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Abstract 

Mobile police officers perform many of their daily duties within vehicles. 

Combined workspace inflexibility and prolonged driving exposure creates a risk for 

developing musculoskeletal issues. Limited research exists that quantitatively describes 

postural and load exposures associated with mobile police work. This study characterized 

officer activity during a typical workday and recommended a cruiser configuration that 

minimized musculoskeletal risk through laboratory quantification of physical loading 

during simulated police patrol tasks. 

A field study captured and analyzed digital video of traffic constables (N = 10) 

using custom Regional Enforcement Activity Characterization Tool (REACT) software. 

Mobile data terminal use represented over 13% of in-car activity time and was identified 

as a primary site for targeted design change. A laboratory study included 20 (10 male, 10 

female) participants aged 18-35 with no recent history of right upper limb or low back 

disorder. Five mobile data terminal (MDT) locations and two driver seat designs were 

tested in two simulated police patrol testing sessions in a custom driving simulator.  

A self-selected mobile data terminal location reduced mean right shoulder 

elevation angle as well as perceived discomfort in both the low back and right shoulder 

relative to all other tested locations. Muscle activity was lowest at the self-selected 

location and current MDT location for all recorded muscles, with significant effects 

shown in posterior deltoid (p < .0001) and supraspinatus (p < .0001). Using a global 

ranking system, the self-selected location was identified as the best of all tested locations, 

followed by the current mobile data terminal location. The ALS driver seat effectively 

reduced discomfort (p < .0001) in the low back during a simulated police patrol session 
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from 15.4mm in the Crown Victoria seat to 11.1mm on a VAS scale. Under these 

experimental conditions, a self-selected MDT and ALS driver seat reduced discomfort 

and physical loading compared to the current configuration.
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1.0 Introduction 

 Emergency services and crisis intervention personnel, including law enforcement, 

experience higher physical demands than those in occupations of a more sedentary nature 

(Anderson, Plecas & Segger, 2001). In all aspects of police work ranging from physical 

criminal restraint to automotive pursuit to legal documentation, officers are exposed to 

physical stressors that may increase their risk of musculoskeletal pain or injury beyond 

other occupations. Mobile police officers, generally traffic division, experience not only 

acute stressors in emergency response situations, but also cumulative physical exposures 

associated with prolonged driving. Such mobile police officers are known to experience 

documented musculoskeletal and performance issues (Porter & Gyi, 2002; Brown et al., 

2003). Occupational driving alone has been shown to increase risk for developing 

musculoskeletal disorders (Magnusson et al., 1996), and these concerns extend to the 

mobile police population.  

Despite research efforts regarding subjective officer questionnaire and survey 

responses (Kuorinka et al., 1994; Gyi and Porter, 1998), few rigorously obtained data sets 

on the physical demands and officer acceptance of these modern advances in technology 

and layout exist. Additionally, quantification of the postural and load exposures is 

unavailable for constrained mobile police workspaces. This lack of information for 

modern designs motivates study of current police cruiser layouts. Effective modification 

of current designs should reduce physical loading and officer discomfort, but it is also 

important to maintain officer safety while minimally affecting job performance ability. In 

no way can modifications restrict the ability to perform rapid action in crises. 
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1.1 Role of Modern Advances in Police-Specific Technology 

 Introduction of modern mobile data terminal (MDT) systems has given officers 

means for rapid, secure access to comprehensive information (Hampton & Langham, 

2005), however, biomechanical complications may arise with improved availability of 

information and work efficiency. The introduction of mobile data terminal systems has 

affected not only communication abilities, but also modified performance methods of 

certain aspects of police work. To create a strong, visible police presence in the 

community and to deter any visible crime, traffic division officers are often encouraged 

to complete nearly all their daily duties within the cab of the police car. In addition to 

physical constraints imposed by the mobile data terminal systems, cruiser design and 

layout flexibility is inhibited by environmental constraints including a steering wheel 

with only minor tilt adjustments, a rear separation cage used to secure detainees, and 

multiple pieces of required on-person equipment, which are typically secured with a 

bulky duty belt. Performing nearly all daily duties within this confined workspace likely 

exacerbates the postural exposures associated with occupational driving and potentially 

introduces additional concerns that could increase the prevalence of musculoskeletal 

disorders. 

 There has been speculation regarding the impact of these factors on the working 

and seated postures that officers must assume to perform their duties in the mobile 

environment, however, there has been limited research to quantify the postural and load 

exposures that relate to the constrained workspace. Given this paucity of research, it is 

difficult to justify intervention recommendations to improve the situation with any 

confidence. 
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1.2 Economic Importance of Identifying Risk Factors and Reducing Injury 

 The economic importance of addressing musculoskeletal disorders and 

contributing risk factors is well defined. Despite a perception of improved workplace 

conditions, the 2006 Ontario total premium revenue was nearly $3.4 billion for 

musculoskeletal disorder related claims, a 6.1 percent increase from 2005. The fourth 

most common site for injury (6.2% of all injuries) is the shoulder, which is superseded 

only by the lower back, fingers and legs. The shoulder accounted for over 5000 lost time 

claims in 2006, and 57115 between 1997 and 2006 (WSIB, 2006). 

 The phrase musculoskeletal disorder (MSD) incorporates several injury types 

including sprains, strains, and overuse or repetitive strain injuries. An important first step 

in reducing the prevalence of such injuries is identifying occupational risk factors that 

may increase the likelihood of their development. Once these risk factors are identified, 

occupational controls or design changes can be implemented and evaluated, and specific 

musculoskeletal disorder risk factors may be mitigated or eliminated. Such quantitative 

research regarding risk factors specific to the police population is limited and is non-

existent concerning technological advances to the modern mobile police environment. 

 Identification and concurrent quantification of physical exposures will help move 

towards improved designs that incorporate the unique challenges of this environment. 

Effecting targeted design changes that maintain officer proficiency while also removing 

ergonomic stressors may improve workplace safety and reduce the injury-based financial 

burden on this population at the local, provincial, national, and international levels. 

 Research scarcity specific to the mobile police population demonstrates a need for 

investigation into the activity postures officers assume and identification of postures that 
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present musculoskeletal risk. Subsequently, there is a need for a biomechanical 

investigation into shoulder and low back measures that will effectively identify cruiser 

configurations that minimize risk in identified activity postures. 

 



 
 

5 
 

2.0  Purposes 

• To identify and characterize the most common daily activities of traffic 

division officers of a representative Regional Police Service 

• To quantify time-series exposures in the context of officer activities in 

terms of absolute time and percent time of a typical daily shift and 

generate a time-history of officer activity postures 

• To determine EMG-based estimates of relative muscle forces and 

cumulative muscle demand 

• To determine time-series postures and model-based estimates of time-

series shoulder joint moments, bone-on-bone glenohumeral contact forces, 

and individual and corporate muscle force and force distribution data for a 

simulated mobile police typing task set in varied mobile data terminal 

configurations 

• To determine mobile data terminal location and seat type configurations 

within a police cruiser that may reduce discomfort for the low back and 

right shoulder and have the potential to reduce risk and prevalence of 

musculoskeletal injury among a mobile police population. 

In attempting to identify a police cruiser configuration that results in the lowest 

physical demands, this work will either identify a preferable configuration within modern 

spatial constraints, or indicate a need for greater adjustability or other solutions in mobile 

data terminal interfaces. This in turn may warrant development and implementation of 

targeted, evidence-based workspace design changes. The potential value of these 
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interventions could be magnified dramatically through their application to cruiser fleets at 

local, provincial, national, and international levels. 
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3.0  Specific Aims and Hypotheses 

 The primary aim of this investigation was to compare physical and psychophysical 

outcome measures across several police cruiser configurations. This included the following 

subtasks: 

 Differentiating EMG-derived muscle activity levels for nine recorded muscles and EMG-

based total muscle force estimates between cruiser configurations 

 Differentiating model-based total muscle force and resultant dynamic moment estimates 

between cruiser configurations 

 Comparing muscle activity levels occurring during a simulated police patrol task to 

literature recommendations 

 Differentiating upper arm and lower back postures between cruiser configurations 

 Using identified differences across outcome measures to recommend a cruiser 

configuration 

 

The hypotheses of this investigation are: 

1. There will be significant differences in shoulder elevation angle across the five mobile 

data terminal locations 

 Keyboard height has been shown to have significant effects on 2-dimensional shoulder 

posture during a visual display terminal typing task (Liao & Drury, 2000) and there are no 

significant differences in trunk, shoulder, elbow, wrist, scapula or neck protraction/retraction 

angles in laptop computer compared to desktop computer use (Straker, Jones & Miller, 1997). 

Both shoulder abduction and shoulder flexion angle increase for mouse use when compared to 

keyboard use (Gerr et al., 2000). These studies show that even subtle task changes may result in 

significant postural changes, so the minor mobile data terminal configuration changes in the 

current study may affect posture-based demands in a police typing task.  
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2. Right shoulder moment and participant shoulder discomfort will be minimized in the 

mobile data terminal location that minimizes shoulder elevation angle 

 Middle deltoid, anterior deltoid and trapezius integrated linear enveloped EMG and 

integrated normalized shoulder joint moments are higher with increased shoulder flexion angle 

(Giroux & Lamontagne, 1992; Anton et al., 2001). Additionally, in dynamic reach tasks, shoulder 

moment has emerged as the most significant independent predictor of perceived effort 

(Dickerson, Martin & Chaffin, 2007). 

 

3. Participant ratings of perceived discomfort for the right upper limb will be minimized for 

the self-selected mobile data terminal location 

 It is difficult to make assumptions about links between self-selected postures, joint 

moments and injury risk. However, self-selected postures during typing tasks have been shown to 

minimize operator discomfort (Babski-Reeves, Stanfield, & Hughes, 2005; Helander & Zhang, 

1997), and this may extend to mobile data terminal use. 

 

4. Average ranks across outcome measures will show differences across mobile data 

terminal locations, and the self-selected mobile data terminal location will have the 

lowest average rank 

Due to the correlation between shoulder angle, resultant moment, and corresponding 

discomfort (Straker, Jones & Miller, 1997; Giroux & Lamontagne, 1992; Dickerson, Martin & 

Chaffin, 2006), agreement is expected in outcome measures and the mobile data terminal 

rankings generated. This relationship is expected to extend to the predicted and measured muscle 

forces as well, as they are not independent of these measures. 
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4.0 Literature Review 

4.1 Functional Anatomy of the Shoulder Complex 

 The combination of sternoclavicular, acromioclavicular, glenohumeral, and 

scapulothoracic articulations allows for complex shoulder motions that are greater than 

those in other body joints. This motion potential is highlighted by abduction (~170°), 

adduction, forward flexion (~160°), extension (~50°), internal rotation (~70°) and 

external rotation (~90°) (Boone & Azen, 1979), (Figure 1).  

Figure 1: Articulations of the human upper arm. A) flexion, B) extension, C) adduction, D) 
abduction, E) internal rotation, F) external rotation.  
 

 The unparalleled motion of the shoulder girdle goes beyond these six gross 

movements and can be isolated to each of the four major articulations. The 

sternoclavicular joint (Figure 2a) contributes to elevation and depression, protrusion and 

retraction, and upward and downward rotation (Rockwood et al., 2004) The 

acromioclavicular joint is the site of three-dimensional articulation between the distal end 

of the clavicle and the acromion process of the scapula (Figure 2b). The scapulothoracic 

surface allows for five degree of freedom motion, enabling glenoid positioning by way of 

a b c

d e f 
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planar superior, inferior, medial and lateral translation along the torso (Figure 3a), and 

rotations about the sagittal plane, frontal plane, and transverse plane (Figure 3b-d). 

. 

 

Figure 2a-c: Joint configuration and ligamentous support at the sternoclavicular, 
acromioclavicular, and glenohumeral joints. [from Rockwood et al. (2004), p. 39; Moore & 
Dalley (2006), p. 854] 
 
 

 

Figure 3: Translational and rotational motions of the scapulothoracic joint. 
[scapular image from Culley, 2008] 
 

The glenohumeral joint accounts for the majority of the abduction (150°), flexion (180°), 

and internal/external rotation (90°/90°) of the shoulder complex (Rockwood et al., 2004).  

These contribution possibilities make it difficult to isolate or attribute overall 

glenohumeral motion to any given mechanism, but their combination and geometric 

interaction allow for remarkable range of motion (Rockwood et al., 2004).  
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4.2 Shoulder Stability and Injury Potential 

 Directly related to the considerable range of shoulder articulation is low intrinsic 

stability. Several factors including articular version, labral contact, intra-articular 

pressure, ligament support, and joint adhesion (Rockwood et al., 2004) contribute to the 

static stability of the glenohumeral joint, but critical to dynamic stability is active 

muscular contraction. In injured populations, weakness of the rotator cuff muscles 

(supraspinatus, infraspinatus, teres minor and subscapularis), in particular, are attributed 

to reduced joint stability and tissue injury.  

 Prolonged activity or exercises, such as an occupational task in a fixed position, 

reduce the ability to generate muscular tension through both metabolic changes and 

impaired activation (Fitts et al., 1982). High level or long duration exertions induce a 

series of metabolic alterations including lactic acid formation, an increase in inorganic 

phosphate, a decrease in phosphocreatine, an increase in calcium concentration and a 

decrease in rate of ATP hydrolysis (Chaffin, Andersson & Martin, 2006). These changes 

reduce the efficiency of cyclic cross-bridge formation and create a decline in the ability to 

produce muscular force. With the fatigue produced during prolonged static exertions, a 

decrease in voluntary motor drive and muscle force reduction is induced. Action potential 

propagation failure, neuromuscular junction transmission error, and action potential 

magnitude reduction are all possible factors responsible for these activation errors 

(Chaffin, Andersson & Martin, 2006). In general, muscle fatigue prompts significant 

changes in muscle activation patterns and recruitment ordering, and produces significant 

reduction in force production (Gorelick, Brown & Groeller, 2003). 
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 These fatigue effects generate both stability and postural issues specific to the 

shoulder. Scapulothoracic and glenohumeral kinematics are altered, with increased levels 

of fatigue altering coordination strategies in order to compensate for localized effects 

(Ebaugh, McClure & Karduna, 2006; Voge & Dingwell, 2003). Onset of this fatigue may 

develop into an imbalance between the superiorly directed forces of the deltoid and the 

stabilizing effects of the rotator cuff and glenoid concavity compression (Wong et al., 

2006). This imbalance may lead to superior migration of the humeral head and eventual 

rotator cuff weakness (Deutsch et al., 1996). In addition, muscle fatigue interferes with 

joint position sense (proprioception) and reflexive rotator cuff activation may be impaired 

by the loss of normal muscle coordination (Carpenter, Blasier & Pellizzon, 1998). 

 

4.3 Use of the Mobile Data Terminal and Effect on Modern Police Work 

The introduction of mobile computing has influenced a number of public and 

private industries. Among the leading governmental users of such technologies are police 

and criminal justice organizations, since many of them need mobile information to 

facilitate law enforcement activity (Agrawal, Rao, and Sanders, 2003). 

In the police context, introduction of these systems has created several 

occupational task and performance modifications. With previous systems, officers 

obtained information primarily through radio dispatch procedures. The efficiency of 

many of the tasks they performed was entirely dependent on the performance and 

availability of radio dispatch and desk clerk staff. Dependence on a cumbersome 

procedure based on radio dispatch resulted in unacceptably high latency in decision 

making. 
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Introduction of modern mobile data terminals (MDTs) has given officers means 

for rapid, secure access to comprehensive information regarding license and registration, 

proximity of criminal activity, and real time global positioning (GPS), while considerably 

reducing the volume of radio traffic and associated complications (Hampton & Langham, 

2005). Comparative figures before and after the introduction of police mobile data 

terminals show a substantial decrease in required time for plate checks, issuing of 

summons and warrant execution tasks. Time saved, as a result of using these terminals 

was equivalent to work performed by 68 officers, or approximately 10% of the patrol 

force (Agrawal, Rao, and Sanders, 2003) (Table 1). 

Police use of MDTs has enabled better communication, which gives officers 

greater access to necessary information and decreases time required to perform 

communication-based tasks. These factors are shown to have a significant positive impact 

on both the job satisfaction of officers and, most critically, effective job performance 

(Hampton & Langham, 2005). 

Table 1: Comparative statistics before and after using MDTs (Agrawal, Rao & Sanders, 2003). 
Task Pre-MDT 

(number per year) 
Post-MDT 

(number per year) 
Redeployment 

Equivalent 
(officers per year) 

Plate checks 177 833 260 001 61.74 
Execution of 
summons 

31 314 33 663 2.43 

Execution of 
warrants 

1 011 1 251 4.67 

 The mobile data terminal systems have several functions that are used in a highly 

variable manner across officers and days. Evidence of the order, frequency and duration 

that these functions are used is a critical aspect of mobile data terminal system 

evaluation. A mobile data terminal usage log over a 4-hour period showed usage 

distribution for both single and double-crewed vehicle in an urban traffic patrol unit 
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(Hampton & Langham, 2005). Police National Computer inquiries for vehicles or names 

(PNC vehicle, PNC name) represent approximately 60% of mobile data terminal usage, 

whereas dispatch communications (remote database update, remote database query, 

incident list, assigned incident) represent approximately 35% of usage (Figure 4). 

