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Abstract

Large software systems are composed of variouerdiit run-time components, partner
applications and, processes. When such systemsitepiiey are monitored so that audits can be
performed once a failure occurs or when maintenapegations are performed. However, log files
are usually sizeable, and require filtering anduogidn to be processed efficiently. Furthermoreréh
is no apparent correspondence of how logged evelate to particular use cases the system may be
performing. In this thesis, we have developed anéaork that is based on heuristic clustering
algorithms to achieve log filtering, log reductiand, log interpretation. More specifically we defin
the concept of the Event Dependency Graph, and wsept event filtering and use case
identification techniques, that are based on egkrgtering. The clustering process groups together
all events that relate to a collection of initigreficant events that relate to a use case. Wer ttef
these significant events &gaconevents. Beacon events can be identified autontigtioa semi-
automatically by examining log event types or ev@arnes against event types or event names in the
corresponding specification of a use case beingsidered (e.g. events in sequence diagrams).
Furthermore, the user can select other or additioitéal clustering conditions based on his or her
domain knowledge of the system. The clusteringnigghe can be used in two possible ways. The
first is for large logs to be reduced or slicedhwespect to a particular use case so that, aperean
better focus their attention to specific eventg tietate to specific operations. The second isttier
determination of active use cases where operagdestsparticular seed events of interest and then
examine the resulting reduced logs against evangsent types stemming from different alternative
known use cases being considered, in order toifgeie best match and consequently provide
insights on which of these alternative use casgshbeaunning at any given time. The approach has
shown very promising results towards the identifma of executing use cases among various

alternative ones in various runs of the Sessidration Protocol.
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Chapter 1

Introduction

1.1 Problem Description

Large software systems are composed of a numtdiffefent run-time components, partner
applications and processes. In many situationsieeel to audit and analyze the log files emitted by
these different run-time components, partner appiios and processes so that, we can perform root
cause analysis, diagnostics, or simply to obtainea of which use cases may be running at any
given point for maintenance, planning, or evolutmmposes. However, the analysis of events in log
files is a computationally expensive and complexcpss, especially when many different
components and software monitors are involved. fiigeles that are being used to analyze log files
that are emitted by different sources and in diffeéformats, fall into two main categories. Thetfir
category is based on statistical analysis that aomsorrelate events using data mining, advanced
event correlation techniques and complex eventgssing techniques. The motivation behind these
approaches is for the operator to be able to ifjeatients that exhibit a high degree of co-occureen
and may also associate with a high degree of piliyatp a particular error or cause of system
failure. In this category of approaches the momnipsystem must have access to a large number of

past cases so that statistically significant catiehs can be established first.



The second category is based on pattern matchidgparcustomized diagnostic rules that
aim to associate structural patterns of these suersystem failures, intrusions, deviations fréma t
expected behavior, or other important system ewhatsrequire the operator’'s attention. Approaches
in this category suffer from the issue of rule gadttern completeness, in the sense that very detail

rules or insufficient patterns may affect recaliletioose patterns may affect precision.

In this work, we take a different approach towaegent filtering that can be used not only
for log reduction but also for root cause analgsig system understanding. For example, in many
situations operators need to know which use casesumning at any given time so that load

balancing, resource allocation, and threat deteatizin can be performed.

The premise of the proposed approach is that evertsystem, relate both to the particular
active use cases involved and to the structural demloyment properties of the system. In this
respect, we propose a collection of event deperderiations that require limited knowledge of the
inner workings of the system, and can be easilyaeted using simple monitoring techniques yet,
they provide valuable information on the structof@vents in large log files. Once such dependence
relations are extracted and an Event DependencphGeacreated, we then propose the use of a
clustering technique that groups together all evdhét relate to a collection of initial signifidan
events that relate to a use case and we refertieaa®n events. The clustering technique is based o
an hierarchical agglomerative clustering algoritnith initial conditions. Beacon events can be
identified automatically or semi-automatically byaenining log event types or event names against
event types or event names in the correspondingfigdion of a use case being considered (e.g.
events in sequence diagrams). Furthermore, theacaseselect other or additional initial clustering
conditions based on his or her domain knowledgh®®&ystem. The clustering technigue can be used
in two possible ways. The first is for large logsbe reduced or sliced with respect to a particusar

case, so that the operators can better focus dltteintion to specific events that relate to specifi
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operations. The second is for the determinatioacti’e use cases where operators select particular
seed events of interest and then examine the irgsultduced logs against events or event types
stemming from different alternative known use cdsgisg considered, in order to identify the best
match and consequently provide insights of whiclthese alternative use cases may be running at
any given time. The approach has shown very prompisesults towards the identification of

executing use cases among various alternative ones.

1.2 Contributions

The main contribution of this work is to addrese groblem of analyzing large volumes of
dynamic system information, namely log files. Thi®cess can be very computationally expensive
and in some cases intractable for practical pugpo®me of the possible solutions, that we have
adopted to address this problem, is to developnigaks to filter the log events so that logs can be
reduced in size and simplified in complexity tooallfor easier analysis. We define the concept ef th
Event Dependency Graph, and apply event filtering ase case identification techniques based on

clustering. In this context, the major contribugasf the proposed solution are as follows:

» It defines the concept of the Event Dependency Kethpt is formed by a collection of
relations that aim to denote structural and behlal@ssociations between events in one or

more log files.

» Itintroduces a novel technique to filter or sllogs, using a heuristic clustering algorithm,
with respect to a particular use case. This enadeem operators to better focus their

attention to specific events that relate to spedcifierations.

» It proposes an approach for the determination tiff@wse cases running on the system

with a small number of initial seed events.
3



» The techniques presented in this work can be etilio aid root cause analysis and system

understanding.

1.3 Outline

The rest of this thesis is organized as follows:

Chapter 2 provides a literature review of relatedknn the field. It covers four main
subtopics, namelpynamic Program Analysis, Clustering Technigu&smplex Event Processing
andMonitoring Framework.

Chapter 3 introduces the concept of the Event Dagrery Graph, and formally defines the
relations that constitute the model. The everdriitig process is then outlined in more detail along
with a description of the specification elemenigally, algorithms summarizing the two techniques
to perform log filtering using clustering are pnetesl.

Chapter 4 builds on the techniques presented ipteh8, with the aim of determining active
use cases running on a system. An algorithm isepted to outline the approach. Sequence diagram
variations are also explained, and we outline hawadgorithm can still be applicable with all of
them.

Chapter 5 shows the results obtained from applfiergoroposed techniques on two separate
sets of data. The first set is a collection of logtined from running a collection of predeterrdine
use cases on a NIST implementation of the Sessitiation Protocol. The second set of logs was
obtained by simulating a complex system.

Finally, Chapter 6 concludes the thesis by presgntie contributions of this work and

discussing some of the future research directions.



Chapter 2

Related Work

This chapter provides an overview of the relatedkwno the field. Four main areas will be
discussed, namelRpynamic Program Analysis, Clustering Techniquesm@lex Event Processing
and Monitoring FrameworksDynamic Program Analysis deals with obtainingadiibm a running
software system to verify certain properties of gystem. The Clustering Techniques section
discusses general clustering techniques with aadecus given to the Bunch clustering tool used i
this work.The Complex Event Processing sectionudises techniques for processing multiple events
from diverse sources to achieve a certain objecteally, the Monitoring Frameworks section
elaborates on some of the existing monitoring fraorks that enable software developers and tester

to profile and monitor their applications.

2.1 Dynamic Program Analysis

Dynamic program analysis has been extensively tsedderstand the behavior of software
systems. A number of different analysis approadtaa® been presented in literature. Bruegge et al.
[4] designed a framework to support source codeumentation of systems written in C/C++. K.

Koskimies et al. [38] presented another tool, SCH, source code instrumentation, with the
5



limitation of being able to monitor independent lqgiions only. Yet both tools assume that access
to the source code is available, which might naiagk be the case. Similarly, there are tools teat u
compiled-code instrumentation. An example of thithie Java bytecode instrumentation tool, BIT, by
H. Lee et al. [88]. Profiling and debugging is drttechnique used in dynamic program analysis.
This technique utilizes interfaces provided by nradd#evelopment environments to facilitate runtime
data collection. Examples of this include the JVMBA] and JVMTI [61], which replaces the earlier
experimental JVMPI [60], for Java (the Eclipse T&dPerformance Tools Platform, discussed in the
next subsection, is based on JVMTI). Microsoft.Nleimework also has a similar interface, the
Common Language Runtime (CLR) Profiler [58]. M. &ualet al. [54] propose an approach,
combining dynamic and static analysis, to map @s®s to specific sections of the source code.
However this approach could result in limitationscls as performance degradation with large
systems, and it only works with programs executiipin the same process space. The technique
proposed in this paper is shown to be more scatiideto the fact that we use selective monitoring
depending on a specific use case. Also, by usingPT&ur technique works even with applications

running on multiple hosts.

H. Safyallah et al. [75] present a technique tdgue dynamic analysis of software systems,
based on frequent trace patterns, to identify sofwfeatures in the source code. This is done by
instrumenting the code to produce function entiy/distings. Again, access to source code is
assumed here. A. Kinneer et al. [3] discuss anastifucture, SOFYA, for providing dynamic
analysis. The framework uses bytecode instrumemtat capture events and offers a feature to help
developers specify program observation withoutrtbed for manual modification of the source code.
S. Neginhal et al. [43] propose a technique, bameddynamic analysis, which visualizes the
relationships between program elements graphidallyaid program comprehension. They also

developed a tool, CVision, allowing users to selmcific parts of the code that are relevant to a

6



given concern. However the tool only works on paogs written in C, and it assumes that the user
doesn’t only have domain knowledge of the systeum atso an understanding of the source code to
be able to select the relevant portions of the yanog The technique we propose could apply to any
system as long as the event logs exist, and neataer knowledge of the source code is necessary.
G. Antoniol et al. [68] present an approach thdlects system data and generates a probabilistic
model of the system. The dynamic collection of pang information utilizes web services as part of
their proposed architecture, enabling them to stppallection of program information even on
distributed clients. In order to save space anddawg efficiency, the proposed model collects only
summary information, instead of detailed ones. atater compressed and encoded following a xml
schema and sent to the main server for proces&mteresting variation was presented by G. A. Di
Lucca et al. [69] where dynamic analysis was usetbtlect traces from web applications. The web
applications analyzed were all dynamically genald@sed on a set of initial options specified ey th
user. In their work, they used the WANDA [23] tdot instrumenting web applications. WANDA
aims at recovering the architecture of web appboat and represents it by generating the UML

documentation of the system.

