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Abstract

Nuclear magnetic resonance (NMR) spectroscopy technique is becoming exceed-

ingly significant due to its capability of studying protein structures in solution.

However, NMR protein structure determination has remained a laborious and costly

process until now, even with the help of currently available computer programs. Af-

ter the NMR spectra are collected, the main road blocks to the fully automated

NMR protein structure determination are peak picking from noisy spectra, reso-

nance assignment from imperfect peak lists, and structure calculation from incom-

plete assignment and ambiguous nuclear Overhauser enhancements (NOE) con-

straints.

The goal of this dissertation is to propose error-tolerant and highly-efficient

methods that work well on real and noisy data sets of NMR protein structure

determination and the closely related protein structure prediction problems.

One major contribution of this dissertation is to propose a fully automated NMR

protein structure determination system, AMR, with emphasis on the parts that I

contributed. AMR only requires an input set with six NMR spectra. We develop

a novel peak picking method, PICKY, to solve the crucial but tricky peak picking

problem. PICKY consists of a noise level estimation step, a component forming

step, a singular value decomposition-based initial peak picking step, and a peak

refinement step. The first systematic study on peak picking problem is conducted

to test the performance of PICKY. An integer linear programming (ILP)-based

resonance assignment method, IPASS, is then developed to handle the imperfect

peak lists generated by PICKY. IPASS contains an error-tolerant spin system form-

ing method and an ILP-based assignment method. The assignment generated by

IPASS is fed into the structure calculation step, FALCON-NMR. FALCON-NMR

has a threading module, an ab initio module, an all-atom refinement module, and
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an NOE constraints-based decoy selection module. The entire system, AMR, is

successfully tested on four out of five real proteins with practical NMR spectra,

and generates 1.25Å, 1.49Å, 0.67Å, and 0.88Å to the native reference structures,

respectively.

Another contribution of this dissertation is to propose novel ideas and methods

to solve three protein structure prediction problems which are closely related to

NMR protein structure determination. We develop a novel consensus contact pre-

diction method, which is able to eliminate server correlations, to solve the protein

inter-residue contact prediction problem. We also propose an ultra-fast side chain

packing method, which only uses local backbone information, to solve the protein

side chain packing problem. Finally, two complementary local quality assessment

methods are proposed to solve the local quality prediction problem for comparative

modeling-based protein structure prediction methods.
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Chapter 1

Introduction

1.1 Motivation

As of April 7th, 2009, there are about 55,000 protein structures solved in the Pro-

tein Data Bank (PDB) [19]. About 99.5% of these proteins are experimentally

determined by either X-ray crystallography or nuclear magnetic resonance (NMR)

spectroscopy technique [5]. Among them, about 86.6% of the structures are solved

by X-ray crystallography and about 12.9% of the structures are solved by NMR

spectroscopy. Although the number of protein structures determined by X-ray crys-

tallography is still dominant, NMR protein structure determination has become

extremely significant. The underlying reasons are: (i) NMR is the only physical

method that can study dynamics and determine the three-dimensional (3D) struc-

tures of proteins in solution; (ii) NMR technique has been well-established, which

can determine protein structures to atomic resolution; (iii) even when crystal struc-

tures exist, NMR spectral properties are sometimes applied to refine the structures

determined by X-ray crystallography [10].

However, NMR protein structure determination in NMR laboratories remains

a tremendously costly and laborious process until now. It usually takes an expe-
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rienced NMR spectroscopist weeks to months to process the spectra and solve the

structure of a target protein after the NMR spectra are collected. With no doubt,

high-throughput structural genomics requires parallelizable high-resolution protein

structure determination. NMR can be such a technique if its tedious process can

be eliminated. Therefore, automating parts of or the entire NMR protein struc-

ture determination process with computational methods has become a very hot

research area. However, there is still a huge gap between the capability of such

computational methods and the requirements of NMR laboratories to apply them

in practice.

Protein structure prediction, a very important and big area in bioinformatics,

is closely related to the NMR protein structure determination problem. For exam-

ple, protein structure prediction methods can be used as the structure calculation

step in NMR protein structure determination process. Moreover, recent CASP

(Critical Assessment of Techniques for Protein Structure Prediction) events have

raised three research directions for protein structure prediction, i.e., inter-residue

contact prediction, side chain packing, and local quality assessment. All of these

three problems are also key steps in the NMR protein structure determination pro-

cess. Therefore, novel methods and research on the three problems will directly

accelerate and improve the NMR protein structure determination process.

In this dissertation, I will focus on developing an integrated fully-automated

system, AMR, to determine accurate protein structures after the NMR spectra

are collected. AMR contains three major and novel modules, i.e., a peak picking

method PICKY, a resonance assignment method IPASS, and a structure calculation

method FALCON-NMR. Furthermore, I will propose novel methods to solve the

three closely related protein structure prediction problems.
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1.2 Contributions

The dissertation proposes a fully-automated NMR protein structure determination

protocol, AMR. AMR has three major components:

1. PICKY: PICKY is a novel NMR spectra peak picking method [9]. Picking

peaks from experimental NMR spectra is a key unsolved problem for auto-

mated NMR protein structure determination. Such a process is a prerequisite

for resonance assignment. NOE distance restraint assignment, and structure

calculation tasks. Manual or semi-automatic peak picking, which is currently

the prominent way used in NMR labs, is tedious, time-consuming, and costly.

We develop a novel peak picking method, PICKY. PICKY includes noise

level estimation, component forming and sub-division, singular value decom-

position (SVD)-based initial peak picking, and peak pruning and refinement.

Different from the previous research on peak picking, we provide the first

systematic study on peak picking methods. PICKY is tested on 32 real 2D

and 3D spectra of eight target proteins, and achieves an average of 88% recall

and 74% precision. This is a joint work with Babak Alipanahi and Emre

Karakoc. My contributions mainly focus on developing the component form-

ing and sub-division method, and the peak refinement method; implementing

the system; and conducting the experimental studies.

2. IPASS: IPASS is an error-tolerant NMR backbone resonance assignment method [8].

The automation of the entire NMR protein structure determination process

requires a superior error-tolerant backbone resonance assignment method. Al-

though a variety of assignment approaches have been developed, none works

well on noisy automatically picked peaks. We develop IPASS as a novel inte-

ger linear programming (ILP)-based assignment method, that can optimally

assign spin systems to the corresponding residues under our problem setup.
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In order to reduce the size of the problem, IPASS further employs proba-

bilistic spin system typing based on chemical shifts and secondary structure

predictions. The experimental results demonstrate that IPASS significantly

outperforms the previous assignment methods on the synthetic data sets.

IPASS achieves an average of 99% precision and 96% recall on the synthe-

sized spin systems, and an average of 96% precision and 90% recall on the

synthesized peak lists. When applied on automatically picked peaks from

experimentally derived data sets, it achieves an average precision and recall

of 78% and 67%, respectively. In contrast, the next best method, MARS,

achieves an average precision and recall of 50% and 40%, respectively. This is

a joint work with Babak Alipanahi, Emre Karakoc, and Frank Balbach. My

contributions mainly focus on developing the ILP model for the resonance

assignment problem and fragment fixing method to reduce the search space;

implementing the ILP module and the fragment fixing module of the system;

and conducting the experimental and comparative studies.

3. FALCON-NMR: FALCON-NMR is a chemical shift assignment and NOE

constraints-based protein structure determination method. Given the imper-

fect resonance assignment generated by IPASS, the traditional NMR protein

structure generation methods are not able to generate accurate structures.

Therefore, we encode our knowledge and previous work on protein structure

prediction to improve the accuracy. FALCON [117] was previously developed

by our lab as a protein structure prediction package. FALCON-NMR takes

the resonance assignment as input. It first tries to find whether there are

close homologs of the target protein in the database. If homologs can be

found, FALCON-NMR will generate medium-resolution decoy structures by

Modeller [158], and then directly call the all-atom refinement module of FAL-

CON to iteratively refine the decoy structures. If no homologs can be found,
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FALCON-NMR will call Frazor [116] to generate fragment candidates accord-

ing to the chemical shift assignment, call the ab initio module of FALCON

to generate decoy structures, and then call the all-atom refinement module

of FALCON to iteratively refine the decoy structures. However, FALCON

is not able to identify the best models from the decoy sets. Therefore, we

develop an NOE distance constraints-based decoy selection method to select

the best decoys from each round of FALCON and feed them back to FALCON

to iteratively generate better models. FALCON-NMR has been successfully

tested on proteins with sizes under 15kDa. This is a joint work with Shuai

Cheng Li, Dongbo Bu, and Guangyu Feng. My contributions mainly focus

on developing and implementing the NOE distance constraint-based decoy

selection method; and conducting the experimental and comparative studies.

The dissertation also proposes novel ideas and methods to solve the three closely

related protein structure prediction problems, i.e., protein inter-residue contact

prediction, side chain packing, and local quality assessment.

I propose a novel consensus method to solve contact prediction problem [62].

Protein inter-residue contacts play a crucial role in the determination and predic-

tion of protein structures. Previous studies on contact prediction indicate that

although template-based consensus methods outperform sequence-based methods

on targets with typical templates, such consensus methods perform poorly on new

fold targets. However, I find out that even for new fold targets, the models gen-

erated by threading programs can contain many true contacts. The challenge is

how to identify them. I develop an integer linear programming model for consensus

contact prediction. In contrast to the simple majority voting method assuming that

all the individual servers are equally important and independent, the newly devel-

oped method evaluates their correlation by using maximum likelihood estimation

and extracts independent latent servers from them by using principal component
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analysis. An integer linear programming method is then applied to assign a weight

to each latent server to maximize the difference between true contacts and false

ones. The proposed method is tested on the CASP7 data set. If the top L/5

predicted contacts are evaluated where L is the number of residues in the protein,

the accuracy is 73%, which is much higher than that of any previously reported

study. Moreover, if only the 15 new fold CASP7 targets are considered, our method

achieves an accuracy of 37%, which is much better than that of the majority voting

method, SVM-LOMETS (the best published consensus method), SVM-SEQ (the

best reported study on new fold targets), and SAM-T06 (the best evaluated contact

predictor on CASP7). These methods demonstrate an accuracy of 13%, 11%, 26%

and 21%, respectively.

I propose a novel classification model to solve side chain packing problem [211].

High-accuracy protein structure modeling demands accurate and very fast side

chain prediction since such a procedure must be repeatedly called at each step

of structure refinement. Many known side chain prediction programs, such as

SCWRL [44] and TreePack [203], depend on the philosophy that global informa-

tion and pairwise energy function must be used to achieve a high accuracy. These

programs are too slow to be used in the case when side chain packing has to be

used thousands of times, such as protein structure refinement and protein design.

We draw an unexpected conclusion that backbone information can determine side

chain conformation accurately. LocalPack, our side chain packing program, which

is based on only local backbone information, achieves equal accuracy as SCWRL

and TreePack, yet runs 4-14 times faster, hence providing a key missing piece in

our efforts to high-accuracy protein structure modeling. This is a joint work with

Jing Zhang. My contributions mainly focus on formulating the side chain packing

problem as a classification problem; building a multi-class support vector machine

(SVM) model to solve the problem; implementing the system; and conducting ex-

6



perimental and comparative studies.

I propose two novel methods to solve local quality assessment problem [61, 63].

A protein model derived from automated prediction or determination methods is

subject to various errors. As methods for structure prediction develop, a continuing

problem is how to evaluate the quality of a protein model, especially to identify

some well predicted regions of the model, so that the structural biology commu-

nity can benefit from the automated structure prediction. It is also important

to identify badly-predicted regions in a model so that some refinement measure-

ments can be applied to. I develop two complementary techniques, FragQA and

PosQA, to accurately predict local quality of a sequence-structure alignment gen-

erated by comparative modeling, i.e., homology modeling and threading. FragQA

and PosQA predict local quality from two different perspectives. Different from

existing methods, FragQA directly predicts RMSD between a continuously aligned

fragment determined by an alignment and the corresponding fragment in the native

structure, while PosQA predicts the quality of an individual aligned position. Both

FragQA and PosQA use an SVM regression method to perform prediction using

similar information extracted from a single given alignment. Experimental results

demonstrate that FragQA performs well on predicting local fragment quality, and

PosQA outperforms two top-notch methods, ProQres and ProQprof.

1.3 Overview of Dissertation

The rest of the dissertation is organized as follows. Chapter 2 introduces the back-

ground on NMR protein structure determination process and related protein struc-

ture prediction problems. Chapter 3 presents the overview of the fully automated

NMR protein structure determination protocol, AMR. Chapter 4 presents the NMR

spectra peak picking method, PICKY. Chapter 5 presents the ILP-based resonance
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assignment method, IPASS. Chapter 6 presents the structure calculation module of

AMR, FALCON-NMR, and evaluates the overall performance of AMR on five test

proteins. In Chapter 7, I present the novel ideas and methods to solve three protein

structure prediction problems that are closely related to NMR protein structure de-

termination problem. Finally in Chapter 8, I summarize and conclude, and propose

future work.
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Chapter 2

Background

2.1 Protein Structure

DNA, RNA, and proteins are the three biological sequences that encode the function

of life. DNA contains all the genetic information. It can be transcribed into RNA.

In turn, RNA is the medium to transport the genetic information from DNA to

proteins. It is proteins that play a vital role in keeping our bodies functioning

properly.

Proteins are the basic building blocks of life. They form the basis of hormones

which regulate metabolism, structures such as hair, wool, and muscle, and antibod-

ies. In the form of enzymes, they are behind most the chemical reactions in the

body. Protein structure is essential for correct function because it allows molecular

recognition. There are four levels of protein structures. The first level is primary

structure, which is also referred as the protein sequence. A protein is a linear chain

of amino acids. Different amino acids have common backbone which contains a

central carbon atom (Cα), an amino group, and a carboxyl group. Different amino

acids have quite different side chain groups. Each amino acid is also called a residue

in a protein. The second level is secondary structure. Secondary structure is pri-
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marily stabilized by hydrogen bonds. There are three typical classes of secondary

structures: alpha helix, beta sheet, and coil. Alpha helix is held in place by hydro-

gen bonds between backbone oxygen and hydrogen atoms of residue i and i + 4,

whereas beta sheet is formed by beta strands and stabilized by hydrogen bonds be-

tween the beta strands. The third level is tertiary structure, which is also referred

as three-dimensional (3D) structure. By understanding the tertiary structure and

the folding process, researchers could develop supplemental proteins for people with

deficiencies and gain more insight into diseases associated with misfolded proteins.

In this dissertation, protein structure always refers to the 3D structure. The fourth

level is quaternary structure. Quaternary structure is the arrangement of multiple

folded protein molecules in a multi-subunit complex.

2.2 NMR Protein Structure Determination Pipeline

Until now, most of the protein structures are determined by either X-ray crys-

tallography or NMR spectroscopy. However, NMR protein structure determina-

tion remains a costly and laborious process. Typically, it takes an experienced

spectroscopist weeks to months for a target protein. Currently, most NMR lab-

oratories are following the standard process proposed by Kurt Wüthrich [200] in

1986, which contains data collection, data processing, peak picking, resonance as-

signment, nuclear Overhauser enhancements (NOE) peak assignment, and finally,

structure calculation. This process is designed under the basic assumption of NMR

structure determination: the 3D structure of the target protein can be uniquely

determined if enough proton-proton distance constraints are provided. Therefore,

the entire process works in the following manner: (i) peak picking step analyzes

the NMR spectra and identifies the important signals; (ii) resonance assignment

step extracts chemical shift values and connectivity information from the peak lists

10



Figure 2.1: Standard process of NMR structure determination

identified from different spectra, combines connectivity information and sequence

information together, and assigns those chemical shift values to the corresponding

atoms; (iii) NOE peak assignment step identifies peaks from NOE spectra and gen-

erates ambiguous distance constraints according to the resonance assignment; and

(iv) structure calculation step takes ambiguous distance constraints into consider-

ation, and iteratively generates final structures while simultaneously satisfying as

many distance constraints as possible.

Figure 2.1 shows the standard pipeline for NMR-based protein structure deter-

mination. The physical principle of NMR behind this is that when active nuclei

such as 1H, 13C, and 15N are placed in a strong magnetic field, such nuclei absorb

at a frequency that is characteristic of the isotope. Depending on local chemical

and geometric environments, different nuclei resonate at different frequencies. The

frequencies can then be transformed into a magnetic field-independent term, which

is so called chemical shift. Chemical shift is a measure of the dependence of the

resonance frequency of the nucleus on its chemical environment, and is commonly

indicated in parts per million (ppm) relative to a reference compound.
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Figure 2.2: An illustration of an 15N-HSQC spectrum.

As shown in Figure 2.1, the first step is to collect NMR spectra data. Data

collection is a purely physical step that only depends on the target protein sam-

ple and the NMR spectrometer. In this step, NMR spectroscopists prepare the

purified and isotope enriched protein samples, put them in the tubes, place the

tubes in NMR spectrometers, and collect the output spectra. During the last two

decades, the development of new cryogenic probe-heads and high magnetic field

spectrometer has significantly reduced data collection time to several days, and

simultaneously, hugely improved spectra resolution. After data collection, one can

employ Fourier transformation to transfer data into frequency domain. One of the

commonly used tools is NMRPipe [41], which is a scripts based NMR spectral pro-

cessing and analysis package. In this dissertation, by NMR spectra we mean NMR

spectra in frequency domain. An NMR spectrum describes the coupling nuclei. A

spectrum is stored in the format of a multi-dimensional matrix. The index of each

dimension is the discrete chemical shift values of a certain nucleus, and the entries

of the matrix are the intensity values. Figure 2.2 shows an 15N-HSQC spectrum.

Apparently, the remaining steps, i.e., peak picking, resonance assignment, NOE
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peak assignment, and structure calculation, are the most time-consuming parts

in the entire NMR protein structure determination process, which attract huge

attention for years [41, 223, 103, 37, 75, 144, 104, 162, 34, 219, 107, 96, 73, 126,

161, 18, 197, 121, 179, 27, 194, 168, 196, 114, 189].

2.2.1 Peak Picking

Automating this entire NMR structure determination process can provide a pow-

erful tool for high-throughput structural genomics, and mitigate costs substan-

tially [195, 74]. Clearly, peak picking is a prerequisite for all the other steps. Peak

picking is a well-known “tricky” step in the NMR structure determination pro-

cess [10]. In a d-dimensional spectrum, a signal, which is often referred to as a

“peak”, represents a group of d nuclei that can be coupled through bonds (scalar

coupling) or through space (spin-spin coupling). In the frequency domain, the

coordinate of each dimension of the peak denotes the chemical shift value of the

corresponding nucleus. Thus, the task of peak picking is to identify all the sig-

nals in an NMR spectrum, such as 15N-HSQC, HNCO, HNCA, CBCA(CO)NH,

HNCACB, 15N-edited NOESY, and TOCSY. Peak picking has been investigated

for about twenty years. A variety of techniques, such as neural networks [36, 25],

Bayesian methods [156, 12], three-way decomposition [144, 104], and spectrum- and

peak property-based methods [101, 64, 93, 103], have been developed to identify

peaks.

AUTOPSY [103] is one of the most well-known peak picking programs. It differs

from previous methods in that not only are the data points around a potential peak

taken considered, but also further data points, near the local maximum, are taken

into account. Given a spectrum, AUTOPSY first estimates the noise level, which

is modeled as the sum of a global base noise and an additional local noise. After
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all the data points that have intensities lower than the noise level are removed,

AUTOPSY applies a “flood-fill” algorithm to decompose the remaining data points

into connected regions. The easily separable peaks are first identified by considering

the symmetry and peak shape properties. Lineshapes are then extracted from these

peaks. The underlying mathematical assumption is that a well-separable peak

shape (a 2D or 3D intensity matrix) can be approximated by the outer product

of 1D lineshapes (a 1D intensity vector) times an intensity matrix. For resolving

overlapping peaks, AUTOPSY then clusters lineshapes of the separated peaks. In

a region with possible overlapping peaks, AUTOPSY tries to interpret this region

by a linear combination of all the potential “layers”, each of which is constructed

from different combinations of lineshapes that overlap with that region. Finally,

integration, symmetrization, and filtering modules are called to refine the peak lists.

Later, Orekhov et al. [144, 104] proposed a multi-dimensional NMR spectra in-

terpretation method, MUNIN, which can only be applied to 3D or higher-dimensional

NMR spectra. The idea of MUNIN is similar to that of AUTOPSY: both are based

on the assumption that the spectra can be interpreted by a linear combination of

different “layers”, each of which is the outer product of 1D lineshapes. However,

instead of solving this multi-layer problem in each separated region, which AU-

TOPSY does, MUNIN deals with the entire spectrum. Thus, each “layer” of the

MUNIN method might contain several peaks. Also, it is very likely that several such

“layers” are required to describe a single peak. MUNIN has some advantages over

AUTOPSY. For example, MUNIN can be applied to frequency-domain or time-

domain data, and does not depend on any assumptions about the lineshapes of the

peaks. It is worth noticing that MUNIN is not a peak picking method, but it can

have a straightforward add-on module for processing the results of decomposition.

Resonance assignment is not the only step in the NMR structure determination

process that requires highly accurate peak picking results. The performance of the
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NOE peak assignment step also depends on peak picking. NOE peak picking prob-

lem is easier than multi-dimensional spectra peak picking, because the resonance

assignment information is given as the input for NOE peak picking, which can

greatly reduce the chance of picking artifacts. Consequently, NOE peak picking

method is usually combined with the iterative NOE peak assignment and structure

calculation part. For instance, ATNOS [79] incorporates NOE peak picking and

assignment into structure calculation, and refines both sides simultaneously.

However, NMR labs currently do not mainly use any automated peak-picking

software. Both AUTOPSY and MUNIN are tested on only one 2D/3D 15N-edited

NOESY spectrum in their papers. AUTOPSY cannot be successfully run on any

of our experimental spectra by its default parameters, and MUNIN is not publicly

available. Regarding all of these impediments: peak picking in the NMR commu-

nity is accomplished manually, and sometimes semi-automatically with the help of

assistant software such as SPARKY [67] and NMRView [93], which can achieve re-

stricted peak picking when the chemical shift values are given. Thus, peak picking

is a substantial road block to automated NMR protein structure determination.

2.2.2 Resonance Assignment

The backbone resonance assignment also known as chemical shift assignment plays

a vital role in the entire NMR protein structure determination process. Here, the

goal is to assign the picked peaks from NMR spectra to their corresponding nuclei

of the target protein. Furthermore, backbone resonance assignment acts as an

indispensable prerequisite for the NOE assignment. In fact, backbone resonance

assignment is the part of the entire NMR process that has attracted the most

computational attention for the last ten years [13, 14, 223, 75, 34, 96, 126, 197,

194, 114, 189].
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Typically, the backbone resonance assignment is divided into three sub-problems:

forming spin systems, linking spin systems into fragments, and mapping the frag-

ments to the target sequence. A “spin system” denotes a group of coupled nuclei

that can be observed as cross-peaks in one or more spectra. Usually spin sys-

tems contain both inter-residue and intra-residue information. The existing meth-

ods can be classified into two groups: assignment methods that require spin sys-

tems [34, 96, 126, 114] and assignment methods that do not require spin systems

[223, 197, 194, 189]. However, the latter assignment methods always require high

quality peak lists with a very small number of missing or false peaks and little

difference in the chemical shift of the same nucleus in different spectra. Therefore,

for most cases, the experiments carried out in such studies are based on either

the manually picked and refined peak lists by spectroscopists, or the synthetic

peak lists formed by assigned chemical shifts in a known protein database such as

BioMagResBank (BMRB) [163].

Also, according to whether or not an assignment method needs human inter-

vention, existing methods can be classified as “semi-automated” assignment meth-

ods [75, 34] or “fully-automated” assignment methods [223, 96, 126, 197, 194, 114,

189]. AUTOASSIGN [223] is a fully-automated multi-stage expert system. The

idea of AUTOASSIGN is the best first search, which assigns the strongest fragment

matches first, and then gradually relaxes restrictions to assign weaker matches.

MAPPER [75] and PACES [34] are semi-automated methods that are also based

on the best first search concept. Both of them employ exhaustive search strat-

egy to map the fragments to target proteins. AUTOLINK [126] is an attempt to

mimic human logic by a fuzzy logic and relative hypothesis prioritization method.

AUTOLINK is the first assignment method that extracts spin system connectiv-

ity information from the NOESY data. Wu et al. [197] later proposed a weighted

maximum independent set formulation for the assignment problem. They provided
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a comprehensive summary of the different sources of the spectra errors in the lab

experiments, and further simulated these errors on perfect datasets, extracted from

BMRB.

MARS [96], one of the widely acknowledged assignment methods, is different

from its ancestors in that it applies the consensus idea to multiple runs of assign-

ments, where each run is carried out to optimize different objective functions. For

the local assignment, MARS uses the best first search to find the local fit of the

fragments, comprising as many as five spin systems. For global assignment, how-

ever, MARS optimizes the global pseudo-energy function, which measures how well

a spin system matches a residue in the target protein. The pseudo-energy is based

on the likelihood of observing a certain chemical shift for an amino acid type in the

BMRB database.

Recently, [114] and [189] proposed two sophisticated methods to solve the reso-

nance assignment problem on the most up-to-date NMR spectra. ABACUS [114]

takes unassigned peaks from NOESY, COSY (correlation spectroscopy), and TOCSY

(total correlation spectroscopy), as well as database-derived likelihoods, as the in-

put. A multi-canonical Monte Carlo procedure, Fragment Monte Carlo (FMC),

is used to perform sequence-specific assignments. In MATCH method [189], both

the global and local optimization strategies are applied, and 6D APSY spectrum

[81, 58] is used as the input.

2.2.3 NOE Peak Assignment and Structure Calculation

As mentioned previously, NOE peak assignment usually combines with structure

calculation in an iterative manner, because NOE assignment usually contains too

much ambiguity, which can never be completely and correctly eliminated without

considering the final 3D structures. Although there are many studies on NOE
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peak assignment and structure calculation [142, 120, 69, 70, 78, 219, 73, 107, 71],

most of them call either XPLOR [162, 161] or DYANA [78] as structure calculation

subroutine. Both XPLOR and DYANA are molecular dynamic methods which

apply torsion angle dynamics, simulated annealing, or gradient-based minimization

to minimize a target function containing covalent geometry, torsion angle restraints,

and non-bonded distance constraints extracted from NMR spectra.

CYANA [73] is a structure calculation program which takes resonance assign-

ment and NOE peak positions and volumes as input, and iteratively applies NOE

peak assignment and DYANA molecular dynamic engine. CYANA first generates

ambiguous distance constraints based on chemical shift assignment under certain

threshold values. A network anchoring technique is then applied to find a self-

consistent subset in the constraint network. This is feasible because wrong assign-

ments are usually random, and thus are unlikely to form self-consistent subset. Af-

ter network anchoring, CYANA re-combines different sets of ambiguous constraints

in two ways, which can significantly reduce the number of wrong assignment sets.

The newly combined constraints are encoded into the target function and feed to

torsion angle dynamic method DYANA to generate structures. Feedbacks are ex-

tracted from structures generated and are then applied to improve NOE assignment

accuracy, until convergence criteria are satisfied.

