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Abstract 

The development of reversible and irreversible inhibitors of steroid sulfatase (STS) 

and protein tyrosine phosphatase 1B (PTP1B) is reported herein.  STS belongs to to the 

aryl sulfatase family of enzymes that have roles in diverse processes such as hormone 

regulation, cellular degradation, bone and cartilage development, intracellular 

communication, and signalling pathways. STS catalyzes the desulfation of sulfated 

steroids which are the storage forms of many steroids such as the female hormone estrone.  

Its crucial role in the regulation of estrogen levels has made it a therapeutic target for the 

treatment of estrogen-dependent cancers.  Estrone sulfate derivatives bearing 2- and 4-

mono- and difluoromethyl substitutions were examined as quinone methide-generating 

suicide inhibitors of STS with the goal of developing these small molecules as activity-

based probes for proteomic profiling of sulfatases.  Kinetic studies suggest that inhibition 

by the monofluoro derivatives is a result of a quinone methide intermediate that reacts 

with active-site nucleophiles.  However, the main inhibition pathway of the 4-

difluoromethyl derivative involved an unexpected process in which initially formed 

quinone methide diffuses from the active site and decomposes to an aldehyde in solution 

which then acts as a potent, almost irreversible STS inhibitor.  This is the first example 

where this class of inactivator functions by in situ generation of an aldehyde.  6- and 8-

mono- and difluoromethyl coumarin derivatives were also examined as quinone methide-

generating suicide inhibitors of STS.  The 6-monofluoromethyl derivative acted as a 

classic suicide inhibitor.  The partition ratio of this compound was found to be very large 

indicating that this class of compounds is not likely suitable as an activity-based probe for 

proteomic profiling of sulfatases.  Boronic acids derived from steroid and coumarin 



 iv 

platforms were also examined as STS inhibitors with the goal of improving our 

understanding of substrate binding specificity of STS.  Inhibition constants in the high 

nanomolar to low micromolar range were observed for the steroidal derivatives.  The 

coumarin derivatives were poor inhibitors.  These results suggest that the boronic acid 

moiety must be attached to a platform very closely resembling a natural substrate in order 

for it to impart a beneficial effect on binding affinity compared to its phenolic analog.  

The mode of inhibition observed was reversible and kinetic properties corresponding to 

the mechanism for slow-binding inhibitors were not observed. 

PTP1B catalyzes the dephosphorylation of phosphotyrosine residues in the insulin 

receptor kinase and is a key enzyme in the down regulation of insulin signaling.  

Inhibitors of PTP1B are considered to have potential as therapeutics for treating type II 

diabetes mellitus. The difluoromethylenesulfonic (DFMS) acid group, one of the best 

monoanionic phosphotyrosine mimics reported in the literature, was examined as a 

phosphotyrosine (pTyr) mimic in a non-peptidyl platform for PTP1B inhibition.  The 

DFMS-bearing inhibitor was found to be an approximately 1000-fold poorer inhibitor 

than its phosphorus analogue. It was also found that the fluorines in the DFMS inhibitor 

contributed little to inhibitory potency. In addition, [sulfonamido(difluoromethyl)]-

phenylalanine (F2Smp) was examined as a neutral pTyr mimic in commonly used 

hexapeptide and tripeptide platforms.  F2Smp was found to be a poor pTyr mimic.  These 

inhibition studies also revealed that the tripeptide platform is not suitable for assessing 

pTyr mimics for PTP1B inhibition. 
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Taken together, the kinetic data on the inhibition of STS and PTP1B provide 

valuable information relevant for future design of inhibitors of these two therapeutic 

targets. 



 vi 

Acknowledgements 

 
 

I would foremost like to thank my dedicated supervisor, Dr. Scott D. Taylor for 

his guidance in overseeing my development from an undergraduate to a graduate 

researcher.  I am grateful for his support, mentorship and encouragement during my 

doctoral research, which has been a fulfilling, rewarding journey and a true privilege. 

I extend sincere appreciation to the members of my advisory committee for their 

advice, constructive criticism and helpful discussions throughout the stages of my 

graduate research. I thank Drs. Guy Guillemette, Elizabeth Meiering, and Richard 

Manderville for their support and insight. 

I am indebted to my coworkers in the lab who made instrumental contributions to 

my project, in particular Yong Liu, Bryan Hill and Munawar Hussain, who synthesized 

many of the compounds integral toward my study of steroid sulfatase and protein tyrosine 

phosphatase 1B.  I also thank them and other members in the lab for their support and 

contributions to my professional development, particularly, Jason Trinh, Cassandra 

Silvestro, Dustin Little, Andrea Dupont, Laura Ingram, Latifeh Navidpour, Farzad Mirzai, 

Mehdi Ispahany and Jennifer Lapierre. 



 vii 

Table of Contents 
 
 
List of Tables xi 
List of Figures xii 
List of Abbreviations xviii 
  
   

CHAPTER 1 – STEROID SULFATASE: STRUCTURE, FU�CTIO� A�D I�HIBITOR 

DEVELOPME�T  

  Page 
1.1 Introduction 1 
 1.1.1    The sulfatase family of enzymes 2 
 1.1.2 Formylglycine 4 
1.2 Steroid sulfatase 10 
 1.2.1    STS expression and location 10 
 1.2.2    STS and hormone-dependent breast cancer 12 
 1.2.3    STS action in prostate cancer 16 
 1.2.4    STS and skin 17 
 1.2.5    STS and neurofunction 17 
 1.2.7    Sulfatase deficiencies 18 
 1.2.8    Crystal structure of STS 21 
 1.2.9    Comparison of tertiary structures of sulfatases 26 
 1.2.10  Comparison of active site structures of sulfatases 28 
 1.2.11  Catalytic mechanism of sulfatases 30 
1.3 STS inhibitor development 34 
 1.3.1    Reversible inhibitors 34 
 1.3.2    Irreversible inhibitors 40 
1.4 Research Objectives 48 
   
CHAPTER 2 – PURIFICATIO� OF STEROID SULFATASE  
   
2.1 Introduction 50 
2.2 Results and Discussion 57 
 2.2.1 Study of the effect of neutralization of pH of STS after 

immunoaffinity purification 
60 

 2.2.2 Evaluation of kinetic properties and comparison to literature 63 
2.3 Conclusions 70 
2.4 Experimental 71 
 2.4.1    Materials 71 
 2.4.2 Methods 71 
 2.4.2.1 Activity Assay 71 
 2.4.2.2 Homogenization and Chromatography 72 
 2.4.2.4 Protein concentration determination 74 
 2.4.2.5 Determining kinetic properties 75 
 2.4.2.6 Determining pH-rate profile 75 



 viii 

CHAPTER 3 – QUI�O�E METHIDE-GE�ERATI�G ACTIVE SITE-DIRECTED MECHA�ISM-

BASED IRREVEVERSIBLE I�HIBITORS OF STEROID SULFATASE 

   
3.1 Introduction 76 
 3.1.1 Mechanism-based enzyme inhibitors 77 
 3.1.2 Quinone methide-generating suicide inhibitors 80 
 3.1.3 Objectives 83 
3.2 Results and Discussion 84 
 3.2.1 General criteria for SIs 84 
 3.2.2 Evaluation of time- and concentration-dependence of compounds 

3.10 and 3.11 
85 

 3.2.3 Active site protection and trapping experiments for compounds 
3.10 and 3.11 

88 

 3.2.4 Irreversibility of inhibition of STS by compounds 3.10 and 3.11. 92 
 3.2.5 Evaluation of time- and concentration-dependence for compound 