A. Zaidman [87] suggested using dynamic analysiaitloprogram comprehension, with the
goal of achieving that in a faster manner. Two témphes were discussed, one based on the frequency
of execution, stemming from the observation thatgmm traces will consist mainly of repetitive
calls to a small number of methods. The secondntqab, based on runtime coupling, helps
developers know program dependencies at runtimeileBly, T. Systa [81] presented an environment
that uses dynamic program analysis to aid softwangprehension. However this work was based on
dynamically analyzing java byte code. A prototypevionment, SCED, was developed where
scenario diagrams and state charts were genefidiedool also provides developers with the option

of specifying what classes and methods to be traSette this step requires knowledge of class

7



interactions, a static analyzer, Rigi, is embedabegerform this. Rigi [26] is a reverse engineering
tool that can identify all software artifacts isgstem and the relations between them. It alsostgp
running queries on the dependency graph so thacassary nodes/relations can be filtered out. The
tool also applies string matching algorithms talfthe required patterns within the event tracess Th
helps in raising the level of abstraction and desirey the overall trace size. A similar tool to
dynamically analyze Java programs was presentet Bargiulo et al. [55]. The tool, Gadget, uses
profiling, filtering and clustering techniques ttmact dynamic program structures, with the objexti

of making it easier to understand. This is dondifsy building a dynamic dependency graph of the

classes and calling relationships, and then clingtéhat graph.

O. Greevy et al. [18] present a very interestirghtégue to help software comprehension.
They use dynamic analysis to achieve an explicippitey between features and classes. In order to
achieve this, they define what is known as featumees as event traces collected by running a
specific set of features in the program. By coilterta large number of feature traces, classes
responsible for specific features can be identifiéts worth noting that this approach is
complementary, so features that require serviaes fipecific classes are also reported. T. Richner e
al. [19] propose combining static and dynamic paogrnalysis to support the creation of different
views of object-oriented systems. Program traceaiméd are stored in a logic database, allowing
users to issue queries and obtain system informaltioorder to filter the large amount of program
traces collected, they used their technique itezhtito refine the final view. So the results of fiirst
view are used to filter the tracing options for #ezond iteration, and so on until a satisfiabwis
reached. Along the same line of handling large etxec traces, A. Hamou-Lhadj et al. [1] present a
way to automatically achieve this. In their workey try to filter out those traces that are reldted
utility classes from the ones that implement higiel concepts. The algorithm is based on fan-in

analysis. A. Hamou-Lhadj [28] also presented a lasimiechnique called trace summarization. The
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technique involves taking a trace as input, andrné@ig a summary of the main events involved as
output. To perform this summary, similar technigteethose used in natural language processing are
applied, such as extracting events based on nacoimgentions. This technique was later also semi-

automated [48] to allow faster trace summarization.

B. Dufour et al. [6] introduced a framework to hegvelopers understand the dynamic traces
generated by their systems. They also introducedtaf metrics that are robust and architecture-
independent to help achieve this. These metricstloam be used to aid program comprehension, as
they cover different aspects of the code includimgmory usage and data structures. A comparable
tool was also developed at the University of Ottg®]ao aid program comprehension by collecting
execution traces. The Software Exploration and ysialTool (STEP), incorporates various filtering
techniques to analyze the large volume of tracieated. Traces can be also visualized from within
the Eclipse IDE, however they focus only on metlballs. An interesting view on the subject was
presented by T. Gschwind et al. [82], where runtdata is collected in order to analyze the dynamic
behavior of software systems. The developed tooReverse Engineering (ARE) tool, collected
parameter and object values to enable developefsrpereflective analysis on dynamic method
invocations. Other researchers have looked intcswayhelp software maintainers through dynamic
analysis. The Daikon [52] project for example, a@hgliscovering program invariants by analyzing
the execution traces. This would help developeentify what sections of the code need to be

preserved when performing code modifications.

Dynamic program analysis was also used to idedtfsign patterns in code. In their work, L.
Wendehals et al. [67] compare the collected traggsnst a behavioral model, sequence diagram in
their case. The sequence diagram is convertedigtgrministic finite automata, then the method call
sequence is tested to make sure it conforms t@ub@mata. Their approach also incorporates data

collected by a static analyzer to perform the pattdentification. Furthermore, literature has give
9



some attention to filtering/storing data generdtgdiynamic program analyzers. R. Brown et al. [70]
introduce STEP as a framework for storing progreswe data. STEP tries to standardize the way
developers handle their trace data. The systemidqesvmethods to allow the encoding of trace
information in a compact flexible format. The systimcludes a trace data definition language as well
to simplify the encoding of data. In [40] , an et#processing language is presented that is based on

regular expressions. EventScript’'s main goal igrtavide real-time response to incoming events.

2.2 Clustering Techniques

Clustering aims at combining observations into teltsggroups, based on a common
characteristic that they all share [79]. This hefpachieving a better understanding of the undwgly
observations. The research community presentedrdeuof different clustering techniques. One of
the earliest attempts was presented by L. Beladsl.ef20] where they presented an automatic
approach to software clustering. Their goal wasetduce the complexity of software systems, by
providing a measure of the complexity based on rimfdion obtained from the system’s
specifications. R. W. Schwanke [78] introduced al tcalled Arch that offers a semi-automatic
clustering approach with the aim of providing deyars with modularization advice to help them
improve existing code. Arch tries to enforce a ggoftware engineering practice by minimize the
coupling between procedures in different modules, maximize the cohesion of procedures within
the same module. Later on Schwanke et al. alsoomgblthe use of neural networks to cluster

software [29].

The Rigi tool presented by Muller et al. [26] emy® a number of clustering heuristics to

measure the strength of interfaces across thereliffesubsystems. In their work, they also used the

10



module names as part of the clustering criteri&l®i et al. [76] present a fully-automatic clusigr
algorithm that is based in a directed resource fipaph. A resource flow graph represents modules
as nodes, and arcs denote that the two connectddl@sgprovide resources to each other. Similar to
Schwanke’s work, their work also focuses on maxingzhe cohesion of modules. C. Lindig et al.
[80] developed a modularization technique thataseld on mathematical concept analysis. K. Sartipi
and K. Kontogiannis et al. [42] [39] presented astiring framework with the goal of recovering the
architecture of a software system. In their wotheyt used data mining techniques to extract
associations, data and control flows, among commsnd&hese associations are then annotated on a

graph, and this information is used to apply thestring.

V. Tzerpos and R. C. Holt [31] presented a clusteralgorithm, ACDC, which clusters
software systems to help program comprehensiors iEhilone based on a set of subsystem patterns
that have shown good program comprehension pregeffiney also presented a heuristic algorithm
to help compute a software clustering metric evalgathe similarities of two decompositions [32].
Along the same lines, they also formally defined #ability of software clustering algorithms and

evaluate the stability of different clustering aitfims presented in literature [33].

J. M. Neighbors [65] presented a techniquen&mually identify software subsystems to
extract reusable components. To achieve this,doberections between components, compile-time
and link-time, were examined. A. Lakhotia [46], &m attempt to unify clustering techniques,
designed a framework defining a set of symbols tarchinologies to describe any clustering
approach, including its inputs, outputs and prdogsOne of the advantages of this work is that it
makes comparing different clustering techniquesieeasnd hence their effectiveness can be
evaluated. N. Anquetil and T. Lethbridge [47] praee a clustering technique that uses naming

conventions as its clustering criteria, showing s@romising results.
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Clustering algorithms fall into two main categorieamely hierarchical and partitioning
algorithms. Hierarchical algorithms find successiligsters using previously established clusters and
can be further subdivided to agglomerative andsdiei Agglomerative clustering is done in a
bottom-up fashion, where items are iteratively puthe cluster with the most level of similarity.
Divisive clustering is top-down, so items are aljéther at the beginning, and are then iteratively
split to form the clusters. The partitioning clustg algorithms on the other hand typically detereni

all clusters at once [83].

S. Mancoridis et al. [16] [73] [7] [74] treat saftre clustering as a search problem, and apply
search heuristics to solve it. At first, their d¢kring technique assigns entities randomly to ceffie
clusters. Then the search heuristics are appliegoi®e the entities around, and create new clugters
necessary, until better clusters are achieved. seaech heuristics are based on hill climbing and
genetic algorithms (to overcome the local optimabjgm of hill climbing algorithms). They have

developed a tool, Bunch [63], which incorporatesirtolustering techniques.

Bunch was the main tool we used to perform clusgeduring our work. It was designed to
be flexible, portable (students and researchersaaity install and use the tool) and fast (executi
speed should be fast to allow clustering of laggesns). The objective function employed in thd too
aims at maximizing cohesion and minimizing coupliagross the software modules involved.
However, and perhaps this is one of the best featof Bunch, its design allows researchers to
develop their own objective functions and clustgratgorithms, and incorporate them into the tool.
The tool also supports the creation of abstractafrsource code by producing a high-level view of
the system structure. The main goal behind this twaaid software developers and maintainers
understand the structure of large and complex syst&Ve have used Bunch to cluster our Event
Dependency Graph (discussed in the next chaptegeterate events that are highly relevant to a

particular use case.
12



2.3 Complex Event Processing

Complex Event Processing (CEP) is an event pramgssincept that deals with techniques
for processing multiple events from many diverserses with the goal of identifying the meaningful
events within large data sets of collected eveDER utilizes a variety of techniques such as detect
of complex patterns, event correlation and abstmiactuse of event type hierarchies, as well as
relationships between events such as causality, bewship, and timing. In [41] and in [50] the
challenges and the themes of CEP as these aredjppllarge software systems are presented. The
research community has also developed severaltppet@pproaches such as the Aurora [15] and
Stream [25] projects.

S. K. Chen et al. [72] present a set of adaptigoréghms which help convert structural
events into simple name-value pair events that loanlater fed into legacy rule-based event
correlation engines for Business Performance Manage (BPM). Complex events are presented in
xml, and then mapped into a smaller set of nameevgbairs. In their implemented BPM
infrastructure, the Enterprise Service Bus thatsisd to send real time events to the system ddes no
only get data from external sensors, but also desigo provide a feedback for itself making the
engine both an event consumer and a producer. Vbptse are generated based on predefined
aggregation and filtering rules. D. C. Luckham [bitioduced the RAPIDE system architecture as an
event pattern language and a rule engine basedemrdlected events. A similar approach was
presented by Y. Magid et al. [86] where a partiaiiyplemented tool for Complex Event Processing
in real time applications was presented. The tgmen a set of rules, generates code for a CEP
application. It extends IBM’s Active Middleware Trewlogy (a rule-based CEP engine for non-real
time applications) to the real-time domain. Howeverintroduces some restrictions on the IBM

Active Middleware Technology to allow it to handkal-time applications. The authors also discuss
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different SOA applications that have real-time liegments where this tool may be helpful. A neat
feature of this tool is that after a set of rulesgiven, the tool can calculate the time requit@d t
execute the code it generates, and so determiitiesfill meet the application’s real-time deaads.

