
Queueing Analysis of a Priority-based Claim Processing System

by
Basil Karim Wagih Ibrahim

A thesis
presented to the University of Waterloo

in fulfilment of the
thesis requirement for the degree of

Master of Mathematics
in

Actuarial Science

Waterloo, Ontario, Canada, 2009

c© Basil Karim Wagih Ibrahim 2009

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

We propose a situation in which a single employee is responsible for processing incoming
claims to an insurance company that can be classified as being one of two possible types.
More specifically, we consider a priority-based system having separate buffers to store high
priority and low priority incoming claims. We construct a mathematical model and perform
queueing analysis to evaluate the performance of this priority-based system, which incorporates
the possibility of claims being redistributed, lost, or prematurely processed.

iii

Acknowledgements

I would like to thank my supervisor, Professor Steve Drekic, for introducing me to this
work and helping derive and calculate the mathematical elements of the model used here. You
have been a great inspiration and I am looking forward to continuing my education under your
supervision. I would also like to thank Professors Jun Cai and Gordon Willmot for agreeing
to read my thesis. Your feedback will help me make this work as readable and mathematically
accurate as possible.

iv

Contents

List of Tables vi

List of Figures vii

1 Preliminaries 1

1.1 Introduction . 1

1.2 The Model . 2

1.3 Mathematical Notation . 4

1.4 Model Assumptions . 6

2 Calculating the Steady-State Probabilities 7

2.1 Calculating the Infinitesimal Generator Matrix Q 8

2.2 Solving the Equilibrium Equations . 12

3 Waiting-time Distributions for HP Claims 13

3.1 Methodology . 13

3.2 Deriving FWH
X1,X2

(ω) . 14

3.2.1 Case 1: (X1 = 0, X2 = 0) or (X1 = m,X2 ≥ 0) 14

3.2.2 Case 2: (X1 = 0, X2 ≥ 1, P = L) . 14

3.2.3 Case 3: (1 ≤ X1 ≤ m− 1, X2 ≥ 0, P = H) 15

3.2.4 Case 4: (1 ≤ X1 ≤ m− 1, X2 ≥ 1, P = L) 16

3.2.5 Rewriting the Cases in Phase-type Form 20

3.3 Deriving FWH (ω) . 21

3.4 Deriving FTH (ω) . 23

3.5 Deriving FTH |NotF (ω), E[TH |NotF] and V ar(TH |NotF) 24

4 Waiting-time Distributions for LP Claims 25

4.1 Methodology . 25

4.2 Deriving FWL(ω) . 26

4.3 Deriving FTL(ω) . 28

4.4 Deriving FTL|NotF (ω), E[TL|NotF] and V ar(TL|NotF) 30

v

5 Illustration 31

5.1 Simple Numerical Example . 31
5.2 Possible Improvements on the Numerical Example 33

6 Concluding Remarks and Further Research 34

Appendix: MATLAB Code 35

Bibliography 44

vi

List of Tables

1.1 Notation for Our Queueing Model . 5

5.1 Steady State Probabilities of Numerical Example 32

vii

List of Figures

1.1 Proposed Queueing Model . 4

5.1 Numerical Example Parameters . 31
5.2 Comparing Conditional Times Spent in HP and LP Queues 32

viii

Chapter 1

Preliminaries

1.1 Introduction

With the increasing number of insurance policies issued every year, especially in first world
countries, it has become essential for insurance companies – alongside with implementing effec-
tive marketing strategies and setting market competitive premium prices and claim amounts –
to use effective and efficient systems for registering and processing claims filed by their insurance
policyholders. Insurance companies that do not process and settle the claims of their customers
efficiently and reliably face losing their credibility and competitiveness in the market, which can
eventually lead to potential bankruptcy. In other words, establishing and maintaining optimally
efficient claim processing systems should be one of the essential agendas of insurance companies,
in order to remain successful.

This thesis assumes a particular queueing scenario of claims entering an employee’s data-
system, waiting to be processed. By making certain mathematical assumptions, we examine
important probability distributions that would help employees/insurance companies in opti-
mizing her/his/its claims management system(s). On a bigger scale, we believe that using
mathematically tractable models, formulated by realistic assumptions, is a critical tool for op-
timizing the performance of organizations – especially for those that are exposed to high levels
of risk.

1

1.2 The Model

We assume that the claims registration system for employees in a particular insurance com-
pany prioritizes its incoming claims into two first-come, first-serve-basis queues: a high-priority
(HP for short) queue and a low-priority (LP for short) queue. If an employee is processing an
HP claim, she/he will not attend to an LP claim until the entire HP queue is empty. However, if
the employee is currently processing an LP claim, she/he will attend to claims in the HP queue
– provided that it is not empty – after having finished the current LP claim. Otherwise, she/he
will move on to process the next LP claim. This is referred to as a non-preemptive service rule.

Finally, the model incorporates the possibility that claims, while waiting in the system to
be processed, can be removed from the queue. This can be due to reasons such as premature
processing, loss or redistribution (to another queue, another department, etc.). For instance, it
can happen there are claims that may need to be reallocated to another system, or may require
more time or expertise to be processed. This will help minimize delays in processing the re-
maining claims in the system, thereby making it more efficient and dependable. To simplify our
description of the model, and without loss of generality, we will label premature queue exiting
(i.e. reneging) as “redistribution”. Hence, by incorporating this option, our model provides a
higher degree of flexibility than many classical queueing models whose elements remain in the
system until service.

These are the two main objectives of this thesis:

1. Derive the waiting-time distribution of an arbitrarily arriving HP claim.

2. Derive the waiting-time distribution of an arbitrarily arriving LP claim.

2

Before proceeding to the mathematical aspects of this model, we provide a couple of examples
in which such a priority-based system could possibly be implemented in practice:

1. Claims that are easy and quick to process (e.g. dental insurance claims, medical insurance)
are assigned as HP. Claims that are more difficult and time consuming to assess (e.g.
property damage, moral hazard) are assigned as LP.

2. Claims of high amounts and requiring immediate settlement (e.g. damage of infrastructure
due to a natural disaster) are assigned as HP. Claims of a less important nature (e.g. tooth
damage of a celebrity) are assigned as LP.

Therefore, the model proposed here is not restricted to a particular class of insurance policy
claims, providing flexibility for a variety of practical applications. We now proceed to the
mathematical details of the model.

3

1.3 Mathematical Notation

The following figure provides a visual depiction of what our proposed queueing model looks like:

Figure 1.1: Proposed Queueing Model

The following table shows the main notation that will be used throughout the thesis. It is also
worth mentioning that the notation used in the subsequent chapters, other than those contained
in Table 1.1, should be treated as local (i.e. a letter used to represent some value or expression
in one chapter can be used differently in another chapter).

4

Notation Description
m Maximum finite capacity of the HP queue
n Maximum finite capacity of the LP queue
λ1 Entrance rate into the HP queue
λ2 Entrance rate into the LP queue
µ1 Processing or service rate for an HP claim (1/µ1 is the mean HP service time)
µ2 Processing or service rate for an LP claim (1/µ2 is the mean LP service time)
α1 Redistribution rate of an HP claim
α2 Redistribution rate of an LP claim
X1 Steady-state number of HP claims in the queue, including the one being processed
X2 Steady-state number of LP claims in the queue, including the one being processed
P Type of claim the employee is currently processing (takes values of H and L)
πi,j,H Pr{X1 = i,X2 = j, P = H}
πi,j,L Pr{X1 = i,X2 = j, P = L}
πi,j Pr{X1 = i,X2 = j} = πi,j,H + πi,j,L
WH Waiting time of an arbitrarily arriving HP claim, assuming it cannot be redistributed
WL Waiting time of an arbitrarily arriving LP claim, assuming it cannot be redistributed

WH
i,j WH , given i HP claims, j LP claims

WH
i,j,H WH , given i HP claims, j LP claims, employee currently processing an HP claim

WH
i,j,L WH , given i HP claims, j LP claims, employee currently processing an LP claim

RH Redistribution time of an HP claim
RL Redistribution time of an LP claim
TH Time spent in the HP queue for an arbitrarily arriving HP claim
TH |NotF Time spent in the HP queue, excluding possibility that the HP queue is full
TL Time spent in the LP queue for an arbitrarily arriving LP claim
TL|NotF Time spent in the LP queue, excluding possibility that the LP queue is full
Ii Identity matrix of dimension i-by-i
T ′ Transpose of a matrix T
X ∼ Exp(β) Random variable X is exponentially distributed with mean 1/β
X ∼ PHi(α, T) Random variable X is phase-type distributed with initial probability

row-vector α and generator matrix T of dimension i

exp{T} Matrix exponential of a square matrix T , namely
∞∑
i=0

T i

i!

