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Abstract 

Large software systems are composed of various different run-time components, partner 

applications and, processes. When such systems operate they are monitored so that audits can be 

performed once a failure occurs or when maintenance operations are performed. However, log files 

are usually sizeable, and require filtering and reduction to be processed efficiently. Furthermore, there 

is no apparent correspondence of how logged events relate to particular use cases the system may be 

performing. In this thesis, we have developed a framework that is based on heuristic clustering 

algorithms to achieve log filtering, log reduction and, log interpretation. More specifically we define 

the concept of the Event Dependency Graph, and we present event filtering and use case 

identification techniques, that are based on event clustering.  The clustering process groups together 

all events that relate to a collection of initial significant events that relate to a use case. We refer to 

these significant events as beacon events. Beacon events can be identified automatically or semi-

automatically by examining log event types or event names against event types or event names in the 

corresponding specification of a use case being considered (e.g. events in sequence diagrams). 

Furthermore, the user can select other or additional initial clustering conditions based on his or her 

domain knowledge of the system. The clustering technique can be used in two possible ways. The 

first is for large logs to be reduced or sliced, with respect to a particular use case so that, operators can 

better focus their attention to specific events that relate to specific operations. The second is for the 

determination of active use cases where operators select particular seed events of interest and then 

examine the resulting reduced logs against events or event types stemming from different alternative 

known use cases being considered, in order to identify the best match and consequently provide 

insights on which of these alternative use cases may be running at any given time. The approach has 

shown very promising results towards the identification of executing use cases among various 

alternative ones in various runs of the Session Initiation Protocol.  
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Chapter 1 

Introduction 

 

1.1 Problem Description 

 

Large software systems are composed of a number of different run-time components, partner 

applications and processes.  In many situations, we need to audit and analyze the log files emitted by 

these different run-time components, partner applications and processes so that, we can perform root 

cause analysis, diagnostics, or simply to obtain a view of which use cases may be running at any 

given point for maintenance, planning, or evolution purposes. However, the analysis of events in log 

files is a computationally expensive and complex process, especially when many different 

components and software monitors are involved. Techniques that are being used to analyze log files 

that are emitted by different sources and in different formats, fall into two main categories. The first 

category is based on statistical analysis that aims to correlate events using data mining, advanced 

event correlation techniques and complex event processing techniques. The motivation behind these 

approaches is for the operator to be able to identify events that exhibit a high degree of co-occurrence 

and may also associate with a high degree of probability to a particular error or cause of system 

failure. In this category of approaches the monitoring system must have access to a large number of 

past cases so that statistically significant correlations can be established first.  
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The second category is based on pattern matching and on customized diagnostic rules that 

aim to associate structural patterns of these events to system failures, intrusions, deviations from the 

expected behavior, or other important system events that require the operator’s attention. Approaches 

in this category suffer from the issue of rule and pattern completeness, in the sense that very detailed 

rules or insufficient patterns may affect recall while loose patterns may affect precision.  

In this work, we take a different approach towards event filtering that can be used not only 

for log reduction but also for root cause analysis and system understanding. For example, in many 

situations operators need to know which use cases are running at any given time so that load 

balancing, resource allocation, and threat determination can be performed.  

The premise of the proposed approach is that events in a system, relate both to the particular 

active use cases involved and to the structural and deployment properties of the system. In this 

respect, we propose a collection of event dependence relations that require limited knowledge of the 

inner workings of the system, and can be easily extracted using simple monitoring techniques yet, 

they provide valuable information on the structure of events in large log files. Once such dependence 

relations are extracted and an Event Dependency Graph is created, we then propose the use of a 

clustering technique that groups together all events that relate to a collection of initial significant 

events that relate to a use case and we refer to as beacon events. The clustering technique is based on 

an hierarchical agglomerative clustering algorithm with initial conditions. Beacon events can be 

identified automatically or semi-automatically by examining log event types or event names against 

event types or event names in the corresponding specification of a use case being considered (e.g. 

events in sequence diagrams). Furthermore, the user can select other or additional initial clustering 

conditions based on his or her domain knowledge of the system. The clustering technique can be used 

in two possible ways. The first is for large logs to be reduced or sliced with respect to a particular use 

case, so that the operators can better focus their attention to specific events that relate to specific 
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operations. The second is for the determination of active use cases where operators select particular 

seed events of interest and then examine the resulting reduced logs against events or event types 

stemming from different alternative known use cases being considered, in order to identify the best 

match and consequently provide insights of which of these alternative use cases may be running at 

any given time. The approach has shown very promising results towards the identification of 

executing use cases among various alternative ones. 

 

1.2 Contributions 

The main contribution of this work is to address the problem of analyzing large volumes of 

dynamic system information, namely log files. This process can be very computationally expensive 

and in some cases intractable for practical purposes. One of the possible solutions, that we have 

adopted to address this problem, is to develop techniques to filter the log events so that logs can be 

reduced in size and simplified in complexity to allow for easier analysis. We define the concept of the 

Event Dependency Graph, and apply event filtering and use case identification techniques based on 

clustering. In this context, the major contributions of the proposed solution are as follows: 

• It defines the concept of the Event Dependency Graph that is formed by a collection of 

relations that aim to denote structural and behavioral associations between events in one or 

more log files. 

• It introduces a novel technique to filter or slice logs, using a heuristic clustering algorithm, 

with respect to a particular use case. This enables system operators to better focus their 

attention to specific events that relate to specific operations. 

• It proposes an approach for the determination of active use cases running on the system 

with a small number of initial seed events.   
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• The techniques presented in this work can be utilized to aid root cause analysis and system 

understanding. 

1.3 Outline 

The rest of this thesis is organized as follows: 

Chapter 2 provides a literature review of related work in the field. It covers four main 

subtopics, namely Dynamic Program Analysis, Clustering Techniques, Complex Event Processing 

and Monitoring Framework. 

Chapter 3 introduces the concept of the Event Dependency Graph, and formally defines the 

relations that constitute the model. The event filtering process is then outlined in more detail along 

with a description of the specification elements. Finally, algorithms summarizing the two techniques 

to perform log filtering using clustering are presented. 

Chapter 4 builds on the techniques presented in chapter 3, with the aim of determining active 

use cases running on a system. An algorithm is presented to outline the approach. Sequence diagram 

variations are also explained, and we outline how our algorithm can still be applicable with all of 

them. 

Chapter 5 shows the results obtained from applying the proposed techniques on two separate 

sets of data. The first set is a collection of logs obtained from running a collection of predetermined 

use cases on a NIST implementation of the Session Initiation Protocol. The second set of logs was 

obtained by simulating a complex system.  

Finally, Chapter 6 concludes the thesis by presenting the contributions of this work and 

discussing some of the future research directions. 
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Chapter 2 

Related Work  

 

This chapter provides an overview of the related work in the field. Four main areas will be 

discussed, namely Dynamic Program Analysis, Clustering Techniques, Complex Event Processing 

and Monitoring Frameworks. Dynamic Program Analysis deals with obtaining data from a running 

software system to verify certain properties of the system. The Clustering Techniques section 

discusses general clustering techniques with a special focus given to the Bunch clustering tool used in 

this work.The Complex Event Processing section discusses techniques for processing multiple events 

from diverse sources to achieve a certain objective. Finally, the Monitoring Frameworks section 

elaborates on some of the existing monitoring frameworks that enable software developers and tester 

to profile and monitor their applications.      

 

2.1 Dynamic Program Analysis 

 

Dynamic program analysis has been extensively used to understand the behavior of software 

systems. A number of different analysis approaches have been presented in literature. Bruegge et al. 

[4] designed a framework to support source code instrumentation of systems written in C/C++. K. 

Koskimies et al. [38] presented another tool, SCED, for source code instrumentation, with the 
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limitation of being able to monitor independent applications only. Yet both tools assume that access 

to the source code is available, which might not always be the case. Similarly, there are tools that use 

compiled-code instrumentation. An example of this is the Java bytecode instrumentation tool, BIT, by 

H. Lee et al. [88]. Profiling and debugging is another technique used in dynamic program analysis. 

This technique utilizes interfaces provided by modern development environments to facilitate runtime 

data collection. Examples of this include the JVMDI [59] and JVMTI [61], which replaces the earlier 

experimental JVMPI [60], for Java (the Eclipse Test & Performance Tools Platform, discussed in the 

next subsection, is based on JVMTI). Microsoft.Net framework also has a similar interface, the 

Common Language Runtime (CLR) Profiler [58]. M. Salah et al. [54] propose an approach, 

combining dynamic and static analysis, to map use-cases to specific sections of the source code. 

However this approach could result in limitations such as performance degradation with large 

systems, and it only works with programs executing within the same process space. The technique 

proposed in this paper is shown to be more scalable due to the fact that we use selective monitoring 

depending on a specific use case. Also, by using TPTP our technique works even with applications 

running on multiple hosts. 

 H. Safyallah et al. [75] present a technique to perform dynamic analysis of software systems, 

based on frequent trace patterns, to identify software features in the source code. This is done by 

instrumenting the code to produce function entry/exit listings. Again, access to source code is 

assumed here. A. Kinneer et al. [3] discuss an infrastructure, SOFYA, for providing dynamic 

analysis. The framework uses bytecode instrumentation to capture events and offers a feature to help 

developers specify program observation without the need for manual modification of the source code. 

S. Neginhal et al. [43] propose a technique, based on dynamic analysis, which visualizes the 

relationships between program elements graphically to aid program comprehension. They also 

developed a tool, CVision, allowing users to select specific parts of the code that are relevant to a 
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given concern. However the tool only works on programs written in C, and it assumes that the user 

doesn’t only have domain knowledge of the system, but also an understanding of the source code to 

be able to select the relevant portions of the program. The technique we propose could apply to any 

system as long as the event logs exist, and no access to or knowledge of the source code is necessary. 

G. Antoniol et al. [68] present an approach that collects system data and generates a probabilistic 

model of the system. The dynamic collection of program information utilizes web services as part of 

their proposed architecture, enabling them to support collection of program information even on 

distributed clients. In order to save space and improve efficiency, the proposed model collects only 

summary information, instead of detailed ones. Data is later compressed and encoded following a xml 

schema and sent to the main server for processing. An interesting variation was presented by G. A. Di 

Lucca et al. [69] where dynamic analysis was used to collect traces from web applications. The web 

applications analyzed were all dynamically generated based on a set of initial options specified by the 

user. In their work, they used the WANDA [23] tool for instrumenting web applications. WANDA 

aims at recovering the architecture of web applications, and represents it by generating the UML 

documentation of the system.  

