
Surface Code Threshold

Calculation and Flux Qubit

Coupling

by

Peter Groszkowski

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Science
in

Physics

Waterloo, Ontario, Canada, 2009

c© Peter Groszkowski 2009

I hereby declare that I am the sole author of this thesis. This is a true copy of the
thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Building a quantum computer is a formidable challenge. In this thesis, we focus on
two projects, which tackle very different aspects of quantum computation, and yet
still share a common goal in hopefully getting us closer to implementing a quantum
computer on a large scale. The first project involves a numerical error threshold
calculation of a quantum error correcting code called a surface code. These are
local check codes, which means that only nearest neighbour interaction is required
to determine where errors occurred. This is an important advantage over other
approaches, as in many physical systems, doing operations on arbitrarily spaced
qubits is often very difficult. An error threshold is a measure of how well a given
error correcting scheme performs. It gives the experimentalists an idea of which
approaches to error correction hold greater promise. We simulate both toric and
planar variations of a surface code, and numerically calculate a threshold value of
approximately 6.0×10−3, which is comparable to similar calculations done by others
[44, 45, 54]. The second project deals with coupling superconducting flux qubits
together. It expands the scheme presented in [43] to a three qubit, two coupler
scenario. We study L-shaped and line-shaped coupler geometries, and show how the
coupling strength changes in terms of the dimensions of the couplers. We explore
two cases, the first where the interaction energy between two nearest neighbour
qubits is high, while the coupling to the third qubit is as negligible as possible, as
well as a case where all the coupling energies are as small as possible. Although only
an initial step, a similar scheme can in principle be extended further to implement
a lattice required for computation on a surface code.

iii

Acknowledgements

I would like to thank my supervisor Prof. Frank Wilhelm for taking me on
as a graduate student, and providing his guidance and always useful feedback. I
look forward to us working together during my PhD. I also very much appreciate
the input I received from the rest of my committee, Jan Kycia, Daniel Gottesman
and Ray Laflamme. Further thanks go to the members of the Quantum Device
Theory group (Brendan Osberg, Felix Motzoi, Farzad Qassemi, Jay Gambetta, Bill
Coish, Ioana Serban) and others from IQC, with whom I’ve had many illuminating
discussions, and often exhausting, but always fun ball-hockey games. This work
would probably not be possible without Austin Fowler, who was very much the
driving force behind the initial ideas for both of the projects that make up this
thesis. He has always put 110% into providing guidance, even if on occasions
it meant matching my often nocturnal schedule and staying up until the early
hours of the morning. His patience, excitement about our work, and all the time
and effort that he has put into it, will be always greatly appreciated. Further
acknowledgements go to NSERC for funding this project, and SHARCNET for
providing the high-performance computing infrastructure, without which some of
the results presented here would be difficult to obtain. Finally, I would like to say
thanks to my parents for all their love and support over the years, and Silvia for
all the good times we’ve had.

iv

Contents

List of Tables vii

List of Figures ix

1 Introduction 1

1.1 Quantum Mechanics and Computing 1

1.2 Multi-Qubit Systems . 3

1.3 Density Operators And Mixed States 3

1.4 Circuit Model . 4

1.5 Single-Qubit Gates . 4

1.6 Two-Qubit Gates . 5

1.7 Organization Of This Thesis . 6

2 Quantum Error Correction 7

2.1 Basics . 7

2.2 Stabilizer Codes . 9

2.3 Surface Codes . 12

2.3.1 Computation On A Surface Code 16

2.4 Error Threshold . 19

3 Surface Code Threshold Calculation 21

3.1 Introduction . 21

3.2 Syndrome Readout Cycle . 21

3.3 Error Model . 24

3.4 Assumptions . 25

3.5 Method . 27

v

3.6 Measurement and Matching . 27

3.7 Logical Error Detection . 31

3.8 Results . 34

3.9 Other Possible Approaches To The Threshold Calculation 36

3.10 A Few Notes On Implementation 38

4 Quantum Computing With Superconducting Circuits 40

4.1 Preliminaries . 40

4.2 Josephson Junctions . 40

4.3 Flux Qubits . 42

4.4 DC-SQUIDs . 44

4.5 Coupling Flux Qubits . 46

5 Three Qubit Coupler 48

5.1 Motivation . 48

5.2 Geometry . 48

5.3 Hamiltonian . 51

5.4 Transfer Function ∂J
∂Φ

. 53

5.5 The Critical Current Of The Coupling DC-SQUIDs 55

5.6 Coupling Strength . 57

6 Conclusions 62

APPENDICES 64

A Readout Cycle Stabilizer Evolution 65

A.1 Planar Code, NWES Readout . 66

A.2 Planar Code, NWSE Readout . 69

References 73

vi

List of Tables

2.1 Evolution of Pauli group members. 10

2.2 Stabilizer for 5 and 7-qubit codes. 11

3.1 Entanglement in different readout orders of CNOTs. 24

vii

List of Figures

1.1 A Bloch sphere. |ψ〉 represents an arbitrary qubit state. 2

1.2 An example of a quantum circuit. 4

1.3 CNOT and CPHASE gate information 6

2.1 Surface code lattices. 12

2.2 Surface code check operators and boundaries. 13

2.3 Logical error detection. 14

2.4 Logical errors on a planar lattice. 15

2.5 Logical errors on a toric code. 15

2.6 A logical qubit represented by two smooth defects 16

2.7 A CNOT gate on a surface code. 18

2.8 Circuits used for arbitrary Z and X rotations. 19

3.1 Ancilla qubit locations. 22

3.2 Syndrome readout circuits. 22

3.3 Plaquette syndrome readout cycle. 23

3.4 Error application. 26

3.5 Threshold calculation algorithm. 27

3.6 Syndrome change locations before and after matching. 28

3.7 Error chains originating at boundaries. 29

3.8 Graph creation optimizations. 30

3.9 Z errors that form paths across the lattice but are not logical errors. 31

3.10 Logical error detection. 32

3.11 Logical error detection without an error-free syndrome extraction
cycle. 33

3.12 Threshold result, toric code with NWES readout order 35

viii

3.13 Threshold result, planar code with NWES readout order 36

3.14 Error chains shown in space and time. 37

4.1 A Josephson junction. 41

4.2 A three junction flux qubit. 42

4.3 The potential energy of a flux qubit 43

4.4 An energy diagram of a flux qubit. 43

4.5 A DC-SQUID — superconducting loop with two junctions. 44

4.6 Coupling of flux qubits. 46

4.7 Two-qubit coupling strength using a DC-SQUID as a coupler. . . . 47

5.1 Two coupler geometries; L-shaped, and line-shaped. 49

5.2 Parameters of the three qubit, two coupler system. 51

5.3 Critical current of a DC-SQUID. 56

5.4 A plot of coupling strengths Kij in a case of straight-line geometry. 59

5.5 A plot of coupling strengths Kij in a case of L-shape geometry. . . . 60

5.6 A plot of K13 with both K12 and K23 kept at ≈ 0 61

A.1 A 5 by 5 planar code lattice. 65

ix

Chapter 1

Introduction

1.1 Quantum Mechanics and Computing

Classical computers have been around for many years. Although originally they
were used only in highly computationally intensive research, in the recent couple
of decades they have made their way into our everyday lives in a way no one
could have ever predicted. Quantum computers promise to revolutionize the way
we perform computation even further. They provide a way to factor numbers
[47], search databases [24], and an ability to effectively simulate physical systems
[20, 48] — all much more efficiently than their classical counterparts ever could.
In classical computation, a bit is used to store information. It can either represent
a 0 or a 1. Quantum computing has an analogous construct — a qubit. Qubits
are quantum two level systems that are described by vectors in a two dimensional
Hilbert space. They are different from classical bits in that they can store an
arbitrary “superposition” of 1 and 0, meaning that a qubit can in a sense be in
both states at the same time. Using Dirac’s bra-ket notation [13] we can describe
such a state of a given qubit as

|Ψ〉 = α |0〉 + β|1〉 (1.1)

where α and β are complex numbers and |0〉, |1〉 quantum basis states - often called
the “computational basis”. These basis states are assumed to be orthonormal with
respect to the scalar product, and hence

〈i|j〉 = δij (1.2)

must be true. Furthermore, in order to ensure that any state is normalized, we
need the condition

|α|2 + |β|2 = 1 (1.3)

to hold. A helpful way of visualizing pure two-level quantum states is using a Bloch
sphere. By rewriting α = cos θ

2
and β = eiϕ sin θ

2
in Eq. 1.1, with 0 ≤ θ ≤ π and

1

0 ≤ ϕ ≤ 2π, we can think of the vector |ψ〉 as being oriented on a unit sphere, as
shown in Fig. 1.1.

Figure 1.1: A Bloch sphere. |ψ〉 represents an arbitrary qubit state.

Over the last few years, many different proposals for qubit implementations
have been suggested. They range from polarized light [30] and NMR [15], through
trapped atoms [11] to superconducting circuits [12], with many others in between.
Although at this stage it is impossible to predict which will turn out to be most
usable in the end, substantial advances have been made, and some few-qubit sys-
tems have been demonstrated experimentally. The actual physics in each proposal
can be rather different, but the two-state nature of qubits is most often described
in terms of a Hamiltonian

H = − ǫ

2
σz −

∆

2
σx (1.4)

where σx, σy and σz are the Pauli matrices (which are explained in Section 1.5), and
both ǫ and ∆ are related to physical parameters which depend on a given physical
implementation. Either of them (or both) can vary in time. The eigenvalues of this
Hamiltonian are ±1

2

√
ǫ2 + ∆2. Quantum mechanics tells us that a qubit’s dynamics

are governed by the Schrödinger’s equation

i~
d

dt
|ψ(t)〉 = H(t) |ψ(t)〉 (1.5)

2

which, when solved for a time independent Hamiltonian leads to a unitary evolution

|ψ(t)〉 = exp

{−itH
~

}

|ψ(0)〉 (1.6)

with |ψ(0)〉 representing the initial state of the system, and |ψ(t)〉 the evolved state
at some arbitrary time t. Full control of the qubit involves appropriately adjusting
(to the task at hand) the parameters of the Hamiltonian in Equation 1.4. This
often includes sporadic changes and/or continuous “driving” of one or both ǫ and
∆.

1.2 Multi-Qubit Systems

In order to perform useful quantum computation, many qubits are needed. When
two quantum systems are involved, the combined state space is a tensor product
of the state spaces of the constituents. This concept can be further generalized to
an arbitrary number of qubits n. The dimension of the combined n qubit Hilbert
space is then 2n. If we suppose that the state of the first system is |ψ1〉 and the
second |ψ2〉, and the combined state can be written as a tensor product of these,
namely as

|ψ〉 = |ψ1〉 ⊗ |ψ2〉 . (1.7)

then we say that the system is separable, and not entangled. If, on the other hand,
a state of a multi-qubit system cannot be written as a simple tensor product of the
states of all the constituents, the combined system is entangled. The dynamics of
multi-qubit systems still follow the Schrödinger’s equation (see Eq. 1.5 and 1.6),
except the dimension of the Hilbert space involved is greater.

1.3 Density Operators And Mixed States

So far we have only looked at pure quantum states - these are states which have a
definite state vector. A more general case involves a description which only assumes
a particular state vector with a given probability, say p. Such a state is called a
mixed state, and one can describe it as set of pairs

ρ = {(p1, |ψ1〉), (p2, |ψ2〉), ..., (pk, |ψk〉)}. (1.8)

This notation means that there is a probability pi of the system being in a quantum
state |ψi〉. It is easy to see that a pure state is simply a state with a single pi = 1,
and all others set to zero. A more compact notation can be introduced, and we can
rewrite Equation 1.8 as

ρ =
∑

i

pi |ψi〉 〈ψi| . (1.9)

3

ρ is often called a density operator. It is always a Hermitian, semi-positive matrix,
which may be infinite dimensional, depending on the type of quantum system it
describes. Furthermore, the trace of any density matrix is always equal to 1. The
evolution of the system under some unitary operation U can be described as simply
applying U to every term in Equation 1.8, which when written using Equation 1.9
leads to

∑

i

Upi |ψi〉 〈ψi|U † = U

(

∑

i

pi |ψi〉 〈ψi|
)

U † (1.10)

= UρU †. (1.11)

Finally, it is worth stressing that a density matrix describes a pure state if and only
if ρ = ρ2 — i.e. if ρ is a projector.

1.4 Circuit Model

We can describe quantum computation as a sequence of unitary operations which
are made to act on a given quantum system. The most well known model for
quantum computation is the circuit model. It is a direct quantum generalization
of its counterpart from the classical world. It consists of a register of n qubits with
a portion of them containing some initial state on which the computation is to be
preformed. During computation, some of those qubits undergo reversible unitary
evolution. At the end of the processing, the qubits are read out. An example of a

|ψ〉 • H
NM

•

|0〉 �������� ��������

NM

|0〉 H • X Z |ψ〉

Figure 1.2: A teleportation circuit. The “computation” involves teleporting an
arbitrary state |ψ〉 from the 1st qubit to the 3rd.

circuit representing quantum teleportation is shown in Fig. 1.2.

1.5 Single-Qubit Gates

The unitary operations which are involved in the computation are called quantum
gates. Some of the most important one-qubit gates are the Pauli operators. They
can be written as

σx =

(

0 1
1 0

)

, σy =

(

0 −i
i 0

)

, σz =

(

1 0
0 −1

)

, I =

(

1 0
0 1

)

. (1.12)

4

For simplicity, we will often refer to σx as X, σy as Y , and σz as Z. These matrices
are linearly independent, and therefore along with I, can be used to form any 2× 2
matrix. Arbitrary qubit rotations can be made along any axis. Suppose that we
wish to rotate our qubit around some arbitrary vector n̂. We could use the Pauli
operators shown in Eq. 1.12 to construct a rotation operator

Rn̂(θ) = exp

{

−iθ
2

(n̂ · σ̂)

}

(1.13)

= cos

(

θ

2

)

I − i sin

(

θ

2

)

(nxX + nyY + nzZ) (1.14)

where we took n̂ = (nx, ny, nz) and σ̂ = (X,Y, Z). We easily observe that θ
determines the angle of rotation. Euler has shown that a rotation about any axis
can be written explicitly in terms of rotations around only two distinct axes. In a
special case where m̂ and n̂ are orthogonal, this can be expressed as

U = e{iα}Rm̂(β)Rn̂(γ)Rm̂(κ) (1.15)

with m̂ and n̂ representing these different rotation axis, and α, β, γ and κ the
rotation angles. This result turns out to be useful in quantum computing, as in
principle at least, it simplifies the control Hamiltonian; we only need control along
at most two axes. A few important one-qubit operators are presented in Eq. 1.16
below

H =
1√
2

(

1 1
1 −1

)

, T =

(

1 0
0 exp (iπ/4)

)

, S =

(

1 0
0 i

)

. (1.16)

H stands for the Hadamard gate, T for a π/8 gate and S for a phase gate.

1.6 Two-Qubit Gates

Two-qubit gates play an important role in quantum computation as they are needed
in order to achieve entanglement between qubits. Furthermore, it has been shown
that only arbitrary one-qubit rotations along with certain two-qubit gates are
needed to perform any computation on any number of qubits. If we assume that U
is some one-qubit gate, then we can define a Controlled-U operation on two-qubits,
to act in the following way. If the first qubit (control) is in the |1〉 state, then U
is applied to the second one (target). Otherwise, if the first (control) qubit is in a
|0〉 state, nothing happens to the second qubit. Two important examples of such
operations are CNOT and CPHASE gates. Their matrix representation, as well as
circuit symbols are shown in Figure 1.3.

5

CNOT

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

•

��������
or

•

X

CPHASE

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

•

•
or

•

Z

Figure 1.3: Names, matrix representations and circuit model symbols for CNOT
and CPHASE two-qubit gates.

1.7 Organization Of This Thesis

In this last section, we outline how this thesis is organized. In Chapter 1, we gave
a brief introduction to the area of quantum mechanics, talked about the funda-
mental building blocks of quantum computers — the qubits, and explained the
mathematical formalism used to describe them. In Chapter 2, we first outline the
basis of quantum error correction and describe the stabilizer formalism and how it
applies to error correcting codes. We then introduce surface codes in some detail
and finally outline what the threshold theorem is, and its importance. Chapter 3
includes a discussion of the numerical threshold calculation of a surface code. Here
we present the approach that was used, assumptions that were made and actual
results that were obtained. In Chapter 4 we give another introduction, this time to
quantum computing with superconducting circuits. After a brief historical treate-
ment, we study a Josephson junction, flux qubit, DC-SQUID, and finally describe
how coupling of flux qubits can be done. Chapter 5 includes a discussion of the
three qubit, two DC-SQUID coupler. Here we study its properties, and in particu-
lar concentrate on numerical calculations of the coupling energy and how it varies
in different coupler geometries. Finally, Chapter 6 contains the conclusions of the
work presented throughout the thesis.

