values
of the density, right: For various values of f . Bottom left: The coefficient of the diagonal
conductivity for various values of the B̃ at f = 0.25, right: The coefficient of the Hall
conductivity for various values of the magnetic field at ρ̃2

Finally, we can look at the mass dependence in fig. 3.6. The biggest surprise from
the Drude picture view is the quadratic dependence of second the expansion coefficient on
the mass. This indicates τ ∝ m̃−1, which is somewhat counterintuitive since one would
have thought that the relaxation time increases with increasing mass. If one considers
the Drude peak however to be a quasiparticle resonance, this is what one does classically
expect since it means that the quasi particle becomes more stable at larger quark mass
due to slower thermal motion and hence reduced collision rates. At vanishing density and
different values of f , the result is also in contradiction with the free particle picture, since
the DC conductivity is in a minimum at finite mass. There is an interesting maximum

87



in the coefficient, which corresponds as f → 0 to the critical quark mass of the phase
transition discussed in appendix E. Hence, it occurs at the transition from the small-mass
to the large-mass regime. This feature is even more apparent when plotting the coefficient
against B̃ for a small value of f = 0.25, where there is a small maximum around the critical
mass. Looking at the Hall conductivity, the regimes in B̃ in which there is a Drude peak
and in which there is a magnetoresistance minimum behave approximately like the pure
Drude peak and magnetoresistance effects. It is an interesting curiosity, that the transition
between those regimes receives a very small mass dependence.

3.4.2 Large Temperatures: Diffusion limit

In the diffusion limit, i.e. at ω̃ � q̃ � 1, we expect to be able to predict the transport prop-
erties from the diffusion behavior, i.e. from the diffusion constant D and the susceptibility
ε because we expect the “mean free path” to be set by the temperature scale.

The diffusion constant was computed e.g. in [101] by studying the equations of motion
of the gauge field in the gravity side to obtain Fick’s Law,

~j(t, ~x) = −D ~∇j0(t, ~x) , (3.4.87)

on the field theory side. The derivation in [101] is very instructive and can be followed also
in our case in the presence of background fields. The expression for the diffusion constant
is then slightly modified and yields

D =
1

πT

(
−G
√
−GttGuuGxx

)
u→1

∫ 1

0

d u√
−GGttGuu

, (3.4.88)

where we keep in mind that in our notation
√
−G contains a factor of the u dependent

coupling g−2
eff (u) =

√
f 2 + (1−Ψ(u)2)2.

At Mq = 0, this can be evaluated analytically and expressed in terms of hypergeometric
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functions as:

πTD =
(1 + f 2)

√
1 + f 2 + B̃2 + ρ̃2

1 + f 2 + B̃2

∫ 1

0

d u
1 + f 2 + b2u4(

1 + f 2 + (B̃2 + ρ̃2)u4
)√

1 + (f 2 + B̃2 + ρ̃2)u4

=
(1 + f 2)

√
1 + f 2 + B̃2 + ρ̃2

1 + f 2 + B̃2
× (3.4.89)

2F1

(
1

4
,
1

2
;
5

4
;−(f 2 + B̃2 + ρ̃2)

)
− ρ̃2

F1

(
5
4
; 1

2
, 1; 9

4
;−(f 2 + B̃2 + ρ̃2),− ρ̃2+B̃2

1+f2

)
5(1 + f 2)

 ,

where we met the Gauss hypergeometric function 2F1, which is asymptotically in our case

∼ Γ(1/4)2

4
√
π(f2+B̃2+ρ̃2)1/4 , in 2.2.1.3 and F1 is an Appell hypergeometric function that is here at

f = 0 asymptotically ∼ 9Γ(5/4)2

5
√
π(B̃2+ρ̃2)5/4 . At F 6= 0, the decay will be with a smaller, non-

rational, power. In fig. 3.7, we see that the diffusion constant is for small f approximately

Figure 3.7: The diffusion constant πT D as a function of the magnetic field and density
for different values of f (left) and as a function of f and the density for different values of
the magnetic field (right)

proportional to
√
ρ̃ whereas for large f the dependence is approximately linear. This may

be due to the strong coupling because the usual classical geometric result for the diffusion
constant is proportional to the mean free path – which one expects to be inversely related
to the density – and the mean free path should dominated by the baryon density at large
baryon density, at least in weak-coupling intuition. However if we are for example in a
superfluid, this intuition does obviously not apply anymore.
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At small f , the diffusion constant decays inversely proportional to the magnetic field,
which represents the fact that charged particles in magnetic fields receive extra “drag” and
become localized. At larger f , this decay slows down. Looking at the f -dependence, we see
that the diffusion constant is approximately proportional to f , with an asymptotic slope
that is independent from B̃. This contrasts to the dependence on ρ̃, which disappears at
large B̃.

Obtaining the permittivity is similarly straightforward. By definition [85, 86]

ε = lim
ω,q→0

Ctt , (3.4.90)

where it is understood that the limit ω → 0 is to be taken first. Taking the limit ω, q → 0
of the equation of motion for At, (3.2.37) gives us a Poisson equation(√

−GGttGuuA′t(u)
)′

= 0 . (3.4.91)

We note that this equation does not yield an appropriate infalling wave behavior near the
horizon, but it is easy to see from the full equations for At and Ax that for very small but
finite ω � q � 1, the behavior will be appropriately resolved near the horizon. Near the
horizon, At and Ax are strongly coupled, with At ∼ ω

q
Ax, and Ax follows an oscillatory

behavior, just like Ay in section 2.2.2. To solve for At, we then simply integrate (3.4.91)
with At = 0 as a boundary condition at u→ 1, which gives us readily the permittivity

ε = ε0
A′t
At

∣∣∣∣
u→1

= ε0
(
√
−GGttGuu)u=0∫ 1

0
d u
√
−GGttGuu

=: ε0εr , (3.4.92)

where (
√
−GGttGuu)u=0 = 1. We can now see immediately, that the isotropic DC con-

ductivity in section 3.4.1.1 is given by the diffusion result σyy = σxx = εD and in the
DC limit there is no contribution from other modes, as expected. However, in contrast to
the remarkable result in section 2.4 where the conductivity was at all frequencies deter-
mined precisely by the diffusion behavior, the diffusion behavior is now only valid at small
frequencies and receives corrections as we move away from ω = 0 as outlined in section
3.4.1.2. Since the integral is the same as the one for the diffusion constant, we find that
for Mq = 0, we obtain the relative permittivity

ε−1
r = 2F1

(
1

4
,
1

2
;
5

4
;−(f 2 + B̃2 + ρ̃2)

)
− ρ̃2

F1

(
5
4
; 1

2
, 1; 9

4
;−(f 2 + B̃2 + ρ̃2),− ρ̃2+B̃2

1+f2

)
5(1 + f 2)

.

(3.4.93)
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Figure 3.8: The relative permittivity εr as a function of the magnetic field and density for
different values of f (left) and as a function of f and the density for different values of the
magnetic field (right)

In figure 3.8, we see the interesting fact that at large f , the relative permittivity becomes
approximately constant. While one does not generically expect any specific dependence
on the magnetic field, one would expect in a simple solid state model εr ∝ n and hence
εr ∝ ρ0 at large ρ̃, which is realized here at large f , but at small f it is proportional to√
ρ0 at large values of ρ̃.

If we compare the results of this section to the Drude model reviewed in section 3.3.1,
we can identify from the Einstein relation (3.3.43)

µ =
D

T
and n = πT 2ε0εr . (3.4.94)

3.4.3 T → 0 limit

Next, let us look at the low temperature limit of q̃, ω̃ � 1. Here, we are interested in the
equations near u = 0. The equations for Ay and Ax (3.2.40),(3.2.41) are identical in this
limit, and become

A′′y +
(
ω̃2 − q̃2

)
Ay = 0 (3.4.95)

as in the “conformal limit” in section 2.2.1, up to order m̃2 u2

ω̃2 or (e2, b2) u
4

ω̃2 . The appropriate

solution gives us the diagonal conductivity σ̃yy = ε0

√
1− q̃2/ω̃2 and σ̃xx = ε0√

1−q̃2/ω̃2
.
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3.4.3.1 Exponentially suppressed regime, q̃2 � 1 � ω̃2, at small backgrounds,
|q̃| � |ρ̃|, |B̃|

To study the low temperature limit more in detail, we start with the regime |ρ̃|, |B̃| � |q̃|
which is similar to the approximation in section 2.2.2.

It is straightforward to see that the dominating term in the solution at finite h = 1−u2

will still be Ay,Ax ∼ A0
y,Axe±q̃

R √
−Gxx/Guu . Using this to estimate the contribution of the

cross-terms in (3.2.40),(3.2.41), we find that they are suppressed by a factor of q̃−1 with
respect to the dominant diagonal terms. In the near-horizon regime at ω2/q2 � h � 1,
they are suppressed by a factor of h/q̃, and in the regime h � ω2/q2 � 1, they are
suppressed by h2q̃/ω̃2. Hence, we can proceed as follows: First we will obtain the diagonal
conductivity σ̃yy (σ̃xx follows similarly) by solving the homogeneous part, because the
contribution from the cross-terms to the diagonal conductivity will be suppressed by the
order of the square of the suppression of the cross-terms and can hence be safely ignored.
Then we will compute the Hall conductivity from the inhomogeneous part.

Again, let us use the Ansatz Ay = A0
ye
R u ζ , which gives us

ζ2 + ζ ′ +

(√
−GGuuGyy

)′
√
−GGuuGyy

ζ +

((√
−GGtuGxy

)′)2

−GGttGuuGxxGyy
+
Gxx

Guu

(
Gtt

Gxx
ω̃2 − q̃2

)
= 0 , (3.4.96)

with the approximate result at h � ω2/q2 up to O(1), ζ = −(
√
−GGuuGyy)

′

2
√
−GGuuGyy ±

ζ′0
2ζ0
± ζ0,

ζ0 := q̃
√

Gxx

Guu
, where we pick the negative sign corresponding to a solution that decays

towards the horizon. Next, we take ζ = −ζ0 −
(
√
−GGuuGyy)

′

2
√
−GGuuGyy −

ζ′0
2ζ0

+ ε and gather the
remaining terms up to linear order in ε

0 = ε′ − ε

(
ζ ′0
ζ0

+ 2ζ0

)
+

((√
g GtuGxy

)′)2

−GGttGuuGxxGyy

+

((√
−GGuuGyy

)′
2
√
−GGuuGyy

+
ζ ′0
2ζ0

)
ζ ′0
2ζ0

−

((√
−GGuuGyy

)′
2
√
−GGuuGyy

+
ζ ′0
2ζ0

)′
+

Gtt

Guu
ω̃2

=: ε′ − εα(u) − β(u) . (3.4.97)

The general solution to this equation is

ε = e
R u
0 dūα(ū)

(
ε0 +

∫ u

0

dũe−
R ũ
0 dūα(ū)β(ũ)

)
. (3.4.98)
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The second part is a small contribution ∈ R that is at most of order q̃−2, so we are only

interested in the first part that evaluates to ε = ε0ζ0e
2
R u
0 dūζ0(ū), or ε = εHζ0e

−2
R 1
u dūζ0(ū).

εH will be fixed in the region ω̃2/q̃2 � h � 1, where there is an overlap between the
asymptotic and near horizon solutions.

At h� 1, the equation becomes:

− 4∂hζ + ζ2 − 4

h
ζ +

ω̃2

h2
− 1

1 + B̃2

1+f2 + ρ̃2

(1−Ψ2
0)2+f2

q̃2

h
= 0 . (3.4.99)

Again, as in section 2.2.2, this can be solved analytically in terms of hypergeometric func-
tions and then be expanded for q̃2

1+ B̃2

1+f2 + ρ̃2

(1−Ψ2
0)2+f2

h� 1, giving us in the overlap region

ζ ∼ − q̃2

√
h
√

1 + B̃2

1+f2 + ρ̃2

(1−Ψ2
0)2+f2

+
1

h
+ . . .

− πiω̃q̃
√
h
√

1 + B̃2

1+f2 + ρ̃2

(1−Ψ2
0)2+f2

e

−q̃
√
hs

1+ B̃2

1+f2 +
ρ̃2

(1−Ψ2
0)2+f2

+ . . . . (3.4.100)

This solution connects nicely to the asymptotic region, even matching subleading terms in
the overlap region, to give us

ζ = −q̃
√
Gyy

Guu
−
(√
−GGuuGyy

)′
2
√
−GGuuGyy

−

√
Gyy

Guu

′

2
√

Gyy

Guu

+ O(q̃−2)

− iπω̃q̃

√
Gyy

Guu
e−2q̃

R 1
u dū,
√

Gyy

Guu
(
1 +O(ω̃2, q̃−2)

)
. (3.4.101)

Hence, the dissipative part of the diagonal conductivity reads to leading order

Re σ̃yy = ε0πq̃e
−2q̃

R 1
0 d u
√

Gyy

Guu , (3.4.102)

where one could again interpret the result as having an “effective temperature” scale of

T

Teff
=

2

π

∫ 1

0

d u

√
Gyy

Guu
. (3.4.103)

93



In the massless limit we can, as usual, find an analytic expression, which evaluates to

T

Teff
=

2Γ(5/4)√
πΓ(3/4)

√
1 + f 2

2F1

(
1

4
,
1

2
;
3

4
;−(f 2 + ρ̃2 + B̃2)

)
. (3.4.104)

If we were to describe this result qualitatively as the behavior of a semiconductor, then
the edge density of states would correspond to total density of baryons and anti-baryons
in thermal equilibrium, and the difference Nc−Nv would correspond to the baryon density
ρ0.
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Figure 3.9: The “effective temperature” Teff/T . Left: As a function of f and

√
ρ̃2 + B̃2.

Right: As a function of m̃ for various values of ρ̃ and B̃

In fig. 3.9, we show how the effective temperature depends on the parameters of the
defect. In addition to the dependence on f , that we saw throughout chapter 2, turning
on a magnetic field or a finite density raises now the effective temperature approximately
∝ (B̃2+ρ̃2)1/4. Furthermore, we find that turning on a finite mass in some sense “enhances”
the effect of the density and of f but the dependence on the mass in the presence of only
B̃ is not very significant.

Next, let us look at the off-diagonal terms. Do do so, we first need to write out the
homogeneous part of the equation of motion for Ax =: A0

xe
R u ζx :

ζ2
x + ζ ′x +−

(√
−GGttGxx

)′
√
−GGttGxx

ζx +
Gxx

Guu

(
Gtt

Gxx
ω̃2 − q̃2

)
= 0 , (3.4.105)

which has the solution up to O(1), ζx =
(
√
−GGttGxx)

′

2
√
−GGttGxx ±

ζ′0
2ζ0
± ζ0, where we again pick the
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negative sign. The dominant terms in the full homogeneous solutions are then

Ax = A0
x

√√
−GGttGxx

ζ0

e−
R u
0 ζ0 and Ay = A0

y

1√√
−GGuuGyyζ0

e−
R u
0 ζ0 . (3.4.106)

There are now two ways to determine the perturbative contribution coming from the cross
terms. Either we again solve for the exponents ζ – which would then contain factors of
A0
y/A

0
x - or we can directly take a pertubation for Ay. Even though the latter one may

seem most natural, in particular since the system is linear, we will use the first method
since it gives us the result in a very neat way. Substituting (3.4.106) into the equation of
motion for Ay (3.2.40), we see that the equation for ε (3.4.97) receives now an additional
term

β(u) → β(u) − ζx

(√
−GGtuGxy

)′√Guu

Gtt

A0
x

A0
y

, (3.4.107)

such that we obtain an extra contribution to ε, taking only the leading term in β ∝ q̃

ε = e2
R u
0 ζ

(
ε0 −

∫ u

0

dũ

(
ζx

(√
−GGtuGxy

)′√Guu

Gtt
e−2

R ũ
0 ζ

)
A0
x

A0
y

)
. (3.4.108)

Now, if we look at the equations of motion (3.2.40),(3.2.41), we remind ourselves that in
the near horizon geometry, the equations of motion for Ay and Ax look the same and the
cross terms are suppressed by a factor of h/q̃ with respect to the dominant terms. Hence
the coupling occurs over the range u ∈]0, 1 − ε] for small ε and not in the near-horizon
region. We keep ε to regulate the asymptotic solution in the near horizon region, in which
it is not valid. To capture the mixing then correctly, we fix εH at the horizon as above,
such that we find

ε '
√
Gyy

Guu
e−2

R 1−ε
u ζ0

(
εH +

∫ 1−ε

u

dũ

(
ζx

(√
−GGtuGxy

)′ Guu

√
−GttGxx

e2
R 1−ε
ũ ζ0

)
A0
x

A0
y

)
=: εhom. + εinh. (3.4.109)

where we absorbed a factor of
√

Guu

Gxx

∣∣∣
u=1−ε

into εH . Because of the exponential factor in the

second term, the integral will be dominated around small ũ. The appropriate expansion
gives us to leading order at u� 1

εinh. = −4
ρ̃B̃

1 + f 2
q̃
A0
x

A0
y

e2
√

1+f2q̃u

∫ 1

u

dũ u3e−2
√

1+f2q̃ũ

= 4
ρ̃B̃

1 + f 2
q̃
A0
x

A0
y

e2
√

1+f2q̃u

[
ũ4

16q̃4(1 + f 2)2
Γ(4, 2q̃ũ)

]1

ũ=u

(3.4.110)

95



and in the limit u→ 0, we find

lim
u→0

εinh. = −3

2

ρ̃B̃

(1 + f 2)5/2 q̃3

A0
x

A0
y

+ O(m̃/q̃5) + O(1/q̃7) . (3.4.111)

Finally, keeping Ay|u=0 = A0
y fixed, we get the leading terms (ignoring the exponentially

suppressed terms)

∂uAy = −
√

1 + f 2 q̃ A0
y −

3

2

ρ̃B̃

(1 + f 2)5/2 q̃3
A0
x + O(M2

q /q̃
5) + O(1/q̃7) , (3.4.112)

and hence we can compute the Hall conductivity

σ̃yx = −ε0

√
1 + f 2

δA′y
δA′x

∣∣∣∣
u→0

= −ε0
3

2

ρ̃B̃

(1 + f 2)5/2 q̃4
+ O(M2

q /q̃
6) + O(1/q̃8) . (3.4.113)

Following through the analysis attentively, one can also see that the imaginary part of the
Hall conductivity is exponentially suppressed by a factor of e−q/Teff .