A. Zaidman [87] suggested using dynamic analysis to aid program comprehension, with the 

goal of achieving that in a faster manner. Two techniques were discussed, one based on the frequency 

of execution, stemming from the observation that program traces will consist mainly of repetitive 

calls to a small number of methods. The second technique, based on runtime coupling, helps 

developers know program dependencies at runtime. Similarly, T. Systa [81] presented an environment 

that uses dynamic program analysis to aid software comprehension. However this work was based on 

dynamically analyzing java byte code. A prototype environment, SCED, was developed where 

scenario diagrams and state charts were generated. The tool also provides developers with the option 

of specifying what classes and methods to be traced. Since this step requires knowledge of class 
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interactions, a static analyzer, Rigi, is embedded to perform this. Rigi [26] is a reverse engineering 

tool that can identify all software artifacts in a system and the relations between them. It also supports 

running queries on the dependency graph so that unnecessary nodes/relations can be filtered out. The 

tool also applies string matching algorithms to find the required patterns within the event traces. This 

helps in raising the level of abstraction and decreasing the overall trace size. A similar tool to 

dynamically analyze Java programs was presented by J. Gargiulo et al. [55]. The tool, Gadget, uses 

profiling, filtering and clustering techniques to extract dynamic program structures, with the objective 

of making it easier to understand. This is done by first building a dynamic dependency graph of the 

classes and calling relationships, and then clustering that graph.  

O. Greevy et al. [18] present a very interesting technique to help software comprehension. 

They use dynamic analysis to achieve an explicit mapping between features and classes. In order to 

achieve this, they define what is known as feature traces as event traces collected by running a 

specific set of features in the program. By collecting a large number of feature traces, classes 

responsible for specific features can be identified. It’s worth noting that this approach is 

complementary, so features that require services from specific classes are also reported. T. Richner et 

al. [19] propose combining static and dynamic program analysis to support the creation of different 

views of object-oriented systems. Program traces obtained are stored in a logic database, allowing 

users to issue queries and obtain system information. In order to filter the large amount of program 

traces collected, they used their technique iteratively to refine the final view. So the results of the first 

view are used to filter the tracing options for the second iteration, and so on until a satisfiable view is 

reached. Along the same line of handling large execution traces, A. Hamou-Lhadj et al. [1] present a 

way to automatically achieve this. In their work, they try to filter out those traces that are related to 

utility classes from the ones that implement high-level concepts. The algorithm is based on fan-in 

analysis. A. Hamou-Lhadj [28] also presented a similar technique called trace summarization. The 
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technique involves taking a trace as input, and returning a summary of the main events involved as 

output. To perform this summary, similar techniques to those used in natural language processing are 

applied, such as extracting events based on naming conventions. This technique was later also semi-

automated [48] to allow faster trace summarization.  

B. Dufour et al. [6] introduced a framework to help developers understand the dynamic traces 

generated by their systems. They also introduced a set of metrics that are robust and architecture-

independent to help achieve this. These metrics can then be used to aid program comprehension, as 

they cover different aspects of the code including memory usage and data structures. A comparable 

tool was also developed at the University of Ottawa [2] to aid program comprehension by collecting 

execution traces. The Software Exploration and Analysis Tool (STEP), incorporates various filtering 

techniques to analyze the large volume of traces collected. Traces can be also visualized from within 

the Eclipse IDE, however they focus only on method calls. An interesting view on the subject was 

presented by T. Gschwind et al. [82], where runtime data is collected in order to analyze the dynamic 

behavior of software systems. The developed tool, A Reverse Engineering (ARE) tool, collected 

parameter and object values to enable developers perform reflective analysis on dynamic method 

invocations. Other researchers have looked into ways to help software maintainers through dynamic 

analysis. The Daikon [52] project for example, aims at discovering program invariants by analyzing 

the execution traces. This would help developers identify what sections of the code need to be 

preserved when performing code modifications.  

Dynamic program analysis was also used to identify design patterns in code. In their work, L. 

Wendehals et al. [67] compare the collected traces against a behavioral model, sequence diagram in 

their case. The sequence diagram is converted into deterministic finite automata, then the method call 

sequence is tested to make sure it conforms to the automata. Their approach also incorporates data 

collected by a static analyzer to perform the pattern identification. Furthermore, literature has given 
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some attention to filtering/storing data generated by dynamic program analyzers. R. Brown et al. [70] 

introduce STEP as a framework for storing program trace data. STEP tries to standardize the way 

developers handle their trace data. The system provides methods to allow the encoding of trace 

information in a compact flexible format. The system includes a trace data definition language as well 

to simplify the encoding of data. In [40] , an event-processing language is presented that is based on 

regular expressions. EventScript’s main goal is to provide real-time response to incoming events. 

 

2.2 Clustering Techniques 

 

Clustering aims at combining observations into clusters/groups, based on a common 

characteristic that they all share [79]. This helps in achieving a better understanding of the underlying 

observations. The research community presented a number of different clustering techniques. One of 

the earliest attempts was presented by L. Belady et al. [20] where they presented an automatic 

approach to software clustering. Their goal was to reduce the complexity of software systems, by 

providing a measure of the complexity based on information obtained from the system’s 

specifications. R. W. Schwanke [78] introduced a tool called Arch that offers a semi-automatic 

clustering approach with the aim of providing developers with modularization advice to help them 

improve existing code. Arch tries to enforce a good software engineering practice by minimize the 

coupling between procedures in different modules, and maximize the cohesion of procedures within 

the same module. Later on Schwanke et al. also explored the use of neural networks to cluster 

software [29]. 

 The Rigi tool presented by Muller et al. [26] employs a number of clustering heuristics to 

measure the strength of interfaces across the different subsystems. In their work, they also used the 
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module names as part of the clustering criteria. S. Choi et al. [76] present a fully-automatic clustering 

algorithm that is based in a directed resource flow graph. A resource flow graph represents modules 

as nodes, and arcs denote that the two connected modules provide resources to each other. Similar to 

Schwanke’s work, their work also focuses on maximizing the cohesion of modules. C. Lindig et al. 

[80] developed a modularization technique that is based on mathematical concept analysis.  K. Sartipi 

and K. Kontogiannis et al. [42] [39] presented a clustering framework with the goal of recovering the 

architecture of a software system. In their work, they used data mining techniques to extract 

associations, data and control flows, among components. These associations are then annotated on a 

graph, and this information is used to apply the clustering.  

V. Tzerpos and R. C. Holt [31] presented a clustering algorithm, ACDC, which clusters 

software systems to help program comprehension. This is done based on a set of subsystem patterns 

that have shown good program comprehension properties. They also presented a heuristic algorithm 

to help compute a software clustering metric evaluating the similarities of two decompositions [32]. 

Along the same lines, they also formally defined the stability of software clustering algorithms and 

evaluate the stability of different clustering algorithms presented in literature [33]. 

     J. M. Neighbors [65] presented a technique to manually identify software subsystems to 

extract reusable components. To achieve this, interconnections between components, compile-time 

and link-time, were examined. A. Lakhotia [46], in an attempt to unify clustering techniques, 

designed a framework defining a set of symbols and terminologies to describe any clustering 

approach, including its inputs, outputs and processing. One of the advantages of this work is that it 

makes comparing different clustering techniques easier, and hence their effectiveness can be 

evaluated. N. Anquetil and T. Lethbridge [47] presented a clustering technique that uses naming 

conventions as its clustering criteria, showing some promising results.    
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Clustering algorithms fall into two main categories namely hierarchical and partitioning 

algorithms. Hierarchical algorithms find successive clusters using previously established clusters and 

can be further subdivided to agglomerative and divisive. Agglomerative clustering is done in a 

bottom-up fashion, where items are iteratively put in the cluster with the most level of similarity. 

Divisive clustering is top-down, so items are all together at the beginning, and are then iteratively 

split to form the clusters. The partitioning clustering algorithms on the other hand typically determine 

all clusters at once [83].  

 S. Mancoridis et al. [16] [73] [7] [74] treat software clustering as a search problem, and apply 

search heuristics to solve it. At first, their clustering technique assigns entities randomly to different 

clusters. Then the search heuristics are applied to move the entities around, and create new clusters if 

necessary, until better clusters are achieved. The search heuristics are based on hill climbing and 

genetic algorithms (to overcome the local optima problem of hill climbing algorithms). They have 

developed a tool, Bunch [63], which incorporates their clustering techniques.  

Bunch was the main tool we used to perform clustering during our work. It was designed to 

be flexible, portable (students and researchers can easily install and use the tool) and fast (execution 

speed should be fast to allow clustering of large systems). The objective function employed in the tool 

aims at maximizing cohesion and minimizing coupling across the software modules involved. 

However, and perhaps this is one of the best features of Bunch, its design allows researchers to 

develop their own objective functions and clustering algorithms, and incorporate them into the tool.  

The tool also supports the creation of abstractions of source code by producing a high-level view of 

the system structure. The main goal behind this was to aid software developers and maintainers 

understand the structure of large and complex systems. We have used Bunch to cluster our Event 

Dependency Graph (discussed in the next chapter) to generate events that are highly relevant to a 

particular use case. 
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2.3 Complex Event Processing 

 

Complex Event Processing (CEP) is an event processing concept that deals with techniques 

for processing multiple events from many diverse sources with the goal of identifying the meaningful 

events within large data sets of collected events. CEP utilizes a variety of techniques such as detection 

of complex patterns, event correlation and abstraction, use of event type hierarchies, as well as 

relationships between events such as causality, membership, and timing. In [41] and in [50] the 

challenges and the themes of CEP as these are applied in large software systems are presented. The 

research community has also developed several prototype approaches such as the Aurora [15] and 

Stream [25] projects.  

S. K. Chen et al. [72] present a set of adaptive algorithms which help convert structural 

events into simple name-value pair events that can be later fed into legacy rule-based event 

correlation engines for Business Performance Management (BPM). Complex events are presented in 

xml, and then mapped into a smaller set of name-value pairs. In their implemented BPM 

infrastructure, the Enterprise Service Bus that is used to send real time events to the system does not 

only get data from external sensors, but also designed to provide a feedback for itself making the 

engine both an event consumer and a producer. The events are generated based on predefined 

aggregation and filtering rules. D. C. Luckham [51] introduced the RAPIDE system architecture as an 

event pattern language and a rule engine based on the collected events. A similar approach was 

presented by Y. Magid et al. [86] where a partially implemented tool for Complex Event Processing 

in real time applications was presented. The tool, given a set of rules, generates code for a CEP 

application. It extends IBM’s Active Middleware Technology (a rule-based CEP engine for non-real 

time applications) to the real-time domain. However, it introduces some restrictions on the IBM 

Active Middleware Technology to allow it to handle real-time applications. The authors also discuss 
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different SOA applications that have real-time requirements where this tool may be helpful. A neat 

feature of this tool is that after a set of rules is given, the tool can calculate the time required to 

execute the code it generates, and so determine if it’ll still meet the application’s real-time deadlines. 

