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Abstract

The objective of this work is to develop mathematical simulation models for predicting the

transient behaviour of strings and beams subjected to impacts. The developed models are

applied to study the dynamics of the piano and the sitar.

For simulating rigid point impacts on continuous systems, a new method is proposed based

on the unit impulse response. The developed method allows one to relate modal velocities

before and after impact, without requiring the integration of the system equations of motion

during impact. The proposed method has been used to model the impact of a pinned-pinned

beam with a rigid obstacle. Numerical simulations are presented to illustrate the inability of the

collocation-based coefficient of restitution method to predict an accurate and energy-consistent

response. The results using the unit-impulse-based coefficient of restitution method are also

compared to those obtained with a penalty approach,with good agreement.

A new moving boundary formulation is presented to simulate wrapping contacts in continu-

ous systems impacting rigid distributed obstacles. The free vibration response of an ideal string

impacting a distributed parabolic obstacle located at its boundary is analyzed to understand

and simulate a sitar string. The portion of the string in contact with the obstacle is governed

by a different partial differential equation (PDE) from the free portion represented by the clas-

sical string equation. These two PDEs and corresponding boundary conditions, along with

the transversality condition that governs the dynamics of the moving boundary, are obtained

using Hamilton’s principle. A Galerkin approximation is used to convert them into a system of

nonlinear ordinary differential equations, with time-dependent mode-shapes as basis functions.

The advantages and disadvantages of the proposed method are discussed in comparison to the

penalty approach for simulating wrapping contacts. Finally, the model is used to investigate

the mechanism behind the generation of the buzzing tone in a sitar. An alternate formulation

using the penalty approach is also proposed, and the results are contrasted with those obtained

using the moving boundary approach.

A model for studying the interaction between a flexible beam and a string at a point in-

cluding friction has also been developed. This model is used to study the interaction between

a piano hammer and the string. A realistic model of the piano hammer-string interaction must
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treat both the action mechanism and the string. An elastic stiff string model is integrated with

a dynamic model of a compliant piano action mechanism with a flexible hammer shank. Simu-

lations have been used to compare the mechanism response for impact on an elastic string and

a rigid stop. Hammer head scuffing along the string, as well as length of time in contact, were

found to increase where an elastic string was used, while hammer shank vibration amplitude

and peak contact force decreased. Introducing hammer-string friction decreases the duration of

contact and reduces the extent of scuffing. Finally, significant differences in hammer and string

motion were predicted for a highly flexible hammer shank. Initial contact time and location,

length of contact period, peak contact force, hammer vibration amplitude, scuffing extent, and

string spectral content were all influenced.
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Chapter 1

Introduction

Many mechanical systems are subjected to impact loading, either due to their functionality

(such as musical instruments, impact dampers, impact hammers, and sports equipment) or due

to undesirable phenomena (such as clearance in joints due to wear and rotor-stator impact in

rotating machinery). The modelling and simulation of such mechanical systems provides an

understanding of their dynamic behaviour, and can assist the engineer in developing better

products. The main objective of this research is to develop mathematical models to simulate

impacts with or without friction on unidirectional continuous systems (i.e., systems with one in-

dependent spatial coordinate) using the modal-based approach. The developed models are used

to study the impact behaviour of strings and beams, with applications to musical instruments.

1.1 Background

Continuous systems have an infinite number of degrees of freedom. In reality, all mechanical

systems are continuous in nature, and elastic waves are initiated when they are subjected to

impacts. The generation of such waves is particularly apparent in highly flexible rods (strings,

slender beams, and cables). Since we are mainly focusing on the impact dynamics of uniform

slender elastic rods, we exclude the finite element method (FEM) and instead consider global

methods using undamped mode shapes as the basis functions for representing their motion.
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1.1.1 Modelling point contacts in continuous systems

Three approaches are generally employed for modelling contacts in continuous systems: the

coefficient of restitution (CoR) approach, the local compliance approach, and the boundary

switching approach. The CoR approach assumes that the impact occurs within an infinitesimal

amount of time, and thereby assumes that the configuration of the system is the same imme-

diately before and immediately after impact. The post-impact initial conditions are obtained

using momentum and/or energy balance equations. This approach has gained popularity due

to its simplicity. Figure 1.1 shows two flexible translating bodies impacting at location P and

the direction of their rigid-body velocities before and after impact. In highly flexible structures,

the impacts occur in finite time. Since significant deformations can occur during the impact

phase, use of the CoR approach is inappropriate in this case.

 Before impact After impact 

Rigid body  
motion 

Small vibration Body A Body B P

AVBVAV  BV  

Figure 1.1: Illustration of coefficient of restitution approach.

 

AV  
BV  AV AVBV

BV  

Before impact During impact                           After impact 

Figure 1.2: Illustration of local compliance approach.
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The second approach involves modelling the local contact compliance, as shown in Figure

1.2. When the two bodies come in contact with each other, forces are generated as one body

penetrates into the other. This approach requires the integration of the governing equations of

motion over the impact phase. Whereas the CoR approach does not provide any insight into

the forces generated during impact, the local compliance approach can be used to estimate the

contact forces involved in a postprocessing step.

The last approach involves switching between models with different boundary conditions

during impact. Figure 1.3 shows a fixed-free beam impacting a point obstacle at its free end.

The beam boundary conditions can be considered fixed-free during non-contact phase and

fixed-pinned during contact phase. Once the impact occurs, the displacement and velocity

distributions of the fixed-free beam are used as initial conditions for the beam model with

fixed-pinned boundary conditions. The loss of contact occurs when the reaction force at the

pinned end approaches zero. This method completely neglects local compliance and assumes

that the global motion is responsible for contact initiation and termination.

Upward motion 
 

Obstacle 

Downward motion 

 

Figure 1.3: Illustration of mode switching approach.

1.1.2 Modelling distributed contacts in continuous systems

It is relatively simple to model point contacts in flexible systems at predefined locations; how-

ever, the contact locations are not known a priori in most applications. Many applications

involve distributed contacts in which multiple impacts can occur simultaneously at different lo-

cations, as shown in Figure 1.4. The beams shown in Figure 1.4 can impact under base-excited

motion. This simple mechanical system is a basic model of a heat exchanger, where the tubes

3



impact each other under fluid-induced vibrations. One approach to model distributed impacts

is to assume a distributed compliance function along the normal direction of contact. Damping

can also be introduced into the contact model to account for losses during impact.

Input motion During operation Equilibrium position 

 

Distributed 
impactsFlexible beams 

Distributed impact 
modelled using 

foundation model 

Figure 1.4: Illustration of local compliance approach for distributed impacts.

In special circumstances, a moving boundary formulation can be employed to model wrap-

ping distributed contacts. Wrapping contacts occur when the continuum is vibrating in its lower

modes and impacts an obstacle. As an example, Figure 1.5 shows a cantilever beam wrapping

against a cylindrical obstacle at its boundary. The motion of the beam during contact can be

formulated as a moving boundary problem.

Moving boundary Upward motion 

Cylindrical obstacle Downward motion 

 

Figure 1.5: Illustration of moving boundary approach.

1.2 Impact modelling in musical instruments

Impact and friction are the basic mechanisms used for tone generation in percussion instru-

ments; Figure 1.6 illustrates the flow of energy in these instruments. The impacts need to be

4



modelled in as much detail as possible, since this is the main mechanism of energy transfer

between the musician and the instrument. Impact is used to excite strings, rods, beams, or

membranes, which are attached to a soundboard through a bridge. The soundboard then ra-

diates the sound that is heard by the human ear. The mathematical models developed in this

thesis will be used to study the mechanism of tone generation in the piano and sitar. Musical

instruments are generally built based on years of experience, and have very subtle designs.

Several centuries of design evolution based on intuition makes musical instruments complicated

objects for mathematical modelling. The materials used in their construction are also difficult

to model: several instruments use bone, leather, hair, and felt along with wood. Felt is widely

used in musical instruments as the impacting interface, as in piano hammers and drum mallets.

The contact evolution in these instruments during an impact is dependent on both space (the

contact location is not known in advance) and time, and is a very complicated process. Trav-

eling waves that are generated during the initial phase of contact travel to the boundary and

are reflected back, interacting with the impacting body.

 

Impact and 
friction 

String, rods, beam 
or membrane Soundboard

Musician

Sound 

Figure 1.6: Energy flow in musical instruments.

1.2.1 Hammer-string interaction in piano

The action mechanism in a piano converts a mechanical input at the key into motion of the

hammer, which then impacts the string to generate sound. A typical configuration of a modern

grand (horizontal) piano action is shown in Figure 1.7, and consists of five main components:

key, whippen, repetition lever, jack, and hammer. The components of this mechanism interact

through felt-lined interfaces providing compliant, and possibly intermittent, contact locations
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with friction and damping. Some of these contacts are perfectly transverse and some are oblique.

The mechanical properties of the felt will influence the damping of vibrations present in the

action components due to their flexibility, as well as the transient vibrations that arise when

components separate and re-contact during the operation of the mechanism.

Figure 1.7: Typical modern grand piano action mechanism: key (1), whippen (2), repetition

lever (3), jack (4), hammer (5), damper (6).

The driving force on the hammer is transmitted through the jack under the knuckle. Imme-

diately before the hammer impacts the string, the jack is mechanically forced to lose contact

with the hammer (called escapement or let-off) so the vibrations generated on the string through

the impact will not be immediately damped by the action mechanism.

1.2.2 Bridge-string interaction in sitar

The sitar (see Figure 1.8) is a musical instrument of Indian origin whose plucked strings can

interact with a shallow curved ledge located beneath the vibrating strings (see Figure 1.9).

The bridge, which includes the ledge as well as grooves to constrain the strings to their evenly-

spaced lateral positions for playing, is typically carved from a piece of bone and rests on small

wooden feet in contact with the soundboard of the instrument. The tone of the sitar, and other

instruments of Indian origin with a similar bridge design (such as the veena and tambura),

is markedly different from that of other plucked stringed instruments like the guitar. The
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Figure 1.8: The sitar, a stringed instrument of Indian origin.

Figure 1.9: The sitar bridge is approximately parabolic.

.

interaction of the string with the bridge generates high-frequency components and creates a

characteristic buzzing sound.

This mechanism of sound generation can also be found in Western instruments. The Me-

dieval and Renaissance bray harp, for example, has small bray-pins that provide a metal surface

for the vibrating strings to impact near their termination points, increasing the upper partial

content in the tone and providing a means for the harp to be audible in larger spaces and in en-

semble with other instruments [28]. The arpichordium stop, common on some virginals (plucked

string keyboard instruments), imitates the bray harp, using soft metal (lead or brass) pins that

can be bent so as to lie close to the vibrating strings (about 15 mm from the termination point)

[56].

The distinctive buzzing sound common to all of these instruments is caused by the presence

of a physical obstacle that alters the behaviour of a vibrating string by interacting with it close

to one of its termination points.
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1.3 Organization of this thesis

The second chapter begins with a literature review on general approaches for simulating point

contacts in continuous systems using the modal-based approach (Section 2.1). Sections 2.2 and

2.3 discuss the work done by earlier researchers on the bridge-string interaction in a sitar and

the hammer-string interaction in a piano. . Chapter 3 presents a new and energy-consistent

method for simulating point impacts in continuous systems using a coefficient of restitution.

The advantages of the proposed method over existing coefficient of restitution methods are

discussed. The simulations obtained using the proposed method to simulate a base- excited

cantilever system are compared with the experimental results published in the literature. In

Chapter 4, the distributed contact problem of a string impacting a rigid obstacle at its boundary

is studied. The developed model is applied to study the mechanism of tone generation of the

sitar. Chapter 5 describes the mathematical modelling of, and numerical simulation results

for, a complete multibody dynamic model of the piano action mechanism with 1D stiff string

contact. Finally, Chapter 6 outlines the major conclusions.
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Chapter 2

Literature review

In this chapter, we briefly review the literature dealing with the following problems:

(i) Modelling the impact of a continuous system with a rigid point obstacle;

(ii) Modelling the impact of a continuous system with a rigid distributed obstacle and its

application to the bridge-string interaction in a sitar; and

(iii) Modelling the impact between a compliant multibody system and a continuous system in

the presence of friction, with an application to the hammer-string interaction in a piano.

2.1 Modelling the impact of a continuous system with a

rigid point obstacle

The dynamics of beams, strings, and rods subjected to impacts caused by motion-limiting

constraints has been studied extensively. An incomplete but illustrative analysis can be found

in [8, 22–24, 26, 48, 50, 54, 61, 68, 69, 72–75, 77, 78]. Three different approaches have been

employed to model the problem:

1. Force integration method (also referred to as the penalty approach) [8, 22, 48, 50, 54, 68,

69, 77, 78]: In this method, a contact force proportional to the penetration of the beam
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at the contact point is applied at the contact location. This method can be used to model

linear or nonlinear stiffness in the obstacles.

2. Mode switching method [23, 26, 63, 68]: In this method, the mode shapes of the continuous

system are evaluated when it is in contact with the obstacle, and are used as the basis for

representing the motion of the system during contact. Since a prior evaluation of mode

shapes is necessary to model the contact, this method is only applicable to linear system

models.

3. CoR method: This approach is based on the coefficient of restitution (CoR) method,

which treats the obstacle as rigid, and has been proposed by Wagg and Bishop [72–75].

Despite the success of modelling short-duration impacts in flexible multibody systems using

the CoR approach, the extension of CoR-based modelling to structural systems has received

little attention, especially when combined with modal discretization. The only work in this

area was done by Wagg and Bishop [75], who comment in their work that the CoR theory can

be applied to a continuous system when the impact is of very short duration, such as with

metal impacting components. They proposed a modal form of CoR (MoCoR) that relates the

pre-impact and post-impact velocities for beams, making two assumptions:

1. The configuration of the system does not change during the impact, in accordance with

the conventional rigid-body CoR approach; and

2. The velocity field of the structure changes only at the impacting point according to the

CoR method, setting up a non-smooth velocity field after impact.

Using the above assumptions, Wagg and Bishop defined a modal form of CoR that relates the

post-impact modal velocities to the pre-impact modal velocities. For an N-mode approximation,

the modal form of CoR requires selecting N−1 locations (the collocation points) on the beam at

which the velocities are assumed to be the same before and after the impact. The authors have

approximated the assumed non-smooth post-impact velocity distribution of the beam using a

function (the collocation function), which is a linear combination of the N mode shapes. The

coefficients of the collocation function are obtained by equating it to the corresponding non-

smooth function at the collocation and impact points. From numerical simulations, we have
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observed that the MoCoR approach, in its current form, adds energy into the structure that

is being impacted for certain simulation parameters (collocation points). To resolve this issue,

we develop a new MoCoR approach that does not involve choosing collocation points. The

developed method is also energy-consistent, as explained in Chapter 3.

2.2 Bridge-string interaction in the sitar

Raman [59] gives a detailed description of the bridge geometry used for the sitar, veena, and

tambura. He notes that even if a veena string is plucked at a node, the corresponding vibration

mode appears in the response. Raman concludes that this phenomenon is a consequence of

the interaction of the string with the bridge. Various approaches for modelling the interaction

between a vibrating string and an obstacle have been presented in the literature. Amerio and

Prouse [3], Schatzman [60], Burridge et al. [12], and Cabannes [13–15] used the method of

characteristics and energy conservation for simulating the impact between a string and a rigid

obstacle. Cabannes [15] notes that the case of modelling a string not initially at rest is an open

problem when using a travelling wave approach. Ahn [2] used a finite element approach and

Newton’s kinetic coefficient of restitution to simulate the string and its impact with the bridge.

Han and Grosenbaugh [39] and Taguti [67] simulated the impact using a penalty approach

combined with finite difference discretization for the string motion, while Vyasarayani et al.

[71] used the penalty approach with a modal representation of the string motion. A different

direction was taken by Krishnaswamy and Smith [49], who model the curved sitar bridge as a

point obstacle and apply digital wave-guides (signal processing methods) and finite difference

methods to obtain the solution for a rigid impact. Valette [70] analyzes the dynamics of a

tambura string interacting with a distributed obstacle that is modelled as a unilateral point

constraint, and assumes completely plastic impact.1

The objective of this study is to developed a mathematical model that can be used to

understand the mechanism behind the tone generation in a sitar. A new modal formulation is

developed to simulate distributed wrapping contacts in continuous systems, which is presented

in Chapter 4. When the obstacle is located near the termination of the vibrating continuum,

1In the literature, a perfectly wrapped string is often described as a completely plastic impact.
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it is possible to model the interaction dynamics as a moving boundary problem. Fung and

Chen [29] proposed this method and studied perfect wrapping of a flexible cantilever beam on

a circular rigid foundation as a moving boundary problem. The sitar bridge-string problem is

closely related to this work, but differs from it in several respects: (i) the vibrating continuum

is a string rather than a beam; (ii) the string can have a non-point contact length at static

equilibrium; (iii) the contacting boundary is of finite length, thus limiting the maximum amount

of wrapping around the obstacle; and (iv) the obstacle geometry is closer to a parabola than a

circle.

2.3 Hammer-string impact in the piano

As mentioned in Section 1.21, the piano hammer loses contact with the action mechanism

(escapement) just before its impact with the string. Many authors [7, 9, 17, 18, 34–38, 66] have

exploited this fact and modelled the hammer as a single-degree-of-freedom translating mass

with nonlinear compliance, thus assuming perfect normal impact between the string and the

hammer. In reality, the hammer shank (the component on which the hammer is mounted) is a

rotating slender beam, so the hammer follows a circular trajectory, not a linear one. Moreover,

small vibrations are superimposed on its motion due, in part, to the flexibility of the shank

and the compressibility of the felt contacts. The influence of these effects on string motion [5],

contact force [30], and action mechanism dynamics [47] have been emphasized in the literature.

The hammer-string contact modelling literature [7, 9, 17, 18, 34–38, 66] ignores any effects

due to hammer shank flexibility and action compressibility; the only simulation model which

includes hammer shank flexibility [47] neglects string dynamics, substituting a rigid stop for

the hammer to impact. In this research, we investigate the dynamic significance of flexibility

by integrating models of an action mechanism with a flexible hammer shank [47] and an elastic

stiff piano string.