This result is remarkable, since the diagonal part of the dissipative conductivity is heav-
ily suppressed with a factor e−q/Teff , while the off-diagonal part is only suppressed by a
factor of T 4/q4. This reflects the fact that at small temperatures we approach conformal
symmetry in the field theory and hence the form of the conductivity in [99] that we dis-
cussed in section 2.5. Having a purely off-diagonal conductivity is not surprising as it is for
example the case on the Hall plateaus in the quantum Hall effect or as we demonstrated
above in intrinsic semiconductors at small temperatures.

Interestingly it occurs also in intrinsic semiconductors at low temperatures. There the
absence of defects and the highly suppressed charge carrier density cause the relaxation
time τ to diverge, whilst the carrier mobility remains approximately unchanged. Hence the
diagonal conductivity (3.3.44) is suppressed, while the factor ωcτ in the Hall conductivity
(3.3.45) causes the Hall conductivity to remain finite.
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3.4.3.2 Exponentially suppressed regime at large backgrounds, q̃2 � |ρ̃|, |B̃| �
|q̃| � 1

This regime is slightly more non-trivial, because now ζ0 splits into three regimes (for
simplicity at Mq = 0):

u .
1√
B̃
,

1√
ρ̃

: ζ0 ∼ q̃
√

1 + f 2 , (3.4.114)

1√
B̃
,

1√
ρ̃
,
√
ρ̃ . u� 1 : ζ0 ∼

q
√

1 + f 2√
f 2 + B̃2 + ρ̃2u2

and (3.4.115)

h� 1 : ζ0 ∼
q
√

1 + f 2√
f 2 + B̃2 + ρ̃2h

. (3.4.116)

In the asymptotic region, the solution is dominated by the decaying exponential, whereas
in the near horizon region, it can be written in terms of the coordinate s from section
3.4.1.1 as

Ay = A0
ye
iν s = A0

ye
iν s

R u
0

1√
−GGuuGyy , (3.4.117)

where ν = ω̃
√

1 + f 2

q
B̃2(f2+(1−Ψ2

0)2)+(1+f2)(ρ̃2+f2+(1−Ψ2
0)2)

1+B̃2+f2 . If this solution were to overlap

with the “tail” of the asymptotic solution, u4 > f 2 + ρ̃2 +B̃2, we could match them at some
1� uH & (f 2+ρ̃2+B̃2)1/4. The fact that they do not overlap, however, can be simply seen

from the different u dependence of ∂us = 1√
−GGuuGyy and ζ0 = q̃

√
Gxx

Guu
. Hence, whatever

we try now, the conductivity will disagree by some finite factor. One way to pretend
that they do overlap is to simply set h = 1 − u4 → 1 and u → 1, which corresponds to
extending the 1√

B̃
, 1√

ρ̃
. u� 1 region towards the horizon and the near-horizon limit into

the intermediate region. Matching the solutions under these conditions and ignoring the
second part of the solution for ε (3.4.98) gives us

ε = −iω̃

√
1 + f 2 + ρ̃2 + B̃2

1 + f 2

√
Gyy

Guu
e−2q̃

R 1
u

√
Gyy

Guu (3.4.118)

with the corresponding conductivity

σ̃yy = −iε0
q̃

ω̃
+ . . . + ε0

√
1 + f 2 + ρ̃2 + B̃2

1 + f 2
e−2q̃

R 1
0

√
Gyy

Guu + . . . . (3.4.119)
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Certainly we cannot trust any O(1) and polynomial factors, but the point to make here
is that we should still expect the exponential suppression from the effective temperature
(3.4.103). This is because the integral in the exponent is dominated by the region in which
ζ0 does indeed dominate the solution, we took care of the deep near horizon region and
elsewhere there are no “large” terms in the equations of motion.

In principle one can also try to find a solution in the regime 1√
B̃
, 1√

ρ̃
. u . 1 and then

“glue” it to the near horizon and asymptotic solutions to gain more accuracy, but there
is limited insight to be learned from this and it would be much more tedious than the
calculations in 3.4.3.1.

The Hall conductivity will still be dominated by the asymptotic regime since the mixing
from the near horizon region is exponentially suppressed. In principle, it is then still

σ̃yx = −ε0
3
2

ρ̃B̃
(1+f2)5/2q̃4 , however we need to note that the integral that was computed in

section 3.4.3.1 is dominated around the maximum of u3e−2q̃
√

1+f2u at umax = 3

2q̃
√

1+f2
and

decays then also on the scale δu = 1

2q̃
√

1+f2
. ζ and hence also the exponential suppression

however start to change around ustop ∼ (f 2+ρ̃2+B̃2)−1/4. To properly evaluate the integral
in the approximation of 2.2.2, ustop need to be significantly larger than umax – otherwise the
“tail” of the polynomial term in the integral will not be sufficiently suppressed and will give
a finite contribution to the result, which will greatly overestimate the Hall conductivity.
Certainly one can always use the full integral

σ̃yx = −ε0

√
1 + f 2

q̃
e−2

R 1
0 ζ0

∫ 1

0

dũ ζx

(√
−GGtuGxy

)′ Guu

√
−GttGxx

e2
R 1
ũ ζ0 (3.4.120)

but this is certainly a somewhat less insightful result and cannot be computed analytically.
In figure 3.10, we demonstrate the boundaries between the different regimes. To see how

far the regime of the previous section reaches, we plot ln (σyy)− ln
(
σ

(asym.)
yy

)
against ln q̃

ln ρ̃
.

σ
(asym.)
yy is defined taking ln

(
σ

(asym.)
yy

q̃

)
to be the linear expansion of ln

(
σyy
q̃

)
at large values of

q̃ approximately where σ̃yy ∼ 10−15ε0, shortly before the numerics fail. ln q̃
ln ρ̃

= n corresponds
to q̃ = ρ̃n. This is sensitive to changes in the factor in front of the suppressed conductivities
at large q̃. To check for the overall limit of the exponentially suppressed regime, we look
directly at σyy − σ(asym.)

yy . It is easy to see that the boundaries at approximately ρ̃, B̃ ∼ q̃
and ρ̃, B̃ ∼ q̃2 are verified. Using that data, we also looked at the O(1) factor π in front of
the exponential term in the conductivity in (3.4.102). It turns out that for our values of
q

Teff
∼ 35, the numerically estimated factor varied from ≈ 3.8 at ρ̃ = 0 to 15 at ρ̃ = 140,

where the numerics carried us only up to q̃ ∼ ρ̃. At the latter values, we could not expect
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Figure 3.10: Left: The check to the deviation from the T → 0 limit as described in the

text. Right: The numerical estimate T
Teff

∼ −π∂q̃ ln
(
σ̃yy

q̃

)
compared to the analytical

result

close agreement because we were outside the regime that we considered in section 3.4.3.1
– and the value of 3.8 seems reasonably close to π.

3.4.3.3 Dominantly large backgrounds ρ̃, B̃ � q̃2 � 1

As ρ̃, B̃ � q̃2, we find that
∫ 1

0
ζ0 ∼ 2q̃(f 2 + ρ̃2 + B̃2)−1/4 � 1, and hence the exponential

suppression factor disappears. Furthermore, as indicated above, our estimate for the Hall
conductivity does not apply anymore, as it will be dominated by the region of u in which
the assumption ζ0 � 1 does not apply anymore.

Looking at the problem in another way in terms of the coordinate s from section 3.4.1.1
for the DC conductivity with the equation for Ay (3.4.61) gives us the relevant term

∂u∂sAy = . . .+
√
−GGyyGxxq̃2Ay . (3.4.121)

Integrating this analytically in the massless case and for for sufficiently slowly varying

∂sAy � Ay, i.e. ν � 1, we find δ ∂sAy
∫ 1

0
du ∂sAy . (1+f2)q̃2

(f2+B̃2+ρ̃2)1/4 ∈ R. A second integration

gives δAy
Ay

. (1+f2)q̃2√
f2+B̃2+ρ̃2

and for larger frequencies ν, the oscillatory behavior of Ay implies

that the integral is further suppressed by a factor 1/ω̃.

Hence, for ρ̃, B̃ � q̃2, the real part of the conductivity is dominated by the results
of the isotropic case in section 3.4.1. The inductive (imaginary) part of the conductivity
obviously still receives the term σ̃yy ∼ −iε0

q̃
ω̃

.
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3.5 Numerical Results

In this section, we study information that can be derived from computing the correlators
numerically, in particular the overview of the frequency-dependent conductivity (i.e. the
spectral curves), the diffusion and relaxation behavior in the hydrodynamic regime, and
the spectrum of quasi-particles.

3.5.1 Spectral Curves

In this section, we present the conductivity spectrum in the presence of various background
quantities.

First, let us look at the case of finite density and magnetic field alone in fig. 3.11.
From the result of the electromagnetic duality in section 3.2.1, and the very generic results
for the Hall conductivity in section 3.3.3, we expect to see a sequence of resonances, in
which maxima and minima are exchanged between the case of finite net baryon density
and magnetic field. The fact that “plasmon” (finite-density) resonances are relatively
strong is not surprising since this is a strongly coupled system – and plasmons are a finite
coupling effect. The small-frequency regime reflects very well the classical Drude model
expectations and the small-frequency expansion from section 3.4.1 – with the Drude peak
and magnetoresistance. Looking at the resonances, we find that they are approximately
equally spaced at nωp or (n − 1/2)ωc, respectively – and they decay quickly. Comparing
this to what we learned in section 3.3.3 reveals interesting information about the quasi-
particles that carry the current: They a) must be massive and b) do not consist of chiral
fermions, in sharp contrast to graphene [89]. It is also interesting to see that we again
have an exponentially decaying amplitude as in the resonance on the width of the defect
that we studied in 2.3. The frequencies ωc and ωp are, however, not proportional to B̃
and, respectively, ρ̃ and even start off at a finite value. In terms of generic weak-coupling
intuition, this would need to be explained by a non-linear magnetization behavior and
non-linear chemical potential, and in terms of a changing mass of the quasi-particles that
carry the current.

Looking at the f -dependence in figure 3.12, we find that on the one hand, increasing f ,
i.e. an increasing width zmax or stronger “confining potential”, reduces the amplitude of the
resonances at small frequencies. This is consistent with the value that we found for the DC
conductivity (3.4.1.1). In contrast to this, we find that the suppression of the resonances
with increasing frequencies decreases with increasing f and we can see the tower of modes,
that is at small amplitudes hinted at by the σ̃ = ε0 lines in the plot. This agrees with the
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Figure 3.11: The real, diagonal part of the isotropic conductivity at q̃ = 0 as a function
of frequency and net baryon density (top) or magnetic field (bottom) for f = 0 (left) and
f = 2 (right).
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Figure 3.12: The real, diagonal part of the isotropic conductivity at q̃ = 0 as a function of
frequency and magnetic field for B̃ = 4 (left) and ρ̃ = 4 (right)

effective temperature (3.4.103) that decreases proportionally to f−1/2. Secondly, we find
that the parameters ωc and ωp decrease with increasing f , which we can again explain by
a non-linear behavior of the response functions or by an f -dependent quasiparticle mass.

To see what happens when we turn on a finite wavenumber of the perturbations, we
look at fig. 3.13, where we show a few of the higher resonances at f = 4 in order to see
how they depend on the wavenumber q̃. Looking at the plots on the left, there seems to
be only a small difference between the behavior of the Landau levels and plasmons. This
difference becomes however very significant when one plots the “normalized” conductivity,

σ̃√
1−q̃2/ω̃2

, as a function of the “rest-frame frequency”
√
ω̃2 − q̃2 as we had done in section

2.2.2.2. Then, we see that the density resonances connect smoothly to the resonances in
the optical regime (i.e. above the conduction threshold ω̃ = q̃) in the “semiconductor”
case at q̃ � 1. Certainly the statement about the continuity of the pole or “resonance” at√
ω̃2 − q̃2 = 0 is somewhat meaningless, since this arises always due to the rescaling (at

finite temperatures), but only says that the correlator is finite at ω = q and does not imply
a pole in the correlator. The magnetic resonances, however, seem to be discontinuous –
the n = 0 Landau level seems to disappear, when the

√
ω̃2 − q̃2 = 0 pole arises, and the

higher resonances behave in a non-monotonic way. In order to see more in detail where this
discontinuity comes from, we can look at the B̃ and ρ̃-dependence at a finite wavenumber
q̃ = π/2 and finite f = 4 in figure 3.14. There we see that we start off with the “bare
defect” and its finite-width resonances, and as we turn on the net baryon density, they shift
smoothly, as if we were to decrease the width of the defect. As we turn on a magnetic field,
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Figure 3.13: The real part of the conductivity σyy at varying q̃, f = 2 and ρ̃ = 4 (top) or

B̃ = 4 (bottom) as a function of ω̃ (left) and rescaled as σ̃yy

ε0
√

1−q̃2/ω̃2
as a function of the

“rest-frame” frequency
√
ω̃2 − q̃2 (right).
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Figure 3.14: Re σ̃yy

ε0
√

1−q̃2/ω̃2
at q̃ = π/2 and f = 4 as a function of the “rest-frame” frequency√

ω̃2 − q̃2 . Left: As a function of the magnetic field. Right: As a function of the density.

while there is still no apparent splitting of resonances – as one might expect if new kinds of
resonances are turned on, they are not monotonically connected. This implies that there
are some non-monotonous changes in the residue and location of the poles. It can be easily
seen from the electromagnetic duality in the plain defect, that at wavenumber q̃ = 0, there
can be only one pole, which is at ω̃ = 0, and hence, assuming continuity, the residue of
the poles from the finite-width resonances must be proportional to q̃. On the gravity side,
this corresponds to the fact that at q̃ = 0 there is only one mode function in the gauge
field and the equations for Ay and Ax are the same, but at finite q̃, the equations for Ay
(3.2.40) and Ax (3.2.41) become different. Hence we find two distinct mode functions. The
same argument applies for turning on ρ̃ or B̃. This also reflects the fact that generically,
the density of states of Landau levels (3.3.56) is proportional to the magnetic field.

A rough, argument in the field theory is that turning on q̃ corresponds to introducing
an inhomogeneity in the x direction. Hence, the U(1) perturbations become localized
in that direction, whereas they are not localized in the y direction. Plasmons are not
generically localized, so they do not change this configuration. Landau levels however are
intrinsically localized quasi-particles, so they break translation invariance also in the y
direction and change the pattern of the resonances less smoothly. From EM duality, we
know that magnetic resonances in σxx connect smoothly to the finite-width resonances and
the density resonances connect less smoothly. This is precisely because in the x direction
the translation invariance of the plasmons becomes broken by finite q̃, whereas the Landau
levels were already localized.
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Figure 3.15: The real part of the isotropic conductivity at q̃ = 0, B̃ = 4 and f = 2 as a
function of frequency and density (top) and at ρ̃ = 4 as a function of the magnetic field
(bottom). Left: diagonal part of the conductivity tensor. Right: Hall conductivity.
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After studying the effects of having either B̃ or ρ̃ turned on, let us look at the case when
they appear simultaneously in fig. 3.15. In the diagonal part of the conductivity tensor,
we see that the magnetic- or density resonances split in two as we turn on a net density
or magnetic field, respectively. It is interesting, that there is no “tower” of excitations
splitting off each resonance and that the mean frequency of each “split level” changes
only by a small amount. Furthermore, we find that at each resonance in the diagonal
conductivity, the Hall conductivity changes sign, at least for the first two resonances. This
is just the continuation of what one expects classically for the first resonance as we saw
in section 3.3.1. It is also what one expects semi-classically, if the split states have either
positive or negative magnetic moment, carrying a total net Hall current similar to the edge
current in the Quantum Hall effect. By continuity, this implies that the plasmons (at zero
magnetic field) and the Landau levels (at zero net “charge” density) have vanishing net
magnetic moment and equal degeneracy (2). It is also worth noting that it is impossible
to have any of the resonances cross ω = 0 no matter how much one tunes the parameters,
which clearly indicates that the system has no Fermi level in the classical sense. Otherwise
we would see Landau levels crossing ω = 0.

Figure 3.16: The real part of the isotropic conductivity at q̃ = 0, B̃ = 4 and ρ̃ = 4 as a
function of frequency and f . Left: diagonal part of the conductivity tensor. Right: Hall
conductivity.

For completeness, we can look at the f -dependence of the Hall effect in figure 3.16. This
confirms our observations of the relation between the resonances in the diagonal part of
the conductivity and the Hall conductivity. In the regime of highly suppressed resonances
this appears through their periodicity that differ by a factor of 2. We can also see that
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their frequencies roughly behave as the resonance frequencies of the plasmons and Landau
levels.

Figure 3.17: The real, diagonal part of the isotropic conductivity at q̃ = 0 as a function of
frequency and quark mass for f = 0, m̃ ∈ [0, 1.18] (left) and f = 0, m̃ ∈ [0, 8] (right).

Finally, let us look at the mass dependence. In fig. 3.17, we look at the conductivity at
q̃ = ρ̃ = B̃ = 0, where we actually see the DC conductivity from (3.4.1.1). At f = 0, we see
a significant change of the conductivity with a resonance around ω̃ ∼ 1.7 as m̃ approaches
the critical mass of the phase transition from appendix E. This m̃-dependence is suppressed
at finite f , and at f = 2, the most significant change takes place only over m̃ ∼ 0 . . . 4 –
simply because it depends roughly on f 2 + (1 − Ψ2)2 and not on the mass directly, such
that the mass dependence becomes “frozen” as Ψ0 becomes close to 1. In contrast to this
indirect mass dependence, the location of the very shallow maximum seems to be roughly
proportional to m̃. This gives some nice insight into the IR and UV dependence of the
underlying physics. Processes that take place at small energies, i.e. in the IR will be
dominated by gravity background near u = 1, and hence depend on Ψ0 and show most of
their mass dependence in the regime of m̃ ∼ O(1). Effects that depend on high energies,
i.e. the UV, however depend on the background near u = 0 and hence depend on m̃ and
(only to subleading order) on c̃. We can observe the influence of the quark mass on the
finite-q̃ resonances in figure 3.18. There we see that the gap between the resonances is
roughly proportional to m̃−1 at large m̃ and the change starts ∝ m̃2 at small m̃ - as one
does generically expect for a relativistic system. As naively expected, the resonances are
also narrower at large m̃ and their amplitude increases. If we look at the overall level of the
conductivity (i.e. ignore the resonances) there seems to be the correction that we found
at q̃ = 0, now as a correction to the background around which the resonances take place
at small

√
ω̃2 − q̃2. This also agrees with the picture that we see at f = 0. Looking at
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Figure 3.18: Top: The real part of the
normalized conductivity σyy√

1−q2/ω2
at q̃ =

π/2 as a function of “rest-frame” frequency√
ω̃2 − q̃2 and quark mass at q̃ = π/2 for

f = 0, m̃ ∈ [0, 1.18] (left) and f = 2,
m̃ ∈ [0, 8] (right). Bottom: σyy for f = 2,
m̃ ∈ [0, 8].
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the un-scaled conductivity, at the bottom in fig. 3.18, we also see that the conductivity
approaches the t→ 0 limit, σ̃yy = ε0Re

√
1− q̃2/ω̃2 as we increase the quark mass.