 L. Brenna et al. [44] introduce Cayuga, an event processing engine developed at Cornell 

University. Some advantages of the system include its ability to scale with the arrival rate of events. 

The system is designed in such a way that each event has its own relational schema, allowing users to 

execute queries using a SQL like language. The engine also has a trace visualize displaying how 

events are matched to each other. Borealis [13] is among the other Complex Event Processing 

frameworks presented in literature. Extending Aurora’s [15] core functionality as an event stream 

processing engine, Borealis is intended to be a second generation stream processing engine providing 

capabilities such as dynamic revision of query results, dynamic query modifications and highly-

scalable optimizations. A comparable technique was presented in [84], where the authors defined 

continuous queries, the concept of evaluating queries on streams of data. They also introduced an 

architecture for handling continuous queries, taking into considerations issues that deal with 

semantics and efficiency. 

  A. S. J. Schiefer [77] proposed a new event processing infrastructure to handle real-time 

Business Intelligence called the Sense And Response Infrastructure (SARI). The main goal behind it 

is to enable the support of real-time business processes over three types of data, namely past, present 

and future –oriented. Past-oriented data refers to the original documentation of the system, its 

business processes and its history. Present-oriented data deals with the ability of the system to 

respond quickly to varying requirements and handling risks. Finally, future-oriented data represents 

how the proposed infrastructure detects trends and cycles. This work was also related to the previous 

work done by A. S. J. Schiefer and C. McGregor in [56]. In their work, they introduced an 
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architecture to that enables the correlation of events with respect to a business process. The 

architecture also allows users to apply their own defined functionality to the events. 

 

2.4 Monitoring Frameworks               

                   

In the area of monitoring frameworks, the Eclipse Test & Performance Tools Platform 

(TPTP) Project [22] is an open platform providing software developers and testers with robust tools 

enabling them to address the entire test and performance life cycle. It is based on the Java Virtual 

Machine Tool Interface (JVMTI) [62]. It supports a wide range of features from early software testing 

to production monitoring, including test editing and execution, monitoring, tracing and profiling, and 

log analysis capabilities. It is tightly integrated with Eclipse, which allows for the profiling of 

applications from within the Eclipse IDE. In addition to its ability to profile local applications and 

complex applications running on multiple hosts on different platforms, it also supports embedded 

systems. We have used TPTP in our work to monitor system events and generate them in a Common 

Base Event (CBE) [34] log format for processing. 

 In addition to TPTP, a number of monitoring frameworks exist for almost all major 

programming languages. The Java PathExplorer [71] (JPAX) is one of the tools used to monitor java 

applications. The tool automatically instruments Java bytecode, and sends out events to the 

monitoring module. The monitoring module can then be used to test the incoming events against the 

system’s high level requirement specifications and against lower level error detection procedures. The 

formal high level requirement specification can be provided in many ways such as temporal logic 

formulae. Low-level error detection typically tries to find concurrency related errors in the code, or 

point out their potential existence. These include errors such as race conditions and deadlocks. 
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Another Java monitoring framework is the one presented by M. Kim et al. in [53]. The 

Monitoring and Checking (MaC) framework provides a way to verify the correctness of Java 

programs during run-time. This process consists of 3 stages: 1) Program variables and function call 

data are extracted from the code. 2) The extracted data is then correlated to the requirements 

specification of the system. 3) Finally, the occurrence of these events is verified during run-time to 

ensure that the system behaves according to the specifications. A similar framework was also 

presented by Y. Cheon [11] named Runtime Assertion Checker (RAC), to enable checking Java 

programs at runtime. Developers annotate their code using the Java Modeling Language [45] (JML), 

to add their specifications. This is then translated into Java bytecode, and the specifications are 

transparently checked during runtime.  

Java with assertions [14] (Jass) is another framework that allows developers to test if their 

systems comply with the specifications. The way the Jass tool works is very similar to RAC. A 

compiler is used to translate annotated code into Java, and then specifications are checked 

dynamically during runtime. An additional feature of Jass is that it checks trace assertions, ensuring 

that methods were invoked in the right order and time.  A. K. Mok and G. Liu [49] presented the Java 

Runtime Timing-constraint Monitor (JRTM) tool, which allows for the monitoring of timing 

constraints in real-time systems. Developers specify timing constraints using a Real Time Logic 

(RLC) based language along with the events of interest. Then a monitor tracks the occurrence of each 

event by storing its name and time, so that synchronization can be enforced.  

Many monitoring frameworks also exist for systems written in C/C++. One of these 

frameworks is BEE++ [5], which was designed to allow monitoring of distributed applications written 

in C/C++. The framework also provides visualization and debugging classes. Developers manually 

instrument their code by adding sensors. When a sensor is encountered during program execution, 

data related to the fired event is sent to all the analysis tools (observers) that bound themselves to that 
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sensor. This takes the load of the executing nodes in the distributed environment, as the event 

processing is moved to a separate node. Sentry [24] is another C monitoring framework. It is designed 

to run as a separate process in parallel with a running C program. Sentry observes the execution of the 

C program, and ensures that it conforms to its specified behavior. Detected errors are reported back to 

the running application. C. L. Jeffery et al. [10] presented Alamo, a dynamic monitoring framework 

for C applications. The way it works is conceptually very similar to Sentry. The monitor, called 

Execution Monitor, executes the target program, and when the execution is over gets back a report of 

all the events that occurred. Monitoring points are identified from the parse trees, using the C 

Instrumentation tool CCI [36]. More general monitoring frameworks also exist, like Temporal Rover 

[17] for example. It enables developers to annotate their Java, C/C++ and Verilog codes using 

properties specified in Linear Time Temporal and Metric Temporal Logics. The tool’s parser then 

converts annotated programs based on their original language, and the program is validated during 

execution using the newly generated code. 
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Chapter 3 

Event Processing  

 

This chapter describes how our framework processes events. In Section 3.1, we will introduce 

the Event Dependency Graph (EDG) that is used to represent relations between events. We present 

the event schema first, and then a total of eight relations will be presented and formally defined. The 

next step after the creation of the Event Dependency Graph is event filtering. This process will be 

described in more detail throughout Section 3.2. An overview of the process will be provided in 

section 3.2.1. Section 3.2.2 describes some of the different specification elements used in the field, 

and explains how we are using sequence diagrams to filter events. Section 3.2.3 describes how 

clustering is used to filter events, and presents the 2 algorithms that we have designed to achieve this. 

Finally, a short summary of the chapter is presented in Section 3.2.4. 
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3.1 Event Dependency Graph 

3.1.1 Event Schema 

 

In order to be consistent and to comply with standards, we have decided to adopt IBM’s 

Common Base Event (CBE) [34] format for encoding events in our log files. Eclipse’s TPTP also 

provides a feature allowing developers to monitor applications and log events in CBE format. Logs 

are all generated in XML format, following the CBE schema.  

The CBE model [9] has a 3-tuple structure allowing it to convey information about the 

module reporting a particular situation, the module affected by the situation and data about the 

situation itself. Due to the fact that the reporting and the affected modules are often the same, the 

CBE schema forces only having the information relating to the reporting module. The third section in 

the structure, data about the situation, is mandatory.  

 Each entry (event) in the CBE log file has a number of attributes that containing important 

information needed for our analysis. These attributes are all summarized in Table 1. However, since 

this information is not enough for us to build our Event Dependency Graph, we had to add extended 

elements for each event in the log file, a feature that is supported by the CBE schema. We introduced 

5 extended elements as follows: 

<sessionID> - contains the current session ID that the event belongs to, if any. 

<features> - contains a collection of features that the event has. These features are typically 

user defined, as will become clearer in the next section. 

<tasks> - contains a collection of tasks indicating that the event is originating or is affecting a 

particular task in a workflow or a business process. 
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<logicalResource> - contains a collection of resources indicating that the event is 

originating or is affecting a particular resource related to the logical point of view of the system 

architecture.  

<infrastructuralResource> - contains a collection of resources indicating that the 

event is originating or is affecting a two (or more) resources that are topologically or 

infrastructurally related to each other.  

<deployedResource> - contains a collection of resources indicating that the event is 

originating or is affecting the same deployed resource.  

<data> - contains a collection of data elements indicating that the event relate to a particular 

data element. This is typically a persistent storage repository.  

 

These extended attributes could be manually or automatically added to the existing log file, 

using information from varying sources such as the system specifications or the Configuration 

Management Database (CMDB). Some of these attributes can also be inferred from the module 

reporting the situations, for example events that originate from JDBC modules would have a data 

element.  It is also worth noting that all of these extended elements are optional depending on the 

scenario, since the user could specify what relations to include before processing and clustering the 

Event Dependency Graph.  
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Table 1 - Summary of CBE attributes 

Attribute Type Description 

creationTime String Event date/time stamp 

globalInstanceID String 
A value that uniquely 

identifies an event 

Msg String 

A human readable text 

providing info about the 

event 

elapsedTime Long 
Time interval between 

identical event instances 

Priority Integer 
A number from 0-100 

indicating an event’s priority 

repeatCount Integer Count of identical events 

Severity Integer 
A number from 0-10 

indicating an event’s severity 

Application String 
Business name of a 

component 

Component String 
Component/Module 

generating the event 

Location String 

Physical address of the 

generating 

component/module 

processed String 
Process ID of the current 

process generating the event 

threaded String 
Thread ID of the current 

thread generating the event 
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The complete event schema can be summarized as a class diagram as shown in Figure 1. This 

is a modified version of the CBE schema presented in [9]. The diagram shows all of the attributes we 

have used in our approach, as well as the relations among different entities. The class ‘Event’ 

represents the root element in the CBE schema, containing basic information about an event such as 

its creation time and global instance ID. Each event would then have a source component that it 

affects, and optionally a reporting component. Since often both these components are the same, the 

multiplicity of the reporting component is 0..1 to indicate that it is optional. The extended element 

class represents all the extended elements that an event could have. Each extended element can also 

have a number of extended elements for itself, to follow the CBE schema. Finally, the situation 

element represents the mandatory CBE element containing information about the reporting situation. 

In our work, however, situation information is not used. 

 

 

Figure 1 - Complete Event Schema Class Diagram 
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3.1.2 Event Dependency Relations 

 

The cornerstone of the proposed log filtering and reduction technique is the Event 

Dependency Graph (EDG) that is formed by a collection of relations that aim to denote structural and 

behavioral associations between events in one or more log files. We define eight event dependency 

relations that are presented in more detail below. 

