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Abstract

For centuries physicians, scientists, engineers, mathematicians, and many others
have been asking: ‘what are the forces that drive tissues in an embryo to their final
geometric forms?’ At the tissue and whole embryo level, a multitude of very dif-
ferent morphogenetic processes, such as gastrulation and neurulation are involved.
However, at the cellular level, virtually all of these processes are evidently driven
by a relatively small number of internal structures all of whose forces can be re-
solved into equivalent interfacial tensions v. Measuring the cell-level forces that
drive specific morphogenetic events remains one of the great unsolved problems
of biomechanics. Here I present a novel approach that allows these forces to be
estimated from time lapse images.

In this approach, the motions of all visible triple junctions formed between trios
of cells adjacent to each other in epithelia (2D cell sheets) are tracked in time-lapse
images. An existing cell-based Finite Element (FE) model is then used to calculate
the viscous forces needed to deform each cell in the observed way. A recursive
least squares technique with variable forgetting factors is then used to estimate the
interfacial tensions v that would have to be present along each cell-cell interface to
provide those forces, along with the attendant pressures in each cell.

The algorithm is tested extensively using synthetic data from an FE model.
Emphasis is placed on features likely to be encountered in data from live tissues
during morphogenesis and wound healing. Those features include algorithm stabil-
ity and tracking despite input noise, interfacial tensions that could change slowly or
suddenly, and complications from imaging small regions of a larger epithelial tissue
(the frayed boundary problem). Although the basic algorithm is highly sensitive to
input noise due to the ill-conditioned nature of the system of equations that must
be solved to obtain the interfacial tensions, methods are introduced to improve the
resulting force and pressure estimates. The final algorithm returns very good es-
timates for interfacial tensions and intracellular cellular pressures when used with
synthetic data, and it holds great promise for calculating the forces that remodel
live tissue.
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Chapter 1

Introduction

One of the unsolved problems in biology is the identification of forces which drive
the self-rearrangement of biological cells. Such fundamental processes as cell sort-
ing, cancer metastases, wound healing, embryogenesis, and a host of other phe-
nomena are all examples of large scale tissue re-shaping resulting from small scale
re-organisation of individual cells. The motions in these processes must be driven
by forces, in accordance with the laws of physics; wherever a mass is displaced, it
must be driven by a force.

Though much research has been done investigating the processes themselves —
the topological changes and biological factors affecting them — very little has been
done to uncover the nature of the forces driving these motions. Finite element (FE)
models based on the assumption that tensions along cell-cell interfaces provide
possible explanations for cell sorting [7, 9], wound healing [45], neurulation and
other embryogenetic processes [12], amongst others in both 2- and 3-dimensions.
These belong to the class of computational models called forward models. They
simulate the motions of live cells based on a starting configuration and certain
mechanical properties of the cell mass.

If the assumptions in these forward models are correct, it should be possible,
given a displacement history, to determine the interfacial tensions and other forces
driving those displacements. There are two classes of data which are available:
synthetic data and live data. Synthetic data are generated using the forward model
Simba [6, 11], whose output is a displacement history. Live data are gathered by
directly observing displacements in live cells over time to compile a displacement
history.

There are a number of reasons to investigate these forces. Obviously, a deeper
understanding of forces driving any motion imparts a deeper understanding of the
motion itself. The capability to determine driving forces in specific structures within
a cell will refine attempts to comprehend — and perhaps control — certain mor-
phogenic or embryogenic processes at a more fundamental level. By manipulating
the genome of an organism to express or suppress certain genes, it may even be
possible to determine the contributions of specific structural proteins to the forces



in these structures. A breakthrough of such magnitude could revolutionise biology
and medicine. For example, it is one thing to know that spina bifida, the most
common birth defect in humans, is a failure of the neural tube to close [76]; it is an
entirely different thing to know which structures or perhaps even proteins generate
the forces necessary for correct neural tube formation.

The algorithm developed here could also be used to further validate and tune
existing forward models. Since algorithm is based on the existing forward model,
positive results using live data would indicate that the assumptions underlying the
forward models are likely sound. The results of the new algorithm could also be used
be used to set the input parameters of the forward model so that they accurately
represent the particular organism being studied.

The purpose of this study is to develop an algorithm to determine from which
sub-cellular structures the forces driving cell motions arise. This algorithm, col-
loquially called Scar, utilises the existing FE model Simba to describe patches of
biological cells in terms of nodes, edges, and cells. With this basis as a starting
point, equations are developed to describe the relationships between forces in cell-
cell interfaces and other structures within the cells, and the nodal forces in the
FE model. The completed algorithm is used to identify forces generated by spe-
cific structures within cell patches from the synthetically generated displacement
histories.

The remainder of this treatise is structured as follows: first, a description of
the FE model, Simba, on which this work is based, as well as a review of the
current state of the art in tissue mechanics and parameter estimation. Following
that, the indentification algorithm is developed from the underlying FE model.
The algorithm, Scar, is designed to accommodate live data and all the particular
challenges associated therewith. With the algorithm developed, Scar’s performance
is assessed using synthetic data, with emphasis placed on how that performance is
affected by various tuning factors, and discuss these results. Finally, conclusions
and recommendations for further development are presented.

This work is sometimes presented in the context of wound healing responses, as
a result of collaborations with Professor Shane Hutson. Professor Hutson’s lab at
Vanderbilt University in Tennessee are specialists in biophotonics. They investigate
the physical mechanisms involved in laser tissue ablation, and the use of laser-
microsurgery to probe forces driving morphogenesis.



Chapter 2

The State of the Art

This thesis makes use of tissue mechanics modelling and experimentation, and
parameter estimation methods. Accordingly, this chapter begins with a literature
review of both tissue mechanics and parameter estimation, highlighting some of the
seminal and recent results in both fields. It concludes with a detailed discussion of
the finite element model on which this study is based.

2.1 Tissue Mechanics

For the better part of a century, scientists and engineers alike have been striving
toward a rigorous understanding of how the many anatomical structures of an
organism arise. A vast body of literature on the subject reveals approaches to the
problem at tissue, cell, and sub-cellular scales. Figure 2.1 shows the key structures
at the tissue, cellular, and sub-cellular scales, which interact to give strength to
an organism and determine its form. The elements of the cytoskeleton and the
cell membrane give structure and strength to each cell. Each cell, in turn, gives
structure and strength to the tissues which they form. Some of these structures
can also generate forces to alter the shape of cells and remodel entire tissues.

In this section, the hierarchy of elements which compose organic tissues, their
interactions, and the morphogenic processes which result are discussed. 1 also
discuss experimental programs which investigate the mechanics properties of these
elements, as well as the forces acting on and through them. From the knowledge
gained through observation and experimentation, several computational models of
cell and tissue mechanical behaviour have been, and continue to be developed.

2.1.1 Cell Membrane and Cytoskeleton

The cell membrane is composed of a phospho-lipid bilayer, which is in tension from
the intracellular pressure. The membrane of typical animal cells is from 6 to 10
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Figure 2.1: The multiple scales in the structure of an organism

nm thick. Scattered about the membrane are many transmembrane and surface
molecules. The membrane is partially connected to aspects of the cytoskeleton at
specific sites across its surface [19].

At the interior of the cell are found the various structural elements collectively
called the cytoskeleton. The cytoskeleton is a network fibrous proteins which serve
a variety of functions in the cell, including determination and maintenance of cell
shape, mechanical strength and integrity, support and intracellular transport of
organelles, and chromosome separation during mitosis/meiosis, to name a few [19,
28]. The three primary classes of protein are microfilaments, intermediate filaments,
and microtubules.

Microfilaments are composed of the protein actin. Actin is present in all cells as
a thin layer just inboard of the cell membrane (the subcortical region of the cell).
This structure is also known as the cortical actin layer [19]. It is composed of series
of antiparallel, mutually sliding actin filaments, connected by myosin bridges [4]. In
embryonic epithelial cells of some species — including the Drosophila melanogaster
— actin is also present in a bundle surrounding the apical end of the cell [4, 65].
Actin is also present in bundles criss-crossing the cell, which reinforce the cortical
actin [19]. The microfilaments contract, generating tensile forces along and in the
vicinity of the cellular membrane. Apical bundles of microfilaments in a group of
neighbouring cells can act in concert to create contractions over large distances
along a tissue [4].

Intermediate filaments are a large and varied class of proteins. They form a
stabilizing network of fibres which gives mechanical strength and integrity to the
cell by bracing the microfilaments and microtubules They also aid in supporting
organelles within the cell [19].



Microtubules are the largest structures of the cytoskeleton, and are also com-
posed of actin. They provide structural rigidity and aid in cell locomotion. They
are also transport agents for proteins and organelles within the cell, and aid in
shape changes during cell division [19]. Growing and mutually sliding microtubules
are primarily for cell elongation during mitosis, but can also resist tensions applied
to the cell [4].

For additional details regarding the physical structures within the cell, the
reader is directed to The Dynamic Architecture of a Developing Organism [5].
Chapter 2 details the function of cytoskeletal components, and how their actions
manifest at the tissue level. The treatise is presented in terms of mechanical stresses
and strains, thermodynamic equilibrium, self-equilibration, oscillations, and large
responses to small stimuli.

2.1.2 Cell

Several instruments exist to investigate how the cytoskeletal components manifest
physically at the cell level. Below the tissue scale, traditional engineering methods
to measure mechanical properties of a material simply do not work. One cannot
place a cell in a loading frame to measure its force-displacement behaviour and
derive constitutive relationships. Testing a cell in such a manner is akin to trying
to determine the properties of a polymeric molecule by testing a whole sheet of
rubber. A different approach is needed.

One of the earliest devices to probe the mechanical properties of single cells was
micropipette aspiration [28, 60]. A glass pipette is brought into contact with the
cell, and a small negative pressure is applied. Deformations over time are observed
directly by microscope. Forces are calculated from the pipette geometry and the
applied pressure. Micropipette aspiration is capable of applying forces on the order
of 10pN — 10uN [60].

A more recent survey paper indi-
cates that forces can also be calculated
according to Laplace’s Law, which re-
lates transmembrane pressure to mem-
brane tension and curvature, given be-
low in Eq. (2.1) [61]. The relationship
assumes an ideal thin-walled spherical
membrane in tension. Transmembrane

pressure, AP, is the pressure in the pip-  Figure 2.2:  Micropipette aspiration:

pete relative to the pressure in the cell. Laplace’s Law relating membrane tension
The radius of curvature of the mem- an( transmembrane pressure

brane is denoted by p, and the tension
in the membrane is 7. The arrangement is shown schematically in Figure 2.2. In-
terestingly the original paper by Mitchison notes that the stiffnesses measured by




his device were higher than predicted by Laplace’s Law, indicating that some factor
other than membrane tension was resisting the deformation [60].

AP xp

> (2.1)

~

Using the micropipette technique, researches have measured tensions in the
basal cortical membranes of single Dictyostelium cells in wvitro. The tensions were
found to be 1.50dyne/cm or 1.5mN/m. The same study also found that myosin I
motors are a component necessary for generating cortical tension [21].

By using a second pipette, the adhesive properties of the cell membrane can
also be measured. A microsphere coated with antibodies directed at cell-surface
molecules can be manipulated by the second pipette, while the first holds the cell
immobile. By bringing the microsphere into contact with the cell and then with-
drawing it, the strength of the adhesion can be measured [28].

Another method of measuring properties of single cells or even large molecules
is atomic force microscopy (AFM). A probe on the end of a flexible beam is driven
into the cell, deforming its surface. A laser is then reflected off the beam thereby
measuring its position. Force information is calculated by approximating the po-
sition of the end of the beam as a linear spring. Displacement measurements are
accurate to ~ 1nm [28].

AFM can be used to map the stiffness of living cells by taking displacement and
force measurements at regular intervals of 10 — 100nm. It then remains to solve
the contact mechanics problem shown below in Eq. (2.2), first treated by Hertz in
1882[28]. The stiffness of the cell, E, can be determined assuming the cell is planar
and linear elastic over the deformation, where « is the half-angle of the conical
probe tip. F' is the force applied on the cell surface causing it to displace by a
distance d, and v is Poisson’s ratio for the cell, often taken as v = 0.5 [28].

62_EF(1—1/2)

— 2.2
2 Ftana (2:2)

Two final methods for investigating the mechanical properties of single cells
rely on the manipulation of a small bead which has been coated to adhere to the
cell surface, similar to that used in the two pipette technique above. The bead is
manipulated in one of two ways. One method uses a pair of laser beams, utilising
the momentum of the photons to manipulate the bead. The displacement of the
bead is observed directly by microscope. This apparatus, also known as ‘optical
tweezers’, is capable of generating forces on the order of 1 — 200p/N. The second
method relies on magnetism to manipulate the bead, and is capable of applying
forces on the order of 0.1 — 10uN [28]. Forces on the beads cannot be directly
measured. Instead, an empirical calibration is used, often by manipulating the
bead in a fluid of known viscosity, and calculating the drag force according to
Stoke’s Law, Eq. (2.3), where pu is the fluid viscosity, r is the radius of the bead,
and v is the velocity [22].



F = 6murv (2.3)

The optical tweezer method has led to several important findings. One study
was able to monitor interactions between the cell membrane and the cytoskeleton,
and also to measure mechanical properties of the membranes themselves [20]. A
subsequent study showed that membrane tension may regulate cell surface area
through the rate of endo- and exocytosis [22, 61]. By applying a force to membrane
tethers, it has been shown that membrane tension is continuous, and that continuity
was experimentally observable when any point of the membrane not adhered to the
substrate was tested [61].

For other examples of the use of micropipette aspiration, AFM, optical tweez-
ers and magnetic bead rheology for membrane tension and mechanical property
measurement, see [20, 21, 22, 28, 61] and references therein.

With regards to sub-cellular structures, researchers have been able to measure
the stiffness of actin by a variety of methods, reporting values for F,.;, between
1.5GPa and 2.5GPa. Most of these studies used optical and x-ray diffraction
techniques and tested muscular actin [28].

All the methods mentioned here, whether for tissues or single cells, require excis-
ing that tissue or cell from the host organism, with the possible exception of AFM.
In this manner, they are highly invasive and preclude measurement of mechani-
cal properties in vivo. Given the dynamic nature of biological tissues, especially
during processes like embryo- and morphogenesis and wound healing responses,
this shortcoming is significant. That being said, these methods have produced in-
valuable results which led to the early mechanical models of cells, essential to the

development of todays finite element and continuum models described in §2.1.4 and
62.2.

