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Abstract

Piezoelectric actuators are well suited for high precision mechanical and electrical engineering
applications. However, its performance in regulator configurations has been limited due to hys-
teresis. The hysteresis in these actuators means that multiple input states can result in the same
output, which introduces a further design variable (initial state) in the regulation problem. It is
proposed that certain initial states result in better regulation performance based on the structure
of the Preisach model. These initial states are called “neutral states”.

In this thesis, hysteresis and piezoelectric actuators are introduced as background information.
The Preisach model is used in this work to describe the hysteresis behaviour of a customized shape
control unit SS15 due to its convenient general structure and ability to model hysteresis. The
representation tests are performed and a Preisach model is subsequently constructed and verified
by comparing simulation and experimental results to ensure that the hysteresis inherent in the
piezoceramic actuators of the SS15 is suitably described by this model. In order to evaluate the
regulation performance for a given desired output, uniformly-distributed noise is injected at the
input side of the SS15 in open- and closed-loop tests. It is demonstrated, by both simulation
and experimental results, that the system output drifts less when it starts from the neutral state
in open-loop tests. A PI regulator is implemented in the closed-loop tests. When the system
is driven from the neutral state, both simulation and experimental results demonstrate that the
system requires less control effort for closed-loop regulation.
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Chapter 1

Introduction

Nowadays piezoelectric actuators are drawing significant attention in the field of precision engi-
neering. For example, shape control can be achieved by spatially distributed piezoelectric actua-
tors, which exert forces to modify and maintain the shape of the material bonded or incorporated
with piezoelectric ceramics. In this chapter, the motivation behind the use of piezoelectric actu-
ators to perform shape control is discussed from various aspects. In particular, discussion is pro-
vided as to the advantages of utilizing actuators made of so-called smart material, the main goals of
shape control and the inherent hysteretic nonlinearity observed in these smart materials. Further-
more the goals of the thesis are specified based on previous research efforts in the area of influence
of initial state on regulation of actuators with hysteresis. Finally the outline of the thesis is listed.

1.1 Motivation

Over the past few decades, there has been a significantly increasing interest in the realm of smart
materials, such as piezoelectric ceramics and shape memory alloys, especially focused towards
their applications as actuators in high performance control design. In comparison to the numerous
research efforts on the use of smart structures1 in active vibration suppression, much less attention
has been focused on the use of smart structures in shape control because the displacement of
the piezoceramics used is very small and the precise positioning control is seriously affected by
hysteresis.

Shape control is highly related to control engineering since the main goal of shape control is to
apply appropriate actuation in order to minimize the influence of specific external disturbances.
For example, Haftka and Adelman introduce the notion of shape control in a contribution [2]. In
this work, the temperatures in control elements are computed in order to minimize the overall
distortion of a space structure from its original shape. Much research has been focussed on solving
the problems of drive signal determination and optimal actuator placement in order to achieve a
certain shape. A considerable amount of literature can be found on piezoceramic actuators bonded

1A smart structure is one that monitors itself and/or its environment in order to respond to changes in its
condition [1].
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to or embedded into beams, shells and plates. Piezoelectric actuators offer high resolution down to
the subnanometer range, high stiffness, low wear and tear, and fast response times [3]. Therefore
these actuators are well suited for high precision electromechanical engineering applications.

For instance, Koconis et. al [4] investigate the changes in the shapes of fiber-reinforced compos-
ite beams, plates and shells due to embedded piezoelectric actuators. In that work, the actuation
voltages are determined in order to achieve a specific shape by following an established analytical
method, which successfully converts the shape control problem into a series of distributed regula-
tion control problems. Agrawal and Treanor [5] have analytically solved the problem of optimal
placement of piezoceramic actuators for shape control of beam structures and optimum piezoce-
ramic actuator voltages, such that the error between the desired shape and the achieved shape
is minimized, as has been demonstrated experimentally. Also the significant effects of hysteresis
were observed and considered since the practical shape control application demands feedback of
the beam’s shape in order to ensure the desired deformation is obtained.

For a linear system, the setpoint regulation problem has been fully investigated and well
understood, e.g., [6]. Unfortunately the regulation task is considerably more complicated when
the actuator includes smart materials due to their inherent hysteresis nonlinearity. Hysteretic
behaviour means that for a given output, there exists a range of inputs [7], which act like multiple
states because of memory. Hysteresis also limits the performance of systems since it can give rise
to undesirable loss of accuracy or oscillations, and even lead to instability [8].

This thesis investigates if there is a specific state holding attractive properties among those
multiple states, such as high noise or disturbance rejection, for a given setpoint. An important
measure of regulating performance is the maximum output transient caused by disturbances, since
this determines the deviation from the desired shape. As shown in [7], the existence of a state with
the above stated advantages has been demonstrated for hysteretic systems, specifically in shape
memory alloy and piezoceramic actuator. This “neutral state” has better rejection of uniformly-
distributed noise at its input in open-loop tests and requires the least control effort in a closed-
loop regulation control systems. The reachability of this so-called “neutral state” is investigated
together with the input required to drive the system to the appropriate neutral state. As noted
in [7], the neutral state locus appears to pass through points inside the major hysteresis loop on
the input and output plane where the internal ascending and descending branches have similar
slopes. In [7], neutral state existence has been intuitively explained based on the Preisach model.
The better regulating performance of the neutral state in terms of superior input noise rejection
has been demonstrated during open-loop tests in both simulations and experiments. However,
its superior regulating performance in terms of the least control effort required in closed-loop
regulation tests is only demonstrated by the simulation results in [7]. This thesis extends the
work of Gorbet by validating his results experimentally on a new system driven by piezoceramic
actuators but with a different configuration. Moreover, this thesis provides the first experimental
closed-loop results in this area.

1.2 Thesis Goals

There are several goals of this research which are listed below.

• Preisach model representation test: According to [9], in order to use the classical Preisach
model to describe a hysteretic behaviour, certain necessary and sufficient conditions have to
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be satisfied such as wiping-out property and congruent minor loop property. Experimental
tests are implemented on the shape control system in order to verify that the hysteresis
behaviour inherent in piezoceramic actuator can be represented by the Preisach model under
certain conditions such as a low frequency input signal.

• Preisach model construction: Following the procedure introduced by Mayergoyz in [9], the
data required for parameter identification (first order descending curves) are collected from
experiments in order to build the Preisach model. Curve fitting and surface fitting are
applied to obtain the weighting functions of the Preisach model.

• Input noise rejection open-loop test: Following the procedure in [7], noise rejection tests are
performed on the shape control system in order to demonstrate the existence and the better
open-loop set-point control performance of a neutral state initial condition with hysteresis.
Both simulation and experimental results are obtained which demonstrate improved noise
rejection when starting from the neutral state.

• Closed-loop regulation tests with the injection of input noise: A PI controller is designed and
implemented in order to accomplish fast, accurate and robust regulation tasks. The control
effort is calculated and compared quantitatively when various initial states and different
noise gains are applied. Both simulation and experimental results are obtained.

1.3 Thesis Outline

The thesis is organized as follows:

• Chapter 2 introduces the background information regarding hysteresis and piezoceramic
actuators. The hysteresis modelling is also investigated and the Preisach model is explained
in detail since it has been chosen to describe the shape control unit with hysteresis. Based
on the state-space representation of the Preisach model, the definition of a neutral state is
provided graphically and discussed.

• Chapter 3 shows the experimental setup and the Preisach model representation test and the
Preisach model identification.

• Chapter 4 provides both simulation and experimental results in open-loop drift tests when
there is input noise. The differential output is applied as the metric to measure the output
drift quantitatively. The explanation of the better regulating performance of the neutral
state is also provided.

• Chapter 5 presents both simulation and experimental results in closed-loop regulation tests
using a PI controller. The 2-norm of the control effort is applied to compare the control
effort quantitatively when different initial states and noise amplitudes are applied.

• Chapter 6 provides conclusions on the employment of the neutral state based on the simula-
tion and experimental results collected in open-loop and closed-loop tests when input noise
is present. Future work is also discussed as extensions of the work in the thesis.
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• Appendix A introduces the definition of a reduced memory sequence and presents the deriv-
ative of the Preisach model. The author believes that this is the first attempt to provide
a formal input-output derivative of Preisach model behaviour, and that the derivative may
be useful in proving optimality of the neutral state in future work.
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Chapter 2

Background

In this chapter, the background information regarding hysteresis and piezoelectric actuators is
introduced. Hysteresis modelling techniques are divided into three categories. Among these mod-
elling techniques, the Preisach model, its representation property, and its identification procedure
are presented in detail since it is adopted to model the hysteresis of a piezoceramic actuator in
Chapter 3. The state space representation of Preisach model is also reviewed as it would be
necessary tool for discussing the influence of initial states in a hysteretic system.

2.1 Hysteresis Definition

Hysteresis is a property of system where the output is not only a strict function of the input, but
also incorporates a lag or memory of the input history. The term hysteresis originates from ancient
Greek and is first used to describe ferromagnetism [10] and many useful models have developed
in this domain [11], [12]. Another area where early hysteresis models are used is plasticity. After
the maximum shear stress yield criterion is introduced by Tresca in 1864, numerous investigations
emphasize this criterion increasingly [10]. Moreover, hysteresis can also be found in various fields,
such as ferroelectricity [13], [14], thermostatics [15], [16], shape memory effects [17], [18], and
mechanics [19], [20].

In [9], the terminology from control theory is adapted in the definition of hysteresis. First
consider a transducer with u (t) and y (t) as its time dependant input and output respectively,
as shown in Figure 2.1 (a). If the relationship between u (t) and y (t) consists of a multi-branch
nonlinearity and the transitions from branch to branch occur after input extrema, then such a
transducer is named as “hysteresis transducer” [9]. Such a relationship is illustrated in Figure 2.1
(b).

Hysteresis can be divided into two categories, namely: static hysteresis and dynamic hysteresis
corresponding to the terminology of rate-independent and rate-dependent hysteresis respectively.
For a static or rate-independent hysteresis, only the past extrema values of the inputs determine
the branches while the rate of input variations between extrema do not affect the branches. On
the other hand, the branches of a dynamic or rate-dependent hysteresis are determined by both
the past extrema values of the inputs and the rate of input variations between extrema.

5



hysteresis 
transducer

y(t)u(t)

(a)

u(t)

y(t)

(b)

Figure 2.1: (a) Hysteresis transducer (b) Multi-branch nonlinearity [9].

As illustrated in Figure 2.2, the major hysteresis loop is the limiting loop enclosing all other
hysteresis loops, typically referred to as minor loops within the major hysteresis loop.

2.2 Piezoelectric Actuator

There are currently two main types of piezoelectric materials: ceramics and polymers. Piezoelec-
tric ceramics are probably the most important piezoelectric materials and the vast majority of
piezoceramics belong to the lead-zirconate-titanate (PZT) family, which are extensively used as
strain sensors and as mechanical sources of displacement [21].

Piezoelectric ceramics transduce energy between the electrical and mechanical domains. Ap-
plication of an electric field across the ceramic produces a mechanical strain, and application of a
mechanical stress on the ceramic induces an electrical charge in a similar manner. The use of the
piezoelectric effect in actuators relies on the first property.

Piezoelectric materials change shape when their electrical dipoles spontaneously align in elec-
tric fields, causing deformation of the crystal structure. Piezoceramic actuators can be constructed
in a number of different configurations such as stack, bender, and building-block types [22]. Fun-
damentally, a bimorph piezoelectric actuator is two piezoceramic strips glued to a passive metal
substrate. Bimorph bender actuators are used in the shape control unit (SS15) [23] studied in
this research, and thus, it will be discussed in detail.

Bender actuators use the internal piezoelectric strain to indirectly generate actuator motion.
The bimorph bender actuator consists of two layers of piezoelectric material, which are poled and
activated such that layers on opposite sides of the neutral axis have opposing strain as shown in
Figure 2.3. An internal bending moment is generated by the opposing strain from the piezoelectric
layers and results in the motion of the bender, which causes a quadratic amplification of actuator
stroke as a function of length [22]. Additionally, inactive substrates may be included to achieve
higher structural strength.

The biomorph bender actuator was first developed in the 1930s by Sawyer [24]. However
the performance of these actuators has not been examined in depth until research into smart
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Figure 2.3: Illustration of bimorph bender actuator [3].

structures became popular in the past three decades [25], [26]. Subsequently, biomorph bender
actuators have been utilized in various fields, such as robotic applications requiring relatively large
displacements [27], spoilers on missile fins [28] and to actuate a quick-focusing lens [29].

A standards committee of the IEEE Ultrasonics, Ferroelectrics, and Frequency Control Society
originally published a description of piezoelectric ceramic behaviour in 1966 and revised it in 1987
[30]: linearized constitutive relations are formulated to describe piezoelectric continua which form
the basis for the model of piezoelectric behaviour that is in general use now. Typically the
linearized constitutive relations are represented in a compressed matrix notation as follow:

Sp = sEpqTq + dpkEk (2.1)

Di = diqTq + εTikEk (2.2)

where S is the strain tensor, sE represents the elastic compliance matrix when subjected to a
constant electrical field, T represents the stress tensor, d is a matrix of piezoelectric material
constants, E is the electric field vector, D is the electric displacement vector and εT is the
permittivity measured at a constant stress. The subscripts indicate the dimensions of the matrices.
Eq. (2.1) and (2.2) state that the material strain and electrical displacement exhibited by a
piezoelectric ceramic are both linearly affected by the mechanical stress and electrical field to
which the ceramic is subjected. However, these linearized constitutive relations are not able to
explicitly describe the nonlinearities that are present in all piezoelectric ceramics. Moreover, these
equations are derived by assuming a purely conservative energy field. As a result, it is impossible
for them to describe the dissipative behavioural aspects of the ceramic as pointed out in [31].
In fact, all currently employed smart materials, including piezoelectric materials, exhibit some
degree of hysteresis in the relation between input fields, temperatures, or stresses and output
displacements [32]. Piezoceramics become useful as actuators after the poling process. A residual
electric field still remains within the material and generates a “pre-strain” after the poling field
is removed. Consequently, strain will increase if fields of the same polarity as the poling field are
applied, while strain will decrease if fields of the opposite polarity are applied. When the applied
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field is removed, the dipoles will tend to realign themselves along the residual field remaining
within the material from the poling process. However, the dipoles cannot realign totally due to
the material defects. Therefore, the hysteresis phenomena occurs [33].

2.3 Hysteresis Modelling History

Roughly speaking, hysteresis models for piezoelectric materials can be separated into three cate-
gories: “microscopic, macroscopic or semi-macroscopic” as pointed out by Smith [34]. In general,
the models tend to employ energy principles, phenomenological principles, or a combination of
the two.

2.3.1 Microscopic Models

In microscopic models of hysteresis [35], quantum principles, typical elasticity or electromagnetic
relations, or thermodynamic laws are employed at a lattice or grain level. Viscosity coefficients
are taken into account when the free energy of a one-dimensional lattice system is calculated for
a ferroelectric material, such that the hysteresis behaviour between the applied electric field and
polarization is built in [35]. Their simulation results show that the hysteresis curves generated
based on such a model are acceptable. However, numerous states and parameters are required
in the model even for the one-dimensional lattice, which makes the microscopic models not very
suitable in control applications.

2.3.2 Semi-macroscopic Models

Semi-macroscopic models employ a combination of physical and phenomenological principles. At-
tributions from the polarization switching mechanism are characterized based on energy relations.
The parameters of the resulting models are obtained through macroscopic averages for describing
the hysteresis.

For instance, the homogenized energy model generated by Smith [32] is a combination of
“aspects of the homogenized free energy theory of [36] and Preisach models posed in terms of
general densities or measure”. As a result, the model is linearly dependent on the parameters and
can be considered for various areas of controller design [8]. Generally speaking, the main goal of
semi-macroscopic models is to utilize known physics to promote model construction and real-time
updating by employing energy-based relations.

2.3.3 Macroscopic Models

Macroscopic models are built for the inherent hysteresis of ferroelectric materials by employing
phenomenological principles. The purely phenomenological models include the Preisach and gen-
eralized Preisach models, which were originally constructed to describe magnetic hysteresis [37],
and have subsequently been extended to piezoceramic materials in various formats [10], [38], [39],
[40], and [41].
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In the classical form, Preisach operators are constructed from a linear combination of multi-
valued kernels [42]. Each kernel is characterized by two saturation states and the coefficients of
each kernel represent the input magnitude when switching occurs between those two saturation
states. As introduced in detail in Section 2.4, Preisach models are purely mathematical models
to describe hysteretic behavior because only phenomenological principles are employed. As noted
in [9], hysteretic nonlinearities can be exactly represented by the classical Preisach model as long
as the hysteresis holds the wiping-out and congruency properties. Consequently the Preisach
model of hysteresis is identified simply by determining the weighting function of the elementary
hysteresis operators.