Hirschkorn et al. [42] developed a multibody dynamic model of the action mechanism

considering all the components as rotating rigid bodies. A detailed review of earlier action

mechanism models was also reported, with the conclusion that none of the existing models are

sufficiently realistic nor mechanistic enough to be useful for prototyping purposes. Parameters
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in the earlier models were tuned to obtain the observed hammer motion and could not be

associated with physical measurements of action components. Izadbakhsh et al. [47] extended

the Hirshkorn et al. [42] model by including hammer shank flexibility. In both these models,

string dynamics are neglected and the hammer impacts a rigid obstacle in place of a string. The

development of a simulation model for analysis and design of piano actions, one of the goals

of this research, demands a complete multibody dynamic model of the mechanism with string

contact. This model will be used to support several future objectives of the Piano Design Lab

at the University of Waterloo, including the following:

• To design and develop a new mechanacoustic piano at a low cost. In the process of

designing a new piano, it is important to analyze the dynamics of existing designs; the

new design should have at least the same dynamic capability as traditional pianos. A

realistic simulation model is required to study the behaviour of existing piano actions.

• To study the biomechanical aspects of the pianist, and to understand the controllability

of the instrument by the pianist.

• To develop a simulation model that can be used by the industrial sponsor, Steinway and

Sons, for their analysis and design of piano action mechanisms.

In order to include a realistic hammer-string interaction, the action mechanism and string must

be dealt with as a single system. This is necessary so that the effect on system response due

to changing physical parameters of the mechanism and/or string may be examined. In general,

there will be tonal changes, characterized by different partials generated on the string, as well as

changes in the dynamic behaviour of the components of the mechanism (presented in Chapter

5). To understand the influence of the string on the dynamic response of the action mechanism

and vice versa, we integrate the stiff string model proposed by Fletcher [27] with the flexible

action mechanism model presented in Izadbakhsh et al. [47], thus filling the gap between the

single-degree-of-freedom hammer-string interaction models [7, 9, 17, 18, 34–38, 66] and dynamic

piano action mechanism models with rigid contacts [42, 47].
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Chapter 3

Modelling the dynamics of a continuous

system impacting a rigid point obstacle

This chapter begins with the mathematical modelling of an Euler-Bernoulli beam impacting

a rigid point obstacle. First, we model the impact using an existing collocation method. The

disadvantages of the collocation method are discussed. A new method based on the unit-

impulse response is then proposed. Numerical simulations are presented to demonstrate the

effectiveness of the proposed method, and a comparison with the penalty approach is presented.

Finally, some qualitative comparisons are made between simulations and existing experimental

results.

3.1 Mathematical modelling

The schematic of the physical system being modelled and the related nomenclature is shown in

Figure 3.1. The system consists of a pinned-pinned beam excited harmonically at location Xf

by a force F ∗ sin(ω∗t). The motion of the beam is constrained by a rigid stop at location Xi.

The equation governing the dynamics of the beam, excluding the event of impact and assuming

Euler-Bernoulli beam theory, is given by the following:

EI
∂4Z

∂X4
+ ρA

∂2Z

∂t2
= F ∗ sin(ω∗t)δd(X −Xf ), Z(Xi, t) ≤ D (3.1)
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Figure 3.1: Schematic of the physical system.

where E is the Young’s modulus, I is the area moment of inertia, ρ is the density, A is the

cross-sectional area, δd is Dirac’s delta function, and t is time. The boundary conditions for

pinned-pinned supports are as follows:

Z(0, t) = Z(L, t) = 0 and
∂2Z(0, t)

∂X2
=
∂2Z(L, t)

∂X2
= 0 (3.2)

We introduce the following dimensionless parameters into the equation of motion:

x =
X

L
, w =

Z

D
, τ = t

√
EI

ρAL4
, ω = ω∗

√
ρAL4

EI
, F =

F ∗L4

EID
(3.3)

The equation of motion now becomes the following:

∂4w

∂x4
+
∂2w

∂τ 2
= F sin(ωτ)δd(x− xf ), w(xi, τ) ≤ 1 (3.4)

with the following boundary conditions:

w(0, τ) = w(1, τ) = 0 and
∂2w(0, τ)

∂x2
=
∂2w(1, τ)

∂x2
= 0 (3.5)

Two further initial conditions are required:

w(x, 0) = w0(x) and ẇ(x, 0) = ẇ0(x) (3.6)

3.1.1 Natural frequencies and mode-shapes

In this section, we derive the expressions for natural frequencies and mode-shapes of the simply-

supported beam. The obtained mode-shapes will be used in the expansion theorem to obtain
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the solution of equation 3.4. To solve for the natural frequencies and mode-shapes, we consider

the following homogenous PDE, which is obtained by dropping the forcing function on the

right-hand side of equation 3.4:
∂4w

∂x4
+
∂2w

∂τ 2
= 0 (3.7)

with boundary conditions:

w(0, τ) = w(1, τ) = 0 and
∂2w(0, τ)

∂x2
=
∂2w(1, τ)

∂x2
= 0 (3.8)

We assume a solution using the method of separation of variables to be of the following form:

w(x, τ) = W (x)q(τ) (3.9)

Substituting equation 3.9 into equation 3.7, we arrive at the following:

d4W
dx4

W
= −

d2q
dτ2

q
(3.10)

The left-hand side of equation 3.10 is a spatial function and the right-hand side is only a

function of time. Equation 3.10 will only have a solution if both sides are equal to a constant,

which should always be positive (Ω4) so that the time-dependent differential equation will have

a harmonic solution. Equation 3.10 reduces to the following two differential equations:

d4W

dx4
− Ω4W = 0 (3.11)

and
d2q

dτ 2
+ Ω4q = 0 (3.12)

Equation 3.12 has a harmonic solution with a frequency of oscillation equal to Ω2. In essence,

we wish to find the mode shapes (spatial functions) that satisfy equation 3.11, and those modes

will have a corresponding natural frequency given by Ω2. Equation 3.11 has the following

solution:

W (x) = C1 sin(Ωx) + C2 cos(Ωx) + C3 sinh(Ωx) + C4 cosh(Ωx) (3.13)

Substituting equation 3.9 into equation 3.8, we obtain the following boundary conditions:

W (0) = W (1) = 0 and
d2W (0)

dx2
=
d2W (1)

dx2
= 0 (3.14)
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Evaluating equation 3.13 at the first boundary conditions, we obtain the following:

W (0) = C2 + C4 = 0 (3.15)

and
d2W (0)

dx2
= −C2 + C4 = 0 (3.16)

The above equations give C2 = C4 = 0, and equation 3.13 can be reduced as follows:

W (x) = C1 sin(Ωx) + C3 sinh(Ωx) (3.17)

Substituting equation 3.17 into other two boundary conditions in equation 3.14, we arrive at

the following:
d2W (1)

dx2
= Ω2(−C1 sin(Ω) + C3 sinh(Ω)) = 0 (3.18)

and

W (1) = C1 sin(Ω) + C3 sinh(Ω) = 0 (3.19)

Adding equation 3.18 (after dropping the Ω2) and equation 3.19, we have:

C3 sinh(Ω) = 0 (3.20)

The above equation holds if Ω = 0, which gives the trivial solution of zero frequency. For a

nontrivial solution, we must have C3 = 0. Equation 3.19 now becomes:

C1 sin(Ω) = 0 (3.21)

The above equation can be true if C1 = 0, which means that W (x) = 0 (a trivial solution);

therefore, sin(Ω) = 0, which gives:

Ω = jπ, j = 1, 2, .....,∞ (3.22)

The natural frequencies given by Ω2 are:

ωj = (jπ)2, j = 1, 2, .....,∞ (3.23)

The mode shape corresponding to the natural frequency ωj can be obtained by substituting

equation 3.22 into equation 3.17:

Wj(x) = C1 sin(jπx) (3.24)

It should be noted that the above mode shape has arbitrary amplitude.
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3.1.2 Assumed solution

Using the expansion theorem, a solution to equation 3.4 is assumed to be of the following form:

w(x, τ) =
∞∑
j=1

Wj(x)qj(τ) (3.25)

where Wj(x) and qj(τ) correspond to the jth mode shape and the corresponding modal coordi-

nate for the beam, respectively. Substituting the above form of solution into equation 3.4, we

get:
∞∑
j=1

d4Wj(x)

dx4
qj(τ) +

∞∑
j=1

Wj(x)q̈j(τ) = F sin(ωτ)δ(x− xf ) (3.26)

The above equation is multiplied by Wk(x) and then integrated over the spatial domain, which

yields the following expression:

∞∑
j=1

qj(τ)

1∫
0

d4Wj(x)

dx4
Wk(x)dx+

∞∑
j=1

q̈j(τ)

1∫
0

Wj(x)Wk(x)dx =

F sin(ωτ)

1∫
0

δd(x− xf )Wk(x)dx, k = 1, 2, ...,∞ (3.27)

We now evaluate the following integral:

1∫
0

Wj(x)Wk(x)dx = C2
1

1∫
0

sin(jπx) sin(kπx)dx =
C2

1

2
δjk (3.28)

where δjk is Kronecker’s delta, defined as:

δjk =

1, if j = k

0, if j 6= k

(3.29)

Since the amplitudes of the mode shapes are arbitrary, we choose the amplitude of mode

shapes (C1) to be
√

2. This procedure of choosing the amplitudes of mode shapes such that

the right-hand side of equation 3.28 becomes δjk is called mass-normalization. By using the

mass-normalized mode shapes, it can be shown that:

1∫
0

d4Wj(x)

dx4
Wk(x)dx = ω2

j δjk = (jπ)4δjk (3.30)
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The coupled ordinary differential equations (ODEs) given by equation 3.27 can be decoupled

using the orthogonality relations (equation 3.28 and equation 3.30). The uncoupled ODEs,

after truncating the system to N modes, are as follows:

q̈j(τ) + ω2
j qj = Wj(xf )F sin(ωτ), j = 1, 2, ..., N (3.31)

To obtain the modal initial conditions, we substitute the series solution given by equation

3.25 into equation 3.6, which gives the following relations for displacement and velocity initial

conditions:

w(x, 0) =
∞∑
j=0

Wj(x)qj(0) (3.32)

and

ẇ(x, 0) =
∞∑
j=0

Wj(x)q̇j(0) (3.33)

Multiplying both sides of equations 3.32 and 3.33 by Wk(x), and then integrating over the

domain, results in the following modal initial conditions:

qj(0) =

1∫
0

w(x, 0)Wj(x)dx and q̇j(0) =

1∫
0

ẇ(x, 0)Wj(x)dx (3.34)

3.1.3 Impact modelling

Once the system parameters have been specified, equation 3.31 can be numerically integrated

until the impact occours. At the impact event, we have information about the pre-impact dis-

placement and velocity distribution of the beam, which are respectively w(x, τ−) and ẇ(x, τ−),

where τ− is the time immediately prior to impact. The objective is to relate the pre-impact

displacement and velocity distributions to the post-impact distributions. In rigid-body prob-

lems involving translation, if the velocity of one point is known, then the velocities of all other

points on the rigid body can be easily derived. With continuous systems, however, we must

predict the post-impact velocity distribution, ẇ(x, τ+), given only a post-impact velocity at the

impact location, ẇ(xi, τ+). At the instant of impact, it is assumed that the configuration of the

system does not change, as was assumed in [75]:

w(x, τ+) = w(x, τ−) (3.35)
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The corresponding modal post-impact displacement initial conditions are:

qj(τ+) = qj(τ−) (3.36)

The velocity of the beam at the impact location changes according to the following classical

coefficient of restitution rule:

ẇ(xi, τ+) = −Rẇ(xi, τ−) (3.37)

where R is the coefficient of restitution. In addition to equation 3.37, the pre-impact velocity

distribution, ẇ(x, τ−), is also known. We must now obtain the post-impact velocity distribution,

ẇ(x, τ+), satisfying equation 3.37. The method proposed by Wagg and Bishop [75] for obtaining

the post-impact velocity distribution and the corresponding modal velocity initial conditions is

presented here. First, equation 3.37 is written as follows:

N∑
j=1

Wj(xi)q̇j(τ+) = −R
N∑
j=1

Wj(xi)q̇j(τ−) (3.38)

In order to solve for the post-impact modal velocity initial conditions, we require N − 1 ad-

ditional equations, which can be obtained from the assumption that the velocity of the beam

remains the same before and after impact at all points except for the impact location. Selecting

N − 1 collocation points (xc1, xc2, ...., xc(N−1)), we have the following relationships:

ẇ(xck, τ+) = ẇ(xck, τ−), k = 1, 2, ..., N − 1 (3.39)

which can be further expressed as follows:

N∑
j=1

Wj(xck)q̇j(τ+) =
N∑
j=1

Wj(xck)q̇j(τ−), k = 1, 2, ..., N − 1 (3.40)

The chosen collocation points must be distinct from the nodal points of the modes that are

included in the simulation. Equations 3.38 and 3.40 can now be expressed in matrix form. As

an example, we show the matrix form for a three-mode problem. Figure 3.2 illustrates the

collocation method for obtaining the post-impact velocity distribution. In this case, we must

choose two collocation points, xc1 and xc2, as well as the impact location, xi. The matrix
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Figure 3.2: Illustration of collocation method.

equation relating the pre- and post-impact modal velocities can be written as follows:
q̇1(τ+)

q̇2(τ+)

q̇3(τ+)

 = [W]−1


1 0 0

0 −R 0

0 0 1

 [W]


q̇1(τ−)

q̇2(τ−)

q̇3(τ−)


where [W] =


W1(xc1) W2(xc1) W3(xc1)

W1(xi) W2(xi) W3(xi)

W1(xc2) W2(xc2) W3(xc2)

 (3.41)

It is clear from equation 3.41 that the post-impact modal velocities are strongly dependent on

the selected collocation points, and can lead to completely different vibro-impacting system

dynamics. Certain choices of collocation points may also lead to the artificial input of energy

into the mechanical oscillator – that is, where the predicted post-impact velocity distribution

contains more energy than the pre-impact velocity distribution. In order to resolve this issue,

a new method is proposed in the next section.

3.1.4 The impulse-based CoR method

Before discussing the proposed impulse-based CoR method, we revisit the idea of the unit

impulse response of a continuous system. We derive the expression for velocity distribution of

a beam, initially at rest, subject to a unit impulse. The equation of motion of a beam with a

unit impulse as the forcing function, acting at the impact location xi at time τ = τ−, can be

written as follows:
∂4w

∂x4
+
∂2w

∂τ 2
= δd(x− xi)δd(τ − τ−) (3.42)
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After substituting the solution given by equation 3.25 into equation 3.42, we get:

∞∑
j=1

d4Wj(x)

dx4
qj(τ) +

∞∑
j=1

Wj(x)q̈j(τ) = δd(τ − τ−)δd(x− xi) (3.43)

We multiply the above equation with Wk(x) and then integrate over the spatial domain, which

yields the following expression:

∞∑
j=1

qj(τ)

1∫
0

d4Wj(x)

dx4
Wk(x)dx+

∞∑
j=1

q̈j(τ)

1∫
0

Wj(x)Wk(x)dx =

δd(τ − τ−)

1∫
0

δd(x− xi)Wk(x)dx, k = 1, 2, ...,∞ (3.44)

We choose the mass normalized mode-shapes Wj(x) =
√

2 sin(jπx) of the pinned-pinned beam

as the spatial functions in equation 3.25. The coupled ODEs given by equation 3.44 can be

decoupled using the orthogonality relations given by equations 3.28 and 3.30. The resulting

system of modal equations as follows:

q̈j(τ) + ω2
j qj(τ) = Wj(xi)δd(τ − τ−), j = 1, 2, ...,∞ (3.45)

The above equation represents the dynamics of the jth modal coordinate, and can be solved

using the Laplace transform technique. It should be noted that the beam is assumed to be at

rest before the application of the unit impulse, so the modal initial conditions are zero before

the application of impact. Taking the Laplace transform of both sides of equation 3.45, we get:

L{qj(τ)} =
Wj(xi)e

−sτ−

s2 + ω2
j

, j = 1, 2...,∞ (3.46)

Now taking the inverse Laplace transform of equation 3.46 by using the second shifting theorem,

we get:

qj(τ) = Wj(xi)
1

ωj
sin(ωj(τ − τ−)), j = 1, 2, ..,∞, τ > τ− (3.47)

Substituting equation 3.47 into 3.25 and truncating the series solution to N terms results in

the following displacement response to equation 3.42:

w(x, τ) =
N∑
j=1

Wj(x)
Wj(xi)

ωj
sin (ωj(τ − τ−)) , τ > τ− (3.48)
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as well as the following velocity response:

ẇ(x, τ) =
N∑
j=1

Wj(x)Wj(xi) cos (ωj(τ − τ−)) , τ > τ− (3.49)

It can be seen that the displacement of the beam is w(x, τ+) = 0 at τ = τ+, but the velocity of the

beam after the application of impact is nonzero i.e., the unit impulse results in a sudden change

in the velocity of the beam. Immediately after the application of impact (i.e., when τ = τ+),

the system has the following velocity distribution:

ẇ(x, τ+) = U̇(x, τ+) =
N∑
j=1

Wj(x)Wj(xi) (3.50)

where U̇(x, τ+) is the velocity distribution of the continuous structure due to a unit impulse at

location xi. The magnitude of the velocity at the impact location, xi, can now be written as

follows:

U̇(xi, τ+) =
N∑
j=1

Wj(xi)
2 (3.51)

We now discuss the impulse-based CoR method. As shown in Figure 3.3, we attempt to find the

 

ix  

( , )w x τ−

Pimpulse  

Figure 3.3: Impact modelled using finite impulse.

non-dimensional impulse P that must be applied to the continuous system at the time of impact

so that the post-impact velocity at the impact location is as described by equation 3.37. We

make use of the velocity distribution of the beam due to a unit impulse at the impact location.

The calculated impulse P should generate similar initial conditions as the unit impulse, but of

different magnitude with a scaling factor of P . The velocity at the impact location due to an

impulse P , when added to the pre-impact velocity at the impact location, should result in the
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following post-impact velocity at the impact location:

ẇ(xi, τ−) + PU̇(xi, τ+) = ẇ(xi, τ+) (3.52)

In equation 3.52, the post-impact velocity, ẇ(xi, τ+), can be expressed in terms of the pre-impact

velocity using equation 3.37. Thus, equation 3.52 now becomes:

ẇ(xi, τ−) + PU̇(xi, τ+) = −Rẇ(xi, τ−) (3.53)

Rearranging equation 3.53, the magnitude of the impulse can be obtained as follows:

P = −(R + 1)
ẇ(xi, τ−)

U̇(xi, τ+)
(3.54)

The post-impact velocity distribution, ẇ(x, τ+), can be obtained by superimposing the velocity

distribution due to impulse P at time τ− on the pre-impact velocity distribution, ẇ(x, τ−):

ẇ(x, τ+) = ẇ(x, τ−)− (R + 1)
ẇ(xi, τ−)

U̇(xi, τ+)
U̇(x, τ+) (3.55)

Multiplying both sides of equation 3.55 with modal functions and integrating over the domain

results in the following relation:

q̇j(τ+) = q̇j(τ−)− (R + 1)
ẇ(xi, τ−)

U̇(xi, τ+)
Wj(xi), j = 1, 2, ..., N (3.56)

Equation 3.56 relates the pre-impact and post-impact modal initial conditions, without the

need to choose collocation points.