The forces generated by, and the stresses transmitted through, the various ele-
ments of the cytoskeleton shown in Figure 2.1 each contribute to a force along the
interface between two cells, which is denoted . The distribution of the interfacial
forces is responsible for the self-rearrangement of biological cells [4, 19, 38, 65, 30].
This process is discussed further in the next section.

2.1.3 Tissue

There is now sufficient background to discuss the self-rearrangement of biological
cells. Many prominent authors have stated that cell self-rearrangement — such as
embryonic development, morphogenetic processes, cell sorting and wound healing
responses — can be described from a purely mechanical basis [4, 5, 19, 38]. These
statements have been supported experimentally, and many such experiments are
discussed in this section. This is not to say that neither chemistry nor genetics
play a role in morphogenesis. Effects of mechanical triggers may be chemically or
genetically regulated, and vice-versa [4]. In this study, I focus on the mechanical

7



system, not to discard the chemical or genetic, but simply to acknowledge them as
outside the current scope.

There are two mechanisms for getting differentiated cells in an embryo into
their correct locations: differentiation based on position and position based on dif-
ferentiation. The former theory results in differentiated cells automatically finding
themselves in their correct anatomical positions. The later requires that each cell
type includes some property or set of properties which cause it to preferentially
move to some location. In animal development both mechanisms are in action [38].
As the focus of this study is the identification forces driving cell motions, only the
second mechanism is discussed.

Cell sorting (differentiation controlling position) was first observed by Wilson
in the simplest of all multicellular organisms: the sponges [38]. Sorting was later
demonstrated in embryonic vertebrates. In both cases, the cells were dissociated
and mixed randomly. The dissociated cells then reassembled themselves into func-
tioning organisms. Wilson concluded that the movements he observed had to have
occurred simply to reassemble the individual cells [86]. The result implies that the
forces driving sorting must come from the cells themselves [38].

Some time later, Holtfreter observed sorting using species-specific pigmentation
of cells to track their movements directly. He hypothesised that the same forces
which drove the cells to re-sort themselves could also be responsible for the origi-
nal sorting of newly differentiated cells during embryogenesis [42]. His hypothesis
implies that cell sorting is an appropriate analogue for the study of embryogene-
sis. Holtfreter also suggested that differential adhesion between cell types may be
among the properties which lead to sorting. Further work along these lines led to
the discovery of cadherins, N-CAMs, and other cell surface proteins responsible for
adhesion.[38].

Townes and Holtfreter performed experiments in morphogenesis with an aggre-
gate of neural cells and certain other different cell types. They observed that no
matter which of three different starting configurations was used, the mass always
tended to the same final geometry: a mass of neural cells surrounded by other cells
[82]. This suggested that the same — or at least similar — mechanism was responsi-
ble for each of engulfment, invagination, and cell sorting [38]. Later, Steinberg also
proposed a common mechanism behind each instance of cellular self-rearrangement

78, 77).

There is extensive experimental evidence to suggest that the mechanism driv-
ing cellular self-rearrangement is mechanical in nature. Infolding of neural plate
(neurulation) has been shown to be driven by active contraction of actin-myosin
on the apical surface of the neural plate [12, 14, 49]. Harris reports on experiments
completed by Grim where non-muscular cells were grafted into premuscular masses
at the wing buds of chicken embryos. These cells took on the geometry of muscle
cells appropriate for that location. Harris postulates that the signals which caused
this event could be shown to be physical (rather than chemical or positional biol-
ogy) if the experiment were repeated with inert material such as silicone rubber

8



[38]. Additional experiments with the slime mould Physarum also support such an
assertion [5].

Harris gives a list of requirements for tissues to reshape themselves mechanically

[38]:

1. There must be two or more mutually opposed forces, that collectively are
strong enough to change the geometry of the system.

2. The relative strengths of at least some of these forces must change as functions
of the existing geometry.

3. These changes in strength must be such that the forces are exactly counter-
balanced when (and only when) the correct geometrical shape or arrangement
exists.

4. For all (nearby) shapes or arrangements, the directions of the imbalanced
forces must be such as to pull the system back toward this correct geometry.

Harris seems to neglect the possibility of the orientations of the forces changing in
item #2 rather than the magnitude.

Having established that morphogenesis is governed by a set of mechanical forces
generated by structures within the cell themselves, one must now ask ‘but what is
the nature of these forces’? Historically, there have been two theories describing
specifically how interfacial forces drive cellular self-rearrangement. The first was
Steinberg’s Differential Adhesion Hypothesis (DAH) [37]. He regarded cell sorting
as logically equivalent to the behaviour of immiscible liquids. Just as liquids with
higher intermolecular adhesion will form droplets suspended in the other liquid, so
will cells of one type sort out to the interior of others, with cell-cell adhesion taking
the place of molecular adhesion. He proposed that cells sort out internally because
their cell-cell adhesion forces are higher [77].

Three sets of observational evidence were presented for the DAH [78].

1. Transitive hierarchy. If cell type A engulfs cell type B, and cell type B engulfs
cell type C, then cell type A will engulf cell type C. Steinberg demonstrated
this for all 56 combinations of 8 different cell types and it always held.

2. If one type sorts internally to another, then it will also be engulfed by that
other type.

3. Those cell types which sort more internally are also more resistant to flatten-
ing out of aggregates of their type.

There is significant opposition to the DAH. For example, all three sets of ob-
servations are equally consistent with a cell’s cortical contractibility (tensions in
the cortical surface) being responsible for sorting, rounding, and engulfment. In

9



fact, item #1 would hold for any theory based on a quantitative difference. Item
#2 merely indicates that the forces responsible for sorting are also responsible for
engulfment, while item #3 suggests that these same forces are also responsible for
the tendency of aggregates to round up [37].

The alternative theory — called the Differential Interfacial Tension Hypothesis
(DITH) — proposes that differences in the tensions in the cortical surface drive
cell self-rearrangement [6, 9, 37, 38]. In liquids, molecular adhesion results in an
apparent contractile film on the surface; in tissues, surface contractility is the likely
cause of surface tension-like effects [38]. Note however, that none of the observed
phenomena could exist if the cells did not adhere to one another. Harris posits
that there are two elements to cell sorting. The adhesion of cell types (by N-
CAM or the cadherins) sorts the cells according to histotype, and the differential
cortical tensions arrange the groupings into their final positions, where the stronger
contractile forces move those cells toward the interior of the mass [38]. Many
researchers agree that the geometric fate of differentiated cells cannot be governed
by adhesion alone, but is the result of the interplay between adhesion and cell
surface tensions [41, 53, 55, 69].

A paper attempting to refute the DITH details an experiment designed to con-
firm the DAH [30]. Motions in a mass of cells were tracked. The mass was composed
of cells which were identical in all ways except for their surface adhesion molecules.
In this way, any sorting observed must therefore be due to differential adhesion
[30]. Others have noted, however, that under these conditions, while the cells do
group themselves according to histotype, they fail to sort one type internally to the
other [38]. This experiment is a classic case of confirmation bias; the experimenter
designed his experiment such that it could only confirm his hypothesis. The DITH
does not deny that intercellular adhesion plays a role in sorting, but states that
ultimately it is the interfacial tensions which govern the final position of cells, not
the intercellular adhesions which merely keep the mass together [6].

Measuring Tissue Stresses

There are, experimental techniques to investigate quantitatively the state of stress
in tissues. The first and perhaps most obvious is dissection. At any particular point
of interest, the tissue is incised and the recoil of the surrounding tissue is observed.
Hole drilling has long been used to evaluate in-situ stresses in conventional building
materials, and even has an ASTM standard method [2]. For biological tissues, it is
important to ensure that active contractile responses from the surrounding tissue
are eliminated if the precise state of stress is to be found. A series of such cuts can
be used to compile a succession of stress reactions to active forces during cellular
self-rearrangement [4].

Dissections have led to innumerable and valuable results. Laser microsurgery of
D. melanogaster embryos have shown the embryonic epithelium is in tension. The
same study was also able to show the existence of isotropic tension in the amniosera
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— the structure beneath the epidermis — and that both these tensions are integral
to D. melanogaster dorsal closure [50].

Dissections have been refined to such a point that single cells, single membranes,
or even single cytoskeletal components can be ablated by laser [13, 15, 40, 54, 80].
In the discussion so far, it has been shown that observing self-rearrangement of
cells is an excellent avenue to learn about embryonic development, presupposing
that the cells are rearranging themselves in such a way that they can be observed.
By ablating small groups or single cells, one can trigger primary wound healing
[64]; in this way can one observe the self rearrangement of cells in a location that
is easily observable, and in the desired cell types. Just as certain morphogenetic
processes can be studied as surrogates for wound healing, so can wound healing be
studied as a surrogate for embryo- and morphogenesis [83]. One can observe both
the recoil — giving insight to the state of stress in a tissue at a particular stage of
development — and the primary wound healing response: an excellent example of
cellular self-rearrangement.

Davidson et al. were able to use laser microsurgery to define three distinct phases
in embryonic wound healing: assembly of supracellular actin filaments in epithelial
cells at the wound margin, contraction and ingression of deep cells exposed by the
wound, and protrusion of the cells at the wound margin [23]. Hutson et al. found
that dorsal closure — a phase in D. melanogaster embryonic development was
also driven by the contraction of supracellular actin filaments [44]. These parallel
results further strengthen the case for the study of wound healing as analogous to
morphogenesis. It has also been shown that if the actin filaments are damaged, a
new set are constructed in the remaining cells and dorsal closure (or wound healing)
will proceed to completion [70].

During these studies, it was noted that adhesion was not a significant force in
dorsal closure until the latest stages, further supporting the DITH: that cellular
self-rearrangement is driven by differential tensions along cell-cell interfaces [44].
Sub-cellular ablation has shown that the behaviour of the amniosera of the D.
melanogaster behaved somewhere “between. . . a continuous sheet and a 2D cellular
foam (a network of tensile interfaces)” [58]. It was noted that tensions were carried

predominantly in the cell-cell interfaces, but also in the apical actin structures
[45, 58].

Dissections and ablation are, of course, invasive methods. Another method of
exploring stresses in live tissue involves the analysis of membrane angles. One
assumes that all mechanical forces which determine cell shape are balanced by
tensions oriented along the membranes and acting in the immediate neighbourhood
of the membranes. The neighbourhood then includes the plasma membrane itself
and the apical bundle and cortical actin layer. One also assumes that the network
of such tensions is in equilibrium at all times [4].

This method has been used by many researchers to generate a histogram of
membrane angles; any particular modality in the histogram suggests a principle
direction of stress in the tissue [4, 35, 45, 65, 79, 81]. The wide acceptance of this
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approach shows that 2D methods are an acceptable avenue of analysis of tissue
mechanics [4]. As embryonic tissues are largely composed of planar aggrerates, 2D
methods are more than adequate [8].

Prior to this study, no one has been able to use membrane angle analysis to at-
tribute a specific tension to each membrane — and neighbouring cytoskeletal struc-
tures — in a particular patch of cells. To develop such a method is the primary aim
of this study.

2.1.4 Modelling

As the understanding of cellular mechanics advanced, several models for the me-
chanical behaviour of cells were developed. Continuum models of whole tissues have
been developed but they are not relevant to the current study. They are therefore
omitted from this discussion.

As a natural response to the experimental investigation into the structural el-
ements of the cell, found in §2.1.2, several models of the mechanical behaviour
of individual cells were developed. Various 1D equivalent mechanical circuits for
the biomechanical behaviour of cells were proposed. These included Maxwell bod-
ies, Kelvin bodies, a Kelvin body with an additional viscous damper in series, and
many others [28]. These models are collectively called ‘lumped parameter viscoelas-
tic’ models. Each equivalent circuit describes the behaviour of a single, isolated cell.
These elements are later used to construct models of multicellular aggregates and
tissues.

Another type of model seeks to describe the behaviour of the cytoskeleton in
greater detail. As a purely philosophical exercise, these model the cytoskeleton
as belonging to a class of structures called tensegrity structures. They consist of
isolated compression elements connected by a network of tension elements [28]. The
tension elements must be under load to maintain the integrity of the structure as
a whole — hence the name. These models are a subject of very active investigation
[18, 47, 46, 74, 75]

We move now to models which describe multicellular aggregates and tissues.
Cellular automata — also known as lattice models — have been employed to attempt
to describe cell sorting [19]. Similar models had been previously used to describe the
behaviour of immiscible fluids, and given the work by Steinberg et al. [77, 78, 79]
their application to morphogenetic processes seems almost inevitable. Longo et
al. developed a cellular automata model to investigate blastocoel roof thinning
curing epiboly based on the DAH, and validated it against experimental times to
complete gastrulation. The model was able to predict dispersion of cells implanted
to the blastocoel roof [57]. Cellular automata models have also been developed by
Glazier and Graner, using multiple sites in the lattice to represent each biological
cell [33]. These models are all computationally cheap, allowing the simulation of
large patches of cells, as many as 1000 cells in some cases [85].
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It is widely thought that the first computational model of cell self-rearrangement
driven entirely by mechanical processes was developed by Odell et al. in 1981 [4, 19,
65]. Odell proposed that invagination processes, such as gastrulation of sea urchin
eggs, neurulation in vertebrates, and ventral folding in D. melanogaster could all
be the result of forces generated by active actin microfilaments contracting, and
the resulting stress patterns such deformations generated [65].

The model consisted of a 2D ring of quadrilateral ‘cells’, each composed of a
truss-like structure of passive viscoelastic elements to represent the cytoskeleton,
an active actin element at the apical end of the cell to represent the apical mi-
crofilament bundle, and an internal cellular pressure. This active element would
contract — or fire — given a certain state of strain. The model showed that to ini-
tiate invagination, the apical bundle of one cell must fire, constricting the apical
surface of the cell. Odell likened the process to drawing a purse-string. Because the
cells maintain a constant volume, apical constriction necessitates that the cells also
elongate. The constriction of the apical surface of this one cell caused extension in
the neighbouring cells; past a certain threshold of extension, the purse-strings in
those cells would also fire, and the contraction propagates along the embryo until
a state of mechanical equilibrium is reached, and invagination is complete [65]. It
has been suggested that the initial activation of the process could be triggered by
low cellular pressure [19].

Odell’s work has formed the basis for a huge class of mechanically driven tis-
sue models. Many continuum, finite element (FE), and other models have been
developed. Some even go so far as to describe tip and whorl formation such as in
fingerprints [19, 35]!

