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Abstract 

 

Conjugate addition reactions are one of the most widely used carbon-carbon bond 

forming reactions in organic synthesis.  This reaction can form a chiral center and can be used 

for the synthesis of structurally complex compounds.  Until now it has been necessary to use a 

chiral heavy metal catalyst in order to carry out asymmetric addition of aromatic groups to α,β-

unsaturated enones via conjugate addition.  Recently we have been successful in achieving the 

same task using an arylboronate as well as a catalytic amount of a chiral substituted binaphthol 

(BINOL).  Using this reaction method great yields and enantioselectivities were achieved when 

diethyl phenylboronate was added to various enones and when various diethyl arylboronates 

were added to chalcone.  This reaction is exciting because it eliminates the chance of having 

trace amounts of heavy metals in the final product, which is advantageous in such areas as the 

pharmaceutical industry.    
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1.0  Introduction 

 Conjugate addition (1,4-addition, Michael addition) reactions are one of the most widely 

used carbon-carbon bond forming reactions in organic synthesis (Figure 1.1).1  This reaction is of 

great importance since most often a chiral center is created after the reaction has taken place,2 

and this reaction can lead to the synthesis of structurally complex compounds.3  Much research 

has been carried out on the development of efficient enantioselective addition reactions since 

there are numerous donor and acceptor compounds that can be used for conjugate addition 

reactions.2,3,4

R1
Acc

R2
R3-M

R1
Acc

R3
R2 H+

R1
Acc

R3
R2

 

 

M = Metal Acc = Acceptor 
Li, Mg, Cu, Zn, 

Ru, etc. 
COR, CO2R, 

NO2, etc. 
 

Figure 1.1:  Conjugate addition of a carbon nucleophile via an organometallic reagent to an 

olefin    acceptor 

 
 Asymmetric conjugate addition reactions are key steps in the syntheses of various natural 

products, such as podophyllotoxin5, and several pharmaceuticals, such as sertraline6 and 

tolterodine.7,8  An example of how this addition reaction is utilized in total synthesis can be seen 

in the reaction scheme for (R)-tolterodine (Scheme 1.1).8     
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CO2Me

CN
OR

Ph

Ph

[Rh]
PhB(OH)2

CO2Me

CN
OR

Ph

OH

Ph

N

(R)-tolterodine  
 
Scheme 1.1 
 
 
1.1  Asymmetric Conjugate Addition Reactions 

1.1.1  Palladium-Catalyzed Asymmetric Conjugate Addition 

 Palladium has been looked at as a catalyst for conjugate addition reactions since 1978 

when palladium(II) acetate was used to add phenyl groups to α-substituted chalcone derivatives.9    

Only in the past few years have reactions been developed using palladium(II) complex catalysts 

that are enantioselective.10,11  One such reaction was reported by Nishikata, Yamamoto and 

Miyaura, where potassium aryltrifluoroborates were added to enones using these palladium(II) 

complexes as catalysts (Scheme 1.2).10  Overall this reaction gave decent to high yields and 

enantioselectivities.10   

Pd2+ catalyst 1.1 (3 mol%)R1 R3

OR2

BF3K

FG

R1 R3

O
R2

FG

yield: 22-99%
%ee: 78-97  

1.1a

P

P
Pd

NCPh

NCPh

Ph

Ph

MeO

MeO

(SbF6)2

                    1.1b

Pd

Ph
NCPh

Ph

NCPh
PhPh

Me

Me (SbF6)2

 

Scheme 1.2  

 
 

2



This method was improved when arylboronic acids were used as the aryl source (Scheme 

1.3).11  This reaction, the first of its type, was reported by Gini, Hessen, and Minnaard.11  The 

reaction gave yields greater than 99% and enantioselectivities up to 99%.10  The advantage it has 

over the previously mentioned palladium-catalyzed reaction is that the arylboronic acids are 

more readily available than the aryltrifluoroborates.11    

 

1.2 (5.5 mol%)
Pd(O2CCF3)2 (5 mol%)

1.2

O

+   3 ArB(OH)2

O

Ar

P P

 

Ar  %yield  %ee  

2-MeC6H4 >99  99 (R)  

3-MeC6H4 >99  97 (+)  

3-MeOC6H4 98 98 (+)  
 
Scheme 1.3 
 
 

1.1.2  Copper-Catalyzed Asymmetric Conjugate Addition 

 The pioneering asymmetric conjugate addition reactions using Grignard reagents to add 

various alkyl groups on to cyclic enones with the help of Cu catalysts were reported by Lippard 

et al. in 1988.12  While the enantioselectivities of these conjugate addition reactions was very 

poor (1-14.5%), the reaction was influential in Cu-catalyzed conjugate addition research.12  The 

next major breakthrough occurred in 1997 when Feringa et al. managed to carry out the first 

asymmetric conjugate addition reactions, using dialkylzinc reagents and Cu catalysts, that were 
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completely stereochemically controlled.13  Enantioselectivities up to >98% were observed, and 

when this occurred the lesser isomer was undetectable (Scheme 1.4).13   

Cu(OTf)2  (2%)
1.3 (4%)

1.3

+  Et2Zn

O O
O
O

P N
Ph

Ph

yield = 94%
%ee = >98%

 
Scheme 1.4 

 The key step to conjugate addition reactions involving Cu catalysts is the transfer of the 

alkyl group from the alkyl-metal complex to the Cu catalyst to form the organocopper reagent.4  

The mechanism using a dialkylzinc reagent can be seen in Scheme 1.5. 

R-Zn-R     +     X-CuLn

R

R- Zn

X

CuLn X-Zn-R     +     R-CuLn
R = alkyl
X = halide

 
Scheme 1.5 
 

While there has been a significant amount of research carried out on asymmetric 

conjugate addition reactions using Cu catalysts since Lippard’s discovery, there are few 

examples of asymmetric arylation reactions using Cu catalysts and diarylzinc complexes.14,15  

The first reported copper-catalyzed arylation reaction, which was carried out by Reiser et al. in 

2001, resulted in yields of only 53-73% and enantioselectivities of 59-74%.14  A few years later 

Feringa was able to improve the efficiency of this reaction by modifying the conditions in which 

it was run.15   He was able to obtain up to 100% conversion and enantioselectivities up to 94% 

(Scheme 1.6).15
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Cu(OTf)2  (1%)
1.4 (2%)

1.4

+  Ph2Zn

O O
O
O

Ph

P N
Ph

Ph

100% conversion
94% ee

 
Scheme 1.6 
 
 Alexakis et al. made an interesting discovery in 2008.16  They were able to carry out 

copper-catalyzed asymmetric conjugate addition reactions where aryl groups were added via aryl 

aluminum reagents to trisubstituted cyclic enones.16  This allowed them to construct cyclic 

ketones containing a quaternary center.16  This asymmetric conjugate addition reaction involving 

arylaluminum reagents, chiral ligands and trisubstituted cyclic enones gave yields up to 87% and 

enantioselectivities up to 98.6% (Scheme 1.7).16

CuTC (10 mol%), 1.5 (11 mol%)

1.5

+ 3 RAlEt2
   (including salts)

O O

O
O

P N

2-Naphthyl

2-Naphthyl

R
Et2O, 5h, -30 oC

 

Entry R % yield % ee 

1 Ph 87 96.8 

2 2-naphthyl 59 98.6 

 
Scheme 1.7 
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1.1.3  Rhodium Catalyzed Asymmetric Conjugate Addition 

Over the past ten years there have been many advancements in the Rh-catalyzed 

asymmetric conjugate addition of aryl reagents to α,β-unsaturated substrates.  The initial reaction 

of this type was carried out by Hayashi et al. in 1998, using a Rh(I) catalyst that was formed in 

situ (Scheme 1.8).17  This reaction was advantageous over previous reactions before this time 

because the organoboronic acids used were stable in the presence of oxygen and moisture, and 

they were much less reactive towards the enone in the absence of the chiral catalyst.17   As well 

the Rh catalysts are able to add the aryl groups onto enones with high selectivity, which has been 

problematic with copper catalysts.17 High yields and enantioselectivities were observed, even 

when various arylboronic acids were used.17  

 

+  5 ArB(OH)2

O O
PPh2

PPh2

Ar

Rh(acac)(C2H4)2
(1-3 mol % Rh)
1.6 (1 eq to Rh)

1.6

dioxane/H2O, 
5h, 100 oC

 

Ar % yield % ee 

Ph >99 97 (S) 
4-MeC6H4 >99 97 

3-MeOC6H4 97 96 
3-ClC6H4 94 96 

Scheme 1.8 

 
The catalytic cycle for this reaction (Scheme 1.9) involves the insertion of the enone 

carbon-carbon double bond into the aryl-rhodium complex, then migratory insertion of the aryl 

group, and then hydrolysis to release the newly formed aryl-substituted organic complex from 
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the rhodium complex.17,18  The active aryl-rhodium complex is then regenerated by a 

transmetallation reaction with the arylboronic acid.18 

Rh
Ar

P P
Rh

Ar
P P

O

O

RhP P

O
ArArB(OH)2/H2O

O

Ar

(S)

* *

*

 

Scheme 1.9 
 
Since the discovery of this asymmetric arylation reaction several chiral ligands have been 

tested and shown to be successful.  Reetz, Moulin and Gosberg19 found that when the achiral 

backbone was varied for the chiral BINOL-based diphosphonite ligands (ligands 1.7-1.9, Scheme 

1.10) used in Rh(I)-catalyzed arylboration reactions, good yields and high enantioselectivities 

were obtained, but the enantioselectivities were reversed.  For example, when ligand 1.8 was 

used in this reaction the S enantiomer was produced, and when ligand 1.9 was used in this 

reaction under the same reaction conditions the R enantiomer was produced.  The reaction 

conditions used were identical to the ones Hayashi et al. used when first discovering the 

asymmetric arylation reaction in 1998.17,19    With the use of the BINOL-based diphosphonite 

ligands catalyst loadings as low as 0.3 mol% could be used without a loss in selectivity.19
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+  ArB(OH)2

O O

Ar

0.3-3 mol% Rh(acac)(C2H4)2
0.3-3 mol% 1.7-1.9

 

1.7 a n = 2
      b n = 4

O
O

P (CH2)n
O
O

P

      

O
O
PO

O
P

1.8 1.9

O

O
O
PO

O
P

 

Ligand Mol % of Ligand % eea

1.7a 3 95 (S) 

1.7b 3 43 (R) 

1.8 3 99 (S) 

1.9 3 97 (R) 

1.9 0.3 97 (R) 
   a100% conversion was achieved for each reaction represented in the table. 

Scheme 1.10 
  

In 2009 the Saki group developed an impressive Rh(I)-catalyzed reaction that used only 

1.05 equivalents of phenylboronic acid, ran at room temperature, and added a phenyl group to a 

cyclic enone with good to excellent yields and excellent enantioselectivities (Scheme 1.11).20  

The chiral ligand used for this reaction was an electron-poor diphosphine ligand (1.10, Scheme 

1.11).20
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1.10

+ 1.05 PhB(OH)2

O O

PAr2

PAr2
R

[Rh(Cl)(C2H4)2]2 / 1.10
1.10 / Rh = 1.0

KOH
solvent/H2O, 

20 oC

MeO
Ar =

F F

CF3

FF

MeO

 

 

Entry Rh (%) KOH (%) Solvent Time (h) % yield % ee 

1 3.0 30 dioxane 5 68 99 

2 3.0 50 toluene 3 99 >99 

3 0.2 20 toluene 1 98 >99 

4 0.1 20 toluene 1 75 >99 

 
Scheme 1.11 

Rh(I)-catalyzed reactions have proved to be one of the most valuable asymmetric 

conjugate addition methods due to the fact that several types of catalysts and aryl-boronic 

compounds can be used.  The enantioselectivities of these types of reactions have been high for 

several different types of ligands, the stereochemistry of the product can be tuned just by altering 

the ligand slightly, and the reaction temperature can be reduced to just room temperature when 

an electron-deficient diphosphine ligand is used.17-20
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1.2  Previous Work on Allylboration, Alkenylboration and Alkynylboration on  

α,β-unsaturated Substrates 

 Over the past few years our group has developed several novel methodologies involving 

asymmetric conjugate addition reactions (Schemes 1.12-1.15).21-26  They are the first reactions 

where BINOL and 3,3'-disubstituted BINOLs are used as the chiral catalysts to promote the 

addition of allylboronates, alkenylboronates, and alkynylboronates to α,β-unsaturated substrates 

instead of transition metal catalysts. 21-28   

The first reaction of this type that was a success was the enantioselective and 

regioselective addition of alkynylboronates to enones.21  While the results using BINOL ranged 

from decent to great in terms of yield (38%-90%), they were disappointingly low in terms of 

enantiomeric selectivity (3-31% ee).21  On the other hand, once substituents were added to the 3 

and 3' positions on the BINOL ligand the enantioselectivities improved dramatically.  The 

highest yields and enantioselectivities were seen when relatively electronegative aryl groups 

were placed at the 3 and 3' positions of the BINOL ligand.21   

A cyclic 6-membered chair transition state similar to the ones proposed by Brown for the 

additions of alkynyl 9-BBN reagents to enones,29 as well by Noyori for the asymmetric reduction 

of alkyl aryl ketones with BINAL-H,30 is able to predict the stereochemistry that is observed for 

the alkynylation products.  It is also able to rationalize the enhanced selectivity observed when 

BINOL has substituents located at the 3 and 3' positions (Figure 1.2). 