6

Chapter 2

Quantum Error Correction

2.1 Basics

Although the theory of quantum information is far along when it comes to potential
benefits quantum computers can bring, actually building a functional quantum
computer is a formidable challenge. To a large extent this has to do with the
contradicting nature of how such a device has to behave. On one hand it needs to be
able to interact with its environment in order for us to manipulate and measure its
constituents — the qubits, but on the other hand this interaction has to be kept to a
minimum in order to minimize decoherence, which destroys the very advantage that
a quantum computer brings to the table over its classical counterpart. A realistic
assumption is therefore that a functional quantum computer will have to be able to
cope with errors that will naturally develop from unwanted interactions with the
environment. The study of quantum error correction deals with the very nature of
this unwanted system-environment interaction, and in particular provides a clear
path of how one can overcome it. The fact that arbitrary, yet reliable quantum
computation can still be performed is not entirely obvious and is covered in some
detail in Section 2.4 where a discussion of threshold error rate is presented. Here
we concentrate on some properties of quantum error correcting codes.

Quantum correcting codes provide a means of encoding quantum states and
keeping them safe from certain types of errors. These codes are described in terms
of three numbers: [[n, k, d]], n being the total number of qubits used, k the number
of encoded qubits, and d the code distance. The code distance is related to the
amount of errors t that a given code can tolerate by the relation t = ⌊(d−1)/2⌋. A
convenient way to think about the code distance is to count the minimum number
of single qubit operations one has perform in order to go from one codeword to any
other.

As already described, an arbitrary 2x2 operator can be expressed as a linear
superposition of Pauli matrices 1l, X, Y, Z,

E = α11l + α2X + α3Y + α4Z (2.1)

7

with αi ∈ C. A consequence of quantum mechanics is that by solely correcting for
errors X and Z we can correct for completely arbitrary, unwanted rotations of the
qubit. Furthermore, quantum mechanics is linear, and therefore we can be assured
that if a given error correcting code can protect against some errors, it will be able
to correct against a linear combination of these errors.

A condition for an existence of a recovery operation is:

〈Ψi|E†
kEl |Ψj〉 = Cklδji (2.2)

where |Ψi〉, |Ψj〉 are codewords, Ek, El the errors and Ckl a positive semi-definite
matrix. We can easily see that the requirement in Equation 2.2 means that a result
of an error operator acting on a codeword, necessarily needs to be orthogonal to
an error (the same or different) acting on any other codeword. This orthogonality
implies that one can come up with a recovery operation which can get rid of the
encountered error. The condition allows for different error operators acting on a
given state to overlap. This happens when the matrix C does not have a maximum
rank, and we say that the the code is degenerate. A code in which the matrix C
does have a maximum rank is called is non-degenerate.

There is an important bound that can shed a little light on the properties of
error correcting codes. It is called the quantum Hamming bound, which is only
valid for non-degenerate codes, and is analogous to the Hamming bound known
from the study of classical error correction. It helps us determine how many qubits
n we need to encode k logical qubits while still being able to tolerate at most t
errors. To answer this question, and formulate the Hamming bound, let us assume
that we can have j errors, with j ≤ t. This will lead to

(

n

j

)

locations where errors
could occur. Furthermore there are three possible errors at each location; X, Y or
Z, and therefore 3j possible errors. We can then conclude that the total number

of errors that can happen is at most
t
∑

j=0

(

n

j

)

. Since the code is non-degenerate,

and therefore any error will take any codeword to an orthogonal state to any other
codeword (possibly being acted upon by another error), we need the total size of
the Hilbert space of n qubits to “fit” all of the possibly erroneous states. This leads
to an inequality

t
∑

j=0

(

n

j

)

3j2k ≤ 2n (2.3)

A well known example is a case with k = 1 and t = 1, which leads to n = 5 — a
smallest known quantum error correcting code that can account for one arbitrary
error on any of the qubits. The quantum Hamming bound tells us that there cannot
be a non-degenerate error correcting code that will use fewer than 5 qubits.

8

2.2 Stabilizer Codes

The stabilizer formalism was invented by Gottesman in 1997 [23]. It provides an
elegant and efficient method for describing a collection of states and their dynamics.
Although its application is limited to a subset of all possible states, it is very
useful when dealing with error correcting codes. Let us first briefly review the
mathematical formalism of groups which will let us concisely define what a stabilizer
is.

A group G is a set of elements with binary multiplication, which satisfies the
following properties:

• Closure; g1· g2 ∈ G for all g1, g2 ∈ G

• Associativity; (g1· g2)· g3 = g1· (g2· g3) for all g1, g2, g3 ∈ G

• Identity; ∃e ∈ G such that e· g = g for all g ∈ G

• Inverse; ∀g ∈ G, ∃g−1 ∈ G such that g−1· g = e for some e ∈ G

A group G is Abelian if g1· g2 = g2· g1 ∀ g1, g2 ∈ G. A simple example of a group
is the one-qubit Pauli group G1, which consists of elements

G1 = {±1l,±i1l,±X,±iX,±Y,±iY,±Z,±iZ}. (2.4)

The factors of ±1 and ±i are needed to satisfy the closure condition defined above.
When studying quantum error correction, we are usually interested in a group of
Pauli operators on n qubits (denoted as Gn). Such a group consists of the n-fold
product of all the Pauli matrices along with the multiplication factors of ±1 and
±i. It is easy to see that it has 4n+1 elements. Luckily, any group can be described
in a more compact way using the concept of group generators. We say that a set of
operators g1, g2, ..., gl generates a given group G if every element in G can be written
as a (possibly repeated) product of elements from this set. A shorthand notation
for G in terms of its generators is G =<g1, g2, ..., gl>. It can be shown [37] that
any group can be described by at most log2 |G| generators with |G| representing
the number of elements in G. We are now ready to define a stabilizer.

Definition A stabilizer S for a given vector space V , is a subgroup of Gn which
fixes every element in a subset of states defined by V .

It is useful to note that in order for the vector space V to include non-null
elements, the stabilizer S cannot contain the −1l element (which is in Gn). One
can easily see this by noting that for any state |Ψ〉 we have −1l |Ψ〉 = |Ψ〉 only if
|Ψ〉 is null.

The stabilizer formalism is not only useful when describing the state of a given
system, but also its dynamics. Let us suppose that stabilizer S describes a quantum

9

Input Unitary Operation U Evolution Result (output)
X H HXH† Z
Z H HZH† X
X S SXS† Y
Z S SZS† Z

X1I2 C1,2 C1,2X1I2C
†
1,2 X1X2

I1X2 C1,2 C1,2I1X2C
†
1,2 I1X2

Z1I2 C1,2 C1,2Z1I2C
†
1,2 Z1I2

I1Z2 C1,2 C1,2I1Z2C
†
1,2 Z1Z2

Table 2.1: A table showing how the different members of the Pauli group (X, Z
— omitting Y , as it can be constructed from these) evolve under the influence of
different unitary operations (shown in the 2nd column). Ci.j implies a CNOT gate
with ith qubit acting as control, and jth as target.

state |Ψ〉 and we want to apply a unitary operator U . Then since |Ψ〉 is stabilized
by any element g ∈ S we have

U |Ψ〉 = Ug |Ψ〉 = UgU †U |Ψ〉 (2.5)

which leads us to conclude that UgU † now stabilizes the newly evolved state U |Ψ〉.
Some important examples of this evolution in a case of unitary gates H, S and
CNOT are shown in Table 2.1.

In addition to understanding how the stabilizer evolves, we need to understand
what happens as we perform measurements. Let us suppose we want to measure
some operator M , and that g represents any of the generators that describe a
stabilizer S. There are three different scenarios that we need to consider.

1. M can be expressed as a product of stabilizers
No change is needed as the state is already an eigenstate of M .
Example: S =<X1, X2 >, M = X1X2. We can rewrite the stabilizer as
S =<X1X2, X2> and easily see that the state must be in a +1 eigenstate of
M .

2. M cannot be expressed as a product of the generators of S, and commutes
with every g
The operator is added to the list of generators that represent the stabilzier,
with a sign which depends on whether the state was projected onto +1 or −1
eigenvalue of M .
Example: S =<X1X3, X2X3>, M = X1. We simply need to add ±X1 to
the stabilizer, with the sign depending on the measurement outcome. This
results in the final state stabilized by S =<±X1, X1X3, X2X3>

3. M cannot be expressed as a product of the generators of S, and anti-commutes
with one or more generators gi of S.

10

One of the anti-commuting generators is selected, and the other anti-commuting
generators are multiplied by it, to make them commute with M . The first
generator is then replaced by M with a sign which depends on whether the
state was projected onto +1 or −1 eigenvalue of M .
Example: S =<X1X2, X2X3, X3X4, Z1Z2Z3Z4 >, M = Z2. We can first
rewrite the stabilizer as S =<X1X3, X2X3, X3X4, Z1Z2Z3Z4>, so that only
one of the generators anti-commutes with the measurement operator. The
second generator is then replaced by the measurement operator with the sign
depending on the measurement outcome. The final state can then be written
as S =<X1X3,±Z2, X3X4, Z1Z2Z3Z4>.

Now that we have an understanding of how to perform stabilizer manipulation,
and how one can represent measurements, we can focus on an important limitation.
It turns out that only a subset of all operators on n qubits can be easily expressed
in a stabilizer formalism. Let us consider a set of gates that take any element in
Gn to elements in Gn under conjugation. Such a set is referred to as a normalizer
of S. It can be proven that any gate in this set can be constructed from at most
O(n2) gates solely consisting of CNOT, Hadamard and Phase. This set, however,
is not universal, which means that it cannot be used to construct a completely
arbitrary operation (which possibly takes gates out of Gn) on n qubits, although
it still allows us to study some very important concepts in quantum computing —
quantum error correction being one of them. Furthermore, a theorem by Gottesman
and Knill (known as the Gottesman-Knill Theorem) [23] states that any quantum
computation which consists of only CNOT, Hadamard and Phase gates, with a
possibility of classical control which may depend on measurement outcomes can be
simulated on a classical computer.

5-Qubit Code [[5,1,3]] 7-Qubit Code [[7,1,3]]

X X Z I Z
Z X X Z I
I Z X X Z
Z I Z X X

I I I X X X X
I X X I I X X
X I X I X I X
I I I Z Z Z Z
I Z Z I I Z Z
Z I Z I Z I Z

Table 2.2: Stabilizer representation of two quantum error correcting codes; the
5-qubit code and the Steane 7-qubit code. Each column corresponds to a single
physical qubit, and each row represents a stabilizer generator.

A couple of well known error correcting codes that can be described in terms of
the stabilizer formalism are the 5-qubit code, and the 7-qubit Steane code. Their
stabilizers are shown in Table 2.2. Detecting errors using the stabilizer formalism
is straightforward. When an error acts on any of the qubits, we simply measure
all the stabilizer generators. Given that the number of errors that occur is within
the range of what a given code can tolerate, which qubit suffered an error, and

11

(a) Toric code (b) Planar code

Figure 2.1: Two examples of a surface code. In both scenarios, qubits are arranged
on a square lattice. The two cases differ in boundary conditions. a) In the toric
case, one can think of the lattice as being the surface of a torus, with the left (top)
boundaries in the diagram “touching” the right (bottom) boundaries. b) In the
planar code case, the top and bottom as well as left and right pairs of boundaries
are the same — either smooth or rough (see text for explanation).

what kind of error it was, can be determined from the results of the measurement.
As a simple example let us consider the 7-qubit Steane code shown in Table 2.2.
Furthermore, let us suppose that an X error happens on the first qubit. If we were
to measure all the stabilizer generators, we would obtain an outcome of +1 from all
but the 6th one (6th row in Table 2.2), since the error operator X anti-commutes
with it. The 6th generator would give a −1. From this information, and the fact
that measuring the other generators would give an eigenvalue of +1, we would know
that applying X to the first qubit would undo the error.

2.3 Surface Codes

Surface codes were invented by Alexei Kitaev in 1997 [28]. They are topological
quantum error-correcting codes in which we can think of qubits being arranged on
a lattice which in turn lives on some surface. Surface codes belong to the family
of stabilizer codes, and therefore can be elegantly described using the stabilizer
formalism presented above. Surface codes have some appealing properties. They
are what is called “local check codes”, and this means that in order to perform
syndrome measurements (and understand where the errors occurred) one only ever
needs to measure operators that are nearest neighbors. This in practice may prove
to be a very useful feature, since for many systems interacting qubits that are close
to each other is substantially less difficult than ones that are further apart. We
can think of physical qubits as being arranged on the edges of a lattice as shown
in Figure 2.1. In this discussion we concentrate on two different cases, a toric code
and a planar code. In the toric code, the qubits are arranged on a lattice which can
be thought of as spread over a surface of a torus, and in a planar code case we think
of the qubits as living on a simple 2-D plane. Mathematically we can describe a
general surface code as a simultaneous +1 eigenstate of mutually commuting check

12

(a)

(b)

Figure 2.2: a) Check operators consist of ZZZZ around every plaquette and
XXXX around every vertex (where possible — there is one less operator around
the edges of the lattice in a planar code case). b) Two different types of surface
code boundaries; rough (on the left) with three-term Z operators, and smooth (on
the right) with three-term X operators.

operators (which are stabilizer generators). We can define these check operators as

Aj =
∏

j∈V

Xj (2.6)

and
Bj =

∏

j∈P

Zj (2.7)

with V representing any vertex on a lattice and P any plaquette, as is schematically
shown in Figure 2.2a. We call the outcomes of the measurements of Aj and Bj,
syndromes. It is worth noting that not all these operators are independent, and in
fact one has conditions

∑

j∈V Aj = 1l and
∑

j∈P Bj = 1l. Furthermore, operators
Aj and Bj always share either zero or two edges, hence they commute.

A planar code has four boundaries, two that are called “smooth” and two that
are called “rough”. Smooth boundaries have four-term Z stabilizer generators, and
three-term X stabilizer generators, whereas rough boundaries have four-term X
stabilizer generators and three-term Z stabilizer generators. A planar code, with
two rough and two smooth boundaries can encode a single logical qubit. One can
easily see this by noting that a square lattice (such as the one in Figure 2.1b) with

13

n qubits on each of the sides has a total of 2n2 + 2n + 1 qubits and 2n2 + 2n
independent stabilizer generators. This leads to 2n2 +2n+1−2n2 +2n = 1 degrees
of freedom, and hence one logical qubit. In a toric code case, a square lattice (such
as the one shown in Figure 2.1a) with n qubits across would have a total of 2n2

qubits, and 2n2 − 2 independent stabilizer generators, hence 2 degrees of freedom,
and could be used to encode two qubits.

Detecting errors involves measuring check operators, and observing which ones
give a value of −1 (due to anti-commuting with errors). This information helps us
guess where errors occurred.

Figure 2.3: Errors can be detected by measuring stabilizer generators around each
plaquette and each vertex.

Figure 2.3 shows this schematically. A single X error on one of the qubits
anti-commutes with the Bj operators directly to the right and left of the qubit.
Likewise, a single Z error anti-commutes with the Aj operators directly above and
below the qubit suffering an error. In practice, of course, errors do not have to occur
on their own, and often one can observe multiple instances next to each other. In
these cases, the error operators form error chains throughout the lattice. Since only
the ends of such error chains anti-commute with the check operators, determining
where errors occurred often involves guessing the most likely scenario.

There are two types of chains that we need to discuss in more detail. The first
involves ones that form closed loops. It turns out that these operators are within
the stabilizer of the code, meaning they in fact can be written as a product of
the stabilizer generators (check operators Aj and Bj). Furthermore, they commute
with each check operator, hence have no effect on the encoded qubits.

The other types of errors that we need to consider are chains that span across the
whole dimension of the lattice. In the planar case this means chains that connect
opposite boundaries of the same type (either left to right, or top to bottom), and
in the toric case, chains that span all the way across a given dimension of the
lattice. These operators, despite commuting with all the check operators, cannot
be expressed as their product. They turn out to the change the encoded, logical
state of the qubit and hence are called logical errors. Two examples are shown in
Figure 2.4. ZL is a chain of Z operators that connects two rough boundaries, and

14

Figure 2.4: On a planar surface code, a logical Z (X) error is a chain of Z (X)
operators that spans the whole lattice, and connects rough (smooth) boundaries.

XL a chain of X operators that connects two smooth ones. Figures 2.5a and 2.5b
show an analogous case in a toric code. Since a toric code has no boundaries, the
chains need to go all the way around one of the dimensions of the lattice (torus).
A ZL along the vertical dimension acts on one qubit, and along the horizontal
dimension, on the other. Likewise in a case of XL. It is worth stressing that since
these operators change the logical state of the encoded qubit, when done purposely,
they can be regarded as simply the logical versions of gates X and Z, and not as
errors. Applying a logical version of Y would naturally include applying both XL

and ZL. In Section 2.3.1 we will come back to the notion of performing other gates
on a surface code, and outline techniques that can be used to make the computation
universal.

(a) (b)

Figure 2.5: We can encode two qubits in a toric code, since there are no boundaries.
Figure a) shows how logical operations are done on the first qubit, and b) on the
second. In both cases, the logical operations involve applying a set of operators
(either X or Z) in a chain that goes around one of the dimensions of the torus.