Davidson et al. developed a FE model to determine which of five hypothesised
mechanisms was responsible for sea urchin invagination, specifically gastrulation.
From these models, they found that different mechanical properties for the epithe-
lial sheet were necessary for gastrulation to complete with each mechanism. Also,
specific shape changes to arrive at the final configuration were predicted with each
mechanism [24]. Davidson proposed a series of experiments to test which hypoth-
esised mechanism was actually occurring; those experiments resulted in a set of
physically plausible gastrulation mechanisms [25].

Numerical models frequently accompany the laser ablation studies detailed in
§2.1.3. Sometimes, the observations from ablations can be used to validate or refine
existing FE models [45]. Other times, new models are developed, which can predict
the results from further experimentation [44].

As recently as 2006, the first cell-based constitutive model for embryonic tis-
sue relating in-plane stresses, tissue deformations, topological evolution of cellular
fabric, mitosis and cell rearrangement was developed. This work relied heavily on
finite element modelling to supplement the available experimental data [8].

2D and 3D cell based finite element models have been developed by Brodland
et al. based on the DITH [10, 9, 11, 12, 14, 87]. That model is used as the basis
for the current study; it is discussed at length in §2.2.

13



There are continuum models of cells and cytoskeletal networks have been devel-
oped [51, 71]. There are also models based on Steinberg’s DAH, and investigating
more precisely the nature of cell-cell adhesions, which do agree with the Steinberg’s
experiments [52, 67]. Since the current study does not make use of this model, they
are not discussed further, and are included here for completeness only.

Clearly, it can be said that neither modelling nor experimentation alone can
be relied upon to unlock the secrets of cell self-rearrangement. Experimentation is
necessary to support modelling, and, as Harris said, “[w]ithout something of that
kind [modelling], we won’t know what other sorts of behavior [sic] to look for, nor
whether our list is already adequate to predict (and thereby explain) the formation
of anatomical patterns... [D]evelopmental biology will remain a prisoner of our
inadequate and conflicting physical intuitions and metaphors.” [38].

2.2 The Finite Element Model

A finite element (FE) model has been developed to simulate displacements in bi-
ological cells. The 2D implementation of the model, called Simba, is used as a
foundation on which the new model Scar was built. Simba provides a system to
mathematically describe the geometry of patches of cells over time, and some rela-
tionships between displacements and forces in these patches. Implicit in the model
are several assumptions about the behaviour of these patches of cells, which are
necessary to develop the model.

The FE model is a forward simulation. A starting geometry is input or gener-
ated. Various mechanical properties, applied forces, and constraints are specified.
The model then calculates an increment of displacement, updates the geometry,
and continues for the prescribed number of time steps.

2.2.1 Nodes, Edges, and Elements

The basic constructs of the FE model are nodes, edges, and elements. These struc-
tures mathematically define the geometry and topology of the cell patch.

Nodes

Nodes are points in space that correspond to triple junctions in the cell patch. A
triple junction is where three cell membranes meet. It is at each node that equi-
librium must be strictly satisfied. In the 2D case, each node can displace in either
the x- or y-direction; displacements in the z-direction are held to zero. Alterna-
tively, each node can be said to have two degrees of freedom (DOF). Therefore two
equations of equilibrium can be written at each node.

It is assumed that no more than three membranes ever meet at one location. The
restriction is imposed for calculation reasons. There is one physical situation where,
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for an instant, four membranes will meet at one single node: a neighbour change
between two cells, shown below in Figure 2.3. A neighbour change occurs when one
cell slides past another. The portion of membrane between cells B and D shortens,
drawing cells A and C closer and closer together. For an instant, when nodes 1 and
2 meet, all four cells share one node and the membrane between nodes 1 and 2 can
be said to have zero length. This moment is shown in configuration b). This must
happen, but computationally we instantaneously change from configuration a) to
configuration ¢). This imposed change to the topology of the patch occurs when
the length of a membrane is less than some critical value, [..;. After the neighbour
change, the length of that edge is set to be longer than [..; to prevent another
neighbour change on the following time step. Such an artificial change is necessary

as short edges artificially stiffen the model, a phenomenon known as shear locking
[11].

Figure 2.3: Neighbour change morphology

It is possible for a node to connect to only two membrane segments. This can
occur along the boundary of a patch to capture the convexity of a cell in contact
with the medium. A node connecting only two membranes is not permitted on the
interior of a patch, that is, on an interface between two cells. Physically, a pressure
difference between two adjacent cells curves the membrane between them such that
is is convex to the cell with higher pressure. This of course produces a different
insertion angle of the membrane at the node that does a straight line between two
nodes. While a mid-side node could more accurately model the insertion angle of
such a curved membrane, the effect is considered negligible, and mid-side nodes are
not permitted. These legal and illegal configurations are shown in Figure 2.4.

Edges

An edge is the programming construct which models the cellular membrane, and
the forces acting along it. Edges are straight line segments between two nodes.
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Legal 2-Edge
Node

Figure 2.4: Legal and illegal configurations for a node connecting only two edges

The edge models the interface between two cells, or between a cell and the
medium. Each edge has a tension specified, dependant on the nature of the inter-
face. The user will specify a certain tension along a cell-medium interface, another
between like cells, and if desired, yet another between cells of different types. The
specified tension y4p aggregates a number of intra-cellular forces, shown schemati-
cally below in Figure 2.5. The forces form each structure are superposed according
to Eq. (2.4)]9].

Yap = FG" + FgU0 4 BT 4 BRI — PR+ FR (24)

The term nyto includes forces oriented along the membrane from the cyto-
plasm, apical microtubules, and intermediate filaments (IFs) of cell A. The term
FJfem include the tension in the membrane itself, and also tensions in the cortical
actin layer (CAL) which is located on the cortical surface of cell B. The term F{d"
includes the adhesion force between cells A and B generated by the cell adhesion
molecules (CAM). This adhesion force actually lowers the tension along the inter-
face which is why this term is subtracted from the total in Eq. (2.4). Finally, the
term F{Yer accounts for any other contractile forces along the interface between
the two cells. The biological function of these structures, and further details of
their composition can be found in §2.1.1 and §2.1.2.
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Figure 2.5: Contributions to the force along a cell interface

Elements

There are several classes of element available in the FE model. In addition to the
familiar structural elements such as the truss and the beam, a customised element
was developed for Simba to model biological cells. The Cell2D element is defined
by a collection of edges, by which the Cell2D element inherits a collection of nodes.

It has been shown that biological cells undergo strain rates on the order of
1075 /s during tissue remodelling processes such as sorting and embryogenesis. At
this low rate, the mechanical behaviour of cell contents - cytoplasm and organelles
- can be modelled as a massless, viscous, incompressible fluid [14]. Wound healing
responses have been shown to have strain rates several orders of magnitude higher
than normal tissue remodelling [45]. This fact has the potential to cause problems
with a viscous-only model of cytoplasm mechanics, and will be discussed further
in Chapter 4. The Cell2D element models the viscous cell contents as a system of
orthogonal dashpots, shown in Figure 2.6. The orthogonal dashpots are oriented
along the major and minor axes of the equivalent elliptical region. The dashpots
are each connected to one node, and to a common ground. The figure shows the
dashpots only in the major axis direction for clarity.

The stiffness of each dashpot is calculated according to Eq. (2.5)[11].
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Figure 2.6: Dashpot model for viscosity of cell contents

dgruhB
fia nA (25)

In Eq. (2.5), g is a form factor equal to 0.682, u is the specified cell viscosity,
n is the number of nodes which comprise the cell, h is the cell thickness, and A
and B are the major and minor axes of the cell, respectively. The y—u model was
discussed at length in §2.1.

2.2.2 Supports and Constraints

The model allows the user to specify various constraints on the degrees of freedom.
These include displacement, velocity, and force or stress constraints. The forces
which arise from these constraints on the FE model will be of great importance to
this study in Chapter 3.

It is assumed that the cell contents are incompressible. As such, throughout
any motion, the volume of each cell is constant. It has been shown that planar
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sheets of cells conserve area throughout motions [65, 45]. This means that for a
two dimensional model, the area of each cell is constant, and so is the thickness of
the planar sheet.

All the constraints on the model are imposed as Lagrange side conditions to the
equations of motion. The resulting Lagrange multipliers and their meanings are
discussed in §2.2.3.

2.2.3 Solution of the FE Model

The general equations of motion are given in Eq. (2.6). For the specific case of
biological cells, the scale is so small that inertial forces can be ignored. As such,
the second order terms can be ignored, reducing the system to a first order sys-
tem of equations. As discussed above in §2.2.1, elastic forces can also be ignored,
leaving only viscous or first order terms in displacement. These two statements are
equivalent to saying that f,, = f, = 0, and that f. = F. The reduced equations of
motion are then divided by the increment of time to solve directly for the nodal
displacements, as given by Eq. (2.7).

Mii+ Cu+Ku="Ff, +£+f=F (2.6)

C <$u> _F (2.7)

The system is geometrically nonlinear. The equations of motion, Eq. (2.7),
augmented with the constraints as discussed in §2.2.2, are solved for one interval of
time. The resulting solution vector is composed of the nodal displacements and the
Lagrange multipliers associated with the constraints for that time step. It bears
repeating the the ultimate output of the model Simba is a time history of nodal
displacements and reactions.

The Lagrange multipliers for constrained degrees of freedom (DOF) such as
nodal displacement or velocity constraints are the reaction forces at those DOF.
These are the forces required to maintain equilibrium of the patch at each node.
The Lagrange multipliers for the volume constraints on each cell correspond to the
internal pressure required for that cell to maintain its volume.

The internal cell pressure is very important to this study. Though it arises as a
reaction force in the FE model, it represents one half of a force balance present in
living cells; the membrane tensions and cell pressures are at all times in dynamic
equilibrium with the viscous resistance of the cell contents. It will be necessary for
the current model to incorporate both tensions and pressures to achieve a complete
set of forces at work for any motion being studied. The complete FE model is
shown schematically in Figure 2.7.

19



UNBOUNDED
MEDIUM

Figure 2.7: The finite element, differential tension model

2.3 Parameter Estimation

Parameter estimation is a topic within the field of system identification. In simplest
terms, parameter estimation is a class of algorithms which seek approximations to
certain parameters governing the behaviour of a dynamical system. These approx-
imations — or estimates — are made using some combination of observations of the
output from a dynamical system, some knowledge of the inputs to the system, and
assumptions about the nature of the system. A number of basic methods exist
to arrive at these estimates, and the variations on these methods are practically
innumerable.

The oldest and simplest method for estimating the parameters relating a number
of observed outputs to a number of inputs is a least-squares (LS) solution. The
method was first developed by Carl Friedrich Gauss and was used to estimate orbits
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of celestial bodies based on a few observations of position over time [31, 32]. When
a relatively large number of observations are available, Laplace later showed that
the LS method is the preferred approach, regardless of the distribution of the errors
in those observations [31]. A modern mathematical description of the method is
given below in Eq. (2.8) through Eq. (2.13), and was adapted from [27], [62], and
[63].

Supposing a set of observations of input (uy) and output (yx) data to a system,
which is assumed to have the form

Y = —Q1Yk—1 — Q2Yp—2 + A3Uj + QqUp_1 (2.8)

The parameters to be estimated are the coefficients a; through as. These are
represented in the form of a parameter vector p? = la1 a3 a3 a4]. We also define
the information (previous output and current and previous input) vector at time
step k as hy = [yr_1 Yk_2 ug ux_1|. Assuming that p is constant over time, then
the output at any time k is given by

yr = hyp. (2.9)

Or, in matrix form, where each hy is a row of H, the entire history of the system is
written as shown below. Note that the meaning of the sign ~ has yet to be defined,
but is necessary to be strictly correct [63].

y ~ Hp (2.10)

If the system of equations in Eq. (2.10) is overdetermined — that is, there are
more observations collected than unknown parameters — it is unlikely that a unique
set of parameters will satisfy all the equations in the system. This is especially
true if the information has been corrupted by measurement error or other noise. In
this case, any set of estimated parameters p will not exactly satisfy the system of
equations, but will leave some residual, r defined as:

r=y—Hp (2.11)

The essence of a LS solution then is to minimise the square root of the sum of
the squares of the residual, also called the Euclidean norm of the residual, defined
according to:

x|z = VrTr (2.12)
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This then is the objective function. It can be shown by simple evaluation of the

rlle
op

partial derivative = 0 that the solution p to the system

H'Hp = H"y (2.13)

is the solution which minimises the norm of the residual, and is the so-called LS
solution to the overconditioned system Eq. (2.10). Eq. (2.13) is simply a set of n
linear equations in n unknowns, and is called the set of normal equations for the
original system. Simple inversion of the matrix product H'H and pre-multiplying
on both sides will yield a solution for p. This approach can result in numerical
stability issues arising out of the special structure of the product H'H[63]. For-
tunately, there exist a number of more sophisticated methods to arrive at the LS
solution to a system of equations, such as the QR-~ and Singular Value decomposi-
tions. Development of these methods and their applications to LS solutions is left
to specialised texts [26, 39, 63].

Another description of the LS solution is shown in Eq. (2.14) and Eq. (2.15), as
presented in [27] and [62]. This representation makes use of an intermediate step
in the procedure, which will prove useful later. We begin by defining two matrices,
P, and B,. In these definitions, Hy, is the first k£ rows of the full matrix H.

P, = (Hng)fl and B, = nyk

o (2.14)

k -1 k
i=1 i=1
The solution to the LS problem after k observations is now the matrix product:

Pr = PiBy (2.15)

In this sense the LS algorithm is a batch estimator [27]. With the addition of
each new batch of observations, the matrix inversion in P, must be recalculated.
This approach is expensive in terms of both computation and memory. It would
be far preferable if the matrices Py and By, as well as the estimate p could be
updated as new information becomes available. The derivation of such a recursive
least-squares (RLS) solution is quite lengthy, and is left to specialised texts [27, 43].
Assuming the parameters being estimated remain constant for a time which is
sufficiently longer than the sampling interval, the resulting update laws for RLS
are:
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P,_1hih, Py,
1+ hPy_ h!

Py =Py —

(2.16)
Pi_1h] (yx — hiPr_1)
1+ h;Py ;h!