However, some hysteresis cannot satisfy both the wiping-out and congruency properties.
Hence, a generalized Preisach model was developed to describe hysteresis in such cases [43].
The generalized Preisach model loosens the congruency property of the classical model and fits
both first and second order transition curves.

Moreover, a Preisach-based dynamic hysteresis model is presented as another extension of the
classical Preisach model in [44]. The dynamic Preisach model can describe the rate dependent
nature of the voltage to displacement dynamics in a piezoceramic actuator and a recursive form of
the model was developed for real-time implementation. Details of Preisach modelling are provided
in the following section.

2.4 The Preisach Model

The Preisach model is used in this thesis due to its convenient general structure and ability to
model hysteresis. It was originally developed to describe the hysteresis in magnetic material.
However, in accordance with experimental work in recent decades, it can also be used to describe
the behaviour in many other hysteretic materials, such as SMAs [45], [46]. For the classical
Preisach model, it is assumed that the hysteresis is rate-independent, which means that the
relationship between input u (t) and output y (t) are invariant under changes in the input rate.
However, such an assumption is not satisfied in the hysteresis behaviour of piezoceramics at high
frequency inputs. An extended Preisach model, which is the Preisach based dynamic hysteresis
model, is introduced by Hu and Ben Mrad [44] in order to describe the hysteresis of piezoceramic
actuators for high frequency input signals.

The elementary block of the Preisach model is the hysteresis relay operator γr,s.

γr,s [u (t)] =

⎧⎨⎩ +1,
γ0,
−1,

u (t) ≥ s+ r
s− r ≤ u (t) ≤ s+ r

u (t) ≤ s− r
(2.3)

where r > 0 and s as its half-width and input offset respectively. γr,s = ±1 depending on the
input u (t) as shown in Figure 2.4 and is defined by Eq. (2.3), where γ0 is the initial state. The
model structure is illustrated in Figure 2.5. The weighted sum of each individual relay output
equals the output y(t), and μ(r, s) stands for the weight of the relay γr,s. The Preisach model
output is defined for continuous inputs u(t). Since the input u(t) varies with time, the output of
each elementary relay γr,s [u (t)] is tuned according to the current input value, and the weighted
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Figure 2.4: Hysteresis relay.

sum of all relay outputs is the overall system output y (t) as shown in Eq. (2.4).

y(t) =

∞Z
0

∞Z
−∞

μ(r, s)γr,s [u (t)] dsdr (2.4)

The right half-plane <+ × < is often referred to as the Preisach plane P , in which every point
presents a unique relay. The collection of weights μ(r, s) forms the Preisach weighting function
μ : P → <, which can be experimentally determined for a given system. The approach as defined
in [9] is used to identify the Preisach model of the hysteresis behaviour in a piezoceramic bimorph
bender actuator in this thesis. If there are physical limitations such as control input saturation
û, the domain of μ can be restricted to a triangle Pr = {(r, s) ∈ P : |s| ≤ û− r}, which is referred
as the restricted Preisach plane.

The Preisach plane is important since it can be used to track individual relay states in the
following way. First of all, the relays are divided into two time-varying sets P− (t) and P+ (t)
defined by Eq. (2.5) as:

P± (t) =
©
(r, s) ∈ Pr : γr,s [u (t)] = ±1

ª
(2.5)

In the Preisach plane time dependence is often implicit, so P− and P+ are used instead of P− (t)
and P+ (t). Obviously P− ∪ P+ = Pr is satisfied, which means that P− and P+ are connected
and separated by the line ψ known as the Preisach plane boundary, which can be considered as
a map ψ: R+ × R → R defined by s = ψ (t, r). The evolution of the Preisach plane boundary
ψ is illustrated in Figure 2.6 corresponding to Case 1 (Figure 2.6 (a) and (b)): a monotonically
increasing input u(t) starting from negative saturation and Case 2 (Figure 2.6 (c) and (d)): a
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monotonically decreasing input u(t) starting from positive saturation separately. So at first in
Case 1, all relays are turned off, i.e. all relays’ output are -1 and P− = Pr, P+ = 0 (Figure 2.6
(a)). As the input increases, it switches on those relays γr,s ∈ {(r, s) ∈ P+ : s ≤ u(t)− r} as it
passes u(t) = s+ r, and moves them from P− to P+. The boundary between P− and P+ can be
represented as a segment of slope -1 in Figure 2.6(b). On the other hand for Case 2, all relays
are turned on initially, i.e. all relays’ output are +1 and P+ = Pr, P− = 0 (Figure 2.6(c)). As
the input decreases, it switches off those relays γr,s ∈ {(r, s) ∈ P− : s ≥ u (t) + r} as it passes
u (t) = s− r, and moves them from P+ to P−. The Preisach plane boundary ψ is represented in
Figure 2.6(d) as a segment of slope +1 for a monotonically decreasing input u(t). P+ is below P−
and the Preisach plane boundary ψ always intersects the axis r = 0 at the current input value
u(t).

The Preisach plane boundary also represents the memory of the Preisach model. When an
arbitrary input is applied, input reversals cause corners in the boundary as shown in Figure 2.7.
Moreover, the history of past input reversals and branching behaviour is stored via the corners
of the boundary. However, some of the corners in the boundary may disappear when wiping-out
happens, which is one of the two necessary and sufficient conditions for the existence of a Preisach
representation of a hysteretic phenomenon [9]. These two conditions will be discussed in detail in
the following section.

Now, according to [47], the output can be calculated based on the Preisach plane boundary
ψ (t, r) by separating the restricted Preisach plane Pr into P+ (t) and P− (t):

y (t) = 2

ZZ
P+(t)

μ (r, s) dsdr −
ZZ
Pr

μ (r, s) dsdr (2.6)

or

y (t) = −2
ZZ
P−(t)

μ (r, s) dsdr +

ZZ
Pr

μ (r, s) dsdr (2.7)

The output variation generated by a monotonic change in input is stated in the following propo-
sition [47].

Proposition 1 (Output Variation) [47]

A monotonic change in input which causes the boundary to sweep out an area Ω from time t1
to t2 leads to an output variation

y (t2)− y (t1) = 2sgn [u (t2)− u (t1)]
ZZ
Ω

μ (r, s) dsdr (2.8)

This relationship is needed subsequently to establish the connection between the output variation
and the input disturbance.

2.5 Preisach Model Representation Property

In the previous section, the Preisach plane and Preisach boundary are introduced, which are two
important concepts in the Preisach model. According to Mayergoyz, there are two necessary and
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Figure 2.6: Preisach boundary behavior.
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sufficient conditions for a certain system to be described by a Preisach model, the wiping-out
property and the congruent minor loop property [9]. In the following two subsections, these two
properties will be explained in detail.

2.5.1 Wiping-Out Property

As stated in the previous section, input extrema generate the corners of the Preisach boundary
which represent the memory of the Preisach model. The wiping-out property indicates that certain
input extrema can remove the effects of previous extrema so as to wipe out the memory of the
model. Such a behaviour is illustrated in Figure 2.7.

Suppose u (t) starts from 0 to minimum saturation first and the boundary at some time t3 is
as shown in Figure 2.7(a) with the input constant at u3. There are three corners, namely O0, O1
and O2 shown on the boundary ψ (t3, r) when u (t) changes its direction at t0, t1 and t2 with input
value of u0 = −9, u1 = 5 and u2 = −2. If the input changes its direction at t3 with input u3 = 3
and decreases from t3 to t4, a new segment with +1 slope is generated on the boundary, sweeping
right downwards through Pr (Figure 2.7(b)). Moreover, a new corner O3 appears on the boundary.
As u(t) keeps decreasing from t4 to t5, it reaches and passes the previous input minimum, i.e.
u2 = −2. The corners previously generated at time t2 and t3, i.e. O2 and O3, are “wiped out”
(Figure 2.7(c)) and as the input continues to decrease, the memory of the pair of input minimum
u2 and maximum u3 before t5 has been removed (Figure 2.7(d)). At any particular time, the
previous extrema which remain on the boundary, such as u0 and u1 are referred as the dominant
input extrema by Mayergoyz [9].

2.5.2 Congruent Minor Loop Property

The congruent minor loop (CML) property states that any two minor loops have the same shape
independent of past input history if those two minor loops are generated by input variation
between the same two distinct values. These minor loops are also defined as comparable minor
loops in [47].

Consider two different input signals which generate comparable minor loops through variation
between u2 and u3 and u3 > u2. However, those two input signals have different input histories.
As stated in Proposition 1, the variation of output 4y due to an input variations between u2
and u3 is determined by the region Ω and is independent of past input history. As long as
u2 < u(t) < u3, the same triangle (shaded area in Figure 2.8) is swept in both cases. Thus, the
output variation from the previous extremum will be identical for both inputs at any point on the
minor loop and the two comparable minor loops will have exactly the same shape.

2.6 Preisach Model Identification

Mayergoyz provides a Preisach model identification procedure in [9]. In Chapter 3 of this thesis,
this procedure is followed to build the specific Preisach model of the shape control unit SS15. In
Mayergoyz’s work, a different notation of the hysteresis relay is adopted to describe a Preisach
model. As shown by Eq. (2.3), the hysteresis relay is characterized by its half-width r > 0 and
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simplify a mathematical discussion of the model.

input offset s respectively. While in Mayergoyz’s work, the hysteresis replay is characterized by
its switch on and off values of input α and β respectively. Then the relationship between (α,β)
and (r, s) are described as follows:

α = s+ r (2.9)

β = s− r (2.10)

Since r ≥ 0, then α ≥ β, and (α,β) stands for the pair of switching values of each relay, which
is shown in Figure 2.9 (a), while Figure 2.9 (b) shows the hysteresis relay noted by γr,s for com-
parison. This is only a linear transformation of those coordinates, which can lead to a simplified
mathematical discussion of the model due to the effect on the Preisach plane as illustrated in
Figure 2.10.

The restricted Preisach plane is shown in Figure 2.10 (b) with γα,β as the basic hysteresis relay
operator, û as the input control saturation and ψ as the Preisach plane boundary generated by
input u (t), which is shown in the left part of Figure 2.10. It is shown that a monotonically increas-
ing input generates a horizontal segment of the Preisach plane boundary, while the monotonically
decreasing input generates a vertical segment of the boundary in Figure 2.10 (a). The correspond-
ing restricted Preisach plane with γr,s as the basic hysteresis relay operator is shown in Figure
2.10 (b), in comparison to the standard Preisach form under the same conditions.

By using the notation of γα,β as the basic hysteresis relay, a first-order descending curve (FOD)
can be directly generated by the input u (t) shown in Figure 2.10 (a), i.e. the input u (t) goes to
negative input saturation −û first, then monotonically increases to a value u = α1, and finally
decreases to u = β1. Such an input is noted by uα1β1 as used in [47]. The corresponding measured
output is denoted by yα1 at u = α1, and yα1β1 at u = β1 as shown in Figure 2.11, from which it is
illustrated that the final branch of the graph is in the descending direction and only one reversal
has appeared before the final branch. Such a branch is named as the first-order descending curve
and will be collected in experiments to determine the Preisach weighting surface μ (α,β) first.
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Figure 2.11: FOD curve in I/O plane.

Then from the linear mapping between (α,β) and (r, s), the weighting surface can be converted
to the restricted Preisach plane based on the basic hysteresis block denoted by γr,s.

As shown in [9], defining the function F (α1,β1) = yα1 − yα1β1 , then

μ (α1,β1) = −1
2

∂2

∂α1∂β1
F (α1,β1)

=
1

2

∂2yα1β1
∂α1∂β1

All points yαβ could be identified for the whole restricted Preisach plane Pr and form the surface
y (α,β). From a physical point of view, the surface y (α,β) should be smooth and then it can be
differentiated to generate the weighting function

μ (α,β) =
1

2

∂2y (α,β)

∂α∂β
(2.11)

In [45] another form of the weighting surface is used in building the Preisach model of piezo-
ceramic and SMA hysteresis. The weighting surface now is separated into two parts:

μ (α,β) = v (α,β) + κ (β) δ (α− β) . (2.12)

v (α,β) represents the hysteretic effect and is a continuous surface, and κ (β) represents the
reversible behaviour of the material. Moreover, κ (β) is the magnitude of the slope of the FOD
curve at the point where it branches off the major loop due an input reversal at u (t) = β, as
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shown in Figure 2.11 [45]. With the distribution κ (β) δ (α− β) along α = β, this form of weighting
surface will illustrate the hysteresis of piezoceramic more precisely because reversible behaviour
can also be described by such a weighting surface and it is not over constrained to be continuous
as β → α. Recall Eq. (A.28). The initial slopes of the FOD curves will be always zero if the
weighting surface is restricted to be continuous in Pr, which is clearly not true as shown in Figure
2.11. Thus, the weighting surface in this thesis is considered and identified in the form of Eq.
(2.12), where

v (α,β) =
1

2

∂2y (α,β)

∂α∂β
(2.13)

κ (β) =
1

2

∂y (α,β)

∂β

¯̄̄̄
β↑α

(2.14)

Practically the input range is divided into n sections, defined by {ui} where i is from 0 to n.
Then for all pairs (ui, uj), where j ≤ i, FOD curves can be generated and n

2 (n+ 3) FOD data
points can be collected. In this thesis, it is assumed that the input u (t) is continuous, then the
FOD curves are smooth in nature from the physical point of view. Then a smooth surface ỹ (α,β)
is fit to those FOD data points by the least-squares method and the smooth surface ỹ (α,β) is
differentiated to obtain an approximate weighting surface μ̃. In the thesis, a Nelder-Mead simplex
algorithm is used to do the least-squares fit. It should be noted that, for those FOD curves with
few data points, the simplex algorithm is likely to fail to converge and result in many minima since
the data points on those curves exhibit the linearity, and a nonlinear candidate function is used in
curve fitting in order to fit the curvature of most FOD curves. In order to avoid divergence of the
algorithm, the identified parameters of the candidate function for the previous FOD curve is used
as the initial condition of those parameters of the candidate function for the next FOD curve.
Moreover, when we choose the candidate function, there is always a trade-off between accuracy
and stability for the model to be identified.

2.7 State-Space Representation of Preisach Model

A state-space representation of Preisach models is developed in [48]. This concept is introduced
in order to discuss the influence of the initial states during control with hysteretic actuators. The
system is defined through the input, output and state spaces U , Y and Ψ respectively, together
with the state transition operator φ and the read-out operator Γr.

The input space U is defined as

U =

½
u ∈ C0 (−∞,∞) : ku (t)k∞ ≤ û and lim

t→−∞u (t) = 0
¾

(2.15)

where û is positive number depending on system itself. The output space Y is the set of real-valued
continuous functions C0 (−∞,∞). As stated previously the Preisach boundary ψ represents the
memory of the Preisach model, so it is a natural state choice.

Definition 1 [State-Space] [48] The state-space Ψ is defined to be the set of continuous func-
tions ψ : [0, û] → R which satisfy the following properties:

Lipschitz condition: |ψ (r1)− ψ (r2)| ≤ |r1 − r2| , ∀r1, r2 ∈ [0, û]
initial condition: ψ (û) = 0
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So the state-space Ψ is the subset of Lipschitz continuous ψ ∈ C [0, û] with ψ (û) = 0 and the
Lipschitz constant L = 1.

The state transition operator φ : R2 × Ψ × U → Ψ satisfies the properties of consistency,
determinism, semi-group and stationarity [48].

Given the desired output yd ∈ Y , suppose all the states start from a state of zero stored energy,
such as the anhysteretic state for which the boundary corresponds to the line α = −β or s = 0,
in which no remnant hysteresis is present. In other words, no remnant polarization exists in the
piezoceramics or no memory is stored. Let ψini denote the initial boundary, which is assumed
to be the line s = 0. The state transition operator φ determines the state ψ = φ (t1, t0,ψ0, u (t))
which results at time t1 from applying an input u (t) ∈ [t0, t1] to a system starting in state ψ0 at
time t0. For this operation to be well-posed, the state ψ0 must be reachable and u (t) must be
admissible to ψ0; that is u (t0) = ψ (t0, 0). According to [48], even though the entire state-space
Ψ is not exactly reachable, it is approximately reachable in L1 norm.

The read-out operator Γr provides the system output corresponding to a particular state ψ.
Recall the Preisach model output in Eq. (2.4). Clearly, relays have output +1 below the boundary
and output −1 above the boundary. The read-out operator can be defined as a function of ψ:

y (t) = Γr (ψ (t)) =

Z ∞
0

Z ψ(t)

−∞
μ (r, s) dsdr −

Z ∞
0

Z ∞
ψ(t)

μ (r, s) dsdr (2.16)

If μ is bounded, piece-wise continuous, and non-negative inside Pr, then the set of μ is named
Mp. It has been shown in [47] that if μ is bounded and piece-wise continuous then Γr : C0 →
C0. Moreover if μ ∈ Mp, then Γr : W 2

1 → W 2
1 . W

2
1 is the Sobolev space which is the space of

real-valued functions satisfying
R∞
−∞

¡
u̇2 + uH2

¢
dt <∞.