15

2.3.1 Computation On A Surface Code

In our discussion so far, we have reviewed general properties of surface codes and
showed the general principles of how errors can be detected and corrected. We
have also described how a logical X or logical Z operation can be performed on a
single encoded qubit in the planar code case or two qubits in a toric case. These
operations, although important, do not paint the full picture. In this section, we
give a brief outline of how a surface code lattice can actually be used to perform
universal quantum computation. Due to the fact that this topic is rather involved,
we only outline the most general ideas, and point the reader to other more detailed
discussions [44, 22, 21].

Z

XX

Z

Z

Z

Z Z

Z

Z

ZZ

Z

Z

Z Z

Z

Z

X

X X

Figure 2.6: A logical qubit can be represented by two defects in the lattice. The
defects are created by simply neglecting to enforce that the eigenvalues associated
with their respective check operators around a given plaquette (in the case of a
smooth defect) are +1. Logical operations on such a qubit are done by applying a
chain of X operators between the two defects in the case of XL, and a chain of Z
operators around one of the defects in the case of ZL. An analogous construction
exists for defects that originate on the vertices and not plaquettes, as explained in
the text. Figure created by Austin Fowler, and taken from [22] with permission.

We have already established that logical operations can be described by chains
of operators that span the lattice and connect boundaries (in a planar code case)
or simply surround a given dimension of the torus (in the toric code case). Another
approach in creating a logical qubit on a surface code, is by introducing artificial
boundaries. This is done by simply stopping to enforce that check operators at
certain spots in the lattice are always in their respective +1 eigenvalues, and hence
creating “holes” or “defects”. An explicit example is shown in Figure 2.6, where
we observe two plaquette stabilizer generators (shaded regions), which we choose
to neglect. These two newly created defects have boundaries, which can be used for
logical operations. The type of boundary a defect has depends on whether we chose
to neglect stabilizer generators associated with plaquettes (as shown in Figure 2.6)
or vertices. The first gives us a smooth boundary, whereas the second a rough

16

one. A chain of X(Z) operators between two smooth (rough) defects represents a
logical X(Z) error, and a chain of Z(X) operators surrounding one of those smooth
(rough) defects represents a logical Z(X) operator. Defects can be easily moved
around the lattice, and even enlarged. A detailed procedure of how this can be
done is explained in [22]. Hence we see that two lattice defects can be used to
describe a single logical qubit. Assuming the lattice we are using is big, and each
pair can be sufficiently separated, this approach provides us with a consistent way
of preparing many logical qubits by simply creating lattice defects.

Another useful consequence of this approach is that a CNOT gate between two
pairs of defects can be easily performed. Such an operation involves braiding parts
of the qubits (i.e. one of the defects in each) around each other. To show this, we
can use the fact that a quantum gate can be specified by how it acts on a set of
basis states, or basis of stabilizers. In particular, a CNOT gate between qubits 1
(control) and 2 (target), is described by how it acts on a set of generatorsX1I2, I1X2,
Z1I2, I1Z2, with the result expressed in the last four rows of Table 2.1. Therefore
in order to show how braiding defects around each other could be equivalent to a
CNOT gate, we need to show that the evolution of these stabilizer generators under
braiding gives the same results. An example of one case where the input state is
originally stabilized by the operator X1I2 is presented in Figure 2.7. We see that
we are dealing with two qubits, the top one formed out of two smooth defects, and
the bottom one out of two rough ones. We assume that the top qubit is initialized
in the state stabilized by XL. The process involves moving one of the defects of
the top qubit between the defects of the bottom one (Figure 2.7 a, b, c) until the
defects comes back to its original starting position. This operation “wraps” the
X1,L operator around one of the defects of the rough qubit (Figure 2.7), which in
turn is equivalent to performing a XL operation on it. This in turn leads to the
final state stabilized by the operator X1,LX2,L, agreeing with the desired result from
Table 2.1. A similar argument can be used in the three remaining cases. Finally,
it is worth stressing that in the shown construction, the CNOT gate is performed
between two different types of qubits — the first being a smooth one, and the
other a rough one. In practice this may not be entirely ideal, and slightly modified
approaches which allow to perform a CNOT gate between two qubits that are of
the same type (smooth or rough) have been devised. They involve a temporary
creation of a dual qubit (a rough if dealing with two smooth ones, and vice-versa),
which at the end of the operation disappears.

So far we have discussed how a logical version of Pauli X, Z, Y and a CNOT
gates can be applied. Unfortunately as described in Section 2.2 this set of gates is
not universal, but luckily can be made universal by providing an ability to perform
gates exp(iπ

8
Z), exp(iπ

4
Z) and exp(iπ

4
X) [45]. The first step in accomplishing the

task of turning this scheme into one where arbitrary quantum computation can be
performed, is done by being able to prepare a couple of special logical states

|Y 〉 = |0〉 + i |1〉 (2.8)

17

b.)

MX

a.)

MX

MX

MX

MX

MX

MX MX MX MX

MX

MX

c.) d.)

XL

MX MX

MX

MX

XL

XL

XL

equivalent

Figure 2.7: A CNOT gate executed between two logical qubits. The top one is a
smooth qubit, playing the role of control, whereas the bottom one is a rough qubit,
playing the role of the target. The gate involves braiding one of the defects of one
of the qubits, around a defect of the other qubit. a) The two qubits start in a state
XLI, where the first and second operators are acting on Hilbert spaces associated
with the top and bottom qubits respectively. b) One of the defects of the top qubit
is moved around one of the defects of the bottom qubit. c) The motion continues
until the defect ends up back in its starting position. d) This results in the operator
XLI evolving to XLXL, which in turn completes a CNOT gate. Figure created by
Austin Fowler, and taken from [22] with permission.

and

|A〉 = |0〉 + exp

(

iπ

4

)

|1〉 . (2.9)

18

Assuming we can rotate a single physical qubit to some arbitrary superposition
state α |0〉 + β |1〉, via a rather involved set of operations [22] a smooth or rough
logical qubit with that same superposition state can be created. Constructing
our desired states just in this way is not fault tolerant, however, and methods of
state distillation [7, 46] need to be employed with which the desired states can be
prepared with fidelity arbitrarily close to 1. These naturally add extra complexity
to computation, but have been shown to be efficient. For a more detailed discussion
which describes these procedures in detail, we point the reader to [44, 22].

MX

2
1 0 1+ eiθb.) ZMXRX((-1)MXθ) ψ

ψ

MZ

2
1 0 1+ eiθ XMZRZ((-1)MZθ) ψa.)

ψ

Figure 2.8: Two circuits that can be used to obtain arbitrary rotations around a) Z
and b) X axis. In both cases it is assumed a specially prepared ancilla qubits can
be created. Figure created by Austin Fowler, and taken from [22] with permission.

Given that our ancilla qubits can be prepared in these special states |Y 〉 |A〉,
the final step in achieving universal computation is using them to perform rotations
of π/4 and π/8 around the X and Z axis. This can be done by non-deterministic
circuits shown in Figure 2.8. The general idea involves entangling the specially
prepared ancilla qubits with a qubit which we wish to rotate, and measuring it.
The ancilla qubit will then have a chance of containing the desired, rotated state.
However, after one application of such a circuit, the resulting gate may be a rotation
in the opposite direction, for example a RX(−θ) as opposed to RX(θ). Luckily, these
cases can be determined from a measurement of a negative eigenvalue of the qubit
which originally contained the input state, and therefore easily corrected.

This discussion, although brief, lets us conclude that full universal quantum
computation on a surface code is possible.

2.4 Error Threshold

Although it has been known for some time that quantum computation may be
possible, initially it was not clear how much physical error a quantum computer
can tolerate. The threshold theorem, which attempts to provide an answer to this
question, was presented by Knill, Laflamme and Zurek [31] and independently by
Aharonov and Ben-Or [2]. It states that there exists an error rate ǫ, such that as
long as all physical error rates are smaller than ǫ, arbitrary quantum computation
is possible. An alternative way to think about it is to note that precisely at the

19

threshold, increasing the resources devoted to error correction does not increase or
decrease the reliability of the computer. This is a remarkable result! It gives hope
that large scale quantum computation is feasible and provided an initial estimate of
its experimental requirements. Threshold error rates give a benchmark for different
error correcting codes and architectures, and shed light on which ones may be more
promising candidates for implementation.

There are two main approaches to threshold calculations. The first is analytical,
which usually results in lower bounds. These lower bounds are often pessimistic as
this simplifies calculations. Alternative approaches utilize Monte Carlo simulations,
which usually result in numbers that are often as much as an order of magnitude
higher than their analytical counterparts. It is believed that actual thresholds are
somewhere between the two.

Known numerical threshold results vary between 10−5 [49] for a restrictive 1-
D architecture and 10−2 [29] for a case with long-range qubit-qubit interactions.
Much work over the last few years has been concentrated on making this number
as large as possible, as that implies that larger physical error rates can be tolerated.
The actual value of the threshold is largely dependent on the architecture used as
well as many of the assumptions that are made during calculations and modeling
(for a list of assumptions made during our surface code threshold calculation, see
Section 3.4).

For completeness, we reproduce a simple, yet very elegant proof of a threshold
for concatenated codes. Concatenated codes are ones in which logical encoding is
used in successive levels. For example, we might imagine using the Steane 7-qubit
quantum error correcting code to encode a single qubit — this would require 7
physical qubits. We can imagine going further and encoding every one of those
7 qubits with 7 new physical qubits — and so on. Now, let us suppose that p is
the probability that any of the physical qubits in our computer can suffer an error.
After one level of encoding, the probability of unrecoverable failure to the encoded
state is reduced to cp2 for some constant c. If we include another level of encoding,
the probability of failure reduces further to c(cp2)2 = c3p4. We can generalize this,
and note that after k levels of encoding, the probability of failure of a logical qubit
can be written as 1

c
(cp)2k

. It is easy to see then, that the probability of failure will
decrease with every new concatenation level, as long as p < 1

c
. This number 1

c
is

precisely the error threshold.

In Chapter 3 will explain the details of how the numerical threshold can be
obtained for a surface code.

20

Chapter 3

Surface Code Threshold

Calculation

3.1 Introduction

As discussed in Chapter 2, an error threshold is a useful measure of how well a
particular error correcting code can perform. Our strategy when calculating such a
threshold for a surface code, is to simulate random generation of errors on a lattice
of qubits, while observing how long it takes for the encoded quantum state to be
compromised. By repeating this procedure for different lattice sizes, and different
physical error rates (denoted as p), we can generate a plot, which can let us estimate
the actual threshold value. Before we move on, it is useful to point out other
outcomes of similar calculations. Numerical results were presented in [45, 44, 54],
where values of ≈ 7.5× 10−3 and ≈ 7.8× 10−3 were obtained. While the method of
calculation differed from the one presented here, we nevertheless expect our results
to be similar, since the underlying nature of the error correcting code used is the
same. Another impressive result was given in [17], where an analytical lower bound
of ≈ 1.7 × 10−4 was derived.

3.2 Syndrome Readout Cycle

Although the explanation of a surface code (both toric and planar) in Section 2.3 is
complete in a mathematical sense, we need to discuss in more detail the procedure,
according to which the check operators Aj and Bj (defined in 2.6 and 2.7) are read
out. Since in many systems directly measuring the four-term Z and X operators
has not been shown to be possible, we use another approach where only one-qubit
measurements are needed. We assume that an ancilla qubit is placed in the center
of every plaquette, as well as at every vertex. This is schematically shown in Fig-
ure 3.1. These ancilla qubits are used for determining the measurement outcomes
of the four-term (and three-term on boundaries) check operators without actually

21

Figure 3.1: A planar surface code lattice with ancilla qubits shown in blue.

needing to measure them directly. We call these outcomes syndromes, and use
them to determine where errors have occurred. The readout circuits, shown in Fig-
ure 3.2, explain how this is done. The approach consists of initializing the ancilla
qubits, performing a collection of CNOT gates with neighboring data qubits, and
finally reading out (measuring) the ancillas. Therefore the full readout cycle needs

M0 HH

M0a.)

b.)

ψ ψ

ψ ψ

Figure 3.2: Circuit showing how an additional ancilla qubit (top line of each figure)
is used to measure a) ZZZZ around each plaquette and b) XXXX around each
vertex.

to include six simulation steps. It is worth noting that in a case of the readout
of XXXX around each vertex, the circuit needs to include Hadamard gates right
after initialization and right before the measurement of the ancilla qubits1, but in
our simulations we simply combine these Hadamard gates with the neighbouring
CNOTs and hence do not need to introduce any extra steps into the readout cycle.
The orientation of the CNOT gates is different when dealing with ancilla qubits

1An equivalent way to think about it would be to say that we initialize the ancillas that live
on vertices to the |+〉 state (and not |0〉), and read it out in the eigenstates of the X operator,
namely {|+〉 , |−〉}.

22

that are located on the vertices, from the ones that sit on the plaquettes. In the
former case, the ancilla qubits play the role of control, while the data qubits are
targets. The situation is reversed in the latter scenario. An example of the pla-
quette readout is shown in Figure 3.3. It turns out that the actual order in which

Figure 3.3: A syndrome measurement typically involves six steps; ancilla qubit
initialization, CNOTs with the four surrounding data qubits (fewer on boundaries
in a planar code case) and finally ancilla qubit readout. This example shows a
temporal order of the CNOT gates of NWES.

the CNOT gates are applied needs to be chosen carefully. This is due to the fact
that certain patterns may lead to entanglement between some of the ancilla qubits.
Entanglement is not desired, because it leads to non-deterministic measurement re-
sults. An easy way to see this is to consider a scenario where both the lattice (not
including ancilla qubits) starts off in a state that corresponds to +1 eigenvalues of
all the four-term check operators, and all the ancilla qubits are also initialized to
states |0〉, the +1 eigenstate of Z. If we further assume that no errors can occur,
and perform the readout cycle, then at the end we expect to find all the ancilla
qubits still in the +1 eigenstate, each agreeing with its respective check operator.
However, if say two of the ancillas are entangled in the state (|00〉 + |11〉)/

√
2 ,

which can be the case in certain patterns (occurs more than once), then measur-
ing will not necessarily give +1 eigenvalue, and hence with only a probability of
1/2 will the result reflect the value of its corresponding four-term check operator.
Figure 3.1 shows a few different patterns, and describes whether each of them is
capable of ancilla qubit entanglement by the end of the readout cycle. The letters
N, E, S, W, stand for North, East, South and West respectively.

To figure out whether a given pattern may lead to entanglement by the end
of the readout cycle, we calculate the evolution of the full stabilizer of the lattice
through the six-step readout cycle with different orders of CNOT gates, and sim-
ply observe whether at the end, the ancilla qubits are in product states or not.
Manual calculations of this sort are very tedious and a software tool was written
in order to simplify and automate this procedure. A more detailed discussion and

23

CNOT readout pattern Lattice type Syndrome Entanglement
NWES
NWSE
NSEW
NWES
NWSE
NSEW

Toric
Toric
Toric
Planar
Planar
Planar

No
Yes
Yes
No
Yes
Yes

Table 3.1: A table showing a few readout patterns and whether they lead to ancilla
qubit entanglement at the end of the readout cycle. For a more detailed discussion
and an explanation how these results were obtained see Appendix A.

actual calculations are presented in Appendix A. In our threshold simulations, we
concentrate on the non-entangling readout order of NWES.

3.3 Error Model

The threshold error rate is derived from four different error rates in our simulations
— initialization error pi, readout error pr, memory error pm and the error asso-
ciated with a two-qubit gate p2. As outlined before, the single qubit Hadamard
gates associated with the readout cycle of vertex syndromes are combined with
neighbouring CNOT gates. In order to be able to compare our result with other
threshold calculations, we set all these error rates to the same value of p. We call
this p a physical error rate, and it is one of the inputs into our simulator. Below,
we describe the four error types in some detail, keeping in mind that ρ represents
the density matrix of the lattice and indices i and j represent the qubits on which
the error operator acts.

1. Memory errors
These happen to qubits which sit idle during a particular step. For example,
data qubits may suffer a memory error during ancilla qubit initialization and
readout. Furthermore, in a planar code case, memory errors may be applied to
boundary qubits which are not involved in a two-qubit gate. We can describe
the transformation that the lattice undergoes from a memory error on the ith
qubit as

ρ→ p

3

(

XiρX
†
i + YiρY

†
i + ZiρZ

†
i

)

+ (1 − p)ρ (3.1)

2. Two-qubit gate errors
These errors occur during two-qubit gates between data and ancilla qubits.
The error is an application of one of the 15 tensor products of I, X, Y and Z
(excluding I ⊗ I). Assuming that the gate takes place between qubits i and

24

j, we can describe it as:

ρ→ p

15

(

IiXjρX
†
j I

†
i + · · · + ZiZjρZ

†
jZ

†
i

)

+ (1 − p)ρ (3.2)

3. Initialization errors
By initialization, we mean initialization of the ancilla qubits to the state |0〉.
An initialization error is therefore accidental preparation of state |1〉 with
probability p. We can describe this mathematically with:

ρ→ pXiρX
†
i + (1 − p)ρ (3.3)

4. Readout errors
By readout, we mean readout in the Z basis. A readout error is a classical
error — the qubit is projected into the ±1 eigenstate of Z, but with probability
p the eigenstate reported by the measurement device is incorrect.