B O

O

X

O

X

R'H

R

R1
 

Figure 1.2:  Cyclic 6-membered transition state. 
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Recently it was discovered that this reaction proceeds efficiently when a catalytic amount 

of the BINOL and 3,3'-disubstituted BINOLs are used23 instead of a stoichiometric amount as in 

the previously discussed reaction.21  This catalytic method produces the desired product with 

good to great yields and excellent selectivities for various 3,3'-disubstituted BINOLs and enones 

(Scheme 1.12).23  The proposed ligand-catalyzed cycle can be seen in Scheme 1.13.23  This is a 

great achievement in asymmetric catalytic synthesis since this is the first example of organic 

ligand-accelerated catalysis using organoboronates.23    

1.11 (2-20 mol%)

1.11

Ph Ph

O

(Oi-Pr)2B R Ph Ph

O

R

OH
OH

X

X

 

 

X (20 mol%) R % yield % ee 
Ph C6H13 60 83 
I C6H13 95 87 
I Ph 95 82 
I CH2OBn 91 95 

 
 

 
 
 
 
 
 
 
 
Scheme 1.12 
 
 

(Oi-Pr)2B R

OH

OH

i-PrOH

B R

O

O Ph Ph

O

Ph Ph

O
B O

O
R

(Oi-Pr)2B R

Ph Ph

O B(Oi-Pr)2

R

*

*

*

 
Scheme 1.13 
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Pellegrinet and Goodman carried out a computational analysis on the catalytic cycle 

proposed by the Chong group for the 3,3'-disubstituted BINOL-catalyzed asymmetric addition of 

alkynylboronates to enones which supported the Chong group’s prediction.31  The investigation 

of the limitations on the possible variations for the process and the direction of the 

stereoinduction involving the catalytic pathway was carried out by a study at the B3LYP/lacvp* 

level of theory and concluded that it was the pathway most favoured thermodynamically and 

kinetically.31 

A similar method has been developed for the addition of allylboronates to carbonyl 

compounds using 3,3'-disubstituted BINOLs.22,27  While it was the Chong group that developed 

the stoichiometric version of this reaction,22 it was the Schaus group that reported the catalytic 

reaction involving the addition of allylboronates to ketones using 3,3'-disubstituted BINOLs.27  

For the stoichiometric allylboration reaction the results were very promising.  Yields up to 98% 

were obtained and enantioselectivities up to >98% were recorded when the substituents at the 3 

and 3' positions on the BINOL ligand were varied, along with the aldehyde and ketone 

substrates.22  For the catalytic reaction that was reported by Schaus, yields up to 89% were 

reported and enantioselectivities up to 94% were observed.27  The best results were observed 

when electronegative substituents were placed at the 3 and 3' positions.27

The Chong group was successful in further applying this method to the catalytic addition 

of alkenylboronates to enones via conjugate addition using a 3,3'-disubstituted BINOL (Scheme 

1.14).26  The asymmetric alkenylation of enones was carried out using BINOL, several different 

3,3'-disubstituted BINOLs and various enones.26  Overall this reaction had great yields and 

amazing enantioselectivities, especially when electronegative groups were placed on the BINOL 
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catalyst at the 3 and 3' positions.  The catalytic cycle proposed for this reaction is similar to the 

one for the alkynylboration reaction (Scheme 1.15).26   

1.11

OH
OH

X

X
CH2Cl2, MS 4 Å , 40oC

12-36 h
Ph Ph

O
(H3CO)2B

C6H13

Ph Ph

O

C6H13
1.9 (20 mol%)

 

 

 

 

X % yield % ee 

H <20 86 

Ph 75 94 

CF3 >95 97 

3,5-(CF3)2C6H3 >95 97 

 

 

 

Scheme 1.14 

(H3CO)2B

OH

OH

2CH3OH

B

O

O Ph Ph

O

Ph Ph

O
B O

O

R

R

Ph Ph

O B(OCH3)2
R

(H3CO)2
B

R

R

*

*

*

 

Scheme 1.15  

The alkenylboration reaction has been studied by Goodman and Pellegrinet as well.32  

They carried out a theoretical DFT study to gain a deeper understanding of what controls the 
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rates, selectivities and substituent effects in this reaction.32  The calculations used in their study 

reproduced the experimental reactivity trends and enantiomeric ratios reported by Wu and Chong 

in 2007.26,32  The study also revealed that the transition state structure is a sofalike transition 

structure instead of the chair transition structure  that Wu and Chong predicted.26,32

 Schaus et al. were able to take the alkenylboration and alkynylboration BINOL-catalyzed 

methods a step further and add alkenyl and alkynyl groups to acyl imines with good to great 

yields and great selectivities.33  When the alkynyl groups were added to the acyl imines a 

BINOL-like catalyst (Figure 1.3) was used instead of the more common 3,3'-disubstituted 

BINOLs.33  Schaus was also able to add aryl groups to acyl imines in the presence of a 3,3'-

disubstituted BINOL catalyst, and these reactions resulted in great yields and selectivities.33 

 

OH
OH

 
 
Figure 1.3 – BINOL-like catalyst used by Schaus et al. for alkynylboration of acyl imines.33

 

 
 

14



1.3  Thesis Topic 
              Since BINOL-catalyzed asymmetric conjugate additions using alkynylboronates21,22 and 

alkenylboronates26 have been successful for α,β-unsaturated enones and acyl imines,33 and 

arylboration catalyzed by BINOLs has been successful for acyl imines,33 it was proposed that the 

addition of aryl groups via arylboronates to α,β-unsaturated enones using a catalytic amount of 

BINOL would also be possible.  This thesis project, which was to carry out the asymmetric 

conjugate addition of arylboronates to α,β-unsaturated enones using 3,3'-disubstituted BINOLs to 

catalyze the reaction, proved that it was possible.  The reaction was first attempted with 

stoichiometric amounts of BINOLs and then the conditions were optimized so that the reaction 

proceeded with a catalytic amount of 3,3'-disubstituted BINOL to give good conversions and 

selectivities.  
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2.0 Results and Discussions 

2.1 Initial Investigation into Arylboration 

Initially, when determining whether the asymmetric conjugate addition of arylboronates 

to enones using catalytic amounts 3,3'-disubstituted BINOLs was possible, the reaction (Scheme 

2.1) was carried out using enone 2.1a, diethyl phenylboronate 2.3a, and either 2 eq of BINOL or 

1eq of 3,3'-disubstituted BINOLs.  The 3,3'-disubstituted BINOLs used in the initial 

investigation were synthesized using methods carried out by Wu et al.22

The diethyl phenylboronate was synthesized using a method similar to one carried out by 

Wu and Chong.26  Phenylboronic acid was refluxed with 1:2 EtOH:CHCl3 (v:v) and 4Å sieves in 

a flame-dried flask under Ar(g) atmosphere for 48 hours.  The reaction mixture was then filtered 

through a Schlenk filter and the excess solvent was removed by high vacuum.  The diethyl 

phenylboronate produced was then stored under an Ar(g) atmosphere and used without further 

purification.   

O O

X

OH
OH

X

5 PhB(OEt)2 2.3a
120 oC2.1a

2.2

2.4a  

Scheme 2.1 
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 The results from Table 2.1 show that this reaction was possible using an excess amount 

of BINOL and stoichiometric amounts of 3,3'-disubstituted BINOLs.  The parent BINOL 2.2a 

(Table 2.1, entry 1) gave good selectivity, but the conversion of starting material to product was 

not optimal.  When looking at the results for BINOLs 2.2b (Table 2.1, entry 2) and 2.2c (Table 

2.1, entry 3) they are similar in terms of their low conversions, but BINOL 2.2c gives a higher 

enantioselectivity.    BINOLs 2.2d (Table 2.1, entry 4) and 2.2e (Table 2.1, entry 5) give the two 

highest conversions out of the 5 BINOLs tested, but only BINOL 2.2d gives a decent conversion 

with a product that has high enantioselectivity.  The results obtained when BINOL 2.2e is used 

show the highest conversion but the lowest selectivity.  Overall, the best results were seen by 

BINOL 2.2d since the reaction shows good conversion and good selectivity.   

 
Table 2.1 – Reactions of BINOLs 2.2a-e with 2.1a and diethyl phenylboronate (2.3a). 
 

  BINOL    
 X Loading Time Conversiona Erb

Entry (ligand) (mol %) (h) (%)  
1 H (2.2a) 200 96 < 50 9:91 

2 CH3 (2.2b) 100 72 34.5 12:88 

3c CF3 (2.2c) 100 72 36 92:8 

4 I (2.2d) 100 72 69 11:89 

5 Ph (2.2e) 100 72 84 29:71 
a Conversion was determined by 1H NMR analysis. 
b Er was determined by HPLC analysis on a Chiralcel OD column. 
c R-BINOL was used.  
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2.2 Optimization of Reaction Conditions

The next step after establishing the most promising disubstituted BINOL was to optimize 

the reaction conditions.  This was achieved by first exploring the effect of lowering the          

3,3'-disubstituted BINOL loading, as well as varying the amount of boronate used, the 

temperature of the reaction, and attempting this reaction in the presence of a high-boiling 

solvent.  The BINOL used for this set of tests was (S)-3,3'-diiodo-BINOL (2.2d)  (Scheme 2.2) 

since it gave the best overall results (Table 2.1, entry 4). 

O O

I

OH
OH

I

 PhB(OEt)2 (2.3a)

2.2d

2.1a 2.4a  

Scheme 2.2 

Table 2.2 – Reaction of BINOL 2.2d with substrate 2.1a and diethyl phenylboronate (2.3a) 
under various reaction conditions. 

a Conversion was determined by 1H NMR analysis. 

 BINOL      
Entry Loading 

(mol %) 
Equivalents 

of 2.3a 
Temp (oC) Time (h) Conversion (%)a Erb

1 200 5 110 24 100 8:92 
2 100 5 110 72 69 11:89 
3c 50 5 110 72 44 11:89 
4 50 4 120 72 67 7:93 
5 50 4 160 72 100 11:89 

b Er was determined by HPLC analysis on a Chiralcel OD column. 
c 1,1,2,2-tetrachloroethane was used as the solvent. 
  

A lot was learned from the results seen in Table 2.2.   When comparing entries 1 and 2 in 

Table 2.2 it is seen that reducing the amount of BINOL 2.2d from 200 mol% to 100 mol% when 

reacting enone 2.1a with 5 equivalents boronate 2.3a at a reaction temperature of 110 oC reduces 
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the conversion of substrate to product and reduces the selectivity of the reaction slightly.   Entry 

3 in Table 2.2 makes it clear that the combination of reducing the catalytic loading to 50 mol% 

and using high-boiling low-polarity 1,1,2,2-tetrachloroethane as a solvent does not optimize the 

conversion of product since these conditions give the lowest conversion.   When the reaction was 

carried out without solvent at a temperature of 120 oC using enone 2.1a and  50 mol% of BINOL 

2.2d (entry 4, Table 2.2), the reaction gave the best selectivity of 7:93.  When the temperature of 

the reaction was increased from 120 oC to 160 oC (entry 5, Table 2.2), the conversion increased 

to 100%, but the reaction enantioselectivity decreased (when compared to the results in entry 4 

of Table 2.2).   Also, when the reaction temperature was increased from 120 oC to 160 oC (entry 

5, Table 2.2), a side product was formed as well as the desired product in a 1:1 ratio.  Therefore 

the overall optimal reaction conditions can be seen in entry 4 of Table 2.2. 

 

2.3  Determination of a Background Reaction

 In order to determine whether or not a background racemic reaction occurs during the 

arylboration reaction a control experiment was carried out using similar reaction conditions as 

seen in entry 4 of Table 2.2.  The only difference in the reaction conditions was that no BINOL 

was used whatsoever.  The results showed that after the reaction had run at 120 oC for 2 days the 

conversion of starting enone 2.1a to ketone 2.4a was 2.8% (as determined by 1H NMR).  Then 

the reaction temperature was increased to 165 oC and the reaction was run for four more days.  

After the four days it was determined by 1H NMR that the reaction conversion had increased to 

50%.  Therefore it was determined that a background reaction did occur under the optimal 

reaction conditions (minus the presence of the BINOL catalyst), but it was very small so it 

should not affect the reaction method greatly. 
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2.4  Substrate Structure and Ligand Effects

The reaction conditions used in Scheme 2.3 were considered the optimal conditions out 

of all that were tested (entries 1-5, Table 2.2) because they resulted in the most enantioselective 

reaction, a catalytic BINOL loading which is more favourable than a stoichiometric or excess 

loading, and a decent conversion of substrate to product after 72 hours. 

I

OH
OH

I

4 PhB(OEt)2 (2.3a)
120 oC, 72 h

R

O

R

O

50 mol%

2.2d

2.1 2.4  
Scheme 2.3 

Table 2.3 – Reactions of enones 2.4a-d with BINOL 2.2d and diethyl phenylboronate 2.3a. 
 

  Compound Conversiona Yield  
Entry R no. (%) (%) Erb

 
1         

 
2.4a 

 
67 

 
50 

 
7:93 

 
2 

MeO  

 
2.4b 

 
85 

 
52 

 
10:90 

 
3 

          

 
2.4c 

 
66 

 
33 

 
3:97 

 
4 

       

 
2.4d 

 
83 

 
19 

 
6:94 

(2.1a) 

(2.1b) 

(2.1c) 

(2.1d) 
             a Conversion was determined by 1H NMR analysis. 
             b Er was determined by HPLC analysis on a Chiralcel OD column. 
 

When analyzing the results of the testing of different substrates using the same 

conditions, the best results on the whole occurred when diethyl phenylboronate is added to (E)-3-

(1-naphthyl)-1-phenyl-prop-2-en-1-one (entry 4, Table 2.3).  This is because when enone 2.1d 

was used as the substrate the conversion was really good and the selectivity of the reaction was 
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great.  The reactivity of enone 2.1b (entry 2, Table 2.3) was greater than that of enone 2.1d, but 

the selectivity was the lowest of all the reactions seen in Table 2.3.  The enantioselectivity of the 

reaction involving enone 2.1c was the highest out of all the reactions seen in Table 2.3, but the 

reactivity of the substrate was the poorest of all the enones tested.  The yields of each reaction in 

Table 2.3 were low due to the inadequate isolation technique used at the time.  When attempting 

to avoid loading the borizine that precipitated out from the reaction residue once it was dissolved 

in ether, some of the desired compound was not loaded onto the column which resulted in a 

lower overall yield.  The isolation technique was improved by adding the borozine plus the ether-

soluble material onto the column.  The borozine did not affect the purity of the desired 

compound, and this improvement in the isolation technique gave better yields of the desired 

product.  Besides the inadequate isolation technique used at the beginning of the project, the 

difficulty of separating the starting material from the product due to the fact that they have very 

similar Rf’s also contributed to the lower isolated yields.  The conversion and selectivity results 

seen in entry 4 of Table 2.3 prompted an investigation into how the conversions and selectivities 

changed when various 3,3'-disubstituted BINOLs were used to catalyze the reaction of enone 

2.1d with boronate 2.3a  at 120 oC (Scheme 2.4).  