 

Coincidental Dependency – Events 1 and 2 are said to be coincidentally dependant if they share a 

collection of features that the user defines. Formally, this is defined as: 

��� ��1, �2
 = � ��1, �2
|∃ �1 ∈ �1 ∧  ∃ �2 ∈ �2 

 ∧ ∀ � ∈ � ∧ � �����1, �
 ∧ �����2, �
�} 
                     
where: 

e1,e2 are single events 

E1, E2 are log files 

f  is a a single feature 

F is a collection of user defined event features 

Has(x,y) is a predicate with the interpretation “event x has feature y” 

 

Logical Dependency – this type is sub-divided into: 

a) Workflow Dependence – Events 1 and 2 are said to have workflow dependence if they are 

produced or consumed by the same task on a workflow or a business process. Formally, this is 

defined as: 

��� ��1, �2
 = � ��1, �2
|∃ �1 ∈ �1 ∧ ∃ �2 ∈ �2  
∧  ∃ � ∈ � ∧  �����1, �
 ∧   ����2, �
�} 
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where: 

t  is a single task in a workflow, 

T is a collection of tasks in a workflow of business process, 

O(x,y) is a predicate with the interpretation of “event x is produced or consumed from task y”. 

 

b) Architectural Dependence – Events 1 and 2 are said to have architectural dependence if they 

originate or consumed by the same resource as this is seen from the logical point of view of the 

system architecture. Formally, this is defined as: 

� ���1, �2
 = � ��1, �2
|∃ �1 ∈ �1 ∧   ∃ �2 ∈ �2 

 ∧  ∃ ! ∈ " ∧ �#��1, !
 ∧  #��2, !
�} 
                                  
where: 

r is a component of the logical view of the system’s architecture, 

R is the collection of components in the logical view of the system’s architecture, 

U(x,y) is a predicate with the interpretation of “event x is produced or consumed by resource y”. 

 
Topological Dependency – Events 1 and 2 are said to be topologically dependent if they originate 

or consumed by two different resources that belong to the same infrastructure component (e.g. a 

bean container). Formally, this is defined as: 

��� ��1, �2
 = � ��1, �2
|∃ �1 ∈ �1 ∧ ∃ �2 ∈ �2 ∧  ∃ !1 ∈ " ∧  ∃ !2 
∈ " ∧   �#��1, !1
 ∧   #��2, !2

} 

where: 

r1, r2 are components that are topologically or infra-structurally related in the logical view of the 

system’s architecture, 

R is the collection of components in the logical view of the system’s architecture, 

U(x,y) is a predicate with the interpretation of “event x is produced or consumed by resource y”. 
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 Temporal Dependency – this type is sub-divided into: 

a) Exact Dependence – Events 1 and 2 are said to have exact dependence if they have the same 

timestamp. The timestamp can be one of two types, logical timestamps and physical timestamps. 

Formally, this is defined as: 

�����1, �2
 = ���1, �2
|∃ �1 ∈ �1 ∧  ∃ �2 ∈ �2 
 ∧ �$#� �����1
, ����2

} 

 
where: 

ts(x) is a function symbol that indicates the logical or physical timestamp of event x. 

 

b) Range Dependence – Events 1 and 2 are said to have range dependence if they occur within a 

specified time frame [t1, t2]. Formally this is defined as: 

                     �"���1, �2
 = � ��1, �2
|∃�1 ∈ �1 ∧ ∃ �2 ∈ �2 
 ∧ �1 ≤ ����1
 ≤ ����2
 ≤ �2} 

 
 

c) Approximation Dependence – Events 1 and 2 are said to have time approximation dependence 

if they approximately have the same timestamp. The range of approximation can be redefined 

for every pair of events as required. Formally this is defined as: 

�&���1, �2
 = � ��1, �2
|∃ �1 ∈ �1 ∧  ∃ �2 ∈ �2 
∧ ����1
 ≅ ����2
} 

    
Procedural Dependency – this type is sub-divided into: 
 
a) Process Dependence – Events 1 and 2 have process dependence if they originate or consumed 

by the same process. Formally, this is defined as: 

()���1, �2
 = � ��1, �2
|∃ �1 ∈ �1 ∧ ∃ �2 ∈ �2  
∧ ∃ �*+ ∈ (, �,��1, �*+
 ∧ ,��2, �*+

} 



 

 26 

 
 

where: 

pid is a process of the system with unique process identifier id, 

P  is the collection of processes, 

B(x,y) is a predicate with the interpretation of “event x is produced or consumed by process y”. 

 
b) Container Dependence – Events 1 and 2 have container dependence if they are produced or 

consumed from two processes operating within the same pool of processes. Formally, this is defined 
as: 

(����1, �2
 = � ��1, �2
|∃ �1 ∈ �1 ∧ ∃ �2 ∈ �2 ∧ ∃ �*+1 ∈ �- ∧  ∃ �*+2 
∈ �- ∧ �,��1, �*+1
 ∧ ,��2, �*+2

} 

where: 

 pid is a process of the system with unique identifier id, 

Co  is the collection of processes in a container 

B(x,y) is a predicate with the interpretation of “event x is produced or consumed by process y”. 

 
Transactional Dependency – Events 1 and 2 are said to be transactionally dependent if they relate to 

the same process ID and same session ID. Formally, this is defined as: 

(����1, �2
 = � ��1, �2
|∃ �1 ∈ �1 ∧  ∃ �2 ∈ �2 ∧  ∃ �*+
∈ �! ∧ �,���1, �*+, �*+
 ∧ ,��2, �*+, �*+

}  

 
where: 
tid is an observed transaction with unique identifier id 

Tr  is the collection of observed system transactions 

Bs(x,y, z) is a predicate with the interpretation of “event x belongs to transaction y and relates to 

session z of the transaction”. 

 
Communicational Dependency – and this is sub-divided into: 
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a) Data Dependence – Events 1 and 2 have data dependence if they relate to the same data. 

Formally, this is defined as: 

                        �����1, �2
 = ���1, �2
|∃ �1 ∈ �1 ∧ ∃ e2 ∈ E2 
 ∧ �A�e1, d
 ∧ A�e2, d

} 

where: 

A(x,y) is a predicate with the interpretation of “event x relates to operations on the data element 

d” (e.g. CRUD operations). 

 
b) Resource Deployment Dependence – Events 1 and 2 have resource dependence if they operate 

or affect the same deployed resource. Formally this is defined as: 

�"���1, �2
 = ���1, �2
|∃ �1 ∈ �1 ∧ ∃ e2 ∈ E2 

∧ ∃ !+ ∈ "+ ∧ �U�e1, !+
 ∧ U�e2, !+
�} 

where: 

rd is a component of the logical view of the system’s architecture, 

Rd is the collection of deployed run-time components,  

U(x,y) is a predicate with the interpretation of “event x is produced or consumed by deployed 

resource y”. 

 
Correlational Dependency – Events 1 and 2 are said to be correlationally dependent if in the 

observed history of the system these events occur together within a certain probability or frequency. 

This definition can also be extended to patterns of events that is a pattern of events P1ei, can exhibit 

correlational dependency with pattern of events P2ej. Formally this is defined as:      

�"���1, �2
 = ���1, �2
|∃ �1 ∈ �1 ∧  ∃ e2 ∈ E2  
∧ P4-��1, �2
 ≥ �} 

                         
where: 

e1, e2 are events or patterns of events and,  
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Pco is the probability or frequency that e1 and e2 co-occur in a series of past observations.  

3.2 Event Filtering 

3.2.1 Process Outline 

 

The proposed log filtering and reduction process is composed of two main phases. A block diagram 

illustrating the outline of the log filtering and reduction process is depicted in Figure 2. 

 

 

Figure 2 - Log Filtering and Reductino Process for a Selected Use Case 

 

In the first phase the logs are reduced by selecting events that pertain to packages, components, 

applications and resources of interest as these are implied by the sequence diagram of the specific use 

case being considered. This part of the process is not restricting the user to consider any other 

additional package, component, application or resource he or she considers to be of interest. The 

result of this phase is a collection of log events to be analyzed for the use case being considered and 
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the creation of an Event Dependency Graph. A configuration file is providing the relationships that 

the user wants to consider for any given analysis. An excerpt of the clustering configuration file is 

illustrated in Figure 3. As shown in the excerpt below, the configuration file allows the user to specify 

3 main configuration elements, namely the components/software packages of interest, a time frame, 

the approximation factor (for the approximate temporal dependency) and the PIDs of the processes 

being monitored. EDG relations matching one or more of the configuration criteria would have higher 

weights accordingly, and as a result are more likely to be clustered into our output cluster. 
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<?xml version="1.0" encoding="UTF-8"?> 

<FilteringCriteriaConfig> 

 

     <Components> 

          <Component>net.java.sip.communicator</Component> 

          <Component>net.java.sip.communicator.sip</Component> 

          <Component>net.java.sip.communicator.sip.security</Component> 

      </Components> 

 

      <TimeWindow> 

           <startTime>2009-03-23T22:18:15.768Z</startTime> 

           <endTime>2009-03-23T22:19:17.253Z</endTime> 

           <approximationFactor>0</approximationFactor> 

       </TimeWindow> 

 

       <Processes> 

           <Process>1</Process> 

           <Process>4</Process> 

       </Processes> 

</FilteringCriteriaConfig> 

Figure 3 - Clustering Configuration Specification 

 

In the second phase of the process, a number of beacon events are selected manually or 

automatically from the logs to be analyzed based on lexicographical similarity with events appearing 

in the sequence diagram of the use case. It is noted that one event in the specification may relate to 

one or more beacon events or event types appearing in the log files to be analyzed. The user may also 
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decide to consider any other beacon event he or she considers to be of interest. Finally, the event 

dependency graph along with initial cluster conditions stemming from the beacon events is clustered 

to produce the final filtered logs.  

 

3.2.2 Specification Elements 

 

Over the years, the software engineering community has proposed a number of different 

software specification models. One of the most useful specification models for transactional systems 

are sequence diagrams. Even though these models have been mostly used for requirements 

specifications, they also denote important relationships between processes and events which are 

consumed, produced or affect these processes. In this work, we consider that log files  generated by 

various components of a system can become very complex and may include a substantial amount of 

noisy events that are generated by either the infrastructure or by other applications that are serving 

many concurrent and in many cases unrelated users and use cases.  In order to better filter and isolate 

the events that may be related to a particular use case or scenario, we consider sequence diagrams as 

the primary source of information to initiate the filtering process. This information takes the form of 

sequence diagram events. As sequence diagram events may be represented at a higher level of 

abstraction than the actual implementation we need to associate a sequence diagram event with one or 

more events observed in the event log files of the system being monitored. This association is not 

always straightforward. However, in the research literature there have been a number of techniques 

that have been proposed to associate model elements that conform to different schemas and domains. 