 
Figure 4: Normalized MDT function usage over a 4-hour period [from Hampton & Langham 
(2005)]. RAS refers to Remote Access Server (remote access to police database). 
 

4.4 Investigations of Police Officer Discomfort and Influence on the  
Cruiser Design Process 

 
 Investigations into the occupational stressors specific to the police community are 

scarce. Very few studies document the physical exposures (Mirbod et al., 1997) and the 

muscular disorders (Brown et al., 2003; Gyi & Porter, 1998) that officers experience. 

Conclusive geometrical and biomechanical evidence of physical stressors have not yet 

emerged from such studies, but subjective officer questionnaire and survey responses 

clearly indicate prevalence of pain and discomfort specific to the mobile police 

population. Brown et al. (2003) investigated the low back pain prevalence among Royal 
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Canadian Mounted Police officers with questionnaire responses regarding experience 

with back pain, exposure to risk factors, and opinions about potential risk factors. The 

primary goal of the investigation was to assess the validity of the perception that the 

patrol car seat and duty belt cause a higher rate of low back pain. Chronic or recurring 

low back pain problems were reported in 54.9% of respondents and 8.5% of those 

reported no back pain prior to joining the RCMP. However, nearly half the sample did 

not wear a duty belt or drive for over half the working day. These results give the 

impression of similar low back pain prevalence in both this RCMP sample and the 

general population and underestimate the magnitude of the negative effect of equipment 

unique to mobile police work. These results conflict with a priori knowledge provided by 

other investigations. 

 Using similar interview-based methods, Gyi and Porter (1998) investigated 

musculoskeletal troubles in all body areas among a police patrol group with high driving 

exposures and a group with low driving exposures. Participant responses showed that 

officers whose job mainly involved driving also experienced more low back trouble over 

the last 12 months than those whose job primarily involved sitting (not driving), standing 

and lifting tasks. Further, greater levels of low back, shoulder, hand, and wrist problems 

were reported with increased exposure to occupational driving. These results agree with 

previous conclusions of increased risk of low back pain risk with occupational driving 

exposures.  

 Additional work has been done with the police population investigating 

psychological stress levels and physical evidence of them (Anderson, Litzenberger and 

Plecas, 2002; Deschamps et al., 2003). These studies cite length of police service, officer 
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rank, marital status, age and leisure activities as key determinants of occupational stress 

levels. Though these factors may have some influence on physical stressors, they provide 

little confirmation or direction towards biomechanical evaluation. 

 With the lack of biomechanical evidence of physical stressors, officer 

participation in workplace design may elicit qualitative solutions to police 

musculoskeletal disorder prevalence. Kuorinka et al. (1994) aimed to determine whether 

a participatory process for improving the interior of the patrol car could be established 

and, whether the process of participation influenced the perception of the police officers 

in LBP-related issues. Two groups (low back pain present and absent) were asked to 

improve the patrol car to better suit the job giving special attention to back disorders. 

Although this investigation engaged some general areas of concern (driver seat, 

communication devices, driver workspace), the specific aim was to compare the 

performance of groups. Minor differences were seen in design priorities as the LBP 

groups tended to stress posture-related items, which may indicate that the process of 

participation will guide design changes to alleviate direct officer concerns. 

 Given the evidence of the prevalence of musculoskeletal pain among police 

populations, recent investigations have sought to identify specific tasks, postures and 

equipment interfaces as possible risk factors. In a two phase study, Donnelly, Durkin and 

Callaghan (in press) investigated both officer discomfort and the efficacy of an active 

lumbar system (ALS) to reduce discomfort. Firstly, low back support, computer use and 

duty belt use were identified as primary areas of officer discomfort through questionnaire 

responses related to seat features, occupational equipment, tasks, and specific body 

regions. Secondly, officer discomfort was assessed using both a standard automobile seat 
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and a seat equipped with an active lumbar system as well as foam structural 

modifications. The active lumbar system seat had significantly lower low back support 

discomfort levels than the control seat (Figure 5) (R7C and R12C being control seat use 

and R7A and R12A being ALS seat use). The findings of this study warrant further 

investigation about and use of modified police seating. This seating should maximize 

adjustability within the fixed range of the current police cruiser configuration and 

accommodate personal equipment worn by mobile officers, specifically the duty belt and 

protective vest. 

 
Figure 5: Mean time-varying responses of body region discomfort when using ALS vs. control 
seat (R7 = lower back, R12 = upper pelvis; A and C refer to the ALS or control seat, respectively) 
[from Donnelly, Durkin and Callaghan (in press)] 
 

 Present work with subjective officer posture and load exposure assessments by 

McKinnon, Callaghan, and Dickerson (submitted for publication) has further explored 

officer discomfort levels and solicited suggestions regarding equipment locations. The 
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primary concerns with officers focus on the placement and adjustability of the mobile 

data terminal: 

• “Laptop positioned too high – have to raise arms – extra tension in shoulders” 
• “Perhaps a more portable base so the user has more position options.” 
• “The laptop night light base is in a position that presses against my right knee at all 

times.” 
• “The laptop blocks access to all temperature controls and emergency lights. Radio 

microphone is in an awkward spot to access without reaching around steering wheel.” 
• “Laptop needs more adjustability and should be placed a little further from the driver. 

Newer stations don’t have height adjustability.” 
• “Being able to adjust the laptop to a preferred position.” 
• “Typing position needs to be more ergonomic to avoid a constant twist movement of 

wrist. Contributes to hand-arm discomfort.” 
 
 
 
4.5 Prolonged Sitting and Occupational Driving as an MSD Risk Factor 

 Extensive research has been conducted on the effect of prolonged sitting on the 

lumbar spine and the associated risk for developing low back pain (Makhsous et al., 

2003; Magnusson & Pope, 1998). Through these efforts, many advocate interrupting 

bouts of prolonged sitting with non-sitting tasks, and recommendations for positions to 

minimize lumbar loading have been developed. In general, such research conclusively 

demonstrates that occupational drivers are at an increased risk for developing 

musculoskeletal disorders. These concerns apply to various occupational driving task sets 

and certainly extend to the mobile police population. However, to understand the police 

risk factor set, the risks of occupational driving must be acknowledged. 

 In addition to risks associated with prolonged seated postures, there are many 

reasons why a high prevalence of back pain could be expected specifically among 

occupational drivers. For example, a fixed posture, vibration, loss of lumbar lordosis, 

asymmetric forces acting on the spine and periodic lifting may be factors associated with 
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the occupational task set. Demonstrating the potential role of factors extrinsic to 

prolonged sitting, Kelsey & Hardy (1975) showed the relative risk of acute herniated 

lumbar disc while driving was twice as high as when sitting in a chair, regardless of the 

type of chair. 

Other outcome research supports the notion of occupational driving in general as 

a musculoskeletal risk factor. Most notably, 25% of all drivers and 66% of all business 

drivers suffer from some low back discomfort (Porter, Porter & Lee, 1992). This driver 

discomfort can be directly associated with amount of driving exposure, as discomfort has 

been found to be more prevalent with increased time driving and less discomfort reported 

in drivers of cars with more adjustable features, such as steering wheel adjustment 

(Porter, Porter & Lee, 1992). Further work by Porter & Gyi (2002) confirmed a 

significantly higher frequency of reported discomfort, notably in the low back and neck, 

as annual mileage increased (Figure 6). The prevalence of wrist/hand trouble was also  

most frequently reported with high 

exposure to driving. An important 

observation that has guided subsequent 

research with occupational driving is 

that drivers of cars with the most 

adjustable driving packages were also 

those with less sickness absences or 

reported discomfort (Porter, Porter & Lee, 1992). This may suggest that elimination of 

postural constraints and investigation into individual responses to minimize pain could 

play essential roles in limiting the adverse effects of prolonged sitting. 

 
Figure 6: Number of days absent from work with 
low back trouble for car drivers according to 
annual mileage (n=422) (Porter & Gyi, 2002). 
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 Investigations into these individual responses to prolonged sitting and resulting 

discomfort have shown that posture selection and interactions with a seated environment 

are highly population dependent. Dunk and Callaghan (2005) investigated gender effects 

using three 15-minute typing tasks performed by both male and female participants on 

four selected office chair designs with varied seat back and pivot characteristics. Male 

and female participants adopted different lumbar spine, pelvis and trunk angles, 

regardless of the chair design used. Females sat with more pelvic anterior rotation, less 

lumbar spine flexion and less trunk flexion than males. These results may suggest that 

males and females are exposed to different loading patterns through different muscle 

force distribution, activation timing, and segmental postures (Dunk & Callaghan, 2005). 

This variation in loading makes it difficult to generalize injury pathways, measures of 

injury risk, and recommendations for reducing injury risk. 

 These seated interactions are also diverse in terms of where individual responses 

to prolonged sitting occur. Reed et al. (2000) investigated the effect of seat height, 

steering wheel position and seat cushion angle on whole-body driving posture. A key 

finding from this study was that postural adaptations to changes in the layout of the 

driving task are accomplished primarily by changes in limb posture, whereas torso 

posture remains largely unaffected. This suggests that loading in the upper limb, 

specifically the shoulder, will be increased in peripheral tasks of an occupational driving 

task set and concerns with prolonged sitting are not limited to the lower back. 

 Static loads in the upper limb during prolonged occupational sitting present 

further risk to musculoskeletal injury (Magnusson & Pope, 1998). Previous investigations 

into upper limb loading have shown a high odds ratio in keyboard typing tasks with and 
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without intermittent rest periods (Hagberg & Sundelin, 1986).  A postal questionnaire of 

machine operators showed some occurrence of painful neck and shoulder symptoms in 

81% of seated machine operators, with work in twisted or bent postures being significant 

risk indicators (Tola et al., 1988). In general, extended upper limb exposures to flexed or 

abducted postures in these occupational tasks increase cumulative shoulder moment 

(Nussbaum et al., 2001). The increased muscular load associated with this moment 

increase may induce local muscular fatigue and present high risk for upper limb problems 

(Nussbaum, 2001). Through loss of intrinsic joint stability, kinematic dysfunction, and 

decreased force production (Armstrong et al., 1993; Magnusson & Pope, 1998), there is a 

subsequent possibility of muscular strain, impingement or tendonitis (Chaffin, Andersson 

& Martin, 2006). 

 

4.6 Surface Electromyography of the Shoulder Musculature 

 Estimations of both corporate and individual muscle forces and their relative 

contributions are essential to understanding the mechanism of mobility and stability in 

the shoulder for a given action (Chang et al., 2000). Currently, no generally available 

methods of non-invasive muscle force measurement exist, thus, indirect and 

mathematical methods are often used to predict muscle forces. Modeling approaches 

driven by electromyography (EMG) are a typical means for such muscle force estimates. 

 Surface EMG presents a non-invasive, inexpensive, and repeatable indication of 

muscle activity level within and between participants. In the case of this current study, 

surface EMG can act as a tool to compare muscular demand between different police 

cruiser configurations. Indwelling EMG does offer some advantages to surface EMG. 
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Surface electrodes have a relatively large pickup volume, which may result in more 

signal, but may collect confounding data from adjacent muscles or muscle elements 

(DeLuca, 1997). Also, with highly dynamic movements, skin movement over a given 

muscle belly may disrupt EMG signal quality (DeLuca, 1997). However, given the nature 

of a simulated police patrol task set, surface electrodes are the most appropriate choice 

for the current study as they offer full participants movement and simplified application 

procedures.   

 Lower back, neck and upper limb muscles are all active in typing tasks at visual 

display units, with m. upper trapezius showing the highest absolute RMS EMG amplitude 

(Kleine et al., 1999). A police mobile data terminal typing task set differs from a standard 

clerical setting in that keyboard location is placed laterally and anteriorly from the body. 

This results in increased elbow flexion and extension, shoulder flexion, abduction, and 

external rotation for hand positioning. Past investigations have primarily looked at 

activity in the neck musculature (Hagberg & Sundelin, 1986; Hermans & Spaepen, 1997; 

Visser et al., 2000); however, it will be beneficial to record the active muscles for each of 

these actions unique for police mobile data terminal typing tasks. Thus, surface 

electromyography sites in the current study will include shoulder flexor, extensor, 

abductor and lateral rotator, and elbow flexor musculature (Table 2) in addition to m. 

upper trapezius and proposed synergists for each of these movements.  

Table 2: Movements of the Glenohumeral Joint [adapted from Moore & Dalley (2006), p. 857 
Movement (function) Prime Movers  Synergists 
Flexion Pectoralis major; anterior 

deltoid 
Coracobrachialis (assisted 
by biceps brachii) 

Extension Posterior deltoid Teres major 
Abduction Middle deltoid Supraspinatus 
Lateral rotation Infraspinatus Posterior deltoid; teres 

minor 
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4.7 Estimation of Shoulder Joint and Tissue Loading 

 The etiology of shoulder musculoskeletal disorders is highly dependent on the 

loads that occur at the tissue level. Measurements of joint postures, electromyographical 

signals and muscle force production have been prevalent in shoulder research, but 

reliable methods of tissue load determination have historically been in question. Past 

models have used postural and external force data to generate muscle force estimates and 

improve understanding of load distribution (Hogfors, Karlsson & Peterson, 1995). 

However, they mostly apply to static or quasi-static situations. Recent efforts (Dickerson, 

Chaffin & Hughes, 2007, 2008) have developed the understanding of shoulder function 

and delineated four linked stages for rigorous tissue-level shoulder demand estimation: 1) 

musculoskeletal geometry reconstruction, 2) external force and moment calculation, 3) 

internal muscle force prediction method, and 4) communication of resultant muscle 

forces (Dickerson, 2008). 

 The shoulder loading analysis modules (SLAM) model (Dickerson, Chaffin & 

Hughes, 2007) incorporates intersegmental dynamics, population scalability, rapid 

geometric depiction and empirical shoulder stability constraints into a computational 

model, and allows integration with commercial ergonomic software. These features make 

it appropriate for use in quantification of physical exposures in a mobile police 

occupational task set. 
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Figure 7: Data flow through the mathematical shoulder model [from Dickerson, Chaffin & 
Hughes (2007)]. 
 

 Model inputs are three-dimensional motion data, anthropometric data, and 

external task load data, (Figure 7). Motion data generates intrinsic shoulder geometry, 

and subject, task, and motion data combine to calculate external dynamic moments 

through an inverse dynamics solution. These intermediate values are subsequently used 

as inputs into an optimization-based muscle force distribution algorithm. Calculated time-

series outcome measures include postural data, joint moments, externally generated and 

bone-on-bone joint forces, and individual and corporate muscle forces and force 

distributions (Figure 8). 

 
Figure 8: SLAM outcome measures. A) Depiction of glenohumeral internal geometry, including 
muscle elements, B) Normalized muscle force predictions with stability multiplier varied from 
0.4 to 1.0. This stability multiplier influences muscle activation levels for different load/posture 
combinations (Dickerson, Chaffin & Hughes, 2007). 
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4.8 Normative Shoulder Strength Limits as Means for Evaluating Police-
 Specific Joint Moments 
 
 Multi-directional shoulder strength limits, a fundamental component of shoulder 

functional capacity, are important determinants of a workers’ ability to perform a task. 

Several studies have investigated normal isokinetic strength values for specific 

populations such as baseball pitchers (Wilk, Andrews & Arrigo, 1995; Wilk et al., 1993), 

and isometric strength values among young, healthy populations (Otis et al., 1990). 

Though these studies provide excellent insight into maximal shoulder functional capacity, 

it is difficult to justify its use as a standard for occupational application. 

 To investigate occupational task limitation values and be fully representative of 

an industrial population, shoulder strength databases must be free of gender restrictions 

and include wide age, height and mass ranges. Hughes et al. (1999) tested shoulder 

strength under isometric conditions and reported values for 120 subjects with a focus on 

age-related changes. An isokinetic dynamometer was used with the elbow secured at 90° 

to ensure testing of isolated maximum shoulder torque. Peak maximal effort torque was 

obtained for twenty unique exertion conditions (Table 3). These procedures developed a 

normative database of isometric shoulder strength for shoulder flexion, extension, 

abduction, adduction, internal rotation, and external rotation. Such a complete database 

with articulation and subject variation is essential for comparison of occupational task 

demands and determining a male or female workers’ age-dependent ability to perform a 

task.  
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Table 3: Mean dominant-side isometric strength measurements for males stratified by age. 

 
*from Hughes, Johnson, O’Driscoll and An (1999). 
 

 A similar strength database was developed for 3DSSPP (University of Michigan, 

Ann Arbor, MI) and integrated into the Jack Task Analysis toolkit. Past investigations 

into isokinetic and isometric strength were the basis for this database (Clarke, 1966; 

Kumar, Chaffin & Redfern, 1988). 