2.8 Neutral State Definition and Discussion

The advantages of the neutral state is investigated in this thesis. Thus, the definition of equivalent
states is described mathematically, and the neutral state is defined graphically in this section.

For a given Preisach system with weighting surface μ and a desired output yd ∈ [y−, y+], there
exists a range [u1, u2] ∈ [−û, û], where y = yd, as shown in Figure 2.12.
Definition 2 [Equivalent State] Given a Preisach system with readout operator: Γr (Ψ) −→ Y

and a desired output yd ∈ Y , the set of equivalent states Ψydeq is defined as

Ψydeq = {ψ ∈ Ψ : Γr (ψ) = yd}

Figure 2.12 shows the boundaries corresponding to the points on the major hysteresis loop at
(u1, yd) and (u2, yd), such that both ψ1 and ψ2 ∈ Ψydeq and Γr (ψ1) = Γr (ψ2) = yd.
As demonstrated in [7] from experimental results, there exists specific states ψydn in Ψdeq which

hold an attracting property such as high noise rejection, and thus this observation provides one
more degree of freedom to accomplish the open-loop regulation task for a hysteretic system. Then
the open-loop regulation task can be considered as choose the initial state ψydn and design an
input ud (t) to drive the hysteretic system to that state, so that the derivative of the output with
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Figure 2.12: Input range of a given desired output.

respect to the input during open-loop regulation in the presence of input noise is minimized, i.e.
the maximum output transient caused by noises is minimized.

The state space representation is adapted [7] in order to discuss the so-called neutral states for
a given desired output yd. Moreover, the neutral state is defined graphically on the Preisach Plane.
According to [7], there exist one or more states which result in better natural rejection of random
input disturbances among those multiple states for a given desired output yd. Any of these states
can be chosen as the neutral state, ψln, which is approximately reached by ψn. The advantages of
the neutral state have been demonstrated by means of both simulations and experiments in open-
loop and closed-loop tests. [7] also illustrates a neutral state on the Preisach plane, which can only
be approximately approached, since it contains a horizontal segment. For instance, the neutral
states ψl1n and ψl2n are shown in Figure 2.13 and can be described by Eq. (2.17) in a general
format. In particular, when l = l1 > 0, the Preisach boundary ψl1n consists of the horizontal
segment s = l1 (r ∈ [0, û− l1]) and the segment s = − (r − û) (r ∈ (û− l1, û]). If l = l2 < 0,
then the Preisach boundary ψl2n consists of the horizontal segment s = l2 (r ∈ [0, û+ l2]) and the
segment s = r − û (r ∈ (û+ l2, û]).

ψln : s = l if 0 ≤ r ≤ û− |l| (2.17)

s = −sgn(l) · (r − û) if û− |l| < r ≤ û

A theorem is provided in [7] which states that given l ∈ [−û, û], ul ∈ U can be constructed so
that ψl = φ (t1, t0,ψ0, ul) approximates ψ

l
n arbitrarily closely in the metric on Ψ, for any ψ0 ∈ Ψ

and t1 > t0. Moreover, the output corresponding to the boundary ψ
l
n is defined as N (l) and can

be defined by the following equation:

N (l)
∆
= Γr

³
ψln

´
= 2

Z ∞
0

Z ψln

0

μ (r, s) dsdr + y0 (2.18)

In addition, if μ is piece-wise continuous, then N (l) is continuous in l and there exists a value
l ∈ [−û, û] such that N (l) = yd for every yd ∈ [y−, y+], where y− and y+ are the output of the
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Preisach model when the inputs are at negative and positive saturation respectively [7]. Moreover,
if μ is positive in Pr additionally, i.e. μ ∈Mp, then N (l) is monotonic and l is unique for a given
yd. Let N inv represent the inverted function of N (l) defined as Eq. (2.18). If μ ∈Mp, then N (l)
is invertible and N inv is defined to be

N inv ≡ N−1 (2.19)

Otherwise N inv is defined below according to [7]:

N inv (y) , min
© |l| l ∈ [−û, û] : N (l) = yª (2.20)

As indicated in [7] the locus N appears to connect those points inside the major hysteresis loop
where internal ascending and descending branches have similar slopes.

It should be noticed that, there may be multiple values of l corresponding to the same output
yd in cases where N (l) is non-monotonic. As shown in Figure 2.14, there exists distinct equivalent
neutral states ψdn1 and ψ

d
n2 for a given desired output yd. According to Eq. (2.20), the value with

the smallest |l| should be taken in this case, which means that the last horizontal segment of the
Preisach boundary should be the longest. Thus, ψdn2 in the case shown in Figure 2.14 should be
taken as the neutral state according to the definition in [7].

Subsequently, Chapter 3 introduces the experimental setup of a hysteretic system, for which
the Preisach model is identified. Chapters 4 and 5 will apply these concepts to data from the
experimental apparatus where the notion of neutral state noise rejection is demonstrated.
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Chapter 3

Experimental Setup and Model
Identification

In this chapter, a Preisach model is constructed in order to model the hysteresis behaviour of a
piezoelectric actuator in a custom-designed shape control unit (Sensor Technologies SS15). The
first section introduces the system structure and the important parameters. The second section
describes the calibration process of the entire shape control system.

As detailed in Section 2.5, the wiping-out property and congruent minor loop property are the
necessary and sufficient conditions for a hysteresis loop to be modeled using a Preisach model [9];
and these conditions are discussed in Section 3.3 as the representation tests.

The ensuing Preisach model is built for the shape control system by following the identification
procedure described in Section 2.6. FOD (First Order Descending) data is collected and subse-
quently curve and surface fitting techniques are used to represent this data. Subsequently, the
Preisach model is verified by comparing the output of the model with the collected experimental
output data corresponding to the wiping-out test, the congruent minor loop test and the FOD
curves.

3.1 Experimental Apparatus

The computer based shape control system setup is described and a photograph of the apparatus
is shown in Figure 3.1.

The SS15, designed by Sensor Technology Limited, can be used to study and improve the
understanding of the hysteretic behaviour of piezoceramic actuators and to determine better and
more useful ways of using piezoceramic materials. The SS15 consists of four piezoceramic bimorph
actuators arranged in a manner to control the orientation of a central circular platform (see Figure
3.2). The bimorphs act in pairs as shown in Figure 3.2 (a), bending out of plane based on the
applied voltage, and affecting the pitch and yaw of the central platform. The bimorph actuators
act as bender actuators, namely, Flexmorphs as termed by Sensor Technology. External high-
voltage is used to drive each of the Flexmorphs, which are the piezoelectric flexure elements.
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Figure 3.1: Computer based shape control system.
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Flexure elements consist of two plates of PZT (an abbreviation of the chemical formula of lead-
zirconate-titanate) bonded together with electrodes and are arranged in a parallel configuration
in the SS15. The strain experienced by each of the bimorphs is indicative of their bending and
allows the orientation of the central platform to be determined. Thus, the desired orientation of
the circular platform could be achieved with the proper voltage across each bimorph.

In the experiments for the present work, the circular platform is released from the bimorphs
in order to focus on the hysteresis behaviour generated by the piezoelectric actuator itself without
interference from additional mechanical parts. Thus, in this system the input is the voltage applied
to the biomorph piezos by the SA11 amplifier and the output is the deflection of the bimorphs as
determined by the voltage generated by the strain gauge amplifier.

In order to supply control voltage to the SS15 and measure the strain on each bimorph, a data
acquisition board is used in the system. In this experiment the Quanser1 Data Acquisition Card
(DAQ) is used (model number: Quanser PCI MultiQ - V1), which can produce analog output
voltages in the range of ±10 V by using DACs (digital to analogue converters), and read analogue
voltages in the range (-5, +5) volts by using ADCs (analogue to digital converters).

On the input side, each Flexmorph has two layered piezoceramic plates connected in parallel
where one plate has the opposite polarity with respect to the other. The Flexmorph tip displace-
ment increases with the magnitude of the applied voltage. For these bimorphs, voltages with
magnitudes in excess of 100 V produce noticeable deflection. As recommended by the manufac-
turer, the input voltage should lie between ±200 V [23]. A high voltage amplifier is needed to
amplify the output voltage from the data acquisition card so that the range of the supplied voltage
is large enough to bend the Flexmorphs noticeably. Using the Sensor SA11 high voltage amplifier
with the Quanser DAQ can supply a voltage in the range of ±135 V. Although the limits of this
voltage range are not sufficient to drive the Flexmorphs to their extreme limits, this supplied
voltage is sufficient for the current experiments towards hysteresis modelling. It is assumed that
the input voltage to SS15 generated by SA11 directly affects the identified Preisach model and
other effects are negligible.

On the output side, as shown in Figure 3.2, each bimorph has a SG-7/350-LY13 strain gauge
from Omega Engineering attached to each side. The strain gauges have a resistance of 350 Ohms
and a nominal gage factor of 2.0 [49]. When the Flexmorphs bend, the resistance of the strain
gauges attached to the Flexmorphs plate changes. The SS15 provides an output connection which
connects directly across the strain gauges. Figure 3.3 shows how the 3 pin female XLR connector
is connected across the strain gauges.

Figure 3.4 shows the relative positioning of the two strain gauges on a piezoceramic bimorph
with one on each side. It should be noted that when the material is driven by a high voltage causing
the bimorph to bend, one strain gauge undergoes tension and the other undergoes compression.
For ease of calculation, the change in resistance on the two strain gauges is considered to be the
same magnitude. The half-bridge configuration for a Wheatstone bridge is capable of the precise
comparisons, and thus, it is suitable to measure the resistance change in the strain gauges. The
strain gauge transforms applied strain into a proportional change in resistance. The bridge circuit
is shown in Figure 3.5 and the excitation voltage (Vex) supplied to the bridge is set at 4 V.

The resistance variation obtained from the strain gauges on the SS15 bimorphs is approxi-
mately 0.0525 Ohms [51], so the output of the strain gauge is 0.3 mV in magnitude. The inputs

1Quanser Inc. Markham, Ontario, Canada.
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Figure 3.2: Shape control unit SS15 schematic prior to the removal of the circular platform.
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Figure 3.3: Strain gauge wiring [23].

FStrain gauge in tension 

Strain gauge in compression

( )0R R+ Δ

( )0R R− Δ

Figure 3.4: Strain gauges mounted on a piezoceramic plate experiencing strain [50].
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Figure 3.5: Half bridge configuration for a Wheatstone bridge [50].

read from the data acquisition card only have a resolution of 0.6 mV. Therefore, such small output
voltages as obtained from the bridge cannot be precisely read from the DAC. Proper amplification
of this voltage is required in order to acquire higher precision in the calculations. The CIO-EXP-
GP manufactured by ComputerBoards Inc. is a common strain gauge amplifier which is highly
customizable to the needs of the experiment and can be easily configured to suit the current setup.
The strain gauge amplifier has eight input channels where each channel has the ability to amplify
the voltage up to a maximum 1000 times of its current value (0.3V max magnitude of output
voltage). However, this amplification is still not sufficient and further amplification is required.
Since the SS15 has four bimorphs, only four of the eight channels of the strain gauge amplifier
are used. The remaining four channels are used for further amplification of the output voltage
obtained out of the currently connected channels. Finally, a gain of 10000 is achieved through the
strain gauge amplifier (CIO-EXP-GP) and a 3 V maximum output voltage is achieved. There are
variable resistors used to adjust the offset to achieve a 0 V output from the board when there is
no strain applied on the Flexmorphs. With this signal preparation, the computer based system
setup is ready to implement the experiment for the hysteresis modelling. For calibration details
of the interface with the SS15, please see Appendix B.

3.2 Preisach Model Suitability Test

As stated in [9], the wiping-out and congruent minor loop properties are the sufficient and nec-
essary conditions to describe hysteresis behaviour with the Preisach model. Therefore, these two
tests are performed to demonstrate that the hysteresis relationship between the input voltage and
the amplified output voltage of the SS15 can be represented by Preisach modelling. In order to
produce repeatable results, a decaying sinusoidal input voltage is applied to the SS15 before each
test in order to approximate the anhysteretic state so that all traces of remnant hysteresis can be
removed before a new trial [52]. This process is called initialization.

3.2.1 Wiping-Out Test

As stated in Section 2.5, the wiping-out property is one of the two necessary and sufficient con-
ditions for a certain hysteretic system to be described by the Preisach model. For the wiping-out
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test, the input voltage V bin of the power amplifier (SA11) is controlled via the Quanser DAC.
Signals at frequencies of f = 1, 2 and 4 Hz used in the test. After initialization, the high input
voltage of the SS15 Vin goes to negative saturation and the wiping-out test input signal is applied
as shown in Figure 3.6 (a), which starts at testing time t = 12 s. In Figure 3.6 (a), T represents
the input signal period, i.e. T = 1/f . The two marked segments (A & B) generate four nested
branches. Then the output Vout generated by high input voltages with the frequencies f = 1, 2
and 4 Hz are shown with respect to time in Figure 3.6 (b) through (d). If the hysteresis of the
SS15 satisfies the wiping-out property, then the peak at the beginning of segment B should be
able to remove any memory of the input up to that point, and the loops traced for input segment
B shown by the dash-dotted curve should re-trace exactly those generated by segment A as shown
by the solid curve. Moreover, the output data points are also shown in Figure 3.6 (b) through (d)
when the input signals first achieve zero from negative saturation. Note that the absolute values
of these outputs become larger when the input frequency increases, which means that the major
hysteresis loops of the piezoceramic actuator becomes wider when the input signal is higher in
frequency.

From the input-output graph shown from Figure 3.7 through Figure 3.9, the loops can be
retraced exactly for all input signals with various frequencies. However, the peak at the start of
segment B does not exactly remove all the memory of the input up to that point. If we define that
the first increasing segment of the input generates the first ascending branch, then the increasing
input between segments A and B generates the fourth ascending branch. During segment A there
are second and third ascending branches. The difference between the 1st and 4th, 2nd and 4th,
3rd and 4th ascending branches are shown from Figure 3.10 through Figure 3.12. According to
the wiping-out property, it is expected that, at points Vin = −98.85, −70.61, and −42.37 V the
difference should be equal to zero. There exists a maximum offset of 0.080 V, 0.18 V, and 0.32
V from 0 (these represent the possible modelling errors) when the frequency of the input signal
is f = 1, 2, and 4 Hz respectively as shown by Datatips2, which allow to read data directly
from a graph by displaying the values of points selected on plotted curves, in these figures. Note
that the output is in the range of [−3.5, 3.5] V and the largest offset 0.32 V is within 5% of the
whole output range. Thus, this is considered to be sufficiently close to zero and it is concluded
that the wiping-out property for the hysteresis of the SS15 is satisfied. It is also expected that
the higher input frequency results in increasing offset. However, the classical model introduces
a maximum 5% error by this measurement. The theory for the effect of initial states has not
yet been extended to dynamic models [7], and thus, the classical model is used as a first pass to
investigate the influence of initial states in this thesis. Since the present work uses the classical
model for the described application, future work could investigate the necessity, and conditions
required for a dynamic model.

3.2.2 Congruent Minor Loop Test

As noted in Section 2.5, the congruency property is the other necessary and sufficient condition
to ensure that a hysteretic system can be described by the Preisach model. The results of the
congruent minor loop (CML) test of the input signal with frequencies f = 1, 2 and 4 Hz are
shown in Figure 3.13. The test input voltage Vin signal is shown from t = 12 s in Figure 3.13 (a),
which is applied to generate two minor loops. On the x-axis of Figure 3.13 (a), T = 1/f . If the
hysteresis loop for the SS15 supports the congruent minor loop property, then these two minor

2Data Exploration Tools (Graphics) of Matlab Version 7.5.0.342 (R2007b)
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Figure 3.6: Input voltage Vin and strain gauge output voltage Vout w.r.t time t in wiping-out test
with different frequencies.
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Figure 3.7: Input Vin vs output Vout in the wiping-out test at f = 1 Hz.
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Figure 3.8: Input Vin vs output Vout in the wiping-out test at f = 2 Hz.
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Figure 3.9: Input Vin vs output Vout in the wiping-out test at f = 4 Hz.

