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Abstract 

Triazenes are molecules characterized by having the triazeno group (–N=N–N<). They 

are known as photoactive molecules due to trans-cis photoinduced isomerization around 

the N=N bond. Their nucleophilic character makes them good ligands to metal centers. A 

study on the potential ability of photochromic organic ligand triazenes to undergo 

reversible cis-trans photoisomerization and, in turn, photoreversible complexation with 

metal cations was carried out in aqueous solutions. Metal-triazenide complexes are 

instantaneously formed upon addition of metal cations to trans-triazenes dissolved in 

aqueous solutions. For silver-triazenide and mercury-triazenide complexes, the metal-to-

ligand ratios are 1:1 and 1:2, respectively. Unfortunately, target metal-triazenide 

complexes do not photoisomerize upon 355 nm laser excitation. 

Triazenes are also known to be unstable materials under acidic conditions. A study on 

the effects of cyclodextrins (CDs) on the rate of acid-catalyzed decomposition of 1,3-

diphenyl-triazenes was carried out in 2% MeOH aqueous buffer solutions by means of 

spectroscopic methods. CDs inhibit triazenes decomposition through inclusion complex 

formation. The inclusion complexes render the guest triazene significantly less basic as a 

consequence of the less polar nature of the CD cavity (a microsolvent effect). For any 

given triazene, the inhibition effect is dependent on both the size of the cyclodextrin 

cavity and the substituents on the cavity rims. Binding constants for 1:1 host:guest 

complexes increase in the order α-CD < ß-CD ~ TM-ß-CD < HP-ß-CD; in the case of 

α-CD, formation of 2:1 complexes is also observed.  
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Chapter 1. Introduction 

1.1 Triazenes 

Triazenes, or diazoamino compounds, contain three consecutive nitrogen atoms in a 

linear arrangement with a double bond in between two of the nitrogen atoms (triazeno 

group, -N1=N2-N3<).1a The simplest member of triazenes HN=N-NH2 is not isolable and 

has been postulated as an intermediate in the one-electron oxidation of hydrazine.2,3 The 

derivatives 1 of triazene can be divided into three groups depending on the number of H 

atoms being substituted: monosubstituted, 1,3-disubstituted and 1,3,3-trisubstituted 

triazenes.1a  

 

R1 N
1
N
2
N
3
R2

R3

1  

 

There are some important characteristics of triazenes based on their triazeno backbone 

structure: (1) cis-trans isomerization around the N1=N2 double bond, (2) nucleophilicity 

(due to the unpaired electrons on N atoms), and (3) relative instability (due to N2-N3 bond 

cleavage). The following three sections provide an overview of these properties of 

triazenes.  

 

1.1.1 Cis-trans isomerization 

Acyclic triazenes exist in the ground state in their trans form;1b when light is applied, 

triazenes can isomerize from the thermodynamically more stable trans form to the cis 

form, which has a different absorption spectrum from the trans isomer; the cis isomer 

subsequently revert to the trans form spontaneously (Scheme 1-1).4,5 This reversible cis-
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trans isomerization renders triazenes as photochromic compounds and hence, potential 

photoswitchable materials.  

 

N

N

N

   trans

NN

N

   cis

h!

"

 

Scheme 1-1. Cis-trans isomerization of triazenes 

 

Photoswitchable materials based on double bond cis-trans isomerization have been 

employed in the development of erasable optical recording supports, image processors, 

laser-addressable devices, light switchable receptors and sensors, and the control of the 

conformation of biomolecules.6 Azobenzenes represent one of the most thoroughly 

studied N-containing systems with photoswitchable properties.7,8 Covalent attachment of 

azobenzene units to enzymes has allowed protein activity modulation by distorting the 

protein structure through isomerization around the N=N double bond.9 Two cyclic 

peptides are joined together with an azo group to form a photo reactive molecule; in the 

thermally preferred trans form, the molecules self-assemble via hydrogen-bonding to 

form an extended network structure, while upon UV irradiation, the molecules 

spontaneously disrupt the network structure through self-association (Scheme 1-2).9 
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N N
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Ar Ar
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Scheme 1-2. Photoreactive system involving azo groups 
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Triazenes display photoisomerization similarly to that of azo compounds, and thus may 

have similar applications.6 In order to make use of these materials, it is very important to 

know how the isomerization occurs. Our group has focused on mechanistic studies of the 

thermal cis-to-trans isomerization of 1,3-diaryltriazenes in aqueous media for a couple of 

years, and suggested an acid/base-catalyzed mechanism as shown in Scheme 1-3.10-14  
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Scheme 1-3. Thermal cis-to-trans isomerization of 1,3-diaryltriazenes 

 

Cis triazenes are obtained by laser photoexcitation of trans forms at 355 nm. For 

symmetrical disubstituted triazenes, the mechanism is as shown in Scheme 1-3. At pH  

6 < pH < 8 (due to the instability of triazenes in acidic conditions, measurements at pH < 

6 aqueous solutions were not able to be carried out), rate-determining proton transfer to 

the N1=N2 double bond gives a resonance-stabilized cation, which then loses a proton 

from the position that renders the thermodynamically more stable trans-isomer.10,11 At  

8 < pH < 11, the cis-to-trans isomerization follows a base catalyzed mechanism. The 

rate-determining base-promoted ionization of the amino N gives a resonance-stabilized 
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anion, which then combines with a proton at the position that leads to the 

thermodynamically more stable trans-triazene.10,11 In all cases, the catalytic rate 

coefficients are found to increase as the pKa difference between the triazene and Brönsted 

catalyst also increases.11 Thus, with increasing electron-donating character of the para 

substituent, acid catalysis becomes more prominent, while with increasing electron-

withdrawing character of the para substituent, base catalysis becomes more 

important.11,13 In the case of unsymmetrically disubstituted 1,3-diaryltriazenes, due to the 

existence of distinguishable tautomeric isomers, two pairs of cis-isomers are obtained 

from the excitation of the trans isomers. These two pairs of cis-isomers undergo 

isomerization independently of one another, each pair following the mechanism showed 

in Scheme 1-3.13,14  

Both acid and base catalyzed isomerizations involve a fast interconversion between 

two rotamers of cis-triazenes, i.e., the cis-s-cis and cis-s-trans isomeric forms (Scheme 

1-3). The interconversion occurs via N2-N3 bond rotation, which has a relatively high free 

energy barrier due to the partial double bond character resulting from a 1,3-dipolar form 

(Scheme 1-4).15 It is not hard to see that only the cis-s-trans form can lead to N1=N2 

double bond isomerization; protonation or deprotonation of the cis-s-cis form does not 

lead to any change in N1=N2 double bond configuration. 

 

N NNN N N

A B   

Scheme 1-4. Resonance structures of the triazeno group  
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In NaOH solutions (pH > 11), the interconversion of cis rotamers via hindered rotation 

around the N2-N3 bond is the rate-controlling step.10,11 The rate of this process is found to 

be more susceptible to the electronic character of the aryl group bonded to N1 than of that 

attached to N3,14 and to decrease with decreasing solvent polarity, implying an increase in 

dipole moment on rotation from the ground state to the transition state.11,12  

The most recently published work focused on the mechanism of cis-to-trans 

isomerization of N-(phenylazo)-substituted N-ring heterocyles.16 It is shown that, in 

organic solvents, the observed first-order rate constants for thermal cis-to-trans 

isomerization increase with increasing electron-withdrawing character of the para 

substituent on the phenyl ring, larger amine rings, and increasing solvent polarity. These 

observed trends are consistent with the geometrical isomerization taking place through 

rotation around the N=N double bond via a polarized transition state (Scheme 1-5).16 The 

ability of the phenyl and cycloamine rings to stabilize, respectively, the negative and the 

positive charges in the polarized transition state as well as in the resonance form B 

(Scheme 1-4) of the ground state cis-triazene, will influence the rotational energy barrier 

and hence, the reaction rate. An electron withdrawing group on the phenyl ring and a 

larger cycloamine ring will not only stabilize the polar transition state but also lead to a 

decrease in the N1=N2 bond order (by increasing the contribution of resonance form B in 

the ground state cis-triazene), thus making the isomerization reaction to go faster.16 

 

N
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N N

N

N
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N

Ph

N
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Scheme 1-5. Cis-to-trans isomerization of N-(phenylazo)-substituted N-ring heterocycles 
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1.1.2 Complexation with metal cations 

The nucleophilic character of triazenes makes them good ligands to complex with 

metal centers with various arrangements of triazenide-metal bonds.17,18 The study of 

transition metal complexes containing triazenide ligands has increased greatly in the past 

few years due to their various applications. Suitable systems may display novel catalytic 

properties; for instance, a polymer supported Pd(II)-triazene complex has been reported 

to have good activity in both Sonogashira and Suzuki reactions.19 In addition, some 

triazenide ligands can stabilize unusual oxidation states of metals in dimeric complexes. 

For example, 1,3-bis(aryl)triazenide ligands bearing Lewis basic groups in the ortho-

positions appear to facilitate the reduction of Pd(II) to the uncommon Pd(I) and to 

stabilize Pd in the +1 oxidation state.20 Moreover, a popular analytical application of 

triazenes is in the spectrophotometric determination of metal cations. For example, 1-(4-

nitrophenyl)-3-(2-quinolyl)triazene has been reported as an extremely sensitive reagent 

for determination of mercury in water;21 hydroxytriazenes have been widely used for the 

extraction and subsequent photometric determination of copper, palladium, iron, cobalt, 

nickel and molybdenum;22 m-nitrophenylazo-2-aminothiazole has been used for the 

determination of trace impurity silver in an anticancer drug and in chemical samples and 

for the measurement of the solubility product of AgCl;23 and dibromo-6-carboxy-

benzenediazoaminoazobenzene can be used for determination of trace amounts of silver 

in waste-water.24  

Triazenes are used as precursors for triazenide complexes, in which the metals take the 

place of the amino H; only four metals (Ir, Rh, Ru, and Os) can form complexes with 

triazenes without replacing the amino H.25-27 Not a single article about trisubstituted 
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triazenes forming complexes with metals could be found. The three most fundamental co-

ordination modes of metal-triazenide complexes have been identified as: (a) monodentate, 

(b) chelate and (c) bridging modes (Figure 1-1).18  

 

N N
N

M M

(a)                         (b)                          (c)

N
N N

N

N N

M M

 

Figure 1-1. Co-ordination modes of metal-triazenide complexes 

 

It has been reported that binuclear-bridged bonding is more likely to be present in 

transition metal complexes.28 The triazene complexes of Ni (II), Cu (II) and Pd (II) are 

isomorphous (structure a in Figure 1-2), while Cu (I), Ag (I) and Pd (I) complexes are 

more likely to arrange as represented by structure b in Figure 1-2.20,28-31 The dark green 

Cu (II)-1,3-diphenyltriazene complex is extremely unstable and decomposes very quickly 

to the orange-brown Cu (I)-1,3-diphenyltriazene complex, releasing N2, aryl radicals and 

aryl amine radicals through auto-reduction.32 Interestingly, in Ag (I) triazene complexes, 

the Ag atoms are found to form zigzag polymeric chains while the bridging triazenido 

ligands are arranged alternately above and below the Ag chain (structure c, Figure 1-2).30 

By far, the most interesting feature of these kinds of complexes is the possible metal-

metal bonding due to the close metal-metal distances.29,30 

Depending on the ligands originally present in Pd (II) and Pt (II) complexes, triazenes 

can form new complexes either by a chelating mode (Figure 1-1(b)) or by a bridging 

mode (Figure 1-1(c)).33 Mercury (II)-triazenide complexes may have different structures 

depending on which mercury salt was used during the synthetic process.34 When HgCl2 
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or HgBr2 is used, structure d (Figure 1-2) in which the central mercury is 4-valent is the 

resulting structure; when acetate or nitrate salts are used, the 4-valent mercury center is 

maintained as in structure e (Figure 1-2).34 Group III metals can form complexes with 

triazenes as well. An interesting observation is that a complex with a tris-chelate structure 

(f, Figure 1-2) was the only product isolated from the reaction between 1,3-diphenyl-

triazene and AlMe3; the gallium and indium analogues can be obtained in a similar 

manner to the aluminum complex, resulting in the same tris-chelate structure.35 
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Figure 1-2. Possible metal-triazene complex structures 

 

Metal complexes involving photochromic moieties and coordination compounds have 

been found to display unique electronic, magnetic and optical properties.36 A study on 

spiropyrans has showed their promising application in surface-based photoswitchable 

chemical sensors due to the fact that spiropyrans can be switched between two states 

(“on” and “off”) through a ring opening reaction that is induced by photoexcitation.37 

One state is an uncharged, colorless, passive spiropyran form; after UV illumination, it 
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converts to a zwitterionic, highly colored active merocyanine form which complexes with 

metals (Scheme 1-6).37 The “on” state is stabilized in solvents of high polarity, thereby 

continuous visible irradiation is needed for the metal complex to transform back to the 

“off” state.37 Bearing in mind both the photochromic and metal complexing abilities of 

triazenes, if only one isomeric form of triazenes (trans form) has binding ability to metal 

cations and the other form (cis isomer) is passive, in principle, it may be possible for 

triazene-metal complexes to exhibit a similar “on” and “off” behavior through 

photoisomerization; one of the objectives indeed of this thesis is to explore the possibility 

of triazene-metal complexes to function as photoswitchable materials. 
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Scheme 1-6. Photoswitchable equilibria and metal complexation of spiropyran with a 

divalent metal cation (M2+). 