 

4.9 Prolonged Occupational Exertion Guidelines 

 Past investigations have attempted to develop standards regarding safe 

characteristics for prolonged work. Isometric endurance time has been the most common 

measure of local muscle fatigue effects with the assumption that endurance time 

sufficiently integrates and describes fatigue, discomfort and injury risk (Rohmert, 1973; 

Jonsson, 1978; Dul, Douwes & Smitt, 1994). These efforts make conclusions under the 

assumption of a direct relationship between endurance time and relative muscular effort 

(% MVC). A commonly used work design guideline is the Rohmert Curve (Figure 9) 

which defines muscular effort below 15-20% is sustainable for an entire working shift 

(Rohmert, 1973). Other work has improved the fidelity of such models showing isometric 
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endurance time to be dependent of load, but not gender or age (Mathiassen & Ahsberg, 

1999). Recent and similar investigations, however, have found the Rohmert Curve may 

overestimate endurance times for exertions less than 45% MVC and underestimate times 

for exertions greater than 45% MVC (Garg et al., 2002)(Figure 9).  

 
Figure 9: Endurance time against % MVC for the five different shoulder postures and seven 
different % MVCs [from Garg et al, 2002]. 
 

 The extensive investigations into fatigue and endurance time during sustained 

pure static contractions are certainly beneficial in developing guidelines that minimize 

risk, however, a large proportion of occupational tasks, though prolonged, are dynamic, 

repetitive or intermittent (Iridiastadi & Nussbaum, 2006). An amplitude probability 

distribution function (APDF) quantifies cumulative muscle activity in relation to 

acceptable working guidelines. Load limits are defined based on the 10th, 50th, and 90th 

probability percentiles, which relate to static, mean and peak activity levels, respectively 

(Jonsson, 1978). Acceptable guidelines are 2-4%, 12-14%, and 50-70% MVC for static, 
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mean and peak, respectively (Jonsson, 1978; Mathiassen & Winkel, 1991). Alternatively, 

the Dul, Douwes & Smitt (1994) model is a work-rest model, which estimates the mean 

remaining endurance capacity of a static posture during and immediately after a work-rest 

schedule. Though this model incorporates the repetitive nature of many occupational 

tasks, it still only describes work in static postures and fixed external forces. 

 Due to the complex nature of dynamic occupational tasks, specific relationships 

between muscle fatigue development and changes in task parameters are not clear, 

making task evaluation difficult (Iridiastadi & Nussbaum, 2006). At present, EMG-based 

muscle fatigue and task evaluation methods are among the best available options. Though 

fatigue assessment is not trivial, it can be monitored and quantified using EMG.  

 In the current study, both real and simulated police patrol tasks are highly 

dynamic and relatively unpredictable. Assumptions of static, sustained task parameters 

are not appropriate, thus cumulative activity and relative effort measures are preferred 

assessment criteria. Though no absolute safety thresholds exist, muscle force (and 

corresponding cumulative muscle stress), joint posture, and muscle activity values will be 

compared between different cruiser configurations in an attempt to minimize those 

measures. Because simulated patrol timelines were developed from observational data, it 

is appropriate to evaluate overall muscle activity with an amplitude probability 

distribution function. 

 

4.10 Estimates of Keyboard Reaction Force for a Keyboard Typing Task 

 Pain and impairment of the upper limb are often attributed to disability and 

compensation among occupational keyboard users (Martin et al., 1996). Muscular 
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fatigue, ischemia, and tendon and nerve compression are principal mechanisms leading to 

related upper limb disorders (Faucett & Rempel, 1994). The repetitive and sustained 

nature of typing task exertions is most often attributed as the primary risk factor for such 

disorders (Martin et al., 1996). 

 Police-specific keyboard data entry ranges from a few keystrokes per hour to 

highly repetitive data entry depending on the division in which a given officer works. 

Based on in-car observation, traffic division officers perform infrequent, short intervals 

of moderate keystroke tasks, but primarily use the keyboard as a command-response tool 

at a rate of a few keystrokes per hour. Time-history analysis of in-car digital video will 

yield mean police keyboard typing task duration.  

 In creating the police work environment in vitro and using digital human 

modeling software, a peak keystroke force estimate is needed to simulate the required 

exertion in traffic division police typing task set. Armstrong, Foulke, Martin, Gerson, and 

Rempel (1994) had observed that applied keystroke force was 2.5 to 3.9 times greater 

than the force required to depress the key (key switch make force). Martin et al. (1996) 

expanded on this work with an investigation of methods to assess finger forces and 

muscle activity during a keyboard typing task and the relationship between keyboard 

reaction forces and flexor EMG during a typing task. Trials of a pangramic text typing 

task were performed on a keyboard with an average keystroke or “make” force of 0.47N. 

Average peak keystroke force was 2.59N, which represents 9% MVC of the subject pool 

(Table 4). To simulate required police exertions, a 2.59N keystroke force acting at the 

hand is appropriate. It is recognized that this does not maximize the fidelity of the task 
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simulation, but the complex hand and wrist modeling required to achieve that is beyond 

the scope of this project. 

 
Table 4: Estimates of peak force using base to peak RMS EMG average of all fingers of each 
participant and typing speed. 

 
*from Martin, Armstrong, Foulke, Natarajan, Klinenberg, Serina, Rempel (1996). 
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5.0 Methods 

 The methods are described for two distinct project aspects: 1) a field investigation 

of mobile police officer activity postures, and 2) a laboratory investigation testing these 

configurations in a simulated police patrol session. 

 

5.1 Field Quantification of Physical Exposures in Police Cruiser Operators 

 The field quantification was a mobile police officer surveillance study in which 

current-duty officers were monitored during the course of a working day using a digital 

video collection system to identify activities performed and postures assumed by drivers. 

 

5.1.1 Participants 

 Ten (10) traffic division officers (8 male; 2 female) volunteered for this study. 

Participants were in good general physical health and provided written informed 

participatory and video consent (Appendix A). Mean participant age and stature were 

37.5 (± 4.3) years and 179.1 (± 12.3) cm, respectively. 

 

5.1.2 Posture and Load Exposure Assessment Survey 

 Officers completed a posture and load exposure assessment survey at the 

beginning of their shift during which digital video was collected (Appendix B). There 

were no exclusion criteria for completion of the survey.  This subjective perceived 

discomfort questionnaire provided officers an opportunity to evaluate any pain, 

immobility and impracticality with equipment interfaces that they experienced. The 

survey had three sections: (1) 27 questions regarding the automotive seating environment, 
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(2) 20 questions regarding body discomfort, and (3) an open section for additional 

comments and suggestions. This survey was adapted from similar, validated assessments 

done by Mergl et al. (2005) and Donnelly, Callaghan and Durkin (in press). 

Modifications to the survey were omission of questions regarding automotive upholstery, 

generalization of questions regarding the driver seat surfaces, inclusion of questions 

regarding discomfort caused by the steering wheel, and addition of an open section for 

suggested improvements of equipment locations. All responses were given on a 100mm 

visual analog scale, with 0mm representing “No discomfort” and 100mm representing 

“Extreme discomfort” (Figure 10).  

Figure 10: Sample 100mm visual analog scale for participant discomfort in the right shoulder. 
An identical scale was used to measure low back discomfort after each typing and driving task in 
the simulated police patrol session. 
 
 

5.1.3 Video Collection System Components 

 A laptop-based video collection system was assembled and mounted to the 

interior of a Ford Crown Victoria police cruiser. The system consisted of three 

components: 1) a 3.6mm, 0.1 LUX bullet camera (Defender Security, Centerville, OH, 

USA) which was mounted on the passenger side of the roll cage, approximately 10° 

posterior to the driver’s seated frontal plane (Figure 11), 2) a laptop computer anchored 

in a protective housing and secured on the passenger side floor of the vehicle, and 3) a 

USB device (Sunplus SPC506A Video Capture, Bronzepoint Security Products, 
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Belleville, IL, USA). Digital video was captured at 20Hz using Windows Movie Maker 

collection software. Audio collection was disabled for all trials. 

  

5.1.4 Video Data Collection and Analysis 

 Continuous digital video was captured for single occupant police cruiser daytime 

shifts between 5.5 and 9.5 hours in duration. An experimenter initiated operation of the 

video collection equipment and officers were instructed to perform their daily task set as 

they normally would. Video was pre-screened to identify a set of common driver 

activities and yielded ten possible driver activity postures (Table 5). 

Full shift video files (.wmv) were 

down-sampled from 20Hz to 1Hz. This 

minimized file size and processing 

duration while maintaining video 

integrity and capture of whole body 

activity posture details.  

Each full shift video collection was 

 

Figure 11: Video collection system a) system components, b) camera placement on the 
passenger-side roll cage of police cruiser. 

Table 5: REACT driver activity posture selections 
Activity Posture Description 

1 Right-handed MDT use 
2 Two-handed MDT use 
3 Two-handed driving 
4 On-paper documentation 

5 Left-handed driving  
(right upper limb relaxed) 

6 Forward right arm reach 
7 Lateral right arm reach 
8 Traffic observation 
9 Vehicle entry/exit 
10 Out of vehicle 

*MDT is mobile data terminal 
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analyzed using REACT (Regional Enforcement Activity Characterization Tool) custom 

software developed at the University of Waterloo using MATLAB R2008a (Mathworks, 

Natick, MA). Video was loaded into REACT graphical user interface (Figure 12) and 

officers were activity matched for each frame of digital video. Video frames were 

matched to one of the ten pre-determined driver activities. The total number of frames 

identified in each of the activity postures yielded cumulative time spent in each activity, 

in seconds. These cumulative totals were used to calculate the percentage time in each 

activity posture for the entire shift (Tnet, Equation 1), percentage of in-car time in each 

activity posture (excluding time outside of vehicle) (Tin, Equation 2), and the percentage 

of time in each activity after initial vehicle entry (Tentry, Equation 3).  
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where, t(p) is cumulative time in posture p  ttotal is total shift time 
 N is number of participants   a is time before initial vehicle entry 
 

 

Group means and standard deviations were calculated for percentage time in each 

activity for the entire shift, percentage of in-car time in each activity, and percentage of 

time in each activity after initial vehicle entry. 



 
 

35 
 

 The activity identification produced a time-history of driver activities that defines 

officer order, frequency and duration in each activity posture (Figure 13). Time-history 

data was analyzed with custom software developed in Matlab R2008a (Mathworks, 

Natick, MA). The duration of each group of consecutive video frames in activities 1 

(right-handed MDT use) and 2 (two-handed MDT use) were determined and mean 

keyboard typing task duration was calculated. 

 

Figure 12: Regional Enforcement Activity Characterization Tool (REACT) graphical user 
interface for officer activity selection. 
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Figure 13: Sample time-history of police officer activity postures. Note: driver activity numerical 
values represent the postures indicated in Table 5. 
 
 
 
5.2 The Evaluation of Mobile Data Terminal Location During a Simulated Police 

Patrol Task Set 
 

Two separate 1-hour simulated police patrol testing sessions were performed in a 

laboratory driving simulator setup (Figure 14), in which nine channels of bipolar surface 

EMG, 21 surface-placed markers for motion tracking, seat pan pressure mapping, lumbar 

accelerations, and ratings of perceived discomfort were recorded. Participants used a 

driver seat equipped with an active lumbar support (ALS) system for one session and a 

standard Ford Crown Victoria driver seat for the other with seat type order randomized.  

 
Figure 14: Experimental driving simulator setup and laboratory environment. 
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For the duration of each testing session, participants were seated in a self-selected 

simulated driving position, facing forward (Figure 15a and 15b). Seat forward-backward 

position was adjusted to the ‘most comfortable’ position by the participants prior to 

testing, and this position was then recorded and fixed for the duration of the session. The 

selected seat position was independent between testing sessions. Lumbar support in each 

of the seats was self-selected prior to the simulated patrol and could be modified by the 

participant at any time during the session. Time and nature of any lumbar support 

adjustments were recorded. Participants performed maximum voluntary contractions for 

the nine collected muscles for EMG normalization. Participants then performed a 1-hour 

simulated police patrol session consisting of 15-minute driving and 1-minute typing 

tasks. For the duration of each testing session, participants were equipped with police 

body armour and duty belt containing a personal radio (0.65kg), a pepper spray canister 

(0.08kg), a flashlight (0.52kg), a retractable assault baton (0.57kg), a pair of handcuffs 

(0.26kg), a fully loaded firearm (0.67kg), and two fully loaded ammunition magazines 

(1.0kg). Net mass of the loaded duty belt was 4.75kg. 

 

 

Figure 15: Participant posture for a) simulated typing task and b) simulated driving task. 
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5.2.1 Typing Task 

 Participants performed a simulated mobile police typing task intermittently during 

each testing session. The task consisted of two integrated elements: (1) a command-

response task to simulate dispatch communication and (2) a facial description typing task 

to simulate offender physical description recognition. For the command-response 

element, participants performed a series of single word or short sentence responses to on-

screen questions or instructions. For the facial description element, participants typed a 

simple description of a facial image that appeared on the screen. Each typing task 

element was 30-seconds in duration. The simulated mobile police typing task software 

was a custom application developed in Matlab 2008a. Typing task elements were based 

on reported MDT function usage distribution (Hampton & Langham, 2005) and verified 

by observed activity descriptions of traffic division constables.   

 

5.2.2 Simulated Police Patrol 

Each simulated police patrol session consisted of three 15-minute simulated 

highway driving tasks that were each followed by a set of five 1-minute simulated mobile 

police typing tasks (Figure 16). Simulated highway driving was performed in a custom 

driving simulator setup. The driving course consisted of straight road with minor bends, 

and driving speed was maintained at 100km/h. Typing tasks were performed at each of 

five randomly ordered MDT locations. Participants were instructed to perform typing 

tasks in a natural posture with either one or two hands. The order of the two elements for 

each typing task was randomized for each trial. 
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Figure 16: Study design – participants performed three sets of five 1-minute typing tasks 
each separated by 15-minutes of simulated driving. 
 

5.2.3 Participants 

 Twenty (10 male; 10 female) University of Waterloo undergraduate and/or 

graduate students aged 18-28 volunteered for this study. Participants were recruited via 

poster and verbal recruitment. Participants were in good general physical health with no 

history of shoulder or lower back injury/pain within the last 12 months. Participants 

provided written informed consent (Appendix C). Participants were stature-matched 

across genders in an attempt to get an experimental representative of the general 

population. Participant age, stature and body mass information are shown in Table 6. 

 
 
Table 6: Participant Information. 

  
Height 
(cm) 

Body Mass 
(kg) Age 

Max. 195.5 118.0 28.0 
Min. 156.8 56.8 18.0 

Mean. 175.6 79.2 23.3 
 

5.2.4 Surface Electromyography 

 Nine bipolar surface electrodes were placed on the skin over 9 muscles and 

muscle-elements surrounding the right shoulder. One electrode was placed on the skin 

superficial to the right clavicle as a reference electrode. Skin was prepared by shaving the 

electrode site with a new disposable razor and wiped with isopropyl alcohol as per Zipp 

(1982). Fixed distance (2cm) dual surface electrodes (Noraxon USA, Inc., Ag/AgCl; IE 
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resistance: 200kΩ, USA) were placed over m. pectoralis major (clavicular insertion), m. 

upper trapezius, m. anterior deltoid, m. middle deltoid, m. posterior deltoid, m. biceps 

brachii, m. triceps brachii, m. infraspinatus and m. supraspinatus. Surface electrodes 

placement sites and test contractions are described in Table 7. 

Table 7: Experimental Surface Electrode Placement Instructions 
Surface 

Electrodes Placement Location 

Pectoralis 
Major 
(clavicular 
insertion) 

Electrode Placement: Between sternoclavicular joint and the caracoidus 
process, 2 cm below the clavicle (on an angle down and laterally) 
Test Contraction: Shoulder abducted to 90º, horizontally adduct & flex 
shoulder. Resist (from above) proximal to elbow joint in a downward and 
outward direction. 

Upper 
Trapezius 

Electrode Placement: 2/3 on the line between the trigonum spinae and the 
8th thoracic vertebrae, 4 cm from muscle edge, at approximately a 55° 
oblique angle 
Test Contraction: Prone: shoulder abduction at 90º with elbow extended, 
thumb down 

Anterior 
Deltoid 

Electrode Placement: 2-4 cm below the clavicle, parallel to muscle fibers 
Test Contraction: Sitting: Forward flexion at 90° 

Middle 
Deltoid 

Electrode Placement: 3 cm below the lateral rim of the acromion, over 
muscle lass, parallel to muscle fibers 
Test Contraction: Sitting: abduct the arm to 90° (elbow extended, thumb 
forward) 

Posterior 
Deltoid 

Electrode Placement: 2 cm below lateral border of scapular spine, oblique 
angle toward arm (parallel to muscle fibers) 
Test Contraction: Prone: Extension when arm is abducted to 90º and 
externally rotated (thumb forward) 

Biceps brachii 
Electrode Placement: Above the centre of the muscle, parallel to the long 
axis 
Test Contraction: Sitting: Forearm flexion (resistance increases EMG) 

Triceps 
Brachii  

Electrode Placement: On the posterior portion of the upper arm, located 
medially 
Test Contraction: Supine: shoulder and elbow flexed to 90º; forearm 
extension against resistance 

Infraspinatus 
Electrode Placement: Parallel to spine of scapulae, approximately 4 cm 
below, over the infrascapular fossa 
Test Contraction: Sitting: elbow bent to 90°, external rotation of arm 

Supraspinatus 

Electrode Placement: Midpoint and 2 finger-breadths anterior to scapular 
spine 
Test Contraction: Side-lying: abduct shoulder to 5° with elbow extended 
(thumb forward); abduct against resistance 

Based on Brookham (2008) and Delagi & Pegotto (1980) 
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 The nine channels of muscle generated potentials were collected with a 16-channel 

Noraxon Telemyo 2400T G2 Telemetry electromyography system (Noraxon U.S.A. Inc., 

Scottsdale, AZ). System leads were equipped with a 1st order high-pass filter (10 Hz +/- 

10% cut-off). Input channels had 10-500Hz analog band pass filters. EMG active lead 

specifications included a differential amplifier common mode rejection ratio of >100 dB 

and input impedance of >100 mΩ. The gain was set at 1000. The transmitter data 

acquisition system has 16-bit resolution on all analog inputs. The system was limited to 

1500Hz and 3000Hz sample rates (fs). Given a surface EMG bandwidth of 10-500 Hz 

(Hagberg & Hagberg, 1989), a 1500 Hz sample rate was used in order to satisfy the 

Nyquist theorem (fs = 2n + 1, where n is the highest frequency content of the collected 

signal) . The system receiver converted the digital telemetry data read from the surface 

electrodes to analog output signals. Output signals were transferred to a personal 

computer for subsequent recording with Vicon Nexus 1.2 software (Vicon Motion 

Systems Ltd., Los Angeles, CA). 