One technique is based on fuzzy association rules [85] that is used to associate intrusion models to 

audit data that is events obtained from the system being monitored. Another technique is based on 

lexicographical and linguistic similarities between the elements of the models being compared [37].  
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Yet another technique, is based on similarities between features of the model elements being 

compared. Such techniques can be used to extract associations between model elements to identify 

difference between model elements [64], [21].  

For our work, we consider a linguistic similarity approach [57] combined with feature vectors 

to associate high level of abstraction events specified in the sequence diagrams of the system’s use 

cases and method names or event types obtained from the monitoring framework used. The linguistic 

similarity is used to identify logged events that have a lexicographical similarity with the specified 

events in the sequence diagrams and the feature vectors are used to limit the types of associate events 

according to the package or process where they emanate or are received.  In this respect, the 

association technique is aiming to map an event specified in a sequence diagram to one or more 

events in the log file that are used as beacons for the filtering process. Initial results obtained by the 

analysis of various scenarios in an implementation of the Session Initiation Protocol indicate a high 

level of recall and precision in this type of analysis. 

 

3.2.3 Log Filtering Using Clustering 

 

Clustering techniques have been extensively used by the software engineering community to 

perform software architecture recovery [35] and for mining software repositories [30]. In this work, 

we utilize a collection of event dependency relations that are used to generate an Event Dependency 

Graph (EDG). The event dependency graph denotes events and relations between these events as they 

are collected from the system’s monitoring infrastructure. We have utilized the Eclipse Test and 

Performance Toolkit Platform (TPTP) to collect events at the JVM layer of Java based applications, 

but the proposed approach can be utilized with any other event extraction and monitoring framework. 
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For consistency and compliance with standards, we also utilized the Common Base Event format for 

encoding events obtained from the monitoring modules. The event dependency graph is then 

clustered utilizing an hierarchical agglomerative clustering algorithm that is discussed in more detail 

below.   

In this work, we experiment with two types of clustering techniques. In the first type, we 

initiate the clustering algorithm with the condition that all beacon events should appear in one cluster. 

The events that concentrate in this cluster form the final result. In the second type, we initiate 

clustering with the condition that each beacon event should appear in a separate cluster. At the end of 

the process, these clusters are then merged to form the final result. These two different approaches are 

discussed in more detail below. 

 

3.2.3.1 One-Cluster Initial Condition 

   

In this approach the motivation is to identify the set of events that collectively exhibit the 

strongest relation with the set of selected beacon events.  This type of clustering aims to increase 

precision of the obtained results. In a nutshell, this approach is based on the clustering of the event 

dependency graph by considering an initial condition where all the log file beacon events are forced 

to be on the same cluster. The clustering process then not only identifies several other clusters but 

also identifies additional events that are merged to the initial cluster that contains all the beacon 

events. Upon termination of the clustering process, the final result is obtained by examining the 

contents of this initial, and by now extended cluster. The clustering algorithm utilizes the Module 

Quality metric to identify the clusters with the maximal number of intra-relations (relations in 

elements within the cluster) and minimum number of inter-relationships (relations of elements across 
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clusters). The following explains the algorithm more formally and is then followed by an example 

showing how the algorithm is applied on the SIP Registration scenario: 

 

Algorithm: Log-Filtering-One-Cluster 

Input:  We have our Event Dependency Graph G that was created to model the relationships 

between different entries in the log file. 

We then have a Set of Beacon events B = {b1 … bn} pertaining to the scenario of interest. 

These events are typically selected by an expert user.  

Output:  A cluster of events containing the beacon events selected initially, in addition to other events             

that relate to the scenario of interest. 

Process: 

S1. We start by forcing all of our beacon events to be in the same cluster. Let c be an initial cluster c 

= {b1 … bn} containing the beacon events {b1 … bn} 

S2. The rest of EDG is then divided into a number of clusters. Let C   be the set of all sub-clusters, 

and initially = { c }  

S3. We start the clustering process which tries to assign events to clusters using an iterative heuristic 

approach. For each clustering iteration i and  

     while clustering is not done 

         S3.1   (Update c with new events)  

                 or, 

         S3.2   (Create newly formed cluster ci  and set 

                  C = { c, c1, c2, …ci})  

                 or, 
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          S3.3. Update existing clusters c1, c2, …ci-1 

 S4.  return ( c ) 

 

Example – SIP Registration 

 

 

Figure 4 - SIP RFC Registration  

Input: We have the created EDG, and we select the following beacon events: Register and OK. 

 

S1. c = {Register, OK} 

 

S2.-4. c = {Register, OK , addCommunicationsListener, cancelPendingRegistrations, 
fireUnregistering, getFromHeader, getLocalViaHeaders, getMaxForwardsHeader, init, 
initProperties, scheduleReRegistration}  

 

Output: The c cluster above with the events shown. 

 

The full algorithm is also summarized in Figure 5 below. 
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Figure 5 - Summary of the 1-cluster algorithm 

 

 

 

3.2.3.2 N-Clusters 

 

In this approach the motivation is to identify the maximal set of events that individually 

exhibit a relation with one or more of beacon events. This type of clustering aims to increase recall of 

the obtained results. In a nutshell, this approach is based on the clustering of the event dependency 

graph by considering an initial condition where each beacon event should appear in a separate cluster. 

In this respect, if we identify n beacon events, the initial condition of the clustering process will 

consider n different initial clusters with one beacon element each. All other events in the event 
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dependency graph will be either placed in one or more of these initial clusters or will form new 

clusters. In this respect, the clustering process not only identifies new clusters but also, and most 

importantly, identifies events that are finally placed in the clusters formed by the initial condition. 

The final result is obtained by considering the all the events that appear in the union of all initial 

condition clusters. The following explains the algorithm more formally and is then followed by an 

example showing how the algorithm is applied on the SIP Registration scenario: 

 

Algorithm: Log-Filtering-N-Clusters 

Input:  We have our Event Dependency Graph G that was created to model the relationships 

between different entries in a log file.  

We then have a set of Beacon events B = {b1 … bn} pertaining to the scenario of interest. These 

events are typically selected by an expert user. 

Output: A cluster of events containing the beacon events selected initially, in addition to other events 

that relate to the scenario of interest. 

Process: 

S1. We start by forcing each beacon event to be clustered separately in a new cluster. Let I  be a set 

of Initial Clusters I  = { c1, c2..  cn} where each cluster ck contains the beacon event bk 

S2. The rest of EDG is then divided into a number of clusters. Let C   be the set of all sub-clusters, 

and initially = I  

S3. We start the clustering process which tries to assign events to clusters using an iterative heuristic 

approach. For each clustering iteration i and  

     while clustering is not done 

         S3.1   (Update  c1 or c2 or .. cn with a new event)  
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                   or, 

         S3.2   (Create newly formed cluster cn+1  and let 

                   C = {c1, c2, …cn, cn+1})  

     or, 

         S3.3. Update existing clusters c1, c2, …ck for k>n 

 S4.  At the end of the clustering process, the clusters containing beacon events are all unioned 

together into one cluster and the algorithm returns (Ui=1..n(c1, c2, …cn))   

 

Example – SIP Registration 

 

 

Figure 6 - SIP RFC Registration 

 

Input: We have the created EDG, and we select the following beacon events: Register and OK. 

S1. c1 ={Register} and c2 = {OK} 

S2.-4. c1 ={Register, addCommunicationsListener, cacheCredentials, cancelPendingRegistrations, 
checkIfStarted, endAllCalls, fireRegistered, fireRegistering, fireUnregistered, fireUnregistering, 
getContactHeader} 

 and c2 = {OK , getFromHeader, getLocalHostAddress, getLocalViaHeaders, 
getMaxForwardsHeader, init, initProperties, processResponse, scheduleReRegistration, start, 
startRegisterProcess} 
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Ui ={Register, addCommunicationsListener, cacheCredentials, cancelPendingRegistrations, 

checkIfStarted, endAllCalls, fireRegistered, fireRegistering, fireUnregistered, fireUnregistering, 

getContactHeader, OK , getFromHeader, getLocalHostAddress, getLocalViaHeaders, 

getMaxForwardsHeader, init, initProperties, processResponse, scheduleReRegistration, start, 

startRegisterProcess} 

Output: The Ui cluster shown above. 

 

The full algorithm is also summarized in Figure 7 below. 

 

 

Figure 7 - Summary of the n-cluster algorithm 
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3.3 Summary 

 

In this chapter, we have introduced our Event Dependency Graph, as a way to model 

behavioral and structural relations among events. The event schema was presented and the EDG was 

formally defined with a total of eight relations. We then described our methodology for performing 

event filtering. The process was clearly outlined, indicating how we used sequence diagrams as a 

means of specification elements to help us understand how different components and events react and 

relate to each other. The use of a clustering algorithm to perform event filtering was explained. We 

also presented 2 algorithms that we have experimented with, namely the one-cluster initial condition 

and the n-cluster initial condition algorithms.  
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Chapter 4 

Use Case Identification  

 

In this chapter, we will describe how our framework can be used for use case identification. 

This basically allows a system administrator to scan a system and identify what use cases are running 

on a system. This can be helpful in a number of situations, for example in order to perform load 

balancing, resource allocation and threat determination. We outline our approach by presenting an 

algorithm to achieve our goals. Finally we present a formal proof of the validity of the proposed 

approach. 
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4.1 Process Outline 

4.1.1 Simple Use Cases 

 

The Event Dependency Graph provides not only a robust model for denoting relationships 

between events produced by a software system for assisting on log filtering for a selected use case but 

also, a way of identifying active use cases as a system operates. We start by describing our approach 

to identify simple use cases, i.e. use cases that can be represented as a simple sequential sequence 

diagram, without any alternatives, options or loops.  

The process is composed of four main steps. The first step is an off-line step aiming to 

compile a set of significant events per use case that can be used as a golden comparison standard. The 

second step of the process is for the operator or the monitoring process to select significant seed 

events from the log files of the system. Seed events are log file events for which there are reasons to 

raise interest to either an operator or to an automated monitoring process. The third step of the 

process is to perform clustering and identify in the log files all other events that are highly related to 

these initial seed events. The fourth step of the process is to compare precision and recall values of 

the obtained cluster that contains all seed events, against the collection of beacon events per use case 

selected in the first step of the process. As the beacon events per use case can be identified off-line 

and may contain events in a significant level of detail, they are considered as the golden standard to 

compare the clustering results against. The use cases that correspond to the collection of beacon 

events with which the obtained clustering results have the highest precision and recall are considered 

as the possible active use cases in the system. Since the approach is based on identification of a small 

number of seed events and clustering can be performed with higher computational efficiency than 

complex event processing and pattern matching, the proposed approach has a benefit over the 
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traditional rule based or pattern based approaches. The outline of the algorithm for the use case 

determination is provided below. 