3.9. 
93 

 3.2.6     Evaluation of time- and concentration-dependence, effect of 
exogenous nucleophiles and active site protection for compound 
3.12 

96 

 3.2.7     Monitoring reaction products and intermediates produced by   
incubation of compound 3.12 and STS by HPLC  

100 

 3.2.8     Examination of 4-FE1 as a time- and concentration dependent 
inhibitor of STS 

101 

 3.2.9 Specificity of inhibition of STS by formylated steroids 102 
 3.2.10  2- and 4-Hydroxymethylestrone as STS inhibitors 108 
 3.2.11 Screening of coumarin derivatives 3.13-3.16 as time-dependent 

STS inhibitors  
112 

 3.2.12 Kinetic studies with compound 3.14 113 
 3.2.13 Determination of the partition coefficient of 3.14 115 
 3.2.14 Potential for quinone methide-generating SIs as activity-based 

proteomic profiling probes 
118 

3.3 Conclusions and Future Work 121 
3.4 Experimental 124 
 3.4.1  General 124 
 3.4.2 Preliminary screening of compounds 3.13-3.16 125 
 3.4.3 General procedure for the determination of time and 

concentration-dependent inhibition of STS 
125 

 3.4.4 Lineweaver-Burk analysis of compound 3.9 126 
 3.4.5  Time and concentration-dependent inhibition of STS in the 

presence of estrone-3-O-phosphate (E1P) (protection 
experiments) 

126 

 3.4.6    Time and concentration-dependent inhibition of STS in the 
presence of β-mercaptoethanol (β-ME) (trapping experiments) 

127 

 3.4.7 Dialysis experiments 128 
 3.4.8 Effect of NaBH4 on STS activity 129 
 3.4.9 Generation of standard curve for coumarin 3.28 129 



 ix 

 3.4.10 Determination of partition coefficient for compound 3.14 130 
 3.4.11 Monitoring the reactions of compounds 3.9-3.12 with STS by 

HPLC 
131 

   
   
CHAPTER 4 – BORO�IC ACIDS AS I�HIBITORS OF STEROID SULFATASE 

   
4.1 Introduction 133 
 4.1.1   Boronic acids as enzyme inhibitors 133 
 4.1.2   Objectives 136 
4.2 Results and Discussion 138 
4.3 Conclusions and Future Work 146 
4.4 Experimental 148 
 4.4.1   General 148 
 4.4.2   Determination of Ki and αKi values for compounds 4.1, 4.6, 4.7 

and 4.10  
148 

 4.4.3 Determination of IC50 values for compounds 4.8, 4.9, and 4.10 149 
   
   
CHAPTER 5  – A� ASSESSME�T OF THE SULFO�IC ACID A�D SULPHO�AMIDE GROUPS AS 

PHOSPHOTYROSI�E MIMICS FOR PTP1B I�HIBITIO� 

   
5.1 Introduction: Protein Tyrosine Phosphatases 151 
 5.1.1 PTP1B as a drug target for diabetes and obesity 154 
 5.1.2 The PTP1B protein: catalytic and regulatory domains 156 
 5.1.3 Catalytic mechanism and structure of PTP1B  158 
 5.1.4 PTP1B reversible oxidation 162 
 5.1.5 PTP1B Inhibitor Development  163 
 5.1.5.1 Phosphotyrosine mimics 164 
 5.1.5.2     Bidentate ligands  171 
 5.1.6 Objectives 176 
5.2 Results and Discussion 179 
 5.2.1 Inhibition studies with compounds 5.26-5.29 179 
 5.2.2  Inhibition studies with compounds 5.32-5.35, 5.42, 5.43 185 
5.3 Conclusions 188 
5.4 Experimental 190 
 5.4.1 Materials 190 
 5.4.1 Purification of PTP1B 190 
 5.4.3 Kinetic Assays 191 
 5.4.2 IC50 and Ki determinations of compounds 5.7, 5.26 to 5.29 192 
 5.4.3    IC50 Determinations for compounds 5.32 to 5.35, and 5.42 and 5.43 193 
 5.4.4 Assay for Time-Dependent Inhibition with Inhibitor 5.42 194 
 5.4.5 Assay for Irreversible Inhibition with Inhibitor 5.42 194 
   
REFERE�CES 196 
   



 x 

APPE�DICES 

   
APPE�DIX A- PRELIMI�ARY KI�ETIC STUDIES WITH COMPOU�DS 3.24, 3.25 A�D 

3.32-3.34 

224 

A.1 General procedure for IC50 determinations of compounds 3.24, 3.25, 3.33 

and 3.34 
224 

A.2  Preliminary studies on the time- and concentration-dependent inhibition of 
STS with compound 3.32 

225 

    
APPE�DIX B – SUPPLEME�TARY FIGURES FOR COMPOU�DS 4.6, 4.7, 4.10, 4.11  227 
   
APPE�DIX C – SUPPLEME�TARY FIGURES FOR COMPOU�DS 5.26, 5.27, 5.28, 

5.29, 5.34, A�D 5.42 
235 

  
APPE�DIX D — PERMISSIO� TO REPRODUCE FIGURES 1.7 TO 1.13 OBTAI�ED BY 

PERSO�AL COMMU�ICATIO� WITH A COLLABORATOR 

239 

  
APPE�DIX E — PERMISSIO� TO REPRODUCE COPYRIGHT MATERIAL I� CHAPTER 

3 I� ASSOCIATIO� WITH THIS THESIS 

240 

  
APPE�DIX F — PERMISSIO� TO REPRODUCE COPYRIGHT MATERIAL I� CHAPTER 

4 I� ASSOCIATIO� WITH THIS THESIS 

241 

  
APPE�DIX G — PERMISSIO� TO REPRODUCE COPYRIGHT MATERIAL I� CHAPTER 

4 I� ASSOCIATIO� WITH THIS THESIS 

242 

 
 
 



 xi 

List of Tables 
 
 Page 
CHAPTER 1 – STEROID SULFATASE: STRUCTURE, FU�CTIO� A�D I�HIBITOR 

DEVELOPME�T 

Table 1.1 Human sulfatases: their substrates and cellular locations 4 
Table 1.2 STS inhibitors as estrone-3-O-sulfate analogs 36 
   
   
CHAPTER 2 – PURIFICATIO� OF STEROID SULFATASE 
Table 2.1 Comparison of Specific Activities of three methods to neutralize 

STS after immununoaffinity purification. 
63 

Table 2.2 Molecular mass for placental STS reported by SDS-PAGE in 
literature 

66 

Table 2.3 Comparison of literature Km values for 4-MUS substrate 69 
   
   
CHAPTER 4 – BORO�IC ACIDS AS I�HIBITORS OF STEROID SULFATASE 
Table 4.1 Ki or IC50 values for compounds 4.1, 4.6-4.10 and E1 137 
   
   
CHAPTER 5  – A� ASSESSME�T OF THE SULFO�IC ACID A�D SULPHO�AMIDE GROUPS AS 

PHOSPHOTYROSI�E MIMICS FOR PTP1B I�HIBITIO� 
Table 5.1 Inhibition of PTP1B with compounds 5.7 and 5.26-5.29 180 
Table 5.2 Inhibition of PTP1B with peptides 5.32-5.35, 5.42, 5.43, and 5.11 185 
   