3.1.5 Alternative derivation for impulse-based CoR method

Let w(x, τ−) and ẇ(x, τ−) be the displacement and velocity distributions of the beam just

before the application of impact. Let us assume that at the instant of impact (τ−) an impulse

of magnitude P acts on the beam at the impact location. The equation of motion of the beam

can be written as:
∂4w

∂x4
+
∂2w

∂τ 2
= Pδd(x− xi)δd(τ − τ−) (3.57)

We assume the same pinned-pinned boundary conditions for the above PDE. Now substituting

the series solution given by equation 3.25 into the above PDE, we have:

N∑
j=1

d4Wj(x)

dx4
qj(τ) +

N∑
j=1

Wj(x)q̈j(τ) = Pδd(x− xi)δd(τ − τ−) (3.58)
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Integrating the above equation between τ− and τ+, we get:

N∑
j=1

d4Wj(x)

dx4

τ+∫
τ−

qj(τ)dτ +
N∑
j=1

Wj(x)

τ+∫
τ−

q̈j(τ)dτ = Pδd(x− xi)
τ+∫
τ−

δd(τ − τ−)dτ (3.59)

The post-impact displacement distribution will remain the same as the pre-impact distribution,

as the impact is assumed to occur in an infinitesimal amount of time, i.e., w(x, τ+) = w(x, τ−).

Hence we have qj(τ+) = qj(τ−) and thus the first integral in equation 3.59 becomes zero.

Integrating the second term with respect to time, and from the definition of Dirac’s delta

function (
∫ τ+
τ−
δd(τ − τ−)dτ = 1), equation 3.59 becomes:

N∑
j=1

Wj(x) (q̇j(τ+)− q̇j(τ−)) dt = Pδd(x− xi) (3.60)

Now substituting for ẇ(x, τ) =
∑N

j=1Wj(x)q̇j(τ), we get:

ẇ(x, τ+) = ẇ(x, τ−) + Pδd(x− xi) (3.61)

From the above equation we can say that the effect of applying an impulse on the Euler-Bernoulli

beam, results in a sudden change in velocity of the beam, immediately after the application

of impact. The resulting velocity distribution after impact is nothing but a Dirac’s function

in space added to the pre-impact velocity distribution. The scaling parameter P (magnitude

of impulse) in equation 3.61 is to be found such that the post-impact velocity at the impact

location is as described by equation 3.37. Multiplying both sides of equation 3.61 by Wk(x)

and integrating over the domain results in:

N∑
j=1

q̇j(τ+)

1∫
0

Wj(x)Wk(x)dx =
N∑
j=1

q̇j(τ−)

1∫
0

Wj(x)Wk(x)dx+ P

1∫
0

Wk(x)δd(x− xi)dx (3.62)

Making use of equation 3.28, the above equation reduces to:

q̇j(τ+) = q̇j(τ−) + PWj(xi) (3.63)

we now substitute equation 3.63 into equation 3.37:

N∑
j=1

Wj(xi) [q̇j(τ−) + PWj(xi)] = −R
N∑
j=1

Wj(xi)q̇j(τ−) (3.64)
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which can be simplified to obtain the following expression for P :

P = −
(1 +R)

∑N
j=1Wj(xi)qj(τ−)∑N

j=1Wj(xi)2
= −(1 +R)ẇ(xi, τ−)

U̇(xi, τ+)
(3.65)

The post-impact modal velocities can be obtained by substituting equation 3.65 into equation

3.63, which results in the following expression:

q̇j(τ+) = q̇j(τ−)− (1 +R)ẇ(xi, τ−)

U̇(xi, τ+)
Wj(xi), j = 1, 2, ..., N (3.66)

The above expression is the same as that of equation 3.56.

3.1.6 Relating the pre-impact and post-impact energies

In this section, we derive the relationship between pre-impact and post-impact energies and

show that the energy of the beam after impact is bounded by its energy before impact. The

expression for the dimensionless energy [53] (4) of the beam is:

4(τ) =
1

2

1∫
0

(
∂2w

∂x2

)2

dx+
1

2

1∫
0

(
∂w

∂τ

)2

dx (3.67)

Substituting the series solution (equation 3.25) by retaining N terms in the above expression

gives:

4(τ) =
1

2

1∫
0

(
N∑
j=1

dW 2
j (x)

dx2
qj(τ)

)(
N∑
j=1

dW 2
j (x)

dx2
qj(τ)

)
dx (3.68)

+
1

2

1∫
0

(
N∑
j=1

Wj(x)q̇j(τ)

)(
N∑
j=1

Wj(x)q̇j(τ)

)
dx (3.69)

Substituting Wj(x) =
√

2 sin(jπx) and using the following relations:

1∫
0

d2Wj(x)

dx2

d2Wk(x)

dx2
dx = (jπ)4δjk = ω2

j δjk (3.70)

we obtain the following expression for the energy of the beam:

4(τ) =
1

2

N∑
j=1

q̇j(τ)2 +
1

2

N∑
j=1

qj(τ)2ω2
j (3.71)
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The energy in the beam just before the impact at τ = τ− is given by:

4(τ−) =
1

2

N∑
j=1

q̇j(τ−)2 +
1

2

N∑
j=1

qj(τ−)2ω2
j (3.72)

and the post-impact energy at τ = τ+ is given by:

4(τ+) =
1

2

N∑
j=1

q̇j(τ+)2 +
1

2

N∑
j=1

qj(τ+)2ω2
j (3.73)

Substituting equation 3.40 into equation 3.73 and making use of the relation qj(τ+) = qj(τ−),

we get:

4(τ+) =
1

2

N∑
j=1

(
q̇j(τ−)− (R + 1)

ẇ(xi, τ−)

U̇(xi, τ−)
Wj(xi)

)2

+
1

2

N∑
j=1

qj(τ−)2ω2
j (3.74)

Further simplifying the above expression gives:

4(τ+) = 4(τ−)+
1

2
(R+1)2 ẇ(xi, τ−)2

U̇(xi, τ−)2

N∑
j=1

Wj(xi)
2− (R+1)

ẇ(xi, τ−)

U̇(xi, τ−)

N∑
j=1

Wj(xi)q̇j(τ−) (3.75)

Substituting U̇(xi, τ−) =
∑N

j=1W
2
j (xi) and

∑N
j=1Wj(xi)q̇j(τ−) = ẇ(xi, τ−), we get:

4(τ+) = 4(τ−) +
1

2
(R + 1)2 ẇ(xi, τ−)2

U̇(xi, τ+)
− (R + 1)

ẇ(xi, τ−)2

U̇(xi, τ+)
(3.76)

Simplifying equation 3.76 results in the following equation relating the post-impact and pre-

impact energies:

4(τ+) = 4(τ−) +
1

2

(
R2 − 1

) ẇ(xi, τ−)2

U̇(xi, τ+)
(3.77)

Substituting R = 1 in equation 3.77, we get 4(τ+) = 4(τ−), i.e., the energy remains constant

before and after impact. For all R < 1, the expression 1
2

(R2 − 1) ẇ(xi,τ−)2

U̇(xi,τ+)
< 0, which means

that, for any coefficient of restitution chosen between 0 and 1, the beam loses energy at the

impact. The amount of energy lost is equal to 1
2

(1−R2) ẇ(xi,τ−)2

U̇(xi,τ+)
.

3.2 Results and discussion

CoR-based modelling is a limiting case of the local compliance approach, in which the stiffness

of the obstacle reaches infinity. We, therefore, compare numerical simulations obtained using

the proposed impulse-based CoR method with those obtained using a penalty approach [68],
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where the obstacle is modelled as a linear spring with very high stiffness. We now briefly

describe the penalty approach. The equation of motion of the beam in dimensionless form

when modelled with the penalty approach is of the following form:

∂4w

∂x4
+
∂2w

∂τ 2
= −Fcontact + F sin(ωτ)δd(x− xf ) (3.78)

where the contact force Fcontact is represented as:

Fcontact =

K [w(xi, τ)− 1] w(xi, τ) ≥ 1

0 w(xi, τ) < 1

(3.79)

The boundary conditions and initial conditions are given by equations 3.5 and equation 3.6.

When the beam penetrates into the obstacle, a contact force is generated as described by

equation 3.79. If the penalty parameter (contact stiffness K) is chosen sufficiently high, the

penetration of the beam will be very small, approaching zero as K tends to infinity. The

generated contact forces will push the beam away from the obstacle, thus simulating its impact

behaviour. Equation 3.78 along with the contact force expression (equation 3.79) can be solved

numerically using modal analysis technique presented in section 3.1.2.

Initially, we present the numerical solution for a free vibration problem and emphasize the

energy-conserving nature of the formulation. The initial conditions for this particular study

are as follows:

w(x, 0) = −1.01 sin(πx) and ẇ(x, 0) = 0 (3.80)

The physical parameters used in numerical simulation are listed in Table 3.1. We compare

Table 3.1: Parameters used in simulation of free vibration.

Physical parameter Quantity

Penalty stiffness (K) 1×1012

Impact location (xi) 0.5

Coefficient of restitution (R) 1

the four-mode solutions obtained when different sets of collocation points are chosen, as shown
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Table 3.2: Collocation method parameters used in simulation.

Number of modes Collocation points

4 CP1=[0.2, 0.3, 0.7]

4 CP2=[0.15, 0.4, 0.8]

4 CP3=[0.1, 0.35, 0.9]

in Table 3.2. The modal equations given by equation 3.31 are solved in MATLAB using the

numerical integrator ode45 and the built-in event detection algorithm for detecting impacts.

Relative and absolute tolerances were chosen to be 10−9 to obtain a high degree of accuracy. The

ode45 is a fourth order Runga-Kutta integrator [62]. The event detection algorithm in Matlab

is based on the bisection method and detects a zero crossing in the function (in our case it is

the gap function (w(xi, t)− 1 = 0)) on which the event is to be detected. Figure 3.4(a) shows

the displacement of the beam at the impact location for different sets of collocation points.

Figure 3.4(b) shows a magnified version of the displacement at the first impact, and clearly

illustrates the dependence of the response on the selected collocation points. This dependence

is also confirmed in Figures 3.5 and 3.6,which show the velocity and phase plot at the impact

location.
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Figure 3.4: Response at impact location: (a) displacement, (b) magnified view at first impact.
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Figure 3.5: Velocity at impact location.
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Figure 3.6: Phase plot at impact location.
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Figure 3.7: Energy of the mechanical system.
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Figure 3.7 clearly shows that the energy of the mechanical system is increasing. It should

be noted that, since the current problem is a free vibration problem with CoR equal to 1, the

energy in the system should be conserved. The lack of energy conservation can be explained by

Figure 3.8, which shows the pre- and post-impact velocity distributions at the first impact for
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Figure 3.8: Pre- and post-impact velocity distributions.

different sets of collocation points. It can be seen that the post-impact velocity distributions are

different for different selections of collocation points. Since it is assumed that the displacement

configuration remains the same before and after impact, the strain energy cannot be altered

and any incorrect predictions of post-impact initial conditions can lead to spurious energy

input. Equation 3.40 strongly enforces that the pre- and post-impact velocities to match at the

collocation points, and relates velocities at the impact location as given by equation 3.37, but

we have no control over the velocity at other points.

Now, we examine the results obtained for a four-mode problem using the impulse-based CoR

method proposed above. Figures 3.9(a) and 3.9(b) show the displacements at the impact loca-

tion obtained for free and forced vibration problems using the impulse-based CoR and penalty

methods. The physical parameters for forcing function amplitude, location, and frequency are

shown in Table 3.3. The forcing function frequency is chosen to be the first natural frequency

of the beam. It can be clearly seen from Figure Ch1Figure9 that the displacement response

agree exactly. This fact is further illustrated in Figures 3.10 and 3.11, which show the velocity

and phase portrait at the impact location.
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Figure 3.9: Displacement at the impact location: (a) free vibration, (b) forced vibration.

Table 3.3: Forcing function parameters used in simulations.

Physical parameter Quantity

Amplitude of forcing function (F ) 72.0000

Location of forcing function (xf ) 0.5

Frequency of forcing function (ω = ω1) π2

(a) (b)
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Figure 3.10: Velocity at the impact location: (a) free vibration, (b) forced vibration.
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Figure 3.11: Phase plot at the impact location: (a) free vibration, (b) forced vibration.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.5

0.6

0.7

0.8

0.9

1

Non−dimensional Time

N
or

m
al

iz
ed

 E
ne

rg
y

CoR=1
Penalty
CoR=0.8
CoR=0.5

Figure 3.12: Energy in the mechanical system in free vibration.

Figure 3.12 shows the energy in the mechanical system for the free vibration problem, illus-

trating that the impulse-based CoR approach with R=1 and the penalty approach formulation

both preserve the energy of the mechanical system. If the coefficient of restitution is decreased,

the beam loses energy at every impact. Interestingly, with R=0.5 the beam settles at an energy

level that is higher than that found when R=0.8. The total energy lost is a function of the

number of impacts, the pre-impact velocity, and the CoR. More energy is lost at each impact

when R=0.5, while more impacts occur in the duration of the simulation when R=0.8.

A comparison of normalized CPU times for the forced response problem is shown in Figure

3.13. It is evident from the graph that the difference in the CPU time grows as the number of
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Figure 3.13: Comparison of computational efficiency.

modes considered in the problem is increased. The impulse-based CoR method runs 87% faster

than the penalty approach when 9 modes are considered in the analysis. The proposed method

can be used to successfully simulate the impact behaviour at a much lower computational cost

compared to the penalty approach, which is particularly useful given that a large number of

numerical parametric studies must be performed in order to characterize the behaviour of vibro-

impacting systems. The developed method can also be incorporated into finite element codes

provided that the analysis is carried out in the modal domain and a prior knowledge of the

response of the structure due to a unit impulse at the impact location is known.

3.3 Experimental validation

Experimental investigations on continuous systems subjected to vibro-impacting motions are

scarce in the literature. The following paragraph provides a brief overview of the work that has

been done by previous researchers.

In the experimental work done by Moon and Shaw [55] and Shaw [63], a base-excited

cantilever beam impacting against a one-sided elastic stop was studied. Bishop et al. [11] have

experimentally studied period-1 motions in a driven beam with a one-sided stop. Experiments

on a cantilever beam with a tip mass excited by a harmonically oscillating impactor were studied

by Fang and Wickert [25], while Balachandran [6] studied the dynamics of the cantilever beam

for both harmonic and aharmonic impactor motion. In the above mentioned literature, single-
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degree-of-freedom models combined with the coefficient of restitution approach [6, 11, 25, 63]

or the method of mode switching [55] were used to simulate the impact. The single-mode

numerical results were qualitatively compared to the experimental results, and were found to

be in good agreement. Cusumano et al. [20] conducted experiments on a cantilever beam

impacted by a harmonic impactor to estimate the dimensionality of the model. Experimental

and numerical studies that dealt with the multi-modal behaviour of beams combined with

coefficient of restitution were done by Wagg et al. [76]. The experimental setup involved a

cantilever beam, forced by an electromagnetic exciter, impacting a rigid obstacle. The authors

performed extensive statistical analysis [76] to determine the excitation frequency range in

which the CoR theory is applicable. Fegelman and Grosh [26] developed a numerical model

based on the mode-switching method to simulate a vibro-impacting pinned-free beam. de Vorst

et al. [21] studied the dynamics of a complex beam structure subjected to unilateral contact.

The impact is modelled in their study using Hertzian contact law. A base-excited cantilever

beam subjected to impact was also studied in [22], where the impact was again modelled using

Herzian contact theory. Ervina and Wickert [23] experimentally studied the impact dynamics

of a base-excited rigid body attached to a flexible beam system. The impact in the numerical

simulation was modelled as a linear spring and a mode-switching approach was used. In all

the above mentioned literature, even though the authors have used different approaches for

simulating impact [21–23, 26, 75], an excellent agreement between numerical and experimental

results were shown. In this section, we make an attempt to validate the theory developed in

this chapter with the experimental results of de Vorst et al. [22].

Figure 3.14 shows the mechanical system that has been studied experimentally by de Vorst

et al. [22]. The mechanical system consists of a fixed-free cantilever beam that is base-excited.

The beam impacts the rigid base through a spherical contact at a predefined location along its

length. An impact occurs when the relative distance between the beam and the base approaches

zero. The base is excited harmonically by the displacement excitation u(t) = 0.501 sin(2πfet)

mm. The beam is comprised of steel with a Young’s modulus (EBeam) of 2.1× 1011 N/m2 and

a density (ρBeam) of 7800 Kg/m3; other physical dimensions are shown in Figure 3.14.

The first three experimentally-observed natural frequencies of the beam system when not in

contact with the base are 17.2 Hz, 128.9 Hz, and 378.9 Hz. The numerical code that was used in
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Figure 3.14: Experimental setup of the beam system [22]: bBeam = 0.0298m, hBeam = 0.0020m.

Section 3.2 was modified to simulate the experimental system. The modal formulation presented

in section 3.1 is implemented with mode shapesWj(x) and natural frequencies ωj that represents

a cantilever beam. The base excitation results in a distributed inertial force on the beam when

the coordinates are transformed to a frame attached to the boundary of the beam. Damping (ζi)

is introduced into the modal oscillators (equation 3.31) to include the experimentally-observed

modal damping of ζi = 0.015. The impact on the beam is simulated using the CoR method

presented in Subsection 3.1.4. Figure 3.15(a) shows the accelerations recorded experimentally

near the impact point, Figure 3.15(b) and 3.15(c) show the accelerations and displacements

obtained numerically using the Hertzian contact theory. Figure 3.15 is from de Vorst et al.

[21] 1. Figure 3.15(d) shows the numerically obtained displacement from the CoR method. A

CoR of 1 has been used in the simulations, as no impact damping was considered in the model

by de Vorst et al. It can be seen from the figure that the displacements closely match with

the numerical model. Unfortunately, the accelerations from our numerical model cannot be

directly compared due to fact that the accelerations are infinite at the instant of impact. The

model predicts the same period of motion that was obtained experimentally. Figure 3.15 shows

period-1 motion—that is, for every one cycle of base motion, the beam impacts the base once.