Figure 3.19: The real, diagonal part of the isotropic conductivity at q̃ = 0 as a function of
frequency and quark mass at f = 2 for B̃ = 4 (left) and ρ̃ = 4 (right)

These generic effects of turning on Mq can also be seen in the plasmons and Landau
levels, and in the Hall effect, in figures 3.19 and 3.20. Again, we see that on the one hand,
the resonances become more stable at large m̃, and that on the other hand the energy
levels receive at small m̃ a small correction ∝ m̃2 and at large masses scale ∝ m−1, just
like ωc and ωp do classically.

Finally, we can turn on a large mass (in this case m̃ = 32) in order to study the structure
of the Hall effect more rigorously. In fig. 3.21, we see that the Hall conductivity has a small
overall positive (or negative if we rather look at σyx or negative B̃ρ̃) background, and there
are poles with alternating residue, each precisely located at a maximum of the diagonal
part of the conductivity. This supports exactly our suggestion above that the Hall current
is carried collectively by localized states with net positive or negative magnetic moment.

3.5.2 Small frequency regime

In this section, we look at the behavior of the purely dissipative poles of the correla-
tor Cxx on the imaginary axis, that dominate the conductivity at small frequencies and
wavenumbers. Our particular interest is how they influence the DC conductivity and how
the transition to “semiconductor-like” in the quasiparticle regime at larger wavenumbers
occurs, i.e. how those poles disappear. We recall that in section 2.3.3, we found two poles
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Figure 3.20: The real, diagonal (left) and Hall (right) part of the isotropic conductivity at
q̃ = 0 and f = 2. Top: As a function of m̃ at B̃ = 4, ρ̃ = 4. Bottom: As a function of ρ̃ at
B̃ = 4 and m̃ = 8.
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Figure 3.21: σyy = σyy and σxy at q̃ = 0,
m̃ = 32, ρ̃ = 32 and B̃ = 24.

– the diffusion pole and one corresponding to decay on thermal scales. Those poles were
found to move along the imaginary axis as we increase the wavenumber, meet at some
critical wavenumber, and for more short scale excitations turn into massive quasi-particles.

The numerical strategy behind locating the poles is reasonably straightforward. First,
we divide the imaginary axis in three regions, based on an educated guess, and localize the
poles in these regions in a simple recursive process at some initial wavenumber, magnetic
field, quark mass and density. Then, we can identify regions around those poles that
allow us to “track” them as we change the parameters, without having to scan the whole
imaginary axis. One caveat though is, that it is numerically increasingly difficult to find the
poles as their residue decreases, so we keep a minimum wavenumber (we will use q̃ ≥ 0.02)
to always find the “middle” pole. We may also “lose track” of poles if their residue becomes
too small. The other caveat is that with our rudimentary method, we need to filter the
result afterwards for whether a suspected pole is a pole or just a local extremum or noise.
In most cases the distinction is obvious, but in some cases we will look at the value of
the residue that we estimate. Furthermore, since this process is reasonably numerically
intensive, we will limit the computations to a few examples.

Compared to section 2, we apply more accurate numerics to find that there is also a third
pole, corresponding to more rapidly decaying excitations. Obviously, at q̃ = B̃ = ρ̃ = 0,
there can only be the diffusion pole because then the electromagnetic duality together with
isotropy restricts ε−1

0 σ̃ ∈ {−1, 1}. As we tune these quantities to zero, the residue of both
poles vanishes. One of them just disappears to a constant conductivity, while the other
one turns into a unit step function of frequency in the conductivity.

First, let us look at the poles in the presence of a finite density. In fig. 3.22, we show the
frequency of the diffusion pole and the second pole as a function of ρ̃, and we see that the
lower pole follows, at small q̃, the diffusion behavior, and then, at some critical wavenumber,
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Figure 3.22: Left: Imaginary frequency of the diffusion pole and the first higher pole as
a function of q̃ for different values of ρ̃. The frequency and wavenumber are scaled with
D, such that the diffusion equation is Dω = −i(Dq)2. The dot indicates the point where
there is the branch cut, and the mode frequency of the poles gain a real part to become
quasi-particles. Right: The critical wavenumber as a function of ρ̃, compared to various
length scales of the problem: the effective temperature, diffusion constant and the electric
permittivity.

they merge and we have again the branch cut with the transition from the dissipative to
quasiparticle behavior. It is interesting to note that even beyond the diffusion behavior, the
curves agree reasonably closely upon the appropriate rescaling with the diffusion constant.
In fig. 3.22, we also plot the critical wavenumber as a function of ρ̃. We see that there is
no length scale in our system that fits it particularly well compared to a simple π−1ρ̃−1/2

approximation – even though 1
πD̃

seems to fit best asymptotically. As in the case of the
diffusion constant, we note that the critical wavenumber is proportional to 1/

√
ρ, and

√
ρ

is approximately the mean separation of the quarks. So at a small net quark density, qc
is dominated by scattering off gluons and quarks from the thermal equilibrium, and at a
large net quark density, it is the baryon density that sets this scale.

The imaginary frequency of the third pole is slightly increasing with increasing q̃, but
it has a very small residue that decreases with increasing q̃. Hence it can only be seen at
q̃ ∼ O(0.1) and we do not plot it here.

To study the nature of the second pole, we look in figure 3.23 at how the location of that
pole depends on the net baryon density. We find that this too is proportional to ρ̃−1/2 at
large ρ̃, and approaches some finite value at small ρ̃. Also, the dependence on f dominates
only the small-ρ̃ regime. In that figure, we also compare the location of this pole to the
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Figure 3.23: The location of the second pole
on the imaginary axis as a function of the
net baryon density for various values of f .
For comparison, we show the inverse corre-
lation time τ−1 computed from the conduc-
tivity for f = 0 only. The other curves for
the relaxation time will be in worse agree-
ment at small frequencies.

inverse of the relaxation time τ−1 that we obtain from ∂2
ωσyy
σyy

∣∣∣
B,ω→0

as defined in section 3.3.1

and computed in 3.4.1.2. We find that for large ρ̃, they are in perfect agreement, whereas
for small ρ̃, the inverse relaxation time diverges. For clarity, we show only the relaxation
time for f = 0. The relaxation time for larger f is in worse agreement (τ−1 becomes
larger at small ρ̃), however the agreement at large ρ̃ is equally good. This disagreement
at small ρ̃ reflects the special conformal nature of the system at ρ = 0, with the constant
conductivity from the electromagnetic duality in (2.4.98). This causes the relaxation time
that we computed from the conductivity to vanish, while we can obviously expect that
any excitation still decays on a finite timescale as dictated for example by causality. The
reason why we do not see this relaxation time in the conductivity at q̃ = ρ̃ = 0 and
hence why the constant conductivity does not violate causality is that the residue of this
relaxation pole vanishes in the isotropic limit at vanishing density. Furthermore, we notice
that this theme of exact convergence to the Drude model ((3.3.44) has precisely a pole at
ω = −iτ−1) at large ρ̃ is recurrent and was already seen in figure 3.4 in section 3.4.1.2.
From naive intuition about weak coupling, one might be puzzled as to why the relaxation
time scales as

√
ρ̃, i.e. proportional to the inverse of mean separation between the quarks

whereas in a simple geometric weakly coupled model, the relaxation time is proportional
to the mean free path, that is proportional to the density. Because this system is strongly
coupled and there are long-range correlations, however, this intuition breaks down.

This case of very small q̃ = 0.02, varying ρ̃ and f is also a good example to study
what happens to the third pole. To do that, we can look at fig. 3.24, which shows the
location of this higher relaxation pole and (the logarithm of) its residue as a function of ρ̃,
at various values of f . We see that the residue decreases exponentially with increasing ρ̃,
while the poles move to higher imaginary frequencies, until they can’t be tracked anymore.
To illustrate this better, the frequency in the region of ρ̃ in which there is no reliable residue
information anymore is plotted dashed. This is because the accuracy of the location of
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Figure 3.24: Left: The location of the second relaxation pole as a function of the net
baryon density for various values of f . Right: The logarithm of the residue of the second
relaxation pole.

the pole that is necessary to determine the residue with our methods is of the order of the
residue. Obviously, there is no guarantee that the extremum that one finds actually is a
pole if there is not good enough data to compute the residue. One could argue that we could
go to much higher accuracy since the accuracy grows exponentially with the number of
steps. However the number of steps needed to track the poles grows with the inverse of the
residue, i.e. exponentially with increasing ρ̃ or q̃. If we look at the density dependence of
this pole, we find that its imaginary frequency increases with increasing density – which is
just what we expect for a naive model of weakly-coupled particles with finite cross sections
σ. In particular, for small cross sections in d dimensions, σ1/(d−1) � ρ−1/d, one expects
classically τ−1

cl. ∼ vσρ, where v is some characteristic speed. Hence for larger densities or
larger cross sections, the scaling would naively approach

√
ρ. This is just what we see in

fig. 3.24. Hence, despite the limited accuracy and reliability in tracking these poles, we
can safely associate this pole with a classical, weakly-coupled relaxation behavior.

A behavior very much in contrast to the case of turning on the finite density can be
found in fig. 3.25, where we show how the relaxation poles behave at small wavenumber in
the presence of a magnetic field. We see that with increasing magnetic field, the relaxation
poles merge at some critical magnetic field, B̃c, and then turn into the first Landau level.
This contrasts to the classical Drude-model analysis, where the magnetic pole moves away
from the imaginary axis as soon as the magnetic field is turned on. Essentially what is
happening is that the creation of the first Landau level is inhibited below B̃c because of
the strong coupling. If we assume a crude model, in which the frequencies are given by
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Figure 3.25: The location of the relaxation
poles as a function of the magnetic field for
various values of f .

−i τ
−1
cl. +τ−1

2
±
√
ω̃2
c −

(τ−1
cl. −τ−1)2

4
, then we see the reason for the dependence of the curves on

f . Now, remember that we found in section 3.4.1.1, that ω̃cτ ∼ B̃√
1+f2

, such that B̃c is

approximately given by the ratio of the relaxation times at vanishing magnetic field, B̃c ∼√
1+f2

2

(
τ−1
cl.

τ−1 − 1
)
B=0

. This ratio depends non-monotonically on f , because apparently

the location of the classical relaxation pole is not closely related to the location of the
first relaxation pole. Obviously, this generic behavior is not exact, but provides a rather
qualitative description.
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Figure 3.26: The location of the relaxation
poles as a function of the magnetic field for
different wavenumbers.

This magnetic dependence is consistent with the dependence of the relaxation poles
on the wavenumber that we show in fig. 3.26. In fact, now it is most apparent that the
behavior is reasonably well-described in terms of τcl./τ only. This can be seen by computing

1
2B̃c

(
τ−1
cl

τ−1 − 1
)
B=0

. For the data in fig. 3.26, this ratio is approximately constant, ranging

from 4.2 at q̃ = 0.02 to 5.3 at q̃ = 1.2. Certainly it is not close to 1, but we could not expect
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this, as we chose our expression only as an example of how a branch cut in the solution for
the location of the poles as a function of the background parameters can look like. This
shows us however how suppressing the first Landau level is related to strong coupling, as
the critical magnetic field is proportional in some approximation to the difference between
the classical and strong-coupling inverse relaxation times.
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Figure 3.27: The location of the poles on the imaginary axis as a function of the wavenum-
ber for different values of the magnetic fields. The frequency and wavenumber are scaled
with the diffusion constant, as the diffusion behavior can be written as iDω = (D q)2.

Finally, we can look in fig. 3.27 at the dependence of the location of all three poles
on the wavenumber at varying magnetic field. At vanishing magnetic field, we start off
with the system in which there is the hydrodynamic to quasiparticle transition, and there
exists always the classical relaxation pole, that moves towards larger τ−1

cl. with increasing
q̃. Going beyond the critical magnetic field, we see that the relaxation poles re-appear
at some wavenumber qB < qc that increases with increasing magnetic field. Beyond some
second critical magnetic field, at which q̃B = q̃c, there is only one imaginary pole, that
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starts off at small q̃ as a diffusion pole and turns at large q̃ into the classical relaxation
pole. Interestingly, at large wavenumbers, we always see only the classical relaxation pole,
so the “strong” relaxation pole is an effect that arises only at small wavenumbers, i.e.
long-distance perturbations, which is what one actually expects, because of the diverging
correlation length. The effect that the magnetic field inhibits relaxation on large length
scales is precisely what we expect because of the localizing effect of the magnetic field
on charged particles. This behavior between the critical magnetic fields, in which a pair
quasiparticle poles (with positive and negative real part of the frequency) turns into a pair
of relaxation poles and then into a different quasiparticle pole nicely reflects the transition
between the regime dominated by Landau levels and the regime dominated by resonances
on the width of the defect, that we observed in the previous section. Furthermore, we see
just as in section 2.3.3, that under the appropriate rescaling with the diffusion constant,
the curves agree even beyond the actual behavior proportional to q̃2 – indicating that q̃c
is reasonably well-described by the lengthscale from the diffusion constant. The attentive
reader will notice the “hole” in the plot near q̃c. This arises because it is difficult to track
the poles in this regime using our method of scanning the frequency for each value of q̃ in
this case. Obviously, swapping that order should allow us to determine the location of the
poles also in this regime.
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Figure 3.28: The imaginary frequencies of the relaxation poles as a function of the quark
mass. Left: For various values of f . Right: For various values of q̃

The effect of turning on a finite quark mass is very similar to the case of the background
magnetic field, as we see in fig. 3.28. The most significant difference is in the f -dependence,
as the critical mass at which the relaxation frequencies receive a real part increases quickly
as we increase f . This is due to the fact that the hydrodynamics is dominated by physics
in the IR, i.e. at small radii and hence depends on Ψ0 rather than the mass directly and
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the quark mass as a function of Ψ0 increases with increasing f .
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Figure 3.29: The location of the poles
on the imaginary axis as a function of
the wavenumber for different values of the
quark mass. The frequency and wavenum-
ber are scaled with the diffusion constant.
For comparison, the critical mass for the
embedding is m̃ ∼ 1.196.

Looking at the picture of the location of the poles as a function of the wavenumber in fig.
3.29, we find again that the system at small imaginary frequencies and small wavenumbers
is well-described by the diffusion behavior, however not up to as high wave numbers as in
the case of the background magnetic field. The critical mass above which there is always
only the classical relaxation pole is just below m̃ ∼ 0.75.

3.5.3 Landau Levels and Plasmons

In this subsection, we will try to shed some light on the nature of the magnetic and density
resonances that we observed in section 3.5.1, by studying the corresponding quasiparticle
poles. For simplicity, we will focus on the isotropic (q̃ = 0) case. In principle, there are
again different methods of estimating the location of the poles. The least reliable method
is simply fitting Lorentzians to the resonances. However it cannot give the right answer, as
we expect a sequence of infinitely many poles with separation ν0 − iγ0, and if we consider
the nth resonance and provided ν0 and γ0 are of the same order, we need to consider more
than O(n) neighboring poles. The more precise method involving only the data on the
real (frequency) axis is then as in section 2.3.1 based on assuming an appropriate sequence
of poles, summing it (ideally analytically), and fitting the parameters locally around each
maximum - assuming they vary slowly enough, such that the “backreaction” from the
varying parameters is sufficiently suppressed. The third method is simply trying to fit
the poles by scanning an area in the complex frequency plane using an appropriate guess
obtained from the data on the real axis. Then, we can use the usual recursion to find the
poles. The most time consuming step in that method is to scan the search area for the first
time, since we can not assume that the poles are the only local extrema. For the former
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technique, we use again the Ansatz (2.3.91) – but it turns out that methods to try to fit
the resulting analytic expression (2.3.92) are unreliable in this case, mainly because of the
periodicity of the expression. This Ansatz basically says that all the poles are located with
equal spacing on a straight line at νn = n(±ν0 − iγ0) (or νn = (n − 1/2)(±ν0 − iγ0) for
the Landau levels), with residues ε0

π
νn
n

(or ε0
π

νn
n−1/2

). From (2.3.93), we can then obtain

the parameters for the poles from the nth local maximum, σn, ωn and its neighboring
minima σn−1/2, σn+1/2. Assuming σn−1/2 = σn+1/2 = σmin, the exact result is in the case
of plasmons

σn − σmin = −2
ε0

sinh 2πω̃nγ̃0

ν̃2
0+γ̃2

0

, ω̃n = n
ν̃2

0 + γ̃2
0

ν̃0

(3.5.122)

and similar for Landau levels. This expression can be trivially inverted to obtain ν̃0

and γ̃0. Taking into account that σn−1/2 6= σn+1/2, the correction when using σmin =

1
2

(
σn−1/2 + σn+1/2

)
will be of order

π2γ̃2
0

ν̃2
0

(
cosh nγ̃0

ν̃0

)−1

, i.e. it will only be significant for

the first few poles. However this seems to be a less bothersome shortcoming to take than
“misfitting” poles because of the periodicity. Note that the two terms in the error term,
make sure that beyond n = 1 always either of them gives us a good suppression.
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Figure 3.30: The location of the poles ωn = νn − iγn in the complex frequency plane from
the different estimates as described in the text. For orientation purposes, the lines connect
the poles of different order in the same background. Left: Finite ρ̃ = 2, Right: Finite
B̃ = 4

