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A B S T R A C T  

Adenosine (Ado) salvage is essential in plant development. The lack of Ado 

kinase activity (ADK) in Arabidopsis thaliana adk1 adk2 double mutants results in 

embryonic lethality; reduction of ADK expression causes a pleiotropic phenotype 

due to the accumulation of Ado inhibiting transmethylation activities. The phenotype 

of ADK mutants shows that this enzyme plays a critical role in Ado salvage but the 

functional significance of the other putative Ado recycling enzymes Ado deaminase 

(ADA) and Ado nucleosidase (ADN) in Arabidopsis thaliana have yet to be 

elucidated.  

ADA catalyzes the irreversible deamination of Ado to inosine. The locus 

At4g04880 (AtADA) of A. thaliana is annotated as encoding a putative ADA, based 

on its amino acid sequence similarity and the presence of important, conserved 

catalytic residues. However, indirect and direct spectrophotometric activity assays of 

the recombinant enzyme demonstrated that the gene product of this locus does not 

possess ADA activity; complementation experiments to test for the functionality of 

the AtADA product in A. thaliana and E. coli confirmed its lack of ADA activity. 

Instead, phylogenetic analysis revealed that AtADA belongs to the group of ADA-like 

(ADAL) proteins, a group closely related to ADAs that to date have not been shown 

to have ADA activity. AtADA is no exception as it also lacks ADA activity based on 

the in vivo and in vitro experiments outlined in this thesis. Thus, the locus At4g04880 

should be re-annotated as ADAL. The question of the function of AtADAL cannot be 

answered as of yet; in general, the knockout of ADA gene product demonstrated that 

At4g04880 is not essential for Arabidopsis growth. Since no further ADA-related 

genes exist in the genome of Arabidopsis it is concluded that ADA activity is not 

present in this plant. 

ADN catalyzes the conversion of purine and pyrimidine ribosides to their 

corresponding bases; although it prefers Ado as a substrate it also acts on 

cytokinins. The activity of this enzyme has been described in several plant species 



 

 vi 

but no corresponding genes have been identified to date. The genome of 

Arabidopsis was screened for ADN genes using an inosine-uridine nucleoside 

hydrolase sequence from the protozoa Crithidia fasciculata. Two genes, annotated 

as ADN1 and ADN2 were identified and their gene products were studied using a 

spectrophotometric assay. The substrate spectrum of ADN2 includes both purine 

and pyrimidine nucleosides but it prefers to utilize uridine. Thus, ADN2 is proposed 

to be involved in the purine and pyrimidine salvage in Arabidopsis but predominantly 

in uridine recycling. Recombinant ADN1 did not show activity on any of the tested 

substrates. Even though the in vivo role of both ADNs is still uncertain, due to their 

lack or low activity on Ado there may yet be the ADN gene in the Arabidopsis 

genome which likely acts on both adenosine and cytokinin ribosides. 
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C h a p t e r  1  
I N T R O D U C T I O N  

1 . 1  A R A B I D O P S I S  T H A L I A N A  

Arabidopsis thaliana is a small flowering plant that is widely used to study the 

cellular and molecular biology of plants. Arabidopsis is a member of the mustard 

family, Brassicaceae, which includes species such as cabbage and radish, that is 

native of the northern hemisphere (Alberts et al., 2005). A mature Arabidopsis plant 

has a basal rosette of 6-12 leaves and a primary shoot of up to 30 cm in height. 

Arabidopsis offers important advantages for research particularly for genetic and 

molecular analyses because of its small genome (5 chromosomes, 125 Mb) which 

was sequenced completely by the Arabidopsis Genome Initiative (2000).  

Out of ca. 26,000 gene products identified, approximately 30 % could not be 

assigned to a specific function (Arabidopsis Genome Initiative, 2000). Varieties of 

approaches are used to collect information about the function of genes. Insertional 

mutagenesis has been extensively used to obtain knockout mutants that help to 

assign biological function to unknown gene products (Radhamony et al., 2005). 

Through investigations of the phenotype linked with the mutation the function of the 

gene can be deduced.  

Further advantages of Arabidopsis are its efficient transformation via 

Agrobacterium tumefaciens infection, its inexpensive cultivation in controlled 

environments and its short life cycle of about 6 weeks, from germination to maturity. 

The research described in this thesis uses Arabidopsis to investigate the 

functional significance of the putative adenosine recycling enzymes, adenosine 

deaminase and adenosine nucleosidase. Three metabolic pathways in Arabidopsis 

generate adenosine as a product: 1) S-adenosyl-L-methionine (SAM) dependent 

methylation cycle, 2) the salvage pathway of purine nucleotides and 3) cytokinin 

(CK) degradation. These metabolic pathways and the important enzymes involved in 

each, will be introduced in the following sections. 
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1 . 2  M E T H Y L  C Y C L E  

Many biochemical reactions in plants involve the transfer of methyl groups; 

S-adenosyl-L-methionine (SAM) is the principal methyl donor for these reactions 

(Cantoni, 1975). The transfer of methyl groups from SAM plays a role in a range of 

cellular activities including DNA methylation, gene regulation, protein modification, 

as well as the synthesis of hundreds of metabolites including biotin, nicotinamine 

and ethylene (Moffatt and Weretilnyk, 2001). 

When the methyl group of SAM is transferred by a methyltransferase (MTase) 

to an acceptor, a molecule of S-adenosyl-L-homocysteine (SAH) is produced as a 

by-product (Figure 1). As SAH is a strong inhibitor of SAM-dependent MTases, it has 

to be removed to maintain methyl recycling and MTase activities (Moffatt and 

Weretilnyk, 2001). To do so, SAH hydrolase (SAHH, EC 3.3.1.1; Enzyme 4 in Figure 

1) converts SAH into adenosine (Ado) and homocysteine (Hcy); in vivo this 

reversible reaction is directed towards SAH hydrolysis by removal of the products 

Ado and Hcy. Ado deaminase (ADA, EC 3.5.4.4; Enzyme 2 in Figure 1), Ado kinase 

(ADK, EC 2.7.1.20; Enzyme 1 in Figure 1) and Ado nucleosidase (ADN, EC 3.2.2.7; 

Enzyme 3 in Figure 1) catalyze different reactions that metabolize Ado. In plants Ado 

salvage is primarily mediated by ADK (Dancer et al., 1997; Moffatt et al., 2002); the 

roles of ADA and ADN have not yet been defined, nor have their contributions to 

plant development been elucidated. The research in this thesis was designed to 

address these issues. 
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Figure 1 – Activated methyl cycle and adenosine salvage. S-adenosyl-L-methionine (SAM) is 
the donor of methyl groups in the transmethylation cycle shown. Methyltransferases (6) 
generate S-adenosylhomocysteine (SAH) during transmethylation. SAH hydrolase (4) 
converts SAH into adenosine (Ado) and homocysteine (Hcy). The forward reaction of this 
reversible process is supported by removal of Ado and Hcy. Ado is removed from the cycle 
by the action of ADK (1), ADA (2) or ADN (3); Hcy is metabolized by methionine synthase (5). 
SAM is regenerated by SAM synthetase (7). 

 

1 . 3  P U R I N E  A N D  P Y R I M I D I N E  S A L V A G E  

Purine and pyrimidine nucleotides are important compounds in metabolic 

pathways and essential for plant development (Zrenner et al., 2006). Ado recycling 

enzymes described in the previous section play an important role in the salvage of 

purines. The de novo biosynthesis of purine and pyrimidine nucleotides involves 

multiple enzymatic steps, several of which require the hydrolysis of ATP or GTP. All 

organisms, including plants have developed salvage pathways to recycle bases and 

nucleosides at low metabolic cost (Zrenner et al., 2006). 

Relevant Ado metabolizing enzymes are ADA (enzyme 5 in Figure 2), ADK 

(enzyme 4 in Figure 2) and ADN (enzyme 1 in Figure 2). Ado can be recycled to 

adenine (Ade) nucleotides but also can be converted to inosine (Ino) nucleotides 

(Figure 2). In animals the recycling of Ado to Ino is primarily catalyzed by Ado 
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deaminase (ADA) but this enzyme activity is not thought to be present in plants 

(Moffatt and Ashihara, 2002). No ADA enzyme activity could be found in plant 

extracts i.e. Catharanthus roseus (Yabuki and Ashihara, 1991) or Solanum 

tuberosum tubers (Katahira and Ashihara, 2006). The conversion of Ado to Ino can 

be alternatively catalyzed by AMP deaminase (enzyme 6 in Figure 2), converting 

Ado monophosphate (AMP) to Ino monophosphate (IMP). Subsequently, IMP can 

be converted into Ino or xanthine; the latter enters the purine degradation pathway. 

 

Figure 2 – Purine bases, nucleosides and nucleotides can be recycled via the purine 
salvage pathway. Animals primarily recycle adenosine to inosine by adenosine deaminase 
(5); plants primarily recycle adenosine by adenosine kinase (4). Adenosine monophosphate 
(AMP) deaminase (6) converts AMP to IMP that is further converted to xanthine 
monophosphate (XMP). XMP enters the purine degradation pathway. Other enzymes seen in 
the cycle are: adenosine nucleosidase (1), adenine phosphoribosyltransferase (2) and 5’-
nucleotidase (3). 

 

ADN contributes to purine salvage in many organisms, it catalyses the 

irreversible hydrolysis of Ado to Ade and ribose (Figure 2). This enzyme activity has 
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been demonstrated in crude extracts or partially purified preparations of several 

plants, including barley (Guranowski and Schneider, 1977) and wheat (Chen and 

Kristopeit, 1981). However, a gene coding for ADN has not been identified yet.  

In Figure 3 is shown the pyrimidine salvage pathway with a focus on uridine 

(Uri). Uridine 5'-monophosphate (UMP) is the product of de novo pyrimidine 

biosynthesis. UMP can be recycled to the base uracil and the nucleoside uridine 

(Figure 3). The first enzyme that was characterized in the Arabidopsis pyrimidine 

salvage pathway was the bi-functional uridine kinase/ uracil 

phosphoribosyltransferase (Islam et al., 2007). Uridine kinase activity was found in  

 

Figure 3 – Uridine salvage pathway. Uridine 5'-monophosphate (UMP) is the end product of 
the de novo pyrimidine biosynthesis; it can be recycled via uracil and uridine involving 
following enzymes: Uridine-nucleosidase (1), uridine kinase/ uracil 
phosphoribosyltransferase (2), 5’-nucleotidase (3), uridine-monophosphokinase (4). 

 

the N-terminal region of the gene and uracil phosphoribosyltransferase activity was 

found in the C-terminal region. The pyrimidine specific 5'-nucleotidase of the 

Arabidopsis salvage pathway has not yet been cloned or characterized. A gene 

coding for Uri nucleosidase was identified and the protein product was recently 

characterized by Jung et al. (2009). 
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Details of the putative adenosine recycling enzymes ADA and ADN and 

subjects relevant to this research will be described in the following sections. 

1 . 4  A D E N O S I N E  K I N A S E  I N  A R A B I D O P S I S  T H A L I A N A  

ADK catalyzes the phosphorylation of Ado to AMP (Figure 1, enzyme 1) and 

has an important role in maintaining the methylation cycle in plants (Moffatt and 

Weretilnyk, 2001). Mutant plants with reduced ADK enzyme activity show a severe 

phenotype compared to wild type; the lack of Ado recycling and the accumulation of 

Ado leads to methylation defects. Hypomethylation of pectin was reported in ADK 

silencing mutants (Moffatt et al., 2002) as well as up to 25 % less methylated 

cytosine in genomic DNA (Engel, Diploma thesis). The two ADK isoforms identified 

in A. thaliana, ADK 1 (locus At3g09820) and ADK 2 (locus At5g63400), are very 

similar, sharing 92 % amino acid identity (89 % nucleotide identity) (Moffatt et al., 

2000). Both genes encode functional enzymes that are capable of utilizing both Ado 

and CK ribosides as substrates (Moffatt et al., 2000). 

In order to investigate the role of ADK in A. thaliana, plant lines with reduced 

ADK activity (sADK lines) were created. Due to sense silencing, the ADK activity in 

these sADK lines range from seven to 70 % of that found in the wild type; lower 

levels of residual ADK activity correlate with a more severe phenotype (Moffatt et al., 

2002). The ADK-deficient lines are characterized by wrinkled leaves, clustered 

inflorescences and reduced primary shoot height; a complete loss of the primary 

shoot is observed in cases of extremely reduced ADK activity. Plants with more than 

50 % residual ADK activity show normal wild-type morphology (Moffatt et al., 2002). 

ADK transcript and protein is abundant in all major organs, but the abundance 

decreases as the plant matures i.e. more ADK transcript and protein can be found in 

younger leaves than in older; ADK also decreases as siliques mature (Pereira et al., 

2007). ADK protein levels in different organs are consistent with other enzymes 

involved in the methylation cycle such as SAHH, SAM synthetase and a SAM-

dependent methyltransferase.  
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1 . 5  A D E N O S I N E  D E A M I N A S E  I N  A R A B I D O P S I S  T H A L I A N A  

As mentioned earlier, ADA catalyzes the irreversible deamination of Ado to 

Ino (see Figure 1, Enzyme 2) as well as 2′-deoxyadenosine to 2′-deoxyinosine. ADA 

activity has been documented in extracts of bacteria, invertebrates and vertebrates 

(Cristalli et al., 2001) but this enzyme activity is not proposed to be present in plants. 

In mammalian cells, the loss of ADA enzyme activity causes severe combined 

immunodeficiency (SCID) due to the accumulation of toxic metabolites in the purine 

salvage pathway (Fischer, 2000). ADA has been shown to require no cofactor but a 

zinc ion is included in the active site pocket (Frick et al., 1987).  The crystal structure 

of mouse ADA bound to 1-deazaadenosine confirmed the presence of a zinc-

activated water molecule in the active site (Wilson and Quiocho, 1993). 

Locus At4g04880 of A. thaliana is annotated as a putative Ado/AMP 

deaminase (electronic annotation, Genbank) and its protein product was 

demonstrated to have ADA activity by an in vitro SAHH activity assay which is 

dependent on ADA activity to draw the reaction in the hydrolysis direction (Sherri 

Fry, 499 report). Unfortunately, this experimental result did not prove to be 

repeatable. As an in vivo test for the functionality of the ADA gene product, the 

cDNA corresponding to the gene At4g04880 was isolated from A. thaliana and 

overexpressed in an ADK-silenced plant line with a severe phenotype (16 % residual 

ADK activity). The resulting transgenic plants (sADK 9-1 35S::ADA) appeared 

phenotypically normal indicating a complementation of ADK activity by the 

transgene, suggesting that the locus At4g04880 encodes a functional ADA activity. 

One part of my thesis research sought to verify this conclusion and to elucidate the 

identity of At4g04880 as ADA. 

1 . 6  A D E N O S I N E  D E A M I N A S E  I N  E .  C O L I  

Adenosine deaminase is present in E. coli cells and catalyzes the conversion 

of Ado to Ino (enzyme 5 in Figure 2). ADA activity is not essential for the growth of 

E. coli and the deletion of ADA gene is not lethal. Even though ADK activity (enzyme 
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4 in Figure 2) has not been found in E. coli (referenced in Petersen and Moller, 

2001) the activity of Ado nucleosidase and Ade phosphoribosyltransferase (enzymes 

1 and 2 in Figure 2) can by-pass ADA deficiency. 

As previously stated, ADA deficiency in mammals causes immunodeficiency. 

More than 50 ADA mutations are known in humans (Arredondo-Vega et al., 1998) 

causing severe combined immunodeficiency, late evolving immunodeficiency, or 

“partial” ADA deficiency with no phenotype. Relating the genotype to a phenotype is 

difficult because: 1) often only one allele is mutated and 2) determination of residual 

ADA activity is problematic due to tissue availability and low ADA activity in all 

phenotypes (Arredondo-Vega et al., 1998). Therefore, ADA-deleted E. coli strains 

have been a useful tool to determine ADA activity of cloned and overexpressed 

human ADAs, by complementation. E. coli SØ3834 is a multiple auxotroph (rpsL, 

∆add-uid-man, metB, guaA, uraA::Tn10) with a deletion of the bacterial ADA gene; 

on minimal medium, it requires guanosine (Gua) to grow (Hove-Jensen and 

Nygaard, 1989). This Gua requirement can be satisfied by 2,6-diaminopurine (DAP) 

if a plasmid coding for a functional ADA is introduced into the strain (Chang et al., 

1991). The synthesis of Gua from DAP is illustrated in Figure 4. This convenient 

complementation system in E. coli SØ3834 will be used to test the ADA identity of 

locus At4g04880 (Section 1.5). 

 

Figure 4 – Synthesis of guanosine and guanine from 2,6-diaminopurine (DAP). DAP is 
converted to guanine by the activity of two enzymes: 1) purine nucleoside phosphorylase, 
2) adenosine deaminase. The SØ3834 mutant requires guanine to grow. DAP can satisfy the 
guanine needs if a functional adenosine deaminase is provided. Figure adapted from 
(Chang et al., 1991).  
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1 . 7  E V O L U T I O N A R Y  C O N S E R V E D  A M I N O  A C I D S  I N  A D E N O S I N E  

D E A M I N A S E - R E L A T E D  P R O T E I N S  

ADA from mammals and bacteria are well characterized because of the 

importance of understanding ADA deficiency and SCID in humans. Important 

residues for the catalytic function of the ADA have been identified by several studies 

and are outlined in Table 1. The amino acid alignment of mammalian and E. coli 

ADA shows high overall similarities but only four regions of four or more contiguous 

highly conserved amino acids (Chang et al., 1991). 

Table 1 – Important residues for the catalytic function of ADA. 

Residues Catalytic function Reference 

His 15 
His 17 
His 214 
Asp 295 

Zinc binding 

His 17 
Gly 184 
Glu 217 
His 238 
Asp 296 

Donating or accepting hydrogen 
bonds 

Ser 265 – 
His 238 Salt link 

(Wilson et al., 1991) 
(Chang et al., 1991) 
(Maier et al., 2005) 
 

 

Ade deaminase (ADE) catalyzes the deamination of Ade to hypoxanthine 

(Figure 2), a similar hydrolytic deamination as that catalyzed by ADA. Also, AMP 

deaminase (AMPD) which converts AMP to IMP (Figure 2) uses a similar mode of 

enzymatic reaction as that of ADA. A third group of ADA-related proteins are the 

adenosine deaminase-related growth factors (ADGFs). ADGFs have been identified 

in invertebrates and vertebrates and ADA activity was demonstrated for some ADGF 

members (Maier et al., 2005). In vertebrates ADGF is also known as cat eye 

syndrome critical region protein (CECR1). Cat eye syndrome is a rare human 

disorder characterized by, among other symptoms, defects of the eyes (Schinzel et 
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al., 1981). As demonstrated in Drosophila, ADGFs stimulate mitogenic activity that is 

correlated with ADA activity (Zurovec et al., 2002). The genome of Drosophila 

contains six ADGFs; two of them possess ADA activity and are demonstrated to act 

as mitogenic, whereas a third ADGF investigated lacked enzymatic activity and was 

not mitogenic. It was evident that ADGFs require catalytic activity for their stimulation 

of cell proliferation by depleting extracellular Ado (Zurovec et al., 2002). 

A phylogenetic study demonstrated sequence similarities between ADA, 

ADGF, ADE and AMPD families (Maier et al., 2005) and revealed conserved regions 

among and within these enzyme groups. Plant sequences were not included in this 

study since only one plant gene was available at the time (H. McDermid, personal 

communication). This analysis revealed a new family of ADA-related proteins, 

termed ADA-like enzymes (ADAL). These proteins are closely related to ADAs and 

even though ADAL along with ADGF possess all the required catalytic residues for 

ADA activity, no ADAL member has been shown to process this activity (Maier et al., 

2005). A further characteristic of ADA and ADAL subfamilies is that no signal peptide 

was predicted whereas some of the ADGFs were predicted to have a signal peptide. 

ADALs were identified in several organisms i.e. mammals, insects and bacteria 

(Maier et al., 2005). Recently, ADAL transcripts were shown to be present in 

different tissues of zebrafish, predominantly in kidney and liver (Rosemberg et al., 

2007), although no ADA activity could be detected. The function of ADAL proteins 

remains unknown. The other ADA-related enzymes ADA, ADGF, ADE and AMPD 

are also abundant in mammals, insects and bacteria, suggesting a very fine-tuning 

of Ado/Ade levels in these organisms (Rosemberg et al., 2008).  

The phylogenetic analysis from Maier et al. (2005) revealed that some ADA-

related genes have been incorrectly labelled as classic ADAs. Drosophila 

melanogaster ADA is a member of the ADALs, while some other insect ADAs belong 

in the ADGF subfamily. As stated earlier, the locus At4g04880 of Arabidopsis has 

been computationally annotated as a putative ADA/AMPD. Another part of my thesis 
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research sought to reveal the identity of this locus using a phylogenetic analysis that 

included all available plant sequences.  

1 . 8  C Y T O K I N I N S  

In general, cytokinins stimulate cell division; they are involved in plant growth 

and development such as root proliferation and apical dominance (Werner et al., 

2003); they are highest in abundance in roots and shoots where they exist in the low 

nM concentration (Schmuelling, 2004). CKs are Ade molecules with an N6 side chain 

and occur in different forms such as: the free base; a nucleoside and a nucleotide 

and can be rapidly interconverted between these forms. The structure of the N6 side 

chain classifies CKs as isoprenoid or aromatic; structure and conformation of the 

side chain influences their biological activity (Schmuelling 2004).  

Several enzymes of the plant Ado salvage pathway can catalyze the 

interconversion of CKs, such as Ade phosphorybosyltransferase (Moffatt et al., 

1994) and ADK (von Schwartzenberg et al., 1998). The regulatory mechanism of 

intracellular CK activity involves reversible hydrolysis of the CK ribosides to CK 

bases, which are the most active forms of CKs. This reaction is thought to be 

catalyzed by Ado nucleosidase but a corresponding gene has not yet been identified 

(Hirose et al., 2008). A CK-specific phosphoribohydrolase encoded by the LONELY 

GUY (LOG) genes has been described recently in rice; they convert CK nucleotides 

directly to the corresponding bases (Kurakawa et al., 2007) thus contributing to the 

level of “active” cytokinins in plants.  

1 . 9  A D E N O S I N E  N U C L E O S I D A S E  I N  A R A B I D O P S I S  T H A L I A N A  

As mentioned previously, ADN catalyses the irreversible hydrolysis of Ado to 

Ade and ribose (Enzyme 3 in Figure 1). This enzyme activity has been demonstrated 

in crude extracts or partially purified preparations of several plants but a gene coding 

for ADN has not been identified.  

Inosine-uridine preferring nucleoside hydrolase (IU-NH; EC 3.2.2.1) was first 

identified and geneticly and structurally characterized in protozoan (Gopaul et al., 
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1996). The enzyme catalyzes the hydrolysis of all purine and pyrimidine nucleosides 

into their corresponding ribose and base forms, preferring Ino and Uri as substrates. 

This enzyme is particularly important for parasitic organisms, since they are deficient 

in de novo synthesis of purines and salvage the host’s purine nucleosides. A 

histidine residue has been shown to be important for the catalytic mechanism for this 

enzyme activity, by acting as a proton donor. A highly conserved amino acid 

sequence in the N-terminal region of the enzyme contains four aspartates 

(DXDXXXDD) that are a hallmark of nucleoside hydrolase activity (Versées and 

Steyaert, 2003). 

One aspect of this research involved searching for ADN genes and enzyme 

activity in Arabidopsis. The genome was screened for putative ADNs using a known 

IU-nucleoside hydrolase sequence from Crithidia fasciculata. Candidate genes were 

investigated, their gene products were studied and their role in plant development 

examined using T-DNA insertion lines. 

1 . 1 0  T H E  A R A B I D O P S I S  T H A L I A N A  M U T A N T  C Y M  

The Arabidopsis mutant cym (cytokinin metabolism) was identified in a 

population of plants treated with the chemical mutagen ethyl-methane sulfonate 

(Auer, 1999). The mutant is resistant to CK ribosides and has reduced Ado 

nucleosidase activity based on radiochemical assays of crude plant extracts (Auer, 

1999). Compared to wild-type protein extracts, cym mutant extracts have only 50 % 

activity on isopentenyladenine riboside and 68 % on Ado. CK nucleotides and 

nucleosides accumulated in shoot tissue but in root the CK levels were similar to the 

wild type (Auer, Nordstrom, Sandberg, unpublished data.) The cym mutation was 

reported to be located on chromosome 2 of Arabidopsis based on preliminary 

mapping data (Auer, 2002) but a corresponding gene was never identified (C. Auer, 

personal communication). ADN2 is hypothezised to be the gene for the location of 

the mutation due to its close proximity to the mapped region. ADN2 is annotated as 

an IU-NH (Section 1.9); a mutation in this gene is likely to account for the cym 
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phenotype described above. One part of this research sought to investigate ADN2 

as the gene carrying the cym mutation. 

1 . 1 1  A I M  O F  T H E S I S  R E S E A R C H  

It is evident that organisms may contain several enzymes acting on Ado, 

reflecting the need to maintain strict control over this metabolite. The consequences 

of Ado accumulation are illustrated by the SCID in humans or the pleiotropic 

phenotype of Arabidopsis thaliana mutants. Relatively few of the Ado recycling 

enzyme activities have been characterized in plants. This thesis research sought to 

identify whether two principal Ado metabolizing enzymes, ADN and ADA are present 

in Arabidopsis and if so, what is their functional significance in plant development. 
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C h a p t e r  2  
M AT E R I A L  A N D  M E T H O D S  

2 . 1  C H E M I C A L S  

Chemicals used in this research were ACS grade or of higher quality; they 

were purchased from Sigma-Aldrich, Bioshop or BioBasic unless otherwise 

indicated. 