2.2

2.1d 2.4d

X

OH
OH

X

4 PhB(OEt)2 (2.3a)
120 oC

O
50 mol%

O

 
Scheme 2.4 
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Table 2.4 – Reactions of enone 2.1d with BINOLs 2.2d-h and diethyl phenylboronate 2.3a. 
 

 X Time Conversiona Yield  
Entry (ligand) (h) (%) (%) Erb

1 I (2.2d) 72 83 19 6:94 
2c Br (2.2e) 32 100 45 99:1 
3d H (2.2f) 72 100 50 7:93 
4 Cl (2.2g) 32 100 22 1:99 
5 CN (2.2h) 5 100 53 3:97 

       a Conversion was determined by 1H NMR analysis. 
       b Er was determined by HPLC analysis on a Chiralcel OD column. 
        c R BINOL was used. 
       d Ligand contains Br in the 6 and 6' positions. 
 

BINOLs 2.2g and 2.2h were the only BINOLs used that had not been previously 

synthesized by Wu.22-26  BINOL 2.2g was synthesized using a method similar to the one used to 

synthesize BINOL 2.2d.22  BINOL 2.2d was synthesized by Wu et al. in 2004.22  The only major 

difference in the synthesis of BINOL 2.2g compared to the synthesis of 2.2d was that 

hexachloroethane was used instead of iodine.22     

BINOL 2.2h was synthesized using a new method.  The synthesis followed a similar 

structure to those carried out by Wu et al.22 where the MOM-protected disubstituted BINOL was 

first synthesized, then it was deprotected to give the desired disubstituted BINOL.   

 (S)-3,3'-Dicyano-2,2'-bis(methoxymethoxy)-1,1'-binaphthyl (2.2i) was synthesized by 

adding 3,3'-diiodo-2,2'-bis(methoxymethoxy)-1,1'-binaphthyl (1 eq), copper cyanide (4 eq) and 

DMF to a flame-dried flask under an Ar(g) atmosphere.  The reaction mixture was heated to 80 oC 

and stirred overnight.  The reaction was allowed to cool to room temperature, diluted with 

diethyl ether, then quenched with NH4Cl(aq) at pH 8 then washed with NH4Cl(aq) at pH 8, H2O 

and brine.  The organic layer was dried over Na2SO4 and concentrated in vacuo.  The residue 

was purified by column chromatography (1/1 Et2O/hexanes).  This compound (2.2i) was then 

deprotected by placing it in a flask with a 1:1 (v/v) mixture of MeOH:THF and Amberlyst-15 
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(equal mass to 2.2i placed in reaction), stirring the mixture at reflux overnight, then cooling the 

mixture to room temperature and filtering the mixture.  The filtrate was concentrated in vacuo 

and the residue was purified by flash column chromatography to give BINOL 2.2h.  

The results from Table 2.4 showed that for the substrate used, the reaction gave overall 

great conversions and great selectivities, but not very great yields. The yields are still slightly 

low due to the same poor isolation techniques that were used when the reaction seen in Scheme 

2.3 was carried out, and was remedied in an identical way later on in the project. 3,3'-Dibromo-

BINOL (2.2e, entry 2, Table 2.4), 3,3'-dichloro-BINOL (2.2g, entry 4, Table 2.4) and 3,3'-

dicyano-BINOL (2.2h, entry 5, Table 2.4) all gave higher conversions, lower reaction times and 

higher selectivities than 3,3'-diiodo-BINOL (2.2d), so they were looked at more closely.  BINOL 

2.2h (entry 5, Table 2.4) was especially impressive since the reaction time was significantly 

shorter than the reactions using BINOLs 2.2d-2.2g (entries 1-4, Table 2.4).  The loading of 

BINOLs 2.2e,g,h were decreased to 20 mol% to determine whether the reaction times and 

selectivities would differ from those seen in Table 2.4 (Table 2.5).   

 
Table 2.5 – Reactions of enone 2.1d with 20 mol% of BINOLs 2.2e,g,h and diethyl 
phenylboronate 2.3a. 
 

 X Time Conversiona Yield  
Entry (ligand) (h) (%) (%) Erb

1c Br (2.2e) 72 80 28 96:4 
2 CN (2.2h) 5 100 50 3:97 
3 Cl (2.2g) 32 100 86 2:98 

              a Conversion was determined by 1H NMR analysis. 
              b Er was determined by HPLC analysis on a Chiralcel OD column. 
              c R BINOL was used. 

  
The results of these tests showed that the selectivities remained the same or decreased 

such a small amount that the advantage of the smaller catalyst loading outweighed the 

disadvantage of the lower selectivity.  There was a major reaction time increase as well as a 
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conversion decrease when the loading of 3,3'-dibromo-BINOL (2.2e, entry 1, Table 2.5) was 

decreased, so it was ruled out as the optimal substituted BINOL to use for this reaction method.  

Both 3,3'-dichloro-BINOL (2.2g, entry 3, Table 2.5) and 3,3'-dicyano-BINOL (2.2h, entry 2, 

Table 2.5) gave practically the same selectivities when the loading was reduced from 50 mol% to 

20 mol%.  The high conversion, high enantioselectivity and very short reaction time for the 

reaction of enone 2.1d with boronate 2.3a at 120 oC in the presence of 20 mol% 2.2h (entry 2, 

Table 2.5) prompted a study into how other enones would react under these new favourable 

conditions (Scheme 2.5). 

CN
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R
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20 mol%
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Scheme 2.5 
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Table 2.6 – Reaction of enones 2.1b-h with BINOL 2.2h and boronate 2.3a at 120 oC. 
  Compound Time Conversiona Yield  

Entry R no. (h) (%) (%) Erb

 
1 

      

 
2.4d 

 
5 

 
100 

 
90 

 
3:97 

 
2 

MeO

 
2.4b 

 
5 

 
100 

 
68 

 
26:74 

 
3 

  Cl  

 
2.4e 

 
5 

 
100 

 
75 

 
21:79 

 
4 

         

 
2.4c 

 
22 

 
100 

 
63 

 
5:95 

 
5 
 

 

        H3C   

 
2.4f 

 
5 

 
100 

 
85 

 
15:85 

6 
              

2.4g 5 100 86 14:86 

7 
 

  2.4h 5 100 61 14:86 

(2.1d)

(2.1b)

(2.1e)

(2.1c)

(2.1f) 

(2.1g) 

          a Conversion was determined by 1H NMR analysis. 
(2.1h) 

           b Er was determined by HPLC analysis on a Chiralcel OD column. 
 

Unfortunately the results in Table 2.6 showed that while in general the reaction times 

were very short and the conversions were excellent, the selectivities were not promising. High 

selectivities were observed for more sterically demanding substrates (entries 1 and 4, Table 2.6) 

but for all the other enones tested the selectivities were much lower (entries 2,3,5-7, Table 2.6).   

Since BINOL 2.2h and BINOL 2.2g gave similar results in terms of reaction 

enantioselectivity when reacted with 2.1d, BINOL 2.2g was reacted with the same enones as 

2.2h was in Table 2.6, as well as a few more, under the same reaction conditions seen in Scheme 

2.5 (Scheme 2.6), in order to compare the results and determine which BINOL makes the best 

catalyst for the reaction of α,β-unsaturated enones with diethyl arylboronates.   
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Scheme 2.6 
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Table 2.7 – Reactions of enones 2.1a-j with BINOL 2.2g and diethyl phenylboronate 2.3a. 
  Compound Time Conversiona Yield  

Entry R no. (h) (%) (%) Erb

 
1 

 

 
2.4d 

 
32 

 
100 

 
86  
 

 
2:98 

 
2  

 
2.4a 

 
72 

 
100 

 
90 
 

 
9:91 

 
 
3 

MeO   

 
2.4b 

 
48 

 
100 

 
66 
 

 
6:94 

 
4 

   Cl  

 
2.4e 

 
48 

 
100 

 
74 
 

 
10:90 

 
 
5 
     Br  

 
2.4i 

 
96 

 
100 

 
66 

 
11:89 

 
6 

           

 
2.4c 

 
48 

 
100 

 
75 
 

 
1:99 

(2.1d) 

(2.1a) 

(2.1b) 

(2.1e) 

(2.1i) 

 
7 
 

 

    H3C  
 

 
2.4f 

 
24 

 
100 

 
66  
 

 
7:93  

 

 
8 
 

         
 

2.4g 
 

72 
 

83 
 

72 
 

 
12:88 

 
9 
 

 

 

 
2.4j 

 
72 

 
95 

 
40 

 
9:91 

 
 

10 
 

 

 

 
2.4h 

 
24 

 
100 

 
54 
 

 
9:91 

(2.1c) 

(2.1f) 

(2.1g) 

(2.1j) 

(2.1h) 

 
 
 

11 
 

 

 
 

         O     

 
 
 

2.4k 

 
 
 

72 

 
 
 

83 

 
 
 

28 

 
 
 

98:2 (2.1k) 

     a Conversion was determined by 1H NMR analysis. 
        b Er was determined by HPLC analysis on Chiralcel OD column. 
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As seen in Table 2.7, the reactions carried out with BINOL 2.2g had longer reaction 

times than those carried out with BINOL 2.2h (Table 2.6), but they had higher 

enantioselectivities.  This showed that 3,3'-dichloro-BINOL 2.2g was the best catalyst, out of all 

that were tested, to use for this reaction method.   When looking at the results of Table 2.7 more 

closely, one would notice several trends.  One is that the reactions with the highest 

enantioselectivities were the ones involving the more sterically demanding enones (entries 1 and 

6, Table 2.7) or had a heteroaromatic group attached to the enone (entry 11, Table 2.7).  The 

enone with the heteroaromatic group, which in this case was a furanyl group, gave a different 

elution result than the other ketone products resulting from the addition of 2.3a to enone 2.1k, it 

is assumed that the arylboration reaction carried out had the same facial selectivity (entry 11, 

Table 2.7).  Enones with an electron donating group on the para position of an aromatic ring 

(entries 2 and 3, Table 2.7) give slightly higher selectivities than the enones with an electron 

withdrawing group on the para position of the aromatic ring (entries 4 and 5, Table 2.7).   When 

looking at the results involving the enones containing an aliphatic group it can be seen that the 

enone with a methyl group attached gives the highest enantioselectivity when reacted with 

BINOL 2.2g and boronate 2.3a (entry 7, Table 2.7) while enones with the longer straight chain 

aliphatic groups had the same enantioselectivity when reacted under the same conditions (entries 

9 and 10, Table 2.7), and the enone with the isopropyl group gave the lowest selectivity and 

reactivity (entry 8, Table 2.7).  The low reactivity and selectivity of the enone with the isopropyl 

group (entry 8, Table 2.7) compared with the other enones tested in Table 2.7 could be due to the 

steric hindrance caused by the isopropyl group.   
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2.5  Effect of Aryl Group on Arylboration Reaction

Once it was established that the arylboration reaction worked very well for many enones, 

containing both aromatic and aliphatic groups (Table 2.7), the next action was to determine 

whether or not other aryl groups, besides a phenyl group, could be added to a α,β-unsaturated 

enones.   During the first attempts to synthesize the various diethylboronates from commercial 

boronic acids using the same method that was used to synthesize diethyl phenylboronate, there 

were some complications.  There was a lot of the arylboronic acid present at the end of the 

reaction, as well as monoesterified and diesterified product.  Due to the initial complications, 

diethyl 4-methoxyphenylboronate as well as dibutyl 4-methoxyphenylboronate were synthesized 

in order to compare whether or not it was easier to make the dibutyl arylboronates and to 

compare the reactivity and selectivity of the reaction using diethyl 4-methoxyphenylboronate 

versus using dibutyl 4-methoxyphenylboronate.  The dibutyl 4-methoxyphenylboronate turned 

out to be just as easy to synthesize as the diethyl 4-methoxyphenylboronate and both products 

showed no trace of the starting arylboronic acid.  The only difference in the syntheses was for 

dibutyl 4-methoxyphenylboronate a 1:2 mixture of butanol:toluene was used instead of a 1:2 

mixture of ethanol:chloroform.  In order to compare the reactivities and selectivities of the two 

boronates they were reacted with enone 2.1a in the presence of BINOL 2.2g (Scheme 2.7).   

2.1a 2.5

2.2g

Cl

OH
OH

Cl

120 oC

O O

20 mol%

4 (RO)2B (4-OMePh) (2.3)

OMe

 

Scheme 2.7 
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Table 2.8 – Reaction of diethyl 4-methoxyphenylboronate (2.3b) vs reaction of dibutyl 4-
methoxyphenylboronate (2.3bb). 
 

  Time Conversiona Yield  
Entry R (h) (%) (%) Erb

1 Et 72 92 83 89:11 
2 Bu 72 80 56 88:12 

  a Conversion was determined by 1H NMR analysis. 
    b Er was determined by HPLC analysis on Chiralcel OD column. 

 

The results in Table 2.8 show that the diethyl 4-methoxyphenylboronate (2.3b) has a 

higher reactivity than dibutyl 4-methoxyphenylboronate (2.3bb).  After a Dean-Stark apparatus 

was added to the reaction set up for the synthesis of diethyl arylboronates, the syntheses of the 

other diethyl arylboronates (2.3c-g, Table 2.9) were successful.  These diethyl arylboronates 

were then reacted with chalcone (Scheme 2.8) and the results are seen in Table 2.9.   

2.1l 2.4

2.2g

Cl

OH
OH

Cl

120 oC

O OAr

20 mol%

4 (EtO)2B Ar (2.3)

 

Scheme 2.8 
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Table 2.9 – Reactions of enone 2.1l with BINOL 2.2g and diethyl arylboronates 2.3b-g. 