However, in practice, it is sometimes very difficult to get almost-complete chem-

ical shift assignment, and thus NOE assignment accuracy will be low because

of the missing chemical shift values, especially when aliphatic and aromatic pro-

tons are missing. Methods that require high accuracy of assignment may fail on

such target proteins. Therefore, various studies are done to overcome this prob-

lem [107, 69, 70, 71]. PASD (probabilistic assignment algorithm for automated

structure determination) [107] aims to generate protein structures with a high ra-

tio of incorrect NOE assignment. The main difference between PASD and other
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iterative methods, such as CYANA, is that results from the successive cycles are

not biased by the global fold of structures generated in the preceding cycles. Their

experiments show that PASD can tolerate as much as 80% of long-range NOE

assignments to be wrong. On the other hand, Grishaev and Llinas [70, 69, 71]

attempted to generate protein structures without chemical shift assignment. They

tried to identify NOE assignment by forming fragment of spin systems without

assigning them.

2.2.4 Automation of NMR Structure Determination Pipeline

With all these efforts on different steps of NMR structure determination process,

one can expect that fully automated pipeline is coming of age. In fact, there are

very comprehensive surveys that summarize the current bottlenecks, and discuss

the feasibility of a fully automated pipeline [136, 10]. An all-encompassing data

model has also been proposed by CCPN project [60] to meet researchers’ needs.

Recently, significant attention has been paid to the automation of NMR struc-

ture determination [219, 27, 168, 196, 121, 179]. Zheng et al. [219] combined

AutoAssign [223] and AutoStructure [85, 86] together to generate medium accu-

racy protein backbone structures. Their experiments on some high quality spectra

demonstrate that medium-resolution backbone structures (around 3Å to experi-

mentally determined structures) can be acquired. FLYA [121, 179] is proposed as

an automated structure determination package, that combines existing programs

together, such as AUTOPSY, NMRView, GARANT [13, 14], and CYANA. How-

ever, the peak picking step of FLYA requires manually adjusted parameters, and the

peak picking subroutine of FLYA demonstrates a quite low performance [121, 179].

Besides the attempts that try to explore the best combinations of existing au-

tomated programs, there are pioneer studies along another avenue [27, 168, 196].
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The basic assumption of these methods is that chemical shifts carry sufficient infor-

mation to determine protein structures. Previous studies have shown that chemical

shifts are not only highly correlated with hydrogen bonds [190], secondary struc-

tures [167], and aromatic properties [26], but can also efficiently guide the selection

of structural fragments [37]. Cavalli et al. [27] encoded chemical shifts information

into the ROSETTA [21] energy function, and calls ROSETTA for ab initio structure

prediction. In this manner, they avoided the most time-consuming and unreliable

step, NOE assignment. CS-Rosetta [168] further encodes chemical shift restraints

into more subroutines of structure calculation step, such as chemical shift based

fragment selection and chemical shift based decoy selection. Recently, Wishart

et al. developed CS23D server [196], which also takes chemical shift assignment

as input, and applies homology modeling, chemical shift threading, as well as de

novo structure prediction to generate final structures. CS23D can rapidly converge

(around 15 minutes) when close homologs or chemical shift homologous templates

can be found in the database.

Although very promising results have been shown by these pioneer studies on

accelerating NMR structure determination process, they all have an obvious bot-

tleneck, that is they all require almost complete and perfect data as input, such as

manually picked peaks or manually assigned chemical shift. In wet lab experiments,

some parts of target proteins, especially long loop regions, will have extremely weak

signals in spectra, because they are rapidly moving in solution. Thus, these meth-

ods are very likely to fail on these targets. On the other hand, all the studies

reviewed here can not efficiently manage peak picking in a good manner, which

makes them still far away from fully automating the entire NMR structure deter-

mination pipeline.
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2.3 Some Relevant Protein Structure Prediction

Problems

Although NMR protein structure determination is mainly based on experimental

data, sometimes such experimental data is not enough to accurately determine

the protein structures due to the experimental errors, such as poor sample qual-

ity, missing peaks, and misassignments. Therefore, methods for protein structure

prediction are considered as good complements to NMR based protein structure

determination. For example, it is common in NMR labs that there are not enough

NOE contacts that can be extracted from NOE spectra, which will probably re-

sult in the failure of structure calculation step; it is also very difficult to refine the

structures to the atomic resolution because side chain chemical shift assignment is

much more complicated than the backbone assignment; and more than 90% of the

NMR structures are solved based on known structural homologs, which means it is

crucial to identify well conserved regions from the homologs.

Meanwhile, existing genome sequencing techniques have led to the identification

of millions of proteins. Thus, there is a huge gap between the number of identified

protein sequences and the number of solved protein structures. Computational pro-

tein structure prediction has made great progress in the last three decades [205, 206].

Given a protein sequence, the goal of protein structure prediction is to predict the

tertiary structure of the protein. There are two typical classes of protein structure

prediction methods: template-based methods (comparative modeling or threading)

and template-free methods (ab initio modeling). Template-based methods try to

identify homologs from the PDB by either sequence-sequence alignments (com-

parative modeling) [11] or sequence-structure alignments (threading) [94, 99, 204],

whereas template-free methods assemble new structures according to the physical-

or statistical-based energy functions [21, 216].
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The biennial CASP (Critical Assessment of Structure Prediction) [141, 139, 140,

138, 68, 33, 137] is the most important and objective event for protein structure

prediction. CASP results demonstrate that more than 95% of the newly solved

proteins have a known structural homolog. Thus, template-based methods should

be able to solve most of the new target proteins. However, although template-

based methods are capable of generating reasonable predictions for approximately

70% of new proteins, the predictions of such methods are still not good enough

for structural biology community use. Therefore, CASP meetings have raised three

research directions for protein structure prediction, i.e., inter-residue contact pre-

diction, side chain packing, and local quality assessment. Not surprisingly, all of

these three problems have direct and important use in NMR protein structure de-

termination.

2.3.1 Inter-residue Contact Prediction

Protein inter-residue contact prediction is one of the problems being actively stud-

ied in the structure prediction community. Recent CASP events have demonstrated

that a few true contacts, extracted from template-based models, can provide very

important information for protein structure refinement, especially on targets with-

out good templates in PDB. For example, Misura et al. [134] revised the widely-used

ab initio folding program, ROSETTA [31], by incorporating inter-residue contact

information as a component of ROSETTA’s energy function, and shown that the

revised ROSETTA exhibits not only a better computational efficiency, but also a

better prediction accuracy. For some test proteins, the models built by this re-

vised ROSETTA are more accurate than their template-based counterparts, which

is rarely seen before [137]. Zhang-server [212] and TASSER [214] perform very well

in both CASP7 and CASP8. One of the major advantages of these two programs

over the others is that both depend on contacts and distance restraints, extracted
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from multiple templates, to refine the template-based models. It has been shown by

Zhang et al. that ab initio prediction methods can benefit from contact predictions

with an accuracy that is higher than 22% [215].

Protein inter-residue contact was first studied by [135, 174, 72, 84] to calculate

the mean force potential. Göbel et al. [66] formally proposed the problem of contact

prediction, and showed that correlated mutation (CM) is useful information to

predict inter-residue contacts. The fundamental assumption is that if two residues

are in contact with each other, during evolution, if one residue mutates, the other

one has a high chance to mutate as well. Thus, by analyzing residue mutation

information from multiple sequence alignments, it can be predicted whether or not

two residues are in contact. Since then, different correlated mutation statistical

methods have been carefully examined [170, 181, 182, 143, 76, 106].

According to whether structural templates information is taken into consider-

ation, contact prediction methods can be classified into two categories: sequence-

based methods and template-based methods. Among all the sequence-based meth-

ods, some rely solely on correlated mutation information calculated by different

statistical approaches [66, 143, 76, 106], while others encode the correlated muta-

tion, together with other features such as secondary structure and solvent accessi-

bility, into machine learning models [54, 53, 172, 150, 218, 77, 152, 199]. Although

the correlated mutation performs well on local contact prediction, which is usually

defined to be two residues within six amino acids from each other in the protein

sequence, it usually fails for non-local contacts. Therefore, other information such

as evolutionary information and secondary structure information, has been applied

to improve the performance of contact prediction methods [54, 53, 172, 150, 218,

77, 152, 164, 199]. In [54], Fariselli et al. encoded four types of features into

a neural network based server (CORNET): 1) correlated mutation, 2) evolution-

ary information, 3) sequence conservation, and 4) predicted secondary structure.
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They defined that two residues are in contact if the Euclidean distance between

the coordinates of their Cβ atoms (Cα atom for Glycine) is smaller than 8Å, and

the sequence separation between the two residues is at least seven to eliminate the

influence of local alpha-helical contacts. CORNET achieves an average accuracy of

21%. Other features have been investigated since then [172, 218]. PROFcon [152],

one of the best three contact prediction servers in CASP6 [68], encodes more infor-

mation into its neural network model, including solvent accessibility and secondary

structure over the regions between the two residues, as well as the properties of the

entire protein. PROFcon performs impressively on small proteins or alpha/beta

proteins with an accuracy of more than 30%. Recently, Shackelford and Karplus

[164] proposed a neural network based method to calculate the correlated mutation

by using the statistical significance of the mutual information between the columns

of multiple sequence alignment. Their SAM-T06 server outperforms all the other

contact prediction servers in CASP7, and achieves an average accuracy of 45% for

all CASP7 target proteins, which is higher than that of any previously reported

study.

In contrast to these sequence-based methods, which encode correlated mutation

information and other sequence-derived information, there are some studies on pre-

dicting inter-residue contacts from structural templates [134, 209, 166, 198, 199].

The underlying assumption for such methods is that contacts are usually very con-

served during evolution. Consequently, templates, with structures similar to that of

the target protein, usually contain common contacts, such that consensus methods

work well. Bystroff et al. [209, 166] considered folding pathways, and predicted

contacts by employing HMMSTR [23], a hidden Markov model for local sequence-

structure correlation. LOMETS [198], a majority voting based consensus method,

takes nine state-of-the-art threading programs as inputs. LOMETS predicts con-

tacts by attempting to select the best input model.
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Recently, two Support Vector Machines (SVMs) based contact prediction meth-

ods, SVM-SEQ and SVM-LOMETS, are proposed by Wu et al. [199]. SVM-

SEQ only takes sequence-derived information into consideration, whereas SVM-

LOMETS, a consensus method, is based on structural templates. SVM-LOMETS

differs from its ancestor, LOMETS, in that it carefully trains contact frequency, Cα

distances, and template quality by an SVM model. The inputs for SVM-LOMETS

are nine state-of-the-art threading programs: FUGUE [169], HHSEARCH [175],

PAINT, PPA-I, PPA-II [198], PROSPECT2 [207], SAM-T02 [98], SP3 and SPARKS2 [222].

Both SVM-SEQ and SVM-LOMETS are tested on a set of 554 proteins, on which

they achieve an average accuracy of 29% and 53%, respectively. Although it is

widely acknowledged that a method usually has different performance on different

data sets, one can still expect that a consensus contact prediction method will out-

perform the individual servers. Instead of testing on the entire CASP7 data set,

these two programs are further tested on the 15 new fold (NF) targets of CASP7.

The average accuracies are 26% and 11%, respectively. Through a comprehensive

comparison of sequence-based and structure-based methods, including SVM-SEQ,

SVMCON [89], SVM-LOMETS, LOMETS, and SAM-T06 server, Wu et al. con-

cluded that template-based methods are better than sequence-based methods on

template-based modeling (TBM) targets, but worse on new fold targets.

2.3.2 Side Chain Prediction

Protein side chain packing is a key step towards accurate protein structure modeling

and has been studied for three decades [91, 20, 128, 178]. Given the backbone con-

formation of a protein, side chain prediction determines the coordinates of all the

side chain atoms. Accurate and very fast side chain prediction is vital to accurate

protein structure modeling since such a procedure needs to be repeatedly called

at each step of the entire protein structure refinement process, which usually sam-
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ples a very large number of backbone conformations. Protein side chain packing is

also an indispensable component of protein design, which finds a protein sequence

that can fold into a given three-dimensional protein structure [42, 39]. Whenever

a protein backbone conformation (in protein structure modeling) or its primary

sequence (in protein design) is changed, side chain packing has to be conducted to

re-determine the coordinates of the affected side chain atoms or even all the side

chain atoms. Many known side chain prediction programs, such as SCWRL [44]

and TreePack [203], predict the positions of side chain atoms using global informa-

tion and pairwise energy function, in order to achieve high accuracy. Thus these

programs are too slow to be called tens of thousands of times in high-accuracy

protein structure modeling or protein design. Therefore, an ultra-fast side chain

prediction method is urgently needed.

An important discovery on side chain conformation is that the side chains have

a few frequently occurred conformations (referred to as rotamers) [91, 128, 44,

45, 201]. Thus, most side chain prediction methods assume side chains can only

take several highly probable rotamers, while others consider conformations sampled

around rotamers.

Problem Description Given a finite set of side chain rotamers for each amino

acid type, and a backbone conformation b. Let p denote a possible side chain

conformation vector indicating the rotamer choice for each residue position. Tra-

ditional side chain prediction problem can be formulated as a combinatorial search

problem:

p∗ = arg min
p

[ESS(p, p) + ESB(p, b) + EBB(b, b)] (2.1)
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where p∗ denotes the optimal side chain conformation, ESS(p, p) is a pairwise en-

ergy item representing interactions among side chain atoms, ESB(p, b) represents

interaction energy between side chain atoms and backbone atoms, and EBB(b, b)

represents backbone-backbone interaction energy. Among them, EBB(b, b) can be

considered as a constant since the backbone conformation is fixed.

Following this formulation, almost all the side chain prediction methods employ

a pairwise energy function and a rotamer library, then apply a global or local search

strategy to find the optimal solution for this combinatorial problem.

Rotamer Libraries A rotamer library is a finite set of rotamers, each of which

has an occurring probability. Rotamer libraries can be either backbone-independent [20,

28, 15, 151, 102, 124] or backbone-dependent [91, 128, 44, 45, 46, 160, 47], according

to whether the occurring probability of a rotamer is estimated based on backbone

information. Chandrasekaran et al. developed the first backbone-independent li-

brary [28]. Janin et al. [91] and McGregor et al. [128] examined the relationship

between side chain conformation and secondary structure, and then developed a

secondary-structure-dependent rotamer library. Dunbrack et al. developed the

first backbone dihedral angle based rotamer library [46] and refined it by Bayesian

statistical analysis [45].

Backbone-dependent rotamer library is widely used to predict side chain confor-

mations [203, 119, 24, 147, 29, 100, 90, 208]. Rotamer library not only can make side

chain prediction a discrete-optimization problem, but can also provide the prob-

ability of each rotamer in energy function calculation. However, since many side

chain prediction methods use rotamer probabilities in their energy functions, their

performance is sensitive to these values which are hard to be estimated accurately.
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Energy Functions The energy function is considered to be a bottleneck of the

existing side chain prediction methods. Although many studies aim to improve the

accuracy of side chain packing energy functions [119, 208, 155, 176, 133], all side

chain predictors claim that their methods can perform much better if the energy

function is more accurate. As mentioned above, energy functions used in side chain

prediction contain both side chain-backbone interaction energy and side chain-side

chain interaction energy.

Roitberg et al. [155] used a mean field approximation, which probably has

the same global minimum as the original system, to direct their search strat-

egy. A much more accurate energy function was developed by Liang et al [119].

Their energy function contains contact surface, volume overlap, backbone depen-

dency, electrostatic interactions, and desolvation energy. In [208], ROSETTA’s

energy function [154], which is the sum of Lennard-Jones potential, rotamer en-

ergy, atomic clash penalty, and hydrogen-bonding potential, was improved by the

tree-reweighted belief propagation (TRBP) technique.

Search Methods A large number of search methods have been developed to op-

timize the energy function and find the side chain conformation with the minimum

energy, such as Metropolis Monte Carlo [82], Gibbs sampling Monte Carlo [188],

genetic algorithm [187], dead-end elimination (DEE) [124, 43], neural networks [88],

simulated annealing [88, 112], graph theory methods [203, 24], semidefinite pro-

gramming [29], and integer linear programming [100, 50].

Besides the energy function, search strategy is another bottleneck for side chain

prediction. The side chain prediction problem has been proved to be NP-hard [7,

149] if pairwise or multi-body energy function is used. Heuristics such as Monte

Carlo or genetic algorithm can find local minimum of an energy function relatively

quickly, but cannot guarantee to find the optimal solution of the energy function.
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On the other hand, some global search methods can find the global optimal solution

at the cost of running time. For example, the widely-used program, SCWRL3.0 [24],

can optimize its energy function to its global optimum by first decomposing a

protein backbone structure into some substructures and then employing a divide-

and-conquer strategy to determine the positions of side chain atoms. SCWRL is not

fast enough to be used for iterative refinements and protein design. Another global

search method, TreePack [203], achieves similar accuracy as SCWRL3.0, but runs

much faster. In contrast to SCWRL, TreePack can decompose a protein structure

into much smaller substructures without losing accuracy, and thus reduce running

time dramatically. However, both SCWRL and TreePack are likely to fail in the

case when the backbone conformation implies heavy steric atomic clashes and thus

cannot be cut into small substructures without losing accuracy.

2.3.3 Local Quality Prediction

The biennial CASP events have demonstrated that the three-dimensional structures

of many new target proteins can be predicted at a reasonable resolution, although in

most cases, the predicted models are still not accurate enough for functional study.

In particular, comparative modeling methods can generate reasonably good models

for approximately 70% of target proteins in recent CASP events. Even for those free

modeling (FM) targets, a structural model generated by protein threading usually

contains some good local regions, although the overall conformation of the model

is incorrect [216].

As methods for structure prediction develop, a continuing problem is how to

evaluate the quality of a protein model in detail. The challenge is to distinguish a

good model from a bad one (as referred to global quality assessment), as well as

correctly-predicted residues from badly-predicted ones (as referred to local quality
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assessment). To make automated structure prediction really useful for the struc-

tural biology community, a reliable model quality evaluation program is indispens-

able when hundreds of models are predicted for a single target protein.

Global quality prediction has been an active research topic for two decades [109,

6, 145, 132, 159, 111, 148, 171, 122, 125, 56, 57, 220, 65, 127, 191, 17, 113, 22, 217,

221, 222, 202, 52, 177, 183, 193, 157, 129]. This kind of programs can be used

to pick up the best few from a bunch of models generated by different structure

prediction programs, which enables structure biologists to focus on the most native-

like models. However, a structural model is not able to provide enough information

for functional study if it is bad quality [192].

A common practice taken by some human predictors or consensus-based auto-

matic predictors to further improve the accuracy of the structure prediction is to

identify correctly-predicted regions from each structural model and then assemble

them together to obtain a better overall model for the target protein; for example,

TASSER [216] and 3D-SHOTGUN [59] are two such top-ranked methods in CASPs.

This kind of refinement method often performs better than the classical threading-

based protein structure prediction methods. The key factor underlying the success

of these refinement methods is identifying the correctly-predicted regions in a struc-

tural model. Besides being used to examine and improve the accuracy of a protein

model, local quality prediction methods can also be used to recognize functional

residues in a protein model [184, 16].

Local quality assessment methods are either structure-based [123, 173, 35, 48,

193, 129, 146] or alignment-based [184, 192, 55, 61, 153]. ERRAT [35] is a program

that uses only structural information. This program employs a Gaussian error

function based on the statistics of non-bonded interactions to predict incorrect re-

gions in a protein model. Such methods can recognize incorrect structural regions

which obviously deviate from their native structure. There are also programs using
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alignment information to predict local quality. Tress et al. developed a method to

evaluate local quality of a given alignment and tested the method on alignments

generated by five comparative modeling methods [184]. The results indicate that

an alignment position with a high profile-derived alignment score often has good

quality. Wallner et al. developed four neural network-based methods, i.e., ProQres,

ProQprof, ProQlocal and Pcons-local, to identify correct regions in a protein model,

using either structural information or alignment information [192]. ProQres uses

structural information in a protein model; while ProQprof uses alignment informa-

tion such as profile-profile scores, information scores, and gap penalty. ProQlocal

combines ProQres and ProQprof together to achieve better performance. Pcons-

local is a consensus-based local quality predictor, taking as input protein models

generated by different structure prediction programs. These four methods evaluate

local quality by comparing the sequence alignments used to build the models with

the optimal structure alignments. However, to make local quality assessment meth-

ods really useful for structure prediction and refinement approaches, it is crucial

to assess the real quality of regions of the structural models. Meanwhile, it is also

important to evaluate the single residue position quality, so that local refinement

strategies can be applied as well.
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Chapter 3

Overview of AMR

Currently, the NMR protein structure determination process is done manually in

NMR labs, even with the help of available programs. However, all of such programs

require high-quality input data. Thus, they are not good enough for the purpose of

fully automating the entire NMR process. To solve this problem and accelerate the

NMR protein structure determination process, we believe all these steps are inter-

related with each other, and should only be considered as a whole. Therefore, we

develop a fully automated NMR protein structure determination protocol, AMR,

which is short for automated NMR protocol. AMR fully automatically generates

accurate final structures for the target proteins after the NMR spectra are collected.

Figure 3.1 shows the flowchart of AMR. Given the input NMR spectra, AMR

first calls PICKY to automatically pick peaks from the spectra. The peak lists of

PICKY are then given to IPASS for resonance assignment. After that, FALCON-

NMR is developed to take the resonance assignment and iteratively generate final

structures.
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Figure 3.1: Flowchart of AMR

3.1 Input NMR Spectra for AMR

One goal of AMR is to use only a minimum set of the most commonly used NMR

spectra to determine the final protein structures. At the current stage, AMR re-

quires six NMR spectra as input: 15N-HSQC, HNCO/HNCA, CBCA(CO)NH, HN-

CACB, HCCONH-TOCSY, and 15N-edited NOESY. Among them, 15N-HSQC is

a 2D spectrum, while the others are 3D spectra. All the input spectra of AMR

are through-bond spectra, except 15N-edited NOESY, which is a through-space

spectrum.

Figure 3.2 shows the illustration of the coupling nuclei that can be detected by

the six through-bond spectra. 15N-HSQC detects the coupling between the back-

bone nitrogen atom and the hydrogen atom that is attached to this nitrogen. Thus,

in ideal case, there should be only one peak corresponding to one residue in 15N-

HSQC. HNCO detects the coupling of the backbone nitrogen atom, the hydrogen

atom that is attached to this nitrogen, and the carbon atom of the carboxyl group of

the previous residue. In ideal case, there should be only one peak corresponding to
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one residue in HNCO. HNCA detects the coupling of the backbone nitrogen atom,

the hydrogen atom that is attached to this nitrogen, and the carbon alpha atoms

(if any) of both this residue and the previous residue. In ideal case, there should be

two peaks corresponding to one residue in HNCA. HNCACB detects the coupling

of the backbone nitrogen atom, the hydrogen atom that is attached to this nitrogen,

and the carbon alpha and the carbon beta atoms (if any) of both this residue and

the previous residue. In ideal case, there should be four peaks corresponding to one

residue in HNCACB. CBCA(CO)NH detects the coupling of the backbone nitrogen

atom, the hydrogen atom that is attached to this nitrogen, and the carbon alpha

and the carbon beta atoms (if any) of the previous residue. In ideal case, there

should be two peaks corresponding to one residue in CBCA(CO)NH. HCCONH-

TOCSY detects the coupling of the backbone nitrogen atom, the hydrogen atom

that is attached to this nitrogen, and the hydrogen atoms of the previous residue.

These six through-bond spectra are mainly used for resonance assignment, which

is the indispensable step for NOE assignment and structure calculation.

Other than the through-bond spectra, AMR also requires 15N-edited NOESY as

an input. As shown in Figure 3.3, 15N-edited NOESY is a through-space spectrum.

It detects the coupling of the backbone nitrogen atom, the hydrogen atom that

is attached to this nitrogen, and any other hydrogen atoms that are close to this

hydrogen atom in Euclidean space.
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(a) 15N-HSQC (b) HNCO

(c) HNCA (d) HNCACB

(e) CBCA(CO)NH (f) HCCONH-TOCSY

Figure 3.2: The six input through-bond spectra: 15N-HSQC, HNCO/HNCA,
CBCA(CO)NH, HNCACB, and HCCONH-TOCSY. Note that AMR only requires
one of HNCO and HNCA as input.
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Figure 3.3: The input through-space spectrum of AMR: 15N-edited NOESY
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Chapter 4

Peak Picking of NMR Spectra

Peak picking is a crucial step in the entire NMR protein structure determination

process. However, existing peak picking methods suffer from two bottlenecks, i.e.,

high false positive rates and slow speed. We develop a novel peak picking method,

PICKY. PICKY adapts a noise level estimation method to efficiently estimate the

noise. A component forming algorithm is then developed to divide the spectra into

very small and simple components. Then, we find out that singular value decom-

position (SVD) can be naturally employed to decompose such small and simple

components and get the initial peak lists. Finally, a novel multi-stage refinement

procedure is applied to refine the initial peak lists.

4.1 Methods

4.1.1 Method Outline

PICKY consists of four sequential steps:

• Noise level estimation: The noise is assumed to be Gaussian and uniform.

By estimating an accurate value for the noise level, most of the noisy data points
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can be easily filtered out.

• Component forming and subdivision: After the elimination of the noisy

points, a spectrum looks like a set of discrete components. Instead of processing all

these components simultaneously, a novel and efficient component forming and sub-

dividing algorithm is developed to form components that are as small and simple

as possible.

• Initial peak picking: Because all the components are very small and simple,

singular value decomposition (SVD) is found to be powerful enough to naturally

solve the peak picking problem inside each component. In this step, each component

is decomposed into the outer product of a set of lineshapes (equal to the dimension

of the spectrum) by SVD. Then these lineshapes are searched for local maxima,

i.e., peaks.

• Peak pruning and refinement: The initial peak lists generated by SVD still

contain many false positive peaks, yet they miss many true peaks. A powerful

and intelligent multi-stage peak refinement step is developed to further refine the

initial peak lists. This refinement step can significantly increase the peak picking

accuracy. It can also be directly applied to refine the peak lists of any other peak

picking methods.

4.1.2 Noise Level Estimation

There are several sources of noise in NMR spectra, including measurement noise

and spectral artifacts, such as phase twisting and water bands. For example, water

bands affect only a small part of the spectra. Thus, Koradi et al. considered a local

noise in AUTOPSY [103]. The noise level is estimated within a small region of the

entire spectrum. This results in the estimated noise level being much smaller than

the actual noise level. Here, a uniform Gaussian noise throughout the spectrum is

considered. The only information available is the observed intensity si, which can
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be written as

si = ti + ηi, (4.1)

where ti represents the actual intensity, and ηi ∼ N(0, σ2
η) represents the i.i.d white

Gaussian noise. The desired noise level is the standard deviation of ηi. However,

it is not possible to directly compute the standard deviation of ηi. Instead, a term

called observed intensity estimation error is introduced as follows

η̂i = si − 1
n

∑
j∈Ni

sj, (4.2)

where Ni is the set of all the direct neighbors of data point i, i.e., all the points

where their indices in all dimensions differ by at most one. In a d-dimensional

spectrum, each point has 3d − 1 such neighbors. For example, in 2D and 3D

spectra, the number of direct neighbors (n = |N |) is 8 and 26, respectively. The

term η̂i evaluates the error of estimating the observed intensity of a data point by

the average of the observed intensities of all of its direct neighbors. By replacing

si and sj in Eq. (4.2) by Eq. (4.1), we can get the relationship between η̂ and η as

follows

η̂i = ηi + εi − 1
n

∑
j∈Ni

ηj, (4.3)

where εi = ti − 1
n

∑
j∈Ni

tj, is the actual intensity estimation error, which evaluates

the error of estimating the actual intensity of a data point by the average of the

actual intensities of all of its direct neighbors.