Algorithm: Use-Case Determination 

Input:  - We have our Event Dependency Graph G that was created to model the relationships 

between different entries in a log file.  

- We have a set of collections of use case beacon events  

B = {B1 … Bn} for each possible use case U1, U2, …Un. that could run on the system. These 

beacon events are typically selected by an expert user. This process is only done once and is 

then stored in a data repository on the system. 

- A collection of log file seed events S = {s1,  s2, …sk} pertaining to the log we are currently 

interested in. 

- R a set of tuples <pi, ri, OBi> , where pi is computed precision value of the events of an 

obtained cluster against the set Bi, ri is the corresponding recall value , and    OBi is the set of 

beacon events observed in the obtained cluster. The R tuples are computed for each one of the 

use cases stored on our system. 

Output: A collection of potentially active uses cases Ui where 1 ≤  i ≤ n 

Process: 

1. Let c be the cluster c = {e1 … en, s1, s2, …sk } that is one of the clusters obtained by utilizing the 1- 

Cluster or N-Cluster log filtering process as discussed in Chapter 3, and s1, s2, …sk are the seed 

events. 

2. Let R = empty 

3. For each collection B1 of use case beacon events 

         3.1   Compute Precision and Recall values <pi,ri> 
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                 between the events of the sets, c and B1 .  

         3.2   Update set R with <pi,ri> 

 4.  We then compute a rank for each R tuple in order to identify the running use case. The rank 

formula aims at normalizing the precision/recall values obtained for each use case by multiplying the 

precision by the ratio of beacon events to observed beacon events. Beacon events refers to the number 

of beacon events that were initially selected for each use case. Observed beacon events refers to the 

number of beacon events observed in the log file being examined. These values might not be the same 

if , for example, the current running use case does not run to completion or there’s a composition of 2 

or more use cases. U = Rank(R)) = {U i |  ri+pi(|Bi| / |OBi|) ≥ rj+pj(|Bj| / |OBj|), for all  j,  1 ≤ j ≤ n} 

5. At the end, the tuple with the highest rank identifies the running use case. The algorithm  returns 

the rank (U) for each tuple. The full algorithm can be summarized as shown in Error! Reference 

source not found..
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Figure 8 - Summary of Use Case Identification Algorithm 

 

 The algorithm above is customized in two ways. The first way is on the selection of the 

clustering process that is used for computing the set c. For this work we have experimented with both 

clustering processes namely 1-Cluster and N-Cluster approaches. The results are reported in the 

experiments section. The second way to customize the above algorithm is the selection of the use case 

identification process that is utilized by the Rank function in step 4 of the algorithm. For this work we 

select the use cases that correspond to beacon events Bi for which a) the set c. has the highest value of 

the summation of the recall value among all the B1, B2, ..Bn. plus the precision value normalized by 

the ratio of the number of beacon events by the number of observed beacon events.  

The approach has been evaluated with a number of different scenarios or combinations of 

scenarios stemming from the SIP protocol with high rate of success on the identification of the 

system’s active use cases. The results are presented in Chapter 5.  
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4.2 Complex Use Case 

 
So far we have presented our use case identification algorithm for simple use cases, i.e. use 

cases that can be represented as a simple sequential sequence diagram, without any alternatives, 

options or loops. In this section we prove that more complex use cases can be handled using the same 

algorithm as well. Complex use cases, as we define them, fall into two categories as follows: 

 

1. Alternatives and Options – Alternatives are used to indicate a mutually exclusive choice 

between two or more sequences [8]. Options are used to indicate a sequence that will 

occur only if a certain condition is satisfied [8]. 

 

 In both cases, we end up having a simple sequence of events occurring, irrespective of which 

paths are taken. This means that we get a sequential composition of methods, just like the simple use 

case, and hence our algorithm would still work.  

 

2. Loops – Loops are used to represent a repetitive sequence of events.  

 

Loops in a sequence diagram can also be broken down into a sequential composition of 

methods, irrespective of the number of loop iterations. Again, this can be treated just like the simple 

use case, and hence our algorithm would still work. 
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4.3 Proof 

 

Intra-connectivity:  

Intra-connectivity measures the degree of connectivity among nodes within the same cluster. A higher 

intra-connectivity value is desirable as it indicates that the nodes that share similar properties are 

clustered together. Formally, intra-connectivity is presented as follows: 

�6 =  76869
 

where: 

76: the number of intra-edge relations within the cluster 

86 : the total number of nodes within the cluster 

 

Inter-connectivity:  

Inter-connectivity measures the degree of connectivity among nodes in different clusters, i.e. cross-

cluster connectivity. A lower inter-connectivity value is preferable as it indicates that clusters are 

independent and more complete. Formally, inter-connectivity is presented as follows: 

 

:;,< =  =;,<>?;?< 

where: 

=;,<: the number of inter-edge relations between clusters i and j 

 

MQ:  

MQ measures the overall modular quality of the system and is represented as follows: 

 

@A =  B
C D E;

C

;FB
− B

C�C − B
>
D :;,<

C

;,<FB
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Proof for the 1-Cluster Technique: 

Let H6I be a beacon event for use case 1, and let HJ9 be a beacon event for use case 2. We define ,I  

and ,9 , the sets of all beacon events for use cases 1 & 2, as follows: 

,I =  KHII, H9I, … , H6IM 
,9 =  KHI9, H99, … , HJ9M 

Let �NI be all events that can be clustered around ,I , and let �O9  be all events that can be clustered 

around ,9 . We define �I  and  �9 , the sets of all events that can be clustered around our initial 

beacon events, as follows: 

�I =  K�II, �9I, … , �NIM 
�9 =  ��I9, �99, … , �O9 } 

 

If we cluster around beacon events of use case 1, we know that we’ll get all the events in the set �I ,  
and similarly for use case 2. The question here is what happens if we cluster a compound case 

consisting of use cases 1 & 2? (i.e. a sequential composition of use cases 1 & 2). In that case, we can 

have 4 sets of results, as follows: 

Case 0: The output cluster contains all events in the sets �I  and �9  

Case 1: The output cluster contains all events in the set �I  and a subset of the events in the set �9  

Case 2: The output cluster contains a subset of the events in the set �I  and all events in the set �9  

Case 3: The output cluster contains subsets of both sets �I  and �9  

 

We claim that the MQ in case 0 would be greater than that in cases 1, 2 and 3. And next we are going 

to prove that and state the conditions where this claim holds. We start by proving that MQ(case 0) is 
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greater than MQ(case 1), and therefore case 2 as well since it’s just the dual of case 1. Then we will 

prove that MQ(case 0) is greater than MQ(case 3). 

 

1. Proof that MQ(case 0) is greater than MQ(case 1 or case 2): 

P$�4��� 0
 =  1
2 R S

�T1 + T2
9 + V
W9X − Y

2�T1 + T2
W 

where: 

n1: The sum of the cardinalities of �I  �T+ ,I   
n2: The sum of the cardinalities of �9  �T+ ,9   
x: The number of intra-edges within the output cluster 

y: The number of intra-edges in the rest of the system 

z: The total number of nodes in the rest of the system 

w: The number of inter-edges in the system 

 

P$�4��� 1
 =  1
2 Z S′

�T1 + T2′
9 + V′
W\9] − Y′

2�T1 + T2′
W′ 
where: 

n1: The sum of the cardinalities of �I  �T+ ,I   
n2’: The sum of the cardinalities of ,9  and a subset of �9   
x’: The number of intra-edges within the output cluster 

y’: The number of intra-edges in the rest of the system 

z’: The total number of nodes in the rest of the system 

w’: The number of inter-edges in the system 
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Due to the migration of nodes from the output cluster to the rest of the system and vice-versa, the 

following inequalities hold: 

W\ ≥ W 
Y\ ≤ Y 
S\ ≤ S 
V\ ≥ V 

Now our goal is to prove that MQ(case 0) > MQ(case 1), or: 

1
2 R S

�T1 + T2
9 +  V
W9X −  Y

2�T1 + T2
W   >  1
2 Z S′

�T1 + T2′
9 + V′
W\9] − Y′

2�T1 + T2′
W′ 
which is equal to: 

R S
�T1 + T2
9 +  V

W9X −  Y
2�T1 + T2
W   >   Z S′

�T1 + T2′
9 +  V′
W\9] −  Y′

2�T1 + T2′
W′ 
then by moving the expressions around: 

R S
�T1 + T2
9 +  V

W9X − Z S\
�T1 + T2\
9 + V\

W\9] >  Y
2�T1 + T2
W   −  Y\

2�T1 + T2\
W\ 

 

for RHS, the following holds: 

Y
2�T1 + T2
W   − Y\

2�T1 + T2\
W\  >  Y
2�T1 + T2
W′   − Y\

2�T1 + T2 �W\ 

 

we know from the above inequalities that z’ and n2 are greater than z and n2’, and therefore the 

above inequality is true. As a result, now we need to prove the following: 

 

R S
�T1 + T2
9 +  V

W9X − Z S\
�T1 + T2\
9 +  V\

W\9] > Y
2�T1 + T2
W′   −  Y\

2�T1 + T2 �W\ 
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or: 

S
�T1 + T2
9 − S\

�T1 + T2\
9 + V
W9 − V\

W\9  > Y
2�T1 + T2
W′   −  Y\

2�T1 + T2 �W\ 

 

similarly, we can replace n2 and z by n2’ and z’ as follows: 

S
�T1 + T2′
9 − S\

�T1 + T2\
9 + V
W′9 − V\

W\9  > Y
2�T1 + T2
W′   − Y\

2�T1 + T2 �W\ 

 

now we can group the terms as follows: 

S − S′
�T1 + T2′
9 + V − V′

W′9 >  Y − Y′
2�T1 + T2
W′   

 

As a result we can conclude that the MQ(case 0) will always be greater than MQ(case 1 or case 2) as 

long as the sum of the reduction on intra-edges over the output cluster and the rest of the system is 

greater than the sum of the reduction of inter-edges over the output cluster and the rest of the system. 