Figures 3.16 and 3.17 show period-2 motion.

1Permission was obtained from elsivier to reproduce the graphs from the paper [21]. The licence agreeement

can be viewed at http://s100.copyright.com/CustomerAdmin/PLF.jsp?lID=2009070_1247590419063.
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(d) 

Figure 3.15: Comparison between experimental and numerical response at excitation frequency

of 37.64 Hz: (a) experimentally observed acceleration, (b) acceleration obtained from simulation

using Hertzian contact model, (c) displacement obtained from simulation using Hertzian contact

model, (d) displacement obtained from simulation using coefficient of restitution model.
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(d) 

Figure 3.16: Comparison between experimental and numerical response at excitation frequency

of 67.8 Hz: (a) experimentally observed acceleration, (b) acceleration obtained from simulation

using Hertzian contact model, (c) displacement obtained from simulation using Hertzian contact

model, (d) displacement obtained from simulation using coefficient of restitution model.
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Figure 3.17: Comparison between experimental and numerical response at excitation frequency

of 71.5 Hz: (a) experimentally observed acceleration, (b) acceleration obtained from simulation

using Hertzian contact model, (c) displacement obtained from simulation using Hertzian contact

model, (d)displacement obtained from simulation using coefficient of restitution model.
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3.4 Chapter conclusions

It has been shown that the collocation-based CoR approach can introduce energy into a mechan-

ical system for certain selections of collocation points. The new impulse-based CoR approach

presented herein is energy-consistent and predicts a response that is very close to that obtained

using the penalty approach. Moreover, the impulse-based CoR approach has been seen to

provide increased computational efficiency over the penalty approach as the number of modes

considered in the analysis is increased. The method has also been validated with experimental

results from the existing literature. Although the impulse-based CoR method has only been

applied to a vibro-impacting beam, the method can be applied to any continuous mechanical

system that can be discretized using modal-based methods.
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Chapter 4

Modelling the dynamics of a

continuous system impacting a rigid

distributed obstacle

In this chapter, we present a new moving boundary formulation for modelling the impact

between a string and an obstacle. Hamilton’s principle is used to obtain the equations of

motion. Three different models are derived to represent the motion of the string during its

three different phases of motion, and switching conditions are derived to switch between these

models. An alternative formulation using a penalty approach is also proposed. Simulations

from the models are studied to predict the behaviour of the string. The developed model is

applied to study the dynamics of a sitar.

4.1 Mathematical modelling using a moving boundary

approach

A schematic representation of the bridge-string geometry being investigated is shown in Fig-

ure 4.1. The bridge is a finite obstacle defined by a parabolic surface for values of X between Γ1

and Γ2. The string has fixed termination points on the X-axis at X = L and on the parabola

at X = Γ1. The shape of the obstacle is assumed to be a parabola, as in the work of Burridge
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Figure 4.1: Bridge-string geometry and the three phases of string motion (exaggerated for

clarity). The right string termination lies on the X-axis; the left termination lies on the

parabolic bridge surface, as shown.

et al. [12], and the geometry can be represented analytically as:

YB(X) = APX(B −X) (4.1)

The motion of the string can be divided into three distinct phases: phase-I motion occurs

when there is no contact with the obstacle, partial wrapping on the obstacle is called phase-II

motion, and a completely wrapped string is considered to be in phase-III motion. In this section

we assume, for simplicity and without loss of generality, that Γ1 = 0 and Γ2 = B. The equation

of motion governing the dynamics of the string during each of the three phases is derived, as are

the corresponding switching conditions as the string passes between the phases. This approach

is more general than that of Burridge et al. [12], who only consider phase-II motion because

the parabola in their model extends indefinitely below the string.

4.1.1 Phase-I motion

During phase-I motion, the string is governed by the following classical string equation:

ρA
∂2Y1

∂t2
− T ∂

2Y1

∂X2
= 0 (4.2)

with boundary conditions:

Y1(0, t) = Y1(L, t) = 0 (4.3)
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where Y1 is the transverse displacement of the string, L is the length of the string, T is the

string tension, ρ is the density, A is the cross-sectional area, X is the coordinate along the

length, and t is the time. We substitute the following non-dimensional parameters into the

equation of motion to facilitate our analysis:

y1 =
Y1

h
, x =

X

L
, τ = t

√
T

ρAL2
(4.4)

where h = APB
2/4 is the height of the obstacle. The equation of motion after substituting the

non-dimensional variables is as follows:

∂2y1

∂τ 2
− ∂2y1

∂x2
= 0 (4.5)

with boundary conditions:

y1(0, τ) = y1(1, τ) = 0 (4.6)

A solution to equation 4.5 is assumed to be of the form:

y1(x, τ) =
N∑
k=1

φk(x)ηk(τ) (4.7)

In equation 4.7, φk(x) =
√

2 sin(kπx) are mass-normalized mode shapes of the string and

ηk(τ) are modal coordinates. Substituting equation 4.7 into equation 4.5, multiplying by φj(x),

integrating over the domain, and simplifying the resulting equation by using orthogonality

relations results in a set of uncoupled ordinary differential equations of the following form:

η̈k(τ) + ω2
1kηk(τ) = 0 k = 1, 2, ..., N (4.8)

where ω1k = kπ are the natural frequencies of the string. The modal initial conditions corre-

sponding to physical initial conditions of y1(x, 0) and ẏ1(x, 0) are as follows:

ηk(0) =

∫ 1

0

y1(x, 0)φk(x)dx and η̇k(0) =

∫ 1

0

ẏ1(x, 0)φk(x)dx (4.9)

The velocity of the string during phase-I motion is given by the following expression:

∂y1(x, τ)

∂τ
=

N∑
k=1

φk(x)η̇k(τ) (4.10)

43



After specifying the system parameters and initial conditions, the modal equations of motion

given by equation 4.8 can be integrated analytically or numerically. When the string begins

contacting the obstacle, the equation of motion given by equation 4.8 is no longer valid. In the

next section, we derive the equation of motion that describes the wrapping of the string around

the obstacle using Hamilton’s principle.

4.1.2 Phase-II motion

The variational principle involving a spatial constraint can be written as follows [29]:

δI = δ

∫ t2

t1

[∫ Γ−(t)

0

(Π + λG) dX +

∫ L

Γ+(t)

ΠdX

]
dt = 0 (4.11)

where Π is the Lagrangian density function defined as:

Π =
1

2
ρA

(
∂Y2(x, t)

∂t

)2

− 1

2
T

(
∂Y2(X, t)

∂X

)2

(4.12)

G is the gap function, defined as G(X, t) = Y2(X, t)−YB(X), Γ is the wrapped string length, Y2

is the displacement of the string during the wrapping motion, and λ is the unknown Lagrange

multiplier function in the domain 0 ≤ X ≤ Γ−(t). Substituting equation 4.12 into equation

4.11 we get:

δI = δ

t2∫
t1

 Γ−(t)∫
0

1

2
ρA

(
∂Y2(X, t)

∂t

)2

dX −
∫ Γ−(t)

0

1

2
T

(
∂Y2(X, t)

∂X

)2

dX

+

∫ Γ−(t)

0

λG(X, t)dX +

∫ L

Γ+(t)

1

2
ρA

(
∂Y2(X, t)

∂t

)2

dX

−
∫ L

Γ+(t)

1

2
T

(
∂Y2(X, t)

∂X

)2

dX

]
dt (4.13)
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L

Figure 4.2: Actual and varied path at the moving boundary (separation point)

After evaluating the variations in equation 4.13, we arrive at the following:

δI =

∫ t2

t1

∫ Γ−(t)

0

(
T
∂2Y2(X, t)

∂X2
− ρA∂

2Y2(X, t)

∂t2
+ λ

)
δY2(X, t)dXdt

+

∫ t2

t1

∫ Γ−(t)

0

(G(X, t)δλ)dXdt

+

∫ t2

t1

∫ L

Γ+(t)

(
T
∂2Y2(X, t)

∂X2
− ρA∂

2Y2(X, t)

∂t2

)
δY2(X, t)dXdt

+

∫ t2

t1

(
T
∂Y2(Γ+(t), t)

∂X
δY2(Γ+(t), t)

)
dt

−
∫ t2

t1

(
T
∂Y2(Γ−(t), t)

∂X
δY2(Γ−(t), t)

)
dt

+

∫ t2

t1

(
T
∂Y2(0, t)

∂X
δY2(0, t)

)
dt

−
∫ t2

t1

(
T
∂Y2(L, t)

∂X
δY2(L, t)

)
dt = 0 (4.14)

4.1.2.1 Relation between variations in δY2(Γ(t), t) and δΓ(t)

It should be noted that the variations δY2(Γ(t), t) and δΓ(t) are unspecified, but they are related

due to the presence of the geometrical constraint. We derive the relationship between them

following Fung and Chen [29]. Figure 4.2 shows the actual (Y2(X, t)) and varied (Y ∗2 (X, t))

paths in Y2 over the X plane It can be seen from the figure that δY2(X, t) = Y ∗2 (X, t)−Y2(X, t)

has meaning only in the interval [Γ(t) + δΓ(t), L], as Y ∗2 (X, t) is not defined in the interval

[Γ(t),Γ(t)+δΓ(t)]. The following relationship for δỸ2 can be derived by exploiting the geometry
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in Figure 4.2:

δỸ2 = Y ∗2 (Γ(t) + δΓ(t), t)− Y2(Γ(t), t)
.
= Y ∗2 (Γ(t), t) +

∂Y2(Γ(t), t)

∂X
δΓ(t)− Y2(Γ(t), t)

=
∂Y2(Γ(t), t)

∂X
δΓ(t) + δY2(Γ(t), t) (4.15)

The point Γ(t) + δΓ(t) of the varied path should also satisfy the geometrical constraint, which

gives the following relation:

G(Y ∗2 (Γ(t) + δΓ(t), t),Γ(t) + δΓ(t)) = 0 (4.16)

Substituting for Y ∗2 (Γ(t) + δΓ(t), t) = Y2(Γ(t), t) + δỸ2 (equation 4.15), we get:

G(Y2(Γ(t), t) + δỸ2,Γ(t) + δΓ(t)) = 0 (4.17)

which can be written as:

G(Y2(Γ(t), t) + δỸ2,Γ(t) + δΓ(t)) = G(Y2(Γ(t), t),Γ(t)) +
∂G

∂Y2(Γ(t), t)
δỸ2 +

∂G

∂Γ(t)
δΓ(t) = 0

(4.18)

The following relations can be used to simplify equation 4.18

G(Y2(Γ(t), t),Γ(t)) = Y2(Γ(t), t)− ApΓ(t)(B − Γ(t)) = 0 (4.19)

∂G(Y2(Γ(t), t),Γ(t))

∂Y2(Γ(t), t)
= 1 (4.20)

∂G(Y2(Γ(t), t),Γ(t))

∂Γ(t)
= −Ap(B − 2Γ) (4.21)

Substituting equations 4.19, 4.20, and 4.21 into equation 4.18, we get:

δỸ2 − Ap(2Γ(t)−B)δΓ(t) = 0 (4.22)

Substituting equation 4.15 into equation 4.22, we get:

∂Y2(Γ, t)

∂X
δΓ + δY2(Γ, t)− Ap(B − 2Γ)δΓ = 0 (4.23)

which, when rearranged, gives:[
Ap(B − 2Γ)− ∂Y2(Γ, t)

∂X

]
δΓ = δY2(Γ, t) (4.24)
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Now substituting equation 4.24 into the fourth and fifth terms of equation 4.14, we have:

δI =

∫ t2

t1

∫ Γ−

0

(
T
∂2Y2(X, t)

∂X2
− ρA∂

2Y2(X, t)

∂t2
+ λ

)
δY2(X, t)dXdt

+

∫ t2

t1

∫ Γ−

0

((G(X, t)δλ) dXdt

+

∫ t2

t1

∫ L

Γ+

(
T
∂2Y2(X, t)

∂X2
− ρA∂

2Y2(X, t)

∂t2

)
δY2(X, t)dXdt

+

∫ t2

t1

(
T
∂Y2(Γ+(t), t)

∂X

(
Ap(B − 2Γ+(t))− ∂Y2(Γ+(t), t)

∂X

))
δΓ+(t)dt

−
∫ t2

t1

(
T
∂Y2(Γ−(t), t)

∂X

(
Ap(B − 2Γ−(t))− ∂Y2(Γ−(t), t)

∂X

))
δΓ−(t)dt

+

∫ t2

t1

(
T
∂Y2(0, t)

∂X
δY2(0, t)

)
dt

−
∫ t2

t1

(
T
∂Y2(L, t)

∂X
δY2(L, t)

)
dt = 0 (4.25)

In equation 4.25, the variations in δY2(X, t) and δλ are arbitrary and the values of Y2(0, t) = 0,

Y2(L, t) = 0 are specified, so we have the following equations of motion that must be satisfied

for all time:

ρA
∂2Y2(X, t)

∂t2
− T ∂

2Y2(X, t)

∂X2
− λ = 0 0 < X < Γ−(t) (4.26)

ρA
∂2Y2(X, t)

∂t2
− T ∂

2Y2(X, t)

∂X2
= 0 Γ+(t) < X < L (4.27)

with boundary conditions:

Y2(0, t) = 0, Y2(Γ−(t), t) = APΓ−(t)(B − Γ−(t)) (4.28)

Y2(L, t) = 0, Y2(Γ+(t), t) = APΓ+(t)(B − Γ+(t)) (4.29)

and from the fact that the variations in δΓ±(t) are arbitrary, we must have the following

condition (transversality) that must be satisfied at the free boundary:

∂Y2(Γ±(t), t)

∂X
= AP (B − 2Γ±(t)) (4.30)

The transversality condition is the necessary condition that must be satisfied for the variations

to vanish at the free boundary, Γ. The physical interpretation of the transversality condition is

that the slope of the string must be equal to the slope of the parabola at the point of separation

(Γ(t)).
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4.1.2.2 Dimensionless equation of motion during phase-II motion

We substitute the same non-dimensional parameters given in equation 4.4, along with γ = Γ/L,

b = B/L, and α = 4L2/B2, into equations (4.26-4.30). It should be noted that the solution

of equation 4.26 is the geometry of the parabola, as the string in the domain 0 < x < γ−(τ)

perfectly wraps around the obstacle. As such, we need only solve for the motion of the string

in the domain γ+(τ) < x < 1 and solve for γ+(τ). Thus, the equation of motion after replacing

γ+(τ) with γ(τ) reduces to the following moving boundary problem:

∂2y2(x, τ)

∂τ 2
− ∂2y2(x, τ)

∂x2
= 0, γ(τ) < x < 1 (4.31)

y2(γ(τ), τ) = αγ(τ)(b− γ(τ)), y2(1, τ) = 0 (4.32)

One further equation is required in order to obtain the separation point (moving boundary),

which comes from the tranversality condition:

∂y2(γ(τ), τ)

∂x
= α (b− 2γ(τ)) (4.33)

4.1.2.3 Approximate solution during phase-II motion

The boundary conditions in equation 4.32 are non-homogeneous, so it is difficult to apply the

Galarkin method directly to solve equation 4.31. To transform the non-homogeneous boundary

conditions given by equation 4.32 into homogeneous boundary conditions, the following variable

transformation defining y3(x, τ) is substituted into equations 4.31-4.33:

y2(x, τ) = y3(x, τ) + s(x, τ) (4.34)

where:

s(x, τ) =
αγ(τ)(b− γ(τ))

(γ(τ)− 1)
(x− 1) (4.35)

To obtain the function s(x, τ), we freeze time and solve for the static contact problem of

equation 4.31. For a given γ(τ), the problem now reduces to:

∂2y2(x, τ)

∂x2
= 0, γ(τ) < x < 1 (4.36)

with the following boundary conditions:

y2(γ(t), τ) = αγ(τ)(b− γ(τ)), y2(1, τ) = 0 (4.37)
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Equation 4.36 has the following solution:

y2(x, τ) = s(x, τ) = C1x+ C2 (4.38)

Substituting equation 4.38 into the boundary conditions given in equation 4.37 and solving for

C1 and C2 gives the following static solution:

s(x, τ) =
αγ(τ)(b− γ(τ))

(γ(τ)− 1)
(x− 1) (4.39)

Although we have frozen time to obtain the above expression, this static solution is valid for

any value of γ(τ). Substituting the variable transformation (equation 4.34) into equation 4.31

we get:
∂2

∂x2
(y3(x, τ) + s(x, τ))− ∂2

∂τ 2
(y3(x, τ) + s(x, τ)) = 0, γ(τ) < x < 1 (4.40)

Simplifying the above equation using the relation ∂2s(x,τ)
∂x2 = 0, we get:

∂2y3(x, τ)

∂τ 2
− ∂2y3(x, τ)

∂x2
= −∂

2s(x, τ)

∂t2
, γ(τ) < x < 1 (4.41)

we now substitute the variable transformation (equation 4.34) into the boundary conditions

given in equation 4.32:

y3(γ(τ), τ) + s(γ(τ), τ) = αγ(τ)(b− γ(τ)) (4.42)

Evaluating s(γ(τ), τ) from equation 4.39, we have:

y3(γ(τ), τ) = 0 (4.43)

Similarly, substituting equation 4.34 into the other boundary condition, we get:

y2(1, τ) = y3(1, τ) + s(1, τ) = 0 (4.44)

Evaluating s(1, τ) from equation 4.39, we have:

y3(1, τ) = 0 (4.45)

After substituting the variable transformation into the transversality condition, we arrive at

the following:
∂y3(γ(τ), τ)

∂x
= α (b− 2γ(τ))− αγ(τ)(b− γ(τ))

(γ(τ)− 1)
(4.46)

It can be seen that the boundary conditions (equation 4.43 and equation 4.44) are homogeneous.

49



4.1.2.4 Galerkin approximation

Since the domain of the problem is changing due to the time-dependent moving boundary, the

basis functions we must choose in the Galerkin approximation should also be time-dependent.