2 . 2  P L A N T  M A T E R I A L  A N D  P L A N T  G R O W T H  

2 . 2 . 1  P L A N T  M A T E R I A L  

In order to understand the role of ADA and ADN in plant development several 

mutants were used in this research. A. thaliana ecotype Columbia is the genetic 

background of all mutant lines used and was used as control for all the experiments 

outlined. An overview of all mutant plant lines used is provided in Table 2. T-DNA 

insertion lines were obtained from the The Arabidopsis Stock Center (Alonso et al., 

2003); these lines were stable in their morphology and development throughout 

generations. The flanking sequences of the T-DNA insertion were identified and the 

presence of the transgene was verified by PCR analysis. Each was backcrossed 

twice with wild-type Columbia before phenotypic analysis. Lines deficient in ADK 

activity (sADK 9-1) were generated by overexpression of an ADK1 transgene 

(Moffatt et al., 2002). amiADK lines were created by Sanghyun Lee by introduction 

of an artificial micro (ami) RNA construct specific for ADK genes into wild-type 

Arabidopsis. The phenotype of the sADK 9-1 mutants ranged in their severity: the 

plants were not phenotypically uniform due to inconsistent silencing of ADK gene 

expression (Table 2). The more deficient mutants were visually identified and 

selected at 2-3 weeks based on the waviness of their leaves and general size. 
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Phenotypic variations were also observed throughout the progeny of amiADK plants; 

more deficient mutants were selected at 2-3 weeks. 

A heterozygous masp::ADA amiADK transgenic line was also produced. The 

masp::ADA expression construct was created by S. Lee (Moffatt Lab) based on the 

vector pSAT3.masP.MCS.masT (Chung et al., 2005). This construct was introduced 

into the amiADK background described above to test whether it would complement 

ADK deficiency. 

Homozygous cym seeds were provided by Carol Auer (University of 

Connecticut, Department of Plant Science, USA). The phenotypic analysis described 

in this thesis was performed on following plant population: cym #3 planted 

November 26, 1999, seeds collected February 1, 2000. Original cym seeds obtained 

1998 did not germinate and were not available for analysis.  

Table 2 – Overview of mutant plant lines used in this research. 

Gene Locus Plant Line Description Phenotype Marker H1 

sADK 9-1 

ADK1 cDNA in 
sense orientation 
expressed from 
CaMV 35S 
promoter 

wrinkled leaves, 
clustered 
fluorescence, 
reduced primary 
shoot height; 
residual ADK 
activity 16 % 

Kan  

ADK 1 
ADK 2 

At3g09820 
At5g03300 

amiADK 7-7 

artificial miRNA 
expressed from 
CaMV 35S 
promoter; targets 
both ADK 
isoforms 

bushy, small 
shoots, reduced 
rosette width, 
wrinkled leaves; 
residual ADK 
activity 5-7 % 

Bar  

ada 1-1 
T-DNA insert in 8th 
exon of ADA 
SALK _010573 

WT phenotype  -  

ada 1-2 
T-DNA insert in 5th 
exon of ADA 
SALK _144851 

WT phenotype -  

masp::ADA 

ADA cDNA in 
sense orientation 
under control of 
mannopine 
synthase promoter 

WT phenotype  Bar - 

ADA At4g04880 

35S::ADA ADA cDNA in WT phenotype Bar - 
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sense orientation 
under control of 
CaMV 35S 
promoter 

ADN 1 At1g05620 adn 1-1 
T-DNA insert in 6th 
intron of ADN1 
SALK _128723 

WT phenotype -  

ADN 2 At2g36310 adn 2-1 
T-DNA insert in 2nd 
exon of ADN2 
SALK _083120 

WT phenotype  -  

ND2 ND2 cym 
ethylmethane 
sulfonate induced 
mutant 

pale green leaves; 
red stem base, 
fasciation, altered 
phyllotaxy 

-  

 sADK 9-1 
ada 1-1  

double mutant 
obtained by 
genetic cross 

phenotype is more 
severe than 
sADK 9-1 parent; 
residual ADK 
activity reduced 
from 16 to 7 % 

-  

 adn 1 adn 2 
double mutant 
obtained by 
genetic cross 

phenotype like WT 
under long-day 
growth conditions 

-  Double 
mutants 

 sADK 9-1 
35S::ADA 

Double mutant 
obtained by 
introducing 
35S::ADA 
construct into the 
genome of 
sADK 9-1 plants 
via A. tumefaciens 

phenotype like 
WT; no over-
expression of 
ADA; ADK activity 
increased 

Bar - 

1 – Homozygous, 2 – Not defined 

2 . 3  P L A N T I N G  A R A B I D O P S I S  T H A L I A N A  A N D  G R O W T H  C O N D I T I O N S  

Depending on required plant quantity, selection method or experimental 

requirements, seeds were either planted on soil (1500 cm² flats) or germinated on 

Murashige and Skoog (MS) agar plates (15 cm2). MS media was used in half 

strength, containing half the macro- and micronutrients as described by Murashige 

and Skoog (1962) and vitamins (Gamborg et al., 1968). 
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2 . 3 . 1  P L A N T I N G  O N  S O I L  

Seeds from A. thaliana were suspended in 0.1 % (w/v) agar and stored at 4°C 

in the dark for 48 h to allow seed stratification. Flats were filled with a 1:2 soil mix of 

Sunshine LC1 Mix and Sunshine LG3 Germination Mix (SunGro, Canada Ltd). The 

soil was thoroughly wetted at first with warm water followed by cold water and left to 

drain for 5 min. Next, seeds were dispersed on the wet soil using a Pasteur pipette. 

The flats were covered with a transparent lid and transferred to the growth chamber. 

Seeds were germinated and grown under long day conditions with a dark/light cycle 

of 8/16 h (140 µmol•m-2•s-1 photosynthetically active radiation [PAR]) at 18°C/22°C. 

For the short-day growth conditions, plants were maintained in a 16/8 h dark/light 

cycle with the same temperature and light intensity. 

The transparent lid was removed when plants developed their first true 

leaves. Plants were watered until they reached full maturity after approximately 6 

weeks. Watering was stopped when siliques started browning and plants were left to 

dry. 

2 . 3 . 2  P L A N T I N G  O N  M U R A S H I G E  A N D  S K O O G  B A S A L  M E D I A  

Plants were grown on ½ MS medium. The pH was adjusted to 5.7 using 

0.1 M KOH prior addition of 0.8 % (w/v) agar (Sigma) and subsequently autoclaved 

for 30 min at 120 °C. Approximately 25 ml media were poured into sterile Petri 

dishes (15 cm2) and seeds sterilized with chlorine gas (Clough and Bent, 1998) were 

applied to the surface of the solidified media. Plates were stored at 4°C in the dark 

for 48 h to allow seed stratification and subsequently shifted to the growth chamber 

under continuous light, 21 °C and 50 µmol•m-2•s-1 PAR If desired, plants were 

transplanted on soil at two weeks of age and grown to maturity. 
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2 . 4  D N A  A N D  R N A  M E T H O D S  

2 . 4 . 1  G E N O M I C  D N A  E X T R A C T I O N  

The following protocol was used for the isolation of plant genomic DNA 

suitable for PCR analysis (Edwards et al., 1991). DNA was extracted from 

A. thaliana rosette leaves using the following extraction buffer: 200 mM Tris-HCl 

pH 7.5, 250 mM NaCl, 25 mM EDTA and 0.5 % (w/v) sodium dodecyl sulfate (SDS). 

Approximately 10 mg healthy leaf tissue, collected by punching the leaf with 

the microfuge cap, was transferred to a 1.5 ml microfuge tube, prefilled with 50 µl 

extraction buffer. Tissue was macerated with a plastic grinder, 350 µl extraction 

buffer was added and the tube was vortexed for 5 seconds. The sample was 

centrifuged at 15,000 rpm for 5 min and 300 µl of supernatant were transferred to a 

new microfuge tube, prefilled with 300 µl isopropanol. The mixture was inverted and 

incubated at RT for 2 min and then centrifuged for 5 min at 15,000 rpm. The DNA 

pellet was recovered, vacuum-dried and resuspended in 100 µl 10 mM Tris-HCl 

ph 8.5. The DNA was stored at -20 °C. Generally 1 µl of extracted DNA was used for 

a PCR. 

2 . 4 . 2  P L A S M I D  D N A  I S O L A T I O N   

The EZ-10 Spin Column Plasmid DNA Miniprep Kit (Bio Basic) was used for 

the extraction of plasmid DNA from 4 ml overnight (O/N) cultures of E. coli DH5α. 

The procedure was followed as outlined by the manufacturer (BioBasic). All 

solutions used were provided by the manufacturer, all centrifugation steps were 

performed using an Eppendorf bench top centrifuge at 4°C. 

2 . 4 . 3  R N A  E X T R A C T I O N  

RNA was extracted from adn mutant lines and wild type to determine the 

ADN1 and ADN2 transcript abundance in the T-DNA lines. Four to five fully-

expanded rosette leaves of 3 to 4 week-old-plants were ground in liquid nitrogen and 

transferred to an Eppendorf tube prefilled with 1 ml of TriPure Isolation Reagent 
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(Roche). The mixture was vortexed for 10 seconds and incubated at room 

temperature (RT) for at least 5 min. After adding 200 µl of chloroform, the sample 

was vortexed for 15 seconds und incubated at RT for 10 min. Subsequently the 

sample was centrifuged for 15 min at 13,000 g at 4° C. The aqueous phase (500 µl) 

was transferred to a new microfuge tube prefilled with 500 µl isopropanol. The 

contents of the tube were mixed by inversion and incubated at RT for 5 min following 

which the mixture was centrifuged for 10 min at 13,000 g. The RNA pellet was 

washed with 1 ml of 75 % ethanol (prepared in deionized water (dH2O) treated with 

diethylpyrocarbonate (DEPC)) and centrifuged for 5 min at 13,000 g. The air-dried 

pellet was resuspended in 30 µl of DEPC treated dH20 and incubated at 60° C for 10 

min. The average yield was 15 µg. All RNA was stored at -80 °C. 

2 . 4 . 4  C D N A  S Y N T H E S I S  

Two µg of total RNA was treated with DNAse in 10 µl total volume using 

RNase-free H20, 10x Turbo DNase buffer (Ambion), 2 U Turbo DNAse I (Ambion). 

The mixture was incubated for 1 h at 37°C; subsequently DNase inactivation reagent 

(Ambion) was added and incubated for 2 min at RT. The mixture was centrifuged for 

2 min 14,000 g at 4 °C and the supernatant was used subsequently for cDNA 

synthesis. To 10 µl of this RNA solution, 1 µl 100 µM anchor-T-primer (T20G, T20C, 

T20A), 1 µl 10 mM deoxynucleotide triphosphates (dNTPs) were added and 

incubated for 10 min at 70°C. The mixture was transferred to ice after which 4 µl 

5x first strand buffer (Invitrogen), 2 µl 0.1 M DTT (Invitrogen) were added and 

preincubated for 2 min at 42°C. Subsequently 100 U SuperScript II (Invitrogen) were 

added and the reaction mix was incubated for 50 min at 42 °C. The resulting cDNA 

was diluted 1:10 with PCR- H20 (ultrapure H20, autoclaved and UV-light treated) and 

tested for intactness by amplification of the actin cDNA. 

2 . 4 . 5  D N A  A N D  R N A  Q U A N T I F I C A T I O N  

Nucleic acids were quantified using a NanoDrop Spectrometer (Thermo 

Scientific). For measurement 1.5 µl sample was applied to the spectrophotometer. 
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2 . 4 . 6  D N A  S E Q U E N C I N G  A N D  A N A L Y S I S  

Sequencing was performed by the dideoxynucleotide chain termination 

method (Sanger), using sequence-specific primers. DNA samples were prepared in 

the required concentration and volumes and analyzed by TCAG DNA Sequencing 

Facility (Centre for Applied Genomics, Hospital for Sick Children, Toronto, Ontario, 

Canada). Sequences were analysed using SeqMan™II Analysis software 

(DNASTAR, version 5.00). 

2 . 5  C L O N I N G  O F  D N A  C O N S T R U C T S  

2 . 5 . 1  C R E A T I N G  E X P R E S S I O N  V E C T O R  F O R  A D A -
C O M P L E M E N T A T I O N   

The open reading frame (ORF) of the A. thaliana locus At4g04880 was 

amplified from a full-length cDNA clone (U24331, ABRC) using proof-reading Taq 

polymerase (Phusion High-Fidelity DNA Polymerase, Finnzymes). PCR was 

performed as described in Section 2.6.1. PCR primers were designed to insert a 

NdeI-recognition site at 5’-end and a HindIII-recognition site at 3’-end of the ADA 

ORF (primer 17 and 18 in Table 6). Using these recognition sites the ORF was 

ligated into pMAL-c4e (New England Biolabs). Digestion of the vector with NdeI and 

HindIII releases the 1.2 kb maltose-binding protein gene fragment. The resulting 

recombinant plasmid was named pAtADA. In this construct, the expression of ADA 

is controlled by the strong, constitutive Ptac promoter.  

The E. coli Ado deaminase was used as positive control in the 

complementation experiment. The ORF was amplified from genomic DNA of E. coli 

DH5α using proof-reading Taq polymerase. PCR-primers inserted a NdeI-

recognition site at 5’-end and a PstI-recognition site at 3’-end of the add ORF (primer 

15 and 16 in Table 6). Using the restriction enzyme recognition sites the ORF was 

ligated into pMAL-c4e substituting the maltose binding protein gene as described 

above. Since the E. coli strain DH5α is a K12 derivative, the resulting vector was 

named pK12ADA. 
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The vector pMAL-c4e was used as a negative control in the complementation 

experiments; this vector encodes the maltose binding protein (MBP), to simplify the 

nomenclature this plasmid will be named pMBP for this reason. 

2 . 5 . 2  C R E A T I N G  A N  A D N -  E G F P -  F U S I O N  V E C T O R  

The ADN ORFs (ADN 1 and ADN 2) were amplified from cDNA templates 

using proof-reading Taq polymerase (as described above). Primers were designed 

to insert a NcoI-recognition sites at both the 5’-and at 3’-ends of each ADN 

sequences and the stop codon was removed. For ADN1 amplification primer 1 and 2 

from Table 6 and for ADN2 amplification primer 3 and 4 from Table 6 were used. 

Using the NcoI-recognition sites the ORF was ligated into a modified pCambia-3301 

(www.Cambia.org; β-glucuronidase (GUS) gene replaced by a green fluorescent 

protein (GFP) gene by Yong Li (Moffatt Lab); unpublished). The binary vector and 

PCR product were digested with NcoI and their subsequent ligation fused the ADN 

ORFs to the enhanced green fluorescent protein (EGFP). The resulting binary 

vectors were named ADN 1-EGFP and ADN 2-EGFP, respectively. The expression 

of ADN-EGFP fusion proteins from these constructs was controlled by the 

constitutive CaMV 35S promoter. 

2 . 5 . 3  C R E A T I N G  A N  A D N -  2 X G F P -  F U S I O N  V E C T O R  

Both, ADN 1 and ADN 2 ORFs were amplified as described in Section 2.5.1 

using the same primers as described above. Each ORF was inserted into the 

multiple cloning site of a modified pSAT6 vector (Tzfira et al., 2005); EGFP gene 

replaced by two GFP genes by S. Lee (Moffatt Lab)) thereby fusing the double-GFP 

to the N-terminus of ADN. A 82 kd fusion protein of ADN and 2xGFP was created. In 

a second cloning step, the expression cassette of pSAT6-ADN-2xGFP was ligated 

into the binary vector pPZP-RCS2-bar using the homing endonuclease PI-PspI. The 

resulting vector was named pPZP-ADN-2xGFP. The expression of ADN-2xGFP 

fusion-protein was controlled by the constitutive CaMV 35S promoter.  



 

 23 

2 . 5 . 4  C R E A T I N G  A N  A D N -  S T R E P - T A G  -  F U S I O N  V E C T O R  

The ADN ORFs (ADN 1 and ADN 2) were amplified as described in Section 

2.5.1 using a NcoI-recognition site to insert the ORFs into the multiple cloning site of 

pXNS2pat-N1 (C. P. Witte, unpublished). The primer pair 1, 13 (Table 6) was used 

to amplify ADN1 and the primer pair 3, 14 was used for ADN2. The reverse primer 

was designed to introduce the NcoI site without eliminating the stop codon. The 

construction fuses a 21 amino acid long StrepII-tag to the N-terminus of each ADN. 

The resulting vectors were named pADN1-NStrep and ADN2-NStrep, respectively. 

The expression of these ADN-NStrep fusion-proteins was controlled by the 

constitutive CaMV 35S promoter. 

2 . 5 . 5  C R E A T I N G  A N  A D N  1  –  P R O F I N I T Y  E X A C T  F U S I O N  V E C T O R  

The ORF of ADN1 was amplified from a cDNA template using the primer pair 

1,10 (Table 6) introducing a 5’-NcoI recognition site and a 3’-NotI-recognition site. 

The ligation of ADN1 into pPAL7 (BioRad) resulted in a N-terminal fusion to the 

Profinity eXact tag. The resulting vector was named pPAL-ADN1. The expression of 

the fusion protein was controlled by a T7 promoter. Elution of purified recombinant 

protein from the affinity column resulted in a native ADN1 protein with only three 

additional amino acids on the N-terminus. 

2 . 5 . 6  C R E A T I N G  A N  A D N -  H I S T I D I N E - T A G  F U S I O N  V E C T O R  

As described above the ORF of both ADNs (ADN 1 and ADN 2) were 

amplified from a cDNA template. The primers were designed to insert a 5’-NdeI 

recognition site and a 3’-NotI-recognition site on each ADN ORF (for ADN1 primer 9, 

10; for ADN2 primer 11, 12 from Table 6). Using these recognition sites the ORF 

was ligated into the multiple cloning site of pET-28a(+) resulting in an N-terminal 

fusion to a 6xHis tag. The resulting vectors were named pADN1-NHis and pADN2-

NHis, respectively. The expression of these ADN-NHis fusion-proteins was 

controlled by a T7 promoter.  
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Table 3 – Overview of DNA constructs 

Construct Expression 
promoter Affinity tag Tag 

location Use 

ADN1-NHis T7 6 His N-terminal 

ADN2-NHis T7 6 His N-terminal 

Recombinant 
ADN activity 
assay 

ADN1-NStrep T7 Step-tag-II N-terminal 

ADN2-NStrep T7 Step-tag-II N-terminal 

“Native“ ADN 
activity assay 

ADN1-tagless T7 Profinity eXact N-terminal 
Recombinant 
ADN activity 
assay 

ADN 1-EGFP CaMV 35S - N-terminal 

ADN 2-EGFP CaMV 35S - N-terminal 

ADN2-2xGFP CaMV 35S - N-terminal 

Localisation 
experiment 

pK12ADA Ptac - - 

pAtADA Ptac - - 

ADA 
complementation 
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2 . 6  P O L Y M E R A S E  C H A I N  R E A C T I O N  ( P C R )  

2 . 6 . 1  H I G H  F I D E L I T Y  P C R  

For amplification of the ORF of interest from a cDNA template, a proof-

reading Taq-polymerase (Phusion High-Fidelity DNA Polymerase, Finnzymes) was 

used in the following reaction mix and the product was amplified using the cycle 

profile as indicated in Table 5. 

Table 4 – Reaction mix for high fidelity PCR 

Contents Stock Concentration Volume [µl] 
cDNA template 1-10 ng 1 

HF Buffer 5 x 10 

Fw primer 10 µM 2.5 

Rev primer 10 µM 2.5 

dNTPs 10 mM 1.0 

Phusion Polymerase 2 u/µl 0.5 
PCR H2O - 32.5 

 

 

Table 5 – Cycle profile for high fidelity PCR 

Temperature [°C] Time Cycles 
98 30 seconds 1 

98 10 seconds 

55-60*1 20 seconds 

72 20 seconds 
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72 7 min 1 
4 ∞ 1 

*1 Annealing temperature for respective primer see Table 6. For Phusion 

Polymerase an annealing temperature of Tm+3 °C was used. 
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Table 6 – Overview of primer used 

No Primer name Primer sequence Tm 
1 05620 F AACCATGGCGATAGGAGACCGC 58 

2 05620 R AACCATGGTAGACTCCATAAGCCTATCCAT 58 

3 36310 F AACCATGGATTGTGGTATGGAGAAT 58 

4 36310 R AACCATGGTTGGCTTCATCAGCTTTGC 58 

5 128340 LP TCCTCAAACCTGGTTCACATC 58 

6 128340 RP CAGCTTGATCCAGAGTTTTCG 58 

7 083120 LP AGGAGCTGAGAGTTTCAAGGG 58 

8 083120 RP ATGAACTATCGCGTTTGATGG 58 

9 ADN1 FW AAAACATATGGCGATAGGAGACCGC 55 

10 ADN1 RWb AAAGCGGCCGCTTAAGACTCCATAAG 55 

11 ADN2 FW AAAACATATGGATTGTGGTATGGAGAATTG 55 

12 ADN2 RWb AAAAGCGGCCGCTTATGGCTTCATC 55 

13 ADN1 NcoI RW AAACCATGGTTAAGACTCCATAAGCCTATCC 55 

14 ADN2 NcoI RW AAACCATGGTTATGGCTTCATCAGCTTTG 55 

15 ADA-K12 FW AAACATATGATTGATACCACCCTGCC 55 

16 ADA-K12 RW AAACTGCAGTTACTTCGCGGCGAC 55 

17 fwdADApet GGAATTCCATATGGAATGGATACAATCACTGCC
C 60 

18 revADApet CCCAAGCTTCTAAACGT 60 

19 ADN1.2-FW AAAACATATGGCGATATTCGTAGC 55 

20 actin 2F CCGATGGTGAGGATATTCAGCC 58 

21 actin 2R TGTCACGGACAATTTCCCGTTCTGC 58 

22 LBa1 TGGTTCACGTAGTGGGCCATCG 55 
23 LBb1.3 ATTTTGCCGATTTCGGAAC 55 
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2 . 6 . 2  C O L O N Y -  P C R  

In order to identify bacterial cells with a desired plasmid a “colony-PCR” was 

performed. A toothpick of a single colony was used to dilute bacterial cells in a PCR 

microfuge, prefilled with 10µl sterile dH2O; five µl were removed from the microfuge 

tube and spotted onto a new agar plate. The PCR was performed using homemade 

Taq polymerase (Yong Li, Moffatt Lab) and 10x Buffer (500 mM KCl, 100 mM Tris-

HCl, pH 8.3, 15 mM MgSO4, 0.1 % Triton X-100, 0.1 % Tween 20). The PCR was 

performed as described in Table 9. The following PCR mix was used for all 

reactions: 

Table 7 – Reaction mix for colony-PCR 

Contents Stock Concentration Volume [µl] 
Bacterial cell suspension - 5 

Buffer 10 x 2.5 

Fw primer 10 µM 0.5 

Rev primer 10 µM 0.5 

dNTPs 10 mM 0.5 

Enzyme - 1.0 
PCR H2O - 15.0 

 

2 . 6 . 3  A N A L Y T I C A L  P C R  

Plant genotyping was done by PCR using gene-specific primers for the target 

transgenes (see Table 6). Homemade Taq polymerase and 10x Buffer was used as 

described above. Genomic DNA was isolated as described in Section 2.4.1 and 1 µl 

of DNA was used in following PCR mix and product was amplified using the 

indicated cycle profile. 
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Table 8 – Reaction mix for control PCR 

Contents Stock Concentration Volume [µl] 
DNA - 1 

Buffer 10 x 2.5 

Fw primer 10 µM 0.5 

Rev primer 10 µM 0.5 

dNTPs 10 mM 0.5 

Enzyme Mix - 1.0 
PCR H2O - 19.0 

 

 

Table 9 – Cycle profile for control PCR 

Temperature [°C] Time Cycles 
94 4 min 1 

94 15 seconds 

57-60* 20 seconds 

72 1 min per 1kb 
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72 7 min 1 
4 ∞ 1 

* Annealing temperature for respective primer see Table 6 

 

2 . 6 . 4  S E M I - Q U A N T I T A T I V E  R E V E R S E  T R A N S C R I P T I O N  P C R  

The exponential phase of amplification was determined for actin, ADN1, 

ADN2 using wild-type cDNA. A PCR master mix was prepared including wild-type 

cDNA but no primer. The master mix was split into 8 aliquots and primers were 

added individually. Aliquots were removed from the PCR cycler at the indicated 

cycle numbers and resolved by electrophoresis through a 1 % (w/v) agarose gel. 

The PCR products were quantitated using Alpha Innotech software (AlphaEaseFC 



 

 29 

version 6.0.0, SpotDenso Analysis Tool). Cycle number was plotted against the log 

of the intensity value and a straight line indicated the exponential phase of 

amplification. 

Semi-quantitative reverse transcription-PCR (RT-PCR) was performed at the 

determined cycle number (Table 11) for all plant lines. The actin PCR was run 

simultaneously to assure equal cDNA loading for all samples. Equal loading of all 

samples required emperical trial and error adjustment. 

Table 10 – Cycle profile for reverse-transcription PCR. 