 

2. Proof that MQ(case 0) is greater than MQ(case 3): 

P$�4��� 0
 =  1
2 R S

�T1 + T2
9 + V
W9X − Y

2�T1 + T2
W 

where: 

n1: The sum of the cardinalities of �I  �T+ ,I   
n2: The sum of the cardinalities of �9  �T+ ,9   
x: The number of intra-edges within the output cluster 

y: The number of intra-edges in the rest of the system 

z: The total number of nodes in the rest of the system 

w: The number of inter-edges in the system 
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P$�4��� 1
 =  1
2 Z S′

�T1′ + T2′
9 + V′
W\9] −  Y′

2�T1 + T2′
W′ 
where: 

n1: The sum of the cardinalities of �I  �T+ ,I   
n2’: The sum of the cardinalities of ,9  and a subset of �9   
x’: The number of intra-edges within the output cluster 

y’: The number of intra-edges in the rest of the system 

z’: The total number of nodes in the rest of the system 

w’: The number of inter-edges in the system 

 

Now our goal is to prove that MQ(case 0) > MQ(case 3), or: 

1
2 R S

�T1 + T2
9 + V
W9X − Y

2�T1 + T2
W   >  1
2 Z S′

�T1′ + T2′
9 + V′
W\9] − Y′

2�T1′ + T2′
W′ 
which is equal to: 

R S
�T1 + T2
9 + V

W9X − Y
2�T1 + T2
W   >   Z S′

�T1′ + T2′
9 +  V′
W\9] −  Y′

2�T1′ + T2′
W′ 
then by moving the expressions around: 

R S
�T1 + T2
9 + V

W9X − Z S\
�T1′ + T2\
9 + V\

W\9] >  Y
2�T1 + T2
W   −  Y\

2�T1′ + T2\
W\ 

 

for RHS, the following holds: 

Y
2�T1 + T2
W   −  Y\

2�T1′ + T2\
W\  >  Y
2�T1 + T2
W′   −  Y\

2�T1 + T2 �W\ 

 

we know from the above inequalities that z’ , n1 and n2 are greater than z, n1 and n2’, and therefore 

the above inequality is true. As a result, now we need to prove the following: 
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R S
�T1 + T2
9 +  V

W9X − Z S\
�T1′ + T2\
9 +  V\

W\9] > Y
2�T1 + T2
W′  −  Y\

2�T1 + T2 �W\ 

 

or: 

S
�T1 + T2
9 − S\

�T1′ + T2\
9 +  V
W9 − V\

W\9  > Y
2�T1 + T2
W′  −  Y\

2�T1 + T2 �W\ 

 

similarly, we can replace n1, n2 and z by n1’, n2’ and z’ as follows: 

S
�T1′ + T2′
9 − S\

�T1′ + T2\
9 +  V
W′9 − V\

W\9  > Y
2�T1 + T2
W′   −  Y\

2�T1 + T2 �W\ 

 

now we can group the terms as follows: 

S − S′
�T1′ + T2′
9 + V − V′

W′9 >  Y − Y′
2�T1 + T2
W′   

 

Again, we can conclude that the MQ(case 0) will always be greater than MQ(case 3) as long as the 

sum of the reduction on intra-edges over the output cluster and the rest of the system is greater than 

the sum of the reduction of inter-edges over the output cluster and the rest of the system. 

 

Therefore, our algorithm would still work as it will always produce a higher MQ value given the 

above conditions. Chapter 5 further supports this by presenting experimental evidence. 
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Proof for the n-Cluster Technique: 

Since the n-Cluster algorithm performs a UNION operation at the end to join all output clusters 

together, having a simple use case or a complex (sequential composition of two or more cases) one 

will result in no change in the output. Therefore we can conclude right away that the n-Cluster 

technique will always be valid for both categories of use cases. 

 

4.4 Summary 

 

In this chapter, we have presented how our framework could be used to identify running use 

cases on a system. This is of vital importance to system administrators as it enables them to perform 

threat determination, resource allocation and load balancing tasks. We have formally presented and 

proved our algorithm and also described how it would still work with different variations of sequence 

diagrams, including more complex ones with alternatives, options and loops. Experimental results on 

use case determination are presented in Chapter 5, where we were able to achieve a 100% accuracy in 

identifying active use cases on a system. 
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Chapter 5 

Experiments  

 

In this chapter, we validate our framework by presenting the experimental results that we 

have collected. We have conducted experiments on two sets of data. The first set belongs to logs 

collected by running real life scenarios of a NIST implementation of the Session Initiation Protocol 

(SIP), called the SIP Communicator. Logs were collected using Eclipse’s TPTP. The second set of 

data is composed of a set of simulated log files that were automatically generated. In the first section 

of this chapter presents results related to the creation of the Event Dependency Graph (EDG) and 

clustering. Section 2 focuses on log filtering by presenting the recall and precision results obtained 

after filtering logs relating to different scenarios. In the third section, we show the results of using our 

framework for use case determination. Finally, we present a stability analysis to validate our 

approach. 
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5.1 Event Dependency Graph Creation and Clustering 

 

The Event Dependency Graph is created incrementally with linear complexity on the number 

of nodes of the dependency graph. Assuming that the number of relations is orders of magnitude 

smaller than the number of nodes in the graph the creation of the graph can be done very efficiently as 

the system operates. In this work the EDG creation process is based on a single threaded sequential 

traversal of nodes and the establishment of elations of existing nodes of the graph with the newly 

added node. However, this process can be greatly optimized in a production environment by hashing 

and partitioning the graph with the purpose of excluding nodes that definitely do not relate with the 

newly added node, and by performing bitwise operations and masks for feature matching between the 

newly added node and other nodes in the graph.  

Experimental results related to the time required to compile an event dependency graph are 

illustrated in Figure 9, where the time to compile incrementally an EDG is exhibiting linear behavior. 

The graph is compiled in steps of 10 events and for a total of 10,000 events (i.e. EDG nodes).   

 

Figure 9 - EDG Incremental Creation Time 
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 The second step after the creation of the Event Dependency Graph is to cluster this graph. 

The time required to perform clustering varies depending on the number of relations that exist in the 

EDG and/or the number of relations that the user wants to include during the clustering process. This 

depends on the scenario or the goal behind which the user applies clustering. The total time required 

for clustering, up to 500 events, is shown in Figure 10. We observe that the time demonstrates an 

exponential behavior. A similar conclusion can also be made regarding Figure 11, which shows the 

total time required to perform both EDG creation and clustering with up to 10,000 events. This 

behavior is expected due to the time required to perform clustering. We will elaborate more on other 

ways to reduce the clustering time in Chapter 6, as part of the future work section.  

 

 

Figure 10 - Clustering Time 
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Figure 11 - Total Time (Creation + Clustering) 

 

5.2 Log Filtering 

 

In order to validate the proposed log filtering and reduction approach, we have applied it to 

the SIP Communicator system [66], which is part of the implementation of the Session Initiation 

Protocol (SIP) [27] developed by the National Institute of Standards and Technology (NIST). SIP is 

an application layer signaling protocol that is used to start, modify and terminate various types of 

sessions such as Internet Telephony calls. We used TPTP [22] to monitor and log all the events in the 

system.  

A total of eight different scenarios (summarized in Table 2) were studied, half of which were 

basic scenarios and the other half were logical combinations of those basic scenarios. Each scenario 

generates more than forty thousand events even for the simplest case. For this experiment only related 

to the scenario source code packages were monitored in order to reduce the number of events per log 

file. Packages were selected according to how relevant they are with the respect to a given use case, 
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which was represented in the form of a sequence diagram. An example of this is illustrated in Figure 

12 and Figure 13. Figure 12 illustrates the SIP RFC standard for the registration scenario, while 

Figure 13 illustrates the corresponding modified sequence diagram for that scenario based on the SIP 

Communicator implementation. It is worth mentioning that the process of selecting only specific 

packages for monitoring by TPTP resulted in a considerable reduction in the amount of events 

logged. The next step of the process is to identify beacon events in the system that relate to our 

specific scenario. In our registration example, those events should correspond to the REGISTER 

message and the 200 OK response code according to SIP’s RFC. 

 

Table 2 - Summary of scenarios and corresponding beacon events 

Scenario Number of Beacon Events 

Registration 2 

Call Establishment 3 

Call Failure (No Answer) 5 

Call Termination 2 

Reg. + Call Est. 5 

Reg. + Call Fail. 7 

Reg. + Call Est. + Call Term. 7 

Call Est. + Call Term. 5 
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Figure 12 – SIP RFC Registration  

 

 

 

Figure 13 -  Simplified Actual Registration Seq. Diagram 

 

 

From the sequence diagram we can clearly identify that this corresponds to the register() and 

processOK() methods, respectively. Those beacon events will be our initial criteria for performing the 

clustering for this use case. The number of beacon events varies by scenario, as shown in Table 2. 

The Event Dependency Graph (EDG) is then built from the log file, as described in Chapter 3, using 

our Java-based tool. Our tool uses JGraphT [12], which is an open-source Java graph library, to 
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construct the EDG. The final step is to perform the clustering using the Bunch tool by utilizing the 

hill climbing heuristic optimization option in Bunch, as empirical results showed that it outperforms 

the genetic algorithms approach [63]. 

Similarly, sequence diagrams relating to the call establishment scenario are shown in Figure 

14 and Figure 15. One can also clearly observe the semantic similarity between the RFC protocol and 

the methods, as shown for example in the INVITE signal and the invite() method.  

 

 

Figure 14 - SIP RFC Call Establishment 
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Figure 15 - Simplified Actual Call Establishment Seq. Diagram 

 

For these experiments, we have used both the 1-Cluster and the N-Cluster initial condition 

techniques. The data illustrating the average number of events per cluster and the time to filter the 

events for the different use cases is summarized in Table 3. 

 

Table 3 - Average Clustering Time per Scenario 

Scenario Average Cluster Size Time (s)  Number of Events 

Registration 12 1 176 

Call Establishment 30 5 377 

Call Failure (No 

Answer) 
23 5 322 

Call Termination 23 5 382 

Reg. + Call Est. 32 6 377 

Reg. + Call Fail. 35 4 322 
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Reg. + Call Est. + Call 

Term. 
34 7 382 

Call Est. + Call Term. 19 4 382 

 

From the above results we observe that the time required to perform the clustering operation 

increases in a scalable manner as compared to the number of events. Furthermore, in order to evaluate 

whether the proposed clustering technique actually filtered events relevant to each scenario, we 

computed a “golden-standard” to compare against. For this work we considered this golden standard 

to be the logs that can be obtained by running the scenarios in debug mode. This was possible as we 

had full access to the source code and we could identify the methods that had to be monitored. 

By doing so, the system registered method entry/exit details that could then be compared against the 

results obtained by the proposed clustering process. More specifically, the clustering results were 

compared against the golden-standard, and we computed precision and recall values for each scenario 

using both of the proposed clustering techniques. Figure 16 and Figure 17 illustrate the precision & 

recall results for techniques 1 and 2 respectively.  