 



 xii 

List of Figures 
 
  Page 
CHAPTER 1 – STEROID SULFATASE: STRUCTURE, FU�CTIO� A�D I�HIBITOR 

DEVELOPME�T 

Figure 1.1 (A) Reactions catalyzed by the formylglycine generating enzyme 
(FGE) in eukaryotes and some prokaryotes and AtsB in 
prokaryotes to convert the first cysteine in the pentapeptide 
concensus sequence (C/S-X-P/A-X-R) to a formylglycine (FGly) 
(B) Signature sequence of sulfatases 

6 

Figure 1.2 A proposed mechanism for formylglycine generation in 
eukaryotes by FGE 

8 

Figure 1.3 The formylglycine generating sequence can be introduced 
recombinantly into a gene of interest 

9 

Figure 1.4 Origins of estrogenic steroids in breast tumours 14 
Figure 1.5 Reaction catalyzed by estrone sulfotransferase (SULT1E1) 15 
Figure 1.6 Biosynthetic pathway for the production of the androgens 

testosterone and dihydrotestosterone from DHEAS 

16 

Figure 1.7 X-LI point mutation sites depicted as amino acids in the wild-type 
enzyme (Ser341, Trp372, His444, Cys446 and Gln560).   

20 

Figure 1.8 Stereographic ribbon diagram of tertiary and secondary structure 
of STS 

22 

Figure 1.9 Active site residues coordinated to the Ca2+ ion.  The 
formylglycine (FGly) is sulfated as depicted by the red oxygen and 
yellow sulfur atoms   

24 

Figure 1.10 STS active site lies at protein-lipid interface 25 
Figure 1.11 Comparison of the overall folds of human STS and ARSA   27 
Figure 1.12 Comparison of the teritary structures of four sulfatases 28 
Figure 1.13 Active site residues of sulfatases share a highly similar spatial 

arrangement 
29 

Figure 1.14 Proposed catalytic mechanism for sulfatases based on ARSB 
crystal structure evidence 

31 

Figure 1.15 Proposed catalytic mechanism for sulfatases based on ARSA 
crystal structure evidence 

32 

Figure 1.16 Proposed mechanism for sulfatases, including STS 34 
Figure 1.17 Small inorganic inhibitors of STS 35 
Figure 1.18 17α-substituted estrodiol derivative, 1.14 and 1.15, and non-

hydrolyzable estrone-3-O-sulfate derivatives 1.16-1.18 

38 

Figure 1.19 STS inhibitors discovered by library screening 39 
Figure 1.20 Estrone-3-O-sulfamate (EMATE) 40 
Figure 1.21 Addition of aryl sulfamate to aldehyde FGly residue as proposed 

by Woo and coworkers 

41 

Figure 1.22 Proposed inactivation of STS by aryl sulfamate when FGly 
hydrate initiates attack on aryl sulfamate 

42 

Figure 1.23 Elimination mechanism of the sulfamate moiety from aryl 
sulfamate resulting in multiple sulfamoylated amino acid residues 

44 



 xiii 

Figure 1.24 �,�-dimethyl-substituted EMATE, 1.26 45 
Figure 1.25 The general structure of coumarin, 1.27, and its numbering scheme 47 
Figure 1.26 Dual aromatase and steroid sulfatase inhibitors, 1.32 and 1.33 48 
   
CHAPTER 2 – PURIFICATIO� OF STEROID SULFATASE 
Figure 2.1 Structure of Triton X-100 detergent 55 
Figure 2.2 4-methylumbelliferyl sulfate (4-MUS) fluorogenic assay of STS 

and aryl sulfatases (ARSs) 
58 

Figure 2.3 Elution profile of STS activity by DEAE chromatography 59 
Figure 2.4 Elution profile of STS activity by anti-STS immunoaffinity 

chromatography 

60 

Figure 2.5 Comparison of Specific Activities of three methods to neutralize 
STS after immununoaffinity purification 

65 

Figure 2.6 pH profile of STS activity in terms of kcat measured with 4-
methylumbelliferyl sulfate (4-MUS, 2.2) as substrate 

67 

Figure 2.7 pH profile of Km values of 4-methylumbelliferyl sulfate (4-MUS, 
2.2) for STS as a function of pH 

68 

Figure 2.8 pH profile of STS activity in terms of kcat/Km measured with 4-
methylumbelliferyl sulfate (4-MUS, 2.2) as substrate 

68 

   
   

CHAPTER 3 – QUI�O�E METHIDE-GE�ERATI�G ACTIVE SITE-DIRECTED MECHA�ISM-

BASED IRREVEVERSIBLE I�HIBITORS OF STEROID SULFATASE 
Figure 3.1 General reaction scheme for mechanism-based inactivators 77 
Figure 3.2.   General scheme for activity-based proteomic profiling 78 
Figure 3.3 Compound 3.1 as a quinone-methide generating SI of a 

glycosidase 
80 

Figure 3.4 Examples of some quinone methide-generating SIs of glycosidases 
and phosphatases 

82 

Figure 3.5 Proposed quinone methide-generating inhibitors 83 
Figure 3.6 Proposed mechanism for the inactivation of STS by compound 

3.10 
84 

Figure 3.7 Time- and concentration-dependent inhibition of STS with 
inhibitor 3.10 over 20 minutes (A) and 5 minutes (B). Inset in B: 
Kitz-Wilson plot 

87 

Figure 3.8 Time- and concentration-dependent inhibition of STS with 
inhibitor 3.11 over 20 minutes (A) and 5 minutes (B) 

88 

Figure 3.9 Inactivation of STS in the presence of E1P and compound 3.10 

(A) and compound 3.11 (B) 
90 

Figure 3.10 Inactivation of STS in the presence of β-ME and compound 3.10 
(A) and compound 3.11 (B) 

92 

Figure 3.11 RP-HPLC analysis of the reaction of compound 3.9 with STS  94 
Figure 3.12 Possible products of reaction of 3.9 with STS 95 
Figure 3.13 Lineweaver-Burk plot for compound 3.9 Inset A: replot of slopes 

of Lineweaver-Burk plot versus concentration of 3.9 Inset B: 
replot of y-intercept of Lineweaver-Burk plot versus concentration 

96 



 xiv 

of 3.9 
Figure 3.14 Time- and concentration-dependent inhibition of STS with 

inhibitor 3.12 
97 

Figure 3.15 Inactivation of STS in the presence of inhibitor 3.12 and β-ME 97 
Figure 3.16 Inactivation of STS with inhibitor 3.12 in the presence of E1P 97 
Figure 3.17 RP-HPLC analysis of the reaction of inhibitor 3.12 with STS 99 
Figure 3.18 Potential modes of inhibition by compound 3.12 and its 

breakdown product, 4-formylestrone (4-FE1) 
100 

Figure 3.19 Time- and concentration-dependence of STS by 4-FE1 over 60 
minutes (A), and 30 minutes (B).  Inset in B: Kitz-Wilson plot 

103 

Figure 3.20 Inactivation of STS in the presence of E1P and 4-FE1. See § 3.4.5 
for details 

104 

Figure 3.21 Inactivation of STS in the presence of β-ME and compound 4-FE1 104 
Figure 3.22 Estra-1,3,5(10)-triene-17-one-3-carbaldehyde (3.22) 105 
Figure 3.23 A comparison of time-dependent inhibition of STS by formylated 

estrones 
105 

Figure 3.24 Schiff’s base formation between a residue on STS and 4-FE1 106 
Figure 3.25 Active site of STS 106 
Figure 3.26 1-hydroxy-2-naphthaldehyde 6-phosphate (HNA-P, 3.23), a time-

dependent inhibitor of fructose-1,6-bisphosphate aldolase 
107 

Figure 3.27 2-Hydroxymethyl estrone (3.24), and 4-hydroxymethyl estrone, 
(3.25), are potential products of hydrolysis of compounds 3.10 and 
3.11, respectively 