FX(ω) Cumulative distribution function (cdf) of a random variable X
E[X] Expectation of a random variable X
V ar(X) Variance of a random variable X

Table 1.1: Notation for Our Queueing Model

5

1.4 Model Assumptions

In order to make the model mathematically tractable, it is necessary to make assumptions
that make explicit mathematical calculations possible. The main challenge in this is to be able to
strike a right balance between having a model in which it is possible to derive/calculate/simulate
all its variables and a model that is realistic. As it is usually the case that there is a tradeoff
between the two options, one has to find the best compromise.

In this case, due to the context for which this model is proposed, one may consider the
assumptions we are about to make plausible. For future research, as we will mention in the
last chapter, one may relax some of these assumptions and attempt to derive/calculate the
underlying mathematical expressions/quantities of a new, more general model.

The following is a list of the assumptions made in our model:

1. The employee only handles one claim at a time.

2. Incoming claims face four possibilities: enter (if possible) a queue, wait in the queue, get
redistributed or proceed to service.

3. Claims receiving service are no longer subject to redistribution.

4. All rates are independent and exponentially distributed.

With these assumptions, one obtains a continuous-time Markov process. For details on
continuous-time Markov processes, we refer the reader to Chapter 6 of [3]. We now turn our
attention to the next chapter, which summarizes the main results of [1], in which the form of
the infinitesimal generator matrix is specified as well as an algorithm to compute the associated
steady-state probabilities πi,j ’s.

6

Chapter 2

Calculating the Steady-State

Probabilities

As the main contribution of [1] involved the computation of {πi,j,P : i = 0, 1, 2, . . . ,m; j =
0, 1, 2, . . . , n;P = H,L}, we simply summarize the main findings here, and then use these
results for calculating the waiting-time distributions whose derivations are shown in the subse-
quent chapters.

Define:

• π = (π0,π1, . . . ,πm).

• π0 = (π0,0, π0,1, . . . , π0,n).

• For k = 1, 2, ...,m,
πk = (πk,0, πk,1,H , πk,1,L, . . . , πk,n,H , πk,n,L).

The main objective becomes solving the equilibrium equations given by πQ = 0̃, where Q

is the infinitesimal generator matrix of the process and 0̃ is a row vector of zeroes with the
same dimension as Q. In [1], the form of Q is first derived followed by a computer-efficient
methodology for calculating the steady-state probabilities πi,j,P ’s.

7

2.1 Calculating the Infinitesimal Generator Matrix Q

By analyzing the simple, albeit tedious, transition states of the model, one finds that Q is of
dimension (mn + (m + 1)(n + 1))-by-(mn + (m + 1)(n + 1)), exhibiting the following block-
structured form:

Q =

0 1 2 · · · m− 2 m− 1 m

0 Q0,0 Q0,1 0 · · · 0 0 0

1 Q1,0 Q1,1 Q1,2 · · · 0 0 0

2 0 Q2,1 Q2,2 · · · 0 0 0
...

...
...

...
. . .

...
...

...
m− 2 0 0 0 · · · Qm−2,m−2 Qm−2,m−1 0

m− 1 0 0 0 · · · Qm−1,m−2 Qm−1,m−1 Qm−1,m

m 0 0 0 · · · 0 Qm,m−1 Qm,m

,

where:

• Q0,0 is (n+ 1)-by-(n+ 1).

• Q0,1 is (n+ 1)-by-(2n+ 1).

• Q1,0 is (2n+ 1)-by-(n+ 1).

• All other submatrices are of size (2n+ 1)-by-(2n+ 1).

8

Since all rates are independent and exponentially distributed, one can derive explicitly the ele-
ments of all these submatrices. Extracted from [1], we have:

Q0,0 =

0 1 2 · · · n− 1 n

0 −λ λ2 0 · · · 0 0

1 γ0 −(λ+ γ0) λ2
. . . 0 0

2 0 γ1 −(λ+ γ1)
. . . 0 0

...
...

.
...

...
n− 1 0 0 0 · · · −(λ+ γn−2) λ2

n 0 0 0 · · · γn−1 −(λ1 + γn−1)

,

where λ = λ1 + λ2 and γi = µ2 + iα2.

We also have:

Q0,1 =

0 1H 1L 2H 2L · · · nH nL

0 λ1

[
0 0

] [
0 0

]
· · ·

[
0 0

]
1 0

[
0 λ1

] [
0 0

]
· · ·

[
0 0

]
2 0

[
0 0

] [
0 λ1

]
· · ·

[
0 0

]
...

...
...

...
. . .

...
n 0

[
0 0

] [
0 0

]
· · ·

[
0 λ1

]

, and

Q1,0 =

0 1 2 · · · n

0 µ1 0 0 . . . 0
1H
1L

[
0
0

] [
µ1

α1

] [
0
0

]
. . .

[
0
0

]
2H
2L

[
0
0

] [
0
0

] [
µ1

α1

]
. . .

[
0
0

]
...

...
...

...
. . . · · ·

nH

nL

[
0
0

] [
0
0

] [
0
0

]
. . .

[
µ1

α1

]

.

9

As for the off-diagonal submatrices, we have:

Q1,2 = Q2,3 = · · · = Qm−1,m = λ1I2n+1. Also, for i = 2, 3, . . . ,m:

Qi,i−1 =

0 1 2 · · · n− 1 n

0 βi−1 0 0 · · · 0 0

1 0′ Ai 0 · · · 0 0

2 0′ 0 Ai · · · 0 0
...

...
...

...
. . .

...
...

n− 1 0′ 0 0 · · · Ai 0

n 0′ 0 0 · · · 0 Ai

,

with βi = µ1 + iα1, Ai =

[
βi−1 0

0 iα1

]
, 0 =

[
0 0
0 0

]
and 0 =

[
0 0

]
.

Finally, for the diagonal submatrices, we obtain:

Qi,i =

0 1 2 · · · n− 1 n

0 −(λ+ βi−1) eΛ2 0 · · · 0 0

1 B1e
′
1 Ci,1 Λ2 · · · 0 0

2 0′ B2 Ci,2 · · · 0 0
...

...
...

...
. . .

...
...

n− 1 0′ 0 0 · · · Ci,n−1 Λ2

n 0′ 0 0 · · · Bn Ci,n

, i = 1, 2, . . . ,m− 1, and

Qm,m =

0 1 2 · · · n− 1 n

0 −(λ2 + βm−1) eΛ2 0 · · · 0 0

1 B1e
′
1 D1 Λ2 · · · 0 0

2 0′ B2 D2 · · · 0 0
...

...
...

...
. . .

...
...

n− 1 0′ 0 0 · · · Dn−1 Λ2

n 0′ 0 0 · · · Bn Dn

,

where Λ2 =

[
λ2 0
0 λ2

]
, e = (1, 1), e1 = (1, 0) and Bi =

[
iα2 0
µ2 (i− 1)α2

]

10

Also, we have for j = 1, 2, . . . , n− 1:

Ci,j =

[
−(λ+ jα2 + βi−1) 0

0 −(λ+ iα1 + γj−1)

]
andDj =

[
−(λ2 + jα2 + βm−1) 0

0 −(λ2 +mα1 + γj−1)

]
.

Finally, we have:

C1,n =

[
−(λ1 + nα2 + βi−1) 0

0 −(λ1 + iα1 + γn−1)

]
andDn =

[
−(nα2 + βm−1) 0

0 −(mα1 + γn−1)

]
.

Note that Q is what is known as a level-dependent quasi-birth-and-death (QBD) process.
This is reflected by having the sub-diagonal, main-diagonal and super-diagonal block matrices
different for each row (level). The main cause of this is the inclusion of redistribution in the
model. Should the model be free from reneging (i.e. α1 = α2 = 0), we would simply end up
with a pure QBD process. And so, a useful observation of expressing Q in the form of these
block matrices is noticing properties, as such, that are already recognized in the literature.