From the obtained results we also observe that both techniques were able to achieve high 

recall values for most of the scenarios. More specifically, in the one-cluster techniques we have 

obtained high precision values at a slight cost of recall in some cases (see Registration and Call 

Termination scenarios). This reduced recall may be due to the fact that these scenarios involve a small 

number of sequence diagram and beacon events, and the clustering few initial beacon events to start 

with. 
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Figure 16 - Recall/Precision Using the One-Cluster Technique 
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Figure 17 - Recall/Precision Using the N-Clusters Technique 
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tool and select seed events. The third step was to perform clustering based on the seed events and 

compare the obtained cluster against the golden standard collection of events for each use case. The 

evaluation of the process was based on whether the comparison process could yield the use case that 

run, among all the possible ones. In this respect, the use case that corresponds to a cluster of golden 

standard events that associates the most with the obtained cluster using the seed events is a possible 

active use case.  The obtained process evaluation results indicated that precision and recall were very 

accurate metrics for determining the use case that runs. The results are illustrated in Table 4. In this 

table we considered four use cases each one active at a time. By selecting seed events (2 seed events 

for the first, second and third use cases, and 1-2-1 events for the fourth use case) performed clustering 

and compared the results against the golden standard events for each use case. The results indicate 

that the estimators for each case yield the highest value when this case was actually the active case. 

The same observation holds for the fourth use case that is a sequential composition of the first three 

use cases.  The experiments also indicated that the algorithm is stable in the sense that if the user adds 

some noisy or unrelated to the use case events as initial seed events the algorithm is still able to 

determine correctly the active use case. 

Table 4 - Use Case Determination Results 

Active Use Case Reg. Estimator Call Est. Estimator Call Term. Estimator 

Reg. + Call Est. + Call 

Term. Estimator 

Reg. 137 13 56 62 

Call Est. 36 128 68 91 

Call Term. 70 8 115 22 

Reg. + Call Est. + Call 

Term. 31 64 90 121 
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5.4  Stability Analysis 

 

In order to test the stability of our approach, we repeated the above experiments, however this 

time using 2 different techniques. Both techniques try to change the way we use beacon events, in 

order to gain a better understanding of the strength and stability of the proposed framework, and also 

know the optimal manner in which beacon events are selected to achieve the best results. In the first 

technique, we systematically decrease the number of beacon events used for each scenario, until we 

reach 50% of the original number of beacon events as interpreted from the specifications. We then 

compute the precision and recall values and present the results. The second technique also removes 

beacon events for each scenario, but this time it also adds random events from the log file. Precision 

and recall results are also calculated. 

Figure 18 and Figure 19 illustrate the precision and recall results obtained by running 

technique 1 using 2 scenarios: Registration + Call Failure and Registration + Call Establishment + 

Call Termination, respectively. The first pair of bars in each graph represents the original 

recall/precision values that we obtain by running the system using all beacon events. The rest 

correspond to the results obtained after removing beacon events in order. As expected, the recall 

drops significantly with the decrease in the number of beacon events. In Figure 18, for instance, the 

recall drops with a factor of more than 50%, even after the removal of only one beacon event. A 

similar pattern is observed in Figure 19, where recall drops, with the exception of the 6 beacon events 

case, more than 50%. The rest of the fluctuations in the recall values can be attributed to the heuristic 

nature of the clustering algorithm.  
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Figure 18 – Precision/Recall using stability technique 1 

 

   

Figure 19 – Precision/Recall using stability technique 1 
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Surprisingly, however, the precision values are still very high. In Figure 18, all of the test 

cases have a precision value of above 80%. Even with approximately half of the original beacon 

events, we get 100% precision, which means that we don’t have any noise in our cluster. Again, the 

pattern is repeated with Figure 19, with precision values all over 80%. This gives us a good advantage 

when trying to identify a running use case on the system, as we know for certain what scenario the 

events in our cluster pertain to, without, in most cases, any noise. The main reason behind these 

values seems to be due to the uniqueness of beacon events for each scenario. The beacon events 

selected where obtained from the specifications of the SIP communicator system, as indicated in the 

SIP RFC. As a result, each scenario has a unique set of signals/methods, in other words beacon 

events, making such precision possible. This also raises a vital point on the importance of selecting 

the beacon events for each case. In the case of the SIP communicator, we were able to compare the 

specifications against the RFC and identify those events. However, we believe that in any system, 

given the appropriate specifications, an expert user can identify all the important beacon events and as 

a result obtain satisfying results. 

The second technique in our analysis aims at testing the robustness of the proposed approach 

by removing relevant beacon events from each scenario and adding random ones instead. Notice that 

in this case, the total number of beacon events per scenario remains fixed. Yet, the quality of the 

resulting cluster(s) will be affected due to the nature of the random events, and the kind of relations, if 

any, that exist between them and the actual beacon events. We applied this technique to the same 

scenarios presented above, namely the Registration + Call Failure and the Registration + Call 

Establishment + Call Termination scenarios. Figure 20 and Figure 21 show the precision and recall 

results obtained, and they clearly highlight the number of random events added in each case. 
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Figure 20 - Precision/Recall using stability technique 2 

 

 

Figure 21 - Precision/Recall using stabillity technique 2 
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When we observe the above graphs, we notice a very interesting characteristic. In all cases, 

there is a considerable drop in recall values, even after the addition of only 1 random event to the 

cluster. In Figure 20, the highest recall value achieved with random events is 30%, which is 1/3 of the 

original recall we get with all the actual beacon events. The same results are also found in Figure 21, 

where recall values reach a high of 27%, even less than 1/3 of the original recall. Precision values, on 

the other hand, exhibit very similar values to the results obtained in technique 1. In both scenarios, 

precision values never dropped below 80% in all test cases, even after adding more than 50% random 

events to the original set of beacon events. As a result, use case identification can still be achieved 

with a high degree of accuracy.  

These results, again, prove the importance of the beacon events selection process. By 

carefully selecting the relevant beacon events, we can successfully reduce large log files and be able 

to keep the important entries at the same time, allowing us to apply future analysis operations such as 

performing root cause analysis and other diagnostics. This also provides evidence for the validity of 

our log reduction technique. Using our algorithm, we were able to find the optimal criterion that 

strikes a balance between achieving significant log reduction and keep the data relevant at the same 

time.   
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5.5 Summary       

 

In this chapter, we have presented the experimental results obtained by running our 

framework using two sets of data. The first was data collected using TPTP by running real life 

scenarios using the SIP communicator. The second was a collection of simulated log files that were 

automatically generated. The results were focused on 4 main areas, namely Timing, Filtering, 

Scenario Identification and Stability. Timing results illustrated how long it takes to create our Event 

Dependency Graph, and the time required to apply the clustering. We then presented precision and 

recall computations after the filtering process. Next we showed how our framework could be used to 

perform operations such as threat determination by presenting the scenario identification results 

obtained, concluding that we can always identify a running scenario with a 100% accuracy. Finally, a 

stability analysis was demonstrated to validate our approach and prove its robustness. 
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Chapter 6 

Conclusions  

 

In this chapter, we provide some concluding remarks on the work presented in this thesis. 

First, we discuss the contributions of this thesis. We then summarize our findings and results. Finally, 

we outline some opportunities for future research. 

 

 

6.1 Contributions 

 

 

The goal of this work was to come up with a new technique that would make the analysis of 

large volumes of log files easier. Due to their size, log analysis is very computationally expensive if 

not impractical in some instances. Our solution to this problem was to introduce a technique that 

would enable us to filter log files and achieve significant reductions in terms of size. However, we 

need to keep in mind that this reduction should not affect the important data contained within this log 

file, otherwise there is no point of performing the analysis. To address this, our technique is based on 

filtering log files with respect to a specific use case. By creating a model of event relations, the Event 

Dependency Graph, we are able to capture structural and behavioral associations among different 
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events in the log file. Then by identifying key events from this file, beacon events, which relate to the 

use case being considered, we run a clustering algorithm that groups relevant events together leading 

to a reduced log file size. In this context, the major contributions of the proposed solution are as 

follows: 

• It defines the concept of the Event Dependency Graph that is formed by a collection of 

relations that aim to denote structural and behavioral associations between events in one or 

more log files. 

• It introduces a novel technique to filter or slice logs, using a heuristic clustering algorithm, 

with respect to a particular use case. This enables system operators to better focus their 

attention to specific events that relate to specific operations. 

• It proposes an approach for the determination of active use cases running on the system 

with a small number of initial seed events.   

• The techniques presented in this work can be utilized to aid root cause analysis and system 

understanding. 

 

 

6.2 Concluding Remarks 

 

Many software maintenance tasks such as, root cause analysis or program understanding, 

require analysis of dynamic system information obtained from log files. However, for large systems 

this may be a computationally expensive and in some cases an intractable for practical purposes, 

process. A possible solution is to develop techniques to filter the logged events so that logs can be 

reduced in size and simplified in complexity and can be easier analyzed. In this context, this paper 
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discusses two event analysis approaches. The first approach aims to reduce log files to collection of 

events that are mostly related to a given use case.  The approach is based on pre-processing logged 

events to form an Event Dependency Graph. The analysis of the graph is performed at per use case 

basis, with initial conditions in the form of beacon events. The result is obtained by considering all 

the events in the cluster that contains all initial beacon events. The benefit of the proposed approach is 

that in order to perform log filtering the users are required to have minimal information of the system 

being analyzed. The results obtained by analyzing various use cases in an implementation of the 

Session Initiation Protocol indicate that not only we can achieve high precision and recall values but 

also we can obtain a significant reduction in the number of events that we need to consider when 

examining the operation of the system for any given use case. The second approach aims to utilize the 

clustering technique to yield a cluster of events that can be compared against a golden standard of 

beacon events for various possible use cases of the system. The results indicate that the approach can 

be used to tractably identify in a running system the active use cases with a relatively small number of 

initial seed events.  

 

6.3 Future Work 

 

This work can be further extended in a number of ways. First, one could consider more innovative 

techniques to identify beacon events. These techniques could be based on the examination of the 

system configuration as well structural and deployment information. A second possible extension is 

the automatic or semi-automatic selection of the optimal set of relations to be used for clustering 

purposes at per use case basis. Lastly, since we used a heuristic hill climbing clustering algorithm, 

one could test our approach using other techniques such as genetic algorithms.  Currently, we are 

experimenting with this technique to reduce logs emitted from Service Oriented systems. We are also 
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looking into ways to incorporate goal trees together with our use case determination technique to aid 

root cause analysis. The idea here is that we use a SAT solver on a goal tree to identify the possible 

failing paths of a program. Then, using our use case determination algorithm, we can determine 

which of these paths are actually executing and find out the failing sub-goals by elimination.    
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