 10 

1.1.3 Decomposition 

1.1.3.1 Photolysis and pyrolysis  

As already mentioned, triazene HN=N-NH2 is very unstable; it undergoes rapid 

decomposition by cleavage of the N2-N3 bond even at room temperature while its 

derivatives (substituted triazenes) usually have much greater stability, particularly when 

aryl substituents are present.1a For example, some of the 1-aryl-3,3-dialkyltriazenes can 

be distilled at temperatures as high as 150˚C. However, most triazenes decompose below 

300˚C.1a  

Triazenes decomposition can be induced not only by heat but also upon UV light 

exposure. In both cases, decomposition progresses through homolytic N2-N3 bond 

cleavage of the triazeno group. The mechanism for photolysis and pyrolysis of triazenes 

can be represented as shown in Scheme 1-7.5,38-40  

 

R1 N N N R1  + N2 +
solvent

products
R2

R3

NR2R3
h!

or !
 

Scheme 1-7. Photolysis and pyrolysis mechanism of triazenes 

 

The decomposition mechanism for 1,3-diphenyltriazene (Scheme 1-8), which also 

applies to 1,3-diaryltriazenes, is worth mentioning because many phenyl products can be 

obtained from the decomposition of different 1,3-diaryltriazenes.5 In the case of 

unsymmetrical 1,3-disubstituted triazenes, the mechanism becomes more complex due to 

substrate tautomerization, resulting in additional radical intermediates that can undergo 

either recombination or degradation to give various product species (Scheme 1-9).38 

 



 11 

PhN N NHPh PhN2   + PhNH

-N2

Ph

H2N N N +

NH2

N N

PhNHPh  + + H2N

NH2

h!

or !

 

Scheme 1-8. Decomposition mechanism for 1,3-diphenyltriazene 

 

R1 N N NHR2

R2NNR1HN

R1  + N2 +  NHR2

products

h!

h!

or !

or !
NHR1 + N2 +  R2  

Scheme 1-9. Photolysis and pyrolysis mechanism of unsymmetrical triazenes 

 

The ability of triazenes to undergo homolytic N2-N3 bond cleavage (and consequently, 

to release N2 gas) makes them suitable materials in polymer chemistry, especially in 

polymer laser ablation.41,42 Figure 1-3 shows a typical structure for triazene polymers, the 

absorption maximum of which can be tuned from 260 nm to 360 nm by varying the “X” 

moiety in the polymer.41 In fact, triazene polymers show one of the best ablation 

performances on exposure at 308 nm (the most common irradiation wavelength applied 

in industry).42 

 

N N N

R2

R1 N N

R2

N **

nX  

Figure 1-3. Typical structure of triazene polymers 
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1.1.3.2 Acid catalyzed decomposition  

Triazenes decompose in the presence of acids to amines and diazonium ions 

intermediates, which subsequently lead to N2 gas and substitution products. Two 

decomposition mechanisms commonly accepted are: (1) specific acid catalysis (which 

involves a fast reversible protonation at the N3 atom followed by rate-determining 

heterolysis of the protonated species to diazonium ions and amines, Scheme 1-10 A)43-45 

and (2) general acid catalysis (which involves simultaneous protonation of the N3 atom 

and splitting of the N2-N3 bond, Scheme 1-10 B).46-49 The rate of a specific acid catalyzed 

reaction is proportional to proton concentration, while that of a general acid catalysis is 

proportional to the concentration of each of the acidic species present in the solution.50a 

Thus, a notable experimental difference between these two mechanisms is that at constant 

proton concentration, the observed rate constant of a specific acid catalysis does not 

change by varying the buffer concentration, while that of a general acid catalysis is 

proportional to buffer concentration.50a 
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Scheme 1-10. Mechanisms for acid-catalyzed decomposition of triazenes: 

(A) specific acid catalysis; (B) general acid catalysis 
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Another, less common, decomposition pathway for triazenes involves fast protonation 

at the N3 atom followed by rate-limiting nucleophilic attack (Scheme 1-11).43 The rate for 

this reaction does respond to proton and buffer concentrations in the same manner as in a 

general acid catalyzed system. Measurement of the kinetic solvent isotope effect (KSIE), 

i.e., the ratio between the reaction rate in H2O and that in D2O, can help to distinguish 

between these two different reaction pathways. For general acid catalysis, proton transfer 

is the rate-limiting process. Since H-A bond is weaker than D-A bond, the reaction in 

H2O will be faster than in D2O; thus, one should expect a KSIE larger than 1. On the 

other hand, for nucleophilic catalysis (as well as specific acid catalysis) proton transfer 

takes place in a pre-equilibrium step, not the rate-limiting step. Such an equilibrium will 

be driven to the right when H2O is substituted by D2O, since D3O+ is a stronger acid than 

H3O+; thus, one should expect a KSIE smaller than 1.50a 
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Scheme 1-11. Mechanism for nucleophilic-catalyzed decomposition of triazenes 

 

All of the above mechanisms show protonation at the N3 atom only, while in fact a 

proton can attach to any of the three nitrogen atoms in the triazeno group.51,52 According 

to quantum-chemical calculations of heats of formation of the different protonation 

intermediates, protonation at N1 and N3 atoms are competitive while both of them are 

more favored than protonation at N2.52 An ab initio molecular orbital calculation study 
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shows that although protonation at N1 is preferred, it is protonation at N3 that results in 

the N2-N3 bond scission, which is consistent with the kinetic experimental data.51  

As in the case of pyrolysis and photolysis, acid catalyzed decomposition of 

unsymmetrical 1,3-disubstituted triazenes becomes more complex due to substrate 

tautomerization (Scheme 1-12).17 Both tautomers can undergo decomposition through 

protonation at the N3 atom, resulting in different decomposition intermediates and 

product species; corresponding product distribution is controlled by the difference in 

standard free energies of the two possible transition states that lead to diazonium ions.44 
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Scheme 1-12. Acid catalyzed decomposition of unsymmetrical 1,3-disubstituted triazenes 

 

The acid-induced decomposition of 1,3-diphenyltriazenes has been reported to be 

solvent sensitive; the overall trend is that the decomposition rate decreases with 

decreasing solvent polarity.46,47,53 Encapsulation of guest molecules into macrocycles can 

change the microenvironment of the guest molecules, hence altering the properties of the 

guest espcies, such as solubility and reactivity. Indeed, the other objective of this thesis is 

to investigate the effects of encapsulation of triazenes into cyclodextrins, one of the most 

popular host molecules (Section 1.2), on the acid-induced decomposition of 1,3-diphenyl-

triazenes.  
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It should be pointed out here that the acid catalyzed decomposition pathways shown 

above are just the opposite to one of the synthetic routes to triazenes: N-coupling of 

diazonium ions with amines (Scheme 1-13 A).17,54 This pathway is commonly used in the 

synthesis of aromatic triazenes, in which anilines are typically treated with nitrite ion 

under acidic conditions to form aryl diazonium salts, which are then quenched with a 

primary or secondary amine to provide the desired triazene. On the other hand, alkyl-

substituted triazenes are typically obtained from the reaction of an alkyl azide with the 

appropriate Grignard or alkyl lithium reagent (Scheme 1-13 B).17,54  
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Scheme 1-13. General synthetic routes to triazenes 

 

Due to the fact that triazenes can be easily synthesized from and readily decompose to 

amines and diazonium ions, which are widely used in organic synthesis, triazenes have 

become very useful not only as protecting groups for amines but also as in situ sources of 

diazonium ions (which in turn undergo rapid fragmentation to the very stable N2 

molecule and highly reactive cationic intermediates).54-56 The use of triazenes in organic 

synthesis may allow to achieve product selectivity that other reactions cannot.54 For 

example, synthesis of primary aniline derivatives by lithiation has been generally limited 

to those producing ortho-substituted ones; selective synthesis of ortho, meta and para 

substituted anilines, however, can be achieved using the triazeno moiety as a protecting 
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group via a modified Sandmeyer reaction.57 In regards to the use of triazenes as in situ 

diazonium ions sources, aromatic fluorination and nanotubes functionalization in aqueous 

solutions represent two of the most important applications.58-60  

Triazenes also play a relevant role in clinical investigations because of their antitumor 

activity.61,62 Structural requirements of triazene antitumor agents are depicted in Figure 

1-4.62 The substituent on N1 has little effect on the antitumor activity and can simply be 

taken as a carrying group, while the substituents on N3 matter a lot (i.e., there should be a 

methyl group and a good leaving group that can be readily lost in a metabolic 

process).62,63  

 

R1 N N N
CH3

R2

carrying 
group

absolute requirement

readily lost by metabolism  

Figure 1-4. Structural requirements of triazene antitumor agents 

 

A commonly accepted metabolism mechanism is illustrated in Scheme 1-14.63 The 

initial enzyme catalyzed dealkylation is followed by rearrangement of the resulting 

disubstituted triazene and proteolytic loss of an amine to generate the methyldiazonium 

ion, a highly reactive species that methylates the target tumor molecules.63  

 

N

N
N

R1

R2H2C Me

enzyme
HN

N
N

R1

Me
N

N
NH

R1

Me

H2N R1 +

N

N
N

R1

R2HC Me

OH
R2CHO
+

H2O
N

N

Me
 

Scheme 1-14. Metabolism of antitumor triazenes 
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The fact that methyldiazonium ions can also react with DNA purinic bases, forming 

methyl adducts, makes triazenes carcinogenic or mutagenic.61 The cytotoxic and 

mutagenic effects of triazenes depend on the efficiency of DNA repair mechanisms; 

detailed information about triazenes antitumor activity and related DNA repair systems 

can be found in a review written by Marchesi et al.63  

 

1.2. Cyclodextrins  

Cyclodextrins (CDs), also known as cycloamyloses and Schardinger dextrins, are 

oligomers of α-glucose obtained by the action of enzymes on starch.64 CDs are 

designated by a Greek letter to denote the number of glucose units: α- for six, β- for 

seven (Figure 1-5), and γ- for eight. The most abundant  α-, β- and γ-CDs are commonly 

referred to as native CDs, among which ß-CD is the most popular and readily accessible 

one.  

The glucose units in CDs are connected by α–(1,4) bonds, as shown in Figure 1-5 (left) 

for β-CD.64 The consequence of this bonding mode is the formation of a donut-shaped 

structure (Figure 1-5, right), with one broader rim lined with 2n secondary hydroxyl 

groups, the other narrower rim lined with n primary hydroxyl groups, and the interior of 

the cavity lined with a row of C3-H groups, then a row of ether-like glycosidic oxygens, 

and then a row of C5-H groups.64 
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Figure 1-5. Cyclodextrins structure 

 

The CD hydroxyl groups are nucleophilic in nature, and a series of modifications can 

be achieved by electrophilic attack on these positions.64,65 Among the three kinds of 

hydroxyl groups, primary C6-OH groups are the most basic and nucleophilic ones, 

C2-OH groups are the most acidic while C3-OH groups are the most inaccessible.64 Thus, 

electrophilic reagents will initially attack C6-OH groups; more reactive reagents can 

further react with C2-OH and C3-OH groups. The electrophilic attack does not simply 

depend on the position of the hydroxyl groups of CDs; the size of the CD cavity also has 

an effect on the reaction site. For example, in alkaline aqueous solutions, tosyl chloride 

reacts with α-CD to give C2-tosyl-α-CD, while with β-CD, it gives C6-tosyl-β-CD.66  

The above mentioned structural characteristics make CDs to have fairly polar 

hydrophilic exteriors and relatively non-polar hydrophobic interiors, which result in two 

of the most important properties of CDs: (1) aqueous solubility and (2) lipophilic 

molecules encapsulation. Some basic physical properties of native CDs at room 
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temperature (25˚C) are listed in Table 1-1.67 The inner diameter of the cavity of the native 

CDs varies from 5 Å to 8 Å, and the cavity is about 7.9 Å in depth.67 Thus, the cavity of 

α-CDs is suitable for encapsulating molecules with the size of a benzene ring or low 

molecular weight compounds with aliphatic side chains; ß-CDs complex aromatics and 

heterocycles; and γ-CDs can accommodate larger guests such as macrocycles and 

steroids.68  

 