This particular solution procedure was used by Fung and Chen [29] for solving the contact

problem of a beam wraping around a cylindrical obstacle. This method was also used by Wang

and Wei [79] to study the vibrations in a moving flexible arm, and Yuksel and Gurgoze [33] to

study the vibrations in an elastic manipulator with a prismatic joint. We assume a solution of

the following form:

y3(x, τ) =
N∑
k=1

ψk(x, τ)βk(τ) (4.47)

The time-dependent basis function that must be chosen should satisfy the time-dependent

boundary conditions (equations 4.43 and 4.44) at all times. Again, we freeze time and for a

given γ(τ), we consider the following boundary value problem with the unknown frequency

parameter Ω2
2(τ):

d2ψ(x, τ)

dx2
+ Ω2

2(τ)ψ(x, τ) = 0 (4.48)

with boundary conditions:

ψ(γ((τ), τ) = 0 and ψ(1, t) = 0 (4.49)

A solution satisfying equation 4.45 can be written as:

ψ(x, τ) = A1 sin (Ω2(τ)(x− γ(τ))) + A2 cos (Ω2(τ)(x− γ(τ))) (4.50)

Evaluating the above solution at the boundary conditions, we get:

ψ(γ(τ), τ) = A2 = 0 (4.51)

and:

ψ(1, τ) = A1 sin (Ω2(τ)(1− γ(τ))) = 0 (4.52)

For a non-trivial solution, we must have:

Ω2(τ) = ω2k =
kπ

(1− γ(τ))
k = 1, 2, ..., N (4.53)

Substituting equations 4.51 and 4.53 into equation 4.50, we get:

ψk(x, τ) = A1 sin

(
kπ

(
x− γ(τ)

1− γ(τ)

))
(4.54)
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Even though we have frozen time in deriving the above expression, the above functions satisfy

the boundary conditions given by equations 4.43 and 4.45 at all times. Substituting the solution

(equation 4.50) into equation 4.41, we have:

∂2

∂τ 2

(
N∑
k=1

ψk(x, τ)βk(τ)

)
− ∂2

∂x2

(
N∑
k=1

ψk(x, τ)βk(τ)

)
= −∂

2s(x, τ)

∂t2
(4.55)

N∑
k=1

ψk(x, τ)β̈k(τ)+
N∑
k=1

2
∂ψk(x, τ)

∂t
β̇k(τ)+

N∑
k=1

∂2ψk(x, τ)

∂t2
βk(τ)−

N∑
k=1

∂2ψk(x, τ)

∂x2
βk(τ) = −∂

2s(x, τ)

∂τ 2

(4.56)

Now, multiplying both sides of the above equation with ψj(x, τ) and integrating over the domain

γ(τ) < x < 1, we have:

N∑
k=1

β̈k

1∫
γ(τ)

(τ)ψk(x, τ)ψj(x, τ)dx+
N∑
k=1

2β̇k(τ)

1∫
γ(τ)

∂ψk(x, τ)

∂t
ψj(x, t)dx

+
N∑
k=1

βk(τ)

1∫
γ(τ)

∂2ψk(x, τ)

∂t2
ψj(x, τ)dx−

N∑
k=1

βk(τ)

1∫
γ(τ)

∂2ψk(x, τ)

∂x2
ψj(x, τ)dx =

−
1∫

γ(τ)

∂2s(x, τ)

∂t2
ψj(x, τ), j = 1, 2, .., N (4.57)

Now calculating the first integral in equation 4.57, we get:

1∫
γ(τ)

ψj(x, τ)ψk(x, τ)dx = A2
1

1∫
γ(τ)

sin

(
jπ

(
x− γ(τ)

1− γ(τ)

))
sin

(
kπ

(
x− γ(τ)

1− γ(τ)

))
dx

= A2
1

(
1− γ(τ)

2

)
δjk (4.58)

We choose the amplitude of function ψj(x, τ) to be
√

2
1−γ(τ)

, so the right-hand side of the above

equation becomes δjk. Now we evaluate the following integral shown below:

1∫
γ(τ)

∂2ψj(x, τ)

∂x2
ψk(x, τ)dx

= − 2

1− γ(τ)

(
jπ

(1− γ(τ))

)2
1∫

γ(τ)

sin

(
jπ

(
x− γ(τ)

1− γ(τ)

))
sin

(
kπ

(
x− γ(τ)

1− γ(τ)

))
dx

= −
(

jπ

(1− γ(τ))

)2

δjk (4.59)
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Substituting the integral evaluations given by equations 4.58 and 4.59 into equation 4.57, and

noting that the indices j and k are interchangeable, we have:

β̈k(τ) + 2

[
N∑
j=1

∫ 1

γ(τ)

∂ψj(x, τ)

∂τ
ψk(x, τ)dx

]
β̇k(τ)

+

[(
kπ

(1− γ(τ))

)2

+
N∑
j=1

∫ 1

γ(τ)

∂2ψj(x, τ)

∂τ 2
ψk(x, τ)dx

]
βk(τ)

=

∫ 1

γ(τ)

∂2s(x, τ)

∂t2
ψk(x, τ)dx, k = 1, 2, ..., N (4.60)

The above equation can now be written as:

β̈k(τ) +

[
N∑
j=1

2Cjk(γ(τ), γ̇(τ))

]
β̇k(τ)

+

[(
kπ

(1− γ(τ))

)2

+
N∑
k=1

Djk(γ(τ), γ̇(τ), γ̈(τ))

]
βk(τ)

= −Ek(γ(τ), γ̇(τ), γ̈(τ)), k = 1, 2, ..., N (4.61)

where Cjk, Djk, and Ek are defined as follows:

Cjk(γ(τ), γ̇(τ)) =

∫ 1

γ(τ)

∂ψj(x, τ)

∂τ
ψk(x, τ)dx = J1kj(γ(τ))γ̇(τ) (4.62)

Djk(γ(τ), γ̇(τ), γ̈(τ)) =

∫ 1

γ(τ)

∂2ψj(x, τ)

∂τ 2
ψk(x, τ)dx

= J1jk(γ(τ))γ̈(τ) + J2jk(γ(τ))γ̇(τ)2 (4.63)

Ek(γ(τ), γ̇(τ), γ̈(τ)) =

∫ 1

γ(τ)

∂2s(x, τ)

∂τ 2
ψk(x, τ)dx

= J3k(γ(τ))γ̇(τ)2 + J4k(γ(τ))γ̈(τ) (4.64)

In the above equations, J1jk, J2jk, J3jk, and J4jk are functions of γ(τ) only. Equation 4.61

is decoupled with respect to βk(τ), but the coefficients are time-dependent and are functions

of γ(τ), γ̇(τ), and γ̈(τ). The time-dependent nature of the coefficients in equation 4.61 can

be explained from the fact that the length of the string changes as the string starts to wrap

around the obstacle, thus making the stiffness a function of time. It should be noted that γ(τ)

is unknown and should be found as a part of the solution. The equation governing the dynamics
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of γ(τ) will be obtained from the transversality condition (equation 4.46). After substituting

the solution given by equation 4.47 into equation 4.46, we get:

N∑
k=1

kπ
√

2βk(τ) = (1− γ(τ))3/2

(
α (b− 2γ(τ))− αγ(τ)(b− γ(τ))

(γ(τ)− 1)

)
(4.65)

Differentiating the above equation with respect to time, we get:

N∑
k=1

kπ
√

2β̇k(τ) = H1(γ(τ))γ̇(τ) (4.66)

Differentiating again with respect to time gives:

N∑
k=1

jπ
√

2β̈k(τ) = H1(γ(τ))γ̈(τ) +H2(γ(τ))γ̇(τ)2 (4.67)

In equation 4.67, H1 and H2 are functions of γ(τ). Equations 4.61 and 4.67 can be solved simul-

taneously for βk(τ) and γ(τ) to predict the motion of the string in the transformed coordinates

y3(x, t) during the contact phase. The above method of satisfying the second derivative of the

displacement constraint rather than the displacement constraint directly, thus converting the

constraint equation into a differential equation, is a well-known approach in the field of multi-

body dynamics [58]. To get the actual motion of the string, y2(x, t), we use the transformation

given in equation 4.34:

y2(x, τ) =
N∑
k=1

ψk(x, τ)βk(τ) +
αγ(τ)(b− γ(τ))

(γ(τ)− 1)
(x− 1) (4.68)

The velocity of the string, which is the partial derivative of the above expression with respect

to time, is as follows:

∂y2(x, τ)

∂τ
=

N∑
k=1

∂ψk(x, τ)

∂τ
βk(τ) +

N∑
k=1

ψk(x, τ)β̇k(τ)

+ α (x− 1)

(
(γ(τ)− 1)bγ̇(τ)− 2γ(τ)γ̇(t)− (bγ(τ)− γ(τ)2)γ̇(τ)

(γ(τ)− 1)2

)
(4.69)

4.1.3 Switching conditions between phase-I and phase-II motions

Let τc1 be the time at which the string in phase-I motion comes in contact with the obstacle.

The subscript c represents contact. The string in phase-I motion contacts the obstacle when
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the slope of the string at x = γ(τc1) = 0 matches the slope of the obstacle. At the event of

contact, we have:

y1(x, τc1) = y2(x, τc1) (4.70)

Substituting equation 4.7 and equation 4.68 into the above expression gives:

N∑
k=1

φk(x)ηk(τc1) =
N∑
k=1

ψk(x, τc1)βk(τc1) +
αγ(τc1)(b− γ(τc1))

(γ(τc1)− 1)
(x− 1) (4.71)

Since γ(τc1) = 0 at τ = τc1, we have:

N∑
k=1

φk(x)ηk(τc1) =
N∑
k=1

ψk(x, τc1)βk(τc1) (4.72)

Recalling the expression for ψk(x, τ) :

ψk(x, τ) =

√
2

1− γ(τ)
sin

(
kπ

(
x− γ(τ)

1− γ(τ)

))
(4.73)

and now substituting γ(τc1) = 0 at time τc1 into this expression, we have:

ψk(x, τc1) =
√

2 sin (kπx) (4.74)

It can be seen from the above expression that ψk(x, τc1) = φk(x, τc1) at γ(τc1) = 0. Multiplying

both sides of equation 4.72 with ψj(x, τc1) and integrating over the domain, we have:

N∑
k=1

ηk(τc1)

1∫
0

φk(x)ψj(x, τc1)dx =
N∑
k=1

βk(τc1)

1∫
0

ψk(x, τc1)ψj(x, τc1) (4.75)

Now evaluating the following integrals, we have:

1∫
0

φk(x)ψj(x, τc1)dx =

1∫
0

ψk(x, τc1))ψj(x, τc1)dx = 2

1∫
0

sin(jπx) sin(kπx) = δjk (4.76)

Substituting the above relations into equation 4.75, we have:

ηk(τc1) = βk(τc1), k = 1, 2, ..., N (4.77)

Since the velocity distributions in phase-I motion and phase-II motion should also be equal at

transferring time τc1, we have:
∂y1(x, τc1)

∂τ
=
∂y2(x, τc1)

∂τ
(4.78)
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Substituting 4.10 and equation 4.69 into the above expression for τ = τc1 and x = γ(τc1) = 0,

we have:

N∑
k=1

(τc1)φk(x)η̇k =
N∑
k=1

(
∂ψk(x, τc1)

∂τ
β(τc1) + ψk(x, τc1)β̇k(τc1)

)
− bα (x− 1) γ̇(τc1) (4.79)

Multiplying both sides of equation 4.79 by ψj(x, τc1) and integrating over the domain results in

the following:

N∑
k=1

η̇k(τc1)

∫ 1

0

φk(x)ψj(x, τc1)dx (4.80)

=
N∑
k=1

βk(τc1)

∫ 1

0

∂ψk(x, τc1)

∂τ
ψj(x, τc1)dx +

N∑
k=1

β̇k(τc1)

∫ 1

0

ψk(x, τc1)ψj(x, τc1)dx

− bαγ̇(τc1)

∫ 1

0

(x− 1)ψj(x, τc1)dx (4.81)

Evaluating the following integral, we get:

1∫
0

(x− 1)ψj(x, τc1)dx =

1∫
0

(x− 1)
√

2 sin(jπx))dx = −
√

2

jπ
(4.82)

Substituting the above equation and using the relations in equation 4.76, the above equation

reduces to the following:

η̇k(τc1) = β̇k(τc1) +

[
βk(τc1)

N∑
j=1

J1jk(0) +
√

2

(
bα

kπ

)]
γ̇(τc1), k = 1, 2, ...., N (4.83)

where J1jk(0) =
∫ 1

0

∂ψj(x,τc1)

∂τ
ψk(x, τc1)dx (see equation 4.63). The above set of N equations

contains N + 1 unknowns, so we need one further equation to solve for γ̇(τc1), which can be

obtained by differentiating the transversality condition given by equation 4.65 with respect to

time:
N∑
k=1

kπ
√

2β̇k(τ) = H1(γ(τ))γ̇(τ) (4.84)

At the transferring time τ = τc1, the above equation becomes:

γ̇(τc1) =
1

H1(0)

N∑
k=1

kπ
√

2β̇k(τc1) (4.85)
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The above algebraic equations (4.83 and 4.85) can be solved to obtain β̇k(τc1) and γ̇(τc1). The

time of switching can be obtained through the transversality condition (equation 4.65):

N∑
k=1

kπ
√

2ηk(τc1) =
N∑
k=1

kπ
√

2βk(τc1) = αb (4.86)

Event-detection based on root-finding algorithms (Newton-Raphson, Secant method, or bisec-

tion method) can be used in the simulation to detect the time at which equation 4.86 holds.

Once contact is detected, the initial conditions needed for phase-II motion can be obtained

from equations 4.83 and 4.85, and the equations of motion (equation 4.61 and 4.67) can be

integrated forward in time.

4.1.4 Phase-III motion

The Phase-III motion is the same as phase-I motion, except that the string is completely

wrapped around the obstacle and vibrates between x = γ(τ) = b and x = 1. The dimensionless

equation of motion of the string during phase-III can be written as:

∂2y4(x, τ)

∂τ 2
− ∂2y4(x, τ)

∂x2
= 0, b < x < 1 (4.87)

y4(b, τ) = 0, y4(1, τ) = 0 (4.88)

Substituting a solution of the following form:

y4(x, τ) =
N∑
k=1

ϕk(x)rj(τ) (4.89)

into equation 4.87 and performing a standard modal analysis, we arrive at the following uncou-

pled ordinary differential equations:

r̈k(τ) + ω2
3krk(τ) = 0, k = 1, 2, ...., N (4.90)

where ϕk(x) =
√

2/(1− b) sin(kπ(x− b)/(1− b)) are the mass-normalized mode shapes of the

string, rk(τ) are the generalized coordinates, and ω3k = kπ/(1− b) are the natural frequencies

of the string.
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4.1.5 Switching conditions between phase-II and phase-III motions

Once the slope of the string at x = γ = b matches the slope of the obstacle, the string enters

into phase-III motion. Let τc2 be the instant of switching. The displacement and velocity

distributions of the string during the last instant of phase-II will be transferred to phase-III,

which can be represented mathematically as:

βk(τc2) = rk(τc2), k = 1, 2, ...., N (4.91)

β̇k(τc2) = ṙk(τc2), k = 1, 2, ...., N (4.92)

The transfer time τc2 between phase-II and phase-III can again be obtained from the transver-

sality condition, as shown below: substituting τ = τc2 and γ(τc2) = b in equation 4.65, we

have:
N∑
k=1

kπ
√

2βk(τc2) = −αb(1− b)3/2 (4.93)

4.1.6 Switching conditions between phase-III and phase-II motions

The switching conditions between phase-III and phase-II motions are similar to those used

between phase-I and phase-II. Let τc3 be the transfer time. Once the phase-III motion is

initiated after time τc2, the string vibrates downwards between the boundaries b and 1. As the

string starts to move upwards, its slope at x = γ(τc3) = b matches the slope of the obstacle and

the string remains in phase-III motion. When the string begins unwrapping itself, it once again

engages in phase-II motion. We now try to relate the initial conditions between phase-III and

phase-II motions. Following a similar procedure as was employed in section 4.1.3, we obtain

the following relations:

rk(τc3) = βk(τc3), k = 1, 2, ...., N (4.94)

ṙk(τc3) = β̇k(τc3) +

[
βk(τc3)

N∑
j=1

J1kj(b) +
√

2

(
bα

kπ

)]
γ̇(τc3), k = 1, 2, ...., N (4.95)

γ̇(τc3) =
1

H1(b)

N∑
k=1

kπ
√

2β̇k(τc3) (4.96)

Equation 4.96 can be substituted into equation 4.95 to eliminate γ̇(τc3), which can then be
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solved for β̇k(t). Once the β̇k(t) are known, they can be re-substituted into equation 4.96 to

get γ̇(τc3). The transferring time τ = τc3 can again obtained from the transversality condition,

as shown below:
N∑
k=1

kπ
√

2βk(τc3) = −αb(1− b)3/2 (4.97)

Equations 4.94-4.96 relate the initial conditions between phase-III and phase-II motions.

4.1.7 Switching conditions between phase-II and phase-I motions

The switching conditions between phase-II and phase-I motions are similar to those used be-

tween phase-II and phase-III. Let τc4 be the switching time between phase-II and phase-I motion.

When the string completely unwraps from the obstacle during phase-II motion, the slope of the

string at x = γ = 0 matches the slope of the obstacle and phase-I motion is again initiated.

Following a similar procedure as that used in section 4.1.5, we get the following relations:

βk(τc4) = ηk(τc4), k = 1, 2, ...., N (4.98)

β̇k(τc4) = η̇k(τc4), k = 1, 2, ...., N (4.99)

The transfer time τc4 between phase-II and phase-III can again be obtained from the transver-

sality condition, as shown below:

N∑
k=1

kπ
√

2βk(τc4) = αb (4.100)

4.1.8 Summary of formulation

We now have the equations governing the dynamics of the string during the three phases of

motion, given by equations 4.8, 4.61, and 4.90. The switching conditions between phase-I

and phase-II motions are given by equations 4.77 and 4.85, and the event of switching can be

obtained from equation 4.86. The switching conditions between phase-II and phase-III motions

are given by equations 4.91 and 4.92, and the event of switching can be obtained from equation

4.93. During upward motion of the string, the switching conditions between phase-III and

phase-II motions and the event of switching can be obtained from equations 4.94-4.96 and

equation 4.97, respectively. Finally, the switching condition between phase-II and phase-I and

the event of switching are given by equations 4.98-4.99 and 4.100.
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4.2 Mathematical modelling using a penalty approach

In the penalty approach, the obstacle is not modelled as a constraint nor treated as a boundary

condition. The constraint is penalized and is modelled as a distributed force in the PDE. The

entire motion of the string can be modelled using only the phase-I motion, with an appropriate

forcing term to simulate the impact. The equation of motion of the string-obstacle system can

be written as:

ρA
∂2Y1

∂t2
− T ∂

2Y1

∂X2
= F (X, t) (4.101)

with boundary conditions:

Y1(0, t) = 0 and Y1(L, t) = 0 (4.102)

where ρ is the density, A is the area of cross-section, T is the tension, Y1 is the transverse

deformation, and t is the time. F (X, t) is the distributed contact force generated due to the

compression of the obstacle, and can be represented as:

F (X, t) =

K(X)G(X, t)n
[
1 + Λ∂G

∂t

]
if G(X, t) ≥ 0

0 if G(X, t) < 0

(4.103)

where G(X, t) = YB(X)−Y1(X, t) is the gap function. The contact force is zero when the string

does not contact the obstacle, and is finite when the string contacts the obstacle. The contact

force is a nonlinear function of G(X, t) and ∂G
∂t

. It should be noted that the contact stiffness and

damping are generally nonlinear due to the variation of contacting geometries during impact as

well as the local plastic deformations; the contact law given by equation 4.103 has parameters

to account for both nonlinear stiffness (n) and dissipation (Λ).