However, next to this, and the need to be able to write down the elements of this infinitesimal
generator matrix on paper in a presentable form, the main motivation behind representing Q in
the form of these block matrices was to avoid the necessity of having to solve mn+(m+1)(n+1)
linear equations simultaneously, which would lead to stability-related issues for large values of
m and n. The next section shows how [1] uses the above mentioned submatrices in formulating
a more computationally effective way to solve the equilibrium equations.

11

2.2 Solving the Equilibrium Equations

Using the previously mentioned block matrices and letting 01,j represent a 1-by-j vector of
zeroes, one can break down πQ = 0̃ into the following equations:

1. 01,n+1 = π0Q0,0 + π1Q1,0.

2. 01,2n+1 = π0Q0,1 + π1Q1,1 + π2Q2,1.

3. For i = 1, 2, . . . ,m− 1:
01,2n+1 = λ1πi−1 + πiQi,i + πi+1Qi+1,i.

4. 01,2n+1 = λ1πm−1 + πmQm,m.

Using an inductive approach, one can verify the following recursive expression derived in [1]:

πi = (−1)iπ0

i∏
k=1

Sk, i = 1, 2, ...,m,

where Sj =

Q0,1(Q1,1 − S2Q2,1)−1 , j = 1

λ1(Qj,j − Sj+1Qj+1,j)−1 , j = 2, 3, ...,m− 1

λ1Q
−1
m,m , j = m

By setting S0 = Q0,0 − S1Q1,0 and knowing that
m∑
i=0

n∑
j=0

πi,j = 1, one can calculate π0, and

hence calculate all the steady-state probabilities.

Therefore, using these derivations, the computational complexity is reduced significantly
from dealing with (mn + (m + 1)(n + 1)) simultaneous equations to recursive arguments with
matrices of a maximum dimension of (2n + 1)-by-(2n + 1). Following this model, insurance
companies can use these probabilities in assessing the efficiency and effectiveness of their claim
processing system. For instance, by knowing that if the priority-based queues for a certain
employee is usually empty because she/he assesses the claim efficiently, the insurance company
can decide to reassign claims that are of a more time consuming nature. Another example could
be if the queues are full most of the time (i.e. πm,X2 and/or πX1,n are/is high), the insurance
company can judge whether the employee is slow in processing these claims relative to the en-
trance rate of new ones into the system. It might be decided that the employee be replaced or
retained, or that some of these claims can be redistributed.

Next, we proceed to deriving the waiting-time distributions of HP claims.

12

Chapter 3

Waiting-time Distributions for HP

Claims

3.1 Methodology

The objective here is to derive FTH |NotF (ω), E[TH |NotF] and V ar(TH |NotF). This is done
through the following steps (for a description of the following expressions, please refer to Table
1.1):

1. Derive FWH
X1,X2

(ω).

2. Derive FWH (ω).

3. Derive FTH (ω).

4. Derive FTH |NotF (ω), E[TH |NotF] and V ar(TH |NotF).

The reason why we are interested in the above conditional random variable is that we want to
exclude the possibility that the HP queue is full upon arrival of our arbitrary HP claim, which
also (technically speaking) yields a waiting-time equal to zero (the other possibility is having
both queues empty, implying immediate entry into service).

To avoid repetition in the following sections, we assume that ω only takes on non-negative
values.

13

3.2 Deriving FWH
X1,X2

(ω)

By conditioning on the distribution of certain values of X1, X2 and P , we obtain the following
four exhaustive scenarios for WH

X1,X2
:

1. Case 1: (X1 = 0, X2 = 0) or (X1 = m,X2 ≥ 0).

2. Case 2: (X1 = 0, X2 ≥ 1, P = L).

3. Case 3: (1 ≤ X1 ≤ m− 1, X2 ≥ 0, P = H).

4. Case 4: (1 ≤ X1 ≤ m− 1, X2 ≥ 1, P = L).

We derive the cdf for each case.

3.2.1 Case 1: (X1 = 0, X2 = 0) or (X1 = m, X2 ≥ 0)

In this case, either the HP claim will be immediately processed upon entry into the system, or
the HP claim will be blocked from the system due to the HP queue being full. Therefore, in
both situations, the waiting-times will be zero (i.e. FWH

0,0
(ω) = FWH

m,X2

(ω) = 1).

3.2.2 Case 2: (X1 = 0, X2 ≥ 1, P = L)

Since there are no claims in the HP queue, the newly arriving HP claim will get processed
immediately after the employee finishes processing the current LP claim.

Thus, WH
0,X2
∼ Exp(µ2)⇔ FWH

0,X2,L
(ω) = 1− e−µ2ω.

Note that the number of remaining claims in the LP queue after the one being processed
leaves the system is irrelevant in the calculation of the distribution.

14

3.2.3 Case 3: (1 ≤ X1 ≤ m− 1, X2 ≥ 0, P = H)

In this case, WH
X1,X2,H

can be expressed as a sum of independent exponential random variables:∑X1
i=1 Y

H
i .

Each Y H
i can be interpreted as the first “impactful” event to occur with respect to the

ith claim in the HP queue, which is either the redistribution of one of the waiting claims in
front of and including it or the service completion of the HP claim being processed. In essence,
WH
X1,X2,H

is the total time required to remove the X1 claims ahead of the arriving HP claim.

As a result, one can show that WH
X1,X2,H

follows a hypoexponential distribution (for a de-
tailed definition of hypoexponential distributions, we refer the reader to 7.6.3 of [5], pages
162-164). This is done by first showing that the Y H

i ’s are indeed exponentially distributed
and independent. Since Y H

i is equal to the minimum of (i − 1) independent exponentially
distributed redistribution times and an independent exponentially distributed service time,
Y H
i ∼ Exp(µ1 + (i− 1)α1).

As a member of the phase-type family of distributions, referring to [2] and [4], one can write
WH
X1,X2,H

∼ PHX1(α, TX1), so that:

FHWX1,X2,H
(ω) = Pr{WH

X1,X2,H
≤ ω} = 1− αexp{TX1ω}e′, with

TX1 =

−(µ1 + (X1 − 1)α1) (µ1 + (X1 − 1)α1) 0 · · · 0
0 −(µ1 + (X1 − 2)α1) (µ1 + (X1 − 2)α1) · · · 0
0 0 −(µ1 + (X1 − 3)α1) · · · 0
...

...
...

. . .
...

0 0 0 · · · −µ1

.

We note that TX1 is an X1-by-X1 matrix, α is a 1-by-X1 vector equal to (1, 0, 0, . . . , 0) and
e′ is an X1-by-1 vector of ones.

15

3.2.4 Case 4: (1 ≤ X1 ≤ m− 1, X2 ≥ 1, P = L)

First of all, we define the following quantities:

1. p1(i): The probability that service to an LP claim (whom the employee is currently
processing) is faster than the redistribution of one of i HP claims in queue. Hence, it
follows that p1(i) = µ2

µ2+iα1
.

2. Y L
i : Analogous to Y H

i in Case 3, we interpret Y L
i as the first “impactful” event to occur

with respect to the ith claim in the HP queue, given that an LP claim is currently in ser-
vice. This event can either be the redistribution of one of the waiting HP claims in front of
and including the ith HP claim, or the service completion of the LP claim being processed.

Since the HP redistribution and LP service rates are exponentially distributed in this
model, one can show that Y L

i ∼ Exp(iα1 + µ2).

Using the definitions above, this case has the following initial mixture representation, based on
two possible scenarios:

WH
X1,X2,L

=

Y L
X1

+WH
X1,X2−1,H with probability p1(X1)

Y L
X1

+WH
X1−1,X2,L

with probability 1− p1(X1)

16

By dividing the second scenario into all possible sub-scenarios, one can derive the following
representation:

WH
X1,X2,L

=

Y LX1
+WH

X1,X2−1,H with probability p1(X1)

Y LX1
+ Y LX1−1 +WH

X1−1,X2−1,H with probability p1(X1 − 1)[1− p1(X1)]

...

{
k∑
i=0

Y LX1−i}+WH
X1−k,X2−1,H with probability p1(X1 − k)

k−1∏
i=0

[1− p1(X1 − i)]

k ∈ {2, 3, . . . , X1 − 1}

...

{
X1∑
i=0

Y LX1−i} with probability
X1∏
i=1

[1− p1(i)]

In distribution, we have:

WH
X1,X2,L

∼

Exp(X1α1 + µ2) + PHX1(α, TX1) = PH1(β, T̃X1) + PHX1(α, TX1)

Exp(X1α1 + µ2) + Exp((X1 − 1)α1 + µ2) + PHX1−1(α, TX1−1) = PH2(β, T̃X1) + PHX1−1(α, TX1−1)

...