L. Brenna et al. [44] introduce Cayuga, an evewtcessing engine developed at Cornell
University. Some advantages of the system incltglalility to scale with the arrival rate of events
The system is designed in such a way that eaclt aasrits own relational schema, allowing users to
execute queries using a SQL like language. Thenengiso has a trace visualize displaying how
events are matched to each other. Borealis [13ni®ng the other Complex Event Processing
frameworks presented in literature. Extending Aai®f15] core functionality as an event stream
processing engine, Borealis is intended to be argkgeneration stream processing engine providing
capabilities such as dynamic revision of query ltesulynamic query modifications and highly-
scalable optimizations. A comparable technique pr@sented in [84], where the authors defined
continuous queries, the concept of evaluating qaeoh streams of data. They also introduced an
architecture for handling continuous queries, tgkinto considerations issues that deal with
semantics and efficiency.

A. S. J. Schiefer [77] proposed a new event @siog infrastructure to handle real-time
Business Intelligence called the Sense And Resplofisestructure (SARI). The main goal behind it
is to enable the support of real-time businessqa®es over three types of data, namely past, firesen
and future —oriented. Past-oriented data refershéo original documentation of the system, its
business processes and its history. Present-alieddiéa deals with the ability of the system to
respond quickly to varying requirements and hamgdiisks. Finally, future-oriented data represents
how the proposed infrastructure detects trendscgokés. This work was also related to the previous

work done by A. S. J. Schiefer and C. McGregor %6][ In their work, they introduced an
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architecture to that enables the correlation ofnessewith respect to a business process. The

architecture also allows users to apply their oefingd functionality to the events.

2.4 Monitoring Frameworks

In the area of monitoring frameworks, the EclipsestT& Performance Tools Platform
(TPTP) Project [22] is an open platform providirgfteare developers and testers with robust tools
enabling them to address the entire test and peafoce life cycle. It is based on the Java Virtual
Machine Tool Interface (JVMTI) [62]. It supportsnéde range of features from early software testing
to production monitoring, including test editingda@xecution, monitoring, tracing and profiling, and
log analysis capabilities. It is tightly integratedth Eclipse, which allows for the profiling of
applications from within the Eclipse IDE. In additito its ability to profile local applications and
complex applications running on multiple hosts dffiecent platforms, it also supports embedded
systems. We have used TPTP in our work to monitstesn events and generate them in a Common
Base Event (CBE) [34] log format for processing.

In addition to TPTP, a number of monitoring franoeks exist for almost all major
programming languages. The Java PathExplorer fFAX) is one of the tools used to monitor java
applications. The tool automatically instruments/alébytecode, and sends out events to the
monitoring module. The monitoring module can thenused to test the incoming events against the
system’s high level requirement specifications agdinst lower level error detection procedures. The
formal high level requirement specification cangyevided in many ways such as temporal logic
formulae. Low-level error detection typically trigs find concurrency related errors in the code, or

point out their potential existence. These incladers such as race conditions and deadlocks.
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Another Java monitoring framework is the one presgrby M. Kim et al. in [53]. The
Monitoring and Checking (MaC) framework providesway to verify the correctness of Java
programs during run-time. This process consist8 sfages: 1) Program variables and function call
data are extracted from the code. 2) The extradegd is then correlated to the requirements
specification of the system. 3) Finally, the oceaae of these events is verified during run-time to
ensure that the system behaves according to theifispgons. A similar framework was also
presented by Y. Cheon [11] named Runtime Asser@itvecker (RAC), to enable checking Java
programs at runtime. Developers annotate their esiteg the Java Modeling Language [45] (JML),
to add their specifications. This is then translateto Java bytecode, and the specifications are

transparently checked during runtime.

Java with assertions [14] (Jass) is another framewmat allows developers to test if their
systems comply with the specifications. The way Jass tool works is very similar to RAC. A
compiler is used to translate annotated code irtea,J and then specifications are checked
dynamically during runtime. An additional featurkJass is that it checks trace assertions, ensuring
that methods were invoked in the right order ankti A. K. Mok and G. Liu [49] presented the Java
Runtime Timing-constraint Monitor (JRTM) tool, whicallows for the monitoring of timing
constraints in real-time systems. Developers spdaifiing constraints using a Real Time Logic
(RLC) based language along with the events of ésteiThen a monitor tracks the occurrence of each

event by storing its name and time, so that synthadion can be enforced.

Many monitoring frameworks also exist for systemstten in C/C++. One of these
frameworks is BEE++ [5], which was designed towallmonitoring of distributed applications written
in C/C++. The framework also provides visualizatemmd debugging classes. Developers manually
instrument their code by addirsggnsors When a sensor is encountered during program &gecu

data related to the fired event is sent to allahalysis tools (observers) that bound themselvésato
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sensor. This takes the load of the executing nadehe distributed environment, as the event
processing is moved to a separate node. Sentryd24lother C monitoring framework. It is designed
to run as a separate process in parallel with aimgnC program. Sentry observes the executioneof th
C program, and ensures that it conforms to itsifpddehavior. Detected errors are reported back t
the running application. C. L. Jeffery et al. [I®ksented Alamo, a dynamic monitoring framework
for C applications. The way it works is conceptyalery similar to Sentry. The monitor, called
Execution Monitor, executes the target program,\ahen the execution is over gets back a report of
all the events that occurred. Monitoring points aentified from the parse trees, using the C
Instrumentation tool CCI [36]. More general monimgr frameworks also exist, like Temporal Rover
[17] for example. It enables developers to annothtsr Java, C/C++ and Verilog codes using
properties specified in Linear Time Temporal andtideTemporal Logics. The tool's parser then
converts annotated programs based on their origemgjuage, and the program is validated during

execution using the newly generated code.
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Chapter 3

Event Processing

This chapter describes how our framework procesgests. In Section 3.1, we will introduce
the Event Dependency GradEDG) that is used to represent relations betweamts. We present
the event schema first, and then a total of eighitions will be presented and formally definede Th
next step after the creation of the Event Depengd@raph is event filtering. This process will be
described in more detail throughout Section 3.2.d\mrview of the process will be provided in
section 3.2.1. Section 3.2.2 describes some oflififerent specification elements used in the field,
and explains how we are using sequence diagranfifteio events. Section 3.2.3 describes how
clustering is used to filter events, and presdm2talgorithms that we have designed to achigse th

Finally, a short summary of the chapter is preskitéSection 3.2.4.
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3.1 Event Dependency Graph

3.1.1 Event Schema

In order to be consistent and to comply with stadslawe have decided to adopt IBM's
Common Base Event (CBE) [34] format for encodingrds in our log files. Eclipse’s TPTP also
provides a feature allowing developers to monifgpligations and log events in CBE format. Logs

are all generated in XML format, following the CBEhema.

The CBE model [9] has a 3-tuple structure allowihgo convey information about the
module reporting a particular situation, the modaffected by the situation and data about the
situation itself. Due to the fact that the repagtend the affected modules are often the same, the
CBE schema forces only having the information neg¢ato the reporting module. The third section in

the structure, data about the situation, is mamgato

Each entry (event) in the CBE log file has a nunidfeattributes that containing important
information needed for our analysis. These attébuwtre all summarized in Table 1. However, since
this information is not enough for us to build dwent Dependency Graph, we had to add extended
elements for each event in the log file, a feathe is supported by the CBE schema. We introduced

5 extended elements as follows:
<sessi onl D> - contains the current session ID that the eventigsldo, if any.

<feat ures> - contains a collection of features that the everst fhese features are typically

user defined, as will become clearer in the nestice.

<tasks> - contains a collection of tasks indicating that &vent is originating or is affecting a

particular task in a workflow or a business process
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<l ogi cal Resource> - contains a collection of resources indicating tktia¢ event is
originating or is affecting a particular resouredated to the logical point of view of the system

architecture.

<i nfrastructural Resource> - contains a collection of resources indicating ttret
event is originating or is affecting a two (or mpresesources that are topologically or

infrastructurally related to each other.

<depl oyedResour ce> - contains a collection of resources indicating tha event is

originating or is affecting the same deployed reseu

<dat a> - contains a collection of data elements indicatimat the event relate to a particular

data element. This is typically a persistent stenagpository.

These extended attributes could be manually omaatically added to the existing log file,
using information from varying sources such as shstem specifications or the Configuration
Management Database (CMDB). Some of these attsbcam also be inferred from the module
reporting the situations, for example events thigimate from JDBC modules would have a data
element. It is also worth noting that all of thesg@ended elements are optional depending on the
scenario, since the user could specify what raiatto include before processing and clustering the

Event Dependency Graph.
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Table 1 - Summary of CBE attributes

Attribute Type Description
creationTime String Event date/time stamp
_ A value that uniquely
globallnstancelD String ) -
identifies an event
A human readable text
Msg String providing info about the
event
_ Time interval between
elapsedTime Long ) ) )
identical event instances
o A number from 0-100
Priority Integer o o
indicating an event’s priority|
repeatCount Integer Count of identical events
_ A number from 0-10
Severity Integer o _
indicating an event’s severit
o _ Business name of a
Application String
component
_ Component/Module
Component String _
generating the event
Physical address of the
Location String generating
component/module
_ Process ID of the current
processed String )
process generating the ever
_ Thread ID of the current
threaded String )
thread generating the event

nt

21



The complete event schema can be summarized assadibgram as shown in Figure 1. This

is a modified version of the CBE schema presentd€]i The diagram shows all of the attributes we

have used in our approach, as well as the relattoneng different entities. The class ‘Event’

represents the root element in the CBE schemaaiciamg basic information about an event such as

its creation time and global instance ID. Each eweould then have a source component that it

affects, and optionally a reporting component. 8inften both these components are the same, the

multiplicity of the reporting component is 0..1 itwdicate that it is optional. The extended element

class represents all the extended elements thavemt could have. Each extended element can also

have a number of extended elements for itself,otmwWw the CBE schema. Finally, the situation

element represents the mandatory CBE element oomgainformation about the reporting situation.

In our work, however, situation information is nsted.