Table 1-1. Physical properties of native CDs67,69 

CD 
 

Molecular  
weight 

pKa 
 

Water 
solubility 

(g/100mL) 

Internal Diameter 
(Å) 

Number of water 
molecules inside the 

cavity 

α-CD 972.85 12.33 14.5 4.7-5.2 6 

β-CD 1134.99 12.20 1.85 6.0-6.4 11 

γ-CD 1297.14 12.08 23.2 7.5-8.3 17 

 

1.2.1 Inclusion complexes 

There are two critical factors that determine the formation of inclusion complexes 

between cyclodextrins and guest molecules. The first one is the relative size of the 

cyclodextrin cavity to the size of the guest molecule or of certain key functional group(s) 

within the guest. If the guest is not of the appropriate size, it will not fit properly into the 

cyclodextrin cavity. The second factor encompasses the thermodynamical interactions 

between the different components of the system (CDs, guests, and solvents). There must 

be a favorable net energetic driving force that pulls the guest into the cyclodextrin 

cavity.68 
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CD inclusion complexes are mainly formed via substitution of included water 

molecules by appropriate guest species; release of high-energy water molecules decreases 

the energy of the system.70 There is no covalent bonding between guests and hosts; other 

factors such as van der Waals interactions, hydrogen bonding, hydrophobic interactions, 

release of strain energy in the macromolecular ring of the cyclodextrins and changes in 

solvent-surface tensions contribute to the formation of CD inclusion complexes as well.71 

Cyclodextrins have been widely applied in pharmaceutical industry, especially in drug 

formulations, to enhance the solubility, stability, and bioactivity of drug molecules 

through the formation of inclusion complexes.64,65 Usually a 1:1 guest:host interaction is 

seen but other order complexes (such as 1:2, 2:2, or 2:1) have been seen as well. Since 

native CDs have relatively low solubility in both aqueous and organic solutions, their 

uses in pharmaceutical formulations are limited.64 Thousands of modified CDs have been 

synthesized in order to achieve better properties (e.g., better solubility, better 

complexation stability and less toxicity) than those of native CDs.65 Three main types of 

derivatives have been developed: hydrophilic (methylated, hydroxyalkylated, and 

branched), hydrophobic (ethylated), and ionic (sulphated and phosphated). Table 1-2 lists 

some examples of modified CDs with improved solubility.72 In addition, CDs have been 

reported to enable mixing of incompatible drugs, prevention of drug-drug interactions, 

reduction of unpleasant drug tastes, protection from ultraviolet irradiation, oxidation, and 

hydrolysis of drugs, provision of a constrained medium for chemical synthesis, 

emulsification of hydrocarbons, steroids, and fats, conversion of liquid materials to dry 

form, and fixation of volatile compounds.73  
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Table 1-2. Physical properties of some CD derivatives (25˚C)72 

CD 
 

O-substituent 
 

Substitution 
degreea 

Molecular 
Weight 

Water solubility 
(g/100ml) 

2-HP-ß-CDb -CH2CHOHCH3 0.65 1400 > 60 

RM-ß-CDc -CH3 1.8 1312 > 50 

2-HP-γ-CDd -CH2CHOHCH3 0.6 1576 > 50 

a Average number of substituents per glucose unit. b 2-Hydroxypropyl-ß-CD. c Randomly 

methylated-ß-CD. d 2-Hydroxypropyl-γ-CD. 

 

The ability to form inclusion complexes with a variety of guest molecules makes CDs 

of utility not only for pharmaceutical use, but also in cosmetics (e.g., sunscreen creams, 

toiletry), foods and flavors, agriculture and environmental science. CDs are used in the 

preparation of sunscreen lotion as the CD cavity limits the interaction between the UV 

filter and the skin, thus reducing the side effects of the formulation.68 By forming 

inclusion complexes, the release of fragrances can be controlled, thus making the 

fragrance long lasting.68 Most natural and artificial flavors are volatile oils or liquids and 

complexation with CDs provides a promising alternative to the conventional 

encapsulation technologies used for flavor protection.68 CDs are also used as process aids 

in food; for example, ß-CD can be used to remove cholesterol from milk and produce 

dairy products low in cholesterol; α-CD can stabilize emulsions like mayonnaise, 

margarine and butter creams.74 In agriculture, CDs can be applied to delay germination of 

seed. In grain treated with ß-CD, some of the amylases that degrade the starch supplies of 

the seeds are inhibited. Initially the plants grow more slowly, but later on, this is largely 

compensated by a larger harvest improvement.74 CDs play a major role in environmental 
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science in terms of solubilization of organic contaminants, enrichment and removal of 

organic pollutants and heavy metals form soil, water and the atmosphere.75 

CDs have been widely used in different separation technologies as well; CDs can be 

used as chemically bonded or sorbed ligands in stationary phase or as solution 

additives.75 The shape and size selectivity of CDs provide the bases for compounds 

separation, because the binding constants of various molecules with CDs are of different 

magnitude, thus, molecular discrimination can be achieved. Table 1-3 shows binding 

constants (KB) for different organic molecules with native CDs.75 In addition to the size, 

the electron density of the guest molecule affects the strength of the complexation too. 

The non-bonding electron pairs of the glycosidic oxygen bridges are directed toward the 

inside of the cavity thus making an electron rich environment in the cavity;67 thus, 

nonionized species generally bind more strongly to the native CDs than their charged 

equivalents (Table 1-4).75  

 

Table 1-3. Dependence of binding constants on solute and cyclodextrin cavity size.75 

 KB (M-1)  
Guest 

α-CD β-CD γ-CD 

1,3-Butanediol 16200 12023  

4-Methoxy-cinnamic acid 

acid cinnamicadacid 

10300 658  

Adamantane carboxylic acid 130 330000 24000 

Testosterone 5058 7540 16500 

Naphthalene 77 608 130 

Anthracene 40 2300 1500 

Phenanthrene 60 1500 770 
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Table 1-4. Binding constants for neutral and ionized forms of various solutes and ß-CD.75 

Guest KB (M-1) 

 neutral anion 

Barbital 210 100 

Benzoic acid 632 35 

n-Decanoic acid 9440 6730 

Hexobarbital 1280 380 

 neutral cation 

Aminoadamantane 110000 8430 

4-Nitroaniline 300 100 

Morpholine 17 7 

 

1.2.2 Catalysis 

CDs can catalyze reactions through inclusion complex formation.64 Catalysis by CDs 

can be divided into two categories: (a) covalent catalysis (in which a covalent 

intermediate is formed between the CD and the substrate, which subsequently renders the 

product) and (b) non-covalent catalysis (in which CDs participate in the reactions in a 

non-covalent manner).64,70a 

The first step in covalent catalysis involves inclusion complex (S.CD) formation 

between the CD and the substrate (S); subsequently, the CD hydroxyl groups react with 

the substrate and form a covalent intermediate CD_P1, which gives rise to the final 

products (P1 and P2) while CD is regenerated (Scheme 1-15). CDs provide their cavities 

as chemically and sterically specific reaction fields, making the chemical transformation 
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specifically selective (with respect to substrates, products, and even 

stereochemistry).64,70a  

 

S + CD S.CD CD-P1 CD + P1

k2

kun

P1 + P2

KB

rcs
+ P2

 

Scheme 1-15. Covalent catalysis by CDs 

 

One of the pioneering works in CD covalent catalysis was reported by Bender and 

coworkers on the hydrolysis of phenyl acetates.76,77 It showed that the hydrolysis of meta-

substituted phenyl acetates is remarkably accelerated (k2/kun = 263) while the hydrolysis 

of para- and ortho-substituted ones is barely affected (k2/kun = 1.1).76,77 Komiyama and 

Bender later on explained the reason for this substrate specific catalysis. It arises from the 

difference in the mutual position of the secondary hydroxyl group and the carbonyl 

carbon of the substrate. In the inclusion complex of meta-substituted phenyl acetate, the 

distance between the nucleophilic centre and the eletrophilic centre is quite short, so only 

a small change in structure is needed from the initial state to the transition state. However, 

in the inclusion complex of para-substituted phenyl acetate, that distance is much larger, 

which makes the reaction suppressed.78  

Catalysis by CDs does not always involve formation of covalent intermediates. In 

some catalytic reactions, CDs simply offer their cavity as a hydrophobic and constrained 

reaction field for the inclusion of substrates. CDs do not directly react with substrates nor 

do they participate in any proton transfer. The cavities serve as the reaction medium, 
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resulting in acceleration (or deceleration) of reactions.64,70b The general mechanism for 

non-covalent catalysis can be illustrated as shown in Scheme 1-16.  

 

CD + P1 + P2

k2

kun

P1 + P2

S.CDS + CD
KB

 

Scheme 1-16. Non-covalent catalysis by CDs  

 

Non-covalent catalysis by CDs can be attributed to two effects: a) conformational 

effects (since the cavity of CDs is spatially restricted) and b) microsolvent effects (which 

arise from the apolar character of the CD cavity).70b When guest molecules accommodate 

into the CD cavity, they take specific orientations due to the above two effects, thus only 

selective reactions can occur. Furthermore, it is not uncommon to find that only one 

conformational isomer can be encapsulated in the cavity or that is more favorable to be 

encapsulated than other isomers. Thus, CDs exhibit catalysis or inhibition of reactions 

depending on what guests and how the guests are encapsulated in the CD cavity;64,70b 

Table 1-5 lists some examples of reactions that are catalyzed or inhibited by CDs. 
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Table 1-5. Examples of reactions catalyzed or inhibited by CDs 

CD Guest Reaction kCD/kun
a Ref. 

COP-ß-CDb 2-Hydroxybenzyl alcohol Oxidation 6.3×104 79 

PFD-α-CDc 2-Hydroxyaniline Oxidation 410 80 

ß-CD o-Methyl red Cis-trans isomerization 0 81 

DM-ß-CDd 4-Methoxybenzoyl chloride Hydrolysis 2.15×10-3 82 

a kCD represents the reaction rate constant for complexed substrate, while kun represents 

the reaction rate constant for free substrate. b 6A,6D-Di-C-oxo-6A,6D-O-(2-oxo-1,3-

propanediyl)-ß-CD. c 6A,6D-Di-O-(2-formyl-1,3-propanediyl)-α-CD d Heptakis(2,6-di-O-

methyl)-ß-CD.  

 

1.3 Research objectives 

As already stated, triazenes are well known photochromic materials due to their ability 

to undergo reversible photoinduced cis-trans isomerization around the N=N double bond. 

In addition, their nucleophilic character gives rise to their frequent application in 

spectrophotometric methods for detection and quantitative determination of metal cations 

upon complexation. One of the objectives of the work presented in this thesis is to probe 

the effects of metal cations on the photochromic reactivity of triazenes. Interest for this 

type of study arises from the potential application of triazenes and metal cations in 

photoswitchable sensing devices, which can enable monitoring metal ions by color 

change upon complexation, and forcibly releasing absorbed ions upon cis-trans 

isomerization.  

As mentioned in Section 1.1.3.2, the acid-induced heterolytic cleavage of triazenes 

N2-N3 bond constitutes the basis of many applications in synthetic and biological areas. 
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Cyclodextrins, macrocycles that can alter guest molecules properties through inclusion 

complexes formation, have been widely used in pharmaceutical applications. The other 

objective of the work presented in this thesis is to study the effects of CDs on the rate of 

acid-catalyzed 1,3-diphenyltriazenes decomposition. Interest for this type of study arises 

from the potential capability of CDs to control the rate of decomposition and hence, 

control the rate of in situ production of anilines and diazonium ions, which are widely 

used in organic synthesis.   
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Chapter 2. Metal-triazene complexes 

To probe the effects of metal cations on the photochromic properties of triazenes, three 

1,3-diphenyltriazenes (Chart 2-1), the parent 1,3-diphenyltriazene (HDPT) and two other 

derivatives with either an electron-donating group (4-CH3O) or an electron-withdrawing 

group (3-CF3), were selected as target substrates. The metal cations chosen for the project 

were Ag+ (AgNO3) and Hg2+ (HgCl2). As mentioned in Section 1.1.2, Ag+ is a 

representative monovalent metal cation, able to form complexes with different triazenes. 

Hg2+ was chosen as a representative bicovalent cation, since other candidates like Zn2+, 

Cu2+ and Fe2+ may catalyze substrate decomposition.83 In addition, both Ag+ and Hg2+ 

have filled d orbitals (4d10 for Ag+, 5d10 for Hg2+) so they do not absorb in the near UV 

and visible regions84 and, therefore, will not absorb photons at 355 nm, which is the 

excitation wavelength used to induced trans-to-cis photoisomerization of target triazenes. 