The above contact law (equation 4.103) does not predict a nonzero force at the moment of

impact as do linear visco-elastic contact models [43]. The contact model is an extension of the

point contact model proposed by Hunt and Crossley [43] for distributed contacts, and has been

developed by Gonthier et al. [31]. Although the main aim of the chapter is to simulate the sitar

string with a parabolic obstacle, we also consider straight and sinusoidal obstacles to compare

and validate our numerical model with the analytical results found in existing literature [13, 15].
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The equation of the obstacle for various geometries can be represented as:

YB(X) =


−h, 0 ≤ x ≤ L straight obstacle

h sin(2πX), 0 ≤ x ≤ L sinusoidal obstacle

hX(B −X), 0 ≤ x ≤ B parabolic obstacle

(4.104)

where h and B are the parameters defining the geometry. We introduce the following dimen-

sionless parameters:

y1 =
Y1

max(YB(X))
, x =

X

L
, τ = t

√
T

ρAL2
, Λ̂ = Λh

√
T

ρAL2
,

k(x) =
L2max(YB(X))n−1K(X)

T
, and b =

B

L
(4.105)

where YB(X) is the maximum height of the obstacle, which is h for straight and sinusoidal

obstacles and hB2

4
for parabolic obstacles. After substituting the non-dimensional parameters,

the equation of motion becomes:

∂2y1

∂τ 2
− ∂2y1

∂τ 2
= f(x, τ) (4.106)

with boundary conditions:

y1(0, τ) = 0 and y1(1, τ) = 0 (4.107)

The contact force now becomes:

f(x, τ) = K

k(x)g(x, τ)n
[
1 + Λ̂ ∂g

∂τ

]
if g(x, τ) ≥ 0

0 if g(x, τ) < 0

(4.108)

where g(x, τ) = yB(x)−y1(x, τ) is the dimensionless gap function. The geometry of the obstacle

can now be written as:

yB(x) =


−1, 0 ≤ x ≤ 1

sin(2πLx), 0 ≤ x ≤ 1

4L2

B2 x(b− x), 0 ≤ x ≤ b

(4.109)

A solution to equation 4.106 is assumed to be of the form:

y1(x, τ) =
∞∑
k=1

φk(x)ηj(τ) (4.110)
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In equation 4.110, φk(x) =
√

2 sin(kπx) are mass-normalized mode shapes of the string and

ηk(τ) are modal coordinates. Substituting equation 4.110 into equation 4.106, multiplying by

φk(x), integrating over the domain, and simplifying the resulting equation by using orthogo-

nality relations results in a set of coupled integro-differential equations of the following form:

η̈k(τ) + ω2
1kηj(τ) =

1∫
0

f(x, τ)φk(x)dx, k = 1, 2, ...., N (4.111)

where f(x, τ) is given by equation 4.108 and ω1k = kπ are the natural frequencies of the string.

The modal initial conditions corresponding to the physical initial conditions of y(x, 0) and

ẏ(x, 0) are as follows:

ηk(0) =

∫ 1

0

y1(x, 0)φk(x)dx and η̇k(0) =

∫ 1

0

ẏ1(x, 0)φk(x)dx (4.112)

4.3 Results and discussion

In this section, we discuss the behaviour of the string motion observed in numerical simulations.

For computational simplicity, we consider only a single-mode representation of the string. It will

be evident shortly that even a one-mode approximation of the moving boundary formulation

can capture the physics of the problem. This approximation requires the string to be plucked

at the centre of its unwrapped length.

4.3.1 General behaviour of string motion

Since we have introduced dimensionless quantities in the equation of motion, the natural fre-

quencies of the completely unwrapped string are integer multiples of π. For a simulation, we

need two dimensionless quantities: the relationship between the bridge and string given by

b = B/L, and the modal amplitude of the initial string configuration given by β1(0). The con-

tact length γ = 1−
√

(1− b) for the string in static equilibrium on the parabolic obstacle can

be obtained from the transversality condition (equation 4.65) by setting β1(0) = 0; the string

shape at static equilibrium, a straight line from the contact point to the right termination, is

given by equations 4.34 and 4.35 with y3 = 0.
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Transitions between phases are controlled by two factors: (i) the location of the bridge

terminations, as determined by γ1 and γ2; and (ii) the pluck amplitude, as given by the initial

condition β1(0). The value of γ1 constrains the left boundary of the vibrating string and

shortens the effective speaking length at the phase-I transition; γ2 constrains the potential

extent of the string wrapping before it enters into phase-III motion. For each defined pair of

bridge terminations, limiting values of the initial conditions such that the string only vibrates

in phase-II motion can be obtained from the transversality condition (equation 4.65):

(1− γ2)3/2

√
2π

(
α (b− 2γ2)− αγ2(b− γ2)

(γ2 − 1)

)
< β1(0) <

(1− γ1)3/2

√
2π

(
α (b− 2γ1)− αγ1(b− γ1)

(γ1 − 1)

)
(4.113)

The significance of these inequalities for sitar bridge design will be subsequently demonstrated.

A parabolic bridge that extends to the x-axis on both sides, as used in the derivation of the

equations of motion and switching conditions in the previous section, corresponds to γ1 = 0

and γ2 = b, in which case the inequalities constraining the string to phase-II motion simplify

to −4(1 − b)3/2/
√

2πb < β1(0) < 1/
√

2πb. The bridge configuration in Burridge et al. [12]

corresponds to γ1 = 0 and γ2 →∞.

Figure 4.3 shows the variation of initial condition β1(0) against initial contact length γ(0)

for a string in phase-II configuration with b = 0.05, which is the value used by Burridge et al.

[12]. The corresponding midpoint deflection y2(0.5, 0) is also shown. Interestingly, the initial
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Figure 4.3: Variation of initial condition with initial contact length.
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conditions seem to vary almost linearly with contact length. For this bridge configuration,

the phase transitions occur when γ(0) is 0 or 0.05, giving β1(0) values of 18.0 and -16.7, and

corresponding midpoint deflections of 25.5 and -24.1. These values require initial conditions

with very large amplitudes if the string is to vibrate in phase-I or phase-III motion. Increasing

γ1 will constrain the γ(0) value on the left for the phase-I transition; decreasing γ2 will constrain

the γ(0) value on the right giving the phase-III transition. In this way, bridge termination can

be used to control the string amplitude required for the phase transitions.

Now we study the free vibrations of the string about the equilibrium state. The equations of

motions were solved numerically using Matlab with ode23s solver The built-in event detection

algorithm in Matlab was used for detecting events for switching between the three phases of

motion. Absolute and relative tolerances of 10−6 were used in the numerical simulations. The

string is assumed to have a displacement initial condition of y1(x, 0) = 35.35 sin(πx), which

corresponds to the first mode of vibration of the unwrapped string.
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Figure 4.4: Variation of contact length with time.

Figure 4.4 shows the variation of contact length with time. The contact length γ is zero

during the Phase-I motion of the string. The string starts to wrap around the obstacle in Phase-

II, during which time the contact length continuously increases. Once the string completely

wraps around the obstacle (i.e., when γ = b), the string enters into phase-III motion and the

contact length remains constant. The string again unwraps itself and eventually returns to
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phase-I motion, thus performing one complete oscillation. The string performs one complete

oscillation in τ = 1.9231, while the time required for one oscillation for a string without an

obstacle is τ = 2. The decrease in length of the string during phase-II motion explains the

reason for the decreased oscillation time. Figure 4.5 shows snapshots of the string motion at

the beginning and end of the Phase-I motion. A magnified view of Figure 4.5 near the obstacle

is shown in Figure 4.6.
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Figure 4.5: Phase-I motion of string.
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Figure 4.6: Magnified view of Phase-I motion of string near obstacle.
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The string is tangential to the obstacle at x = 0 during the last configuration of Phase-I

motion, after which the string begins wrapping around the obstacle and enters enter into Phase-

II motion. The initial, in-between, and final configurations of the string during phase-II motion

are shown in Figure 4.7. Magnified view of the same near the obstacle is shown in Figure 4.8.
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Figure 4.7: Phase-II motion of string.
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Figure 4.8: Magnified view of Phase-II motion of string near obstacle.
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Once the string is again tangent to the right end of the obstacle (i.e., at γ = b), the third

phase of the string motion begins. Snapshots of the string in the initial, in-between, and final

configurations of phase-III motion are shown in Figure 4.9, and a magnified version of the figure

near the obstacle is shown in Figure 4.10. As expected, the initial and final configurations of

the string during phase-III match exactly.
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Figure 4.9: Phase-III motion of string.
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Figure 4.10: Magnified view of Phase-III motion of string near obstacle.
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Figure 4.11 shows the variation of modal coordinate β1(t) with time for four different initial

conditions. The corresponding phase space plots are given in Figure 4.12. The first initial
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Figure 4.11: Variation of modal amplitude β1 with time for four different initial conditions.

Bridge terminations given by γ1 = 0 and γ2 = b = 0.05.
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Figure 4.12: Phase space for β1 and β̇1 for four different initial conditions. Bridge terminations

are given by γ1 = 0 and γ2 = b = 0.05.

condition is β1(0) = 24 > 1/
√

2πb and, thus, the string starts its motion in phase-I; the
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string eventually vibrates in all the three phases of motion, but the asymmetry seen in the

phase plot should be noted. All the other initial conditions shown satisfy the inequalities

−4(1 − b)3/2/
√

2πb < β1(0) < 1/
√

2πb and the initial string condition is in phase-II. In this

case, the string remains in phase-II motion; however, this cannot be concluded in general

due to asymmetry. Figure 4.11 shows that the string starting in phase-I motion has a higher

oscillation frequency than that starting in phase-II, since some high frequency phase-III motion

occurs during the vibration period. The frequencies of oscillation for all cases that remain in

phase-II motion are essentially the same, possibly due to the near-linear relationship of β1(0)

and γ(0), as shown in Figure 4.3. To understand how the natural frequency of the system

changes while the string wraps around the obstacle, an instantaneous natural frequency can be

defined by taking a square root of the coefficient of β1(τ) in equation 4.61 and dropping the

rate-dependent terms. Figure 4.13 shows the variation of the instantaneous natural frequency

for the same four initial conditions. It is clear that the natural frequencies are time-dependent.
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Figure 4.13: Variation of instantaneous natural frequency with time.

To validate our results with the moving boundary formulation, we compared them to those

obtained using the penalty approach [71], and found good agreement only when at least 60

modes were retained in the penalty method. Moreover, the moving boundary formulation

simulated the string motion 50 times faster than the penalty approach. During phase-III motion,
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the slope of the string at γ = b is discontinuous, except in the initial and final configurations.

This non-smooth behaviour of the string shape at γ = b is exactly captured by the formulation,

and its discontinuous slope can be seen in Figure 4.14. This particular non-smooth behaviour
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Figure 4.14: Slope of the string during phase-II and III motion.

of the string slope cannot be captured if the impact is modelled using a penalty approach [71],

where the obstacle is assumed to be a linear continuum of distributed springs. Usually, a series

solution is sought in terms of the normal modes of the classical string, and it is well known that

the series solution converges very slowly in the presence of non-smooth displacements and is

prone to Gibbs phenomenon [57]. Capturing such discontinuities exactly in the derivatives of the

spatial displacement is still a challenging problem with a sparse modelling literature.[10, 57, 81]

In order to investigate the frequency components present in the string shape during phase-

II motion, the shape of the string during its entire motion (obtained by solving the moving

boundary problem) is projected onto the normal modes of the classical string. Mathematically:

y(x, τ) =
N∑
j=1

ηj(τ) sin(jπx) (4.114)

represents the shape of the string including both the wrapped and unwrapped portions. The

series in equation 4.114 can also be interpreted as the series solution of the penalty approach,
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for which the ηj(t) are obtained by solving the following differential equations [71].

η̈j(τ) + ω2
j ηj(τ) = k

1∫
0

f(x, τ)φj(x)dx, j = 1, 2, ...., N (4.115)

with penalty parameter k and penetration function f(x, τ). The moving boundary approach

of the present work is the limiting case of the penalty method for k → ∞ and penetration

function tending to zero, which corresponds to a rigid obstacle. Both methods should give the

same results in the limiting case.

Figure 4.15, is a waterfall plot obtained from equation 4.114, showing the variation of

normalized participation factors aj(τ) with time for the initial condition β1(0) = 1.8 with

string motion constrained to phase-II only. The presence of a particular aj(τ) in the waterfall
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Figure 4.15: Waterfall plot showing the variation of string shape frequency components with

time for motion in phase-II only.

plot means that the corresponding modal oscillator in equation 4.115 must participate in the

response if the problem is solved using a penalty approach, and its frequency component will

automatically be present in the time response. Figure 4.15 clearly shows the participation of

higher modes during phase-II motion. Considerably more terms in the series (equation 4.114)

are needed around τ = 0.5 and τ = 1.5, when the shape of the string demands higher-mode

participation. It can be seen that equation 4.61 is highly coupled and, during phase-II motion,

the modes can exchange energy. As time progresses, higher modes will start participating and
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will eventually lead to multiple distributed impacts between the bridge and the string, which

will violate the perfect wrapping assumption required in the moving boundary method. It is

believed that these multiple impacts are responsible for the distinct tone of the sitar.

4.3.2 Simulation approximating the configuration of a sitar

An initial string deflection 24 times the height of the bridge is required for phase-I string motion

with the bridge-string configuration used in the above simulations, which is the same as that

of Burridge et al. [12]. This scenario is clearly impractical for a real sitar, if only because

the resulting large amplitude string vibrations would have to pass through the back of the

instrument. In reality, the geometry of a sitar bridge, shown in Figure 1.9, is quite different in

several respects: (i) the bridge is terminated on the left at its apex, with a downbearing from

the string back length keeping it fixed there; (ii) the bridge is terminated on the right at a level

considerably higher than that of the far string termination; and (iii) the slope of the bridge is

very shallow, so the bridge surface remains very close to the string.

Measurements obtained from the sitar shown in Figure 1.8 give the following dimensions:

B = 300 mm, Γ1 = 150 mm, Γ2 = 173 mm, and L = 1060 mm (the length of the string between

contact point and right termination is 910 mm). We chose the straight neck of the instrument

to define the horizontal direction; the x-axis for simulations (Figure 1.8) is parallel to this and

passes through the far string termination, which is 14 mm above the neck reference line. The

apex of the bridge at 27 mm above the neck reference line gives h = 13 mm. Figures 1.8 and 1.9

show how the simulation configuration relates to the real sitar-bridge. The tops of the frets at

11 mm above the neck reference line constrain the maximum vertical displacement of the string

if it is to avoid hitting them. The normal plucking point is about 200 mm from the bridge apex,

giving a plucking ratio of about 2:9. A typical pluck moves the string about 15 mm horizontally

and 2-3 mm vertically.

This sitar string-bridge configuration is approximated for simulations using the following

non-dimensional parameters: b = 0.283, γ1 = b/2 = 0.142, and γ2 = 0.163. The initial condition

for a one-mode solution requires a mid-string plucking point for which the β1(0) value of 0.25 is

used. This initial condition corresponds to a string raised slightly above the horizontal between
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the bridge termination and the pluck point, a state that is easily achieved in normal playing.1

Substituting the non-dimensional parameters into equation 4.113 gives phase transitions for

β1 values of 0.209 (phase-I to phase-II) and -0.172 (phase-II to phase-III), corresponding to

midpoint defections of 0.890 and 0.329, respectively. It can be seen that string motion in all

three phases can easily be achieved for the configuration of a real sitar in normal playing, as

a result of the geometry of the bridge and its terminations. The results of simulations with

the above conditions, shown in the phase plot of Figure 4.16, should be contrasted with those

shown in Figure 4.12.

Figure 4.16: Phase space for β1 and β̇1 with two initial conditions and simulation parameters

approximating those for a sitar: b = 0.283, and bridge terminations γ1 = 0.142 and γ2 = 0.163.

Also shown are results for an extra wide 30 mm bridge surface with γ2 = 0.170.

4.3.3 Simulation results using penalty approach

The hypothesis presented in section 4.3.1, that multiple impacts between the string and the

obstacle causes a buzzing tone, will be investigated using the penalty approach. The modal

1These comments refer to an open string. Fretting the string shortens its length and lowers the far termination

about 2 mm, making only a minor difference to the vertical displacement at the normal plucking point.

72



equations of motion (equation 4.111) along with the contact force expression given by equation

4.109 are numerically solved in Matlab. We use the solver ode23 with absolute and relative

tolerances of 10−7. To validate our numerical model, we compare our modal model to the ana-

lytical results of Cabannes [13] for a string impacting a straight obstacle. Han and Grosenbaugh

[39] also validated their finite difference model of a nonlinear cable with the results of Cabannes

[13]. We use the initial condition of y0 sin(πx), and the location of the obstacle is chosen such

that y0
h

= 2. These parameters are same as those used in [39]. We consider the first 60 modes

of the string in the numerical simulation. The foundation stiffness is chosen sufficiently high

(k(x) = 1.23 × 106) to simulate rigid contacts. The damping in the string and the contact

model are neglected in order to compare our results for the perfectly elastic case of Cabannes

[13]. The nonlinear exponent in the contact model was assumed to be unity (n = 1).

Figure 4.17 shows the mid-point deflection of the string when impacting a straight obstacle.