109 

Figure 3.28 RP-HPLC analysis of the reaction of compound 3.10 with STS  110 
Figure 3.29 RP-HPLC analysis of the reaction of compound 3.11 with STS   112 
Figure 3.30 Time- and concentration-dependent inhibition of STS by 3.14. 114 
Figure 3.31 (A) Inactivation of STS in the presence of 3.14 and E1P (B) 

Inactivation of STS in the presence of 3.14 and β-ME 
115 

Figure 3.32 Potential hydrolysis products of 3.14 116 
Figure 3.33 Relative fluorescence of 50 µM coumarins 3.28 and 3.14 versus 

λem in 0.1 M tris, pH 7.0, 5% DMSO, 0.01% Triton X-100. (λex = 
360 nm).   

118 

Figure 3.34 Change in fluorescence with time during the reaction of STS with 
500 µM 3.14 in 0.1 M tris, pH 7.0, 0.1 % Triton X-100 

118 

Figure 3.35 Proposed mechanism for the irreversible inhibition of STS by 
compound 3.29 

119 

Figure 3.36 The structure of an activity-based probe for steroid sulfatase 
proposed by Lu and coworkers 

121 

Figure 3.37 Structures of compounds 3.31-3.34 123 
   
   
CHAPTER 4 – BORO�IC ACIDS AS I�HIBITORS OF STEROID SULFATASE 
Figure 4.1 Examples of potent 17α-benzyl estradiol inhibitors of STS 

reported by Poirier and coworkers 
134 

Figure 4.2 Proposed mechanism of inhibition of serine protease enzymes by 
boronic acids 

135 



 xv 

Figure 4.3 Structure of Bortizomid 135 
Figure 4.4 Proposed mechanism of inhibition of STS by boronic acids 137 
Figure 4.5 Proposed boronic acid inhibitors of STS, 4.6-4.9 137 
Figure 4.6 Lineweaver-Burk plot for boronic acid 4.6 at pH 7.0 139 
Figure 4.7 Lineweaver-Burk plot for E1 at pH 7.0 140 
Figure 4.8 Lineweaver-Burk plot for boronic acid 4.6 at pH 8.8  141 
Figure 4.9 Lineweaver-Burk plot for boronic acid 4.7 at pH 7.0 142 
Figure 4.10 Lineweaver-Burk plot for 4.1 at pH 7.0 143 
Figure 4.11 Lineweaver-Burk analysis for 4.10 at pH 7.0 145 
Figure 4.12  Structures of compounds 4.11 and 4.12 146 
   
   
CHAPTER 5  – A� ASSESSME�T OF THE SULFO�IC ACID A�D SULPHO�AMIDE GROUPS AS 

PHOSPHOTYROSI�E MIMICS FOR PTP1B I�HIBITIO� 
Figure 5.1 (A) Protein phosphorylation is regulated by the dual action of 

protein tyrosine kinases (PTKs) and protein tyrosine phosphatases 
(PTPs)  (B) General reaction scheme for the PTP reaction that 
catalyzes phosphate ester hydrolysis via a covalent 
phosphocysteine intermediate  

153 

Figure 5.2 The role of PTP1B in insulin and leptin signalling 157 
Figure 5.3 Phosphotyrosine and its position in a hexapeptide portion of the 

epidermal growth factor receptor (EFG) 
158 

Figure 5.4 Ribbon diagram of the PTP1B tertiary structure 160 
Figure 5.5 Proposed catalytic mechanism and transition state of PTP reaction 162 
Figure 5.6 bis-(para-phosphophenyl) methane (BPPM) 163 
Figure 5.7 (A) Schematic illustration of interrelationship of redox states of 

PTP1B.  (B) Proposed mechanism for generating the sulphenyl-
amide bond 

164 

Figure 5.8 Non-hydrolyzable phosphate mimics 167 
Figure 5.9 Sulfotyrosine (sTyr) mimics of phosphotyrosine (pTyr) 168 
Figure 5.10 Non-hydrolyzable phosphate mimic, 

difluorosulfonomethylphenylalanine (F2Smp) 
169 

Figure 5.11 Carboxylic acid-containing phosphate mimics 170 
Figure 5.12 Tripeptide display platform examined by Lee and coworkers 172 
Figure 5.13 Bidentate ligands developed as inhibitors of PTP1B 174 
Figure 5.14 Isothiazolidinone-based inhibitors of PTP1B 175 
Figure 5.15 Structure of proposed sulfonate and difluorosulfonate inhibitors 176 
Figure 5.16 Phosphotyrosine mimics 177 
Figure 5.17 Proposed inhibitors of PTP1B 178 
Figure 5.18 Lineweaver-Burk plot for the inhibition of PTP1B with inhibitor 

5.26 
180 

Figure 5.19 Structure of peptide 5.37 181 
Figure 5.20 Lineweaver-Burk plot for the inhibition of PTP1B with inhibitor 

5.29 
183 

Figure 5.21 Examples of monoanionic inhibitors of PTP1B recently reported 
in literature 

184 



 xvi 

Figure 5.22 Tripeptide inhibitor 5.44 of YopH and PTP1B and a hydrophobic 
inhibitor 5.45 of PTP1B 

188 

Figure 5.23 Fluorogenic assay for PTP1B 192 
   
   
APPE�DIX A - PRELIMI�ARY KI�ETIC STUDIES WITH COMPOU�DS 3.24, 3.25 

A�D 3.32-3.34 

 

Figure A.1 IC50 plot for compound 3.24.  Inhibitor concentrations range from 
11-400 µM.  IC50 = 218 ± 12 µM. 

225 

Figure A.2 IC50 plot for compound 3.25.  Inhibitor concentrations range from 
15-400 µM.  IC50 = 158 ± 17 µM. 

225 

Figure A.3 IC50 plot for compound 3.33.  Inhibitor concentrations range from 
2-1000 µM.  IC50 = 62 ± 7 nM. 

225 

Figure A.4 IC50 plot for compound 3.33.  Inhibitor concentrations range from 
22-400 µM.  IC50 = 215 ± 8 µM. 

226 

Figure A.5 Time- and concentration-dependent inhibition of STS with 
inhibitor 3.32 over 30 minutes.   