 

N
H
N

N

XX  

Substrate X 

HDPT H 

CH3ODPT 4-CH3O 

CF3DPT 3-CF3 

 

Chart 2-1. Structure and abbreviation of target substrates 
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Experiments were carried out in aqueous solutions at pHs high enough to diminish 

substrate decomposition, since triazenes are sensitive to the presence of acids (see 

Section 1.1.1.2). Two photometric techniques were applied in this study: UV-visible 

absorption spectroscopy (used to monitor the formation of metal cation-triazene 

complexes as well as to determine the stoichiometry of the complexes) and laser flash 

photolysis (LFP, used to monitor the thermal cis-to-trans isomerization process). 

 

2.1 Results  

2.1.1 UV-visible absorption spectroscopy  

Complexation of triazenes with metal cations was monitored by recording absorption 

spectra of solutions containing a constant concentration of the triazene and increasing 

concentrations of the metal cation. The spectra obtained in this manner are often referred 

to as absorption titration spectra.85 The method of continuous variation (also known as 

Job’s method) was used to determine the stoichiometry of the predominant complex.85 In 

this method, the total concentration of triazene plus metal cation is kept constant, while 

the [metal cation]/[substrate] ratio is varied. A graph is made by plotting the corrected 

absorbance (i.e., ΔAc = measured absorbance minus (metal cation absorbance + substrate 

absorbance)) as a function of the metal ion molar fraction. A maximum absorbance is 

reached at the stoichiometric molar ratio of the predominant complex.85 The plot 

approaches two straight-line segments when the binding constant of the complex is very 

large, and the apex of the angle yields the stoichiometry of the complex.86 Deviations of 

the plot from the theoretical straight lines can be used to estimate the binding constant of 

the complex.87 
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2.1.1.1 HDPT  

Experiments with HDPT as ligand and AgNO3 or HgCl2 as metal cation source were 

carried out at pH 9 and 13, in 2% MeOH (v/v) aqueous buffer solutions. Figures 2-1 and 

2-2 show absorption titration spectra corresponding to Ag+ and Hg2+, respectively.  
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Figure 2-1. Absorption titration spectra of HDPT with Ag+ in 2% MeOH aqueous 

solution; top: pH 9, [HDPT] = 1.35 × 10-5 M, [Ag+] = 0 to 1.35 × 10-5 M (from a to b); 

bottom: pH 13, [HDPT] = 2.62 × 10-5 M, [Ag+] = 0 to 2.35 × 10-5 M (from a to b). Inset: 

corresponding Job’s plot. 
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Figure 2-2. Absorption titration spectra of HDPT (3.08 × 10-5 M) with Hg2+ in 2% MeOH 

aqueous solution; top: pH 9, [Hg2+] = 0 to 1.26 × 10-5 M (from a to b to c); bottom: pH 

13, [Hg2+] = 0 to 1.67 × 10-5 M (from a to b). Inset: corresponding Job’s plot. 

 

In all cases, the intensity of the absorption band centered at around 350 nm, which 

arises from the π-π* transition associated with the N=N double bond,88,89 decreases with 

increasing metal cation concentration and a new absorption band at longer wavelength 

appears (~412 nm for Ag+, ~394 nm for Hg2+). These spectral changes are good evidence 
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of complex formation between HDPT and Ag+ or Hg2+, and are consistent with the 

observation that upon metal cation addition the solutions turn yellow. Comparison of the 

absorption spectra for HDPT in aqueous solutions at pH 9 and pH 13 shows that at pH 13, 

the most intense peak, which arises from the π-π* transition associated with the N=N 

double bond, is much broader than that at pH 9 and the wavelength of maximum 

absorption (λmax) shifts to the red. Since the pKa for HDPT in 2% MeOH aqueous 

solution is ca. 13,90 at this pH the neutral form and the anionic form of the substrate exist 

in ca. 1:1 ratio. Thus, the spectrum of the solution is the sum of the spectra for two 

absorbing species, i.e., neutral and anionic triazene. The charge of the anionic form of 

triazene is further delocalized by conjugation. The effect of charge delocalization by 

conjugation is to lower the π* energy level and give it less anti-bonding character; as a 

result, the absorption maximum is shifted to a longer wavelength.91 Thus, since the 

anionic form of triazene absorbs at a longer wavelength in comparison to the neutral form, 

the spectrum of the sum of neutral and anionic forms becomes broader and λmax shifts to 

the red, relative to the spectrum of the neutral form. This also explains why at pH 9 

solutions of HPDT were colorless while at pH 13 the solutions were light yellow.  

In the spectra shown in Figures 2-1 and 2-2 there is at least one isosbestic point, which 

indicates that there are two stoichiometric states in a chemical equilibrium.92 Thus, it can 

be concluded that in each set of reactions corresponding to each of the spectra above, the 

two absorbing species in equilibrium are the free triazenes and the complexed ones.  

The stoichiometry of the silver and mercury complexes was determined using the 

continuous variation method (Job’s method). Theoretically, a Job’s plot for a 1:1 complex 

yields a maximum at a molar fraction at 0.5, whereas that of a 1:2 complex yields a 
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maximum at 0.33. The insets of Figures 2-1 and 2-2 show, respectively, sharp maxima at 

mole fractions of 0.45 (top plot) and 0.47 (bottom plot) for silver complexes, and 0.30 

(both plots) for mercury complex. The sharp shape of the Job’s plots reveals large 

binding constants for both silver and mercury complexes. The values of the metal molar 

fractions corresponding to the maximum corrected absorbance reveals that, within 

experimental error, the stoichiometry (metal:ligand) for the silver complex is 1:1 while 

that of the mercury complex is 1:2 in aqueous solutions. These stoichiometric ratios are 

the same as those reported for solid state complexes, in which the amino H of 

1,3-disubstituted triazenes has been substituted by Ag+ or Hg2+ cation.93 Hence, one 

would expect that, if the amino H is also replaced by the metal cation in aqueous 

solutions, the absorption spectra of the complexes should not change with pH. Spectra for 

solutions containing HPDT and Ag+ or Hg2+ (in 1:1 and 2:1 ratios, respectively) were 

recorded at pH 9, 10, 13 and 14, in 2% MeOH (v/v) aqueous solutions. As already 

mentioned, the pKa of HDPT is ca. 13, thus, at pH 9 and 10, the substrate exists mainly 

in its neutral form, while at pH 14, the substrate exists mainly in its anionic form. It turns 

out that for both silver and mercury complexes, the shape of the spectra is pH 

independent, in agreement with the assumption that the amino H is substituted by the 

metal ion. However, it should be pointed out here that a slight variation (if at all 

significant) in absorbance with increasing pH is observed (typically, the higher the pH, 

the higher the absorbance), and that for both silver and mercury the solubility of the 

complexes is higher at pH 13 than in pH 9 solutions.  

Experiments with higher organic co-solvent concentrations (30% MeOH and 30% 

THF) and in pure organic solvents (MeOH and MeCN) were also carried out. Spectra of 
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solutions with a stoichiometric ratio of metal:triazene in 30% MeOH and 30% THF 

aqueous solutions resemble the spectra previously recorded in 2% MeOH aqueous 

solutions. This may be an indication of co-solvent insensitivity of the absorption spectra 

of the metal complexes in aqueous solutions. On the contrary, in organic solutions, even 

with a large excess amount of metal cations, the spectra resemble the spectrum of HDPT 

itself, only slight spectral changes are observed, but are relatively more obvious in MeOH 

than in MeCN. 

 

2.1.1.2 CH3ODPT  

Experiments with CH3ODPT were carried out in 2% MeOH (v/v) and 30% MeOH (v/v) 

aqueous solutions, at pH 9 and 13. Figure 2-3 shows spectra of CH3ODPT in the absence 

and in the presence of Ag+ (1:1 ligand:metal) or Hg2+ (2:1 ligand:metal) in 2% MeOH 

aqueous solution at pH 13. As in the case of HDPT, spectral changes indicate the 

formation of complexes, and the pH independent spectra of the complexes indicate the 

replacement of the amino H. Unfortunately, due to the substrate instability in aqueous 

solutions, neither the titration absorption spectra nor the Job’s method plot could be 

obtained.  
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Figure 2-3. Absorption spectra of CH3ODPT (1.26 × 10-5 M) in the absence (1) and 

presence of metal cations (2, [Ag+] = 1.26 × 10-5 M; 3, [Hg2+] = 0.63 × 10-5 M) in 2% 

MeOH aqueous solutions at pH 13. 

 

2.2.1.3 CF3DPT 

Experiments with CF3DPT as ligand and Ag+ or Hg2+ were carried out in 30% (v/v) 

MeOH and 30% THF (v/v) aqueous solutions, at pH 9 and 13. Due to the limited 

solubility of the complexes in 30% MeOH aqueous solutions (precipitate comes out when 

metal cation is added to the substrate at a concentration of ~1.4 × 10-5 M), absorption 

titration spectra and the stoichiometry of the complexes were determined using 30% THF 

(v/v) aqueous solutions.  

Figure 2-4 shows the spectra of the substrate (a) and of the silver-triazenide complex 

(b). The Job’s plot (Figure 2-4 inset) with a joint point at 0.45 reveals that for CF3DPT, 

silver cation forms a 1:1 complex, as in the case of HDPT. The same spectral changes 

upon complexation as with the previous two substrates are seen here, i.e., the intensity of 
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the main peak decreases while a new absorption band appears at a longer wavelength. 

Experiments at pHs higher than 13 were not feasible, because Ag+ was not stable in 

alkaline 30% THF aqueous media. The solutions became darker and darker as time 

passed by, which may be attributed to formation of the dark brown Ag2O in hydroxide 

solutions.94 
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Figure 2-4. Absorption spectra of CF3DPT and of its silver complex in 30% THF aqueous 

solution at pH 9: (a) [CF3DPT] = 2.82 × 10-5 M; (b) [CF3DPT] = [Ag+] = 1.41 × 10-5 M. 

Inset: corresponding Job’s plot. 

 

The absorption titration spectra and Job’s plot for Hg2+ in 30% THF aqueous solutions 

at pH 9 and 13 are shown in Figure 2-5. The spectral changes upon metal cation addition, 

i.e., decrease in intensity of the main peak and appearance of a new peak at a longer 

wavelength, indicate metal complex formation. The observation that the shape of the 

absorption spectrum of the complex remains unchanged at different pHs once again 
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reveals that it is the triazenide which forms the complex. There is at least one isosbestic 

point in each set of spectra, which again indicates free triazene and complexed triazene at 

equilibrium. The joint point at 0.31 and 0.27 in the Job’s plots indicate that Hg2+ forms a 

1:2 (metal:ligand) complex with CF3DPT in aqueous solutions. 
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Figure 2-5. Absorption titration spectra of CF3DPT with Hg2+ in 30% THF aqueous 

solutions; top: pH 9, [CF3DPT] = 1.41 × 10-5 M, [Hg2+] = 0 to 2.82 × 10-5 M (from a to 

b); bottom: pH 13, [CF3DPT] = 2.68 × 10-5 M, [Hg2+] = 0 to 3.22 × 10-5 M (from a to b). 

Inset: Job’s plot. 
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2.1.2. Laser flash photolysis (LFP) 

Trans-cis isomerization of triazenes in aqueous solutions can be monitored using a 

LFP system. Cis-triazenes are obtained by laser excitation at 355 nm of trans-triazenes, 

and the cis-to-trans isomerization is a spontaneous thermal process. Transient absorption 

spectra for triazenes reveal that at λ > 350 nm, cis-triazenes have lower absorptivity than 

their corresponding trans-forms.10 Thus, the LFP signal, which is a measurement of the 

absorption difference between the absorption of the solution before and after laser 

excitation, will be negative.95 Kinetic traces for laser induced isomerization of triazenes 

show an instantaneous bleaching (due to trans-to-cis photoisomerization), followed by a 

complete recovery of the signal (resulting from thermal cis-to-trans isomerization), as 

illustrated in Figure 2-6 for isomerization of HDPT in 2% MeOH aqueous solution at pH 

13.  
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Figure 2-6. Laser induced kinetic trace for HDPT (2.62 × 10-5 M) in 2% MeOH aqueous 

solution at pH 13. Inset: laser induced kinetic trace for HDPT (2.62 × 10-5 M) in the 

presence of an equimolar amount of Ag+ in 2% MeOH aqueous solution at pH 9. 
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Unfortunately, regardless of the pH and substrate, upon addition of stoichiometric 

amounts of metal cations, no LFP signals could be observed (a typical trace is shown in 

Figure 2-6 inset), indicating that target metal-trans-triazenide complexes do not 

photoisomerize. 