Situation

Event

+globallnstancell: String
+creationTime: String
+severity: Ink

+priority: Ink

+rn=g: Skring
+repeatCount: Ink
+elapsedTime: Long

i
i
Componenkt

1

k_______l!

source_omponent

D..*

ExtendedElement

+values: Stringl]

children
1
+name: Skring j

reportingComponent

+ocation: String
+application: String
+component: String
+processID: Skring
+threadID: String

Figure 1 - Complete Event Schema Class Diagram
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3.1.2 Event Dependency Relations

The cornerstone of the proposed log filtering amdluction technique is thé&vent
Dependency Graph (EDGhat is formed by a collection of relations thaih 4o denote structural and
behavioral associations between events in one oe hog files. We define eight event dependency

relations that are presented in more detail below.

Coincidental Dependency -Events 1 and 2 are said to be coincidentally degretnid they share a
collection of features that the user defines. Fdlgmthis is defined as:

COD (el,e2) ={(el,e2)|3el € E1 A Fe2 €E2
AYf EFA (Has(el,f) /\Has(eZ,f))}

where:
el,eZare single events
E1l, E2are log files

fis a asingle feature

F is a collection of user defined event features

Has(x,y)is a predicate with the interpretation “event % feature y”

Logical Dependency -this type is sub-divided into:

a) Workflow Dependence —Events 1 and 2 are said to have workflow dependéntteey are
produced or consumed by the same task on a worldloavbusiness process. Formally, this is
defined as:

WFD (el,e2) = {(el,e2)|]3el € E1 A Je2 € E2

A3AteT A (Oplel,t) A Op(e2,t))}
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where:
t is a single task in a workflow,
T is a collection of tasks in a workflow of busingsecess,

O(x,y)is a predicate with the interpretation of “everig yroduced or consumed from task y".

b) Architectural Dependence —Events 1 and 2 are said to have architectural dkgree if they
originate or consumed by the same resource asstheen from the logical point of view of the
system architecture. Formally, this is defined as:

ALD(el,e2) ={(el,e2)|]3 el €E1 A Je2 €E2
A dr €R /\(U(el,r)A U(eZ,r))}

where:
ris a component of the logical view of the systearhitecture,

Ris the collection of components in the logicaWwief the system’s architecture,

U(x,y)is a predicate with the interpretation of “everi$ yroduced or consumed by resource y”.

Topological Dependency -Events 1 and 2 are said to be topologically depanifiehey originate
or consumed by two different resources that belmnthe same infrastructure component (e.g. a
bean container). Formally, this is defined as:
ATD (el,e2) ={(el,e2)|]3el € E1 A Je2 € E2 A Ar1l ER A 3712
ER A (U(el,r1) A U(e2,12))}

where:

rl, r2 are components that are topologically araigtructurally related in the logical view of the

system’s architecture,

Ris the collection of components in the logicalwief the system'’s architecture,

U(x,y)is a predicate with the interpretation of “everi$ yroduced or consumed by resource y”.
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Temporal Dependency -this type is sub-divided into:

a) Exact Dependence Events 1 and 2 are said to have exact dependeticeyithave the same
timestamp. The timestamp can be one of two typegicdl timestamps and physical timestamps.
Formally, this is defined as:

TED(el,e2) = {(el,e2)|]3 el € E1 A Je2 €E2
ANEQUAL(ts(el),ts(e2))}

where:

ts(x)is a function symbol that indicates the logicaphysical timestamp of event x.

b) Range Dependence Events 1 and 2 are said to have range dependetieeyibccur within a
specified time frame [t1, t2]. Formally this is ohefd as:

TRD(el,e2) ={(el,e2)|qel € E1 A Je2 € E2
Atl < ts(el) < ts(e2) < t2}

c) Approximation Dependence -Events 1 and 2 are said to have time approximatependence
if they approximatelyhave the same timestamp. The range of approximatn be redefined
for every pair of events as required. Formally thidefined as:

TSD(el,e2) ={(el,e2)|]3el € E1 A Je2 € E2
Ats(el) = ts(e2)}

Procedural Dependency -this type is sub-divided into:
a) Process Dependence Events 1 and 2 have process dependence if theyatégor consumed
by the same process. Formally, this is defined as:
PID(el,e2) ={(el,e2)|3 el € E1 A 3 e2 € E2
A A pid € P,(B(el,pid) A B(e2,pid))}

25



where:
pid is a process of the system with unique procestifke id,
P is the collection of processes,

B(x,y)is a predicate with the interpretation of “everns yroduced or consumed by process y”.

b) Container Dependence —-Events 1 and 2 have container dependence if theypesduced or

consumed from two processes operating within theesaool of processes. Formally, this is defined
as:

PCD(el,e2) ={(el,e2)|]3el € E1 A Je2 € E2 A I pidl € Co A T pid2
€ Co A (B(el,pidl) A B(e2,pid2))}
where:
pid is a process of the system with unique identitler

Co is the collection of processes in a container

B(x,y)is a predicate with the interpretation of “everis yroduced or consumed by process y".

Transactional Dependency -Events 1 and 2 are said to be transactionally dispdrif they relate to

the same process ID and same session ID. Forrtalyis defined as:

PTD(el,e2) ={(el,e2)|]3el € E1 A 3 e2 € E2 A I tid
€ Tr A (Bs(el,tid,sid) A B(e2,tid, sid))}

where:
tid is an observed transaction with unique identifier

Tr is the collection of observed system transactions

Bs(x,y, z)s a predicate with the interpretation of “everitetongs to transaction y and relates to

session z of the transaction”.

Communicational Dependency -and this is sub-divided into:
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a)

b)

Data Dependence -Events 1 and 2 have data dependence if they redathbe same data.
Formally, this is defined as:

DAD(el,e2) = {(el,e2)|3 el € E1 A 3 e2 €E2
A (A(el,d) AA(e2,d))}
where:

A(x,y)is a predicate with the interpretation of “evemelates to operations on the data element

d” (e.g. CRUD operations).

Resource Deployment DependenceEvents 1 and 2 have resource dependence if thegtepe
or affect the same deployed resource. Formallyishiefined as:
DRD(el,e2) = {(el,e2)|3 el € E1 A Fe2 € E2

A 3drd €Rd A (U(el,rd) AU(e2, rd))}
where:
rd is a component of the logical view of the systearshitecture,
R; is the collection of deployed run-time components,
U(x,y)is a predicate with the interpretation of “evens yroduced or consumed by deployed

resource y".

Correlational Dependency —Events 1 and 2 are said to be correlationally dégenif in the

observed history of the system these events oogeather within a certain probability or frequency.

This definition can also be extended to patternevaits that is a pattern of eventg,Rcan exhibit

correlational dependency with pattern of events Formally this is defined as:

CRD(el,e2) ={(el,e2)|3 el €E1 A 3e2€E2
APco(el,e2) = p}

where:

el, e2are events or patterns of events and,
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Pcois the probability or frequency thal ande2 co-occur in a series of past observations.

3.2 Event Filtering

3.2.1 Process Outline

The proposed log filtering and reduction processoimposed of two main phases. A block diagram

illustrating the outline of the log filtering andduction process is depicted in Figure 2.

Log Files
. Log
Identification Reduction by Logs to be Final Filtered
of Selected
Selected analyzed Logs
Packages
Packages
\ 4 T
Sequence Selection of De Ee\:ﬁjr:nc
Diagram Beacon P y Clustering
For Events Graph
Use Case Compilation

Figure 2 - Log Filtering and Reductino Process foa Selected Use Case

In the first phase the logs are reduced by selgavents that pertain to packages, components,
applications and resources of interest as thesengted by the sequence diagram of the specific us
case being considered. This part of the processfsrestricting the user to consider any other
additional package, component, application or resoine or she considers to be of interest. The

result of this phase is a collection of log eventbe analyzed for the use case being considerdd an
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the creation of an Event Dependency Graph. A canditipn file is providing the relationships that
the user wants to consider for any given analysisexcerpt of the clustering configuration file is
illustrated in Figure 3. As shown in the excergdble the configuration file allows the user to sifec

3 main configuration elements, namely the compaieottware packages of interest, a time frame,
the approximation factor (for the approximate terapadependency) and the PIDs of the processes
being monitored. EDG relations matching one or nofrthe configuration criteria would have higher

weights accordingly, and as a result are moreylit@be clustered into our output cluster.
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<?xml version="1.0" encoding="UTF-8"?>

<FilteringCriteriaConfig>

<Components>
<Component>net.java.sip.communicator</Component>
<Component>net.java.sip.communicator.sip</Component>
<Component>net.java.sip.communicator.sip.security</Component>
</Components>

<TimeWindow>
<startTime>2009-03-23T22:18:15.768Z</startTime>
<endTime>2009-03-23T22:19:17.253Z</endTime>
<approximationFactor>0</approximationFactor>

</TimeWindow>

<Processes>
<Process>1</Process>
<Process>4</Process>

</Processes>

</FilteringCriteriaConfig>

Figure 3 - Clustering Configuration Specification

In the second phase of the process, a numbé&eatonevents are selected manually or

automatically from the logs to be analyzed basetexicographical similarity with events appearing

in the sequence diagram of the use case. It igirthtg one event in the specification may relate to

one or more beacon events or event types appearthg log files to be analyzed. The user may also
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decide to consider any other beacon event he ocshsiders to be of interest. Finally, the event
dependency graph along with initial cluster comiti stemming from the beacon events is clustered

to produce the final filtered logs.

3.2.2 Specification Elements

Over the years, the software engineering commumity proposed a number of different
software specification models. One of the mostulsgdecification models for transactional systems
are sequence diagrams. Even though these models ween mostly used for requirements
specifications, they also denote important relatips between processes and events which are
consumed, produced or affect these processesislnvtrk, we consider that log files generated by
various components of a system can become verylearapd may include a substantial amount of
noisy events that are generated by either thestntreture or by other applications that are serving
many concurrent and in many cases unrelated usdrase cases. In order to better filter and isolat
the events that may be related to a particularcase or scenario, we consider sequence diagrams as
the primary source of information to initiate thkefing process. This information takes the forfn o
sequence diagram events. As sequence diagram eweytshe represented at a higher level of
abstraction than the actual implementation we teegsociate a sequence diagram event with one or
more events observed in the event log files ofymem being monitored. This association is not
always straightforward. However, in the researtdrditure there have been a number of techniques
that have been proposed to associate model elethetsonform to different schemas and domains.
One technique is based on fuzzy association r@gpthat is used to associate intrusion models to
audit data that is events obtained from the sydiemng monitored. Another technique is based on
lexicographical and linguistic similarities betwettre elements of the models being compared [37].
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Yet another technique, is based on similaritiesvbenh features of the model elements being
compared. Such techniques can be used to extrsotiasons between model elements to identify

difference between model elements [64], [21].