X1∑
i=0

Exp((X1 − i)α1 + µ2) = PHX1+1(β, T̃X1)

17

Similar to Case 3, for a PHk(α, Tk) distribution, we have:

Tk =

−(µ1 + (k − 1)α1) (µ1 + (k − 1)α1) 0 · · · 0
0 −(µ1 + (k − 2)α1) (µ1 + (k − 2)α1) · · · 0
0 0 −(µ1 + (k − 3)α1) · · · 0
...

...
...

. . .
...

0 0 0 · · · −µ1

.

We note that Tk is a k-by-k matrix, α is a 1-by-k vector equal to (1, 0, 0, . . . , 0) and α0 = 0.

As for a PHk(β, T̃X1) distribution, we have:

T̃X1 =
−(µ2 +X1α1) (µ2 +X1α1) 0 · · · 0

0 −(µ2 + (X1 − 1)α1) (µ2 + (X1 − 1)α1) · · · 0
...

...
...

. . .
...

0 0 · · · 0 −(µ2 + (X1 − k + 1)α1)

.

In this case, we note that T̃X1 is also a k-by-k matrix and β = α.

18

From these results, one can deduce that:

FHWX1,X2,L
= 1− ηexp{D2X1+1ω}e′, where

e′ = (1, 1, . . . , 1)′ is a (2X1 + 1)-by-1 vector, and η is a 1-by-(2X1 + 1) vector equal to (1, 0, 0, . . . , 0).

D2X1+1 is a (2X1 + 1)-by-(2X1 + 1) matrix, which can be partitioned into the following submatri-
ces:(
D̃1,1 D̃1,2

0 TX1

)
.

Here, 0 is an X1-by-(X1 + 1) matrix of zeroes, D̃1,1 is an (X1 + 1)-by-(X1 + 1) matrix equal to
−(µ2 +X1α1) (1− p1(X1))(µ2 +X1α1) 0 · · · 0

0 −(µ2 + (X1 − 1)α1) (1− p1(X1 − 1))(µ2 + (X1 − 1)α1) · · · 0
...

...
...

. . .
...

0 0 · · · 0 −µ2

,

and D̃1,2 is an (X1 + 1)-by-X1 matrix equal to

p1(X1)(µ2 +X1α1) 0 0 · · · 0 0
0 p1(X1 − 1)(µ2 + (X1 − 1)α1) 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 p1(1)(µ2 + α1)
0 0 0 · · · 0 0

.

Finally, note that in the special case when the exponential service rates of both claim types are equal (i.e.
µ1 = µ2 = µ), we can express WH

X1,X2,L
as a sum of independent exponential random variables

∑X1
i=0 Vi,

where Vi ∼ Exp(iα1 + µ). Thus, we will be dealing with a purely Case 3 situation, with X1 + 1 claims
instead of X1 (i.e. FHWX1,X2,L

(ω) = FHWX1+1,X2,H
(ω)). In other words, having the service rates equal and

the HP queue is not empty, one can consider the LP claim currently in service as being a member of the
HP queue.

19

3.2.5 Rewriting the Cases in Phase-type Form

Because phase-type distributions in general do not have unique representations, the cdfs derived in
the last three cases can be rewritten in such a way that the generator matrices and associated initial
probability vectors are of equal dimension, for all values of X1 and X2 (i.e. Case i has a phase-type
representation PHk(αi, Di), where i = 2, 3, 4, for some common dimension k). The main motivation
behind this is that these cases are components of the unconditional waiting-time random variable WH .
By equalizing the dimensionality of the generator matrices and corresponding initial probability vectors,
deriving FWH (ω) becomes simpler, which is the subject of the next section.

The cdfs of the last three cases can be rewritten as follows:

1. Case 2: FW0,X2
(ω) = 1− η

2
exp{D2m−1ω}e′,

with η
2

= (0, 0, . . . , 1, 0, . . . , 0) at the mth position
(
i.e. the last element of the D̃1,1 matrix: −µ2

)
,

implying that the cdf can be re-collapsed into 1− e−µ2ω.

2. Case 3: FHWX1,X2,H
(ω) = 1− η

3,X1
exp{D2m−1ω}e′,

with η
3,X1

= (0, 0, . . . , 1, 0, . . . , 0) at the (2m − X1)th position
(
i.e. the (m − X1)th diagonal

element of the Tm−1 matrix: −(µ1 + (X1 − 1)α1)
)
, implying that the cdf can be re-collapsed into

1− αexp{TX1ω}e′.

3. Case 4: FHWX1,X2,L
(ω) = 1− η

4,X1
exp{D2m−1ω}e′,

with η
4,X1

= (0, 0, . . . , 1, 0, . . . , 0) at the (m − X1)th position
(
i.e. the (m − X1)th diagonal

element of the D̃1,1 matrix: −(µ2 + X1α1)
)
, implying that the cdf can be re-collapsed into

1− ηexp{D2X1+1ω}e′.

Note that the rate transition matrices use the largest allowable value of X1, which is m− 1, so that the
claim can enter the system. Also, observe that the rate transition matrices in these cases are identical,
which further facilitates the derivation of the (unconditional) waiting-time distribution of an arbitrarily
arriving HP claim, as shown in the next section.

20

3.3 Deriving FWH(ω)

Using the Law of Total Probability, we have:

FWH (ω) = Pr{WH ≤ ω}

=
m∑
i=0

n∑
j=0

Pr{WH ≤ ω|X1 = i,X2 = j}πi,j

=
m∑
i=0

n∑
j=0

Pr{WH ≤ ω|X1 = i,X2 = j}πi,j

= π0,0 +
n∑
j=0

πm,j +
n∑
j=1

π0,jPr{W0,j ≤ ω}+
m−1∑
i=1

πi,0Pr{WH
i,0,H ≤ ω}

+
m−1∑
i=1

n∑
j=1

πi,j,HPr{WH
i,j,H ≤ ω}+

m−1∑
i=1

n∑
j=1

πi,j,LPr{WH
i,j,L ≤ ω}.

Thus, using the phase-type representations derived in the previous section, we have in distribution:

WH ∼(π0,0 +
n∑
j=0

πm,j) · 0 +
n∑
j=1

π0,jPH2m−1(η
2
, D2m−1) +

m−1∑
i=1

πi,0PH2m−1(η
3,i
, D2m−1)

+
m−1∑
i=1

n∑
j=1

πi,j,HPH2m−1(η
3,i
, D2m−1) +

m−1∑
i=1

n∑
j=1

πi,j,LPH2m−1(η
4,i
, D2m−1).

21

By having a mass-point at zero (Case 1) and a mixture of phase-type distributions (Cases 2, 3 and 4),

all with a common generator matrix D2m−1, we end up with another phase-type distribution with the

same generator matrix and a modified initial probability vector, which takes into account all possible

values of X1, X2 and P . In particular, we have:

FWH (ω) = 1− κHexp{D2m−1ω}e′,

where:

κH =
(n∑

j=1
πm−1,j,L,

n∑
j=1

πm−2,j,L, . . . ,
n∑

j=1
π1,j,L,

n∑
j=1

π0,j ,(πm−1,0+
n∑

j=1
πm−1,j,H),(πm−2,0+

n∑
j=1

πm−2,j,H), . . . ,(π1,0+
n∑

j=1
π1,j,H)

)

We note that κH is a 1-by-(2m− 1) vector, whose elements sum to 1− π0,0 −
n∑
j=0

πm,j .

Because we still consider the waiting-time equal to zero, even when the HP queue is full, we need
to condition on the queue not being full upon the arrival of our arbitrary HP claim. Before
normalizing our probabilities in this regard, we derive FTH (ω) (from which we can obtain
FTH |NotF (ω)).

22

3.4 Deriving FTH(ω)

As mentioned in Chapter 1, TH = min{WH , RH}. By assumption, WH is independent of RH .
Thus, one can easily show that TH also follows a phase-type distribution such that:

FTH (ω) = 1− Pr{TH > ω}

= 1− Pr{min{WH , RH} > ω}

= 1− Pr{WH > ω}Pr{RH > ω}

= 1− κHexp{QHω}e′.

Here, we have QH = D2m−1 − α1I2m−1.

Finally, we proceed to deriving the conditional distribution of TH , given the HP queue is not
full upon arrival.