 

2.2 Discussion 

Upon complexation with metal cations, the longest wavelength absorption band 

appears to the right in comparison to that of free triazene, and a decrease in absorption 

where the free triazene absorbs is observed. Table 2-1 lists the absorption bands of the 

three substrates employed in this study and of their corresponding silver and mercury 

complexes. 

 

Table 2-1. Absorption bands of triazenes and of their metal complexes in aqueous 

solutions.a 

 HDPT CH3ODPT CF3DPT 

None 285 (295); 350 (360) 300 (302); 373 (370) 296; 352 

Ag+ 348; 412 345; 425 358; 417 

Hg2+ 303 (305); 394 (390) 312 (310); 415(400) 312; 382 

a Data in parenthesis are from Ref. 96 for benzene as solvent. 

 

Table 2-1 indicates that, in aqueous solutions, the silver-triazenide complexes have two 

peaks at around 350 nm and 415 nm, while mercury–triazenide complexes have two 

peaks at around 310 nm and 390 nm. In addition, the spectra of HDPT and CH3ODPT as 
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well as of their corresponding mercury complexes obtained in aqueous solutions are 

similar to the spectra reported for benzene as solvent.96 This might be an indication that, 

for these systems, the dipole moment of the electronic ground state is similar to that of 

the excited state, since a pronounced solvatochromism should be observed if the charge 

distribution and consequently the dipole moment in the electronic ground state is 

considerably different from that in the excited state.97 In fact, absorption spectra of HDPT 

and CH3ODPT recorded in 2% MeOH aqueous solution, MeOH and THF, display only a 

small bathochromic λmax shift with decreasing polarity (Δλmax = 4 nm for HDPT, 3 nm 

for CH3ODPT). 

As indicated in the previous section, the sharp shape of the Job’s plots is a good 

indication of large binding constants for the complexes involved in this study. In all 

cases, it is observed that complexation occurs as rapidly as the two reactants can be put 

together, indicating that a fast equilibrium takes place between the triazene and metal 

cation. Experiments to test if the metal cations are exchangeable were also carried out. 

Excess amount of Ag+ was added to solutions containing stoichiometric amounts of Hg2+ 

and HDPT, and excess amount of Hg2+ was added to solutions containing stoichiometric 

amounts of Ag+ and HDPT. In no case did addition of a second metal cation species 

change the spectrum of the solution; in other words, once the complex is formed, it is 

very stable and the metal cations are not exchangeable. This result is consistent with the 

fact that metal ions in the second and third transition series are generally kinetically 

inert.98  

Spectra of HDPT and metal cations in organic solvents resembling that of HDPT itself 

may be due to either the similarity between the spectra of the complexes and 
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corresponding triazene in organic solvents or the formation of the complex in very little 

extent, if any at all. The first possibility is very unlikely because it contradicts the above 

observation that the spectra characteristics of mercury-triazenide complexes in benzene 

and aqueous solutions are very similar while they are very different from the spectrum of 

HDPT. As mentioned in the results section, when the metal complexes are formed, metal 

cations take the place of the amino H; thus, the acidity of triazenes, which is a solvent 

dependent property, is expected to affect complex formation. Since H2O is a stronger 

base than MeOH,97a it would facilitate replacement of the amino H and hence, metal 

complex formation. Thus, one can assume that the binding constants of the metal 

complexes in organic solvents (e.g., MeOH and MeCN) would be much smaller than 

those in aqueous solutions. This assumption is supported by reports on the synthesis of 

metal-triazenide complexes in organic solutions which indicate in the absence of 

triethylamine some of these reactions do not happen at all, or hours of stirring are 

needed.30,31,99,100 In addition, the fact that spectral changes are more obvious in MeOH 

than in MeCN would indicate that the complex can be formed, although to a very small 

extend, more easily in MeOH than in MeCN. 

As mentioned in the results section, no isomerization of metal-triazenide complexes 

could be observed. Lack of photoisomerization of triazenide systems is not 

unprecedented; no laser signal could be detected upon photoexcitation of the anionic 

conjugate form of NO2DPT (X = NO2 in Chart 2-1).11 Whether charge delocalization in 

the triazenide moiety, photoexcitation wavelength, and the chelating or bridging structure 

of the complexes play any role in preventing photoisomerization of metal-triazenide 

complexes are yet to be determined.   
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2.3 Conclusions 

UV-visible absorption spectra show that target 1,3-diphenyltriazenes HDPT, 

CH3ODPT and CF3DPT can easily form complexes with Ag+ and Hg2+ cations in 

aqueous solutions. The stoichiometry (ligand:metal) of silver-triazenide complexes is 1:1, 

while that of mercury-triazenide complexes is 2:1. Unfortunately, metal complex 

formation prevents photoisomerization of the triazenide moiety, at least upon excitation 

at 355 nm.  
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Chapter 3. Cyclodextrin effects on triazenes decomposition 

To investigate the effects of cyclodextrins on the acid-catalyzed decomposition of 

triazenes, two of the most water soluble 1,3-diphenyltriazenes, i.e., HDPT and CH3ODPT 

were chosen as substrates (guest molecules). Cyclodextrins varying in size, i.e., α-CD, 

ß-CD, and γ-CD, and with different rim substituents, i.e., heptakis(2,3,6-tri-O-2-hydroxy-

propyl)-ß-CD (HP-ß-CD) and heptakis(2,3,6-tri-O-methyl)-ß-CD (TM-ß-CD), were 

employed as host molecules (Chart 3-1).  

 

O

ORRO

CH2OR

n

O

 

Host n R 

α-CD 6 H 

ß-CD 7 H 

γ-CD 8 H 

HP-ß-CD 7 CH2CHOHCH3 

TM-ß-CD 7 CH3 

 

Chart 3-1. Structure and abbreviation of host molecules 

 

Kinetic measurements were carried out by means of UV-visible spectrometry, while a 

study on the binding of host and guest molecules was carried out using both UV-visible 

and circular dichroism spectrometric methods.  
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3.1 Results 

Acid-induced decomposition of 1,3-diaryltriazenes can be easily followed by UV-

visible spectroscopy, since they usually have strong absorptions around the 350 nm UV 

region, while their decomposition products do not. The time-resolved absorption spectra 

of HDPT at pH 6.16 (phosphate buffer) are shown in Figure 3-1. As for spectrum (a) in 

Figure 2-1 for HDPT at pH 9, the peak centered at 350 nm is ascribed to the π-π* 

transition of the triazeno group;88 since both pH 9 and 6 are far below the pKa value of 

HDPT (i.e., 13.090b) the spectra (a) at both pHs are of the neutral triazene. In Figure 3-1, 

the decrease in the intensity of the peak centered at 350 nm reflects the decomposition of 

HDPT. The peak at 263 nm, with an initial increase and subsequent decrease in intensity, 

is a good indication of a reaction intermediate (Figure 3-2), and is assigned to the 

diazonium ion. The assignment is based on the facts that (1) triazenes, as mentioned in 

Section 1.1.1.2, generate diazonium ions in acidic conditions, (2) the diazonium ion 

C6H5N2
+ mainly absorbs at 260 nm in solutions,101 and (3) the formation of the 

intermediate has the same rate as the consumption of the triazene (Figure 3-2 inset). In 

addition, as the diazonium ion absorption band decreased in intensity, the absorbance at 

longer wavelengths (visible region) increased. This is ascribed to formation of a C-azo 

compound ( ), which also is a common byproduct in the 

synthesis of triazenes, through an electrophilic aromatic substitution reaction 

(C-coupling) between the diazonium ion intermediate and aniline.102,103  

 

H2N N N
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Figure 3-1. Time-resolved absorption spectra for decomposition of HDPT (3.2 × 10-5 M) 

in 2% MeOH aqueous solution at pH 6.16 (0.05 M phosphate buffer), obtained within 1 

min and 45 min (from a to b) after sample preparation. Inset: corresponding spectra 

obtained within 45 min and 8 h (from b to c) after sample preparation.  
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Figure 3-2. Absorption-time profile for decomposition of HDPT (3.2 × 10-5) M in 2% 

MeOH aqueous solution at pH 6.16 (0.05 M phosphate buffer) monitored at 350 nm () 

and 263 nm (). Inset: expanded profiles obtained within first 58 min. 
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Figure 3-3 shows the time-resolved absorption spectra of HDPT in the presence of 7 

mM ß-CD. When compared with Figure 3-1, the initial λmax in Figure 3-3 shows a 

bathochromic (red) shift, while the maximum absorption wavelength corresponding to 

the diazonium ion intermediate remains at the same position (263 nm). The most 

significant observation in the presence of ß-CD is that the decomposition of HDPT 

becomes much slower than in the absence of it (Figure 3-2 vs. 3-4). Formation of the 

C-azo compound still can be observed although to a smaller extent (Figure 3-3 inset), 

which may be ascribed to ß-CD inhibition of the electrophilic aromatic substitution 

reaction as well. 
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Figure 3-3. Time-resolved absorption spectra for decomposition of HDPT (3.2 × 10-5 M) 

in the presence of ß-CD (7 mM) in 2% MeOH aqueous solution at pH 6.16 (0.05 M 

phosphate buffer), obtained within 1 min and 1.7 h (from a to b) after sample preparation. 

Inset: corresponding spectra obtained within 1.7 h and 8.0 h (from b to c) after sample 

preparation.  
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Figure 3-4: Absorption-time profile for decomposition of HDPT (3.2 × 10-5 M) in the 

presence of ß-CD (7 mM) in 2% MeOH aqueous solution at pH 6.16 (0.05 M phosphate 

buffer), monitored at 353 nm () and 263 nm ().  

 

The time-resolved absorption spectra of CH3ODPT in aqueous solutions at pH 6.16 

were not recorded due to the fast decomposition of this substrate. However, as in the case 

of HDPT, the rate of decomposition of CH3ODPT decreased significantly in the presence 

of ß-CD, so that the corresponding time-resolved absorption spectra could be recorded 

(Figure 3-5). Although in the presence of ß-CD, the λmax (314 nm) ascribed to the 

diazonium ion p-CH3O-C6H4N2
+ is in excellent agreement with the reported λmax value in 

aqueous media (i.e., 315 nm104). Formation of the C-azo compound was not observed, 

which is consistent with the fact that the para position of the phenyl ring is substituted 

with a CH3O- group. 
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Figure 3-5. Time-resolved absorption spectra for decomposition of CH3ODPT (2.9 × 10-5 

M) in 2% MeOH aqueous solution at pH 6.16 (0.05 M phosphate buffer), obtained within 

1 min and 16 min (from a to b) after sample preparation. Inset: corresponding spectra 

obtained within 16 min and 7.3 h (from b to c) after sample preparation.  
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Figure 3-6. Absorption-time profile for decomposition of CH3ODPT (2.9 × 10-5 M) in the 

presence of ß-CD (7 mM) in 2% MeOH aqueous solution at pH 6.16 (0.05 M phosphate 

buffer), monitored at 353 nm () and 263 nm (). Inset: expanded profiles obtained 

within first 17 min.   
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Series of solutions were made at different pHs in the absence (for both substrates) and 

presence (for CH3ODPT) of ß-CD, to determine the dependence of the rate of 

decomposition on proton concentration. The decomposition of HDPT was monitored at 

352 nm while that of CH3ODPT was monitored at 367 nm. In all cases, the kinetic traces 

followed a first order rate law. The corresponding rate constants (see Tables A-1 and A-2 

in Appendix) were obtained by curve fitting to a first order rate law (see Experimental 

Section). The proton dependence of the acid-catalyzed decomposition rate constants for 

HDPT and CH3ODPT in the absence and presence of ß-CD is shown in Figures 3-7 and 

3-8, respectively. For both substrates, the observed rate constant is directly proportional 

to proton concentration, even in the presence of ß-CD; however, the higher the ß-CD 

concentration, the smaller the slope of the line. 
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Figure 3-7. Proton dependence of the observed rate constant for acid-induced 

decomposition of HDPT () and CH3ODPT () in 2% MeOH aqueous solutions.  
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Figure 3-8. Proton dependence of the observed rate constant for acid-induced 

decomposition of CH3ODPT in 2% MeOH aqueous solutions in the presence of varying 

amounts of ß-CD (concentrations given in mM). 

 

In order to determine if the inhibition effect observed in the presence of ß-CD arises 

from unspecific interactions between triazenes and glucose additives or from formation 

of inclusion complexes, glucose and soluble starch as well as four other CDs were tested. 