For our work, we consider a linguistic similarifgmoach [57] combined with feature vectors
to associate high level of abstraction events §ipdcin the sequence diagrams of the system’s use
cases and method names or event types obtainedHmmmonitoring framework used. The linguistic
similarity is used to identify logged events thawé a lexicographical similarity with the specified
events in the sequence diagrams and the featutersece used to limit the types of associate event
according to the package or process where they &mamr are received. In this respect, the
association technique is aiming to map an eventifspé in a sequence diagram to one or more
events in the log file that are used as beaconthéofiltering process. Initial results obtainedthg
analysis of various scenarios in an implementatibthe Session Initiation Protocol indicate a high

level of recall and precision in this type of arsidy

3.2.3 Log Filtering Using Clustering

Clustering techniques have been extensively usetidogoftware engineering community to
perform software architecture recovery [35] andrfaning software repositories [30]. In this work,
we utilize a collection of event dependency relaithat are used to generateEaent Dependency
Graph (EDG) The event dependency graph denotes events atihnsl between these events as they
are collected from the system’s monitoring infrasture. We have utilized the Eclipse Test and
Performance Toolkit Platform (TPTP) to collect etgeat the JVM layer of Java based applications,

but the proposed approach can be utilized withathgr event extraction and monitoring framework.
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For consistency and compliance with standards, lse @tilized the Common Base Event format for
encoding events obtained from the monitoring maglulehe event dependency graph is then
clustered utilizing an hierarchical agglomeratilastering algorithm that is discussed in more dietai
below.

In this work, we experiment with two types of clkshg techniques. In the first type, we
initiate the clustering algorithm with the conditithat all beacon events should appear in oneetlust
The events that concentrate in this cluster form fihal result. In the second type, we initiate
clustering with the condition that each beacon esbould appear in a separate cluster. At the énd o
the process, these clusters are then merged totf@rfimal result. These two different approaches a

discussed in more detail below.

3.2.3.1 One-Cluster Initial Condition

In this approach the motivation is to identify thet of events that collectively exhibit the
strongestrelation with the set of selected beacon eventhis Type of clustering aims to increase
precision of the obtained results. In a nutshhbik aipproach is based on the clustering of theteven
dependency graph by considering an initial conditidere all the log file beacon events are forced
to be on the same cluster. The clustering prodess mot only identifies several other clusters but
also identifies additional events that are mergedhe initial cluster that contains all the beacon
events. Upon termination of the clustering procels, final result is obtained by examining the
contents of this initial, and by now extended ausiThe clustering algorithm utilizes the Module
Quality metric to identify the clusters with the xitaal number of intra-relations (relations in

elements within the cluster) and minimum numbeintdr-relationships (relations of elements across
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clusters). The following explains the algorithm mdormally and is then followed by an example

showing how the algorithm is applied on B Registratiorscenario:

Algorithm: Log-Filtering-One-Cluster

Input: We have our Event Dependency Grapkhat was created to model the relationships

between different entries in the log file.

We then have a Set of Beacon evefits {b, ... b,} pertaining to the scenario of interest.

These events are typically selected by an expert us
Output: A cluster of events containing the beacon evselscted initially, in addition to other events
that relate to the scenario of interest.
Process:
S1.We start by forcing all of our beacon events tarbghe same cluster. Letbe an initial clustee
={b: ... b,} containing the beacon eventk{... b.}
S2.The rest of EDG is then divided into a numberloéters. LetG be the set of all sub-clusters,
and initially = {¢ }
S3.We start the clustering process which tries tagassvents to clusters using an iterative heuristic
approach. For each clustering iteratiand
while clustering is not done
S3.1 (Updatec with new events)
or,
S3.2 (Create newly formed cluster and set
G={c,c1,ca...c})

or,
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S3.3.Update existing clusters, cs, ...ci

S4. return (c)

Example — SIP Registration

[T
I
ae}
i

Server

1 : REGISTER() "'::|
D4 2200 0K :

Figure 4 - SIP RFC Registration

Input: We have the created EDG, and we select the falipWweacon events: Register and OK.

S1.c = {Register, OK}

S2.-4. ¢ = {Register, OK, addCommunicationsListener, cancelPendingRegistmatio
fireUnregistering, getFromHeader, getLocalViaHeagler getMaxForwardsHeader, init,
initProperties, scheduleReRegistrafjon

Output: Thec cluster above with the events shown.

The full algorithm is also summarized in Figuredidov.
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Output Clusters

Log file

{el}
{e2}

{e3]
[ed} clustering

{e5}

o >
{e7}
{e8}
{9}
{e10}

ed, e9, el0

Figure 5 - Summary of the 1-cluster algorithm

3.2.3.2 N-Clusters

In this approach the motivation is to identify theaximal set of events that individually
exhibit a relation with one or more of beacon esefhis type of clustering aims to increase reafill
the obtained results. In a nutshell, this apprdadiased on the clustering of the event dependency
graph by considering an initial condition whererebeacon event should appear in a separate cluster.
In this respect, if we identify beacon events, the initial condition of the cltisge process will

considern different initial clusters with one beacon elemesaich. All other events in the event
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dependency graph will be either placed in one orenaf these initial clusters or will form new
clusters. In this respect, the clustering processonly identifies new clusters but also, and most
importantly, identifies events that are finally géa in the clusters formed by the initial condition
The final result is obtained by considering theth# events that appear in the union of all initial
condition clusters. The following explains the altfon more formally and is then followed by an

example showing how the algorithm is applied onSHe Registratiorscenario:

Algorithm: Log-Filtering-N-Clusters

Input: We have our Event Dependency Grapkhat was created to model the relationships
between different entries in a log file.
We then have a set of Beacon evefits {b; ... b} pertaining to the scenario of interest. These

events are typically selected by an expert user.

Output: A cluster of events containing the beacon eveglected initially, in addition to other events
that relate to the scenario of interest.

Process

S1.We start by forcing each beacon event to be gledtseparately in a new cluster. l¥ebe a set

of Initial Clustersy” ={ ci, c2.. ca} Where each clustef, contains the beacon evént

S2.The rest of EDG is then divided into a numberloéters. LetG be the set of all sub-clusters,
and initially =4

S3.We start the clustering process which tries tagassvents to clusters using an iterative heuristic
approach. For each clustering iteratiand

while clustering is not done

3.1 (Updatec; or c: or .. ¢, With a new event)
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or,

3.2 (Create newly formed cluster., and let
G ={ei, 2, ...Cny Cat1})
or,

$.3.Update existing clusters, cs, ...ck for k>n

S4. At the end of the clustering process, the clustergaining beacon events are all unioned

together into one cluster and the algorithm ret@ths (ci, cz, ...c.))

Example — SIP Registration

[
L
o
=

Server

: 1 : REGISTER()
D4 2 1 2000k

Figure 6 - SIP RFC Registration

Input: We have the created EDG, and we select the falipbieacon events: Register and OK.
S1.ci={Register}andc; = {OK}
S2.-4. ¢; ={Register, addCommunicationsListener, cacheCredentials, c@eralingRegistrations,

checkifStarted, endAllCalls, fireRegistered, firgRtering, fireUnregistered, fireUnregistering,
getContactHeadér

and ¢ = {OK, getFromHeader, getLocalHostAddress, getLocalVadées,

getMaxForwardsHeader, init, initProperties, procBgsponse, scheduleReRegistration, start,
startRegisterProce}s
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Ui ={ Register, addCommunicationsListener, cacheCredentials, cidwadingRegistrations,
checklifStarted, endAllCalls, fireRegistered, firgRtering, fireUnregistered, fireUnregistering,
getContactHeadelQK, getFromHeader, getLocalHostAddress, getLocalVatdes,
getMaxForwardsHeader, init, initProperties, procBssponse, scheduleReRegistration, start,
startRegisterProce}s

Output: TheU; cluster shown above.

The full algorithm is also summarized in Figureeldw.

Output Clusters

Final Output

Log file

{el}
{e2} ;
{e3} union el, eb, 7, e3,

lusteri
fed} clustering e3, e2, ed ‘ e2, ed, eb, e8
fes) —>

{6}
{e7}
{e8}
{e9}
{E].D} Eﬁ, el

e9,ell

Figure 7 - Summary of the n-cluster algorithm

39



3.3 Summary

In this chapter, we have introduced our Event Ddpany Graph, as a way to model
behavioral and structural relations among evertig. 8vent schema was presented and the EDG was
formally defined with a total of eight relations.eWwhen described our methodology for performing
event filtering. The process was clearly outlingdlicating how we used sequence diagrams as a
means of specification elements to help us undeidtaw different components and events react and
relate to each other. The use of a clustering dhgorto perform event filtering was explained. We
also presented 2 algorithms that we have expergdenith, namely the one-cluster initial condition

and the n-cluster initial condition algorithms.
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Chapter 4

Use Case Identification

In this chapter, we will describe how our framewodn be used for use case identification.
This basically allows a system administrator tinsaaystem and identify what use cases are running
on a system. This can be helpful in a number ofatitns, for example in order to perform load
balancing, resource allocation and threat detertioimaWe outline our approach by presenting an
algorithm to achieve our goals. Finally we presarformal proof of the validity of the proposed

approach.
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4.1 Process Outline

4.1.1 Simple Use Cases

The Event Dependency Graph provides not only astolnodel for denoting relationships
between events produced by a software system $astimg) on log filtering for a selected use case bu
also, a way of identifying active use cases asstemy operates. We start by describing our approach
to identify simple use cases, i.e. use cases Hratoe represented as a simple sequential sequence

diagram, without any alternatives, options or loops

The process is composed of four main steps. Tls¢ step is an off-line step aiming to
compile a set of significant events per use caseddin be used as a golden comparison standard. The
second step of the process is for the operatoh@mionitoring process to select significaeed
events from the log files of the systenee8events are log file events for which there aresoea to
raise interest to either an operator or to an aatech monitoring process. The third step of the
process is to perform clustering and identify ia thg files all other events that are highly redatie
these initial seed events. The fourth step of tloegss is to compare precision and recall values of
the obtained cluster that contains all seed evegtinst the collection of beacon events per use ca
selected in the first step of the process. As #ecbn events per use case can be identified eff-lin
and may contain events in a significant level dhidethey are considered as the golden standard to
compare the clustering results against. The usesctmt correspond to the collection of beacon
events with which the obtained clustering resudtgenthe highest precision and recall are considered
as the possible active use cases in the systege 8ia approach is based on identification of dlsma
number of seed events and clustering can be pesfbmwith higher computational efficiency than

complex event processing and pattern matching, ptloposed approach has a benefit over the
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traditional rule based or pattern based approaches.outline of the algorithm for the use case

determination is provided below.