By Eq. (4.3), the relationship between the variance of η̂ and that of η can be

derived as

σ2
η̂ = n+1

n
σ2

η + σ2
ε . (4.4)

Since the actual intensities are assumed to be much smoother than the observed
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intensities, σ2
ε should be much smaller than σ2

η̂ and σ2
η. Therefore, the noise level

can be estimated by

ση =

√
n

n+ 1
ση̂. (4.5)

ση̂ is calculated by a two-round estimation. After ση̂ is computed over all

the original data points, all the η̂i samples are again examined and omitted, if

|η̂i| > OTH × ση̂. The outlier threshold, OTH, is set to 5 by default, since only

about 0.000029% of the values are expected to be at least five standard deviations

away from the mean. Then, an updated ση̂ is computed, and the noise level ση is

calculated according to Eq. (4.5).

After the noise level is calculated, all the data points with the absolute values of

the observed intensities, less than the noise-threshold (NTH) times the noise level,

i.e., (|si| < NTH × ση), are omitted (the intensities are set to 0). If the spectrum is

supposed to contain only positive intensities, such as the CBCA(CO)NH spectrum,

all the negative points are discarded (the intensities are set to 0).

For more details about the noise level estimation, please refer to [9].

4.1.3 Component Forming and Subdivision

After the noise level estimation step, most of the original data points are eliminated.

The spectrum looks like a set of disconnected components. Previous peak picking

methods, such as AUTOPSY [103] and MUNIN [144, 104], try to interpret all these

components simultaneously. This results in a very slow speed of such methods when

applied on the state-of-the-art spectra, which contain hundreds times more data

points than previous spectra. Therefore, we develop a novel component forming and

subdivision algorithm that can efficiently form very small and simple components.

The peak picking step thus can very easily identify peaks from each component

separately.
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There are three steps for forming components. At the first step, all the con-

nected components are identified by applying a modified version of the flood-fill

algorithm in a similar manner as the one used in AUTOPSY [103]. The algorithm

iteratively classifies a point as in the same component as its direct neighbors (if at

least one of its neighbors has been already assigned), and forms a new component,

otherwise. The component forming algorithm generates hundreds of components,

especially for 3D components, and many of them contain only a small number of

noisy data points which have not been completely eliminated by the noise estima-

tion step. Furthermore, the components that have fewer than 3d − 1 points are

discarded. Another problem is that some of the components are significantly large.

For example, in 2D spectra, such as 15N-HSQC, several overlapping peaks can form

a large component. Figure 4.1 shows an example of a region of an 15N-HSQC

spectrum after the noise level estimation step. It is clear that some data points

in this region are eliminated by the noise level estimation and this region contains

several potential peaks, while two of them are highly overlapped and one of them

is separate. Figure 4.2 shows the result of this region after the flood-fill algorithm.

It can be seen that all the remaining data points are identified to be in the same

large component.

The second step further divides the large components into smaller ones. A

component is defined to be large if it contains more than one local maxima. A

local maximum is defined to be a data point that has the intensity higher than

all its first- and second-tier neighbors. The subdivision algorithm is conducted on

each large component separately: each local maximum is labeled with a different

component index, and then all of its direct neighbors are labeled with the same

index and pushed into a priority queue (PQ). PQ is a list of points which are

sorted according to their intensities from the highest to the lowest. For the entire

algorithm, only the points that have been already assigned with a sub-component
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Figure 4.1: A region of an 15N-HSQC spectrum after noise level estimation

Figure 4.2: Illustration of the result of the flood-fill component forming algorithm
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Figure 4.3: Illustration of the result of the component subdivision algorithm

index can be pushed into PQ. According to the definition of local maxima, the

distance between any two local maxima is at least two data points, thus there is

no conflict in assigning labels to the neighbors at the beginning of the algorithm.

Then, each point in PQ is popped out in the order of its intensity. All the neighbors

of this point, which have not been assigned any index, are assigned by this point’s

index, and then pushed into PQ. This process stops until the queue is empty. It

is clear that this sub-division algorithm can detect the border of two components

within one data point shift from the optimal solution. Figure 4.3 illustrates the

result of the subdivision algorithm on the large component shown in Figure 4.2.

The original component is divided into three smaller ones.

It can be seen in Figure 4.3 that two small components (the two on the left

side of the figure) are highly overlapped with each other. Thus, it is not wise to

deal with them separately because otherwise none of them will maintain an almost

complete peak shape. Thus, the highly overlapped small components should be

merged back again. In AUTOPSY [103], the number of data points within each

sub-component is used as the criterion of merging them. An alternative way is to
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analyze the points on the border of the two sub-components. If the intensities of

those points are negligible, compared with the intensities of the two corresponding

local maxima, there is no need to merge again; otherwise, it means the two potential

peaks are highly overlapped, and thus, they should merge again. Thus, if the ratio

defined in (4.6) is larger than merge-threshold (MTH), then the two sub-components

merge and a larger sub-component is created.

maxk∈Bi,j
{sk}

min{mi,mj}
> MTH, (4.6)

where Bi,j is the set of points on the border of sub-components i and j, and mi

and mj are the intensities of the corresponding local maxima, respectively. MTH is

set to 1/2 in PICKY. Different settings are tested by comparing receiver operating

characteristic (ROC) curves on a set of six spectra. However, very little difference is

observed. Thus, MTH is set to 1/2 by default, but the users can set different values

manually in PICKY. For a large component that contains more than two local

maxima, this process is applied on each pair of connected local maxima. Figure

4.4 shows the final result of the component forming and subdivision algorithm on

the region shown in Figure 4.1. Each of the resulting components is very small and

simple. It either contains a strong and obvious peak, or contains a few number of

highly overlapped peaks.

4.1.4 Initial Peak Picking

After the component forming and subdivision step, each component is treated sep-

arately to identify the initial peaks. Instead of searching for peaks directly from

each component, we assume that each component can be approximated by the

outer product of d lineshapes. Each lineshape is a 1D intensity vector. This as-

sumption is also used in [103, 144, 104]. Thus, if a component can be decomposed
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Figure 4.4: Illustration of the final result of the component forming and subdivision
algorithm

into lineshapes, these lineshapes can be used to search for peaks. For example, a

2D component, P ∈ Rp×q, can be approximated by

P ≈ u⊗ v, (4.7)

where u ∈ Rp×1 and v ∈ Rq×1 are column vectors, called lineshapes, and ⊗ denotes

the outer product. Similarly, a 3D P ∈ Rp×q×r component is a tensor that can be

expressed as

P ≈ u⊗ v⊗w, (4.8)

where u ∈ Rp×1, v ∈ Rq×1, and w ∈ Rr×1 are the column vectors.

We find out that since each component is very small and simple, SVD can be

naturally applied to decompose the component into lineshapes. For 2D spectra,

standard SVD is applied, and for higher-dimensional spectra, higher-order SVD

(HOSVD) is used. More surprisingly, rank-1 approximation is accurate enough for

the peak picking problem. That is, a component can be accurately approximated
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Figure 4.5: Noise reduction using SVD for a 2D component in an 15N-HSQC spec-
trum: (a) the original component of two highly overlapping peaks, (b) the recon-
struction of (a) by the vectors, corresponding to the largest singular value.

by the outer product of the vectors corresponding to the largest singular value in

the SVD. The reason is that for such simple components, the largest singular value

is larger than 80% of the sum of all the singular values for most cases. For more

details about SVD, please refer to [9].

Figure 4.5(b) represents the reconstruction of Figure 4.5(a) by the vectors, cor-

responding to the largest singular value. It is clear that Figure 4.5(b) is a very good

approximation which not only discovers all the potential peaks, but also smooths

the original component. Thus, for most cases, a rank-1 approximation results in an

accurate approximation. In other words, the lineshapes found by SVD are reliable

enough to be searched for the possible locations of the peaks, because the line-

shapes demonstrate the inherent characteristics of the component, while reducing

the noise.

46



4.1.5 Peak Refinement

The initial peak lists generated by SVD still contain many false peaks, yet miss

many true peaks. Thus, we develop a multi-stage peak refinement method. The

initial peak lists are first given to the peak pruning step, which eliminates false

peaks that do not satisfy local maximum requirement and discovers new potential

peaks. Then, the peaks from different spectra, which share some common nuclei

are cross-referenced to further remove the false peaks. Finally, an intensity-based

peak filtering method is applied to make sure that a reasonable number of peaks

is remained. This refinement method is able to significantly refine the peak lists

generated by any peak picking method because it does not depend on the method

itself.

Peak Pruning

A peak should be a local maximum, which means it should be larger (or smaller if

the component corresponds to a negative-intensity peak) than its first- and second-

tier neighbors (5d − 1 points in total). If a peak from the initial peak lists fails to

satisfy this local maximum requirement, it is not discarded directly. Instead, the

peak location is corrected by a recursive jumping procedure, which keeps jumping

to the highest intensity neighbor until the local maximum requirement is satisfied.

Thus, an initial peak that fails to satisfy the requirement will either jump to a

new peak location that satisfies the requirement or jump to an existing peak. This

procedure can not only correct an existing false peak, but can also recover new

potential peaks that are not detectable by SVD.
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Cross-referencing

Most spectra share common nuclei. For example, 15N-HSQC, HNCO, HNCA, HN-

CACB, CBCA(CO)NH, HCCONH-TOCSY, and 15N-edited NOESY all share back-

bone 15N and 1H attached to 15N. Therefore, a cross-referencing refinement method

is developed to further remove the false peaks, if the spectra, sharing some common

nuclei, are available. 15N-HSQC, HNCO, and HNCA are considered to be the most

sensitive spectra. CBCA(CO)NH and HNCACB are considered to be less sensitive.

Thus, if the peak list of HNCO is available, it is used as cross-referencing informa-

tion to refine the peak list of 15N-HSQC. If the peak list of HNCO is not available,

HNCA is used and so on. The goal is to compare the 15N-HSQC peaks with the

most sensitive spectrum available. By this cross-referencing refinement, the arti-

facts and the peaks caused by the side chains of amino acids such as Asparagine

and Tryptophan are eliminated. After 15N-HSQC peak list is refined, its peaks

are used to, first, compensate for the shifts in (N,HN) values of all the NH-based

spectra. Then, if the (N,HN) value of a peak in these spectra does not correspond

to any peak in 15N-HSQC, this peak will be discarded.

Intensity-based Filtering

For most of the through-bond spectra, the number of expected peaks is known. For

example, in an CBCA(CO)NH spectrum of a protein with n residues, there should

be around 2n − 1 peaks corresponding to the Cα and Cβ nuclei. Therefore, after

the peak pruning and cross-referencing steps, all the remaining peaks are sorted

according to their intensities. In a spectrum that has Nr expected peaks, the top

K ·Nr peaks are kept as the final peak list, where K is set to 1.2 in PICKY, because

false peaks can be further eliminated in the following assignment step, but missing

peaks cannot be recovered in the following step. Here, the confidence score of a
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peak is defined as the ratio of its intensity to the estimated noise level. If the

number of the expected peaks is unknown for a spectrum, such as in 15N-edited

NOESY and HCCONH-TOCSY, the peaks with confidence score below a ceratin

threshold (RTH) are discarded. RTH is set to 25 by default.

Therefore, for any input spectrum, PICKY finally outputs a list of a reasonable

number of final peaks with confidence scores. Although there are other possible

ways to define confidence scores, such as the portion of the peak shape that is

overlapped with other peaks, none of them performs better than the intensity-based

one in terms of the final precision and recall values.

4.2 Results

4.2.1 Peak Picking Accuracy on Raw Spectra Data

There are two traditional accuracy measures that can objectively evaluate the per-

formance of a peak picking method: the recall value or the measure of completeness,

the ability to discover true peaks; and the precision value or the measure of ex-

actness, the ability to reject false peaks. Assume that in a given spectrum, there

are Nr true peaks and a peak picking method picks No peaks, where Tp of them

are true peaks. Then, recall and precision are defined as recall = TP/Nr and

precision = TP/No, respectively. Apparently, there is a trade-off between recall

and precision. For instance, if the peak picking criteria are loose, the recall is

high but a large number of false peaks pass through the filter, and result in a low

precision.

PICKY’s performance is evaluated on 32 spectra of eight proteins from Don-

aldson’s lab at York University and Arrowsmith’s lab at the University of Toronto.

All the data are noisy raw spectra in the frequency domain, taken by NMR spec-
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trometers from these two labs. In Table 4.1, the first four proteins, TM1112,

YST0336, RP338, and ATC1776, are provided by Arrowsmith’s lab, and the other

four, COILIN, VRAR, HACS1, and CASKIN, are from Donaldson’s lab. Since the

peak lists that are manually picked by these experienced spectroscopists are not

always available for all these spectra, and it is very common that spectroscopists

sometimes do not pick some obvious peaks or fail to pick some highly-overlapped

or buried-in-noise peaks, we generate “ideal peak lists” as the “correct answer”,

based on the final manually assigned chemical shift tables, established by these

labs, to fairly compare the PICKY’s peaks. For example, for residue i of a target

protein, a peak for 15N-HSQC at position (Ni,H
N
i ) and a peak for HNCO at position

(Ni,H
N
i ,Ci−1) are generated, where Ni, HN

i , and Ci−1 are experimentally assigned

chemical shift values of backbone N and HN atoms for residues i, and the chemical

shift value of the backbone C atom for residue i− 1, respectively.

Figure 4.6 illustrates PICKY’s performance on the 15N-HSQC spectrum of

YST0336. The original spectrum is a challenging one, because it contains a huge

and crowded region which contains many potential peaks. After PICKY’s noise fil-

tering, only about 2% of the data points remain. PICKY then forms components,

picks peaks, and refines these peaks by peak pruning, cross-referencing, and inten-

sity filtering. It can be seen that most of the overlapping peaks are found, whereas

some obvious peaks are eliminated in the refinement process (most of which are

caused by histidine-tags and side chains).

It is indicated in Table 4.1 that PICKY achieves 100% recall on 2 out of the

32 spectra, more than 85% recall on 22 out of 32 spectra, while more than 85%

precision on 6 spectra. The underlying reason for this difference between recall

and precision is that we prefer recall to precision in the intensity-based filtering

step. Note that 1.2Nr peaks for a spectrum are retained in the intensity-based
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Figure 4.6: Illustration of PICKY’s performance on the 2D 15N-HSQC spectrum
of YST0336. All the data points with intensities higher than 1.5 × 105, which is
automatically determined by PICKY, are set to cyan. Peaks are shown by the black
dots. Some strong peaks (shown by crosses), caused by side chains, are filtered by
cross-referencing.

filtering step, where Nr is the ideal peak number of this spectrum. Consequently,

even if PICKY picks all the true peaks correctly (100% recall), precision is only

Nr

1.2Nr
= 83%. Sometimes, the peak pruning and cross-referencing processes can be

used to eliminate most of the false peaks, resulting in no more than 1.2Nr peaks

after the intensity filtering. This explains why we have more than 83% precision

in some cases. Note here, all the spectra data that are investigated are real data

with a high ratio of different sources of noise, artifacts, water bands, and even

peaks caused by the histidine-tags attached to the target proteins. Consequently,

it is likely that some “expected” peaks in the ideal peak list do not exist in a real

spectrum, and some peaks, caused by histidine-tags or side chains, can appear to

be strong peaks. Therefore, all the recall and precision values in Table 4.1 are
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actually the lower bounds. A higher accuracy is expected from PICKY in practice.

The missing “expected” peaks are also the main reason for the differences of recall

and precision of PICKY on different proteins.

Table 4.1: Performance (recall/precision) of PICKY on the 32 spectra of the eight
target proteins.

Protein Len NHSQC HNCO HNCA CBCACONH HNCACB Ave.

TM1112 89 96 / 89 - 93 / 88 98 / 88 91 / 83 94 / 87
YST0336 146 91 / 84 96 / 79 84 / 79 86 / 69 - 89 / 76
RP3384 64 94 / 86 100 / 82 85 / 70 91 / 76 - 93 / 79
ATC1776 101 78 / 82 89 / 73 79 / 75 78 / 66 - 81 / 74
COILIN 98 97 / 70 97 / 58 - 86 / 54 78 / 54 90 / 59
VRAR 72 87 / 93 89 / 84 - 83 / 71 69 / 72 82 / 80
HACS1 74 95 / 67 94 / 62 - 94 / 61 82 / 52 91 / 61
CASKIN 67 100 / 93 85 / 72 - 91 / 68 70 / 75 86 / 77
Average - 92 / 83 93 / 73 85 / 78 89 / 69 78 / 67 88 / 74

Len: the length of the protein; NHSQC: 15N-HSQC; CBCACONH: CBCA(CO)NH; Ave.:
Average. All the recall/precision values are in percentiles.

However, we are not able to make a comparison between PICKY and the previ-

ously published peak picking methods. In fact, AUTOPSY is the only automated

peak picking program in the literature that is available for public users. Also, AU-

TOPSY is the most well-known and cited peak picking method. AUTOPSY was

tested by using only one 2D-NOESY NMR spectrum and it was shown to be a use-

ful tool for improving the manual peak picking process [103]. We test AUTOPSY

with the spectra in our benchmark set. However, AUTOPSY fails to produce peaks

by using its default parameters. Thus, the performance of AUTOPSY depends on

how to manually set different parameters for different proteins, which is beyond the

scope of our knowledge.

Another contribution of this work is to set a comparable benchmark set for

automatic peak picking methods. In either AUTOPSY paper [103] or MUNIN pa-

per [144], the demonstrated experiments contain only one spectrum, which is not
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publicly available. Thus, it is difficult for other researchers to conduct a fair com-

parison. Our data set contains 32 spectra, which covers a wide range of commonly

used spectra. This data set is publicly available. To the best of our knowledge, this

is the first systematic study on the peak picking problem.

4.2.2 Efficiency of PICKY

PICKY is efficient. PICKY is run on a set of 46 spectra (15N-HSQC, HNCO, HNCA,

CBCA(CO)NH, HNCACB, 15N-edited NOESY, and HCCONH-TOCSY) derived

from the eight proteins. Eight of these spectra are 2D spectra. The remaining

spectra are 3D in nature and are subdivided into 30 correlated experiments and 8

NOESY-based experiments. The total time required by PICKY to process these

46 spectra is 721 seconds, which gives an average runtime of 15.7 seconds per

spectrum. This indicates that PICKY is very efficient. We also observed that the

time required to process individual spectrum is directly related to the resolution of

the spectrum.

4.3 Discussion

PICKY mainly differs from previous peak picking methods in the way it interprets

the spectra. Both AUTOPSY and MUNIN try to accurately interpret a spectrum

by a linear combination of different layers, whereas PICKY efficiently divides the

spectrum into small and simple components, and takes advantage of the natural

power of SVD, which can inherently find most of the overlapping peaks in such

components. Then, a powerful refinement process reveals more peaks, corrects

their locations, and significantly reduces false peaks, which makes PICKY very fast

and accurate in practice.
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PICKY is written in a flexible manner, so that expert experience can be taken

as input, and users can easily modify peaks generated by PICKY. Thus, PICKY

can hopefully lead to a better interactive strategy for rapid peak picking, i.e., users

would very rapidly pick the true peaks and then only have to manually sort through

more questionable ones.

PICKY has not been tested on spectra with dimensions higher than three, be-

cause such spectra data are not at hand. However, all the four steps of PICKY

can be trivially extended to higher dimensions. On the other hand, higher dimen-

sional spectra contain significantly fewer overlapping peaks. Consequently, it can

be expected that PICKY will be consistently successful for any spectra.
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Chapter 5

Backbone Resonance Assignment

Most of the previously proposed resonance assignment methods are designed to

deal with high quality data sets. Therefore, none of these methods work well on

the imperfect peak lists generated by automatic peak picking methods. We develop

a superior error-tolerant assignment method, IPASS, for automated peak-picking

results. IPASS applies Integer Linear Programming (ILP) to optimally solve the

assignment problem under our problem setup. Moreover, IPASS contains a new

spin system forming step, an improved probabilistic spin system typing step, and

a novel connectivity extraction step.

5.1 Methods

5.1.1 Problem Formulation

The resonance assignment problem is to assign the chemical shift values extracted

from peaks of different spectra to the corresponding atoms in the protein. Due to

the fact that most peaks detect chemical shifts of the nuclei that couple through

covalent bonds, peaks are usually used to form spin systems which contain both
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inter-residue and intra-residue information, and the spin systems are then assigned

to the corresponding residues of the protein.

Define a protein sequence with n residues to be r1r2 . . . rn, letR denote {r1, r2, . . . , rn}.

Define spin system set to be S = {s1, . . . , sm}. Each spin system contains N, HN,

Cα and Cβ chemical shifts such that

sj = (Nj,H
N
j ,C

α
j ,C

β
j , C̃

α
j , C̃

β
j ). (5.1)

If sj is mapped to residue i, then C̃ denotes Carbon chemical shifts of residue i− 1.

The assignment problem is to find the correct mapping between the spin system

set and the residue set, expressed as f : S → R. Note that due to the imperfect

NMR spectra, peak picking, and spin systems forming, the number of spin systems

can be smaller, larger, or equal to the number of residues.

5.1.2 Method Outline

IPASS consists of two essential steps:

• Spin system forming: This is a pre-processing step for resonance assignment.

During the spin system forming process, the chemical shifts from the peaks are

grouped to form spin systems. Spin systems are viewed as the building blocks of

the backbone assignment process. A novel clustering-based method is developed

to group the peaks of different spectra into spin systems. The input to spin sys-

tem forming module is the peak lists of 15N-HSQC, HNCA, CBCA(CO)NH, and

HNCACB spectra, and the output is a set of spin systems.

• Integer linear programming: After the spin systems are formed, the problem

is to find the correct mapping between the spin system set and the residue set. We

prove this problem is NP-hard. Therefore, we develop an ILP model to solve this
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problem. However, sometimes the original problem size is too big for the state-of-

the-art ILP solvers. Thus, additional information, such as chemical shift statistics

and spin system connectivity information, is used to reduce the ILP problem size.

Finally, the ILP model can be solved very fast to find the globally optimal resolution

under our problem setup. The two helping steps are described as follows:

Spin system typing: Since the chemical shift of a nucleus only depends on its

local chemical and local geometric environment, atoms of different amino acids and

different secondary structures have quite different chemical shift distributions. Such

distributions can be acquired by statistics from the known chemical shift database.

A probabilistic model is then derived to estimate how likely a given spin system

can be mapped to a certain residue.

Connectivity information extraction: Two spin systems are connected if

they can be mapped to two consecutive residues. The connections are detected by

both inter-residue and intra-residue information. Since there are always shifts in

the chemical shift values of the same nucleus in different spectra, exactly matched

chemical shift values are not expected from peaks of different spectra. Thus, a

threshold is needed to define the connectivity. Consequently, a low threshold re-

sults in many undetected true connections, whereas a large threshold results in

many false connections. In IPASS, two sets of connections are defined: a set of

highly reliable connections based on the Cα and Cβ chemical shifts and the infor-

mation extracted from the 15N-edited NOESY peaks. Furthermore, a set of loose

connections are detected by a larger threshold. By using reliable connections, a set

of fragments is determined and the combinations of them are enumerated.

57



5.1.3 Spin System Forming

A highly error-tolerant resonance assignment method requires a highly error-tolerant

spin system forming step. The NMR spectra used in the spin system forming

step are 2D 15N-HSQC and triple resonance experiments HNCA, HNCACB, and

CBCA(CO)NH. In ideal case, since peaks from 15N-HSQC, HNCA, HNCACB, and

CBCA(CO)NH share common backbone N and HN nuclei, if all these peaks are

projected to the 2D N − H space, the peaks from the same spin system should

overlap with each other. A simple clustering method can then be easily applied to

find these clusters and form spin systems accordingly. However, when deal with

real peaks, it is always the case that there are shifts of the chemical shift values of

the same nucleus in different spectra. Thus, the traditional clustering method does

not work on practical peaks. We develop a two-stage clustering method to form

spin systems based on imperfect peaks generated by PICKY.

The problem of forming spin systems is modeled as a graph theory problem.

Typically, a shift as high as 0.5 ppm is expected in the 15N and 13C chemical shifts,

and a shift as high as 0.05 ppm in the 1H chemical shifts. To solve this problem, each

peak is denoted as a point in the multidimensional space, where each dimension

corresponds to a certain type of nuclei such as 15N, 1H, or 13C.

At the first stage, the peaks within each 3D spectrum are connected according

to their N and HN chemical shifts. Each spectrum provides multiple peaks for the

same residue, and these peaks should be in the small vicinity of each other. Given

two peaks with root pairs Px = (Nx,H
N
x ) and Py = (Ny,H

N
y ), the distance between

them is defined as

dPx,Py =
√

(Nx − Ny)2 + ω2(HN
x − HN

y )2, (5.2)
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where ω is the scaling factor for the compensation of the difference in the resolution

between 1H and 15N. Usually, 1H chemical shifts are 10 times more sensitive than

the 15N chemical shifts, and so the default value of ω is 10. According to the

distance defined in Eq. (5.2), each peak, P, in a given spectrum is associated with

its nearest neighbor, PNN. An edge is created between P, and any peak that is

within 2× dP,PNN
distance to P. The edges between the peaks are directional with

the starting point to be the reference peak, P. The peaks which are connected to

each other represent the peaks from the same N and HN root.

At the second stage, the peaks from different spectra are connected. Peaks

from two 3D spectra are connected according to their N, HN, and C chemical

shifts, whereas a peak from a 2D spectrum is connected with a peak from a 3D

spectrum according to N and HN chemical shifts. For example, the distance between

Px = (Nx,Cx,H
N
x ) in CBCA(CO)NH spectrum and Py = (Ny,Cy,H

N
y ) in HNCA is

defined as

DPx,Py =
√

(Nx − Ny)2 + (Cx − Cy)2 + ω2(HN
x − HN

y )2 (5.3)

The distance between Px = (Nx,Cx,H
N
x ) in CBCA(CO)NH spectrum and Pz =

(Nz,H
N
z ) in 15N-HSQC is defined as

DPx,Pz =
√

(Nx − Nz)2 + ω2(HN
x − HN

z )2 (5.4)

Similar to the aforementioned process, the edges can be created between P and

its close vicinity peaks in other spectra, which are within 2×DP,PNN
distance to P.

All of the created edges are directional. If there are two edges in both directions

between two nodes, two edges are replaced by a non-directional edge.