Table 3-1 lists the observed rate constants for acid-induced decomposition of target 

triazenes upon addition of various glucose derivatives. The lack of any effect in the 

presence of 10 mM glucose and only a slight retardation (if at all significant) upon 

addition of soluble starch (equivalent to 2 mM ß-CD in mass), as well as the CD 

dependent inhibition effects on the rate of decomposition of HDPT in aqueous solutions 

at pH 6.16, clearly indicates that the inhibition effects observed in the presence of CDs 

are due to the formation of inclusion complexes.  
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Table 3-1. Observed rate constants for decomposition of 1,3-diphenyltriazenes in 2% 

MeOH aqueous solutions at pH 6.16 in the presence of CDs or other glucose additives.a 

kobs (10-3 s-1) 
Additive 

[Additive] HDPT MeODPT 

None 0 1.26 ± 0.01 49 ± 3 

D-Glucose 10 mM 1.24 ± 0.01  

Starch 2 mMb 1.00 ± 0.01  

α-CD 10 mM 0.117 ± 0.002 0.41 ± 0.01 

β-CD 10 mM 0.204 ± 0.002 3.9 ± 0.1 

HP-β-CD 10 mM 0.0452 ± 0.0001 0.800 ± 0.003 

TM-β-CD 10 mM 0.0908 ± 0.0002 1.51 ± 0.05 

TM-β-CD 4.3 mM 0.228 ± 0.001 3.74 ± 0.02 

γ-CD 5 mM 0.998 ± 0.003 19.4 ± 0.1 

a µ = 0.5 M (NaCl), T = (21 ± 0.1) °C. b In terms of ß-CD equivalents. 

 

In order to investigate the dependence of the inhibition effects on CD cavity size and 

rim substitution, for both substrates and each CD employed in this study, kinetic traces 

were recorded using series of solutions at pH 6.16 but varying host concentration. Figures 

3-9 to 3-12 show the corresponding plots of observed rate constants (see Tables A-3 and 

A-4 in Appendix for values) of the two target triazenes vs. [CD]. As can be seen, the 

inhibition increases with increasing CD concentrations, and its strength is CD dependent. 
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Figure 3-9. Influence of α-CD concentration on the observed rate constant for acid-

induced decomposition of HDPT () and CH3ODPT () in 2% MeOH aqueous solution 

at pH 6.16 (0.05 M phosphate buffer). 

 

0

1

2

3

4

5

6

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 0.005 0.01 0.015
[!-CD] (M)

k
o
b
s (

1
0

-2
 s

-1
) k

o
b
s  (1

0
-2 s

-1)0 0.005 0.01 0.015

1
/k

o
b
s

[!-CD] (M)

 

Figure 3-10. Influence of ß-CD concentration on the observed rate constant for acid-

induced decomposition of HDPT () and CH3ODPT () in 2% MeOH aqueous solution 

at pH 6.16 (0.05 M phosphate buffer). 
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Figure 3-11. Influence of HP-ß-CD concentration on the observed rate constant for acid-

induced decomposition of HDPT () and CH3ODPT () in 2% MeOH aqueous solution 

at pH 6.16 (0.05 M phosphate buffer). 
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Figure 3-12. Influence of TM-ß-CD concentration on the observed rate constant for acid-

induced decomposition of HDPT () and CH3ODPT () in 2% MeOH aqueous solution 

at pH 6.16 (0.05 M phosphate buffer). 
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Evidence of inclusion complexes formation is not only obtained from the kinetic study 

but it is also inferred from Figures 3-1 and 3-2, where absorption spectral changes are 

observed upon addition of ß-CD. Further evidence is obtained from absorption titration 

spectra. Three sets of spectra were recorded using pH 9.98 borax buffer solutions (to 

diminish substrate decomposition): HDPT in the presence of α-CD and HP-ß-CD, 

respectively, and CH3ODPT in the presence of α-CD. Experiments with HDPT as 

substrate were carried out in 2% MeOH aqueous solutions, whereas those with 

CH3ODPT were done in 2% MeCN aqueous solutions, due to its appreciable 

decomposition in MeOH within the time period needed for the experiments. Same as in 

the case of ß-CD addition, a bathochromic shift in λmax is observed for each set of 

titration experiments (Figures 3-13 and 3-14). For HDPT, the shift is ca. 8 nm for both 

α-CD and HP-ß-CD, while for CH3ODPT, addition of α-CD causes a shift of 12 nm. The 

absorption maximum for HDPT decreases upon addition of CDs, especially for α-CD 

addition. For CH3ODPT, the intensity ultimately increases upon addition of α-CD.  

Circular dichroism spectrometers record the absorption difference between left- and 

right-handed circularly polarized lights of an absorbing optically active substance.105 

Triazenes are optical inactive, thus do not exhibit circular dichroism signals. CDs, in spite 

of being chiral compounds, do not have circular dichroism signals in the 200-1000 nm 

(UV-visible) region; however, they are capable of inducing circular dichroism when they 

form complexes with achiral compounds bearing chromophores.64 Experiments to acquire 

ICD spectra of HDPT in the presence of CDs were carried out under the same condition 

as the UV-visible titration experiments, i.e., pH 9.98 borax buffer aqueous solutions, to 

diminish the decomposition of the substrate. As shown in Figure 3-15, upon addition of  
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Figure 3-13. Absorption titration spectra of HDPT (3.8 × 10-5 M) with α-CD (0, 0.5, 1, 2, 

7.5, and 21 mM from a to b) in 2% MeOH aqueous solutions at pH 9.98 (0.05 M borax 

buffer). Inset: normalized spectra for HDPT in the presence of HP-ß-CD (0, 0.2, 0.5, 1, 

and 10 mM from a to b). 
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Figure 3-14. Absorption titration spectra of CH3ODPT (3.5 × 10-5 M) with α-CD (0, 0.5, 

1, 2, 3, 4, 5, 7.5, 10, 13.5, 17 and 21 mM from a to b,) in 2% MeCN aqueous solutions at 

pH 9.98 (0.05 M borax buffer). 



 56 

α-CD, ß-CD, HP-ß-CD and TM-ß-CD to HDPT containing solutions, different ICD 

spectra were recorded. These induced circular dichroism spectra are the best evidence of 

CD-triazene inclusion complex formation. 
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Figure 3-15. Induced circular dichroism (top) and absorption (bottom) spectra of HDPT 

(3.2 × 10-5 M) in the presence of CDs (7 mM): (a) α-CD; (b) ß-CD; (c) HP-ß-CD; (d) 

TM-ß-CD.  
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The ICD titration spectra of HDPT with α-CD were obtained by keeping the 

concentration of HDPT at 3 × 10-5 M while that of α-CD ranged from 0 to 21 mM. The 

ICD signal grows with increasing α-CD concentration up to 7.5 mM, and then remains in 

that level with higher α-CD concentration (Figure 3-16).  
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Figure 3-16. Induced circular dichroism titration spectra of HDPT (3×10-5 M) with α-CD 

(0.5, 1, 2, 3, 4, 5, 7.5, 10, 17 and 21 mM, from bottom to top) in 2% MeOH aqueous 

solutions at pH 9.98 (0.05 M borax buffer).  

 

It should be pointed out here that, for UV-visible and ICD titration experiments, 

solutions with α-CD concentrations larger than 21 mM could not be used due to 

aggregation of α-CD in solution. Native CDs are known to aggregate in solution, which 

may make the solutions hazy.106 As a consequence, the light beam of the spectrometer is 

dispersed when passing through the solution and false signals are recorded.  
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3.2 Discussion 

The acid-catalyzed decomposition of 1,3-diphenyltriazene under experimental 

conditions analogous to those of this study has been interpreted in terms of specific acid 

catalysis, since the rates of decomposition increase with decreasing pH while are 

independent of buffer concentration.90a Scheme 3-1, in which T, TH+, k, and Ka represent 

the triazene, the N3 protonated triazene, the first order rate constant for N2-N3 bond 

cleavage, and the acid dissociation equilibrium constant for TH+, respectively, illustrates 

the mechanism for specific acid-catalyzed triazene decomposition. The corresponding 

expression of the observed rate constant (kobs) is given by Eq. 3-1. 
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Scheme 3-1. Specific acid-catalyzed decomposition mechanism for 1,3-diphenyltriazenes. 
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The linear plots of kobs vs. proton concentration (Figure 3-7) indicate that, under the 

experimental conditions of this study, the [H+] term in the denominator of Eq. 3-1 is 

negligible. Instability of triazenes in acidic media precludes spectral titrations for 

measurement of their Ka values. The reported pKa value for the N3 protonated parent 

triazene as determined from the dependence of the first order rate constant on pH is 4.95.3 

Resonance effects in 1,3-diphenyltriazenes are expected to decrease the electron density 
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of the triazeno moiety, and hence the basicity, and as a consequence to increase the 

acidity of its conjugated acid TH+. Thus, one would expect the pKa value of TH+ to be 

smaller than 4.95, i.e., much smaller than the lowest pH (6.16) in this study. On the other 

hand, the electron-withdrawing character of the –N=N–Ar group50c would render the 

N3-protonated forms of HDPT and CH3ODPT more acidic than the conjugate forms of  

the corresponding aniline, i.e., anilinium (pKa = 4.63107a) and p-anisidinium ions (pKa = 

5.34107b), hence the Ka values of the TH+ species would be much smaller than the lowest 

pH (6.16) in this study. 

The linear plots in Figure 3-7 yield second-order rate coefficient k/Ka (slope) values of 

(5.26 ± 0.07) ×104 M-1s-1 and (1.36 ± 0.04) ×103 M-1s-1 for CH3ODPT and HDPT, 

respectively. These values are in good agreement with values from other independent 

experiments, i.e., (5.90 ± 0.08) ×104 M-1s-1 for CH3ODPT (value calculated from the top 

line of Figure 3-8*) and (1.37 ± 0.03) ×103 M-1s-1 for HDPT.90a CH3ODPT has a much 

larger second-order rate coefficient value than HDPT, which is consistent with previous 

reports on the substituent effects on the acid-induced decomposition of 

aryltriazenes.11,108-110 The trend is attributed to an increase in the basicity of the amino N 

and in the stability of diazonium ion, with increasingly stronger electron-donating groups. 

The inhibition effect of CDs on the acid-induced decomposition of triazenes rises from 

inclusion complex formation. The most commonly claimed stoichiometric ratio for CDs 

complexes is 1:1,111 thus, the reaction scheme for decomposition of triazenes in the 

presence of CDs can be illustrated as shown in Scheme 3-2, in which TCD and TH+CD  

________________________________________________________________________ 

*Ionic strength kept at 0.55 M (NaCl) 
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represent the CD inclusion complex for triazene and TH+, respectively; k’ and Ka’ 

represent the first order rate constant for cleavage of the N2-N3 bond and the acid 

dissociation equilibrium constant for complexed TH+, respectively. Bearing in mind that, 

under the experimental conditions of this study, target substrates are essentially in their 

neutral form (i.e., molar fraction of neutral substrate ≈ 1, as inferred form Figure 3-8), the 

expression for the observed rate constant corresponding to Scheme 3-2 would be given 

by Eq. 3-2.  

 

TCD TH+CD

T + CD TH+

P

 K
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Ka
k

k'
Ka'
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Scheme 3-2. Mechanism for specific acid-catalyzed decomposition of 1,3-diphenyl-

triazenes in the presence of CDs. 
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Values of kobs as a function of ß-CD concentration (Figure 3-10) for the two substrates 

can be well fitted with Eq. 3-2. The values of the different parameters determined through 

curve fitting according to Eq. 3-2 are listed in Table 3-2.  
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Table 3-2. First order rate coefficients and association equilibrium constants obtained for decomposition of HDPT and CH3ODPT in 

the presence of CDs.a  

HDPT CH3ODPT 

k[H+]/Ka K1 K1K2 k[H+]/Ka K1 K1K2 

 

CD 

 (10-3 s-1) (102 M-1) (105 M-2) (10-3 s-1) (102 M-1) (105 M-2) 

α-CD 1.26 ± 0.01 7.4 ± 0.2 0.30 ± 0.05 51.2 ± 0.8 14 ± 2 7 ± 2 
α-CDb    36.3 ± 0.1 4.0 ± 0.8 1.4 ± 0.4 

ß-CD 1.26 ± 0.01 9.1 ± 0.4  50.5 ± 0.5 29 ± 1  

 (0.077 ± 0.009)c   (1.1 ± 0.2)c   

HP-ß-CD 1.26 ± 0.01 32.1 ± 0.8  49.1 ± 0.4 77 ± 2  

TM-ß-CD 1.28 ± 0.01 10.9 ± 0.4  46.5 ± 0.9 22 ± 1  

a 2% MeOH (v/v) aqueous solutions (unless stated otherwise); T = 21 °C; µ = 0.5 (NaCl); pH = 6.16 (0.05 M phosphate buffer). Errors 

given correspond to the standard deviations. b 2% MeCN (v/v) aqueous solutions. c Value for k’[H+]/Ka’. 
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For HP-ß-CD and TM-ß-CD, curve fittings according to Eq. 3-2 lead to a negligible 

    

! 

k " / K "
a
K1[CD] term, which agrees well with the linear plots in Figures 3-11 and 3-12 

insets. Thus, Eq. 3-2 can be reduced to Eq. 3-3, and the corresponding k/Ka and K1 values 

obtained from curve fittings for HP-ß-CD and TM-ß-CD are also shown in Table 3-2.  
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For α-CD as host, neither Eq. 3-2 nor Eq. 3-3 fit plots of kobs as a function of α-CD 

concentration. As illustrated in the inset of Figure 3-9, plots of 1/kobs curve upward, 

which implies a higher order complex formation. The fact that in the UV-visible 

absorption titration spectra (Figures 3-13 and 3-14) no isosbestic point remains 

throughout the α-CD concentration range, suggests the existence of more than two 

stoichiometric states, in support of the involvement of higher order complexes. Formation 

of 2:1 (host:guest) inclusion complexes is a common observation when using α-CD as 

host molecule.112 Scheme 3-3 shows the corresponding reaction mechanism, in which 

Ka” and k” represent the acid dissociation equilibrium constant and the first-order rate 

constant for heterolytic cleavage of 2:1 CD:TH+ complexes.  
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Scheme 3-3. Mechanism for specific acid-catalyzed decomposition of 1,3-diphenyl-

triazenes in the presence of CDs (with formation of higher order complexes). 