Algorithm: Use-Case Determination

Input:

- We have our Event Dependency Grapthat was created to model the relationships

between different entries in a log file.
- We have a set of collections of use case beaceam®

A ={Bs ... B,} for each possible use casg, U, ...U,. that could run on the system. These

beacon events are typically selected by an expent This process is only done once and is
then stored in a data repository on the system.

- A collection of log file seed even®= {s;, s, ...S} pertaining to the log we are currently
interested in.

- R a set of tuples spr, OB> , where pis computed precision value of the events of an
obtained cluster against the gt r; is the corresponding recall value , an@B; is the set of
beacon events observed in the obtained clusterRTiples are computed for each one of the

use cases stored on our system.

Output: A collection of potentially active uses casgsvhere 1< i<n

Process:

1. Letc be the clustet = {e; ... es, S1, &, ...& } that is one of the clusters obtained by utiliziie 1-

Cluster or N-Cluster log filtering process as di&sad in Chapter 3, and, %, ...s are the seed

events.

2. LetR = empty

3. For each collectioB, of use case beacon events

3.1 Compute Precision and Recall valuegrsp
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between the events of the seasidB, .
3.2 Update seR with <p,r>

4. We then compute a rank for each R tuple in ordeidémtify the running use case. The rank
formula aims at normalizing the precision/recalues obtained for each use case by multiplying the
precision by the ratio of beacon events to obsebeztton events. Beacon events refers to the number
of beacon events that were initially selected facheuse case. Observed beacon events refers to the
number of beacon events observed in the log filegbexamined. These values might not be the same
if , for example, the current running use case dhmtsun to completion or there’'s a compositior2 of
or more use casel.= RankR)) = {U; | +pi([Bi| / PBi]) > ri+p([Bj| / I0By]), for all j, 1<j<n}

5. At the end, the tuple with the highest rank idéesithe running use case. The algoritreturns

the rank ) for each tuple. The full algorithm can be summedias shown i&rror! Reference

source not found.

Repository of events per use Log file
case in our system le1} Clustering Output

{e2}
{e3}

{e4}
(e5} ‘ e2, e5,eb, e7

{e6}
{e7}
{e8}
{e9}
{el10}

Lse Cases

Compute recall/precision against
each use case inthe repository
using the rank formula

Identify Use
Match e [l By Rank
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Figure 8 - Summary of Use Case Identification Algathm

The algorithm above is customized in two ways. Tirg way is on the selection of the
clustering process that is used for computing &tesFor this work we have experimented with both
clustering processes namely 1-Cluster and N-Cluspgroaches. The results are reported in the
experiments section. The second way to customiabove algorithm is the selection of the use case
identification process that is utilized by tRankfunction in step 4 of the algorithm. For this wavk
select the use cases that correspond to beacots @&idor which a) the set has the highest value of
the summation of the recall value among all theB, ..B,. plus the precision value normalized by
the ratio of the number of beacon events by thelmurof observed beacon events.

The approach has been evaluated with a numberffefatit scenarios or combinations of
scenarios stemming from the SIP protocol with higte of success on the identification of the

system’s active use cases. The results are presenthapter 5.
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4.2 Complex Use Case

So far we have presented our use case identificafigorithm for simple use cases, i.e. use
cases that can be represented as a simple sedsgisence diagram, without any alternatives,
options or loops. In this section we prove thatenmymplex use cases can be handled using the same

algorithm as well. Complex use cases, as we déiigm, fall into two categories as follows:

1. Alternatives and Options —Alternatives are used to indicate a mutually exgkishoice
between two or more sequences [8]. Options are teséadicate a sequence that will

occur only if a certain condition is satisfied [8].

In both cases, we end up having a simple sequareents occurring, irrespective of which

paths are taken. This means that we get a seguemtigposition of methods, just like the simple use

case, and hence our algorithm would still work.

2. Loops —Loops are used to represent a repetitive sequdreents.

Loops in a sequence diagram can also be broken daena sequential composition of

methods, irrespective of the number of loop iterai Again, this can be treated just like the sémpl

use case, and hence our algorithm would still work.
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4.3 Proof

Intra-connectivity:

Intra-connectivity measures the degree of conniéggtimong nodes within the same cluster. A higher
intra-connectivity value is desirable as it indesathat the nodes that share similar properties are

clustered together. Formally, intra-connectivitpiesented as follows:

where:

u;: the number of intra-edge relations within thestkr

N; : the total number of nodes within the cluster

Inter-connectivity:

Inter-connectivity measures the degree of conniggtamong nodes in different clusters, i.e. cross-
cluster connectivity. A lower inter-connectivity lua is preferable as it indicates that clusters are
independent and more complete. Formally, inter-eotivity is presented as follows:

Si,]'

E.; = —2—
Y 2N;N;

where:

g;j: the number of inter-edge relations between clustarsl

MQ:

MQ measures the overall modular quality of theesysaind is represented as follows:

k k
Mo=1-%2a ! E
Q—kZ ¢ k(k—1)z &
i=1 — 3 ij=1
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Proof for the 1-Cluster Technique:

Let bl-1 be a beacon event for use case 1, anlijzldzte a beacon event for use case 2. We défine
andB? , the sets of all beacon events for use cases ,1a& @llows:
B' = {b},b},..,b}}

B* = {b%,bZ,..,b}?}

Let el be all events that can be clustered aroRhd and lete2, be all events that can be clustered
aroundB?. We defineE! and E?, the sets of all events that can be clusterednarawr initial
beacon events, as follows:

E' = {el,e},.., et}

E? = {e},€3,..,e4}

If we cluster around beacon events of use case kmaw that we’ll get all the events in the Bét

and similarly for use case 2. The question heresHat happens if we cluster a compound case
consisting of use cases 1 & 27? (i.e. a sequentdiaposition of use cases 1 & 2). In that case, we ca
have 4 sets of results, as follows:

Case 0:The output cluster contains all events in the BétandE?

Case 1:The output cluster contains all events in theEdeaind a subset of the events in theRet

Case 2:The output cluster contains a subset of the everite se! and all events in the sBt

Case 3:The output cluster contains subsets of bothEktandE 2

We claim that the MQ in case 0 would be greaten that in cases 1, 2 and 3. And next we are going

to prove that and state the conditions where thisncholds. We start by proving that MQ(case 0) is

48



greater than MQ(case 1), and therefore case 2 lhsinee it's just the dual of case 1. Then we will

prove that MQ(case 0) is greater than MQ(case 3).

1. Proof that MQ(case 0) is greater than MQ(case dr case 2):

MQ(case 0) = 1 <;+ l) v
2\ (n1+n2)? 2z2 2(nl1+n2)z
where:
nl: The sum of the cardinalities Bf and B!
n2: The sum of the cardinalities Bf and B>
x: The number of intra-edges within the output tdus
y: The number of intra-edges in the rest of théesys
Z: The total number of nodes in the rest of théegys
w: The number of inter-edges in the system
MQ(case 1) = 1 (L,+ LI) - L,,
2\ (n1+n2)2%  z72 2(n1+n2")z

where:

nl: The sum of the cardinalities Bf and B*

n2’: The sum of the cardinalities Bf and a subset af?
X": The number of intra-edges within the outputstdu
y’: The number of intra-edges in the rest of thetey

Z': The total number of nodes in the rest of thaean

w’: The number of inter-edges in the system
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Due to the migration of nodes from the output @ugb the rest of the system and vice-versa, the

following inequalities hold:

y'zy
Now our goal is to prove that MQ(case 0) > MQ(chseor:

! !

1 ( x + y) w S 1 x N y w
2\ (n1+n2)2 2z2 2(nl +n2)z 2\ (n1+n2)% 27?2 2(n1 +n2")7

!

which is equal to:

( X N y) w S x' N y' w'
(n1+n2)2  z2 2(n1+n2)z (n1+n2")2 2?2 2(n1 +n2")7

then by moving the expressions around:

( X N y) X N y' S w w'
(n1+n2)2  z2 (n1+n2)2  z'?2 2(n1+n2)z 2(n1+n2")z’

for RHS, the following holds:

! !

w w > w w
2(n1+n2)z  2(nl+n2)z' =~ 2(n1+n2)z  2(nl+n2 )z’

we know from the above inequalities that z' andan? greater than z and n2’, and therefore the

above inequality is true. As a result, now we rntegarove the following:

! ! !

( x N y) x N y S w w
(n1+n2)z  z2 (n1+n2")z  z'2 2(n1+n2)z 2(n1 +n2 )z’
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or:

! ! !

x x N y vy S w w
(n1+n2)2 @m1+n2)2% 22 z2° 2(nl+n2)7 2(n1 +n2 )Z’

similarly, we can replace n2 and z by n2’ and zf@dkbws:

! ! !

x x LYY w w
(n1+n2)% m1+n2)% 2?2 227 2n1+n2)z 2(nl+n2 )z’

now we can group the terms as follows:

x—x' y—y w—w

+ >
(n1 + n2")? z'2 2(n1+n2)z

As a result we can conclude that the MQ(case Q)ahilays be greater than MQ(case 1 or case 2) as
long as the sum of the reduction on intra-edges thes output cluster and the rest of the system is

greater than the sum of the reduction of inter-edmy@r the output cluster and the rest of the syste

2. Proof that MQ(case 0) is greater than MQ(case 3)

MQ(case 0) = % ( ad y) ad

@i+n2)? " 722) 7 2l +n2)z
where:

nl: The sum of the cardinalities Bf and B*

n2: The sum of the cardinalities Bf and B*

x: The number of intra-edges within the output &us

y: The number of intra-edges in the rest of théesys

z: The total number of nodes in the rest of théegys

w: The number of inter-edges in the system
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y ( 1)_ 1 X’ N y/ WI
Q(case 1) = 2\ (nl' +n2)2 " 722 2(n1 +n2")7'

where:

nl: The sum of the cardinalities Bf and B*

n2’: The sum of the cardinalities 8f and a subset af?
x": The number of intra-edges within the outputstu
y': The number of intra-edges in the rest of thetem

Z’: The total number of nodes in the rest of theteay

w’: The number of inter-edges in the system

Now our goal is to prove that MQ(case 0) > MQ(caser:

1( X N y) w S 1 x' N y' w'
2\ (n1+n2)?2 22 2(nl1+n2)z 2\ (n1"+n2"H?2 27 2(n1" +n2"z'

which is equal to:

( X N y) w S x' N y' w'
(n1+n2)?  z2 2(nl1+n2)z (n1'+n2"%2  z'? 2(n1" +n2"z'

then by moving the expressions around:

( X N y) x' N y' S w w'
(n1+4+n2)?  z2 (n1'+n2")2  z'2 2(n1+n2)z 2(n1’' +n2")z’'

for RHS, the following holds:

! !

w w > w w
2(n1+n2)z  2(nl'+n2)z' = 2(n1+n2)z  2(nl+n2 )z’

we know from the above inequalities that z’ , nd B are greater than z, nl1 and n2’, and therefore

the above inequality is true. As a result, now wecdto prove the following:
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( x N y) x' N y' S w w'
(n1+n2)2  z2 (n1' +n2)%  z'2 2(nl +n2)z' Z(nl +n2 )z’

or:

X x' y oy w w'

(n1+n2)2 (nl' +n2')? + 2 77 2(nl +n2)z 2(n1+n2 )z’

similarly, we can replace nl, n2 and z by n1’, a@d z’ as follows:

! ! !