Pr = Pr—1 +

The matrix Py in Eq. (2.15) and Eq. (2.16) is more than just a convenient
representation of terms in the LS formulation; it is related to the covariance matrix
3 by a constant [59]. For n parameters:

var(po)  cov(po,p1) --. €ov(Po, Pn)
1 | cov(pr,p var(p
52 52 : -

This means that the diagonal of the matrix P contains information regarding
the variance of the estimate of each parameter. High values on the diagonal of
P, imply large variance in the estimates of those parameters. Furthermore, the
off-diagonal terms contain information relating to the covariance of the parameters
being sought. The constant s? is an estimate of the variance, o2, of the residual
[59]. This results allows us to assess — or at least compare — the accuracy of the
estimates. Other statistical quantities can be derived from terms in the above
formulation, but these are not relevant to the current study; the curious reader is
referred to the extensive literature on the subject [3, 27, 43].

The recursive formulation presented in Eq. (2.16) provides an updated estimate
of the parameters each time new information becomes available. One should there-
fore be able to adapt this algorithm to estimate parameters which vary over time.
If in the formulation the newer information is given some precedence over the older,
the output should track changes in the parameters. This can be accomplished by
introducing an exponentially decaying weight to the objective function [27]. Recall
Eq. (2.12). Substituting Eq. (2.11) and adding an exponentially decaying weight,
with some algebraic manipulation, the cost function becomes:

k
T =Y N (hipy — i) (2.18)

i=1

The cost function .J’ is presented in terms of a summation rather than the vector
notation previously used for clarity of the inclusion of the weighting factor A. This
coefficient is called a forgetting factor, and has a range 0 < A < 1. Following a
similar derivation to that used for the RLS formulation in Eq. (2.16), we find the
following update laws for the RLS with forgetting factors (RLS-FF) [27]:
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CPiy (1-)) Puhih P,
A \2 DY
(1 + 5 hkP“hg)

Pr=DPr1 — (1 = N)Pr(hihipr_1 — hlyx)

(2.19)

The forgetting factor A can be said to define the length of the algorithm’s
memory. Values of A close to unity mean that old information is ‘forgotten’ very
slowly; values close to zero mean that old information is forgotten more quickly. In
this sense, A would be more accurately called a ‘remembering factor’. Some texts
make the substitution @ = 1 — X\ when constructing the cost function Eq. (2.18)[27]
. The constant o can more appropriately be called a forgetting factor since higher

values correspond to faster forgetting. The majority of the literature, however, uses
A, as does this study [16, 17, 29, 56, 48, 66, 72, 73]

The selection of an appropriate forgetting factor is somewhat of a compromise.
Lower values of A forget quickly. As such, the estimate will adapt to changing
parameters and is said to have good tracking. A forgetting factor close to unity
will be less susceptible to noise corruption (misadjustment) and will be more stable,
but will track more slowly [66]. Another problem with forgetting factors arises as
the system reaches a steady state. In that case, the update law for Py reduces to
P, — %Pk_l. Since A < 1, Py can tend to increase exponentially or “blow-up”[27].
A solution to all these issues can be found in a variable forgetting factor.

The recursive least-squares with variable forgetting factors (RLS-VFF) was first
proposed by Fortescue. His method is based on a scaling of the prediction error in
an RLS formulation which more closely resembles the Kalman filter [29].

Since this seminal work, a number of other formulations for varying the forget-
ting factor have been published. So et al. propose a method based on the gradients
of the parameter estimates [72]. Leung and So later proposed another gradient
based method where the gradient is derived from a new mean square error analysis
of the RLS algorithm [56]. Cooper and Worden present a similar method based
on exponentials scaled using a normalised gradient of the parameter estimates [16].
That piece is noteworthy in its focus on applications to structures and dynamic
structural system identification. Paleologu et al. introduce a method which depends
on recovering the corrupting noise in the error signal and noise power estimates [66].
Song et al. derived a method which uses a Gauss-Newton approach incorporating
second derivatives of the cost function. This method improves tracking of quickly
varying parameters without sacrificing noise immunity and stability [73].

Each method has its own particular strengths, limitations, and appropriate
uses. Selection of a RLS-VFF scheme is often a process of trial and error, trying
the various methods and selecting the one which is most suited to the application
at hand. For more details and methods, the reader is directed to [16, 56, 66, 72,
73, 88, 89] and the references therein.
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The above discussion was completed for the single input, single output (SISO)
system. For this study, there are multiple inputs (the displacement of each node
in each direction) and multiple unknown forces. Such a system is called a multiple
input, multiple output (MIMO) system, and andjustments to the LS and RLS
formulations are required to cope with the increased order of the problem. Instead
of the scalar SISO system from Eq. (2.9), the MIMO system is written at each step
as

yr = h;p. (2.20)

where y}, is now a vector of system outputs, and hj is a matrix of previous outputs
and previous and current inputs. Eq. (2.10) remains unchanged in notation, but the
matrix H now contains submatrices hj for each timestep, rather than the vectors

h; as each row. The LS formulation remains the same for Eq. (2.11) through
Eq. (2.13).

The intermediate matrices P, and B, for the MIMO system are now

k -1 k
P, = {Z h;‘Th;*} and By =Y h!y, (2.21)
i=1 =1
with the matrix notation remaining unchanged. Finally, the RLS update laws for
the MIMO system become

P, 11—\ 1—A\ -1
Pk) — l;\ 1 _ ( )\2 )Pk_thThZ;Pk—l (I+ Tthk—lhzT)

(2.22)

Pr = DPr1 — (1 = NPr(hi hipe_y — hi'yy)

where I denotes the identity matrix.
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Chapter 3

Scar: The Identification
Algorithm

With the FE model from §2.2 as a foundation, a new method was developed to
estimate forces which drive deformations in patches biological cells. Drawing on
system identification techniques from §2.3, This new method is referred to as the
wdentification algorithm, or colloquially as ‘Scar’. This chapter will develop the
algorithm’s various elements model. At each step, we demonstrate the performance
using a single input patch of synthetic data, kept consistent throughout the chapter.
Such output is meant to be purely demonstrative; rigorous detailed discussion of
results is left to Chapter 4.

3.1 Inverting the FE Model

The existing FE model Simba was discussed at length in §2.2, and is used as the
foundation of the current study. The inputs to this new model will be the displace-
ment history which was the output of the forward model. Note that while the FE
model can output data such as cell pressures and support reactions, both of which
would be useful to the current study, the inputs are restricted to the displacement
history only, even when using synthetic data, since that information will not be
available when live data are employed.

The first step is to use existing code libraries to assemble the damping matrix
from the FE model. Eq. (2.7) was solved for nodal displacements subject to the
applied constraints in the forward model. For the new algorithm, the displace-
ment history is available, and so Eq. (2.7) is used instead to calculate forces at
the nodes which arise from viscous resistance of the cell contents to the observed
displacements.

As was hinted at before, this expression of nodal force includes only viscous
forces; it does not include any concentrated forces at the nodes from support re-
actions or any other forces on the cell patch. During this early stage of algorithm
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development, the synthetic data used have been constructed such that this assump-
tion holds. This was achieved by ensuring that the patch of cells is isolated in an
unbounded medium, with no external forces. Also the boundary conditions were
set such that one node was pinned — both degrees of freedom at the node were held
to be zero — and one other node is connected to a very weak spring as shown in
Figure 3.1. The spring ensures static determinacy of the patch as a free body, but
has such a low stiffness as not to attract any load. This set of boundary condi-
tions ensures that no forces other than the viscous resistance to deformation are
present, with all support reactions being zero. This simple input patch will be used
to demonstrate each step in the identification algorithm.

Figure 3.1: Input patch for demonstrating the elements of the identification algo-
rithm

3.2 The Geometric Matrix

Having calculated the nodal forces, which include only the viscous forces according
to Eq. (2.7), it must be determined which subcellular structures generate these
forces. To this end, a set of equation dubbed the geometric matrix is developed,

27



which relates the nodal forces to forces in subcellular structures. These equations
are written at each timestep individually, just as nodal forces were calculated at
each time step individually.

3.2.1 Force Generators

Figure 3.2 shows a portion from the interior of a synthetic patch of cells. The two
assumed contributions to the nodal forces are shown in this figure.

Figure 3.2: Contributions to Nodal Forces

We will first focus on Node 26. Each of the three edges which meet at this node
is assumed to be in tension. Therefore, each exerts a force on Node 26 equal to
the tension in that edge, and oriented along the edge itself. These forces are shown
in red. The sizes of the arrows are arbitrary; as yet it is not known whether Edge
33 carries higher tension than Edge 32. It is assumed that the tensions are not
necessarily equal.

A distributed load is shown in blue on Edges 12 and 13. This represents the
in plane loads in cell three. Typically, this load is thought of as a pressure — and
referred to henceforth as such — but represents any type of in-plane load carried by
the apical and basal membranes and the contents of the cell, but not the cortical
membranes. In addition to the pressure in the cytoplasm, this aggregate of forces
could account for forces in the cytoskeleton or other structures within the cell.
As a result, it is possible that this representation of pressure is negative, meaning
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only that forces in certain structures within the cell oppose the pressure in the
cytoplasm and are greater in magnitude. Negative ‘pressures’ arise easily form
a patch in tension. As discussed in §2.1.3, embryonic tissues such as in the D.
melanogaster are often in tension [50].

Figure 3.2 also shows concentrated loads at Nodes 10, 11, and 12. These are the
resultants of the distributed pressures on the edges. The magnitude of the resultant
is given by Eq. (3.1), and is simply the pressure in the cell, multiplied by half the
length of the edge. The resultant forces act perpendicular to the edge in question.
This representation is identical to a distributed load on a beam.

Pl

|PR| = = (31)

3.2.2 Assembling the Geometric Matrix

Having determined in the previous section the force generators in a patch of cells,
we now have a system of equations in component form which relate the tensions and
pressures to the nodal forces. All calculations are carried out in component form.
This system of equations will take the form of Eq. (3.2), where G is the geometric
matrix, F is a vector of nodal forces, and T is a vector of unknown tensions and
pressure for which the equations are solved.

GT =F (3.2)

(Gr{Tr} + [Gp{Tp} =F (3.3)

Eq. (3.2) can be seen as being composed of two sets of equations: one set relates
tensions to nodal forces, and the second relates pressures. This representation is
shown in Eq. (3.3), and is useful for the discussion of the assembly of the geometric
matrix G.

Tensions

The entries of G relate the tension in an edge to the force the edge exerts on a
particular node. The entries are given by the components of a unit vector along
the edge in question. Refer to Figure 3.3 and Eq. (3.4), where [ is the length of the
edge, and Ax and Ay are the x and y components of the edge, respectively.
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Figure 3.3: Development of tension components in the Geometric matrix, G

[~ 7 4 )
Gr, -

GT53,33 = A"E/l
GT54,33 = Ay/l

In Eq. (3.4), the structure of the geometric matrix can be seen; the rows cor-
respond to the degrees of freedom (DOF) of the model. In the example above,
quantities in x and y at Node 26 are DOF 53 and 54. Entries in the 53" row of G
are multiplied by the unknown tensions in T, and summed, in accordance with the
laws of matrix-vector multiplication. By having non-zero entries for a row in only
those columns which correspond to the edge tensions which meet at that DOF, a
compact notation is achieved, which relates components of force in x and y at each
node to the unknown tensions in each edge.

Pressures

The entries of Gp relate the pressure in a cell to the forces exerted on each node
in that cell. In the previous section, it was determined that the resultants of
the distributed cell pressure acting on an edge are given by Eq. (3.1) and act
perpendicularly outward from that edge. To determine the components of this

vector in a Cartesian system, binormal vectors are employed, arranged as shown in
Figure 3.4.

For the node in question, two vectors are defined. The vector ¢ extends form the
node in question to the centre of the cell. The vector € extends from the node along
the edge on which pressure is acting. From here, we calculate two more vectors
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Figure 3.4: Development of pressure components in the Geometric matrix, G

according to Eq. (3.5) and Eq. (3.6). The order of the cross products ensures that K’
is an outward normal to the cell’s edge. R’ is then scaled to give ﬁ, such that when
multiplied by the cell pressure, the vector PR is the resultant force on the node, as
shown in Eq. (3.1). The complete formulation for R then given by Eq. (3.7), where
[ is the length of the edge on which the pressure acts.

i=Ex¢é (3.5)
¥ =& x i (3.6)

fo L ex(exo (3.7)
2lex (€x o)l

The cross product is only defined in R2, so the resultant vector R has three
components. For this 2D problem, the z-component is always zero; the z- and
y-components are placed in Gp. An example case of the placement of these com-
ponents is shown in Eq. (3.8). This case is based on calculating the coefficients for
Cell 3 at Node 11 in Figure 3.2. These terms will include contributions form the
pressure acting on Edges 12 and 13. The symbol R refers to the x component
of the vector F when calculated for Edge 12.
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3.2.3 Assembly

The geometric matrix is populated by looping through all edges and cells in the
model. The two portions Gt and Gp are assembled into the full geometric matrix
as shown in Eq. (3.9), whose form is identical to the original Eq. (3.2).

Tr

Gr | Gp]{T—P}:F (3.9)

3.3 Solution

Having assembled the Geometric Matrix in §3.2.2, and calculated the viscous forces
in §3.1, two systems of equations in terms of forces at the nodes have been devel-
oped. By equating the right hand sides of Eq. (2.7) and Eq. (3.9), we can solve the
system for the unknown tensions and pressures. But first, a closer inspection of the
dimensionality of this system is necessary.

A system of equations can be either underdetermined, overdetermined, or have
a unique solution. An underdetermined system will have infinitely many solutions;
an overdetermined system has no unique solution. For any patch of cells which is
surrounded by unbounded medium, it can be shown that this system is overdeter-
mined, and has no unique solution.

The method to approximately solve overdetermined systems; the most well
known is the least squares (LS) fit. The method minimises the sum of the squared
residual error. For any vector T, the residual error is defined by Eq. (3.10). The
quantity to be minimised is the sum of the squares of the residual, which can be
expressed as r’r. The simplest method to minimise r’r is by solving the normal
equations, Eq. (3.11) [63]. There are, however, a number of numerical problems
with this formulation, and several more advanced methods for LS solutions to
overdetermined systems exist.

r=GT—F (3.10)

G'GT =G'F (3.11)
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Due to the nature of the system, the geometric matrix is sparse. This fact
enables us to make use of certain properties of properties of sparse matrices. To this
end, the model employs the CSparse libraries developed by Timothy Davis of the
University of Florida [26]. These libraries contain a robust method for performing
a LS solution: QR decomposition.