Temperature [°C] Time Cycles 
94 2 min 1 

94 15 seconds 

55 20 seconds 

72 1 min 

30*1 

72 7 min 1 
4 ∞ 1 

*1number of cycles see Table 11 

 

Table 11 – Primer pairs and cycle numbers for RT- PCR. 

Primer*2 Gene Cycles for RT-PCR 
Actin 2F/R Actin2 24 

05620 F/R ADN1 30 

ADN1.2 F/05620 R ADN1 32 
36310 F/R ADN2 30 

*2primer sequences are described in Table 6. 

2 . 7  R E S T R I C T I O N  D I G E S T I O N  O F  P C R  P R O D U C T S  A N D  V E C T O R S  

In order to digest double-stranded DNAs for cloning, the restriction 

endonucleases HindIII, NcoI, NdeI and PstI (Fermentas) were used. These enzymes 

generate sticky-end DNA fragments of four nucleotides. For cloning the ADN ORF 
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from pSAT6-2xGFP into pPZP-RCS2-bar the homing endonuclease PI-PspI was 

used. This enzyme does not have a stringently defined recognition sequence (New 

England Biolabs). All restriction digests were performed in the recommended 

buffers. A preparative digest was performed in a 100 µl volume with 1 µg DNA, 1 u 

of enzyme and incubated at recommended temperature for at least two hours. An 

analytical digest was performed in a 20 µl volume with approximately 300 ng 

Miniprep-DNA and 0.5 u enzyme incubated at recommended temperature for 1 h. 

2 . 8  A G A R O S E  G E L  E L E C T R O P H O R E S I S  

DNA fragments were separated using 1.0 % (w/v) agarose gels in 1x Tris-

acetate-EDTA buffer (1 L of 10x buffer contains: 48.4 g Tris-base, 11.4 ml glacial 

acetic acid, 9.3 g EDTA). Ethidium bromide was added to the gel to a final 

concentration of 10 µg/µl. For loading, samples were mixed with 5x glycerol-dye-

EDTA loading buffer (5 ml glycerol, 3.3 ml 0.2 M EDTA, 0.85 ml 1 % (w/v) 

bromophenol blue, 0.85 ml xylene cyanol). DNA was separated at 80-100 V for 20 to 

40 min. Ethidium bromide (fluorescent dye) intercalated in the DNA and the 

detection of DNA was performed using a UV transilluminator. 

2 . 9  P U R I F I C A T I O N  O F  D N A  F R A G M E N T S  F R O M  A G A R O S E  G E L  

In order to purify a DNA fragment from an ethidium bromide-stained agarose 

gel the QIAquick Gel Extraction Kit (Qiagen) was used. The procedure was followed 

as outlined by the manufacturer. All solutions used were provided from Qiagen, all 

centrifugation steps were performed using an Eppendorf bench top centrifuge at 

4°C. 

2 . 1 0   D N A  D E P H O S P H O R Y L A T I O N  A N D  L I G A T I O N  

To increase ligation efficiency terminal phosphate groups were removed from 

5’-end of the restricted vector DNA using Alkaline Phosphatase (Roche). This step 

was performed using an enzyme isolated from northern shrimps (Pandalus borealis) 
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since a complete and irreversible heat inactivation at 65°C was feasible. The 

reaction was performed following the instructions of the manufacturer. 

In order to ligate DNA fragments the NEB Quick ligation kit was used for 

10 min ligation step. Enzymatic reactions were performed as outlined by the 

manufacturer. 

2 . 1 1  P L A N T  A N D  B A C T E R I A L  C E L L  T R A N S F O R M A T I O N  

2 . 1 1 . 1  P R E P A R A T I O N  O F  H E A T - S H O C K  C O M P E T E N T  E .  C O L I  

This protocol is an adaptation of procedure described in Hanahan (1985); it 

was used to prepare heat-shock competent E. coli DH5α, BL21(DE3), BL21-

CodonPlus(DE3)-RIPL (Novagen) and SØ3834 (Chang et al., 1991). The cells were 

stored at -80°C for up to one year without losing their high transformation efficiency. 

The following steps were performed: (1) cells were grown O/N in 5 ml Luria-Bertani 

(LB) media (10 g tryptone, 5 g yeast extract, 5 g NaCl per litre H20) at 37°C with 

shaking at 220 rpm; (2) 2 ml of the O/N culture was added to 100 ml LB-medium and 

incubated at 37°C, with shaking; (3) when the culture reached the optical density at 

600 nm (OD600) of 0.4-0.6 the cells were harvested in pre-chilled tubes by 

centrifugation at 3000 g for 5 min at 4 °C; (4) the pellet was gently resuspended in 

0.4 V of ice-cold sterile Tfb I (30 mM KOAc, 100 mM RbCl, 10 mM CaCl2, 50 mM 

MnCl2, 15 % glycerol, pH 5.8) and incubated on ice for 5 min followed by 

centrifugation at 3000 g for 5 min at 4°C; (5) the pellet was gently resuspended in 

0.04 V ice-cold Tfb II (10 mM MOPS, 75 mM CaCl2, 10 mM RbCl, 15 % glycerol, 

pH 6.5) and incubated on ice for 15 min; (6) the cells were aliquoted (100 µl) into 

prechilled microfuge tubes on dry ice and stored at -80 °C.  

2 . 1 1 . 2  H E A T - S H O C K  T R A N S F O R M A T I O N  O F  B A C T E R I A L  C E L L S  

For the introduction of purified plasmid DNA or ligation products into bacterial 

cells, heat-shock competent cells were used. Aliquots of competent cells were 

removed from -80°C and placed on ice for thawing. To 50 µl competent cells 80 ng 
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of plasmid DNA or 5 µl of ligation mix were pipetted, mixed and incubated on ice for 

20 min. Subsequently cells were incubated at 42 °C for 45 seconds and quickly 

chilled on ice for 2 min. LB-media (500 µl) was added to the cells and incubated for 

1 h at 37°C, 220 rpm. Cells were spin down at 8000 g for 1 min, resuspended in 

approximately 100 µl LB and transferred to agar plates supplemented with 

appropriate antibiotic and grown O/N at 37°C. 

2 . 1 1 . 3  T R A N S F O R M A T I O N  O F  A R A B I D O P S I S  T H A L I A N A  U S I N G  

A G R O B A C T E R I U M  T U M E F A C I E N S  ( F L O R A L  D I P  M E T H O D )  

Plant transformation was performed using a modified method described by 

Clough and Bent (1998). Young, healthy plants of about 4-weeks-old containing a 

large number of immature floral buds and only few developed siliques were used for 

this method. Agrobacterium tumefaciens strain GV3101 carrying the binary plasmid 

of interest was grown in a LB media at 28°C, 220 rpm. The medium was 

supplemented with gentamycin (25 µg/ ml), rifamycin (25 µg/ ml) and the suitable 

antibiotic for selection of the binary plasmid of interest. A liquid culture (200 ml) was 

started by inoculation with 1 ml of a saturated O/N culture and grown for 15-20 h at 

28°C. Cells were harvested by centrifugation at 5,500 rpm for 10 min at 4°C and 

resuspended in dipping medium (5 % (w/v) sucrose, 0.05 % Silwet L-77) to a final 

OD600 of 0.8. The inoculation solution was added to a sterilized aluminium tray, 

plants were inverted, and above-ground tissue was moistened with solution by 

gentle agitation for 2-3 seconds. Dipped plants were placed under a plastic dome 

and left in low light conditions for 24 h before being returned to the growth chamber. 

Plants were watered and grown until siliques were fully developed. Seeds were 

harvested from mature brown dry siliques and selected for positive transformants as 

described in the following section. 
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2 . 1 1 . 4  G L U F O S I N A T E  A M M O N I U M  ( B A S T A )  S E L E C T I O N  O F  

A R A B I D O P S I S  T H A L I A N A  

All binary constructs used in this research carry the bar gene of Streptomyces 

hygroscopicus, which encodes phosphinothricin acyl transferase; plants expressing 

this enzyme are able to inactivate glufosinate ammonium and can grow in presence 

of the herbicide (40 mg/ L). Seeds of putative transformed plants were planted on 

soil as described in Section 2.3.1. Following the development of the first true leaves 

the treatment with an herbicide was started. A 0.067 % solution of herbicide 

(“WipeOut”, Wilson Laboratories, Ontario) was sprayed on plants daily, for one 

week. Within 48 h sensitive plants showed yellowing of leaves and died within 7 

days. Positive transformed plants tolerant to the herbicide were grown to maturity. 

2 . 1 1 . 5  A G R O - I N F I L T R A T I O N  

This procedure was used for transient expression of GFP-fused proteins in 

leaves of tobacco Nicotiana benthamiana. Infiltration of tobacco Nicotiana 

benthamiana was performed using a 3-week-old seedlings (4-leaf stage). 

Agrobacterium tumefaciens strain GV3101 carrying the binary plasmid of interest 

was grown in LB at 28°C, 220 rpm, supplemented with gentamycin (25 µg/ ml), 

rifamycin (25 µg/ ml) and the suitable antibiotic for selection of the binary plasmid. A 

50 ml liquid culture was started by inoculation with 0.5 ml of an saturated O/N culture 

and supplemented with 20 µM acetosyringone (Fluka) and grown for 15-20 h. Cells 

were harvested by centrifugation at 5,500 rpm for 10 min at 4°C. In addition a culture 

of Agrobacterium tumefaciens carrying a plasmid encoding the p19 protein of the 

Tomato bushy stunt virus was grown as described above using kanamycin 

(50 µg/ ml), tetracycline (5 µg/ ml) and rifamycin (25 µg/ ml) in the media. Both 

strains were combined in one centrifuge bottle and harvested as described above. 

The volume of each culture harvested was determined so that the cells could be 

resuspended in infiltration medium (10 mM MgCl2, 10 mM MES, pH 7.5, 100 µM 

acetosyringone) resulting in a final OD600 of 1.0 for the strain carrying P19 and 0.5 
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for the second strain used. The resuspended cells were incubated at RT for 2 h. 

Infiltration was performed using a 3 ml syringe without needle. The syringe was 

pressed on the underside of the leaf while a simultaneous counterpressure was 

applied to the other side and the infiltration solution was injected into the airspaces 

of the leaf. Plants were left under low light conditions for 24 h before being returned 

to the growth chamber. The expression of GFP was monitored 3-7 days after 

infiltration under a confocal laser scanning microscope. The upper side of the leaves 

were examined for fluorescence, which lasted about three to four days. The co-

infiltration of p19 enhanced the transient expression of the target protein (Voinnet et 

al., 2003). 

2 . 1 2  A C T I V I T Y  A S S A Y S  

2 . 1 2 . 1  D E T E C T I O N  O F  A D K  A C T I V I T Y  

2 . 1 2 . 1 . 1  E X T R A C T I O N  O F  P L A N T  P R O T E I N S  

In order to extract proteins from rosette leaves 100 mg tissue was collected, 

placed in a pre-chilled conical glass homogenizer and 200 µl Super Buffer (5 mM 

DTT, 50 mM HEPES, pH 7.2, 1 mM EDTA, pH 8.0, 50 mM citric acid, pH 4.2, 10 mM 

boric acid, pH 6, 20 mM sodium-metabisulfate, 4 % (w/v) polyvinylpolypyrolidone 

(Bio Basic #9003-39-8; MW 40,000) were added. The tissue was ground thoroughly. 

This crude extract was centrifuged two times, for 2 min each time, at 14,000 rpm at 

4 °C. Subsequently small molecules including purines, nucleosides and nucleotides 

were removed from the cleared crude extract using gel filtration. The filtration 

column was prepared by adding 1.2 ml of swollen Sephadex G25 (in 50 mM HEPES 

buffer, pH 7.2) to a 1.5 ml microfuge tube with a partially pierced bottom (performed 

with 20 gauge needle). “Microfuge columns” were placed in 13x100 mm glass test 

tubes and the excess buffer was removed by centrifugation at maximum speed in a 

tabletop centrifuge (IEC Model HN-S) for 15 seconds (no brake) at RT. The column 

was transferred to a new test tube and 150 µL of crude extract was applied and was 
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spun for 15 seconds. The eluate was collected in microfuge tubes and stored at 

4 °C. Protein extracts were used for analysis the same day or were stored at -20 °C 

with 20 % glycerol. 

2 . 1 2 . 1 . 2  M E A S U R E M E N T  O F  P R O T E I N  C O N C E N T R A T I O N  

The assay of ADK activity requires a specific protein concentration range it 

was necessary to determine the protein concentration of the crude leaf extracts. This 

was determined using the BioRad protein assay reagent following the 

manufacturer’s instructions. Glycerol (final concentration 10 %) was added to the 

sample prior to the protein concentration measurement, Bio-Rad Protein Assay Dye 

Reagent was used in a 1:4 dilution. A protein standard curve was prepared using a 

concentration of 2 to 10 µg/ ml bovine serum albumin, in duplicates. The protein 

samples were assayed in duplicates as well, typically in a 1:500 dilution. The 

absorbance of samples and standards was measured at 595 nm, after 5 min 

incubation at RT. The bovine serum albumin standard slope was used to determine 

the concentration of the samples. Subsequently the protein concentration of each 

sample was adjusted to 0.1mg/ ml using Super buffer. 

2 . 1 2 . 1 . 3  [ 3 H ]  – A D K  A S S A Y  

The ADK assay measures the conversion of radioactive [2,8-3H] Ado to 

Ado monophosphate (AMP) (Moffatt et al., 2000). The assays of ADK activity were 

performed using desalted crude protein extracts prepared as described in Section 

2.12.1.1. The reaction took place in a 30°C waterbath for 5 min and was stopped 

with 1 mL of ice-cold stop buffer (0.05 M NaOAc, 2.0 mM K2HPO4, pH 5.0). AMP 

was precipitated using ice-cold 0.5 M LaCl3. The precipitate was collected by 

vacuum filtration through a glass fiber filter with a pore size of 1.2 µm. The filter was 

immersed in Cytoscint (MP Biomedicals) and radioactivity was quantified by liquid 

scintillation counting (Beckmann LS 1701). 
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2 . 1 2 . 2  D E T E C T I O N  O F  A D N  A C T I V I T Y  

Nucleoside hydrolases catalyse the irreversible hydrolysis of nucleosides to 

their corresponding base and ribose. Two different enzyme assays were used to 

quantitate nucleoside hydrolase activity. The spectrophotemetric assay followed the 

decrease in absorbance of the substrate provided whereas the colorimetric assay 

measured the formation of the ribose product. The first assay was used to determine 

the kinetic parameters of the enzymatic reaction whereas the second assay was 

used to verify the mode of reaction performed by the enzyme. 

2 . 1 2 . 2 . 1  S P E C T R O P H O T O M E T R I C  A S S A Y  

The 1 ml reaction mixture contained the nucleoside at the desired 

concentration in 50 mM Hepes, pH 7.2. The reaction was initiated by adding the 

enzyme (5 to 10 µg) and the increase or decrease in absorbance was recorded at 

the appropriate wavelength (Table 12). The conversion of a 1 mM solution of 

nucleoside resulted in a change in absorbance as outlined in Table 12. The molar 

extinction coefficient was used to determine the activity of the enzyme. The specific 

activity for uridine is calculated as following: 
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where ∆A280nm is the delta absorbance per minute at 280 nm wavelength, ∆ε280nm is 

the delta millimolar extinction coefficient for uridine at 280 nm and [E] is the enzyme 

concentration in milligram.  

To determine the temperature and pH profile of ADN 2 Uri was used as 

substrate. For the temperature profile the reaction mix as described above was 

used. Following buffer systems were used to cover the pH range of 3.5 to 9.5: 

50 mM acetate, 50 mM MES, 50mM Tris-HCl, adjusted to the desired pH with HCl or 

NaOH. The molar extinction coefficient is not a linear function of the pH and does 
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vary over a pH range (Parkin et al., 1991). The molar extinction coefficient for each 

pH was not determined in this research.  

Table 12 – Wavelength and delta millimolar extinction coefficient for substrates used in the 
spectrophotometric assay.  

Substrate λ [nm] ∆ε* [mM-1cm-1] Reference 

Adenosine 276 -1.4 (Parkin, 1996) 

Cytidine 280 3.42 (Liang et al., 2008) 

Guanosine 308 0.16 (Parkin, 1996) 

Inosine 280 -0.92 (Parkin et al., 1991) 

Thymidine 265 -1.7 (Hansen and Dandanell, 2005) 

Uridine 280 -1.8 (Hansen and Dandanell, 2005) 

*∆ε = delta millimolar extinction coefficient 

2 . 1 2 . 2 . 2  C O L O R I M E T R I C  A S S A Y  

Nucleoside hydrolase activity was determined by monitoring the formation of 

a reducing sugar at 37 °C from a 1 mM substrate in 50 mM Hepes, pH 7.2. The 

assay volume was 1 ml. After 20 min incubation the reaction was stopped by the 

addition of 0.3 ml termination reagent (4 % (w/v) Na2C03, 1.6 % (w/v) glycine, 

0.045 %(w/v) CuS04) followed by 0.3 ml of 0.12 % (w/v) neocuproine (Fluka). 

Subsequently, the colour was developed at 95°C for 10 min and the absorbance was 

measured at 450 nm. A ribose standard curve was used to determine the sample 

concentration. 
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2 . 1 2 . 3  D E T E C T I O N  O F  A D A  A C T I V I T Y  

2 . 1 2 . 3 . 1  C O L O R I M E T R I C  A S S A Y  

The enzymatic activity of SAHH was assayed spectrophotometrically in the 

hydrolytic direction using S-adenosylhomocysteine (SAH) as a substrate (Wolfson et 

al., 1986); Ado and L-homocysteine (Hcy) are the products of this reaction. The 

conversion of 5, 5-dithiobis(2-nitrobenzoic acid) (DTNB or Ellman’s reagent) to 

2-nitro-5-thiobenzoic acid (TNB) by Hcy is measured at 412 nm and 30°C. The 

extinction coefficient of 13,600M-1 cm-1 for TNB is used to calculate the amount of 

L-homocysteine formed. The addition of ADA (Roche) ensured that the reaction 

catalyzed by SAHH proceeded in the hydrolytic direction. Two blanks were 

conducted: (1) contained all components except SAHH enzyme, (2) contained all 

components including SAHH, except the ADA enzyme. This assay was used to test 

the activity of the plant ADA by substituting the commercial enzyme. 

Plant enzyme was obtained by recombinant expression of the At4g04880 

ORF in E. coli BL21-CodonPlus(DE3)-RIPL (Stratagen) as described in Section 

2.14. A 6x histidine-tag was fused to the C-terminus of the ORF and was used as a 

source of the recombinant plant enzyme. This expression vector (p778) was 

constructed by Sherri Fry (Moffatt Lab). 

2 . 1 2 . 3 . 2  S P E C T R O P H O T O M E T R I C  A S S A Y  

The 1 ml reaction mixture contained Ado at the desired concentration in 

50 mM Tris-HCl, pH 7.2 and 37 °C. The reaction was initiated by adding 

recombinant plant ADA (source see Section 2.12.3.1) and decrease in absorbance 

was recorded at 265 nm due to conversion of Ado to Ino. The conversion of a 1 mM 

Ado resulted in a -8.4 change in absorbance (Kaplan, 1955). This molar extinction 

coefficient was used to determine the activity of the enzyme: 
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where ∆A265nm is the delta absorbance per minute at 265 nm wavelength and ∆ε265nm 

is the delta millimolar extinction coefficient for adenosine at 265 nm. 

Alternatively, the ADA activity was monitored at 240 nm wavelength detecting 

the increase of Ino concentration. The enzyme activity was determined using the 

delta molar extinction coefficient of 7.2 mM-1 cm-1 (Pospisilova et al., 2008). 

The enzyme assay described above was also used to determine the ADA 

activity in E. coli crude extracts. E. coli harbouring the constructs for ADA 

complementation (see Section 2.5.1) was grown in 10 ml 2xYT medium containing 

appropriate antibiotics and supplemented with 100 µM IPTG or no IPTG. After 

growing O/N at 37 °C, cells were pelleted and resuspended in 200 ul buffer [10 mM 

Tris pH 8.2, 50 µM EDTA, 2 mM CaCl2]. The cells were lysed by sonication, cell 

debris was removed by centrifugation and supernatant was collected. The total 

protein content was determined using Bradford. The ADA activity assay was initiated 

by adding 2 µg total protein to the reaction mixture described above. 

2 . 1 2 . 3 . 3  A D A  C O M P L E M E N T A T I O N  I N  S Ø 3 8 3 4  

The construction of the vectors used in this experiment was described in 

Section 2.5.1. The vectors were transformed into SØ3834 using the heat shock 

method (see Section 2.11.2). Positive transformants were selected on LB plates 

supplemented with 50 µg/ml ampicilin; in addition, the mutant strain SØ3834 carried 

tetracycline (5 µg/ml) resistance. The protein expression was under the control of the 

tac-promoter, a strong but leaky E. coli hybrid promoter (de Boer et al., 1983). A 

starter culture was inoculated with a single colony recovered from selective media 

and grown O/N at 37°C and 200-220 rpm in LB with appropriate antibiotic. Culture 
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tubes (18 x 150 mm) containing 10 ml of minimal medium [contained per L: 13.6 g 

KH2PO4, 2 g (NH4)2SO4, FeSO4 pH 7.2, 50 mg methionine, 2 ml glycerol, 0.2 g 

MgSO4, 0.01 g CaCl2, 1 mg thiamine] supplemented with 20 mg/L DAP and 

appropriate antibiotic were inoculated with 10 µl of the O/N culture. IPTG was added 

to the culture tubes of a concentration between 0 mM and 5 mM and grown O/N at 

37°C, 175 rpm. After O/N incubation, the growth of each culture was estimated by 

measuring the OD600. 

2 . 1 3  M E A S U R E M E N T  O F  A D A  A N D  A D N  A B U N D A N C E  I N  P L A N T S  

2 . 1 3 . 1  I M M U N O B L O T   

Proteins were extracted as described in Section 2.12.1.1 using 50 mM 

HEPES, pH 7.2 in a 1:2 ratio tissue vs. buffer. Typically, 150 mg rosette leaf tissue 

was used for each extraction. Cleared supernatant was used for protein 

determination using the Bradford method (see Section 2.12.1.2). Each sample was 

mixed 1:5 with 5x SDS loading buffer [60 mM Tris-HCl, pH 6.8, 25 % glycerol, 2 % 

(w/v) SDS, 0.1 % (w/v) bromophenol blue, 5 % 2-mercaptoethanol], boiled for 5 min 

at 95 °C and 20 µg total protein was loaded per lane along with prestained protein 

marker (low MW range; Fermentas). The samples were applied to a 1.5 mm thick 

SDS polyacrylamide gel consisting of 5 % stacking, 12.5 % separating prepared with 

a 10 well comb. The samples were electrophoresed in 1x SDS running buffer 

[25 mM Tris base, pH 8.3, 192 mM glycine, 0.1 % (w/v) SDS] at 80 V for 20 min 

followed by 120 V. Samples were run depending on desired separation grade. 

Prior to the transfer of the proteins onto a polyvinylidene difluoride (PVDF) 

western blotting membrane (Roche) the gel was soaked in Bjerrum and Schafer-

Neilson transfer buffer (48 mM Tris, 38 mM glycine, 20 % methanol, 0.0375 % (w/v) 

SDS) two times for 15 min. Proteins were transferred using a BioRad Semi-dry 

Transblotter following the manufacturer’s instructions. Transfer was performed at a 

constant voltage of 20V for 45 min. Once the transfer was completed, the membrane 

was stained temporarily with 0.2 % (w/v) Ponceau S prepared in 3 % trichloroacetic 
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acid for 2 min to verify equal loading of samples and successful transfer. After 

obtaining an image of the Ponceau-stained membrane the colour was washed off 

using PBS-T (1 % (w/v) dry milk powder, 0.3 % Tween 20 in phosphate-buffered 

saline (PBS) (1 L PBS contained: 8 g NaCl, 0.2 g KCl, 1.44 g Na2HPO4, 0.24 g 

KH2PO4, pH to 7.4). Subsequently the membrane was blocked for 30 seconds with 

polyvinyl alcohol (0.1 % (w/v) PVA; Sigma P8136; MW 30-70 000) and quickly 

washed in dH20 followed by 5 min in PBS-T. Next, the membrane was incubated 

with the desired primary antibody in PBS-T at the appropriate dilution (Table 13) for 

2 h at RT, with gentle shaking.  

Table 13 – List of antibodies used in this research. 

Antibody Raised in Raised 
against Grade Dilution factor 

ADA# Rabbit ADA* Crude serum 500 

ADN# Rabbit ADN 2* Crude serum 500 

SAHH Rabbit SAHH 1* Crude serum 3,000 

ADK Rabbit ADK 1* Affinity purified 5,000 
Anti-Rabbit-IgG 
Peroxidase 
conjugated+ 

Goat - Affinity purified 10,000 

+Jackson ImmunoResearch Laboratories; *full length cDNA from Arabidopsis 

thaliana was expressed in E. coli and affinity purified prior application in antibody 

production; # produced in this research 

 

Membranes were washed 3x in PBS-T for 10 min each and subsequently 

incubated in secondary antibody for 1 hr at RT, with gentle shaking. Membrane was 

washed 3x in PBS-T for 10 min before developed using enhanced 

chemiluminescence detection [100 mM Tris-HCl pH 8.8, 1.25 mM luminol, 2 mM 

4-iodophenylboronic acid, 5.3 mM hydrogenperoxide] (Haan and Behrmann, 2007). 