  Compound Time Conversiona Yield  
Entry Ar no. (h) (%) (%) Erb

1 4-MeOPh (2.3b) 2.4b 29 100 88 89:11 

2 4-MePh (2.3c) 2.4a 20.5 100 84 93:7 

3 4-ClPh (2.3d) 2.4e 46 75 67 91:9 

4 2-MePh (2.3e) 2.4c 48.5 100 70 95:5 

5 3-MePh (2.3f) 2.4l 48.5 100 73 99.5:0.5

6 4-CF3Ph (2.3g) 2.4m 73 25 21 91:9 
  a Conversion was determined by 1H NMR analysis. 
  b Er was determined by HPLC analysis on Chiralcel OD column. 
 

The selectivities remained high when substituted aryl groups were added to chalcone, but 

not the reactivity (Table 2.9).  When the arylboronate contains an electron withdrawing group in 

the para position (entries 3 and 6, Table 2.9) the reactivity was less than when electron donating 

groups are on the aromatic ring (entries 1,2,4 and 5, Table 2.9).  Overall, Table 2.9 shows that 

this reaction works for a range of diethyl arylboronates when they are reacted with chalcone in 

the presence of BINOL 2.2g at a temperature of 120 oC. 

 

2.6  Reactivity of Arylboronic Acids in Arylboration Reaction 

  The conditions were changed slightly to explore how the addition of a variety of 

commercially available arylboronic acids to chalcone (Scheme 2.9) compared to the addition of 

the diethyl arylboronates when it came to yields and selectivities.  A high-boiling solvent was 

needed to create a reaction medium for the solid reactants. 
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Cl

OH
OH

ClO OAr

20 mol%

4 (HO)2B Ar
CF3-C6H5, 120oC

2.2g

2.1l 2.4  

Scheme 2.9 

Table 2.10 – Reaction of enone 2.1l with commercially available arylboronic acids and BINOL 
2.2g. 

  Compound Time Conversiona Yield  
Entry Ar no. (h) (%) (%) Erb

1 4-MeOPh 2.4b 87 65 50 83:17 
2 4-MePh 2.4a 87 100 28 86:14 
3 4-ClPh 2.4e 87 45 38 88:12 

a Conversion was determined by 1H NMR analysis. 
b Er was determined by HPLC analysis on Chiralcel OD column. 
  

While using the arylboronic acid would be easier since the boronic acids are 

commercially available while the arylboronates have to be synthesized from the corresponding 

arylboronic acids, the reactions proceeded with lower conversions, yields and selectivities.  This 

is clear when comparing the results from Table 2.9 and Table 2.10.  The use of diethyl 

arylboronates gave better selectivities and eliminated the need for the use of toxic solvents.   

 

2.7 Determination of Absolute Configuration

When comparing the results from Tables 2.7 and 2.9 it can be seen that when the phenyl 

ring is added to a variety of substrates via diethyl phenylboronate in the presence of (S)-BINOL 

(Table 2.7) most often the major enantiomer elutes from the HPLC column second, while when a 

variety of substituted aryl rings are added to chalcone via diethyl arylboronates in the presence of 

(S)-BINOL (Table 2.9) the major enantiomer elutes first from the HPLC column.  As well, when 
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4-chlorophenyl)-1,3-diphenylpropan-1-one (2.4e) was synthesized by reacting diethyl 

phenylboronate (2.3a) with  (E)-3-(4-chlorophenyl)-1-phenylprop-2-en-1-one (2.1e) in the 

presence of (S)-3,3'-dichloroBINOL (entry 4, Table 2.7) the major enantiomer elutes from the 

HPLC column second, and when the same addition product 2.4e was synthesized by reacting 

chalcone with diethyl 4-chlorophenylboronate (2.3d) in the presence of BINOL 2.2g the major 

enantiomer eluded first from the HPLC column (entry 3, Table 2.9).  From these two results it 

could be assumed that the major enantiomer formed in entry 4 of Table 2.7 was the opposite of 

the major enantiomer formed in entry 3 of Table 2.9.  In order to determine which enantiomer is 

the major one formed when a phenyl group via diethyl phenylboronate is added to several 

different substrates in the presence of (S)-BINOL  3-(4-bromophenyl)-1,3-diphenylpropan-1-one 

(Table 2.7, entry 5) was recrystallized two times in order to give the pure major enantiomer (the 

purity was determined by HPLC analysis on a Chiralcel OD column).  Then the absolute 

configuration was determined by X-ray crystallography.  From the results it was concluded that 

the major enantiomer formed when the diethyl phenylboronate was reacted with (E)-3-(4-

bromophenyl)-1-phenylprop-2-en-1-one, the major product was (R)-3-(4-bromophenyl)-1,3-

diphenylpropan-1-one (Scheme 2.10). 

2.1i 2.4i

2.2g

Cl

OH
OH

Cl

120 oC

O O

20 mol%

4 (EtO)2B Ph (2.3a)
Br

Br

=

 

Scheme 2.10  
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The absolute configuration of the product of this arylboration reaction is further 

supported by the results observed for the reaction of (E)-1-phenylhept-2-en-1-one (2.1j) with 

diethyl phenylboronate (2.3a) in the presence of (S)-3,3'-dichloroBINOL (entry 9, Table 2.7).   

When the product is run through the Chiralcel OD HPLC column the major enantiomer elutes 

second, and when Waldmann et al. synthesized the same product they observed that the major 

enantiomer eluted first from their Chiralcel OD HPLC column and they found that the major 

enantiomer for the reaction was the (S)-enantiomer.34  From their results it could be concluded 

that the major enantiomer formed when enone 2.1j is reacted with arylboronate 2.3a in the 

presence of (S)-BINOL 2.2g is the (R)-enantiomer (Scheme 2.11).34

2.1j 2.4j

2.2g

Cl

OH
OH

Cl

4 PhB(OEt)2 (2.3a)
120 oC

O O

20 mol%

 
Scheme 2.11 
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2.8  Proposals for Mechanistic Details

The proposed catalytic cycle for this reaction is similar to that proposed for 

alkynylboration23 and alkenylboration26, since these are all similar reactions (Figure 2.1). 

(EtO)2B Ar

OH

OH

2EtOH

B Ar

O

O Ph Ph

O

Ph Ph

O
B O

O

Ar

Ph Ph

O B(OEt)2
Ar

(EtO)2B Ar

*

*

*

 

Figure 2.1: Proposed catalytic cycle for arylboration. 

 The proposed transition state for this reaction method (Figure 2.2) is also similar to the 

one proposed for alkynylboration23 and akenylboration26. 

B

Ar
O

O

X

O

X

R'H

R  

Figure 2.2: Proposed transition state for arylboration. 

 The X-ray crystallography results support the proposed transition state, since when using 

(S)-3,3'-Dichloro-BINOL to catalyze the addition of a phenyl group via diethyl phenylboronate 

to the substituted chalcone (enone 2.1i) the major enantiomer produced was the R enantiomer, 
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and when the substituted aryl groups were added to chalcone using the same (S)-BINOL catalyst, 

the S enantiomer was the major product. 

 

2.9 Future work 

2.9.1 Further Optimization of Arylboration Reaction

 One aspect of the arylboration reaction that could be improved upon is the reactivity of 

the substituted BINOL.   3,3'-Dicyano-BINOL (2.2h) was tested first with various enones 

because it had such a short reaction time with enone  2.1d as well as great enantioselectivity 

(entry 2, Table 2.5).   Unfortunately the results showed that the great enantioselectivities were 

only observed with sterically hindered enones (entries 1 and 4, Table 2.6) and those enones that 

were less sterically hindered did not give as high selectivities (entries 2,3,5-7, Table 2.6).  3,3'-

Dichloro-BINOL (2.2g) was then tested with various enones because when it was reacted with 

enone 2.1d it also had great selectivity but with a longer reaction time (entry 2, Table 2.5).   

When BINOL 2.2g was tested with the same enones as BINOL 2.2h, as well as a few more, it 

was observed that all the reaction had very good selectivities (Table 2.7) but the reaction times 

were much longer than those seen when BINOL 2.2h was used to catalyze the reaction.  If there 

was a way to combine the selectivity of BINOL 2.2g with the reactivity of BINOL 2.2h the 

optimal BINOL could be produced.  This could possibly be achieved by placing the cyano 

ligands on the 6,6' positions on the BINOL and placing the chloro ligands on the 3 and 3' 

positions on the BINOL (Figure 2.3).  This would allow for the electron withdrawing capability 

of the cyano ligand to be combined with the small size of the chloro ligands, which allows for 

less steric hindrance when it is reacted with the boronate and enone.   
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Cl

OH
OH
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Figure 2.3 – Possible BINOL to test in arylboration reaction. 

 

2.9.2  Practical Applications of Arylboration Reaction 

2.9.2.1  Synthesis of (R)-tolterodine  

 Since the arylboration reaction has been optimized to a point where various diethyl 

arylboronates could be added to chalcone with good yields and selectivities, and diethyl 

phenylboronate could be added to various enones with good yields and selectivities, it is time to 

try improving on some natural product syntheses using this reaction.  One such case would be 

with the synthesis of (R)- tolterodine (Scheme 2.12).   
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Ph Ph

1.  LiAlH4
2.  H3O+

N
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2.1m

(R)-tolterodine

2.6

 
Scheme 2.12 

 Using the arylboration reaction compound 2.6 could be synthesized by reacting enone 

2.1m with diethyl phenylboronate (2.3a) in the presence of the BINOL 2.2g catalyst.  Then 2.6 
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could undergo a Baeyer Villiger oxidation reaction and be reacted with a secondary amine to 

form the amide form of (R)-tolterodine.  After that if the amide was then reacted with LiAlH4 it 

should form (R)-tolterodine.  This an improvement upon Hayashi’s synthetic pathway (Scheme 

2.13) because it uses no heavy metals, which is a great advantage since (R)-tolterodine is a 

pharmaceutical compound.35   

CO2Me

CN
OR

Ph

Ph

[Rh]
PhB(OH)2

CO2Me

CN
OR

Ph

OH

Ph

N

(R)-tolterodine  

Scheme 2.13 

 

 

2.9.2.2  Synthesis of Indatraline

 The synthesis of Indatraline could also be improved by using the arylboration method.  

One intermediate compound that Davies36 uses to synthesize Indatraline is very similar to the 

ketones produced when arylboration is carried out on α,β-unsaturated enones.  In Davies’ 

synthetic pathway it takes five steps to go from compound 2.7 to compound to compound 2.8 

(Scheme 2.14).36
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Scheme 2.14 
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If enone 2.1n was used instead, compound 2.8 could be synthesized in three steps 

(Scheme 2.15). 
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Heat Cl
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2.8
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Scheme 2.15 

Bobby Guobadia, a former member of the Chong group, successfully synthesized ketone 

2.9 from enone 2.1n using the arylboration reaction method and got great results.37  The yield 

was 0.61g (86%) and the er for this reaction was 91:9.37  After this he carried out a Baeyer 

Villiger reaction on ketone 2.9 to produce ester 2.10.37  This reaction showed a 51% conversion 

(conversion was determined by 1H NMR) from 2.9 to 2.10.37   While the conversion is lower 

than one would desire, the reaction could possibly be optimized in order to obtain a more 

favourable yield.  This was the last step Guobadia carried out in the synthetic pathway proposed 

for Indatraline.  After 2.10 is synthesized it could be heated up with H2O and acid to produce 2.8.  

There are only three more steps that need to be carried out in order to synthesize the desired 

pharmecutical Indatraline from 2.8.36 
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2.10 Conclusion

This thesis project was a success.  Several aryl groups were added to chalcone 2.1k using 

the corresponding diethyl arylboronates (2.3b-g) and BINOL 2.2g with good yields and 

selectivities.  As well, diethyl phenylboronate was added to enones 2.1a-j using a catalytic 

amount of BINOL 2.2g resulting in great yields and selectivities.  Further work could be carried 

out though on optimizing the arylboration reaction using α,β-unsaturated enones.  The 

substituted BINOL could be improved upon so the reactions have great selectivities and shorter 

reaction times.  As well, this new reaction method could be used in the total synthesis of 

pharmaceuticals, as well as natural products, in order to improve on synthetic pathways already 

developed.   
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3.0 Experimental 

General Experimental 

All reactions were performed using flame-dried glassware under an argon atmosphere. 

Chiral 3,3′-disubstituted binaphthols were synthesized using procedures carried out by Wu  et al. 

unless otherwise noted.21 1H and 13C NMR spectra were recorded in CDCl3 at 300 MHz and 75 

MHz, respectively, unless otherwise specified. Mass spectra were recorded on a Kratos MA890 

mass spectrometer using electron impact (EI, 70 eV) ionization unless otherwise specified. 

Optical rotations were recorded in cells with 10 cm path length on an Autopol III automatic 

polarimeter.  The commercially boronic acids used for the diethyl arylboronate syntheses were 

bought from Matrix Scientific. 

 

General Procedure for Diethyl arylboronate synthesis: 

Air sensitive arylboronates were prepared by refluxing the corresponding arylboronic acid with 

1:2 (v:v) of EtOH (10mL/g):CHCl3 (20mL/g) and 4Å sieves in a flame-dried flask under argon 

atmosphere for 48 hours.  This reaction is based on one carried out by Wu et al.,25 but instead of 

distilling the boronate after 48 hours, the excess solvent was removed under high vacuum and the 

boronate left in the flask was used without further purification and stored under Ar(g). 

 

Large Scale Synthesis for Diethyl Phenylboronate: 

Phenylboronic acid (11.65 g , 0.1 mol, 1 eq) was refluxed in 126 mL (2.2 mol, 22 eq) of EtOH 

and 252 mL of CHCl3, and in the presence of 72 g of 4Å sieves in a flame-dried flask under 

argon atmosphere.  After 48 hours the reaction was filtered through a Schlenk filter and the 
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excess solvent was removed by placing the filtrate under high vacuum to provide 16 g of a light 

brown oil (80% yield). 