In fig. 3.30, we compare the two methods to obtain the poles – the “exact” direct
search and the “approximate” result from fitting to the Ansatz – for various values of f ,
B̃ and ρ̃. In the direct search, we used the maximum value of the spectral function in
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the last recursion as an indicator as to whether the pole has been found, with a threshold
at σ̃(ν̃)

ε0
= 100. In practice the value will be either much larger or much smaller than this

number. In the plot, we still show the “misfitted” poles for reference. Overall, we see that
the agreement of ν̃0 is very good at finite f , and the estimates from the spectral curves
are much more reliable in the sense that there are no poles that are “not found” or have
large displacements. In fact, even if there is some disagreement, the spacing ν̃0 between
the poles is more accurate than the overall shift of the poles. While there may be larger
disagreements for the first pole and at small values of f , we should note that in those
cases the direct fitting also fails frequently. There is no clear trend for the dependence
on ρ̃ and B̃. Typically the approximation is slightly worse for very large values and very
small values, because in the former case the decay is more rapid, causing the resonances
to be more asymmetric. In the latter case, we also see only the first few resonances and
are not in the slowly decaying oscillatory regime – this time because of the larger spacing
between resonances. We will not demonstrate this in the plots in fig. 3.30, simply because
γ̃0/ν̃0 is approximately constant when varying B̃ or ρ̃ at fixed f , and hence this is difficult
to display in a clear fashion. The agreement in the imaginary direction is slightly worse,
which is not unexpected because it depends more on the conjectured form of the residues
for the Ansatz.
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Figure 3.31: The real part ν̃n of the location of the poles in the complex frequency plane
as a function of the level number. The lines are linear fits. Left: Various values for B̃ at
f = 2. Right: Varying ρ̃ at f = 4

Next, let us look at the spectrum of the resonances as a function of the resonance level
n. In figure 3.31, we show the real part of the poles ν̃n for various choices of ρ̃ and B̃ at
Mq = 0. Because it is important to distinguish between behaviors that are, for example,

of the kind
√
n(1 + n) from strictly linear behaviors, we used the direct search for poles in
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order to obtain the highest accuracy. It turns out that the poles follow extremely closely
a linear behavior ν̃n = nν̃0 + δν̃ (or ν̃n = (n − 1/2)ν̃0 + δν̃ in the case of a magnetic
background field), with a small negative value for δν̃. The latter is easily explained from
the behavior of the first pole that we found in the hydrodynamic regime. The constant
separation implies that the spectrum of Landau levels is indeed the classical one for the
finite mass case. This is slightly puzzling though, because one would have thought that
if the collective excitations that carry the current have an effective mass, this mass would
be finite. Then we should see a transition from the massive to the massless behavior at
some frequency. Hence, either that mass must be large or frequency dependent, or some
unusual mechanism gives rise to the Landau levels.
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Figure 3.32: The real part ν̃n of the location of the poles in the complex frequency plane
as a function of the level number at finite quark mass. Left: Varying m̃ at B̃ = 4 and
f = 4. Right: Different values of ρ̃ at m̃ = 8 and f = 2.

Looking at the case of finite quark mass in fig. 3.32, we find again no sign of a non-
constant spacing between the poles, surprisingly even around the level of the quark mass.
There is however a transition in the value of ν̃0 around that region, which we will follow
up on later.

Finally looking at the behavior of the imaginary part of the poles, which reflects the
inverse lifetime, in fig. 3.33, we find a small but significant deviation from the linear
relation γ̃n = nγ̃0 + δγ̃ (and accordingly for the Landau levels). This small drift towards
larger γ̃n for small n can again be explained from the non-trivial behavior of the first
(hydrodynamic) poles and from the fact that we are in a finite temperature background,
which renders the first few resonances that are close to the temperature scale less stable.

Finally, we can look at the resonances. Before looking at ν̃0, let us study the shift δν̃
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Figure 3.33: The imaginary parameter in the location of the poles, ω̃n = ν̃n − iγ̃n. Left:
Varying values of ρ̃ at f = 4. Right: Varying mass m̃ at f = 4 and B̃ = 4.
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in fig. 3.34. We find that for large f , there is a universal behavior δν̃ ∝ B̃−1, ρ̃−1 with a
proportionality constant that seems independent of f . A significantly different behavior
exists only for small values of f and large values of B̃ or ρ̃. This may be simply due to the
worse fitting because in those cases we found only the first two poles, and the second one
has already a very low amplitude such that it is at the limit of what can be recognized as
a resonance above the background. This overall behavior may be simply due to the fact
that the first quasiparticle pole originates from the relaxation poles on the imaginary axis
as we found in the previous section.
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Figure 3.35: The separation ν̃0 in the spectrum of “plasmons” and “Landau levels” as a
function of B̃ or ρ̃ for various values of f . The plot on a right only shows the highest f
curves.

Next, let us look at the value of ν̃0 in fig. 3.35. There are two features to notice: Firstly
the finite value of ν̃0 at vanishing magnetic field or density, and secondly the non-trivial
dependence on B̃ or ν̃ – both of which are quite different from what we would have naively
expected for plasmons and Landau levels. It turns out that there are two equivalent ways
to interpret this situation.

An interesting physical picture can be obtained by representing the data as ν̃2
0 as a

function of the square of the magnetization M̃ or chemical potential µ̃ that we compute
in (E.2.26). As we see in fig. 3.36 the result are perfectly straight lines, such that the

resonances are given by ω2
c = ω2

0 + M2

α(f)2 or ω2
p = ω2

0 + µ2

α(f)2 . Obviously, we could interpret

the function α(f) as some kind of a mass scale that depends on f only, i.e. not on the width
of the defect, but only its “topological” property. If we were – inappropriately – to look
at the corresponding classical Schrödinger equation, we would see that then the magnetic
and density perturbations are not independent, but mixes with some other potential. This
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Figure 3.36: ν̃0 presented as ν̃2 as a function of the square of the magnetization or chemical
potential M̃2 or µ̃2 for various values of f . The plot on a right only shows the highest f
curves.

is in contrast to the fact that the overall “amplitude” of the resonances, and hence the
residue of the poles is at least for small fields proportional to the magnetic field. This is
just what happens in the case of the classical Hall effect as discussed in section 3.3.1. In
fact, we can check a few values for ω0, and go back to fig. 2.12 to see that this resonance
is precisely the one that we found in chapter 2 and interpreted as being resonances over
the width of the defect.
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Figure 3.37: The ratio ν̃0T
Teff

as a function of

B̃ or ρ̃ for various values of f .

Inspired by this, we can try to check the relation between the resonances and the length
scale given by the effective temperature that we observed in fig. 3.36. To do so, we can
plot the ratio ν̃0T

Teff
in fig. 3.37, where we see that it approaches within errors ν̃0T

Teff
∼ 2. This

is not a big surprise, as there is an underlying exact relation between
Teff
T

and µ (or M),
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that we can easily verify numerically and may in principle be able to derive analytically.
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Figure 3.38: The “inverse lifetime to mass ratio” γ̃0

ν̃0
for the magnetic and density resonances

as a function of B̃ or ρ̃ for various values of f .

Before concluding the study of the parameters of the resonances, let us look at the ratio
γ̃0

ν̃0
in fig. 3.38. Firstly, we notice the steps in the curves, that happen to coincide with data

sets at which the highest pole in the sequence of resonances drops out of the fit because
of its decreasing amplitude. This indicates the limitations in fitting the parameters (that
we expect to converge only asymptotically) accurately. Obviously, we could try to account
for the non-linearity in γ̃n as in section 2.3.2, but this has the downside that fitting with
more parameters makes the result less reliable and may simply hide the limitations of the
numerical result. Secondly, we see that within those limitations and even though γ̃0

ν̃0
itself

seems to approach constants in ν̃ or B̃, it seems to be best described as being proportional
to

Teff
T

. Within the errors, it seems that the appropriate ratio is independent of f and

becomes also approximately constant in ν̃ and B̃.

Next, we can look at the location of the poles at a finite quark mass in fig. 3.39. If we
look only at ν̃0 as a function of B̃, we see a surprise, as there is only an overall shift in
the curves depending on the quark mass. On the other hand, if we plot ν̃2

0 as a function
of the square of the magnetization M̃2, we see clearly the scale M̃ ∼ m̃ that separates
the massive and massless regime. Below M̃ ∼ m̃, ν̃0 is suppressed with increasing mass
and above M̃ ∼ m̃, the behavior is similar to the massless case. If we compare ν̃0 to
the effective temperature, we find that ν̃0T

Teff
is approximately constant around 2.04 . . . 2.06

with no apparent systematic trend, so even in this case the effective temperature sets the
appropriate scale for the quasiparticle energy spectrum. In principle, it would be interesting
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Figure 3.39: ν̃0 for various values of the quark mass parameter m̃ at f = 4. Left: As a
function of the magnetic field. Right: ν̃2

0 as a function of the magnetization M̃2.

to study also smaller values of f , however at smaller f and large masses, it is not possible
to find reliably at least the first two or three poles.
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Figure 3.40: The difference in ν̃0 between
the case of the magnetic field and density
at f = 4 for various values of the quark
mass as a function of ρ̃ = B̃.

In principle, we expect that the results in the presence of the finite density and the
magnetic field are different as we turn on the finite mass. Comparing ν̃ for these cases in
fig. 3.40, we see that the difference is very small, even as m̃ > B̃. We are uncertain as to
whether these deviations are significant. From the behavior at m̃ = 8, it seems that there
may be a small effect, which is suppressed in the quasiparticle regime. This question is
resolved in 3.41, where we plot Teff/T at finite mass. We see that there is indeed a small
difference between the dependence on ρ̃ and B̃ at finite quark mass. Upon close inspection
we also notice the separation between the regimes above and below the mass scale with the
scalings

Teff
T
∝ B̃1/2 or

Teff
T
∝ B̃, respectively, at least in the case of the magnetic field. It

seems that there, the scale is B̃ ∼ m̃, whereas for the density it is ρ̃ ∼ m̃2.
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Figure 3.41: The scale Teff/T at f = 1 and
various values of the quark mass as a func-
tion of the net baryon density and magnetic
field.

Figure 3.42: Left:
Teff
T

as a function of the mass and the net baryon density for various
(small) values of f . We choose the lower bound of the range 2 ≤ ρ̃ ≤ 16 to avoid the phase

transition at the critical mass and numerical problems near it. Right:
Teff
T

as a function
of the mass and the magnetic field for various values of f .
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Because of the very good agreement between the quasiparticle spectrum and Teff , let us

have one more look at the mass-dependence of
Teff
T

in fig. 3.42. Generically, the dependence

on ρ̃ and B̃ is very similar at large values of f and differs very significantly at small values,
hence our choice of plots. At small values of f , we see a very interesting behavior. It seems
that at vanishing f , Teff is essentially given by the mass, with only a subleading dependence
on ρ̃ at large masses, which actually reduces Teff with increasing ρ̃. As we turn on f , this
behavior turns over into a more common behavior, starting first at small f at large masses
and small densities. This may be some transition from a purely 2-dimensional system to a
system that extends also in the third dimension. What makes this behavior so surprising
is that normally, both in the mass dependence and also at Mq = 0, any dependence on
f is subleading at large ρ̃. We should be careful with conclusions however, because we
have not tested the dependence of the resonances on Teff in this regime. Looking at the

B̃ dependence at large f , we find that the behavior is more generic, with a ∼ B̃
m̃

scaling of

Teff at m̃ � B̃ and dependence approximately proportional to
√
B̃ at m̃ � B̃. We also

note that The transition between the two regimes becomes clearer at increasing f , i.e. as
we widen the defect. Large f also suppress the B̃ dependence of Teff .
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Figure 3.43: The “inverse lifetime to mass ratio” γ̃0

ν̃0
for the magnetic resonances as a

function of B̃ for f = 4 and various values of m̃.

To conclude, let us also in this case look at the ratio ν̃0

γ̃0
which we show in fig. 3.43.

Again, we see that ν̃0

γ̃0
is approximately constant in B̃, however it seems to depend on the

quark mass. If we divide by the effective temperature, the dependence on the quark mass
is removed, however there seems to be some dependence on B̃.

Finally, we can look at how the poles split if we turn on the Hall effect. In fig. 3.44, we
show the location of the poles for various values of f , ρ̃ and B̃. In black, we show the poles

128



f=4, Ρ
�
=2:  B

�
=0, 0.4, 0.8, 1.2, 1.6

B
�
=2

f=2, B
�
=1:  Ρ

�
=0, 0.2, 0.4, 0.6, 0.8, 1

f=4, B
�
=1:  Ρ

�
=0, ... 1

f=4, Ρ
�
=1:  B

�
=0, ... 1

0. 1. 2. 3. 4.Ν
�

n
0.

0.25

0.5

0.75

1.

1.25

1.5

1.75

Γ
�

n 

Figure 3.44: The splitting of the poles due to the Hall effect at various values of ρ̃, B̃ and f .
The black symbols indicate the sequence of poles in the absence of the Hall effect for some
choice of f and B̃ or ρ̃. With decreasing gray shade, we turn on the ρ̃ or B̃, respectively,
causing the original pole to split in two poles.
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in the absence of the Hall effect, and then we show the sequence of poles as we gradually
turn on the “other” parameter. The most surprising result is that the total spacing ν̃0 of
the pairs of poles remains approximately unchanged, with quadratic dependence on the

“smaller” background quantity δν̃0(B̃) :=
√
ν̃2

0 − ν̃0(B̃ = 0)2 ∝ B̃ that is within errors

consistent with the behavior of the effective temperature. The splitting of the poles, ν̃∆

depends approximately linearly on the magnetic field or density that we turn on, however
there seems to be no simple dependence of the proportionality coefficient on the obvious
candidates such as the specific magnetic moment ∂M

∂ρ0
, the density of states or the magnetic

susceptibility. We show this in fig. 3.45
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Figure 3.45: Left: The splitting of the energy of the quasiparticle poles due to the Hall
effect, ν̃∆. Right: The shift in ν̃0 from turning on the second parameter, written as

δν̃0(B̃) :=
√
ν̃2

0 − ν̃0(B̃ = 0)2 ∝ B̃ (and ρ̃↔ B̃).

The origin of the resonances on the gravity side is again straightforwardly explained
in terms of quasinormal modes on the brane. Taking the same Ansatz as for the effec-
tive temperature, but now in terms of the variable s that we used in section 3.4.1.1 and
computing the equation of motion for the Ansatz Ay = A0e

R
dsζ as in (3.4.96), we obtain

ζ2 + ζ̇ +

((√
−GGtuGxy

)′)2
Guu

Gtt
− GGttGuuGxxGyyω̃2 = 0 . (3.5.123)

Since we just want to have a brief picture, we will only work to leading order, i.e.. use
ζ0 := iω̃

√
GGttGuuGxxGyy and the pertubation ζ = ζ0 + ε. Taking only the leading terms,

we find the equation of motion

0 = ε̇ − 2εζ0 + ζ̇0 =: ε̇ − εα(s) − β(s) , (3.5.124)
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again with the general solution ε = e
R s
0 ds̄ α(s̄)

(
ε0 +

∫ s
0
ds̃ e−

R s̃
0 ds̄ α(s̄)β(s̃)

)
. Essentially what

happens now is that the resonances arise from the inhomogeneous term. If we imagine
that the source term β were a delta function at some position s0 with amplitude ξ, then
the result would be ε = ξe

R s0
s ds̄α(s̄). Setting s = 0 and taking the real part gives us the

resonances we want as δσ ∼ ξ cos 2ω
∫ s0

0

√
GGttGuuGxxGyy.

To see where the resonances originate from in the geometry, we consider the high fre-
quency limit ω̃ � 1 and remind ourselves that the integral of a periodic function vanishes,
however the contribution to an integral of the type

∫
F (x)eiωx from some region around x0

will be of the order F ′(x0)
ω

. In our case, the frequency in the exponent is also not constant,
but we can take care of that by a coordinate change s→

∫
ζ0. After taking the derivative

and changing back to s, we find that the term that gives us the contribution in the integral

is ds ∂s
ζ̇(s)
ζ(s)

. This expression already shows us straightforwardly that these resonances ap-

pear only in the presence of the background fields, since otherwise
√
−GGttGuuGxxGyy = 1.

In fig. 3.46, we show this term for various choices of the magnetic field, f and the density.
We see how this length scale arises, and we see also the structure that gives rise to the
line splitting in the Hall effect. It also demonstrated how the different phase between the
magnetic and plasma resonances arises, essentially through flipping the sign in this term.
The shape of this contribution gives rise to the amplitude of the oscillations, and the pos-
itive and negative sections tell us that there is a higher suppression by ω̃. Note that at

small u �
√
B̃, ρ̃ we have s ∼ u and ζ ∼

√
1 + f 2. Hence at small or O(1) values for B̃

and ρ̃, the spacing between resonances will be mostly controlled by the value of ζ, and not
through s. The curves in the plot however control through their shape the nature and the
stability of the resonances. Essentially, we can interpret this as scattering off a potential
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Figure 3.46: Coefficient giving an estimate
of the contribution to the resonances as de-
scribed in the text.

step, as we discussed around equation (2.2.90).
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Chapter 4

Discussion and Conclusion

In this thesis, we used holographic techniques to investigate the transport properties of
certain defect CFT’s. In particular, we studied matter on a (2 + 1)-dimensional defect
emersed in a heat bath. Most of our analysis covers two distinct defect CFTs. The first
was realized by embedding Nf probe D5-branes in AdS5×S5, as described in section 2.1.1
and in this case, the system (at T = 0) preserves eight supersymmetries. The second system
involves embedding Nf probe D7-branes in the AdS5 × S5 background and the resulting
defect CFT preserves no supersymmetries. In this case, it is however not quite sure in
how far the setup persists in the light of gravitational backreaction. In both cases, the
theory could be deformed by introducing an additional internal flux on the probe branes,
a flux in the AdS and a deformation of the sphere. In the dual CFT, the defect in the
presence of the internal flux separated regions where the rank of the SYM gauge group
was different. As described in section 2.1.2, this flux was crucial to remove an instability
which would otherwise appear with the D7-brane construction. Perhaps surprisingly, the
transport properties of both defect CFT’s were essentially identical in the massless case.
Certainly, higher order effects might not be identical anymore.