After these two stages, each connected component represents a cluster that
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corresponds to a spin system in the resulting general peak graph. The primary

advantage of this approach is its generalization. It can be applied to any set of

available NMR spectra. After the connected components are found, each cluster

contains similar HN and N values such that these values are taken from the 15N-

HSQC spectrum. The problem is how to detect Cα, Cβ, C̃α, and C̃β. The clusters

are usually incomplete as a result of the missing peaks, and over-crowded as a result

of the overlapping peaks.

A brute force method is applied, which searches all the possible combinations of

the chemical shift values for different Cα and Cβ nuclei in each cluster. If a unique

combination of the chemical shifts exists and does not conflict with the peaks in

the cluster, a spin system is generated. After Cα and Cβ are identified, C̃α and C̃β

can be easily identified.

5.1.4 An ILP Model to Solve the Assignment Problem

After the spin systems are formed, the next step is to assign the spin systems to the

corresponding residues. We first prove that the assignment problem is NP-hard,

then adopt additional information, such as statistics and connectivity information,

to reduce the problem size, and finally propose a novel ILP model for the assignment

problem.

The backbone resonance assignment problem can be represented by a graph

G(V,E). Here, each node in V corresponds to a mapping between a spin system

and a certain residue, and the edges in E represent the connections between the

spin systems.
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NP-hardness Proof of the Assignment Problem

Initially, any of the m spin systems can be mapped to any of the n residues. Recall

that spin systems contain both inter-residue and intra-residue information, thus,

there is connectivity information between different spin systems, i.e., if two spin

systems i and j are mapped to two consecutive residues, then there should be a

connectivity edge from i to j. Figure 5.1 illustrates the graph of the original assign-

ment problem. It is clear that any spin system can be mapped to any residue, and

if there is an edge between spin system k and l, there should be n− 1 duplications

of that edge. The goal of the resonance assignment problem is to find the mapping

between the spin systems and the residues that results in the largest total weights

of the connectivity edges used.

Figure 5.1: Illustration of the original problem setup of the assignment problem.

Theorem 1. Backbone resonance assignment problem, under the proposed graphi-

cal representation is NP-hard.
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Proof. The NP-hardness of the backbone resonance assignment problem is through

a reduction from the Hamiltonian path problem which is known to be NP-hard.

The Hamiltonian path problem is defined as follows: Given a graph, G′(V ′, E ′),

decide whether there exists a path in G′(V ′, E ′) that visits each vertex exactly

once. For an instance of the Hamiltonian path problem, a new graph G′′(V ′′, E ′′),

which is a product of the {1, 2, ..., n} × G′, where n = |V ′|, is constructed. Thus

the new graph, G′′(V ′′, E ′′), has nodes (i, v), where v ∈ V ′ and 1 ≤ i ≤ n, and

an edge between (i, v) and (j, w) if j = i + 1 and there is an edge between v and

w in G′, where w ∈ V ′ and 1 ≤ j ≤ n. Here, the edge weights are defined as 1

for all the edges in G′′. Each spin system corresponds to a vertex in G′ and the

residues correspond to the {1, 2, ..., n} set. G′′ has a very similar topology as the

graph shown in Figure 5.1.

G′ has a hamiltonian path, if and only if there exists an assignment solution with

total edge weights n− 1 for the backbone resonance assignment problem. For each

i, the vertices are connected to their adjacent vertices in the graph with weight 1.

A backbone resonance assignment solution with total weight n−1 corresponds to a

mapping, where each spin system is used once, and every residue has a spin system

that is mapped to it. As a result, the assignment with total weight n − 1 visits

each vertex in G′ exactly once which corresponds to a Hamiltonian path. Similarly,

if there is a Hamiltonian path visiting vertices v1, v2, ..., vn, it corresponds to an

assignment of mapping spin system vi to residue i. This assignment has total

weight n− 1, and is thus an optimal solution for the assignment problem.

Therefore, the resonance assignment problem is NP-hard.

62



Spin System Typing

Right now, every spin system can be mapped to every residue. However, this is not

the case in practice. Each spin system is a vector of chemical shift values. Chemical

shift value of a nucleus only depends on the local chemical and local geometric

environment. Therefore, atoms of different amino acids and different secondary

structures have quite different chemical shift distributions. The goal of spin system

typing is to reduce the number of candidate spin systems for each residue, based

on the chemical shift information. A statistical analysis of the deposited chemical

shifts in the BMRB database reveals correlation between the chemical shifts, and

the amino acid types and secondary structures. These statistics are used to build

a probabilistic model to estimate how likely a spin system can be mapped to a

certain residue.

Collecting Statistics The statistics is based on the deposited proteins with ex-

perimentally assigned chemical shift values in BMRB database. A restriction is

that only proteins which has corresponding structure entries in PDB database are

considered, because only for these proteins, their secondary structure information

is known. There are 1168 proteins left after redundancy elimination at sequence

identity level 40%. DSSP [97] is called to determine the secondary structure types

for these proteins. Since the N and HN chemical shifts exhibit similar statistics

for all amino acids and all secondary structures, N and HN chemical shifts are not

informative for typing the spin system purpose. Thus, only mean and covariance

matrices for Cα and Cβ chemical shifts are estimated for each amino acid and

secondary structure type.

A Probabilistic Typing Model A probabilistic model is developed to estimate

Pr {ri | sj}. That is, how likely spin system sj can be mapped to residue ri. Two
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vectors are extracted for spin system sj: cj = (Cα
j ,C

β
j )T and c̃j = (C̃α

j , C̃
β
j )T . Recall

that N and HN chemical shifts are not informative for spin system typing. Thus,

Pr {ri | sj} is equal to the probability that cj and c̃j are mapped to ri and ri−1,

respectively, which is represented by Eq. (5.5).

Pr {ri | sj} = Pr {ri = ap, ri−1 = aq | cj, c̃j}, (5.5)

where ap, aq ∈ A, and A is the set of twenty amino acids.

We assume that cj and c̃j are independent, apply the Bayes’ rule, and finally

get

Pr {ri | sj} = Pr {ri = ap | cj} × Pr {ri−1 = aq | c̃j} (5.6)

=
Pr {cj | ri = ap}Pr {ri = ap}

Pr {cj}
× (5.7)

Pr {c̃j | ri−1 = aq}Pr {ri−1 = aq}
Pr {c̃j}

.

In Eq. (5.7), Pr {ri = ap} and Pr {ri−1 = aq} only depend on the amino acid

types, but not the positions in the protein sequence. Therefore, they can be easily

estimated by the abundance of amino acid ap and aq in the entire BMRB database.

By using the total probability law,

Pr {cj} =
∑
a`∈A

Pr {cj | ri = a`}Pr {ri = a`}, (5.8)

and Pr {c̃j} =
∑
a`∈A

Pr {c̃j | ri−1 = a`}Pr {ri−1 = a`}.

By using the total probability law again,

Pr {cj | ri = a`} =
3∑

k=1

Pr {cj | ri = a`, γi = σk} Pr {γi = σk}, (5.9)
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where γi denotes the secondary structure of ri. For k = 1, 2, and 3, σk denotes

α-helix, β-strand, and random coil, respectively. PSIPRED is used to estimate

Pr {γi = σk} values [130], whereas Pr {cj | ri = a`, γi = σk} is calculated according

to the previously extracted chemical shift statistics.

Pr {ri | sj} values are calculated for every spin system and residue pair. For a

residue, the spin systems that have lower than 0.05 probabilities of mapping to this

residue are eliminated. For more details about the spin system typing, please refer

to [8].

Connectivity Information Extraction

Although the spin system typing step is able to significantly reduce the number

of candidate spin systems for each residue, the remaining problem size is still very

large. Therefore, some highly reliable fragments are assigned and fixed. Since

spin systems contain both inter-residue and intra-residue information, connectiv-

ity information can be extracted between spin systems. We define two types of

connections, reliable connections and loose connections.

Spin system sj can be reliably followed by spin system sk if and only if at least

two of the following three conditions are satisfied:

1. |Cα
j − C̃α

k | ≤ δα ,

2. |Cβ
j − C̃β

k | ≤ δβ ,

3. (Nj,H
N
k ,H

N
j ) and (Nk,H

N
j ,H

N
k ) peaks exist in the 15N-edited NOESY spec-

trum,

where δα = δβ = 0.05 ppm. The first two conditions require that two reliably

connected spin systems should agree on their shared chemical shift values, while
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the third condition requires that if two spin systems are assigned to two consecutive

residues on the target protein sequence, their hydrogen atoms of the amide groups

should be close in 3D space, providing a peak in the 15N-edited NOESY spectrum.

For the loose connections, we set δα = δβ = 0.5 ppm. Two spin systems sj and

sk are loosely connected if they can satisfy one of the first two conditions without

violating the other one. Note that the third condition itself is not enough to judge

a connection because HN
j can be from a residue that is far from residue k in the

protein sequence, but close in 3D space.

Both the reliable connections and the loose connections are position specific.

The reason is that the spin system typing step has significantly reduced the number

of the residues that a certain spin system can be mapped to. Thus, a connection

between two spin systems si and sj can only occur if si can be mapped to a certain

residue rk and sj can be mapped to rk+1.

After all the reliable connections are determined, they are enumerated for all

the possible fragments, i.e., if si and sj is a reliable connection, sj and sk is a

reliable connection, then there is a fragment that contains si, sj, and sk. Suppose

there are p reliable fragments, F1, . . . , Fp, with lengths l1, . . . , lp, respectively. Each

fragment is denoted as Fq = (se1 , se2 , . . . , selq
), where sej

is connected to sej+1
for

j = 1, . . . , lq − 1. Fragments shorter than three spin systems, or fragments that are

contained by other fragments are discarded. Since it is possible that a fragment

can have more than one mapping positions in the protein sequence, we define the

score of mapping a fragment Fq to the i-th position in the target sequence as

T
(q)
i = −

lq∑
k=1

log (1− Pr {ri+k−1 | sek
}) , 1 ≤ i ≤ n− lq + 1, (5.10)

where Pr {ri+k−1 | sek
} can be calculated by the probabilistic model mentioned

before. All the combinations of the reliable fragments are enumerated according
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to the requirement that in a combination, any two fragments should not be in

conflict, i.e., they should not share any spin systems, and their mapped positions in

the sequence should not overlap. Then, all the fragments within the combination

are fixed. For example, if in a combination, Fq is mapped to the sequence region

starting from the i-th position, then all the spin systems contained in Fq are removed

from the candidate spin system sets of residues outside this sequence region. All

possible reliable combinations are enumerated, and the following ILP model is built

for each combination separately. Finally, the solution of the ILP model with the

highest assignment score is selected as the final solution.

Integer Linear Programming Model for the Problem

After typing the spin systems and fixing a combination of reliable fragments, the

problem size of the backbone resonance assignment is significantly reduced. That

is, for a residue ri, for any spin system sj such that Pr {ri | sj} 6= 0, there is a node

vi,j ∈ V in G. There is a directional edge from vi,j to vl,k if and only if l = i+1 and

spin system j can be followed by spin system k by either a reliable connection or a

loose connection. The edge between vi,j to vi+1,k is denoted as ei,j,k, the weight of

which is defined as

wi,j,k = log (Pr {ri; ri+1 | sj, sk})

= log (Pr {ri | sj}) + log (Pr {ri+1 | sk}) , (5.11)

where wi,j,k corresponds to the probability of mapping two spin systems to two

consecutive residues.

For each node vi,j ∈ V , define a boolean variable xi,j to be 1 if spin system j

is mapped to residue i, and 0 otherwise. For each edge ei,j,k ∈ E, define a boolean

variable yi,j,k to be 1 if the connection between node vi,j and vi+1,k is selected, and
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0 otherwise.

Figure 5.2 shows an illustration of the assignment problem setup. Note that

a spin system can still be mapped to multiple residues with different probabilities

which are calculated in spin system typing step, and for each residue, there are only

a few spin system candidates left which can be possibly mapped to it.

Figure 5.2: Illustration of the problem setup of the assignment problem. There is
a node vi,j (shown by gray circles) corresponding to residue ri and sj if and only if
Pr{ri|sj} 6= 0.

Therefore, the backbone resonance assignment problem can be formulated by

the following ILP model:
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max
yi,j,k

∑
ei,j,k∈E

(wi,j,k + λ) yi,j,k, (5.12)

subj. to ∀i ∈ {1, . . . , n},
∑m

j=1 xi,j ≤ 1, (5.13)

∀j ∈ {1, . . . ,m},
∑n

i=1 xi,j ≤ 1, (5.14)

∀ei,j,k ∈ E yi,j,k ≤ xi,j; yi,j,k ≤ xi+1,k, (5.15)

and xi,j ∈ {0, 1}, yi,j,k ∈ {0, 1}. (5.16)

Constraint (5.13) ensures that a residue can be assigned by, at most, one spin

system. Constraint (5.14) ensures that a spin system can be assigned to, at most,

one residue. Constraint (5.15) ensures that an edge can be selected, only if both

of its ends are selected. The objective function is to find the assignment which

maximizes the total weight of the selected edges. Since all the original edge weights

are negative, the objective function adjusts all the edge weights to be positive values

by adding a fixed term, λ = −mini,j,k(wi,j,k), which enables the maximization to

be meaningful.

CPLEX9.1 is used to solve the ILP model. For each combination of the reliable

fragments, an ILP is generated and the solution is attained. The assignment with

the highest score is reported as the final assignment.

5.2 Experimental Results

To evaluate the performance of IPASS, several experiments are conducted. Two

performance measures are used in the following parts: precision and recall. Preci-

sion measures the ability to reject false assignments, whereas recall measures the

ability to discover true assignments. Assume that for the target protein, there are
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Nr manually assigned residues, and a resonance assignment program assigns No

residues, where Tp of them are assigned correctly. Then, recall and precision are

defined as TP/Nr and TP/No, respectively.

5.2.1 Performance on Real Data Sets

In practice, the input for resonance assignment is not “perfect”. Instead, the input

peak lists contain various sources of errors, such as the chemical shift difference

of the same nucleus in different spectra and false peaks, picked during the peak

picking step. Therefore, an assignment method is practical only if it works on “low

quality” real noisy input data sets.

In the NMR lab experiments, the spectroscopists usually conduct the entire

NMR process altogether, i.e., the resonance assignment, NOE assignment, structure

calculation information, as well as information from the various kinds of other

spectra, which are used as feedback to refine the peak lists. Thus, the final peak

lists provided by NMR labs are always “almost perfect”, and do not represent

the original peaks picked by spectroscopists. Therefore, we apply IPASS on the

peak lists generated by automated peak picking method, PICKY, to evaluate its

performance on the real NMR lab data sets. Since IPASS requires HNCACB at

one of the input spectra, only five of the eight proteins from PICKY’s experiments

are used as test proteins for IPASS, i.e., TM1112, COILIN, VRAR, HACS1, and

CASKIN.

Table 5.1 summarizes the performance of RIBRA, MARS, and IPASS for the

five real proteins. Since MARS cannot take the peak lists as inputs, the spin

systems formed by the spin system forming step of IPASS are given to MARS

as inputs. The performance of MARS and IPASS are compared on the same set

of spin systems. RIBRA takes the peak lists of 15N-HSQC, CBCA(CO)NH, and
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HNCACB as inputs, so the performance of RIBRA and IPASS are compared on

the same peak lists. Table 5.1 clearly shows that IPASS significantly outperforms

RIBRA and MARS on all of the five proteins in terms of the number of correctly

assigned residues. One thing to notice is that when the input peak list quality is

as good as TM1112, IPASS can generate assignments, which are almost as good as

the manual assignment. In Table 5.1, the number of Glycine and Proline residues

are shown. The Proline residues cut the fragments and make the assignment more

challenging. The Glycine residues are favorable in a way that can be typed very

easily due to their distinct Cα values. However, The Glycine residues shorten the

fragments, because they do not have any Cβ chemical shifts, and hence, no reliable

connections. It is noticeable that when a protein has a large number of Glycine and

Proline residues, such as COILIN, HACS1, and CASKIN, the number of incorrectly

assigned residues by IPASS is also quite high. This reveals the importance of the

reliable fragments because such residues break long reliable fragments.

Table 5.1: Performance of RIBRA, MARS, and IPASS on target proteins TM1112,
COILIN, VRAR, HACS1, and CASKIN.

Protein Len Man SS Gly/Pro RIBRA1 MARS2 MARS3 IPASS

TM1112 89 83 81 / 85 4 / 5 40 / 54 6 / 45 55 / 63 71 / 73
COILIN 98 71 60 / 73 4 / 9 6 / 38 23 / 28 23 / 28 36 / 64
VRAR 72 60 47 / 47 1 / 0 4 / 13 6 / 17 6 / 17 34 / 42
HACS1 74 61 48 / 61 7 / 5 5 / 11 15 / 16 15 / 16 24 / 36
CASKIN 67 54 47 / 48 7 / 4 12 / 21 23 / 25 23 / 25 31 / 41

Len: protein length; Man: number of manually assigned residues; SS: number of correct/total
spin systems discovered by the spin system forming step of IPASS; Gly/Pro: number of Glycine
and Proline residues in the sequence. For each protein, the performance of each method is shown
in “number of correctly assigned residues/total number of assigned residues” format.
1 RIBRA’s performance with 15N, 13C threshold values of 0.5 and 1H threshold value of 0.05.
No residue can be assigned if the default values are used. The parameters are set according to
IPASS, which makes the comparison fair.
2 MARS with the first set of default parameters: δα = 0.5ppm and δβ = 0.5ppm.
3 MARS with the second set of default parameters: δα = 0.2ppm and δβ = 0.4ppm.
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5.2.2 Performance on Simulated Data Sets

Although the goal is to develop a backbone resonance assignment method which

works on real data sets of automatically picked peak lists, performance of IPASS is

also evaluated on some previously used benchmark sets.

Simulated Spin Systems as Input

First, the IPASS performance is evaluated on a simulated data set, used by [194],

which contains 12 proteins. For each protein, the spin systems are simulated, based

on the BMRB deposited chemical shift assignments of the protein, and used as the

input for all of these programs. Each spin system contains N, HN, Cα, Cβ, C̃α,

and C̃β chemical shifts. Since RANDOM and CISA are not available, the precision

and recall values are selected from [194]. The accuracy of RANDOM, MARS, and

CISA is calculated according to two different sets of threshold values, because these

programs are sensitive to different threshold values. Note that in these experiments,

the input for IPASS is simulated spin systems, so the spin system forming step is

not tested here.

As shown in Table 5.2, IPASS performs very well and significantly better than

any other program regardless of the set of threshold settings. The average precision

of IPASS is 99%, and IPASS achieves a 100% precision on seven out of 12 target

proteins. Meanwhile, IPASS can also achieve a high recall value of 96%. It is note-

worthy that although MARS also has a high precision value on this data set, it has

a relatively low recall value, compared to that of IPASS. On the other hand, Table

5.2 demonstrates that RANDOM, MARS, or CISA are sensitive to the threshold

settings. For this simulated data set, a smaller threshold value can give a much

better accuracy. However, in practice, researchers do not know the quality of the

spin systems. It is challenging to determine the potential difference in the chemical
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shift values of the same nucleus in different spectra. In contrast, IPASS does not

rely on any parameter settings and its parameters are chosen without training on

any data set.

Table 5.2: Performance (precision/recall) of RANDOM, MARS, CISA, and IPASS
on the 12 protein data set with simulated spin systems.

δα = 0.2ppm, δβ = 0.4ppm δα = 0.4ppm, δβ = 0.8ppm

Protein Len Man RAN MARS CISA RAN MARS CISA IPASS

bmr4391 66 59 67 / 63 100 / 76 97 / 97 58 / 55 100 / 75 91 / 91 93 / 90
bmr4752 68 66 40 / 35 100 / 97 96 / 94 36 / 30 100 / 97 90 / 88 100 / 94
bmr4144 78 68 36 / 33 100 / 91 100 / 99 33 / 31 100 / 69 100 / 99 98 / 85
bmr4579 86 83 54 / 51 99 / 98 98 / 98 34 / 32 96 / 90 80 / 80 100 / 98
bmr4316 89 85 42 / 36 100 / 100 100 / 99 35 / 30 99 / 91 83 / 83 99 / 98
bmr4288 105 94 62 / 55 100 / 99 98 / 98 42 / 38 98 / 97 91 / 91 100 / 98
bmr4929 114 110 68 / 63 100 / 100 93 / 91 46 / 43 100 / 99 96 / 94 100 / 100
bmr4302 115 107 66 / 64 100 / 100 96 / 95 47 / 45 100 / 100 91 / 91 100 / 99
bmr4670 120 102 67 / 62 100 / 100 96 / 95 43 / 39 100 / 100 88 / 87 98 / 97
bmr4353 126 98 48 / 43 95 / 55 96 / 95 47 / 43 95 / 55 90 / 90 99 / 93
bmr4027 158 148 43 / 32 100 / 99 100 / 99 40 / 30 100 / 99 88 / 85 100 / 97
bmr4318 215 191 40 / 38 99 / 99 87 / 84 25 / 22 100 / 95 74 / 70 100 / 98

Average 112 101 53 / 48 99 / 93 96 / 95 41 / 37 99 / 89 88 / 87 99 / 96

Len: protein length; Man: number of residues that are manually assigned in the BMRB file;
RAN: RANDOM. The accuracy of RANDOM, MARS, and CISA is calculated based on two sets
of thresholds and listed in percentiles.

Simulated Peak Lists as Input

The IPASS performance is further tested on the same data set, but with simulated

peak lists. Spin system forming step is also tested in this experiment. However, the

CISA paper [194] does not provide such a comparison on RANDOM, MARS, and

CISA. Furthermore, RANDOM and CISA are not available. As a result, IPASS

is compared with two available programs: MARS and RIBRA. MARS takes only

formed spin systems as inputs and RIBRA takes the peak lists as inputs. RIBRA

is used directly, and IPASS’s spin system forming method is applied to form spin

systems for MARS.
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Table 5.3 shows that both MARS and IPASS perform well on the simulated

peak lists, and are better than RIBRA. MARS achieves higher precision and lower

recall values than IPASS.

Table 5.3: Performance (precision/recall) of RIBRA, MARS, and IPASS on the 12
protein data set with simulated peak lists.

Protein Len Man SS Gly/Pro RIBRA1 MARS2 MARS3 IPASS

bmr4391 66 59 55 6/1 91 / 76 93 / 43 94 / 46 91 / 85
bmr4752 68 66 65 6/1 91 / 90 100 / 94 100 / 94 100 / 92
bmr4144 78 68 63 3/5 62 / 45 100 / 58 100 / 41 98 / 85
bmr4579 86 83 80 5/2 87 / 67 99 / 87 99 / 83 100 / 94
bmr4316 89 85 80 13/3 99 / 88 99 / 83 99 / 73 88 / 79
bmr4288 105 94 93 5/10 100 / 97 99 / 95 100 / 97 99 / 97
bmr4929 114 110 108 10/2 82 / 78 100 / 83 99 / 68 99 / 98
bmr4302 115 107 107 5/2 100 / 92 100 / 96 99 / 97 96 / 95
bmr4670 120 102 92 9/5 98 / 86 99 / 87 100 / 87 93 / 79
bmr4353 126 98 97 8/10 98 / 93 99 / 90 100 / 91 97 / 90
bmr4027 158 148 146 11/8 90 / 82 99 / 94 99 / 92 97 / 94
bmr4318 215 191 188 9/12 74 / 63 99 / 93 99 / 86 98 / 90

Average 112 101 98 5/8 89 / 80 99 / 84 99 / 80 96 / 90

Len: protein length; Man: number of residues that are manually assigned in the BMRB file; SS:
number of correct spin systems discovered by the spin system forming step of IPASS; Gly/Pro:
number of Glycine and Proline residues in the sequence. The accuracy is listed in percentiles.
1 RIBRA’s performance with 15N and 13C threshold values of 0.5 and 1H threshold value of 0.05.
Those parameters are set according to IPASS for the sake of fair comparison.
2 MARS with the first set of default parameters δα = 0.2ppm, and δβ = 0.4ppm.
3 MARS with the second set of default parameters, δα = 0.5ppm, and δβ = 0.5ppm which is the
same as IPASS.

5.3 Discussion

IPASS is implemented in C++. It takes IPASS fewer than 5 minutes to achieve

the result for a practical noisy data set of a medium size protein (70-100 residues

in length). In addition, the whole process requires only five seconds for a simulated

data set. The difference in speed stems from the fact that for the simulated data
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sets, most of the fragments are fixed. Consequently, ILP problem size is very small.
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Chapter 6

Structure Calculation and Decoy

Selection

Although PICKY performs very well on the real NMR spectra and IPASS sig-

nificantly outperforms the state-of-the-art assignment methods on automatically

picked peaks. There is still one question to answer: since IPASS is not able to gen-

erate complete and perfect assignment, is the assignment of IPASS good enough

for the ultimate goal, i.e., automatically determining the high resolution structures

of proteins? FALCON-NMR is developed, as the third module of AMR, to answer

this question.

6.1 Methods

Figure 6.1 shows the flowchart of FALCON-NMR. Given the target protein sequence

and the backbone assignment done by IPASS, FALCON-NMR first tries to look for

close homologs by FALCON-Threading, the threading module of FALCON [117].

If there are close homologs, they are used to build the initial structural models for

the target protein by Modeller [158]. If there is no close homolog found, the target
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protein is considered as an ab initio target, and FALCON-AbInitio, the ab initio

module of FALCON, is called to generate the initial structural models for the target.

FALCON-AbInitio first calls Frazor [116] to generate fragment candidates for each

small region of the target protein sequence according to chemical shift information.

The torsion angles of these fragments are used to build torsion angle distributions.

A hidden Markov model (HMM)-based torsion angle sampling method is developed

to sample the protein conformational space based on the torsion angle distributions.

However, both FALCON-Threading and FALCON-AbInitio are not able to identify

the best decoys from the large number of decoys generated. Therefore, we develop

an NOE contact-based score function to select the best decoys for FALCON. Such

decoys are selected and fed into FALCON-Refinement to conduct all-atom level

refinement. The refinement process is iterative by selecting the best decoys by the

NOE contact-based score function at each round, and feeding back to FALCON-

Refinement to further refine the models, until convergence.

6.1.1 FALCON

The protein structure prediction modules used in FALCON-NMR, i.e., FALCON-

Threading, FALCON-AbInitio, and FALCON-Refinement, are parts of the FAL-

CON package [117, 116], which was previously developed by our lab.

FALCON-Threading is a threading method that tries to identify the best tem-

plates from PDB for a target protein by evaluating not only the sequence similarity,

but also how well it is to align the target protein to the structural environments of

the templates [115]. Since most of the newly solved protein structures have close

homologs in PDB [141, 139, 140, 138, 137], it can be expected that FALCON-

Threading can detect good templates for most of the target proteins.