36



-40 -20 0 20 40 60 80 100
-0.5

0

0.5

X: 98.85
Y: -0.0139

Difference between 4th and 1st Ascending Curve

Input Voltage Vin (V)

-40 -20 0 20 40 60 80 100
-0.2

-0.1

0

0.1

0.2

X: 70.69
Y: -0.08246

Difference between 4th and 2nd Ascending Curve

Input Voltage Vin (V)

S
tra

in
 G

au
ge

 O
ut

pu
t V

ol
ta

ge
 D

iff
er

en
ce

 Δ
V

ou
t (V

)

-40 -20 0 20 40 60 80 100
-0.1

-0.05

0

0.05

0.1

X: 42.48
Y: -0.08307

Difference between 4th and 3rd Ascending Curve

Input Voltage Vin (V)

Figure 3.10: Output difference ∆Vout between ascending branches in the wiping-out test at f = 1
Hz.
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Figure 3.11: Output difference ∆Vout between ascending branches in wiping-out test f = 2 Hz.
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Figure 3.12: Output difference ∆Vout between ascending branches in wiping-out test f = 4 Hz.
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loops should have the same shape. The first minor loop is generated by input segment A shown
by a dashed line, while the second is generated by segment B shown as a dash-dotted line. The
peak at t = 12 + 1.5T s shifts the second minor loop upwards. The measurement of the output
voltage Vout is shown from Figure 3.13 (b) through (d) corresponding to the input voltage at
f = 1, 2 and 4 Hz respectively. The CML test results are shown on the input/output plane (I/O
plane) from Figure 3.14 to Figure 3.16. Each graph is drawn with a solid line, dashed line and
dash-dotted line, which correspond to the major loop, the first minor loop and the second minor
loop. Moreover, the magnified parts of the first and second minor loops are shown in part (b) of
Figure 3.14 through Figure 3.16. The second minor loops are shifted along the output axis of the
I/O plane and rotated along the origin such that it can be compared to the first minor loop on
the I/O plane directly. Even though the loops are not exactly congruent, their general shapes are
similar, and therefore the CML property is satisfied.

Based on the experimental results of the wiping-out and congruent minor loop tests, the
classical Preisach model can be used to characterize the hysteresis loop inherent in piezoceramic
actuators with reasonable modelling error provided the input frequency is below 4 Hz.

3.3 Preisach Model Identification

A Preisach model is constructed for one Flexmorph in the SS15 by following the modelling identi-
fication process described in [53]. Generally speaking, the first order descending curve (FOD) data
are collected for the whole restricted Preisach plane to form the surface y (α,β) which should be
smooth based on an assumption of continuity for the system being modelled [53]. Then a smooth
surface ỹ (α,β) is fit to those FOD data points and the smooth surface ỹ (α,β) is differentiated
to obtain an approximate weighting surface μ̃ (α,β) according to Eq. (2.12), (2.13) and (2.14).

The experimental identification data are provided in subsection 3.4.1 for input signals with
different frequencies, i.e. f = 1, 2, and 4 Hz. Surfaces ỹ1 (α,β) ỹ2 (α,β) and ỹ4 (α,β) are obtained
to fit the identified data generated from the different input signals in subsection 3.4.2. Then, those
surfaces are respectively differentiated to generate the weighting functions μ̃1 (α,β) μ̃2 (α,β) and
μ̃4 (α,β). Simulation results of the identified model are subsequently provided to show that the
model can capture the fundamental characteristics of the wiping-out test and the congruent minor
loop test.

3.3.1 Model Identification Data Collection

This subsection presents the FOD data collected in experiments in order to determine the Preisach
weighting surfaces that are subsequently used and detailed in the next two subsections.

As mentioned in Section 3.1, the circular platform is released from the four Flexmorphs in
order to focus on the hysteresis behaviour generated by the piezoceramic actuator itself without
the interference from additional mechanical parts. The range of the input voltage applied to SA11
controlled by DACs, i.e. the range of V bin, is approximately reduced to ±7 V in order to reduce
the strain gauge output voltage of the four connected ADCs within the reading range of ±5 V.
Then the high input voltage Vin applied to SS15 is divided into 20 equal sections, i.e.

{Vin} = {−100 + 10 ∗ i : i = 0, 1, · · · , 20}
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Figure 3.13: Input voltage Vin and strain gauge output voltage Vout w.r.t time t in CML test with
different frequencies.
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Figure 3.14: CML test results f = 1 Hz.
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Figure 3.15: CML test results f = 2 Hz.
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Figure 3.16: CML test results f = 4 Hz.
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The input voltage signals Vin with frequencies f = 1, 2, and 4 Hz are shown in Figure 3.17 which
generated the twenty FOD curves for each input signal. T in the x-axis of Figure 3.17 presents
the period of the input signal and is equal to 1/f , thus the 3 different frequencies are included in
the figure by T = 1, 0.5, and 0.25 s for f = 1, 2, and 4 Hz respectively. The circle points represent
the corresponding input of the FOD data points. In Figure 3.17 the FOD data points shown with
asterisks is an example curve of the twenty FOD curves to be fit. The corresponding measured
output of those 21 asterisks data points can be denoted by yα1 and yα1βi (i = 1, 2, ....... 20),
where α1 = 100 and βi = 100 − 10i, also shown as asterisks on the I/O plane from Figure 3.18
through Figure 3.20.

The measured outputs of those FOD curves are shown from Figure 3.18 through Figure 3.20, in
each of which the FOD data points are joined by dashed line segments to show the general shape of
the hysteresis generated by the input signals with frequencies f = 1, 2, and 4 Hz correspondingly.
Even though it is not evident from the figure directly, the FOD curves indeed do not intersect
within the major loop. This can, however, be observed when the figure is magnified. A magnified
section of each figure is also shown from Figure 3.18 through Figure 3.20 when the input voltage
Vin is around 40 V. Moreover, the actuator is not fully exercised since the width of the hysteresis
loop is quite narrow and no output saturation appears. Figure 3.21 through Figure 3.23 illustrate
the FOD data in three dimensions generated by input voltage signals with frequencies f = 1, 2,
and 4 Hz respectively. Surfaces ỹ1 (α,β) ỹ2 (α,β) and ỹ4 (α,β) are generated to fit those FOD data
points and the weighting functions μ̃1 (α,β) μ̃2 (α,β) and μ̃4 (α,β) of the hysteresis behaviour are
obtained by numerically differentiating the surfaces ỹ1 (α,β) ỹ2 (α,β) and ỹ4 (α,β) respectively.

3.3.2 FOD Surface Fit

In [45], a third-order, two-dimensional surface is fit to the FOD surface of a piezoceramic actuator.
The approach to surface fitting applied in this thesis is modelled after that used in [47] because of
its high degree of applicability to the system studied in the present work. From the experimental
data with input voltage signals at frequencies f = 1, 2, and 4 Hz, it is observed that the curvature
of the FOD curves is similar to that of the square root function for each input voltage signal.
Thus, curve fitting is implemented first on each FOD curve by a least-square fit of the function

ỹiα (β) = X
i
1 (α) +X

i
2 (α)

q
β −Xi

3 (α) i = 1, 2, 4

for each constant α. Polynomial curves are avoided because they can increase model order and
introduce oscillations which will cause problems when differentiated. Then, the parameters Xi

1,
Xi
2, and X

i
3 are examined as a function of α in order to determine a candidate surface to fit the

FOD surface finally. In the following, the superscript i = 1, 2, and 4 indicates the corresponding
function or variable based on the FOD data sets generated by input voltage signals with frequencies
f = 1, 2, and 4 Hz respectively, and are named by Case 1, 2 and 3.

The least-square fit is applied in the data fitting by using the fminsearch command in Matlab
which is based on a Nelder-Mead simplex algorithm [54]. The results are shown from Figure 3.24
through Figure 3.26. Since three parameters are used to determine the curve function for each
FOD data set, only those FOD curves that contain more that three data points were fit and the
resulting parameters Xi

1, X
i
2, and X

i
3 are parameterized as a function of α in order to perform the

surface fitting. Comparing to the result shown in [45], the FOD curves have very similar shapes
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Figure 3.17: Identification input with frequencies f = 1, 2, 4 Hz and T = 1/f .
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Figure 3.18: Measured FOD data (f = 1 Hz).
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Figure 3.19: Measured FOD data (f = 2 Hz).
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Figure 3.20: Measured FOD data (f = 4 Hz).
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Figure 3.21: FOD fit data in three dimensions (f = 1 Hz).
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Figure 3.22: FOD fit data in three dimensions (f = 2 Hz).
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Figure 3.23: FOD fit data in three dimensions (f = 4 Hz).
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Figure 3.24: FOD curve fit (f = 1 Hz).
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Figure 3.25: FOD curve fit (f = 2 Hz).
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Figure 3.26: FOD curve fit (f = 4 Hz).
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especially when the input voltages have lower frequency since the FOD data collected in [45] is
generated by “low rate of change command trajectories”.

Initially the candidate surface is denoted by ỹ0i where i = 1, 2, 4 and indicates that the
candidate surface is for the FOD data set generated by the input voltage signal with frequencies
f = 1, 2, and 4 Hz respectively. ỹ0i is defined by the following equation:

ỹ0i (α,β) = ỹ
i
α (β) = X

i
1 (α) +X

i
2 (α)

q
β −Xi

3 (α)

The parameters Xi
1 to X

i
3 are shown from Figure 3.27 through Figure 3.29 as functions of α for

Case 1, 2 and 3 respectively, which are all fit by second order polynomials in order to keep the
order of the model low and fit the data curvature appropriately at the same time. The Matlab
command polyfit is used to implement the data fitting in a least-square sense. The parameters
are defined as follows:

Xi
1 (α) = f i1 (α) = x

i
1α

2 + xi2α+ x
i
3

Xi
2 (α) = f i2 (α) = x

i
4α

2 + xi5α+ x
i
6

Xi
3 (α) = f i3 (α) = x

i
7α

2 + xi8α+ x
i
9

In order to match the output when the input is at the saturation point, the candidate surface
needs to be modified for a perfect match.

Now, yi (û, û) is defined as the maximum output when the input keeps increasing to the
maximum identification input value û. Similarly yi (û,−û) represents the minimum output when
the input is increased to û first and then decreased to the minimum identification input value −û.
As shown in Figure 3.18 through Figure 3.20, all the FOD curves merge at −û. Thus, yi (û,−û)
should be reached on every FOD curve, i.e. yi (α,−û) = yi (û,−û) for each α. yi (û, û) and
yi (û,−û) were obtained in identification experiments.
In order to match the minimum output value, a zero offset term is added to the candidate

surface and three parameters xi1 x
i
2 and x

i
3 can be removed for parameter minimization in each

case:

ỹi (α,β, f) = ỹ0i (α,β)− ỹ0i (α,−û) + yi (û,−û) (3.1)

= f i2 (α)

µq
β − f i3 (α)−

q
−û− f i3 (α)

¶
+ yi (û,−û)

On the other hand, one more parameter can be removed for parameter minimization in each
case. In order to make ỹi (û, û) match the maximum output value yi (û, û), xi6 can be isolated by
substituting α = β = û into Eq. (3.1), setting ỹi (û, û) = yi (û, û) and rearranging the equation.
The function f i2 is redefined as f̄

i
2 as follows, which is not equal to zero in the input range of

[−100, 100] as observed from Figure 3.27 through Figure 3.29:

f̄ i2 (α) = x̄
i
4α

2 + x̄i5α+ 1

where x̄i4 = x
i
4/x

i
6 and x̄

i
5 = x

i
5/x

i
6. It is observed that f̄

i
2 (û) 6= 0 from Figure 3.27 through Figure

3.29. Thus, xi6 is calculated based on y
i (û, û), yi (û,−û), f̄ i2 (û), and f i3 (û) for the parameter

minimization, as shown below:

xi6 =
yi (û, û)− yi (û,−û)

f̄ i2 (û)
³p

û− f i3 (û)−
p
−û− f i3 (û)

´
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Figure 3.27: Parameters variation and fitting (f = 1 Hz).
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Figure 3.28: Parameters variation and fitting (f = 2 Hz).
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Figure 3.29: Parameters variation and fitting (f = 4 Hz).
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The modified form of the candidate surface is

ỹi (α,β, f) =
¡
yi (û, û)− yi (û,−û)¢ ¡x̄i4α2 + x̄i5α+ 1¢

³p
β − f i3 (α)−

p
−û− f i3 (α)

´
¡
x̄i4û

2 + x̄i5û+ 1
¢ ³p

û− f i3 (û)−
p
−û− f i3 (û)

´
+yi (û,−û) (3.2)

It is straight forward to show that ỹi (û, û) = yi (û, û) and ỹi (α,−û) = yi (û,−û).

Table 3.1: FOD surface fit data
f (Hz) 1 2 4
x̄4 8.81e-06 2.24e-06 -5.28e-06
x̄5 3.47e-03 3.99e-03 4.39e-03
x7 -4.16e-03 -1.73e-03 -3.41e-04
x8 -4.83e-01 -3.19e-01 -1.33e-01
x9 -1.94e+02 -1.55e+02 -1.24e+02
umax 100.00
umin -100.00
ymax 3.49 3.49 3.48
ymin -3.63 -3.62 -3.60
error 0.38 0.57 1.10

The results of surface fitting based on this least-squares technique are shown in Figure 3.30
through 3.32 and Figure 3.33 through 3.35 based on the different FOD data sets and the different
elementary hysteresis block notation γα,β and γr,s respectively. The FOD data measurement
from experiments is also shown in those six figures. The surface matches the experimental data
exactly at the minimum saturation input. All the parameters of the surface are listed in Table
3.1 together with the square root of the least-squares error over all the FOD data points for three
cases. The average error at each sampled data point is only 0.0016, 0.0025, and 0.0047 V and
within 0.07% of the whole output measurement range for each case. This is indicative that the
matching result is quite good.

An interesting aspect of the current research is that data sets have been collected and surfaces
fit for multiple input frequencies. Thus, these data sets suggest that the parameters of the surfaces
listed in Table 3.1 could be re-parameterized as functions of frequency. In this way, the effective
expanding of these static data sets could be used to generate a dynamic model for the frequency-
dependent piezo system with hysteresis. Although the current data sets only cover three input
frequencies and would not be sufficient to generate a meaningful result, future work could augment
these data sets so that a weighting surface μ could be fit as a function of frequency and retain a
high degree of fidelity over a broad range of frequencies.

3.3.3 Weighting Surface

Differentiating the fitted FOD surface results in the weighting functions. For each FOD data set,
the weighting functions are illustrated by two parts as shown in Figure 3.36 and Figure 3.37 based
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on the notation of the basic hysteresis block γα,β when the input voltage signal is at f = 1 Hz.
The results of the other two cases are shown from Figure 3.38 through Figure 3.41. There are two
parts of the weighting function: a new two-dimensional surface v (α,β) and a one-dimensional
curve κ (α) along the diagonal line (α = β).

By using γr,s as the notation of the elementary hysteresis block, the corresponding two-
dimensional surface of the weighting v (r, s) is shown from Figure 3.42 through 3.44 for all the
three cases. The corresponding one-dimensional curve κ (s) along the vertical axis (r = 0) has the
exact same shape as the curve κ (α) shown from Figure 3.37 through 3.41 for all the three cases
since s = α+β

2 = α when α = β.

Figure 3.36 and Figure 3.37 show that the weighting function μ (α,β) is bounded and piecewise
continuous as expected from the form of FOD surfaces ỹi (α,β). μ (α,β) is also non-negative when
the input voltage signal is at 1 Hz. Thus, μ (α,β) ∈Mp when f = 1 Hz. Moreover, when the input
signal is at 2 and 4 Hz, the weighting function μ (α,β) is bounded and piecewise continuous as
shown in Figure 3.38 through Figure 3.41. However, with careful observation, it is found that the
negative part of the weighting function μ (α,β) is very small. When the input signal is at 2 Hz,
the negative values appear at four points which are (100,−100), (94.87,−100), (89.74,−100) and
(84.62,−100) and the minimum value is −1.177× 10−6 at the point (94.87,−100). In particular,
when the input signal is at f = 4 Hz, a negative value appears at only one point which is
(100,−100) and the value is −1.451× 10−6. From a physical point of view, the negative value of
the weighting function should not exist for the hysteresis of piezoceramic actuators. This could
be caused by forcing all the FOD curves to merge at −û or the effect of measurement noise in the
FOD data. Considering that the area and the magnitude of the weighting function μ (α,β) < 0
is relatively small, μ (α,β) is considered to belong to Mp for all input frequencies tested.
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Figure 3.30: FOD surface fit based on γα,β as the basic hysteresis block (f = 1 Hz).
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Figure 3.31: FOD surface fit based on γα,β as the basic hysteresis block (f = 2 Hz).
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Figure 3.32: FOD surface fit based on γα,β as the basic hysteresis block (f = 4 Hz).
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Figure 3.33: FOD surface fit based on γr,s as the basic hysteresis block (f = 1 Hz).
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Figure 3.34: FOD surface fit based on γr,s as the basic hysteresis block (f = 2 Hz).
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Figure 3.35: FOD surface fit based on γr,s as the basic hysteresis block (f = 4 Hz).
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Figure 3.36: Identified weighting function: surface part based on γα,β as the basic hysteresis block
(f = 1 Hz).
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Figure 3.37: Identified weighting function: curve part based on γα,β as the basic hysteresis block
(f = 1 Hz).
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Figure 3.38: Identified weighting function: surface part based on γα,β as the basic hysteresis block
(f = 2 Hz).
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Figure 3.39: Identified weighting function: curve part based on γα,β as the basic hysteresis block
(f = 2 Hz).
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Figure 3.40: Identified weighting function: surface part based on γα,β as the basic hysteresis block
(f = 4 Hz).
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Figure 3.41: Identified weighting function: curve part based on γα,β as the basic hysteresis block
(f = 4 Hz).
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Figure 3.42: Identified weighting function: surface part based on γr,s as the basic hysteresis block
(f = 1 Hz).
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Figure 3.43: Identified weighting function: surface part based on γr,s as the basic hysteresis block
(f = 2 Hz).
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Figure 3.44: Identified weighting function: surface part based on γr,s as the basic hysteresis block
(f = 4 Hz).
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3.3.4 Model Verification

In order to validate the model, the output of the wiping-out test, congruent minor loop (CML) test
and identification input are simulated for all of the three cases. The simulation model developed
in [7] is used to generate simulation results. The FOD data applied in the simulation is a linear
interpolation from the experimentally collected FOD data. The simulation and experimental
results of the wiping-out test in the input and output plane are shown from Figure 3.45 through
3.47 for Case 1, 2 and 3 respectively. The scalloped behavior on the ascending branches is likely
caused by the linear interpolation of the FOD data since this effect is more obvious when the
input signal has a higher frequency causing the hysteresis loop of a piezoceramic actuator to have
a larger curvature. The error between experimental data and simulation results is represented
in Figure 3.48 with stretching in the time axis for different cases. It can be observed that the
error becomes larger when the input signal is at higher frequency. The error of the maximum
magnitude over the whole output range is about 2.33% 4.51% and 9.23% when the input signal
is at f = 1, 2, and 4 Hz respectively.