Each time step is solved individually using the QR decomposition to affect a LS
fit. The result, T, is a time history of estimates of the tension in each edge and the
pressure in each cell. Table 3.1 shows the mechanical and model properties for the
3-cell input patch from Figure 3.1. Any set of self-consistent units can be used in
the FE model [14]. For the simulations here, base units of g, um, and s were used
for mass, length and time, respectively. The choice of these base units leads to the
derived units for force, pressure (in 2D), and viscosity of 10~*dyne, 10~*dyne/um,
and g/s - pm, respectively.

Table 3.1: Mechanical and model properties for the 3-cell input patch

Ygg» 10" *dyne 7460
Ygms 107*dyne 3730
W, g/s-pm 200
Number of Nodes/DOF 13/26
Number of Edges 15
Number of Cells 3
Total Number of Unknowns 18
Number of Steps, n 157
Interval between Time Steps 0.1

In Table 3.1, 7,4, is the tension in an edge between two green cells; likewise, vgm,
is the tension in an edge between a green cell and a the medium. p is the viscosity
of the cell contents. Pertinent model parameters are also shown.

The output from the identification algorithm for the 3-cell patch is shown in
Figure 3.5. It can be seen from the figure, that the identification algorithm did
correctly identify edge tensions and cell pressures for the 3-cell patch. Note also
that the solution begins to diverge at later timesteps.

3.4 Sensitivity

In Figure 3.5, the output from the input patch, it can be seen that over time, the
solution begins to diverge from the correct values, which are found in Table 3.1.
The divergence in the solution is a numerical artefact of the least-squares (LS)
solution method.
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Figure 3.5: Output of the 3-cell model

The observed behaviour is because the problem is mathematically ill-posed, also
known as ill-conditioned. With respect to a system of linear equations, a problem
that is ill-posed will have a coefficient matrix which is near-singular. The structure
of G matrix is such that GTG will always be near-singular.

An ill-posed problem will be very sensitive to input errors, and this problem
is no different. The divergence observed in the output is due entirely to round-off
error in node coordinates, which are stored with 6 significant figures. To assess the
sensitivity of the input patch was corrupted with Gaussian random noise added to
the nodal co-ordinates at each timestep. The corrupting noise induces error in the
positions of the nodes prior to calculating the nodal displacements from one step
to the next, and prior to the calculation of the damping and Geometric matrices
from Eq. (2.7) and Eq. (3.2). The noise signal was mean zero (white noise) with a
standard deviation scaled according to Eq. (3.12), where A; is the area of a given
cell, and N¢ is the total number of cells.

> A

cells

7TNC

€0 = (3.12)

Initially, a noise signal with ¢ = ¢,/50 was used. It was found that this small
amount of error in the input rendered the output completely unintelligible. The
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Figure 3.6: Scar output for the 3-cell model corrupted by noise. Rapid divergence
of the solution.

problem is that noise in the input nodal coordinates is hugely amplified in the
calculation of nodal displacements, which through Eq. (2.7), generate the right
hand side of the identification equations. That result left the author rather taken
aback; additional simulations were run with ¢ = ¢,/500 and o = ¢,/5000, and still
the results were unintelligible. Only at o = €,/50000 does the algorithm produce
any meaningful results, and then only during the first few timesteps, as shown in
Figure 3.6. After the first 25 or so timesteps, the solution quickly degrades.

Figure 3.7 shows the dramatic fall-off in the identification algorithm’s perfor-
mance when the input is corrupted by any amount of noise, and that the perfor-
mance of the algorithm decreases with increasing input noise. The mathematics
behind the performance measure shown in the figure are discussed in §4.1. The
figure shows that any amount of noise dramatically reduces how well the funda-
mental elements of the algorithm perform, and that increasing amounts of noise
further reduce the quality of the estimate. The identification algorithm is clearly
an ill-posed system of equations, and the sensitivity is very high.
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Figure 3.7: Estimator Performance for 3-cell model corrupted by noise

3.5 Live Data Mesh Extraction

As was discussed in §3.4, the model is very sensitive to input errors. Any process
to extract a FE mesh from images of live tissues will necessarily be subject to some
level of error. The sources of this error are discussed, and a procedure to reduce
this error is presented.

3.5.1 Sources of Error

There are several sources of error which occur in the steps necessary to produce
a FE mesh from live tissue. The signals corrupted by these errors are the nodal
coordinates at each time step. The nodal coordinates are used to calculate nodal
displacements and thence nodal forces, according to Eq. (2.7). In this way does
input error propagate throughout the entire model.

The first avenue for error to occur is in the imaging of the tissue itself. The
CCD capture of the image frequently has significant additive noise, and can also
be corrupted by multiplicative noise. These two noise sources appear similar to
the eye, but the signal processing techniques to remove them are quite different.
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This noise in the image itself is more likely to cause problems with edge finding,
watershed, and other image processing algorithms than to affect the coordinates of
the nodes themselves. For a discussion of how these types of noise are treated, the
reader is directed to the many texts on the subject [34, 36].

Another source of error comes from the projection of the 3D tissue surface onto a
2D image. Often times confocal microscope is used to capture a stack of x—y images
at a series of depths z through the tissue. If the surface of the tissue is curved, the
image recorded by compositing the many confocal slices may be distorted when the
stack is flattened from 3D to 2D. Portions of the recorded image affected this way
might appear smudged or blurred, further impairing mesh extraction techniques.

The factors above all contribute to the inaccuracies in the extracted mesh,
notwithstanding the fact that any such extraction algorithm will be subject to
errors of its own. Current extraction techniques, subject to some of the sources of
error discussed above, are far from perfect.

3.5.2 Smoothing

Ultimately, it is the cumulative effect of the many sources of error that is of interest
to this study. While some of the individual error sources in the extraction process
are likely to be normally distributed, others like out-of-plane effects are certainly
not. Without substantially more detailed analyses of these sources of error, it
is difficult to achieve any greater noise reduction than what smoothing can offer,
assuming normally distributed, zero-mean error.

The Savitzky-Golay (SG) algorithm is a smoothing filter which, when convolved
with a signal, reduces noise. The main advantage of the SG method over say a
moving average or Gaussian smoothing filter, is that local extrema are preserved.
Representative output comparing the performance of the SG filter with a moving
average is shown below in Figure 3.8. Where an averaging filter deadens peaks in
a signal as it smooths, the SG algorithm is essentially a windowed polynomial fit.
Using LS regression, the polynomial of order & is fit to at least k41 terms [68]. Here,
smoothing order is denoted Og and smoothing window size is denoted Wg. Another
advantage of the SG algorithm is that the window need not be symmetrical, and
a smoothed output signal is not truncated by half the window size as in a moving
average filter. The code for implementing a SG filter was adapted from Numerical
Recipes 3rd Edition [68].

The SG smoothing filter is applied to each node ordinate. That is, the position
in  of Node 1 is treated independently of the position in y of the same node. This
was done for ease of application. The smoothed nodal coordinates are then used
for input to calculate nodal displacements, and the remainder of the identification
algorithm proceeds as usual.

The selection of parameters used for the smoothing filter depends greatly on
the data. In general, fitting a polynomial of order 2 and a window size of 31 has
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Figure 3.8: Representative output comparing the Savitzky-Golay smoothing filter
with a moving average filter [68]

proven effective. The original, noise corrupted, and smoothed node position for a
single DOF is shown below in Figure 3.9. In the figure, it is difficult to distinguish
between the raw and smoothed node ordinate; the two are almost coincident.

Figure 3.10 shows the nodal displacement at the same DOF as Figure 3.9 for
the raw, noise corrupted, and smoothed cases. Here it can be plainly seen that the
small amount of noise corrupting the node coordinates has a profound effect on the
nodal displacements, and that the SG filter has removed a great deal of noise.

The effects of the SG filter on Scar’s performance are discussed in §4.4. That
discussion includes a parameter study for the SG filter itself, as it relates to the
final output.

3.6 Recursive Least Squares with Forgetting Factors

An extension to standard least squares (LS) algorithms is the Recursive Least
Squares (RLS) method, which was discussed in §2.3. The RLS method updates
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Figure 3.9: Original, noise corrupted, and smoothed node ordinate

the current estimate with any new observations from the system. By including
a forgetting factor (FF) in the formulation of the estimator, older information is
weighted exponentially less than the new information.

Assuming that the magnitudes of the tensions and pressures being estimated
are changing slowly, a RLS estimator can be used to include information from
previous time steps. The additional information should improve the conditioning
of the problem, reducing the noise observed in the solution. To accomplish this, G;
and F; are augmented with information from previous timesteps, subjected to an
exponentially decreasing weight. For a FF A, the augmented system at step ¢ is:
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and the LS problem is solved in the normal way. Eq. (3.13) can be formulated in
terms of update laws, following the prototypes in Eq. (2.16), which is much more
efficient computationally.

Figure 3.11 compares the output for the 3-cell model given three different values
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for the forgetting factor, A = {0, 0.65, 0.9}. Recall from Table 3.1 the correct values
for the parameters being identified. Qualitatively, it can be seen that the higher
the FF in the RLS formulation, the better the results. Note that mathematically,
a FF of A = 0 is identical to the simple LS fit from §3.3.
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Figure 3.11: Scar output using RLS and multiple forgetting factors

3.6.1 Variable Forgetting Factors

A variable forgetting factor (VFF) has been developed for this study. In this thesis,
A denotes a constant FF, while \; is FF which varies over time. Several VFF for-
mulations were discussed in §2.3. When the method uses gradients of the estimate,
updates to \; may lag behind what is actually happening in the data. In other
words, if the parameters of a system stabilise at particular values, the estimator
may be slow to track a change in those values. The VFF update law in this study
follows the philosophy the original Fortescue formulation [29], and scales \; accord-
ing to an exponential of the normalised prediction error, as shown in Eq. (3.14)
through Eq. (3.16).

First, the prediction error ¢; is calculated. The prediction error is normalised by
the number of degrees of freedom (DOF), Npop, in the cell patch. The prediction
error at a particular step is the residual one would calculate using the previous
step’s parameters with the current step’s observations. A high prediction error
means the parameters are changing quickly.

o IFi— G.Ti |
Z VNpor

(3.14)

Next, a moving average of the prediction error &; is calculated, to smooth the
volatility that can be present in the prediction error calculations. The size of the
window is IV,,.
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Finally, A\; — the FF at timestep i — is calculated according to the exponential

5J52|
At Ty, 1

where the limits 0.02 < \; < 1 are imposed. [ is a scaling term which controls the
adaptation speed of the update law. In this way, the larger the prediction error,
the smaller A; becomes. The mean prediction error, € is normalised by the time
increment At and the mean value of the parameter estimate vector T after N, — 1
steps, denoted as Ty, _;. It is assumed that the window size is chosen such that the
parameter vector has stabilised after N,, — 1 steps, however the choice of window
size must also account for the smoothing effects NV, has on &;.

Figure 3.12 shows a representative history for A; calculated using the scheme
described in this section. The patch used was specifically constructed with slowly
and suddenly varying parameters to induce the VFF to adapt. The accompanying
surface plot shows how \; propagates as a weight on adjacent timesteps j as an
exponential function Eq. (3.17), where wj; is the weight applied to information
from timestep j when solving for timestep i. To interpret the surface plot, first
determine which timestep ¢ is being solved. Taking timestep 38 as an example,
the weights applied to each neighbouring timestep are indicated by the green line.
The weight applied to neighbouring timesteps has been introduced in this thesis
before, as the exponential terms (\)¥ in Eq. (3.13) for the back-looking constant
FF. This figure shows a non-causal (forward- and back-looking) formulation, which
is presented in §3.7.2.

Wil = ()\i)li_jl (3.17)

3.7 Sub-patches

So far, everything in the discussion has involved patches of cells with free edges.
When using synthetic data, this is a condition that can be imposed at will. In the
case of live data, we are frequently not so fortunate. Most times what we have is
an image of a region of a tissue: the field of view of the microscope. This view of
the tissue is referred to as a sub-patch of cells, or alternatively a patch with ‘frayed
boundaries’.
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3.7.1 Contributions to Nodal Forces

Mechanically, the analysis of a sub-patch brings additional forces into play which
must be considered. Consider the patch of cell shown in Figure 3.13. In this figure,
suppose the solid cells are fully within the microscope’s field of view. All other cells
are only partially visible, or at least not fully visible for the entire time course.

In Figure 3.13 one can see forces acting on the frayed boundary of the patch
from the surrounding tissue. Edges directed radially outward from the boundary of
the sub-patch exert tensions on the nodes to which they are connected. Radial edge
tensions are shown in red; some are omitted for clarity. Cells along the boundary
exert pressures on the sub-patch. Some representative pressures are indicated in
blue. Any stresses in the tissue as a whole — called far-field stresses — are transmitted
to the sub-patch through these tensions and pressures.

Rather than attempt to identify each tension and pressure which is outside the
sub-patch, these parameters are combined into unknown boundary force compo-
nents in x and y. This approach also accommodates unknown support reactions
in the case of statically indeterminate patches with free edges. The unknown force
component pairs are shown in yellow in Figure 3.13.

In §3.3 we said that the system of equations GT = F was overdetermined for
patches with free boundaries. It was for this reason that a simple least squares fit
could solve for the unknown tensions and pressures. For the sub-patch with frayed
boundaries this is no longer the case. Each boundary force constitutes another
pair of unknown parameters to identify. At the same time, there are still only two
equations of equilibrium at each node. For the sub-patch, the same system GT = F
is now underdetermined. Three more equations of equilibrium can be added, taking
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Figure 3.13: Sub-patch of cells showing additional forces from truncated cells

the entire sub-patch as a free body, and the unknown component pairs as forces
acting on it.

The form of the new system for a sub-patch with frayed boundaries is shown
in Eq. (3.18). The bulk of the matrix is constructed as outlined in §3.2, and these
portions of the system are denoted by their respective symbols. The 0 denotes a zero
filled region. The upper-right region of G4“9) has ones in rows corresponding to
DOF on the boundary of the sub-patch, and in columns corresponding the unknown
boundary force components R. The last three rows appended to G are the equations
of equilibrium for the sub-patch as a free body: > F,, > F,, and > M,. The
coefficients in the last row are the nodal coordinates — Ny, N1, etc. — which are the
moment arms for each of the unknown boundary force components. Representing
the unknown boundary forces as component pairs greatly simplifies this step.
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3.7.2 Non-Causal Variable Forgetting Factor

Having described mathematically the relationships between tensions, pressures, and
unknown boundary forces on the sub-patch, the system of equations must be solved.
§3.7.1 discussed how the system described by Eq. (3.18) is underconditioned, and
cannot be solved by normal means. However, the same technique used to improve
the conditioning of the base model can be employe here. RLS combines many
observations to estimate the value of a parameter. In the case of the sub-patch,
why not then combine observations from several adjacent time steps — resulting
again in an over conditioned system — and solve that augmented system.