23

3.5 Deriving FTH |NotF (ω), E[TH |NotF] and V ar(TH |NotF)

By conditioning on the probability that the HP queue is not full, one gets:

FTH |NotF (ω) = 1− κH|NotF exp{QHω}e′, where κH|NotF = κH

1−
n∑
j=0

πm,j

.

Consequently, using phase-type theory, we have:

• E[TH |NotF] = −κH|NotFQ−1
H e′.

• V ar[TH |NotF] = 2κH|NotFQ
−2
H e′ − (E[TH |NotF])2.

The next chapter derives the corresponding waiting-time distribution of an arbitrarily arriving
LP claim.

24

Chapter 4

Waiting-time Distributions for LP

Claims

4.1 Methodology

Analogous to the the previous chapter on HP waiting-times, the objective here is to derive
FTL|NotF (ω), E[TL|NotF] and V ar(TL|NotF). This is done through the following steps (for a
description of the following expressions, please refer to Table 1.1):

1. Derive FWL(ω).

2. Derive FTL(ω).

3. Derive FTL|NotF (ω), E[TL|NotF] and V ar(TL|NotF).

As mentioned in the previous chapter, we are interested in the above conditional random vari-
able because we want to exclude the possibility that the LP queue is full upon arrival of our
arbitrary LP claim, which also (technically speaking) yields a waiting-time equal to zero (the
other possibility is having both queues empty, implying immediate entry into service).

To avoid repetition in the following sections, we again assume that ω only takes on non-negative
values.

25

4.2 Deriving FWL(ω)

Due to the independent exponential rates in our model, one finds that WL follows a phase-type
distribution.

Specifically, we have:

FWL(ω) = 1− κLexp{Dω}e′, where:

• κL = (κ̃n−1, κn−1, κn−2, . . . , κ1), such that:

1. κ̃n−1 = (π1,n−1,H , π2,n−1,H , . . . , πm,n−1,H).

2. κ1 = (π0,1, π1,1,L, π2,1,L, . . . , πm,1,L, π1,0, π2,0, . . . , πm,0).

3. κi = (π0,i, π1,i,L, π2,i,L, . . . , πm,i,L, π1,i−1,H , π2,i−1,H , . . . , πm,i−1,H),
for i = 2, 3, ..., n− 1.

• e′ is an (nm+ (n− 1)(m+ 1))-by-1 vector of ones.

• D is the generator matrix, having a square dimension of (nm + (n − 1)(m + 1)). It can
be expressed as follows:

D =

Tn−1 [A, (n− 1)α2Im] 0 0 · · · 0 0

0 An−1 Bn−1 0 · · · 0 0

0 0 An−2 Bn−2 · · · 0 0

0 0 0 An−3 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · A2 B2

0 0 0 0 · · · 0 A1

.

26

For the generator matrix D, the bold zeroes represent zero-filled matrices of appropriate dimen-
sion.

The diagonal block matrices, A1, A2, . . . , An−1, are (2m + 1)-by-(2m + 1) matrices, which
can be represented by the following submatrices:(
Ui B

0 Ti−1

)
, where Ti is an m-by-m matrix, such that Ti = T0 − iα2Im, with T0 equal to

−(λ1 + µ1) λ1 0 · · · 0 0

µ1 + α1 −(λ1 + µ1 + α1) λ1 · · · 0 0

0 µ1 + 2α1 −(λ1 + µ1 + 2α1) · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · −(λ1 + µ1 + (m− 2)α1) λ1

0 0 0 · · · µ1 + (m− 1)α1 −(µ1 + (m− 1)α1)

,

Ui is an (m+ 1)-by-(m+ 1) matrix, such that Ui = U1 − (i− 1)α2Im+1, with U1 equal to

−(λ1 + µ2) λ1 0 · · · 0 0
α1 −(λ1 + µ2 + α1) λ1 · · · 0 0
0 2α1 −(λ1 + µ2 + 2α1) · · · 0 0
0 0 3α1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · −(λ1 + µ2 + (m− 1)α1) λ1

0 0 0 · · · mα1 −(µ2 +mα1)

,

and B is an (m+ 1)-by-m matrix equal to

(
0

µ2Im

)
.

As for the off-diagonal blocks, [A, (n − 1)α2Im] describes the column concatenation of the
matrices A and (n − 1)α2Im, where A is an m-by-(m + 1) matrix with µ1 in the upper left
corner, zero everywhere else. B2, B3, . . . , Bn−1 are (2m+ 1)-by-(2m+ 1) block matrices, which
can be represented by the following submatrices:(
Ci−1 0

A (i− 1)α2Im

)
,

where Ci is an (m+ 1)-by-(m+ 1) matrix equal to

µ2 + iα2 0 0 · · · 0 0
0 iα2 0 · · · 0 0
0 0 iα2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · iα2 0
0 0 0 · · · 0 iα2

.

27

4.3 Deriving FTL(ω)

As mentioned in Chapter 1, TL = min{WL, RL}. By assumption, WL is independent of RL.
Thus, one can easily show that TL also follows a phase-type distribution such that:

FTL(ω) = 1− Pr{TL > ω}

= 1− Pr{min{WL, RL} > ω}

= 1− Pr{WL > ω}Pr{RL > ω}

= 1− κLexp{QLω}e′.

Here, QL = D − α2Inm+(n−1)(m+1).

Notice that for large values of m and n, the dimensionality of QL becomes significantly larger
than QH derived in the previous chapter (which is of dimension (2m+1)). Thus, computational
complexity for calculating the matrix exponential and the inverse of QL becomes an obstacle in
obtaining numerical quantities when n and m are large.

We have successfully derived a methodology to reduce the computational complexity of the
inverse of QL through a recursive method shown in the next page.

28

1. Since QL = D − α1Inm+(n−1)(m+1), let:

(a) For i = 1, 2, . . . , n− 1: Âi = Ai − α2I2m+1.

(b) T̂n−1 = Tn−1 − α2Im.

2. Set Q1 = Â1 ⇒ Q−1
1 = Â−1

1 .

3. Set Q2 =

(
Â2 B2

0 Â1

)
=

(
Â2 B2

0 Q1

)
⇒ Q−1

2 =

Â
−1
2 −Â−1

2 B2Q
−1
2

0 Q−1
1

.

4. Set Q3 =

Â3 B3 0

0 Â2 B2

0 0 Â1

 =

Â3 [B3, 0]

0 Q2

⇒ Q−1
3 =

Â
−1
3 −Â−1

3 [B3, 0]Q−1
2

0 Q−1
2

.

Note that the 0’s are of appropriate dimension and can differ from one another.

5. One continues along the same pattern, until:

Qn−1 =

(
Ân−1 [Bn−1, 0]

0 Qn−2

)
⇒ Q−1

n−1 =

Â
−1
n−1 −Â−1

n−1[Bn−1, 0]Q−1
n−2

0 Q−1
n−2

.

6. Finally, one can write QL as:T̂n−1 [A, (n− 1)α2I, 0]

0 Qn−1

, and thus Q−1
L =

T̂
−1
n−1 −T̂−1

n−1[A, (n− 1)α2I, 0]Q−1
n−1

0 Q−1
n−1

.

We remark that this technique can also be used in reducing the computational complexity of
the rate transition matrix QH , derived in the previous chapter. We now proceed to deriving
the conditional distribution of TL, given the LP queue is not full upon arrival.

29

4.4 Deriving FTL|NotF (ω), E[TL|NotF] and V ar(TL|NotF)

By conditioning on the probability that the LP queue is not full, one gets:

FTL|NotF (ω) = 1− κL|NotF exp{QLω}e′, where κL|NotF = κL

1−
m∑
i=0

πi,n

.

Consequently, using phase-type theory, we have:

• E[TL|NotF] = −κL|NotFQ−1
L e′.

• V ar[TL|NotF] = 2κL|NotFQ
−2
L e′ − (E[TL|NotF])2.

We now proceed to a simple numerical example to give an idea on how such as system could be
beneficial.

30

Chapter 5

Illustration

5.1 Simple Numerical Example

Assume an employee is assigned to the following system for the day, with specified rates and
obtained conditional distributions shown in the following two diagrams:

Figure 5.1: Numerical Example Parameters

31

Figure 5.2: Comparing Conditional Times Spent in HP and LP Queues

All calculations here have been obtained using MATLAB. For details regarding the computer
code used, please see Appendix A.