 

The expression of the observed rate constant corresponding to Scheme 3-3 is given by 

Eq. 3-4. However, curve fittings according to Eq. 3-4 of data in Figure 3-9 reveal that the 
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! 

1/ k "
obs
#1/ k

obs
)/[CD] vs. 

[CD] are linear (Figure 3-9 inset). Thus, Eq. 3-4 can be reduced to Eq. 3-5, from which 

nonlinear fittings yield association equilibrium constants for 1:1 and 2:1 α-CD complexes 

(Table 3-2). 
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In all cases, the k/Ka values determined from curve fittings of the observed rate 

constant obtained in the presence of CDs (Table 3-2) are in good agreement with the 
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values determined from the pH dependent series in the absence of CD. Furthermore, the 

value of     

! 

(k / K
a

+ k " / K"
a

K1[CD]) (1+ K1[CD])  calculated from Table 3-2 for HDPT in 

the presence of 11 mM ß-CD is ca. 195 M-1s-1, in excellent agreement with the value 

previously obtained by our group, namely 196 ± 8 M-1s-1, by measuring observed rate 

constants as a function of pH in the presence of 11 mM ß-CD.113 

As described in Section 1.2.2, non-covalent catalysis by CDs can be attributed to two 

effects: conformational and microsolvent effects. The inhibition by CDs of the acid-

catalyzed decomposition of triazenes can be rationalized in terms of microsolvent effects. 

As mentioned in Section 1.1.3.2, the acid-induced decomposition of 1,3-diphenyl-

triazenes has been shown to be solvent sensitive; the overall trend is that the 

decomposition rate decreases with decreasing solvent polarity. From previous studies in 

our research group, the k/Ka values in 30% THF aqueous solutions are (21.3 ± 0.7) M-1s-1 

and (976 ± 9) M-1s-1 for HDPT and CH3ODPT, respectively,11 which are much smaller 

than those obtained in 2% MeOH aqueous solutions (listed in page 59). Protonation 

constants for anilines in dioxane-water mixtures have been shown to systematically 

decrease as the concentration of dioxane increases.114 Thus, Ka values for TH+ are 

expected to be smaller in 2% MeOH than in 30% THF. According to the Hughes and 

Ingold theory, the rate of reactions for which the charge density in the activated complex 

is lower than in the initial reactant will decrease (to a small extent) with increasing 

solvent polarity.97b Thus, k values are expected to increase (slightly) with increasing 

organic co-solvent fraction, since the transition state for the heterolytic cleavage of TH+ 

involves charge dispersion. The significant decrease in reactivity on going from 2% 

MeOH to 30% THF indicates that the rate of decomposition of target triazenes is 
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dominated by their basicity. As indicated in Section 1.2, CDs are macrocyclic molecules 

with hydrophobic cavities. Thus, when triazenes are encapsulated in the CDs cavity, the 

N3 protonation constant would be decreased. As a consequence, the k/Ka value is 

decreased and the decomposition is inhibited. 

As shown in Table 3-2, among all four CDs involved in this study, ß-CD is the only 

one for which the reactivity of the TH+CD is detected, which suggests that guest triazenes 

experience less environmental changes upon inclusion in ß-CD than upon inclusion in the 

narrower α-CD or in any of the ß-CD derivatives (in which alkyl substituents elongate 

the cavity and increase the hydrophobicity of its edges115,116). From Table 3-1, it can be 

seen that with 5 mM γ-CD there is barely any inhibition on triazenes decomposition. As 

shown in Table 1-1, among the three native CDs, γ-CD has the largest cavity size and 

accommodates the highest number of water molecules in its cavity. Hence, the lack of 

inhibition by γ-CD on triazenes decomposition might be attributed to the triazene 

molecule experiencing a predominantly aqueous environment when included in γ-CD.  

The K1 values (Table 3-2) derived from the dependence of observed rate constants as a 

function of [CD] increase in the order α-CD < ß-CD ~ TM-ß-CD < HP-ß-CD. This is 

consistent with the trend for binding constants reported for complexation with aromatic 

molecules, i.e., α-CD < ß-CD111,112 and ß-CD < ß-CD derivatives.65,116 The K1 values for 

CH3ODPT are ca. twice as large as those of HDPT, and the values obtained from ß-CD 

are comparable to the literature values for inclusion of azobenzene derivatives 

(X-Ph-N=N-N(CH3)2
+Cl-), which are 860 M-1 and 1300 M-1 for X = H and CH3, 

respectively.116  
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ICD spectra can help to elucidate the relative orientation of triazenes in CDs. The sign 

of the ICD signal depends on the orientation the guest molecules take in the inclusion 

complex, while the intensity of the signal depends not only on the orientation, but also on 

the strength of the interaction between the host and guest molecules.117 According to the 

empirical rules on the ICD phenomena on CD complexes, the ICD of a chromophore 

located inside the cyclodextrin cavity will be positive when its electric transition dipole 

moment is parallel to the principal axis of the cyclodextrin, while the ICD will be 

negative when the alignment inside the cavity is perpendicular to the principal axis of the 

host; reverse ICD signals will be expected when the chromophore is located outside the 

cavity.118-120 

The single positive signal centered at ~350 nm for α-CD, ß-CD and HP-ß-CD 

inclusion complexes with HDPT is attributed to the π-π* transition band of the N=N 

group being nearly parallel to the axial direction of the CDs, i.e., the N=N group is 

aligned parallel to the principal axis. This conclusion is in agreement with the reported 

orientation for para-substituted azobenzene derivatives, i.e., the linear molecules 

penetrate CDs cavity with the N=N group located in the centre of and parallel to the 

chiral cavity.121-123 

For TM-ß-CD inclusion complexes with aromatic azo dyes, split pattern of signals is 

very common.121,124,125 Methylation of the hydroxyl groups reverse the CD 

hydrophobicity, i.e., the most hydrophobic surface regions are located at the torus rims 

made up by the 2-, 3- and 6-OMe groups;115 as a result, the N=N group moves from the 

centre of the cavity to the rim, but still parallel to the cavity axis.125 Thus, rules for signal 

signs reverse; the sign of the 350 nm absorption band would be negative. The positive 
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signal at the shorter wavelength (which corresponds to the shoulder in the absorption 

spectra) might arise from the observed π-π* transition of the phenyl ring being parallel to 

the principal axis of TM-ß-CD.119  

The UV-visible and ICD titration spectra presented in Figures 3-13, 3-14 and 3-16 

were recorded in an attempt to measure binding constants. The changes (ΔI) observed in 

absorbance and in ellipticity as a function of CD concentration can be related to the 

binding constant(s) of Schemes 3-2 and 3-3 according to Eq. 3-6 and 3-7, respectively, 

 

    

! 

"I =
"c1bK1[CD][T]0

1+ K1[CD]
 Eq. 3-6 

 

    

! 

"I =
"c1bK1[CD][T]0 + "c2bK1K2[CD]

2
[T]0

1+ K1[CD] + K1K2[CD]
2

 Eq. 3-7 

 

where Δc1 and Δc2 represent, respectively, the difference between molar extinction 

coefficients or molar ellipticities for 1:1 or 2:1 (host:guest) complexed and free triazenes; 

[T]0 refers to total triazene concentration. 

Due to the limited number of ΔI values obtained, and in the case of UV-visible 

experiments the small ΔA values recorded (ΔA < 0.1), a statistically significant fitting 

according to Eq. 3-7 to determine the corresponding binding constants was precluded. 

However, when one of the binding constants was fixed to the value obtained from the 

kinetic experiments, the one determined from Eq. 3-7 was of the same order as the value 

obtained from the kinetic study. Furthermore, fittings of ΔA values (obtained from 



 68 

Figures 3-13 and 3-14) according to Eq. 3-6 render wavelength dependent K1 values; this 

result also provides clear experimental evidence for higher-order complexes formation.  

During the UV-visible titration experiments for CH3ODPT, it was observed that for 

any given α-CD concentration, the spectral changes recorded in 2% MeOH were always 

larger than those in 2% MeCN, which suggests lower binding constants in the latter 

system. It is well established that binding properties of CDs can be significantly affected 

by the presence of aprotic organic cosolvents; competition for the CD cavity between 

guest and co-solvent may lead to a significant decrease in equilibrium constants.116,126 

Among all the organic solvents, MeOH resembles the structure and properties of water 

the most, while MeCN is an aprotic organic solvent and hence, more competitive for CD 

complexation. In order to verify the suggestion that the binding constant between 

CH3ODPT and α-CD is higher in 2% MeOH than in 2% MeCN, observed rate constants 

for CH3ODPT decomposition were determined in 2% MeCN aqueous solutions.113 From 

the dependence of the observed rate constants on α-CD concentration, lower equilibrium 

constants in comparison with values for 2% MeOH were obtained (Table 3-2). In 

addition, the k/Ka value obtained in 2% MeCN (Table 3-2) is smaller than that in 2% 

MeOH, which is in good agreement with the dependence of the reaction on solvent 

polarity mentioned in page 64. 

 

3.3 Conclusions 

Formation of inclusion complexes between cyclodextrins and triazenes has an 

inhibitory effect on the rate of acid-induced decomposition of 1,3-diphenyltriazenes. This 

inhibition is ascribed to the decrease in basicity of the amino N, as a result of the apolar 
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nature of the CD cavity (a microsolvent effect). The strength of the inhibition depends 

not only on the size of the CD cavity, but also on the substituents on the cavity rims. 

Binding constants for 1:1 host:guest complexes increase in the order α-CD < ß-CD ~ 

TM-ß-CD < HP-ß-CD, with values for CH3ODPT being larger than those for HDPT. The 

orientation of the guest triazene molecules in the CD cavity depends on the substituents 

on the cavity rims.  
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Chapter 4. Experimental  

4.1 Reagents and instruments 

The triazene substrates HDPT, CH3ODPT and CF3DPT were existing samples from 

previous studies.10,14 The melting points of these triazenes were measured on a Mel-temp 

II apparatus: HDPT 98-100 °C (dec.) (lit.1a 100 °C (dec.)), CF3DPT 115-116°C (dec.) 

(lit.127 115 °C (dec.)), CH3ODPT 97-98 °C (dec.), (lit.128 98-100 °C (dec.)). Boric acid 

and D-glucose (Baker), NaOH, Na2HPO4, KH2PO4 and potassium hydrogen phthalate 

(BDH), NaCl and soluble starch (EM Science), AgNO3, HgCl2, α-CD, ß-CD, γ-CD and 

TM-ß-CD (Aldrich), and HP-ß-CD (TCI) were all analytical grade reagents and used as 

received. MeOH and MeCN (OmniSolv, EM science) were used as received; THF (ACS, 

EM science) was distilled before use. Ultra pure water obtained from a Millipore Milli-Q 

apparatus was used to prepare the aqueous solutions. 

Buffer pH values were determined with an ATI Orion PerpHecT 350 digital pH meter 

using a glass body pH electrode. UV-visible spectra and kinetic traces were recorded with 

a Varian Cary 1 Bio UV-visible spectrophotometer (connected to a VWR Scientific 

Model 1160A circulating water bath) using 1 cm quartz cells; a few absorption spectra 

were recorded on an Agilent 8542 UV-visible spectrophotometer. Induced circular 

dichroism spectra were recorded on a JASCO J-715 spectropolarimeter (0.2 nm step 

resolution, 10 accumulations) using 1 cm quartz cells.  