It is clear from the figure that the response predicted by the modal model is a very close match

to that of the analytical solution. Cabannes [13] also gave an analytical expression that relates

the frequency of the string with an obstacle to that without an obstacle. The relation between

frequencies is expressed as τ0 = y0+h
2
τs, where τs is the frequency of the string without the

obstacle and τ0 is the frequency with an obstacle. It can be seen from Figure 4.17 that the

frequency predicted by the modal result is 1.5 times the frequency of the string without an

obstacle, which is consistent with the expression of Cabannes [13]. The energy in the string,

the obstacle, and the total energy of the string-obstacle system is shown in Figure 4.18. The

energy has been normalized with respect to the initial energy in the string (E0). The total

energy is calculated from the following expression:

ETotal = EString + EObstacle (4.116)

where EObstacle and EString are given by the following:

EString =
1

2

1∫
0

(
∂y

∂x

)2

+

(
∂y

∂τ

)2

dx (4.117)

EObstacle =
1

2

1∫
0

k(x)g(x, τ)n+1

n+ 1
dx (4.118)
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The energy in the string is almost constant over the simulation time. Han and Grosenbaugh

[39] reported an energy error of -0.079% of the initial value, while the error associated with the

modal approach was found to be -0.002% for the same non-dimensional time. As shown in Figure

4.18, when the string impacts the obstacle, some of the energy of the string is transferred to the

obstacle. Since the obstacle is considered to be perfectly elastic, the energy is again transferred

to the string during the restitution phase of the impact.
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Since the sitar string impacts a curvilinear obstacle, we also compare our results with the

analytical results for the case of a sinusoidal obstacle [15]. Cabannes [15] gave a closed-form

expression for string shape after the first impact, and we compare it with the numerical simula-

tion at τ = 1. Figure 4.19(a) shows the snapshots of the string motion for the initial condition

y(x, 0) = y0 sin(πx). It can be seen that at τ = 1, the analytical expression and numerical

simulation elicit the same string shape.
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Figure 4.19: (a) Snapshots of the string motion with sinusoidal obstacle, (b) Normalized vertical

displacement at mid point with sinusoidal obstacle.

4.3.4 Presence of multiple impacts during bridge-string interaction

In this section, we describe the general behaviour of the sitar string. We consider a linear elastic

bridge with no loss (n = 1 and λ = 0). Snapshots of the string motion during one cycle for a

sinusoidal initial condition are shown in Figure 4.20. The string exhibits a wrapping motion

without multiple impacts for the sinusoidal initial condition, which confirms the applicability

of the moving boundary formulation when the string is vibrating in its lower modes. If the

simulation is carried out for long time, the coupling between the modes during the impact

will lead to energy transfer between the modes, and eventually high frequency components will

dominate the response. With the plucked initial condition shown in Figure 4.21, the string
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Figure 4.20: Snapshots of the string motion for sinusoidal initial condition and parabolic ob-

stacle: (a) entire string, (b) close-up of bridge

impacts the bridge at several locations. The string is plucked at 0.1, and to represent the
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Figure 4.21: Snapshots of the string motion for plucked initial condition and parabolic obstacle:

(a) entire string, (b) close-up of bridge

non-smooth shape accurately, we considered 100 modes in the simulation. Since the plucked

initial condition inherently has several high-frequency components due to the non-smooth shape

of the string, these high-frequency components generate multiple impacts at the obstacle. At
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τ = 0.8516, the string is completely airborne, indicating repetitive impacts with the bridge.

The string motion is no longer considered pure wrapping in this case. This repetitive impact

response is responsible for generating the buzzing tone of the instrument.

4.4 Chapter conclusions

A mathematical model of a string wrapping against an obstacle at its boundary has been formu-

lated using a moving boundary approach. The formulation includes the distributed behaviour

of a rigid bridge obstacle that may be terminated at arbitrary locations on either side. Equa-

tions of motion have been derived for the three phases of motion corresponding to the string

completely (phase-III), partially (phase-II), or not at all (phase-I) wrapped on the bridge. It

is shown that a single-mode moving boundary approach can reveal much of the underlying

physics, including capturing the non-smooth string shape during phase-II motion. As many as

60 natural frequency components of the string are present in the wrapped string, in particular

during phase-II motion. Thus, the model captures the characteristic buzzing behaviour of the

sitar tone. In the simulations given, the string motion has been reasonably well represented

using only a single mode, requiring the solution of only a single ODE in phase-I and phase-III

motion and two coupled ODEs in phase-II. This compact formulation suggests the applicability

of the method to physics-based sound synthesis algorithms. The following conclusions can be

drawn on phase-II motion:

• The modal amplitude β1(τ) decreases as the contact length γ(τ) increases.

• The frequency of oscillation of a string initially in phase-I motion is higher than that of

a string initially in phase-II motion.

• The frequency of oscillation in phase-II remains constant irrespective of the initial ampli-

tude given by modal amplitude β1(0).

Finally, the hypothesis of multiple impacts as the origin of the buzzing tone is confirmed by

simulations from the penalty approach.
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Chapter 5

Modelling the dynamics of two

continuous systems impacting at a

point with friction

In this chapter, we study the interaction between a rotating beam and a string. The beam

model is an integral part of the piano action mechanism model, as it is used to represent the

motion of the piano hammer. We briefly discuss the action mechanism models found in the

existing literature. A string model is developed and integrated into the action mechanism

dynamics in order to model the hammer-string interaction. The finite-time impact between the

hammer head and the string is modelled using a penalty approach. Hysteresis is also included

in the hammer-string interaction model. Parametric studies are conducted to understand how

the hammer flexibility, the friction between the hammer and the string, and the horizontal

motion (scuffing) of the hammer during hammer-string contact influence the generated tone.

5.1 Mathematical modelling

5.1.1 Action mechanism dynamic model

A procedure for constructing a multibody dynamic model of a piano action mechanism with

rigid components was presented in Hirschkorn et al. [42]. This model was extended to include
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a flexible hammer shank in Izadbakhsh et al. [47]. Further details, including the results of

detailed experimental validation, have also been previously published [41, 45, 46]. The basic

structure of the model is shown in Figure 5.1. Bodies representing the action components rotate

( )F t

Figure 5.1: The components and the 13 contact locations between them (dashed lines) repre-

sented in the dynamic piano action mechanism model.

on pin joints (with friction), which represent the bushed pivots connecting the bodies either

to the ground or to a reference frame attached to another body (such as the jack pinned to

the whippen). The key, driven by a time-dependent force F (t) (force profile) applied vertically

downward at a location on the front surface, is assumed to rotate on a pin joint at the balance rail

(key pivot). A contact detection methodology is followed to determine the dynamic interaction

between the components coupled through compliant contact interfaces.

Graph-theoretic methods [52] are used to formulate the equations of motion for the rotation

of the five component bodies. Due to the complexity of the equations and in order to avoid

manual errors, the entire equation formulation procedure was systematically implemented using

computational symbolic algebra, with the aid of the multibody dynamic modelling package
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DynaFlexPro [1] in Maple.1 One advantage of this graph-theoretic approach is that user-defined

coordinates may be freely chosen for each body, allowing the convenience of a purely joint-

coordinate formulation. For the rigid-component action mechanism, the system is governed by

five ordinary differential equations (ODEs).

Hammer shank flexibility is included in the model by splitting the rigid hammer into three

components; a rigid head and base are linked by weld joints to the ends of a flexible shank, as

shown in Figure 5.1. We define two useful measures related to flexibility for the hammer: (i)

hammer head tip position with respect to the ground reference frame, which is an indication

of the absolute motion of the string contact point on the hammer head, and incorporates both

the large-scale rotation of the base pivot as well as the effects on the head motion caused by

shank vibrations and string contact; and (ii) hammer shank tip deflection which is a measure

of shank bending, defined as the displacement of the tip away from the equilibrium axis of the

shank. Wherever hammer head tip displacement is reported in this chapter, the undeformed

position of the felt will be assumed. In reality, the actual physical tip of the hammer head may

be compressed due to its interaction with the strings during contact. The flexible beam model

used for the shank is based on the theory developed by Shi et al. [64, 65], which considers

shear deformation (Rayleigh beam) and uses Taylor, Legendre, or Chebyshev polynomials to

discretize the governing partial differential equation. A convergence study [47] concluded that

three elastic coordinates are sufficient to accurately capture the flexible behaviour of the hammer

shank. Therefore, the equations of motion for the rigid-component action are supplemented by

three additional coupled ODEs, two of which represent the dynamics of shank bending, and

the third represents the axial dynamics of the hammer.

Graph-theoretic modelling of multibody systems is a well-established methodology [51] and

the exact procedure followed in generating the equations of motion for the dynamic action

model has been explicitly and fully described previously. Equations generated in symbolic form

have the following general structure:

Më = F (5.1)

where M is the mass matrix and e = [Ak, Aw, Aj, Ar, Ah, uf1, vf1, vf2]T is the vector of

1Maple is a trademark of Maplesoft, Waterloo, Ontario, Canada.
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generalized coordinates, consisting of the angular positions of the key, whippen, jack, repetition

lever, and hammer base, as well as the elastic coordinates that describe the state of the flexible

hammer shank. The first five coordinates in e are angles measured counter-clockwise from the

ground reference frame (or from the reference frame attached to the whippen, in the case of

Aj and Ar) to the body-fixed reference frame attached to the corresponding component. The

last three coordinates in e are the axial deformation and the two transverse elastic coordinates

of the flexible shank, respectively. The right-hand force vector F in equation 5.1 includes

quadratic velocity terms and contact forces.

5.1.2 Contact modelling

The contact model used in [41] for representing the compliant felt interfaces between compo-

nents will be described in some detail, as the same approach is used in this chapter to provide

a simple model of the hammer-string interaction (contact 12 in Figure 5.1). Contact detection

is based on geometric proximity, with each of the two contacting surfaces defined as a line,

circle, or hybrid shape that reflects the actual geometry of the component. A phenomenolog-

ical model defining force versus compression characteristics was obtained empirically for each

individual contacting pair of components in the action mechanism [42, 47]. The approach can

be interpreted as an extension of the contact model proposed by Hunt and Crossley [43]. The

experimentally-obtained loading and unloading curves determine an average fit curve:

ffit(x) = af∆
3 + bf∆

2 + cf∆ (5.2)

which gives the normal force at a contact based on the inter-penetration ∆ of the contact

surfaces of the two bodies. Hysteresis is introduced to the contact model by including damping

that is dependent on penetration velocity in the normal force fn as follows:

fn = ffit(∆)(1 + df∆̇) (5.3)

The damping coefficient df is defined by:

df =

(
fn(∆̃)

ffit(∆̃)
− 1

)/
ẋav (5.4)
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where ∆̃ is chosen as the penetration giving the maximum difference between loading and

unloading curves, and ∆̇av is the average velocity of the penetration observed in experiments

with a real action mechanism.

Friction at the contacting interfaces has been represented using a Coulomb friction model

proposed by Cull and Tucker [19], accounting for both static and dynamic friction effects. The

expression for frictional force is shown below:

ft = µfn (5.5)

where the coefficient of friction µ is given by the following expression:

µ = A

(
tanh(st/vt) +

B1st/vt

1 +B2(st/vt)4

)
(5.6)

In this smoothed version of the standard piecewise linear friction model, parameters A, B1,

and B2 are determined through the static and kinetic friction coefficients, while st and vt are

relative and threshold velocities at which the slipping starts. Details on how these parameters

were obtained can be found in the published model [42, 47].

It should be emphasized that an empirical force-compression fit curve, as described above,

implicitly incorporates the contact surface geometry of both bodies involved and, consequently,

cannot be interpreted as characterizing a unique force-compression curve for the felt inter-

face material itself. In general, if the contact geometry of either body is changed, the force-

compression curve will be different even though the compliant properties of the felt interface

are maintained. This observation is of particular importance in understanding the rationale for

selecting hammer-string contact parameters in the next section.

5.1.3 Hammer-string interaction

In this subsection we discuss the process of integrating a string model into the action mechanism,

in place of the rigid stop used previously [42, 47]. The rigid stop was a steel plate fixed to

ground and mounted above the hammer, which impacted its narrow edge (3 mm) as if it were

a completely rigid string. The equation governing the transverse dynamics of an elastic stiff

string, as proposed by Fletcher [27], is given by the following:

ρ
∂2Y1

∂t2
+ EI

∂4Y1

∂X4
− T ∂

2Y

∂X2
= fn(t)δd(X −Xhc) (5.7)
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where Y1 is the deformation of the string, X is the coordinate along the length of the string, L

is the speaking length of the string, T is the tension in the string, ρ is the linear density, I is

the area moment of inertia of the string cross-section, E is the Young’s modulus, and δd is the

Dirac delta function.

The hammer impact is modelled as an external force on the above string model. In equation

5.7, Xhc is the X component of the displacement rhc of a point P on the hammer resolved in

a frame attached at the boundary of the string, as shown in Figure 5.2. The point P is chosen

 

x 

y 

String 

hhr  

hcr  

P

Figure 5.2: Schematic representation of the hammer and string during contact.

such that the contact surface geometry of the hammer head can be represented with a circle,

which then is used for contact detection with the string represented as a line. The position Xhc

is governed by the dynamics of the action mechanism, thereby providing a more sophisticated

hammer-string interaction model than the transverse-impact hammer models [7, 9, 17, 18, 34–

38, 66] in which the impact location does not change during the contact. Boundary conditions

for pinned-pinned supports are as follows:

Y1(0, t) = Y1(L, t) = 0 and
∂2Y1(0, t)

∂X2
=
∂2Y1(L, t)

∂X2
= 0 (5.8)

The normal contact force during hammer-string impact can be represented by the general

contact model described above:

fn(t) = Υ(af∆
3 + bf∆

2 + cf∆)(1 + df∆̇) (5.9)
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where ∆ = Yhc + rhh− Y1(xhc, t) is the dynamic compression of felt during contact, parameters

af , bf , cf define the empirical fit curve, df is the damping coefficient for (compromise) average

penetration velocity, and the contact condition Υ is defined by:

Υ =

 1 if Yhc + rhh ≥ Y1(Xhc, t)

0 if Yhc + rhh < Y1(Xhc, t)
(5.10)

As noted above, neither the hammer nor the felt are characterized by a unique empirical fit

curve, since an identical hammer contacting different target bodies will, in general, produce

different force-compression curves according to the different contact areas pertaining during

the stages of compression.2 The frictional force at the interface can be obtained as follows:

ft(t) = µfn(t) (5.11)

with µ obtained from equation 5.6 as described above for the general contact model. Previously,

friction between the hammer and the rigid stop was ignored [42, 47]; in this work, we consider

some implications of including friction in the hammer-string contact.

A solution to the string equation 5.7 is assumed to be of the following form:

Y1(X, t) =
∞∑
j=1

φj(X)ηj(t) (5.12)

where φj(x) is the jth undamped mass-normalized mode shape of the string and ηj(t) is the

jth modal coordinate to be solved. Substituting the above solution and assuming the damping

to be of Rayleigh form where Ξj is the modal damping, equation 5.7 can be reduced using

orthogonality relations to an infinite number of second-order ODEs of the form:

η̈j + 2ξjωj η̇j + ω2
j ηj = φj(xhc)fn(t) (5.13)

The closed-form expressions for natural frequencies and mass-normalized mode shapes given by

Fletcher [27] are as follows:

ωj =
π

L

√
T

ρ
(1 + επ2j2) (5.14)

2The compression properties of piano hammer felt may be characterized, however, by a stress-strain curve

which is independent of the properties of the target. It is difficult to use this approach to analytically derive

a force-compression curve for a hammer impacting a particular non-planar target, such as a string trichord,

because of the complex local loading involved as the target embeds in the hammer felt.
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φj(X) =

√
2

ρL
sin

(
jπ
X

L

)
(5.15)

where ε = πr4E/4L2T is the inharmonicity index and can be interpreted as the perturbation

in the natural frequencies due to the introduction of the small bending stiffness term in the

equation of motion (equation 5.7).

5.2 Results and discussion

The equations of motion (equation 5.1) were solved numerically in Matlab along with equation

5.13, discretized considering the first 40 string modes and using the customized hammer-string

contact model given by equations 5.9, 5.10, and 5.11. The contact force asymptotically con-

verged near 35 modes, with a maximum difference of 0.05 N when 35 modes were retained in

the solution rather than 40 modes. We have considered 40 modes since this covers the audible

frequency range. The stiff solver ode15s was used with absolute and relative tolerances of 10−6.

Action parameters relate to note 52 (C5) of a Boston GP-178 grand piano. All geometric and

material properties, dynamic and contact parameters, initial conditions, and key input were

the same as those used previously [40, 44]. The force profile from a forte blow recorded at the

key surface 3 was used to provide the input function shown in Figure 5.3; values were linearly

interpolated as required because the variable time steps of the solver did not correspond to the

fixed sampling rate of the force measurement device.

The soundboard bridge termination of the string (on the left side in all illustrations herein)

is the origin of the (horizontal) string axis; the agraffe termination is at position L on this axis.

A fixed geometric relation between the string and the action is determined by the positions

of the string terminations with respect to the action ground points. This is accomplished by

placing the nominal (pseudo-static) hammer-string contact location at 0.88L on the string axis.

(As will be seen, the dynamic hammer-string contact location can vary according to the flexing

of the hammer shank.) Hammer blow distance (the vertical distance between the hammer at

rest and the underside of the string) is the standard 47 mm. The action mechanism is arranged

3In this case, a pressed touch with the finger initially resting on the key was used. The character of the

finger motion is actually not relevant to the model simulations, which only rely on the force profile recorded at

the key surface.
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Figure 5.3: Force profile from a forte blow recorded at the key surface and used for model input.

as shown in Figure 1.7, with the key front and hammer pivot to the right side of the string

contact location.

String parameters used in the present simulations, given in Table 5.1, were obtained for note

52 (C5) of a Boston GP-178 grand piano; the hammer strikes three such identical parallel strings

(a trichord unison) simultaneously. We wish to examine the effect of changing only the target

Table 5.1: Physical parameters of the string.

Physical parameter Value

Length of the string (L) 0.341 m

String tension (T ) 703 N

Linear density (ρ) 0.0058 kg/m

(rigid stop vs. trichord strings) while keeping all other factors, including the hammer, identical

in the simulations. However, as noted previously, hammer-string contact parameters will be

different, in general, for the same hammer striking different targets. This problem has been

circumvented by: (i) representing the trichord target as a single equivalent string model with
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linear density and tension both increased by a factor of three, instead of three individual strings;

and (ii) assuming that the stop and the triple-string present the same geometric profile to the

hammer. These assumptions ensure that the same hammer force-compression characteristics

can be used in each case. The hammer contact fit curve parameters in the present simulations,

as well as the damping coefficient, are the same as those used previously [42, 47].