Similarly, the comparisons between the simulated output and experimental data in the CML
test are shown from Figure 3.49 and 3.51 followed by the error between the experimental data
and simulated output presented in Figure 3.52 with stretching in the time axis for different cases.
Note that the modelling error increases with respect to the frequency of the input signal. The
error of the maximum magnitude over the whole output range is about 2.05% 4.16% and 7.38%
for the input signals at f = 1, 2, and 4 Hz respectively.

Finally, the comparisons between the FOD experimental data and the simulated result are
shown from Figure 3.53 to 3.55. The error between the experimental output data and the simulated
output data with respect to time is shown in Figure 3.56 with suitable stretching in the time axis
for different cases. Note that the error between the experimental and simulated result is increased
when the piezoceramic actuator is driven by the input with a higher frequency. It is found that
the error of the maximum magnitude over the whole output range is about 2.42% 4.52% and
8.69% at f = 1, 2, and 4 Hz respectively.

From the wiping-out test, the congruent minor loop (CML) test and the FOD data, it is obvious
that the error between the experimental data and simulated output increases when the frequency
of the input voltage signal increases. There could be two sources of the increasing modelling
error. First, the classical Preisach model is intended to describe static hysteresis, and thus, may
not capture frequency dependent effects. The second likely source of discrepancy pertains to the
piezoceramic actuator configuration. The experimental apparatus used in this research employs
bimorph piezo actuators in a cantilevered arrangement. Recall that the bimorphs consist of piezo
elements bonded on the upper and lower faces of a metal substrate. Thus, when the piezos actuate
and produce a bending moment in the bimorph, the glued interface between the piezos and the
metal substrate would experience shear stress. The response of this glued interface in shear is
unknown. An additional mechanical factor with the bimorph is that the free end has a relatively
large clip adhered to it for the purpose of interacting with the circular platform (removed in these
experiments). This additional mass would undoubtedly introduce a dynamic effect that would be
highly correlated with frequency. In its totality, there are several aspects of the bimorphs which
likely involve mechanical dynamics, and modelling such effects is beyond the scope of the current
work.
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Figure 3.45: Comparison between simulation and experiment results of wiping-out test (f = 1
Hz).
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Figure 3.46: Comparison between simulation and experiment results of wiping-out test (f = 2
Hz).
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Figure 3.47: Comparison between simulation and experiment results of wiping-out test (f = 4
Hz).
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Figure 3.48: Error between experiment output and simulation output in wiping-out test (f = 1,
2, 4 Hz).
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Figure 3.49: Comparison between simulation and experiment results of CML test (f = 1 Hz).
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Figure 3.50: Comparison between simulation and experiment results of CML test (f = 2 Hz).
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Figure 3.51: Comparison between simulation and experiment results of CML test (f = 4 Hz).
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Figure 3.52: Error between experiment output and simulation output in CML test (f = 1, 2, 4
Hz).
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Figure 3.53: Comparison between simulation and experiment results of identified FOD data (f = 1
Hz).
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Figure 3.54: Comparison between simulation and experiment results of identified FOD data (f = 2
Hz).
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Figure 3.55: Comparison between simulation and experiment results of identified FOD data (f = 4
Hz).
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Figure 3.56: Error between experiment output and simulation output of FOD curves (f = 1, 2, 4
Hz).
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Chapter 4

Open-Loop Drift Tests Based on
Input Noise Injection

As noted in Chapter 1, piezoceramics are well suited for high precision shape control. An active
material as such is able to modify and maintain its shape with spatially distributed piezoceramic
elements; and they offer high resolution down to the subnanometer range, high stiffness, low wear
and tear, and fast response times [3]. In such applications, the shape control problem can be
converted into a series of independent distributed regulation control problems [4].

However, the inherent hysteresis of piezoceramic actuators makes the setpoint regulation prob-
lem much more difficult than that for linear systems as pointed out in [7]. It is interesting to
notice that for a given desired setpoint yd, and a hysteresis read-out operator Γr, there exists a

set of equivalent states Ψdeq such that for any state ψ
d
eq ∈ Ψdeq, Γr

³
ψdeq

´
= yd. This observation

provides one more degree of freedom to accomplish the open-loop regulation task. Moreover, an
important measure of open-loop regulation performance is the maximum output transient caused
by noises because this measurement describe the deviation from the desired shape. Thus, the
open-loop regulation task for a hysteresis system is defined as follows.

Problem 1 (Open-Loop Regulation Task) Let tr be a time instant, η (t) be a uniformly
distributed noise, and Ψydeq be the set of equivalent states for a given Preisach system with readout
operator: Γr (Ψ) → Y and a desired output yd ∈ Y . Suppose the input u (t) = ūd + η (t) when
t > tr, where kη (t)k∞ = ξ and ūd = ud (tr) = ψdeq (tr, 0) ∈ Ψydeq . When t < tr, choose the initial
state and design an input ud (t) to drive to that state, so that the derivative of the output with
respect to the input during open-loop regulation in the presence of input noise is minimized.

Intuitively for a hysteretic system, the set of equivalent states provide us one more degree
of freedom, the initial state, to accomplish a regulation task. In this chapter, the notion of
regulating a hysteretic system around a neutral state for the purposes of improved input noise
rejection is investigated in both simulations and experiments. This is accomplished via open-
loop drift tests performed on the computer based shape control system driven by piezoceramic
actuators described in Chapter 3. The differential drift [7] before and after the injection of noise
on the input are investigated based on the different initial states ψa, ψd and ψn. These states exist
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on the ascending curve of the major hysteresis loop, the descending curve of the major hysteresis
loop and the locus of neutral states N (l) respectively as defined by Eq. (2.16) and corresponding
to a given desired output position where Γr (ψa) = Γr (ψd) = Γr (ψn) = yd = 1. However, the
hysteresis found in piezoceramic actuators is frequency dependent. Thus, input voltage signals
Vin with frequencies f = 1, 2, and 4 Hz are applied in order to reach the initial states ψa, ψd and
ψn for the open-loop drift tests.

The piezoceramic actuators of the SS15 are in a bimorph configuration, which is different from
the stack actuator investigated in [7]. Thus, a uniformly-distributed random noise input ud is
generated and filtered offline. The cut-off frequency of the filter is determined by the resonance
frequency of the bimorph piezoceramic actuator investigated in the first section of this chapter.
The implementation procedure of the simulations and experiments is listed in the second section.
Both simulation and experimental results are shown and discussed in the third and fourth sections.
The simulations are generated according to the Preisach model using the FOD data collected from
the shape control unit SS15, while the experimental data is collected directly from the SS15 by
following a slightly modified procedure to account for the dynamics of the Flexmorph itself.

4.1 Noise sequence generation

The effect of input noise on a piezoceramic actuator of the SS15 is examined in this thesis using
a zero-mean uniformly-distributed random noise input ud generated offline.

The configuration of the piezoceramic bimorph actuators in the SS15 is constructed as a
cantilever. In order to avoid resonance of the cantilever and generating results that are difficult
to interpret, the natural frequency fn of the piezo actuated beam is identified from an initial
experiment implemented on the shape control system. The rationale is that the cut-off frequency
of the noise input ud can be determined according to fn. At the anhysteretic state, a step signal
of small amplitude, i.e. 7V is applied to the bimorphs of the SS15 and the response is recorded.
From the free vibration result shown in Figure 4.1, the natural frequency is 37.62 Hz as shown in
the single-sided amplitude spectrum of the strain gauge output Vout(t) shown in Figure 4.2.

Based on the natural frequency identified, i.e. fn = 37.62 Hz, a noise sequence with amplitude
0.5 V and with cut-off frequency 15 Hz is generated for the open-loop drift test. It is observed
that the sample time used in the Uniform Noise Generator1 needs to be reduced to 0.015 s in
order to retain the noise amplitude after the low pass filter with 15 Hz cut-off frequency. When a
larger sampling time is set in the Uniform Noise Generator, the original noise signal is generated
over a smaller frequency range. Thus, a smaller portion of the noise is filtered by the low-pass
filter. As a result the filtered noise amplitude is not significantly reduced and this is depicted in
the first two seconds of the noise sequence shown in Figure 4.3. The power spectral density of the
filtered noise sequence shown in Figure 4.4 shows that the main power component of the noise
sequence is below 15 Hz.

1Simulink block of Matlab Version 7.5.0.342 (R2007b)
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Figure 4.1: Step response Vout (t).
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Figure 4.5: Open-loop system schematic for input noise injection tests.

4.2 Implementation Procedure of Open-Loop Simulations
and Experiments

In the following sections, the open-loop response in the presence of input noise is investigated in
both simulation and experiment using the shape control system. It is expected that the output
drift would vary depending on different initial states as a result of the hysteresis found in the piezo
actuators. It is also expected that for a given desired output yd, the output drift due to input
noise will be lower when the system starts from a neutral state ψln. Moreover, the lower output
drift in the open-loop response should lead to a lower control effort in the closed-loop response
based on a PI regulator as hypothesized in [7].

The open-loop system for comparative tests is illustrated in Figure 4.5. For a given desired
output yd, an input uo is generated by D such that it can drive the system to the corresponding
desired initial state, which can be a neutral state ψn, a state ψa on the major ascending branch
of the hysteresis or a state ψd on the major descending branch of the hysteresis.

If the desired state is ψn and l ∈ [−û, 0) ∪ (0, û], then uo = ul as shown in Eq. (4.1). It
is modified from [7] by specifying the amplitude of the input used to wiping-out the boundary
ψ (t0).

ul (t) =

½
t1−t
t1−to (sgn(l)× û− l) sin

¡
2πf (t− t0) + π

2

¢
+ l to < t < t1, l 6= 0

l t ≥ t1, l 6= 0 (4.1)

where t1 > to, f is the input frequency to drive the system output to the desired initial state ψn,
and û is the maximum input saturation. If the desired state is ψn and l = 0, then

ul (t) =

½
t1−t
t1−to û sin

¡
2πf (t− t0) + π

2

¢
to < t < t1

0 t ≥ t1 (4.2)

where t1 > to. D in Figure 4.5 is a combination of N inv, as defined in Section 2.8 by Eqs. (2.19)
and (2.20), and Eq. (4.1) or Eq. (4.2). According to the desired output yd, N inv determines the
parameter l, then uo = ul as defined by Eq. (4.1) or Eq. (4.2) in order to generate the desired
state ψn.

If the desired state is ψa, uo is generated by a one and a half period sinusoidal wave, which is
in the form of

uo =

⎧⎨⎩
û sin (2πf (t− t0) + θa) to < t < t0 + 1/f

(ū+û)
2 sin (2πf (t− t0) + θa) +

(ū−û)
2 t0 + 1/f ≤ t ≤ t0 + 1.5/f

ū t > t0 + 1.5/f

(4.3)
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where f is set to be 1, 2 and 4 Hz in separate trials, θa = −π
2 , û = 7. ū is determined during

the first half period of the sine wave, which drives the system into the range close to the desired
output yd, i.e. [yd − 0.03, yd + 0.03]. Similarly, if the desired state is ψd, uo is generated by a one
and a half period sinusoidal wave, which is in the form of

uo =

⎧⎨⎩
û sin (2πf (t− t0) + θd) to < t < t0 + 1/f

(ū+û)
2 sin (2πf (t− t0) + θd) +

(ū−û)
2 t0 + 1/f ≤ t ≤ t0 + 1.5/f

ū t > t0 + 1.5/f

(4.4)

where f is also set to be 1, 2 and 4 Hz in separate trials and θd =
π
2 .

The open-loop drift tests with input noise are performed based on input signal uo (t) having
frequencies f = 1, 2 and 4 Hz. The following procedure is followed to examine the differential
drift starting from the neutral state ψn in simulation:

1. Generate and save a uniformly-distributed random disturbance input ud (t) with cut-off
frequency 15 Hz to the workspace of Matlab.

2. Invert N numerically and determine l for the given desired output yd = 1 by interpolation.

3. Construct an input uo = ul to drive the system to an initial state ψn ≈ ψln.

4. Apply a constant offset at uo, i.e. uo = l from t = t1 to t = t1 + 2 s.

5. Starting from t = t1 + 2 s, inject 8 s of input noise at ud (t) scaled by different gains
Kn = 0.8 ∗ i (where i = 1, ...7) for different trials.

6. At t = t1 + 10 s, complete the test and store the output measurement.

For the other two different initial states ψa and ψd, the simulations are carried out in a similar
procedure by changing step 2 and 3 to apply uo (t) as defined by Eq.(4.3) and (4.4) in order to
drive the system to the other two initial states. Moreover in steps 4, 5 and 6, t1 = t0 + 1.5/f for
initial states ψa and ψd specifically.

In the experiments the implementation procedure is similar to that for the simulations with
minor modification due to the un-modelled inertia of the bimorph beam. The parameter l in ul for
generating the initial state ψn and ū for generating the initial states ψa and ψd are determined
in experiments in order to give an output close to yd = 1.

In order to generate the neutral state ψn in experiments, the locus N (l) is determined from
experimental data collected from the shape control system and inverted numerically to determine
l for the given desired output yd = 1 by interpolation. In order to generate ψa and ψd, ū in
Eq.(4.3) and (4.4) is determined during the first half period of the sine wave, which drives the
system output into the range of [yd +∆yl, yd +∆yh] in the first half period of the sine wave and
keeps the system output in the range of [yd − 0.1, yd + 0.1] between t1 and t1+2 in all experimental
trials. The parameters ∆yl and ∆yh are determined experimentally for the input signals uo (t)
with frequencies f = 1, 2 and 4 Hz separately, which are listed in Table 4.1.
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Table 4.1: Threshold for generating the desired state ψa and ψd given yd = 1
ψa ψd

f (Hz) ∆yl ∆yh ∆yl ∆yh
1 -0.22 -0.14 0.14 0.22
2 -0.28 -0.22 0.22 0.28
4 -0.44 -0.38 0.38 0.44

4.3 Simulation Results

Open-loop drift tests are implemented in simulations in the presence of input noise. The influence
of the initial states is investigated based on the Preisach model identified in Section 3.4 by using
the FOD data sets collected from the bimorph piezoceramic actuator SS15. The simulation model
developed in [7] is used to generate simulation results. The differential output drift as defined in
[7] is applied to the outputs of the bimorph piezoceramic actuator, such that the effect of scaled
input noise on different initial states can be compared quantitatively.

As explained at the beginning of this chapter, three different initial states ψn, ψa and ψd
are investigated, each of which gives an output yd ≈ 1. The locations of those three initial
states ψn, ψa and ψd are shown on the input-output graphs in Figure 4.6 through Figure 4.8
where a sinusoidal input is used to drive the hysteretic system to the desired state using the
frequencies f = 1, 2, and 4 Hz. The major loop of the hysteresis becomes wider when the
input signals are applied at higher frequency. Such a change in the hysteresis characteristics of a
voltage-to-displacement relationship is likely caused by a combination of viscous-type effects and
other dynamic effects which obviously become more pronounced when the input voltage frequency
increases [55]. Moreover, in each figure the locus N (l) and the major loop generated by an input
voltage of different frequencies are also shown. In each case, the locus N (l) together with y− and
y+ is noted by a dash-dot line which is monotonic. The input range is discretized and neutral
boundaries for each input in the discrete set are generated to drive the system to those boundaries.
Then the output is determined based on the simulation model. Other missing points on locus
N (l) corresponding to the input not belonging to the input discrete set are determined by linear
interpolation assuming continuity and fine enough quantization.