226 

   
   
APPE�DIX B – SUPPLEME�TARY FIGURES FOR COMPOU�DS 4.6, 4.7, 4.10, 4.11  
Figure B.1 Replot of the data from Figure 4.6 to determine the Ki of inhibitor 

4.6 at pH 7.0 
227 

Figure B.2 Lineweaver-Burk plot of inhibitor 4.6 at pH 7.5 227 
Figure B.3 Replot of the data from Figure B.2 to determine the Ki of inhibitor 

4.6 at pH 7.5 
227 

Figure B.4 Lineweaver-Burk plot of inhibitor 4.6 at pH 8.0 228 
Figure B.5 Replot of the data from Figure B.4 to determine the Ki of inhibitor 

4.6 at pH 8.0 
228 

Figure B.6 Lineweaver-Burk plot of inhibitor 4.6 at pH 8.5. 228 
Figure B.7 Replot of the data from Figure B.6 to determine the Ki of inhibitor 

4.6 at pH 8.5 
229 

Figure B.8 Replot of the data from Figure 4.8 to determine the Ki of inhibitor 
4.6 at pH 8.8 

229 

Figure B.9 Replot of the data from Figure 4.9 to determine the Ki of inhibitor 
4.7 at pH 7.0 

229 

Figure B.10 Replot of the data from Figure 4.9 to determine the αKi of 
inhibitor 4.7 at pH 7.0 

230 

Figure B.11 Replot of the data from Figure 4.7 to determine the Ki of inhibitor 
estrone (E1) at pH 7.0 

230 

Figure B.12 Replot of the data from Figure 4.7 to determine the αKi of 
inhibitor estrone (E1) at pH 7.0 

230 

Figure B.13 Replot of the data from Figure 4.10 to determine the Ki of 
inhibitor 4.1 at pH 7.0 

231 

Figure B.14 Replot of the data from Figure 4.10 to determine the αKi of 
inhibitor 4.1 at pH 7.0 

231 

Figure B.15 Replot of the data from Figure 4.11 to determine the Ki of 231 



 xvii 

inhibitor 4.10 at pH 7.0 
Figure B.16 Replot of the data from Figure 4.11 to determine the αKi of 

inhibitor 4.10 at pH 7.0 
232 

Figure B.17 IC50 plot for inhibitor 4.8 at pH 7.0 232 
Figure B.18 IC50 plot for inhibitor 4.9 at pH 7.0 232 
   
   
APPE�DIX C – SUPPLEME�TARY FIGURES FOR COMPOU�DS 5.26, 5.27, 5.28, 

5.29, 5.34, A�D 5.42 
233 

Figure C.1 Replot of the data from Figure 5.19 to determine the Ki of 
inhibitor 5.26 

233 

Figure C.2 Lineweaver-Burk plot of compound 5.27 233 
Figure C.3 Replot of the data from Figure C.2 to determine the Ki of inhibitor 

5.27 
234 

Figure C.4 Lineweaver-Burk plot of compound 5.28 234 
Figure C.5 Replot of the data from Figure C.4 to determine the Ki of inhibitor 

5.28 
235 

Figure C.6 Replot of the data from Figure 5.21 to determine the Ki of 
inhibitor 5.29 

235 

Figure C.7 IC50 of compound 5.42 using 3 nM PTP1B 236 
Figure C.8 IC50 of compound 5.42 using 1.5 nM PTP1B 236 
Figure C.9 IC50 of compound 5.42 using 6.0 nM PTP1B 237 
Figure C.10 IC50 of compound 5.34 237 
Figure C.11 IC50 of compound 5.35 238 
Figure C.12 IC50 of compound 5.43 238 
   
 



 xviii 

List of Abbreviations 
 
Abbreviation Full name 

ABP Activity-based probe 
Adiol Andro-5-ene-3β,17β-diol 
Adione Androstenedione 
ADP Adenosine diphosphate 
AH Addition-Hydrolysis  
ARS Arylsulfatase 
ARSA Arylsulfatase A 
ARSB Arylsulfatase B 
ARSC Arylsulfatase C, also called Steroid Sulfatase (STS), Estrone 

Sulfatase (ES) 
AP Alkaline phosphatase 
ATP Adenosine triphosphate 
β-ME β-mercaptoethanol 
BPPM bis-(para-phosphophenyl) methane 
BSA Bovine serum albumin 
3β-HSD 3β-hydroxysteroid dehydrogenase isomerase 
17β-HSD 17β-hydroxysteroid dehydrogenase 
CA II Carbonic anhydrase II 
CCK Cholecystokinin 
CD45 Cluster for differentiation 45 
cDNA Complementary deoxyribonucleic acid 
CHO Chinese hamster ovary cells 
CMC Critical micelle concentration 
667-COUMATE 667 4-methyl coumarin sulphamate 
COUMATE 4-methyl coumarin sulphamate 
Da Dalton 
DASI Dual aromatase and STS inhibitor 
DEAE Diethylaminoethyl cellulose 
DFMP α,α-difluoromethylenephosphonic acid 
DHEA Dehydroepiandrosterone 
DHEAS Dehydroepiandrosterone Sulfate 
DHEA-STS Dehydroepiandrosterone Sulfatase 
DiFMUS Difluoro-4-methyl-umbelliferyl sulfate 
DiFMUP Difluoro-4-methyl-umbelliferyl phosphate 
DFMP Difluoromethylene phosphonate 
DMSO Dimethylsulfoxide 
DNA Deoxyribonucleic acid 
DSPs Dual-specificity phosphatases 
DTT Dithiothreitol 
EE Ethinyl estradiol 
293-EBNA human embryonic kidney cells expressing Epstein Barr virus nuclear 

antigen-1 
E.C. Enzyme Commission 



 xix 

E-I Enzyme-Inhibitor complex 
E1 Estrone 
ECM Extracellular matrix 
EGFR Epidermal growth factor 
EMATE Estrone-3-O-sulphamate 
E1-3-MTP Estrone Methylthiophosphonate 
E1S Estrone-3-O-sulfate 
E1P Estrone-3-O-phosphate 
E2 Estradiol 
ER Estrogen receptor 
ER+ Estrogen receptor-postive 
ER- Estrogen receptor-negative 
ESI Electrospray ionization 
4-DFME 4-difluoromethyl estrone 
4-FE 4-Formylestrone 
FGE Formylglycine generating enzyme 
FGly Formylglycine 
FGS Formylglycine Sulfate 
FOMT fluoro-O-malonyl tyrosine 

F2Pmp α,α-difluoromethylenephosphonic acid 

GABAA γ-aminobutyric acidA 
GSH Glutathione 
HEK Human embryonic kidney cells 
HEPES N-2-Hydroxyethylpiperazine-N’-2-ethanesulfonic acid 
HPLC High pressure liquid chromatography 
IL-6 Interleukin 6 
IPTG Isopropyl-β-D-thiogalactopyranoside 
IR Insulin receptor 
IRS Insulin receptor substrates 
JAK2 Janus kinase 2 
kb kilobase 
kDa Kilodalton 
LC-MS Liquid chromatography mass spectrometry 
LMW Low molecular weight 
LNCaP Prostate cancer cell line 
MALDI Matrix-assisted laser/desorption ionization 
MBI Mechanism-based inhibitors 
MCF-7 Human breast cancer cell line 
MLD Metachromatic Leukodystrophy 
MS Mass spectrometry 
MSD Multiple Sulfatase Deficiency 
4-MUS 4-Methylumbelliferyl Sulfate 
4-MU 4-Methylumbelliferone 
NCBI National Centre for Biotechnology Information 
NMR Nuclear magnetic resonance 
NRPTP Non-receptor protein tyrosine phosphatase 



 xx 

mRNA Messenger ribonucleic acid 
ObR Leptin receptor 
OMT O-malonyl tyrosine 
PAPS 3’-phosphoadenosine-5’-phosphosulfate 