 

4.2 Laser flash photolysis (LFP) 

LFP is a powerful tool for characterization of photochemical and photophysical 

processes, by combining the information obtained from transient absorption spectra and 
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kinetic traces.95 A LFP spectrometer is composed of a sample cell holder, a xenon lamp 

(monitoring source), laser (excitation source), optical quality lenses and filters, 

monochromator/photomultiplier tube (MC/PMT, detector), and analysis devices 

including digitizer, synchronizer, distribution box and computer (Figure 4-1).95  

 

Xenon lamp Cell holder MC/PMT

Digitizer

Computer

Laser

(355 nm)

 

Figure 4-1. Laser flash photolysis apparatus diagram 

 

The laser employed in our system is a nanosecond Neodymium-Yttrium Aluminum 

Garnet (Nd-YAG) laser operating at 355 nm (266 nm and 532 nm are also available). It is 

capable of generating high-energy laser pulses (< 10 mJ/pulse, 4-6 ns pulses), which can 

easily promote the ground state molecules to excited states. The beam from the xenon 

lamp is used as the monitoring beam, and the MC/PMT detector detects the light not 

being absorbed by the sample before and after laser excitation, so then the difference in 

absorbance (ΔA) is recorded.  

Kinetic traces are obtained by monitoring ΔA at a chosen (monitoring) wavelength as a 

function of time (Figure 4-2), and are used to follow the evolution of transient species. 

The monitoring wavelength usually is determined from transient absorption spectra, 

which are plots of ΔA as a function of wavelength. The observed kinetic traces lead to 
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values of rate constants by proper kinetic fittings. Three possible types of time-resolved 

signals are shown in Figure 4-2: (1) ΔA > 0, when the transient species absorb more than 

the precursors do; (2) ΔA = 0, when the transient species have the same absorbance as the 

precursors have; (3) ΔA < 0, when the transient species absorb less than the precursors 

do. In the case of triazenes, the kinetic traces (monitored at 390 nm) are as trace (3) in 

Figure 4-2, since target cis-triazenes absorb less than the trans-forms at λ > 350 nm.129 

 

(1)

(2)

(3)

Laser pulse

Time

!
A

0

 

Figure 4-2. Possible kinetic traces observed with a LFP system. 

 

4.3 Preparation of solutions 

Borax buffer solutions were prepared from a stock NaOH aqueous solution and boric 

acid. The stock NaOH aqueous solution was standardized against potassium hydrogen 

phthalate. Phosphate buffer solutions were made from Na2HPO4 and KH2PO4. The pH 

values of the buffer solutions were determined before substrate triazene was added.  
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All solutions for metal-triazenide complexes studies were kept at room temperature 

(i.e., (21 ± 1) °C). Sample solutions for spectral titration experiments were made from 

two stock solutions: triazene stock solution in organic cosolvent-aqueous borax buffer (or 

NaOH) and (concentrated) metal cation stock aqueous solution. Series of solutions at 

constant triazene concentration and variable metal cation concentration were prepared by 

mixing a constant aliquot of the triazene stock solution and different amounts of the metal 

cation stock solution (transferred with a µL syringe) in individual volumetric flasks, 

before diluting with water to the mark. The concentration of the triazene stock solution 

was adjusted so that after dilution, the final triazene concentration was ca. 1.5 × 10-5 M or 

ca. 3 × 10-5 M, depending on the solubility of the metal-triazenide complex. The final 

total buffer concentration of sample solutions in borax buffer was 0.05 M. 

Sample solutions for Job’s method experiments were prepared from stock triazene and 

metal cation solutions having the same solute concentration and solvent composition. 

Thus, series of solutions at constant total triazene plus metal cation concentrations but 

with different [triazene]/[metal cation] ratios were prepared by mixing aliquots of the two 

stock solutions in different ratios, while keeping the sum of the two aliquots constant, in 

individual volumetric flasks before diluting with water to the mark. 

For the LFP experiments, sample solutions were made in individual volumetric flasks 

as follows: to a constant aliquot of a stock buffer or NaOH aqueous solution, organic co-

solvent was added (if at all needed), followed by slow addition of a small aliquot (using a 

µL syringe) of a concentrated triazene stock solution in MeOH, and then addition of the 

corresponding aliquot (also using a µL syringe) from a concentrated metal cation stock 

aqueous solution, and finally diluting with water to the mark. It should be noted that the 
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order in which the aliquots from the different stock solutions are mixed is very important 

to avoid precipitation; the above order proved to be the best way to prepare solutions. The 

final total buffer concentration of sample solutions in borax buffer was 0.05 M. The 

absorbance at 355 nm of the sample solutions (which were contained in 0.7 cm quartz 

cells) typically ranged between 0.1 and 0.15 (with total triazene concentration in the 

order of 1.5–1.9 × 10-5 M). All measurements were done at room temperature (i.e., (21 ± 

1) °C) using air-equilibrated samples. 

Sample solutions for acid-catalyzed decomposition studies were prepared by adding 41 

µL of a stock MeOH solution (unless stated otherwise) of the triazene to 2 mL of the 

buffer solution containing all other components. The resulting triazene concentration 

ranged between 1.9 × 10-5 M and 3.8 × 10-5 M. The ionic strength of the buffer was set at 

0.5 M (unless stated otherwise), using NaCl as compensating electrolyte. ß-CD solutions 

at a concentration higher than 10 mM and α-CD solutions at a concentration higher than 

13.5 mM were heated at ca. 80°C for 30 minutes and cooled down before use. Sample 

solutions for absorption spectra were kept at room temperature (i.e., (21 ± 1) °C), those 

for kinetic studies were kept at (21 ± 0.1) °C using a circulating water bath, and those for 

ICD experiments were kept at (24 ± 1) °C (ambient temperature of the biochemistry 

laboratory). 

 

4.4 Kinetic data acquisition and processing  

Kinetic traces for acid-catalyzed decomposition of triazenes were obtained either by 

using the automatic kinetic data acquisition function of the Varian UV-visible 

spectrometer to monitor the change in absorbance at the corresponding λmax or by 
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manually reading the absorbance at λmax from the recorded time-resolved absorption 

spectra. The monitoring wavelengths were 352 and 367 nm for HDPT and CH3ODPT, 

respectively. All reactions were followed until at least 80-90% decomposition of the 

starting substrate was observed. Observed rate constants (kobs) were obtained by fitting 

the kinetic traces to a single exponential function (Eq. 4-1), in which At is the absorbance 

at time t, Ae is the absorbance at the end of the reaction, and A0 is the initial absorbance. 

All reactions were measured at least twice, and resulting average observed rate constant 

values are listed in the Appendix. 

 

! 

At = (A0 "Ae)exp("kobs # t) + Ae Eq. 4-1 

 

Proton concentrations were obtained from Eq. 4-2, using 0.732 as value for the proton 

activity coefficient γH+.130a This value is for γH+ in pure water; however, it has been 

reported that addition of up to 12% (v/v) MeOH has a negligible effect on γH+.130b  

 

! 

[H
+
] =
10

"pH

#
H

+

 Eq. 4-2 

 

All curve fittings were carried out by using the general curve fitting procedure of 

Kaleidagraph software (Version 3.6.4) from Synergy Software. 
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Appendix. Observed rate constants for acid-catalyzed decomposition of 

1,3-diphenyltriazenes in aqueous solutions 

Table A-1. HDPT and CH3ODPT in phosphate buffer.a  

pHb  kobs (10-4 s-1)b pHc kobs (10-4 s-1)c 

6.76 3.8 ± 0.1 7.45 2.36 ± 0.01 

6.46 7.1 ± 0.1 6.76 11.6 ± 0.4 

6.28 9.60 ± 0.06 6.46 25 ± 1 

6.16 12.6 ± 0.1 6.28 39 ± 2 

  6.16 49 ± 3 

 a In 2% (v/v) MeOH/water, µ = 0.5 M (NaCl), T = 21 °C. Observed rate constant values 

correspond to the average of two to four independent runs. b Data for HDPT. c Data for 

CH3ODPT. 

 

Table A-2. CH3ODPT in the presence of ß-CD in phosphate buffer at various pHs.a  

BCD kobs (10-4 s-1) 

(mM) pH = 6.51 pH = 6.69 pH = 6.80 pH = 7.07 pH = 7.46 

none 280 ± 9 186 ± 2 138 ± 2 66.3 ± 0.5 26.2 ± 0.2 

0.25 191 ± 7 131 ± 6 88 ± 2 46.6 ± 0.9 19.0 ± 0.1 

0.50 169 ± 9 92 ± 3 68 ± 2 32.6 ± 0.2 14.1 ± 0.3 

1.0 97 ± 7 57.2 ± 0.2 47 ± 1 22.9 ± 0.2 10.0 ± 0.1 

2.0 64.4 ± 0.8 40.8 ± 0.2 30 ± 1 14.6 ± 0.4 6.14 ± 0.01 

4.0 41.8 ± 0.6 24.7 ± 0.3 18.7 ± 0.1 9.1 ± 0.1 4.02 ± 0.01 

6.0 29.9 ± 0.5 18.9 ± 0.5 14.3 ± 0.1 7.12 ± 0.06 3.30 ± 0.02 

8.0 24.0 ± 0.4 15.7 ± 0.2 12.2 ± 0.2 5.99 ± 0.02 2.76 ± 0.01 

11 20.6 ± 0.5 13.4 ± 0.1 10.0 ± 0.1 4.96 ± 0.02 2.28 ± 0.01 

14 17.6 ± 0.2 11.7 ± 0.1 8.82 ± 0.04 4.44 ± 0.003 1.96 ± 0.08 

 a In 2% (v/v) MeOH/water, µ = 0.55 M (NaCl), T = 21 °C. Observed rate constant values 

correspond to the average of two to four independent runs. 
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Table A-3. HDPT in the presence of different CDs varying in concentration in phosphate 

buffer at pH 6.16.a  

CD kobs/10-4 s-1 

(mM) α-CD ß-CD HP-ß-CD TM-ß-CD 

none 12.7 ± 0.1 12.5 ± 0.2 12.5 ± 0.2 12.6 ± 0.1 

0.10   9.7 ± 0.1  

0.20 10.9 ± 0.2 10.6 ± 0.1b 7.70 ± 0.04 10.2 ± 0.1b 

0.50 9.22 ± 0.09 9.0 ± 0.1 4.84 ± 0.02 8.4 ± 0.2 

1.0 7.20 ± 0.03 6.70 ± 0.06 2.80 ± 0.01 6.10 ± 0.01 

2.0 4.92 ± 0.01 4.94 ± 0.02 1.61 ± 0.01 3.88 ± 0.05 

3.0 3.54 ± 0.04    

4.0 2.82 ± 0.02 3.26 ± 0.01 0.925 ± 0.008 2.28 ± 0.01c 

6.0 2.2 ± 0.1d 2.58 ± 0.02   

7.0 1.59 ± 0.01 2.22 ± 0.03e 0.582 ± 0.006 1.32 ± 0.02 

10 1.17 ± 0.02 1.88 ± 0.01f 0.452 ± 0.001 0.908 ± 0.002 

14  1.64 ± 0.01 0.330 ± 0.002 0.64 ± 0.01 

a In 2% (v/v) MeOH/water, µ = 0.5 M (NaCl), T = 21 °C. Observed rate constant values 

correspond to the average of two to four independent runs. b 0.25 mM. c 4.3 mM. d 5.5 

mM. e 8.0 mM. f 11 mM.  
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Table A-4. CH3ODPT in the presence of different CDs varying in concentration in 

phosphate buffer at pH 6.16.a  

 
CD kobs/10-3 s-1 

(mM) α-CD ß-CD HP-ß-CD TM-ß-CD 

none 52 ± 1 50.6 ± 0.4 48.9 ± 0.2 46 ± 3 

0.10 43 ± 1  28.6 ± 0.1  

0.20 39.1 ± 0.4 29.2 ± 0.2b 19.2 ± 0.1 31 ± 1b 

0.50 28 ± 1 22 ± 2 9.8 ± 0.3 23 ± 2 

1.0 15.9 ± 0.1 14 ± 1 4.96 ± 0.01 13.2 ± 0.3 

2.0 7.5 ± 0.1 7.7 ± 0.1 2.72 ± 0.01 7.6 ± 0.1 

4.0 2.38 ± 0.02 4.79 ± 0.09 1.74 ± 0.02 3.7 ± 0.1 

6.0  3.76 ± 0.04   

7.0 0.880 ± 0.001 3.38 ± 0.06c 1.03 ± 0.005 2.1 ± 0.1 

10 0.41 ± 0.01 2.80 ± 0.02 0.800 ± 0.003 1.51 ± 0.05 

14  2.5 ± 0.1 0.632 ± 0.007 0.98 ± 0.02 

a In 2% (v/v) MeOH/water, µ = 0.5 M (NaCl), T = 21 °C. Observed rate constant values 

correspond to the average of two to four independent runs. b 0.25 mM. c 8.0 mM. 
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