Chemiluminescence was detected using the DNR BIS303PC Bio-Imaging System 

(version 3.0.3).  
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2 . 1 4  L A R G E - S C A L E  P R O T E I N  E X P R E S S I O N  

All expression vectors used in this thesis were dependent on 

T7 RNA polymerase expression. For high-level protein production the desired 

plasmid was transformed in BL21(DE3) or BL21-CodonPlus(DE3)-RIPL cells 

(Stratagene). A starter culture was inoculated with a single colony recovered from 

selective media, in LB with appropriate antibiotic and grown O/N at 37°C and 200-

220 rpm. The large-scale culture [2xYT media [16 g Tryptone, 10 g Yeast Extract, 

5 g NaCl, pH 7.0] supplemented with 0.6 % glycerol and appropriate antibiotic] was 

inoculated with 1/100th of the O/N culture and grown in a 1L baffled flask at 37°C, at 

175 rpm. When an OD600 of 1.0 was reached the culture was shifted to RT and 

grown for 1 h, by which cells typically reached an OD600 of 1.5 to 2.0. Subsequently 

expression was induced by the addition of 100 µM IPTG and growth was continued 

at RT for 15 to 20 h at 180 rpm. Cells were harvested by centrifugation at 3000 g for 

10 min at 4 °C using an Eppendorf tabletop centrifuge. Cell pellets were stored at 

-20 °C until purification. 

2 . 1 5  P R O T E I N  P U R I F I C A T I O N  U S I N G  A F F I N I T Y  C H R O M A T O G R A P H Y  

2 . 1 5 . 1  P U R I F I C A T I O N  O F  R E C O M B I N A N T  P R O T E I N  F R O M  E .  C O L I  

All purification steps were carried out at 4 °C. Cell pellets were thawed and 

resuspended in one volume of lysis buffer (Table 14) per one gram of cell pellet. Cell 

lysis was preceded by 40 seconds sonication (power level 5, 12 watts, Sonic 

Dismembrator 100, Fisher Scientific) on ice followed by a 20 second break; each 

cycle was repeated 5 times. Cell debris and insoluble material was removed by 

centrifugation at 12,000 g for 20 min. Subsequently the supernatant was filtered 

through a 0.45 µm filter (Millipore). The supernatant was passed through the 

appropriate affinity column using gravity flow. Wash and elution steps were carried 

out as outlined by the manufacturer; see Table 14 for details. Samples were taken at 

each step to monitor the success of the purification. Samples were mixed 1:5 with 

5x SDS loading buffer [60 mM Tris-HCl, pH 6.8, 25 % glycerol, 2 % (w/v) SDS, 
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0.1 % (w/v) bromophenol blue, 5 % 2-mercaptoethanol] and boiled at 95 °C for 5 

min. Approximately 50 µl cell debris obtained after sonication and centrifugation as 

described above was mixed with 50 µl 5x SDS loading buffer and 25 µl 1x SDS 

running buffer [25 mM Tris base, pH 8.3, 192 mM glycine, 0.1 % (w/v) SDS] and 

boiled for 30 min at 95 °C. All samples were separated by migration through a 

12.5 % SDS-polyacrylamide gel at 200 V until the dye reached the end of the gel. 

Fractions with purified protein were identified, pooled and dialysed against 50 mM 

HEPES, pH 7.2. The average volume of 4 ml protein solution was dialysed against 

1 L buffer for 2 hour and fresh 1 L buffer O/N. Protein concentration was determined 

using the Bradford assay (see Section 2.12.1.2). Protein was stored at -80 °C after 

adding 10 % glycerol. The ADN2 protein was also lyophilized and stored at 4°C; the 

protein was still active after 6 month of storage. 
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Table 14 – Composition of buffers used for affinity purification. 

Ni-NTA His bind resin (Novagen) Usage 

2x lysis buffer 0.04 mM Tris, pH 7.9, 1 M NaCl, 10 mM 
imidazole, 1 mg/ml lysozyme 

1 ml per mg cell 
pellet 

Binding buffer 0.02 mM Tris, pH 7.9, 0.5 M NaCl, 5 mM 
imidazole 

10 column 
volumes (CV) 

Wash buffer 0.02 mM Tris, pH 7.9, 0.5 M NaCl, 
30 mM imidazole 5 CV 

Elution buffer 0.02 mM Tris, pH 7.9, 0.5 M NaCl, 
250 mM imidazole 5x 1ml 

Profinity eXact resin (BioRad) Usage 

Lysis buffer and 
Wash buffer 0.1 M sodium phosphate, pH 7.2 1 ml per mg cell 

pellet 

Elution buffer 0.1 M sodium phosphate, pH 7.2, 0.1 M 
sodium fluoride 3x 1ml 

Strep tactin superflow agarose (Novagen) Usage 

Extraction buffer 

100 mM Tris, pH 8.0, 150 mM NaCl, 
1 mM EDTA, 10 mM DTT, 0.5 % Triton-
X-100, 10 ug/ml avidin, 1 mM PMSF, 
1 protease inhibitor tablet 

2 ml per 
mg tissue 

Wash buffer 
100 mM Tris, pH 8.0, 150 mM NaCl, 
1 mM EDTA, 2 mM DTT, 0.05 % Triton-
X-100 

20 CV 

Elution buffer 
100 mM Tris, pH 8.0, 150 mM NaCl, 
1 mM EDTA, 2 mM DTT, 0.05 % Triton-
X-100, 2.5 mM desthiobiotin 

4 CV 

 

2 . 1 5 . 2  P U R I F I C A T I O N  O F  “ N A T I V E “  A D N  P R O T E I N  

Arabidopsis rosette leaf tissue (750 mg) was ground in liquid nitrogen and 

transferred in a 2.0 ml microfuge tube prefilled with extraction buffer (see Table 14). 

The mixture was vortexed 20 seconds and centrifuged for 15 min at 4°C and 
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20,000x g in an Eppendorf table top centrifuge. The supernatant was transferred into 

a new centrifuge tube prefilled with 50 µl Strep-Tactin Superflow Agarose 

(Novagen). The mixture was incubated by rotating for 30 min at 4°C and 

subsequently centrifuged for 20 s at 700x g. The beads were washed 3x with 1 ml 

wash-buffer (Table 14) each time. Bound protein was eluted with 2x 200 µl elution 

buffer (Table 14). Samples were analyzed by electrophoresis through a 12.5 % SDS 

gel as described in Section 2.15.1. Positive fractions were pooled and dialysed 

against 50 mM HEPES, pH 7.2 as described in Section 2.15.1. For activity assays, 

protein from a fresh preparation was used only or the protein was stored at 4 °C for 

a maximum of 3 days. For western blot analysis, protein was stored at -20 °C. 

2 . 1 6  S U B C E L L U L A R  L O C A L I Z A T I O N  O F  A D N  

Leaves of tobacco Nicotiana benthamiana were placed on a microscope slide 

and fixed lightly on the bottom with a drop of dH2O. The tissue was viewed using a 

Zeiss LSM 510 Meta Confocal microscope. Samples were excited at 488 nm and 

emission was detected at 509 nm for EGFP and 650 nm for chlorophyll 

autofluorescence. 

2 . 1 7  G E N E  D I S C O V E R Y ,  S E Q U E N C E  C O L L E C T I O N  A N D  

C H A R A C T E R I Z A T I O N  

The Basic Local Alignment Search Tool (BLAST) version 2.0 on the National 

Center for Biotechnology Information (NCBI) server 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi) was used to screen the genome of 

Arabidopsis thaliana for putative ADNs. Screens using the amino acid sequence of 

Crithidia fasciculata as query were performed using the “Arabidopsis thaliana 

RefSeq protein” database. Putative nucleoside hydrolase identity was verified using 

visual analysis of their alignments and the presence of the aspartic motif 

(DXDXXXDD) (1.9). 
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Nucleotide and amino acid sequence of Arabidopsis thaliana proteins ADN 1, 

ADN 2 and ADA were retrieved from the TAIR webpage 

(http://www.arabidopsis.org/). 

The amino acid sequence similarity between different proteins was analyzed 

using NCBI “BLAST 2 sequences” (http://blast.ncbi.nlm.nih.gov/bl2seq/wblast2.cgi). 

The Conserved Domain Architecture Retrieval Tool (CDART) from NCBI 

(http://www.ncbi.nlm.nih.gov/Structure/lexington/lexington.cgi) was used to identify 

conserved domains in proteins of interest. 

The NetPhos software (http://www.cbs.dtu.dk/services/NetPhos/) was used to 

predict phosphorylation sites on serine, threonine or tyrosine residues of ADN1 or 

ADN2. 

The AtProteome database (http://fgcz-atproteome.unizh.ch/index.php) was 

used to identify the proteome map for ADN1 and ADN2. Proteins in the database 

were identified using mass spectrometry in different organs of Arabidopsis; proteins 

were displayed with the number of distinct peptides with which the protein was 

identified and whether or not these peptides contained post-translational 

modifications (Baerenfaller et al., 2008) 

AtGenExpress Visualization Tool (http://jsp.weigelworld.org/expviz/expviz.jsp) 

was used to obtain transcript abundance information for ADN1 and ADN2 using 

existing microarray data. 

2 . 1 8  M U L T I P L E  A L I G N M E N T  A N D  P H Y L O G E N E T I C  A N A L Y S I S  

The identification of ADA-related amino acid sequences was performed in 

NCBI Blast searches of GenBank restricted to eukaryotic taxa, using the AtADA 

protein as query. The annotation of the received sequences were manually 

reviewed; proteins without annotations were excluded from the analysis. The 

alignment was performed using ClustalW program provided on the European 

Bioinformatics Institute (EBI) server (http://www.ebi.ac.uk/). A phylogenetic tree was 

constructed according to Neighbor-Joining method (Saitou and Nei, 1987) using 
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percentage identity with the Jalview program at the EBI server (Waterhouse et al., 

2009). The Jalview program was used to eliminate gaps in the alignment and to 

minimize the redundancy of sequences using a threshold of 95 %. The design of the 

tree was adjusted using FigTree software version 1.2.3 

(http://tree.bio.ed.ac.uk/software/figtree/). 
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C h a p t e r  3  
R E S U LT S  

3 . 1  T H E  I D E N T I T Y  O F  A t 4 G 0 4 8 8 0  ( A t A D A )  

Locus At4g04880 of A. thaliana is annotated as encoding a putative ADA 

based on a computational prediction; the amino acid sequence contains most of the 

catalytic important sequences for ADA activity. This research sought to demonstrate 

ADA activity for this protein product by 1) in vitro activity assay of the recombinant 

enzyme using indirect colorimetric assay and direct spectrophotometric assay, 2) in 

vivo test for functionality of the AtADA gene product in A. thaliana and E. coli. Both 

sets of experiments demonstrated that AtADA does not process ADA activity but 

further investigations of the amino acid sequence suggests that the protein product 

encoded by this locus belongs to the novel group of ADA-like (ADAL) proteins. 

3 . 1 . 1  A T A D A  T - D N A  I N S E R T I O N  L I N E S  

In order to elucidate the function of AtADA, two T-DNA insertion lines were 

retrieved from the SALK-Institute collection: ada1-1 and ada1-2 (Table 2) which 

contain T-DNA insertions in exons of the AtADA (Figure 5A). Mutant line ada1-2 was 

acquired near the end of the research and has not yet been examined in detail. 

Western blot analysis demonstrated the absence of AtADA in the ada1-1 mutant 

protein extract (Figure 5B, n=3 independent biological replicates). This result 

indicates that ada1-1 is a complete knockout of AtADA. The AtADA expression level 

in ada1-2 mutant was not investigated to date. However, homozygous ada1-1 and 

ada1-2 T-DNA insertion mutants displayed a wild-type-like phenotype when grown 

under long-day and short-day growth conditions (data not shown) suggesting that 

AtADA is not essential for plant growth and development when grown under ideal 

conditions.  
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Figure 5 – Analysis of the T-DNA insertion allele in the AtADA gene (At4g04880) of 
Arabidopsis thaliana. A) A schematic of the AtADA gene and the location of the ada1-1 and 
ada1-2 T-DNA insertion alleles. The exact location of the T-DNA inserts is shown in 
Appendix A. B) Western blot analysis for expression of AtADA. Rosette leaf protein extracts 
(20 µg) from wild type (WT) and ada1-1 were probed with polyclonal anti-AtADA antibody. 
Wild-type AtADA migrates at a molecular mass of 39.9 kDa. The AtADA polypeptide is 
absent in ada1-1 extracts. Three replicates for WT and ada1-1 were analyzed with the same 
result.  

To test the hypothesis that AtADA encodes an ADA, the recombinant protein 

was tested for ADA activity using activity assays as described in the following 

sections. Furthermore, an in planta test for ADA functionality of the AtADA gene 

product in A. thaliana was conducted using ada1-1 as a control (Section 3.1.3.1). 

3 . 1 . 2  D E T E C T I O N  O F  A D A  A C T I V I T Y  

ADA activity of the recombinant plant ADA (AtADA) was studied using two 

different activity assays as mentioned above. The protein used in the assays was 

expressed in E. coli and used as a crude extract or was purified using a C-terminal 

His-tag as described in Section 2.15.1. It was not possible to analyze the stability of 

purified AtADA enzyme under different storage conditions due to the lack of enzyme 
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activity; therefore the studies were done on fresh enzyme preparations. Enzyme was 

stored at 4 °C for a maximum of 7 days prior analysis. 

3 . 1 . 2 . 1  C O L O R I M E T R I C  A S S A Y  

To test the enzymatic activity of recombinant AtADA an indirect colorimetric 

assay was used based on the requirement for ADA in an assay of 

S-adenosylhomocysteine hydrolase (SAHH) (Section 2.12.3.1). SAHH catalyzes the 

reversible reaction of SAH into Ado and Hcy; the formation of TNB by Hcy was 

detected at 412 nm. When the assay was coupled with a functional ADA enzyme, 

the hydrolytic direction of the SAHH catalysis was ensured and the rate of TNB 

production was high. When using commercial grade calf intestinal ADA (Roche) the 

TNB production was 1.49 mM per min (Figure 6). When ADA was absent from the 

reaction mixture, the TNB production dropped to 0.38 mM per min (Figure 6). The 

lack of ADA activity changed the position of the reaction equilibrium towards the 

condensation reaction of SAHH, hence the hydrolysis reaction and TNB production 

was diminished. The addition of AtADA did not shift the equilibrium towards the 

hydrolysis reaction; the TNB production for the assay containing AtADA did not differ 

from the negative control assay without ADA (Figure 6). 
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Figure 6 – Colorimetric assay for adenosine deaminase (ADA) activity. ADA activity was 
monitored indirectly in a continuous colorimetric assay at 412 nm detecting the increase of 
2-nitro-5-thiobenzoic acid (TNB) concentration. When a functional calf intestinal ADA (ADA 
Roche) was added to the reaction 1.49 mM TNB per min was produced. In the absence of 
ADA in the reaction mixture TNB was produced but in a lower concentration. The addition of 
plant ADA (AtADA) did not lead to an increased TNB production different from the negative 
control. Five µg ADA protein was used in the assay. Data are expressed as mean ± standard 
deviation (n = 2). 

3 . 1 . 2 . 2  S P E C T R O P H O T O M E T R I C  A S S A Y  

To test whether AtADA possesses ADA activity, an in vivo complementation 

test in E. coli was designed (Section 2.12.3.3). Successful complementation was 

determined by the growth promoting effect of the introduced plasmids coding for 

K12ADA or AtADA. The introduction of pMPB into E. coli served as a negative 

control in this experiment; the results are outlined in Section 3.1.2.3. These three 

complementation constructs were also used to check ADA activity in the lysate of 

SØ3834 and BL21(DE3) backgrounds using a spectrophotometric assay at 265 nm 

as described in Section 2.12.3.2. 

It was expected that SØ3834 is deficient in ADA activity due to deletion of the 

gene, whereas in the host BL21(DE3) the ADA gene is intact and was assumed to 
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be functional. As shown in Figure 7, the negative control SØ3834pMBP did not show 

ADA activity whereas in BL21(DE3)pMBP a low enzyme activity was detected. This 

result was achieved for crude extracts obtained from cultures grown without IPTG or 

with 100 µM IPTG. The introduction of pAtADA did not lead to detectable ADA in 

SØ3834 cells and did not lead to an increase in the ADA activity in BL21(DE3) 

background for either growth condition. 
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Figure 7 – ADA activity in E. coli crude extracts. Effect of tac::maltose binding protein (MBP), 
tac::Arabidopsis thaliana ADA (AtADA) and tac::E. coli K12 ADA (K12ADA) on the ADA activity 
of SØ3834 and BL21(DE3) lysate. Prior lysis, the cells were cultured for 17 h with either 0 or 
with 100 µM IPTG. Bars represent ± standard deviation (n = 2). 

In contrast, the introduction of pK12ADA resulted in detectable ADA activity in 

SØ3834 crude extracts and an increase of ADA activity in BL21(DE3) when grown 

without IPTG (K12ADA 0, Figure 7). A further increase in ADA activity for both 

K12ADA lines was detected when the cultures were grown with 100 µM IPTG; the 

activity was increased 22-fold in BL21(DE3) and 17-fold in SØ3834 background. 

The E. coli lysates used for the activity assays described above were 

separated in a 12.5 % SDS-PAGE and stained with Coomassie brilliant blue in an 

attempt to detect the K12ADA polypeptide. The expression of K12ADA (36.3 kDa) 

was easily detected in lysates of cells induced with 100 µM IPTG (lane 2 and 9, 

Figure 8); the polypeptide representing K12ADA protein is indicated with an arrow in 
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Figure 8. The high abundance of K12ADA protein in this crude extract correlates 

with the high ADA activity detected in the spectrophotometric assay (Figure 7).  

K12ADA expression in cells grown without IPTG (lane 3 and 8, Figure 8) 

could not be detected on the SDS gel. The polypeptide profile detected in these 

lysates was indistinguishable to that of cells expressing MBP only (compare lanes 4 

and 7). Either the K12ADA expression is below the detection limit of the Coomassie 

brilliant blue or the K12ADA polypeptide is masked by other proteins. Despite being 

unable to observe a K12ADA protein in the non-induced extract of either E. coli 

strain, ADA enzyme activity was detected in the spectrophotometric assay as shown 

in Figure 7 (K12ADA 0). 

Lysates of E. coli strains carrying pAtADA did not show ADA activity in the 

spectrophotometric assay (Figure 7). The extracts were analyzed in a 12.5 % SDS-

PAGE stained with Coomassie brilliant blue to verify the presence of the AtADA 

polypeptide and to eliminate the possibility that the lack of ADA activity was due to 

the lack of AtADA protein. In the lysates of non-induced cells no AtADA polypeptide 

was distinguishable (data not shown). IPTG induction of AtADA expression was 

associated with the presence of a new 39.9 kDa polypeptide (lane 5 and 6, Figure 

8); AtADA was detected in the same abundance in the lysate of both E. coli strains 

used. In IPTG-induced lysates, AtADA and K12ADA were detectable in the SDS-

PAGE but AtADA was less abundant than K12ADA. 

No ADA activity was detected in the spectrophotometric assay of the lysate of 

SØ3834 cells expressing AtADA (Figure 7), nor was any enzyme activity above 

background found in BL21-CodonPlus(DE3)-RIPL. As mentioned earlier, the 

abundance of AtADA in the IPTG-induced lysate was lower than in the K12ADA 

lysate; increasing the amount of total protein used in the spectrophotometric assay 

to 50 µg did not lead to measureable ADA activity in SØ3834pAtADA (data not 

shown). 
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Figure 8 – Expression of K12ADA and AtADA. SDS-PAGE of SØ3834 (lane 6 to 9) and BL21-
CodonPlus(DE3)-RIPL (lane 2 to 5, lane 10) lysates grown without IPTG (lane 3 and 8) or 
100 µM IPTG (lane 2, 4 to 7, 9 and 10) harboring the ADA complementation constructs as 
follows: lane 2, 3, 8 to 10: pK12ADA; lane 5, 6: pAtADA; lane 4: pMBP. For SØ3834 lysates 
25 µl were loaded onto the SDS-gel and 20 µl for BL21-CodonPlus(DE3)-RIPL lysates except 

in lane 10 only 5 µl was loaded. The complete SDS-PAGE picture can be seen in Appendix 

C. 

As previously stated, AtADA expression was demonstrated by the presence 

of a 39.9 kDa polypeptide (lane 5 and 6, Figure 8) that was absent in the lysates of 

K12ADA and MBP. To verify the identity of the 39.9 kDa polypeptide and to ensure 

the functionality of the AtADA expression construct a western blot analysis was 

performed. The soluble protein fraction of BL21(DE3) lysates of all three 

complementation constructs were separated on 12.5 % SDS-PAGE and transferred 

to a PVDF membrane. The expression of MBP and K12ADA was strong and could 

be detected on the Ponceau stained membrane (panel B, Figure 9); both proteins 

were visible as distinct bands at the expected size (MBP: 50.9 kDa, K12ADA: 

36.3 kDa). AtADA expression was low but detectable using western blot technique 

(panel A, Figure 9). The anti-AtADA antibody detected a distinct band in the lysate of 

BL21(DE3)pAtADA at the expected size for AtADA (39.9 kDa); a nonspecific 

polypeptide of approximately 34 kDa was detected in all extracts. Based on the 

Ponceau staining and the anti-AtADA western the expression level of all three 

constructs differed but all three plasmids were capable of expressing the transgene. 
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Figure 9 – Expression of ADA complementation constructs in BL21(DE3). Cells carrying 
pK12ADA (3), pAtADA (2) or pMBP (1) were induced with 100 µM IPTG at OD600=0.5 and 
grown at 37 °C for 6 h. Cells were lysed and soluble fraction was separated on 12.5 % SDS 
PAGE and transferred to PVDF membrane. A) immunoblot stained with anti-AtADA antibody 
to show AtADA expression; dashed arrow marks polypeptide of strong but nonspecific 
antibody binding B) Ponceau-stained PVDF membrane visualizing maltose binding protein 
(MBP) and E. coli K12 adenosine deaminase (K12ADA) accumulation. 

It was demonstrated above that the spectrophotometric assay can detect 

ADA activity in both BL21-CodonPlus(DE3)-RIPL and SØ3834 cell lysates; the use 

of SØ3834 cells was advantageous due to the absence of ADA background activity 

(K12ADA, Figure 7). The expression level of the plant ADA in E. coli was relatively 

low compared to the E. coli K12ADA (compare lanes 2 and 5 or lanes 6 and 9 in 

Figure 8), most likely due to a codon usage problem. If the specific activity of AtADA 

on Ado is much lower than that of K12ADA, the concentration of the enzyme in the 

lysate might not have been sufficient enough to be detected. To address this issue 

the recombinant plant ADA purified from E. coli (2.12.3.1) was used in higher 

concentration in the spectrophotometric assay. Ado was used as a substrate in two 

different concentrations: 65 µM and 200 µM. ADA activity was monitored at 240 nm 

wavelength detecting the increase of Ino concentration (2.12.3.2). The complete 

conversion of Ado to Ino by the recombinant ADA from the calf intestine (Roche) 

resulted in a change of absorbance of 0.26 for 65 µM Ado (graph A, Figure 10) and 

0.76 for 200 µM Ado (graph D, Figure 10). For this control reaction 5 µg calf ADA 
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was used. The same amount of recombinant AtADA was used in the assay but no 

change in absorbance was observed (graph B, Figure 10); also, a five-fold increase 

of AtADA in the assay did not lead to a change in absorption over the time course 

(compare graph B and E, Figure 10). The addition of 25 µg AtADA caused a slight  

Figure 10 – Time course of adenosine deaminase (ADA) activity. ADA activity was 
monitored in a continuous spectrophotometric assay at 240 nm detecting the increase in 
inosine concentration. The substrate Ado was used at 65 µM (A, B, C) and 200 µM (D, E, F). 
The arrows in the graphs indicate the time when the enzyme was added to the reaction 
mixture; the numbers on the arrows indicate the amount of enzyme [µg] added. The 
following enzymes were used: A and D: recombinant calf ADA (Roche), B and E: 
recombinant plant ADA, C: recombinant plant Ado nucleosidase, F: no enzyme. 

jump in the absorption at 240 nm (graph B, Figure 10) but this is most likely due to 

protein absorbance at this wavelength since there was no increase in absorbance 

over the time course of the experiment consistent with Ado hydrolysis. This 

conclusion was supported by the observation of a similar jump in absorption when 

30 µg Ado nucleosidase (ADN) was added to the reaction mixture containing 65 µM 

Ado (graph C, Figure 10); Again, no change of absorption over the time course was 

detected. It was not tested if the addition of 30 µg BSA will cause the same jump in 

absorption. The fact that the conversion of Ado to Ade and ribose by ADN was not 

detectable at 240 nm demonstrates the specificity of the chosen wavelength for ADA 

activity. Thus neither the spectrophotometric nor the colorimetric assays provided 
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any evidence that the putative AtADA encoded by At4g04880 has ADA enzyme 

activity. 

3 . 1 . 2 . 3  A D A  C O M P L E M E N T A T I O N  I N  S Ø 3 8 3 4  

E. coli SØ3834 is a multiple auxotroph with a deletion of the bacterial ADA 

gene; on minimal medium it requires Gua to grow but DAP can satisfy the Gua 

requirement if a plasmid coding for a functional ADA is introduced into the strain. 