If there is no close homolog in PDB or FALCON-Threading fails to detect any
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Figure 6.1: Flowchart of FALCON-NMR
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homologs, the target protein is considered to be an ab initio target, for which

FALCON-AbInitio is developed to predict the structure from scratch. FALCON-

AbInitio first calls Frazor [116] to generate fragment candidates. Frazor takes the

protein sequence and the backbone resonance assignment as input. The back-

bone assignment can be either complete or incomplete. Frazor then applies a local

threading technique to select 9-mer fragments based on both the chemical shift

information and the local threading information, such as solvent accessibility and

secondary structure. Local threading is similar to the threading technique, which is

widely applied in protein structure prediction community. Local threading tries to

find local template fragments that have similar structures to a sequence fragment

of a target protein with unknown structure, according to not only the sequence

similarity between the template fragment and the sequence fragment, but also how

well it is to put the sequence fragment into the local structural environment of the

template fragment. Frazor further encodes chemical shift information into its local

threading score function. For more details about Frazor, please refer to [116]. After

the 9-mer fragment candidates are generated for each length-9 sliding window of the

target protein, the torsion angles (φ and ψ angles) of these fragments are extracted

to build torsion angle distributions for each residue. A high-order HMM-based tor-

sion angle sampling method is applied to sample the conformational space directed

by an empirical energy function that is used in ROSETTA [21]. For more details

about the high-order HMM-based sampling method, please refer to [115, 117].

Although FALCON-Threading can identify good templates and FALCON-AbInitio

can generate medium-resolution structural models for most target proteins, the

quality of such models are still far away from the accuracy of the experimentally

determined structures. Therefore, FALCON-Refinement is developed to try to re-

fine the medium-resolution structural models to high-resolution ones. Similar to

FALCON-AbInitio, FALCON-Refinement first extracts torsion angle distributions
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from the input medium-resolution models. However, the distributions are much

tighter than the ones extracted from the fragment candidates selected by Frazor.

FALCON-Refinement then conducts an all-atom level refinement by sampling the

torsion angles according to these very tight distributions.

6.1.2 A Contact-based Score Function

However, a common bottleneck of FALCON-Threading, FALCON-AbInitio, FALCON-

Refinement, and any other protein structure prediction methods is that they are not

able to select the best decoys from the large number of decoys generated. The most

commonly used clustering-based decoy selection methods usually trap into popular

but bad-quality models. We develop an NOE contact-based score function to select

the best decoys for the structure generation methods. The main idea is that since

NMR data is the major source to determine the structure of a target protein, a

good-quality structural model must agree with the experimental evidence.

For a target protein, PICKY is called to pick peaks for the 15N-edited NOESY

and HCCONH-TOCSY spectra. A simple process is then applied to map protons

determined by HCCONH-TOCSY peaks to their corresponding residues, according

to the consistency between (N,HN) values of HCCONH-TOCSY peaks and that

of backbone resonance assignment. A similar process is then called to explain

each 15N-edited NOESY peak. For an 15N-edited NOESY peak (Ni,Hj,H
N
i ), the

residue with the closest (Nk,H
N
k ) values are first found, and all residues that contain

protons with chemical shift values close to Hj are kept to form “ambiguous” NOE

assignments, i.e., each NOE assignment contains a set of possibly correct contact

residue pairs. The basic idea is that there should be at least one correct contact pair

inside each assignment. For a decoy on one NOE assignment, it scores 1 if it satisfies

at least one pairwise contact in this “ambiguous” assignment, and 0 otherwise. All
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decoys are ranked according to how well they agree with the NOE assignments, and

the top ranked models are selected as the inputs for iterative refinement process. If

the RMSD between the models selected by two consecutive rounds of the refinement

process is smaller than 0.05Å, the refinement process is considered to be converged

and the top-ranked model is outputted as the final structure.

6.2 Results

FALCON-NMR is applied to determine the structures for the five target proteins,

i.e., TM1112, COILIN, VRAR, HACS1, and CASKIN. Among them, HACS1 and

CASKIN have close homologs identified by FALCON-Threading, whereas TM1112,

COILIN, and VRAR are solved by FALCON-AbInitio. For HACS1 and CASKIN,

the initial models are built by Modeller based on the alignments between the target

protein and its homologs detected by FALCON-Threading. For each of the three ab

initio targets, FALCON-AbInitio generates 10,000 initial structural models. The

NOE contact-based score function is applied to select the best decoys. The best

decoys are then fed into FALCON-Refinement to iteratively refine the structures

until convergence.

6.2.1 Final Prediction Models

The final prediction models for these five proteins have RMSD, without variable

regions, of 1.25Å, 6.95Å, 1.49Å, 0.67Å, and 0.88Å to the native reference structures,

respectively. It is noticeable that targets with close homologs usually result in better

prediction models than the ab initio targets. One reason for the failure on COILIN

is that the resonance assignment generated by IPASS is bad on COILIN (with 36

correctly assigned residues over the total 64 assigned residues). Another reason is
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Figure 6.2: The superimposition between the finally selected model of FALCON-
NMR (shown in cyan) and the crystal structure (shown in magenta) of TM1112.
Backbone RMSD is 1.25Å.

that COILIN, which has 98 residues, is longer than the other four target proteins.

FALCON-AbInitio is not able to handle such a long protein due to the flexibility

in the torsion angle sampling process.

Figure 6.2, 6.3, 6.4, and 6.5 show the superimposition between the finally se-

lected model and the native reference structure for TM1112, VRAR, HACS1, and

CASKIN, respectively. It is clear that all the predicted models align very well to

the native structures, except the variable loop regions which do not have fixed 3D

structures.

6.2.2 Case Study of Contact-based Decoy Selection

To further illustrate the accuracy and the usefulness of the NOE contact-based

score function, we present more details about NOE contact-based decoy selection

on TM1112.

PICKY automatically picks 1,213 peaks for the 15N-edited NOESY spectrum

of TM1112, and 951 “ambiguous” NOE assignments are generated. Among them,

811 assignments contain at least one correct contact pair, which gives an accuracy

of 85.3%. A contact pair is correct if the distance between HN atoms of the two
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Figure 6.3: The superimposition between the finally selected model of FALCON-
NMR (shown in cyan) and the reference NMR structure (shown in magenta) of
VRAR. Backbone RMSD is 1.49Å.

Figure 6.4: The superimposition between the finally selected model of FALCON-
NMR (shown in cyan) and the reference NMR structure (shown in magenta) of
HACS1. Backbone RMSD without variable regions is 0.67Å.
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Figure 6.5: The superimposition between the finally selected model of FALCON-
NMR (shown in cyan) and the reference NMR structure of (shown in magenta)
CASKIN. Backbone RMSD without variable regions is 0.88Å.

residues are indeed smaller than 6Å in the crystal structure. More specifically, there

are 207 correct non-local assignments. An NOE assignment is defined as non-local

if the two residues in contact are at least 6 residues apart in the protein sequence.

These non-local contacts are extremely important to determine the 3D structure of

the protein.

This set of 951 NOE assignments is then applied on the decoys generated by

FALCON-AbInitio and FALCON-Refinement. Figure 6.6 shows the correlation be-

tween the decoy quality, in terms of RMSD value to the crystal structure, and the

NOE contact score, on the final decoy set of FALCON-Refinement before conver-

gence. The decoy set contains 10,000 decoys. It can be seen that the best decoys

are well identified by the NOE contact score. In fact, the best decoy (RMSD 1.25Å

to the crystal structure) is ranked number one among all 10,000 decoys, while the

five of the best six decoys are ranked as top five, which are 1.25Å, 1.43Å, 1.94Å,

1.36Å, and 1.74Å RMSD to the crystal structure, respectively. The second best

decoy (RMSD 1.26Å to the crystal structure) is ranked number ten.
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Figure 6.6: Correlation between decoy quality in terms of RMSD value to the
crystal structure, and the NOE contact score, for TM1112. The blue point on y-
axis represents the crystal structure, which has higher contact score than any decoy
does.

6.3 Discussion

One may argue that since FALCON is a protein structure prediction method, it is

possible that even without NMR data, i.e., chemical shift information and NOE

contacts, FALCON itself can still generate high-resolution structural models for

the target proteins. To verify this, three more experiments are performed: 1) run

FALCON with the experimentally determined resonance assignment based on the

manually picked peaks from the NMR lab. The NOE contact-based score function is

applied again for decoy selection; 2) simply run FALCON without any chemical shift

information, and perform decoy selection by the default clustering-based method

of FALCON; 3) run ROSETTA2.3.0 [21] without any chemical shift information,

and perform decoy selection by the default clustering-based method of ROSETTA.

Experimental results demonstrate that running FALCON with perfect assignment

results in a slightly better model for the target protein, whereas simply running

FALCON or ROSETTA with their default clustering-based decoy selection methods

results in low-resolution models, especially for ab initio targets. For example, the

finally selected decoys for TM1112 are 1.17Å, 11.84Å, and 12.13Å for those three

85



experiments, respectively. Similar results are obtained on other targets as well. This

implies that replacing the manual peak picking process by PICKY and replacing

the manual assignment process by IPASS do not affect the final structure accuracy.

This also shows that without chemical shift information, neither FALCON nor

ROSETTA is able to generate the final high-resolution structures.

86



Chapter 7

Some Related Protein Structure

Prediction Works

7.1 Contact Prediction

To solve the protein inter-residue contact prediction problem, we propose a novel

consensus contact prediction method to eliminate the effect of server correlation,

and to discover true contacts even when they are not commonly found in the top

templates. All the contacts, determined by structure prediction servers, are con-

sidered to be candidates. Our consensus method then assigns a confidence score

to each contact candidate, while also taking correlated mutation information into

consideration.

7.1.1 Methods

Recent CASP results have indicated that correlation exists in different protein

structure prediction servers, because of the common information used by the servers

such as PSI-BLAST [11] sequence profile and PSIPRED-predicted secondary struc-
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ture [95]. Thus, it is very likely that a true contact is supported less than some false

ones due to the server correlation. Our consensus method is capable of reducing

the impact caused by the server correlation. The outline of our consensus method

is as follows:

• A maximum likelihood (ML) method is applied to measure the correlation

coefficient between two servers.

• Principal component analysis (PCA) technique is employed to extract a few

independent latent servers from a set of correlated servers.

• An integer linear programming (ILP) method is then used to assign a weight

to each latent server, by maximizing the difference between the true contacts

and the false ones. Also, correlated mutation is treated as a latent server

which assigns a probability value to each contact candidate. This results in

a consensus contact predictor that can accurately assign confidence scores to

all the contact candidates.

Notations

A model refers to a protein conformation, generated by a protein structure predic-

tion server. In contrast to human experts, a server refers to an automated system

which predicts a set of models for a given protein (also called a target), whereas

a contact predictor/server refers to an automated system which predicts a set of

contacts. Following the contact definition used by CASPs, two residues are in con-

tact, if the distance between their Cβ atoms (Cα atom for Glycine), is smaller than

8Å, and they are at least six residues apart in the sequence. We call a contact

native/true contact, if the two residues are indeed in contact in the native structure

of the target.
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The prediction accuracy is the number of correctly predicted contacts divided

by the total number of contacts predicted by a predictor, while the coverage is

defined as the number of correctly predicted contacts divided by the total number

of native contacts. If a contact predictor is a tertiary structure prediction server,

all the contacts, contained in the structural models of this server, are considered to

be the contact prediction results of this server.

Let ` denote the number of target proteins, and u denote the number of input

contact prediction servers. Given a target tl (1 ≤ l ≤ `), a server Si (1 ≤ i ≤ u)

outputs a set of models. The contacts, determined by these models, are extracted

and considered as contact candidates, denoted as Ci,l = {ci,l,q|1 ≤ q ≤ ni,l}, where

ni,l is the number of contacts, predicted by server Si for target tl. The set of all

contact candidates for target tl is denoted as Cl =
⋃

iCi,l. A consensus server aims

to assign a confidence score to each candidate in Cl.

Our consensus method is based on the following two assumptions:

• Server Si generates its predictions based on a confidence measure; that is,

for each contact c ∈ Cl, Si has a confidence, si,c,l, on how likely it is for c to

appear in the native structure. Since the initial confidence score is unavailable,

it is approximated as follows: the number of models containing this contact

divided by the total number of models generated by the server for this target.

• There are v implicitly independent latent servers Hj (1 ≤ j ≤ v) dominating

the explicit servers Si. Given a target tl, Hj assigns a value hj,c,l (c ∈ Cl) as

the confidence score on how likely c is a native contact.

Identifying independent latent servers is essential to reduce the negative effects

of the server correlation and to reduce the dimensionality of the search space, as

the number of latent servers is expected to be smaller than the number of original
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servers. After deriving the latent servers, a new and more accurate prediction server

S∗ can be designed, by an optimal linear combination of the latent servers, which

for each target tl, assigns a confidence score to each contact candidate c ∈ Cl as

follows:

s∗c,l =
v∑

j=1

λ∗jhj,c,l, (7.1)

where λ∗j is the weight of latent server Hj in S∗.

Maximum Likelihood Estimation of Server Correlation

Let Oi,j,l denote the overlap set of Ci,l and Cj,l; that is, Oi,j,l = Ci,l ∩ Cj,l, and let

oi,j,l = |Oi,j,l|. For a given target, let pi,j be the probability that a contact, returned

by server Si, is the same as that returned by Sj. Under a reasonable assumption

that targets tl (1 ≤ l ≤ `) are mutually independent, the likelihood that server Si

(1 ≤ i ≤ u) generates contacts ci,l,q (1 ≤ q ≤ ni,l) is

L(pi,j) =
∏̀
l=1

(
ni,l

oi,j,l

)
p

oi,j,l

i,j (1− pi,j)
ni,l−oi,j,l . (7.2)

Therefore, the maximum likelihood estimation of pi,j can be calculated as follows:

pi,j =

∑`
l=1 oi,j,l∑`
l=1 ni,l

. (7.3)

Let P denote the matrix [pi,j]u×u.

Uncovering Independent Latent Servers

Recall that on a target tl, si,c,l and hj,c,l are the confidence scores assigned by server

Si and Hj, respectively. Since the latent servers are mutually independent, it is
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reasonable to assume that si,c,l is a linear combination of hj,c,l(1 ≤ j ≤ v) such that

−→si,l =
v∑

j=1

λi,j

−→
hj,l,

v∑
j=1

λi,j = 1, 1 ≤ i ≤ u, 1 ≤ l ≤ `, (7.4)

where−→si,l =< si,1,l, si,2,l, . . . , si,|Cl|,l >, 1 ≤ i ≤ u, and
−→
hj,l =< hj,1,l, hj,2,l, . . . , hj,|Cl|,l >

, 1 ≤ j ≤ v. Here, λi,j is the weight, and a larger λi,j implies there is a higher chance

that server Si will adopt the contacts reported by Hj.

From the correlation matrix of prediction servers Si, the factor analysis tech-

nique is employed to derive λi,j and
−→
hj,l; that is,

−→
hj,l can be represented as a linear

combination of −→si,l as follows:

−→
hj,l =

u∑
i=1

ωj,i
−→si,l, 1 ≤ j ≤ v, 1 ≤ l ≤ `, (7.5)

where < ωj,1, ωj,2, · · · , ωj,u > is an eigenvector of P TP .

ILP Model to Optimally Combine Latent Servers

After deriving the latent servers Hj(1 ≤ j ≤ v) , a new server S∗ can be constructed

as an optimal linear combination of the latent servers. For each target tl, S
∗ assigns

a score to each contact candidate c ∈ Cl as in Eq. (7.1).

To determine a reasonable setting of coefficient λ∗k, a training process is con-

ducted on a data set D = {< tl, C
+
l , C

−
l >, 1 ≤ l ≤ |D|}, containing |D| training

proteins, where tl is a training protein, C+
l ⊆ Cl denotes the set of native contacts,

and C−
l ⊆ Cl denotes the set of false contacts. The learning process attempts to

maximize the number of contacts that can be correctly identified by S∗.

More specifically, for each target tl in the training data set, a score is assigned

to each contact candidate by S∗. A good contact predictor should assign native
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contacts with higher scores than those with false ones. The larger the gap between

the scores of the native contacts and those of the false ones, the more robust this

new prediction server is. In practice, a “soft margin” idea is adopted to take the

outliers into account; that is, by allowing errors on some samples, we maximize the

number of native contacts with a score that is higher than that of all the false ones,

by at least a gap.

This optimization problem is formulated as an integer linear programming

model. Let xp,q be an integer variable such that xp,q = 1 if and only if the na-

tive contact p is assigned a score higher than that of the false contact q by at least

ε by the new server; xp,q = 0, otherwise. Here, ε is a parameter used as the lower

bound of the gap between the score of a native contact and that of the false ones.

Similarly, yp,l = 1 if and only if the native contact p has a score higher than that

of all the false contacts in C−
l ; yp,l = 0, otherwise. The goal is to maximize the

number of native contacts that have higher score than that of all the false contacts.

Consequently, the consensus contact prediction problem is formulated by the

following ILP model:

max
yp,l

|D|∑
l=1

∑
p∈C+

l

yp,l, (7.6)

subj. to ∀p ∈ C+
l ,∀q ∈ C

−
l , 1 ≤ l ≤ |D|

v∑
j=1

λ∗jhj,p,l −
v∑

j=1

λ∗jhj,q,l − ε ≥ xp,q − 1,

(7.7)

∀p ∈ C+
l , 1 ≤ l ≤ |D| 1

|C−
l |

∑
q∈C−l

xp,q ≥ yp,l, (7.8)
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v∑
j=1

λ∗j = 1, λ∗j ≥ 0, (7.9)

and xp,q ∈ {0, 1} yp,l ∈ {0, 1}. (7.10)

Constraint (7.7) forces xp,q to be 0 if the gap between the scores, assigned to

the native contact p and the false contact q, is smaller than ε. If a native contact

p has a score not higher than all the false contacts, constraint (7.8) forces yp,l to

be 0. Thus, there is no contribution to the objective function. Constraint (7.9)

normalizes the weights, and constraint (7.10) restricts xp,q and yp,l to be either 0 or

1. The objective function is the number of native contacts that have higher scores

than all the false contacts.

New Prediction Server

After the independent latent servers are derived and the optimal weights are trained,

a new contact predictor is formed. Given a query target tl, each server Si produces

a set of contact candidates, Ci,l. The set of all the candidates is denoted as Cl =⋃
iCi,l. For each contact candidate c ∈ Cl, the confidence assigned by the latent

server Hj is calculated by Eq. (7.5). Then, the new consensus server S∗ assigns

a confidence score to contact candidate c according to Eq. (7.1). S∗ assigns a

confidence score to each contact candidate, and picks up the top scored ones as the

final predictions.
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7.1.2 Results

Data Set

Server Selection To evaluate the performance of the proposed consensus method,

six threading-based protein structure prediction servers are used: FOLDpro [30],

mGenThreader [94, 131], RAPTOR [204, 202], FUGUE3 [169], SAM-T02 [98], and

SPARK3 [222]. Although there are some servers, such as ROSETTA and Zhang-

server, with a better performance than that of the six servers, they are not used

because their models are already refined by predicted contacts.

Training and Test Data The biennial CASP competition provides us a com-

prehensive and objective data set. The CASP7 targets and models generated by

the six servers are adopted as the training and test data. For each server on a

target, the five submitted models are considered. All server models are downloaded

from the CASP7 website, except for mGenThreader, which does not participate in

CASP7. We submitted the CASP7 targets to the mGenThreader web server, and

downloaded models from there before August 2006. Therefore, all these models are

generated before the native structures of the CASP7 targets are released. Eighty

nine CASP7 target proteins are used as valid targets for the CASP7 evaluation,

while 104 protein sequences are released as targets. Redundancy is removed at the

40% sequence identity level by using CD-HIT [118], which results in 88 target pro-

teins. Only T0346 is removed, because it shares 71% sequence identity with T0290.

Furthermore, two targets (T0334 and T0385) are removed from the data set due

to some errors in the models, generated by some of the six individual servers on

these two targets; for example, the models generated by some servers only cover

discontinued regions of the target proteins. To conduct a cross-validation, the 86

target proteins are randomly divided into four sets of 22, 21, 21, and 22 proteins,

respectively. If one target belongs to a certain set, all of its models and contacts
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Table 7.1: Average and deviation of contact accuracy and coverage of the six indi-
vidual servers on the 86 CASP7 targets.

Accuracy Coverage
Average Deviation Average Deviation

FOLDpro 45 8.2 48 9.3
mGenThreader 43 6.6 45 8.5
RAPTOR 48 6.6 52 7.0
FUGUE3 46 7.9 37 5.5
SAM-T02 53 6.5 37 5.5
SPARK3 48 7.3 51 7.6
Overall 12 7.2 80 2.3

All values are percentiles.

are in the same set.

Data Set Statistics The performance of the six individual servers are compared

in terms of prediction accuracy and coverage. In evaluating the performance of

a server, only the best models of each target are considered. If the number of

contacts in a model is less than L/5, where L is the target size, both the accuracy

and the coverage for this model are set to 0. As shown in Table 1, the average

accuracy of the six servers ranges from 43% to 53%. The SAM-T02 server has the

highest accuracy but the lowest coverage. The artificial server “Overall” in Table

1 means a server that generates the union set of all contacts contained in the best

models. The accuracy of server “Overall” is very low (12%), compared to that of

any individual server. Note that the server “Overall” consistently contains many

more true contacts than any individual server does. Therefore, the low accuracy of

the server “Overall” implies that the false contacts, generated by these individual

servers, differ from each other in most cases, whereas the individual servers tend to

generate common true contacts. This means the consensus method can probably

be employed to differentiate true contacts from false ones.

As shown in Table 1, the average coverage of the six servers ranges from 37% to
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Table 7.2: Pairwise correlation of the six individual servers.

Server FDP MGTH RAP FUG SAM SPK
FDP 1 0.34 0.43 0.25 0.30 0.41
MGTH 0.35 1 0.42 0.26 0.30 0.41
RAP 0.43 0.41 1 0.30 0.35 0.51
FUG 0.35 0.35 0.40 1 0.37 0.40
SAM 0.50 0.50 0.59 0.47 1 0.59
SPK 0.40 0.41 0.50 0.29 0.34 1

FDP: FOLDpro, MGTH: mGenThreader, RAP: RAPTOR, FUG: FUGUE3, SAM: SAM-T02,
SPK: SPARK3.

52%. However, when they are combined, the coverage for server “Overall” is very

high (approximately 80%). This indicates that some true contacts are predicted by

only a small number of individual servers, and the different servers can predict a

common subset of the true contacts. On the other hand, this implies that most of

the native contacts are contained in the models, generated by threading programs.

Thus, the challenge is how to identify them.

Server Correlation and Latent Servers

The correlation of the six individual servers is studied and the latent servers are

derived. Table 2 lists the pairwise correlation of the six individual servers, which

is calculated according to Eq. (7.3). Note that the matrix is not symmetric,

because different servers predict different numbers of contacts. As shown in Table

2, the correlation between two different servers ranges from 0.25 to 0.59, which

implies that some servers are more closely correlated than others in terms of contact

prediction. Therefore, the majority voting based consensus methods, which simply

apply majority voting and assume each server is independent, will not always work

because some of the common components of these servers are over-expressed.

The relationship between the latent servers and the individual ones is then
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Table 7.3: Relationship between the six individual servers and the independent
latent servers.

Server H1 H2 H3 H4 H5 H6
FOLDpro 0.37 -0.35 0.66 0.01 -0.08 -0.55
mGenThreader 0.37 -0.26 -0.75 -0.01 -0.02 -0.48
RAPTOR 0.42 -0.23 0.04 0.27 0.76 0.36
FUGUE3 0.37 0.82 0.04 0.37 0.01 -0.22
SAM-T02 0.49 0.20 0.03 -0.81 -0.04 0.23
SPARK3 0.41 -0.21 -0.02 0.36 -0.65 0.49

derived according to Eq. (7.4). Note here that the top five models for each target of

each server are considered. The confidence score of a server on a contact candidate is

estimated by the number of models in the top five, containing this contact, divided

by the total number of models considered (five in this case). As shown in Table

3, different latent servers represent different individual servers. For example, H1

represents the common characteristics shared by these individual servers, because

the weights of H1, on these individual servers, are about the same; H2 differentiates

FUGUE3 from the other servers; H3 represents FOLDpro by a large positive weight,

and represents mGenThreader by a large negative weight. Based on the eigenvalues,

H6 is eliminated, since the eigenvalue for H6 is much smaller than that of the others.

Thus, H6 is considered as random noise.

The optimal weights for the latent servers are derived by the cross-validation of

the four sets. Correlated mutation is considered to be another independent latent

server, because it provides a target sequence-related probability for each contact

candidate. Correlated mutation is calculated as previously described in [66, 143].

Each time the ILP model is trained on three of the four sets, and a set of weights

is optimized by the ILP model, based on which a new prediction server is derived,

named as S∗
1 , S

∗
2 , S

∗
3 , and S∗

4 , respectively. S∗ refers to server S∗
i on test set i

(i = 1, 2, 3, 4). Since the inputs are the six individual servers, after the optimal
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Table 7.4: Linear combination representation of new server S∗ on the six individual
servers and correlated mutation.

S FDP MGTH RAP FUG SAM SPK CM
S∗

1 0.29 -0.28 1.27 1.47 0.23 0.62 0.30
S∗

2 0.301 -0.27 1.35 1.35 0.22 0.58 0.37
S∗

3 0.38 -0.29 1.37 1.36 0.14 0.65 0.28
S∗

4 0.29 -0.44 1.29 1.39 0.12 0.56 0.23

FDP: FOLDpro, MGTH: mGenThreader, RAP: RAPTOR, FUG: FUGUE3, SAM: SAM-T02,
SPK: SPARK3, CM: correlated mutation.

weights λ∗ are calculated by the ILP model, each hidden server in Eq. (7.1) are

further replaced by the linear combination of the original individual servers as

calculated in Eq. (7.5). Table 4 shows the linear combination representation of

S∗ on the individual servers and correlated mutation. It is clear that the four

sets of weights are very similar. Note that mGenThreader has negative weights.

This implies that the contribution of mGenThreader is accounted for by the other

individual servers.

CASP7 Evaluation

We first assess our consensus server S∗ by Receiver Operating Characteristic (ROC)

plots. They provide an intuitive way to examine the trade-off between the ability

of a classifier to correctly identify positive cases and to incorrectly classify negative

cases. Figure 7.1 depicts the performance of server S∗ and the six individual servers

on the four test sets.

As shown in Figure 7.1, server S∗ performs better than any individual server

on all the four test sets. For each server, the performance of this server on test set

1 is slightly better than that on the other three test sets, which means test set 1

is the easiest among those four. RAPTOR performs better than other individual

servers on the first three test sets, and SPARK3 exhibits the best performance
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Figure 7.1: ROC curves for our method and the six individual servers

on test set 4. There are distinct performance differences between server S∗ and

the best individual server on test set 1, 2, and 4, when the false positive rate is

below 0.3. However, the difference is not obvious on those three test sets, when the

false positive rate is higher than 0.3. For test set 3, the most difficult test set, the

performance of S∗ is much better than that of any individual server all the time. It

is also noticeable that the curve of S∗ is much smoother than that of the individual

servers.

Then, the accuracy of S∗ is evaluated. Table 5 summarizes the average accuracy

of S∗ and the majority voting method on the four test sets, where different numbers

of top contacts are evaluated. Recall S∗ generates a confidence score for each

contact candidate. The top contacts for each target are readily found by sorting

the candidates according to their confidence scores. The majority voting method

is implemented as follows: for each contact candidate, its confidence score by the

majority voting method is calculated as the sum of the confidence scores assigned

by the six servers. After the scores of all the contact candidates are calculated and
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Table 7.5: Average accuracy of the top contacts predicted by S∗ on different test
sets, and the accuracy of the majority voting method.