A proper RLS formulation is back-looking only, that is, RLS is causal. The
reason for this is that it allows the RLS filter to be used for on-line identification,
as in an industrial plant. This study has no need for on-line identification. This frees
us to combine information from time steps both prior and subsequent to the time
step of interest: a non-causal approach. A non-causal combining of observations
helps to reduce any bias in the estimate; if the value of the parameter is changing
monotonically then combining only prior observations would cause the estimate to
be skewed higher or lower than its true value. Only at a local extrema will the
non-causal combination bias the estimate.

Using the VFF from §3.6.1, and in a manner similar to Eq. (3.13), time steps in
both directions are directions are combined to write a system of equations which can
be solved using least squares. At time step i, the system to estimate the tensions
and pressures in the sub-patch with n timesteps is
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These equations can be used to estimate the tensions and pressures in a patch
with frayed boundaries. Given a series of FE meshes extracted from microscope im-
ages of live tissue over time, it is now possible to identify the history of tensions and
pressures which drove the observed motions. The performance of the identification
algorithm is assessed in Chapter 4.
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Chapter 4

Results and Discussion

In this chapter, we first present some metrics by which the performance of the
identification algorithm can be assessed, and discuss the merits of each. A series of
synthetic data sets are presented, upon which the algorithm is tested. Finally, we
show how the algorithm may be refined by adjusting the tuning factors developed
in Chapter 3, and discuss the results from synthetic data.

4.1 Performance Measures

To evaluate and compare the effects of the various components of the identification
algorithm, it is necessary to develop metrics for the performance of the estimation
algorithm. Three metrics were developed for assessing the quality of the estimate.
Later, when the algorithm is applied to live data, the actual interfacial tensions
and intracellular pressures will not be available; a metric independent of those
values will be needed to have any confidence in estimates of parameters in live data
patches.

4.1.1 RMS Residual

The first measure of estimator performance to be explored was a normalised RMS
residual. Since the least-squares (LS) solution is based on a minimization of the
residual, this approach gives us a direct measure of the extent to which the residual
has been minimized, and hence, a direct measure of the quality of the fit of the es-
timated parameters for the system. The RMS residual at Time-step k is calculated

according to Eq. (4.1). The term 1/Npor normalizes the residual according to the
number of degrees of freedom (DOF) in the FE model.

1 ~ ~
TRMSk = \/NDOF (Fk — Gka)T(Fk — Gka) (41)
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Lower values of rgry¢ indicate better performance of the estimator. In theory,
the normalization by 1/n should allow us to compare Scar’s performance between
different cell patches, since the scale of each patch should be factored out.

The residual has units of force. The discrepancy in the dimensions of tensions
and pressures is accounted for in the units of the various entries in G. Those coeffi-
cients which multiply a tension parameter are dimensionless; those which multiply
a pressure parameter have dimensions of length. Since the edge tensions have units
of force and the cell pressures have units of force per length, all terms in the residual
vector F;, — G,'T), have units of force.

4.1.2 Covariance Matrix

The covariance matrix, 3, was discussed in §2.3; it arises as an intermediate step
in multidimensional LS solutions. The diagonal of 3 contains estimates of the
variance of each parameter. Taking the sum of each variance estimate for edge
tensions only, the result can be thought of as an estimate of the quality of the fit
of those tensions. This metric is called v, and is calculated according to Eq. (4.2)
at Time-step k, where tr(x) denotes the trace of a matrix.

U =tr(Xg) = tr(Pk)sg (4.2)

The matrix Py is calculated according to either Eq. (2.15) or Eq. (2.16), de-
pending on whether or not the recursive formulation is used. For this model, the
estimate of the standard error, s? is calculated according to Eq. (4.3). Here again,
Npor is the number of DOF in the FE model. Ng and No are the number of
edges and cells — and hence combined they are the total number of parameters to
estimate — in the cell patch.

1
2 _
“*  Npor — (Ng + N¢)

Only the diagonal terms of ¥ related to edge tensions are included in ¢/,. This is
due to an inability to satisfactorily resolve the incompatible dimensionality between
those terms related to tensions and those related to pressures. Any attempt to non-
dimensionalise the diagonal terms of ¥ must be based on generalized geometric
properties of the input patch, which necessarily change over time. These changes
would make a metric based on a non-dimensionalised X very difficult to defend,
and even more difficult to compare between one cell patch and another. This
shortcoming is accepted since it has been shown in §2.1.3 that tensions in the
cortical edges of cells in a patch are predominantly responsible for driving self-
rearrangement of cells and tissue reshaping.

48



4.1.3 Coefficient of Determination

The classic measure of the quality of a parameter fit for linear regression models is
the coefficient of determination, R?. In general terms, R? is one minus the ratio of
the sum of squared errors to the total sum of squares [59]. In the context of the
multivariate linear fit, R? is calculated according to Eq. (4.4).

(Fr — Gka)T(Fk — Gkr/fk)

RZ=1-— _ _
" (Fr —Fu)T(Fp — Fy)

(4.4)

As with the RMS residual of §4.1.1, R? is dimensionally consistent, and therefore
includes information regarding the quality of the estimated tensions and pressures.
The metric is also normalized from 0 to 1, making comparisons between different
cell patches possible. Such comparisons should be used with caution, however, as
R? does not scale properly with model size [59].

4.1.4 Verification Performance Measures

A x? test will be used with the early synthetic data results to validate the perfor-
mance measures. Y2 can be used for the synthetic data runs because the original
parameters used in the forward simulations are available. If a correlation is seen
between the performance measures and the y? value, we can be more confident
in applying the performance measures to the live data runs, and have a better
understanding of when certain measures are more appropriate than others. For
instance, it may be that one measure is more suitable for comparing results from
different input patches, and another is only useful for evaluating how tuning factors
affect the output of the identification algorithm. For the multivariate identification
algorithm, x7 is calculated at timestep k according to

Neg+Nc /s

1 (T — Tix)?
2 _ AL L 4.5

4.2 Sources of Data

There exist two basic classes of displacement data which are available: synthetic
data and live data. Synthetic data are generated using the forward model Simba,
whose output is a displacement history. Live data are gathered by directly observing
displacements in live cells over time.

Three different input patches were used for synthetic data. The 3-Cell patch
used to demonstrate the identification algorithm in Chapter 3 is extensively used

49



in testing, partially because of its simplicity. The initial configuration of the patch
is shown in Figure 4.1a; the final configuration is found in Figure 4.1b. The Vari-
able Tension patch, as the name suggests, was created such the the tensions being
estimated vary over the history of the motion. Initial and final configurations are
found in Figure 4.2. The pressures will vary over the history of the motion, it was
deemed appropriate to have a test patch where all parameters sought varied over
time. Such variability is expected to be seen in live tissues. Finally, a larger patch
with two different cell types was used. The interfacial tensions for this patch were
set such that the ‘red-type’ cells sort internally to the ‘green-type’ cells. The initial
and final configurations of the Sorting patch are shown in Figure 4.3.

All three test patches were generated using a random 2D Voronoi tessellation.
The 3-Cell patch was stretched in the x direction and allowed to recoil to an equi-
librium configuration. The Variable Tension patch was allowed to anneal from the
generated Voronoi tessellation, under the influence of the slowly varying edge ten-
sions. The correct values for edge tensions are indicated on any output plots for
this patch. Deformations in the Sorting patch were driven by differential interfacial
tensions between the two cell types. The forward FE model used to generate the
Sorting patch output only one of every four steps. This was done to emulate sam-
pling the continuous nodal displacement functions, such as would be done when
extracting a mesh from live data.

The pertinent mechanical and simulation properties for all patches are listed in
Table 4.1. These include the edge tensions for the various cell-cell and cell-medium
interfaces, cell viscosity, number of time steps, and interval between timesteps. The
units for the various physical quantities are discussed in §3.3.

Table 4.1: Mechanical and Model Properties for three test cases

Parameter 3-Cell Variable Tension  Sorting
Figure 4.1 Figure 4.2 Figure 4.3
Vg9, 107 *dyne 7460 7310-7460 7500
Ygm, 107*dyne 3730 3730-3900 4000
Ygr, 1074dyne — — 10 000
Yory 107 4dyne — — 3000
Yoms 1074dyne — — 8000
W, g/s-pum 200 200 200
Number of Nodes/DOF 13/26 21/42 43/86
Number of Edges 15 26 57
Number of Cells 3 6 15
Total Number of Unknowns 18 32 72
Number of Steps 400 67 67
Interval between Time Steps 0.1 0.1 4

In Table 4.1, 74, is the tension in an edge between two green cells; likewise, g,
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is the tension in an edge between a green cell and a red cell, 7., is the tension in
an edge between a red cell and the medium, and so on. p is the viscosity of the
cell contents. Pertinent model parameters such as the number of nodes, edges, and
cells in the model, the total number of degrees of freedom in the model, the number
of unknowns, and the number of times steps.
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4.3 Basic Algorithm Output

First performance of the basic elements of the identification algorithm is evaluated.
That is, the elements of the algorithm discussed in §3.1-3.3. The basic algorithm
output using the 3-Cell patch is shown in Figure 4.4.
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Figure 4.4: Output from the basic algorithm using the 3-Cell patch

The estimated tensions and pressures for the 3-Cell patch are shown in Fig-
ure 4.4. One can see that the identification algorithm estimated values for the cell-
cell and cell-medium interfaces centred around the correct values from Table 4.1.
Correct values are also shown in dashed and dotted black lines for cell-cell and
cell-medium interfaces respectively. One also sees the estimate diverging from the
correct values at later timesteps, as was done in §3.4. We understand this diver-
gence to be a consequence of numerical artefacts in the solver, and refer to it as
solver noise.

These qualitative observations of the algorithm output are useful, but it would
be more effective to have quantitative measures of performance. Figure 4.5 shows
each of the three performance measures defined in §4.1 plotted along with the 2
statistic.

The x? measure confirms that the estimate is diverging from the correct param-
eter values at later timesteps. Both 1 and R? reflect that divergence. The 7z
measure shows a consistently low value, which seems to suggest a good fit over the
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Figure 4.5: Performance measures for the 3-Cell patch using the basic algorithm
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whole history. The low value is deceptive, however, since the LS method minimises
the residual. It is expected then, that rgry;s is consistently low, and since it dis-
agrees with ¥ and R?, and more importantly 2, it shan’t be given much credence
for the basic algorithm.
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Figure 4.6: Output from the basic algorithm using the Variable Tension patch

The estimated tensions and pressures for the Variable Tension patch are shown
in Figure 4.6. The dotted and dashed lines indicate the true values for the cell-cell
and cell-medium interfaces respectively. The algorithm tracks changes in these pa-
rameters quite well. The sudden jump in cell-medium interfacial tension at timestep
7 is well represented in the estimated tensions. As with the 3-Cell patch there is
output solver noise present in the later steps.

The ¥? measure again confirms that the estimate is diverging slowly from the
correct parameter values, a conclusion supported by the 1 and R? measures. The
rrus is consistently low, as was seen with the 3-Cell patch, and does not reflect
the degrading quality of the estimate.

At first glance, the quality of the estimate for the sorting patch does not appear
as good as the previous two patches’. There a number of interesting features in the
Figure 4.8. The most obvious are the spikes (truncated for clarity) in the estimated
values for the parameters. These spikes coincide with neighbour changes during
the simulation, are only one time step long. Since the neighbour change algorithm
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Figure 4.7: Performance measures for the Variable Tension patch using the basic
algorithm
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Figure 4.8: Output from the basic algorithm using the Sorting patch

in the forward model is an artificially imposed displacement, it was expected that
the identification algorithm would not correctly identify parameters during these
steps. One can also see a slow recovery of the solution to the correct value after
these neighbour changes. It is unclear exactly why the re-convergence is delayed;
the delay may be related to the 4:1 sampling rate used to create input patched
for this algorithm from the output of the forward FE simulation. The effects of
such sampling are most pronounced over the large displacements in the region of
the neighbour change. The earliest timesteps appear to suffer from a similar effect.
Further investigation may be required to identify the cause of this effect.

It is also shown in the figure above that Scar accurately tracks the abrupt change
in tension in an edge following the neighbour change. During the neighbour change
at timestep 37, Edge 52 changed from being a red-medium interface, to a green-
green interface, thereby eliminating the last red-medium interface. In the figure,
one can see the estimate of the tension in Edge 52 is roughly 8000 prior to the
neighbour change - the appropriate value for a red-medium interface according to
Table 4.1 - and after the neighbour change the tension is roughly equal to 7500 - the
appropriate value for a green-green interface. All neighbour changes were tracked
correctly, but this example is the most clearly visible in the figure.

The x? measure shown in Figure 4.9 has spikes so large at each timestep in-
volving neighbour change, accurately reflecting the incorrect parameter estimate
during those steps. Those spikes are reflected in each of the three performance mea-
sures and the spikes completely dominate both the 7zy;s and R2. The 1) measure,
however, does show the quality of the estimate improving slowly after neighbour
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Figure 4.9: Performance measures for the Sorting patch using the basic algorithm
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Table 4.2: Comparison of performance measures for three input patches using the
basic algorithm

Input Patch TRMS (0 R? x>
3-Cell 0.255 7.91e5 0.996 265
Variable Tension 0.594 2.32e4 1.00 10.2
Sorting 9.85 4.47e8 0.997 1.78e5

changes, in line with 2. If rpyg were plotted on a log scale as is done for 1,
one sees the same improvement in estimate quality following the neighbour change.
That plot is found in Figure 4.10.
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Figure 4.10: RMS Residual for the basic algorithm using the sorting patch - log
scale

One can compare the overall performance of the identification algorithm for
each patch by taking an average of each measure over the whole time history for
each patch. That comparison is shown in Table 4.2. The table shows that by each
measure, the algorithm performed best using the Variable Tension patch, and worst
for the Sorting patch. Note that these averages do include those timesteps which
involved a neighbour change in the Sorting patch, which dramatically effects the
performance. One also sees that for all three patches, the R? value is nearly unity,
which is not particularly useful. In fact, throughout this section so far, it can be
said that 9 followed x? most closely, and gave the most useful information.