The test inputs as defined in the previous section are applied in simulation to the identified
Preisach model of the bimorph actuator using the MATLAB code developed by the author of [7].
The simulated output starting from the three different initial states generated by input signals
with different frequencies are presented in Figure 4.9 through Figure 4.11. The input noise has a
gain of 1.6, i.e. the amplitude of the noise is 0.8 V. Even though the output signals are difficult to
distinguish from each other, it can still be observed that the output is constant before the input
noise injection starting from t = 2 s for each initial state of ψn, ψa and ψd. Moreover after the
injection of input noise, the average output drifts different amounts based on the initial state.
Such a difference becomes much more significant when the initial state is generated by an input
signal with higher frequency. From Figure 4.9 through Figure 4.11, the differential output drift
can be observed clearly. The mean value of the output between time t = a and t = b is noted
by ya,b, then the differential output drift is defined as y8,10− y0,2. The differential output drift is
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Figure 4.6: Major loop locus N(l) and initial states for regulation test (f = 1 Hz simulated).
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Figure 4.7: Major loop locus N(l) and initial states for regulation test (f = 2 Hz simulated).
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Figure 4.8: Major loop locus N(l) and initial states for regulation test (f = 4 Hz simulated).
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compared in open-loop regulation tests in the presence of input noise based on the different initial
states where each initial state approximates the desired output yd = 1.

Figure 4.12 shows the complete simulation results of the open-loop drift tests with input noise.
Differential output drift is calculated and shown in the figure for the initial states ψn, ψa and ψd
that have been generated by input signals with frequencies f = 1, 2, and 4 Hz. The injected input
noise is scaled by gains {0.8, 1.6, 2.4, 3.2, 4.0, 5.6}. Figure 4.12 clearly shows the output drift based
on the initial state ψn is less than those based on the other two initial states ψa and ψd. The
simulated output also drifts in the opposite direction for initial states ψa and ψd. For example,
y8,10 > y0,2 for the initial state ψa while y8,10 < y0,2 for the initial state ψd. When the noise gains
are increased the differential output drift is also increased in magnitude for initial states ψa and
ψd in most cases while such a tendency is not so clear for initial state ψn. Moreover, for initial
non-neutral states ψa and ψd generated by higher frequencies, the differential output drift is more
than those based on initial non-neutral states generated by lower frequency.

4.4 Experimental Results

The open-loop drift tests with input noise are also implemented in the shape control system.
The complete experimental results are shown in Figure 4.13. There are two major similarities
between the experimental and simulation results even though the experimental results shown do
not appear exactly the same as simulation results. First, the differential output drift increases
when the noise amplitude increases for non-neutral initial states. Second, the neutral state holds
the best noise rejection property. The corresponding output voltage is also shown from Figure
4.14, which shows that the output is close to yd within the range of ±0.1 V. The results shown in
Figure 4.13 are chosen from seven trials. During the chosen trial the output is closest to yd before
input noise injection comparing to the other six trials.

4.5 Discussion

From results in both simulations and experiments, it is clear that the differential output drift
based on initial state ψn is lower than that based on the other two non-neutral states ψa and ψd.
Now, this phenomenon will be explained based on the Preisach model. The Preisach boundaries of
initial states ψn, ψa and ψd are shown in Figure 4.15. The state ψn is the reachable approximation
of the unreachable neutral state ψln.

The intuitive reason for the state ψn holding optimal input noise rejection can be depicted in
Figure 4.16 based on the Preisach model. The Preisach boundaries of initial states ψn ψa and
ψd are presented in Figure 4.16 (a) (b) and (c) along with the area swept due to small positive
and negative disturbances of the same amplitude ξ̄. It is clearly shown in Figure 4.16 (a) that
similar areas in the Preisach Plane Pr are swept by positive and negative disturbances with the
same amplitude starting from initial state ψn. According to Proposition 1 stated in Section 2.4
on page 13, the output variation will be dependent on the integration of the weighting function
μ over the area swept by the boundary caused by a monotonic change in input. In general the
output variation will be similar when a similar area is swept by the Preisach boundary. Therefore,
the output drift from the desired regulation point is much lower for a uniform distributed noise
with zero mean based on the initial state ψn.
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Figure 4.9: Simulated output response from initial states ψn, ψa and ψd generated by input signal
at f = 1 Hz for a noise gain of 1.6.
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Figure 4.10: Simulated output response from initial states ψn, ψa and ψd generated by input
signal at f = 2 Hz for a noise gain of 1.6.
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Figure 4.11: Simulated output response from initial states ψn, ψa and ψd generated by input
signal at f = 4 Hz for a noise gain of 1.6.
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Figure 4.12: Open-loop differential drift for different noise gains and initial states generated by
input signal with frequency f=1, 2 and 4 Hz (simulation).
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Figure 4.13: Open-Loop differential drift for different noise gains and initial states generated by
input signal with frequencyf = 1, 2 and 4 Hz (experiments).
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Figure 4.14: Output before input noise injection with different gains and initial states generated
by input signal at f = 1, 2 and 4 Hz (experiments).
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Figure 4.15: Initial states ψn ψa and ψd for open-loop drift tests about yd = 1.

From Figure 4.16 (b), it can be observed that the area swept by the Preisach boundary caused
by a positive disturbance is much larger than a negative disturbance. Generally speaking, the
output variation is larger when a larger area is swept. Moreover, if μ > 0 the output variation
will have the same tendency as the input variation. Thus the differential output drifts are positive
when a uniform distributed noise with zero mean is injected into the input signal. Similarly, the
area swept by the Preisach boundary caused by a negative disturbance is much larger than a
positive disturbance based on the initial state of ψd. Thus, the output drifts down after uniform
distributed noise with zero mean is injected and starting from the initial state of ψd.

109



u1

u2

s

r

nψ

l

û
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Chapter 5

Closed-Loop Regulation using PI
Control

In order to achieve better performance during regulation tasks in the presence of noise and un-
modelled system dynamics, a closed-loop controller is required. It is also prudent to investigate the
influence of the initial state during closed-loop regulation. A closed-loop controller for regulation
is expected to decrease or remove the drift observed in the open-loop tests in the presence of input
noise regardless of the initial state prior to the injection of input noise. It is hypothesized in [7]
that lower regulation control effort in closed-loop can be achieved if the system starts from the
neutral state and this was demonstrated in simulation with a PI regulator and a Preisach model
of a stacked actuator. The closed-loop regulation task for a hysteresis system is defined as follows.

Problem 2 (Closed-Loop Regulation Task) Let trf < tcf < tnf be three time instants,
η (t) be a uniformly distributed noise where t ∈ (tcf ,tnf ), and Ψydeq be the set of equivalent states
for a given Preisach system with readout operator: Γr (Ψ) → Y and a desired output yd ∈ Y .
Suppose the input u (t) = ūd + uc (t) when t ∈ (trf ,tcf ), where ūd = ud (tr) = ψdeq (tr, 0) ∈ Ψydeq
and uc (t) is a PI regulator output. Suppose the input u (t) = ūd+uc (t)+η (t) when t ∈ (tcf ,tnf ),
where kη (t)k∞ = ξ. When t < tr, choose the initial state and design an input ud (t) to drive to
that state, so that the control effort during closed-loop regulation in the presence of input noise is
minimized.

In this chapter, the control effort of a PI regulator is investigated in both simulations and ex-
periments. In the first section the implementation procedure for the simulations and experiments
is introduced. The simulation results based on the Preisach model of the bimorph piezoceramic
actuator are presented in the second section while the experimental results collected from the
shape control system are provided in the last section.

5.1 Implementation Procedure of Closed-loop Regulation
in Simulation and Experiment

Figure 5.1 presents the closed-loop control system schematic employed to compare the closed-loop
control effort when the initial states ψa ψd and ψn are achieved by uo and the input noise ud
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with different gains is injected. Similar to the open-loop system schematic, D generates one of
the initial states ψa, ψd and ψn given the desired output yd without enabling the controller C
by applying the input signal uo with the frequencies f = 1, 2, and 4 Hz. The read-out operator
Γr provides the system output y corresponding to a particular state generated by the total input
uo + ud + uc.

With the experimental system initially at ψa, a PI controller C is manually tuned to achieve a
good response subject to a small step input disturbance. The analog controller output is provided
as follows [56]:

uc (t) = Kpe (t) +Ki

Z t

0

e (τ) dτ (5.1)

where e (t) = yd − y (t) is the controller input signal. Considering the controller required to be
implemented in a discrete form, it is necessary to convert Eq. (5.1) into the equation in discrete
format. The integral term is approximated to be the summation of all previous errors. Thus, the
discretized PI controller is shown as below [56]:

uc (k) = Kpe (k) +KiTs
X

e (k) (5.2)

where e (k) = yd − y (k) and Ts is the sampling time interval. In both the simulation and
experiment the sampling time Ts is set to 0.001 s when the input signal is set to 1 and 2 Hz in
order to initialize the system to a particular initial state such as ψa, ψd and ψn given a desired
output yd = 1 V; the sampling time is set to 0.0005 s when the initialization input signal is set to
4 Hz in both the simulation and experiment. The simulation results are obtained via the following
procedure:

1. Apply uo (t) (t ≤ t1) to achieve each of the initial states ψa, ψd and ψn for a desired output
voltage yd = 1 V, i.e. Γr (ψa) = Γr (ψd) = Γr (ψn) = yd; this is the same as the open-loop
test.

2. Starting from t = t1, apply a constant offset uo (t1) to keep the system in the desired state
given the desired output voltage.

3. Starting from t = t1 + 1 s, enable the PI regulator by closing switch S as shown in Figure
5.1 and superimpose the controller output uc (t) on the constant offset uo (t1)

4. Starting from t = t1 +2 s, inject the 8 s scaled input noise ud, i.e. after t = t1+10, ud = 0.

5. At t = t1 + 12 s, complete the test and store the experimental data.

The implementation procedure for the experiments is similar to that for the simulations.
However, the input to the PI controller is obtained by the average error, i.e. ∆y = yd−y, collected
in the previous 0.025 s in order to remove the effect of measurement noise in the experimental
setup.

This procedure is followed for each of the initial states and for 7 noise gainsKn, i.e. Kn = 0.8∗i
(where i = 1, ...7). In order to compare the control effort of the PI regulator starting from the
different initial states in the presence of the input noise, the 2-norm of the control effort nc is the
metric employed and is calculated using the formula:
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Figure 5.1: Control system schematic employed to compare performance when different initial
states and input noise are applied.

nc = kucn (t)− ūck2 (5.3)

where ucn (t) = uc (t) t ∈ (t1 + 2, t1 + 10) and ūc is the mean value of uc (t) t ∈ (t1 + 1.5, t1 + 2).
Only the control effort to overcome the differential drift due to the injection of the input noise is
taken into account in nc. The simulation and experimental results are presented in the following
two sections.

5.2 Simulation Results

The closed-loop regulation tests are implemented in simulation based on the same Preisach model
and simulation model used in the open-loop tests except with the addition of proportional-integral
(PI) feedback. The simulated closed-loop output for a noise gain of 1.6 is shown in Figure 5.2
through Figure 5.4 for each initial state generated by an oscillatory input with frequencies 1, 2
and 4 Hz respectively. It can be observed from these three figures that the PI regulator is able
to drive the system to the desired output yd = 1 regardless of the initial states and the input
signals frequencies without the presence of the input noise. The difference between the desired
output and simulated output can be observed from t = 0 to 1 s when the controller is disabled.
Such an error is caused by the quantization of the simulated Preisach model. Starting from t = 1
s, the controller is enabled and drives the system to the desired output, i.e. yd = 1 V. However,
the controller is not able to maintain the system at the desired output when the input noise is
injected from t = 2 to 10 s. When the input noise ends at t = 10 s, the controller drives the
system to the desired output yd = 1 V again. Therefore, we can conclude that the closed-loop
regulator is able to eliminate the output drift observed in the open-loop tests.

The 2-norm of control effort nc is calculated based on Eq. (5.3), where the timing information
is given, and shown in Figure 5.5 through Figure 5.7 for input signals with different frequencies
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Figure 5.2: Closed-loop simulated output at a noise gain of 1.6 and an input signal with frequency
f = 1 Hz.
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Figure 5.3: Closed-loop simulated output at a noise gain of 1.6 and an input signal with frequency
f = 2 Hz.
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Figure 5.4: Closed-loop simulated output at a noise gain of 1.6 and an input signal with frequency
f = 4 Hz.
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Figure 5.5: Simulated closed-loop control effort for different noise gains and initial states with the
initialization input signal with frequency f = 1 Hz.

applied to achieve the initial states. When the initialization input signal has frequency f = 1 and 2
Hz, the control effort nc obtained in the regulation test starting from the initial state ψn is smaller
than the other two initial states ψa and ψd, which is more obvious when the noise gain increases.
Moreover, for the initialization input signal at frequency f = 1 Hz, approximately the same control
effort is required in the regulation task for the initial states ψa and ψd on opposite branches of the
major loop since the hysteresis loop is approximately symmetric at yd = 1 V. However, the control
effort shows increased difference between the initial states ψa and ψd when the initialization input
signal has a frequency of f = 2 Hz. This is probably because when the frequency of the input
signal for initialization increases, the branches of the major loop becomes less symmetric. When
the input signal frequency increases to 4 Hz, the better regulating performance of starting from
the neutral state ψn disappears when the noise gain is increased to more than 4.0; this may be
caused by limitations of the Preisach model of a piezo when the input signal is at a high frequency.
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Figure 5.6: Simulated closed-loop control effort for different noise gains and initial states with the
initialization input signal with frequency f = 2 Hz.
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Figure 5.7: Simulated closed-loop control effort for different noise gains and initial states with the
initialization input signal with frequency f = 4 Hz.
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Figure 5.8: Experimental output of closed-loop regulation control for different Kp at initialization
state ψa generated by an input signal at 1 Hz.

5.3 Experimental Results

The experimental results of the closed-loop regulation tests are presented in this section. First, the
gain tuning results based on the initial state ψa are shown, then the control efforts nc calculated
from the data collected from experiments are shown.

The gain tuning results are based on the mean value of five trials for each gain setup. When
the integral gain Ki is nominally set to be 30, the proportional gain Kp is set to be 1.0, 1.5
and 2.0 separately and the results are shown in Figure 5.8. With higher Kp, the oscillation is
more obvious while with smaller Kp the output tends to achieve steady state slower. Thus, Kp

is selected to be 1.5 ,and trials are run where Ki = 20, 30, and 40, and the results are shown in
Figure 5.9. With higher Ki, the output approaches the desired output quicker, but there exists
oscillation after achieving steady state. Thus, Ki is set to 30.

In order to evaluate the effect of the different initial states, the 2-norm of the control effort nc
is examined for each of the initial states as nc (ψn) nc (ψa) and nc (ψd). The differences of the
2-norm of control effort between initial states ψa and ψn, i.e. nc (ψa) − nc (ψn), are shown as
upward-pointing triangles in Figure 5.10 through 5.12 for the various noise gains and the input
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Figure 5.9: Experimental output of closed-loop regulation control for different Ki at initialization
state ψa generated by an input signal at 1 Hz.
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signals frequencies f = 1, 2 and 4 Hz. In addition, the differences of nc between initial states ψd
and ψn, i.e. nc (ψa)− nc (ψn), are shown as downward-pointing triangles in the same figures for
each case. The results shown here are based on the mean value of seven trials and the experimental
data are collected from the shape control system. It can be seen in Figure 5.10 through 5.12 that
most of the differences are positive except for one data point in Figure 5.12, which means that
the control efforts during regulation starting from the initial state ψn are smaller than the other
two initial states ψa and ψd even though the control effort differences are not increasing when
the input noise gains increase. The differences of the 2-norm of control effort nc between the
non-neutral states (ψa and ψd) and the neutral ψn over the control effort nc starting from the
neutral state ψn, i.e.

[nc(ψa)−nc(ψn)]
nc(ψn)

× 100% and [nc(ψd)−nc(ψn)]
nc(ψn)

× 100% are listed in Table 5.1
in percentages for different noise gains and input signals with different frequencies. It is shown
that, even though it is better to start from the initial state ψn, the difference of the control effort
between the non-neutral states and the neutral state is not significant.