# Contacts Accuset1 Accuset2 Accuset3 Accuset4 Accuoverall Accumv

L 69 60 57 65 63 61
L/2 75 67 63 72 69 66
L/5 80 73 67 74 73 68
L/10 79 74 69 76 75 71

# Contacts: the number of top contacts being considered. Accuset1, Accuset2, Accuset3, and
Accuset4 show the accuracy of our method on the four test sets, respectively. Accuoverall: the
overall accuracy of our method on all the four test sets. Accumv: the overall accuracy of the
majority voting method on all the four test sets. All values are percentiles.

sorted, different numbers of the top candidates are chosen.

As shown in Table 5, the average accuracy increases when the number of the top

contacts decreases, except for server S∗ on test set 1, in which the accuracy for the

top L/10 contacts is slightly lower than that for the top L/5 contacts. This occurs

because L/10 is usually a small number (20-30 for most cases), and a few incorrectly

predicted top contacts will influence the total accuracy significantly. The overall

accuracy of S∗ on all the four test sets is at least 63%, and is consistently higher

than the accuracy of the majority voting method. For the top L/5 contacts, the

accuracy of S∗ is 73%, which is about 5% higher than that of the majority voting

method, and much higher than the accuracy of any previously reported study.

Figure 7.2 reflects the prediction accuracy for the top L/5 contacts of S∗ on

each CASP7 target. It can be seen that the accuracy is higher than 80% on most

targets. In fact, of the total 86 targets, S∗ has an accuracy of 100% on 13 targets,

higher than 90% on 39 targets, higher than 80% on 58 targets, and below 40% on

only 16 targets. Note that S∗ has an accuracy of 0 on two targets: T0309 (free

modeling target) and T0335 (template based modeling target). We carefully look

into these two cases. Both targets are very short. The target sequences, published

by CASP7 for T0309 and T0335, have 76 and 85 residues, respectively. However,
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Figure 7.2: Prediction accuracy for the top L/5 contacts of S∗ on each CASP7
target

the experimentally determined size used by CASP7 to evaluate these two targets

are only 62 and 36, respectively. This conveys that some parts of the targets are not

experimentally determinable or accurate enough. Thus, L/5 is only 12 and 7 for the

two targets. Additionally, all the six individual servers perform poorly in terms of

the contact prediction, which means there are only a few correct candidates among

a large number of incorrect ones. This can explain the failure of S∗ on T0309 and

T0335.

To evaluate more carefully how much our consensus method can improve upon

individual servers and the simple majority voting method, all the targets are divided

into three categories: easy (high accuracy), medium (template based modeling), and

hard (new fold), according to the CASP7 assessment [3]. Table 6 shows the average

accuracy and deviation on the top L/5 contacts of S∗, individual servers, and the

majority voting method. As shown in Table 6, for easy, medium, and hard targets,

the accuracy of S∗ on the top L/5 contacts is 94%, 76%, and 37%, respectively,

and much higher than the best individual server, where the improvement is at

least 17% for each case. On the other hand, server S∗ always performs better
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Table 7.6: Accuracy and deviation of top L/5 contacts of the six individual servers,
the majority voting method, and the new server S∗ on easy, medium, and hard
target sets.

Server Name Easy Targets Medium Targets Hard Targets
Accu. Dev. Accu. Dev. Accu. Dev.

FOLDpro 77 1.1 44 5.3 10 5.8
mGenThreader 68 3.8 43 4.4 11 7.4
RAPTOR 75 1.3 50 3.9 13 7.1
FUGUE3 75 0.7 47 6.2 12 9.1
SAM-T02 75 1.3 54 5.2 17 14.7
SPARK3 76 1.4 48 4.7 11 7.4
Majority Voting 92 0.7 71 8.1 13 6.9
S∗ 94 0.4 76 8.5 37 28.2

Accu.: Accuracy. Dev.: Deviation. All values are percentiles.

than the majority voting method, and the improvements are about 2%, 5%, and

24%, respectively. This exactly verifies the server correlation assumption because,

for easy targets, individual servers usually do well, which means for a contact

candidate, the more servers that support it, the more likely it is correct. However,

the majority voting rule does not always work on medium and hard targets, because

it suffers from the over-expressed common components of the input servers due to

the server correlation. Thus, our consensus method does much better than the

majority voting method on harder targets.

Depending on the sequence separation, contacts can be classified as short-range

contacts (separation 6-11), medium-range contacts (separation 12-24), and long-

range contacts (separation >24) [89, 199]. The performance of our method is fur-

ther evaluated on different separation ranges for target protein classes with different

difficulty levels. As shown in Table 7, the accuracy of a certain separation range de-

creases clearly when target proteins become harder. For easy targets, the accuracy

of long-range contacts is higher than that of short- and medium-range contacts.

This makes sense because for an easy target, it is very likely that all the individ-
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Table 7.7: Performance of the new server S∗ on different separation ranges of target
protein classes with different difficulty levels.

Target Classes Short-range Medium-range Long-range All-range
Easy Targets 91 90 93 94
Medium Targets 73 74 70 76
Hard Targets 41 35 26 37
All Targets 72 71 68 73

Top L/5 contacts are considered. All values are percentiles.

ual servers predict models that have very similar topology to the native structure.

Thus, these models contain common long-range contacts, which helps to determine

the overall topology. For medium targets, our method achieves similar performance

on different separation ranges. Not surprisingly, when applied on hard targets, the

accuracy of long-range contacts is much worse than that of short- and medium-range

contacts. This coincides with the fact that the individual servers are usually not

able to generate models with correct folds, which causes most long-range contact

candidates to be wrong ones.

Among the three categories of the test proteins, the new fold category is much

more important than the other two for fairly evaluating the performance of a con-

tact predictor, especially for template-based consensus methods. In fact, new fold

targets are adopted as the assessment data set for the contact predictors by CASPs.

Table 8 shows the average accuracy on the top L/5 contacts of the six individual

servers, the majority voting method, and our method on the 15 new fold targets

of CASP7. Note that the classification of the new fold targets comes from the

assessors of CASP7, according to the criterion that no server could find the correct

templates although there might be homologs in the PDB. Our method significantly

outperforms the best individual server on eight out of the 15 targets, and performs

worse than the best individual server on five targets. It is noticeable that SAM-T02

outperforms our method on four of these five targets. The reason is that SAM-T02
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does not generate complete models for these targets. Instead, it generates struc-

tures only for some very conserved regions of the targets. The contacts predicted

by SAM-T02 thus cover only a small portion of the targets. It can also be seen from

Table 8 that our method performs much better than the majority voting method

on new fold targets. More specifically, the accuracy of our method at least doubles

that of the majority voting method on 10 of the 15 targets. On the other hand,

only four of these 15 new fold targets lacked any homologs during CASP7 season,

i.e., T0287, T0309, T0314, and T0353 [89]. This implies that although other new

fold targets have similar structures in the PDB, almost all structure prediction

servers fail to detect them. Thus, by using our predicted contacts, one may be

able to identify the similar structures for these target proteins, especially for the

proteins on which our method achieves a high accuracy, such as T0316 D2, T0319,

T0347 D2, T0350, T0356 D1, T0356 D3, and T0386.

We are not able to obtain top-notch contact predictors, such as SVM-LOMETS,

the best published consensus method, SVM-SEQ, the best reported study on new

fold targets, and SAM-T06 server, the best evaluated contact predictor on CASP7.

Thus, the performance of these three methods is retrieved from [199]. When

SVM-LOMETS, SVM-SEQ, and SAM-T06 server are applied to the 15 new fold

targets of CASP7, each achieves an accuracy of 10.8%, 25.8%, and 21.2% on the

top L/5 contact predictions, respectively. On the same data set, the accuracy of

our method for the top L/5 contacts is 37%, which indicates that the improve-

ments are significant. Recall that among all three methods, SVM-LOMETS is the

only template-based consensus method. Although the input threading programs

of our method are not the same as SVM-LOMETS, both methods contain some

common input servers such as FUGUE and SAM-T02. The different input servers

are within a similar range of accuracy in terms of structure prediction according

to the CASP7 evaluation; three inputs for SVM-LOMETS, i.e. PAINT, PPA-I,
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Table 7.8: Accuracy of top L/5 contacts of the six individual servers, the majority
voting method, and the new server S∗ on the 15 new fold targets of CASP7.

FDP MGTH RAP FUG SAM SP3 MV S∗

T0287 8 6 9 5 12 6 9 33
T0296 2 25 7 3 29 7 8 17
T0300 16 4 6 10 3 6 8 18
T0307 3 6 10 15 18 10 7 12
T0309 22 3 6 6 32 5 8 0
T0314 12 6 7 8 3 6 8 5
T0316 D2 15 18 14 24 31 16 21 88
T0319 9 9 15 29 0 8 11 40
T0347 D2 13 3 14 5 46 28 26 48
T0350 11 8 27 9 35 26 21 80
T0353 17 23 24 29 26 18 12 22
T0356 D1 4 18 6 3 0 5 8 36
T0356 D3 6 10 12 9 12 10 11 79
T0361 4 4 19 4 9 10 6 21
T0386 12 15 23 18 5 11 25 56
Average 10 11 13 12 17 11 13 37

FDP: FOLDpro, MGTH: mGenThreader, RAP: RAPTOR, FUG: FUGUE3, SAM: SAM-T02,
SP3: SPARK3, MV: majority voting, S∗: our method. All values are percentiles.

105



and PPA-II, are components of Zhang-server, which is ranked the best among all

the structure prediction servers on CASP7. Thus, the huge improvement of our

method over SVM-LOMETS demonstrates that by revealing the server correlation

and optimizing the gap between the true and false contacts, superior contacts can

be predicted than those of other consensus methods.

Case Study on Two CASP7 New Fold Targets

As shown in the previous section, our method significantly outperforms the other

methods, especially on new fold targets. Two CASP7 new fold targets, T0319 and

T0350, are investigated in this section. T0319 (PDB id 2j6a) is a zinc finger protein

from the ERF1 methyltransferase complex [80] with 135 residues. T0350 (PDB id

2hc5) is protein yvyC from Bacillus subtilis [49] with 117 residues. Table 9 lists the

TM-score [217], contact accuracy, and contact coverage of the best models among

the five models submitted by each threading server on T0319 and T0350. All the

six threading servers fail to detect correct templates. Typically, a TM-score lower

than 0.17 indicates a random structure, and a TM-score higher than 0.4 indicates

a meaningful structure [217]. Consequently, all the models predicted by these six

servers are probably not meaningful structures.

The hardness of these two targets causes all the six threading servers to fail.

Thus, the templates selected by the threading servers are almost random and sig-

nificantly different from each other, which consequently leads to the failure of the

majority voting consensus method. As shown in Figure 7.3, the majority voting

method is even worse than some individual servers on these two targets, whereas

our method performs significantly better than any individual server. In fact, the

top L/5 accuracy of our method is 40.0% and 80.2% on these two targets, while the

majority voting method achieves an accuracy of only 10.8% and 21.0%, respectively.

One may argue that some of the true contacts picked up by our method are strongly
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Table 7.9: TM-score, contact accuracy, and contact coverage of the best models by
the six individual servers for T0319 and T0350.

FDP MGTH RAP FUG SAM SPK
T0319 TMscorea 0.20 0.18 0.27 0.26 0.12 0.22

Accuracyb 9% 9% 15% 29% 0 8%
Coveragec 7% 6% 14% 13% 0 6%

T0350 TMscorea 0.24 0.23 0.33 0.26 0.26 0.27
Accuracyb 11% 8% 27% 9% 35% 26%
Coveragec 15% 9% 29% 3% 12% 28%

FDP: FOLDpro, MGTH: mGenThreader, RAP: RAPTOR, FUG: FUGUE3, SAM: SAM-T02,
SPK: SPARK3.
a TM-score of the best model among the five submitted models for each server.
b Contact accuracy of the best model for each server. All contacts contained in this model are
evaluated.
c Contact coverage of the best model for each server. All contacts contained in this model are
evaluated.

supported by correlated mutation. Even when we remove correlated mutation from

our method, its accuracy decreases only slightly, to 39.3% on T0319 and 79.3% on

T0350. The minor difference shows that correlated mutation information is not

that important for these two targets. Therefore, the case study on these two new

fold targets demonstrates that by removing the server correlation and optimizing

the best combination of the individual servers, it is possible to select true contacts

even if the majority of the individual servers does not support them.

We further demonstrate the usefulness of our method on protein structure pre-

diction by applying it to model ranking, which is one of the major bottlenecks for

the state-of-the-art protein structure prediction methods. The most widely used

method for model ranking is clustering. However, although clustering based meth-

ods work well on easy and medium targets because for such targets, most of the

models are high-quality ones and very similar to each other, such clustering meth-

ods usually fail on hard targets since the models usually have poor quality and

are very different from each other. Thus, we test how well the contacts predicted
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Figure 7.3: Accuracy of top L/5 contacts of the six threading servers, the ma-
jority voting method, and our method on T0319 and T0350. FDP: FOLDpro,
MGTH: mGenThreader, RAP: RAPTOR, FUG: FUGUE3, SAM: SAM-T02, SP3:
SPARK3, MV: majority voting, S∗: our method

by our method can rank the models on T0319 and T0350. We design a simple

contact ranking score which is very similar to NOE contact-based score proposed

in Section 6.1.2. Given the top L/5 contacts predicted by our method, for each

contact, a model scores 1 if this model indeed contains this contact, and scores 0

otherwise. Table 10 shows the ranking of the best model, in terms of TM-score,

of each individual server by their default model ranking method (according to the

order of the models submitted to CASP7) and the ranking of the best model by

our contact score. It is clear that our contact score has much better ranking of

the best models for most cases. Additionally, for both T0319 and T0350, the best

models generated by all these six individual servers, i.e., model 4 of RAPTOR for

T0319 and model 4 of RAPTOR for T0350, are ranked first among all the models

by our contact score. This demonstrates the potential applications of our contact

prediction method to select better submitted models or to select good models at

each iteration of the refinement process, especially for hard targets.
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Table 7.10: The ranking of the best model (in terms of TM-score) for each individual
server by its default ranking method and by our contact score for T0319 and T0350.

FDP MGTH RAP FUG SAM SPK
T0319 Default ranking 4 3 4 4 4 3

Contact ranking 2 1 1 1 3 2
T0350 Default ranking 1 3 4 4 1 4

Contact ranking 2 1 1 1 3 1

FDP: FOLDpro, MGTH: mGenThreader, RAP: RAPTOR, FUG: FUGUE3, SAM: SAM-T02,
SPK: SPARK3.

7.1.3 Discussion

The experimental results demonstrate that by accounting for the correlation among

different threading programs, our consensus method can successfully identify native

contacts, even when these contacts are not contained in the majority of the models.

It is worth noticing that the proposed method is quite different from the more direct

linear combination or non-linear combination of the original individual servers. The

underlying reason is that by detecting correlation among the individual servers and

removing the last latent server which corresponds to the random noise, our ILP-

based optimization process is able to find an optimal solution without the bias

caused by the random noise.

A potential application of our contact prediction method is to provide highly

conserved constraints for ab initio folding or protein structure refinement. Recent

research has shown that by incorporating contacts predicted from template-based

methods or sequence-based methods, a structural model generated by comparative

modeling can be refined [32, 214, 212, 110]. However, if all the individual servers

predict the structure for a target protein extremely well or very poorly, our consen-

sus method will probably not help too much. In the former case, since almost all

the contact candidates provided by these individual servers are correct ones, our

method can only improve the accuracy slightly. In the latter case, since there are
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very few correct contact candidates for our method to choose from, the refinement

process can hardly benefit from our results. However, in any other case, contacts

provided by our method should help with the folding simulation. The reason is that

our method can generate a small number of highly conserved contacts. Considering

only a small number of contacts can reduce the conformational search space, and

thus increase the speed and reduce the chance of generating wrong models. More-

over, experimental results demonstrate that our method can generate contacts with

a higher accuracy than both sequence-based and template-based methods. This can

reduce the risk of generating models with incorrect contacts, which can reduce the

risk of selecting incorrect models from the final decoy set, and thus, greatly increase

the overall ab initio folding accuracy.

7.2 Side Chain Packing

To solve the side chain packing problem, we study the relationship between local

backbone information and side chain conformations, and develop a side chain pack-

ing program LocalPack. LocalPack predicts the side chain conformations using

local backbone information only and is as accurate as SCWRL, a program that

uses pairwise energy function and global search method. We first reformulate side

chain packing problem and then solve it using multi-class Support Vector Machines

(multi-class SVM). Our method has the following three features: 1) Instead of us-

ing the occurring probabilities contained in a rotamer library, our method only uses

the angle values of rotamer candidates. 2) Our method does not use any pairwise

energy function. Instead, only local backbone information is employed to predict

side chain positions. Furthermore, these local backbone features can be calculated

extremely fast. 3) Our method does not need to optimize any energy function. By

contrast, our method generates a set of linear classifiers based on local backbone
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features and then use these classifiers to predict the side chain positions.

7.2.1 New Formulation for Side Chain Prediction

Given a position in a protein backbone sequence, we can calculate a set of backbone

related local features at this position. Starting from a rotamer library, our basic

assumption is that a certain set of local features can determine the correct rotamer

of the side chain at this position.

Table 7.11: An example of the basic assumption: a backbone related feature vector
A can determine the rotamer choice. Except for the last column, the first 6 columns
show examples of possible backbone related feature vectors. The last column shows
χ1 rotamer values corresponding to the feature vectors.

Res φ ψ SS Solvent Access. # Contacts χ1 Rotamer
ARG 60◦ 45◦ Helix 82.75% 11 63◦

PHE 112◦ 42◦ Helix 10.23% 4 114◦

GLN 34◦ 16◦ Loop 8.65% 6 125◦

MET 156◦ 107◦ Sheet 65.22% 19 178◦

Res: residue type; SS: secondary structure type.

Let A = {A1, A2, . . . , An} denote the set of feature vectors for a given protein

with length n, where vector Aj = {aj
1, a

j
2, . . . , a

j
k} denote the set of backbone related

features at the j-th position, either continuous values, such as solvent accessibility,

or discrete values, such as secondary structure and amino acid type. Let R =

{r1, r2, ...., rm} denote an arbitrary rotamer set. Table 7.11 shows some examples

of feature vectors, according to which the rotamer choice for each residue position

is determined.

Based on our assumption, given a rotamer set R, we can consider side chain

predictor as a function f(Aj) that maps from a given feature vector Aj to a rotamer.
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f(Aj) is defined to be

f(Aj) = arg max
i,ri∈R

h(Aj, ri), j = 1, . . . , n (7.11)

where h(Aj, ri) is a scoring function that evaluates the score of assigning the rotamer

ri to the j-th position with feature vector Aj ∈ A. We aim to find a function

h(Aj, ri) such that f(Aj) matches the correct rotamer choices as well as possible

for all the position j.

The formulation (7.11) is based on a general rotamer library R. Studies on

backbone-dependent rotamer libraries [44, 45, 46, 47] show that side chains do

prefer some rotamers for a fixed amino acid type and a fixed pair of φ, ψ backbone

dihedral angles. This kind of rotamer libraries can also fit into our model easily by

removing the features (amino acid type, φ, ψ) from vector Aj and finding h on a

rotamer library which is an (amino acid type, φ, ψ)-dependent subset of the original

rotamer library R.

7.2.2 A Multi-class SVM Model for Side Chain Packing

Problem

A Multi-class SVM Model

We consider side chain prediction problem as described in formulation (7.11) that

is a linear function on feature vector A. That is, h(Aj, ri) = wi · Aj, where wi

is a parameter vector for rotamer i that we want to learn. Thus, according to

formulation 7.11, side chain prediction problem can be formulated as a classification

problem:

f(Aj) = arg max
i,ri∈R

wi · Aj, j = 1, . . . , n, (7.12)
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in which we want to find such a f that matches correct rotamer choices as well as

possible.

To learn the parameter vectors wi from a training example set S = {(A1, r1), . . . , (Ap, rp)}

with size p, where Aj is the feature vector of a residue and rj is the experimen-

tally determined rotamer of this residue, we apply a multi-class Support Vector

Machine (multi-class SVM) model. Multi-class SVM provide powerful approaches

to deal with the general problem of learning a mapping from a high dimensional

feature space to a discrete set [38]. However, traditional multi-class SVM do not

directly fit into the side chain prediction problem. The reason is that the number

of rotamer labels is usually very large in the real world, which will result in a large

number of constraints in multi-class SVM. This will make the traditional quadratic

programming based algorithm unfeasible to solve the side chain prediction problem.

To solve this large class problem, the idea of loss function 4 from structured

SVM [185, 186], a generalized version of multi-class SVM, is applied. Different from

multi-class SVM, which is developed to solve classification problems on discrete

set Y = {1, . . . , k}, structured SVM is developed to solve classification problems

that involve features extracted jointly from the inputs and the outputs, such as

sequences, strings, graphs, or labeled trees. Loss function 4 is widely used in

structured SVM [185, 186] to deal with the case in which |Y| is large. In our method,

we use the concept of loss function and define it to be: 4 : R×R → {0, 1}, where

4(y′, y) returns 0 if y′ = y, and 1 otherwise. 4(y′, y) quantifies how “bad” it is to

predict y′ when y is the correct label.

Here we use the loss function 4 to re-scale the margin as proposed by Taskar et

al. [180] and formulate the problem of finding parameter vectors wi, i = 1, . . . ,m

in the form of the following optimization problem:
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min
wi,ξj

1

2

m∑
i=1

‖wi‖2 +
C

p

p∑
j=1

ξj (7.13)

∀j, l wrj · Aj − wl · Aj ≥ 4(l, rj)− ξj

where m is the size of rotamer library, p is the size of training set, ξj ≥ 0 are called

slack variables. l and rj are the predicted rotamer and the real rotamer for residue

j in the training set. ‖wi‖ is the norm of vector wi, which determines the size

of margin in SVM. C > 0 is a tradeoff between training error minimization and

margin maximization.

We then apply a cutting plane algorithm described in [185] to solve this opti-

mization problem. The basic idea of the algorithm is to find a relatively small set of

constraints without losing too much accuracy. They achieved this goal by building

a nested sequence which successively tights relaxations of the original problem. It

can be proved that:

• Accuracy: the cutting plane algorithm can compute arbitrarily close approx-

imation to the optimal solution.

• Efficiency: the number of steps that the cutting plane algorithm needs to

converge is polynomial on the number of data points.

In practice, the cutting plane algorithm works very well on solving our side

chain prediction problem, which we will show later. For more details about the

algorithm, please refer to [185].

Model Features

The relationship between side chain conformations and backbone dihedral angles

(φ, ψ) has been well studied. Many side chain prediction programs use a backbone-
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dependent or backbone-independent rotamer library. Here we use the backbone-

dependent rotamer library [44, 45] developed by Dunbrack et al.. The major prob-

lem to be addressed is what kind of backbone structure features a side chain con-

formation depends on. Many works [128, 47, 51] have been done to analyze the

relationship between side chain dihedral angles and local backbone features, such

as backbone dihedral angles, secondary structure and solvent accessibility. Here we

introduce the local structure features used in our prediction and show how to use

them in training and testing.

Backbone Dihedral Angles Given an amino acid and a pair of (φ, ψ) angles,

the backbone-dependent rotamer library can provide a set of candidate side chain

conformations. We do not use backbone dihedral angles as features in the training.

Instead, we divide training data point into many groups according to the amino

acid types and φ, ψ angles, and develop a classifier for each group based on its

corresponding rotamer subset.

Secondary Structure Secondary structure is local conformation of a protein

backbone. Previous works [128] have shown that secondary structure is highly

relevant to the distribution of side chain dihedral angles. We use P-SEA [108] to

calculate the secondary structure of a given protein backbone. P-SEA can generate

the secondary structure type for each backbone position. Since SVM can only

take numerical values as input, we use the expected occurring probability of each

secondary structure type as its feature value. Let N(α), N(β), N(loop) denote the

numbers of residues in α-helices, β-sheets and loops in a training data group, and N

denote their sum. The expected occurring probabilities are calculated as N(α)/N ,

N(β)/N and N(loop)/N , respectively.
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Solvent Accessibility The accessible surface area is the area of a biomolecule’s

surface that is accessible to a solvent. It can be calculated by using a sphere

of a certain radius to probe the surface of the molecule. A typical radius value

is 1.4Å, which approximates the radius of a water molecule. Solvent-accessible

surface of atoms have been used to predict conformations of side chains in [51],

where they added this term into the energy function during the global optimization

and calculated it iteratively. Their results show that the prediction accuracy can be

significantly improved by adding the solvent term. This implies the importance of

solvent accessibility in modeling side chain conformations. We use Naccess [87] to

calculate the backbone solvent accessibility. The output of Naccess is normalized

value and we use it as one of our features directly.

Contact Number The contact number of a residue in a protein structure is a

quantity similar to, but different from solvent accessible surface area. The contact

number of a given residue is defined as the number of Cα atoms within a predefined

distance D(= 8Å) to the Cα atom of this given residue. The contact numbers are

scaled to values between 0 and 1 using a standard max-min normalization method,

such that the smallest contact number becomes zero and the largest number be-

comes one.

7.2.3 Results

Implementation Details

LocalPack is implemented in C++. To improve the efficiency of feature calculation,

we use a quick K-nearest-neighbor (KNN) algorithm [40, 165] to calculate contact

numbers. After extracting backbone related features, such as solvent accessibility,

secondary structure, and contact number, these features are encoded into a multi-
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class SVM model as described in Section 7.2.2. The SVM model is trained using

SVMmulticlass [4] with linear kernel function, a program that solves multi-class SVM

problem by applying cutting plane algorithm described in [185].

Ten-fold cross-validation is applied on the training set to estimate the best C

(see Eq. (7.13)), a tradeoff between model parameter complexity and tolerable

model training errors. A big C indicates that a small training error is tolerated but

a big model parameter complexity allowed. A model trained using such a C may

not generalize well to the test data. Hsu et al. showed in [83] that by testing on

a sequence of exponentially growing C values, a good model can be identified in

practice. Thus, C = 2−5, 2−4, ..., 220 are tried and the best C value is determined

accordingly.

Training and Test Sets

Selecting reasonable training and test sets is very important for fairly evaluating

the performance of machine learning methods. PDB20 is used as the training set,

in which any two proteins do not share more than 20% sequence identity. The

proteins in this set with resolution worse than 2Å are removed. This results in

a data set of 3060 proteins. For test set, Dunbrack’s benchmark set [44], which

consists of 180 proteins, is used. Since the rotamer library used here is extracted

from a set of 800 proteins [45], we examine the overlap among PDB20, the set of 800

proteins for rotamer library generation, and Dunbrack’s benchmark set. It turns

out that Dunbrack’s benchmark set contains 87 proteins in PDB20 and 102 in the

set of proteins for rotamer library generation. Thus, we remove all the overlapping

proteins from Dunbrack’s benchmark set and obtain a reduced benchmark set of

78 proteins. It can be seen from Figure 7.4 that both the PDB20 training set and

the reduced test set are good samples of real world proteins in terms of amino acid

composition.
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Figure 7.4: The amino acid compositions on PDB20 training set; (b) reduced 78
benchmark test set, and (c) the UniProtKB/Swiss-Prot protein knowledgebase.
UniProtKB/Swiss-Prot protein knowledgebase [1] is one of the largest protein se-
quence databases. The statistics of UniProtKB/Swiss-Prot was taken at 283,454
protein sequences on September 11, 2007.