 

Small Scale Synthesis of Diethyl 3-methylphenylboronate 

3-Methylphenylboronic acid (2.0 g , 0.015 mol, 1 eq) was refluxed in 20mL (0.55 mol, 37 eq) of 

EtOH and 40 mL (0.50 mol, 33 eq) of CHCl3, and in the presence of 4Å sieves in a flame-dried 

flask under argon atmosphere.  After 48 hours the reaction was filtered through a Schlenk filter 

and the excess solvent was removed by placing the filtrate under high vacuum to provide 1.83 g 

of a yellow oil (65% yield).   

 

Diethyl phenylboronate (2.3a) 

B
OEt

OEt  
1H NMR (300 MHz, CDCl3): δ 7.65 (s, 2H), 7.41 (s, 3H), 4.13 (q, J = 6.8 Hz, 4H), 1.32 (t, J = 

6.6 Hz, 6H) 

13C NMR (75 MHz, CDCl3): δ 133.2, 129.4, 127.7, 60.2, 17.5 

11B NMR (96 MHz, CDCl3): δ 28.6 

 

Diethyl 4-methoxyphenylboronate (2.3b) 

B
OEt

OEt
MeO

 
1H NMR (300 MHz, CDCl3): δ 7.63 (d, J = 8.6 Hz, 2H), 6.92 (d, J = 8.7 Hz, 2H), 4.11 (q, J = 7.0 

Hz, 4H), 3.81 (s, 3H), 1.29 (t, J = 6 Hz, 6H) 

13C NMR (75 MHz, CDCl3): δ 160.7, 135.2, 60, 54.9, 17.5  
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11B NMR (96 MHz, CDCl3): δ 28.3 

Monoesterified product: 

1H NMR (300 MHz, CDCl3): δ 7.73 (d, J = 8.6 Hz, 2H), 6.88 (d, J = 8.7 Hz, 2H), 3.79 (s, 3H), 

1.33 (t, J = 6 Hz, 3H) 

13C NMR (75 MHz, CDCl3): δ 162, 136.2, 59.1, 17.1   

 

Dibutyl 4-methoxyphenylboronate (2.3bb) 

B
OBu

OBu
MeO

 
1H  NMR (300MHz, CDCl3): δ 7.61 (d, J = 8.7 Hz, 2H), 6.90 (d, J = 6.8 Hz, 2H), 4.02 (t, J = 6 

Hz, 4H), 3.81(s, 3H), 1.62 (m, 4H), 1.43 (m, 4H), 0.946 (t, J = 4.5 Hz, 6H) 

13C NMR (75 MHz, CDCl3): δ 160.7, 135.3, 113.1, 64.1, 54.9, 33.9, 19, 13.8 

11B NMR (96 MHz, CDCl3): δ 28.2 

Monoesterified product: 

1H NMR (300 MHz, CDCl3): δ 7.72 (d, J = 8.6 Hz, 2H), 6.86 (d, J = 8.8 Hz, 2H), 3.99 (t, J = 6 

Hz, 4H), 3.79 (s, 3H) 

13C NMR (75 MHz, CDCl3): δ 161.9, 136.2, 113.2, 63.1, 33.6, 18.9 

11B NMR (96 MHz, CDCl3): δ 18.2 
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Diethyl 4-methylphenylboronate (2.3c) 

B
OEt

OEt  
1H NMR (300 MHz, CDCl3): δ 7.62 (d, J = 7.8 Hz, 2H), 7.26 (d, J = 7.8 Hz, 2H), 4.17 (q, J = 7.1 

Hz, 4H), 2.44 (s, 3H), 1.36 (t, J = 7.1 Hz, 6H) 

13C NMR (75 MHz, CDCl3): δ 139.3, 133.4, 128.6, 60.1, 21.4, 17.5 

11B NMR (96 MHz, CDCl3): δ 28.6 

Monoesterified product: 

1H NMR (300 MHz, CDCl3): δ 7.77 (d, J = 7.8 Hz, 2H), 7.23 (d, J = 8.1), 4.16 (q, J = 7 Hz, 2H), 

2.42 (s, 3H), 1.40 (t, J = 7.2 Hz, 3H) 

13C NMR (75 MHz, CDCl3): δ 141.1, 134.6, 128.7, 59.2, 21.5, 17.2 

 

Diethyl 4-chlorophenylboronate (2.3d) 

B
OEt

OEt
Cl

 
1H NMR (300 MHz, CDCl3): δ 7.54 (d, J = 8.3 Hz, 2H), 7.33 (d, J = 8.3 Hz, 2H), 4.06 (q, J = 7 

Hz, 4H), 1.26 (t, J = 7 Hz, 6H) 

13C NMR (75 MHz, CDCl3): δ 135.6, 134.6, 127.8, 60.2, 17.4 

11B NMR (96 MHz, CDCl3): δ 28.1 

Monoesterified product: 

1H NMR (300 MHz, CDCl3): δ 7.68 (d, J = 8.3 Hz, 2H), 7.30 (d, J = 7.5, 2H) 

13C NMR (75 MHz, CDCl3): δ 135.7, 128.0, 
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Diethyl 2-methylphenylboronate (2.3e) 

B
OEt

OEt
 

1H NMR (300 MHz, CDCl3): δ 7.25 (m, 4H), 3.96 (q, J = 7.5 Hz, 4H), 2.41 (s, 3H), 1.29 (t, J = 

6.6 Hz, 3H) 

13C NMR (75 MHz, CDCl3): δ 139.7, 130.9, 129.1, 128.5, 124.8, 60.2, 21.9, 17.4 

11B NMR (96 MHz, CDCl3): δ 29.9 

Monoesterified product: 

1H NMR (300 MHz, CDCl3): δ 4.09 (q, J = 6 Hz, 2H), 2.51 (s, 3H), 1.34 (t, J = 7.5 Hz, 3H) 

 

Diethyl 3-methylphenylboronate (2.3f) 

B
OEt

OEt
 

1H NMR (300 MHz, CDCl3): δ 7.40 (m, 2H), 7.23 (m, 2H), 4.17 (q, J = 6 Hz, 4H), 2.45 (s, 3H), 

1.36 (t, J = 7 Hz, 6H) 

13C NMR (75 MHz, CDCl3): δ 136.9, 133.8, 130.15, 130.07, 127.7, 59.9, 21.4, 17.5 

11B NMR (96 MHz, CDCl3): δ 28.6 

Monoesterified product: 

1H NMR (300 MHz, CDCl3): δ 2.42 (s, 3H), 1.42 (t, J = 6 Hz, 3H) 

13C NMR (75 MHz, CDCl3): δ 137.0, 135.2, 131.8, 131.5, 127.9, 59.3, 21.3, 17.1 
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Diethyl 4-trifluoromethylphenylboronate (2.3g) 

B
OEt

OEt
F3C

 
1H NMR (300 MHz, CDCl3): δ 7.72 (d, J = 7.9 Hz, 2H), 7.62 (d, J = 8.0 Hz, 2H), 4.08 (q, J = 7 

Hz, 4H), 1.28 (t, J = 7.1 Hz, 6H) 

13C NMR (75 MHz, CDCl3): δ 134.6, 122.3, 59.6, 17.2  

11B NMR (96 MHz, CDCl3): δ 28.2 

 

General Procedure for Synthesis of Enones: 

Aldehyde (1 eq), ethanol (0.013 mL/mmol), 50% NaOH (0.010 mL/mmol) and 1.05 eq 

acetophenone were added to a reaction flask.  Reactants were stirred at room temperature until 

reaction was complete, then the solid obtained was filtered and recrystallized from hexanes. 

 

(E)-1-phenyl-3-p-tolylprop-2-en-1-one (2.1a) 

O

 

m.p.  90-92 oC 

IR (KBr): 1656, 1512, 984, 694 

1H NMR (300 MHz, CDCl3): δ 8.00 (d, J = 7.1 Hz, 2H), 7.78 (d, J = 15.7 Hz, 1H), 7.56-7.45 (m, 

6H), 7.21 (d, 8.0 Hz, 2H), 2.38 (s, 3H) 

13C NMR (75 MHz, CDCl3): δ 190.6, 144.9, 141.0, 138.3, 132.6, 132.1, 129.7, 128.5, 128.4, 

121.1, 21.5 
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MS m/z (relative intensity): 222 (M+, 66), 207 (M+-CH3, 100), 145 (M+-Ph, 29), 105 (PhCO+, 

13), 77 (Ph+, 18) 

HRMS m/z calcd. for C16H14O (M+): 222.1045.  Found: 222.1051. 

 

(E)-3-(naphthalen-1-yl)-1-phenylprop-2-en-1-one (2.1d)22

O

 
1H NMR (300 MHz, CDCl3): δ 8.66 (d, J = 15.4, 1H), 8.25 (d, J = 8.2 Hz, 1H), 8.07 (d, J = 8.0 

Hz, 2H), 7.93-7.87 (m, 3H), 7.65-7.49 (7H) 

13C NMR (75 MHz, CDCl3): δ 190.3, 141.7, 138.1, 133.7, 132.8, 132.3, 131.7, 130.8, 128.7, 

128.6, 128.5, 126.9, 126.3, 125.4, 125.1, 124.6, 123.5 

 

 (E)-3-(4-bromophenyl)-1-phenylprop-2-en-1-one (2.1i) 

O

Br  

m.p.  119-121 oC 

IR (KBr): 1659, 664 cm-1

1H NMR (300 MHz, CDCl3): δ 8.00 (d, J = 7.9 Hz, 2H), 7.73 (d, J = 15.7 Hz, 1H), 7.61-7.48 (m, 

7H) 

13C NMR (75 MHz, CDCl3): δ 190.1, 143.3, 137.9, 133.7, 132.9, 132.2, 129.7, 128.6, 128.4, 

124.7, 122.5 
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MS m/z (relative intensity): 286 (M+, 100), 285 (M+-H, 45), 207 (M+-Br, 65), 179.1 (24), 178.1 

(19), 105 (PhCO+, 35), 102 (30), 77 (Ph+, 26) 

HRMS m/z calcd. for C15H11
79BrO (M+): 285.9995.  Found: 285.9991 

 

Synthesis of (E)-1-phenylhept-2-en-1-one (2.1j) 

O

 

IR (neat): 2871, 1621, 1004  

1H NMR (300 MHz, CDCl3): δ 7.91 (d, J = 7.0 Hz, 2H), 7.53 (t, J = 6.7 Hz, 1H), 7.44 (t, J = 7.4 

Hz, 2H), 7.10-7.00 (m, 1H), 6.85 (d, J = 15.3 Hz, 1H), 2.30 (q, J = 6.8 Hz, 2H), 1.52-1.33 (m, 

4H), 0.92 (t, J = 7.2 Hz, 3H) 

13C NMR (75 MHz, CDCl3): δ 190.8, 150.0, 138.0, 132.5, 128.4, 125.8, 32.5, 30.2, 22.2, 13.8 

MS m/z (relative intensity): 188 (M+, 76), 159 (M+-C2H5, 41), 145 (M+-C3H7, 24), 131 (M+-

C4H9, 15), 105 (PhCO+, 100), 83.91 (23), 77 (Ph+, 33) 

HRMS m/z  calcd. for C13H16O: 188.1202.  Found: 188.1203 

 

Synthesis of (E)-3-(fran-2-yl)-1-phenylprop-2-en-1-one (2.1k)38

O

O
 

2-Furaldehyde (1.53 mL, 18.4 mmol), acetophenone (2.15 mL, 18.4 mmol), NaOH (0.98 g, 1.84 

mmol), MeOH (20 mL) and H2O (20 mL) were stirred in a round-bottomed flask at room 

temperature overnight.  The reaction was quenched with 6 M HCl (~0.3 mL), then the product 

was extracted with dichloromethane (3 x 50 mL).  The organic layers were combined, dried over 
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Na2SO4(s), and concentrated in vacuo.  The crude material was purified by flash column 

chromatography (1:10-1:7 Et2O:hexane) to provide 3.2 g of (S)-3-(furan-2-yl)-1,3-

diphenylpropan-1-one as a colourless oil (89% yield)..   

1H NMR (300 MHz, CDCl3): δ 8.01 (d, J = 8.50 Hz, 2H), 7.61-7.41 (m, 6H), 6.695 (d, J = 3Hz, 

1H), 6.50-6.48 (m, 1H). 

13C NMR (75 MHz, CDCl3): δ 189.8, 151.6, 144.9, 138.1, 132.7, 130.6, 128.6, 128.4, 119.2, 

116.2, 112.6. 

 

General Procedure B 

α,β-Unsaturated enone (0.387 mmol, 1 eq), 3,3'-disubstituted BINOL (0.0744  mmol, 20 

mol%) and diethyl arylboronate (1.548 mmol, 4 eq) were added to the reaction flask and heated 

up to 120oC.  Crude material was purified by flash column chromatography on silica gel 

(hexane/Et2O) to give the addition product. 

 The enantiomeric purities of the products were determined by HPLC analysis (4.6 x 250 

mm ChiralCel OD, hexane/i-PrOH = 99.6/0.4 ~ 98.8/1.2 v/v). 

 

(R)-1,3-diphenyl-3-p-tolylpropan-1-one (2.4a) 

O

 

This compound (a pale yellow solid) was prepared in 90% yield from (E)-1-phenyl-3-p-

tolylprop-2-en-1-one, diethyl phenylboronate and (S)-3,3'-dichloro-2,2'-dihydroxy-1,1'-
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binaphthol using general procedure B and purified by flash chromatography using hexane:ether 

20:1. 

 [α]25
589 -28.0 (9:91 er, c 2.9, CHCl3) 

m.p.  76-78 oC 

IR (KBr): 1688, 1598, 700 cm-1

1H NMR (300 MHz, CDCl3): δ 7.95 (d, J = 7.8 Hz, 2H), 7.55 (t, J = 7.0 Hz, 1H), 7.44 (t, J = 7.6 

Hz, 2H), 7.28 (d, 4.1 Hz, 4H), 7.21-7.17 (m, 3H), 7.09 (d, J = 4.0 Hz, 2H), 4.82 (t, J = 7.3 Hz, 

1H), 3.74 (d, J = 7.3 Hz, 2H), 2.30 (s, 3H) 

13C NMR (75 MHz, CDCl3): δ 198.0, 144.4, 141.1, 137.1, 135.8, 133.0, 129.2, 128.6, 128.5, 

128.0, 127.8, 127.7, 126.3, 45.5, 44.8, 21.0 

MS m/z (relative intensity): 300 (M+, 85), 194 (23), 181 (M+-PhCOCH2, 100), 165 (21), 105 

(PhCO+, 46), 77 (Ph+, 13) 

HRMS m/z calcd. for C22H20O (M+): 300.1515.  Found: 300.1511. 