Table 5.1: Percentage of control effort
f (Hz) 1 2 4 1 2 4

Normalized Noise Gain [nc(ψa)−nc(ψn)]
nc(ψn)

[nc(ψd)−nc(ψn)]
nc(ψn)

0.1429 0.2277 1.9916 0.2666 6.6523 6.3656 18.0776
0.2857 1.1494 0.7452 2.2912 2.3129 2.8210 3.3733
0.4286 2.6548 1.7425 -0.0032 1.9575 1.5881 2.0138
0.5714 1.2536 1.6094 0.9816 1.9920 0.8368 1.1421
0.7143 1.4988 1.2737 1.1755 1.3567 1.2008 1.0495
0.8571 1.5130 1.2553 1.4559 1.4250 1.0649 0.7772
1 2.0443 1.3737 1.2434 1.4365 0.7818 1.5092

Since noise also affects the control effort during the experiments, the experimental results are
not exactly as we expect: the control effort is not monotonically increasing when the input noise
gains increase; the control effort starting from the initial states ψa and ψd are not the same as
each other even when the input signal is at 1 Hz to generate the initial states. However, the
benefit of starting from the initial state ψn in regulation tasks is demonstrated experimentally
with results collected from the shape control system.
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Figure 5.10: Experimental difference of control signal 2-norm for different noise gains and initial
states based on initialization input signal with frequency f = 1 Hz.
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Figure 5.11: Experimental difference of control signal 2-norm for different noise gains and initial
states based on initialization input signal with frequency f = 2 Hz.
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Figure 5.12: Experimental difference of control signal 2-norm for different noise gains and initial
states based on initialization input signal with frequency f = 4 Hz.
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Chapter 6

Conclusions and Future Work

In this thesis, a study has been conducted to investigate the effect of the initial state of a hysteretic
system with Preisach representation in a regulation task when there is input noise.

6.1 Conclusions

The hysteresis inherent in piezoceramics leads to the limitation in their precision applications.
However, given a desired output, the existence of multi-states also provides one more degree
of freedom for the regulation design of those systems with memory, which is different from the
regulation design for memory-less systems.

The Preisach model is identified in this work to describe the hysteretic relationship between
the strain gauge output voltage and the high input voltage of the shape control system studied
in this thesis. The Preisach model is chosen due to its general structure and ability to model
hysteresis.

• The results from the representation tests demonstrate the classical Preisach model is suf-
ficient to describe hysteresis with reasonable error when the input signal is at frequency
f = 1, 2, and 4 Hz.

From the wiping-out tests, the error of the maximum magnitude over the whole output range
is about 2.33% 4.51% and 9.23% when the input signal is at f = 1, 2, and 4 Hz. From the
CML tests, the error of the maximum magnitude over the whole output range is about 2.05%
4.16% and 7.38% for the input signals at f = 1, 2, and 4 Hz. From the comparison between
the experimental and simulated FOD data, it is found that the error of the maximum magnitude
over the whole output range is about 2.42% 4.52% and 8.69% at f = 1, 2, and 4 Hz. However,
the modelling error becomes larger when the high input voltage has a higher frequency based
on the experimental results. Since the classical Preisach model is intended for describing the
static hysteresis while the hysteresis inherent in piezoceramic actuator is more dynamic when the
frequencies of the input signals increase, such an increased modelling error is expected. Further
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more, since the mechanical dynamics of the bimorphs have not been incorporated into the model,
this represents another source of the increased modelling error.

The open-loop drift tests are performed in both simulations and experiments based on the
shape control system. The better regulating performance of the neutral state is explained intu-
itively based on the Preisach model.

• The simulation and experimental results clearly show that the open-loop differential output
due to input noise is less when the system starts from the neutral state ψn as compared
to the other two initial states ψa and ψd on the ascending and descending branches of the
major loop.

• The simulation and experimental results also demonstrate that the open-loop differential
drift increases when the input noise gain increases and the system starts from the initial
states ψa and ψd, while such a tendency for the initial state ψn is not so obvious.

• When the initial state is generated by an input voltage with a higher frequency, the difference
of the differential output between starting from the neutral states and the non-neutral states
becomes larger according to the simulation results. However, such a trend is not clear
according to the experimental results when the frequency of the input signal increases.

The closed-loop regulation tests are also applied in both simulations and experiments. The
same input noise signal injected in the open-loop tests is used here. A traditional PI controller
is tuned based on the initial state ψa. The 2-norm of the control effort due to the input noise
injection is compared when the system starts from the different initial states ψn ψa and ψd.

• The simulation results demonstrate that the system requires the least control effort when
it is initialized at the neutral state as compared to the other two initial states ψa and ψd,
except when the initial states are generated by an input signal with a higher frequency up
to 4 Hz.

• The experimental results indicate that the shape control system requires the least control
effort when it starts from the neutral state ψn under all noise and frequency conditions
tested as compared to the other two initial states.

Since both simulation and experiments have shown advantages by starting from the neutral
states, it may be possible to show this analytically. Traditionally this could be approached by
taking derivatives of the model used, in this case, the Preisach model. Although a conventional
derivative does not exist for this model, it is possible to take sub-derivatives for this purpose, and
this is provided in Appendix A.

6.2 Future Work

In order to continue the work of investigating the better regulating performance of the neutral
state, the following tasks are recommended:
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• Identify the dynamic Preisach model at frequencies over a broader spectrum. Implement
open-loop noise rejection test and closed-loop regulation test at frequencies over the broader
spectrum in both simulations and experiments.

• Theoretically, the better noise tolerance of the neutral state may be proved by minimizing the
output variation subject to a noisy input signal based on the Preisach model. A derivative
based on the Preisach model (see Appendix A) may be incorporated into optimization
routines, such that for a given output setpoint, the output variation due to noise in the
input signal is minimized by designing an optimal initial state.

• Design and implement more sophisticated control methodologies such as robust control [57],
fuzzy logic adaptive control [58] and neuro-adaptive control [59] to investigate the effects of
different initial states. Investigate the response to disturbance or input noise in closed-loop
using the Preisach model to determine initial state given an output. It is expected that the
control effort is minimum at neutral state and neutral state is robust to disturbance and
noise regardless of the type of controller.

• Explore the effect of initial states based on a dynamic Preisach model. Hopefully the exten-
sion and the application of a dynamic model to the shape control unit SS15 would remove
some of the uncertainties around the frequency-dependence which is observed in this thesis.

• Investigate the influence of initial states within the hysteresis in terms of a dynamic tracking
problem. Explore the possibility of tracking the state along the neutral locus, as the desired
output varies in the range of the hysteresis. The extension is non-trivial since the current
model requires wide swings of input (and therefore output) in order to drive the system to
the neutral locus once it leaves. However, there may be value in studying these regulation-
specific results for the understanding of the tracking problem in future.
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Appendix A

Preisach Model Derivative

In this appendix, the derivative of the Preisach model is determined. Before computing the
derivative, we introduce a reduced memory sequence as a useful tool. When the input keeps its
direction, the derivative can be easily defined in a conventional sense. However, the derivative of a
hysteresis loop does not even exist, in a traditional sense, at input reversals. Thus, the generalized
derivative of the Preisach model is developed when the input reverses its direction.

A.1 Reduced Memory Sequence

A branch appears in the hysteresis loop when the input switches direction at the input extrema.
Generally the output of a static hysteresis is dependent on the current input value and all the past
input extrema. The effect of these previous input extrema are stored in a hysteretic loop output,
and the set of past extrema is used to build a memory sequence [10]. The wiping-out property of
the Preisach model implies, in particular, that the output is determined only by a specific subset
of the memory sequence. Mayergoyz referred to the subset as dominant input extrema [9] and
Visintin referred it as the reduced memory sequence, abbreviating to be RMS [10]. The latter
terminology is used in the thesis.

As described in the previous section, the wiping-out property states that any input maximum
which is larger than previous maxima will wiping-out the memory of those maxima and any input
minimum which is smaller than previous minima will also wiping-out those minima. For a given
time τ , only particular past extrema remain and influence the output. Those extrema build a
corresponding set of input maxima and minima. In the set, the maxima decrease in magnitude
sequentially while the minima increase until the two series converge at u (t).

Both [10] and [9] have examples of the construction of the reduced memory sequence associated
with an input. The following construction is from [10].

For any input u ∈ U (−∞, T ] and any τ ≤ T , set

s0 = 0

η = max
t∈(−∞,τ ]

|u (t)|
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Figure A.1: Input u (t) and correponding RMS.

and let
t1 = max {t ∈ (−∞, τ ] | |u (t)| = η}

Then the elements si (i = 1, 2, ...) of the reduced memory sequence s = {si} where i ≥ 1 can be
defined as follows:

i = 1 : s1 = u (t1)

si−1 < si−2 : si = max
t∈(ti−1,τ ]

u (t)

ti = max {t ∈ (ti−1, τ ] |u (t) = si}
si−1 > si−2 : si = min

t∈(ti−1,τ ]
u (t)

ti = max {t ∈ (ti−1, τ ] |u (t) = si}
When ti = τ , the sequence is terminated.

The elements in RMS vary with respect to time. For instance, the input u(t) and its RMS
corresponding to different time is shown in Figure A.1. The Preisach boundaries at different
instances in time is also shown in Figure A.2, from which it is clearly shown that wiping-out
occurred during time interval (t5, t6) and (t7, t8).

Let sn−1 stand for the input which causes the last reversal of the Preisach boundary ψ (τ , r)
and note that sn−1 will be used in the following section of the appendix to develop the derivative
of a Preisach model.
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Figure A.3: Slopes of hysteresis loop on I/O plane.

A.2 Derivative of the Preisach Model

To improve eligibility of this section, we use the notation dy
du to refer to the derivatives of the

output with respect to the input dy(t)
du(t) for the Preisach model, which are developed here since

they are generally considered to be useful in optimization as they can illustrate the relationship
between the input and the output variation. Together with the input derivative with respect to
time du(t)dt , the output derivative with respect to time

dy(t)
dt can also be calculated and it is essential

for stability analysis. dy
du is expected to be used in proving the better regulating performance of

the neutral state with respect to input noise for piezoceramics.

Even though the Preisach model is not dependent on time, dydu for a hysteresis loop is different
depending on whether u(t) is increasing or decreasing and on the past history of the input for
a given desired output yd. Geometrically,

dy
du is the slope of the tangent line to the curve of the

hysteresis in the I/O plane. As shown in Figure A.3, the slope k1 of the ascending branch of the
major loop is different from the slope k2 of the ascending branch of the minor loop, and the slope
k3 on the descending branch of the minor loop is also different from the slope k2. Moreover, the
derivative is not defined when the input u (t) reverses as shown by point Rp in Figure A.3, i.e.
elements in the RMS change, so the subderivatives will be stated and computed.

The magnitude of the output variation is related to the area Ω swept by the Preisach boundary
in response to a given input variation. sn−1 is the second-last element in the RMS as defined
in the previous section. When dy/du is calculated in the following part of the section, a small
change in u, namely ∆u, is considered such that for the given boundary ψ (τ , r) no corners are
wiped out. In Section A.2.1 and A.2.2, the cases of monotonic increase and decrease change in u
are examined as shown in Figure A.4 (a) and (b) separately. In Section A.2.3, the cases of input
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reversals are investigated.

A.2.1 Derivative For Monotonically Increasing Input

First consider that input u (t) does not change its direction and monotonically increases with
respect to time, which is Case (a) shown in Figure A.4 (a), where r̃ = u−sn−1

2 and s̃ = u+sn−1
2 . In

this monotonic increase case, the derivative can be defined in a conventional way. Note that r̃ is
positive. For a given boundary ψ (τ , r), assume that the input is increasing (Case (a)). According
to Eq. (2.6) for a monotonic increase in input, the output y can be written as:

y = 2

ZZ
P+(t)

μ (r, s) dsdr −
ZZ
Pr

μ (r, s) dsdr

= 2

⎛⎜⎝ ZZ
P+1(t)

μ (r, s) dsdr +

ZZ
P+2(t)

μ (r, s) dsdr

⎞⎟⎠− ZZ
Pr

μ (r, s) dsdr

for Case (a), where P+1 (t) and P+2 (t) are as shown in Figure A.4 (a) by light and dark grey
shaded regions. As indicated in the figure, only P+1 (t) is changing with respect to u (t) at this
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time instantaneous as long as no wiping-out happens. Furthermore u (t) > sn−1, such that r̃ > 0.
Thus

dy

du
= 2

d

du

⎛⎜⎝ ZZ
P+1(t)

μ (r, s) dsdr

⎞⎟⎠ (A.1)

As in the section on Preisach modelling (Section 2.6), the form of the weighting function from
[45] is considered here, i.e. μ (r, s) = v (r, s) + κ (s− r) δ (2r).
Without loss of any generality, Eq.(A.1) can be rewritten as

dy

du
= 2

d

du

ÃZ r̃

0

Z u−r

sn−1+r
v (r, s) dsdr

!

+2
d

du

ÃZ s̃

sn−1

Z s−sn−1

0

κ (s− r) δ (2r) drds+
Z u

s̃

Z u−s

0

κ (s− r) δ (2r) drds
!

= 2
d

du
(f1 (u) + f2 (u)) (A.2)

where

f1 (u) =

Z r̃

0

g1 (r, u) dr (A.3)

g1 (r, u) =

Z u−r

sn−1+r
v (r, s) ds (A.4)

f2 (u) =

Z s̃

sn−1

Z s−sn−1

0

κ (s− r) δ (2r) drds

+

Z u

s̃

Z u−s

0

κ (s− r) δ (2r) drds (A.5)

Then according to the Leibniz Integral Rule [60]

∂

∂z

Z b(z)

a(z)

f (x, z) dx =

Z b(z)

a(z)

∂f

∂z
dx+ f (b (z) , z)

∂b

∂z
− f (a (z) , z) ∂a

∂z

the following equations are obtained:

∂f1 (u)

∂u
=

∂

∂u

Z r̃

0

g1 (r, u) dr

=

Z r̃

0

∂g1 (r, u)

∂u
dr + g1 (r̃, u)

∂ (r̃)

∂u
− g1 (0, u) ∂0

∂u

=

Z r̃

0

∂g1 (r, u)

∂u
dr +

1

2
g1 (r̃, u) (A.6)
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where

∂g1 (r, u)

∂u
=

∂

∂u

Z u−r

sn−1+r
v (r, s) ds

=

Z u−r

sn−1+r

∂v(r, s)

∂u
ds+ v (r, u− r) ∂ (u− r)

∂u
− v (r, sn−1 + r) ∂ (sn−1 + r)

∂u

= v (r, u− r) (A.7)

Substituting Eq. (A.7) into Eq. (A.6) leads to

∂f1 (u)

∂u
=

Z r̃

0

v (r, u− r) dr + 1
2

Z u−r̃

sn−1+r̃
v

µ
u− sn−1

2
, s

¶
ds

=

Z r̃

0

v (r, u− r) dr (A.8)

due to continuous and bounded v (r, s) and

u− r̃ = u− u− sn−1
2

=
u+ sn−1

2

sn−1 + r̃ = sn−1 +
u− sn−1

2
=
u+ sn−1

2

i.e. the interval of the second integration term goes to zero.

According to the properties of the Dirac delta function, i.e. δ (ax) = 1
|a| δ (x) and the Sifting

Property [61], (A.5) can be rewritten as

f2 (u) =
1

2

ÃZ s̃

sn−1
κ (s− 0) ds+

Z u

s̃

κ (s− 0) ds
!

=
1

2

Z u

sn−1
κ (s) ds (A.9)

Since κ (s) is continuous along the s axis, the Leibniz Integral Rule can be applied to get df2(u)
du ,

which results in

∂f2 (u)

∂u
=

1

2

ÃZ u

sn−1

∂κ (s)

∂u
ds+

∂u

∂u
κ (u)− ∂sn−1

∂u
κ (sn−1)

!
=

1

2
κ (u) (A.10)

Substituting Eq.(A.8) and (A.10) into Eq.(A.2) to get

dy

du
= 2

ÃZ r̃

0

v (r, u− r) dr + 1
2
κ (u)

!
(A.11)

Since r̃ > 0 in Case (a) Z r̃

0

κ (u− r − r) δ (2r) dr = 1

2
κ (u) (A.12)
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Substituting Eq. (A.12) into Eq. (A.11) achieves

dy

du
= 2

ÃZ r̃

0

v (r, u− r) + κ (u− r − r) δ (2r) dr
!

= 2

Z r̃

0

μ (r, u− r) dr

Let dy
du↑+ denotes

dy
du of Case (a), for monotonically increasing u thus

dy

du ↑+ = 2

Z r̃

0

μ (r, u− r) dr (A.13)

= 2

Z r̃

0

v (r, u− r) dr + κ (u) (A.14)

If μ (r, u− r) ∈Mp, then the integration term in A.14 is always larger than or equal to zero. Thus
dy
du↑+ ≥ κ (u) ≥ 0. When r̃ = 0, dy

du↑+ = κ (u) ≥ 0.