 

5.2.4.1 Maximum Voluntary Contraction (MVC) Collection 

 Electromyography of each recorded muscle for testing trials was normalized to 

percentage of the maximum voluntary contraction (MVC) EMG amplitude for relative 

signal comparison between individual muscles and between subjects (MVC exertions are 

described in Table 7). Subjects performed two isometric MVC contractions for each of 

the 9 recorded muscles, separated by two minutes of rest to eliminate fatigue effects (as 

per DeLuca, 1997). Subjects were asked to ramp up to their MVC within a six second 
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collection period, reaching peak force production after two seconds. The peaks of the two 

linear enveloped trials were averaged and used as the MVC amplitude for each muscle. 

 

5.2.5 Motion Tracking System 

  To act as input for the SLAM biomechanical model (Dickerson, Chaffin & 

Hughes, 2007), participant kinematics were recorded throughout all tasks. This 

information yielded specific torso and upper limb positions and orientations for driving 

and typing tasks, and were used to estimate dynamic joint moments and forces. The 

Vicon MX motion capture system (Vicon Motion Systems Ltd., Los Angeles, CA) was 

used to record upper limb and torso kinematic data. Seventeen reflective markers were 

placed on each participant at external bony landmarks and segment tracking triad 

locations, and four markers were placed on the mobile data terminal (Table 8). Eight 

Vicon MX20+ (2.0 MP) cameras surrounded the collection space and tracked the motion 

of the reflective markers throughout the task set. Motion and position data were collected 

with Vicon Nexus 1.2 software. Each task collection was recorded synchronously with 

the nine channels of surface electromyography. 

 
Table 8: Motion tracking reflective marker positions 
Marker Location 

1 5th metacarpal phalangeal joint 
2 2nd metacarpal phalangeal joint 
3 ulnar styloid 
4 radial styloid 
5 lateral epicondyle 
6 medial epicondyle 
7 right acromion 
8 left acromion 
9 C7 spinous process 
10 suprasternal notch 
11 xyphoid process 
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Note: Arm Triad I, II and III form a 
triangular segment tracking cluster on the 
right upper arm.  
 
Forearm Triad I, II and III form a triangular 
segment tracking cluster on the right forearm.  
 
All markers are on the right side  
of the body unless otherwise indicated. 
 
 
 

5.2.6 Ratings of Perceived Discomfort 

 Ratings of perceived discomfort (RPD) were recorded after each driving and 

typing task was performed during the session. The RPD was rated on a visual-analog 

scale 100mm long (Appendix D). Participants rated both their right upper limb and lower 

back discomfort after the completed task, with 0mm being ‘no discomfort’ and 100mm 

being ‘extreme discomfort’. 

 

5.2.7 Laboratory Setup and Components 

The simulator setup followed that of Durkin et al., 2006. The simulator included a 

car seat, dashboard, steering wheel, brake and gas pedals, mobile data terminal (MDT) 

and a viewing monitor (Figure 17). The driving simulation software was STISIM Drive 

(Systems Technology Inc., Hawthorne, CA, USA). The steering wheel was a standard 

Ford Crown Victoria wheel, and gas/brake pedals were a commercial product compatible 

with the driving simulation software. A representative mobile data terminal was fixed on  

12 arm triad I 
13 arm triad II 
14 arm triad III 
15 forearm triad I 
16 forearm triad II 
17 forearm triad III 
18 mobile data terminal I 
19 mobile data terminal II 
20 mobile data terminal III 
21 mobile data terminal IV 
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a Motoman NX100 robotic 

arm (Motoman, West 

Carrollton, OH, USA), 

allowing six degree of 

freedom adjustment of 

location and orientation 

relative to the driver and 

seat. Simulator and mobile 

data terminal component 

locations were setup 

according to standard 

dimensions of a Ford 

Crown Victoria Police Cruiser.  

 

5.2.7.1 Driver Seats 

 Participants used a modified driver seat equipped with an active lumbar support 

(ALS) system for one session and a standard Ford Crown Victoria driver seat for the 

other. The Crown Victoria driver seat allowed for only anteroposterior lumbar support 

adjustment. The modified ALS seat was a prototype that, in addition to manual anterior-

posterior and superior-inferior lumbar support adjustment, produced cyclic anterior-

posterior-superior-inferior excursions of the lumbar support with a cycle time of 20 

seconds.  The system ran for 10 minutes after which the driver was required to re-initiate 

the mechanism. The modified ALS seat contained a shortened seat pan and foam 

Figure 17: Driving simulator and data collection components. 
 A) Viewing screen, B) steering wheel, C) gas and brake pedal 
assembly, D) mobile data terminal, E) Motoman NX100 robotic 
arm, F) Seat pressure mat, G) Vicon MX20+ Camera, H) Ford 
Crown Victoria driver seat. 
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structure modifications to accommodate the police duty belt and provide active support 

through interaction with the police protective vest. 

 

5.2.7.2 Mobile Data Terminal (MDT) 

Typing tasks were performed at one of five randomly ordered mobile data 

terminal locations. Locations were numerically classified as location 2-6 accordingly to 

robotic arm naming conventions. Four locations (location 2-5) were fixed relative to the 

simulated cruiser environment (Figure 18), and one location (location 6) was self-selected 

by participants as the ‘most comfortable’ location. The self-selected MDT location was 

chosen prior to testing sessions at the time of seat position selection. The only restriction 

placed on location self-selection was that it did not make contact with any other aspects 

of the simulated cruiser environment. The self-selected location was independently 

chosen for each testing session.  The self-selected location was highly variable both 

across participants and between seat types (Table 9), however, mean location was similar 

to the current location (Figure 19). Mean self-selected location was within 6.0cm of the 

current location in the anterior-posterior, medial-lateral, and superior-inferior directions 

for both driver seat types (Table 9). Because driver seat position was adjustable, mobile 

data terminal locations are expressed relative to a fixed point, the front right mounting 

bolt of the driver seat (Table 10).  
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Figure 18: Four mobile data terminal locations fixed relative to simulated cruiser environment. 
Locations 2, 3 and 4 were developed in digital human modeling software to minimize an upper 
limb loading measure in three parallel planes. 
 
 
Table 9: Mean and standard deviation of distance between current and self-selected MDT 
location. Positive values in the X and Y directions indicate that the self-selected MDT location is 
closer to the driver, and positive Z values indicate the self-selected location is below the current 
location. ALS is the active lumbar support driver seat; CV is the Crown Victoria driver seat. 
  distance between locations (cm) 

  
X (anterior-
posterior) 

Y (superior-
inferior) 

Z (medial-
lateral) 

mean 5.46 -3.92 1.65 ALS 
st. dev. 4.29 5.29 2.86 
mean 1.51 -1.19 0.84 CV st. dev. 8.54 10.89 3.50 

 
 
 
Table 10: Fixed MDT locations relative to the front right driver seat mounting bolt. Positive X 
direction is posterior; positive Y direction is superior; positive Z direction is right (towards 
passenger seat). 
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Fixed locations 3, 4 and 5 (Figure 18) were determined using Jack digital human 

modeling software (Siemens PLM Software, Plano, TX, USA). Computer-aided design 

(CAD) objects were acquired and modified for a representative mobile data terminal and 

Ford Crown Victoria police cruiser. A 95th percentile male digital human operator 

manikin was inserted in the virtual environment and visually posture matched to 

previously collected digital video data. A reach envelope for the manikin was determined, 

and an 11.0cm by 11.0cm grid was formed within it, aligned with the sagittal plane of the 

manikin. The tip of the 3rd digit on the right hand of the manikin was positioned at each 

intersection point in the grid in the one-handed typing posture. A 2.59N reactive finger 

force was applied at the point of finger-keyboard contact, which represents the average 

keystroke force for a keyboard typing task (Martin et al., 1996). The summation of elbow 

extension, right shoulder abduction/adduction, right shoulder flexion/extension, and right 

shoulder internal/external rotation moments was calculated using the Static Strength 

Prediction tool within the software. The intersection point in each anteroposterior vertical 

plane which minimized this total moment value was identified (Figure 20).Three of these 

locations were within the physical and safety constraints of the police cruiser and were 

chosen as keyboard centre locations 3, 4 and 5. Location 2 represents the most commonly 

used current MDT location. Participants were not informed of MDT location prior to or 

at the time of any of the typing tasks. 
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Figure 19: Mean self-selected (location 6) and current (location 2) MDT locations for both the a) 
Active Lumbar Support driver seat and b) Crown Victoria driver seat. 
 

 

Figure 20: Evenly spaced planes of discrete points parallel to the sagittal plane of the driver. 
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5.2.8 Data analysis 

All EMG data was processed using MATLAB 2008a (Mathworks, Natick, MA). 

The mean of two resting EMG trials in quiet lying was taken to represent the resting 

EMG signal for each muscle. All raw EMG was linear enveloped (full-wave rectified and 

filtered with a single-pass, 2nd order Butterworth filter) with a cutoff frequency of 2 Hz 

(Dark, Ginn & Halaki, 2007). Trial EMG recordings had resting bias removed and were 

normalized to individual muscle MVC values for comparison. Nine separate 4-way 

repeated measures ANOVAs (MDT location, seat type, typing task set, and gender) 

tested for significant trial mean muscle activity differences in each of the nine recorded 

muscles. A Tukey HSD post-hoc analysis was conducted when statistically significant 

differences were found. Statistical significance was considered at α = 0.05. 

Participant motion data gaps were pattern filled with Vicon Nexus 1.2 and Matlab 

2008a software to remove any missing marker data. Motion files were input to the SLAM 

mathematical model (Dickerson, Chaffin & Hughes, 2007) using Matlab 2008a to 

generate time-series humeral elevation angles (3D angle between long axes of the torso 

and humerus), resultant dynamic right shoulder moment, and raw and normalized 

individual muscle force predictions (38 muscles and muscle elements). Raw muscle force 

predictions were summed to yield a model-based total predicted muscle force. Individual 

muscle EMG recordings were scaled to maximum producible force (Fmax) for each 

muscle (Makhsous, 1999) (Appendix E) and summed to yield an EMG-based total 

muscle force. A 4-way repeated measures ANOVA (MDT location, seat type, typing task 

set, gender) was run for each of the six outcome measures (mean muscle activity, RPD, 

humeral elevation angle, resultant dynamic shoulder moment, model-based total muscle 
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force, EMG-based total muscle force) and tested for significant main and interaction 

effects. A Tukey HSD post-hoc analysis was conducted when statistically significant 

differences were found. Statistical significance was considered at α = 0.05. 

Outcome measure agreement was evaluated with an agreement matrix (example 

in Table 11). Within seat type rankings across mobile data terminal locations were 

determined for six outcome measures: (1) shoulder rating of perceived discomfort, (2) 

low back rating of perceived discomfort, (3) mean resultant dynamic shoulder moment, 

(4) mean humeral elevation angle, (5) EMG-based total empirical muscle force, and (6) 

model-based total predicted muscle force. The sample mean at each MDT location 

(within seat type) was calculated and ranked. The MDT location with the lowest level for 

a given outcome was ranked as 1 and other outcome measures were subsequently ranked 

based on identified statistically significant differences. Each of the six outcome measures 

were evenly weighted to calculate group average ranks across outcome measures 

(Equation 4).  

N

)rerank(measu
mean rank location 1

∑
==

N

i
i

   (4) 

Table 11: Sample outcome measure agreement matrix. RPD is rating of perceived discomfort. 
  Outcome Measure Rank 

Outcome Measure 
Location 

2 
Location 

3 
Location 

4 
Location 

5 
Location 

6 
Shoulder RPD 2 4 3 5 1 
Low Back RPD 2 3 4 5 1 
Mean Elevation Angle 2 5 4 3 1 

Mean Resultant Dynamic 
Shoulder Moment 

4 2 1 5 3 

Muscle Activity Total 3 4 2 5 1 
Total Predicted Muscle Force 1 4 5 2 3 

Average Rank 2.33 3.67 3.17 4.17 1.67 
Rank Order 2 4 3 5 1 



 
 

51 
 

6.0 Results 

 The results are described for the two distinct project aspects, which were a field 

investigation of mobile police officer activities and a laboratory investigation testing 

modified configurations in a simulated police patrol session. 

 

6.1 Field Quantification of Physical Exposures in Police Cruiser Operators 

 Percentage time in each of the identified activities for the full shift of video 

collection, for activity in vehicle (out of vehicle activity omitted), and for activity after 

initial entry of the officer in the vehicle are presented in Tables 12, 13, and 14, 

respectively. For the full shift of video collection, the highest mean time spent in any one 

activity posture was 55.5 ± 13.4% of the shift out of the vehicle (Table 12). Time out of 

the vehicle occurred for various reasons, including roadside interaction due to traffic 

violations, attendance at Municipal Court meetings, equipment retrieval from the vehicle 

trunk, and meal breaks. The highest mean percentage time spent in an in-car activity 

posture was 50.3 ± 15.7% of time in-car driving with the left arm (right arm relaxed on 

arm rest) (Table 13).  

 On-paper documentation and MDT use represented the most time of in-car, non-

driving activity postures. Completion of various daily logs on paper (on-paper 

documentation) consumed 20.8 ± 16.5% of the time. Mobile data terminal use (combined 

one-handed and two-handed) represented over 13.1% of time activities performed by 

officers. 

 To determine the length of driving tasks for a simulated patrol task set, mean 

initial driving duration prior to mobile data terminal use, vehicle exit, or on-paper 
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documentation was calculated. Mean duration was 739.3 ± 734.5 frames of a 1Hz video 

collection (Table 15), which translates to 12 minutes, 19.3 seconds. 

 Slight variations existed for inter-participant individual joint postures, but whole-

body activity postures consistently fit into one of the ten activity posture activities created 

in the REACT software tool. No frames were omitted from classification. 

Table 12: Percentage time of full shift in each activity posture (n = 10). 

Activity Posture Mean Time 
(%) 

Standard 
Deviation (%) Rank 

Officer out of vehicle 55.5 13.4 1 
Left-handed driving 
(right-hand relaxed) 22.3 10.5 2 

On-paper documentation 9.38 7.52 3 
Right-handed MDT use 4.57 2.00 4 
Two-handed driving 3.95 3.00 5 
Vehicle entry/exit 1.28 0.49 6 
Two-handed MDT use 1.23 1.06 7 
Relaxed/Traffic watch 0.65 1.19 8 
Right arm lateral reach 0.61 0.33 9 
Right arm forward reach 0.53 0.36 10 
 
Table 13: Percentage time of activity in vehicle in each activity posture with time out of vehicle 
omitted (n = 10). 

Activity Posture Mean Time 
(%) 

Standard 
Deviation (%) Rank 

Left-handed driving 
(right-hand relaxed) 50.3 15.7 1 

On-paper documentation 20.8 16.5 2 
Right-handed MDT use 10.3 3.99 3 
Two-handed driving 8.98 6.54 4 
Vehicle entry/exit 3.09 1.29 5 
Two-handed MDT use 2.78 1.81 6 
Right arm lateral reach 1.49 0.81 7 
Relaxed/Traffic watch 1.20 2.08 8 
Right arm forward reach 1.12 0.60 9 
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Table 14: Percentage time of activity after initial vehicle entry in each activity posture (n = 10). 

Activity Posture Mean Time 
(%) 

Standard 
Deviation (%) Rank 

Officer out of vehicle 50.4 16.7 1 
Left-handed driving 
(right-hand relaxed) 24.7 11.6 2 

On-paper documentation 10.4 8.64 3 
Right-handed MDT use 5.01 2.14 4 
Two-handed driving 4.57 3.78 5 
Vehicle entry/exit 1.41 0.51 6 
Two-handed MDT use 1.36 1.15 7 
Relaxed/Traffic watch 0.81 1.56 8 
Right arm lateral reach 0.68 0.38 9 
Right arm forward reach 0.58 0.38 10 
 
 
Table 15: Initial driving duration prior  
to mobile data terminal use, vehicle  
exit or on-paper documentation. 