Therefore, SØ3834 is a useful tool to determine ADA activity of cloned and 

overexpressed plant ADA by in vivo complementation (Section 1.6). Successful 

complementation was determined by the growth promoting effect of the introduced 

plasmid pAtADA. A plasmid coding for MBP was used as a negative control in this 

experiment. The introduction of a plasmid coding for the E. coli K12ADA is expected 

to complement ADA deficiency in SØ3834 and acted as a positive control (Section 

2.12.3.3). 

It was anticipated that the multiple auxotroph SØ3834 would not grow in 

minimal medium supplemented with DAP if no functional ADA was introduced. 

However, as shown in Figure 11 the SØ3834pMBP did grow in the minimal media 

but growth was significantly reduced compared to the strain carrying a functional 

E. coli ADA (K12ADA). There was leaky expression of K12ADA from the tac-

promoter (non-induced condition, 0 µM IPTG) which promoted the growth of SØ3834 

on the minimal medium; pK12ADA transformants grew to a 2.6-fold higher density 

as monitored by the OD600 of the culture, than did the pMBP transformants. pAtADA 

transformants did not show growth different from the negative control under non-

induced conditions; SØ3834pAtADA grew to the same OD600 as SØ3834pMBP 

(0 µM IPTG, Figure 11). The low concentration of 5 µM IPTG elevated slightly the 

growth promoting effect of pK12ADA; the transformants grew to a 2.9 -fold higher 

OD600 than did the pMBP transformants. Again, pAtADA transformants did not differ 

in growth from the negative control (5 µM IPTG, Figure 11). 
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Figure 11 – Growth of SØ3834 in minimal media plus DAP. Effect of tac::maltose binding 
protein (MBP), tac::AtADA and tac::K12ADA on the growth of SØ3834 in minimal media 
supplemented with DAP. DAP can satisfy the guanosine requirement of SØ3834 if a 
functional ADA is introduced. 

Interestingly, higher concentrations of IPTG (25 to 500 µM) caused decreased cell 

growth for SØ3834pK12ADA and SØ3834pMBP; culturing with 500 µM IPTG 

resulted in a drop of OD600 to 0.105 and 0.03, respectively. In contrast, the growth of 

SØ3834pAtADA did not change with increasing IPTG concentration. This suggested 

that overexpression of K12ADA or MBP might be inhibitory to E. coli and is 

consistent with the idea that AtADA was not being expressed in the same quantity in 

these strains.  

3 . 1 . 3  C O M P L E M E N T A T I O N  O F  A D K  D E F I C I E N C Y  B Y  A T A D A  

A final in planta test for ADA activity of the At4g04880 gene product was 

carried out. The AtADA cDNA was overexpressed in an ADK-silenced plant line with 

a severe phenotype (see Table 2) corresponding to 16 % residual ADK activity. 

Since the sADK lines are known to have higher concentrations of Ado leading to 

inhibition of MTases, the thought was that if At4g04880 encodes ADA activity it 
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should reduce the Ado concentration and alleviate some of the abnormal 

morphology of the sADK plants.  

sADK 9-1 35S::ADA appeared phenotypically normal suggesting 

complementation of the ADK deficiency in sADK 9-1 plants by the At4g04880 cDNA 

expression. However, it must be excluded that the 35S promoter driving the 

expression of the putative AtADA was interfering with the activity of the 35S 

promoter expressing the ADK cDNA (which triggers ADK gene silencing). This type 

of trans-inactivation mediated by homology between 35S promoters on the T-DNAs 

has been documented previously by Daxinger et al., (2008). These authors crossed 

21 randomly chosen homozygous SALK lines with a line containing a 35S::β-

glucuronidase (GUS) gene transgene; 11 of the lines showed silencing of the GUS 

gene in the F2 generation. Thus I conducted an ADK activity assay to exclude the 

possibility that the normal phenotype of sADK 9-1 35S::ADA plants was due to the 

loss of ADK silencing. 

3 . 1 . 3 . 1  R A D I O C H E M I C A L  A S S A Y  O F  A D K  A C T I V I T Y  I N  

S A D K  9 - 1  3 5 S : : A D A  L E A F  E X T R A C T S   

ADK activity was measured in desalted leaf crude extracts by the conversion 

of radioactive [2,8-3H] Ado to AMP (Section 2.12.1.3) of sADK9-1 and 

sADK 9-1 35S::ADA plant lines and is presented as residual ADK activity compared 

to wild type in Figure 12. The lowest ADK activity was observed in sADK 9-1 plants 

with 7.25 % residual ADK activity. All transgenic sADK 9-1 35S::ADA plant lines 

contained an ADK activity of more than 80 % compared to wild type. Earlier analysis 

of the sADK lines showed that plants with more than approximately 50 % residual 

ADK activity have a normal phenotype (Moffatt et al., 2002). Thus introduction of the 

AtADA overexpression construct driven by a CaMV35S promoter into the sADK 9-1 

background caused an increase of ADK activity of about 70 % (Figure 12) explaining 

the wild-type phenotype of sADK 9-1 35S::ADA plants. 
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Figure 12 – ADK activity assay in sADK 9-1 35S::ADA plants. ADK activity was measured in 
desalted leaf crude extracts of the indicated plant lines and is expressed as percentage of 
wild-type activity (WT). Different colors indicate separate ADK assay runs. WT activity in 
nmol AMP/min/mg: black=3.61 (Engel, Diploma thesis), white=1.53, grey=1.42. Different 
transformants of sADK 9-1 carrying the 35S::ADA transgene (20-3, 11-6 and 16-3) were 
analyzed along with a T-DNA insertion mutant of At4g04880. Data are expressed as mean ± 
standard deviation (n = 2 for assay runs indicated with white or grey color, n=5 for black).  

The interruption of the AtADA gene product in ada 1-1 plant lines did not lead 

to a change in ADK activity. Plants lacking the At4g04880 gene product had wild-

type levels of ADK activity. 

3 . 1 . 4  A T 4 G 0 4 8 8 0  E N C O D E S  A N  A D E N O S I N E  D E A M I N A S E - L I K E  

P R O T E I N  

A phylogenetic study by Maier et al., (2005) demonstrated sequence 

similarities between the ADA-related proteins ADA, ADE, AMPD and ADA-like 

enzymes and revealed conserved regions among and within these groups. This 

study did not include plant sequences. I carried out a phylogenetic analysis of 

eukaryotic ADA-related protein sequences to address whether At4g04880 encoded 

a protein belonging to one of these subfamilies.  
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Amino acid sequences used in this analysis were derived from the NCBI 

database (see Section 2.17) and are listed in Appendix B. The alignment of these 

132 sequences was used to obtain the phylogenetic tree in Figure 14. Since the 

alignment of all sequences was very large, an alignment of reduced sequences is 

shown in Figure 13. Protein sequences used for the reduced alignment are listed in 

Table 15. All plant proteins included in this alignment are annotated either as 

putative ADA or as uncharacterized proteins.  
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Table 15 – Collection of ADA-related proteins used in the multiple alignment. Plant proteins 
annotated as ADA are marked with (*), uncharacterized proteins are marked with (°) 

Protein name Organism name Common name Protein 
accession 

B9P4P9° Populus trichocarpa Western balsam 
poplar B9P4P9 

B9RXP2* Ricinus communis Castor bean B9RXP2 

A5C4M9° Vitis vinifera Grape A5C4M9 

Q8LPL7* Arabidopsis thaliana Mouse-ear cress Q8LPL7 

Q8H3U7* Oryza sativa subsp. japonica Rice Q8H3U7 

A3BN30° Oryza sativa subsp. japonica Rice A3BN30 

A2YPL0° Oryza sativa subsp. indica Rice A2YPL0 

B6TRX4* Zea mays Maize B6TRX4 

B4FH67° Zea mays Maize B4FH67 

A9TIL6° Physcomitrella patens 
subsp. patens Moss A9TIL6 

ADAL_HUMAN Homo sapiens Human Q6DHV7 

ADAL_PAPAN Papio anubis Baboon A9X1B0 

ADAL_BOVIN Bos taurus Bovine Q0VC13 

ADAL_MOUSE Mus musculus Mouse Q80SY6 

ADAL_DANRE Danio rerio Zebrafish Q4V9P6 

ADA_RAT Rattus norvegicus Rat Q920P6 

ADA_MOUSE Mus musculus Mouse P03958 

ADA_HUMAN Homo sapiens Human P00813 

ADA_DANRE Danio rerio Zebrafish Q6DG22 
ADA_ECOLI Escherichia coli Bacteria P06134 

 

The amino acid sequences of the retrieved proteins were compared and several 

conserved regions were found throughout the alignment (data not shown). The six 

most highly conserved regions of the alignment are shown in Figure 13; these 
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regions include important residues required for ADA activity i.e. His 15, His 17 and 

His 214 for zinc binding, Gly 184 Glu 217 His 238 Asp 296 for donating or accepting 

hydrogen bonds (Wilson et al., 1991) (see Table 1). Amino acids conserved in all 

proteins are highlighted with a grey star underneath the alignment. Within the first 

conserved region shown in Figure 13, ADAL and plant proteins share three 

conserved amino acids; these amino acids are marked with a red star. 

Subsequently, in all conserved regions shown in Figure 13 plant proteins share 

many amino acids that define the ADAL subfamily (Figure 13, red stars) but not the 

ones that define the ADA subgroup (Figure 13, black stars). 

 

Figure 13 – Amino acid alignment of conserved domains among ADA and ADAL proteins. 
Grey stars indicate amino acids that are identical among all groups of proteins, red stars 
indicate amino acids conserved among ADAL proteins and black stars indicate amino acids 
conserved among ADA proteins. Species abbreviations are explained in Table 15. 
Horizontal lines represent margins between proposed groups of ADA-related proteins. 
Amino acids are numbered according to mouse ADA. 

 

To determine the phylogenetic position of AtADA among the ADA-related 

subfamilies, a tree based on protein sequences from eukaryotes was constructed. 
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The phylogenetic analysis was performed using the alignment of all amino acid 

sequences listed in Appendix B. The alignment was performed using the ClustalW 

software on the EBI server and the phylogenetic tree was constructed according to 

Neighbor-Joining method (Saitou and Nei, 1987) using percentage identity (2.18). 

Jalview provided on the EBI server (2.18) was applied to minimize the redundancy of 

sequences using a threshold of 95 %. This threshold was not applied to the ADA-

related sequences from human and baboon. As shown in Figure 14 the ADA, ADGF 

and the ADAL proteins clearly form three clusters but originate from a common 

ancestor. The cluster of classic ADA proteins is highlighted in red; it contains 

sequences annotated as ADA only. The cluster of ADAL (black and green) and 

ADGF (blue) contain a lot of proteins annotated as ADA or hypothetical proteins 

without annotation. The phylogenetic analysis from Maier et al. (2005) revealed that 

some ADA-related genes have been incorrectly labelled as classic ADAs and this I 

presume is the reason why so many putative ADAs are contained in the ADAL and 

ADGF cluster in Figure 14. Nevertheless, the ADAL and ADGF clusters in my 

analysis are defined by the position of already characterized proteins i.e. Drosophila 

melanogaster and human ADALs as well as Danio rerio and Homo sapiens 

ADGF/CECR1, respectively. The plant proteins included in the analysis formed a 

well defined cluster (highlighted with green in Figure 14) and are grouped within the 

ADAL subfamily. The sequences of four dicot plants cluster together as well as the 

three sequences of monocot plants maize, rice and sorghum. The ADA-related 

sequences from the moss Physcomitrella patens grouped within in the cluster of 

plant proteins but the branch length indicates that the Physcomitrella gene diverged 

earlier in evolution from the higher plant proteins (Figure 14). It is evident that the 

ADA-related sequences in plants do not belong to classic ADAs but to the novel 

group of ADALs. 
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Figure 14 – Phylogenetic analysis of ADA-related proteins from eukaryotes. Rooted neighbor-
joining phylogenetic tree, based on amino acid sequences showing the relationships between 
adenenosine deaminases (ADA, red), ADA-like genes (ADAL, black), ADA-related growth 
factors (ADGFs, blue) and the cluster of plant genes including AtADA (green). GenBank 
accession numbers are given along with the species name.  
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Another component of this research involved an additional putative Ado 

recycling enzyme. The genome of Arabidopsis was screened for putative ADNs 

using a known NH sequence from a protozoan. Candidate genes were identified, 

their gene products studied and their role in plant development was examined. 

3 . 2  A T 1 G 0 5 6 2 0  A N D  A T 2 G 3 6 3 1 0  E N C O D E  P U T A T I V E  A D N S  

ADN catalyses the irreversible hydrolysis of Ado to Ade and ribose; it may 

also accept CK ribosides as substrates. It contributes to purine salvage and it might 

be involved in the regulation of active CK levels. This enzyme activity has been 

demonstrated in crude extracts of several plants but no gene coding for ADN has 

been identified. The genome of Arabidopsis was screened for putative ADNs using a 

known IU-nucleoside hydrolase sequence from Crithidia fasciculata. Two candidate 

genes were selected and investigated, their gene products were studied and their 

role in plant development was examined using T-DNA insertion lines. 

3 . 2 . 1  I D E N T I F I C A T I O N  O F  P U T A T I V E  A D N S  I N  A R A B I D O P S I S  

T H A L I A N A  

In the genome of Arabidopsis five genes have been computationally 

annotated as putative nucleoside hydrolases (NHs) (TAIR). The amino acid 

sequence of a NH that is characterized in structure and function was required to 

analyze the annotated genes for catalytic important residues and to screen the 

genome of Arabidopsis for further putative genes. NHs have been well characterized 

in parasitic protozoa such as Crithidia fasciculata (Parkin et al., 1991) or 

Trypanosoma vivax (Versees et al., 2001) because of their association in many 

human diseases i.e. trypanosomiasis (sleeping sickness) or malaria. Parasitic 

organisms are deficient in de novo synthesis of purines and are dependent on the 

host purine nucleosides; consequently NHs are particularly important for these 

organisms and are an object of intense research to find methods to cure deseases 

associated with parasitic organisms (Versees et al., 2001). Various sequences of 

protozoa NH are available in genome databases and were accessible for the 
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screening approach of the Arabidopsis genome. The BLAST (Altschul et al., 1990) 

on the NCBI server was used to screen the genome of Arabidopsis for putative 

ADNs (Section 2.17). The screen of the Arabidopsis thaliana proteome using the 

amino acid sequence of the inosine-uridine NH (IU-NH) of C. fasciculata led to the 

identification of the candidate proteins listed in Table 16; a tentative name was 

assigned to the genes for an easy identification in the following sections. 

Table 16 – List of candidate ADN genes in Arabidopsis thaliana. 

Gene Annotation E-value Name (tentative) 
AT2G36310.1 IU-preferring NH 2e-35 ADN2 

AT1G05620.1 IU-preferring NH 2e-33 ADN1 

AT5G18890.1 IU-preferring NH 2e-05 ADN90 

AT5G18860.1 IU-preferring NH 4e-05 ADN60 

AT5G18870.1 IU-preferring NH 0.013 ADN70 
In the following, the candidate proteins retrieved by BLAST will be 

investigated in detail to determine their status as putative NHs. Their amino acid 

sequences was analyzed regarding the aspartic motif (DXDXXXDD), a highly 

conserved amino acid sequence in the N-terminal region of NHs that is involved in 

forming the nucleobase binding pocket (Versées and Steyaert, 2003). Tools 

provided at the TAIR and NCBI databases were used for further analysis of the 

candidate proteins, i.e. for gene structure, transcript abundance and protein domain 

structure.  

Two proteins, ADN1 and ADN2 were retrieved with a very low expectation 

value (E-value) of 2e-33 and 2e-35 (Table 16); this value represents the number of 

expected hits with a equivalent or better alignment score than that of ADN1 or ADN2 

in the database, by chance (Pevsner, 2003). These low E-values for the two 

candidate genes are a strong evidence that these proteins are very similar to IU-NH 

from C. fasciculata. Further proteins in the list shared a lower similarity with the 

C. fasciculata protein, as characterized by their higher E-values. Interestingly, 

ADN70 and ADN90 shared a very high amino acid sequence identity with ADN60 
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(71 % and 81 %, respectively; Table 18) but the sequence identity with each other 

was much lower (32 %).  

ADN60 is a 100 kDa protein located in cell walls by mass-spectrometry based 

proteomic studies (Borderies et al., 2003; Kwon et al., 2005); the protein is 

composed of two NH domains (NCBI). The Conserved Domain Architecture 

Retrieval Tool (CDART, NCBI) retrieved 1770 proteins from the NCBI nonredundant 

protein database that contain a single NH domain but none with a double domain 

architecture as ADN60 (data not shown). BLAST on the NCBI server was used for 

finding similar double domain NH sequences in the non-redundant protein sequence 

databases using ADN60 amino acid sequence as query. The screen of the database 

led to the identification of six proteins only (Table 17) and all are derived from plants. 

It is evident that the double domain NH structure is unique to plants. Both domains 

of ADN60 have a high similarity to the inosine-adenosine-guanosine-NH from the 

parasitic protozoa Trypanosoma vivax. The amino acid alignment of ADN60, ADN70 

and ADN90 (Appendix D) revealed that ADN70 aligns with an N-terminal section of 

ADN60 whereas ADN90 aligns with a C-terminal section of the same protein; the 

sections were not overlapping. These structures suggest that ADN60 was likely the 

common ancestor of both ADN70 and ADN90, since the longer ADN60 protein only 

exists in plants (data not shown). It is anticipated that ADN70 and ADN90 evolved 

from ADN60 by gene duplication and gene-splitting or gene fission event after 

Arabidopsis thaliana diverged from a common ancestor. The rate of gene 

duplications in A. thaliana is 2x10-9 duplicates per gene per year; the half-life to 

silencing and loss of a gene duplicate is estimated at 2.3x10-5 years (Moore and 

Purugganan, 2005). However, the average rate of fusion and fission events is lower 

with approximately 1x10-11 to 2 x10-11 per gene per year (Nakamura et al., 2007). 

The duplication event is supported by the contiguous location of ADN60 and ADN70 

on chromosome five of Arabidopsis while ADN90 is separated from ADN70 by one 

gene only. Moreover, a recent duplication is likely since the shorter ADN90 and 

ADN70 proteins do not exist in other plant species. ADN60 might have evolved from 
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a single domain NH duplication event but if so, this event must have occurred in an 

ancestral plant since the duplicated gene is present in Arabidopsis and the other 

plant species that are listed in Table 17. This excludes the possibility that ADN60 

evolved as a fusion of ADN70 and ADN90. The proposed gene fission event of 

ADN60 into ADN70 and ADN90 did not lead to two functional transcription units as 

indicated by: 1) the gene structure of ADN70 and ADN90 is incomplete (5’ and 3’ 

untranslated region (UTR) are missing) (TAIR); 2) no cDNAs or expressed sequence 

tags have been recovered for either gene (TAIR). In summary, ADN70 and ADN90 

encode predicted NH-like proteins but it is not expected that the genes are 

functional. ADN70 and ADN90 were not considered as putative ADNs and were 

excluded from further investigations. 

Table 17 – List of plant organisms carrying the gene for a double domain nucleoside 
hydrolase (NH). The NCBI accession number is listed for the putative double domain NH 
proteins recovered from the NCBI non-redundant protein sequence databases using BLAST. 

NCBI protein accession Organism name Common name 
NP_197387.1 Arabidopsis thaliana Mouse-ear cress  

ABD96887.1 Cleome spinosa Spiderflower 

EEF45449.1 Ricinus communis Castor bean 

CAO71050.1 Vitis vinifera Grape 

XP_002311814.1 Populus trichocarpa Western balsam poplar 

EEC79209.1 Oryza sativa subsp. indica Rice 
XP_002441080.1 Sorghum bicolor Sorghum 

The remaining candidate proteins ADN1, ADN2 and ADN60 contained the 

aspartic motif (DXDXXXDD), the hallmark of NHs (Figure 15) and thus were 

considered as putative ADNs. All three genes are functional transcription units 

supported by 23 to 66 cDNAs originating from different tissues (NCBI). 
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Figure 15 – N-terminal section of a multiple alignment of the amino acid sequence of 
candidate adenosine nucleoside hydrolases (ADNs) from Arabidopsis thaliana and inosine-
uridine nucleoside hydrolase from Chrithidia fasciculata (CfNH). Arrows indicate conserved 
amino acids of the aspartic motif, the hallmark of nucleoside hydrolases (Versées and 
Steyaert, 2003). The complete alignment is shown in Appendix E. 

Beside the aspartic motif, additional amino acids are important for the 

catalytic function of nucleoside hydrolases (Versées and Steyaert, 2003). One of 

these, His 214 is involved in hydrogen-bonding interactions with Asp 14 and is 

proposed to protonate the leaving nucleobase, as demonstrated for Ino by Degano 

et al., (1996). The protein ADN60 does not contain the His 241 residue (Figure 16). 

Mutagenesis experiments showed that a tryptophan (Trp260) contributes to catalysis 

in the IAG-NH (Versees et al., 2001) but Trp 260 is absent in the amino acid 

sequence of ADN60 as well (data not shown). Therefore it is less likely that ADN60 

possesses NH activity. Initially, five ADN candidate genes were identified in the 

genome of Arabidopsis. Only ADN1 and ADN2 were chosen for further investigation 

in this research; both genes have the highest similarity to CfNH (Table 16) and 

contain most of the catalytic important amino acids for NH activity (data not shown).  
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Figure 16 – Section of a multiple alignment of the amino acid sequence of candidate 
adenosine nucleoside hydrolases (ADNs) from Arabidopsis thaliana and inosine-uridine 
nucleoside hydrolase from Chrithidia fasciculata (CfNH). The arrow marks a conserved 
histidine residue, important for the protonation of the leaving nucleobase (Versées and 
Steyaert, 2003). The complete alignment is shown in Appendix E. 

Both, ADN1 and ADN2 share 31 % to 32 % amino acid identity with the 

IU-NH sequence from C. fasciculata (Table 18). At1g05620 and At2g36310 are 

currently annotated as IU-preferring NH family proteins. For the purposes of this 

project, the genes were tentatively designated as ADN 1 (At1g05620) and ADN 2 

(At2g36310). 

Table 18 – Amino acid sequence identity (percent) of putative Arabidopsis thaliana adenosine 
nucleoside hydrolases (ADNs) with the inosine-uridine nucleoside hydrolase from Crithidia 

fasciculata (CfNH). 

Protein CfNH ADN1 ADN2 ADN60 ADN70 
CfNH 100     

ADN1 31 100    

ADN2 32 52 100   

ADN60 28 23 26 100  

ADN70 29 25 25 71 100 
ADN90 27 23 24 81 32 

The open reading frames of At1g05620 and At2g36310 were amplified by 

PCR using a cDNA template (Section 2.5.6) and cloned into E. coli expression 

vectors. Recombinant protein was used to investigate the identity of the putative 

plant ADNs using activity assays. Two mutant plant lines were obtained from the 

The Arabidopsis Stock Center containing a T-DNA insertion in At1g05620 or 
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At2g36310 (see Table 2); these plant lines were used to examine the role of ADN 1 

and ADN 2 in plant development. 

3 . 2 . 2  P U R I F I C A T I O N  O F  R E C O M B I N A N T  A D N S  

In order to characterize ADN1 and ADN2, both ORFs were cloned into 

expression vectors generating N-terminal 6xHis tag fusion proteins (Section 2.5.6); 

ADN1 was also cloned to create a N-terminal fusion with the Profinity eXact tag 

(2.5.5). Successful cloning of the expression constructs was verified by sequencing 

the complete ORF; it was confirmed that the protein coding sequence was in-frame 

with the affinity purification tag and the ribosome binding site was intact. The 

constructs were transformed into BL21(DE3) cells and protein was produced as 

described in Section 2.14. Cell pellets were frozen at -20 °C for up to four months 

prior purification on a nickel-NTA His Bind resin (Section 2.15.1) as shown in Figure 

17 and Figure 19.  

 

Figure 17 – Purification of His-tagged ADN1 from E. coli using nickel affinity 
chromatography. Samples of the different fractions collected during purification were 
separated in a 12.5 % SDS-PAGE and analyzed by Coomassie stain. Lane M: marker; 1: 
soluble fraction of crude lysate; 2: insoluble fraction of crude lysate; 3: flow through; 4 and 
5: washes; 6 to 11: elution fractions. The masses of the marker polypeptides are shown in 
kDa. The purified ADN1 protein is indicated with an arrow. Protein was eluted in 3x 0.5 µl 
(fractions 6 to 8) and 3x 1 ml (fractions 9 to 11). A volume of 5 µl of fractions 1 to 3 was 
applied to the gel, for lanes 4 to 11 10 µl were applied. From the 350 ml culture 1 mg ADN1 
was recovered. 
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Recombinant 6xHis tag ADN1 was released from the column partially in the 

wash fraction (Lane 5, Figure 17) but higher amounts were eluted in the third and 

fourth elution fractions (Lanes 7 and 8, Figure 17). A much higher amount of 6xHis 

tag ADN2 was eluted from the affinity column (Figure 18); most protein eluted in 

fractions three and four. The purified proteins were desalted and used for 

characterization of enzyme activity and substrate spectrum classification. 

 

Figure 18 – Purification of His-tagged ADN2 from E. coli using nickel affinity 
chromatography. Samples of each of the six elution fraction were separated on a 12.5 % 
SDS-PAGE and stained with Coomassie. The masses of the marker polypeptides are shown 
in kDa and the purified ADN2 protein is indicated with an arrow. Five µl of the 1 ml elution 
fractions (1/200th) was loaded onto the SDS gel. The final yield recovered from 200 ml 
culture was 7.65 mg ADN2 protein. 