πi,j j = 0 j = 1 j = 2 j = 3 j = 4
i = 0 0.0029 0.0091 0.0231 0.0466 0.0751
i = 1 0.0022 0.0111 0.0378 0.0985 0.2041
i = 2 0.0018 0.0119 0.0466 0.1329 0.2963

Table 5.1: Steady State Probabilities of Numerical Example

• Pr{HP Queue Not Full} = 1−
4∑
j=0

π2,j ≈ 0.5105

• Pr{LP Queue Not Full} = 1−
2∑
i=0

πi,4 ≈ 0.4246

• E[X1] ≈ 1.3327.

• E[X2] ≈ 3.3828.

• E[TH |NotF] ≈ 0.6104.

• E[TL|NotF] ≈ 1.4580.

•
√
V ar(TH |NotF) ≈ 0.6245

•
√
V ar(TL|NotF) ≈ 1.3282

32

5.2 Possible Improvements on the Numerical Example

As the above calculations show, both queues have a high probability of being full, im-
plying either that the employee is not assessing/processing the claims fast enough or the
queueing buffers need to be increased. For instance, by having all the rates the same (i.e.
λ1 = 2, λ2 = 5, µ1 = 1, µ2 = 2, α1 = α2 = 0.5) and doubling the limit size of both queues
(i.e. m = 4 and n = 8), the chances of having a full queue are reduced:

• Pr{HP Queue Not Full} = 1−
8∑
j=0

π4,j ≈ 0.7910.

• Pr{LP Queue Not Full} = 1−
4∑
i=0

πi,8 ≈ 0.6922.

In addition to this, if the employee, for instance, were replaced by a more proficient one who
can process the claims at double the speed (i.e. µ1 = 2 and µ2 = 4), we witness a further
improvement in performance, namely:

• Pr{HP Queue Not Full} = 1−
8∑
j=0

π4,j ≈ 0.9068.

• Pr{LP Queue Not Full} = 1−
4∑
i=0

πi,8 ≈ 0.7895.

• E[TH |NotF] ≈ 0.5187.

• E[TL|NotF] ≈ 1.3502.

As a result, given the available resources, insurance companies following this setup will be better
equipped in creating optimal claim processing systems.

33

Chapter 6

Concluding Remarks and Further

Research

The derivations of this model are complete from the theoretical point of view. However,
as pointed out in Chapter 4, we must consider the computational complexity of our expres-
sions. Our final unfinished task in this model is deriving a method that significantly reduces
the complexity of the matrix exponential of the generator matrix in the LP waiting-time case,
especially for large values of m and n. Therefore, in order to maximize the potential of applying
this model in practice (where buffers could hold over a hundred claims each), one has to find
optimal methods for computing this matrix exponential.

Next to this, we also plan to derive all the previous distributions under a more general
framework: we will work with the redistribution rates as functions of the claims’ positions in
the queue. We intend to begin by assessing the case where the redistribution rates are linearly
decreasing functions of the position of the claim in the queue. In other words, the closer the
claim is to being served, the smaller its redistribution rate becomes. One can find this scenario
practically plausible if one argues that other departments in the insurance company become
more reluctant to incorporate claims into their own system, the closer these claims are to be
being processed in the original system.

To conclude, we find that using mathematical theory is a necessary tool for improving the
effectiveness and efficiency of institutions and organizations. The more literatures broaden, the
greater the chances that overlaps and synergies would occur between them. With improved
models and increasing technological facilities, one aims to help guide us to new paradigms and
horizons.

34

Appendix: MATLAB Code

m=2; n=4;lambda1=2;lambda2=5;mu1=1;mu2=2;alpha1=0.5;alpha2=0.5;%Initial Conditions

%1) Calculating Transition Probabilities

lambda=lambda1+lambda2;

%A) Gamma Matrix; Q(0,1)

Q=zeros(n+1,2*n+1);

for i=1:n+1

for j=1:2*n+1

if i==1 && j==1 %If we are in the first row

Q(i,j)=lambda1;

else %if we are not in the first row

if j==2*i-1

Q(i,j)=lambda1;

end

end

end

end

Gamma=Q;

%%%

%B)Psi_k Matrices; k=1,1,2,...,m; Q(k,k-1)

%i)Psi_1 Matrix; Q(1,0)

Q=zeros(2*n+1,n+1);

for i=1:2*n+1

for j=1:n+1

if i==1 && j==1

Q(i,j)=mu1;

else

if i==2*(j-1)

Q(i,j)=mu1;

Q(i+1,j)=alpha1;

end

end

end

end

Psi_1=Q;

%ii)Psi_k Matrices; k=2,3,...,m; Q(k,k-1)

if m>1

for k=2:m

Q=zeros(2*n+1,2*n+1);

for i=1:2*n+1

for j=1:2*n+1

if i==1 && j==1

Q(i,j)=mu1+(k-1)*alpha1;

else

if i==j

35

if i/2 == floor(i/2)%To distinguish between high and low priority

Q(i,j)=mu1+(k-1)*alpha1;

else

Q(i,j)=k*alpha1;

end

end

end

end

end

if k==2

Psi_k=Q;

else

Psi_k=horzcat(Psi_k,Q);%Concatenating the Psi_k’s in ascending order

end

end

else

Psi_k=Psi_1;

end%End of if statement

%%%

%C)P_k Matrices; k=0,1,2,...,m; Q(k,k)

%i)P_0 Matrix; Q(0,0)

Q=zeros(n+1,n+1);

for i=1:n+1

for j=1:n+1

if i==j

if i==1

Q(i,j)=-lambda;%First edge of the matrix

elseif i==n+1

Q(i,j)=-(lambda1+mu2+(i-2)*alpha2);%Last edge of the matrix

else

Q(i,j)=-(lambda+mu2+(i-2)*alpha2);

end

elseif i==j+1

Q(i,j)=mu2+(j-1)*alpha2;

elseif i==j-1

Q(i,j)=lambda2;

end

end

end

P_0=Q;

%ii)P_k Matrices; k=1,2,...,m; Q(k,k)

for k=1:m

Q=zeros(2*n+1,2*n+1);

for i=1:2*n+1

for j=1:2*n+1

if i==j

if i==1

if k==m

Q(i,j)=-(lambda2+mu1+(k-1)*alpha1);

else

Q(i,j)=-(lambda+mu1+(k-1)*alpha1);

end

elseif i==2*n

if k==m

Q(i,j)=-(n*alpha2+mu1+(k-1)*alpha1);

else

Q(i,j)=-(lambda1+n*alpha2+mu1+(k-1)*alpha1);

end

36

elseif i==2*n+1

if k==m

Q(i,j)=-(k*alpha1+mu2+(n-1)*alpha2);

else

Q(i,j)=-(lambda1+k*alpha1+mu2+(n-1)*alpha2);

end

elseif i/2==floor(i/2)%make sure it is an even number

if k==m

Q(i,j)=-(lambda2+(j/2)*alpha2+mu1+(k-1)*alpha1);

else

if k==m

Q(i,j)=-(lambda2+(j/2)*alpha2+mu1+(k-1)*alpha1);

else

Q(i,j)=-(lambda+(j/2)*alpha2+mu1+(k-1)*alpha1);

end

end

else

if k==m

Q(i,j)=-(lambda2+k*alpha1+mu2+((j-1)/2-1)*alpha2);

else

Q(i,j)=-(lambda+k*alpha1+mu2+((j-1)/2-1)*alpha2);

end

end

elseif i==1 && j==2

Q(i,j)=lambda2;

elseif j==i+2 && i/2==floor(i/2) %make sure it is an even number

Q(i,j)=lambda2;

Q(i+1,j+1)=lambda2;

elseif i==2 && j==1

Q(i,j)=alpha2;

Q(i+1,j)=mu2;

elseif i==j+2 && i/2==floor(i/2) %make sure it is an even number

Q(i,j)=i/2*alpha2;

Q(i+1,j)=mu2;

Q(i+1,j+1)=(i/2-1)*alpha2;

end

end

end

if k==1

P_k=Q;

else

P_k=horzcat(P_k,Q);%Concatenating the _k’s in ascending order

end

end

%%%

if m>1

%D)Calculating Sj; j=0,1,...,m

%i)Calculating Sj; j=1,...,m

S=lambda1*inv(P_k(:,(2*n+1)*(m-1)+1:(2*n+1)*m));%value of Sm

k=m-1;

while(k>=2)%We are beginning from m-1 and working backwards

%Taking into account that Psi_k starts from 2

Q=lambda1*inv(P_k(:,(2*n+1)*(k-1)+1:(2*n+1)*k)-S(:,1:2*n+1)*Psi_k(:,(2*n+1)*(k-1)+1:(2*n+1)*(k)));