Finally, it is worth stressing that in our simulations we apply the error operators (for
initialization, readout, two-qubit gates) after first executing all operations perfectly
— one could think of this approach as the errors being applied between simulation
steps. Figure 3.4 shows an example of a possible error pattern that gets applied
after a) the initialization step, and b) CNOTs North step. We see that in both cases,
appropriate errors are applied to random qubits. An obvious difference between a
toric code and a planar code is that in the toric code, during steps 2, 3, 4 and 5
(when two-qubit gates are being applied), no qubits ever sit idle, whereas in the
planar code case both ancilla and data qubits can possibly suffer a memory error
if they are located on a boundary (see Figure 3.4b for an example).

3.4 Assumptions

Our calculation makes certain assumptions that need to be clearly stated. We
outline them below.

• Fast (instantaneous!) classical processing.
This means that we are assuming that in a quantum computer controlled by
classical electronics, classical processing is not taking any of the simulation
steps.

• Uncorrelated errors
We assume that errors which are generated at random, are not correlated in
space or in time (the actual error model used is described in Section 3.3).
It is important to stress, that here we are only talking about the process
of random error generation, meaning that the probability of an error being
generated at random at any given position on the lattice during any time step

25

(a) (b)

Figure 3.4: In our simulations, errors are applied to qubits at random. The type
of errors depends on the current step of the readout cycle — in particular whether
a given qubit has been sitting idle, has been involved in a two-qubit gate, or has
undergone the process of initialization or readout. Above, we see error application
a) after initialization and b) after CNOTs to the north of every ancilla qubit. In this
particular step, ancilla (data) qubits in the top (bottom) row can suffer a memory
error, as they are not involved in two-qubit gate operations.

is independent from an error being randomly generated on a different part of a
lattice, during any other time step. Once an error has occurred on some part
of the lattice however, depending on the time step and its location, it may
get “copied” around to other qubits. This “copying” is properly accounted
for by the simulation.

• Constant error rate
This assumption implies that the physical probability of failure is independent
of the number of the qubits in our computer.

• Quick measurement and initialization
We assume that initialization and measurement of the ancilla qubits can be
done as fast as any of the gates.

• Concurrent computation
We assume that all the gates in different parts of the lattice can be done con-
currently. Mathematically, this is not a problem, as all the operations done
during any particular readout cycle step always commute. Here, we assume
something different however — namely that the hardware required to do per-
form all the operations simultaneously would have to exist. This assumption
is the basis of our approach where we are using six steps to perform a full
syndrome readout cycle (explained in Section 3.2).

26

3.5 Method

We are now ready to describe the calculation procedure in more detail. We assume
that the lattice starts off with some encoded state that was prepared beforehand,
and in a +1 eigenstate of all the check operators. As was explained in Section 3.1,
the simulation involves checking how long it takes for this encoded state to be
compromised. In practice this means repeating the readout cycle discussed in Sec-
tion 3.2 over and over, until a logical error can be observed. Figure 3.5 shows a
schematic diagram of this procedure. The simulation software takes a physical gate

Figure 3.5: A schematic representation of the algorithm used in the threshold
calculation. This particular case represents a scenario where the order of CNOT
gates is NWES.

failure rate p as well as a lattice size as input. We can also adjust whether a planar
or a toric lattice should be simulated. Since X and Z errors can be treated inde-
pendently, in order to decrease simulation times, we only concentrate on one type
of error at a time (although in initial runs both error types were being accounted
for).

3.6 Measurement and Matching

In order to extract all the syndromes, the last step of the readout cycle — step 6,
involves ancilla qubit readouts. After each ancilla is read, its value is checked against
a result from the previous iteration, and if the values differ, the syndrome change
location (in time and space) is recorded. Next, a matching of all the syndrome
changes collected up to this point is used to guess where errors occurred. An
example of this is shown in Figure 3.6a, where we can see that in this particular
scenario, a collection of X errors (shown as Xs in blue) after six readout cycles,
have lead to the given space-time locations of syndrome changes (red dots). We
stress that one could get the same readout pattern from a different set of errors,
hence the best we can do when guessing where the errors occurred is find a guess
that is the most likely scenario.

To do this, we observe that shorter error chains are more likely than longer
ones and therefore use a minimum-weight matching algorithm [14] to match the
syndrome change locations and obtain a likely error pattern. Before the matching
algorithm can find a minimum-weight solution, however, we need to convert our

27

(a)

(b)

Figure 3.6: a) An example of syndrome change locations (red dots) after six readout
cycles. The X operators represent the actual errors that the lattice suffered, which
lead to the given syndrome change location pattern. These now have to be matched
to obtain a guess as to where the errors happened. b) The matching of syndrome
changes gives us information on which errors should be corrected.

28

matching results into something that the matching algorithm can understand. This
is done by converting all the syndrome change results into a graph, with the loca-
tions of the syndrome changes representing the graph’s nodes, and edges between
these nodes having a weight which depends on the distance between them. The
edge weight is measured in faces along the spatial dimensions and ancilla qubit
readout cycles along the time dimension.

In the case of a planar code, some error chains may begin at the boundary and
end somewhere inside the lattice (see Figure 3.7). In such cases, we can only observe
the syndrome changes on the inner lattice. To account for this (meaning enable
the matching algorithm to guess that the error chain started on a boundary), in a
planar code case, for every inner node, we always create a closest boundary node.
The edges between different boundary nodes are set to be of weight zero in order
to minimize the cost of their removal by the minimum-weight perfect matching
algorithm. This is not needed when we are dealing with a toric code, since toric
codes have no boundaries (i.e. the lattice “wraps around”).

Figure 3.7: A planar surface code where we only observe a single syndrome change
location (for a given error type) tells us that the error chain possibly originated at
the boundary. The algorithm assumes the least damaging scenario — meaning the
shortest path to the closest boundary.

One way to prepare our graph would be to include an edge between every pair
of nodes (since in principle we don’t know where actual errors occurred), but in
practice we only do this for the toric code case, as it is not necessary for the planar
surface code in which some edges will never be a part of a minimum-weight perfect
match. The preparation of the graph takes this into account and only includes
edges that connect nodes which are not further from each other than the sum of
the weights between each node and its closest boundary node (since matching with
the boundary gives a smaller total edge weight). An example that illustrates this
is shown in Figure 3.8. We further optimize graph creation in the planar code case
by noting that matches which are temporally far behind the current time step will
not be changed by recent syndrome changes and therefore can be “remembered”
from previous iterations. These techniques let us minimize the size of the graph
that is passed to the matching algorithm which, despite scaling polynomially in the

29

(a) (b)

(c) (d)

Figure 3.8: a) Let us suppose that after some number of simulations steps of a
planar surface code, we have a collection of syndrome change locations labeled 1,
2 and 3 (which we can call “inner nodes”). These directly correspond to red dots
in Figures 3.6a and 3.6b. b) The first thing we do when creating a graph which
will be passed to the matching algorithm is to include a closest wall (boundary)
node for every inner node. These are labeled 1w, 2w and 3w. c) The next step
involves connecting the nodes using edges with weight that depends on the spatial
and temporal distance between the nodes. One way to do this would be to put an
edge between every pair of inner nodes, as well as between every node and its closest
wall node, and finally to connect all the wall nodes together with edges of weight
zero. d) A more efficient way of handling a planar code scenario is to note that
only edges that connect inner nodes which are not further from each other than the
sum of weights of edges between themselves and their respective boundary nodes
can contribute to the minimum-weight perfect matching. In this example we can
then remove the direct edge between nodes 1 and 3 as it is not needed.

30

number of edges and nodes, can often still take substantial computing time. An
example of a successful minimum-weight perfect match is shown in Figure 3.6b. In
it we see that the correction did eliminate most of the errors — but not all. The
matching algorithm guessed that the vertical line of 3 Xs was less likely than the
X in the bottom left corner, thus in fact introducing a logical error, which leads us
to the next important aspect of the simulation — logical error detection.

3.7 Logical Error Detection

As outlined in Section 3.5, in order to know if the simulation should continue or
not, we need to determine whether the lattice suffered a logical error (and hence the
encoded state has changed). Logical errors are chains of operators (X or Z) that
span across the whole lattice. In the case of a planar code, this means chains which
connect boundaries of the same type — either smooth or rough. In a case of a toric
code, the chain needs to “wrap around” the surface. Detecting these chains is not
entirely trivial. One approach would be to start at a boundary (in a planar case,
or simply chose an artificial boundary in a toric case) and try to find paths of error
operators that would lead to the other boundary (or cross the artificially chosen
one in the toric case). However, an even number of paths of operators that cross
the lattice are equivalent to no errors at all (i.e. XX = ZZ = 1l), and therefore
should not be considered as logical errors. Furthermore, one has to consider that
some paths may be a part of closed loops and as we outlined in Section 2.3, closed
loops are within the stabilizer of the code, and do not contribute to logical errors.
Hence any direct path detection algorithm would have to take these things into
account. Figure 3.9 shows a specific example of a case where multiple paths of Z
operators exist between two boundaries, and where the logical state has not been
compromised. Furthermore, all the errors can be “decomposed” into loops which
are within the stabilizer of the code. Therefore, in order to simplify logical error

Figure 3.9: Z errors that form an even number of chains across the lattice do not
form logical operators. Furthermore, the loops of errors presented in the diagram
are within the stabilizer of the code.

31

Figure 3.10: A logical Z(X) error detection involves checking if the parity of Z(X)
operators along any of the vertical(horizontal) lines of qubits is odd. Above we
show an example of a logical Z error.

detection procedure, we approach the problem form a different angle. To detect if
a logical error has occurred, we repeat the readout cycle with all the error sources
set to zero (i.e. set pi = pr = pm = p2 = 0). This allows us to be certain that any
logical error can be recognized by solely checking the parity of operators crossing a
line of qubits which is perpendicular to the direction of the chain needed to produce
a logical error. Figure 3.10 shows this in more detail in a case of a logical Z error
on a planar lattice. A chain of Z operators spans from the left boundary to the
right. The number of times it passes through any of the dashed lines is always
odd and whether this is the case or not can be easily detected by the simulation
software. It is worth noting that without such a “perfect readout” simply checking
the operator parity crossing a line of qubits in the way outlined above would not
work. To see this we can consider a simple example of having a single readout error
on one of the syndrome qubits. This error would lead to a syndrome change, and
if it was sufficiently isolated from others, it would be matched to the boundary
(in a planar code case), which, when corrected for, would lead to a single chain
of errors on qubits between the ancilla where the syndrome was obtained and the
closest boundary. Hence measuring the parity along a path that would cut this
chain, would yield an odd operator number leading to a wrong conclusion that a
logical error has occurred. This example is shown graphically in Figures 3.11a and
3.11b. In a case of a toric code a readout error presented above could lead to an
odd number of syndrome readout nodes, which the matching algorithm would not
be able to handle.

Now that we’ve explained the logical error detection in some detail, we can
summarize just how it fits into the whole picture. At the end of every syndrome
extraction cycle the current state of the simulation is recorded (all relevant data

32

(a) (b)

Figure 3.11: A simple example which shows that the detection of logical errors by
simply checking the parity of operators along the parity check lines does not work
without a final error-free syndrome extraction cycle. a) We suppose that there
have not been any errors on the lattice, except for a readout error on one of the
ancilla qubits, resulting in the syndrome value of −1. b) The matching algorithm
guesses that the most likely errors that could cause this situation occurred on
the path between the ancilla qubit and its closest boundary. By “correcting” we
introduce an unwanted chain of Z operators. Finally, measuring the parity of these
Z operators crossing the two parity check lines closest to the boundary, gives an odd
result, which in turn is wrongly interpreted as a logical error. If the final error-free
readout cycle was used, the original readout error would be detected precisely as a
readout error, and no matching to the boundary would occur.

33

structures, variables, etc. copied). Another full readout cycle is then performed
with all failure rates set to zero. The last step of this readout cycle involves ancilla
qubit measurements, and hence if any syndrome changes are detected they are
recorded. Next, the full set of syndrome changes, those from before as well as
from this latest readout cycle are used for minimum-weight perfect matching. The
resulting guess is then used for applying a correction. Finally, the corrected lattice
is then passed onto error detection routines which can determine whether a logical
error has occurred. If it has, then the simulation is stopped and the previous cycle
step (at which the simulation was “frozen”) recorded. If no logical error has been
detected, the simulation is reverted to the state just before the “perfect readout”
cycle began and continues on.

3.8 Results

As was described above, in order to obtain a value for the threshold, one needs
to calculate time-until-failure for different size lattices as well as different physical
error rates p. The time-until-failure may differ from run to run, even when the
same lattice size and physical error rate is used, and therefore an average over
many (we use at least 5000) repeated simulation runs is needed. The crossing point
of all the curves gives the threshold. We can easily see why that is the case by
remembering that by definition, a threshold is an error rate at which increasing the
resources devoted to error correction does not increase or decrease the reliability of
the computer. The resources are the qubits (expressed here in terms of the lattice
size), and the reliability can be described in terms of the number of readout cycles
before an encoded state suffers a logical error. In the case of the toric code, we look
at lattice sizes between 3 and 13 faces across (or codes with distances between 3 and
13). Although it would be beneficial to look at larger sizes, we are limited by the
matching algorithm and the fact that optimization techniques used when dealing
with the planar code (more about it in Section 3.6) cannot be applied to the toric
code case. The resulting plot is presented in Figure 3.12. In it we see that except for
the two curves associated with the smallest lattice sizes, the crossing is observed at
≈ 6.0×10−3. The situation is similar in the planar code case shown in Figure 3.13.
Here however, using the optimization techniques described in Section 3.6, we are
able to look at larger lattice sizes — between 4 and 20 faces across (corresponding
to the code distance between 5 and 21). The crossing is now substantially more
noisy, and only visible for much larger larger lattice sizes (than in the toric code).
This is likely due to the fact that the boundary check operators have three terms as
opposed to four, which is the case for the ones on the inside of the lattice (for more
on this, see Section 2.3, and in particular Figure 2.2). The ratio of the three-term to
total check operators (of a particular kind — either composed of Xs or Zs) scales as
2/(n+ 1), where n is the number of faces across the square lattice (or alternatively
as 2/d with d being the code distance). For smaller lattices, where this number
is large, changing the lattice size has an effect on the average probability of an

34

æ

æ

æ

æ

æ

à

à

à

à

à

à

ì

ì

ì

ì

ì

ì

ò

ò

ò

ò

ò

ò

ô

ô

ô

ô

ô

ô

ç

ç

ç

ç

ç

ç

0.005 0.0055 0.006 0.0065 0.007 0.0075

100

50

20

200

30

150

70

Physical Error Probability p

A
ve

.R
ea

do
ut

C
yc

le
s

U
nt

il
Fa

ilu
re

Toric Code Threshold

æ d:13

à d:11

ì d:9

ò d:7

ô d:5

ç d:3

Figure 3.12: A log-log plot of average time-until-failure versus the physical error
rate p on a toric code. We study lattice sizes ranging from 3 to 13 faces across (code
distance from 3 to 13). Except for cases of the two smallest lattices, a crossing is
observed at ≈ 6.0× 10−3. A case where no error correction is used (single qubit) is
represented with a dashed line.

ancilla qubit reporting errors in a single readout cycle (whereas in a toric code for
example, this stays constant as the lattice size changes). From Figure 3.13 we can
observe that the crossing is slowly converging to a value slightly above 6.0×10−3 in
particular for lattice sizes larger than 12 faces across (distance 13). We can suspect
that if we were able to look at even larger lattice sizes, the crossing would likely
agree with that of the toric code case. We therefore estimate our threshold value
to be 6.0 × 10−3.

These results let us conclude that below the threshold, the average lifetime of
the encoded qubit can be increased arbitrarily by increasing the size of the lattice.
Furthermore, the numbers we obtain are in general agreement with those presented
by others [45, 44, 54], which are only slightly higher at 7.5 × 10−3 and 7.8 × 10−3.
The reason for this small discrepancy likely has to do with the differences in the
details of the simulations. To further solidify the values presented above, it would
be beneficial to observe the behaviour of the system with larger lattice sizes. In
order to make this possible one approach might involve using an approximation
to the minimum-weight perfect matching algorithm as this is currently the biggest

35

æ

æ

æ

æ

æ

æ

à

à

à

à

à

à

ì

ì

ì

ì

ì

ì

ò

ò

ò

ò

ò

ò

ô

ô

ô

ô

ô

ô

ô

ç

ç

ç

ç

ç

ç

ç

á

á

á

á

á

á

á

í

í

í

í

í

í

í

ó

ó

ó

ó

ó

ó

ó

0.004 0.0045 0.005 0.0055 0.006 0.0065 0.007 0.0075

20

50

100

200

Physical Error Probability p

A
ve

.R
ea

do
ut

C
yc

le
s

U
nt

il
Fa

ilu
re

Planar Code Threshold

æ d:21

à d:19

ì d:17

ò d:15

ô d:13

ç d:11

á d:9

í d:7

ó d:5

Figure 3.13: A log-log plot of average time-until-failure versus the physical error
rate p on a planar code. We study lattice sizes ranging from 4 to 20 faces across
(code distance between 5 and 21). For lattice sizes larger than 12 faces across
(corresponding to distance 13), a crossing is converging to value just above ≈
6.0 × 10−3. A case where no error correction is used (single qubit) is represented
with a dashed line.

bottleneck in our calculations. The drawback could be that the threshold estimate
calculated in such a way, might be lower than what is presented here, but depending
on the approximations used, it might not be by much. In summary, we state that
it is encouraging that both our results and those presented elsewhere for a surface
code threshold, are higher than error thresholds of many other approaches to error
correction (in particular, ones that assume only nearest neighbour interaction).