Affinitiy chromatography was used to purify ADN1 protein from an E. coli 

culture using the Profinity eXact fusion-tag. The tag is cleaved from the fusion 

protein during the elution process thereby producing a highly purified ADN1 protein 

containing three additional amino acids on its N-terminus (Figure 19). The elution of 

bound protein was sufficient after 30 min incubation at RT (Figure 19), the majority 

of protein was eluted in this fraction. Considering the risk of loss of enzyme activity 

under RT conditions the shorter elution time of 30 min was used to obtain ADN1 

protein for kinetic analysis. 
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Figure 19 – Purification of ADN1 from E. coli by affinity chromatography using the Profinity 
eXact tag. Samples of the different fractions collected during purification were separated in 
a12.5 % SDS-PAGE and analyzed by Coomassie stain. The molecular masses of the marker 
proteins are indicated in kDa. Lane 1: insoluble fraction of crude lysate; 2: soluble fraction 
of crude lysate; 3 to 5: flow through; 6 to 8: washes; 9 and 12: elution fraction after 30 min 
incubation at room temperature (RT); 10 and 13: elution after 60 min incubation at RT; 11 
and 14: elution fraction after 90 min incubation at RT. A volume of 5 µl of each fraction was 
applied to the gel, for lanes 12 to 14 10 µl were applied (1/250th of the elution fraction). From 
the 200 ml culture 2.5 mg purified, tagless ADN1 protein (indicated by the arrow) was 
recovered. 

From a 200 ml culture 2.5 mg ADN1 and 7.65 mg ADN2-NHis of >95 % purity 

were obtained. The His-tag purification allowed the recovery of more protein than did 

the Profinity eXact purification, but with the latter method, a tag-free ADN1 protein 

was obtained, which is beneficial for the kinetic analysis. 

3 . 2 . 3  P U R I F I C A T I O N  O F  “ N A T I V E “  A D N S  

It was desirable to purify “native“ ADN protein from Arabidopsis for multiple 

purposes: 1) to test for the presence of post-translational modifications via a shift in 

the migration of the protein analyzed by SDS-PAGE; 2) to investigate differences in 

the substrate spectrum of the “native“ protein in comparison to the recombinant 

version; 3) to recover active ADN1 protein and 4) to investigate the detection limit of 

“native“ ADN1 in western blot analysis using the anti-ADN2 polyclonal antibody. For 

these purposes, each ADN ORF was cloned into a binary vector creating an N-
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terminal StrepII tag (C. P. Witte, unpublished); these constructs were stably 

introduced into wild-type Arabidopsis.  

Both ADN-StrepII proteins expressed in Arabidopsis thaliana were purified to 

near homogeneity (Figure 20). For each transgenic plant line three replicate 

purifications were performed and in each case the same amount of purified protein 

was recovered as estimated by SDS gel analysis (compare lanes 1 to 3 and 4 to 6 in 

Figure 20). 

 

Figure 20 – Purification of ADN1 and ADN2 from Arabidopsis thaliana leaf tissue via StrepII 
tag affinity chromatography. The elution fractions were separated on a 12.5 % SDS-PAGE 
and analyzed by Coomassie stain. The molecular masses of the marker proteins are 
indicated in kDa. The arrows indicate purified ADN proteins. Each lane represents protein 
purified from approximately 750 mg leaf tissue. Lane 1 to 3: ADN1-NStrep, lane 4 to 6: 
ADN2-NStrep. Twenty µl of the 200 µl elution fractions (1/10th) were loaded onto the SDS gel. 

More ADN2 than ADN1 was obtained from the plant tissue using the affinity 

purification. However, the yield recovered from approximately 3x 750 mg leaf tissue 

was low with three µg for ADN1-NStrep and eight µg for ADN2-NStrep, respectively 

(Table 19). This corresponds to a recovery of 1.34 µg ADN1-Nstrep from 1 g fresh 

weight leaf tissue and 3.8 µg for ADN2-NStrep (Table 19). 
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Table 19 – Results of ADN-StrepII protein purification from Arabidopsis thaliana leaf tissue. 

 ADN1-NStrep ADN2-NStrep 
Leaf tissue fresh weight [g] 2.2 10 2.1 10 

Volume resin [ml] 3x 0.050 1 3x 0.050 1 

Tissue/resin [g/ml] 14.8 10 14 10 

Yield [µg] 3 20.5 8 51 

Yield/tissue [µg/g] 1.34 2.05 3.8 5.1 
Yield/resin [µg/ml] 20 20.5 53 51 

A scaled-up purification using 10 g leaf tissue and 1 ml StrepTactin resin 

recovered more “native“ protein per g FW tissue (see Table 19) but the yield was still 

insufficient for activity assays. 

3 . 2 . 4  K I N E T I C  P R O P E R T I E S  O F  A D N S  

ADN1 and ADN2 proteins were purified to near homogeneity from E. coli cells 

or Arabidopsis leaf tissue as described in the previous sections. The substrate 

spectrum and kinetic properties of these proteins was determined using a 

spectrophotometric assay. The colorimetric assay was used to verify the mode of 

reaction catalysed by ADN2 using the recombinant enzyme. 

3 . 2 . 4 . 1  S P E C T R O P H O T O M E T R I C  A S S A Y  

The substrate specificity of the putative ADNs was tested using a 

spectrophotometric assay following the decrease in absorbance of the substrate at a 

nucleoside-specific wavelength (Table 20). The ADN1 and ADN2 enzyme kinetics 

were analyzed using purified recombinant enzyme (Section 3.2.2) as the amount of 

“native“ protein purified was insufficient for this analysis.  

The recombinant ADN2 protein can hydrolase Uri, Ino, Ado and Gua whereas 

no activity was detected for thymidine and cytidine (Table 20).  
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Table 20 – Kinetic analysis of ADN2-NHis. 

Substrates Km  
[mM] 

Specific activity 
[mM min-1 mg-1] 

kcat 
[s-1] 

kcat/Km 
[M-1s-1] 

Adenosinea 0.16 0.39a 2.31 1.44x104 

Inosine 0.25±0.02 2.43±0.53 1.46±0.32 5.86x103 

Uridine 0.33±0.05 23.00±5.62 13.80±3.37 4.25x104 

Guanosine Ndb < 0.1 - - 

Thymidine NDA NDA - - 
Cytidine NDA NDA - - 

NDA: no detectable activity; Nd: not determined; a: The absorption of Ado 

was very high in the assay which limited the accuracy of the assay for this substrate. 

A deviation of the Beer’s law is anticipated leading to the underestimation of Km; b: 

The activity of ADN2 on Gua was too low to determine a Km. 

 

No nucleoside hydrolase activity was detected for ADN1 on the tested 

substrates. Neither the 6xHis tag fusion nor the tag-free protein (Section 2.5.5 and 

2.5.6) showed NH activity in the spectrophotometric assay. Kinetic properties were 

determined for ADN2 only. 

The kinetic constant Km was determined by measuring the initial, constant 

rate of velocity for different substrate concentrations. Ado, Ino and Uri as substrates 

showed hyperbolic Michaelis-Menten kinetics. Example graphs for Ino and Uri are 

shown in Figure 21. Vmax and Km were determined graphically from the Michaelis-

Menten plot and further kinetic constants as kcat and kcat/Km were calculated based 

on these values.  
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Figure 21 – Michaelis-Menten plot of ADN2 nucleoside hydrolase activity. Recombinant ADN2-
NHis protein was synthesized in E. coli and purified to near homogeneity. The effect of 
substrate concentration on ADN2 hydrolysis activity is shown for uridine (left graph) and for
inosine (right graph). Data given in the graphs represent experiments with 2 replicates for
each substrate concentration. Bars indicate standard deviation. 

 

As shown in Table 20, the Km for Ino and Uri are relatively high and are in the 

mM range. The substrate concentrations useable in the assay were limited by the 

high absorption of the substrates at the desired wavelength. Approximately 1 mM Uri 

or Ino was the maximum concentration measurable in the spectrophotometer. Due 

to the high absorption of the substrates it was not possible to take measurements 

further into the saturation phase of the Michaelis-Menten curve. In addition, the 

absorption of the substrate at the highest concentration in the assay was 2 to 3. A 

deviation from the Beer’s law is expected in this case leading to an underestimation 

of the Vmax and Km. This was particularly true for the very high absorbing substrate 

Ado. Even low Ado concentrations (~164 µM in contrast to 350 µM Uri and 450 µM 

Ino) led to an absorption of >1.0 and likely a strong deviation from Beer’s law. Thus 

the real Km for Ado will be much higher than that listed in Table 20. It was not 

possible to design the experiment for the spectrophotometric assay in order that no 

absorption above 1.0 was expected. The kinetic values for Ino and Uri were 
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expected to reflect the true values with only a minor deviation. Among the tested 

substrates, Uri was converted most efficiently with a 10 times higher kcat/Km than Ino 

mainly owing to a higher specific activity. The kcat/Km value for Ado was very high as 

well but once again, this was expected to be overestimated due to assay limitations. 

0.000 0.005 0.010 0.015 0.020

ADN2-NHis

negative control 1

negative control 2

ADN1-NStrep

ADN2-NStrep

Enzyme activity [µmol substrate/min]

Inosine

Uridine

 

Figure 22 – Spectrophotometric assay of “native“ ADN proteins. Analysis of purified plant 
protein (0.3 µg) on uridine and inosine as substrate using a continuous spectrophotometric 
assay at 280 nm detecting the decrease of substrate concentration. Both substrates were 
used at 150 µM. Negative control 1 represents the assay run without addition of enzyme. 
Negative control 2 represents the assay run with 10 µl elution buffer substituting the 
enzyme. 

ADN1 and ADN2 StrepII tag proteins (hereafter referred to as “native“ ADN1 

and ADN2) were purified from Arabidopsis rosette leaves carrying the corresponding 

transgenes (Section 3.2.3).  

The spectrophotometric assay was used to determine activity of both “native“ 

enzymes on Ado, Ino and Uri at a concentration of 150 µM. The recombinant 6xHis 

tag ADN2 protein (3.2.2) was used as a positive control in this assay. Both “native“ 

enzymes did not show detectable activity on Ado (data not shown). ADN2 utilized Uri 

as a substrate (Figure 22) but activity on Ino was very low. The “native“ ADN1 

protein did not have activity on the tested substrates. The amount of “native“ protein 

purified from Arabidopsis leaves was not sufficient for further kinetic studies or 
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substrate spectrum investigations. However, these preliminary results are consistent 

with those obtained from the recombinant ADN protein. 

3 . 2 . 4 . 2  C O L O R I M E T R I C  A S S A Y  

As described in the previous section, a spectrophotometric assay was used to 

analyse the enzyme kinetics of ADN2 protein (3.2.4.1). The metabolism of the tested 

nucleosides to bases and riboses was followed at a specific wavelength in each 

case and the decrease of absorbance of the substrate was observed during the 

enzymatic reaction. To verify that ADN2 was converting the substrates to base and 

ribose a second assay was used to determine the concentration of the ribose 

product. In this colorimetric assay the formation of the reducing sugar molecules was 

determined using neocuproine and subsequent colour development was measured 

at 450 nm (Section 2.12.2.2). Three different substrate concentrations were 

incubated with the recombinant 6xHis tag ADN2 protein (3.2.2) for 20 minutes. If a 

complete turnover of substrate to product had occurred in this period of time, a 

predictable amount of ribose in the sample could be calculated (white bar, Figure 

23). The integrity of the assay was verified by including a reaction containing boiled 

enzyme or no enzyme (sample A and B, respectively, in Figure 23). 
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Figure 23 – Nucleoside hydrolase activity of ADN2-NHis detected by colorimetric assay. 
Twenty minutes after incubation of inosine (panel A) or uridine (panel B) with ADN2-NHis at 
37 °C the abundance of ribose was estimated with a colorimetric assay. The expected 
amount of ribose by the complete turnover of substrate to base and ribose is shown as 
white bars and x-axis label; the amount of ribose present in the reaction mixture after 
incubation is shown as grey bars. Following controls were carried out: I) reaction without 
application of enzyme; II) reaction with 10 min boiled enzyme. Data are expressed as mean ± 
standard deviation (n = 2). 
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The catalysis of Ino and Uri by ADN2 resulted in ribose as a product (grey 

bars, Figure 23). The amount of ribose detected in the assays was lower than the 

expected value (white bars, Figure 22). This is likely to be caused by an incomplete 

turnover of substrate to product during the incubation period. The colorimetric assay 

verified that ADN2 catalyses a NH reaction. 

3 . 2 . 4 . 3  T E M P E R A T U R E  A N D  P H  D E P E N D E N C E  O F  A D N 2  

The spectrophotometric assay described above was used to determine the 

effect of temperature and pH on the velocity of ADN2. Uri was chosen as the 

substrate for these experiments as it was determined to be the preferred nucleoside 

for this enzyme (Table 20). The purified recombinant 6xHis tag ADN2 protein (3.2.2) 

showed an optimum pH at 7.5 and 8.0 depending on the buffer system used for the 

assay (Figure 24); it retained more than 40 % activity at pH 6.5 and 9.  
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Figure 24 – Influence of temperature and pH on the catalytic efficiency of ADN2. Specific 
activity was determined by measuring the initial, steady rate of velocity at a constant uridine 
concentration but varying temperature or pH. For the temperature assay 150 µM and for pH 
assay 680 µM uridine was used. The temperature assay was run in standard assay buffer; pH 
assay was run in ( ) glycine buffer and ( ) citrate-phosphate buffer at 30 °C. Bars indicate ± 
standard deviation (n = 2). 

The optimum temperature for Uri hydrolase activity was at 35 °C, with the 

enzyme retaining 82 % activity at 40 °C but losing almost all activity at 50 °C (Figure 
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24). In the lower temperature range the hydrolase activity dropped slowly, retaining 

85 % activity at the lowest temperature tested (18 °C). 

The next stage of the research involved studying both putative ADNs in 

planta. The subcellular localization was investigated using transient expression in 

Nicotiana benthamiana leaves and T-DNA insertion lines were used to investigate 

the role of ADN1 and ADN2 in Arabidopsis. 

3 . 2 . 5  S U B C E L L U L A R  L O C A L I Z A T I O N  O F  A D N 1  A N D  A D N 2  

For an analysis of the subcellular localization of ADN1 and ADN2, constructs 

for the expression of each ORF fused to the EGFP reporter gene and driven by the 

CaMV35S promoter were generated (Section 2.5.2). Transient expression was 

analyzed in Nicotiana benthamiana leaf epidermal cells and monitored under a 

confocal laser scanning microscope. As a positive control, N. benthamiana was 

transformed with a GFP translation construct; as expected it showed localization 

throughout the cell with strong signal in the cytoplasm and nucleus (Figure 25). Both 

ADN-GFP constructs showed clear localization in the nucleus and cytoplasmic 

strands (Figure 25).  
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Figure 25 – Localization of transiently expressed ADN1-GFP and ADN2-GFP within tobacco 
Nicotiana benthamiana epidermal cells. Images of green fluorescent protein (GFP) and 
chlorophyll fluorescence were taken with a laser scanning confocal microscope. GFP 
signals are shown in green, chlorophyll autofluorescence in red. Both fusion proteins are 
approximately 67kDa. C = cytosol, N = nucleus. Scale bar represents 20 µm. 

The construction of a larger double GFP fusion with ADN2 protein showed 

that the residence of ADN2 in the nucleus was due to diffusion; the larger ADN-

2xGFP fusion protein was excluded from the nucleus (data not shown). Taken 

together these data showed that ADN1 and ADN2 are localized in the cytoplasm. 

3 . 2 . 6  A D N 1  A N D  A D N 2  T - D N A  I N S E R T I O N  M U T A N T S  

The adn1-1 and adn1-2 T-DNA lines were obtained from The Arabidopsis 

Stock Center (Table 2) to examine the role of ADN 1 and ADN 2 in plant 

development. The mutant plants were evaluated for genotype, phenotype and ADN 

transcript and protein abundance. 
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3 . 2 . 6 . 1  G E N O T Y P I N G  A D N 1 - 1  A N D  A D N 2 - 1  

DNA isolated from individual plants was screened using a primer specific for 

the left border of the T-DNA insertion and two flanking gene specific primers. For 

adn1-1 primers 5, 6 and 22 (Table 6) and for adn2-1 primers 4, 7 and 23 were used. 

The location of the T-DNA insert in the target gene was verified by sequencing 

(Appendix F). A adn1-1 adn2-1 double mutant was obtained and backcrossed to wild 

type Columbia twice. Because no phenotype was apparent in the single and double 

mutant, PCR screens were performed to identify homozygous lines. DNA was 

isolated from backcrossed lines and analyzed in two sets of PCRs. The first PCR 

was designed to identify the T-DNA tagged adn1-1 or adn2-1 allele using the left 

border primer and gene specific primer as indicated in Figure 26. The second PCR 

used primer to identify the wild-type allele. 
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Figure 26 – Use of PCR to identify T-DNA insertion mutants adn1-1 and adn2-1. Mutant 
plants homozygous for the T-DNA insertion were identified using two sets of primer. 
Primers a/b or d/e are gene specific for Arabidopsis thaliana ADN1 or ADN2 and flank the 
T-DNA insert; primers c and f bind in the T-DNA insert. Positions of the primers used for 
amplification are indicated below the schematic diagram. Primers used in the PCR were: a) 
128723RP,b) 128723LP, c) LBa1, d) 083120LP, e) 36310R and f) LBb1.3. The exact location of 
the T-DNA insertion is shown in Appendix F. 
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A homozygous T-DNA mutant failed to amplify the wild-type allele but did 

amplify the T-DNA tagged adn1-1 or adn2-1 alleles. Homozygous mutants were 

investigated for ADN transcript and protein abundance as well as for phenotypic 

variations from wild-type Arabidopsis; the results of these investigations are 

presented in the following sections. 

3 . 2 . 6 . 2  T R A N S C R I P T  A N D  P R O T E I N  A B U N D A N C E  I N  T - D N A  

I N S E R T I O N  L I N E S  

The expression of ADN1 and ADN2 was examined using reverse-

transcription PCR analysis of both T-DNA insertion lines and wild type. RNA was 

isolated from rosette leaf tissue of homozygous plant lines (Section 2.4.3) and the 

presence of ADN1 and ADN2 transcript was examined by semi-quantitative and 

end-point reverse-transcription PCR (Section 2.6.4). In contrast to wild type, low 

ADN1 and no ADN2 transcript was detected in the double mutant adn1-1adn2-1 in 

the linear range of amplification (Figure 27A, 30 cycles). A fragment of the ADN2 

transcript can be detected at the end-point range of amplification (Figure 27A, 34 

cycles), indicating that the T-DNA insertion in adn2-1 did not lead to a complete 

knockout of ADN2 expression, although the decrease was stronger than that 

observed for ADN1 protein in adn1-1. The band that was observed in the RT-PCR 

was not a genomic DNA contamination since amplification of the corresponding 

genomic ADN1 or ADN2 regions would lead to a 1.3 kb larger product. 
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Figure 27 – Reverse-transcription-PCR analysis of ADN1 and ADN2 T-DNA insertion 
mutants. A) Reverse-transcription analysis for expression from ADN1 and ADN2 in rosette 
leaf tissue. Transcript abundance was analyzed in wild type, cytokinin metabolism mutant 
(cym) and adn1-1adn2-1 double mutant using primer amplifying the full-length cDNA of 
ADN1 and ADN2. Actin 2 was used as a control. All PCRs were performed in semi-
quantitative range of amplification; in addition, ADN2 was amplified at nearly steady state 
level (34 cycles). B) The linear range of amplification was determined by carrying out six 
identical PCRs and stopping one reaction after every four cycles. Amplification products 

were quantified on a 1 % ethidium bromide-stained agarose gel. 

 

ADN protein abundance was evaluated by immunoblotting. For western blot 

analysis a protein extract was isolated from leaf and root tips (apical 1 cm) of 

homozygous plant lines and separated by 12.5 % SDS PAGE. Immunoblot with 

polyclonal anti-ADN2 antibody showed that ADN2 protein is more abundant in root 

tips than in leaves (Figure 28). ADN2 is abundant at wild-type level in adn1-1 mutant 
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plants but is down-regulated in adn2-1 and in the double mutant adn1-1adn2-1 

(Figure 28). The T-DNA insertion in adn2-1 did not result in the elimination of ADN2 

protein in rosette leaves nor roots; this result is consistent with the RT-PCR that 

showed low ADN2 transcript abundance. 

 

Figure 28 – Immunoblot analysis for expression of ADN2 in ADN1 and ADN2 T-DNA 
insertion mutants. A) Rosette leaf protein extracts and B) root protein extracts of wild type 
and mutant plant lines were probed with polyclonal antibody raised against 6x His tag ADN2 
protein. Wild-type ADN2 migrates at a molecular mass of 36 kDa.  

The polyclonal anti-ADN2 antibody is able to recognize both recombinant 

ADN1 and ADN2 proteins but is more sensitive for ADN2 (data not shown). Anti-

ADN2 antibody detected a minimum of 210 ng of ADN1 but 50 ng of ADN2. No 

polypeptide of the expected size for ADN1 protein was detectable in root or leaf 

protein extracts. The abundance of ADN1 in these tissues must be below detection 

limits of the anti-ADN2 antibody. 

Thus the T-DNA insertions in ADN1 and ADN2 do not eliminate either 

transcript, although the amount of ADN transcript is reduced compared to wild type 

(Figure 27). The mutant plant lines were further investigated for phenotypic 

deviations from wild-type Arabidopsis. 
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3 . 2 . 6 . 3  P H E N O T Y P I C  I N V E S T I G A T I O N  O F  A D N  T - D N A  I N S E R T I O N  

L I N E S  

Arabidopsis plants homozygous for adn1 and/or adn2 mutations germinated, 

grew, flowered and developed siliques similar to wild type when grown under 

normal, optimal conditions, indicating that the reduction of the proteins had no 

developmental effect.  

I tested a range of environmental settings to reveal conditional phenotypes; 

preliminary result indicated differences between wild type and mutants for some 

conditions but the results obtained were not consistent. Since the abundance of 

ADN1 and ADN2 mRNA and protein was found to be higher in root tissue compared 

to other organs (AtGenExpress Visualization Tool, AtProteome database) most 

approaches concentrated on root growth of the mutants. In these experiments seeds 

of mutants and wild-type were germinated on vertical ½ MS media plates containing 

5 µM Ino, Uri or Ado. The nucleosides did not have an effect on mutant root growth. 

When 7-day old seedlings were transferred onto vertical plates containing 5 µM 

cytokinins or cytokinin ribosides (6-benzylaminopurine, 6-benzylaminopurine-

riboside, trans-zeatin or trans-zeatin riboside) a difference in root growth was 

observed. The growth of adn1-1, adn2-1 and adn1-1adn2-1 roots were less inhibited 

by these cytokinins than that of wild-type Arabidopsis seedlings. Unfortunately, these 

results were not consistent. Also unreliable was the result of the growth experiment 

under short-day light conditions; a phenotype was apparent in one set of 

experiments suggesting a delayed shoot development for the adn1-1adn2-1 double 

mutant compared to wild type. This conditional phenotype was not observed for the 

single mutants. However, this result was not repeatable. 

3 . 2 . 7  T H E  A R A B I D O P S I S  M U T A N T  C Y M  

The cym mutation was created using the chemical mutagen ethyl 

methanesulfonate and seeds were provided by Carol Auer (University of 

Connecticut, Department of Plant Science, USA). Mutant plants were identified 
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based on their resistance to CK riboside (6-benzylaminopurine-riboside) and their 

sensitivity to the free base (6-benzylaminopurine). The mutation is expected to be a 

single nucleotide alteration and located on chromosome 2 of Arabidopsis but a 

corresponding gene was not identified yet. Based on the screen for cym it was 

suspected to be a CK regulation mutant, likely a CK nucleosidase mutant. Increased 

anthocyanin concentration in young cym seedlings was reported by Carol Auer 

(1999) as well as stunted roots and short hypocotyls but phenotypic investigation of 

adult plants was not reported. 

3 . 2 . 7 . 1  T H E  P H E N O T Y P E  O F  C Y M  M U T A N T S  

As known for juvenile seedlings, also adult cym plants showed increased 

anthocyanin concentrations in stem tissue (Figure 29). The base of primary shoots 

showed a dark red staining (Figure 29, panel 3 and 4) as well as juvenile secondary 

branches (Figure 29, panel 1). Wild-type Arabidopsis showed a reddish stem base 

occasionally (data not shown) but this was never as strong as cym. 
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Figure 29 – Phenotypical analysis of cym mutants. Pictures 1 to 5 show phenotypic features 
of cym mutant plants in close-up view. The location of the close-up pictures are indicated 
with arrows on the overview image of wild-type Arabidopsis thaliana (A). 1) red secondary 
branch; 2) red node and curled cauline leaf; 3) pale green, flattened and slightly outwards 
curled rosette leaves; 4) red primary stem close to base and 5) normal sized and short 
siliques. 

 

In addition to higher anthocyanin concentration in cym, the appearance of the 

rosette leaves differed compared to wild type. Rosette leaves of cym appeared pale 

green in colour, were flattened or slightly curled outwards (Figure 29, panel 3). A 

consistent variation in silique length was also observed. Siliques of cym plants were 

stunted and of different lengths although they contained healthy seeds (Figure 29, 

panel 5). 