4.1 Conformal effects

In the first part of this thesis, we focused on the presence of the internal flux parameter f ,
f Nf

√
λ/π ∈ Z, in order to isolate the properties that appear to be due the defect nature of

the system. Overall, our analysis revealed the expected diffusion-dominated hydrodynamic
limit at small wave-numbers and we found a smooth crossover to a collisionless regime at
the large wave-numbers. In the latter regime, the defect theory exhibits a conduction
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threshold, given by the wave-number q of the current and the system is approximately
described only in terms of the “rest-frame frequency” ν =

√
ω2 − q2.

In many respects, our results coincided with those in [49], where holographic techniques
were used to study a purely (2 + 1)-dimensional system with sixteen supersymmetries.
Hence maximal supersymmetry (or supersymmetry, in general) does not seem to be a
key feature for producing the interesting behavior of these holographic models. Instead
many properties seem to emerge from the infinite Nc and infinite λ limits, that are implicit
in making a supergravity analysis of the AdS dual. In section 2.4, we elucidated one
such effect that arises purely from the large-Nc and large-λ limits, namely the frequency
independence of the conductivity, σ̃(ω̃). In [49], this effect was described as a consequence
of the electromagnetic duality of the gauge theory giving the dual description of the CFT
currents. We were able to explicitly show that this duality is lost when stringy corrections
are included in the worldvolume gauge field action and explicitly calculated the frequency
dependence in σ̃(ω̃) arising from the corresponding finite-λ corrections to the conductivity.
As described in appendix B, one can well imagine that there will be other interactions
which, although they appear to be of higher order in the α′ expansion, provide further
corrections to the conductivity with coefficients fn/

√
λ, where n > 2. Hence, our results

in section 2.4 are only the leading corrections when f is small but finite. There will also
be curvature interactions to the worldvolume action of the probe branes [97, 98]. These
will also produce finite-λ corrections but in contrast to the previous discussion, the latter
will not be enhanced by factors of f and first appear only at order 1/λ.

While certain aspects of charge transport were similar for the present defect CFT’s
and the maximally supersymmetric CFT studied in [49], we also found some profound
differences. The most prominent one is the dependence of our results on the internal flux
f – certainly a difference since no such parameter exists in the maximally supersymmetric
case. For example then, with large f , strong quasiparticle peaks appeared in the spectral
functions and conductivities. Similarly, certain phenomena in the defect CFT seemed to
be controlled by a new dynamically generated scale in this regime, i.e., a scale distinct
from the temperature T . We denoted this scale as the effective temperature Teff in section
2.2.2.1. For small f , Teff ∼ T to within factors of order one. However, for large f , one
finds that πT/(2Teff ) ' k

√
f where k = 4Γ(5/4)2/

√
π, as shown in (2.2.85). While this

seems a curious way to present the ratio of T and Teff , it was found in section 2.3.2 that
precisely this combination played a role in fixing the spacing of the quasiparticle poles.
Further, as also noted there, precisely the same behavior was found at large f for the
diffusion constant: πD T ' k

√
f .

A more intuitive picture as to the origin of this dynamical scale comes from considering
the probe brane geometry, as in section 2.1. Recall that when f is non-vanishing, the defect
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separates a region where the SYM has gauge group U(Nc + q) from one where the gauge
group is U(Nc). However, on the side where the rank of the gauge group is enhanced, the
defect also excites a non-commutative configuration of adjoint scalars in a U(q) subgroup

of the full U(Nc +q). At T = 0, this configuration extends to infinity with Tr(Φ2) = q2

4Nf

1
z2 .

In particular, this configuration preserves the conformal symmetry, i.e., does not introduce
a new scale. The scalar profile is reflected in the radial profile of the probe D-branes which
also extends out to z → ∞ when T = 0 and f is non-vanishing. However, when the
temperature is non-vanishing, the probe branes fall into the horizon at a finite value of z.
For large f , one finds

zmax T = k
√
f , (4.1.1)

where k is precisely the same constant found above. The natural interpretation of this
profile is that at finite temperature, thermal fluctuations decohere the scalar fields at
some distance away from the defect. That is, at finite T , the defect can only excite a
coherent configuration of scalars out to zmax. However, at small f , zmax vanishes whilst the
dynamical length scale doesn’t vanish. We can interpret that by some extra contribution to
the width that arises from excitations in the bulk fields that are induced at strong coupling
from the presence of the charged matter degrees of freedom on the defect.

One interpretation then is that the defect effectively acquires a finite width when T
is non-vanishing. This intuitive picture may seem more reasonable, if we recall that the
system is at (extremely) strong coupling and so any probe exciting of the defect fields will
actually excite a complicated mixture of defect fields and “bulk” SYM fields. This picture
of finite-width for the defect seems to match well with the results for the quasiparticle
spectrum on the defect. In particular, we found that both the conduction threshold and
the resonance peaks are well-described by a quasiparticle “tower” with equally spaced
“rest frame” energy and constant “mass to inverse lifetime ratio”. The length scale that is
suggested from this spectrum is very similar to πDT and πT/(2Teff ) (and at large f also
similar to zmax) plus a small constant.

In terms of the effective Schrödinger analysis, e.g., see appendix C, the quasinormal
spectrum arises in the gravity side from interference on a potential barrier in the asymptotic
region. From the profile of the brane, this translates into an interference or resonance in
the region around the defect. These two dual pictures of the origin of the spectrum seem
orthogonal. The intuitive CFT picture involves a width and implicitly, a potential, in
the space transverse to the defect, while the effective Schrödinger analysis constructs an
effective potential in the radial or “energy scale” direction. It would certainly be interesting
to have a clearer connection between these two descriptions.

The hydrodynamic and collisionless regimes are cleanly separated at a critical wave-

134



number where the diffusion pole disappears, as observed in section 2.3.3. There, we found
that the diffusion mode is partnered with another dissipative mode on the imaginary axis.
These two poles coalesce at the critical wave-number and move out into the complex
plane for larger q. Hence precisely at the critical wave-number qc, the corresponding
thermal correlator will exhibit a curious double pole on the imaginary axis. Interestingly,
qc has a similar qualitative f dependence as the other (inverse) length scales and is also
quantitatively close, as qc/(πT ) ∼ 0.67/(k

√
f). This supports again the concept that the

properties of the defect are controlled by one fundamental length scale, that can be related
to the effective width of the defect.

In section 2.5, we outlined a topological Hall conductivity, which is induced when the
defect is coupled to the SYM gauge theory with a topological θ-term. Of course, it is also
interesting to study the Hall conductivity induced by a background magnetic field on the
defect as we do in the second part of this thesis.

4.2 Condensed matter effects

In the second part of this thesis, we added to our analysis the presence of a finite background
magnetic field, finite quark mass and net baryon number density. This allowed us on the
one hand to enlarge the class of theories that we are studying, and on the other hand it
allowed us to compare the rich structure of our results to known phenomena in condensed
matter physics, that are based either on generic considerations or on physics in the weakly
coupled regime. We tried to distinguish between a) generic properties that seem to be
independent of physical details of particular models, b) intuition that carries over from the
weak coupling regime and c) properties that are specific to the strong coupling regime and
allow us to build some new intuition that is generic in the strong coupling regime.

In section 3.1.1, we looked at the gravitational setup that corresponds to turning on
the various parameters in the field theory side. We looked both at supersymmetric field
theories with the D3-D5 embedding and at non-supersymmetric D3-D7 setups. The latter
is of particular interest to condensed matter physics because the the spectrum of charged
matter contains only fermions on the massless level. Furthermore it is curious that the
only change is a Chern-Simons term with non-constant coupling at finite “quark” mass.
However, we did not pursue this avenue at the massive level, since the results would be
unreliable as an attempt to to stabilize the branes with a large internal flux f produces an
inconsistency due to gravitational backreaction. We deferred a more detailed discussion
of the phase diagram to appendix E, where we found results that are similar to the ones
found previously in 3+1 dimensional field theories [45], and we found that the blackhole
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embeddings that we use to compute the transport properties are always thermodynamically
preferred.

We then went on to provide a few analytic results in section 3.2. In 3.2.1, we studied how
the field theory outcome of the EM duality in gravity side changes in the case of the extra
parameters. We found the very interesting result, that the transport properties are now
related under a simultaneous exchange of the dimensionless magnetic field and density and
the transverse and longitudinal coordinate, while interchanging the complex 2-dimensional
conductivity tensor with its inverse. From a condensed matter point of view, this relates
completely distinct parameters of the theory for a large class of 2+1 dimensional theories
whose gravity dual obeys EM duality. This duality also became apparent in appendix E,
where we studied the thermodynamics, and in the massless case, there was a degeneracy
between the density and magnetic field. Throughout chapter 3.5 and appendix E, we saw
how this duality gets broken as we consider a finite mass. However, still, this breaking
appears gradually, with the parameter Mq/T .

In chapter 3.4, we then discussed several regimes. In the DC limit, we found the Drude
conductivity at finite density, a magnetoresistance effect and a Hall conductivity. They can
be parametrized under the Drude model, obviously giving a new description to the “Drude-
parameters” in terms of the parameters of the theory, as the underlying microscopic physics
is different. However, the overall scalings in the limit of large density and magnetic field
are the familiar ones. Coincidentally, if we assume that the form of this DC conductivity
has a high degree of generality, this could address the minimum quantum conductivity in
Graphene [109]. There, it is known that at the neutrality point, which corresponds in our
case to vanishing net baryon density, there is a minimum in the conductivity of e2/h per
carrier type, and this has apparently been of significant interest in the community [108].
Under an appropriate translation of the parameters, this is precisely what we observe in our
case, as we also find an increasing conductivity as we move away from the neutrality point,
which goes beyond the results in [49]. However, for example from the observed magnetic
resonances, our defects seem to be quite different from the chiral nature of graphene [89].
We then studied the small-frequency limit, in which we reproduce the existence of a Drude
peak and the minimum in the magnetoresitance. We could also identify a relaxation time,
and accurately reproduce a relation between the frequency dependence of the diagonal
conductivity and the hall conductivity, in the limit of large densities. In general, the
structure of the frequency dependence resembled the generic prediction from the Drude
model. We also found however, that the particular behavior of the parameters that depend
on a particular model changes – for example the relaxation time receives a dependence on
the magnetic field.

When we compared the relaxation time to the location of the purely dissipative poles
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in the hydrodynamic regime that we studied numerically in section 3.5.2, we found that
there was a disagreement with the dominant “relaxation pole” only at small densities.
This can be explained by the remarkable constant DC conductivity from the EM duality
at vanishing density (2.4.98), that is obviously not considered in the Drude model. In this
regime and also in general, we observed that there is always a total finite quark density in
thermal equilibrium (which we can’t control) that influences the transport properties even
at vanishing net density. Beyond the dominant relaxation pole, that showed an unusual
dependence on the density, which we attributed to the strong coupling, there was a second
relaxation pole, that shows a more classical behavior, but has no significant contribution to
the charge transport. We were able to reproduce the transition to the quasiparticle regime
that we found in the first part, and also found another transition in which the relaxation
poles merge and turn into the first Landau level at some critical magnetic field, rather than
the diffusion pole merging with the first relaxation pole. This transition can be attributed
to strong coupling and is absent in free particle models. Overall, there is an interesting
interplay between those relaxation poles and the diffusion pole as we tune the parameters,
and there is a common theme that before poles move to large (imaginary) frequencies or
leave their regime of validity, they either merge into quasiparticle poles or have decaying
residue.

The diffusion pole also has an unusual dependence on the density, which can be mo-
tivated from the strong coupling properties. We verified that the numerically obtained
diffusion constant agrees with the one obtained analytically from the membrane paradigm.
We also computed the permittivity. This gives us what we called the “relative” permit-
tivity, that depends on the mass, magnetic field, internal flux and density. The diffusion
constant and permittivity reproduce precisely the DC conductivity from the diffusion be-
havior, i.e. the Einstein relation.

In the opposite regime, i.e. in the low temperature limit, we found again the conduction
threshold at ω = q. Our analytical approximations were focussed on the exponentially
suppressed conductivity at small frequencies and large wavenumbers, q � T � omega,
and extended the result for the diagonal conductivity that we found in the first part of
the thesis. Now, the “effective temperature” that controls the exponential suppression
however also depends on the other parameters of the theory. In particular, the density
and magnetic field now raise that factor, i.e. reduce the exponential suppression. This is
however not to be misunderstood as doping a semiconductor. At very large values of those
parameters, of the order B̃, ρ̃ � q̃2, we were able to demonstrate that the conductivity
turns into the DC result. Computing the Hall conductivity gave an interesting result as
we obtained a finite value of the Hall conductivity even in the regime where the diagonal
conductivity vanishes. This is however a common theme in condensed matter physics, for
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example in semiconductors at low temperatures or on Hall plateaus in the quantum Hall
effect.

The rest of the work in the quasiparticle regime was mostly numerics-based. In section
3.5.1, we gave an overview over the spectral curves, where we found the appearance of what
one could describe as the strong-coupling equivalent of Landau levels and plasmons, and
line splitting in the Hall effect. We also noticed that increasing the mass or the internal
flux parameter f makes the results approach the low temperature limit, as we expect from
our results on the effective temperature. Furthermore, we looked at how the resonances
from the isotropic regime carry over to the finite-wavenumber regime in which we observed
the resonances in chapter 2. In particular, we found that for the transverse correlator,
the density resonances connect smoothly whereas the magnetic resonances connected less
smoothly – which can be explained in terms of the localizing property of the magnetic field.
The more quantitative approach to the quasiparticle regime was to extract the location of
the poles in the correlator in order to obtain the quasiparticle spectrum. We found that the
poles are exactly equally spaced, indicating that the mechanism underlying the magnetic
resonances is just a quantum harmonic oscillator as in the classical generation of Landau
levels. The length scales corresponding to the spectrum can be explained in two ways:
On the one hand, they are just given by approximately 2 times the effective temperature,
over essentially all the parameter range including the mass. On the other hand they can
be related to the magnetization or chemical potential, which splits in the massive case
into regimes below and above the quark mass. In this scenario, however, it seems that
the Landau levels or plasmons are strongly coupled to the resonances over the “width” of
the defect, as apparent from the minimum spacing of the resonances. This fits in nicely
with the line splitting that we observed in the context of the Hall effect, where each pole
splits in two, indicating that there are overall two types of resonances in the system. In a
qualitative description, we discussed, as in the first part, how the quasiparticles arise from
quasinormal modes in the scattering off a step in a potential in the gravity side.

Comparing our results to those obtained from field theory methods [57], we found
that there were a few similarities as a resonance or threshold at ω = q is also generically
obtained using field theory methods. Furthermore, our results can be expressed in terms of
a universal function that depends on ω/T . Expressed in this way, this universal function
depends on dimensionless quantities like ρ0/T

2, and hence also depends on the temperature.
Overall, it seems that using AdS/CFT, we could more straightforwardly obtain the very
complex behavior of this universal function. Also, it seems that the methods in [57] do
not find quasiparticle resonances, that seem to be an integral part of the defect that we
studied.

For directions of future research, it would certainly be interesting to gain a better inter-
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pretation of our results in terms of the microscopic theory beyond what we have attempted
in this thesis. This reveals a big weakness in using the AdS/CFT correspondence, as it is
in practice to some degree like performing an experiment; and the “microscopic” theory in
AdS/CFT is not the field theory, but the gravitational configuration. Another interesting
direction would be to study the problems of the D3-D7 defect more in detail, as having a
purely fermionic system is very appealing, even if it is only in the sector of the fundamental
representation on the defect and the 3+1 bulk is still SYM. It would be interesting to see
what kind of effects may then appear in the “massive” case.

4.3 Closing remarks

Overall, we hope that this work demonstrates that there is great potential in string theory
to produce tangible results that are of relevance for example to condensed matter physics.
We think that we may have delivered a few starting points, that may be generic enough
to be worth trying to pursue further and compare to the experimental condensed matter
literature.

Also, we hope that this work may provide some use in generating intuition for strongly
coupled field theories. Certainly, a new kind of intuition can be gained, which is based
on the geometry on the gravity side. This is related to the fact that there is also some
degeneracy in the concept of what one refers to as a “model” – the field theory that is
translated in to the gravity setup under AdS/CFT, or the gravity setup itself in connection
with the “rules” of AdS/CFT. In the end, it does not matter, as all we need are “risky
predictions” [30] to make from our theory.
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Appendix A

Probe brane horizon

In this section, we want to elaborate on the induced geometry of the probe brane at
the event horizon. The embeddings of the probe branes found in section 2.1 may seem
somewhat surprising since the brane seems to cross the horizon at an angle, i.e., , χ′ 6= 0
at the horizon, as shown in eq. (2.1.17). However, common arguments suggest that such
a configuration could not be smooth or remain static – see, e.g., [68]. Hence, we must
explain here why our static brane embeddings cross the horizon ‘at an angle’ without any
singularity.

We begin by considering the noncompact part of the brane geometry, which is common
to both the D5-branes (2.1.7) and D7-branes (2.1.19):

ds2 =
r2

L2

(
−h(r)dt2 + dx2 + dy2

)
+

(
L2

r2h(r)
+
r2

L2
z′2
)
dr2 , (A.0.1)

where z′ is given in eq. (2.1.15). It is a straightforward exercise to calculate some of the
curvature invariants for this geometry, e.g.,

R = − 12

L2(1 + f 2)
− 4f 2r8

0

L2(1 + f 2)r8
and (A.0.2)

RabR
ab =

36

L4(1 + f 2)2
+

4

L4(1 + f 2)2r16

(
r8

0r
8(1 + 8f 2 + 3f 4) + 4r12

0 r
4f 2 + 7r16

0 f
4
)
.

In both of these expressions, the first term corresponds to the result expected for an AdS4

geometry with radius of curvature L
√

1 + f 2. The subsequent terms arise because in
general the induced geometry only approaches AdS4 asymptotically. That is, these terms
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originate from both the brane bending and the presence of background black hole. In any
event, these expressions remain finite at the horizon indicating that the brane geometry
remains smooth there. The probe brane’s geometry can also be characterized by the
extrinsic curvature, given the embedding in the AdS5 black hole background. It is again a
straightforward exercise to evaluate these curvatures and produce, e.g., the following scalar
invariants

K = −
4f
√

1 + f 2( r0
r

)4√
1 + f 2

r0

L2
, KabK

ab =
4f 2
(
1 + ( r0

r
)8
)

1 + f 2

r2
0

L4
. (A.0.3)

Again, evaluating either of these expressions at the horizon yields a finite result, indicating
that the brane embedding is smooth there.