Trial Duration (s) 
1 2214 
2 341 
3 528 
4 118 
5 819 
6 641 
7 335 
8 234 
9 238 
10 1925 

Mean 739.3 
S.D. 734.5 

 
 
 
6.2 The Evaluation of Mobile Data Terminal Location During a Simulated Police 

Patrol Task Set  
 

The results for the laboratory investigation of mobile data terminal location and 

driver seat type have are provided as a sub-section for each of six outcome measures and 

an agreement matrix, which incorporates all outcome measures. 
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6.2.1 Mean Muscle Activity Level 

Mobile data terminal (MDT) location, driver seat type and gender each influenced 

the recorded mean muscle activity in one or more of the nine recorded muscles during 

simulated police typing tasks. All muscles that indicated significant differences had the 

highest muscle activity in locations 3 and 5, followed by location 4, and lowest in 

locations 2 and 6. Significant differences in mean muscle activity during the simulated 

police typing task were seen across mobile data terminal location for four of the nine 

recorded muscles: MDEL (p = .0015), PDEL (p < .0001), BICP (p = .048), and SUPR (p 

< .0001). Three levels of significance existed for PDEL and SUPR (Figure 21), whereas 

MDEL and BICP showed a location main effect, but only one level of significance upon 

post-hoc analysis.  
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Figure 21: Mean muscle activity and significance level across MDT location for m. posterior deltoid and 
m. supraspinatus. Levels not separated by the same letter are significantly different. 
 

Seat type elicited significant differences in mean muscle activity for simulated 

police typing tasks in six of the nine recorded muscles: PECC (p = .0015), ADEL (p = 

.0117), BICP (p < .0001), TRCP (p < .0001), INFR (p = .0115), and SUPR (p = .0192). 

Activity level was greater in the CV seat for all recorded muscles, except for UTRP and 

TRCP (Figure 22). 
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Figure 22: Mean muscle activity of all recorded muscles between seat types. CV and ALS refer 
to Crown Victoria and active lumbar support driver seats, respectively. Muscle abbreviations: 
pectoralis major (PECC), upper trapezius (UTRP), anterior deltoid (ADEL), middle deltoid 
(MDEL), posterior deltoid (PDEL), biceps brachii (BICP), triceps brachii (TRCP), infraspinatus 
(INFR), supraspinatus (SUPR). * indicates significant differences. 

 

Gender differences existed in mean muscle activity for simulated police typing 

tasks in two of the nine recorded muscles: BICP (p = .0381) and TRCP (p = .0070). 

Activity level was greater in female participants for both of these muscles—6.3 %MVC 

(female) vs. 3.5 %MVC (male) for BICP; 41.0 %MVC (female), vs. 24.3 %MVC (male) 

for TRCP. 

A significant seat type by gender interaction effect emerged for six of the nine 

recorded muscles: PECC (p = .0028), MDEL (p = .0003), BICP (p < .0001), TRCP (p = 
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.0010), INFR (p < .0001), SUPR (p < .0001). Trends and significance of this interaction 

varied across muscles (Figure 23). Mean muscle activities for all recorded muscles across 

MDT location and seat type are presented in Table 16-18. 

 
 
Table 16: Mean and standard deviation of muscle activity for all recorded muscles across MDT 
location for active lumbar support (ALS) driver seat. 

 
Table 17: Mean and standard deviation of muscle activity for all recorded muscles across MDT 
location for Ford Crown Victoria (CV) driver seat. 

 
Table 18: Mean and standard deviation of muscle activity for accumulated data set. 
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Figure 23: Mean muscle activity interaction between seat type and gender for pectoralis major 
(PECC), middle deltoid (MDEL), biceps brachii (BICP), triceps brachii (TRCP), infraspinatus 
(INFR), and supraspinatus (SUPR). CV and ALS refer to Crown Victoria and active lumbar 
support driver seats, respectively. Levels with different letter codes are significantly different. 
 

6.2.2 Rating of Perceived Discomfort (RPD)  

For ratings of perceived discomfort (RPD) in the lower back, significant 

differences existed across MDT locations (p < .0001), between seat types (p < .0001), 

and across the three typing task sets (time) (p = .0035). MDT location 5 elicited 

significantly more discomfort in typing tasks than all other locations, and location 6 

significantly reduced discomfort compared to locations 3, 4, and 5 (Figure 24). Perceived 
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discomfort in the CV seat (15.4mm) was significantly greater (p < .0001) than in the ALS 

seat (11.1mm). Perceived discomfort also increased with time, as RPD in the first set of 

typing tasks (11.9mm) was lower than the second set (13.1mm) and significantly lower 

than the third set (14.7mm) (Figure 25).  

 

Figure 24: Mean low back rating of perceived 
discomfort (RPD) across MDT location. RPD 
reported in mm. Levels not separated by the 
same letter are significantly different. 

Figure 25: Mean low back perceived 
discomfort across time, male, female and group 
mean. A * indicates a significant difference. 
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In the right shoulder, significant differences in perceived discomfort existed 

across MDT locations (p < .0001). RPD in location 5 > location 3 > location 4 > 

locations 2 and 6 (Figure 26). A significant MDT location by gender interaction effect (p 

< .0001) was also present for right shoulder RPD, but this effect was not consistent 

between genders across MDT locations. 

Figure 26: Mean low back rating of perceived discomfort (RPD) 
across MDT location. Levels not separated by the same letter are 
significantly different. 
 

6.2.3 Shoulder Elevation Angle 

Few differences were seen in the mean elevation angle between the humerus and 

long axis of the torso. Significant differences in this mean shoulder elevation angle were 

shown only across MDT locations (p = .0022): Locations 3 and 4 elicited a greater 

elevation angle than location 6 (Table 19). Gender differences in elevation angle were not 

present as a main effect, but a seat type by gender interaction effect (p = .0055) was 
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present. Elevation angle for male participants in the ALS seat (40.9°) was significantly 

lower than males in the CV seat (44.5°), however, these values were both statistically 

similar to female measures on both the ALS seat (48.7°) and CV seat (47.8°). Gender 

seemed have the greatest impact on this interaction effect. 

Table 19: Mean Elevation Angle across mobile data terminal (MDT) locations. Levels not 
separated by the same letter are significantly different. 

Location Significance Level Mean Elevation Angle (°) 
3 A  47.60 
4 A  46.46 
5 A B 46.13 
2 A B 44.49 
6  B 42.68 

 

6.2.4 Mean Resultant Dynamic Shoulder Moment 

Differences in mean resultant dynamic shoulder moment emerged across MDT 

location (p < .0001), gender (p = .047), and in a location by gender interaction effect (p = 

0.0008). Upper arm postures for MDT location 5 produced greater mean resultant 

dynamic shoulder moment than all other locations, followed by location 2, location 6, and 

locations 4 and 3 (Figure 27). Approximately 20% higher values existed for male 

participants (7.06 N⋅m) than female participants (5.90 N⋅m). 
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Figure 27: Mean resultant dynamic shoulder moment across MDT location. Levels not separated 
by the same letter are significantly different. 
 

6.2.5 EMG-Based Total Muscle Force 

No significant main effect differences emerged for any of the tested independent 

variables, however, a significant seat by gender interaction effect (p = .0014) was present. 

Total muscle force for male participants in the ALS seat (1191.8N) was significantly 

higher than males in the CV seat (1121.9N), however, these values were both statistically 

similar to female measures on both the ALS seat (1247.9N) and CV seat (1266.6N). 

Gender seemed have the greatest impact on this interaction effect.  

 

6.2.6 Model-Based Total Predicted Muscle Force 

Total muscle force as predicted by SLAM showed significant differences across 

seat type (p = .0054). Though an MDT location main effect was present overall, only one 

level of significance existed. These total muscle force estimates ranged from 367.9 ± 
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145.5N (location 5) to 406.2 ± 166.8N (location 4) (Figure 28). Total predicted muscle 

force in the ALS seat (398.2 ± 157.7N) was greater than in the CV seat (371.9 ± 94.7N). 

Typing task set (time) and participant gender had no significant effect on model-based 

total muscle force.  

 
Figure 28: Model-based total predicted muscle force across MDT location. All levels are 
statistically similar. 

 

6.2.7 Outcome Measure Agreement Matrix 

The outcome measure agreement matrix served as a method by which to rank 

MDT locations within seat type based on a consolidation of all of the experimental 

outcome measures. Slight differences were seen between the two measured seats (CV and 

ALS) for both average ranks and the rank orders across MDT locations. Location 6 was 

ranked best as it produced the lowest average rank for both driver seat types. Overall, 

locations 2 and 4 ranked second followed by locations 3 and 5 (Tables 20 and 21). 

Specific rank order for the ALS seat was identical to overall rank order, however, 

location 4 produced a lower score (1.42) than location 2 (1.50) in the CV driver seat. The 

rank order of mean elevation angle, resultant dynamic shoulder moment and model-based 
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total predicted muscle force were almost identical between the two seat types, whereas 

RPD and EMG-based total muscle force had distinctly different rank ordering between 

the seats. 

Table 20: Outcome measure agreement matrix for ALS driver seat. 
  Outcome Measure Rank 

Outcome Measure 
Location 

2 
Location 

3 
Location 

4 
Location 

5 
Location 

6 
Shoulder RPD 1.5 3 2 4 1 
Low Back RPD 1.5 1.5 2 3 1 
Mean Elevation Angle 1 1 1 1 1 
Mean Resultant Dynamic 
Shoulder Moment 

2 1 1 3 1 

EMG-based Total Muscle 
Force 2 2.5 1.5 3 1 

Model-based Total Muscle 
Force 1 1 1 1 1 

Average Rank 1.50 1.67 1.42 2.50 1.00 
Rank Order 3 4 2 5 1 

 

Table 21: Outcome measure agreement matrix for CV driver seat. 
  Outcome Measure Rank 

Outcome Measure 
Location 

2 
Location 

3 
Location 

4 
Location 

5 
Location 

6 
Shoulder RPD 1.5 3 2.5 4 1 
Low Back RPD 1.5 2 2 3 1 
Mean Elevation Angle 1 1 1 1 1 
Mean Resultant Dynamic 
Shoulder Moment 

2 1 1 2 1 

EMG-based Total Muscle 
Force 1.5 1.5 1 2 1.5 

Model-based Total Muscle 
Force 1 1 1 1 1 

Average Rank 1.42 1.58 1.42 2.17 1.08 
Rank Order 2 4 2 5 1 
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7.0 Discussion 

7.1 Addressing the Specific Aims and Hypotheses 

Field Quantification of Physical Exposures in Police Cruiser Operators 

The specific aims of the field investigation were to identify and characterize the 

most common daily activities of traffic division officers and to quantify cumulative 

exposures in the context of whole body activities. Using this digital video collection 

method of activity characterization, the typical daily task set was quantitatively and 

explicitly described for a sample of mobile police officers. Ten common daily activities 

were identified and evaluated in terms of absolute time and percent time of a typical daily 

shift. 

 

Hypothesis 1 

It was hypothesized that shoulder elevation angle would be influenced by mobile 

data terminal location. Due to upper limb posture changes required to complete the 

simulated police typing tasks, variation of the mobile data terminal location did lead to 

significant changes in the mean shoulder elevation angle, however, effects did not exist 

for all comparisons. As a whole, hypothesis 1 was supported by the results of this 

investigation. 

 

Hypothesis 2 

It was hypothesized that right shoulder moment and participant shoulder 

discomfort would be minimized in the mobile data terminal location that minimizes 

shoulder elevation angle. Shoulder elevation angle was minimized for the self-selected 
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mobile data terminal location, although it significantly differed from only two other 

locations. In terms of non-significant differences, trends in shoulder elevation angle and 

perceived discomfort agreed for the self-selected and current mobile data terminal 

locations. Trends in mean resultant dynamic shoulder moment did not follow those of 

shoulder elevation angle. Hypothesis 2 was not supported by the results in this 

investigation. 

 

Hypothesis 3 

It was hypothesized that ratings of perceived discomfort for the right shoulder 

would be minimized for the self-selected mobile data terminal location. The self-selected 

location did reduce participant discomfort compared to three of the four tested mobile 

data terminal locations, however, it was statistically similar to discomfort ratings for the 

location currently used in observed police cruisers. Hypothesis 3 was supported by the 

results in this investigation. 

 

Hypothesis 4 

It was hypothesized that average ranks across all outcome measures would show 

differences across mobile data terminal locations and that the self-selected location would 

have the lowest average rank. Average ranks were nominally different across MDT 

locations, however, these differences were not statistically tested. The self-selected 

mobile data terminal location did elicit the lowest average rank, suggesting that it 

presents the least physical risk among the tested locations. Hypothesis 4 was supported 

by the results in this investigation. 



 
 

67 
 

7.2 Field Quantification of Physical Exposures in Police Cruiser Operators 

  Few studies have previously investigated the longitudinal (full shift) physical 

exposures officers experience in a modern mobile police environment. This investigation 

characterized specific officer activities and identified the duration for which these 

activities were performed. Two distinct work environments were identified for these 

officers: in-vehicle and out-of-vehicle. Out-of-vehicle activities encompassed more than 

half of the daily shift activities (Table 12), identifying them as having potential for 

intervention to reduce the prevalence of musculoskeletal symptoms among this 

population. However, due to the highly variable nature of these activities, and legal and 

logistical difficulty in documenting them, this study focused on in-vehicle activities. The 

data generated in this study provides a rigorously ranked quantification of percentage 

time spent in various in-vehicle activities that was previously unavailable for modern 

mobile police operations. Due to the absence of high load activities performed in the 

vehicle, cumulative postural activity exposures were chosen as a method to identify 

possible aspects of the work activity or workplace that would be most beneficial to 

address with design modifications. In-car activities are further divisible into driving and 

non-driving activities. Onset of low back pain or discomfort has previously been 

identified for occupational driving activities in general (Porter & Gyi, 2002; Porter, 

Porter & Lee, 1992), as well as for the flexed lumbar postures associated with such 

activities (Beach et al., 2008; Dunk & Callaghan, 2005). The level of this discomfort is 

directly related to the amount of occupational driving exposure (Porter, Porter & Lee, 

1992). In our current investigation, single-handed (left arm) driving (Figure 29a) made up 

50.3 ± 15.7% of the in-vehicle activities performed by the officers on a time basis (Table 
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13). As driving is a functionally necessary component of this occupation, as well as many 

others, limited potential modifications to the environment unique to this population seem 

pragmatic. Further, as much work continues to be done on reduction of spinal loading 

through automotive seating investigations (Gyi & Porter, 1999; Carcone & Keir, 2007; 

Durkin et al., 2006) the focus of this study was on possible intervention in this specific 

population with non-driving, in-vehicle activities and equipment interfaces. 

 
Figure 29: Sample images of driver activities for (A) left-handed driving, (B), on-paper 
documentation, and (C) two-handed mobile data terminal use. 

  High exposures to non-driving, or peripheral, police activities present additional 

risk to mobile officers. Postural adaptations to driving task layout changes are 

accomplished primarily by changes in limb posture, whereas torso posture remains 

largely unaffected (Reed et al., 2000). Thus, officers are exposed to repetitive or static 

upper limb loads which may lead to musculoskeletal impairment (Magnusson & Pope, 

1998). In general, extended upper limb exposures or flexed and abducted postures in 

these peripheral tasks increase cumulative shoulder moments (Nussbaum et al., 2001). 

Increased muscular loads associated with these moment increases may induce local 

muscular fatigue and increase the risk of upper limb problems (Nussbaum, 2001). 

  On-paper documentation (Figure 29b) and mobile data terminal use (Figure 29c) 

emerged as the best apparent candidates for attempted mobile police environment 

interventions, based on cumulative exposures. Despite improvements in communication 
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that accompany modern mobile data terminals, officers are still required to complete 

various daily logs on paper. Completing various forms of paperwork consumes 

approximately 20% of the time spent working in the vehicle. There is no fixed location or 

standard method for completing this documentation in the vehicle. As a result, officers 

use different strategies and individualized joint postures to complete this task.  

 Mobile data terminal use is another area of concern as it represented over 13% of 

in-car time activities performed by officers (combined one and two-handed use). The 

mobile data terminal as currently configured has minimal adjustability, and thus its 

location and orientation are not easily repositioned to reduce upper limb and low back 

loading associated with the arm extension and trunk axial twisting its use requires. These 

specific problems are not common to all police fleets, but not unique to the fleet observed 

in this study. Supportive devices are available to minimize such problems, but are not 

designed to function in the mobile environment (Milani, 2008). Large swing arm or 

“boom” mounts and removable MDT mounting solutions have been implemented in 

unique applications, but have not motivated fleet-wide adaptations (Brewer, 2008). Given 

the significant investment required to outfit a police fleet with modern MDT systems 

compared to the cost of mounting hardware, it may be worth upgrading current mounting 

solutions (Milani, 2008). The next aspect of this line of study investigated the influence 

of both MDT location and driver seat characteristics on postural, psychophysical, and 

physiological experimental measures. 
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7.3 The Evaluation of Mobile Data Terminal Location During a Simulated Police 

Patrol Task Set 

This study has identified that MDT location and driver seat type differences 

influence postural, psychophysical and physiological measures of the upper limb and 

torso during simulated police patrol. The differences that do occur, however, are not 

homogeneous across all recorded and calculated outcome measures, so they should be 

discussed both individually, within each effect, and with regards to a global outcome 

measure ranking system, the average ranks and rank order. 