PARS Pseudomonas aeruginosa aryl sulfatase 
PDB Protein Data Bank 
p-NCS Para-nitrocatechol sulfate 
pI Isoelectric point 
PMP Phosphonomethyl phenylalanine 
PRL Phosphatase of regenerating liver  
PTEN Phosphatase and tesin homolog  
PTK Protein tyrosine kinase 
PTP Protein tyrosine phosphatase 
PTP1B Protein tyrosine phosphatase 1B 
pTyr Phosphotyrosine 
RBC Red blood cell 
RER Rough Endoplasmic Reticulum 
RFU(s) Relative Fluorescence Unit(s) 
rmsd Root mean square deviation 
RP-HPLC Reverse Phase High Performance Liquid Chromatography 
RPTP Receptor protein tyrosine phosphatase 
S Svedberg 
SD-1 Subdomain 1 
SD-2 Subdomain 2 
SDM Site-directed mutagenesis 
SDS PAGE Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis 
SI Suicide inhibitor 
SPPS Solid phase peptide synthesis 
STS Steroid Sulfatase 
SULT1E1 Estrone sulfotransferase (E.C. 2.8.2.4) 
sTyr Sulfotyrosine 
sumf1 Sulfatase modifying factor 1 gene 
TE Transesterification-elimination 
Th cell T helper cell 
TNFα Tumour necrosis factor alpha 
X-LI X-linked ichthyosis 
 



 1 

Chapter 1 – Steroid Sulfatase: Structure, Function and 

Inhibitor Development
†
 

 
 

 

1.1 Introduction 

1.1.1 The sulfatase family of enzymes 

 The sulfatase family is a class of enzymes that were discovered in eukaryotes 

and prokaryotes sporadically during the 20th century without receiving much research 

focus.  It was originally thought that the role of these enzymes was limited to the 

degradation of organic sulfates in soil in prokaryotes or to render mammalian 

metabolites soluble for excretion in eukaryotes. The sulfatases began to receive more 

careful attention in the 1960s due to the discovery that they were responsible for human 

lysosomal storage disorders when deficiencies in certain sulfatases occurred.  Sulfatases 

are now understood to have roles in diverse processes such as hormone regulation, 

cellular degradation, bone and cartilage development, intracellular communication, and 

signalling pathways (Hanson et al., 2004).  As listed in Table 1.1 there are currently 

seventeen members identified in the human sulfatase family (Obaya, et al., 2006; 

Sardiello et al., 2005) whose function is to catalyze the hydrolysis of sulfate monoester 

bonds (RO-SO3
-) from various physiological substrates such as hydrophobic steroid 

sulfates, water-soluble mono- and disaccharide sulfates, and amphiphilic carbohydrate 

                                                 
† Figures 1.7 to 1.13 in this chapter were provided courtesy of a collaborator, Dr. 

Debashis Ghosh of the Hauptman-Woodward Medical Research Institute and Roswell 
Park Cancer Institute, Buffalo, N.Y, and are reproduced herein with his express written 
consent as noted in Appendix E. 
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sulfates from glycosaminoglycans, proteoglycans, glycolipids.  The reason many 

members of the class are named aryl sulfatases (ARSs) is because their ability to 

hydrolyze the sulfate ester bond from non-natural aryl substrates, such as p-nitrocatechol 

sulfate (p-NCS) (Roy, 1971), was discovered before their physiological substrates were 

known.  Six members of the family reside in lysosomes, are soluble, and function at 

acidic pH in the degradative pathways of glycosaminoglycans and sulfolipids.  Five 

other members are associated with organelle membranes where they function at neutral 

pH.  Before being targeted to these cellular locations, sulfatases are extensively 

glycosylated in the secretory pathway (Stein et al., 1989).  Two cell-surface 

carbohydrate sulfatases that reside in the extracellular matrix (ECM) have also been 

identified, hSulf1 and hSulf2 (Morimoto-Tomita et al., 2002).  These sulfatases remove 

6-O-sulfate endo-groups on glucosamine in heparan sulfate with the effect of fine-tuning 

the sulfation pattern of this glycosaminoglycan.  Thus, the hSulf1 and hSulf2 sulfatases 

may have a role in the development and the pathogenesis of pancreatic cancer 

(Uchimura et al., 2006; Li et al., 2005). Four new human sulfatase genes, encoding aryl 

sulfatases ARSH, ARSI, ARSJ, and ARSK, have recently been identified and while 

their substrates and subcellular locations are still unknown, their expression is restricted 

mainly to embryonic tissues and cancer cell lines (Sardiella et al., 2005; Obaya, 2006). 

 The sulfatase class is highly conserved in sequence and structurally across 

members.  For example, there is a 20-60% sequence homology over the entire protein 

length and particular homology is attributed to the N-terminal region where sulfatase 

concensus motifs are present (Ghosh, 2007).  The level of homology has lead to a theory 

that all sulfatases arise from a common genetic ancestor (Peters et al., 1990; Meroni et 
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al., 1996; Parenti et al., 1997).  One of the most distinctive features of the sulfatase class 

is the presence of a post-translationally installed 2-amino-3-oxypropanic acid, or α-

formylglycine (FGly), residue that is established as a result of a post-translational 

modification that is unique in nature, as discussed in detail in § 1.1.2 and Figure 1.1A.  

Until recently, the sulfatase enzyme family was the only known example to carry a post-

translationally installed FGly residue.  A recent report structurally and kinetically 

characterized a phosphonate monoester hydrolase/phosphodiesterase derived from 

Rhizobium leguminosarum that bears a FGly post-translational modification (Jonas et al., 

2008).  This is the first example of a non-sulfatase to carry an active site FGly residue 

and to use it as a nucleophile in the catalytic manner of sulfatases.  In addition the R. 

leguminosarum phosphonate monoyhydrolase possesses a close structural homology to 

the α/β core seen in sulfatases, although their sequences have diverged considerably. 

These findings support a theory that sulfatases belong to the alkaline phosphatase 

superfamily (O’Brien and Herschlag, 1998).   
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Table 1.1.  Human sulfatases: their substrates and cellular locations 

Sulfatase Name Abbreviation Location Natural 
Substrate 

Reference 

Aryl sulfatase A ARSA Lysosome Cerebroside sulfate Stein et al., 1989 

Aryl sulfatase B ARSB Lysosome Dermatan sulfate Peters et al.,1990; 
Anson et al., 1992 

Steroid Sulfatase STS, ARSC ER Steroid sulfates Stein et al., 1989 
Aryl sulfatase D ARSD ER Unknown Franco et al., 1995 

Aryl sulfatase E ARSE Golgi 
apparatus 

Unknown Franco et al., 1995 

Aryl sulfatase F ARSF ER Unknown Puca et al., 1990 

Aryl sulfatase G ARSG ER Unknown Ferante et al., 2002 

Aryl sulfatase H ARSH Unknown Unknown Sardiello et al., 
2005; Obaya, 2006 

Aryl sulfatase I ARSI Unknown Unknown Sardiello et al., 
2005; Obaya, 2006 

Aryl sulfatase J ARSJ Unknown Unknown Sardiello et al., 
2005; Obaya, 2006 

Aryl sulfatase K ARSK Unknown Unknown Sardiello et al., 
2005; Obaya, 2006 

Galactosamine (N-
acetyl)-6-sulfatase 

GALNS Lysosome Keratin sulfate, 
Chondroitin sulfate 

Tomatsu et al., 
1991 

Glucosamine (N-
acetyl)-6-sulfatase 

G6S Lysosome Heparan sulfate 
Keratan sulfate 

Scott et al., 1995 

N-sulfoglucosamine 
sulfohydroloase 

SGSH Lysosome Heparan sulfate Freeman and 
Hopwood, 1991 

Iduronate-2-
sulfatase 

IDS Lysosome Dermatan sulfate, 
Heparan sulfate 

Bielicki et al., 1993 

Endo sulfatase 1 Sulf 1 ECM Heparan sulfate Morimoto-Tomita et 
al., 2002 

Endo sulfatase 2 Sulf 2 ECM Heparan sulfate Morimoto-Tomita et 
al., 2002 

 