To study the probe brane geometry at the horizon in more detail, it is convenient to
change to suitable Kruskal coordinates:

U = e−(r?+
r0
L2 t) , V = e−(r?− r0

L2 t) ; r? = r0

∫ ∞
r

r′2 dr′

r′4 − r4
0

, (A.0.4)

which puts the induced metric (A.0.1) in the form

ds2 = r(U, V )2L
2h

r2
0

dUdV + r(U, V )6 h2z′2

r2
0L

2
(V dU +UdV ) +

r(U, V )2

L2

(
dx2 +dy2

)
, (A.0.5)

where we defined for convenience h = (1+ r0
r

)2(1+( r0
r

)2)e2 tan−1 r0
r ∈ ]1, 4eπ] . We note that

∂U is only null at the part of the horizon where V = 0 and vice-versa.

To see now whether the brane falls vertically into the horizon, we want to compute the
tangent to the brane in the z direction, tz = vµeaµξ

µ
z , where ξz is the finite norm killing

vector ∂z on the horizon, v is any non-singular vector in the brane and we use the map
eµa = ∂ax

µ to compute it’s push-forward. It is easy to see that the only relevant non-zero
components are ezU = V z′ and ezV = Uz′, so the brane falls vertically into the horizon only
at the bifurcation surface.
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Appendix B

Corrections to D5-brane action

The worldvolume action (2.1.4) is a low-energy effective action which captures the inter-
actions of the massless open string modes supported on the D5-branes. The “stringy”
nature of the underlying theory will in principle produce an infinite series of higher dimen-
sion terms that are suppressed at low energies by the inverse string tension, i.e., α′ ≡ `2

s .
However, in practice, one typically only includes a specific set of terms to a certain order
in the α′ expansion. In fact, the action (2.1.4) implicitly captures an infinite set of these
stringy corrections, as can be seen by the explicit factor of `2

s accompanying the gauge
field strength in the DBI action. Further, we might add that this entire series of terms
plays a role in our analysis, as the full square-root form of the action is used in (2.1.8) to
normalize the DBI contributions. However, as already alluded to in section 2.1.2, the DBI
action does not capture all of the higher dimension stringy interactions. Beyond the non-
abelian commutator terms referred to there, the full low-energy action includes additional
terms involving derivatives of the gauge field strength [95, 96], as well as higher derivative
couplings to the bulk fields [97, 98]. In terms of the dual CFT, the contributions of these
α′ interactions will provide finite λ corrections to the leading supergravity results.

In the following and in section 2.4, we focus our attention on a particular new term
involving derivatives of the field strength, which modifies the vector correlators on the D5-
branes. Our results below give the leading 1/λ corrections when f is finite. Our calculations
consider explicitly those leading contributions for the transverse correlator. As we discuss
in section 2.4, the higher derivative interaction also upsets the electromagnetic duality on
the AdS4 part of the worldvolume.

An effective action to describe open string gauge fields at higher order in α′ has been
extensively studied in the literature, e.g., see [95, 96]. However, since we consider only the
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linearized equations of motion (or the quadratic action) to compute the correlators in the
AdS4 directions, the leading term at (α′3) is [95]

− 1

4g2
4

ζ(3)

16π4

(2π`2
s)

3

L2
√

1 + f 2

∫
d6σ
√
−g∇µFαβ∇µFαβ F 2 . (B.0.1)

In fact, this term only becomes relevant for the calculation of the vector correlators because
of the flux background on the compact S2. After integrating over the internal two-sphere,
this interaction reduces to

− 1

4g2
4

ζ(3)

2π

`2
s f

2√
1 + f 2

∫
d4σ
√
−g∇µFαβ∇µFαβ . (B.0.2)

Note that the background flux (2.1.6) remains unmodified by this new interaction. When
considering linearized fluctuations of the vector field, we can work with a perturbative
expansion in `2

s /L
2 = 1/

√
λ. We begin with the Ansatz

F = F(0) +
`2

s

L2
F(1) + · · · . (B.0.3)

The equations determining the leading 0th order field are still the same Maxwell equations
(2.2.34), while for F(1), we have

∇νF
(1) νµ =

ζ(3)

2π

L2 f 2√
1 + f 2

∇ν∇α∇αF(0) νµ . (B.0.4)

Writing this out explicitly for µ = y gives

∂u
h√
H
∂uA

(1)
y +

√
H

h
(ω̃2 − hq̃2)∂uA

(1)
y (B.0.5)

=
ζ(3)f 2

2π
√

1 + f 2

(
∂u u

2

√
h

H
∂u

h

u2
√
H
∂u u

2

√
h

H
∂uA

(0)
y + ∂u

u2

√
H

(ω̃2 − q̃2h)∂uA
(0)
y

+
ω̃2u2

√
h
∂u

h

u2
√
H
∂u

u2

√
h
Ay − q̃2u2∂u

h

u2
√
H
∂u u

2A(0)
y +

u2
√
H

h2

(
ω̃2 − q̃2h

)2
A(0)
y

)
.

Note that we adopt the convention above that the derivatives ∂u act on all factors to their
right. At the horizon, u → 1, we again wish to impose infalling boundary conditions.
If we substitute the expansion (2.2.52) for Ay as u → 1, the right hand side of (B.0.5)

diverges as hiω̃/4−2 and hence we expect to find singular behaviour in A
(1)
y there. Hence we
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begin by isolating this singular behaviour in a particular solution to (B.0.5): A
(1),NHG
y ∼

hiω̃/4( a
h

+b+c log h+d h log h) with appropriate constants a, b, c, d. This particular solution
is holds to order h0 near u→ 1 and is well-behaved in the rest of the geometry. Implicitly,
it also satisfies the desired infalling boundary conditions. Next we add to A

(1),NHG
y a

contribution which is regular at the horizon and takes the form on an infalling homogenous
solution near u→ 1 as described by (2.2.52) and (2.2.53). That is, we use the Ansatz

A(1)
y = A(1),NHG

y + hiω̃/4
(

1 +

(
iω̃

4

3 + 5f 2

1 + f 2
+

q̃2

4 + 2iω̃

)
(1− u)

)
F (u) . (B.0.6)

where ∂uF (u)|u→1 = 0. This Ansatz is constructed so that F (u) is well behaved every-
where and we proceed by calculating this profile numerically. In practise, we apply the
boundary condition at some small, but finite, (1− u), so need we go one order higher in h
and increase the accuracy for solving A(0).

The correlator is then found by substituting our original Ansatz (B.0.3) into (2.2.41),

Cyy =
ε0√

1 + f 2

∂u(A
(0)
y + `2

s /L
2A

(1)
y )

A
(0)
y + `2

s /L
2A

(1)
y

' ε0√
1 + f 2

[
∂uA

(0)
y

A
(0)
y

+
`2

s

L2
∂u

(
A

(1)
y

A
(0)
y

)]
u→0

+ · · · .

(B.0.7)

From this expression, we can see that the normalization of any homogenous solution in A
(1)
y

does not effect the correlator, as we expect for a gauge-invariant quantity. The expressions
for Ctt and Cxx following from (2.2.42) are similar to that above.

The second term on the right-hand side of (B.0.7) yields the correction to the correlator
due to the fact that the solutions for the fluctuations Aµ(u) are modified. In addition,
(B.0.2) also contributes to the overall value of the bulk action and hence provides an
additional modification of the correlators. Proceeding as in (2.2.37), we now get two
boundary terms at order `2

s , since DµFαβD
µFαβ = Dµ(FαβD

µFαβ)−Dα(AβDµD
µFαβ) +

Aβ(e.o.m.)β, where the last term combines with contributions from the leading Maxwell
term in the action to vanish by the equations of motion. These expressions lead to a number
of new contributions to the flux (2.2.40), which in principle even contribute to off-diagonal
correlators. We might add that there is a further ambiguity in these expressions because
the effective action (B.0.2) was constructed from examining string scattering amplitudes
[95] and so it is only determined up to total derivatives or boundary terms. Explicitly
comparing [95] and [96], one finds that in fact their results differ by such a boundary term.
However, this ambiguity does not contribute in our background (2.2.35) and in fact, of the
myriad of potential boundary contributions, only a single term survives

∆Cyy = − `2
s f

2ζ(3)

2π
√

1 + f 2

ε0√
1 + f 2

∇2∂uAy
Ay

∣∣∣∣
u→0

. (B.0.8)
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Similar expressions survive for Ctt and Cxx while the potential contributions to the off-
diagonal correlators vanish. Combining the results in (B.0.7) and (B.0.8), we can write the
total change to the correlator as

δCyy =
`2

s

L2

ε0√
1 + f 2

[
∂u

(
A

(1)
y

A
(0)
y

)
− L2f 2ζ(3)

2π
√

1 + f 2

∇2∂uA
(0)
y

A
(0)
y

]
u→0

. (B.0.9)

Again similar expressions arise for δCtt and δCxx.

The two previous formulae, (B.0.8) and (B.0.9), still require a precise definition for
∇2∂uAy. This expression should understood as the covariant tensor expression ∇2Fuy
which when evaluated asymptotically yields a remarkably simple result:

∇2∂uAy = − 2

L2

1

1 + f 2
∂uAy + · · · (B.0.10)

where the implicit terms decay rapidly enough as u → 0 that they will not contribute to
the correlator. Hence (B.0.8) can be greatly simplified to

∆Cyy =
`2

s

L2

f 2ζ(3)

π(1 + f 2)3/2

ε0√
1 + f 2

∂uAy
Ay

∣∣∣∣
u→0

. (B.0.11)

The last factor has exactly the same form as the leading correlator (2.2.41) and so this
contribution can be interpreted in terms of a rescaling of the pre-factor ε0:

ε0 → ε0

(
1 +

1√
λ

f 2 ζ(3)

π(1 + f 2)3/2

)
, (B.0.12)

where we have replaced `2
s /L

2 = 1/
√
λ. Remarkably our numerical calculations show that

the first contribution to δCyy in (B.0.9) also produces a shift of ε0 with precisely the same
f dependence – see figure 2.15.

At this point, several comments are in order. We already pointed out that the square-
root form of the DBI action already incorporates an infinite set of stringy α′ corrections.
While this form was incorporated in our leading order calculations, e.g., (2.1.8), it did
not appear to introduce any 1/λ corrections. Of course, these factors are hidden in the
definition (2.1.9) of f and for finite values of f , we are actually introducing a magnetic flux
quantum number q ∼ O(

√
λ). In this context, it is not quite correct to say the interaction

(B.0.1) is the leading term to modify the correlators. One can well imagine that there will
be other interactions which, although they appear to be of higher order in the α′ expansion,
will modify the correlator with contributions of order fn/

√
λ where n > 2. Of course, these

contributions will be suppressed in a regime where f � 1. Considering the possible tensor
structure of the relevant higher order interactions, it seems that this class of contributions
will always be arising from an equation of motion of the form (B.0.4).
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Appendix C

Hyperbolic tangent potential

To get more insight into the appearance of the finite temperature effects in the frequency
dependence of the conductivity, we can study a qualitatively similar problem that has an
analytic solution.

C.1 Finding the spectral curves

Let us modify the effective Schrödinger equation in (2.2.90) to write it in terms of the
complex frequency ν of section 2.3, i.e., ν̃ ≡

√
ω̃2 − q̃2,(

−∂ 2
ρ + V

)
Ay = ν̃2Ay (C.1.1)

with V = −q̃2 u4 and ρ =

∫ u

0

dũ

√
H

h
.

Recall in terms of the new radial coordinate ρ, the asymptotic boundary is mapped to ρ = 0
and the horizon, to ρ → ∞. In fact, it is straightforward to evaluate the integral above
to find ρ(u) in terms of incomplete elliptic integrals of the third kind or alternatively, in
terms of the Appell hypergeometric function [106] ρ =

√
1 + f 2uF1

(
1
4
; 1

2
, 1; 5

4
;−f 2u4, u4

)
.

Note that the only difference between (2.2.90) and (C.1.1) is that we have subtracted q̃2Ay
from both sides in the equation above. Hence in the present form, the effective potential
V vanishes at ρ = 0 and approaches −q̃2 as ρ→∞.

The equation of motion in the form of (C.1.1) can be examined in three distinct regions
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which for f � 1, where the potential looks roughly like

V ∼ 0 : ρ . f 1/2

V ∼ −q̃2(2f 1/2 − ρ)−4 : f 1/2 . ρ . 2f 1/2 − 1

V ∼ −q̃2 + q̃2e−4(ρ−2f1/2+1) : 2f 1/2 − 1 . ρ . (C.1.2)

Of course, the full potential is smooth across these three regions.

To model the “smooth” step with a fi-

2. 4. 6. 8. 10.Ρ

-1.
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Figure C.1: The exact potential V (solid
grey) and the tanh approximation Vapp (black
dotted), for f ∈ {0, 4, 25} with q̃ = 1. We
also indicate a number of interesting values
of ρ with narrow vertical lines: ρ(uhalf ), solid
black; ρ(umin), solid grey; ρ = π T

2Teff
, dashed

black; and ρ = πD T , grey dashed.

nite slope and a fast tailoff in the asymp-
totic regions, we will use

Vapp = −q̃2 1 + tanh n(ρ− ρ0)

2
, (C.1.3)

which allows us to find exact solution for
(C.1.1). We fix the “step” position ρ0 either
as location where the the potential has half
its minimum, i.e., at u4

half = 1/2 or the
point where the slope of the potential is
minimum, i.e., at

u4
min =

5f 2 − 7 +
√

(7− 5f 2)2 + 108f 2

18f 2
.

(C.1.4)
To fix the parameter n that we will use
to characterize the slope of the step of the
potential, we simply take the slope of the
full potential at either of the corresponding
points: n ≡ −2 ∂ρV |uhalf,min = 8q̃2u3h(u)H(u)−1/2

∣∣
uhalf,min

. Working with uhalf or umin will

give Vapp which is a good approximation of the full potential V . As shown in figure C.1,
the potentials constructed with these two choices typically can not be distinguished. For
comparison purposes, the figure also indicates two other interesting scales: ρ = π T/2Teff
and πD T . There we see that both of these scales are close to the width of the effective
potential but ρ = πD T is particularly close to the center of the step.

Note that V (ρ = 0) = 0 and ∂ρV (ρ = 0) = 0 while neither of these properties holds for
the approximation (C.1.3). We will take account of this fact simply by expanding around
ρ − ρ0 → −∞ and discarding higher order terms when computing the values at ρ = 0.
One can expect this potential to be a good approximation for ν̃ � 1, where the result is
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less sensitive to the details of the potential away from it’s maximum slope and for large f ,
where the results should be dominated by the large flat part of the potential.

Using infalling boundary conditions at ρ→∞, the solution is

Ay = Ay0 2F1

„
1+ iν̃

2n
(1−
√

1+q̃2/ν̃2), iν̃
2n

(1−
√

1+q̃2/ν̃2); 1− iν̃
n

√
1+q̃2/ν̃2; 1

1+e2n(ρ−ρ0)

«
(1− tanh n(ρ− ρ0))−

iν̃
2n

√
1+q̃2/ν̃2

(1 + tanh n(ρ− ρ0))
iν̃
2n (C.1.5)

and the asymptotic expansion gives us

Ay = Ay0 e
iν̃(ρ−ρ0)


(√

1 + q̃2/ν̃2 − 1
)

Γ
(
iν̃
2n

(1−
√

1 + q̃2/ν̃2)
)2

Γ
(
− iν̃

n

)
(√

1 + q̃2/ν̃2 + 1
)

Γ
(
− iν̃

2n
(
√

1 + q̃2/ν̃2 + 1)
)2

Γ
(
iν̃
n

) + e−2iν̃(ρ−ρ0)


≡ Ay0 e

iν̃(ρ−ρ0)
(
ℵ + e−2iν̃(ρ−ρ0)

)
, (C.1.6)

for which we redefined Ay0. In the opposite limit, as ρ → ∞, the solution converges

exponentially to Ay ∝ e−iν̃ρ
√

1+q̃2/ν̃2
, which is the desired infalling wave solution at the

horizon.

The transverse conductivity can now be written in a compact suggestive form in terms
of the implicitly defined ℵ:

σ̃yy = ε0 Re
ν̃

ω̃

ℵ − e2iν̃ρ0

ℵ + e2iν̃ρ0
, (C.1.7)

which is of the same form as the result (2.2.2.2), but with different coefficients. We again
see how the oscillatory pattern arises from interference in the asymptotic region due to
the potential “step”, and how the effective temperature arises from tunnelling through the
potential out of the “heat bath” in the near horizon region. For |ν̃| � n, we find the limit

ℵ |ν̃|→∞−→ 4nν̃

sgn(Re ν̃) πq̃2
esgn(Re ν̃)πν̃/n (1 + O ( q̃

ν̃
log ν̃/n)) , (C.1.8)

This result shows that the subleading term in the conductivity (beyond the low temperature
limit (2.2.51)) has an exponential frequency dependence for ω̃ > q̃, as we found in section
2.2.2.1. We can also see how the results depend on n, i.e., on the slope of the step in the
potential. We compare the present results (C.1.7) for the conductivity to our numerical
results and to the perturbative approximation in figure 2.9. There we can see that the
various approaches are in very close agreement for ω̃ & q̃.
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C.2 Exact pole structure

We can look at the solutions (C.1.6) and identify the quasinormal modes by imposing the
asymptotic boundary condition: Ay(ρ = 0) = 0. The quasinormal frequencies are then
simply determined by the equation

e2iν̃ρ0 = −

(√
1 + q̃2/ν̃2 − 1

)
Γ
(
iν̃
2n

(1−
√

1 + q̃2/ν̃2)
)2

Γ
(
− iν̃

n

)
(√

1 + q̃2/ν̃2 − 1
)

Γ
(
− iν̃

2n
(1 +

√
1 + q̃2/ν̃2)

)2

Γ
(
iν̃
n

) (C.2.9)

which simplifies in the limit of |ν̃| � n, q̃ to

e(2iρ0−sgn(Re ν̃)π/n)ν̃ ' − 4nν̃

sgn(Re ν̃) πq̃2
. (C.2.10)

These quasinormal frequencies also give the location of the poles in the spectral function [82,
107], with the exception of the asymptotically constant solution, ν̃ = 0. In the terminology
of section 2.3, the present approximation yields:

ν̃0 =
4πρ0

4ρ2
0 + π2/n2

,
γ̃0

ν̃0

=
π

2ρ0n
. (C.2.11)

Further as mentioned in section 2.3, the subleading contributions are logarithmic in n,
giving us

δν̃n =
γ̃0 − iν̃0

2π

(
lnn+ ln

4n(iγ0 − ν̃0)

πq̃2

)
, (C.2.12)

in contrast to the constant shift as the largest subleading term for the full correlator.