The enantiomeric purity was determined by HPLC analysis: (ChiralCel OD, hexane/i-PrOH = 

99.2/0.8, flow rate = 0.7 mL/min), tR = 40.8 min (S), tR = 45.72 min (R). 

 

(S)-1,3-diphenyl-3-p-tolylpropan-1-one (2.4a) 

O

 

This compound (a pale yellow solid) was prepared in 94% yield from (E)-chalcone, diethyl 4-

methylphenylboronate and (S)-3,3'-dichloro-2,2'-dihydroxy-1,1'-binaphthol using general 

procedure B and purified by flash chromatography using hexane:ether 20:1. 
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 [α]25
589 +22.7 (94:6 er, c 1.2, CHCl3)  

The spectral data was identical to the data for the R enantiomer of this compound. 

The enantiomeric purity was determined by HPLC analysis: (ChiralCel OD, hexane/i-PrOH = 

99.2/0.8, flow rate = 0.7 mL/min), tR = 38.84 min (S), tR = 42.78 min (R). 

 

(R)-3-(4-methoxy)-1,3-diphenylpropan-1-one (2.4b) 

O

OMe

 

This compound (a yellow solid) was prepared in 66% yield from (E)-3-(4-methoxyphenyl)-1-

phenylprop-2-en-1-one, diethyl phenylboronate and (S)-3,3'-dichloro-2,2'-dihydroxy-1,1'-

binaphthol using general procedure B and purified by flash chromatography using hexane:ether 

10:1. 

 [α]25
589 -37.5 (9:91 er, c 2.2, CHCl3) 

m.p.  68-71 oC 

IR (KBr): 1675, 1514, 702 cm-1

1H NMR (300 MHz, CDCl3): δ 7.93 (d, J = 7.2 Hz, 2H), 7.54 (t, J = 6.2 Hz, 1H), 7.43 (t, J = 7.2 

Hz, 2H), 7.26 (m, 4H), 7.18 (m, 3H), 6.81 (d, J = 8.7 Hz, 2H), 4.79 (t, J = 7.3 Hz, 1H), 3.78 (s, 

3H), 3.71 (d, J = 7.3 Hz, 2H) 

13C NMR (75 MHz, CDCl3): δ 198.1, 158.0, 144.5, 137.0, 136.2, 133.0, 128.7, 128.5, 128.4, 

128.0, 127.7, 126.2, 113.9, 55.1, 45.1, 44.8 
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MS m/z (relative intensity): 316 (M+, 39), 197 (M+-PhCOCH2, 100), 105 (PhCO+, 10), 77 (Ph+, 

8) 

HRMS m/z calcd. for C22H20O2 (M+): 316.1464.  Found: 316.1468 

The enantiomeric purity was determined by HPLC analysis: (ChiralCel OD, hexane/i-PrOH = 

98.8/1.2, flow rate = 1 mL/min), tR = 37.96 min (S), tR = 46.02 min (R) 

 

(S)-3-(4-methoxy)-1,3-diphenylpropan-1-one (2.4b) 

O

OMe

 

This compound (a yellow solid) was prepared in 88% yield from (E)-chalcone, diethyl 4-

methoxyphenylboronate and (S)-3,3'-dichloro-2,2'-dihydroxy-1,1'-binaphthol using general 

procedure B and purified by flash chromatography using hexane:ether 10:1. 

 [α]25
589 +57.1 (89:11 er, c 2.8, CHCl3)   

The spectral data was identical to the data for the R enantiomer of this compound.   

The enantiomeric purity was determined by HPLC analysis: (ChiralCel OD, hexane/i-PrOH = 

98.8/1.2, flow rate = 1 mL/min), tR = 34.52 (S), tR = 43.88 (R) 
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(S)-1,3-diphenyl-3-o-tolylpropan-1-one (2.4c) 

O

 

This compound (yellow oil) was prepared in 70% yield from (E)-chalcone, diethyl 2-

methylphenylboronate and (S)-3,3'-dichloro-2,2'-dihydroxy-1,1'-binaphthol using general 

procedure B and purified by flash chromatography using hexane:ether 20:1. 

 [α]25
589 +1.5 (95:5 er, c 0.39, CHCl3) 

IR (neat): 1686, 1597, 750 cm-1

1H NMR (300 MHz, CDCl3): δ 7.93 (d, J = 7.4 Hz, 2H), 7.53 (t, J = 7.3 Hz, 1H), 7.43 (t, J = 7.5 

Hz, 2H), 7.28-7.19 (m, 4H), 7.17-7.09 (m, 5H), 5.03 (t, J = 7.3 Hz, 1H), 3.80-3.64 (m, 2H), 2.33 

(s, 3H) 

13C NMR (75 MHz, CDCl3): δ 198.1, 143.7, 141.8, 137.0, 136.4, 133.0, 130.7, 128.6, 128.4, 

128.0, 127.9, 126.3, 126.2, 126.0, 45.0, 41.8, 19.9 

MS m/z (relative intensity): 300 (M+, 32), 282 (100), 196 (21), 181 (M+-PhCOCH2, 78), 167 

(31), 105 (PhCO+, 92), 77 (Ph+, 24) 

HRMS m/z calcd. for C22H20O (M+): 300.1515.  Found: 300.1517. 

The enantiomeric purity was determined by HPLC analysis: (ChiralCel OD, hexane/i-PrOH = 

99.5/0.5, flow rate = 0.7 mL/min), tR = 43.67 min (S), tR = 50.02 min (R). 
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(R)-1,3-diphenyl-3-o-tolylpropan-1-one (2.4c) 

O

 

This compound (yellow oil) was prepared in 75% yield from (E)-1-phenyl-3-p-tolylprop-2-en-1-

one, diethyl phenylboronate and (S)-3,3'-dichloro-2,2'-dihydroxy-1,1'-binaphthol using general 

procedure B and purified by flash chromatography using hexane:ether 20:1. 

 [α]25
589 -1.6 (1:99 er, c 2.3, CHCl3)  

The spectral data was identical to the data for the S enantiomer of this compound. 

The enantiomeric purity was determined by HPLC analysis: (ChiralCel OD, hexane/i-PrOH = 

99.2/0.8, flow rate = 0.7 mL/min), tR = 49.13 min (S), tR = 52.60 min (R). 

 

 (R)-1,3-diphenyl-3-naphthylpropan-1-one (2.4d) 

O

 

This compound (a yellow solid) was prepared in 90% yield from (E)-3-(naphthalen-4-yl)-1-

phenylprop-2-en-1-one, diethyl phenylboronate and (S)-3,3'-dichloro-2,2'-dihydroxy-1,1'-

binaphthol using general procedure B and purified by flash chromatography using hexane:ether 

10:1. 

 [α]25
589 -2.1 (2:98 er, c 3.8, CHCl3) 

m.p.  70-75 oC 

IR (KBr): 1675, 1597, 688 cm-1
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1H NMR (300 MHz, CDCl3): δ 8.16 (d, J = 9.1 Hz, 1H), 7.93 (d, J = 7.5 Hz, 2H), 7.82 (d, J = 

9.4Hz, 1H), 7.72 (d, J = 7.9 Hz, 1H), 7.53 (t, J = 7.3 Hz, 1H), 7.44-7.37 (m, 5H), 7.29-7.19 (m, 

5H), 7.10 (t, J = 7.2 Hz, 1H), 5.66 (t, J = 7.2 Hz, 1H), 3.86-3.82 (m, 2H) 

13C NMR (75 MHz, CDCl3): δ 197.9, 143.9, 139.7, 137.0, 134.2, 133.1, 131.6, 128.8, 128.6, 

128.5, 128.1, 128.0, 127.3, 126.4, 126.2, 125.6, 125.3, 124.4, 123.8, 45.1, 41.4 

MS m/z (relative intensity): 336 (M+, 100), 217 (M+-PhCOCH2, 98), 215 (35), 105 (PhCO+, 31), 

77 (Ph+, 13) 

HRMS m/z calcd. for C19H20O (M+): 336.1515.  Found: 336.1505 

The enantiomeric purity was determined by HPLC analysis: (ChiralCel OD, hexane/i-PrOH = 

98.7/1.3, flow rate = 1 mL/min), tR = 46.42 min (S), 51.48 min (R). 

 

 (R)-3-(4-chlorophenyl)-1,3-diphenylpropan-1-one (2.4e) 

O

Cl

 

This compound (a pale yellow solid) was prepared in 74% yield from (E)-3-(4-chlorophenyl)-1-

phenylprop-2-en-1-one, diethyl phenylboronate and (S)-3,3'-dichloro-2,2'-dihydroxy-1,1'-

binaphthol using general procedure B and purified by flash chromatography using hexane:ether 

10:1. 

[α]25
589 -8.2 (9:91 er, c 1.4, CHCl3) 

m.p.  83-85 oC 

IR (KBr): 1674, 1595, 1014, 748 cm-1
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1H  NMR (300 MHz, CDCl3): δ 7.91 (d, J = 7.4 Hz, 2H), 7.54 (t, J = 7.3 Hz, 1H), 7.43 (t, J = 7.8 

Hz, 2H), 7.20 (m, 9H), 4.79 (t, J = 6.9 Hz, 1H), 3.69 (d, J = 6.9 Hz, 2H) 

13C NMR (75 MHz, CDCl3): δ 197.6, 143.7, 142.6, 136.8, 133.2, 129.2, 128.6, 128.0, 127.7, 

126.6, 45.2, 44.5 

MS m/z (relative intensity): 320 (M+, 74), 201 (M+-PhCOCH2, 71), 165 (31), 105 (PhCO+, 100), 

77 (Ph+, 18) 

HRMS m/z calcd. for C21H17
35ClO (M+): 320.0969.  Found: 320.0969. 

The enantiomeric purity was determined by HPLC analysis: (ChiralCel OD, hexane/i-PrOH = 

99.2/0.8, flow rate = 0.7 mL/min), tR = 52.84 min (S), tR = 66.77 min (R) 

 

(S)-3-(4-chlorophenyl)-1,3-diphenylpropan-1-one (2.4e) 

O

Cl

 

This compound (a pale yellow solid) was prepared in 67% yield from (E)-chalcone, diethyl 4-

chlorophenylboronate and (S)-3,3'-dichloro-2,2'-dihydroxy-1,1'-binaphthol using general 

procedure B and purified by flash chromatography using hexane:ether 10:1. 

 [α]25
589 +7.9 (91:9 er, c 2.3, CHCl3)   

The spectral data was identical to the data for the R enantiomer of this compound.   

The enantiomeric purity was determined by HPLC analysis: (ChiralCel OD, hexane/i-PrOH = 

99.2/0.8, flow rate = 0.7 mL/min), tR = 43.43 min (S), tR = 54.82 min (R) 
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(R)-1,3-diphenylbutan-1-one (2.4f) 

O

 

This compound (a yellow oil) was prepared in 66% yield from (E)-1-phenylbut-2-en-1-one, 

diethyl phenylboronate and (S)-3,3'-dichloro-2,2'-dihydroxy-1,1'-binaphthol using general 

procedure B and purified by flash chromatography using hexane:ether 20:1. 

 [α]25
589 -55.0 (7:93 er, c 0.82, CHCl3) 

IR (neat): 2963, 1685, 1001, 755 cm-1

1H NMR (300 MHz, CDCl3): δ 7.91 (d, J = 7.7 Hz, 2H), 7.53 (t, J = 7.4 Hz, 1H), 7.42 (t, J = 7.6 

Hz, 2H), 7.3-7.26 (m, 4H), 7.20-7.16 (m, 1H), 3.52-3.43 (m, 1H), 3.28 (dd, J = 16.5 Hz, 5.7 Hz, 

1H), 3.16 (dd, J = 16.5 Hz, 8.3 Hz, 1H), 1.32 (d, J = 6.9 Hz) 

13C NMR (75 MHz, CDCl3): δ 199, 146.5, 137.1, 132.9, 128.5, 128.49, 128.0, 126.8, 126.2, 47.0, 

35.5, 21.8 

MS m/z (relative intensity): 224 (M+, 40), 209 (M+-CH3, 38), 105 (PhCO+, 55), 86 (65), 84 (100), 

77 (Ph+, 20), 51 (34) 

HRMS m/z calcd. for C16H16O (M+): 224.1202.  Found: 224.1197 

The enantiomeric purity was determined by HPLC analysis: (ChiralCel OD, hexane/i-PrOH = 

99.6/0.4, flow rate = 1 mL/min), tR = 23.06 min (S), tR = 24.86 min (R) 

 

 

 

 

 

 
 

57



(R)-4-methyl-1,3-diphenylpentan-1-one (2.4g) 

O

 

This compound (a yellow oil) was prepared in 72% yield from (E)-4-methyl-1-phenylpent-2-en-

1-one, diethyl phenylboronate and (S)-3,3'-dichloro-2,2'-dihydroxy-1,1'-binaphthol using general 

procedure B and purified by flash chromatography using hexane:ether 20:1. 