Other phenotypes observed in the cym line included stem fasciation and 

altered phyllotaxy (Figure 30). Cym mutants showed flattened and fasciated stems 

beside round wild-type stems. Fasciation was accompanied by phyllotaxy alteration 

as seen for siliques (Figure 30, panel 2 and 5). Fasciated stems could split into two 

(Figure 30, panel 5), accompanied by reversion to normal phyllotaxy and wild-type 

vascular pattern (Figure 30, panel 4). 
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Figure 30 – Analysis of stem fasciation in cym mutants. Cym mutant plants grown under 
long-day conditions showed both, round wild-type appearing stems and flattened, fasciated 
stems often paired with altered silique phyllotaxy (A and B). Pictures 2 and 5 are magnified 
sections from pictures A and B. Cross sections were cut as indicated in picture 2 or 5 and 
stained with toluidine blue O. The scale bar in pictures 1,3,4 and 6 represents 120 µm. 

 

3 . 2 . 7 . 2  G E N O M I C  S E Q U E N C E  O F  A D N 2  I N  C Y M  B A C K G R O U N D  

The cym mutation was mapped to chromosome 2 of Arabidopsis by Carol 

Auer (1999). ADN2 was suggested as candidate gene for the location of the 

mutation due to close proximity to the mapped region; the proposed identity of ADN2 

as an Ado NH and a putative CK metabolizing enzyme might account for the cym 

phenotype described in the previous section. A direct sequence analysis of the 

ADN2 gene was performed to test whether the cym mutation lay in the ADN2 gene.  
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Figure 31 – Schematic of the sequencing result of ADN2 gene in cym mutant background. 
The diagram shows the Arabidopsis thaliana ADN2 gene organization (AtADN2) on top and 
the range of sequencing data obtained below. All exons and introns of ADN2 were 
sequenced completely only missing the 3 base pairs (bp) of the stop codon due to the 
primer used for PCR. The 5 prime untranslated region (5’ UTR) was sequenced partially, the 
3’ UTR was not sequenced to date. The sequenced region did not show a deviation from 
wild-type ADN2.  

To date the full-length ADN2 sequence has been obtained except for the 3 

base pairs of the stop codon due to a deletion in the primer used for amplification. In 

this sequence, no diversion from the wild-type allele was observed. The 5′ and 

3′UTRs are incomplete or not sequenced yet. 
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C h a p t e r  4  
D I S C U S S I O N  

Ado recycling is an essential process in organisms. The importance of this process 

is illustrated by the SCID in humans which is associated with the loss of ADA 

enzyme activity (Fischer, 2000). The ADA deficiency causes accumulation of Ado 

and 2′-deoxyadenosine which is phosphorylated into deoxyATP. Immature 

lymphocytes are unable to convert dATP but it blocks cell division by inhibiting 

ribonucleotide reductase, an enzyme important for DNA synthesis (Fischer, 2000). 

Higher plants also need to recycle Ado efficiently; plants depend largely on 

ADK activity for this process and loss of ADK has severe developmental 

consequences. For example, Arabidopsis adk1 adk2 double mutants which lack 

ADK activity are embryonic lethal (B. Moffatt, unpublished); silencing of ADK activity 

causes a pleiotropic phenotype due to accumulation of Ado causing inhibition of 

transmethylation activities (Moffatt et al., 2002).  

The aim of this research was to investigate the functional significance of the 

putative Ado recycling enzymes ADA and ADN in Arabidopsis thaliana. This 

research sought to verify ADA identity of locus At4g04880 and ADA activity for the 

protein product. One further aim of this research involved the screen for ADN genes, 

homologs to nucleoside hydrolases from protozoa. 

4 . 1  A T A D A  D O E S  N O T  P O S S E S S  A D A  A C T I V I T Y  

The Arabidopsis locus At4g04880 is annotated as a putative ADA/AMPD 

based on computational analyses (TAIR). Recombinant protein generated in E. coli 

has ADA activity based on a preliminary study using a colorimetric assay (Sherri Fry, 

499 report).  

I repeated the colorimetric assay but the result described by S. Fry was not 

obtained (3.1.2.1). Plant ADA did not show activity in the assay; reactions containing 

AtADA produced a signal indistinguishable from the negative control without ADA 
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(Figure 6). This colorimetric assay is an indirect measure of ADA activity only; the 

addition of ADA ensures that the reaction catalyzed by SAHH proceeds in the 

hydrolytic direction.  

A direct test for the ADA functionality of the recombinant protein was sought 

next. In the selected spectrophotometric assay the enzyme activity was determined 

directly by the production of Ino which is detected as an increase in the absorbance 

at 240 nm. However, no ADA activity was detectable for purified, recombinant 

AtADA using this assay (Figure 10). The integrity of the spectrophotometric assay 

was verified by including a reaction containing recombinant ADA from the calf 

intestine (Roche); this enzyme preparation converted Ado to Ino effectively (graph A, 

Figure 10). Thus, the direct spectrophotometric assay is a valuable method to detect 

ADA activity and I recommend its use over the indirect colorimetric assay.  

Recently, Popsiliova et al. (2008) demonstrated that the protein encoded by 

the gene At4g04880 acts with very low activity on Ade, Ado, AMP and ATP, without 

obvious substrate preference. These data were obtained using a spectrophotometric 

assay at 240 nm and a recombinant 6xHis tag protein. The activities detected by 

Popsiliova et al. (2008) were very low with kcat for Ado of 0.005 and specific activity 

for Ade of 0.12 nkat/mg. The specific activity of the recombinant AtADA on Ado is 

reported to be approximately 30 % of the Ade value, which would correspond to 

0.036 nkat/mg. This low catalytic activity is below the limit of detection of the 

spectrophotometer that I used. Despite their ability to detect these low activities, 

Popsiliova et al. (2008) concluded that it is not clear if the protein is a deaminase 

enzyme. 

The recombinant AtADA used in colorimetric and spectrophotometric assays 

was purified from previously frozen E. coli BL21-CodonPlus(DE3)-RIPL cells using 

affinity chromatography; a loss of enzyme activity during the purification process is 

not expected but could not be excluded. Therefore, a study was done on freshly 

grown, quickly processed crude extracts from two different E. coli strains containing 

6xHis tag AtADA. In addition, the spectrophotometric assay was performed at a 
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second wavelength (265 nm) that monitored the conversion of Ado by the decrease 

of the substrate concentration. The spectrophotometric assay detected K12ADA 

activity in BL21-CodonPlus(DE3)-RIPL and SØ3834 cell lysates (Figure 7). Thus, 

the assay at 265 nm is applicable to detect ADA activity in E. coli crude extracts 

although the use of SØ3834 cells is advantageous due to the absence of ADA 

background activity. Nevertheless, no activity for AtADA was detected (Figure 7). In 

IPTG-induced lysates, AtADA and K12ADA were detectable in the SDS-PAGE but 

the AtADA protein concentration was low due to codon usage problems (Figure 8).  

The sensitivity of the spectrophotometric assay could be improved if the 

expression of AtADA in E. coli can be enhanced by either altering the rare codons in 

AtADA cDNA sequence or exploring an alternative expression host. In conclusion, 

neither the spectrophotometric nor the colorimetric assays provided any evidence 

that the recombinant protein encoded by At4g04880 has ADA enzyme activity.  

4 . 2  A T A D A  C A N N O T  C O M P L E M E N T  A D A  O R  A D K  D E F I C I E N C Y  

In vivo complementation was used as a further approach to test for AtADA 

enzyme activity. Information relevant to AtADA overexpression in an Arabidopsis 

mutant can be derived from a resulting phenotype but a uniform and sensitive 

method to evaluate these effects was important. The complementation test involved 

providing the AtADA cDNA as a transgene to an ADK-deficient plant (sADK 9-1) 

which otherwise has a pleiotropic phenotype due to Ado accumulation. The premise 

of the test was if AtADA encodes a functional ADA, this activity might reduce the 

Ado concentration and alleviate the stunted growth, wavy leaves and reduced fertility 

associated with ADK deficiency. Although this in planta complementation test mimics 

the in vivo situation well, it was possible that the results might be inconclusive due to 

variability of sADK mutant phenotype or gene silencing issues.  

Since ADA is a monomer and homolog to the E. coli enzyme, I also used a 

more convenient and faster approach for complementation based on the E. coli ADA 

deletion mutant strain SØ3834 (Hove-Jensen and Nygaard, 1989; Chang et al., 
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1991). In this test, SØ3834 cannot grow on a defined medium unless provided with a 

functional ADA activity. Codon usage problems were apparent in earlier AtADA 

expressions using BL21-CodonPlus(DE3)-RIPL cells; therefore one concern with 

this complementation approach was that codon usage problems might reduce the 

expression of the AtADA transgene in SØ3834 and thus reduce the utility of the test. 

Fortunately, SDS-PAGE analysis of the E. coli crude extracts revealed detectable 

AtADA protein so the lack of expression was eliminated as a concern (Figure 8).  

In analysing the growth promoting effect of AtADA and K12ADA on SØ3834 it 

was evident that K12ADA but not AtADA was able to complement ADA deficiency 

(Figure 11).  

The final in planta test for ADA activity of the At4g04880 gene product was 

inconclusive due to gene silencing issues. sADK 9-1 35S::ADA appeared 

phenotypically normal but this was not due to complementation of the ADK 

deficiency by the At4g04880 cDNA expression. Instead the 35S promoter driving the 

expression of the putative AtADA was interfering with the activity of the 35S 

promoter expressing the ADK cDNA as verified by ADK activity assay (Figure 12). 

Other cases of trans-inactivation mediated by homology between 35S promoters on 

T-DNAs have been documented previously by Daxinger et al. (2008). These authors 

studied 21 SALK lines which were crossed with a line containing a 35S::GUS 

transgene; 11 of these lines showed silencing of the GUS gene in the F2 generation. 

Thus, using the 35 S promoter for the AtADA overexpression construct was not a 

good choice.  

An alternative in planta complementation test was devised involving the use 

of an ADK-deficient line generated by artificial microRNA expression (S. Lee, 

unpublished results) and an AtADA cDNA expressed from the manopine synthase 

promoter. The preliminary results showed no complementation of ADK deficiency by 

AtADA.  

Taken together, it is reasonable to conclude that overexpression of AtADA did 

not complement ADA deficiency in Arabidopsis and that the protein encoded by 
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locus At4g04880 does not encode a functional ADA. No further ADA-related genes 

have been identified in the genome of Arabidopsis, therefore it is concluded that 

ADA activity is not present in this plant. 

4 . 3  P H Y L O G E N E T I C  A N A L Y S I S  R E V E A L S  T H A T  A T 4 G 0 4 8 8 0  

E N C O D E S  A N  A D A L  

Activity assays demonstrated that the recombinant AtADA does not process 

ADA activity; furthermore, it was demonstrated that AtADA is not able to 

complement ADA deficiency in E. coli. Concurrent phylogenetic analysis of ADA-

related sequences from eukaryotes revealed that the protein encoded by At4g04880 

is related to the classic ADA subfamily but in fact belongs to the ADAL family (Figure 

14). The ADAL proteins are closely related to the ADA subgroup in sequence 

similarity and share numerous important catalytic residues. However, no ADAL 

subfamily member has been shown to have ADA activity (Maier et al., 2005); the 

results presented in this thesis show that AtADA is no exception.  

This raises the question of the function of AtADA but to date no answer can 

be given. Since Maier and colleagues published the discovery of the novel ADAL 

subfamily in 2005 only two additional publications were released dealing with this 

topic. In 2007, Rosemberg and colleagues investigated the expression profile of 

ADA1, ADA2 and ADAL genes in brain, gills, heart, liver, skeletal muscle and kidney 

tissue of zebrafish (Danio rerio) using RT-PCR. The results demonstrated that each 

protein is expressed in all tissues; ADAL transcript was more abundant in liver and 

kidney and less in the heart. In a second study the biochemical properties of these 

ADA-related proteins were investigated but no evidence about the functionality of 

ADAL was obtained (Rosemberg et al., 2008).  

In general, the knockout of At4g04880 gene product demonstrated that this 

locus is not essential for Arabidopsis development, when grown under normal 

conditions. The locus At4g04880 should be re-annotated as ADAL. 
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4 . 4  A D N 1  A N D  A D N 2  A R E  P O T E N T I A L  A D N S   

ADN enzyme activity has been demonstrated in crude extracts or partially 

purified preparations of several plants including spinach beet (Poulton and Butt, 

1976), barley (Guranowski and Schneider, 1977) and wheat (Chen and Kristopeit, 

1981) but in none of the investigated plants has the gene coding for ADN been 

identified. The aim of this research was to screen for ADN genes in Arabidopsis 

thaliana and to investigate their enzyme activity. BLAST was used to screen the 

genome of Arabidopsis and the existence of five candidate genes was revealed 

(Table 16). I chose two genes, ADN1 and ADN2 for investigation and at the time I 

started my research both were computationally annotated as IU-NH. During the time 

of my study the genes were re-annotated as Uri ribohydrolases by Jung et al. (2009). 

The results I obtained for the characterization of both proteins are consistent with 

those of Jung et al. (2009); no substrate was found for ADN1 whereas ADN2 acts 

predominately on Uri. The results of my research are discussed in the following 

sections. 

4 . 5  A D N 2  P O S S E S S E S  N U C L E O S I D E  H Y D R O L A S E  A C T I V I T Y  

ADN2 expressed as recombinant protein in E. coli was purified to near 

homogeneity by affinity chromatography (Figure 18); this preparation had a specific 

activity of 23 mM Uri min-1 mg-1. The recombinant ADN2 utilized additional 

substrates such as Ino, Ado and Gua but strongly preferred Uri. Its specific activity 

on Uri was 9.5- and 59-fold higher than on Ino or Ado, respectively (Table 20). Thus, 

the substrate spectrum of ADN2 includes purine and pyrimidine nucleosides, which 

is similar to that of the homolog from C. fasciculata that also prefers Uri and 5-

Methyl-Uri over other substrates (Parkin et al., 1991). The Km values obtained for 

ADN2 on the tested substrates appeared high, being between 0.16 to 0.33 mM 

(Table 20) but values for the IU-NH from Crithidia have a similar range (0.38 to 

1.2 mM). The recombinant ADN1 did not show activity on any tested substrates 

including Ado, cytidine, Ino, thymidine and Uri. 
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The precision of the kinetic values obtained for ADN2 was limited by the 

spectrophotometric assay used and the high absorption of the substrates at the 

desired concentrations. The Michaelis-Menten curve for Uri entered the saturation 

phase at a substrate concentration of approximately 0.9 mM and for the substrate 

Ino at approximately 0.7 mM (Figure 21); this corresponds to an absorbance of 2.2 

and 1.5, respectively at the beginning of the assay run. The equation of the Beer’s 

law implies that the absorption of a sample will increase linearly with the 

concentration. However, this linear relationship is true only over a limited range of 

absorption values but readings greater than 1.0 do not reflect the accurate 

concentration of the analyte and vice versa. Thus, a minor deviation from the Beer’s 

law is expected for the kinetic analysis using Ino and Uri leading to a slight 

underestimation of the Vmax and Km. A strong deviation from Beer’s law is expected 

for kinetic analysis using Ado as substrate since it is very high absorbing at the 

required wavelength. Even low Ado concentrations of approximately 164 µM led to 

an absorption of >1.0 whereas not until 350 µM Uri and 450 µM Ino this absorption 

value was reached. It is not recommended to obtain kinetic values for Ado with the 

spectrophotometric assay. Alternatively, an HPLC assay is suggested (Parkin et al., 

1991). 

Recently it has been demonstrated that the genome of the moss 

Physcomitrella patens contains 3 sequences with 26% amino acid identity to an 

IU-NH sequence from Crithidia fasciculata (Turcinov and Schwartzenberg, 

unpublished). ADN1 and ADN2 share high amino acid similarity of 46 to 60% with 

these moss genes. Experiments to determine substrate specificity revealed that one 

of the moss proteins acts on purine and pyrimidine nucleosides, which is similar to 

the substrate profile of the ADN2 homolog from A. thaliana. The moss enzyme also 

utilizes cytokinin ribosides and a function in cytokinin homeostasis is proposed 

(Turcinov and Schwartzenberg, unpublished). The moss protein and ADN2 share 

51 % amino acid identity and a similar substrate spectrum; the activity of ADN2 on 

cytokinin appears likely and should be investigated. Recombinant protein produced 



 

 104 

from the other two moss coding sequences did not show activity on tested 

substrates (Turcinov and Schwartzenberg, unpublished); this fact is interesting since 

ADN1 did not show activity either. The function of these plant proteins with unknown 

substrates is yet to be revealed. 

4 . 6  “ N A T I V E “  A D N 2  P R O T E I N  A C T S  O N  U R I D I N E   

Affinity tagged versions of ADN1 and 2 were purified from Arabidopsis for 

multiple purposes; I was able to accomplish the investigation of differences in the 

substrate spectrum of the protein synthesized in planta in comparison to the 

recombinant version only. It was thought that some type of post-translational 

modification might lead to an active ADN1. Phosphorylation sites are predicted for 

ADN1 and ADN2 based on NetPhos 2.0 software but ADN1 and ADN2 peptides 

identified by mass spectrometry did not contain any modifications (AtProteome 

database, Baerenfaller et al., 2008). Unfortunately, it was not possible to obtain a 

sufficient amount of protein for all experiments including a test of the detection limit 

of “native“ ADN1 in western blots or a broad substrate spectrum analysis to reveal a 

substrate for ADN1.  

Both ADNs were tested for their activity on Ado, Ino and Uri. The “native” 

ADN2 enzyme did not show detectable activity on Ado but utilized Uri and Ino 

(Figure 22). No ADN activity was detected on any of these substrates in reactions 

containing the “native” ADN1. Nevertheless, these data must be considered 

preliminary because it was not possible to do multiple replicates of each assay due 

to the low protein concentrations.  

The yield of StrepII-tag protein was possibly limited by the binding capacity of 

the StrepTactin resin or the amount of overexpressed ADN protein per g leaf tissue 

(Table 19). With the current data no conclusive statement is possible but either 

explanation is possible. The binding capacity of StrepTactin resin is stated as 

3 mg/ml by the manufacturer. These values were previously obtained when purifying 

recombinant protein from E. coli. StrepTactin resin also binds and co-purifies 



 

 105 

biotinylated proteins along with the StrepII-tag protein. Since the cytosolic biotin level 

in plants has been estimated to be 3 times higher than in bacteria (Tissot et al., 

1997), the yield of target protein might be reduced due to this fact. However, since it 

was possible to purify consistently more ADN2 than ADN1 protein (Table 19) it 

appears that the protein expression in Arabidopsis is the most likely limiting step 

rather than the binding capacity of the resin. Nevertheless, both ADN-StrepII 

proteins were purified to near homogeneity (Figure 20). Lichty and colleagues (2005) 

examined two proteins and six peptide affinity tags to purify recombinant proteins 

from E. coli, yeast, Drosophila and HeLa cell extracts. Tags such as the His tag 

produced proteins with many contaminants whereas the StrepII tag produced protein 

almost as pure as epitope-based systems. The purification of both ADN-StrepII 

proteins demonstrated that this tag is very valuable to extract proteins from 

Arabidopsis in high purity. 

4 . 7  B O T H  A D N S  A R E  S U B C E L L U L A R  L O C A L I Z E D  I N  T H E  C Y T O S O L  

To study the localization of ADN, ADN1 and ADN2 GFP translational fusions 

were expressed in plants. The transient expression in epidermal cells of tobacco 

Nicotiana benthamiana indicated that ADN resides in the cytosol and nucleus 

(Figure 25). The 67 kDa fusion proteins are below the diffusion limit of nuclear pores 

(Pollard et al., 1996) making it possible for these proteins to enter the nucleus by 

diffusion rather than by an active transport mechanism. To address this issue ADN2 

was fused to a double GFP resulting in a 82 kDa fusion protein. Analysis of these 

lines showed that ADN2 resides in only the cytosol and entry to the nucleus was due 

to diffusion.  

Immunolocalization studies using affinity-purified antibodies for ADK 

performed by Schoor (2007) found ADK to be present in the cytosol, nucleus and 

chloroplast even when fused to an 89 kDa reporter protein. To enter the nucleus an 

active transport of the fusion protein was presumed. The present results for 

localization indicate that ADN and ADK share the presence in the cytosol but not in 
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nucleus or chloroplasts; ADK is localized in these additional compartments. Thus 

ADK and ADN do not contribute to adenosine recycling activities in all the same 

compartments. Since the purine and pyrimidine salvage is located in the cytosolic 

compartment of the cell (Zrenner et al., 2006), the localization of ADN in the cytosol 

is sufficient for this role. 

4 . 8  F U N C T I O N A L I T Y  O F  A D N 1  A N D  A D N 2  I N  A R A B I D O P S I S  

T H A L I A N A  

The T-DNA insertion mutants adn1-1 and adn2-1 were chosen to investigate 

the role of ADN 1 and ADN 2 in plant development. The T-DNA insertions in these 

lines did not lead to a complete knockout of transcription of the mutated genes as 

demonstrated by RT-PCR analysis, although the decrease in adn2-1 was substantial 

(approximately 80 %) (Figure 27). The effect of the T-DNA insertion on protein 

expression was investigated using a polyclonal antibody raised against ADN2. 

Reduced ADN2 protein in adn2-1 could be demonstrated but the antibody did not 

detect ADN1 protein in crude extracts of wild type, adn1-1 nor adn2-1. Thus the 

synthesis of ADN1 and ADN2 was not eliminated in these plant lines even though 

insertion in exons or introns is commonly thought to lead to knock out the target 

gene.  

Wang (2008) studied the frequency with which insertions within the protein-

coding region knocked out gene expression by reviewing 648 publications, 1084 

Arabidopsis thaliana insertion mutants representing 755 genes. Wang (2008) 

revealed that in 14 % of the time insertions within the protein-coding region do not 

knock out gene expression; differences between the location in an intron or exon are 

not large with 18 % and 12 %, respectively (Wang, 2008). Since the T-DNA insertion 

of adn1-1 is in an intron, a wild-type transcript may be produced in this mutant 

because the intron can be spliced out together with the inserted T-DNA sequence. 

This indeed occurs in several insertion mutants i.e. AGL104 and ASP2 (reviewed in 

Wang, 2008). However, the mechanism to explain a partial transcript for adn1-2, 
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where the T-DNA insertion is in an exon, is difficult. It is possible that the T-DNA is 

processed out, generating a shorter, altered transcript with a very low efficiency or 

only a small part of the T-DNA was inserted (Wang, 2008). Since the size of the 

ADN2 transcript and protein correlates with the predicted size it is unlikely that a 

large truncation occurred but the possibility of a very small T-DNA insertion needs to 

be investigated.  

Although ADN1 and ADN2 transcripts were reduced in single and double 

mutants when compared with the wild type, all three lines do not exhibit visible 

phenotypic changes in standard growth conditions. Many mutants have no 

identifiable phenotype under standard conditions i.e. of the 17 mutants described in 

Krysan et al., (1996) none displays an altered phenotype unless grown under 

specific conditions. In order to circumvent this problem, it was proposed that mutants 

should be tested under a wide range of environmental conditions that would reveal 

conditional phenotypes (Krysan et al., 1999). The conditions I tested i.e. growth 

under short-day growth conditions, root growth on ½ MS media supplemented with 

nucleosides or cytokinins, did not reveal differences therefore genetic crosses to 

further mutants might be necessary to reveal a conditional phenotype.  

The cym mutant was included in this research since its phenotypic description 

and its reported decreased adenosine nucleosidase activity (Auer, 1999) made it an 

interesting candidate for an ADN mutant. Since the cym mutation was mapped to the 

Arabidopsis chromosome 2 it was proposed to be an ADN2 mutant. The sequencing 

of the ADN2 gene of the cym mutant did not lead to the identification of a mutation 

(Figure 31). Changes in the 5’ or 3’UTRs have yet to be investigated. 