X x N y y S w w
(n1'+n2")%2 (m1'+n2)2 22 22" 2(nl1+n2)7 2(n1+n2 )z’

now we can group the terms as follows:

x—x' y—9v' w—w

+ >
(n1’" +n2")?2 z'? 2(nl1+n2)z'

Again, we can conclude that the MQ(case 0) willatsbe greater than MQ(case 3) as long as the
sum of the reduction on intra-edges over the outfugdter and the rest of the system is greater than

the sum of the reduction of inter-edges over thpuicluster and the rest of the system.

Therefore, our algorithm would still work as it ivdlways produce a higher MQ value given the

above conditions. Chapter 5 further supports thipresenting experimental evidence.
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Proof for the n-Cluster Technique;

Since the n-Cluster algorithm performs a UNION agien at the end to join all output clusters
together, having a simple use case or a complejuéseial composition of two or more cases) one
will result in no change in the output. Therefore wan conclude right away that the n-Cluster

technigue will always be valid for both categoriésise cases.

4.4 Summary

In this chapter, we have presented how our framlewould be used to identify running use
cases on a system. This is of vital importanceysbesn administrators as it enables them to perform
threat determination, resource allocation and loaldncing tasks. We have formally presented and
proved our algorithm and also described how it waatill work with different variations of sequence
diagrams, including more complex ones with altéveat options and loops. Experimental results on
use case determination are presented in Chapidrese we were able to achieve a 100% accuracy in

identifying active use cases on a system.
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Chapter 5

Experiments

In this chapter, we validate our framework by preisgy the experimental results that we
have collected. We have conducted experiments onsets of data. The first set belongs to logs
collected by running real life scenarios of a Nligiplementation of the Session Initiation Protocol
(SIP), called the SIP Communicator. Logs were ctdié using Eclipse’s TPTP. The second set of
data is composed of a set of simulated log files tere automatically generated. In the first secti
of this chapter presents results related to thatiore of the Event Dependency Graph (EDG) and
clustering. Section 2 focuses on log filtering begenting the recall and precision results obtained
after filtering logs relating to different scenaridn the third section, we show the results ofigisiur
framework for use case determination. Finally, wespnt a stability analysis to validate our

approach.
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5.1 Event Dependency Graph Creation and Clustering

The Event Dependency Graph is created incrementatltylinear complexity on the number
of nodes of the dependency graph. Assuming thantimeber of relations is orders of magnitude
smaller than the number of nodes in the graphitba&tion of the graph can be done very efficiengly a
the system operates. In this work the EDG cregtimtess is based on a single threaded sequential
traversal of nodes and the establishment of elatafnexisting nodes of the graph with the newly
added node. However, this process can be gredtlyiapd in a production environment by hashing
and partitioning the graph with the purpose of edirig nodes that definitely do not relate with the
newly added node, and by performing bitwise openatiand masks for feature matching between the

newly added node and other nodes in the graph.

Experimental results related to the time requieddmpile an event dependency graph are
illustrated in Figure 9, where the time to compilerementally an EDG is exhibiting linear behavior.

The graph is compiled in steps of 10 events and total of 10,000 events (i.e. EDG nodes).

Incermental Time

9000
8000 L
7000
6000
5000
4000
3000
2000
1000 -

0 . . . . .

0 2000 4000 6000 8000 10000 12000

Time (ms)

Events

Figure 9 - EDG Incremental Creation Time
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The second step after the creation of the EvempeBdency Graph is to cluster this graph.
The time required to perform clustering varies agligg on the number of relations that exist in the
EDG and/or the number of relations that the usertsvtd include during the clustering process. This
depends on the scenario or the goal behind whigluser applies clustering. The total time required
for clustering, up to 500 events, is shown in Figwp. We observe that the time demonstrates an
exponential behavior. A similar conclusion can dieomade regarding Figure 11, which shows the
total time required to perform both EDG creatiord arlustering with up to 10,000 events. This
behavior is expected due to the time required téopa clustering. We will elaborate more on other

ways to reduce the clustering time in Chapter Gaasof the future work section.
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Figure 10 - Clustering Time
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Figure 11 - Total Time (Creation + Clustering)

5.2 Log Filtering

In order to validate the proposed log filtering aeduction approach, we have applied it to
the SIP Communicator system [66], which is parthef implementation of the Session Initiation
Protocol (SIP) [27] developed by the National & of Standards and Technology (NIST). SIP is
an application layer signaling protocol that is dug¢e start, modify and terminate various types of
sessions such as Internet Telephony calls. We TiB&® [22] to monitor and log all the events in the

system.

A total of eight different scenarios (summarized able 2) were studied, half of which were
basic scenarios and the other half were logicallioations of those basic scenarios. Each scenario
generates more than forty thousand events evehdm@implest case. For this experiment only related
to the scenario source code packages were monito@der to reduce the number of events per log

file. Packages were selected according to how aelethey are with the respect to a given use case,
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which was represented in the form of a sequenagatia An example of this is illustrated in Figure
12 and Figure 13. Figure 12 illustrates the SIP RiEhdard for the registration scenario, while
Figure 13 illustrates the corresponding modifiequemce diagram for that scenario based on the SIP
Communicator implementation. It is worth mentionitigat the process of selecting only specific
packages for monitoring by TPTP resulted in a asrsible reduction in the amount of events
logged. The next step of the process is to idert#gacon events in the system that relate to our
specific scenario. In our registration example,sth@vents should correspond to the REGISTER

message and the 200 OK response code accordinB’'soR3-C.

Table 2 - Summary of scenarios and corresponding beon events

Scenario Number of Beacon Events
Registratiol 2
Call Establishmel 3
Call Failure (No Answe 5
Call Terminatiol 2
Reg. + Call Es 5
Reg. + Call Fai 7
Reg.+ Call Est. + Call Tern 7
Call Est. + Call Tern 5
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Figure 12 — SIP RFC Registration

SipCornrnunicator SipManager EeigsterProcessing

1 : SipManaget)

2 1 register)

2 1 registed)

1

41 processOK)

Figure 13 - Simplified Actual Registration Seq. Dagram

From the sequence diagram we can clearly idert#y this corresponds to the register() and
processOK() methods, respectively. Those beacam&wvell be our initial criteria for performing the
clustering for this use case. The number of bea@mts varies by scenario, as shown in Table 2.
The Event Dependency Graph (EDG) is then built ftbenlog file, as described in Chapter 3, using

our Java-based tool. Our tool uses JGraphT [12]clwis an open-source Java graph library, to

60



construct the EDG. The final step is to perform thestering using the Bunch tool by utilizing the
hill climbing heuristic optimization option in Buhgcas empirical results showed that it outperforms
the genetic algorithms approach [63].

Similarly, sequence diagrams relating to the cstlhlelishment scenario are shown in Figure
14 and Figure 15. One can also clearly observedheantic similarity between the RFC protocol and

the methods, as shown for example in the INVITBaignd the invite() method.

User & Proxy User B

1 INVITE()

2 ¢ INVITE()

31100 Tryinal)

T |::|< 4180 Ringing{}l
; o :

5+ 180 Ringingt)

& 1 200 Ok

7 200 0K
= 8 ACKD

Figure 14 - SIP RFC Call Establishment
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Figure 15 - Simplified Actual Call Establishment Sq. Diagram

For these experiments, we have used both the eflaad the N-Cluster initial condition

techniques. The data illustrating the average nurobevents per cluster and the time to filter the

events for the different use cases is summarizaédlie 3.

Table 3 - Average Clustering Time per Scenario

Scenario Average Cluster Size Time (s) Number of Events
Registratiol 12 1 17¢€
Call Establishmet 3C 5 377
Call Failure (Nc
23 5 322
Answer)
Call Terminatiol 23 5 382
Reg. + Call Es 32 6 377
Reg. + Call Fai 35 4 32z
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Reg. + Call Est. + Ca
34 7 382
Term.
Call Est. + Call Tern 19 4 382

From the above results we observe that the timeinedjto perform the clustering operation
increases in a scalable manner as compared taithkar of events. Furthermore, in order to evaluate
whether the proposed clustering technique actudtgred events relevant to each scenario, we
computed a “golden-standard” to compare againgtttie work we considered this golden standard
to be the logs that can be obtained by runningstiemarios in debug mode. This was possible as we
had full access to the source code and we couldifgeéhe methods that had to be monitored.

By doing so, the system registered method entrytistiails that could then be compared against the
results obtained by the proposed clustering proddsse specifically, the clustering results were
compared against the golden-standard, and we cechpuecision and recall values for each scenario
using both of the proposed clustering techniquegireé 16 and Figure 17 illustrate the precision &
recall results for techniques 1 and 2 respectively.

From the obtained results we also observe that temthniqgues were able to achieve high
recall values for most of the scenarios. More dwedly, in the one-cluster techniques we have
obtained high precision values at a slight costeafall in some cases (see Registration and Call
Termination scenarios). This reduced recall magideeto the fact that these scenarios involve alsmal
number of sequence diagram and beacon eventshardustering few initial beacon events to start

with.