S=horzcat(Q,S);%Concatenating the S’s in ascending order starting from S_1

k=k-1;

end

%Value of S1

37

S_1=Gamma*inv(P_k(:,(2*n+1)*(k-1)+1:(2*n+1)*k)-S(:,(2*n+1)*(k-1)+1:(2*n+1)*k)*Psi_k(:,(2*n+1)*(k-1)+1:(2*n+1)*(k)));

%ii)Calculating S_0

S_0=P_0-S_1*Psi_1;%Q takes the value of S1 from previous statement

%%%

%E)Calculating Pi_i’s, i=0,1,2,...,m

%i)Calculating Pi_0

n1=n+1; n2=2*n+1;

u=ones(n1,1)-S_1*ones(n2,1);%Incorporating S1 from the start

for i=2:m

k=(-1)^i*S_1;%Putting the first two term of the product

for j=2:i %As we’re starting from S2, by already incorporating S1

k=k*S(:,(2*n+1)*(j-2)+1:(2*n+1)*(j-1));%Recall that the S matrix starts from S2 not S1

end

u=u+k*ones(n2,1);

end

Coef_Pi_0=horzcat(S_0(:,1:n),u);

RHS_Pi_0=horzcat(zeros(1,n),1);

Pi_0=RHS_Pi_0*inv(Coef_Pi_0);

%ii)Calculating Pi_i’s

Pi_i=-Pi_0*S_1;%Calculating Pi_1

for i=2:m

k=(-1)^i*Pi_0*S_1;

for j=2:i%As we’re starting from S2, by already incorporating S1

k=k*S(:,(2*n+1)*(j-2)+1:(2*n+1)*(j-1));

end

Pi_i=vertcat(Pi_i,k);

end

else% if m==1

P_0_Star=P_0; P_0_Star(:,n+1)=ones(n+1,1);%Making the last column ones

Psi_1_Star=Psi_1; Psi_1_Star(:,n+1)=ones(2*n+1,1);%Making the last column ones

RHS_Pi_0=horzcat(zeros(1,n),1);

Pi_0=RHS_Pi_0*inv(P_0_Star-Gamma*inv(P_k)*Psi_1_Star);

Pi_i=-Pi_0*Gamma*inv(P_k);

end%end of if statement, m>1

%%%

%F)Display of Pi_i’s

Distr=zeros(m+1,n+1);

Distr(1,:)=Pi_0;

for i=2:m+1%We are starting from second row

for j=1:n+1 %We are starting from first column

if j==1

Distr(i,j)=Pi_i(i-1,j);

else

Distr(i,j)=Pi_i(i-1,2*(j-1))+Pi_i(i-1,2*(j-1)+1);

end

end

end

%%%

%G)Display of Expectations

EX1=0; EX2=0;

MarginX1=sum(Distr’);%Marginal probabilities for X1

MarginX2=sum(Distr);%Marginal probabilities for X2

for i=1:m+1

EX1=EX1+(i-1)*MarginX1(i);

end

for j=1:n+1

EX2=EX2+(j-1)*MarginX2(j);

end

38

%%%

%%%

%%%

%2) Calculating HP Waiting-times

%A)Calculating F_{T^H}(omega)

%i) Calculating the C matrix, we assume that m>=2

D=zeros(2*m-1,2*m-1);

for i=1:2*m-1

for j=1:2*m-1

if i==j

if i<=m%D1,1

D(i,j)=-(mu2+(m-i)*alpha1);

else%T

D(i,j)=-(mu1+(2*m-i-1)*alpha1);

end

elseif j==i+1

if i<=m%D1,1

D(i,j)=(1-(mu2/(mu2+(m-i)*alpha1)))*(mu2+(m-i)*alpha1);

else%T

D(i,j)=-D(i,j-1);

end

elseif i<=m && j>=m+1 %D1,2

if j==m+i

D(i,j)=(mu2/(mu2+(m-i)*alpha1))*(mu2+(m-i)*alpha1);

end

end

end

end

C=D-alpha1*eye(2*m-1);

%ii) Calculating the gamma matrix, we assume that m>=2

gamma=zeros(1,2*m-1);

for i=1:2*m-1

for j=1:n

if i<=m-1

gamma(1,i)=gamma(1,i)+Pi_i(m-i,2*j+1);

elseif i==m

gamma(1,i)=gamma(1,i)+Pi_0(j+1);

else

if j==1

gamma(1,i)=gamma(1,i)+Pi_i(2*m-i,1)+Pi_i(2*m-i,2*j);%to include the first term

else

gamma(1,i)=gamma(1,i)+Pi_i(2*m-i,2*j);

end

end

end

end

%%%

%B)Calculating E[T^H] and Var(T^H)

e=ones(2*m-1,1);

E_TH=-gamma*C^(-1)*e;

E_TH2=2*gamma*C^(-2)*e;

Var_TH=E_TH2-E_TH^2;

%%%

%C) Calculating F_{T^H}(omega)

scale=400;increments=1/100;

omega=zeros(1,scale+1);

omega(1)=0;

39

F_TH=zeros(1,scale+1);

F_TH(1)=1-gamma*expm(C*omega(1))*e;

for i=2:scale+1

omega(i)=(i-1)*increments;

F_TH(i)=1-gamma*expm(C*omega(i))*e;

end

%%%

%D) Conditioning on HP Queue Not Being Full

PrbH_NotF=1-sum(Distr(m+1,:));%Adding all columns of mth row (note that Distr starts at zero)

F_TH_NotF=1-(1-F_TH)/PrbH_NotF;

E_TH_NotF=E_TH/PrbH_NotF;

E_TH_NotF2=E_TH2/PrbH_NotF;

Var_TH_NotF=E_TH_NotF2-E_TH_NotF^2;

%%%

%E) Plotting Conditional Time Spent Probabilities for HP Claims

%plot(omega,F_TH_NotF)

%axis([0 max(omega) 0 1])

%xlabel(’Time Units’)

%ylabel(’F_{T^H|InQ}(\omega)’)

%title(’Time Spent in HP Queue: m=2, n=4,\lambda_1=2,\lambda_2=5,\mu_1=1,\mu_2=2, \alpha_1=0.5, \alpha_2=0.5’)

%%%

%%%

%%%

%3) Calculating LP Waiting-times

%A) Calculating Q

%m=2;n=4;lambda1=2;lambda2=5;mu1=1;mu2=2;alpha1=0.5;alpha2=0.5;

%i)Calculating T0 and U1

T0=zeros(m,m);%Initializing T0 matrix to zeros

U1=zeros(m+1,m+1);%Initializing U1 matrix to zeros

for i=1:m+1

for j=1:m+1

if (i<m+1&&j<m+1)%Gain of efficiency, since T0 is only an m by m matrix

if j==i-1

T0(i,i-1)=mu1+(i-1)*alpha1;

U1(i,i-1)=(i-1)*alpha1;

elseif j==i

if i<m

T0(i,i)=-(lambda1+(i-1)*alpha1+mu1);

U1(i,i)=-(lambda1+(i-1)*alpha1+mu2);

else

T0(m,m)=-((m-1)*alpha1+mu1);%Last element,m, has no lambda1 term

U1(m,m)=-(lambda1+(m-1)*alpha1+mu2);%No change for U1 term

end

elseif j==i+1

T0(i,i+1)=lambda1;

U1(i,i+1)=lambda1;

end

else

U1(m,m+1)=lambda1;

U1(m+1,m)=m*alpha1;

U1(m+1,m+1)=-(m*alpha1+mu2);

end

end

end

A=zeros(m,m+1);

A(1,1)=mu1;

40

B=vertcat(zeros(1,m),eye(m));

B=B*mu2;

%ii)Calculating block matrices (Call Ai function and Bi function)

if n==1 Q=T0; QQ=Q-alpha2*eye(m);QQ_inv=inv(QQ);%QQ is to be the matrix: Q-Ialpha2

else

An=T0-(n-1)*alpha2*eye(m);%Upper corner block matrix T_{n-1}

An_QQ=An-alpha2*eye(m);