The research in this thesis revealed that ADN2 is a purine and pyrimidine 

nucleoside hydrolase that acts on Ado but prefers Uri as substrate. ADN2 is 

proposed to be involved in the purine and pyrimidine salvage in Arabidopsis and 

predominantly in uridine recycling. Therefore, ADN2 might not be the ADN gene this 

work was aiming to identify. Nevertheless, I am confident that in the genome of 

Arabidopsis a gene coding for a nucleosidase exists that converts Ado and 
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cytokinins predominantly. Recently, an in vivo feeding experiment in Arabidopsis 

demonstrated that the conversion of tritium labeled cytokinin riboside into base was 

higher in an ADK deficient plant compared to wild type (K. von Schwarzenberg and 

H. Turcinov, personal communication). Crosses of ADK deficient plants and ADN1 

and ADN2 knockout mutants could reveal if this nucleosidase activity is due to the 

activity of one of these loci or a different gene is coding for this activity. Further 

analysis is also needed to test whether ADN60 (Table 16) is the elusive functional 

ADN I have been seeking in this research. 
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Appendix A 
The location of the T-DNA insertion in At4g04880 as verified by 

sequencing 

Sequence flanking the ada1-1 insertion allele 
CCNCAGGGCCCGGCNGGGGAAAGGGCATCAGCTGTTGCCCCGTCTCACTGGTGAAAG

AAAAACCACCCCAGTACATTAAAAACGTCCGCAATGTGTTATTAAGTTGTCTAAGCGTCAATTTGT

TTACACCACAAAGACAATGATCTTCACATCACTCTTAAAGCGTCAATTTGAAATCTTCCATGTTCT

TGTAGGAGCACTTTCTTGCCTGCATTACAATATGCCAAAGACAATGATCTTCACATCACTCTTCAC

TGTGGAGAGGTATTAACTCTTGAAAATCCACTTAACCGATTTTCAAATGTTTATGTTTCAGATTGT

CTACTACTTTCTCTATCTTAGTGCTTTGTAGGTTCCCAATCCGAAAGAGATCCAAGCCATGCTTGA

TTTTAAACCGCATCGGATTGGACATGCCTGTTTCTTCAAAGACGAAGATTGGACAAAGTTGAAAT

CTTTCCGGATTCCGGTAATAGATTTGCATGTACCATTATTCTCTGTTTCTTATAATCTCTTTAACCA

ATTTCAAGAGTTTGCTATGTTTTGCAGGTTGAAATATGTTTAACATCCAACATTGTAACCAAATCG

ATATCTTCCATCGATATACACCATTTCGGTTAGATTTTCTCTTTCCGCTGCTTCGTTTTCTACATTC

CTCCTTGTTCATTTAAAATCAAAGCAATCTTGACAAGATCTTAGTCTGATCTTACCAGCTGATCTTT

ACAATGCAAAGCATCCATTGATTCTATGCACTGATGATTTTGGAGTATTCTCCACTAGCCTCTCAC

GAGNTACNCANNNNN 

 

Location of T-DNA insertion in At4g04880 
Lower letter: Intron 

Upper letter: Exon 

: Location of T-DNA insertion in Exon 8 

 

ATGGAATGGATACAATCACTGCCCAAAATCGAGCTTCATGCTCATCTCAACGGTTCCATT

AGAGACTCCACTCTTCTgtaaatcccccaaatttatcttctttcttacgagttttgtttccattaactctatctttcgtatctgcaactttctgca

attgcactgatcaattatgaatttacccaatttgatattttgaactgatgggtttcgtttcttttgatgaatcagAGAGCTTGCTAGGGTTCT

TGGTGAGAAAGGCGTTATAGTGTTTGCTGATGTTGAACATGTCATTCAAAAAAgtaagagtctttaattttttg

aattcgttgttctgtattttgcttaagttttagtctactctagtgtcgcaagtagtttctaatgtttggtatgtgtgatgatgtttttttttaagATGATCGA

TCTTTGGTTGAAGTCTTCAAGTTGTTTGATTTGATCCATAAGCTCACTACTGATCACAAAACTGTG

ACAAGGATCACAAGAGAAgtaaaaccctaattctaatttccattcattagcttgattttagtaattctatagacttgactgatgatcttatctt

gacagGTTGTGGAAGATTTTGCTTTAGAGAATGTGGTGTATCTTGAGTTACGAACTACTCCAAAGgt

acacaccttttggcatattttttgcaagtggttaagttatatgaatgatggagattgtttgtttgtagAGGAGTGATTCAATAGGTATGA

GTAAACGTTCTTACATGGAAGCTGTAATCCAAGGTCTAAGATCTGTCAGTGAAGTCGATATTGAT

TTTGTTACCGCATCTGATTCTCAAAAACTGCACAATGCTGGTGATGGGATTGGAAGAAAGAAGAT
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TTATGTTAGACTTCTTCTTAGTATTGATCGTAGGGAAACAACAGAGTCCGCAATGGAAACTgttagtgt

ttcaaaacaagctaagctactcagaatacttaaaagactaatgcagaaaacatttgatactctccttttttctttaaagGTTAAGCTCGCA

TTGGAAATGAGAGATGTCGGGGTAGTTGGTATCGATCTTTCGGGGAATCCTCTTGTTGGAGAAT

GgtaaactgttcttagttctcctctttatcttttgcttcgctttatgagttggttttgaaatcttccatgttcttgtagGAGCACTTTCTTGCCTGC

ATTACAATATGCCAAAGACAATGATCTTCACATCACTCTTCACTGTGGAGAGgtattaactcttgaaaatcca

cttaaccgattttcaaatgtttatgtttcagattgtctactactttctctatcttagtgctttgtagGTTCCCAATCCGAAAGA GATCCA

AGCCATGCTTGATTTTAAACCGCATCGGATTGGACATGCCTGTTTCTTCAAAGACGAAGATTGGA

CAAAGTTGAAATCTTTCCGGATTCCGgtaatagatttgcatgtaccattattctctgtttcttataatctctttaaccaatttcaagagt

ttgctatgttttgcagGTTGAAATATGTTTAACATCCAACATTGTAACCAAATCGATATCTTCCATCGATATA

CACCATTTCGgttagattttctctttccgctgcttcgttttctacattcctccttgttcatttaaaatcaaagcaatcttgacaagatcttagtctgat

cttaacagCTGATCTTTACAATGCAAAGCATCCATTGATTCTATGCACTGATGATTTTGGAGTATTCTC

CACTAGCCTCTCCAACGAGTACGCCCTCGCTGTTCGTTCTCTTGgtgagcttccagaacctgagctcaaatcca

acagttacagagcttttctgatttttgagaattgtgattaagtttagattcacaaagaaactacatttccaaataatctaattttgtttcttctgtgaagG

TCTTAGTAAAAGTGAAACCTTTGCATTGGCTAGAGCAGCCATAGACGCAACATTTGCAGAAGATG

AAGTTAAGCAACAACTTAGGTTCATTTTTGATTCAGCCTCGCCAGAGCACGTTTAG 
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Appendix B 
List of ADA-related proteins retrieved from NCBI database for the 

phylogenetic analysis 

gi|22328354_ADA_Arabidopsis thaliana gi|145246602_HP_Aspergillus niger 

gi|225444347_HP_Vitis vinifera gi|168052009_HP_Physcomitrella patens subsp. patens 

gi|195640778_ADA_Zea mays gi|189537427_HP_Danio rerio 

gi|115473871_HP_Oryza sativa gi|8745398_ADA_Lutzomyia longipalpis 

gi|125559485_HP_Oryza sativa Indica Group gi|242765187_ADA_Talaromyces stipitatus ATCC 10500 

gi|224142856_HP_Populus trichocarpa gi|242765191_ADA_Talaromyces stipitatus ATCC 10500 

gi|242046828_HP_Sorghum bicolor gi|189205585_ADA_Pyrenophora tritici-repentis Pt-1C-BFP 

gi|223542356_ADA_Ricinus communis gi|156396691_HP_Nematostella vectensis 

gi|212722682_HP_Zea mays gi|110762275_ADAGF_Apis mellifera 

gi|125601393_HP_Oryza sativa Japonica Group gi_ADA_Aspergillus fumigatus Af293 

gi|76253699_ADAL_Danio rerio gi|212532149_ADA_Penicillium marneffei ATCC 18224 

gi|194034856_ADAL_Sus scrofa gi|209733054_ADA_Salmo salar 

gi|156230101_ADAL_Danio rerio gi|6680636_ADA_Mus musculus 

gi|110626056_ADAL_Mus musculus gi|1518868_ADA_Mus musculus 

gi|74000326_HP_Canis familiaris gi|170057282_ADA_Culex quinquefasciatus 

gi|146286026_ADAL_HUMAN gi|148229278_ADAGF_Xenopus laevis 

gi|184186693_ADAL_Rhinolophus ferrumequinum gi|121701335_ADA_Aspergillus clavatus NRRL 1 

gi|194206726_ADAL_Equus caballus gi|59894171_CECR1_Gallus gallus 

gi|163781038_ADAL_Papio anubis gi|197097916_CECR1_Pongo abelii 

gi|229366052_ADAL_Anoplopoma fimbria gi|59894169_CECR1_Xenopus laevis 

gi|115497612_ADAL_Bos taurus gi|7650202_CECR1_Homo sapiens 

gi|126281885_ADAL_Monodelphis domestica gi|156537065_ADA_Nasonia vitripennis 

gi|225707674_ADA_Osmerus mordax gi|91078362_ADA_Tribolium castaneum 

gi|24645260_ADA_Drosophila melanogaster gi|29029550_CECR1_Homo sapiens 

gi|158292670_HP_Anopheles gambiae str. PEST gi|71059839_ADA_Mus musculus 

gi|219497951_HP_Branchiostoma floridae gi|30704990_CECR1_Homo sapiens 

gi|156717926_HP_Xenopus (Silurana) tropicalis gi|114685023_CECR1_Pan troglodytes 

gi|109091964_ADA_Macaca mulatta gi|121698885_ADA_Aspergillus clavatus NRRL 1 

gi|224062359_ADAL_Taeniopygia guttata gi|112497629_ADAL_Phlebotomus duboscqi 

gi|27806933_ADA_Bos taurus gi|68358568_CECR1_Danio rerio 

gi|148878089_ADA_Bos taurus gi|212528902_ADA_Penicillium marneffei ATCC 18224 

gi|58332372_ADA_Xenopus (Silurana) tropicalis gi|148223271_ADAGF_Xenopus laevis 
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gi|57529377_ADA_Gallus gallus gi|73992040_ADA_Canis familiaris 

gi|114682264_ADA_Pan troglodytes gi|55962504_CECR1_Danio rerio 

gi|47078295_ADA_Homo sapiens gi|19111863_ADA2_Schizosaccharomyces pombe 

gi|224078024_ADA_Taeniopygia guttata gi|149239973_ADA_Lodderomyces elongisporus NRRL 

gi|238844595_ADA_Microsporum canis CBS 113480 gi|241951764_ADA_Candida dubliniensis CD36 

gi|240272916_ADA_Ajellomyces capsulatus H143 gi|242774814_ADA_Talaromyces stipitatus ATCC 10500 

gi|157110346_ADA_Aedes aegypti gi|115644403_ADA_Strongylocentrotus purpuratus 

gi|239610012_ADA_Ajellomyces dermatitidis ER-3 gi|238883594_ADA_Candida albicans WO-1 

gi|1402634_ADAGF_Sarcophaga peregrina gi|146419867_HP_Pichia guilliermondii ATCC 6260 

gi|239594865_ADA_Ajellomyces dermatitidis SLH14081 gi|68482418_ADA_Candida albicans SC5314 

gi|157120960_ADA_Aedes aegypti gi|198429719_ADAL_Ciona intestinalis 

gi|17737615_ADAGF_Drosophila melanogaster gi|68482539_ADA_Candida albicans SC5314 

gi|119480769_ADA_Neosartorya fischeri NRRL 181 gi|240135345_ADA_Candida tropicalis MYA-3404 

gi|18426812_ADA_Rattus norvegicus gi|149639307_ADAL_Ornithorhynchus anatinus 

gi|195334425_HP_Drosophila sechellia gi|45550748_ADAGF_Drosophila melanogaster 

gi|194224452_ADA_Equus caballus gi|126135216_ADA_Pichia stipitis CBS 6054 

gi|238493619_ADA_Aspergillus flavus NRRL3357 gi|157110767_ADA_Aedes aegypti 

gi|71001136_ADA_Aspergillus fumigatus Af293 gi|221131927_ADAL_Hydra magnipapillata 

gi|226693318_ADAL_Homo sapiens gi|224147241_HP_Populus trichocarpa 

gi|17646180_ADAGF_Drosophila melanogaster gi|224010419_ADA_Thalassiosira pseudonana CCMP1335 

gi|19922262_ADAGF_Drosophila melanogaster gi|18568326_ADA_Aedes aegypti 

gi|24666073_ADAGF_Drosophila melanogaster gi|67479401_ADA_Entamoeba histolytica HM-1:IMSS 

gi|73992038_ADA_Canis familiaris gi|66807095_ADA_Dictyostelium discoideum AX 

gi|195376039_HP_Drosophila virilis gi|224158489_HP_Populus trichocarpa 

gi|81167689_ADA_DANRE gi|156537067_ADAGF_Nasonia vitripennis 

gi|50540360_ADA_Danio rerio gi|118386223_ADA_Tetrahymena thermophila 

gi|156553202_ADAL_Nasonia vitripennis gi|157110765_ADA_Aedes aegypti 

gi|110751253_ADA_ Apis mellifera gi|145046487_ADA_Dekkera bruxellensis 

gi|123466985_ADA_Trichomonas vaginalis G3 gi|24646671_ADAGF_Drosophila melanogaster 

gi|225557937_ADA_Ajellomyces capsulatus G186AR gi|238660044_ADA_Schistosoma mansoni 

gi|123488240_ADA_Trichomonas vaginalis G3 gi|56417438_ADA_Aedes albopictus 

gi|40882142 _ADA_Neurospora crassa gi|6324188_ADA_Saccharomyces cerevisiae 

gi|112497029_ADAL_Phlebotomus duboscqi gi|170051337_ADA_Culex quinquefasciatus 

gi|225678411_HP_Paracoccidioides brasiliensis Pb03 gi|119472974_CECR1_Neosartorya fischeri NRRL 181 
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Appendix C 
SDS-PAGE analysis of E. coli lysates carrying the ADA 

complementation constructs 

 

 

SDS-PAGE of SØ3834 (lane 6 to 9) and BL21-CodonPlus(DE3)-RIPL (lane 1 to 5, lane 10) 
lysates grown without IPTG (lane 3 and 8) or 100 µM IPTG (lane 2, 4 to 7, 9 and 10) harboring 
the ADA complementation constructs as follows: lane 2, 3, 8 to 10: pK12ADA; lane 5, 6: 
pAtADA; lane 4: pMBP. For SØ3834 lysates 25 µl were loaded onto the SDS-gel and 20 µl for 

BL21-CodonPlus(DE3)-RIPL lysates except in lane 10 only 5 µl was loaded. 
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Appendix D 
Amino acid alignment of ADN70 with a N-terminal section of ADN60 

and of ADN90 with a C-terminal section of ADN60 

 

Amino acid sequence alignment of ADN70 with the N-terminal section of ADN60 from 
Arabidopsis thaliana. Identical amino acids are highlighted in a dark grey color and marked 
with a star symbol (*). 
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Amino acid sequence alignment of ADN90 with the C-terminal section of ADN60 from 
Arabidopsis thaliana. Identical amino acids are highlighted in a dark grey color and marked 
with a star symbol (*). 
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Appendix E 
Multiple amino acid alignment of ADN candidate genes from 

Arabidopsis thaliana 

 

Multiple alignment of the amino acid sequence of candidate adenosine nucleoside 
hydrolases (ADNs) from Arabidopsis thaliana and inosine-uridine nucleoside hydrolase 
from Chrithidia fasciculata (CfNH). The arrows mark conserved amino acids of the aspartic 
motif (DXDXXXDD, the hallmark of nucleoside hydrolases and a conserved histidine 
residue, important for the protonation of the leaving nucleobase (Versees and Steyaert, 
2003). 
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Appendix F 
The location of the T-DNA insert in the At1g05620 and At2g36310 

gene as verified by sequencing 

Sequence flanking the adn1-1 insertion allele 
NNNNNNNNNNNNNNCNTNGNNNTGGANTCCNCGTTCTTTATAGTGGANTCTTGTTCCAA

ACTGGANCNNCNCTCAACCCTATCTCGGGCTATTCTTTTGATTTATAAGGGATTTTGCCGATTTC

GGAACCACCATCAAACAGGATTTTCGCCTGCTGGGGCAAACCAGCGTGGACCGCTTGCTGCAA

CTCTCTCAGGGCCAGGCGGTGAAGGGCAATCAGCTGTTGCCCGTCTCACTGGTGAAAAGAAAA

ACCACCCCAGTACATTAAAAACGTCCGCAATGTGTTATTAAGTTGTCTAAGCGTCAATTTGTTTAC

ACCACAATATATTGACGCTTAATTTGTGTTATTAAGTAATGAAAACCTCGAGCCATAAAGGCAACA

ATCAGGATCATCACGGTTCTGTTGACAGCATTTGTATATTTTCAATATAAAACATCAAATAAGGAA

AAAAGATTATCCAAGATAACCTGTCATAATAACTTGATGGGTCACATTGATTCCCACAGCAATTAT

ATCGGCCCCACATGTGAACACAATATCTGCAGCTTCGGGATCGCCAAAAATCTACCCTAACCAAA

AAATTGGTTAAACAGATGTGAAAACTAAAAGAAGAGTTTTTGATAGAAAGTGATGTGTTATGTGTA

TGAATATCACATTACTTTTA 

 

Location of the adn1-1 T-DNA insertion in At1g05620 
Lower letter: Intron 

Upper letter: Exon 

: location of T-DNA insertion in Intron 6 

 
ATGGCGATAGGAGACCGCAAGAAGATTATCATCGATACTGATCCTGGAATCGgtatatacttat

ctccttttcattggattcgatttggatctctgtttctctactgtcattgcccaatatctttgaatcttctcggatttagaaaattttgggttttactggattctctc

cacttagtggaactacttggttttactgaatcttggtttacgaaaactctgggaaattagagatctgagtttttttttaagcgtttgactttacttaagaga

gctatcatgagtttattctcactggatttgatgatgttgtagATGATGCAATGGCGATATTCGTAGCTTTAAATTCACCTG

AAGTTGATGTCATTGGCCTCACTACTATCTTTGGAAACGTGTATACCACTCTCGCCACTCGAAAC

GCCTTGCATTTGgtaccatttctacaccatttttctcatatggatctcattacgaaaatgaagtcaataacatttcttggttgatctaatcatca

ttgttctatatgcatatctactagTTGGAGGTTGCGGGTAGGACCGATATTCCGGTGGCTGAAGGAACACATA

AAACCTTCTTGgtatgtttccactttatggcctttgatatgtttttgtgagaaagatggatgctatgtaatgtgtttgagattcaatatatgttttcta

gatctttagtaagaataataattcacacaaatgtgtttagttccaatctgtgttataaatcaaatggtaagttatattgtgtctttttcacatgtcatacca

cttagattttttagcattgataacttgttgtcttttcttctctaaagAACGATACGAAGCTTCGAATAGCTGACTTTGTTCATG

GAAAAGATGGGCTTGGCAACCAAAACTTCCCTCCACCTAAAGGAAAACCAATTGAAAAGTCTGG

ACCTGAGTTTTTAGTTGAACAAGCAAAGCTTTGCCCTGGTGAAATCACGGTTGTTGCTTTGGGAC
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CACTAACAAATCTCGCGTTGgtaagactttctcatccgcaatttttatattccggttcttacttatctctgttcctatcatcttatcggagatt

tcattaccttgataatgcagGCTGTTCAGCTTGATCCAGAGTTTTCGAAAAATGTCGGACAAATTGTTCTTC

TTGGTGGAGCATTTGCAGTAAACGGAAATGTAAATCCAGCTTCGGAAGCTAATgtaagttccttcacccgtt

aaagtaatgtgatattcatacacataacacatcactttctatcaaaaactcttcttttagttttcacatctgtttaaccaattttttggttagggtagATT

TTTGGCGATCCCGAAGCTGCAGATATTGTGTTCACATGTGGGGCCGATATAATTGCTGTGGGAA

TCAATGTGACCCATCAAGTTATTATGACAGgttatcttggataatcttttttccttatttgatgttttatattgaaaatatacaaatgc

tgtcaacagaaccgtgatgatcctgattgttgcctttatggctcgaggttttcattactt gttgcgaccaagaacataatttagttaaacagagctt

tctaatggcttttttcccggtgtttctgctggatttagCTGATGACAAGGACAAACTAGCATCATCGAAGGGGAAATTAG

CTCAATATCTCTGTAAAATCCTTGATGTGTACTATGATTATCATCTCACGGCTTACGAAATCAAAG

gtacgataatgataatcatttgtatgtgtgtttatttcatttggtaataagttcagttgtacacaaaattatataacaagaatttccacgactacgtattttt

atcttaacctcttcttttttgtgtgtgtgtggggcagGTGTGTACCTTCATGATCCTGCGACGATCCTTGCGGCTTTCC

TTCCTTCTCTATTCACTTATACAGAAGGAGTTGCTAGAGTGCAGACAAGTGGTATCACTAGGGGA

CTCACTTTACTGTACAACAATCTTAAGAGgtaagtttttttcatacatacaatacaaacattcaaaatagacagttgtgttatat

ataatagaggatgtaaatgtcatgtgtggtgatggaaaaaaacttgttgttgtgatgtgaaccagGTTTGAGGAAGCGAACGAGT

GGTCAGACAAACCAACGGTAAAAGTGGCAGTGACGGTTGATGCTCCTGCAGTCGTGAAGCTCAT

AATGGATAGGCTTATGGAGTCTTAA 
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Sequence flanking the adn2-1 insertion allele 
NNNNNNNNNNNNNNNCNTTNNNNNGGNNTCCACGTTCTTTATAGTGGANTCTTGTTCCA

AACTGGNNNNNNNNNNNNCNTATCTCGGGCTATTCTTTTGATTTANNNNGNANTTTNCCGATTTC

GGAACCACCATCAAACAGGATTTTCGCCTGCTGGGGCAAACCAGCGTGGACCGCTTGCTGCAA

CTCTCTCAGGGCCAGGCGGTGAAGGGCAATCAGCTGTTGCCCGTCTCACTGGTGAAAAGAAAA

ACCACCCCAGTACATTAAAAACGTCCGCAATGTGTTATTAAGTTGTCTAAGCGTCAAGTTGTAGA

AACATTACCAAACACAGTAGTTAATCCTAATATCTCCAGCTCCGGTGTTTGAAACGCCATCAATAT

CGCCATGCTATCATCTAATCATACACTAATGTTAGAACTGATCCTATTGAACAGTCATTTGGAAAA

AAGTCAACACACAAAAAAGAACAATTTCCCCTGAATCTTTCTATTAAGCAAAGCATTGAACTTTAC

AAGTAAATGAGCACACAAAAACAGATTCAAGAGATAACCATCTAAATATTTCTATTCAAATTAAAC

AAAGTTGGAAGCTTTCTGAGGTTAAATCCTACTCTGCCTGAAGATCCATTTACTAAAAGACGTAAT

CNAAACAGGGGAAGAAGAAGCTCACCAANTNNN 

 
Location of the adn2-1 T-DNA insertion in At2g36310 
Lower letter: Intron 

Upper letter: Exon 

: location of T-DNA insertion in Exon 2 

 

ATGGATTGTGGTATGGAGAATTGTAATGGTGGGATCTCAAACGGTGACGTTTTGGGTAA

GCATGAGAAGCTCATTATCGATACAGACCCAGGAATTGgtgagcttcttcttcccctgttttgattacgtcttttagtaaat

ggatcttcaggcagagtaggatttaacctcagaaagcttccaactttgtttaatttgaatagaaatatttagatggttatctcttgaatctgtttttgtgtg

ctcatttacttgtaaagttcaatgctttgcttaatagaaagattcaggggaaattgttcttttttgtgtgttgacttttttccaaatgactgttcaataggatc

agttctaacattagtgtatgattagATGATAGCATGGCGATATTGATGGCGTTTCAAACACCGGAGCTGGAGA

TATTAGGATTAACTACTGTGTTTGGTAATGTTTCTACA CAAGATGCTACTCGCAACGCTTTACT

CTTGgtatgtacagtacaatgcatcagtttactctgtcactacaacttttggaatgcgtctgtgatctctttctctttgttcattttgcaaaagaatagT

GTGAGATTGCTGGCTTCCCTGATGTTCCCGTTGCAGAAGGAAGTTCCGAACCTTTAAAGgtaccatct

ttctctcctctcataaggattgaaactttagtttatgccatgaagatttttcagatctttgctatgagacaaaaagccaaaccgttgtgactttagcttg

aattctggctttggtgtgttgattcagGGTGGAATTCCGCGTGTTGCTGATTTTGTGCATGGTAAAAACGGACTA

GGAGATGTCTCTCTTCCTCCTCCGAGTAGAAAGAAATCTGAGAAAAGTGCAGCTGAGTTTCTAGA

TGAGAAGGTCGAAGAATATCCGGGTGAAGTCACCATTCTCGCCCTCGGACCTCTAACCAACCTG

GCATTAgtaagaatcatgaatcccctcctttaatcttcttaaaatccgatttgtgtactgacgatgaccgggttttttcgttatagGCCATCAA

ACGCGATAGTTCATTTGCGAGCAAGGTGAAGAAAATTGTTATTCTTGGTGGAGCTTTCTTTTCTTT

GGGAAATGTCAATCCTGCAGCTGAGGCTAATgtaacccctccttgtaacctcatcttaatcttctgttaatgaaaaaggaaa

tgctggtttcattttgttggtctctgttctatatgcagATATATGGTGACCCGGAAGCAGCTGATGTTGTTTTCACATCT

GGAGCGGATATCACTGTTGTCGGTATAAACATCACAACCCAACTTAAACTATCAGgtgaagaagcttctc
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ccctcatctcctttagcattctggatatcacaatatagcctgctaaaagaatgtgtctgtttttgatctatttcagATGATGACCTCTTGGA

GCTTGGTAACTGCAAGGGGAAACACTCTAAATTGATAAGCGATATGTGCAAATTTTATAGAGATT

GGCACGTCAAATCTGATGGTGTTTACGgtaagcaagaatctgtgatcaatcaaacatgcttagaaattgcagttttgattctca

agagtttgttgttactggtttcagGAGTGTACCTCCATGACCCAGTCAGCTTTGTGGCTGTAGTACGGCCTGA

TTTATTCACATATAAGAAAGGCGTTGTTCGGGTGGAGACTCAAGGGATATGTGTTGGCCACACG

CTCATGGATCAAGGCCTCAAGAGgtttataacttgtttttcaccaaaaaataacactctttgaatctttagacctttcactaagtaatg

gtttggttcggattgtagATGGAACGGAAGCAATCCGTGGGTGGGATATTCACCGATATCAGTTGCTTGGA

CGGTTGACGTAGAAGGAGTTTTGGAATATGTCAAAGCAAAGCTGATGAAGCCATAA 
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