The residues in the Green’s function, before taking the imaginary part, are given by

R(n)
yy ≡

ε0√
1 + f 2

Res
ν̃=ν̃n

∂uAy
Ay

∣∣∣∣
u→0+

= ε0
−2iν̃n

2iρ0 − ∂ν̃ log γ|ν̃=ν̃n

. (C.2.13)

One finds that ∂ν̃ log γ can be expressed in terms of digamma functions, and asymptotes
to

ε0√
1 + f 2

Res
ν̃=ν̃n

∂uAy
Ay

∣∣∣∣
u→+0

' ε0
−2ν̃n

2ρ0 + iπ/n
, (C.2.14)

where we used implicitly n ∈ Z to label all the poles.
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We can use the knowledge of the poles to verify that the spectral function is indeed
approximated extremely well by the regularized sum of poles plus the term linear in ω̃ as
given in (2.3.94),

Cyy = ε0

∑
n 6=0

R(n)
yy

ν̃n sgn(Re ν̃n)(
q̃2 + ν̃2

n

)1/2

(
1

ω̃ − sgn(Re ν̃n)
(
q̃2 + ν̃2

n

)1/2
+

sgn(Re ν̃n)(
q̃2 + ν̃2

n

)1/2

)

+ ε0 lim
n→+∞

ω̃

π
log

ν̃n − ν̃n+1

ν̃−(n+1) − ν̃−n
, (C.2.15)

or from (2.3.95)

Cxx = ε0

∑
n 6=0

(
R(n)
xx

ν̃n sgn(Re ν̃n)(
q̃2 + ν̃2

n

)1/2

R(n)
xx

ν̃ − sgn(Re ν̃n)
(
q̃2 + ν̃2

n

)1/2

)
, (C.2.16)

which we show in figure 2.9. We also use the exact location of the poles to check how well
the algorithm from section 2.3 finds the location and residue of the poles, which we show
in figure 2.11 and discuss in section 2.3.
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Appendix D

Components of the metric

In this appendix, we write out the components of the metric in the most convenient com-

bination, including the implicit effective coupling in
√
−G :=

√
(1−Ψ2)2+f2√

1+f2

√
− detG:

√
−GGxxGyy =

(f 2 + (1−Ψ(u)2)2)
√

(1−Ψ2) + u2(1− u4)Ψ′(u)2(
1 + B̃2u4

1+f2

)√
1−Ψ(u)2

√
(f 2 + ρ̃2 + B̃2)u4 + 1−

(
1 + B̃2u4

1+f2

)
(1− (1−Ψ(u)2)2)

√
−GGuuGyy =

(1− u4)
√

1−Ψ(u)2

√
(f 2 + ρ̃2 + B̃2)u4 + 1−

(
1 + B̃2u4

1+f2

)
(1− (1−Ψ(u)2)2)(

1 + B̃2u4

1+f2

)√
(1−Ψ2) + u2(1− u4)Ψ′(u)2

√
−GGttGyy =

−

(
(1−Ψ(u)2)2 + f 2 + (ρ̃2 + B̃2)u4 − B̃2u4

1+f2 (1− (1−Ψ(u)2)2)
)√

(1−Ψ2) + u2(1− u4)Ψ′(u)2

(1− u4)
(

1 + B̃2u4

1+f2

)√
1−Ψ(u)2

√
(f 2 + ρ̃2 + B̃2)u4 + 1−

(
1 + B̃2u4

1+f2

)
(1− (1−Ψ(u)2)2)

√
−GGttGuu =

√√√√(f 2 + ρ̃2 + B̃2)u4 + 1−

(
1 +

B̃2u4

1 + f 2

)
(1− (1−Ψ(u)2)2) ×

√
1−Ψ(u)2

(
(1−Ψ(u)2)2 + f 2 + (ρ̃2 + B̃2)u4 − B̃2u4

1+f2 (1− (1−Ψ(u)2)2)
)

(
1 + B̃2u4

1+f2

)
(f 2 + (1−Ψ(u)2)2)

√
(1−Ψ2) + u2(1− u4)Ψ′(u)2

√
−GGtuGxy =

B̃ρ̃

1 + B̃2u4

1+f2

.
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At Mq = 0, i.e. Ψ(u) = 0, these simplify to:

√
−GGxxGyy =

1 + f 2(
1 + B̃2u4

1+f2

)√
1 + (f 1 + ρ̃2 + B̃2)u4

√
−GGuuGyy =

(1− u4)
√

1 + (f 1 + ρ̃2 + B̃2)u4

1 + B̃2u4

1+f2

√
−GGttGyy = − 1 + f 2 + (ρ̃2 + B̃2)u4

(1− u4)
(

1 + B̃2u4

1+f2

)√
1 + (f 1 + ρ̃2 + B̃2)u4

√
−GGttGuu = −

(
1 + f 2 + (ρ̃2 + B̃2)u4

)√
1 + (f 1 + ρ̃2 + B̃2)u4(

1 + B̃2u4

1+f2

)
√
−GGtuGxy =

B̃ρ̃

1 + B̃2u4

1+f2

.
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Appendix E

Thermodynamics of the defect

In this appendix, we compute the contribution of the defect to the extrinsic thermodynamic
quantities that are localized on and around the defect. This allows us to study the phase
diagram of the matter on the defect and tells us in which regime we can trust our analysis
and in which regime the black hole embeddings that we consider may be unstable or
metastable. Obviously it is also of interest on its own to study what states the matter
on the defect takes in various regimes, and also how the nature of the defect affects the
thermodynamic properties.

Naturally, we will implicitly consider the density of these quantities per unit area of
the defect in terms of the boundary metric, which removes the divergence from the infinite
volume factor of the integral. We will miss however any contribution to possible changes to
the asymptotic characteristics of the 3+1 SYM. Since such asymptotic properties however
should only depend on the topological properties, i.e. the flux parameter f and not the
local properties of the embedding, this is still sufficient to argue about the phase diagram
and stability, in the sense of which phases are thermodynamically preferred.

As in chapter 2, we will limit our discussion to the massive embeddings to the D5 case.

E.1 Free Energy and Thermodynamic Variable

As a starting point, we can straightforwardly compute the free energy via the standard
procedure from the Euclidean energy, Ie, using

F = TIe , Ie =

∫ umax

umin

Le + Ibdy , (E.1.1)
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where the boundary terms

Ibdy. = −1

3

√
γ +

1

2
Ψ2 (E.1.2)

are dictated to us by consistency [111]. The other boundary terms of [111] do not contribute
in our case because of isotropy in the flat directions and rotational symmetry on the
sphere. Since the determinant on the boundary metric, γ, vanishes on the horizon, only the
asymptotic boundary contributes. In the case of non-blackhole (Minkowski) embeddings
there is only one (i.e. the asymptotic) boundary, provided the action is consistent at umin
and the point at umin is included, as will be discussed below.

In the next step, one can construct other thermodynamic quantities, such as the entropy,
S = − ∂F

∂T

∣∣
V

, the energy E = −F +TS or the heat capacity cV = ∂E
∂T

∣∣
V

. Since the defect is
in thermal equilibrium with the bulk, and also the extrinsic curvature of the horizon in the
brane geometry is the same as in the bulk theory, the choice for the temperature is obviously
the bulk temperature T = r0

πL2 . There is a slight ambiguity as to what one considers to
be the thermodynamic volume V . One could either consider the defect as an isolated
thermodynamic system, embedded in the SYM heat bath, or as part of an overall system.
In the former case the volume is either the 2-dimensional volume

∫
dx dy with the effective

width of the defect considered to be an “internal” degree of freedom or alternatively the
3-dimensional volume

∫
dx dy dz over a finite width ∆z, e.g. ∆z =

∫
z′(u) du, with z′(u)

given in (3.1.10). In the latter case, however, one considers a large volume of 3d SYM
plus the defect, and the quantities that we are studying are just the contributions that
are extrinsic in the two dimensions of the defect, and independent of the extension of the
volume in the z-direction – in the limit of placing the boundary of the volume far away
from the defect. To make this more explicit, we can look at the variation of the euclidean
action, which gives

δIe =
∂Le
∂Ψ′

δΨ +
∂Le
∂A′t

δAt +
∂Le
∂χ′

δχ , (E.1.3)

or in terms of field theory quantities

δF = 2CδMq + ρ0δµ + Ffδzmax . (E.1.4)

In principle we might expect a term ∝ mδm that would be divergent. This term however
cancels because of the renormalization. Also the variation of the magnetic field does not
contribute because of its tensor structure. Ff is just defined as the change of the 3+1 free
energy density FSYM due to varying Nc → Nc + q, in dimensionful units:

Ff =
δFSYM
δNc

q = −2
π2

8
NcqT

4 = −π
4
NcNf

√
λfT 4. (E.1.5)
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If f ∼ O(1), then term is suppressed by a factor λ−1/2 compared to FSYM . Noting the
fact that the SYM background is isotropic such that the pressure equals the free energy,
FSYM = PSYM , we could interpret Ffδ∆z as a work term for the case of the isolated
defect. This demonstrates nicely that this case is inconsistent, since want to consider the
defect system “on-shell” and study thermodynamic processes obviously with a fixed gauge
group, i.e. at constant f , and hence we can’t use zmax as an independent thermodynamic
variable. Hence, we need to do a change of variables in the thermodynamic potentials,
corresponding to a Legendre transformation of the action. Since we also want to consider
processes at fixed baryon density on the defect, rather than at fixed chemical potential, we
do Legendre transformations in χ and At:

L̃e = Le + ρ0A
′
t − fχ′ or Ĩe = Ie + ρ0At − fχ . (E.1.6)

Now, the variation of the free energy is

δF = 2CδMq + µδρ0 + zmaxδFf , (E.1.7)

which implies F = F (Mq, nq, f, T ). Obviously we consider f fixed, even though it is not
inconceivable to have processes in condensed matter physics that change the effective gauge
group.

In the case of Minkowski embeddings, the significance of the Legendre transformation
can be seen nicely from the brane tension in the z direction at the endpoint of the brane
umax that can be straightforwardly computed from

τz = gzz
δL(D5)

δgzz
= gzzz

′2 δL(D5)

δgrr
, (E.1.8)

where g is here the D3 background metric. upon substitution of (3.1.10) and the boundary
condition Ψ ∼ 1− (umax−u) 1

umax(1+u4
max)

to match precisely the tension of qNf D3 branes.

In particular, we can look at the source term that corresponds to attaching an appro-
priate stack of D3 branes in the flat directions at the endpoint of the probe branes and
balances this tension to allow for a consistent static embedding,

Lsource(u) = −f z(u)δ(umax − u) . (E.1.9)

After integration in the radial direction, this term gives precisely the same contribution to
the action as the term − fχ′ that we added for the Legendre transform. An interesting
comment to add is that in this Minkowski embedding, the radial tension τr vanishes at the
endpoint, and entirely generated by the 5-form flux acting on the brane.
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E.2 Derived quantities

As some physical quantities of relevance, we will obtain the entropy S = − ∂F
∂T

∣∣
V

, the

total energy E = F + TS, heat capacity cV = ∂E
∂T

∣∣
V

= − ∂2F
∂T 2

∣∣∣
V

, baryon number chemical

potential µ = ∂F
∂ρ

∣∣∣
T,V

and magnetization M = ∂F
∂B

∣∣
T,V

.

The latter two quantities are straightforward, since we only need to keep in mind the
temperature scaling and normalization, such that

µ =
∂F

∂ρ0

=
1

2π2(πT )2ε0

∂F

∂ρ̃
=:

1

2π2(πT )2
µ̃ and (E.2.10)

M =
∂F

∂B
=

1

(πT )2

∂F

∂B̃
=

ε0

(πT )2
M̃ . (E.2.11)

In principle, there would also be a contribution from the variation of the embedding Ψ(u)
via a term δIe

δΨ
∂ρ0,BΨ, however, it turns out that it does not contribute for the following

reason: Since we did a Legendre transform in (A′t, ρ) and (χ′, f), the variation δ
δΨ

at
constant f , B and ρ0 is on-shell, i.e. only a boundary term contributes:

δIe
δΨ

δΨ =

[(
∂Le
∂Ψ′

+
∂Ibdy
∂Ψ

)
δΨ

]
bdy.

. (E.2.12)

In principle, this term depends on m̃ and c̃, and keeping m̃ fixed. c̃ will generically depend
on B and ρ, and hence δΨ = ∂ρ̃,B̃ c̃ u

2δ(ρ̃, B̃). However, it turns out that in an expansion

around u = 0 and ignoring overall factors, ∂Le
∂Ψ′

+
∂Ibdy
∂Ψ
∼ c̃

u
+ m̃2, such that any such term

will not contribute in the limit u → 0. For black hole embeddings, there is obviously
also the second boundary at the horizon, but this contribution vanishes since γ → 0 and
Ψ→ 0 as u→ 0. In the case of Minkowski embeddings, there exists only one boundary (the
asymptotic one), as we learned above that the Legendre-transformed action is consistent at
the endpoint umax and corresponds to including this point in the integral. To demonstrate
that there is indeed no contribution from the region at umax, we can use the expansion of
Ψ near umax,

Ψ = 1− umax − u
umax(1 + u4

max)
+

(umax − u)2u2
max(3 + 13u4

max)

6(1− u4
max)(1 + u4

max)
2

+O(umax − u)3 . (E.2.13)

This relates any change umax → umax + δumax. If we then were to exclude the point at
umax and evaluate the integral only up to some uε = umax − ε, then the contribution from
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any on-shell variation of the scalar Ψ, − ∂Le
∂Ψ′

∣∣
u=uε

δΨ(uε) cancels the corresponding extra

contribution to the integral, Le(uε) δΨ(uε)
Ψ′(uε)

as we take ε→ 0.

Computing the entropy requires a few more steps. In order to compute the temperature
derivative, we proceed by computing the integral (E.1.1) in terms of the dimensionless
versions of the coordinates and fields. We then consider only the indirect temperature
dependence of the terms in the integral and an overall explicit temperature factor which
we find by dimensional analysis to be T 3. Keeping ρ0, B, Mq and f fixed, the temperature

dependencies that we will need are given by ∂ρ̃
∂T

∣∣
ρ0

= 2 ρ̃
T

, ∂B̃
∂T

∣∣∣
B

= 2 B̃
T

and ∂m̃
∂T

∣∣
Mq

= − m̃
T

.

The variation of the action with respect to ρ̃ and B̃ are straightforward and defined in
(E.2.10) and (E.2.11), and the variation with respect to Ψ gives on-shell

δΨ
δ Ie
δΨ

=
∂Le
∂Ψ′

δΨ +

∫
EΨδΨ +

∂Ibdy
∂Ψ

δΨ = − 22/3

√
λT

c

umin
δΨ|umin (E.2.14)

where EΨ is the equation of motion for Ψ. Hence, in the limit umin → 0, we don’t have
to worry about the non-trivial temperature dependence of the condensate. Finally, we
have to worry about the temperature dependence of the boundary of the integral. The
boundary at the horizon is fixed in terms of the dimensionless coordinate at u = 1, so
there is no contribution from the horizon. For the asymptotic boundary, we can compute,
in dimensionless variables and ignoring overall factors:

∂Ie
∂umin

∣∣∣∣
u=umin

= Le + ∂uminIbdy. = −1

6
+

1

2

(
ρ̃2 + B̃2 + f 2 + c2 − m̃4

4

)
+O(umin)

(E.2.15)
Since we take the limit umin → 0, any temperature dependence at maximum dimensionful
radius rmax is ∂Tumin = umin

T
and hence, there is no contribution from this boundary either.

Putting all the non-vanishing contributions together, we arrive with

S = −3F

T
− 2

T

(
∂F

∂ρ̃
ρ̃+

∂F

∂B̃
B̃

)
+
δIe
δΨ

Ψbdy. or (E.2.16)

T S = −3F − 2µρ0 − 2M B + Mq C . (E.2.17)

Finally, we can compute the total energy, E = F + TS and the heat capacity

cV =
∂E

∂T

∣∣∣∣
V

= −T ∂2F

∂T 2

∣∣∣∣
V

. (E.2.18)

The second temperature derivative is again computed straightforwardly like the first deriva-
tive for the entropy. The most straightforward way is to take the temperature derivative

158



of the entropy. Keeping in mind that the total temperature derivative of the implicitly
present equations of motion EΨ vanishes, the remaining terms are:

d2 F

dT 2
=

(
∂T +

2ρ̃

T
∂ρ̃ +

2B̃

T
∂B̃ +

dΨ

d T

δ

δΨ

)(
∂T +

2ρ0

T
∂ρ0 +

2B̃

T
∂B̃

)
F − d

d T

Mq C

T
(E.2.19)

=

(
∂T +

2ρ̃

T
∂ρ̃ +

2B̃

T
∂B̃

)2

F − 3
Mq C

T 2
+

(
2ρ̃

T
∂ρ̃ +

2B̃

T
∂B̃

)∫
EΨ

dΨ

d T
− d

d T

Mq C

T
.