The performance of our method is evaluated on both this reduced benchmark

set and Dunbrack’s original benchmark set which has overlapping proteins to our

training set. Not surprisingly, the accuracy of our method is approximately 8%

higher on the Dunbrack’s benchmark set than on the reduced set, while the accuracy

of SCWRL3.0 is consistent on the two benchmark sets. Thus, in the following

experimental studies, we will only evaluate our method on this reduced benchmark

set.

Prediction Accuracy on Native Backbones

The accuracy of our method is compared to the most widely used program SCWRL3.0

in terms of χ1 and χ1+2 accuracy. Other widely used programs, such as Mod-

eller [158], SCAP [201], and TreePack [203], performs no better than SCWRL3.0

on both the 180 benchmark set and the 78 benchmark set. A prediction is con-

sidered to be correct if its value is within 40◦ from its experimental value. The

prediction accuracy of one amino acid is calculated as the ratio of the number of

118



Table 7.12: Prediction accuracy of LocalPack and SCWRL 3.0 on the 78 benchmark
set. A prediction of a side chain is correct if its deviation from the experimental
value is no more than 40◦. χ1 accuracy of one amino acid is the ratio of the number
of correctly predicted χ1 angles to the total number of this amino acid type, while
χ1+2 accuracy of one amino acid is the ratio of the number of side chains with both
χ1 and χ2 being predicted correctly to the total number of this amino acid type.

LocalPack SCWRL 3.0

amino acid χ1 accuracy χ1+2 accuracy χ1 accuracy χ1+2 accuracy
ARG 0.7701 0.6060 0.7558 0.6226
ASN 0.7888 0.7011 0.7956 0.6882
ASP 0.8322 0.7337 0.8218 0.6974
CYS 0.8497 0.8497 0.8915 0.8915
GLN 0.7493 0.5416 0.7449 0.5319
GLU 0.6841 0.5077 0.7084 0.5128
HIS 0.8226 0.7551 0.8382 0.7745
ILE 0.9172 0.7884 0.9114 0.8060
LEU 0.7851 0.7321 0.8996 0.8142
LYS 0.7678 0.5768 0.7199 0.5444
MET 0.8169 0.6097 0.8160 0.6720
PHE 0.8410 0.7740 0.9361 0.8774
PRO 0.8426 0.7701 0.8517 0.7879
SER 0.7556 0.7556 0.6883 0.6883
THR 0.9193 0.9193 0.8855 0.8855
TRP 0.8328 0.6851 0.8843 0.6688
TYR 0.9239 0.8616 0.9171 0.8615
VAL 0.8922 0.8922 0.9075 0.9075

overall 0.8205 0.7314 0.8266 0.7365

correctly predicted side chains to the total number of side chains of this amino acid

type.

As shown in Table 7.12, the overall accuracy of our method is very close to that

of SCWRL3.0. In fact, the χ1 accuracy of our method is only 0.61% lower than

that of SCWRL3.0, while the χ1+2 accuracy is 0.51% lower. Although our method

is based on local backbone information only, it does not lose any accuracy while

is much more computationally efficient. In fact, the χ1 accuracy of our method is

higher than SCWRL3.0 on nine out of the eighteen amino acids, especially Lysine
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(LYS), Serine (SER) and Threonine (THR). However, our method is much worse

than SCWRL3.0 on Cysteine (CYS), Leucine (LEU), Phenylalanine (PHE) and

Tryptophan (TRP). Meanwhile, the χ1+2 accuracy of our method is higher than

SCWRL3.0 on eight out of the eighteen amino acids. This means local backbone

information can also determine χ2 conformation accurately. On the other hand,

results shown in Table 7.12 also demonstrate that the accuracy of our method is

not worse than any global optimization methods.

We further examine the eight amino acids on which our method did not perform

well (with χ1 accuracy ≤ 82%). They are Arginine (ARG), Asparagine (ASN), Glu-

tamine (GLN), Glutamic acid (GLU), Leucine (LEU), Lysine (LYS), Methionine

(MET) and Serine (SER). Except for SER, all the other seven amino acids have

large side chain groups as shown in Figure 7.5. This result is consistent with the

model on which our method is built. Our method assumes that local backbone in-

formation can determine side chain conformations. However, if a side chain group

is large, its position will be more likely to be impacted by other side chain groups

around it and thus cannot be completely determined using only local information.

Thus, for such cases, we probably need more information to determine side chain

conformations. Interestingly, the global optimization method, SCWRL3.0, which

considers all the side chain and backbone atoms around one side chain, performs

worse than our method on four out of these seven amino acids as shown in red

boxes in Figure 7.5.

Feature Importance Analysis

A key step in feature based machine learning study is to evaluate the importance

of each feature encoded. The importance of each feature is evaluated by removing

it from the whole set of features, and testing the accuracy on the rest of the feature

set. Table 7.13 shows the χ1 accuracy on different feature sets on amino acid
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Figure 7.5: The χ1 accuracy of LocalPack on amino acid types ARG, ASN, GLN,
GLU, LEU, LYS, and MET. The four amino acids on which the accuracy of Local-
Pack is higher than that of SCWRL3.0 are marked in red boxes.

Arginine (ARG). It can be seen from Table 7.13 that all of the three features

are important to our method. More specifically, removing solvent accessibility

feature will reduce the accuracy by 4.8%, while removing secondary structure and

contact number will reduce the accuracy by 3.5% and 3.8%, respectively. This

means that solvent accessibility is the most important feature in our method, while

secondary structure is the least. This makes sense becuase the backbone-dependent

rotamer library [45] has already partially encoded secondary structure information

by considering backbone φ, ψ angles in their statistics. Similar results are observed

on other amino acids as well.

Table 7.13: Feature importance analysis on ARG.

All No as No ss No cn
χ1 Accuracy 0.7701 0.7226 0.7352 0.7320

All: the χ1 accuracy of LocalPack with all the three features; No as: the χ1 accuracy on feature
sets without solvent accessibility; No ss: the χ1 accuracy on feature sets without secondary
structure; No cn: the χ1 accuracy on feature sets without contact number.
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Performance on Non-native Backbones

We further evaluate the accuracy of our method on nonnative backbones. The

χ1 accuracy of our method is compared to four commonly used side chain predic-

tion methods: MODELLER, TreePack, SCWRL3.0, and SCAP, on a nonnative

backbone test set provide by Xu et al. in [203]. The test set contains prediction

models generated by a protein threading program, RAPTOR [204], on 24 CASP6

test proteins [2]. RAPTOR generated good alignments for most of these targets.

MODELLER [158] was called by RAPTOR to generate model backbones according

to the alignments. Besides, MODELLER is also able to predict side chains based

on a statistical method. SCAP was tested using the CHARMM force field with the

heavy atom model and the largest rotamer library available to SCAP.

The overall χ1 accuracy is shown in Table 7.14. The prediction accuracy of our

method is the same as TreePack, and slightly worse than SCWRL3.0, while much

better than MODELLER and SCAP. This indicates that our method also works

well on nonnative backbones.

Table 7.14: The overall χ1 accuracy of MODELLER, TreePack, SCWRL3.0, SCAP,
and LocalPack on the 24 nonnative test proteins.

MODELLER TreePack SCWRL3.0 SCAP LocalPack
χ1 Accuracy 0.428 0.520 0.530 0.488 0.520

Computational Efficiency

Since our method is based on only local backbone features, it can be expected that

our method is much more computationally efficient. TreePack has been reported as

one of the fastest methods for side chain prediction. Table 7.15 shows the total CPU

time comparison of TreePack, SCWRL3.0, and our method on the 78 benchmark

set. All three programs are tested on a Debian Linux box with a 1.7GHz CPU.
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Table 7.15: CPU time comparison of TreePack, SCWRL3.0, and LocalPack on the
78 protein benchmark set.

TreePack SCWRL3.0 LocalPack
Time 186 seconds 657 seconds 46 seconds

From Table 7.15, it is clear that our method is much faster than both TreePack

and SCWRL3.0. In fact, LocalPack is more than 14 times faster than SCWRL3.0,

and more than 4 times faster than TreePack. The average CPU time of our method

on one test protein is 0.58 seconds.

7.2.4 Discussion

We demonstrate that protein side chain positions can be predicted using local

backbone information to the same accuracy as those programs employing pairwise

energy functions and computationally-intensive optimization algorithms, such as

SCWRL and TreePack. We hope our discovery will change the way researchers

look at this problem and lead to rapid and accurate protein side chain packing

programs, which are indispensable in high-accuracy protein structure modeling.

One of the major bottlenecks in protein structure refinement is how to quickly

generate a huge number of possible all-atom conformations so that an all-atom en-

ergy function can be used to pick up the energetically most favorable conformations.

Our method enables us to generate a good side chain packing extremely fast after

a change of backbone conformation. Since our method depends on local backbone

information only, it can be even much faster when only a local part of a protein

structure is refined. This allows us to do side chain packing at each step of pro-

tein structure refinement and thus makes it feasible to apply an accurate full-atom

energy function to each generated conformation.
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7.3 Local Quality Assessment

To solve the local quality assessment problem, we develop two complementary meth-

ods FragQA and PosQA to accurately predict local quality of a sequence-structure

alignment. Distinguishing itself from previous methods, FragQA directly predicts

the quality of an ungapped region in the alignment. The quality is measured using

the RMSD (i.e., Cα-based RMSD) between two fragments corresponding to the

ungapped region: one is the native structure of the region and the other one is

the predicted model. Note that the quality measurement used here is “absolute”

quality, which is independent of the optimal structure alignment. Furthermore, sta-

tistical significance is introduced to improve FragQA’s performance. As opposed to

RMSD, statistical significance can cancel out the impact of region length. Comple-

mentary to FragQA, recently developed PosQA predicts the quality of an individual

aligned position in a given alignment. The single position quality is measured using

a normalized RMSD described in [192]. FragQA and PosQA utilize only informa-

tion in a single alignment. Structural information in the alignment-derived protein

model is not directly used. However, in calculating features from an alignment, we

use structural information in the template.

7.3.1 Methods

Development of FragQA

Our SVM regression model uses only features extracted from a single sequence-

template alignment, generated by any comparative modeling program (i.e., ho-

mology modeling and threading). To exploit the evolutionary information of pro-

teins, sequence profiles of both the target protein and the template protein are

utilized in calculating features. The sequence profile of the template, denoted by
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PSSMtemplate (position specific mutation matrix), is generated by PSI-BLAST [11]

with five iterations; PSSMtemplate(i, a) encodes mutation information for amino

acid a at position i of the template. PSI-BLAST is also applied with five iterations

to generate position specific frequency matrix, PSFMtarget, for each target protein;

PSFMtarget(j, b) encodes occurring frequency of amino acid b at position j of the

target. Let A(i) denote the aligned sequence position of template position i, and

Ttemp denote the set of template positions belonging to an aligned region. A variety

of features extracted from the alignment are explored, and their relative impor-

tance is studied in Section 7.3.2. In summary, the following features are tested in

FragQA:

1. Mutation score: Mutation score measures the sequence similarity between

two segments of an aligned region: one corresponds to the target protein and

the other to the template. The mutation score (Sm) of a region is calculated

as:

Sm =
∑

i∈Ttemp

∑
a

PSFMtarget(A(i), a)× PSSMtemplate(i, a). (7.14)

2. Environmental fitness score: This score measures how well to align one target

protein region to the environment where the corresponding template region

lies in. The environment consists of two types of local structure features.

• Three types of secondary structure are used: α-helix, β-strand, and loop.

• Solvent accessibility: There are three levels: buried (inaccessible), inter-

mediate, and accessible. The Equal-Frequency discretization method is

used to determine boundaries between these three levels. The calculated

boundaries are 7% and 37%.

Thus, there are nine environment combinations (denoted as env) in total.
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Define F (env, a) to be the environment fitness potential for amino acid a

and environment combination env. F (env, a) is calculated and taken from

PROSPECT-II [99]. For more details about F (env, a), please refer to [99].

The environment fitness score (Se) for an aligned region is calculated as:

Se =
∑

i∈Ttemp

∑
a

PSFMtarget(A(i), a)× F (envi, a). (7.15)

3. Secondary structure score: In addition to the secondary structure informa-

tion encoded in environmental fitness score, we also use SS(i, A(i)), the sec-

ondary structure difference between position i in template and position A(i)

in target, to measure the quality of an ungapped region from another as-

pect. PSIPRED [95] is called to predict the secondary structure of the target

protein. Let α(i), β(i), and loop(i) denote the predicted confidence levels of α-

helix, β-sheet, and loop at sequence position i, respectively. If the secondary

structure type at template position i is α-helix, then SS(i, A(i)) =α(A(i))−

loop(A(i)). If the secondary structure type at template position i is β-sheet,

then SS(i, A(i)) =β(A(i)) − loop(A(i)). Otherwise, we set SS(i, A(i)) to be

0. The secondary structure score (Sss) of an ungapped region is calculated

as:

Sss =
∑

i∈Ttemp

SS(i, A(i)). (7.16)

4. Contact capacity score: Contact capacity potentials describe the hydrophobic

contribution of free energy, measured by the capability of a residue making a

certain number of contacts with other residues in the protein. Two residues

are in physical contact if the spatial distance between their Cβ atoms (Cα

for glycine) is smaller than 8Å. Let CC(a, k) denote the contact potential of

126



amino acid a having k contacts. CC(a, k) is calculated by statistics on PDB

as:

CC(a, k) = −log N(a, k)N

N(k)N ′(a)
, (7.17)

where N(a, k) is the number of amino acid a with k contacts; N(k) is the

number of residues with k contacts; N ′(a) is the number of amino acid a; and

N is the total number of residues in PDB. Let C(i) denote the number of

contacts at template position i. The contact capacity score (Sc) is calculated

as:

Sc =
∑

i∈Ttemp

∑
a

PSFMtarget(A(i), a)× CC(a, C(i)). (7.18)

5. Aligned region length: The RMSD between the two fragments of an ungapped

region is relevant to its length. The longer the ungapped region is, the more

likely larger the RMSD is.

6. G-score: G-score measures the overall quality of a sequence-structure align-

ment. An alignment with a good G-score likely contains more good ungapped

regions. G-score is calculated by Xu’s SVM module [202] as the predicted

alignment accuracy normalized by the target protein size. G-score ranges

from 0 to 1. G-score equal to 0 means the alignment is likely random, while

1 means it is probably a perfect alignment.

7. Sequence identity : The fraction of identical residues in the whole alignment

is used to measure the sequence identity.

8. Other sequential features : Three separate sequential features are tested: tem-

plate protein size, target protein size, and alignment length (i.e., the number
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of aligned positions).

Meanwhile, mutation score, environmental fitness score, secondary structure score,

contact capacity score, and aligned region length are specific to the ungapped re-

gion; while G-score, sequence identity, and other sequential features are for the

whole sequence-structure alignment.

Development of PosQA

Instead of directly using RMSD between the native Cα position and the predicted

position of a residue, a normalized RMSD is used as the objective function of

PosQA. Let Di and di denote the normalized RMSD and RMSD at position i,

respectively. Then Di is defined as 1/(1 + (di)
2

(d0)2
) [192] where d0 is set to

√
5. Thus,

the larger the Di is, the higher the quality of this position is.

PosQA uses almost the same set of features as FragQA. In particular, PosQA

tests the following information: (1) mutation score, (2) environmental fitness score,

(3) secondary structure score, (4) contact capacity score, and (5) G-score. The only

difference between PosQA and FragQA is that the values of the first four features

are calculated at a single position.

7.3.2 Results

Problem description

We study the following two problems:

1. Given a sequence-structure alignment, what is the quality of an ungapped

region in this alignment? The quality is defined as the RMSD between the

native and the predicted local structures of the ungapped region, denoted
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as “RMSD of an ungapped region”, after they are optimally superimposed.

Note that the two local structures are superimposed without taking into con-

sideration other parts of the alignment. The alignment is cut into ungapped

regions at gap positions. Thus, the fragments studied here are different from

the fixed-length fragments studied in [55, 153]. FragQA is developed to solve

this problem.

2. Given a sequence-structure alignment, what is the quality of a single aligned

position in this alignment? To measure the quality of a single position, we

optimally superimpose the predicted structural model, derived from this align-

ment, and the native structure, and then calculate RMSD at each position

to measure its quality. The final quality measure is normalized RMSD as

described in [192]. Different from the quality measure of an ungapped region,

the single-point quality depends on the superimposition between the whole

predicted model and its native structure. PosQA is developed to solve this

problem.

FragQA Training

Training and Test Data. Alignments generated by RAPTOR default threading

algorithm (with NoCore option) on the CASP7 target proteins are used as the

training and test data. As suggested by Fasnacht et al. [55], CASP data set is

the most practical and challenging set, which covers a very broad range of types of

target proteins and local errors. There are 104 target proteins in CASP7 while 89 of

them were considered as valid targets and were used for final assessment by CASP7

assessors. Eighty-eight target proteins are left after we removed redundancy at

40% sequence identity level using CD-HIT [118]. Only T0346 is removed because

it shares 71% sequence identity with T0290. To do a cross validation, the 88 target
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Table 7.16: Statistics of ungapped regions on the four data sets.

Set Name # of proteins # of fragments Average RMSD Deviation

1 22 1347 2.93Å 1.50Å
2 22 1108 2.57Å 1.46Å
3 22 1519 2.86Å 1.47Å
4 22 1461 2.73Å 1.49Å

Columns 2-5 show the number of target proteins, the number of fragments, the
average quality in terms of RMSD of the fragments, and the standard deviation of
RMSD of each set, respectively.

proteins are randomly divided into four sets. Top 10 alignments generated by

RAPTOR are considered for each target protein. If one target protein belongs to a

set, then all of its 10 alignments belong to this set. Each alignment is cut into a set

of ungapped regions with cutting points being at the gap positions. The ungapped

regions containing less than 5 residues are not considered in our experiments. Table

7.16 shows the statistics on the four sets. It is clear that the four data sets are very

similar.

Training. SVM-light [92] with RBF (radial basis function) kernel is used to train

FragQA. The parameter gamma in the RBF kernel function is trained using the

leave-one-out error estimation method. Other parameters are set to their default

values or calculated automatically by SVM-light. Experimental results indicate that

the RBF kernel with its gamma parameter set to 0.2 can yield the best training

performance. Other kernel functions such as linear kernel and polynomial kernel

are also tested, but they cannot yield as good performance as the RBF kernel.

A 4-fold cross validation is applied. Each time three of the four data sets are

used as the training set, and the other one is used for testing.

130



Performance of FragQA

After studying the relative importance of eight features, which will be discussed

later, following features are encoded into FragQA: (1) length of the ungapped re-

gion, (2) G-score of the whole alignment, (3) mutation score of the region, (4)

environmental fitness score of the region, and (5) secondary structure score of the

region.

Comparing to ProQres To the best of our knowledge, FragQA is the first

method to directly predict the quality of fragments that are automatically de-

termined by the sequence-structure alignments rather than fragments with fixed

length. Thus, there is no existing method for us to compare with. However, there

are some well-known methods that predict local quality for each residue. So it is

possible to convert the prediction on residues by such methods to a prediction of

a fragment. Since the objective function of FragQA is RMSD, to fairly evaluate

FragQA, FragQA is compared to a top-notch method ProQres [192], which uses

a residue-based RMSD-related objective function. All three available methods by

ProQ-group are tested in terms of the ability to predict fragment quality: Pro-

Qlocal, ProQres, and ProQprof. ProQres yields the best results (slightly better

than ProQlocal and ProQprof in terms of RMSD prediction of fragments). For

the sake of clearness, only the comparison between FragQA and ProQres is shown.

The objective function of ProQres is Di = 1/(1 + (di)
2

(d0)2
) [192], where di denotes the

RMSD at position i, and d0 is set to
√

5. From the prediction of ProQres, di is

calculated from Di for each residue of a fragment, then the predicted RMSD by

ProQres for the fragment is calculated by RMSD =

√
1
n

n∑
i=1

di
2, where n is the

length of the fragment. Note RMSD calculated by this way has a slightly different

meaning to the one used by FragQA, because this RMSD is based on the optimal

superimposition between the whole target and the template on all similar regions,
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while FragQA’s RMSD is based on the optimal superimposition between two local

regions. However, the superimposition between two aligned regions determined by

the optimal superimposition of the whole target and template is usually very simi-

lar to the optimal one between the two regions, because aligned regions are usually

similar. Thus, FragQA and ProQres are comparable from this point of view.

Prediction Error and Correlation Coefficient of FragQA The prediction

error is defined as the absolute difference between the predicted RMSD value and

the real one. Table 7.17 lists the average prediction errors of FragQA and ProQres,

under different RMSD thresholds on the four test sets, together with the average

fraction of fragments with real RMSD under such thresholds, and the correlation

coefficient between the predicted and real RMSD by FragQA and ProQres on the

four test sets. As shown in this table, the prediction error of FragQA ranges from

0.9Å to 1.6Å, whereas the error of ProQres ranges from 0.9Å to 2.4Å. In most

cases, the prediction error of FragQA is much smaller than that of ProQres. In

fact, when there is no restriction on RMSD, the error of FragQA is on average 0.5Å

smaller than that of ProQres. The smallest error of FragQA happens when RMSD

threshold is set to 3Å, which means FragQA is most accurate when dealing with

fragments with RMSD to native smaller than 3Å. However, when the real RMSD

is very small (≤ 1Å), the prediction error tends to be big. In other word, it is hard

to obtain an accurate prediction when RMSD is very small. As indicated in Table

7.17, the correlation coefficient between the predicted RMSD by FragQA and the

real RMSD is about 0.5 for each test set, while that of ProQres is at most 0.22.

This makes sense because FragQA is trained to predict the “absolute” quality of a

fragment, while ProQres is trained to predict the displacement of a single residue.
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Table 7.17: Comparison of prediction accuracy of FragQA and ProQres.

RMSD Test Set 1 Test Set 2 Test Set 3 Test Set 4 Fra.
FQA PQr FQA PQr FQA PQr FQA PQr

≤1Å 1.36 1.50 1.57 1.10 1.41 1.35 1.54 1.30 14%
≤2Å 1.11 1.06 1.28 0.90 1.08 1.01 1.18 1.01 42%
≤3Å 1.00 1.84 1.16 1.12 0.94 0.98 1.04 1.01 69%
≤4Å 1.03 1.79 1.12 1.23 0.97 1.21 1.04 1.13 85%
≤5Å 1.12 1.88 1.14 1.34 1.06 1.37 1.09 1.34 92%
≤6Å 1.20 1.98 1.19 1.46 1.16 1.50 1.20 1.51 95%
≤7Å 1.33 2.13 1.26 1.57 1.22 1.58 1.25 1.62 97%
≤8Å 1.41 2.20 1.32 1.68 1.29 1.67 1.31 1.72 98%
≤9Å 1.48 2.27 1.36 1.73 1.37 1.78 1.36 1.77 99%
≤10Å 1.57 2.37 1.39 1.77 1.41 1.84 1.41 1.83 99%
Correlation
Coefficient 0.51 0.07 0.46 0.22 0.50 0.22 0.48 0.16 -

Column 1 lists different RMSD thresholds. Column 2-9 list prediction errors of FragQA (denoted
as FQA) and ProQres (denoted as PQr), under different RMSD thresholds on the four test sets.
Column 10 lists average fraction of fragments with real RMSD under such thresholds.

Sensitivity and Specificity Given a RMSD threshold, sensitivity is calculated

as the fraction of ungapped regions with real RMSD smaller than the threshold,

that are also predicted to be smaller than the threshold. Specificity measures the

fraction of ungapped regions with predicted RMSD under a given threshold, that

indeed have RMSD smaller than the threshold. Figure 7.6 illustrates the sensitivity

and specificity of FragQA and ProQres under various RMSD thresholds on the four

test sets.

As shown in Figure 7.6, there is no obvious difference between sensitivity or

specificity of FragQA and ProQres when RMSD is larger than 4Å. When RMSD

is smaller than 4Å, the sensitivity of ProQres is higher than that of FragQA for

most cases, while the specificity of FragQA is higher than that of ProQres. In

particular, when RMSD threshold is 2.5Å, approximately 70% of ungapped regions

with predicted RMSD by FragQA under 2.5Å indeed have RMSD less than 2.5Å,

while 70% of ungapped regions with real RMSD under this threshold are predicted

133



2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

cRMSD
S

en
si

 &
 S

pe
ci

Sensitivity and Specificity on Test Set 1

Sensitivity of FragQA
Sensitivity of ProQres
Specificity of FragQA
Specificity of ProQres

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

cRMSD

S
en

si
 &

 S
pe

ci

Sensitivity and Specificity on Test Set 2

Sensitivity of FragQA
Sensitivity of ProQres
Specificity of FragQA
Specificity of ProQres

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

cRMSD

S
en

si
 &

 S
pe

ci

Sensitivity and Specificity on Test Set 3

Sensitivity of FragQA
Sensitivity of ProQres
Specificity of FragQA
Specificity of ProQres

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

cRMSD

S
en

si
 &

 S
pe

ci

Sensitivity and Specificity on Test Set 4

Sensitivity of FragQA
Sensitivity of ProQres
Specificity of FragQA
Specificity of ProQres

Figure 7.6: Comparison of sensitivity and specificity between FragQA and ProQres
under different RMSD thresholds on the four test sets. Circle dotted line: sensitivity
of FragQA, cross dotted line: sensitivity of ProQres, circle solid line: specificity of
FragQA, cross solid line: specificity of ProQres.

by FragQA correctly. However, the sensitivity of ProQres on RMSD 2.5Å is about

80%, while the specificity is only 50%. This implies that ProQres has a strong trend

to predict the RMSD of a fragment to be smaller than the real value. This makes

ProQres to have a high sensitivity but a low specificity. As shown in Figure 7.6, the

specificity curves of ProQres are not smooth sometimes, nor it is monotonous. It is

clear that for both FragQA and ProQres, the sensitivity curves increase much more

quickly than the specificity curves. However, all curves are quite low when RMSD

is small. A possible explanation is that when the ungapped region is short, a small

RMSD does not necessarily mean that this region has a good quality. Therefore,

it is hard for FragQA to predict RMSD accurately under such cases. Later we

will replace RMSD with its statistical significance and show that when statistical

significance is high, even as high as 1, FragQA can still yield a good prediction.
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Feature Selection for FragQA It is important to detect which features are

closely relevant to the prediction capability of FragQA since unrelated features may

introduce extra noise. The importance of each feature is investigated by excluding

it from the feature set, training a new FragQA, and then testing the performance of

this new predictor. Thus, the performance resulting from different sets of features

can be compared, and the important features can be detected.