 

7.3.1 Effect of Mobile Data Terminal Location 

Ratings of Perceived Discomfort 

An MDT location main effect was present for both low back and right shoulder 

perceived discomfort, showing that spatial configuration changes may potentially reduce 

the prevalence of musculoskeletal pain in a mobile police population. There is a marked 

separation of locations 2 and 6 from the other tested locations. In both body regions, 

locations 2 and 6 produced significantly less discomfort (Figures 24 and 26). This finding 

identifies possible configuration changes in a modern mobile police environment. Where 

this finding comes up short, however, is in the fact that for both body regions, perceived 

discomfort at locations 2 (LB-11.2mm; Sh-9.4mm) and 6 (LB-9.5mm; Sh-7.1mm) are 

statistically similar. Location 2 represents the current MDT location used in modern 

police cruisers, and location 6 represents an MDT location self-selected by each 

participant. The lack of separation between these two locations suggests that 

modifications would not change perception. Although this finding may be disappointing 
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as it does not identify an obvious configuration to reduce injury prevalence, it is 

fundamental information for developing future solutions.  

A goal of this study was to identify the location that minimizes discomfort, but it 

is important to note the location or locations that increased discomfort relative to the 

current location and perhaps exacerbate the potential for pain and injury prevalence 

among mobile officers. Location 5 (LB-19.0mm; Sh-22.0mm) produced significantly 

more discomfort than all other locations in both the low back and the right shoulder. This 

location was tested because it does fit within the spatial confines of a police cruiser, 

however, greater trunk axial twisting and static shoulder abduction and flexion are 

apparent with increased MDT distance from the driver. Further, to remain upright in the 

driver seat, its use allowed only single-handed operation. A majority of participants 

(85%) found this single-handed operation difficult and opted for two-handed operation 

despite increased loading. These static loads in the upper limb coupled with awkward 

seated postures present high risk for muscular strain, impingement or tendonitis 

(Magnusson & Pope, 1998; Chaffin, Andersson & Martin, 2006). In attempting to 

identify the best MDT location based on minimization of perceived discomfort, location 

5 is not a candidate for future use. 

The association between musculoskeletal discomfort and task factors (MDT 

location and driver seat type) cannot be used as a sole means for evaluation of task injury 

risk. This link does not eliminate the possibility of psychosocial factors for the 

development of pain and injury, specifically among MDT users (Faucett & Rempel, 

2007). However, musculoskeletal discomfort has been shown to be a precursor to 

developed disorders, and a reduction in injury prevalence can be achieved by 
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improvement in workplace ergonomic (postural and physiological) factors (Sauter et al., 

1991). Given that with this current data set psychosocial factors were controlled for, 

recorded measures of perceived discomfort (RPD) are an appropriate means for 

evaluating the tested police cruiser configurations. 

 

Muscular Force and Exertion Estimates 

Unlike perceived discomfort, estimation of both corporate and individual muscle 

demand and their relative contributions are more direct indicators of physical risk, and 

are essential to understanding the mechanism of mobility and stability in the shoulder for 

a given action (Chang et al., 2000). The relative contributions of muscles in an effort to 

produce movement in this simulated police patrol task set were evaluated by two 

methods: surface EMG and mathematical force predictions. 

Muscular activity via surface EMG is a very important tool in assessing physical 

injury risk in these typing tasks in general, as well as identifying whether configuration 

changes affect this risk. The static loads required for these typing tasks present risk for 

initiation of local muscle fatigue. As part of an amplitude probability distribution 

function, the acceptable activity level guideline for the 50th percentile or half of a daily 

shift is 12-14% MVC (Mathiassen & Winkel, 1991). Mobile officers perform typing and 

documentation tasks in these static upper limb postures for 34% of the time spent in the 

police cruiser (McKinnon, Callaghan & Dickerson, submitted), thus activity levels 

approaching this guideline are a site of fatigue-based injury risk. In this study, five 

muscles (UTRP, ADEL, MDEL, TRCP, INFR) presented mean activity levels greater 

than 10% MVC for typing tasks and present potential risk for musculoskeletal pain or 
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injury (Tables 16-17). Overall, variability in muscle activity across subjects suggests that 

risk may be present for all recorded muscles (Table 18). Addition of one standard 

deviation to individual muscle means presents muscle activity greater than 10 %MVC for 

all muscles but the biceps. For the muscles that present a sample mean above 10 %MVC, 

the high intersubject variability suggests that many participants may be at an even greater 

risk for injury. 

 Overall, the nature of these typing tasks contain an inherent risk for mobile 

officers when performed on a daily basis, but it is still essential to identify whether or not 

changes in MDT location influence the magnitude of this risk. In a pattern similar to RPD 

scores, all significant muscles noted a tendency of muscle activity highest in locations 3 

and 5, followed by location 4, and lowest in locations 2 and 6. Again, the goal of this 

study was to identify specific sites of risk and potential configuration changes as a result 

of that risk. Since muscle activity level was consistently lowest in tasks performed at 

locations 2 and 6, futher discussion can be narrowed to these locations. Significant MDT 

location main effect differences were found for MDEL (p = .0015), PDEL (p < .0001), 

BICP (p = .048), and SUPR (p < .0001), however, post-hoc analysis (Tukey HSD) 

showed muscular activity level for tasks performed at locations 2 and 6 to be statistically 

similar for all of these muscles. A physiological link can be made to strengthen past 

evidence that self-selected postures during typing tasks minimize operator pain and injury 

risk (Babski-Reeves, Stanfield, & Hughes, 2005; Helander & Zhang, 1997). Again, the 

lack of separation between these two locations suggests that the current MDT location is 

ideal for minimizing muscular activity.  

A mathematical musculoskeletal shoulder model was also used to evaluate the 
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posture-based demands of these simulated police typing tasks. The Shoulder Loading 

Analysis Modules (SLAM) model (Dickerson, Chaffin & Hughes, 2007) produced 

estimates of model-based total predicted shoulder muscle force. A significant MDT 

location main effect existed for total predicted muscle force, but post-hoc analysis 

revealed only one level of significance across locations. It appears that the magnitude of  

predicted corporate muscular loading in the shoulder system did not vary much across 

MDT locations, but perhaps the changes in the direction of loading increase activity level 

in individual muscles. High variability across subjects also resulted in an inability to 

distinguish values across the locations (Figure 26).  

 

Resultant Dynamic Shoulder Moment 

Evaluation of resultant dynamic shoulder moment follows a similar analysis to the 

other outcome measures that have been discussed. Shoulder joint moments are known to 

increase with increased reach distance and increased shoulder flexion angle (Giroux & 

Lamontagne, 1992; Anton et al., 2001). Consequently, increased moments have the 

potential for causing fatigue or acute strain, which are recognized factors for the 

development of cumulative trauma disorders (Anton et al., 2001). Minimizing reach and 

minimizing elevation angles may be one method of reducing these disorders (Wos et al. 

1992). Thus, the tested MDT location that minimizes resultant dynamic shoulder moment 

in this study may be identified as the best location for the MDT. 

As with measures of perceived discomfort and muscle activity, this moment 

measure in typing tasks performed at MDT location 5 (7.30 N⋅m) was greater than all 

other locations. Moment was not, however, minimized at locations 2 (6.95 N⋅m) and 6 
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(6.24 N⋅m), but rather at locations 3 (5.95 N⋅m) and 4 (5.96 N⋅m) (Figure 27). This 

finding contradicts other outcome measures in this study, as well as previous work. In 

dynamic reach tasks, shoulder moment is the most consistent physical predictor of 

perceived effort (Dickerson, Martin & Chaffin, 2007), which is not the case here. 

Disagreement with surface EMG and RPD outcomes may be attributed to upper arm and 

forearm interaction. EMG was measured only for upper arm and torso musculature, and 

perceived discomfort was only measured for low back and right shoulder, but demands of 

the structures (muscle, tendon, ligament, bone) in the forearm and hand may also vary 

across typing postures at each MDT location. The SLAM model incorporates a full set of 

upper limb joint coordinates (including elbow, wrist and hand) and accounts for these 

demands, whereas EMG and RPD do not. Another explanation for this disagreement 

between measures is that resultant moments were calculated in this study. Disagreement 

between resultant moment and muscle force model predictions of perceived effort exist 

for load transfer tasks (Dickerson, Martin & Chaffin, 2007), with moments typically 

performing better. Mechanically, resultant external joint moments do not directly map 

onto individual muscle requirements. Differences in the directional components of the 

resultant moment may require different muscular responses, even if the magnitude of the 

resultant moment is unchanged. 

 

Shoulder Elevation Angle 

Shoulder elevation angle should be a driving measure for determining the effect 

of MDT location in this study. Past studies have confirmed that as shoulder elevation 

angle increases, the load on the shoulder also increases (Giroux and Lamontagne, 1992, 
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Sporrong and Styf, 1999). The typing tasks performed at each of the MDT locations were 

identical, and thus should only see posturally driven demand changes. This investigation 

should follow this evidence for determining relative risk of injury across MDT locations. 

As elevation angle increases, perceived discomfort, individual muscle activity levels, 

total muscle force (EMG-based and model-based), and resultant dynamic shoulder 

moment should all increase accordingly. 

 These relationships with elevation angle were partially maintained for all other 

outcome measures, with the exception of resultant dynamic shoulder moment. Shoulder 

elevation angle is smallest for typing tasks performed at MDT location 6 (42.7°), but this 

is only significantly different from angle at location 3 (47.6°). With lack of distinct 

statistical differences across all locations, it is difficult to comment on the rank ordering 

of elevation angles compared to other outcome measures. It is important to note, 

however, that again this outcome measure was lowest for typing tasks performed at 

locations 2 (44.5°) and 6. Prior to data collection, it was considered that postural variation 

may wash out significant effects in this outcome measure. Typing postures were expected 

to be quite different, especially across the wide range of participant statures in this 

investigation (Table 6). However, elevation angles were very consistent at all MDT 

locations with angles ranging from 42.7° to 47.6° and all standard deviations between 

2.13° and 2.14°. 

 

Outcome Measure Agreement Matrix 

This investigation used six different outcome measures in an attempt to evaluate 

five different MDT locations within a simulated police cruiser. Ideally, all measures 
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would agree with one another, however, some rank ordering contradictions did occur. 

Perceived discomfort, EMG-based total muscle force, resultant dynamic moment, 

predicted muscle force, and elevation angle were each effective in evaluating injury risk 

for a simulated police typing task across MDT locations, however, an agreement matrix 

was also appropriate to produce a global ranking that incorporated all these outcome 

measures. The agreement matrix showed slight differences between seat types (CV and 

ALS) for average rank values as well as order of the average ranks (Tables 20 and 21).  

The goal of this investigation was to improve the current mobile police cruiser 

configuration by evaluating a set of possible MDT locations. In agreement with our 

hypothesis, the self-selected MDT location, location 6, had the lowest rank of all 

locations, indicating that it presents the least risk of injury of the tested locations. 

Through previously discussed outcome measures, a logical link can be created between 

self-selection and average rank across all outcome measures. Discomfort tends to be 

minimized in self-selected postures (Babski-Reeves, Stanfield, & Hughes, 2005), and 

shoulder angle and thus resultant shoulder moment correlate with discomfort rankings 

(Dickerson, Martin & Chaffin, 2006). Therefore, it is not surprising that the self-selected 

typing location presents the best ranking among the tested locations. 

Ranked second among the tested locations were location 2, which represents the 

current MDT location, and location 4. In an effort to recommend change to the current 

configurations that reduces risk and prevalence of musculoskeletal injuries among the 

mobile police population, two key conclusions can be drawn from this.  

Firstly, the best way to improve this situation based on posture induced changes is 

to improve the adjustability of the MDT mounting system. To give each officer a truly 
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self-selected MDT location will improve low back and shoulder perceived discomfort 

and elevation angle among the tested locations, and reduce resultant dynamic shoulder 

moment from the current location. As currently configured, the MDT allows for small tilt 

and swivel adjustments, but full adjustability is not available to each officer at the 

beginning of their shift. 

Secondly, for all individual outcome measures, except resultant dynamic shoulder 

moment, the self-selected MDT location (location 6) is statistically similar to the current 

MDT location (location 2).Therefore, the current MDT configuration provides negligible 

room for improvement if it remains fixed within the current spatial constraints provided 

by other necessary equipment within the cruiser. Also, though large inter-participant 

variations did exist, mean placement of the self-selected MDT location was very similar 

to the current location. The largest differences seen were the ALS seat self-selected 

location being 5.5cm and 3.9cm closer to the driver in the anterior-posterior and medial-

lateral directions, respectively (Table 9). Due to the similarity of these locations, 

statistical similarity in outcome measures is not surprising.    

The outcome measure agreement matrix showed locations 4 and 2 to have 

identical average ranks within the CV seat as well as across both driver seats. This 

suggests that location 4 may be comparable to location 2, however, individual measures 

showed contradictory findings. Because average rank is calculated from six outcome 

measures, major differences in one outcome measure may have inflated the average rank 

score. Location 2 was consistently better or comparable to location 4 for five of the six 

recorded outcome measures. The only exception was mean resultant dynamic shoulder 

moment (Tables 20 and 21). The low score of location 4 and subsequent high score of 
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location 2 within this outcome measure skewed average rank towards location 4. Though 

average ranks did provide a global ranking system across all measures, all measures were 

weighted evenly, and thus, the average rank scores were evaluated in conjunction with 

statistical analysis of each measure individually. 

Devices have been developed specifically for police applications that modify the 

police cruiser from the current spatial constraints, but are not designed for a mobile 

environment (Milani, 2008). Other systems have been developed integrating voice 

recognition software that allows the officer to communicate without using key presses 

and typing tasks necessary with current MDT systems (i.e. Project 54 (Kun, Miller & 

Heeman, 2005)). Such systems may reduce posture based loading experienced by mobile 

officers, but this loading and risk of injury have not yet been investigated. Given the lack 

of distinction between the MDT locations tested in the current investigation, it is likely 

that technology changes, rather than structural ones, may have the greatest influence on 

further reducing injury risk.  

 

7.3.2 Effect of Driver Seat Type 

The use of the ALS seat reduced participant discomfort in the low back compared 

to the standard CV seat in this simulated police patrol investigation. Mean low back RPD 

showed statistically significant decreases from 15.4mm in the CV seat to 11.1mm in the 

ALS seat. In a similar investigation by Donnelly, Callaghan & Durkin (in press), specific 

seat aspects which differ from a standard seat were identified as potential factors in 

reducing RPD, and these factors hold true for this investigation. First, the ALS seat 

contained a shortened seat pan to accommodate shorter officer thigh lengths. Second, the 
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seat included foam structure modifications to accommodate the police duty belt and 

provide active torso support through interaction with the police protective vest. Third, the 

seat allowed manual anterior-posterior and superior-inferior lumbar support adjustment, 

and produced cyclic anterior-posterior-superior-inferior excursions of the lumbar support. 

It is difficult to isolate the effect of each of these seat aspects, and perhaps more 

appropriate to attribute reduction in discomfort to the seat as a whole. Increased 

adjustability likely improved the ability of participants to adjust peak pressures imposed 

by equipment attached to the police duty belt worn for the testing sessions (Donnelly, 

Callaghan & Durkin, in press). A reduction in such lumbar peak pressures has been 

shown to reduce reporting of perceived discomfort (Mergl et al., 2005). 

The interaction of seat aspects likely increased overall support and maintained 

lumbar lordosis of the lumbar spine throughout the testing sessions. Increased support has 

been shown in the past to better maintain lumbar lordosis close to that of a standing 

posture (Mahksous et al., 2003). The ability to maintain this lumbar lordosis while seated 

and also reducing peak pressures caused by police equipment is essential for reduction in 

low back perceived discomfort (Mahksous et al., 2003; Donnelly, Callaghan & Durkin, in 

press). The increased adjustability of the ALS seat likely achieved these goals using a 

combination of each modified seat aspect. 

As may be expected, seat type had little effect on upper limb measures. Perceived 

discomfort in the right shoulder, resultant dynamic shoulder moment, and shoulder 

elevation angle were all statistically similar between seat types. Seat type did have a 

statistically significant effect on the muscle activity of six of the nine recorded muscles 

(PECC, ADEL, BICP, TRCP, INFR, and SUPR); however, the clinical significance of 
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this finding is unlikely. In general, activity level was reduced for the ALS seat compared 

to the CV seat for all recorded muscles, except for UTRP and TRCP (Figure 22). Among 

these muscles, seat type differences in activity level ranged only from 0.6 %MVC for 

SUPR to 1.7 %MVC for ADEL. During tasks in an automotive driver seat, postural 

adaptations are accomplished primarily by changes in limb posture, rather than torso 

adjustments (Reed et al., 2000). This may justify the fact that these measures show 

limited differences between seat types. This also suggests that MDT location or 

interaction modifications are the best solution to reduce upper limb loading and 

subsequent injury. In addition, injury risk reduction in the low back may be more 

effectively realized with seating modifications rather than MDT modifications.  