Here, we find that we cannot avoid computing the temperature dependence of the em-
bedding Ψ and the condensate. This can be done in closed form, without resorting to
numerical derivatives. To do so, we expand the temperature derivative of the equations of
motion for Ψ and the boundary conditions on the horizon or at the endpoint of the brane
to first order in temperature, obviously keeping the appropriate dimensionful quantities
fixed. This term then gives us an inhomogeneous linear second order equation for dΨ

d T
, and

a boundary condition fixing
(
dΨ
d T

)−1
∂u
(
dΨ
d T

)
- both of which are not very illuminating and

we do not explicitly write them out here. Finally, we choose the boundary condition

∂u

[
dΨ

d T

]
umin

= − Ψ′|umin (E.2.20)

at the asymptotic boundary to account for the temperature derivative of the dimension-
less mass parameter - giving the problem numerically slightly non-trivial mixed boundary
conditions. Alternatively, the heat capacity can also be written in a more systematic way,

cv = −T
(
∂T + 2

B

T

d

dB
+ 2

ρ0

T

d

d ρ0

− Mq

T

d

dMq

)2

F (E.2.21)

= −4B2χB
T
− 4

ρ2

ε T
− 8ρB

m

T
+
M

T

(
4B

d

dB
+ 4ρ0

d

d ρ+ 0
− Mq

d

dMq

)
C − 6

F

T
,

where we identified the magnetic susceptibility, density of states, and mean magnetic mo-
ment:

χB = dM
dB

∣∣
T,V,ρ0

=
1

(πT )2

∫ (
∂2
B̃
Le + ∂B̃EΨ

dΨ

dB̃

)
(E.2.22)

ε−1 = dµ
d ρ0

∣∣∣
T,V,B

=
1

(2π2(πT )2ε0)2

∫ (
∂2
ρ̃Le + ∂ρ̃EΨ

dΨ

dρ̃

)
(E.2.23)

m = dM
dρ0

∣∣∣
T,V,B

=
1

2π2(πT )4ε0

∫ (
∂B̃∂ρ̃Le + ∂ρ̃EΨ

dΨ

dB̃

)
. (E.2.24)
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The derivatives of the scalar, dΨ
dB̃

and dΨ
dρ̃

can be computed in an equivalent fashion as the

derivative dΨ
d T

described above.

E.2.1 Massless case

In the massless case, the free energy can be integrated straightforwardly analytically and
becomes

F = −4πT5r
3
0

∫ 1

0

du

 u4 − 3

3u4
√

1− u4
+

√
1 +

(
f 2 + ρ̃2 + B̃2

)
u4

u4


= −

√
λT 3Nc

1

3

(√
1 + f 2 + ρ̃2 + B̃2 (E.2.25)

+ 2
(
−
(
f 2 + ρ̃2 + B̃2

))3/4

F
(

sinh−1
(
−
(
f 2 + ρ̃2 + B̃2

))1/4 ∣∣∣− 1

))
,

where the first term in the integral cancels the divergence of the second term at u→ 0; we
substituted field theory quantities in the dimensionful factor in the second line and F(·|·)
is the incomplete elliptic integral of the first kind. For convenience, we give the asymptotic

expansion F
(

sinh−1 (−X)1/4
∣∣− 1

)
= iK(2) − (−X)−1/4 + O(X)−5/4 and the expansion

at small values F
(

sinh−1 (−X)1/4
∣∣− 1

)
= (−X)1/4

(
1− X

10

)
+ O(−X)9/4, where K(.) is

the complete elliptic integral of the first kind and K(2) ∼ 1.854eiπ/4. These asymptotic
approximations are indicated in fig. E.1. We also note again the effect of the electric-
magnetic duality, which relates quantities under the interchange of density and magnetic
field, such that in the following we only need to show e.g. either the chemical potential or
the magnetization.
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Figure E.1: The free energy density of the
as a function of

√
f 2 + ρ̃2 + ν̃2 (denoted for

simplicity as “f”.

Now, we can simply verify the relations (E.2.10) and (E.2.11):

µ =
∂F

∂ρ

∣∣∣∣
T

= (πT )2 ∂F

∂ρ0

(E.2.26)

=
√
λT 3Ncρ0

F
(

sinh−1 (− (f 2 + ρ2
0/(πT )2 +B2/(πT )2))

1/4
∣∣∣− 1

)
(− (f 2 + ρ2

0/(πT )2 +B2/(πT )2))
1/4

=
√
λT 3Nc

∫ 1

0

duA′t

zmax =
∂F

∂Ff

∣∣∣∣
T

=
4

πNcNf

√
λT 4

∂F

∂f
(E.2.27)

=
1

πT
f
F
(

sinh−1 (− (f 2 + ρ2
0/(πT )2 +B2/(πT )2))

1/4
∣∣∣− 1

)
(− (f 2 + ρ2

0/(πT )2 +B2/(πT )2))
1/4

= πT

∫ 1

0

d uχ′ .

This is shown in fig. E.2, and we note that the dominant dependence of µ on ρ0 or

Figure E.2: The chemical potential as a

function of ρ̃ and

√
B̃2 + f 2. Note that,

due to electromagnetic duality, this is the
same as the magnetization as a function of
B̃ and

√
ρ̃2 + f 2, upon an appropriate scal-

ing with a dimensionful constant.

M on B, with an apparent saturation behavior as the scaling power changes from 1 to
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1/2. The behavior on the subleading quantities is a small suppression, which goes slightly
against classical intuition Further more, we can straightforwardly give the contribution of
the defect to the entropy, which is

S =
√
λT 2Nc

(√
1 + f 2 + ρ2/(πT )2 +B2/(πT )2

+ 2f 2
F
(

sinh−1 (− (f 2 + ρ2/(πT )2 +B2/(πT )2))
1/4
∣∣∣− 1

)
(− (f 2 + ρ2/(πT )2 +B2/(πT )2))1/4

 , (E.2.28)

which is indicated in fig. E.3. Now, we can notice that for large values of f , this ex-

Figure E.3: The contribution of the defect

to the entropy as a function of

√
ρ̃2 + B̃2

and f .

pression turns negative. Since the thermodynamic quantities that we derive here are only
contributions to the overall quantities of the system “defect+background”, and the defect
is certainly strongly coupled to the background and hence always in thermal equilibrium,
this is not troublesome, as we can demonstrate:

First, we assume that the defect effectively extends roughly homogeneously over a
region up to zmax in the normal direction. This is suggested by (3.1.10), (E.2.26) and at
large f also by the results from chapter 2. Then, we consider the entropy density over this
region,

S∆z

zmax
= 2
√
λπT 3Nc

(− (f 2 + ρ2
0/(πT )2 +B2/(πT )2))

1/4
√

1 + f 2 + ρ2
0/(πT )2 +B2/(πT )2

fF
(

sinh−1 (− (f 2 + ρ2
0/(πT )2 +B2/(πT )2))

1/4
∣∣∣− 1

) − 2f

 ,

(E.2.29)
where we look in particular at the density of the negative term, −2π

√
λT 3Ncf . In our limit

of large Nc and Nc � f 2, this term is precisely (minus) the contribution q δSSYM
δNc

. This
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can be interpreted simply in the way that the extra degrees of freedom due to changing
Nc → Nc + δNc become fully available only after the brane falls into the horizon, and the
positive term in the entropy of the defect describes the extra degrees of freedom contributed
by the defect inside that region. Furthermore, there is no region in which the total entropy
of the combined system is negative.

At large densities or magnetic fields, the contribution to the entropy is just
√
λNc

ρ0

π
or√

λNc 2πε0B, respectively - indicating that the number of degrees of freedom is independent
of the temperature, and proportional to the number of quarks or magnetic states.

We can also straightforwardly compute the heat capacity:

cV = 2
√
λTNc

(
1√

1 + f 2 + ρ2
0/(πT )2 +B2/(πT )2

(
1 + 2f 2 − f 4

f 2 + ρ2
0/(πT )2 +B2/(πT )2

)

−
f 2F

(
sinh−1(− (f 2 + ρ2

0/(πT )2 +B2/(πT )2))
1/4
∣∣∣− 1

)
(− (f 2 + ρ2

0/(πT )2 +B2/(πT )2))
1/4

(
3− f 2

f 2 + ρ2
0/(πT )2 +B2/(πT )2

) ,(E.2.30)

which we show in figure E.4. Again, we notice that the heat capacity is negative for large f ,

Figure E.4: The contribution of the de-
fect to the specific heat as a function of√
ρ̃2 + B̃2 and f .

but as in the case with the entropy, this does not signify an instability, as the contribution
is much smaller than the heat capacity of the background SYM in the appropriate region
around the defect, and the negative contribution to the heat capacity simply indicates that
the additional degrees of freedom only turn on gradually over some region∼ zmax away from
the defect. At small f , the heat capacity is just cV = 2

√
λTNc

1√
1+ρ2/(πT )4+B2/(πT )4

+O(f 2).

This is somewhat counter-intuitive, as one normally expects an increasing heat capacity
with increasing density. However, since this system is strongly coupled, this is not too
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surprising, as ρ̃0 is obviously only the net baryon number density, but there is always a
plasma of quarks and gluons in thermal equilibrium, so there is always a finite total density.
As we increase the net quark density, beyond the normal equilibrium total quark density,
we are changing the equilibrium, and it may happen that the density of gluons decreases.

Finally, we can look at magnetic the susceptibility,

χB =

√
λNcT

2

(
B2

(f 2 + ρ2
0/(πT )2 +B2/(πT )2)

√
1 + f 2 + ρ2

0/(πT )2 +B2/(πT )2
(E.2.31)

+ (πT )4

(
2− B2

ρ2 +B2 + f 2(πT )4

) F (sinh−1 (− (f 2 + ρ− 02/(πT )2 +B2/(πT )2))
1/4
∣∣∣− 1

)
(− (f 2 + ρ2

0/(πT )2 +B2/(πT )2))
1/4

 .

This expression is always less than χ
(0)
B

√
λNcπ

2T 3 - the susceptibility of the defect without
any of the parameters turned on as shown in fig. E.5 - and behaves asymptotically as

χ
(0)
B

(−1)1/4K(2)√
f

, χ
(0)
B

(−1)1/4K(2)√
ρ/(πT )2

or χ
(0)
B

(−1)1/4K(2)

2
√
B/(πT )2

, respectively. Hence, the defect is diamag-

netic. Again, we can blame this on the strong coupling, which may increase the spin-spin
interactions. In the case of the equivalent density of states, this becomes more obvious,
since asymptotic freedom should have the effect of lowering the energy density of the plasma
as we increase the quark density.

Figure E.5: The magnetic susceptibility of
the defect as a function of B̃ and

√
ρ̃2 + f 2.

This is the same as the density of states as

a function of ρ̃ and

√
B̃2 + f 2.

E.2.2 Numerical results

Now, let us look at the phase diagram in fig. E.6. Looking at the different kinds of
embeddings, we find that in the case of vanishing ρ and f , there are three phases: the stable
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phases of the blackhole embedding at small masses Mq < M
(BH)
max (or large temperatures),

denoted as “B” and of the Minkowski embedding at large masses Mq > M
(flat)
min (M). In

principle, these connect via 2nd order phase transition to an unstable phase with M
(BH)
max >

Mq > M
(flat)
min (C), but in practice, this phase is not realized and there will just be a first

order phase transition from B to M. At finite f or ρ, the mass diverges at umax = 0 or
Ψ0 = 1, so we find two additional phases, each one for the blackhole (B1) and Minkowski
(M1) embeddings. We interpret this B1 embedding as a phase with free quarks, but
also a high density of mesons. In many situations, the phase transition between those
phases will disappear, as we will see below. Using the condensate as an order parameter to
identify different phases, we demonstrate the various phases in figs. E.6 - E.8. In order to
demonstrate the phase transitions, and the disappearance of the blackhole phase M and
the transition phase C in the presence of strong magnetic fields, we plot the results at fixed
temperature with varying M/(πT ), rather than fixed mass and varying T/M . Obviously,
in a thermodynamic process M/(πT ) = 0 cannot be attained. In fig. E.6, we find that the
critical masses decreases approximately linearly with the increasing magnetic field, there
is a critical magnetic field, above which the blackhole phase B disappears. This indicates
that the magnetic field catalyzes meson formation. This behavior is similar to what was
observed in 3+1 dimensional systems in [110]. Rigorously speaking, however, there exists
at all magnetic fields a continuation of the B phase at zero mass. Also, we find how the
phase C, that is suppressed at finite density or f re-appears at large magnetic fields. The
condensate is large in the blackhole phase B1 and in the Minkowski phases and grows
approximately proportional to the magnetic field – indicating chiral symmetry breaking.
As indicated above, these phases have a very similar behavior. The reader is reminded
however that at finite density, the Minkowski embedding is not physical within string
theory. It is interesting though that turning on f reverses the linear mass dependence of
the condensate when interpreted as the conjugate potential of the mass - meaning that
if we increase the mass or lower the temperature, the free energy will “saturate”. In the
blackhole phase B in which the mesons are dissociated and we have only free quarks, the
condensate vanishes and is independent of mass and magnetic field. This indicates to us
that the SU(Nf ) is not broken.

In fig. E.7, we see that a finite net baryon density increases the critical masses, sup-
presses the blackhole phase B and the connecting phase and separates the two Minkowski
phases. The phase M is left approximately unchanged by turning on the finite density,
sitting still at c̃ ∼ 0 with unbroken chiral symmetry, but the condensate of the M1 and B1
phases is negative for Mq 6= 0 and approximately proportional to the mass. Turning on a
finite magnetic field has the expected effect of lowering the critical masses, increasing phase
space volume of the phases C and B and shifting the overall condensate - breaking also
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The light gray (upper) surface is the bary-
onic, i.e. Minkowski, phase and the darker
(lower) surface the blackhole phase. The gray
line is the projection of the minimum mass of
the Minkowski phase M

(flat)
min . The black line

is the (local) minimum mass of the blackhole
phase and the dark gray line the local maxi-
mum M

(BH)
max , if it exists, or the slowest rate

of change of the mass w.r.t. them embedding,
i.e. approximately the fastest change conden-
sate. There is some numerical noise visible in
the plots that can be ignored, but we chose not
to suppress artificially.

Figure E.6: Value of the condensate as a function of the dimensionless mass, m̃ and
magnetic field, B̃ at fixed temperature. Top left: Vanishing density and magnetic field.
The light and dark gray lines identify the transition between B and C and M, respectively.
Top right: Density ρ̃ = 0.5. The dark gray line is now the transition between B and C,
or B and B1 and the black line between C and B1. The light gray line is the transition
between M and M1. Bottom left: f = 0.25. More details are explained in the bottom
right.
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Figure E.7: Value of the condensate as a function of the dimensionless mass and density,
at fixed temperature. Left: B̃ = 0, right B̃ = 4.

the symmetry of the M phase. Interestingly, this persists even at relatively large densities.
To understand this behavior we recall that there is always a finite total baryon density,
and the polarizing an localizing effect of the magnetic field is not affected by changing the
ratio of quarks and anti-quarks. The parameter f , not surprisingly form the gravity point
of view, but surprisingly from the field theory point of view, has a very similar effect to
turning on a finite density as we show in fig. E.8.

In order to determine which phases are thermodynamically preferred, i.e. stable, we
can look at the entropy. Before studying the data, we should notice that there is a trade-off
between numerical accuracy and noisiness. This arises because a significant contribution to
the entropy comes from the UV regime, i.e. small values of u. On the other hand, however,
the solution for Ψ becomes unstable and noisy in this regime, so we usually choose a cutoff
of the order of 10−5, which causes usually no significant errors in the result – except for
the case of the entropy. Even if we try to extrapolate at small u, the cancellation of the
boundary term in (E.2.16) will not be accurate, so we need to push the minimum value for
u as far as possible and we will notice some noise. Eventually, the qualitative result will
not be affected in any event, and we can further check whether some apparent “effect” is
due to numerical errors or not.

We use quantities that are made dimensionless using the mass as we consider the system
at fixed mass. For example, we have T̄ = 1

m̃
and B̄ = B̃

m̃2 . We chose this combination,
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Figure E.8: Condensate as a function of the dimensionless mass and f , at fixed tempera-
ture. Left: B̃ = 0, right B̃ = 4.

because these are parameters that naturally arise in the computations. Notice however,
that m̃ contains a factor of

√
λ, i.e. T̄ =

√
λ T

23/2Mq
and B̄ = B̃

m̃2 = λ B
8π2M2

q
.

If we now look at the entropy in fig. E.9, we see that in all cases, the blackhole
embedding is preferred. In the case of having only the magnetic field non-vanishing, we
actually notice the cusp-like behavior at the point where the blackhole and Minkowski
phases meet, as it was observed in [45]. In the plot on the top right, at f = 1/2, we there
is some numerical error which causes the entropy of the lower branch of the Minkowski
embedding not to go to zero at vanishing temperature. In the bottom-left, we “cut out”
the region of small temperatures and densities, as it was dominated by noise. We also
notice again in the bottom right, which shows the plot “from behind”, that f causes a
negative entropy contribution, as discussed in the context of fig. E.3. Note that the hint of
the entropy of the phases crossing around T̄ ∼ 0.25 can be shown to be due to numerical
errors.

Let us finally just take a quick look at the other first derivatives of the free energy. In
fig. E.10, we show the magnetization and we notice that the magnetization is higher in
the blackhole phase, where we expect more free quarks, and lower in the Minkowski phase
where we expect more mesons. In the case of small finite f (qualitatively the same happens
also for ρ̄) however, the difference is highly suppressed and both phases have essentially
the same magnetization.
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Figure E.9: The dimensionless entropy S̄ = S
8M2

qNc
as a function of T̄ =

√
λ T

23/2Mq
and

B̄ = λ B
8π2M2

q
for f = 0 = ρ̄ (top left) and f = 1/2, ρ̄ = 0 (top right) or as a function of T̄

and ρ̄ (bottom left) or f (bottom right).

169



Figure E.10: The magnetization M̄ as a function of the temperature-mass ratio T̄ and the
magnetic field B̄ at ρ̄ = 0 = f (left) and f = 0 (right).

Figure E.11: The chemical potential µ̄ as a function of the temperature-mass ratio T̄ and
the density ρ̄ at B̄ = 0 = f (left) and as a function of B̄ at ρ̄ = 1/2 (right).
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In figure E.11, we look at the chemical potential. In contrast to the magnetization,
there is a a significant difference in the chemical potential, that persists in all cases, and
the chemical potential of the Minkowski phase is higher. Hence, inducing a difference in
the density of baryons and anti-baryons requires more energy in the Minkowski phase.
Intuitively, this would be the case if the Minkowski phase is dominated by mesons. It
might also be related to the fact that in string theory, there should be no finite net baryon
density in the Minkowski phase.
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