5.2.1 Validation of action and string models

The action mechanism model being used in these simulations has been experimentally validated

previously [47]. The modal string model was validated by comparing simulation results to those

of Bensa et al. [9], in which a space and time finite difference method (FDM) was used to solve

the governing PDE. The comparison in this case was for a simple transverse impact between a

single-degree-of-freedom hammer model and the string. A modal damping value of ξj = 0.04

was used in the simulation, with string parameters the same as those used by Bensa et al. [9]

to validate their FDM (derived originally from Chaigne and Askenfelt[17]). Using 30 modes

for the string model, the simulated hammer-string contact force (Figure 5.4) was seen to be in

very close agreement with the FDM results.
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Figure 5.4: Force profile from a forte blow recorded at the key surface and used for model input.
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5.2.2 Effect of string flexibility on mechanism dynamics

In this section, the behaviour of the piano action model with a flexible hammer shank is

compared for string and rigid stop impacts. Friction is not included here since it was not

considered previously with the rigid stop [47]. In the simulations, the hammer impact occurs

about 109 ms after the force profile input begins. The post-impact response of the string is

governed by the displacement and velocity immediately after the hammer-string contact.

The time-varying contact force between the hammer and the string is shown in Figure 5.5(a).

Hammer contact duration (tc) with the string is 2 ms, about 1.5 times longer than with the
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Figure 5.5: (a) Hammer contact force for rigid stop and string for varying coefficient of friction

(CoF). Peak force with rigid stop impact is 95 N. Time zero corresponds to initiation of impact.

(b) Variation of CoF during hammer-string impact for A = 0.6.

rigid stop (1.2 ms), and the peak contact force with the string (44 N) is about 50 percent of that

experienced using the rigid stop (95 N). Fluctuations seen in the hammer-string force profile are
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caused by pulses initiated on the string by the hammer contact, which reflect off the boundaries

and return to interact with the hammer.

The rotation of the hammer base is considerably different for the two impact targets. De-

flection of the string in the transverse direction results in an increase in both the hammer-string

contact duration and the post-impact angular velocity, and also results in a significant reduc-

tion in the vibration of the hammer base about its pivot. The position of the hammer head is

determined by the angular rotation of the hammer base as well as the flexural configuration of

the hammer shank. Figure 5.6 shows that the shank vibration amplitude at the tip is reduced

to about 75 percent of that experienced with the rigid stop (comparing the frictionless cases).

Inspection of Figure 5.6 provides the lowest mode frequency of about 280 Hz for shank vibra-

tions; combining this with the contact times from Figure 5.5 shows that the hammer shank

executes one half-cycle of oscillation while the hammer is in contact with the string. The lack

of high-frequency ripples for the string contact in Figure 5.6 can be explained as follows. The

hammer experiences the same normal force as the string and it can be seen from Figure 5.5, that

with a rigid stop, the hammer force more closely approximates an ideal impulse, thus exciting

more of the higher modes in the response. With the flexible string, the impulse (contact force)

is quite smooth and only the first vibration mode of the hammer is excited during hammer-

string interaction. However, the modes are coupled due to geometrical nonlinearity in the beam

model, and higher-frequency oscillations eventually appear after two cycles of hammer shank

oscillation.

The scuffing motion of the hammer head along the string during hammer-string contact

can be seen in the trajectory of the hammer head tip in Figure 5.7, as viewed from a reference

frame attached to the string boundary. The origin in this trajectory plot is selected as the

initial contact point between the hammer head tip and the string or rigid stop. As mentioned

previously, it is always the undeformed position of the hammer head tip that is reported and,

thus, the vertical displacement of the string will be somewhat less than that implied by the

vertical hammer head tip displacement shown in the trajectory plots. In reality, the hammer

head felt will have been compressed by the string during contact. In the case of the rigid

stop, the implied vertical hammer head tip motion is, in fact, entirely associated with felt

compression, as the stop is rigid and does not move.
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Figure 5.6: Vibration of flexible hammer shank after hammer head impact with string or rigid

stop, expressed by shank tip deflection from equilibrium, for varying contact coefficient of

friction (CoF). Time zero corresponds to initiation of impact.
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Figure 5.7: Hammer head tip trajectory during contact for string and rigid stop, for varying

contact coefficient of friction (CoF). The origin is chosen to represent the initial contact point.

Arrows indicate evolution of time. It should be noted that the horizontal and vertical scales

are not the same.
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5.2.3 Effect of hammer-string friction on mechanism dynamics

As previously mentioned, the above results do not include friction between the hammer head and

the string or stop. Friction creates a force along the axis of the string, exciting the longitudinal

modes of vibration; however, the present study neglects the longitudinal motion of the string,

so this phenomenon cannot be modelled. Nevertheless, it is interesting to study the effect of

friction on the dynamics of the mechanism and, in particular, the amplitude of hammer shank

vibration and scuffing of the hammer on the string. In this subsection these effects are studied

using the friction model presented in subsection 5.1.2. The model parameters were taken to be

A = µ, where µ is the static coefficient of friction, slipping velocity vt = 0.001 m/s, B1 = 0,

and B2 = 0 – that is, we consider only a smoothed static friction model in these simulations. A

parametric study varying the CoF from 0 to 0.8 was carried out, which covers the full range of

realistic values. For clarity of presentation, only the extreme cases are included in the following

plots. There was also little difference between results for CoF of 0.6 and 0.8.

The variation of friction during the hammer-string contact is shown in Figure 5.5 for A = 0.6.

During the first 0.4 ms of contact, the hammer slides on the string. The hammer then sticks

to the string until 1.55 ms, after which time slipping again occurs until the end of the contact

period at 1.8 ms. Due to the vibratory nature of the hammer-string contact, multiple slip-stick

transitions occur between 0.4 and 1.55 ms. During this time, the relative velocity between the

hammer and the string is below the stick-slip transition velocity of 0.001 m/s and can, therefore,

be regarded as sticking motion (equation 5.6).

Figure 5.7 shows the hammer head tip trajectory during its contact with the string for

different hammer-string coefficients of friction (CoF). It is clear that the amount of hammer

head scuffing is reduced with increased CoF, as the frictional force generated at the interface

prevents the hammer tip from sliding freely along the string. The scuffing footprint on the

string is 0.9, 0.4, and 0.25 mm for CoFs of 0, 0.2, and 0.6, respectively. The predicted normal

contact force on the hammer is slightly reduced with increasing CoF, as shown in Figure 5.5.

The hammer-string contact time is also slightly reduced, possibly due to frictional energy losses

in the hammer. Different CoFs determine different boundary conditions at the interface of the

hammer and string, thus affecting the amount of energy transferred to the hammer to excite
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its modes of vibration, as shown by the shank tip deflection for CoF of 0.6 in Figure 5.6.

5.2.4 Effect of hammer shank flexibility on string spectra

The influence of hammer shank flexibility on piano tone is well known to piano professionals

who routinely select hammer shanks for different locations from treble to bass according to tap

frequencies. It is also common practice to adjust the stiffness of hammer shanks, particularly

thinning the treble shanks, as a means to achieve a voicing objective. Wolfenden [80] noted

that, ’‘in respect to the recoil of hammers from string, the elasticity of the shank is of prime

importance.” He also pointed out that ‘’the bending of the shank induces a stroking action

of the head upon the strings.” These effects on hammer-string contact due to hammer shank

flexibility have been investigated experimentally [4], and have also been proposed as a potential

mechanism whereby variation in tone (string spectrum) may be achieved with different types

of touch at the same dynamic level [5].

In order to study the effect of hammer-shank flexibility on string spectra, the results of the

above simulations with the flexible hammer shank have been compared to those in which the

stiffness of the shank is reduced by a factor of 4. For simplicity, the increase in shank flexibility

was achieved by using a Young’s modulus of 2.8 GPa instead of the original realistic value of

11 GPa for a hard maple shank.4 This highly flexible shank would have the same stiffness as one

where the diameter of the original shank has been reduced from 6.4 to 4.5 mm with no change to

the Young’s modulus. This is a significant, though by no means unrealistic, reduction in shank

diameter. No other changes were made in the action and string model parameters or in the key

force profile input. String damping was neglected in this comparison, since the objective was

to study the spectral content of the string, and a hammer-string CoF of 0.6 was used.

For the highly flexible shank, an increased hammer head scuffing motion (0.43 mm versus

0.25 mm footprint) during string contact can be seen in the hammer head tip trajectories

shown in Figure 5.8. It can also be seen that the initial contact locations are different, the

4In practice, a change in shank stiffness is achieved by altering geometry, in particular shank cross section

(for instance, by removing material from the sides of the shank). This will, in general, also affect the inertial

properties of the shank.
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Figure 5.8: Hammer head tip trajectories during string contact for normal (Eh = 11 GPa) and

highly flexible (Eh = 2.8 GPa) hammer shanks. The origin is chosen as the initial hammer-string

contact point for the normally flexible shank. Arrows indicate time evolution. The coefficient

of friction is 0.6. It should be noted that the horizontal and vertical scales are not the same.

highly flexible shank first touching the string about 0.2 mm closer to the bridge termination

(to the left in the diagrams) compared to the normally flexible shank. In previous simulations

(for instance Figure 4.7 of reference [44]), when compared to a rigid shank, the contact point

for the normally flexible shank was already observed to shift about 0.1 mm toward the bridge

termination. This shift in the contact location can be explained by the shank tip deflection

shown in Figure 5.9. The highly flexible hammer shank is bent downward and away from

the string before impact, thus changing the initial contact location of the hammer head. As

anticipated, the vibration amplitude of the highly flexible shank is greater than that of the

normally flexible shank. Finally, the contact time for the highly flexible shank is delayed by

0.2 ms, and the hammer remains in contact with the string about 0.1 ms longer, the contact

period being 1.97 ms compared to 1.87 ms for the normally flexible shank. The magnitude of

these predicted responses for the highly flexible hammer is consistent with reported observations

in experiments with a highly flexible hammer shank [4].

Hammer shank flexibility has been seen to affect many aspects of the hammer-string contact

event: contact force, initial contact time, contact location, scuffing motion, and the duration of
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Figure 5.9: Vibration of hammer shank for normal (Eh = 11 GPa) and highly flexible (Eh =

2.8 GPa) hammer shanks. The coefficient of friction is 0.6. Zero time corresponds to the impact

event in both cases.

contact. Consequently, it can be anticipated that the string shape (spectral content) after the

hammer contact ends will also be affected by the hammer shank flexibility. This is demonstrated

in the time domain plot of Figure 5.10 which shows the simulated string motion during and after

impact for the two different shank flexibilities. To further demonstrate the effect of flexibility on

the spectral content of the string, an explicit plot of the modal participation factors ηj(t) taken

immediately after hammer contact ends is shown in Figure 5.11. The spectra (in dB), calculated

as the logarithm of the normalized absolute values 20 log (|ηj| /max |ηj|), is shown for each of

the 40 modes simulated in the string. As anticipated from the time domain string response

in Figure 5.10, there are significant differences in the spectral content due to variation in the

hammer shank flexibility. The fifth partial of the string is found to be very sensitive to a highly

flexible hammer shank. A difference of 20 dB can be seen from Figure 5.11 with respect to a

normal shank. The hammer shank vibration during the hammer-string interaction can influence

the string shape at the end of hammer-string interaction, thus changing its spectral content.

It will be interesting to further study in future the causal relationship between hammer shank

flexibility and its influence on string spectra. Whether the observed differences in spectra would

be audible cannot be ascertained from the simulated results due to the absence of damping and

other relevant effects (nonlinear string motion, coupling effects between tri-chord strings, and
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Figure 5.10: Transverse string displacement at 0.88L (close to the strike point) during and

after hammer-string contact for normal (Eh = 11 GPa) and highly flexible (Eh = 2.8 GPa)

hammer shanks. Time scales have been shifted for comparison; contact is initiated at the same

t = 0 for both hammer shanks. String damping is neglected. The coefficient of friction is 0.6.

soundboard design) that could alter the perceived tonal quality in listening tests. The psycho-

acoustic question of spectral sensitivity is complex [16]. Differences in spectra occurring in the

lower frequency portion of the response (where a distinct effect from hammer shank flexibility is

observed in the simulations) are known to be more significant in the perception of tone quality

[32].

This result also gives some insight into understanding the potential influence of touch on

tone, which may be possible without overall change in the dynamic level by manipulating the

flexural state of the hammer prior to contact. This proposed mechanism would require a rea-

sonable degree of hammer shank flexibility and the ability to control hammer shank vibrations

by touch variation.

5.3 Chapter conclusions

A dynamic model of a piano action mechanism with a flexible hammer shank and realistic

compliant contacts between components has been integrated with an elastic stiff string model.

95



5 10 15 20 25 30 35 40
-140

-120

-100

-80

-60

-40

-20

0

Mode Number

 

 
Eh=11 GPa

Eh=2.8 GPa

(
)

10
20

lo
g

(
)

/m
ax

(
)

dB
j

c
j

c
t

t
η

η

Figure 5.11: Normalized modal participation factors for the string immediately after contact

for normal (Eh = 11 GPa) and highly flexible (Eh = 2.8 GPa) hammer shanks. The coefficient

of friction is 0.6.

The effect of string motion on the mechanism has been investigated and compared to previously

published results in which the hammer strikes a rigid stop. It was found that replacing the stop

in the model with a string increased the extent of hammer scuffing during contact and reduced

the predicted vibration of the hammer shank. Hammer shank tip deflection amplitude during

contact was also reduced, while peak contact force decreased and hammer-string contact time

increased. Introducing hammer-string friction into the simulations decreased the duration of

contact and hammer head scuffing. Finally, simulations in which the hammer shank flexibility

was increased by a factor of 4 without making any other changes to the model showed significant

differences in the behaviour of the hammer and the string. For the highly flexible hammer shank,

there were predicted differences in contact time, force, duration, hammer shank vibration, and

scuffing motion on the string. Moreover, these differences were responsible for corresponding

changes in the predicted spectral content initiated in the string by the hammer impact.
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Chapter 6

Conclusions

This thesis presents new methods for modelling point and distributed contacts in continuous

systems, and are applied to simulate and understand the tone generation mechanism in musical

instruments. Although it is simple, the penalty method was found to be effective at simulating

a wide variety of impact problems; however, it may not be the optimal choice when simulat-

ing limiting-case models such as infinite-stiffness or near-rigid impacts. We have studied the

following problems related to impacts in continuous systems:

• Point impacts between a continuous system and a rigid or near-rigid obstacle without

friction (Chapter 3);

• Distributed impacts in a continuous system, considering the distributed obstacle as both

rigid and compliant (Chapter 4); and

• Point impacts between two continuous systems in presence the of friction (Chapter 5).

In Chapter 3, we have presented a new CoR approach for simulating impacts between

a continuous system and a rigid obstacle. It was found that the existing collocation-based

approaches systematically inject energy into the mechanical system that is being simulated.

The proposed method based on the unit impulse response is energy-conserving, and gave results

that are very close to those obtained using the penalty method. The proposed method was also

found to be more computationally efficient than the penalty method, which is particularly

useful when simulating near-rigid impact. The results obtained using the proposed method
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were also compared to the existing experimental data from the literature; the model was found

to accurately capture the qualitative behaviour of the system (period-1 motions).

In Chapter 4, we described the modelling of a distributed contact as a moving boundary

problem. We analyzed a string vibrating against a rigid parabolic obstacle, which simulates the

bridge-string interaction in a sitar. The moving boundary approach can effectively capture the

complex shape of the string when wrapping around the bridge using only one modal coordinate

(in addition to the differential equation governing the moving boundary). The method also

captured the non-smooth string shape during phase-III motion. The same problem was also

solved using the penalty approach, where at least 60 modes (60 differential equations) were

needed to simulate the shape of the string. Once again, the approach adopted herein was found

to be more computationally efficient than the existing approaches. The spectral content of the

string was studied by projecting the shape of the string obtained using the moving boundary

approach onto the normal modes of a classical string. Several high-frequency components were

observed in the string shape. It was anticipated that these high-frequency components in the

string would eventually violate the wrapping assumption, resulting in multiple impacts with

the distributed bridge. The multiple impacts were believed to be the source of the character-

istic buzzing tone of the sitar. To confirm the existence of multiple spatial impacts, the sitar

bridge-string interaction was simulated using the penalty approach, which is more general and,

therefore, is able to handle multiple spatial impacts. With a plucked initial condition, it was

found that multiple impacts occur within the first few cycles (few milliseconds).

In Chapter 5, we presented a complete multibody dynamic model of a piano action mecha-

nism with string contact. In modelling the piano hammer-string interaction, it is very important

to model the finite contact time. The tone generated by the string is influenced by the contact

force profile between the hammer and the string during impact. The penalty method was found

to be an ideal candidate for the hammer-string interaction model, as the stiffness and damping

of the piano hammer felt can be explicitly represented in the formulation. Several insights

into the hammer-string interaction were obtained by replacing the rigid string in the existing

action mechanism model with a flexible string, and by introducing friction. The flexible string

impact was found to increase the contact duration, while the introduction of friction at the

contact interface was found to decrease the amount of scuffing between the hammer and the
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string during hammer-string interaction. Finally, it was shown that the frequency content of

the string is significantly affected by changing the flexibility of the hammer.

6.1 Contributions

The major findings of this thesis are the following:

• A new and energy-consistent CoR-based methodology was developed for simulating point

impacts in continuous systems.

• A new methodology for modelling multipoint contacts using a moving boundary formu-

lation has been presented. The developed model was applied to study the mechanism

behind tone generation in the sitar.

• For the first time, a complete multibody dynamic model for the piano action mechanism,

including its interaction with a flexible string, has been developed. The developed model

can be used as a tool for prototyping the piano action mechanism.

6.2 Recommendations for future work

The following are potential extensions for the research presented in this thesis:

• The coefficient of restitution method proposed in Chapter 3 can be extended to model

impact between multiple continuous systems. Frictional effects can be included and the

model can be used to simulate the impact between a continuous rotor and a rigid stator.

The proposed model can be further extended to simulate simultaneous impacts with

distributed obstacles.

• Parametric studies can be performed using the developed simulation model of a beam-stop

system to predict zones of period-1 motions. Optimization studies can be done to predict

the optimal coefficient of restitution that will maximize the energy dissipation. The results

from the study can then be used in the design of impact dampers for continuous systems.
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• The mathematical model presented in Chapter 4 can be extended to predict the 3D motion

of a string. Friction between the bridge and the string can be included in the moving

boundary and penalty formulations. The simulations from the resulting model can be

used to understand the sitar dynamics in a more comprehensive way.

• The piano hammer-string interaction model presented in Chapter 5 can be refined in sev-

eral ways. Nonlinear effects in string deformation can be included in order to predict cou-

pling effects between the transverse and longitudinal modes. The excitation mechanism

for longitudinal vibrations due to hammer-string friction can be studied. A soundboard

and acoustical room model can be added to the simulation model to predict the perceived

tone of the instrument.
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