To reduce the effects of the output solver noise, each patch was re-run using the
RLS solution method with multiple constant and variable forgetting factors (FF).
Table 4.3 shows the average v, R?, and y? measure for the several FF for each input
patch. The rgryrs measure is omitted because it was found to be ineffective for the
basic algorithm earlier in this section. If, for a particular row in the table, there is
a value in the column A, then that run was done using a constant FF using that
value. If, on the other hand, there is a value in the column [, then that run was
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done using a variable forgetting factor (VFF), with that value as the adaptation
speed in the VFF formulation Eq. (3.16). The best value for each measure for each
patch is shown in bold face.

Table 4.3: Basic algorithm performance using RLS with several Forgetting Factors

Input Patch ) IE] Y R? x>
095 — 4596 0.978 2.34
0.6 — 3.48¢6  0.983 17.9
— -0.01 -4.92¢5 1.01 3.49
3-Cell —  -0.1 -4.95%5 1.01 3.49

— -1 -8.53eH  1.01 3.49
— -10 4.01le5 1.00 2.07
— -100 4.09¢6  0.980 2.74

0.95 — 9.33¢6  0.992 78.8
0.66 — 1.45e6  0.999 2.48
Variable — -0.01 4.52¢6  0.997 124
Tension — -0.1 4.34e6 0.997 124

— -1 4.95e6  0.996 93.2
— -10  3.15e5 0.997 10.9
— -100 1.76e4 1.00 3.83

095 — 576e9 1.01  5.30e4
0.66 —  3.90e9 0.962 4.85e4
— -0.01 6.30e9 0.847 4.48e4
Sorting — -0.1 6.30e9 0.847 4.48e4

— -1 6.24e9  0.849 4.50e4
— =10 5.09¢9 1.01 5.57e4
— -100 1.67e9 1.12  1.48eH

For the 3-Cell patch, all performance measures indicate that using a VFF with
B = —10 produced the best estimates. The other two patches are less defini-
tive. For the Variable Tension patch, x? indicates that a constant FF of A\ = 0.65
produced the best estimates, while the other two measures suggest that a VFF
with # = —100 is best. For the Sorting patch, each measure indicated a different
(V)FF was best. Since x? directly measures deviations from the expected values,
it must be used, when available, to determine the optimal (V)FF in this case. The
identification algorithm output for the optimal case is shown, for each patch, in Fig-
ure 4.11. Whenever the notation (V)FF is used, it refers to constant and variable
FF concomitantly.

Crucially, for each patch, most or all runs performed better with some from of
RLS with either FF or VFF than the original runs reported in Table 4.2. Note
however that the output shown in Figure 4.11(c) does not appear to be very good,
despite having the best reported x2?. Shown in Figure 4.12, one can see that using a
constant A = 0.65 produces much better results. This could be due to including the
steps involving neighbour changes in the performance measures. The performance
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Figure 4.12: Basic algorithm output for the Sorting patch with constant A = 0.65.
These estimates appear better than what the performance measures indicate.

measures are examined more closely in the following sections discussing how the
identification algorithm copes with noise and patches with frayed boundaries, both
of which are of far greater concern this algorithm is to be used with live data.

Perhaps most concerning about the results in Table 4.3 is the apparent lack
of correlation between y? and the other performance measures. The correlation is
good for the 3-Cell patch, but less well correlated for the other two.

It can be concluded that the basic identification algorithm — that including
the elements from §3.1-3.3 — does estimate tensions and pressures in patches of
cells generated synthetically. Though subject to solver noise, the means of these
estimates tracked the correct values very well. RLS solution methods with either
constant or variable FF are able to reduce the effects of the output solver noise.
Furthermore, there exists some correlation between the x? measure of estimated vs.
expected values, and the 1 and R? performance measures developed in §4.1. The
correlation is discussed further in the subsequent §4.4 and §4.6, in the hopes that
they can be of use in future live-data studies.

4.4 Effects of Noise

As was shown in §3.4, the identification algorithm is extremely sensitive to noise
corrupting the input nodal coordinates and displacements. In this section, two
methods for reducing the effects of this input noise are explored: smoothing, and
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Table 4.4: Average performance measures for smoothed noise corrupted input
Input Patch Og Wy 7Trus ) R? x>
— 502  2.76el0 0.888  2.00e7

15 105  1.95¢9 0921  1.20e6
21 89.0 1.83¢9 0.935 3.58ed
31 69.2  1.36e9 0.950 6.38ed
41 476 8.66e8 0.962 1.74e5

2 15 689 144e9 0.883 7.46ed
2 21 478 7.39e8 0.878  2.66e5
2 31 31.6 4.62e8 0.882 1.62eb
3-Cell 2 41 236 3.73e8 0.893 1.61eb
3 15 70.6 1.46e9 0.873 5.50e5
3 21 481 8.16e8 0.882  3.55eb
3 31 312 441e8 0.891 1.81ed
3 41 23.4 4.00e8 0.900 2.15e5
—  — 0699 2.03¢9 0.896 1.04e7
2 15 109 1.56e9  0.907 6.36e5
2 21 748 1.46e9 0933 4.56eb
Variable 2 31 528 1.24e¢9 0.954 3.94e5
Tension 2 41 45.5 1.29¢9 0956 1.79e5
3
3
3
3

the same RLS-FF solution method used to reduce output solver noise in §4.3.
Following that, a combination of smoothing and RLS-FF was tested for reducing
the effects of input noise.

Nodal co-ordinates for the input patches were corrupted with Gaussian white
noise with a standard deviation o = 0.002¢y, where ¢, is given by Eq. (3.12). Given
the issues with the sorting patch in §4.3, only the 3-Cell and Variable Tension
patches will be tested in this section.

4.4.1 Smoothing

In §3.5.2, a method to smooth the input nodal co-ordinates was developed to re-
duce the effects of input noise. Shown in Table 4.4 are the performance measures
for both the 3-Cell and Variable Tension patch using several different tuning fac-
tors for the smoothing filter. The performance measures for both patches without
any smoothing applied are shown with ‘— in the Og (smoothing order) and W
(window size) columns for comparison. Again, the best value for each performance
measure for each patch is shown in bold face.

One can see good agreement between the various performance measures for the
3-Cell patch, the tuning factors which rzys and R? indicate are optimal had the
second best values of 1 and x2. For the variable tension patch, the second best
value for rgyrs corresponds to the optimal runs as indicated by the other measures.
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For both patches larger smoothing window sizes produced better results. The table
also shows the results using a smoothing order of either Og = 2 or Og = 3 produce
very similar results. For the 3-Cell patch, Og = 2 was slightly better, while for
the Variable Tension patch Og = 3 was slightly better. In any case, the difference
between the two is negligible. Finally, any set of tuning factors for the smoothing
filter yields substantially better results than no smoothing at all.

The algorithm output using the optimal tuning factors for the smoothing filter
from Table 4.4 are shown, for the 3-Cell patch in Figure 4.13(a), and for the Variable
Tension patch in Figure 4.14(a)

Figure 4.13(a) does not show the full 400 available timesteps, however, even
from the 75 steps shown one can see that the quality of the estimate degrades
quickly. Even though the performance measures may indicate that a particular set
of tuning factors produces the best output for a particular patch, that output may
still be highly inaccurate. It is clear that all measures excepting the rz);s indicate
that the estimate is substantially better at earlier timesteps.

Turning to the Variable Tension patch, whose output and performance are found
in Figure 4.14, there is a region between timesteps 10 and 20 where the estimates do
match up with the correct values for both the cell-cell and cell-medium interfaces.
Looking closer at the plots of the performance measures, we see that R? primarily,
but also the rzys and the 1) measures though to a lesser extent, do indicate a
better quality estimate over those timesteps. This assertion is confirmed by x2.

A problem arises in that there are other timesteps where the several performance
measures suggest that estimate is as good as timesteps 10-20, a suggestion not
borne out by looking qualitatively at the algorithm output. This effect is similar
to observations made with Anscombe’s quartet, where four dramatically different
sets of data yield identical regression statistics. The example is often used to stress
the importance of physically looking at the data, and not simply relying on one’s
analyses [1, 84].

4.4.2 Recursive Least Squares

Another technique available to reduce the effects of input noise is the RLS solution
method with either constant or variable FF. Table 4.5 shows the average perfor-
mance measure for the 3-Cell and Variable Tension patches with the various (V)FF.
If, for a particular row in the table, there is a value in the column A, then that run
was done using a constant FF using that value. If, on the other hand, there is a
value in the column (3, then that run was done using a variable forgetting factor
(VFF), with that value as the adaptation speed in the VFF formulation Eq. (3.16).
The performance measures for both patches without (V)FF applied are shown with
‘—7in the A and (8 columns for comparison. The best value for each measure for
each patch is shown in bold face.

From the table, it is unclear as to whether RLS-(V)FF improved the perfor-
mance of the algorithm when the input was corrupted by noise. The output, >
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Table 4.5: Average performance measures for noise corrupted input with RLS-
(V)FF

Input Patch A I} TRMS (0 R? 2
— — 502 2.76el0 0.888 2.00e7
0.95 — 1.43e3 6.38¢11 0.225 7.33e6
0.6 — 1.22e3 2.05ell 0.406 1.12e7
3-Cell 0.5 — 1.16e3 1.58ell 0.483 1.21e7

—  -0.01 1.47e3 2.86ell 0.193 6.26€6
— =01 1.28e3 2.19ell 0.369 1.14e7
— -1 022. 4.92e¢9 0.887 1.5le7
— — 699 2.03e9 0.896 1.04e7

095 —  1.99¢3 191ell 0.162 5.48e6
Variable 0.6 — 1.84e3 1.64ell 0.363 1.66e7
Tension 0.5 — 1.70e3 2.83ell 0.463 1.82e7

— -0.01 2.05e3 1.71lell 0.138 3.95e6
— =01 1.97e3 24lell 0.215 1.05e7
— -1 931 4.70e9  0.825 9.76e6

and 1) performance measures, and VFF for the runs with the best x? are shown for
each patch in Figure 4.15 and Figure 4.16. Higher values of 3 than those shown in
the table were found to produce no variation in the FF whatsoever, and the algo-
rithm returned the same results as when the basic algorithm was used to produce
the top rows shown for each patch.

Figure 4.15 shows that the use of RLS with the VFF shown in (b) does, at least
at earlier steps, reduce the effects of input noise on the identification algorithm.
There is good correlation between the two performance measures shown in (c);
both indicate the quality of the estimate degrades at later timesteps. It is not
known why the estimate increases over time. The increase was so severe, that only
the first 200 timesteps are plotted.

The output in Figure 4.16(a) is not as definitive as that of the 3-Cell patch. The
estimates even at early timesteps are significantly higher than the correct values.
The algorithm did, at least, yield estimates which grouped cell-cell and cell-medium
interface tensions together, even though the values of the estimates are far too
high. The performance measures x? and ¢ are well correlated, and support the
observation that the estimate is of higher quality earlier in the history of the patch.
One can also see that the FF is higher for the Variable Tension patch than it was
for the 3-Cell patch (Figure 4.15(b)) over the entire history. Given that the update
law for A — Eq. (3.16) — is based on prediction error, higher values of A could suggest
that the identification algorithm had difficulty in producing acceptable estimate.

We can conclude then, that the use of the RLS-VFF solution method can im-
prove the estimates of edge tension and cell pressure when inputs are corrupted by
noise, and that such improvement is concentrated in earlier timesteps rather than
later ones. More importantly, the performance measure 1 is well correlated with
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x? for noise corrupted inputs. Finally, when using VFF, it appears as though the
history of the FF itself can yield useful information about estimate quality, so long
as consistent [ is used for each run. It is unclear as to why the estimates increase
over time. This surprising result is clearly worthy of further investigation.

4.4.3 Smoothing and Recursive Least Squares

Having shown that both smoothing and RLS-VFF can have positive effects on
algorithm output when the inputs are corrupted by noise, both methods are imple-
mented concomitantly, to see if estimates can be further improved. The 3-Cell and
Variable Tension patches, corrupted by input noise, were run with the best tuning
factors for the smoothing filter and RLS-VFF solution method as determined in
§4.4.1 and §4.4.2.

Figure 4.17 shows the algorithm output for the 3-Cell patch, as well as rrys
and v performance measures plotted against x?. A smoothing order of Og = 2 and
window size of Wy = 41 were used, along with the adaptation speed § = —0.01 for
the VFF update. One can immediately see that the combination of both smoothing
and RLS-VFF has radically improved the estimate. Thought the estimated values
are slightly lower than the correct parameter values, the algorithm performed much
better when both methods were used to reduce the effects of input noise.

Both Figure 4.17(b) and Figure 4.17(c), do not show good correlation of the
performance measures with y2. This is somewhat troubling; since the combination
of smoothing and RLS-VFF will be used in future studies to reduce the effects of
input noise for live data, and since x? will not be available when using live data,
the lack of good correlation reduces confidence when these performance measures
are used to assess the quality of any live data-based estimates. In fact, both the
rrus and ¥ suggest that the estimates are better in the last 25 or so timesteps,
when in fact, x? shows this region to be of lowest quality.

Figure 4.18 shows the algorithm output for the Variable Tension patch, as well
as rrys and 1P performance measures plotted against x?. Og = 3 and Wy = 41
were used, along with the adaptation speed § = —0.01 for the VFF update. In
Figure 4.18(a), especially at later timesteps, the estimates appear to converge nicely
to the correct values for tension and pressure. Though the algorithm did not
perform as well for this patch is it did for the 3-Cell patch, the combination of
smoothing and RLS-VFF does dramatically reduce the effects of input noise when
compared with either smoothing or RLS-VFF alone.

Again with the Variable Tension patch, the lack of correlation between the per-
formance measures and x? is apparent. This shortcoming will need to be addressed
in future live-data studies.