 

7.3.3 Effect of Time and Gender 

As noted, occupational driving itself is a musculoskeletal risk factor and may lead 

to driver discomfort, pain and injury. Increased time or driving exposure generates a 

greater level and prevalence of driver discomfort (Porter & Gyi, 2002; Porter, Porter & 

Lee, 1992). In this investigation low back perceived discomfort corroborated this 

evidence and increased with time through the testing sessions. Mean low back RPD 

increased from 11.9mm to 13.1mm to 14.7mm during the first, second, and third sets of 

typing tasks, respectively.  

Again, the goal of this investigation is to provide evidence-based 

recommendations to reduce injury risk among mobile police officers, primarily through 

police cruiser configuration changes. Police patrol shifts are generally between 8 and 12 
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hours, and with in-car activities accounting for 49.6% of that daily shift (Table 14), time 

while seated is a key issue that should be discussed when suggesting any changes. 

It is important to note that the field aspect of this study looked at time-based 

physical exposures to mobile officers over the course of a daily shift, and the laboratory 

aspect subsequently compared these exposures across different cruiser configurations. 

The belief in this investigation was that with task characteristics held constant—as they 

were at all tested MDT locations—short duration task demands may reflect differences in 

long duration demands. Because the laboratory investigation was only 1-hour long, it is 

difficult to draw conclusions regarding the cumulative loading in the evaluated typing 

tasks. However, it is likely that effects demonstrated in this investigation could be 

magnified when considering cumulative loading parameters. The primary area of concern 

is mean muscle activity. Though the current (location 2) and self-selected (location 6) 

MDT locations tended to elicited the lowest mean muscle activity level across all 

recorded muscles, a measure of cumulative muscle activity may provide a more 

appropriate interpretation of long-term mobile police exposures in the upper limb and low 

back.  

 Because of the time effect in this investigation, the overall benefit of the ALS 

seat is also difficult to discern. Current investigations are being done with this ALS seat 

at the University of Waterloo to evaluate its effectiveness in reducing long term 

discomfort as well as improving posture-based factors in the short term. 

 Gender of the participants in this investigation had little effect on most of the 

outcome measures. Apart from individual muscle activity levels during the typing tasks, 

only resultant dynamic shoulder moment showed a significant difference with mean 
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moments of 7.06 N⋅m for male and 5.90 N⋅m for female participants. Any gender-based 

torso responses are, however, unavailable at this time. Gender differences exist for 

lumbar spine, pelvis and trunk angles, which can be applied to this automotive seating 

application (Dunk & Callaghan, 2005). Further analysis with lumbar angle and seat 

interface pressure are required to make any gender-based conclusions about low back 

injury risk.  

Gender played a significant role in muscle activity level for both biceps and 

triceps. Mean activity level was higher for female participants in both muscles: 6.3 (± 

3.8) %MVC (female) vs. 3.5 (± 2.6) %MVC (male) for BICP; 41.0 (± 16.5) %MVC 

(female), vs. 24.3 (± 10.9) %MVC (male) for TRCP. Within female participants, both 

biceps and triceps muscle activity were highly variable, however, inter-participant trends 

in activity level of these two muscles were similar. Three female participants had 

recorded activity levels well above other participant scores for biceps (11.0, 8.2, and 

5.9% MVC) and triceps (41.7, 60.2, and 50.7% MVC). With these three participants 

removed, female mean muscle activity level was 3.4% MVC for biceps and 24.9% MVC 

for triceps, both similar to male values. Previous studies have shown no gender 

differences in muscle activity level for similar tasks (Blangsted, Hansen & Jensen, 2003; 

Nordander et al., 2003), and the results of this study are comparable with these 

participants removed. 

Increased co-activation is a possible explanation for the increased muscle activity 

in these identified subjects. Upper limb elevation angle differences were not seen and 

task requirements were identical between genders, thus muscle activity differences are 

likely due to differences in task performance strategies. Female users tended to operate 
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computer-based tasks with more extreme postures, such as increased shoulder abduction, 

wrist extension, and ulnar deviation (Karlqvist et al., 1999), as well as use a higher 

number of keystrokes (Blangsted, Hansen & Jensen, 2003). An increased typing rate 

requires increased accuracy for the task, which has been linked to an increased level of 

co-contraction in the upper limb musculature (Gribble et al., 2003). Typing task 

performance was neither recorded nor evaluated in this study, so it is difficult to make 

any conclusions about performance-based gender differences and accompanying 

differences in muscle activity levels. 

 

7.4 Limitations 

This investigation characterized mobile police officer activities, but also identified 

mobile police work as highly variable. Standard deviations were as high as 16.7% when 

characterizing officer activities as a percentage of their total shift. Though the laboratory 

investigation in this thesis sought to design a simulated police patrol protocol that 

accurately reflected actual police work, it logistically could not capture this task 

variability. As a result, a few limitations in the laboratory protocol arise. 

This investigation looked primarily at short-term (2-hour) postural, physiological, 

and psychosocial effects and did not evaluate the potential for any prolonged or fatigue-

based outcomes that may correspond more closely with actual police work. Perceived 

discomfort increased with time, and muscle activity changes may be amplified with a 

more prolonged task set. 

No data was collected for the left side of the body in this study. Participants 

acknowledged that they often felt more discomfort in the left upper limb than the right 
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due to greater reaching required for two-handed typing. The possibility of missing 

important physical demands therefore exists. 

Preference of one-handed versus two-handed typing presents another limitation of 

the tested task set. Mobile officers preferred one-handed typing in all cases, and 10.3% 

and 2.78% of in-car daily activity was occupied by one-handed and two-handed typing, 

respectively. Among the academic population used for this investigation, however, two-

handed typing was preferred in almost all experimental trials. 

 

7.5 Suggestions for Future Investigations 

Future investigations could directly address the limitations of this study as well as 

investigate design and technology changes. Long term simulated police patrol activities 

are currently being investigated at the University of Waterloo in a study on prolonged 

lumbar loading. This and future investigations should provide some conclusive evidence 

regarding the effectiveness of driver seat design changes for use by a mobile police 

population. These officers differ from occupational drivers in both the equipment that 

they wear and the task set that they perform. Now that this task set has been 

characterized, future research can effectively target specific job demands and aspects 

unique to this population. 

 The effect of one-handed versus two-handed typing for this simulated police 

patrol should be scrutinized in future investigations. Postural demands are profoundly 

different for these different typing styles and may have noteworthy implications on the 

physical loading in both the right and left upper limb and lower back. Concurrently, 

further work outlining mobile officer activity needs to be done with a larger sample of 
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officers. Though the first aspect of this thesis did effectively characterize officer activity, 

the sample size was small and localized to a single police unit. To achieve effective 

municipal, provincial, or federal design changes, data must be collected for a larger, more 

representative sample. Such data would further justify the investigation of one-handed, 

two-handed, or mixed typing styles that directly relate to actual mobile police officer 

preference. 

 This investigation aimed to outline possible changes to the current police cruiser 

configuration, but design and technology changes may be a better long-term solution to 

reduce risk of injury among the mobile police population. Various design changes 

ranging from minor to drastic have been and continue to be investigated. These 

technology and design changes include voice operated systems, which eliminate most 

physical interface with the system, single-celled police cruisers which allow posterior 

seat movement for MDT use directly in front of the driver, and wireless handheld devices 

which eliminate the need for a fixed system. Such changes must be evaluated from both 

ergonomic, performance and safety stances before they can be endorsed as viable 

methods to reduce physical loading and subsequent injury risk.  
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8.0 Conclusions 

In documenting and recommending solutions to reduce the physical risk in a 

mobile police population, this investigation yielded five principle conclusions developed 

from the specific aims and previously stated hypotheses: 

1. Two distinct work environments exist for mobile police officers: in-vehicle and 

out-of-vehicle. In the vehicle, on-paper documentation and mobile data terminal 

use are the best apparent candidates for attempted mobile police environment 

interventions.  

2. Variation of the mobile data terminal location leads to significant changes in the 

mean shoulder elevation angle. 

3. Shoulder elevation angle is a moderate indicator of trends in right shoulder 

perceived discomfort, but a poor indicator of resultant dynamic shoulder moment. 

4. Self-selection of mobile data terminal location for the tested typing tasks reduces 

right shoulder perceived discomfort relative to all tested locations except the 

currently used location. Thus, self-selection of location does not reduce 

discomfort compared to modern configurations. 

5. A self-selected mobile data terminal location elicited the lowest average rank 

across all outcome measures, suggesting that it presents the lowest physical risk 

among the tested locations. 

 

The first aspect of this thesis, Field Quantification of Physical Exposures in Police 

Cruiser Operators, effectively characterized mobile police activity and identified possible 

opportunities for ergonomic interventions. This robust activity characterization is an 
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important first effort in moving towards creating improved automotive interior designs 

that address the set of unique challenges facing mobile police. The ultimate goal is to 

develop and implement targeted, evidence-based workspace design changes that both 

effectively maintain officer proficiency and safety while removing or mitigating physical 

risks.  

Through a variety of measures, the second aspect of this thesis, The Evaluation of 

Mobile Data Terminal Location During a Simulated Police Patrol Task Set, effectively 

identified police cruiser configurations that reduced loading metrics in a mobile police 

environment.  

A set of five mobile data terminal locations were tested in this investigation 

including the current location, three fixed locations within the plausible space of a 

modern police cruiser, and a self-selected location. The self-selected mobile data terminal 

location, location 6, minimized mean right shoulder elevation angle as well as perceived 

discomfort in both the low back and right shoulder for a set of simulated police typing 

tasks. Muscle activity, in terms of percent of MVC, was lowest at the self-selected and 

current locations for all recorded muscles, with significant effects shown in m. posterior 

deltoid and m. supraspinatus. In addition, when seated in the ALS seat, EMG-based total 

muscle force was minimized at the self-selected location. Average rank, a measure that 

incorporated all recorded and calculated outcome measures, identified the self-selected 

location as the best of all tested locations, followed by the current mobile data terminal 

location. 

The current Ford Crown Victoria police cruiser driver seat was also tested against 

a prototype seat that included an active lumbar support (ALS) system, among other 
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modifications. The ALS seat did effectively reduce discomfort in the low back during a 

simulated police patrol session. Future work investigating tri-axial lumbar angles and seat 

pan interface pressure should provide some further insight into the effectiveness of the 

ALS seat in a mobile police population. 

 

Ergonomics Applications 

Overall, a self-selected mobile data terminal location and resultant typing posture 

reduce physical loading and self-reported discomfort compared to the current location. 

However, these reductions are not significant for some of the outcome measures and 

clinically these reductions may not be sufficient to motivate substantial field 

configuration changes. In order for suggested design changes to occur, definitive 

reductions in pain and injury risk must occur to offset implementation costs. The self-

selection of mobile data terminal location suggested in this study may not achieve these 

goals. To significantly reduce the risk of injury among the mobile police population and 

justify changes, future research investigating the physical loading with alternative 

configuration designs and technology must be conducted, likely with a combination of 

physical and virtual evaluations. 
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Appendix A: Information and Consent Form (Field Quantification of Physical Exposures in 
Police Cruiser Operators) 

University of Waterloo 

Title of Project: Field Quantification of Physical Exposures in Police Cruiser Operators 

Principal Investigator: Clark Dickerson 
                                    University of Waterloo, Department of Kinesiology 
                                    (519) 888-4567 Ext. 37844 

Co-investigator: Jack Callaghan 
 University of Waterloo, Department of Kinesiology 
 (519) 888-4567 Ext. 37080 
 
 Jennifer Durkin 
 University of Waterloo, Department of Kinesiology 
 (519) 888-4567 Ext. 37535 

Purpose of this Study: 

More attention is needed in the design of mobile workstations, particularly those in which a large array of 
bulky equipment is needed, such as the police cruiser. There is a societal mandate to ensure that the safety 
of police officers entrusted with the public good is made a priority and receives targeted, expert opinion. 
This study aims to take the preliminary actions (observation) necessary in order to achieve the final goal of 
improving the working conditions for this important segment of the population.  

Procedures Involved in this Study 

This study will involve the development of methods to analyze workplace exposures for police officers 
while in their vehicles. We will unobtrusively observe their usual daily activities and develop methods of 
data collection following this initial observation. As the environment will undoubtedly present several 
complications in terms of the exact nature of the data collection, it is difficult to be more specific at present. 
Data collection will include videotaping and unobtrusive observation, No person will be accompanying the 
officers in the vehicles. 

Personal Benefits of Participation 

By participating in this study, you will aid development of methods to analyze workplace exposures for 
police officers while in their vehicles. By doing so, you will be enabling us to be able to help potentially 
improve the work environment you perform in on a daily basis. There are no other expected benefits to 
you. 

Risks to Participation and Associated Safeguards 

There are no additional risks in participation beyond what is normally experienced on a regular shift.  
Involvement in this study will in no way affect your job or relationship with the Waterloo Regional Police. 

Time Commitment 

This study will require no additional time commitment as all observation will be done during a regular shift 
duration.  
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Changing Your Mind about Participation 

You may withdraw from this study at any time without penalty. To do so, indicate this to the researcher or 
one of the research assistants by saying, "I no longer wish to participate in this study". 

Confidentiality 

To ensure the confidentiality of individuals’ data, each participant will be identified by a participant 
identification code known only to the investigators and the research assistants. Videotapes and/or 
photographs will be stored indefinitely in a secure area, BHM 3034, in a locked cabinet in a locked office. 
Separate consent will be requested in order to use the videotapes and/or photographs for teaching, for 
scientific presentations, or in publications of this work. 

All paper documentation will be kept in a secured locked office (BMH 3034) indefinitely.  All electronic 
files will be stored indefinitely on a password-protected computer, with file names that protect 
confidentiality.   

Participant Feedback 

After the study is completed, the Waterloo Regional Police will be provided with a feedback sheet.  A copy 
of this feedback sheet can be requested from the contact information below. 

Concerns about Your Participation 

I would like to assure you that this study has been reviewed and received ethics clearance through the 
Office of Research Ethics. However, the final decision about participation is yours. If you have any 
comments or concerns resulting from your participation in this study, you may contact Dr. Susan Sykes, 
Director ORE, at (519) 888-4567 ext. 36005. 

Questions About the Study  

If you have additional questions later or want any other information regarding this study, please contact Dr. 
Clark Dickerson at 519-888-4567 ext. 37844. 



 
 

100 
 

 

 

CONSENT TO PARTICIPATE   

I agree to take part in a research study being conducted by Dr. Dickerson of the Department of 
Kinesiology, University of Waterloo. 

I have made this decision based on the information I have read in the Information letter. All the procedures, 
any risks and benefits have been explained to me. I have had the opportunity to ask any questions and to 
receive any additional details I wanted about the study. If I have questions later about the study, I can ask 
one of the researchers (list names, departments, telephone numbers of investigators). 

I understand that I may withdraw from the study at any time without penalty by telling the researcher.  

This project has been reviewed by, and received ethics clearance through, the Office of Research Ethics at 
the University of Waterloo. I may contact this office (888-4567, ext. 6005) if I have any concerns or 
questions resulting from my involvement in this study. 

_____________________________                  __________________________ 
Printed Name of Participant                                   Signature of Participant  

_____________________________                 ___________________________ 
Dated at Waterloo, Ontario                                               Witnessed  
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Consent To Use Video and/or Photographs 

   

Sometimes a certain photograph and/or part of a video-tape clearly shows a particular feature or detail that 
would be helpful in teaching or when presenting the study results in a scientific presentation or publication. 
If you grant permission for photographs or videotapes in which you appear to be used in this manner, 
please complete the following section. 

I agree to allow video and/or photographs to be used in teaching or scientific presentations, or published in 
scientific journals or professional publications of this work without identifying me by name.  I understand 
that I retain the right to withdraw my consent to be videotaped or photographed at any time, and that 
existing video or photos may be destroyed at my request. 

__________________________             _______________________________ 
Printed Name of Participant                                          Signature of Participant  

_________________________                 _______________________________ 
Dated at Waterloo, Ontario                                            Witnessed  
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Appendix B: Postural and Load Exposure Assessment 

 
 
 
 
 
 
 
 
 

Quantifying Physical Exposures in Police Cruiser Operations 
~ Postural and Load Exposure Assessment ~ 

 
 
 
 
 
 
 
 

This study is being conducted by researchers at the University of Waterloo in 
co-operation with the Waterloo Regional Police Services 

 
 
 

Please read and complete all pages 
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Police Postural and Load Exposure Assessment 
Please complete the following questions prior to mobile shift: 
 
Date (DD/MM/YYYY):______/______/______ 
 
Height:______ (ft./cm),  Weight:______ (lbs./kg),  Age:______(years),  Gender (M / F) 
 
Have you suffered a low back injury in the last six (6) months? (Y / N) 
 
Have you suffered an upper limb (arm/shoulder) injury in the last six (6) months? (Y / N) 
 
Shift time (start time to end time):____________(am/pm) to ______________(am/pm) 
 
Area/Region of service:__________________________________________________ 
 
Right-handed______   Left-handed______ 
 
 
 
Overview of objectives and purpose and questionnaire and digital video collection: 
 
The goal of this questionnaire is to investigate driver seat discomfort and cruiser interior 
inflexibility. This questionnaire is meant to identify limitations and constraints with 
equipment interfaces, seat adjustability and driver comfort maximization. 
 
Digital video collection is meant to document and quantify low back, shoulder and upper 
limb postural, joint, and tissue exposures experienced by mobile police officers in a typical 
workday. 
 