1.1.2 Formylglycine  

All FGly-containing sulfatases in eukaryotes have a signature pentapeptide 

motif 1 , (Cys/Ser)-Xxx-(Pro/Ala)-Xxx-Arg, responsible for directing the post-

translanslational modification of FGly at the site of the first cysteine residue, as shown 

in the partial alignment in Figure 1.1B.  In prokaryotes this modification occurs at the 

site of the first serine residue and is catalyzed by an Fe-S cluster enzyme termed AtsB 

(Szameit et la., 1999).  Biochemical data provides evidence that FGly is essential for 

catalysis in sulfatases (Dierks et al., 1997, Miech et al., 1998, Selmer et al., 1996).  In 

                                                 
1 According to the Prosite website (http://us.expasy.org/prosite), the N-glycosylation sulfatase signature 
sequence accession number is PS00523. 
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humans the essential FGly modification is underscored by serious pathological 

consequence, multiple sulfatase deficiency (MSD, Dierks et al., 2003), a lysosomal 

storage disorder that occurs due to a dysfunction in the enzyme responsible for 

catalyzing the installation of FGly.  Multiple sulfatase deficiency is a rare autosomal 

recessive disease and is further discussed in § 1.2.7.  Symptoms are severe and include 

ataxia, progressive loss of motor abilities, speech, vision and hearing, organomegaly and 

eventually death.  The enzyme responsible for catalyzing the FGly modification was 

recently isolated, cloned and sequenced and is termed formylglycine-generating enzyme 

(FGE) and is encoded for by the sulfatase modifying factor 1 (sumf1) gene (Cosma et al., 

2003; Dierks et al., 2003).  Mutations to the gene coding for FGE lead to an inactive 

enzyme and this causes an absence or an incompletely modified Cys → FGly 

modification in all human sulfatases.   
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 1 2 3 4 5 6 7 8 9 10 11 12 ExPASY Accession 

Number
*
 

ARSA C T P S R A A L L T G R P15289 
ARSB C T P S R S Q L L T G R NP_000037 
STS C T P S R A A F M T G R P08842 
PARS C S P T R S M L L T G T P51691 
 

Figure 1.1.  (A) Reactions catalyzed by the formylglycine generating enzyme 
(FGE) in eukaryotes and some prokarytoes and AtsB in prokaryotes to convert 
the first cysteine in the pentapeptide concensus sequence (C/S-X-P/A-X-R) to a 
formylglycine (FGly).  (B) Signature sequence of sulfatases. A partial alignment 
of sulfatase genes from ARSA, ARSB, STS and PARS shows homology of the 
sulfatase signature sequence. This sequence is essential for directing the 
formylglycine generating enzyme to convert the first amino acid residue of the 
sequence to FGly.   
 

FGE is located in the endoplasmic reticulum and mediates the modification 

during, or shortly after translocation of newly translated, unfolded target sulfatase to the 

membrane of the endoplasmic reticulum (Dierks et al., 1997).  Once the target sulfatase 

has folded, the cysteine residue is buried in a deep cleft and becomes inaccessible to 

FGE (Boltes et al., 2001; Lukatela et al., 1998).   

The mechanism for modification of Cys → FGly is a multi-step redox process 

that requires calcium, molecular oxygen, and a reducing agent to generate FGly via a 

                                                 
*
 Please see the website: http://us.expasy.org/prosite operated by the Swiss Institute of Bioinformatics. 
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cysteine sulfenic acid intermediate (Fey et al., 2001; Dierks et al., 2005).  Notably, the 

process does not employ any cofactors or any redox-active metal ions and molecular 

oxygen serves as the terminal electron acceptor.  This redox process has been emulated 

in vitro using model peptides as substrates and dithiothreitol as a reducing agent (Dierks 

et al., 2003; Preusser-Kunze et al., 2005).  The FGE redox process is unusual because 

many redox enzymes use metals in Fe-S- or Mo-Fe-clusters, or Ni2+ or Cu2+ to exchange 

electrons during catalysis.  Alternatively, redox enzymes employ nucleotide or protein 

cofactor such as NAD(P)+, or FAD. The three-dimensional crystal structures of human 

FGE was elucidated in six different redox environments to provide structure-based 

evidence for a mechanism (Dierks et al., 2005).  These structures reveal that the 

substrate-binding cleft bears a redox-active cysteine pair (Cys336 and Cys341) that is 

prone to oxidation to a disulfide bond in the presence of molecular oxygen.  A 

mechanism has been proposed where a mixed disulfide forms between the target 

sulfatase substrate and Cys341 of FGE as shown in step (A) of Figure 1.2, while the 

other FGE cysteine residue, Cys336 is oxidized to a sulfenic acid (SOH) as shown in 

step (B).  In the next step (C), transfer of the hydroxyl group from Cys336 to the 

substrate sulfatase cysteine residue occurs and the FGE disulfide Cys336/Cys341 pair is 

regenerated (D).  An attack by a catalytic base occurs at Cβ of the substrate cysteine 

sulfenic acid to eliminate H2O and generate the thioaldehyde intermediate (E), which is 

hydrolyzed to formylglycine (F), and can undergo further hydrolysis to form a 

formylglycine hydrate (H).  In addition to crystal structure evidence for FGE under 

various oxidation states, this mechanism has been further supported by evidence 
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obtained by X-ray crystal structures2 of FGE in complex with model peptides (Roeser et 

al., 2006).  The model peptides, CTPSR and LCTPSRA, were based on the pentapeptide 

FGE-directing amino acid sequence of arylsulfatase A (ARSA).  The X-ray crystal 

structure obtained of a complex between an expressed FGE mutant Cys341Ser and 

CTPSR demonstrate direct evidence of a disulfide bond between Cys336 of the mutant 

ARSA and the cysteine residue of the pentapeptide (Roeser et al., 2006). 

 

SH
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OH

Cys336HSCys341
Cys336

S
S

D
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OH

H2O SHOHOHHO

FH

Sulfatase-Cys

Sulfatase-Cys Sulfatase-Cys

Sulfatase-CysSulfatase-CysSulfatase-CysSulfatase-Cys E

 

Figure 1.2.  A proposed mechanism for formylglycine generation in eukaryotes 
by FGE. 
 

Through genetic evaluation of patients with MSD to date, a total of 18 missense 

mutations have been found to occur to FGE over 17 different residues.  By mapping the 

locations of these mutations on the three-dimensional X-ray crystal structure of FGE it 

becomes clear that they have serious effects on residues involved in structural stability, 

                                                 
2 Protein Data Bank ID numbers: 2aij, 2aik 
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substrate binding, and catalysis (Dierks et al., 2005).  Thus, there is a molecular basis for 

MSD.  

 It is interesting to note that a strategy has been reported recently where the 

pentapeptide sequence, CXPXR, responsible for directing modification of Cys → FGly 

can be inserted into a gene of interest to produce a recombinant protein for expression in 

E. coli (Carrico et al., 2007).  As illustrated in Figure 1.3 prokaryotes such as E. coli 

have the ability to convert the cysteine residue in the pentapeptide sequence CXPXR to 

FGly via FGE.  This sulfatase motif can serve as an FGly-directing modification for the 

site-specific introduction of an aldehyde tag which can be chemoselectively modified 

with an an aminooxy- or hydrazide-functionalized reagent.  The protein can then be 

labeled with a fluorescent dye in this manner.  