Table 7.18 lists the sensitivity and specificity of FragQA with different sets of

features under different RMSD thresholds on test set 1. The results are similar on

the other test sets. There is no obvious difference among different sets of features

when RMSD threshold is larger than 3.75Å. As shown in this table, if the aligned

region length is removed, the performance of FragQA will drop obviously, except

for RMSD threshold larger than 2.75Å, the sensitivity of FragQA without fragment

length is a little higher than that with all the features. This complies with a fact

that RMSD itself is closely related to the length of an ungapped region. Removing

mutation score or the overall G-score will also have an obvious reduction on the

performance of FragQA, except for RMSD larger than 2.25Å, removing G-score

will increase the sensitivity slightly and have no obvious influence on the speci-

ficity. This also makes sense: mutation score measures the sequence similarity in

the aligned region, and G-score evaluates the overall quality of the alignment. An

alignment with good overall quality often contains good aligned regions. However,

when the overall quality of an alignment is poor (G-score is low), the fragments

can be either good or bad. In such case, G-score will not be an influential factor

any more. Removing environmental fitness score will decrease both the sensitivity

and the specificity. Surprisingly, removing contact capacity score will increase both

the sensitivity and the specificity. This implies contact score is a noisy feature.

On the other hand, removing secondary structure score will decrease the speci-

ficity but increase the sensitivity slightly. Removing any other features, such as
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Table 7.18: Sensitivity and specificity of FragQA with different feature sets.

RMSD All ¯Len S̄g S̄m S̄e S̄c S̄ss
¯SeqId ¯Other

≤1Å 12/19 0/0 4/10 9/17 11/16 13/32 13/17 12/18 12/18
≤1.25Å 16/28 1/22 8/20 15/27 14/22 22/43 18/27 16/28 15/28
≤1.5Å 25/42 4/23 16/37 19/35 2236 27/49 26/41 25/42 25/41
≤1.75Å 35/52 12/41 27/51 27/46 29/47 34/57 36/51 34/52 35/52
≤2Å 42/59 21/48 38/58 35/53 39/57 48/65 42/56 43/60 42/59
≤2.25Å 50/64 42/56 52/64 46/60 48/62 58/68 51/63 51/64 51/64
≤2.5Å 62/72 61/63 64/70 55/66 56/69 65/73 63/70 62/72 62/72
≤2.75Å 70/78 74/67 73/75 65/73 67/76 74/78 71/77 69/78 69/77
≤3Å 76/79 82/70 79/77 74/77 75/80 81/79 77/79 76/79 76/79
≤3.25Å 83/82 90/75 86/80 82/81 80/83 85/82 84/80 83/82 83/82
≤3.5Å 88/86 94/79 90/84 88/83 84/85 89/86 89/84 88/86 88/86

Column 1 lists different thresholds. Column 2 lists the sensitivity/specificity of FragQA with all
features. Starting from column 3, each column lists the sensitivity/specificity when one feature is
removed. Len: region length, Sg: G-score, Sm: mutation score, Se: environmental fitness score,
Sc: contact capacity score, Sss: secondary structure score, SeqId: sequence identity, and Other:
other sequential features. All values are percentiles.

sequence identity feature and other sequential features, does not obviously deterio-

rate either the sensitivity or the specificity. Thus, the final version of FragQA uses

the following features: (1) aligned region length, (2) overall alignment G-score, (3)

mutation score, (4) environmental fitness score, and (5) secondary structure score.

Meanwhile, mutation score, G-score, and the region length are the most important

factors in quality prediction.

Statistical Significance The RMSD between the predicted structure of an un-

gapped region and its native is closely relevant to the length of the region. Thus,

a 5-residue ungapped region with 3Å RMSD may not be better than a 15-residue

region with 4Å RMSD. To better evaluate the quality of a region, the statisti-

cal significance of its RMSD is calculated to reduce the bias introduced by region

length. To calculate statistical significance, statistical distribution of RMSD for a
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Figure 7.7: (a) Mean (circle solid line) and standard deviation (point dotted line) of
RMSD for random region sets with length from 5 residues to 50 residues. (b) The
statistical distribution of RMSD calculated from 10,000 randomly sampled pairs of
fragments with length 10.

given region length is empirically calculated as follows. For a given region length,

10,000 pairs of fragments of this length are randomly sampled from PDB30, and

their pairwise RMSDs are calculated. PDB30 is a subset of PDB (the Protein Data

Bank) [19], in which any two proteins share no more than 30% sequence identity.

As shown in Figure 7.7(a), the mean of RMSD increases clearly with respect to

the length, but the standard deviation increases much more slowly. The RMSD

distribution looks like a normal distribution. Figure 7.7(b) shows the statistical

distribution of RMSD calculated from 10,000 randomly sampled pairs of fragments

with length 10. Fragments with different length give similar distributions. For a

given ungapped region with length l and (real or predicted) RMSD r, its statistical

significance (denoted as StatSig) is calculated as follows:

StatSig =
#random pairs of length l with RMSD ≥ r

10, 000
. (7.19)

Thus, the smaller the RMSD is, the larger its statistical significance is.

The sensitivity and specificity of FragQA in terms of statistical significance is
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Figure 7.8: FragQA’s sensitivity (circle solid line) and specificity (cross dotted line)
in terms of statistical significance on test set 1.

calculated in a way similar to that calculates them in terms of RMSD. For each

statistical significance threshold varying from 0 to 1, the sensitivity is defined as

the percentage of ungapped regions with real statistical significance larger or equal

than the threshold, that also have predicted values larger or equal than the thresh-

old. The specificity is defined as the percentage of ungapped regions with predicted

significance larger or equal than the threshold, that have real statistical significance

better or equal than the threshold. Figure 7.8 illustrates the sensitivity and speci-

ficity of FragQA in terms of statistical significance on test set 1. Results are similar

on the other three sets. As shown in this figure, when statistical significance is 0.8

(about 81% fragments in our test sets have such values), both the sensitivity and

specificity is around 90%. Even when statistical significance threshold is 1 (about

48% fragments in our test sets have this value), the sensitivity is 78%, and the

specificity is 88%.

The prediction error of FragQA in terms of statistical significance is also studied.

As shown in Table 7.19, the prediction error decreases quickly from 0.26 to 0.05

when the statistical significance threshold increases from 0 to 1. When the threshold

is 0.9, the prediction error is approximately 0.12. This indicates that FragQA is

able to predict the statistical significance well when the ungapped region has a
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Table 7.19: Prediction errors of FragQA in terms of statistical significance.

StatSig Whole High-quality Medium-quality Low-quality
≥0 0.26 0.21 0.25 0.28
≥0.1 0.23 0.20 0.23 0.25
≥0.2 0.21 0.19 0.21 0.22
≥0.3 0.19 0.16 0.18 0.20
≥0.4 0.17 0.14 0.17 0.18
≥0.5 0.15 0.12 0.16 0.16
≥0.6 0.14 0.10 0.15 0.14
≥0.7 0.13 0.08 0.14 0.14
≥0.8 0.12 0.08 0.14 0.13
≥0.9 0.12 0.08 0.14 0.13
=1.0 0.05 0.03 0.04 0.08

Column 1 lists different significance thresholds. Column 2 lists the overall prediction errors of
FragQA. Columns 3-5 are the prediction errors on the three classes of alignments: “high-quality”,
“medium-quality”, and “low-quality”.

good quality. By contrast, FragQA is not able to accurately predict RMSD when

it is small because a small RMSD does not imply a high-quality region. This result

also shows that statistical significance is a better measure than RMSD. All the

test alignments are further divided into three classes, “high-quality” alignments,

“medium-quality” alignments, and “low-quality” alignments, based on their G-

scores (calculated by RAPTOR) at cutting points 0.33 and 0.66. A “high-quality”,

“medium-quality”, and “low-quality” alignment has G-score at least 0.66, between

0.33 and 0.66, and less than 0.33, respectively. Table 7.19 indicates that different

sets have different prediction errors. The underlying reason may be that different

sets have different distributions of ungapped regions under a given threshold.

On the other hand, the correlation coefficient of FragQA on each set in terms

of statistical significance is higher than 0.60. This means statistical significance is

probably a better way to measure the quality of a fragment.
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PosQA Training

PosQA uses the same data source as FragQA to train and test the SVM model.

The only difference is that a data entry in FragQA is an ungapped region while a

data entry in PosQA is a single aligned position. If a residue in the target protein

is aligned to a gap, the quality of this position is set to zero, and this residue is not

used for training or test. The whole CASP7 data set is also divided into four sets as

in FragQA. In summary, there are 26,432, 27,018, 26,982, and 26,831 entries in the

four sets, respectively. Their average Di’s are 0.57, 0.51, 0.52 and 0.54, respectively.

The SVM-light software [92] is also applied to train PosQA with the RBF kernel,

following almost the same procedure to train FragQA. Experimental results indicate

that PosQA yields the best performance when the RBF kernel function is used with

gamma being 0.3. After selecting features by using the similar approach used by

FragQA, PosQA encodes the following features: (1) overall alignment G-score, (2)

mutation score, (3) environmental fitness score, and (4) secondary structure score.

Again, contact capacity score has no contribution to the performance of PosQA,

and is thus not encoded in PosQA.

Performance of PosQA

Prediction Error of PosQA We compare the prediction error of PosQA, Pro-

Qres, and ProQprof, which is defined as the average absolute difference between the

predicted Di and its real value. Table 7.20 shows the prediction errors above differ-

ent Di thresholds. As shown in this table, the overall prediction errors for PosQA,

ProQres, and ProQprof range from 0.13 to 0.29, 0.14 to 0.41, and 0.15 to 0.40,

respectively. This implies that the overall prediction accuracy of PosQA is better

than that of ProQres and ProQprof. When Di increases, the overall prediction

errors of PosQA decrease clearly, while the lowest errors of ProQres and ProQprof
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Table 7.20: Comparison of prediction errors of PosQA (PA), ProQres (Pr), and
ProQprof (Pp).

Di Whole High-quality Medium-quality Low-quality
PA Pr Pp PA Pr Pp PA Pr Pp PA Pr Pp

0 0.29 0.41 0.40 0.27 0.36 0.44 0.29 0.47 0.54 0.29 0.41 0.20
0.1 0.28 0.31 0.35 0.27 0.26 0.32 0.29 0.31 0.36 0.29 0.39 0.37
0.2 0.26 0.26 0.29 0.25 0.22 0.27 0.26 0.26 0.30 0.29 0.31 0.30
0.3 0.23 0.22 0.24 0.21 0.19 0.23 0.22 0.22 0.26 0.27 0.25 0.24
0.4 0.22 0.18 0.20 0.20 0.16 0.19 0.21 0.18 0.22 0.25 0.22 0.20
0.5 0.21 0.16 0.17 0.18 0.14 0.15 0.20 0.15 0.18 0.23 0.19 0.18
0.6 0.19 0.14 0.15 0.16 0.13 0.12 0.19 0.13 0.15 0.20 0.18 0.19
0.7 0.17 0.15 0.15 0.15 0.12 0.10 0.15 0.12 0.14 0.21 0.21 0.24
0.8 0.15 0.16 0.17 0.14 0.14 0.10 0.10 0.14 0.13 0.20 0.22 0.29
0.9 0.13 0.19 0.19 0.13 0.17 0.13 0.12 0.17 0.13 0.24 0.25 0.33

Column 1 lists different Di thresholds. Columns 2-13 list the prediction errors of PosQA (denoted
as PQA), ProQres (denoted as PQr), and ProQprof (denoted as PQp) on the whole set, “high-
quality” alignments, “medium-quality” alignments, and “low-quality” alignments, respectively.

happen when Di threshold is 0.6. Recall that a large Di indicates a high-quality

position. This means that PosQA predicts the well-aligned positions better than

ProQres and ProQprof.

All the test alignments are also divided into three classes: “high-quality” align-

ments, “medium-quality” alignments, and “low-quality” alignments, based on their

G-scores (calculated by RAPTOR) at cutting points 0.33 and 0.66. Table 7.20

shows the prediction errors of PosQA, ProQres, and ProQprof on the three classes

of alignments. It is clear that different sets have different prediction errors, which

means G-score is an informative factor for local quality. For all the three classes, the

overall errors, which correspond to Di ≥ 0, and the errors on high-quality residues,

which correspond to Di ≥ 0.9, of PosQA are better than those of ProQres and

ProQprof. However, ProQres outperforms the other two methods on both “high-

quality” and “medium-quality” alignments, whereas PosQA is the best method on

“low-quality” alignments. This makes sense because ProQres and ProQprof are
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Figure 7.9: ROC curves for PosQA, ProQres, and ProQprof on the four test sets.
Discrimination threshold 4Å.

both trained on high-quality models and alignments, while PosQA is trained on

the comprehensive set of CASP7 targets, which contains high-quality (HA) targets,

template based modeling (TBM) targets, as well as free modeling (FM) targets.

Sensitivity and Specificity Receiver Operating Characteristic (ROC) plots are

used to evaluate the trade-off between the ability of PosQA, ProQres, and Pro-

Qprof to correctly identify positive cases and the number of negative cases that

are incorrectly classified. Figure 7.9 shows the ROC curves for PosQA, ProQres,

and ProQprof on the four cross-validation test sets. PosQA clearly outperforms the

other two methods on all the four test sets. Meanwhile, the ROC curves also show

that the performance for a method on test set 1 and 3 is higher than that on test

set 2 and 4, which reveals test set 1 and 3 are probably easier than test set 2 and

4 in terms of single position quality assessment.
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We further evaluate the performance of PosQA, ProQres, and ProQprof on

“high-quality”, “medium-quality”, and “low-quality” alignment sets. As shown in

Figure 7.10(a)-(c), ProQres outperforms PosQA and ProQprof on “high-quality”

alignments, whereas PosQA is the best method on both “medium-quality” and

“low-quality” alignments. It is noteworthy that PosQA performs significantly better

than both ProQres and ProQprof on “low-quality” alignments. One may argue that

the difference on the performance is the result of the settings of ROC discrimination

thresholds. Thus, we draw the ROC curves of PosQA with different discrimination

thresholds on test set 1 in Figure 7.10(d). Since there is almost no difference

between different curves when false positive rate is higher than 0.4, only the ROC

curves with false positive rate lower than 0.4 are shown. Again, the difference is not

obvious when different discrimination thresholds are used. Similar observations are

found on the other test sets and on the other two methods. Thus, all ROC curves

shown here reveal the actual comparisons of the three methods regardless of the

discrimination thresholds.

Prediction Examples of PosQA and ProQres Three representative align-

ments generated by RAPTOR in CASP7 are shown here, and the performance of

PosQA and ProQres on them is carefully studied. ProQres has been used for protein

structure prediction by its developer, a top-ranked group in the CASP events [192].

These three alignments are T0346 (target) vs. 1a33 (template), T0323 vs. 1dizA,

and T0372 vs. 1sqhA; the structural models derived from these alignments have

very different GDT TS [210] scores 97.67, 53.69 and 24.75, respectively. For the

sake of clearness, only the results of PosQA and ProQres are compared here, be-

cause ProQprof performs worse than ProQres on these three alignments. Since

PosQA does not predict the quality of an unaligned position, to do a fair compar-

ison between PosQA and ProQres, the average prediction errors for both PosQA
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Figure 7.10: (a) ROC curves for PosQA, ProQres, and ProQprof on “high-
quality” alignments (G-score≤0.33). Discrimination threshold 2Å; (b) ROC curves
for PosQA, ProQres, and ProQprof on “medium-quality” alignments (0.33<G-
score≤0.66). Discrimination threshold 4Å; (c) ROC curves for PosQA, ProQres,
and ProQprof on “low-quality” alignments (0.66<G-score≤1.0). Discrimination
threshold 6Å; (d) ROC curves for PosQA with different discrimination threshold
values on test set 1.

and ProQres are calculated on only the aligned positions. As shown in Figure 7.11,

the prediction errors of both PosQA and ProQres are related to the overall align-

ment quality. The better the overall quality is, the smaller the prediction error is.

PosQA performs better than ProQres on all these three test cases. The difference

between the prediction errors of PosQA and ProQres is large on “high-quality” and

“low-quality” alignments, i.e., T0346 vs. 1a33 and T0372 vs. 1sqhA, but relatively

small on “medium-quality” alignment, T0323 vs. 1dizA. The average prediction er-
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rors of PosQA and ProQres are 0.10 and 0.15 for T0346 vs. 1a33, respectively, 0.24

and 0.27 for T0323 vs. 1dizA, respectively, and 0.39 and 0.47 for T0372 vs. 1sqhA,

respectively. It is clear that for most residues of these alignments, the prediction

errors of PosQA are smaller than that of ProQres. In particular, ProQres has ob-

viously large prediction errors at some positions on the “high-quality” alignment

between T0346 and 1a33, whereas PosQA’s prediction errors are mostly contained

within 0.3.

7.3.3 Discussion

Other than the RMSD and the statistical significance, there are other possible

measurements for local quality assessment. For instance, torsion angles may be

a good choice for measuring the local quality of a fragment. The performance of

FragQA and PosQA on such measurements will be worth exploring in the future.

A potential application of local quality predictors such as FragQA and PosQA is

that they can be used to identify those high-quality regions in an alignment. These

high-quality regions can often cover a large portion of the target protein even if it

is a hard target and thus, they can be refolded to obtain a better structural model

for the target protein. For example, Zhang-server [212, 213] achieved an impressive

performance in CASP7 and CASP8 by first cutting a threading-generated align-

ment into some ungapped regions, and then rearranging the physical orientations of

these regions. Zhang-server uses all the ungapped regions without considering their

quality. A further improvement over Zhang-server is to first predict the “absolute”

quality of each region, and then refold only those high-quality regions to obtain a

better structural model. FragQA provides such a powerful tool to directly evaluate

the fragment quality cut from the alignments, which is independent of the optimal

superimposition of the two whole structures.
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(a) Prediction errors on T0346 vs. 1a33 (GDT TS score 97.67). The average errors of PosQA and
ProQres are 0.10 and 0.15, respectively.
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(b) Prediction errors on T0323 vs. 1dizA (GDT TS score 53.69). The average errors of PosQA
and ProQres are 0.24 and 0.27, respectively.
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(c) Prediction errors on T0372 vs. 1sqhA (GDT TS score 24.75). The average errors of PosQA
and ProQres are 0.39 and 0.47, respectively.

Figure 7.11: Prediction errors of PosQA and ProQres on three typical alignments
generated by RAPTOR in the CASP7 event. Since PosQA does not predict the
quality at unaligned positions, the prediction errors at these positions are set to 1.
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Chapter 8

Concluding Remarks and Future

Work

8.1 Conclusions

In this dissertation, we propose a fully automatic NMR protein structure determi-

nation protocol, AMR, which is able to generate high-resolution structures for short

proteins from the raw NMR spectra. The major difference between AMR and pre-

viously proposed automatic NMR protein structure determination methods is that

rather than combining existing methods together, AMR has all of its three steps

developed altogether. Therefore, each step is highly error-tolerant to the imperfect

output from the previous step. All the test proteins are acquired from our collab-

orators. These NMR spectra are thus obtained by different NMR spectrometers,

different NMR spectroscopists, and different sample preparation processes, which

make the spectra have quite different noise levels and different fractions of missing

peaks. AMR is able to generate accurate structures for four of the five test proteins.

Even for the one on which AMR failed, i.e., COILIN, the results of automatic peak

picking and resonance assignment are still reasonable. The main reason for the
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failure on that protein is that COILIN is recognized by FALCON-NMR as an ab

initio target, but the torsion angle sampling method applied by FALCON-NMR is

not able to generate medium-resolution structural models due to the bad-quality

fragments selected by Frazor and the flexibility in the sampling process.

We propose a novel peak picking method PICKY. The key idea is to form com-

ponents that are as small and simple as possible. Decomposition techniques can

then be applied to each component separately to detect peaks. PICKY is tested

by the first systematic study on peak picking problem, and demonstrates fairly

high recall and precision values. The refinement module of PICKY is method-

independent. So it can be applied to the peak lists generated by any other peak

picking methods. After peak lists are generated, we first prove that the resonance

assignment problem is NP-hard. A novel assignment method, IPASS, is then pro-

posed to deal with imperfect peaks generated by PICKY. As demonstrated in the

experiments, IPASS is the only available assignment method that is able to toler-

ate errors in automatically picked peaks. IPASS has an error-tolerant spin system

forming module. After the spin systems are formed, they are typed and reliable

fragments are fixed. An integer linear programming model is proposed to globally

optimize the assignment problem under our problem setup. Given the assignment

done by IPASS, FALCON-NMR is developed to generate high-resolution structures

based on chemical shift information and ambiguous NOE constraints. The idea is

to use such NMR information as soft constraints rather than hard constraints.

Therefore, chemical shift information is used to identify homologs if there is any

or to select fragment candidates for each small region of the protein. The ambigu-

ous NOE constraints are used to select the best decoys from each iteration of the

structure calculation. The advantage of this method is that it can tolerate the high

ambiguity rate on NOE constraints while still requiring the final structure to agree

with the experimental data. However, the disadvantage is that NOE constraints
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are not directly encoded into the sampling process, which results in the possibility

of trapping into the local minimum of the energy function.

Another contribution of this dissertation is to propose novel methods to solve

three key protein structure prediction problems which are closely related to NMR

protein structure determination. These three protein structure prediction problems

are inter-residue contact prediction, side chain packing, and local quality assess-

ment. We propose a novel consensus method to accurately select true contacts

from a large number of false ones. By eliminating server correlation, we are able

to identify true contacts even when they are not supported by the majority of in-

dividual servers. Our method significantly outperform any other contact predictor,

especially on new fold targets. Thus, this method can provide more true contacts

to the NOE contact set in NMR protein structure determination. Especially when

the quality of the NMR spectra is poor, our contact prediction method can possibly

save the entire NMR structure determination process from failure. As demonstrated

in the experiments of AMR, the all-atom refinement is an important step to achieve

the final high-resolution structures. However, AMR currently does not contain a

side chain assignment module. We propose an ultra-fast side chain packing method,

which uses only backbone information. Our method is as accurate as the state-of-

the-art global optimization methods, yet runs many times faster. This method can

be hopefully applied to the all-atom refinement module of FALCON-NMR to ac-

celerate the refinement process, thus to shorten the runtime of the entire system.

In AMR, when a homolog can be found for a target protein, Modeller is called to

generate initial structural models according to the alignment between the target

and the homolog. However, the structural models generated from the alignment

usually have bad regions, which are caused by the wrongly aligned positions. We

propose two complementary local quality assessment methods to accurately pre-

dict the quality of local fragments and single aligned positions. Both of these two
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methods perform better than the stat-of-the-art local quality predictors. These two

methods can be applied to FALCON-NMR when homologs can be identified. Ac-

cording to the prediction results of these two methods, FALCON-NMR can refine

the structural models by sampling based on strict torsion angle distributions for

well-aligned regions and loose distributions for poorly-aligned regions. This will

reduce the conformational search space for the sampling process, and thus increase

the speed of convergence and reduce the risk of trapping into local minima.

8.2 Future Work

An immediate improvement of AMR is to increase the limit of the protein size that

it can handle. Among all the three steps of AMR, peak picking and resonance

assignment steps are standard which work consistently well on both short proteins

and long proteins. The major bottleneck comes from the structure calculation

step, especially when no homologs can be found to build reasonably good initial

structural models. I plan to develop a new structure calculation method that is

able to generate good structures for longer proteins. The key idea is to increase the

weight of NOE contacts in the structure calculation step. There are two possible

ways to achieve this goal, i.e., encoding NOE contacts as soft constraints or as hard

constraints. A direct way to improve FALCON-NMR is to encode NOE contacts

into its energy function. By using the NOE contacts as soft constraints, the torsion

angle sampling process will reduce the risk of generating structures with obviously

wrong topologies. However, it is possible that due to the other terms in the energy

function, some very bad structures can still be generated if they behave well on the

other energy terms. Thus, another possibility is to encode the NOE contacts as hard

constraints. Techniques such as constraint programming and multi-dimensional

scaling might be used to achieve this goal. However, if the ambiguity of the NOE
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contacts is too high, such methods will still be very easy to fail. Thus, a better

method is needed to reduce the NOE ambiguity. CYANA [73] uses the ideas of

network-anchoring and constraint combination to eliminate ambiguous distance

constraints. I would like to develop a method to discover self-consistent distance

constraint set based on geometric properties of the protein, such as bond length,

bond angle, and secondary structure information.

Another way to improve our current system is to encode more knowledge and

experience on protein structure prediction problems. We have proposed novel meth-

ods to solve three key structure prediction problems that are close related to NMR

protein structure determination. These methods should be able to improve the

performance of FALCON-NMR. For example, the consensus contact prediction

method can be used as the complement to the NOE constraint extraction module

of AMR, the side chain packing method can be used as a subroutine of FALCON-

Refinement, and the local quality assessment methods can be encoded into the

FALCON-Threading module. I plan to incorporate these methods or the ideas

into FALCON-NMR. Thus, if there is enough information from NMR spectra, the

weights of the prediction methods will be reduced and the structure calculation step

will generate structures mainly according to the experimental data. Otherwise, if

the quality of the NMR spectra is poor, or the resonance assignment returns results

with low confidence, the weights of the prediction methods will be increased and the

structure calculation step will generate structures according to both experimental

data and prediction results.

Providing AMR as a fully automatic system to the NMR community is a long-

term goal, because it still requires significant improvements on AMR. A more rea-

sonable short-term goal is to provide PICKY and IPASS as interactive tools to assist

NMR spectroscopists in the data processing steps. We have implemented PICKY

as a plug-in in one of the most commonly used NMR user interfaces, SPARKY,
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so that the users can easily call PICKY through SPARKY to pick initial peaks,

and modify the initial peaks according to their expertise. We will also implement

IPASS to be an interactive tool in the near future.

As methods for protein structure determination developing, a continuing prob-

lem is to model protein dynamics and protein-protein interaction or protein-ligand

binding. The traditional way of modeling protein structures is to model them as

rigid bodies. However, this is not true in nature. A protein has different structures

under different conditions, such as different PH values or different temperatures.

Even under the same condition, a protein is dynamically changing its conformation

in solution. Therefore, a very important problem is to model protein dynamics and

protein conformational changes during the protein-protein interaction or protein-

ligand binding process. Many proteins undergo fairly large conformational changes

when they bind to another molecule. These movements are often essential for bind-

ing and function, and are thus relevant to things like drug design. Understanding

the mechanisms by which the proteins bind to each other or to ligands is crucial

to control and alter protein associations. For example, the action of an enzyme

and a single substrate has been extensively studied. The first hypothesis is “lock

and key” model. That is, the enzyme serves as a lock and the substrate serves as

a key. Thus, this hypothesis is based on the rigid shape assumption. However,

experimental evidence shows that this model can not well explain the real action

in nature. The induced-fit theory is then proposed [105], which assumes that the

shape of the enzyme is actually partially flexible and the substrate is the main

factor to determine the final shape of the enzyme. One major advantage of NMR

over other structure determination techniques, such as X-ray crystallography and

electron microscopy, is the fact that NMR is able to study protein structures in so-

lution. Thus, NMR is a perfect tool to study protein dynamics and conformational

changes. I would like to work on modeling protein dynamics and conformational
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changes during protein-protein interaction or protein-ligand binding process. The

automatic NMR tools proposed in this dissertation, such as PICKY and IPASS,

can be directly applied to such studies. I believe this is an essential step towards

the understanding of protein structures and their function.
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