 [α]25
589 -72.5 (11:89 er, c 0.79, CHCl3) 

IR (neat): 2959, 1685, 1597, 701 cm-1

1H NMR (300 MHz, CDCl3): δ 7.85 (d, J = 7.1 Hz, 2H), 7.49 (t, J = 7.4 Hz, 1H), 7.39 (t, J = 7.7 

Hz, 2H), 7.21 (d, J = 7.1 Hz, 2H), 7.16-7.10 (m, 3H), 3.33 (d, J = 6.9 Hz, 2H), 3.14 (q, J = 7.1 

Hz, 1H), 1.98-1.86 (m, 1H), 0.962 (d, J = 6.7 Hz, 3H), 0.769 (d, J = 6.7 Hz, 3H) 

13C NMR (75 MHz, CDCl3): δ 199.2, 143.5, 137.2, 132.7, 128.4, 128.3, 128.0, 127.9, 126.1, 

47.8, 42.5, 33.2, 20.9, 20.3 

MS m/z (relative intensity): 252 (M+, 4), 209 (M+-C3H7, 32), 132 (M+-PhCOCH2, 100), 105 

(PhCO+, 100), 77 (Ph+, 27) 

HRMS m/z calcd. for C18H20O (M+): 252.1515.  Found: 252.1513 

The enantiomeric purity was determined by HPLC analysis: (ChiralCel OD, hexane/i-PrOH = 

99.6/0.4, flow rate = 1 mL/min), tR = 21.26 min (S), tR = 24.41 (R) 
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(R)-1,3-diphenylnonan-1-one (2.4h) 

O

 

This compound (a pale yellow solid) was prepared in 54% yield from (E)-1-phenylnon-2-en-1-

one, diethyl phenylboronate and (S)-3,3'-dichloro-2,2'-dihydroxy-1,1'-binaphthol using general 

procedure B and purified by flash chromatography using hexane:ether 20:1. 

 [α]25
589 +28.8 (9:91 er, c 1.13, CHCl3) 

m.p.  59-62 oC 

IR (KBr): 2917, 1683, 1594, 699 cm-1

1H NMR (300 MHz, CDCl3): δ 7.88 (d, J = 7.9 Hz, 2H), 7.51 (t, J = 7.3 Hz, 1H), 7.41 (t, J = 7.5 

Hz, 2H), 7.29-7.13 (m, 5H), 3.35-3.27 (m, 1H), 3.24-3.21 (m, 2H), 1.70-1.62 (m, 2H), 1.72 (s, 

8H), 0.81 (t, J = 6.6 Hz, 3H) 

13C NMR (75 MHz, CDCl3): δ 199.2, 145.0, 137.2, 132.8, 128.5, 128.4, 128.0, 127.5, 126.2, 

45.9, 41.2, 36.3, 31.7, 29.2, 27.4, 22.6, 14.0 

MS m/z (relative intensity): 294 (M+, 18), 209 (M+-C6H13, 100), 174 (M+-PhCOCH2, 100), 105 

(PhCO+, 52), 104.1 (23), 77 (Ph+, 19) 

HRMS m/z calcd. for C21H26O (M+): 294.1985.  Found: 294.1975. 

The enantiomeric purity was determined by HPLC analysis: (ChiralCel OD, hexane/i-PrOH = 

99.6/0.4, flow rate = 1 mL/min), tR = 15.02 min (S), tR = 18.18 min (R). 
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(R)-3-(4-bromophenyl)-1,3-diphenylpropan-1-one (2.4i) 

O

Br

 

This compound was prepared in 66% yield from (E)-3-(4-bromophenyl)-1-phenylprop-2-en-1-

one, diethyl phenylboronate and (S)-3,3'-dichloro-2,2'-dihydroxy-1,1'-binaphthol using general 

procedure B and purified by flash chromatography using hexane:ether 10:1.  After two 

recrystallizations in hexane, the er was >99:1. 

 [α]25
589 -6.3 (>1:99 er, c 0.28, CHCl3) 

m.p.  117-118 oC 

IR (KBr): 1677, 1593, 689 cm-1

1H NMR (300 MHz, CDCl3): δ 7.91 (d, J = 7.9 Hz, 2H), 7.54 (t, J= 7.0 Hz, 1H), 7.43 (t, J = 7.6 

Hz, 2H), 7.36 (d, J = 8.2 Hz, 2H), 7.26-7.17 (m, 5H), 7.12 (d, J = 8.3 Hz, 2H), 4.77 (t, J = 7.3 

Hz, 1H), 3.69 (d, J = 7.3 Hz, 2H) 

13C NMR (75 Hz, CDCl3): δ 197.6, 143.6, 143.1, 136.8, 133.2, 131.6, 129.6, 128.64, 128.61, 

128.0, 127.7, 126.6, 120.2, 45.3, 44.4 

MS m/z (relative intensity): 364 (M+, 43), 247 (40), 245 (M+-PhCOCH2, 42), 165 (32), 105 

(PhCO+), 77 (Ph+) 

HRMS m/z calcd. for C21H17
79BrO (M+): 364.04631.  Found: 364.0459. 

The enantiomeric purity was determined by HPLC analysis: (ChiralCel OD, hexane/i-PrOH = 

99.2/0.8, flow rate = 0.8 mL/min), tR = 73.98 min (S), tR = 92.51 min (R) 
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(R)-1,3-diphenyl-heptan-1-one (2.4j) 

O

 

This compound (a yellow oil) was prepared in 58% yield from (E)-1-phenylhept-2-en-1-one, 

diethyl phenylboronate and (S)-3,3'-dichloro-2,2'-dihydroxy-1,1'-binaphthol using general 

procedure B and purified by flash chromatography using hexane:ether 24:1. 

 [α]25
589 +86.0 (9:91 er, c 4.0, CHCl3) 

IR (neat): 2857, 1685, 1597, 700 cm-1

1H NMR (300 MHz, CDCl3): δ 7.88 (d, J = 7.8 Hz, 2H), 7.51 (t, J = 7.5 Hz, 1H), 7.41 (t, J = 7.5 

Hz, 2H), 7.29-7.16 (m, 5H), 3.32-3.21 (m, 3H), 1.75-1.64 (m, 2H), 1.27-1.10 (m, 4H), 0.80 (t, J 

= 6.9 Hz, 3H) 

13C NMR (75 MHz, CDCl3): δ 198.1, 145.0, 137.1, 132.8, 128.5, 128.3, 128.0, 127.5, 126.2, 

45.9, 41.2, 36.0, 29.6, 22.6, 13.9 

MS m/z (relative intensity): 266 (M+, 9), 209 (M+-C4H9, 100), 146 (M+-PhCOCH2, 98), 117 (18), 

105 (PhCO+, 75), 92 (25), 86 (60), 84 (95), 77 (Ph+, 26), 51 (32) 

HRMS m/z calcd. for C19H22O (M+): 266.1672.  Found: 266.1668. 

The enantiomeric purity was determined by HPLC analysis: (ChiralCel OD, hexane/i-PrOH = 

99.6/0.4, flow rate = 0.8 min/mL), tR = 20.69 min (S), tR = 26.15 min (R) 
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(R)-3-(furan-2-yl)-1,3-diphenylpropan-1-one (2.4k) 

O

O
 

This compound was prepared in 28% yield from (E)-3-(fran-2-yl)-1-phenylprop-2-en-1-one, 

diethyl phenylboronate and (S)-3,3'-dichloro-2,2'-dihydroxy-1,1'-binaphthol using general 

procedure B and purified by flash chromatography using hexane:ether 15:1. 

[α]25
589 -2.6 ( 98:2 er, c 0.40, CHCl3) 

IR (KBr): 1676, 1081, 747 cm-1

1H NMR (300 MHz, CDCl3): δ 7.93 (d, J = 7.1 Hz, 2H), 7.54 (t, J = 6.2 Hz, 1H), 7.43 (t, J = 7.5 

Hz, 2H), 7.30-7.20 (m, 6H), 6.26-6.25 (m, 1H), 6.025 (d, J = 3.2 Hz, 1H), 4.83 (t, J = 7.2 Hz, 

1H), 3.81 (dd, J = 17.0 Hz, 7.3 Hz, 1H), 3.54 (dd, J = 17.1, 7.1 Hz, 1H) 

13C NMR (75 MHz, CDCl3): δ 197.4, 156.6, 141.9, 141.4, 136.8, 133.0, 128.5, 128.0, 127.7, 

126.7, 110.1, 105.7, 43.5, 40.2 

MS m/z (relative intensity): 276 (M+, 71), 171 (-PhCO, 17), 157 (-PhCOCH2, 100), 128 (19), 105 

(PhCO+, 44), 77 (Ph+, 19) 

HRMS calcd. for C19H16O2 (M+): 276.1150.  Found: 276.1154 

The enantiomeric purity was determined by HPLC analysis: (ChiralCel OD, hexane/i-PrOH = 

99.2/0.8, flow rate = 0.7 mL/min), tR = 31.8 min (R), tR = 76.2 min (S) 

 

 

 

 

 
 

62



 (S)-1,3-diphenyl-3-m-tolylpropan-1-one (2.4l) 

O

 

This compound (a pale yellow solid) was prepared in 73% yield from (E)-chalcone, diethyl 3-

methylphenylboronate and (S)-3,3'-dichloro-2,2'-dihydroxy-1,1'-binaphthol using general 

procedure B and purified by flash chromatography using hexane:ether 20:1. 

 [α]25
589 +32.3 (99.5:0.5 er, c 0.95, CHCl3) 

m.p.  60-62 oC 

IR (KBr): 1679, 1596, 706 cm-1

1H NMR (300 MHz, CDCl3): δ 7.94 (d, J = 7.9 Hz, 2H), 7.54 (t, J = 7.1 Hz, 1H), 7.43 (t, J = 7.6 

Hz, 2H), 7.27 (d, J = 4.32 Hz, 4H), 7.19-7.14 (m, 2H), 7.08 (d, J = 6.8, 2H), 6.99 (d, J = 7.3 Hz, 

1H), 4.80 (t, J = 7.3, 1H), 3.73 (d, J = 7.3 Hz, 2H), 2.29 (s, 3H) 

13C NMR (75 MHz, CDCl3): δ 198.0, 144.2, 144.0, 138.0, 137.0, 132.9, 128.6, 128.5, 128.4, 

128.3, 128.0, 127.7, 127.1, 126.2, 124.6, 45.8, 44.7, 21.4 

MS m/z (relative intensity): 300 (M+, 100), 181 (M+-PhCOCH2, 77), 165 (24), 105 (PhCO+, 67), 

77 (Ph+, 16) 

HRMS m/z calcd. for C22H20O (M+): 300.1515.  Found: 300.1509. 

The enantiomeric purity was determined by HPLC: (ChiralCel OD, hexane/i-PrOH = 99.5/0.5, 

flow rate = 0.7 mL/min), tR = 42.53 min (S), tR = 62.49 min (R). 
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(S)-1,3-diphenyl-3-(4-trifloromethylphenyl)-propan-1-one (2.4m) 

O

CF3

 

This compound (a pale yellow solid) was prepared in 21% yield from (E)-chalcone, diethyl 4-

trifluoromethylphenylboronate and (S)-3,3'-dichloro-2,2'-dihydroxy-1,1'-binaphthol using 

general procedure B and purified by flash chromatography using hexane:dichloromethane 1:3. 

[α]25
589 +8.8 (91:9 er, c 0.5, CHCl3) 

m.p.  132-135 oC 

IR (KBr): 1650, 1010, 736 cm-1

1H NMR (300 MHz, CDCl3): δ 7.92 (d, J = 7.9 Hz, 2H), 7.58-7.35 (m, 7H), 7.31-7.19 (m, 5H), 

4.88 (t, J = 7.2 Hz, 1H), 3.82-3.62 (m, 2H) 

13C NMR (75 MHz, CDCl3): δ 198.1, 148.8, 143.9, 137.5, 134.0, 129.4, 129.3, 128.9, 128.7, 

128.4, 127.4, 126.2, 126.1, 46.3, 45.0, 30.4, 1.7 

MS m/z (relative intensity): 354 (M+, 52), 235 (-PhCOCH2, 31), 105 (PhCO+, 100), 77 (Ph+, 21) 

HRMS calcd for C22H17F3O (M+): 354.1231.  Found: 354.1231. 

The enantiomeric purity was determined by HPLC analysis: (ChiralCel OD, hexane/i-PrOH = 

99.2/0.8, flow rate = 0.7 mL/min), tR = 43.38 min (S), tR = 57.11 min (R) 
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(S)-3-(4-methoxyphenyl)-1-phenyl-3-p-tolylpropan-1-one (2.5) 

O

OMe

 

This compound (a yellow solid) was prepared in 83% yield from (E)-1-phenyl-3-p-tolylprop-2-

en-1-one, diethyl 4-methoxyphenylboronate and (S)-3,3'-dichloro-2,2'-dihydroxy-1,1'-binaphthol 

using general procedure B and purified by flash chromatography using hexane:ether 6.5:1. 

 [α]25
589 -26.7 (89:11 er, c 1.95, CHCl3) 

m.p.  83-84 oC 

IR (KBr): 1629, 1114, 1005 cm-1

1H NMR (300 MHz, CDCl3): δ 7.91 (d, J = 7.5 Hz, 2H), 7.53 (t, J = 7.2 Hz, 1H), 7.42 (t, J = 7.5 

Hz, 2H), 7.13 (t, J = 8.1 Hz, 3H), 7.05 (d, J = 8.0, 2H), 6.78 (d, J = 8.6, 2H), 4.71 (t, J = 7.3 Hz, 

1H), 3.73 (s, 3H), 3.46 (d, J = 7.3 Hz, 2H), 2.26 (s, 3H) 

13C NMR (75 MHz, CDCl3): δ 198.2, 157.9, 141.5, 137.1, 136.8, 135.7, 133.0, 129.2, 128.7, 

128.5, 128.0, 127.5, 113.9, 55.2, 45.0, 44.7, 20.9  

MS m/z (relative intensity): 330.3 (M+, 42), 211.2 (-PhCOCH2, 100) 

HRMS calcd. for C23H22O2 (M+):330.1620 Found: 330.1628 

The enantiomeric purity was determined by HPLC analysis: (ChiralCel OD, hexane/i-PrOH = 

99/1, flow rate = 1 mL/min), tR = 25.92 min (S), tR = 30.27 min (R) 
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 (S)-3,3'-dicyano-2,2'-bis(methoxymethoxy)-1,1'-binaphthyl (2.2i) 

OMOM

OMOM

CN

CN  

3,3'-Diiodo-2,2'-bis(methoxymethoxy)-1,1'-binaphthyl (1 eq, 1.005 g, 1.60 mmol), copper 

cyanide (4 eq, 0.433 g, 4.80 mmol) and DMF (50 mL) were added to a 100 mL flame-dried flask 

under an Ar(g) atmosphere.  The reaction mixture was heated to 80 oC and stirred overnight.  The 

reaction was allowed to cool to room temperature, diluted with diethyl ether, then quenched with 

NH4Cl(aq) at pH 8 then washed with NH4Cl(aq) at pH 8 (3 x 50 mL), H2O (3 x 50 mL) and brine 

(50 mL).  The organic layer was dried over Na2SO4 and concentrated in vacuo.  The residue was 

purified by column chromatography (1/1 Et2O/hexanes).  Yield = 291 mg, 43%. 