There are two sections to this questionnaire: 1) Seating Environment Discomfort Scale 
      2) Body Discomfort Scale 
 
 
 
 
 
 
 
 
 
 
At the end of your shift, please add any additional comments with respect to 
comfort/discomfort you felt were not reflected in the car seat questionnaire. 
 
 
Thank you.
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Automotive Seating Environment Discomfort Scale 
  

To answer each question place a vertical dash [ | ] through the corresponding line 
 

      No Objections                                          Extreme Objections 

1.  In terms of where the laptop is located, I have…  |─────────────────────────────────| 

2.  In terms of where the radio is located, I have…  |─────────────────────────────────| 

3.  In terms of seat adjustability, I have…         |─────────────────────────────────| 

      No Discomfort                                          Extreme Discomfort 

4.  Discomfort due to the width of the seat cushion          |─────────────────────────────────| 

5.  Discomfort due to seat cushion length         |─────────────────────────────────| 

6.  Discomfort due to seat cushion firmness                    |─────────────────────────────────| 

      No Discomfort                                          Extreme Discomfort 

7.  Discomfort produced by the height of the back rest   |─────────────────────────────────| 

8.  Discomfort due to back rest width         |─────────────────────────────────| 

9.  Discomfort due to firmness of back rest         |─────────────────────────────────| 

      No Discomfort                                          Extreme Discomfort 

10.  Discomfort created by lumbar (low back) stiffness |─────────────────────────────────| 

11.  Discomfort created by shoulder stiffness   |─────────────────────────────────| 

12.  Discomfort created by upper arm stiffness  |─────────────────────────────────| 

Scale Continued on NEXT PAGE 
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Automotive Seating Environment Discomfort Scale (Continued) 
To answer each question place a vertical dash [ | ] through the corresponding line 

           
      No Discomfort                                          Extreme Discomfort 

13.  Discomfort produced by low back support   |─────────────────────────────────| 

14.  The vertical location of the low back support causes…  |─────────────────────────────────| 

15.  Pressure created from the low back support has… |─────────────────────────────────| 

                   No Discomfort                                          Extreme Discomfort 

16.  Discomfort due to computer use    |─────────────────────────────────| 

17.  Discomfort due to radio use          |─────────────────────────────────| 

18.  Discomfort caused by getting into car seat      |─────────────────────────────────| 

19.  Discomfort caused by getting out of car seat        |─────────────────────────────────| 

      No Discomfort                                          Extreme Discomfort 

20.  Discomfort caused by soft body armour    |─────────────────────────────────| 

21.  Discomfort caused by side arm/radio         |─────────────────────────────────| 

22.  Discomfort caused by duty belt    |─────────────────────────────────| 

23. Discomfort caused by equipment on back of duty belt |─────────────────────────────────| 

24. Discomfort caused by asp     |─────────────────────────────────| 

25. Discomfort caused by seatbelt    |─────────────────────────────────| 

26. Discomfort caused by steering wheel   |─────────────────────────────────| 

       

 No Discomfort                                          Extreme Discomfort 

27. Seating environment overall discomfort level      |─────────────────────────────────| 
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Body Discomfort Scale 
 
To answer each question place a vertical dash [ | ] through the corresponding line 

 
 
 
 
 

 
 
       The number displayed in the regions 
   in the diagram above correspond with the  
         numbers in the survey to the right  
                     of the diagram. 
 
 
 
 
 
 
 

               
                  No Discomfort             Extreme Discomfort    

1. Neck                        |─────────────────────────────────| 
 
2. (L) Shoulder          |─────────────────────────────────| 
                             
3. (R) Shoulder        |─────────────────────────────────| 
                               
4. (L) Upper Back       |─────────────────────────────────| 
 
5. (R) Upper Back     |─────────────────────────────────| 
 
6. Middle Back           |─────────────────────────────────| 
 
7. Lower Back         |─────────────────────────────────|  
 
8. (L) Side of Body  |─────────────────────────────────|          
 
9. (R) Side of Body  |─────────────────────────────────|         
 
10. (L) Upper Pelvis    |─────────────────────────────────| 
 
11. Sacrum/tail bone  |─────────────────────────────────| 

         
12. (R) Upper Pelvis   |─────────────────────────────────| 

Scale Continued on NEXT PAGE 
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Body Discomfort Scale (Continued) 

 
To answer each question place a vertical dash [ | ] through the corresponding line 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

 
                             No Discomfort          Extreme Discomfort    
13. (L) Buttocks        |─────────────────────────────────|       
              
14. (R) Buttocks        |─────────────────────────────────|       
             
15. (L) Upper Thigh   |─────────────────────────────────|  
                       
16. (R) Upper Thigh   |─────────────────────────────────| 
             
17. (L) Lower Thigh  |─────────────────────────────────|       
             
18. (R) Lower Thigh  |─────────────────────────────────|  
 
19. (L) Side of Leg     |─────────────────────────────────| 
                       
20. (R) Side of Leg    |─────────────────────────────────| 
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Addition Comment Section 
 

Do you have any suggestions for improvement of interior cruiser equipment locations (e.g. 
laptop, radio)? 
 
_________________________________________________________________________

_________________________________________________________________________

_________________________________________________________________________

_________________________________________________________________________

_________________________________________________________________________

_________________________________________________________________________

_________________________________________________________________________

_________________________________________________________________________

________________________________________________ 

 
Are there any concerns or comments that you have with respect to the seating environment 
that were not addressed in the discomfort scales above? 
 
_________________________________________________________________________

_________________________________________________________________________

_________________________________________________________________________

_________________________________________________________________________

_________________________________________________________________________

_________________________________________________________________________

_________________________________________________________________________

_________________________________________________________________________

________________________________________________ 

_________________________________________________________________________

_________________________________________________________________________

_________________________________________________________________________

________________________________________________ 

~ Thank you for participating in this Research Study ~ 
We appreciate your time. 

 
Please return the completed questionnaire to the appropriate person following your shift. 
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Appendix C: Information and Consent Form (The Evaluation of Mobile Data Terminal Location 
During a Simulated Police Patrol Task Set) 
 

University of Waterloo 

Title of Project: The Evaluation of Mobile Data Terminal Location During a Simulated 
Police Patrol Task Set 

Student Investigator:  Colin D. McKinnon 
                                     University of Waterloo, Department of Kinesiology 
                                     (519) 888-4567 Ext. 33865 

Faculty Supervisor: Clark R. Dickerson 
   University of Waterloo, Department of Kinesiology 
   (519) 888-4567 Ext. 37844 

Faculty Supervisor:  Jack P. Callaghan 
  University of Waterloo, Department of Kinesiology 
  (519) 888-4567 Ext. 37080 
 

Purpose of this Study: 

Law enforcement personnel experience higher physical demands than those in occupations of a more 
sedentary nature. In all aspects of police work ranging from physical criminal restraint to automotive 
pursuit to legal documentation, officers are exposed to physical stressors which may put them at risk for 
musculoskeletal pain or injury. Mobile police officers, generally traffic division, experience not only acute 
stressors in emergency response situations, but also cumulative physical exposures with prolonged driving 
conditions. Such mobile police officers have been shown to experience muscle pain and discomfort as a 
result of this prolonged occupational driving.  
 
The purpose of this project is to recommend a modified laptop configuration that minimizes physical risk in 
a simulated mobile police driving and typing. Physical and psychophysical outcome measures will be 
compared between driver seat types and mobile data terminal locations to determine the police cruiser 
configuration that minimizes physical risk. 

Procedures Involved in this Study 

Four mobile data terminal locations and two driver seat designs will be tested with simulated police patrol 
and typing tasks in two separate 1-hour simulated police patrol testing sessions in a driving simulator setup.  
 
You will be instrumented with surface EMG, a motion tracking system, and seat pressure mapping to 
evaluate EMG-based muscle stress estimates and model-based muscle stress estimates, and to determine 
the in-car laptop location and seat design that minimizes resultant right shoulder moment, rate of perceived 
discomfort and a combination of outcome measures.  

You will be instrumented with 9 sets of bipolar surface EMG electrodes. Skin will be prepared by shaving 
the electrode site with a new disposable razor and site will be wiped with isopropyl alcohol. Surface 
electrodes will be placed over 9 muscles of the shoulder, chest, and neck (m. pectoralis major (clavicular 
insertion), m. upper trapezius, m. anterior deltoid, m. middle deltoid, m. posterior deltoid, m. biceps brachii, 
m. triceps brachii, m. infraspinatus and m. supraspinatus).  
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Twenty-one reflective markers will be attached to the right arm and torso to track your upper body motion 
throughout the session. The small markers will be attached directly to the skin with non-irritating double-
sided tape. 

A set of two 6-second maximum voluntary contractions will be performed for each of the 9 EMG-recorded 
muscles. This allows for relative evaluation of the EMG recordings. 
 
The testing session itself will consist of 15-minutes of simulated highway driving to pre-condition and 
achieve a comfortable driving posture. You will then perform a series of four 30-second typing tasks at four 
different laptop locations. These locations will slight forward-back and left-right modifications from the 
current position. All positions are to the right of the steering wheel and in front of the right arm rest. Tasks 
will be separated by 1-minute rest intervals. Locations are plausible modified locations within a police 
cruiser and will be randomly ordered for each set of typing tasks. Typing tasks consist of key presses in 
response to on screen instructions and a type-written description of a facial image. You will then complete 
15-minutes of simulated driving, another identical series of typing tasks, 15-minutes of simulated driving, 
and another identical series of typing tasks. You will report their perceived low back and right shoulder 
discomfort on a 100mm scale for each simulated driving and typing task. 
 

Personal Benefits of Participation 

By participating in this study, you will aid development of methods to analyze workplace exposures for 
police officers while in their vehicles. By doing so, you will be enabling us to be able to help potentially 
improve the work environment you perform in on a daily basis. There are no other expected benefits to 
you. 

Risks to Participation and Associated Safeguards 

You will be performing low-level exertions in both typing and simulated driving tasks. There is minor risk 
of upper limb and low back fatigue in typing tasks and minor risk of neck, low back and upper limb 
discomfort/stiffness due to prolonged sitting and screen viewing. These risks are equivalent to those of 1-
hour of city driving. Isopropyl alcohol is used for EMG skin preparation, thus, you must not participate in 
this study if you have a known sensitivity or allergy to rubbing alcohol. 

Time Commitment 

This study will require 2 sessions each lasting approximately 1.5-hours in duration. If needed, breaks are 
allowed through the sessions by requesting them from the researcher. 

Changing Your Mind about Participation 

You may withdraw from this study at any time without penalty. To do so, indicate this to the researcher or 
one of the research assistants by saying, "I no longer wish to participate in this study". 

Confidentiality and Security of Data 

To ensure the confidentiality of individuals’ data, each participant will be identified by a participant 
identification code known only to the investigators and the research assistants. All data will be stored 
indefinitely in a secure area, BHM 3034, on a password encrypted computer or in a locked cabinet in a 
locked office. Separate consent will be requested in order to use the videotapes and/or photographs for 
teaching, for scientific presentations, or in publications of this work. 

Inclusion Criteria 
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Participants must be right-hand dominant males and females between the ages of 18 and 35 years. Males 
and females will be stature matched; meaning that the stature ranges of participants used will be similar for 
males and females. 

Exclusion Criteria 

Participants with a known sensitivity or allergy to rubbing alcohol must not participate in this study. If you 
have had an injury or experienced any discomfort to the low back or right shoulder area within the last 12 
months, you must not participate in this study. 

Participant Feedback 

After the study is completed, you will be provided with a feedback sheet.  A copy of this feedback sheet 
can be requested from the contact information on the front page of this letter. Results will be available to 
you by request at the completion of this study approximately in July 2009. 

Concerns about Your Participation 

I would like to assure you that this study has been reviewed and received ethics clearance through the 
Office of Research Ethics. However, the final decision about participation is yours. If you have any 
comments or concerns resulting from your participation in this study, you may contact Dr. Susan Sykes, 
Director ORE, at (519) 888-4567 ext. 36005, ssykes@uwaterloo.ca.  

Questions About the Study  

If you have additional questions later or want any other information regarding this study, please contact 
Colin McKinnon (cdmckinn@uwaterloo.ca) at 519-888-4567 ext. 33865 or Dr. Clark Dickerson 
(cdickers@uwaterloo.ca) at 519-888-4567 ext. 37844. 
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CONSENT TO PARTICIPATE  
 

Student Investigator:  Colin D. McKinnon 
                                     University of Waterloo, Department of Kinesiology 
                                     (519) 888-4567 Ext. 33865 

Faculty Supervisor: Clark R. Dickerson 
   University of Waterloo, Department of Kinesiology 
   (519) 888-4567 Ext. 37844 

Faculty Supervisor:  Jack P. Callaghan 
  University of Waterloo, Department of Kinesiology 
  (519) 888-4567 Ext. 37080 

Recent history of low back or shoulder injury and/or discomfort may confound the results of this study and 
impose potential physical risk to the participants. I confirm that I have not had an injury or experienced any 
discomfort to the low back or right shoulder area within the last 12 months. 

I agree to take part in a research study being conducted by Dr. Dickerson of the Department of 
Kinesiology, University of Waterloo. 

I have made this decision based on the information I have read in the Information letter. All the procedures, 
any risks and benefits have been explained to me. I have had the opportunity to ask any questions and to 
receive any additional details I wanted about the study. If I have questions later about the study, I can ask 
one of the researchers. 

I understand that I may withdraw from the study at any time without penalty by telling the researcher.  

This project has been reviewed by, and received ethics clearance through, the Office of Research Ethics at 
the University of Waterloo. I may contact Dr. Susan Sykes, Director, ORE, at 519-888-4567 ext. 36005 
ssykes@uwaterloo.ca if I have any concerns or questions resulting from my involvement in this study. 

_____________________________                  __________________________ 
Printed Name of Participant                                   Signature of Participant  

_____________________________                 ___________________________ 
Dated at Waterloo, Ontario                                               Witnessed  
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CONSENT TO BE VIDEOTAPED
 

 Videotaping for sessions is a useful tool for detecting any abnormalities in data collection. When using 
multiple methods of data collection (EMG, motion tracking, seat pressure), it is important to be able to 
coordinate collected data with physical actions. Recording video of each session will allow us to verify that 
data and action are matched on a time basis. 

I agree to allow videotape and photographs to be recorded throughout the collection period of each of two 
sessions. I understand that I retain the right to withdraw my consent to be videotaped or photographed at 
any time, and that existing video or photos may be destroyed at my request. 

__________________________             _______________________________ 
Printed Name of Participant                                          Signature of Participant  

_________________________                 _______________________________ 
Dated at Waterloo, Ontario                                            Witnessed  
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CONSENT TO USE VIDEO AND/OR PHOTOGRAPHS
 

 Sometimes a certain photograph and/or part of a video-tape clearly shows a particular feature or detail that 
would be helpful in teaching or when presenting the study results in a scientific presentation or publication. 
If you grant permission for photographs or videotapes in which you appear to be used in this manner, 
please complete the following section. 

I agree to allow video and/or photographs to be used in teaching or scientific presentations, or published in 
scientific journals or professional publications of this work without identifying me by name.  I understand 
that I retain the right to withdraw my consent to be videotaped or photographed at any time, and that 
existing video or photos may be destroyed at my request. 

__________________________             _______________________________ 
Printed Name of Participant                                          Signature of Participant  

_________________________                 _______________________________ 
Dated at Waterloo, Ontario                                            Witnessed  
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Appendix D: Rating of Perceived Discomfort (RPD) Assessment Sample 
 

Rating of Perceived Discomfort (RPD) Assessment 
 
Date (DD/MM/YYYY):______/______/______ 
 
Participant Code:__________________________ 
 
 
 
 
This Visual Analog Scale (VAS) discomfort is to be completed for both the lower back and 
right upper limb after each driving and each typing task. 
 
A total of nine sets of RPD scales should be completed: 

- Drive 1  - Drive 2  - Drive 3 
- Type 1A  - Type 2A  - Type 3A 
- Type 1B  - Type 2B  - Type 3B 
- Type 1C  - Type 2C    - Type 3C 
- Type 1D  - Type 2D  - Type 3D 
- Type 1E  - Type 2E  - Type 3E 
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Simulated Police Patrol Discomfort Scale (Drive 1) 

  
To answer each question place a vertical dash [ | ] through the corresponding 
line 
 
 
 
 
 
 
 
 

             No Discomfort                                           Extreme 
Discomfort 
Lower Back             |─────────────────────────────────| 

 
 
 
 
 
 
 
 
 
 
                                           No Discomfort                              Extreme 
Discomfort 

Right Shoulder      |─────────────────────────────────| 
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Appendix E: Current muscle parameters. Fmax was used to calculate EMG-based total muscle 
force (Makhsous, 1999; Hogfors et al., 1987) 
 
 

No. Muscle Fmax (N) 
1 Pectoralis major (upper) 397.7
2 Trapezius (upper) 842.09
3 Deltoid medial 652.95
4 Deltoid posterior 377.49
5 Deltoid anterior 777.83
6 Infraspinatus 1 (upper) 560.54
7 Supraspinatus 277.23
8 Biceps (long) 434.68
9 Triceps (medial head) 878

 
 