3.9 Other Possible Approaches To The Thresh-

old Calculation

The approach to the surface code threshold calculation presented above requires
large computational resources. The matching algorithm is invoked after every read-
out cycle. As is observed in Section 3.8, in the cases of larger lattices and lower
physical rates, logical errors are not detected until often as many as couple of

36

hundred of iterations. Furthermore, in the cases of larger lattice sizes, even with
optimizations associated with preparation of the graphs which represent syndrome
changes (more about this in Section 3.6), the matching takes substantial time. Ex-
pecting this, our original approach to the threshold calculation differed. In order
to minimize the computing time, it was envisioned that instead of attempting to
determine whether a logical error occurred after every readout cycle, we could run
the simulation for some time (say a few hundred cycles), record all the errors (in
space and time) along with syndrome change locations, and from this information
try to determine how many logical errors the lattice suffered over the given period
of time. The leap of faith that one had to make to justify this approach was that
the density of logical errors would be constant as the simulation progressed, which
is in tune with the general assumptions shown in Section 3.4. At the same time, we
were also experimenting with the alternative logical error detection method where
we explicitly searched for boundary-to-boundary paths of error operators (more on
this method in Section 3.7). An artistic rendering of this is shown in Figure 3.14.

In the end, the results were not what was expected — in particular no crossing
of curves representing different lattice sizes was observed. Since we were provided
with access to Sharcnet (a high-performance computing cluster), in the end we
switched our approach to the “check for error after every step” method described
in the other parts of this chapter.

Figure 3.14: Error chains crossing a planar lattice structure. The vertical axis is
time, and the horizontal axis represent the spatial dimensions of the lattice. Logical
errors are chains that span the lattice, starting at one boundary and ending at the
other. In order to detect logical errors in the lattice, such paths had to be found,
keeping in mind that closed loops are within the code stabilizer, hence don’t actually
contribute to logical errors.

37

3.10 A Few Notes On Implementation

Our simulation software was written in either C (the original version, see Section 3.9
for more details) or C++ (the final version which was ultimately used to produce
results presented here). Naturally there are multiple ways to implement a simu-
lation such as this. One way is to simply simulate the stabilizer evolution of the
lattice, accounting for ancilla qubit initialization, CNOTs between ancilla and data
qubits, ancilla measurements, and of course appropriate error operators that would
be randomly generated. A well established method for this might be to use a check
matrix [37] where a g× 2n matrix can be used to represent a stabilizer with g gen-
erators, and n qubits. 1s in a position (i, j) with 1 ≤ j ≤ n denote a Zj operator
in the ith generator, and 1s in a position (i, j) with n + 1 ≤ j ≤ 2n represent a
Xj−n operator in the generator with index i. Evolution of the stabilizer involves
updating such a check matrix according to the rules shown in Table 2.1. An efficient
approach to do this, which is capable of dealing with a rather arbitrary gate order,
and even with available software was presented in [1]. In our case, the situation can
be simplified, because we are not dealing with a completely unpredictable stabilizer
evolution. When one does not consider any errors, the order of the CNOT gates
and hence the evolution of the stabilizer is the same in every cycle. Furthermore, by
noting that errors only change the signs of certain generators (which ones, depends
on where and when they occurred) and not the structure, we can calculate what
each generator will look like after each step of the readout cycle (up to a possible
sign difference, which depends on the errors). By then figuring out what generators
are affected by an error happening on a given qubit during any of the six cycle steps
and storing this information in some static data structure, we have a very efficient
way to run the simulation.

Our first version of the code worked in precisely the way described above, how-
ever in the later incarnations we modified the way we kept track of errors. Instead
of dealing with the stabilizer, we imagined a lattice with qubits which was imple-
mented as a 2D array. Each entry of the array represented a count of the number
of errors (of a particular type) which acted on a qubit with the same lattice index.
Since two Xs (or Zs or Y s) are equivalent to I, this number could be either a 1
or a 0. As the simulation progressed, the CNOT gates “copied” the errors around.
The readout involved checking whether each syndrome is a 0 or a 1 corresponding
to the +1 and −1 eigenvalues respectively.

The two approaches presented above are equivalent in the sense that both can be
used to describe the error propagation throughout the lattice, and in turn provide
enough information to ultimately determine a numerical error threshold when a
non-entangling readout cycle is used (see Section 3.2 for more information on this).
We ended up sticking with the latter, simply because it was more “geometrical”
and hence easier to deal with.

In order to perform minimum-weight perfect matching, our software was inter-
faced to a matching code written by Cook and Rohe [14], which is freely available
on the internet. The code was originally written in C, but a C++ wrapper was

38

provided to us by K. Goyal, which we slightly modified to simplify its integration
into our project. It turned out that the matching process was computationally by
far most demanding. The optimizations in syndrome change graph preparation in
the planar code case, explained in Section 3.6 gradually let us go to lattices with
over 40 qubits across (counting ancilla qubits), but exploring large lattice sizes
without choosing to approximate the process of perfect matching would not be
computationally practical.

39

Chapter 4

Quantum Computing With

Superconducting Circuits

4.1 Preliminaries

Superconductivity was first discovered in 1911 by a Dutch physicist named Heike
Kamerlingh Onnes [39]. He noticed that when when mercury is cooled below 4.2K,
its resistivity to current disappears. Over the last century, many scientists have
tried to explain this fascinating phenomenon. An important breakthrough was
made in 1957, when a microscopic (BCS) theory was proposed by Bardeen, Cooper,
and Schrieffer [4]. In this theory it is established that atomic level vibrations
force electrons to “team up” into pairs, which in turn enables them to flow freely
through the superconducting material. The BCS theory has been very successful
in explaining low temperature superconductivity and led to many advances in the
field.

In the last decade, physicists realized how to build qubits using superconducting
circuits. Many different approaches have been introduced [10, 12, 18, 34, 36, 41,
53, 56, 57]. Their differences come from the circuit layouts and components used.
In this chapter we explain the workings of a flux qubit, as well as a DC-SQUID.
Both of these devices play an important role in proposals that envision large scale
quantum computing with superconducting circuits.

4.2 Josephson Junctions

Before we move on to a more detailed discussion of quantum computing applica-
tions, let us review the Josephson effect, as it will play a central role in what follows.
The Josephson effect was named after British physicist Brian David Josephson, who
in 1962 predicted the phenomenon of current flow through a junction created by
separating two superconductors with a thin insulating layer [26]. Such a junction

40

(a) (b)

Figure 4.1: a) A Josephson junction as described in the RCSJ model, by a resistor
R, capacitor C and the Josephson element (represented by a cross). b) A simpler
representation that does not explicitly show the resistor and capacitor.

can be schematically represented as a resistor, capacitor and what’s called a Joseph-
son element in parallel (this is often called the RCSJ model [50]), an example of
which is shown in Figure 4.1. Josephson discovered two equations that govern the
behavior of these junctions. The first is

Is = I0 sinφ (4.1)

with φ being the difference in the phase of wavefunctions in the superconductor on
either side of the junction and I0 = I0(T,∆) the critical current — the maximum
supercurrent that can flow without dissipation. In general it depends on the tem-
perature of the sample as well as the properties of the superconductor (many of
which govern the size of the energy gap ∆) [3]. The other equation is

dφ

dt
=

2eV

~
(4.2)

and it tells us that a varying phase difference across the junction implies non zero
voltage. The two equations lead to an interesting conclusion that the supercurrent
can flow even if the potential across the junction is zero. We can go a little further,
and use Equations 4.1 and 4.2 to derive the free energy stored in a junction by
integrating the work done by the current source that is required to change the
phase. This leads to

E =

∫

ISV dt =

∫

I0 sin(φ′)
~

2e
dφ′ = constant− EJ cos(φ) (4.3)

with EJ = ~I0
2e

called the Josephson energy. When describing Josephson tunnel
junctions, one also needs to consider the capacitance associated with their geometry,
and therefore capacitative single-electron charging energy, defined as Ec = e2

2C
.

One can also define a Josephson inductance as

LJ =
Φ0

2πIs cosφ
. (4.4)

41

with Φ0 being the “flux quantum” and expressed in terms of other fundamental
constants as Φ0 = h

2e
. The fact that it is not linear, plays a critical role in quantum

computing as it leads to non-uniform differences in energy levels, which in turn
makes addressing specific transitions possible. This addressability, along with the
fact that under some critical temperature and voltage these junctions are non-
dissipative, makes Josephson junctions extremely important in building quantum
computing devices with superconducting circuits.

4.3 Flux Qubits

Flux qubits can be constructed from a loop of superconducting wire, and three
Josephson junctions [35], shown schematically in Figure 4.2. We assume that the
qubit is operated in the non-dissipative regime, hence the resistance branch of
each junction is not shown in the picture. We define φi to represent the Cooper
pair wavefunction phase difference across junction i, and EJ,i the ith junction’s
Josephson’s energy. In this design, two of those junctions are of the same size,

Figure 4.2: A three junction flux qubit, often called a “persistent current qubit”.

and the third is fabricated to be a factor 1
α

smaller. This leads to EJ,3/EJ,1 =
EJ,3/EJ,2 = α, with α usually being between 0.6 and 0.8. We assume that an
applied flux Φx can be threaded through the loop, and easily controlled by the
experimental apparatus. Furthermore, by taking the loop to be small, we can
assume that its geometric inductance L is small, and hence observe that the total
flux Φ passing through the loop is roughly the same as the applied flux Φx, namely
Φ ≈ Φx. Using fluxoid quantization [50, 16], we can then relate the applied flux
with the phases φi by

φ1 + φ2 + φ3 +
2πΦx

Φ0

= 2πm (4.5)

for m integer. This lets us get rid of φ3 in the Hamiltonian by writing it in terms
of the flux and other junction phases. All this leads to

H =
3
∑

i=1

Q2
i

2CJ,i

− EJ

(

cosφ1 + cosφ2 + α cos

(

2πΦx

Φ0

− φ1 − φ2

))

. (4.6)

42

The second term in Equation 4.6 describes the potential energy landscape, which
when plotted along φ1 = φ2 = φ leads to a double well potential. The minima
of the wells can be changed relative to each other by changing the applied flux
through the qubit. This is shown in Figure 4.3. The two wells correspond to

Figure 4.3: Potential energy of a flux qubit. We observe that the double-well shape
of the potential energy can be shifted by the applied flux threaded through the
qubit.

a circulating, persistent currents in the clockwise or counter-clockwise directions.
Mathematically, they can be described in terms of the parameter α as

Ip = I0

√

1 − 1

4α2
. (4.7)

where I0 is the critical current of junctions 1 and 2. They represent two basis states
of the qubit, usually denoted as |0〉 and |1〉. When the applied flux Φx is equal to
Φ0

2
, the lowest energy states are symmetric and anti-symmetric superpositions of

|0〉 and |1〉, and as shown in Figure 4.4, an energy anti-crossing is observed. In the

Figure 4.4: An energy diagram of a flux qubit. We observe an anti crossing where
the flux is equal to Φx = Φ0

2
. States |0〉 and |1〉 are represented by clockwise and

counterclockwise directions of the circulating currents.

two state approximation, the Hamiltonian shown in Equation 4.6 can be further

43

rewritten in the form presented in Chapter 1.4 as

Hi = −1

2
(ǫσz + ∆σx) (4.8)

with ǫ = 2Ip
(

Φx − Φ0

2

)

and ∆ often called the tunneling energy. The parame-
ter ∆ is dependent on the physical properties of the circuit (in particular on the
Josephson junctions used) and in most implementations it is fixed at fabrication
time. However, approaches where ∆ is adjustable have been demonstrated both
theoretically [35] and experimentally [42] by simply replacing the third junction by
a DC-SQUID (reviewed in detail in the next section).

Finally, for completeness, it is worth stressing that the original proposal for a
flux qubit only included one Josephson junction [8]. It had similar properties to
the approach presented above, but in order to obtain a double-well potential the
geometrical inductance needed to be large. This meant that the physical size of
the qubit was large, which lead to substantial interaction with the environment,
rendering the qubit very sensitive to decoherence and experimentally difficult to
use.

4.4 DC-SQUIDs

A DC-SQUID consists of a loop of superconducting material, which is interrupted
by two Josephson junctions, as is shown in Figure 4.5. For simplicity, we’ll assume

Figure 4.5: A DC-SQUID is a superconducting loop, interrupted by two Josephson
junctions. γ1 and γ2 are the differences in phase of the wavefunction of Cooper
pairs on either side of junctions 1 and 2 respectively.

that both junctions have the same parameters, and their critical current is described
by I0 and capacitance by C. Ib represents the bias current sent through the loop.
Using Kirchhoff’s current laws, we can write

Ib
2
− J = I0 sin γ1 +

CΦ0

2π
γ̈1 (4.9)

and

Ib
2

+ J = I0 sin γ2 +
CΦ0

2π
γ̈2 (4.10)

44

where Jn is the circulating current of the DC-SQUID. By adding and subtracting
these, using γ− = γ1−γ2

2
, γ+ = γ1+γ2

2
and a couple of trigonometric identities, we

can rewrite Equations 4.9 and 4.10 as

Ib = 2I0 sin γ+ cos γ− +
2CΦ0

2π
γ̈+ (4.11)

J = I0 sin γ− cos γ+ +
CΦ0

2π
γ̈−. (4.12)

Next, using fluxoid quantization around the loop we have a relation between the
γs, the applied flux Φx and the circulating current J

γ1 − γ2 +
2πΦx

Φ0

− LJ = 0 (4.13)

where L is the geometric inductance of the DC-SQUID. At this stage we can sim-
plify things a little and assume that L is small, and LI0 ≪ Φ0

2
. In this case, the

Josephson inductance dominates the geometrical inductance, and the last term in
Equation 4.13 can be neglected (Note that Chapter 5 does not neglect the geomet-
ric inductance, and full numerical treatment is presented). This lets us write the
Hamiltonian [9] as simply

H =
~

2

4EC

γ̇2
+ − 2EJ cos

(

πΦx

Φ0

)

cos γ+ − ~

2e
Ibγ+. (4.14)

We see that a DC-SQUID acts very much like a single Josephson junction with the
important difference that its critical current can be controlled by the applied flux
Φx. In the limit of small L, we can express the critical current Ic of the DC-SQUID
as

I0(Φx) = 2I0 cos

(

πΦx

Φ0

)

. (4.15)

DC-SQUIDs are turning out to play important roles in applications of supercon-
ducting circuits to quantum computing. For example, they can be used as readout
devices for flux qubits [40, 52, 32]. One readout method involves injecting a dc-
current and observing at what point the device switches into a non-zero voltage
state. Since the critical current is dependent on the flux, which in turn can be
affected by the nearby flux qubit, the applied current that is needed for the DC-
SQUID to switch will differ depending on the actual state of the qubit. Hence,
by first calibrating the DC-SQUID appropriately, one can determine the state of
the qubit. Another very useful application of DC-SQUIDs in quantum computing
applications is coupling. Since this topic is very important to what follows, we’ll
review it in more detail in the next section.

45

(a) (b)

(c)

Figure 4.6: Different approaches to coupling flux qubits. a) Direct coupling via
mutual inductance. b) Coupling via a shared Josephson junction, which is typically
larger than junctions used in the qubits. c) A DC-SQUID used as a coupler. By
applying an appropriate bias current Ib one can completely turn off any qubit-qubit
interactions.

4.5 Coupling Flux Qubits

Many different approaches have been proposed to couple multiple qubits together.
In the simplest case, one can consider only direct qubit-qubit coupling via mutual
inductance, as shown in Figure 4.6a. In more complicated cases, qubits can share
an edge with or without extra junctions (Figure 4.6b), or even couple via another
high-excitation energy object such as a DC-SQUID (Figure 4.6c) [43] or even an-
other qubit [38]. Recently proposals of coupling qubits to a cavity also have been
demonstrated [33, 6], but we will not further discuss those here. An important
aspect of building a useful quantum computer is making multi-qubit coupling con-
trollable, hence proposals that provide some way of switching off, or at least being
able to, at some level, control the coupling strength are preferred.