[α]25
589 +10.8 (c 0.50, CHCl3) 

IR (neat): 1475, 1201, 1031 cm-1

1H NMR (300 MHz, CDCl3): δ 8.40 (s, 2H), 7.95 (d, J = 8.1 Hz, 2H), 7.53 (t, J = 7.4 Hz, 2H), 

7.43 (t, J = 7.5 Hz, 2H), 7.17 (d, J = 8.5 Hz, 2H), 4.92 (d, J = 6.3 Hz, 2H), 4.75 (d, J = 6.4 Hz, 

2H), 2.84 (s, 6H) 

13C NMR (75 MHz, CDCl3): δ 152.6, 136.9, 135.3, 129.9, 129.6, 128.6, 126.8, 126.1, 125.6, 

116.7, 107.6, 99.8, 56.9 

MS m/z (relative intensity): 424 (M+, 28), 348 (100), 327 (17), 318 (28) 

HRMS m/z calcd. for C26H20N2O4: 424.1423.  Found: 424.1428. 
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(S)-3,3'-dichloro-2,2'-bis(methoxymethoxy)-1,1'-binaphthyl (2.2j) 

OMOM

OMOM

Cl

Cl  

2,2'-Bis(methoxymethoxy)-1,1'-binaphthyl (1 eq, 4.2336g, 11.3 mmol) was added to 194 mL of 

diethyl ether (17 mL/mmol) in a flame-dried flask under Ar(g) atmosphere.  n-BuLi (24.0 mL of a 

1.41 M solution in hexanes, 33.9 mmol, 3eq) was then added to the solution.  After the reaction 

mixture was stirred for three hours the reaction was cooed down to 0oC, then THF (124 mL, 11 

mL/mmol) and hexachloroethane (33.9 mmol, 8.0252 g, 3eq) were added to the reaction.  It was 

left to warm up to room temperature overnight.  Reaction was quenched with NH4Cl(aq).  The 

organic layer was isolated and the aqueous layer was extracted with CH2Cl2 (3 x 50 mL).  The 

combined organic layers were dried over Na2SO4(s) and concentrated in vacuo.  The residue was 

purified by column chromatography (10:1 hexanes:ether).  Yield = 4.04 g, 81% 

[α]25
589 -29.5 (c 3.8, CHCl3) 

m.p. 69-70 oC 

IR (KBr): 1236, 1156, 818 cm-1

1H NMR (300 MHz, CDCl3): δ 8.08 (s, 2H), 7.80 (d, J = 8.2 Hz, 2H), 7.43 (t, J = 7.6 Hz, 2H), 

7.28 (t, J = 7.6 Hz, 2H), 7.20 (d, J = 8.4 Hz, 2H), 4.85 (q, J = 5.6 Hz, 4H), 2.59 (s, 6H) 

13C NMR (75 MHz, CDCl3): 149.3, 132.6, 130.9, 129.4, 127.6, 127.5, 126.9, 126.7, 126.4, 

126.1, 98.9, 56.2 

MS m/z (relative intensity): 442 (M+, 27), 366 (100), 303 (27), 268 (20), 84 (18). 

HRMS m/z calcd. for C24H20Cl2O4: 442.0740.  Found: 442.0756 
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General Procedure for 3,3'-disubstituted-2,2'-bis(methoxymethoxy)-1,1'-binaphthyl deprotection 

The protected disubstituted BINOL was placed in a flask with a 1:1 (v/v) mixture of 

MeOH (37.5 mL/g):THF and Amberlyst-15 (mass BINOL/mass Amberlyst-15 = 1).  The 

mixture was stirred at reflux overnight, then cooled to room temperature and filtered.  The 

filtrate was concentrated in vacuo and the residue was purified by flash column chromatography.  

 

(S)-3,3'-dichloro-2,2'-dihydroxy-1,1'-binaphthyl (2.2g) 

OH

OH

Cl

Cl  

[α]25
589 -1.1 (c 3.9, THF) 

m.p. 176-178 oC 

IR (KBr): 1584, 1146, 814 cm-1

1H NMR (300 MHz, CDCl3): δ 8.06 (s, 2H), 7.80 (d, J = 8.1 Hz, 2H), 7.38 (t, J = 7.2 Hz, 2H), 

7.28 (t, J = 7.1 Hz, 2H), 7.10 (d, J = 8.4 Hz, 2H), 5.56 (s, 2H) 

13C NMR (75 MHz, CDCl3): δ 147.3, 132.2, 129.1, 129.0, 127.4, 127.3, 124.8, 124.5, 122.1, 

114.8 

MS m/z (relative intensity): 354 (M+, 100), 319 (M+-Cl, 5), 226 (15), 113 (10). 

HRMS m/z calcd. for C20H12Cl2O2: 354.0214.  Found: 354.0211 
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(S)-3,3'-dicyano-2,2'-dihydroxy-1,1'-binaphthyl (2.2h) 

OH

OH

CN

CN  

[α]25
589 -0.80 (c 2.6, THF) 

m.p.  >252 oC 

IR (KBr): 2234, 1504, 892 cm-1

1H NMR (300 MHz, CDCl3): δ 8.41 (s, 2H), 7.95 (d, J = 9.3 Hz, 2H), 7.48 (m, 4H), 7.09 (d, J = 

9.2 Hz, 2H), 5.50 (s, 2H) 

13C NMR (75 MHz, CDCl3): δ 151.5, 137.7, 134.9, 131.0, 129.3, 128.3, 126.0, 124.1, 111.9, 

102.6, 1.01 

MS m/z (relative intensity): 336 (M+, 100), 319 (M+-OH, 7), 279 (8). 

HRMS m/z calcd. for C22H12N2O2: 336.0899.  Found: 336.0902. 
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Appendix A:  X-ray Crystallography data for (R)-3-(4-bromophenyl)-1,3-

diphenylpropan-1-one (2.4i) 
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Crystal data and structure refinement for C21H17BrO  
   

Empirical formula                   C21H17BrO  

Formula weight                      365.26 g/mol 

Temperature                         200(2) K  

Wavelength                          0.71073 Å  

Crystal system, space group        Orthorhombic, P212121  

Unit cell dimensions                a = 5.7256(18) Å, b = 16.786(5) Å , c = 17.572(6) Å    

Volume                              1688.8(9) Å3  

Z, Calculated density               4, 1.437 g/cm3  

Absorption coefficient             2.436 mm-1  

F(000)                              744  

Crystal size                        0.49 x 0.38 x 0.10 mm  

Theta range for data collection    3.36 to 28.00 °  

Limiting indices                    -7<=h<=7, -22<=k<=22, -23<=l<=23  

Reflections collected / unique     21751 / 4069 [R(int) = 0.0566]  

Completeness to theta = 28.00      99.8 %  

Absorption correction              Empirical  

Max. and min. transmission         0.7927 and 0.3815  

Refinement method                  Full-matrix least-squares on F2  

Data / restraints / parameters     4069 / 0 / 208  

Goodness-of-fit on F2              1.058  

Final R indices [I>2σ(I)]       R1 = 0.0328, wR2 = 0.0758  

R indices (all data)                R1 = 0.0428, wR2 = 0.0803  

Absolute structure parameter       0.023(8)  

Largest diff. peak and hole        0.245 and -0.424 e.Å3  
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Atomic coordinates ( x 104) and equivalent isotropic displacement parameters 

(Å2 x 103) for C21H17BrO  
   
         ________________________________________________________________  
   
                         x             y             z           U(eq)  
         ________________________________________________________________  
   
          Br(1)        -912(1)      -8387(1)       -342(1)       76(1)  
          O(1)         3693(3)      -9785(1)      -3682(1)       49(1)  
          C(1)         1774(4)      -9842(1)      -3973(1)       33(1)  
          C(2)           62(4)     -10477(1)      -3727(1)       37(1)  
          C(3)          612(4)     -10829(1)      -2942(1)       32(1)  
          C(4)          231(3)     -10224(1)      -2311(1)       31(1)  
          C(5)         1950(4)     -10097(1)      -1763(1)       37(1)  
          C(6)         1619(4)      -9559(1)      -1174(1)       45(1)  
          C(7)         -442(4)      -9146(1)      -1135(1)       43(1)  
          C(8)        -2192(4)      -9260(1)      -1660(1)       43(1)  
          C(9)        -1853(4)      -9798(1)      -2246(1)       38(1)  
          C(10)        -740(4)     -11593(1)      -2783(1)       34(1)  
          C(11)       -2867(4)     -11762(1)      -3114(1)       41(1)  
          C(12)       -4030(5)     -12474(1)      -2950(1)       48(1)  
          C(13)       -3076(5)     -13014(1)      -2455(1)       46(1)  
          C(14)        -962(5)     -12850(1)      -2119(1)       45(1)  
          C(15)         202(4)     -12144(1)      -2278(1)       40(1)  
          C(16)        1059(4)      -9295(1)      -4601(1)       31(1)  
          C(17)        2580(4)      -8676(1)      -4804(1)       36(1)  
          C(18)        1994(4)      -8167(1)      -5391(1)       41(1)  
          C(19)         -65(4)      -8264(1)      -5785(1)       41(1)  
          C(20)       -1587(4)      -8877(1)      -5593(1)       40(1)  
          C(21)       -1027(4)      -9384(1)      -4999(1)       36(1) 
  
          H(2A)          67        -10911         -4108          44  
          H(2B)       -1528        -10245         -3717          44  
          H(3A)        2309        -10970         -2939          39  
          H(5A)        3376        -10385         -1794          44  
          H(6A)        2802         -9478          -802          54  
          H(8A)       -3616         -8972         -1621          52  
          H(9A)       -3058         -9880         -2610          45  
          H(11A)      -3547        -11392         -3458          50  
          H(12A)      -5493        -12583         -3183          58  
          H(13A)      -3869        -13498         -2344          56  
          H(14A)       -291        -13223         -1777          54  
          H(15A)       1656        -12036         -2039          48  
          H(17A)       4011         -8607         -4539          43  
          H(18A)       3021         -7745         -5524          49  
          H(19A)       -446         -7912         -6189          50  
          H(20A)      -3002         -8947         -5867          48  
          H(21A)      -2079         -9798         -4861          44  
         ________________________________________________________________  
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Table 3.  Bond lengths [Å] and angles [°] for C21H17BrO  
           _____________________________________________________________  
   
            Br(1)-C(7)                    1.908(2)  
            O(1)-C(1)                     1.216(3)  
            C(1)-C(16)                    1.492(3)  
            C(1)-C(2)                     1.512(3)  
            C(2)-C(3)                     1.534(3)  
            C(3)-C(4)                     1.519(3)  
            C(3)-C(10)                    1.524(3)  
            C(4)-C(5)                     1.393(3)  
            C(4)-C(9)                     1.395(3)  
            C(5)-C(6)                     1.388(3)  
            C(6)-C(7)                     1.370(4)  
            C(7)-C(8)                     1.376(3)  
            C(8)-C(9)                     1.384(3)  
            C(10)-C(11)                   1.380(3)  
            C(10)-C(15)                   1.389(3)  
            C(11)-C(12)                   1.398(3)  
            C(12)-C(13)                   1.371(3)  
            C(13)-C(14)                   1.374(4)  
            C(14)-C(15)                   1.389(3)  
            C(16)-C(21)                   1.392(3)  
            C(16)-C(17)                   1.402(3)  
            C(17)-C(18)                   1.380(3)  
            C(18)-C(19)                   1.377(3)  
            C(19)-C(20)                   1.390(3)  
            C(20)-C(21)                   1.384(3)  
   
            O(1)-C(1)-C(16)             120.79(19)  
            O(1)-C(1)-C(2)              121.32(19)  
            C(16)-C(1)-C(2)             117.87(17)  
            C(1)-C(2)-C(3)              113.33(17)  
            C(4)-C(3)-C(10)             110.86(16)  
            C(4)-C(3)-C(2)              111.66(16)  
            C(10)-C(3)-C(2)             112.65(16)  
            C(5)-C(4)-C(9)              118.0(2)  
            C(5)-C(4)-C(3)              120.30(18)  
            C(9)-C(4)-C(3)              121.63(18)  
            C(6)-C(5)-C(4)              121.2(2)  
            C(7)-C(6)-C(5)              118.9(2)  
            C(6)-C(7)-C(8)              121.6(2)  
            C(6)-C(7)-Br(1)             119.71(17)  
            C(8)-C(7)-Br(1)             118.69(18)  
            C(7)-C(8)-C(9)              119.2(2)  
            C(8)-C(9)-C(4)              121.0(2)  
            C(11)-C(10)-C(15)           118.4(2)  
            C(11)-C(10)-C(3)            122.94(18)  
            C(15)-C(10)-C(3)            118.68(18)  
            C(10)-C(11)-C(12)           120.6(2)  
            C(13)-C(12)-C(11)           120.5(3)  
            C(12)-C(13)-C(14)           119.4(2)  
            C(13)-C(14)-C(15)           120.5(2)  
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            C(14)-C(15)-C(10)           120.7(2)  
            C(21)-C(16)-C(17)           119.02(18)  
            C(21)-C(16)-C(1)            122.71(18)  
            C(17)-C(16)-C(1)            118.25(18)  
            C(18)-C(17)-C(16)           119.8(2)  
            C(19)-C(18)-C(17)           120.7(2)  
            C(18)-C(19)-C(20)           120.17(19)  
            C(21)-C(20)-C(19)           119.6(2)  
            C(20)-C(21)-C(16)           120.7(2)  
           _____________________________________________________________  
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