A.2.2 Derivative For Monotonically Decreasing Input

Similarly for monotonically decreasing input du/dt < 0, and u (t) keeps decreasing (Case (b)) as
shown in Figure A.4 (b) , i.e. u (t) < sn−1. Thus r̃0 =

sn−1−u
2 > 0. According to Eq. (2.7):

y = −2
ZZ
P−(t)

μ (r, s) dsdr +

ZZ
Pr

μ (r, s) dsdr

= −2

⎛⎜⎝ ZZ
P−1(t)

μ (r, s) dsdr +

ZZ
P−2(t)

μ (r, s) dsdr

⎞⎟⎠+ ZZ
Pr

μ (r, s) dsdr

for Case (b), where P−1 (t) and P−2 (t) are as shown in Figure A.4 (b) by light and dark grey
shaded regions. As indicated in the figure, only P−1 (t) is changing with respect to u (t) at this
time instaneous as long as no wiping-out happens. Thus

dy

du
= −2 d

du

⎛⎜⎝ ZZ
P−1(t)

μ (r, s) dsdr

⎞⎟⎠ (A.15)

Similarly to Case (a) without loss of any generality, Eq.(A.15) can be rewritten as

dy

du
= −2 d

du

ÃZ r̃0

0

Z sn−1−r

u+r

v (r, s) dsdr

!

= −2 d
du

ÃZ sn−1

s̃

Z sn−1−s

0

κ (s− r) δ (2r) drds+
Z s̃

u

Z s−u

0

κ (s− r) δ (2r) drds
!

= −2 d
du
(f3 (u) + f4 (u)) (A.16)
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where

f3 (u) =

Z r̃0

0

g2 (r, u) dr (A.17)

g2 (r, u) =

Z sn−1−r

u+r

v (r, s) ds (A.18)

f4 (u) =

Z sn−1

s̃

Z sn−1−s

0

κ (s− r) δ (2r) drds

+

Z s̃

u

Z s−u

0

κ (s− r) δ (2r) drds (A.19)

Then according to the Leibniz Integral Rule [60],

∂f3 (u)

∂u
=

∂

∂u

Z r̃0

0

g2 (r, u) dr

=

Z r̃0

0

∂g2 (r, u)

∂u
dr + g2 (r̃

0, u)
∂ (r̃0)
∂u

− g2 (0, u) ∂0
∂u

=

Z r̃0

0

∂g2 (r, u)

∂u
dr − 1

2
g2 (r̃

0, u) (A.20)

where

∂g2 (r, u)

∂u
=

∂

∂u

Z sn−1−r

u+r

v (r, s) ds

=

Z sn−1−r

u+r

∂v(r, s)

∂u
ds+ v (r, sn−1 − r) ∂ (sn−1 − r)

∂u
− v (r, u+ r) ∂ (u+ r)

∂u

= −v (r, u+ r) (A.21)

Substituting Eq. (A.21) into Eq. (A.20) leads to

∂f3 (u)

∂u
=

Z r̃0

0

−v (r, u+ r) dr − 1
2

Z sn−1−r̃0

u+r̃0
v

µ
sn−1 − u

2
, s

¶
ds

=

Z r̃0

0

−v (r, u+ r) dr (A.22)

due to continuous and bounded v (r, s) and

sn−1 − r̃0 = sn−1 − sn−1 − u
2

=
u+ sn−1

2

u+ r̃0 = u+
sn−1 − u

2
=
u+ sn−1

2

i.e. the interval of the second integration term goes to zero.

According to the properties of the Dirac delta function, i.e. δ (ax) = 1
|a| δ (x) and the Sifting

Property [61], Eq. (A.19) can be rewritten as
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f4 (u) =
1

2

ÃZ sn−1

s̃

κ (s− 0) ds+
Z s̃

u

κ (s− 0) ds
!

=
1

2

Z sn−1

u

κ (s) ds (A.23)

Since κ (s) is continuous along the s axis, the Leibniz Integral Rule can be applied to get df4(u)
du ,

which results in

∂f4 (u)

∂u
=

1

2

µZ sn−1

u

∂κ (s)

∂u
ds+

∂sn−1
∂u

κ (sn−1)− ∂u

∂u
κ (u)

¶
= −1

2
κ (u) (A.24)

Substituting Eq.(A.22) and (A.24) into Eq.(A.16) to get

dy

du
= −2

ÃZ r̃0

0

−v (r, u+ r) dr − 1
2
κ (u)

!
(A.25)

Since r̃0 > 0 Z r̃0

0

κ (u+ r − r) δ (2r) dr = 1

2
κ (u) (A.26)

Substituting Eq. (A.26) into Eq. (A.25) achieves

dy

du
= 2

ÃZ r̃0

0

v (r, u+ r) + κ (u+ r − r) δ (2r) dr
!

= 2

Z r̃0

0

μ (r, u+ r) dr

Let dy
du↓− denotes

dy
du of Case (b), for monotonically decreasing u thus

dy

du ↓− = 2

Z r̃0

0

μ (r, u+ r) dr (A.27)

= 2

Z r̃0

0

v (r, u+ r) dr + κ (u) (A.28)

If μ (r, u+ r) ∈ Mp, then the integration term in Eq. (A.28) is always larger than or equal to
zero. Thus dy

du↓− ≥ κ (u) ≥ 0. When r̃0 = 0, dy
du↓− = κ (u) ≥ 0.

A.2.3 Subderivatives For Input Reversal Cases

At the input reversing point us, the classical derivative of the output with respect to the input in
a hysteresis loop does not exist. Thus, the classical derivative should be extended to a generalized
format at input reversals. The generalized derivative in [62] is adopted here.
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Consider the absolute value as a simple example first:

h (u) = |u| (A.29)

h (u) does not have derivative at u = 0. However, both left and right derivatives of h (u) at the
origin are defined by

h0− (u) = lim
u0↑u

h (u0)− h (u)
u0 − u

h0+ (u) = lim
u0↓u

h (u0)− h (u)
u0 − u

where u0 ↑ u means that u0 approaches u from below, i.e. u0 < u, and u0 ↓ u represents u0 tends
to u from above, i.e. u0 > u. For the function h(u) in (A.29):

h0− (0) = −1
h0+ (0) = +1

As defined in [62], a generalized derivative h0λ (u) of h at u is a convex combination of its left and
right derivatives h0− (u) and h

0
+ (u), as shown below:

h0λ (u) = (1− λ)h0− (u) + λh0+ (u) (A.30)

where 0 ≤ λ ≤ 1. For the function h (u) at the point of u = 0, the generalized derivative h0λ (0)
are in the range of

£
h0− (0) , h

0
+ (0)

¤
= [−1, 1] and can be expressed as

h0λ (u) = 2λ− 1

The definition of the generalized derivative above applies to single-valued functions, but the
hysteresis graph around an input reversal is multi-valued with a cusp at the switching point
u = us as shown by the point Rp in Figure A.3. The definition can be easily extended, however,
by looking at the derivatives on either side of the switching point us and taking limits as u→ us
on either function.

As developed in Section A.2.1 and A.2.2, output derivative with respect to input dy
du can be

written as

dy

du
= y0 (u)

=

½
y01 (u) if

du
dt < 0

y02 (u) if
du
dt > 0

where y01 (u) =
dy
du↓− as shown in Eq.(A.27) and y

0
2 (u) =

dy
du↑+ as shown in Eq. (A.13). At input

reversals us, the classical derivative y0 (u) is not defined. However it lies within the range of y01 (u)
and y02 (u).

As a result, define the subderivative at us as:

y0 (us) =
∙
lim
u→us

y01 (u) , limu→us
y02 (u)

¸
(A.31)
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which can also be expressed in a convex combination of the range’s lower and upper limits as

y0λ (us) = (1− λ) lim
u→us

y01 (u) + λ lim
u→us

y02 (u)

Suppose that the input switched from decreasing to increasing at u = us, at time t = tr.
Figure A.5 (a) shows the Preisach plane just after the reversal and Figure A.5 (a’) shows the
Preisach plane just prior to the reversal. Over τ > τ r, u (τ)→ sn−1 (u, τ) = us = u (τr) and the
Preisach boundary is shown as ψ (τ , r). Moreover, the boundary of ψ (τ 0, r) is shown in Figure
A.5 (a’) and it can be observed that sn−1 (u, τ 0) = sn−2 (u, τ). The dashed line in the figure shows
the boundary of the time at switching point τr in Figure A.5 (a) and (a’). It is important to
notice that for the reversal cases, a new corner appears on the Preisach boundary and the second
last element in RMS needs to be updated, such as sn−2 (u, τ) = sn−1 (u, τ 0) when calculating
lim
u→us

y02 (u) and sn−1 (u, τ) = us when calculating lim
u→us

y01 (u). The range of subderivatives are

calculated as below for input reversing from decreasing to increasing first.

For Case (a) and (a’) in Figure A.5:

lim
u→us

y01 (u) = lim
u→us

2

Z sn−2−u
2

0

μ (r, u+ r) dr

= lim
u→us

2

Z sn−2−u
2

0

v (r, u+ r) dr + κ (u)

= 2

Z sn−2−us
2

0

v (r, us + r) dr + κ (us) (A.32)

lim
u→us

y02 (u) = lim
u→us

2

Z u−sn−1
2

0

μ (r, u− r) dr (A.33)

Noting us = sn−1 (u, τ), Eq. (A.33) becomes

lim
u→us

y02 (u) = κ (us)

Thus

y0λ (us) = (1− λ) lim
u→us

y01 (u) + λ lim
u→us

y02 (u)

= (1− λ)

⎛⎝2Z sn−2−us
2

0

v (r, us + r) dr + κ (us)

⎞⎠+ λκ (us)

= 2 (1− λ)

Z sn−2−us
2

0

v (r, us + r) dr + κ (us) (A.34)

On the other hand, if the input starts to decrease from increasing also generates a reversal us
in input when t = τ r. Similarly the Preisach boundaries just after the reversal and prior to the
reversal are shown in Figure A.5 (b) and(b’) respectively. The range of subderivatives for this
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û−

û
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Figure A.5: Preisach plane for dy
du calculation of reversal input cases: (a) After reversal from

decreasing to increasing, (a’) Prior to reversal from decreasing to increasing, (b) After reversal
from increasing to decreasing, (b’) Prior to reversal from decreasing to increasing.
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kind of reversal are calculated as below.

lim
u→us

y02 (u) = lim
u→us

2

Z u−sn−2
2

0

μ (r, u− r) dr

= lim
u→us

2

Z u−sn−2
2

0

v (r, u− r) dr + κ (u)

= 2

Z us−sn−2
2

0

v (r, us − r) dr + κ (us) (A.35)

lim
u→us

y01 (u) = lim
u→us

2

Z sn−1−u
2

0

μ (r, u+ r) dr (A.36)

Noting us = sn−1 (u, τ), Eq. (A.36) becomes

lim
u→us

y01 (u) = κ (us)

Thus

y0λ (us) = (1− λ) lim
u→us

y01 (u) + λ lim
u→us

y02 (u)

= (1− λ)κ (us) + λ

⎛⎝2Z us−sn−2
2

0

v (r, us − r) dr + κ (us)

⎞⎠
= 2λ

Z us−sn−2
2

0

v (r, us − r) dr + κ (us) (A.37)

Moreover, since λ is only an arbitrary number in [0, 1], λ and 1 − λ are in the same range.
Thus, the subderivative at input reversals of a hysteresis loop can finally be written as:

y0λ (us) = 2λ
Z sgn(us−sn−2)(us−sn−2)

2

0

0

v (r, us − (sgn (us − sn−2)) r) dr + κ (us) (A.38)

where λ ∈ [0, 1]. If μ (r, us − (sgn (us − sn−2)) r) ∈Mp, then y0λ (us) > κ (us). When the interval
of the first integration term goes to zero, i.e. us → sn−2, y0λ (us) is minimized to be κ (us).

It is easy to verify that the extending of the generalized derivative definition from [62] to multi-
valued functions, as presented here, reduces for the definition of [62] for the case of h (u) = |u|.
In summary, the derivative of a hysteresis loop is defined as

dy

du
=

⎧⎨⎩ y01 (u) if
du
dt < 0

y02 (u) if
du
dt > 0

y0λ (us) at u (t) reversals
(A.39)
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Appendix B

Experimental Calibration

The manner in which the ADCs of the Quanser Data Acquisition Card are calibrated is described
in Section B.1, whereas the relationship between the analogue voltage from the DACs of the
Quanser Data Acquisition Card and the high output voltage of the power amplifier (SA11) is
investigated in Section B.2.

B.1 Quanser ADC

The output signal of the strain gauge amplifier is measured through the ADC. In order to calibrate
the ADC on the Quanser-PCI Multi-Q DAQ, a -5 to +5 VDC voltage is supplied by a DC power
supply through the ADC sockets. The input voltage from the DC power supply is measured with
a multimeter (FLUKE 189 TRUE RMS MULTIMETER). Each ADC channel is sampled and
controlled via the Matlab real-time workshop using the Weighted Moving Average block 1 to take
the average of the 10 most recent samples (sampling time is 1 ms). Four channels, Ch0 to Ch3,
are tested for proper functioning as listed in Table B.1.

1Simulink block of Matlab Version 7.5.0.342 (R2007b)
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Table B.1: Analogue input voltage and digital output voltage ADC (Ch0 to Ch3)

Power Supply (V) Ch 0 (V) Ch 1 (V) Ch 2 (V) Ch 3 (V)
-5.00 -5.00 -5.00 -5.00 -5.00
-4.00 -4.02 -4.03 -4.03 -4.03
-3.00 -3.02 -3.02 -3.02 -3.02
-2.00 -2.02 -2.02 -2.02 -2.02
-1.00 -1.01 -1.01 -1.01 -1.01
0.00 0.00 0.00 0.00 0.00
1.00 1.00 1.00 1.00 1.00
2.00 2.00 2.00 2.00 2.00
3.00 3.00 3.00 3.01 3.01
4.00 4.01 4.02 4.02 4.00
5.00 5.00 5.00 5.00 5.00

B.2 Quanser DAC+SA11 Amplifier

Table B.2 depicts the data collected to reveal the relationship between the voltage signal sent out
from the Quanser DAC socket and the output voltage of the SA11 amplifier. In the table, output
channel A (Ch A) of SA11 (V aout) is controlled by the analogue voltage on CH 0 (V ain) of the
Quanser DAC card, while output channel B (Ch B), i.e. V bout, is controlled by CH 1 (V bin). In
Table B.2, V ain = V bin noted by V a, bin. The output voltage of the SA11 amplifier is measured
by the digital multimeter which can show five digits. Thus, two decimal digits are listed in Table
B.2 since the range of the output voltage of the SA11 amplifier lies between ±150 V.

Table B.2: Digital voltage set by Matlab and output voltage of the power amplifier

V a, bin (V) V aout (V) V bout (V) V a, bin (V) V aout (V) V bout (V)
0 -0.45 -0.34 -10 141.30 141.06
1 -14.56 -14.42 -9 127.22 127.00
2 -28.66 -28.48 -8 113.12 112.94
3 -42.77 -42.57 -7 99.01 98.86
4 -56.88 -56.64 -6 84.91 84.79
5 -70.97 -70.70 -5 70.81 70.72
6 -85.08 -84.78 -4 56.71 56.65
7 -99.18 -98.84 -3 42.61 42.59
8 -113.29 -112.93 -2 28.50 28.50
9 -127.39 -126.99 -1 14.40 14.44
10 -141.48 -141.05 0 -0.45 -0.34

It is assumed that the relationship between the digital input voltage of the DAC channels and
the analogue output voltage of the power amplifier SA11 is linear. Then the “Polyfit” function
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of Matlab is used to establish the relationship by 1st order polynomial. The experimental data
V aout V bout and the linear fit line fV aout fV bout are shown in the following Figures B.1 (a) and B.2
(a). Moreover, the errors between the experimental data, V aout V bout, and the linear fit data,fV aout fV bout, are shown in Figures B.1 (b) and B.2 (b) respectively.
The RMS values of the errors between the linear fit data and the experimental data are 0.20

V and 0.19 V respectively. For Ch A and Ch B of the power amplifier, the following functions
are used to describe the relationship between the input and output voltages of the SA11 amplifier
approximately.

V aout ≈ fV aout = −14.16× V ain − 0.12 (B.1a)

V bout ≈ fV bout = −14.12× V bin − 0.02 (B.1b)

The applied voltage on the other two Flexmorphs holds the same magnitude as V aout and
V bout respectively, but with the opposite polarity. In this thesis, only one Flexmorph will be
examined. Its high input voltage is calculated based on Eq.(B.1b) although variables are renamed
and shown below in Eq.(B.2) for an easier understanding.

Vin = −14.12× V bin − 0.02 (B.2)

Its output is measured through Ch 1 of the Quanser ADC socket and named Vout.
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Figure B.1: Relationship between input and output of amplifier channel A. (a) V aout and fV aout;
(b) error between V aout and fV aout.
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Figure B.2: Relationship between input and output of amplifier channel B. (a) V bout and fV bout;
(b) error between V bout and fV bout.
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