In this section we’ll concentrate on briefly reviewing an approach presented
in [43] as it forms the starting point of the three qubit, two coupler work from
Chapter 5. In this scenario, two flux qubits are coupled via both direct inductive
coupling, as well as via a third object — a DC-SQUID. The circuit representation
is shown in Figure 4.6c. The energy between the ground and first excited state of
the coupler is chosen to be large when compared to the energies of the qubits, and
therefore one can assume that the coupler always stays in its ground state. We
will study the details of an extended version of this circuit in Chapter 5, but it
is worth stressing a few important results. The total coupling energy K between
the two qubits is due to both direct coupling K0 as well as coupling through the
DC-SQUID, denoted Ks. The direct coupling is due to the mutual inductance M

46

between both of the qubits and takes the form of MI1I2, where Ii is the circulating
current in the qubit i. In the next chapter we will show that Ks ∝ ∂J

∂Φx
, with

J representing the circulating current in the coupler, and Φx the applied flux.
The authors of [43], have shown that for certain values of the bias current Ib and
applied flux Φx, this derivative is negative, and therefore the direct coupling between
qubits can be exactly negated by the interaction through the DC-SQUID. A plot
of the coupling strength for experimentally achievable parameters is presented in
Figure 4.7. It shows that at Φx = 0.45Φ0 and the bias current Ib = 0.57Ic, with
I0 being the critical current of the coupler, the total coupling energy K is zero.
Being able to tune K is a useful feature of this design. It simplifies control of the

Figure 4.7: Coupling strength due to both direct qubit-qubit coupling K0 as well
as qubit-coupler-qubit Ks. By tuning the bias current Ib, the total coupling energy
can be set to zero. Plot taken from [43].

qubits, and in particular makes performing two-qubit gates a less daunting task.
Many other suggestions for controllable coupling architectures have been suggested
[55, 33, 38, 51], but at this stage it is not yet clear which will become most useful
on a large scale.

47

Chapter 5

Three Qubit Coupler

5.1 Motivation

Coupling qubits is a critical aspect of building a large scale quantum computer.
From the previous chapters of this thesis we see that even a simple two-dimensional
lattice in theory provides an adequate “resource” and furthermore seems to yield a
high error threshold, which naturally leads to its usefulness in experimental realiza-
tions. So far however, scientists have only begun to construct multi-qubit systems
out of superconducting circuits. In this chapter we study a specific scenario where
three flux qubits are coupled using two DC-SQUIDs. We explore how the coupling
energy changes as we vary geometrical properties of the couplers for a set of ex-
perimentally achievable parameters, and concentrate on two cases of interest; the
first where coupling between all the qubits is small, and another where it is large
between one pair, and small between the other two. Although only a starting point,
these results could be extended further to more complicated designs with both more
qubits as well as couplers.

5.2 Geometry

The performance of any inductively coupled qubit architecture will strongly depend
on the geometry of the qubit-coupler layout. In this chapter, we study two geome-
tries that partially describe a square lattice, which could be used (for example)
to implement a surface code. The geometries we study are both shown in Figure
5.1. In the layout (a), the coupling DC-SQUIDs form a straight line and in (b),
a capital letter “L”. In both cases we have two qubits at the end points (labeled
as 1 and 3) and the third (labeled 2) in the middle. The middle qubit is therefore
surrounded by both of the couplers. We consider the qubits at the edge to be
nearest-neighbours to the middle qubit. The qubits sit inside the couplers, hence
maximizing the qubit-coupler inductance. We take the edge length of our square
qubits to be 44µm, roughly the same as those used by the Clarke group [25]. The

48

(a)

(b)

Figure 5.1: Two different arrangements of qubits 1, 2, 3 and couplers A, B. “a”
represents the arm length of the couplers, and “w” its width. We assume that
the wires of couplers A and B overlap at most in two places around qubit 2. a)
Straight-line shape. b) Capital “L” shape.

49

distance between the qubit and the surrounding wire of the coupler is between 2
and 4µm (depending on whether a qubit is surrounded by one or two coupling DC-
SQUIDs). Since qubit 2 is always surrounded by two DC-SQUIDs, an experimental
realization of this scenario would require crossing the wires of the couplers in at
least two places. For simplicity we assume a fully symmetric situation meaning the
qubits that are situated at the edges look the same to the qubit in the middle.

To understand what impact qubit separation has on the coupling energy, we
vary both the DC-SQUIDs’ arm length and arm width (shown as “a” and “w”
respectively in Figure 5.1). The arm length “a” varies between 50µm and 300µm
and we study cases of the arm width w = 48µm and w = 2µm (although in the latter
case we keep a 10×10µm2 loop in the center of the arm to simplify delivering a well
defined flux through the couplers). In order to numerically calculate the inductance
of any given configuration, we use a program called “FastHenry” [27]. To simplify
its use, a “wrapper code” has been written, which is easily able to prepare rather
involved configuration files for various geometries. We have assumed that both the
qubit loops and the coupling DC-SQUIDs are made out of aluminum, and use a
penetration depth of 51nm [5] (which in practice can vary depending on purity).
The result is a 5×5 inductance matrix. As an example, we can look at the L-shaped
geometry with the thin arm width of w = 2µm. With the arm length a = 50µm,
the inductance matrix was obtained to be

Q1 Q2 Q3 A B

Q1 171.5483 −0.4689 −0.1659 73.9081 −0.8751
Q2 −0.4689 171.5483 −0.4600 75.6132 75.5106
Q3 −0.1659 −0.4600 171.5483 −0.8751 73.9081
A 73.9081 75.6132 −0.8751 457.8219 91.8483
B −0.8751 75.5106 73.9081 91.8483 457.8219

× 10−12H, (5.1)

and in a case of a = 300µm,

Q1 Q2 Q3 A B

Q1 171.5483 −0.0101 −0.0041 74.6179 −0.0200
Q2 −0.0101 171.5483 −0.0089 76.3539 76.2424
Q3 −0.0041 −0.0089 171.5483 −0.0200 74.6179
A 74.6179 76.3539 −0.0200 716.4041 94.2563
B −0.0200 76.2424 74.6179 94.2563 716.4041

× 10−12H. (5.2)

where in both cases the columns (and rows) correspond to the first, second, third
qubits and couplers A and B respectively. The inductance matrices for other ge-
ometries are similar in order (hundreds of pH for DC-SQUIDs’ self inductance).
We point out that the matrix elements that correspond to the mutual inductance
between each of the qubits and their nearest coupling DC-SQUIDs (there are two
in a case of qubit 2) are much greater than the ones that corresponds to the mu-
tual inductance between qubits themselves. The significance of this is that smaller
currents (in the couplers) can still provide substantial coupling energy.

50

5.3 Hamiltonian

In this section we look at the mathematics of the coupling in more detail. We do
this by expanding on the results presented in [43]. First we define the parameters
of our system of which a schematic representation is shown in Figure 5.2. The
three flux qubits are labeled 1, 2 and 3, and the couplers A and B. The variables
γn,i are phase differences across ith junction in a coupler n. Φn is the applied flux
threaded through a coupler n and Jn its circulating current. I0 is the critical current
of the Josephson junctions used in the coupling DC-SQUIDs — for simplicity we
assume that all the junctions, and hence their critical currents are the same. We
further assume that we are able to control the flux independently through each of
the DC-SQUIDs and qubits.

Figure 5.2: The three flux qubits labeled 1, 2 and 3, and two DC-SQUIDs labeled
A and B, form a three qubit, two coupler system. γn,i is the phase difference across
ith junction in a coupler n. Φn and Jn are the applied flux and circulating current
of coupler n respectively. I0 is the critical current of the Josephson junctions used
in the coupling DC-SQUIDs — for simplicity we assume that all the junctions, and
hence their critical currents are the same.

Using the discussion presented in Chapters 1 and 4, we can write an effective
Hamiltonian of the three flux qubits and interaction between them as

H =
∑

i=1,2,3

Hi −
∑

i6=j

Kijσ
i
z ⊗ σi

z (5.3)

whereHi are the Hamiltonians of the individual qubits as described in Equation 4.8,
and Kij correspond to the coupling energy between qubits i and j. In writing this
Hamiltonian, we make an important assumption that the energy difference between
the ground and excited states of the couplers is much greater than that of the qubits.
This lets us assume that the coupling DC-SQUIDs will stay in their ground state,
and hence we can neglect the dynamics of the couplers. Furthermore we stick to
the sign convention used in [43] and note that for K < 0 the minimum energy
configuration corresponds to anti-parallel fluxes. The coupling terms Kij can be
split into two parts; the first, K0

ij consisting of direct coupling between qubits i and j
and the secondKc

ij relating to the indirect coupling that is mediated by the two DC-
SQUIDs themselves. The second term comes from the fact that as the persistent
current of qubit j, Ij changes direction, it modifies the DC-SQUIDs’ circulating

51

currents JA and JB which in turn alter the flux in qubit i. Mathematically we can
describe the two coupling contributions as

Kij = K0
ij +Kc

ij. (5.4)

To calculate these terms, we start by writing the change in the energy of qubit i
due to qubit j. This is simply

Kij = Ii∆Φj
i (5.5)

where ∆Φ
(j)
i refers to the change in flux of qubit i due to qubit j. We can rewrite

it using three terms, which are related to changes in the current of qubit j and the
circulating currents of both of the couplers

Kij = IiMij∆Ij − (MiA∆J
(j)
A +MiB∆J

(j)
B). (5.6)

∆Ij is the change in the persistent current of qubit j, and ∆J
(i)
A represents the

change in the circulating current of the coupler A only due to changes in qubit j
— likewise for coupler B. The negative sign in front of the second and third terms
comes from the fact that the coupling that is mediated through the DC-SQUIDs
is anti-ferromagnetic in nature — for a detailed justification of this, we point the
reader to [19]. Each of the circulating currents depends on the applied fluxes ΦA

and ΦB, hence for fixed bias currents IA and IB, we can write

∆J
(j)
A =

∂JA

∂ΦA

∆Φ
(j)
A +

∂JA

∂ΦB

∆Φ
(j)
B (5.7)

where similarly as before, ∆Φ
(j)
A and ∆Φ

(j)
B correspond to the changes in applied

fluxes of the coupling DC-SQUIDs A and B due to qubit j. We can write them
as MjA∆Ij and MjB∆Ij. Following the same arguments for ∆J

(j)
B and rewriting

∆Ij as simply Ij (since the computational basis correspond to persistent currents
in either one or the other direction, and as we’re dealing with a two level system,
only the signs of Ij can change), we can write the total interaction energy between
qubits i and j as

Kij = K0
ij +Kc

ij (5.8)

= MijIiIj −
∑

n=A,B

∑

k=A,B

Mn,iMk,j

∂Jn

∂Φk

IiIj. (5.9)

From the above we see that the coupling strength depends on the transfer func-
tions of the form ∂Jn

∂Φk

. And these ultimately depend on the DC-SQUIDs’ control
parameters; the bias current and the applied flux. In the following section, we will
show how.

52

5.4 Transfer Function ∂J
∂Φ

Although in this work we are are limiting ourselves to treating a situation where
only two coupling DC-SQUIDs are present, it is not much harder to generalize this
particular section to an arbitrary number of coupling DC-SQUID devices. We will
therefore initially treat a more general situation, and only at the end explain what
the equations reduce to in our particular case.

We start with Kirchhoff’s current laws for coupler n. In the limit of ω = 0,
(meaning the coupler stays in its ground state) and using results from Section 4.4
we know they can be written as

In = I0 sin γn1 + I0 sin γn2

2Jn = I0 sin γn2 − I0 sin γn1
(5.10)

Using γn− = γn1−γn2

2
and γn+ = γn1+γn2

2
, we rewrite equations 5.10 as

In = 2I0 sin γn+ cos γn− (5.11)

and
Jn = I0 sin γn− cos γn+ (5.12)

From fluxoid quantization [16], we have another condition, which relates the flux
passing through the nth DC-SQUID to a change in phases across the junctions.
This lets us write

γn− =
π

Φ0

(Φn −MnJn −
∑

l,l 6=n

MnlJl) (5.13)

where Φn is the applied flux, Mn the geometric inductance of the nth DC-SQUID,
MnJn flux due to its circulating current, and the last term involving a sum over l is
related to the flux passing through the nth coupler due to the circulating currents
in all the others. By fixing the applied flux Φn and bias current In for all n (i.e.
in all the coupling DC-SQUIDs) we can solve equations 5.11, 5.12 and 5.13 to
obtain circulating currents Jn as well as the phases γn− and γn+. Next we fix the
bias currents In and implicitly differentiate Equations 5.11, 5.12 and 5.13 in order
to obtain the transfer functions ∂Jn

∂Φk

(at this stage k may equal n), which we’ll
ultimately need to calculate the interaction energy Kij. Therefore differentiating
5.11 with respect to Φk gives

∂In
∂Φk

= 0 = 2I0
∂

∂Φk

(sin γn+ cos γn−) (5.14)

which further leads to

cos γn+
∂γn+

∂Φk

cos γn− − sin γn−
∂γn−

∂Φk

sin γn+ = 0. (5.15)

53

Now solving for ∂γn+

∂Φk

gives

∂γn+

∂Φk

= tan2 γn+ tan2 γn−
∂γn−

∂Φk

. (5.16)

Next, by differentiating 5.12 and substituting in Equation 5.16 we arrive at

∂Jn

∂Φk

= I0 (cos γn− cos γn+ − sin γn− sin γn+ tan γn− tan γn+)
∂γn−

∂Φk

(5.17)

= I0 cos γn− cos γn+

(

1 − tan2 γn− tan2 γn+

) ∂γn−

∂Φk

(5.18)

Finally, we’re left with obtaining ∂γn−

∂Φk

, which will now depend on whether n and
k are the same, or different. Differentiating Equation 5.13 with respect to Φk and
treating a case where k = n, we get

∂γn−

∂Φn

=
π

Φ0

(

1 −Mn

∂Jn

∂Φn

−
∑

l,l 6=n

Mnl

∂Jl

∂Φn

)

. (5.19)

Now assuming that k 6= n yields

∂γn−

∂Φk

=
π

Φ0

(

−Mn

∂Jn

∂Φk

−
∑

l,l 6=n

Mnl

∂Jl

∂Φk

)

. (5.20)

Substituting the results of equations 5.20 and 5.19 into 5.18 and solving for ∂Jn

∂Φn

and ∂Jn

∂Φk

leads to

∂Jn

∂Φn

=
1

2LJ
n

1 − tan2 γn+ tan2 γn−

1 + Mn

2LJ
n

[1 − tan2 γn+ tan2 γn−]

(

1 −
∑

l,l 6=n

Mnl

∂Jl

∂Φn

)

(5.21)

and for a case where n 6= k

∂Jn

∂Φk

=
−1

2LJ
n

1 − tan2 γn+ tan2 γn−

1 + Mn

2LJ
n

[1 − tan2 γn+ tan2 γn−]

∑

l,l 6=n

Mnl

∂Jl

∂Φk

, (5.22)

where we have taken

LJ
n =

Φ0

2πI0 cos γn− cos γn+

(5.23)

to be the Josephson inductance associated with the nth coupling DC-SQUID. For
a system with N couplers, one would have to simultaneously solve N2 equations in
order to calculate all the combinations of ∂Jn

∂Φk

. Naturally, things could be simplified
by accounting for geometrical factors. For example DC-SQUIDs that would be “far
away” from each other would have small mutual inductance terms Mnl and hence
the correction to the flux threaded through a given coupler due to another might

54

be neglected (and therefore their equations decoupled).

As a check of our calculations, we can observe that in a case of one coupler,
Mnl = 0 in Equation 5.21 and Equation 5.22 does not come into play since there is
only one applied flux in the problem. This lets us reproduce the results derived in
[43]. We are also now ready to adapt the results from Equations 5.21 and 5.22 and
explicitly write them for two coupler scenario that we are dealing with. As before,
labeling the coupling DC-SQUIDs A and B gives

∂JA

∂ΦA

=
1

2LJ
A

1 − tan2 γA+ tan2 γA−

1 + MA

2LJ

A

[1 − tan2 γA+ tan2 γA−]

(

1 −MAB

∂JB

∂ΦA

)

(5.24)

∂JA

∂ΦB

=
−1

2LJ
A

1 − tan2 γA+ tan2 γA−

1 + MA

2LJ

A

[1 − tan2 γA+ tan2 γA−]
MAB

∂JB

∂ΦB

(5.25)

∂JB

∂ΦB

=
1

2LJ
B

1 − tan2 γB+ tan2 γB−

1 + MB

2LJ

B

[1 − tan2 γB+ tan2 γB−]

(

1 −MAB

∂JA

∂ΦB

)

(5.26)

∂JB

∂ΦA

=
−1

2LJ
B

1 − tan2 γB+ tan2 γB−

1 + MB

2LJ

B

[1 − tan2 γB+ tan2 γB−]
MAB

∂JA

∂ΦA

(5.27)

Hence for a given geometry (which defines the inductance matrix M), the applied
fluxes ΦA, ΦB as well as the bias currents IA, IB, we can now have a means of
calculating the interaction energy from Equation 5.9, as well as the Hamiltonian
from Equation 5.3.

5.5 The Critical Current Of The Coupling DC-

SQUIDs

In Section 4.4 we outlined that the critical current of a DC-SQUID can be written as
shown in Equation 4.15. This result however, was for a case where the inductance
of the DC-SQUID was ignored, and in this section we want to see what impact
including it may have on the value of the critical current for the coupler geometries
we study. The strength of the interaction energy Kij, which will be calculated in
the next section, clearly does not depend on the critical current itself, however it
does depend on the bias current of both of the couplers, hence we need to have an
idea about the maximum value that a bias current can have before the couplers
switch out of the zero voltage state. It is worth stressing that we only consider the
self inductance of a given DC-SQUID, and neglect further effects from the mutual
inductance between the coupler in question and its neighbour.