Bn=[A (n-1)*alpha2*eye(m)];

zeroH=zeros(2*m+1,2*m+1);%Zero matrices other than first row and first column

zero_r1=zeros(m,2*m+1);%Zero matrices in first row

zero_c1=zeros(2*m+1,m);%Zero matrices in first row

if n==2

temp1=Ai(U1,B,T0,1,m,alpha2);temp2=temp1-alpha2*eye(2*m+1);%Reduce notation

Q=vertcat([An Bn],[zero_c1 temp1]);

QQ=vertcat([An_QQ Bn],[zero_c1 temp2]);

QQ_inv=vertcat([inv(An_QQ) -inv(An_QQ)*Bn*inv(temp2)],[zero_c1 inv(temp2)]);

else

tempA1=Ai(U1,B,T0,1,m,alpha2);tempAi=Ai(U1,B,T0,2,m,alpha2);tempBi=Bi(A,2,m,mu2,alpha2);

tempA1QQ=tempA1-alpha2*eye(2*m+1);tempAiQQ=tempAi-alpha2*eye(2*m+1);

Q=vertcat([tempAi tempBi],[zeroH tempA1]);%Starting point of recursion

QQ=vertcat([tempAiQQ tempBi],[zeroH tempA1QQ]);%Starting point of recursion

QQ_inv=vertcat([inv(tempAiQQ) -inv(tempAiQQ)*tempBi*inv(tempA1QQ)],[zeroH inv(tempA1QQ)]);

zero_R1=zero_r1;%Concatenates first row zero matrices

zero_C1=vertcat(zero_c1,zero_c1);%Concatenates first column zero matrices

if n>3

zeroUp=zeroH;

zeroLeft=vertcat(zeroH,zeroH);

for i=3:n-1

tempAi=Ai(U1,B,T0,i,m,alpha2);tempBi=Bi(A,i,m,mu2,alpha2);tempAiQQ=tempAi-alpha2*eye(2*m+1);%Reduce notation

Q=vertcat([tempAi tempBi zeroUp],[zeroLeft Q]);

QQ=vertcat([tempAiQQ tempBi zeroUp],[zeroLeft QQ]);

QQ_inv=vertcat([inv(tempAiQQ) -inv(tempAiQQ)*[tempBi zeroUp]*QQ_inv],[zeroLeft QQ_inv]);

zeroUp=[zeroUp zeroH];

zeroLeft=vertcat(zeroLeft,zeroH);

zero_R1=[zero_R1 zero_r1];

zero_C1=vertcat(zero_C1,zero_c1);

end

end%End of if n>3

Q=vertcat([An Bn zero_R1],[zero_C1 Q]);

QQ=vertcat([An_QQ Bn zero_R1],[zero_C1 QQ]);

QQ_inv=vertcat([inv(An_QQ) -inv(An_QQ)*[Bn zero_R1]*QQ_inv],[zero_C1 QQ_inv]);

end%End of nested if-else statement

end%End of if-else statement

%%%

%B)Calculating Kappas

if n==1

kappa=Pi_i(1,1);

for i=2:m

kappa=[kappa Pi_i(i,1)];%[pi_{1,0} pi_{2,0},...,pi_{m,0}]

end

else

kappa_n=Pi_i(1,2*(n-1));

for i=2:m

kappa_n=[kappa_n Pi_i(i,2*(n-1))];%[pi_{1,n-1,H} pi_{2,n-1,H},...,pi_{m,n-1,H}]

end

41

kappa=kappa_n;

for i=2:n-1

kappa=[kappa kappai(Pi_0,Pi_i,(n-i+1),m)];%We have all the kappas, except for kappa1

end

%Calculating kappa1

kappa1=zeros(1,2*m);

for j=1:m

kappa1(j)=Pi_i(j,3);%First m elements excluding pi_{0,i}. All pi_{j,i,L}

kappa1(j+m)=Pi_i(j,1);%Last m elements excluding. All pi_{j,i,H}

end

kappa1=[Pi_0(2) kappa1];

%Concatenating kappa1 at the end

kappa=[kappa kappa1];

end

%%%

%C)Calculating E[T^L] and Var(T^L)

e=ones(m*n+(n-1)*(m+1),1);

E_TL=-kappa*QQ^(-1)*e;

E_TL2=2*kappa*QQ^(-2)*e;

Var_TL=E_TL2-E_TL^2;

%%%

%D) Calculating F_{T^L}(omega)

%scale=400;increments=1/100;

%omega=zeros(1,scale+1);

%omega(1)=0;

F_TL=zeros(1,scale+1);

F_TL(1)=1-kappa*expm(QQ*omega(1))*e;

for i=2:scale+1

omega(i)=(i-1)*increments;

F_TL(i)=1-kappa*expm(QQ*omega(i))*e;

end

%%%

%E) Conditioning on LP Queue Not Being Full

PrbL_NotF=1-sum(Distr(:,n+1));%Adding all columns of mth row (note that Distr starts at zero)

F_TL_NotF=1-(1-F_TL)/PrbL_NotF;

E_TL_NotF=E_TL/PrbL_NotF;

E_TL_NotF2=E_TL2/PrbL_NotF;

Var_TL_NotF=E_TL_NotF2-E_TL_NotF^2;

%%%

%vi)Plotting F_{T^L|NotFull}(omega)

%plot(omega,F_TL_NotF)

%axis([0 max(omega) 0 1])

%xlabel(’\omega’)

%ylabel(’F_{T^L|InQ}(\omega)’)

%title(’Time Spent: m=2, n=4,\lambda_1=2,\lambda_2=5,\mu_1=1,\mu_2=2, \alpha_1=0.5, \alpha_2=0.5’)

%%%

%%%

%%%

%4) Comparing F_TH|InQ and F_TL|InQ

plot(omega,F_TH_NotF,’k.’,omega,F_TL_NotF,’k’)

axis([0 max(omega) 0 1])

xlabel(’Waiting-time Units’)

42

ylabel(’Probability’)

legend(’F_{T^H|NotF}(\omega)’,’F_{T^L|NotF}(\omega)’)

%%%

%%%

%%%

%File Name: Ai.m

%Producing Ai’s, i=1,2,...,n-1

function[X] = Ai(U1,B,T0,i,m,alpha2)

Ui=U1-(i-1)*alpha2*eye(m+1);

Ti=T0-(i-1)*alpha2*eye(m);

X=vertcat([Ui B],[zeros(m,m+1) Ti]);

%%%

%%%

%%%

%File Name: Bi.m

%Producing Bi’s, i=2,3,...,n-1

function[X] = Bi(A,i,m,mu2,alpha2)

Ci=eye(m+1)*(i-1)*alpha2;

Ci(1,1)=Ci(1,1)+mu2;

X=vertcat([Ci zeros(m+1,m)],[A eye(m)*(i-1)*alpha2]);

%%%

%%%

%%%

%File Name: kappai.m

%Producing Low Priority Claim Block Vectors, Excluding First Block and Last block

%kappa=[kappa_n, kappa_{n-1},...,kappa_1]

%This Function Produces kappa_i, for i=2,...,n-1.

function[X] = kappai(Pi_0,Pi_i,i,m)

X=zeros(1,2*m);

for j=1:m

X(j)=Pi_i(j,2*i+1);%First m elements excluding pi_{0,i}. All pi_{j,i,L}

X(j+m)=Pi_i(j,2*(i-1));%Last m elements excluding. All pi_{j,i,H}

end

X=[Pi_0(i+1) X];%Including pi_{0,i}. Note that we take i+1 since 0,0 is included

43

Bibliography

[1] A. Zhang. (2006). A Priority Queueing Analysis of the Short Message Service for GPRS Networks. 3B Co-op Work

Report, University of Waterloo.

[2] M.F. Neuts. (1981). Matrix-geometric Solutions in Stochastic Models: An Algorithmic Approach. John Hopkins Uni-

versity Press, Baltimore.

[3] S.M. Ross. (2007). Introduction to Probability Models, 9th Edition. Academic Press, San Diego.

[4] S. Drekic. (2004). Phase-type distributions. In: Encyclopedia of Actuarial Science, Volume 3, J.L. Teugels and B. Sundt

(Editors), John Wiley & Sons, Chichester, pp. 1288-1290.

[5] W. J. Stewart. (2009). Probability Markov Chains, Queues, and Simulation: The Mathematical Basis of Performance

Modeling. Princeton University Press.

44