63



1-Cluster

100
90 —

70 —
60 —
50 A —
40 - —
30 A —

20 - —
10 - | OPrecision

M Recall

Figure 16 - Recall/Precision Using the One-Clusterechnique

Nonetheless, the one-cluster technique was alédehi@ve more than 90% recall in three of
the scenarios with fairly high precision rates. Thelusters (union) technique achieved a 100% Irecal
in three of the scenarios, however now at the @bgtecision (see Call Termination, Registratiod an
Call Failure scenarios). This is an expected regsithe union oh-clusters may introduce noisy

events that may have been clustered as part girtloess in each of threclusters.
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Figure 17 - Recall/Precision Using the N-Clustersé@chnique

5.3 Use Case Determination

For the evaluation of the use case determinatiatgss, we have experimented with a

number of different use case scenarios and conibimrsabf these scenarios to obtain actual event logs

from the NIST implementation of the Session InitiatProtocol. The experiments run in three major

phases. In the first phase we run the system wffareint use cases and obtained the maximum

number of events by running the system in the debode. These events were then considered to be

the golden standard for each use case and forrdathgoool for comparison. The second step of the

experimentation process was to run the systemknoavn use case, obtain events using the TPTP
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tool and selecseedevents. The third step was to perform clusteringedaon theseedevents and
compare the obtained cluster against the goldemdatd collection of events for each use case. The
evaluation of the process was based on whetharaimparison process could yield the use case that
run, among all the possible ones. In this resgbetuse case that corresponds to a cluster of golde
standard events that associates the most withitteéned cluster using the seed events is a possible
active use case. The obtained process evaluasutts indicated that precision and recall were ver
accurate metrics for determining the use caserthmst The results are illustrated in Table 4. lis th
table we considered four use cases each one attevéime. By selecting seed events (2 seed events
for the first, second and third use cases, andLle®ents for the fourth use case) performed clngter
and compared the results against the golden sthrdants for each use case. The results indicate
that the estimators for each case yield the highalsie when this case was actually the active case.
The same observation holds for the fourth use tlagels a sequential composition of the first three
use cases. The experiments also indicated thalgbeithm is stable in the sense that if the askls
some noisy or unrelated to the use case eventsitad seed events the algorithm is still able to

determine correctly the active use case.

Table 4 - Use Case Determination Results

Req. + Call Est. + Call

Active Use Case Reg. Estimator Call Est. Estimator Call Term. Estimator Term. Estimator
Req, 137 13 56 62
Call Est. 36 128 68 91
Call Term, 70 8 11¢ 22

Reg. + Call Est. + Call

31 64 90 121

Term.
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5.4 Stability Analysis

In order to test the stability of our approach,repeated the above experiments, however this
time using 2 different technigues. Both technigtrgso change the way we use beacon events, in
order to gain a better understanding of the stheagtl stability of the proposed framework, and also
know the optimal manner in which beacon eventssatected to achieve the best results. In the first
technique, we systematically decrease the numbbeaton events used for each scenario, until we
reach 50% of the original number of beacon evestsrpreted from the specifications. We then
compute the precision and recall values and preabentesults. The second technique also removes
beacon events for each scenario, but this timksd @alds random events from the log file. Precision
and recall results are also calculated.

Figure 18 and Figure 19 illustrate the precisiom aacall results obtained by running
technique 1 using 2 scenarios: Registration + Eailure and Registration + Call Establishment +
Call Termination, respectively. The first pair ofirb in each graph represents the original
recall/precision values that we obtain by runnihg system using all beacon events. The rest
correspond to the results obtained after removiegcbn events in order. As expected, the recall
drops significantly with the decrease in the numifebeacon events. In Figure 18, for instance, the
recall drops with a factor of more than 50%, evéierahe removal of only one beacon event. A
similar pattern is observed in Figure 19, wheraltatrops, with the exception of the 6 beacon event
case, more than 50%. The rest of the fluctuatinribe recall values can be attributed to the heciris

nature of the clustering algorithm.
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Surprisingly, however, the precision values ark wtiry high. In Figure 18, all of the test
cases have a precision value of above 80%. Evem apiproximately half of the original beacon
events, we get 100% precision, which means thatlavét have any noise in our cluster. Again, the
pattern is repeated with Figure 19, with precisiatues all over 80%. This gives us a good advantage
when trying to identify a running use case on ty&tein, as we know for certain what scenario the
events in our cluster pertain to, without, in moases, any noise. The main reason behind these
values seems to be due to the uniqueness of bea@mis for each scenario. The beacon events
selected where obtained from the specificationthefSIP communicator system, as indicated in the
SIP RFC. As a result, each scenario has a uniquefssgnals/methods, in other words beacon
events, making such precision possible. This adsses a vital point on the importance of selecting
the beacon events for each case. In the case & Eheommunicator, we were able to compare the
specifications against the RFC and identify thogents. However, we believe that in any system,
given the appropriate specifications, an expent aae identify all the important beacon events and

a result obtain satisfying results.

The second technique in our analysis aims at gpghie robustness of the proposed approach
by removing relevant beacon events from each siceaad adding random ones instead. Notice that
in this case, the total number of beacon eventsspenario remains fixed. Yet, the quality of the
resulting cluster(s) will be affected due to théuna of the random events, and the kind of relatidhn
any, that exist between them and the actual beawents. We applied this technique to the same
scenarios presented above, namely the Registrati@®all Failure and the Registration + Call
Establishment + Call Termination scenarios. Figgbeand Figure 21 show the precision and recall

results obtained, and they clearly highlight thenber of random events added in each case.
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Figure 20 - Precision/Recall using stability techmjue 2
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When we observe the above graphs, we notice aintanesting characteristic. kll cases,
there is a considerable drop in recall values, eafeer the addition of only 1 random event to the
cluster. In Figure 20, the highest recall valueiegdd with random events is 30%, which is 1/3 @&f th
original recall we get with all the actual beacoems. The same results are also found in Figure 21
where recall values reach a high of 27%, eventless 1/3 of the original recall. Precision valuss,
the other hand, exhibit very similar values to thsults obtained in technique 1. In both scenarios,
precision values never dropped below 80% in atl¢ases, even after adding more than 50% random
events to the original set of beacon events. Assalt, use case identification can still be achieve
with a high degree of accuracy.

These results, again, prove the importance of thecdn events selection process. By
carefully selecting the relevant beacon eventscavesuccessfully reduce large log files and be able
to keep the important entries at the same timewallg us to apply future analysis operations suh a
performing root cause analysis and other diagnmsiihis also provides evidence for the validity of
our log reduction technique. Using our algorithne were able to find the optimal criterion that
strikes a balance between achieving significantréauction and keep the data relevant at the same

time.
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5.5 Summary

In this chapter, we have presented the experimemslilts obtained by running our
framework using two sets of data. The first wasadatllected using TPTP by running real life
scenarios using the SIP communicator. The secomsdaw@llection of simulated log files that were
automatically generated. The results were focused4 omain areas, namely Timing, Filtering,
Scenario Identification and Stability. Timing retsulllustrated how long it takes to create our Even
Dependency Graph, and the time required to apm@ycthstering. We then presented precision and
recall computations after the filtering processxiNee showed how our framework could be used to
perform operations such as threat determinatiorpt®genting the scenario identification results
obtained, concluding that we can always identifyuraning scenario with a 100% accuracy. Finally, a

stability analysis was demonstrated to validateamproach and prove its robustness.
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Chapter 6

Conclusions

In this chapter, we provide some concluding remankgshe work presented in this thesis.
First, we discuss the contributions of this thedie then summarize our findings and results. Rmall

we outline some opportunities for future research.

6.1 Contributions

The goal of this work was to come up with a nevhitégue that would make the analysis of
large volumes of log files easier. Due to theiesipg analysis is very computationally expensive i
not impractical in some instances. Our solutiorthie problem was to introduce a technique that
would enable us to filter log files and achievengfigant reductions in terms of size. However, we
need to keep in mind that this reduction shouldafifict the important data contained within thig lo
file, otherwise there is no point of performing tealysis. To address this, our technique is based
filtering log files with respect to a specific usagse. By creating a model of event relations, thenE

Dependency Graph, we are able to capture structun@lbehavioral associations among different
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events in the log file. Then by identifying key et®from this file, beacon events, which relatéhi
use case being considered, we run a clusteringitdigothat groups relevant events together leading
to a reduced log file size. In this context, thejonzontributions of the proposed solution are as

follows:

» It defines the concept of the Event Dependency Kethpt is formed by a collection of
relations that aim to denote structural and behlal@ssociations between events in one or

more log files.

» It introduces a novel technique to filter or sliogs, using a heuristic clustering algorithm,
with respect to a particular use case. This enatletem operators to better focus their

attention to specific events that relate to specifierations.

» It proposes an approach for the determination tiff@wse cases running on the system

with a small number of initial seed events.

* The techniques presented in this work can be etilto aid root cause analysis and system

understanding.

6.2 Concluding Remarks

Many software maintenance tasks such as, root camgkysis or program understanding,
require analysis of dynamic system information oted from log files. However, for large systems
this may be a computationally expensive and in soames an intractable for practical purposes,
process. A possible solution is to develop techedquo filter the logged events so that logs can be

reduced in size and simplified in complexity anah ¢& easier analyzed. In this context, this paper
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discusses two event analysis approaches. Theafimbach aims to reduce log files to collection of
events that are mostly related to a given use ca@be. approach is based on pre-processing logged
events to form an Event Dependency Graph. The sisaty the graph is performed at per use case
basis, with initial conditions in the form of beacevents. The result is obtained by considering all
the events in the cluster that contains all inib@hcon events. The benefit of the proposed appisac
that in order to perform log filtering the usere aequired to have minimal information of the syste
being analyzed. The results obtained by analyziagous use cases in an implementation of the
Session Initiation Protocol indicate that not owly can achieve high precision and recall values but
also we can obtain a significant reduction in thuehber of events that we need to consider when
examining the operation of the system for any givea case. The second approach aims to utilize the
clustering technique to yield a cluster of eveiist itan be compared against a golden standard of
beacon events for various possible use cases afyftem. The results indicate that the approach can
be used to tractably identify in a running systbmactive use cases with a relatively small nurober

initial seed events.

6.3 Future Work

This work can be further extended in a number ofswé&irst, one could consider more innovative
techniques to identify beacon events. These teabsigould be based on the examination of the
system configuration as well structural and deplegtrinformation. A second possible extension is
the automatic or semi-automatic selection of thénwgd set of relations to be used for clustering
purposes at per use case basis. Lastly, since &g aubeuristic hill climbing clustering algorithm,

one could test our approach using other techniguel as genetic algorithms. Currently, we are

experimenting with this technique to reduce logéttexsh from Service Oriented systems. We are also
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looking into ways to incorporate goal trees togethi¢h our use case determination technique to aid
root cause analysis. The idea here is that we &&Tasolver on a goal tree to identify the possible
failing paths of a program. Then, using our usee adstermination algorithm, we can determine

which of these paths are actually executing ardi dutt the failing sub-goals by elimination.
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