Rewriting Equations 5.11 and 5.12 using 5.13 and neglecting the mutual induc-
tance between different couplers (the term with Mnl in Equation 5.13) we obtain

In = 2I0 sin γn+ cos

(

π

Φ0

(Φn −MnJn)

)

(5.28)

55

and

Jn = I0 sin

(

π

Φ0

(Φn −MnJn)

)

cos γn+. (5.29)

Here, as before, n represents either coupler A or B. In order to find the critical
current for a given value of applied flux Φn, we simply fix Φn and maximize Equa-
tion 5.28 with respect to γn+, subject to 5.29. Plotting this results in the dashed,
red line in Figure 5.3. For comparison we also include a plot of the critical cur-

Figure 5.3: Critical current of a DC-SQUID. The solid (blue) line represents a case
where all effects due to the inductance are neglected, and the dashed (red) line a
situation where the self-inductance of the DC-SQUID is taken into account. In the
latter case, we take the scenario of the largest inductance of all the geometries we
study — where the arm width w = 48µm and arm length a = 300µm, which leads
to MA = MB = 1.011nH.

rent, obtained using Equation 4.15, where the inductance is not taken into account
— solid, blue line. We look at a geometry where the inductance of the coupling
DC-SQUID is the largest; namely the case where the arm width is w = 48µm and
arm length a = 300µm, which leads to MA = MB = 1.011nH. We can see that that
in our case the critical current is not affected by much, and the main differences
come in only for high (absolute) values of the applied flux Φn. An ideal situation
would be to also include effects of mutual inductance between the two coupling DC-
SQUIDs, but since we’re only using the resulting critical current values as a rough
guide to what bias currents can be applied to the couplers, and not for calculations
of the actual coupling energy (where the extra terms are included — see previous
section), we do not consider these mutual inductance effects in our critical current
calculations.

56

5.6 Coupling Strength

In this section we use the equations obtained above to numerically calculate all
the interaction energies Kij of the Hamiltonian shown in Equation 5.3. In our
calculations, we take the qubits’ persistent currents values to be 0.46µA and the
critical currents of the Josephson junctions that are used in DC-SQUIDs as 0.11µA
— both in the experimentally achievable ranges. In order to answer whether all
coupling can be turned off, or whether we can selectively make certain interaction
strong, while keeping others weak, we need to understand what happens to all
the coupling terms for all possible input parameters. To do this, we scan both of
the applied fluxes ΦA and ΦB between −πΦ0/2 and −πΦ0/2 and the bias currents
between 0 and their critical value for a given flux (as discussed in Section 5.5).
The inductance matrix is obtained for each geometry and incorporated into the
calculations to obtain values for all possible Kij. The results are explicitly shown
for both line-shape and L-shape geometries, in a case where the arm width “w”
is 2µm, in Figures 5.4 and 5.5 respectively. The vertical axis corresponds to the
values of coupling K12, the horizontal to coupling K23 and finally the “out-of-page”
direction to the crosstalk term K13. Obtaining these results included calculating
thousands of data points, which were then used to obtain a surface that spans
all possible combinations of the three coupling energies. We further repeated the
process for all the different geometries, while varying the arm length and arm width
of the coupling DC-SQUIDs.

The first question we wish to address is whether we can keep the coupling
between two nearest neighbour qubits (say 1 and 2) high, the other nearest neigh-
bour coupling (say 2 and 3) turned off, while eliminating the crosstalk (interaction
between qubits 1 and 3). We can get the answer to this by looking at plots in
Figures 5.4 and 5.5. We first fix K23 (horizontal axis) at zero, and then traverse
in the vertical direction along the dashed line (note that in order to simplify this
procedure, each plot has two dashed lines which represent cases of K12 = 0 and
K23 = 0). We find that in the straight-line geometry (see Figure 5.4), in the case of
the shortest arm length of a = 50µm, when the interaction energy K12 ≈ 1.0GHz,
while K23 ≈ 0, the crosstalk is at ≈ 16MHz, which is roughly 1.6% of K12. Further-
more, as we increase the couplers’ arm width it becomes clear that one can easily
find a value of K12 beyond which K13 is always zero (for example when a = 300,
K13 ≈ 0 for K12 ≥ 0.7GHz).

In the case of the L-shape geometry (Figure 5.5), the situation is less favorable
— which is expected since qubits 1 and 3 are closer together and their direct mutual
inductance is larger. Furthermore, they interact with the coupler that is further
away from them more than is the case in the line-shaped geometry. From Figure 5.5
we see that the best we can do for a case of short couplers (a = 50µm) and the
coupling strengthK12 ≈ 1.0GHz, isK13 with a magnitude of ≈ 62MHz — which is a
few times larger than in the straight-line geometry scenario. However, as expected,
we can reduce the crosstalk term K13 by simply increasing the arm length of the
coupling DC-SQUIDs — for example in a case of a = 300µm, for K12 > 1.0GHz,

57

the magnitude of K13 is smaller than 2MHz. We have further found that increasing
the arm width of the couplers made no qualitative difference in the results above,
however for the same set of parameters the magnitudes of the interaction energies
(Kij) were smaller. This is due to the fact that the mutual inductance elements
between these wider coupling DC-SQUIDs and qubits are smaller than in cases of
the narrow couplers. The discussion above leads us to conclude that minimizing the
crosstalk coupling (term K13) can be done to a great degree, even when fairly small
DC-SQUIDs are used and more importantly in both of the studied geometries.

The next question we wish to answer is whether the interaction between all
pairs of qubits can be turned off completely. This may be useful when one wants
to perform single gate operations on any (or all) of the qubits without affecting the
others. To determine this, we once again turn to Figures 5.4 and 5.5 (and their
analogues for cases of w = 48µm — not explicitly shown). We can now look at
the crossing of the two dashed lines in each plot in the figures, which correspond to
K12 = K23 = 0, and try to figure out the corresponding value of K13. We plot the
results in Figure 5.6 for both geometries and two different arm widths. From the
data it is clear that once again the straight-line geometry is much less (over 3 times
in a case of short arm length) susceptible to the unwanted interaction K13. However
the crosstalk energy dies off quickly, and in a case of arm length a > 200µm, its
magnitude stays below 5MHz. Given that the typical energies of the qubits are of
the order of a few GHz, the crosstalk strength of roughly three orders of magnitude
smaller may not be very damaging. We also find that the width of the couplers
have little effect on how well all coupling energies can be turned off.

58

Figure 5.4: Interaction energies K12 (vertical axis), K23 (horizontal axis) and K13

(out-of-page direction) for a straight-line geometry with couplers’ arm width of
w = 2µm. Even in a case of a short arm lengths the crosstalk is only a few percent
of the interaction between qubits 1 and 3 or 2 and 3. All values are shown in GHz.

59

Figure 5.5: Interaction energies K12 (vertical axis), K23 (horizontal axis) and K13

(out-of-page direction) for an L-shape geometry with couplers’ arm width of w =
2µm. All values are shown in GHz.

60

50 100 150 200 250 300
−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

Arm length (µm)

cr
os

st
al

k
K

13
/h

 (
G

H
z)

Line shape, w=2 µm
Line shape, w=48 µm
L shape, w=2 µm
L shape, w=48 µm

Figure 5.6: A plot consisting of values for the crosstalk K13, while keeping K12 =
K23 ≈ 0. The horizontal axis represents different arm lengths of the coupling DC-
SQUIDs. We find that the magnitude of K13 is substantially smaller in the case of
the straight-line geometry, but even in the L-shaped scenario dies off quickly.

61

Chapter 6

Conclusions

It is still unclear what form large scale quantum computing devices will take. It is
likely that whatever the physical hardware will be, some form active error correction
will be required1. An error threshold can tell us what physical error rate can be
tolerated by a particular architecture and error correcting code, while still allowing
for arbitrary quantum computation. In this thesis, we concentrated on numerically
calculating such an error threshold for two variations of surface codes; toric and
planar. We obtained an estimate of 6.0 × 10−3, which is similar to other results
presented in literature [45, 44, 54]. We gave a detailed description of the calculations
and methods that were involved in obtaining these numbers. We also stressed the
importance of proper syndrome readout order and explicitly showed how some
orders can lead to syndrome qubit entanglement, which could potentially be very
decremental to the threshold value (although no actual threshold calculations with
entangling readout orders were performed).

In the second part of this thesis, we included a discussion of flux qubit coupling
which provides a very first step in the direction of multi-qubit devices built out of
superconducting circuits. In particular we extended the coupling mechanism first
presented in [43], to a three-qubit, two couplers scenario. We studied multiple ge-
ometries of the coupling DC-SQUIDs; a straight-line shape, and an L-shape, with
couplers’ arm widths of 50µm and 300µm, and arm widths between 2 and 48µm.
We hoped to answer two important questions; the first, whether by choosing appro-
priate DC-SQUIDs’ parameters, we can completely turn off the coupling between
all three qubits, and the second, whether we can keep a coupling energy between
two nearest neighbours hight while at the same time eliminating their interaction
with the other qubit. Both of these questions will play a central role in larger
systems, where many more qubits are involved. In particular, turning off all inter-
action energy is desirable when one needs to perform single qubit gates. On the
other hand, keeping the interaction high between any two qubits, but not others is
important when a two-qubit gate between those two qubits is being implemented.

1This may not be true in a case of topological quantum computers which require special states
of matter. However, at this time it is not clear that their implementation will even be possible.

62

In the end we found that, as expected, for shorter arm lengths, in the straight-line
geometries it was easier to keep the interaction between all qubits small, than it was
for the L-shaped scenario; in particular we concentrated on turning the coupling
K12 and K23 off completely, while observing how the crosstalk term K13 varies with
different geometries. In both cases, for arm lengths larger than 200µm, the magni-
tude of the interaction between the two furthest qubits (K13) stayed below 5MHz.
Furthermore, we found that the arm width of the couplers made virtually no dif-
ference (although it did affect the maximum strength that a given coupling could
have). When it came to turning on the coupling between two nearest neighbour
qubits (for example K12), to the strength of approximately 1.0GHz, and keeping
the interaction K23 ≈ 0, we observed that in the case of straight-line geometry,
the crosstalk was roughly 1.6% of K12 — even when the smallest arm lengths were
considered. In the L-shape geometry, with the shortest arm length of 50µm, the
crosstalk increased to as much as 6% of K12. However in both cases, by increasing
the couplers’ lengths to 300µm the ratio of K13/K12 could be reduced substantially
to well below a few MHz. The situation was completely analogous in the case
where wide arm couplers were used, once again with the exception that maximum
achievable coupling energies were smaller than in their narrow arm counterparts.

In summary, our results show that in a two coupler, three qubit case, even with
short arm lengths one can substantially reduce unwanted crosstalk (termK13), while
still keeping wanted interaction (K12 or K23) high. It is clear that our design is
only the very first step when it comes to implementing a full lattice which could be
used for surface code computation. Future work may involve modeling of a system
with additional qubits and couplers, and also studying methods of single and multi-
qubit control using optimization techniques such as the GRAPE algorithm, while
taking into account the constraints on the coupling energies due to the system’s
geometrical properties.

63

APPENDICES

64

Appendix A

Readout Cycle Stabilizer

Evolution

In this chapter we show the stabilizer evolution during the six step readout cycle
for different CNOT gate readout orders. For brevity, we study a planar 2 by 2 faces
(5 by 5 qubits, including ancillas) lattice. This has turned out to be important,
as certain orders of CNOT gates during the six step readout cycle may entangle
some of the ancilla qubits together. We explicitly show the full calculations for two
different CNOT orders in a planar code case. Although not conceptually difficult,
these calculations if done by hand are very tedious, and therefore special software
was written to simplify and automate the procedure.

The tables below in Sections A.1 and A.2 show what the stabilizer looks like
after the first five steps of the readout cycle (the last step which consists of the
ancilla qubit measurements is not explicitly shown). The columns represent qubits
(numbered as shown in Figure A.1), and the rows, the stabilizer generators. The

Figure A.1: A 5 by 5 qubit planar code lattice. Each of the qubits is numbered —
with the top left having an index of 0 and the bottom right of 24.

order of those, is simply top left to bottom right — the first twelve are generators
associated with the vertices, and the following twelve with the plaquettes. We
assume that there aren’t any errors during the cycle, and therefore the evolution is

65

only due to the ancilla qubit initialization and the CNOT gates. It is worth noting
that if errors were introduced, the only difference would be a potential sign change
on some of the terms in the stabilizer. Before each table, a list of gates that were
performed between the last step and the current step is shown. The notation of
cnot(i, j) implies that the ith qubit was taken as control, and jth as target. A table
showing these and other outcomes from both planar and toric codes and different
readout orders is presented in Table 3.1.

In Section A.1 where we study a NWES readout pattern, we observe that after
the last step, the generators that describe the states of the ancilla qubits are written
in a simple product form. Namely X1, X3, X11, . . .Z5, Z7, Z9, etc., which tells us
that they are not entangled. On the other hand, Section A.2 where a NWSE
readout pattern is studied, shows that certain ancilla states cannot be expressed in
a product form. We see for example that the states of qubits 1 and 5 are described
by the operators X1X5 and Z1Z5, which correspond to (|00〉 + |11〉)/

√
2 — an

entangled Bell state. This implies that even though no errors were present, and we
would hope that measuring the ancilla qubits 1 and 5 would deterministically yield
eigenvalues of +1, this will be the case only only with a probability 1/2.

In summary, we stress that the order of CNOT gates during the ancilla qubit
readout cycle may produce entanglement, leading to non-deterministic outcomes of
the measurements results.

A.1 Planar Code, NWES Readout

Step 0 (Init):

ID 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0 X X X

1 X

2 X X X

3 X

4 X X X X

5 X

6 X X X X

7 X

8 X X X

9 X

10 X X X

11 X

12 Z Z Z

13 Z

14 Z Z Z Z

15 Z

16 Z Z Z

17 Z

18 Z Z Z

19 Z

20 Z Z Z Z

21 Z

22 Z Z Z

23 Z

Step 1 (CNOT North):

cnot(11,6)

66

cnot(21,16)

cnot(13,8)

cnot(23,18)

cnot(0,5)

cnot(10,15)

cnot(2,7)

cnot(12,17)

cnot(4,9)

cnot(14,19)

After step 1:

ID 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0 X X X X X

1 X

2 X X X X X

3 X

4 X X X X X X

5 X X

6 X X X X X X

7 X X

8 X X X

9 X X

10 X X X

11 X X

12 Z Z Z Z

13 Z Z

14 Z Z Z Z Z Z

15 Z Z

16 Z Z Z Z

17 Z Z

18 Z Z Z Z

19 Z Z

20 Z Z Z Z Z Z

21 Z Z

22 Z Z Z Z

23 Z Z

Step 2 (CNOT West):

cnot(1,0)

cnot(11,10)

cnot(21,20)

cnot(3,2)

cnot(13,12)

cnot(23,22)

cnot(6,7)

cnot(16,17)

cnot(8,9)

cnot(18,19)

After step 2:

ID 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0 X X X X

1 X X

2 X X X X

3 X X

4 X X X X X X

5 X X X X

6 X X X X X X

7 X X X X

8 X X X X

9 X X X X

10 X X X X

11 X X X X

12 Z Z Z Z

13 Z Z Z

14 Z Z Z Z Z Z

15 Z Z Z Z

16 Z Z Z Z

17 Z Z Z

18 Z Z Z Z

67

19 Z Z Z

20 Z Z Z Z Z Z

21 Z Z Z Z

22 Z Z Z Z

23 Z Z Z

Step 3 (CNOT East):

cnot(1,2)

cnot(11,12)

cnot(21,22)

cnot(3,4)

cnot(13,14)

cnot(23,24)

cnot(6,5)

cnot(16,15)

cnot(8,7)

cnot(18,17)

After step 3:

ID 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0 X X X

1 X X X

2 X X X

3 X X X

4 X X X X X X

5 X X X X X X

6 X X X X X X

7 X X X X X X

8 X X X X X

9 X X X X X X

10 X X X X X

11 X X X X X X

12 Z Z Z Z

13 Z Z Z Z

14 Z Z Z Z Z Z

15 Z Z Z Z Z Z

16 Z Z Z Z

17 Z Z Z Z

18 Z Z Z Z

19 Z Z Z Z

20 Z Z Z Z Z Z

21 Z Z Z Z Z Z

22 Z Z Z Z

23 Z Z Z Z

Step 4 (CNOT South):

cnot(1,6)

cnot(11,16)

cnot(3,8)

cnot(13,18)

cnot(10,5)

cnot(20,15)

cnot(12,7)

cnot(22,17)

cnot(14,9)

cnot(24,19)

After step 4:

ID 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0 X X X

1 X X X X

2 X X X

3 X X X X

4 X X X X

5 X X X X X

6 X X X X

7 X X X X X

8 X X X

9 X X X X

10 X X X

68

11 X X X X

12 Z Z Z

13 Z Z Z Z

14 Z Z Z Z

15 Z Z Z Z Z

16 Z Z Z

17 Z Z Z Z

18 Z Z Z

19 Z Z Z Z

20 Z Z Z Z

21 Z Z Z Z Z

22 Z Z Z

23 Z Z Z Z

After step 4; rewrite

stab(1) = stab(0) x stab(1)

stab(3) = stab(2) x stab(3)

stab(5) = stab(4) x stab(5)

stab(7) = stab(6) x stab(7)

stab(9) = stab(8) x stab(9)

stab(11) = stab(10) x stab(11)

stab(13) = stab(12) x stab(13)

stab(15) = stab(14) x stab(15)

stab(17) = stab(16) x stab(17)

stab(19) = stab(18) x stab(19)

stab(21) = stab(20) x stab(21)

stab(23) = stab(22) x stab(23)

ID 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0 X X X

1 X

2 X X X

3 X

4 X X X X

5 X

6 X X X X

7 X

8 X X X

9 X

10 X X X

11 X

12 Z Z Z

13 Z

14 Z Z Z Z

15 Z

16 Z Z Z

17 Z

18 Z Z Z

19 Z

20 Z Z Z Z

21 Z

22 Z Z Z

23 Z

A.2 Planar Code, NWSE Readout

Step 0 (Init):

ID 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0 X X X

1 X

2 X X X

3 X

69

4 X X X X

5 X

6 X X X X

7 X

8 X X X

9 X

10 X X X

11 X

12 Z Z Z

13 Z

14 Z Z Z Z

15 Z

16 Z Z Z

17 Z

18 Z Z Z

19 Z

20 Z Z Z Z

21 Z

22 Z Z Z

23 Z

Step 1 (CNOT North):

cnot(11,6)

cnot(21,16)

cnot(13,8)

cnot(23,18)

cnot(0,5)

cnot(10,15)

cnot(2,7)

cnot(12,17)

cnot(4,9)

cnot(14,19)

After step 1:

ID 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0 X X X X X

1 X

2 X X X X X

3 X

4 X X X X X X

5 X X

6 X X X X X X

7 X X

8 X X X

9 X X

10 X X X

11 X X

12 Z Z Z Z

13 Z Z

14 Z Z Z Z Z Z

15 Z Z

16 Z Z Z Z

17 Z Z

18 Z Z Z Z

19 Z Z

20 Z Z Z Z Z Z

21 Z Z

22 Z Z Z Z

23 Z Z

Step 2 (CNOT West):

cnot(1,0)

cnot(11,10)

cnot(21,20)

cnot(3,2)

cnot(13,12)

cnot(23,22)

cnot(6,7)

cnot(16,17)

70

cnot(8,9)

cnot(18,19)

After step 2:

ID 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0 X X X X

1 X X

2 X X X X

3 X X

4 X X X X X X

5 X X X X

6 X X X X X X

7 X X X X

8 X X X X

9 X X X X

10 X X X X

11 X X X X

12 Z Z Z Z

13 Z Z Z

14 Z Z Z Z Z Z

15 Z Z Z Z

16 Z Z Z Z

17 Z Z Z

18 Z Z Z Z

19 Z Z Z

20 Z Z Z Z Z Z

21 Z Z Z Z

22 Z Z Z Z

23 Z Z Z

Step 3 (CNOT South):

cnot(1,6)

cnot(11,16)

cnot(3,8)

cnot(13,18)

cnot(10,5)

cnot(20,15)

cnot(12,7)

cnot(22,17)

cnot(14,9)

cnot(24,19)

After step 3:

ID 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0 X X X X

1 X X X

2 X X X X

3 X X X

4 X X X X X X

5 X X X X X X

6 X X X X X X

7 X X X X X X

8 X X X X

9 X X X X X

10 X X X X

11 X X X X X

12 Z Z Z

13 Z Z Z Z

14 Z Z Z Z Z Z

15 Z Z Z Z Z Z

16 Z Z Z Z Z

17 Z Z Z Z Z

18 Z Z Z

19 Z Z Z Z

20 Z Z Z Z Z Z

21 Z Z Z Z Z Z

22 Z Z Z Z Z

23 Z Z Z Z Z

Step 4 (CNOT East):

71

cnot(1,2)

cnot(11,12)

cnot(21,22)

cnot(3,4)

cnot(13,14)

cnot(23,24)

cnot(6,5)

cnot(16,15)

cnot(8,7)

cnot(18,17)

After step 4:

ID 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0 X X X

1 X X X X X

2 X X X

3 X X X X X

4 X X X X

5 X X X X X X X

6 X X X X

7 X X X X X X X

8 X X X

9 X X X X X

10 X X X

11 X X X X X

12 Z Z Z

13 Z Z Z Z Z

14 Z Z Z Z

15 Z Z Z Z Z Z Z

16 Z Z Z

17 Z Z Z Z Z

18 Z Z Z

19 Z Z Z Z Z

20 Z Z Z Z

21 Z Z Z Z Z Z Z

22 Z Z Z

23 Z Z Z Z Z

After step 4; rewrite

stab(1) = stab(0) x stab(1)

stab(3) = stab(2) x stab(3)

stab(5) = stab(4) x stab(5)

stab(7) = stab(6) x stab(7)

stab(9) = stab(8) x stab(9)

stab(11) = stab(10) x stab(11)

stab(13) = stab(12) x stab(13)

stab(15) = stab(14) x stab(15)

stab(17) = stab(16) x stab(17)

stab(19) = stab(18) x stab(19)

stab(21) = stab(20) x stab(21)

stab(23) = stab(22) x stab(23)

ID 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0 X X X

1 X X

2 X X X

3 X X

4 X X X X

5 X X X

6 X X X X

7 X X X

8 X X X

9 X X

10 X X X

11 X X

12 Z Z Z

13 Z Z

14 Z Z Z Z

15 Z Z Z

16 Z Z Z

72

17 Z Z

18 Z Z Z

19 Z Z

20 Z Z Z Z

21 Z Z Z

22 Z Z Z

23 Z Z

73

References

[1] Aaronson, S., and Gottesman, D. Improved simulation of stabilizer
circuits. Physical Review A 70, 5 (2004), 52328.

[2] Aharonov, D., and Ben-Or, M. Fault-tolerant quantum computation with
constant error. In Proceedings of the twenty-ninth annual ACM symposium on
Theory of computing (1997), ACM New York, NY, USA, pp. 176–188.

[3] Ambegaokar, V., and Baratoff, A. Tunneling between superconductors.
Physical Review Letters 10, 11 (1963), 486–489.

[4] Bardeen, J., Cooper, L. N., and Schrieffer, J. R. Theory of super-
conductivity. Phys. Rev. 108, 5 (1957), 1175–1204.

[5] Biondi, M., and Garfunkel, M. Millimeter Wave Absorption in Super-
conducting Aluminum. II. Calculation of the Skin Depth. Physical Review 116,
4 (1959), 862–867.

[6] Bourassa, J., and Blais, A. Ultra-strong coupling regime of cavity QED
with flux qubits. In American Physical Society, 2009 APS March Meeting,
March 16-20, 2009, abstract# L17. 004 (2009).

[7] Bravyi, S., and Kitaev, A. Universal quantum computation with ideal
Clifford gates and noisy ancillas. Physical Review A 71, 2 (2005), 22316.

[8] Caldeira, A., and Leggett, A. Quantum tunneling in a dissipative sys-
tem. Ann. Phys. (NY) 149 (1983), 374.

[9] Chen, G. Quantum computing devices: principles, designs, and analysis.
Chapman & Hall/CRC, 2006.

[10] Chiorescu, I., Nakamura, Y., Harmans, C., and Mooij, J. Coherent
quantum dynamics of a superconducting flux qubit. Science 299 (2003), 1869.

[11] Cirac, J. I., and Zoller, P. Quantum computations with cold trapped
ions. Phys. Rev. Lett. 74, 20 (1995), 4091–4094.

[12] Clarke, J., and Wilhelm, F. Superconducting qubits. Nature 453 (2008),
1031.

74

[13] Cohen-Tannoudji, C., Diu, B., and Laloë, F. Quantum Mechanics.
Wiley Interscience, Weinheim, 1992.

[14] Cook, W., and Rohe, A. Computing minimum-weight perfect matchings.
Forschungsinst fur Diskrete Mathematik, 1997.

[15] Cory, D., Fahmy, A., and Havel, T. Ensemble quantum computing by
NMR spectroscopy, 1997.

[16] de Gennes, P. Superconductivity of metals and alloys. Benjamin, N.Y., 1966.

[17] Dennis, E., Kitaev, A., Landahl, A., and Preskill, J. Topological
quantum memory. Journal of Mathematical Physics 43 (2002), 4452.

[18] Devoret, M., Wallraff, A., and Martinis, J. Superconducting qubits:
A short review. Arxiv preprint cond-mat/0411174 (2004).

[19] Ferber, J. Efficient creation of multipartite entanglement for superconduct-
ing quantum computers. PhD Thesis - Munchen (2005).

[20] Feynman, R. Simulating physics with computers. International Journal of
Theoretical Physics 21 (1981), 467.

[21] Fowler, A., and Goyal, K. Topological cluster state quantum computing.
Arxiv preprint arXiv:0805.3202 (2008).

[22] Fowler, A., Stephens, A., and Groszkowski, P. High threshold univer-
sal quantum computation on the surface code. Arxiv preprint arXiv:0803.0272
803 (2008).

[23] Gottesman, D. Stabilizer codes and quantum error correction. PhD Thesis
- Caltech (1997).

[24] Grover, L. Quantum mechanics helps in searching for a needle in a haystack.
Proceedings of the 28’th Annual ACM Symposium on the Theory of Computing
79 (1997), 325.

[25] Hime, T., Reichardt, P., Plourde, B., Robertson, T., Wu, C., Usti-

nov, A., and Clarke, J. Solid-state qubits with current-controlled coupling.
Science 314, 5804 (2006), 1427–1429.

[26] Josephson, B. Possible new effects in superconductive tunneling. Phys. Lett.
1, 7 (1962), 251.

[27] Kamon, M., Tsuk, M. J., and White, J. Fasthenry: A multipole-
accelerated 3-d inductance extraction program. In Design Automation Con-
ference (1993), pp. 678–683.

[28] Kitaev, A. Quantum computations: algorithms and error correction. Russian
Mathematical Surveys 52, 6 (1997), 1191–1249.

75

[29] Knill, E. Quantum computing with realistically noisy devices. Nature 434,
7029 (2005), 39–44.

[30] Knill, E., Laflamme, R., and Milburn, G. J. A scheme for efficient
quantum computation with linear optics. Nature 409, 6816 (2001), 46–52.

[31] Knill, E., Laflamme, R., and Zurek, W. Accuracy threshold for quan-
tum computation. Arxiv preprint quant-ph/9610011 (1996).

[32] Lupascu, A., Verwijs, C., Schouten, R. N., Harmans, C., and

Mooij, J. E. Nondestructive readout for a superconducting flux qubit. Phys.
Rev. Lett. 93 (2004), 177006.

[33] Majer, J., Chow, J., Gambetta, J., Koch, J., Johnson, B.,

Schreier, J., Frunzio, L., Schuster, D., Houck, A., Wallraff, A.,

Blais, A., Devoret, M., Girvin, S., and Schoelkopf, R. Coupling
superconducting qubits via a cavity bus. Nature 449 (2007), 443.

[34] Martinis, J., Nam, S., Aumentado, J., and Urbina, C. Rabi oscillations
in a large Josephson-junction qubit. Phys. Rev. Lett. 89, 11 (2002), 117901.

[35] Mooij, J., Orlando, T., Levitov, L., Tian, L., van der Wal, C., and

Lloyd, S. Josephson persistent current qubit. Science 285 (1999), 1036.

[36] Nakamura, Y., Pashkin, Y., and Tsai, J. Coherent control of macro-
scopic quantum states in a single-Cooper-pair box. Nature 398 (1999), 786.

[37] Nielsen, M., and Chuang, I. Quantum Computation and Quantum Infor-
mation. Cambridge University Press, Cambridge, UK, 2000.

[38] Niskanen, A., Nakamura, Y., and Tsai, J. Tunable coupling scheme for
flux qubits at the optimal point. Phys. Rev. B 73 (2006), 094506.

[39] Onnes, H. K. The superconductivity of mercury. Leiden Comm. 122b (1911),
124.

[40] Orlando, T., tian, L., Crankshaw, D., Lloyd, S., van der Wal,

C., Mooij, J., and Wilhelm, F. Engineering the quantum-measurement
process for the persistent current qubit. Phyisca C 368 (2003), 294.

[41] Orlando, T. P., Mooij, J. E., Tian, L., van der Wal, C., Levitov,

L. S., Lloyd, S., and Mazo, J. J. Superconducting persistent-current
qubit. Phys. Rev. B 60 (1999), 15398.

[42] Paauw, F., Fedorov, A., Harmans, C., and Mooij, J. Tuning the
Gap of a Superconducting Flux Qubit. Physical Review Letters 102, 9 (2009),
90501.

76

[43] Plourde, B., Zhang, J., Whaley, K., Wilhelm, F., Robertson, T.,

Hime, T., Linzen, S., Reichardt, P., Wu, C., and Clarke, J. Entan-
gling flux qubits with a bipolar dynamic inductance. Physical Review B 70,
14 (2004), 140501.

[44] Raussendorf, R., and Harrington, J. Fault-tolerant quantum compu-
tation with high threshold in two dimensions. Appl. Phys. Lett Phys Rev Lett
98 (2006), 190504.

[45] Raussendorf, R., Harrington, J., and Goyal, K. Topological fault-
tolerance in cluster state quantum computation. New Journal of Physics 9, 6
(2007), 199.

[46] Reichardt, B. W. Improved magic states distillation for quantum univer-
sality. Quantum Information Processing 4 (2005), 251.

[47] Shor, P. Algorithms for quantum computation: Discrete logarithms and
factoring. Proceedings 35th Annual Symposium on Foundations of Computer
Science (1994), 124.

[48] Somaroo, S., Tseng, C. H., Havel, T. F., Laflamme, R., and Cory,

D. G. Quantum simulations on a quantum computer. Phys. Rev. Lett. 82, 26
(Jun 1999), 5381–5384.

[49] Stephens, A., and Evans, Z. Accuracy threshold for concatenated error
detection in one dimension. Arxiv preprint arXiv:0902.2658 (2009).

[50] Tinkham, M. Introduction to Superconductivity. McGraw-Hill, New York,
1996.

[51] van der Ploeg, S. H. W., Izmalkov, A., van den Brink, A. M., Hueb-

ner, U., Grajcar, M., Il’ichev, E., Meyer, H. G., and Zagoskin,

A. M. Controllable coupling of superconducting flux qubits, 2007.

[52] van der Wal, C., ter Haar, A., Wilhelm, F., Schouten, R.,

C.J.P.M.Harmans, Orlando, T., Lloyd, S., and J.E.Mooij. Quantum
superposition of macroscopic persistent-current states. Science 290 (2000),
773.

[53] Vion, D., Aassime, A., Cottet, A., Joyez, P., Pothier, H., Urbina,

C., Esteve, D., and Devoret, M. Manipulating the quantum state of an
electrical circuit. Science 296 (2002), 866.

[54] Wang, D. S., Fowler, A. G., Stephens, A. M., and Hollenberg, L.

C. L. Threshold error rates for the toric and surface codes.

[55] Wei, L., x. Liu, Y., and Nori, F. Coupling Josephson qubits via a current-
biased information bus. Europhys. Lett. 67 (2004), 1004.

77

[56] Wendin, G., and Shumeiko, V. Superconducting quantum circuits, qubits
and computing. Arxiv preprint cond-mat/0508729 (2005).

[57] You, J., and Nori, F. Superconducting circuits and quantum information.
Arxiv preprint quant-ph/0601121 (2006).

78

	List of Tables
	List of Figures
	Introduction
	Quantum Mechanics and Computing
	Multi-Qubit Systems
	Density Operators And Mixed States
	Circuit Model
	Single-Qubit Gates
	Two-Qubit Gates
	Organization Of This Thesis

	Quantum Error Correction
	Basics
	Stabilizer Codes
	Surface Codes
	Computation On A Surface Code

	Error Threshold

	Surface Code Threshold Calculation
	Introduction
	Syndrome Readout Cycle
	Error Model
	Assumptions
	Method
	Measurement and Matching
	Logical Error Detection
	Results
	Other Possible Approaches To The Threshold Calculation
	A Few Notes On Implementation

	Quantum Computing With Superconducting Circuits
	Preliminaries
	Josephson Junctions
	Flux Qubits
	DC-SQUIDs
	Coupling Flux Qubits

	Three Qubit Coupler
	Motivation
	Geometry
	Hamiltonian
	Transfer Function J
	The Critical Current Of The Coupling DC-SQUIDs
	Coupling Strength

	Conclusions
	APPENDICES
	Readout Cycle Stabilizer Evolution
	Planar Code, NWES Readout
	Planar Code, NWSE Readout

	References