We can conclude that a combination of smoothing with a large window size,
and a RLS-VFF solution method with slow adaptation (low (3) are highly effective
at reducing the effects of input noise on the identification algorithm. This section

72



2000 1000
. _ﬂ‘\_ a0
o —— =
ot
Y - 3
< s =
S so0 Iy
F - S
| __g;
o
S s o 7
. =
w
g 000 500 =~
e e ——— e
L bt
% . "‘.ﬂ-'\ - 5
H 7
- 300 £
Q
L 2000 Pt
'-O ﬂ-i
= [ =
—
1000 rq:\}
ST
o , , . , , , , o
[+] 50 100 150 200 =0 300 350 400
Timestep
----Cell-Cell Interfaces - Call-Meadium Interfaces Cell 1 Call 2 Call3
(a) Identification algorithm output
30 2000 1E-11 2000
e BS Bz iclual  —T blgoo LE-10 1200
3 | 1500 168 [ b 1600
=0 b 1aca 1E8 1 Yy — b 1aoo
E | 187 | L] 12 |
2 o 1200 g 1200
biooo w e oo
£ 10 | 800 = 1ES | 800 =
= | 164
100 n A - soo 13 Y | sco
o 183 ] [ oo
50 b 200 1E:1 L_.. — ™ [ 200
o# ; . ; ; o 160 T ; ; . o
100 200 300 100 500 o 100 200 300 100 500
Timestzp Timestzp
(b) rras and x? performance measures (c) 1 and x? performance measures

Figure 4.17: Output and performance of noise corrupted 3-Cell patch with optimal
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has revealed some issues with the performance measures used, namely that neither
rrus nor 1 appear well correlated with 2, which directly measures deviations
from the expected values of the estimated parameters. The performance measures
may still be useful to compare the quality of estimates made with different tuning
factors, but statements regarding estimate quality at a certain timestep in a given
run may not be as reliable when inputs are corrupted by noise and both smoothing
and RLS-VFF are employed.

4.5 Validation of Non-Causal Forgetting Factors

In §3.7, an augmented system of equations and used a non-causal forgetting factor
was constructed to combine information from neighbouring timesteps in arriving at
a solution. At the time, the only justification given was to reduce estimator bias
when parameters were changing monotonically. Now, a comparison between causal
(back-looking) and non-causal (forward- and back-looking) RLS-FF is presented,
using the 3-Cell patch and x? to measure the accuracy of the estimates. That
comparison is shown in Table 4.6. If, on the other hand, there is a value in the
column [, then that run was done using a variable forgetting factor (VFF), with
that value as the adaptation speed in the VFF formulation Eq. (3.16). Values
greater than unity in the ‘Improvement Ratio’ column indicate the the non-causal
approach is better.

Table 4.6: Comparison of estimate accuracy using causal and non-causal FF solu-
tion methods. 3-Cell patch using x? as a measure of accuracy.

A 16} Causal Non-Causal Improvement Ratio
095 — 2.34 3.33 0.703
0.6 — 17.9 2.23 8.03
— -0.01| 3.49 3.75 0.931
—  -0.1 3.49 3.75 0.931
— -1 3.49 3.66 0.954
—  -10 2.07 2.08 0.995
—  -100 2.74 0.623 4.40

The table shows that in most cases the estimates made using the non-causal
approach are very close those made using the causal approach. In other cases, such
as the two runs set in bold face, the non-causal approach yields estimates that
are closer to the expected values by a large margin. The two cases above yielded
estimates that were better by factors of 4 and 8 respectively when compared to
estimates made using the causal approach. This justifies the use of the non-causal
FF in the identification algorithm.
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Table 4.7: Average performance measure for the frayed boundary sub-patch

A g T"RMS Y R X

0.95 20.7  2.04e7 0.916 1.99e3

0.65 18.9 1.87¢7 0911 2.10e3

— -0.01 ] 23.8 2.84e7 0.854 110

— 0.1 | 23.8 2.84e7 0.854 110

— -1 23.7 2.84e7 0.854 110

— -10 | 20.5 2.10e7 0.907 1.16e3

— -100 | 19.0 1.86e7 0.912 2.08e4

4.6 Patches with Frayed Boundaries

One of the most critical aspects of the identification algorithm if it is ever to be
used with live data is the capacity to handle patches with frayed boundaries. As
discussed in §3.7, the patch with frayed boundaries, or sub-patch, is treated as
having unknown forces in z and y at each node on the sub-patch boundary; these
unknown boundary forces are included along with the unknown tensions and pres-
sures, and the augmented system, described by Eq. (3.18) and Eq. (3.19), is solved
using a QR factorisation.

This aspect of the algorithm is tested using the familiar 3-Cell patch shown in
Figure 4.1 but with additional concentrated loads at nodes 0, 1, 7, 9, and 10. These
additional forces cause the final configuration of the patch to differ from that shown
in Figure 4.1b), but only slightly. Also, there are only 150 timesteps in this patch.

The structure of the sub-patch problem requires the use of the RLS-(V)FF
solution method. Shown in Table 4.7 are the average performance measures for
several different constant and variable FF. Where a value is present in the A column,
that run used a constant FF; where a value is present in the 8 column, that run
used a VFF. The best value for each performance measure is shown in bold face.

None of the performance measure averages agree with x? as to which tuning
factor produced the best estimate. In this case, it appears that averages will be
inadequate for comparisons between runs, except to say that values of g between
—0.01 and —1 give very similar results. The algorithm output A = 0.95 and VFF
runs with § = —1 and # = —10 are shown in Figure 4.19. The performance
measures for these runs are shown in Figure 4.20.

One can see by looking at the algorithm output, and Figure 4.20(c) that a VFF
with § = —1 produced the best estimates for tensions and pressures. Full plots of
¢ and R? bear out the lack of correlation between these measures and x? that was
suggested by the average values presented in Table 4.7. rgrys was omitted from
these plots since it has been shown in previous sections that rry;g tends to report
how far the estimate deviates from the simple LS fit, and not how good or bad the
estimate itself is.

It should be stated that § = —1 did not produce much variation in the FF;
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in fact, A had a nearly constant value of 0.99 throughout the run shown in Fig-
ure 4.19(b). A constantly high FF like this is biased toward producing good results
for constant parameters as is the case with the test patch used here. In the case
of live data, it cannot be assumed that parameters are constant, and should the
VFF update produce consistently high A such as occurred here, the estimate may
be unduly drawn toward a constant value. We will have to take care in selecting
values for J and interpreting the results with live data.

4.6.1 Frayed Boundaries with Noise

Because meshes extracted from live data will necessarily be subject to input error,
the analyses of the previous section were repeated using the same frayed boundary
sub-patch but with Gaussian white noise added to the nodal co-ordinates. As in
§4.4, the corrupting noise has ¢ = 0.002¢y, where ¢ is calculated according to
Eq. (3.12).
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The tuning factors determined to be optimal for noise reduction in §4.4.1 were
used, along with different constant and variable FF. As the sub-patch is based on
the 3-Cell patch, these were a smoothing order Og = 2, and a window size W = 41.
The algorithm output is shown in Figure 4.21, and the performance measures are
shown in Figure 4.22.

One can see from Figure 4.21 that VFF with 3 = —0.1 and g = —1 yield
estimates which are quite close to the correct parameter values. The other two
plots — A = 0.95 and VFF with = —10 — also yield very good estimates, but not
as close to the expected values as the runs mentioned previously. This observation
is borne out by Figure 4.22(c). The x? histories for the A = 0.95 and VFF with
= —10 runs still indicate a very good fit. It is difficult to say anything definitive
based on the ¥ or R? performance measures. They do, however, indicate that the
quality of the estimates degrades at later timesteps, which agrees with both the y?
plots and qualitative assessment of the algorithm output. In all cases, the estimates
are slightly lower than the expected values. the cause of the low estimates is not
known at this time.

We can conclude that the identification algorithm is quite capable of estimating
tensions and pressures in sub-patches with frayed boundaries, even when the inputs
are noise corrupted. The synthetic data used in this section were designed to
simulate as closely as possible those aspects of live data with which identification
algorithm must cope and, following the discussion above, we can say that the
algorithm is ready to be tested with live data.
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Figure 4.22: Performance measures for the noise corrupted sub-patch with frayed

boundaries and differing
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Chapter 5

Conclusions and
Recommendations

The purpose of this thesis was to develop an algorithm to identify forces driving
the self-rearrangement of cells in biological tissues. Large strides have been made
toward that goal. Using an extant Finite Element (FE) model as a foundation, and
implementing Least Squares (LS) estimation methods, an identification algorithm
called ‘Scar’ was developed, and extensively tested using synthetic data.

It was shown that the algorithm yielded very accurate estimates of tensions and
pressures driving cellular self-rearrangement in synthetic data. This was shown
using a number of different input patches of cells designed to test the algorithms
performance on different fronts. Estimates accurately tracked slowly varying edge
tensions, as well as abrupt changes arising from neighbour changes over the history
of the motion in the patch.

The estimates were found to be subject to output solver noise, arising from the
numerically ill-conditioned system of equations, represented as the Geometric ma-
trix used to calculate the parameter estimates. It was shown that using a Recursive
Least Squares (RLS) solution method incorporating a Forgetting Factor (FF) re-
duces the output solver noise. Selection of an appropriate FF is largely dependent
on the input patch. To aide with the selection an appropriate FF, a new variable
FF was formulated based on prediction error. The VFF was found to produce
better estimates of tensions and pressures than a constant FF tried for reducing
output solver noise. It is still necessary to select a value for the adaptation speed
in the VFF update law.

The sensitivity of the algorithm was assessed by adding Gaussian white noise
to the nodal co-ordinates in the synthetic data patches. The ill-conditioned nature
of the Geometric matrix means that the algorithm is highly sensitive to errors in
the input. It was found that any amount of input error dramatically reduced the
quality of the estimates, and that increasing input error produced increasingly poor
estimates.
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Two approaches were taken to reduce the effects of input errors on the algorithm.
A Savitsky-Golay smoothing filter was implemented to smooth the noisy inputs,
and the RLS solution method with variable and constant FF was again used. On
their own, both smoothing and RLS-(V)FF were shown to reduce the effects of
input errors; a combination of both approaches was quite effective at mitigating
the effects of input errors. The ability of the algorithm to effectively cope with
input errors is necessary for the treatment of live data. It was found that a large
smoothing window and a slowly adapting VFF were most effective in reducing the
effects of input errors.

With the future treatment of live data in mind, a method to calculate param-
eter estimates in sub-patches with frayed boundaries was developed. By adding
unknown forces at each boundary node in the sub-patch, and combining informa-
tion from neighbouring timesteps weighted by the exponentially decaying (V)FF.
The addition of the unknown boundary forces causes the Geometric matrix for each
individual timestep to be underdetermined. Including the neighbouring timesteps’
information is not a necessity. For the sub-patch problem, information from neigh-
bouring timesteps in both directions was included, and hence the RLS-(V)FF for-
mulation is non-causal. The non-causal approach was validated experimentally by
comparing estimates from the basic algorithm (synthetic data, no noise) for the
tradition causal (V)FF and the non-causal (V)FF. In most cases the difference be-
tween estimates from the two methods was negligible; in the remaining cases, the
non-causal (V)FF performed significantly better.

The identification algorithm produced good estimates of tensions and pressures
in the sub-patch both with and without imposed input error. This portion of the
algorithm was tested with a synthetic data patch which had concentrated loads
placed at several boundary nodes, representing the forces which would have been
transfered to the sub-patch from the surrounding tissue. The tuning factors for
the smoothing filter were the same as those found to produce the best results in
the synthetic data patches tested during the sensitivity analysis. A VFF with
moderate adaptation speed was found to produce the best estimates when input
errors were included. The synthetic data sub-patch with input error is the closest
representation to live data available for algorithm testing.

To assess the effect of the several tuning factors used in the algorithm, three
different performance measures were developed and evaluated against the y? hy-
pothesis test for estimated vs. expected values. The RMS residual is closely related
to the quantity which the LS method seeks to minimise; as a result, it tends to
report deviations from the pure LS fit. In nearly all cases, a FF is used to drive
the estimate away from the pure LS estimate, rendering the RMS residual use-
less in most cases. While some correlation seen between the other two measures
— the coefficient of determination and the trace of the covariance matrix — and the
hypothesis test, the correlation was sporadic at best.

Several avenues for further research presented themselves during the course of
this study. Foremost, further refinement of the algorithm’s response to input noise
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is needed. The algorithm was tested with a small quantity of input noise compared
to noise levels expected to be present in future live data mesh extractions. Robust
noise mitigation is absolutely necessary should one seek to obtain meaningful results
using live data, the ultimate goal of this project in the long term.

Related to the handling of input noise, general improvement of the algorithm’s
conditioning is warranted. The Geometric matrix was shown to be ill-conditioned,
resulting in significant output solver noise. While RLS solution methods using
constant and variable forgetting factors were shown to reduce the output solver
noise, improving the mathematical conditioning of the system of equations would
see improvements in the estimates in all cases.

Expansion of these techniques to three spatial dimensions is recommended. It
can be shown that the 3D case does not result in under-conditioned systems of
equations when treating the sub-patch problem. This property removes the restric-
tion seen in the 2D case for the sub-patch problem, namely that either causal or
non-causal forgetting factors (FF) are necessary to reach a solution.

The x? hypothesis test directly measures the deviation of the estimate from the
expected values, which are available for synthetic data. In treating live data, the
expected parameter values are not available. Further investigation is needed into
performance measures which correlate well with the hypothesis test for synthetic
data, so as to be more reliable as a measure of how well the algorithm estimates
tensions and pressures from live data.

The algorithm makes use of a number of tuning factors at the various steps of the
solution, such the initial value of the FF, the speed of adaptation in the VFF update
law, the smoothing order and window size, and others besides. Following some
of the improvements suggested above, a rigorous parametric study to determine
optimal values for these tuning factors should be undertaken with a number of
different input patches. To assess the suitability of specific tuning factors for use
with live data, improvement of the performance measures is a necessity.

Implementing a Singular Value Decomposition (SVD) in the identification algo-
rithm should be explored. The SVD can be used to improve the numerical condi-
tioning of linear systems, especially those whose inputs are corrupted by noise. SVD
is also more stable computationally than the QR decomposition used currently.

As work progresses more toward live data applications for this algorithm, it
would be beneficial to improve current mesh extraction techniques to reduce input
errors. Furthermore, better characterisation of the nature of the input errors could
lead to more sophisticated methods to reduce its impact on the final estimates.
Even so, the method in its current form seems suitable for application to live data.

The identification algorithm presented here has the potential to grant new in-
sights into the developing embryo, especially when applied to data live real embryos.
Positive results with live data would provide strong support for the DITH based
FE model upon which the new algorithm is based. But perhaps most importantly,
success with live data would remove the need to engage in long and tedious trial-
and-error methods to tune computational models to live observations; for the first
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time it may be possible to measure the forces driving cellular self-rearrangement
directly and in a non-invasive and non-destructive manner, and with a level of
refinement never before seen.
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