 

Figure 1.3.  The formylglycine generating sequence can be introduced 
recombinantly into a gene of interest and E. coli formylglycine-generating 
enzyme (FGE) can be exploited to generate an aldehyde tag at this site.  The 
aldehyde serves as a handle to which a fluorescent dye can be attached 
(Adapted from Carrico et al., 2007). 
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1.2 Steroid sulfatase 

1.2.1 STS expression and location  

 Much of the work in this thesis is concerned with the development of inhibitors 

of an enzyme known as steroid sulfatase (STS).  Human steroid sulfatase (E.C. 3.1.6.2) 

is an enzyme responsible for modulating the levels of steroid hormones.  It is an integral 

membrane protein localized in the rough endoplasmic reticulum (Stein et al., 1989), 

lumen-oriented, and catalyzes the hydrolysis of sulfur ester bonds from diverse 3-O-

sulfated steroids such as cholesterol sulfate, pregnelone sulfate, dehydroepiandrosterone 

sulfate and estrone sulfate.  It was long thought that sulfated steroids merely represented 

a means to excrete these steroids, however, it is now well established that STS serves to 

convert these inactive precursors to their active, desulfated counterparts that feed into 

pathways for steroid-based signaling (Noel et al., 1981).  STS is ubiquitously expressed 

in mammalian tissues (Warren and French, 1965).  STS activity is detected in tissues 

ubiquitously in small quantities (Dooley et al., 2000; Martel et al., 1994).  It is most 

richly expressed in placenta, and is also prevalent in testis, ovary, adrenal glands, 

fallopian tubes, prostate, skin, brain, fetal lung, viscera, endometrium, peripheral blood 

lymphocytes, aorta, kidney and bone (Miki et al., 2002).   

 STS contains four possible �-linked glycosylation sites as a result of post-

translation modifications (Stein et al., 1989; Yen et al., 1987).  The site of post-

translational modification is dictated by a consensus sequence 3  Asn-Xaa-Ser/Thr.  

However, despite the consensus sequence the four possible glycosylation sites are not 

always glycosylated.   Digestion studies performed with endoglycosidase H shows that 

                                                 
3 According to the Prosite website (http://us.expasy.org/prosite), the N-glycosylation sulfatase 
signature sequence is  PS00149. 
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at least two sites, Asn47 and Asn259, of the four potential sites are glycosylated.  The 

exact functional significance of these glycosylations with regard to modulating STS 

activity was not shown until recently when mutation studies were reported (Stengel et al., 

2008).  When the mutations N47Q and N259Q were made, the STS activity was 

significantly reduced, while STS mutants bearing N333Q, N459Q and N54Q had 

activity comparable to the wild type enzyme.   

The STS gene lies on the distal short arm of the X-chromosome and has been 

cloned, sequenced and characterized (Yen et al., 1988)4
.   The 146-kb gene is comprised 

of 10 exons, with introns ranging from 102 bp up to 35 kb in size.  The cDNA for STS 

has also been cloned and sequenced (Yen et al., 1987; Stein et al., 1989)5.   It encodes a 

583-amino acid protein with a short signal peptide of 21-23 amino acids and the four �-

glycosylation motifs. Its apparent size is 63.5 kDa including the signal peptide that is 

cleaved during translocation to the endoplasmic reticulum in addition to the processing 

of the �-oligosaccharide chains, leaving a 61 kDa protein.  However, there is disparity 

in the literature regarding the molecular size of STS purified from human placenta due 

to the presence of various �-linked glycosylations (Stein et al., 1989; Yen et al., 1987).  

There is no current agreement in the literature regarding molecular regulation of STS 

transcription.  There was evidence that both cytokines TNFα and IL-6 up-regulate STS 

activity in MCF-7 breast cancer cells (Purohit et al., 1997).  However, this was refuted 

by evidence that the change in activity was effected post-translationally and not due to a 

change in gene transcription (Newman et al., 2000).  Nevertheless, there is strong 

evidence that upregulation of STS activity is a factor in hormone-dependent cancers 

                                                 
4 GenBank accession no. M23945 
5 GenBank accession no. M16505 and J04964 
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such as breast cancer (Miyoshi et al., 2003; Suzuki et al., 2003).  For this reason the 

enzyme has become a target for design of small molecule therapeutics. 

1.2.2 STS and hormone-dependent breast cancer 

The levels of sulfated estrogens are regulated through the actions of steroid 

sulfatase and sulfotransferase.  Sulfated steroids are unable to bind to steroid hormone 

receptors and are biologically inactive until hydrolysis of their sulfate ester bond is 

catalyzed by steroid sulfatase.  Circulating plasma concentrations of the sulfated steroids, 

estrone-3-O-sulfate (E1S), and dehydroepiandrosterone sulfate (DHEAS), are 

significantly higher than those of their non-sulfated counterparts, estrone (E1), and 

dehydroepiandrosterone (DHEA) (Noel et al., 1981).  In addition, the half-life of E1S 

and DHEAS in plasma is about 10-12 hours, which is considerably longer than the 30-

40 minute half-life of E1 and DHEA (Ruder et al., 1972).  For these reasons, the role of 

sulfated steroids is seen a storage reservoir that acts as a source of biologically active 

steroid hormones when activated by STS. 

 Research directed toward STS has intensified in the last 15 years due to its role 

in estrogen receptor-positive (ER+) hormone-dependent breast and endometrial cancer.  

These types of endocrine-dependent cancers occur most frequently in post-menopausal 

women which is paradoxical as ovarian production of estrogen has stopped.  Instead of 

local production of estrogens in tumours, the growth of the tumour is stimulated by 

estrogen produced by enzymes in peripheral tissues.  For example, androstenedione is 

produced in the adrenal cortex and converted to E1 by the enzyme complex aromatase 

(James et al., 1987; Reed et al., 1989) (Figure 1.4).  Subsequently, estrone is converted 

to E1S via estrone sulfotransferase (SULT1E1, E.C. 2.8.2.4) using 3’-
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phosphoadenosine-5’-phosphosulfate (PAPS) as a cofactor as illustrated in Figure 1.5 

(Williams et al., 2008).  The E1S produced in this fashion now acts as an estrogen 

reservoir in tissue and in plasma (Hobkirk, 1993; Reed and Purohit, 1993; Reed et al., 

1994).  There is agreement that estrogen formed in breast tumours is produced largely 

by the action of STS and not through that of aromatase (Santner et al., 1984; Masamura 

et al., 1996).   
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Figure 1.4.  Origins of estrogenic steroids in breast tumours.  The aromatase 
route forms estradiol which stimulates tumour cells. However, estradiol is also 
formed via STS. Additional stimulation of tumour growth occurs via 
Androstenediol production. Abbreviations: 17-β-HSD, 17-β-hydroxysteroid 
dehydrogenase; 3-β-HSD-isomerase, 3-β-hydroxysteroid dehydrogenase; ER, 
estrogen receptor. 
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Figure 1.5.  Reaction catalyzed by estrone sulfotransferase (SULT1E1). 

Many aromatase inhibitors for treating ER+ breast cancer have been developed 

but have shown limited efficacy.  In a stage III clinical trial of a potent aromatase 

inhibitor designed to block the production of estrone, only 11% of patients treated 

showed any response measured by the study’s endpoints (Jonas et al., 1996).  This major 

study highlights the inadequacy of blocking estrogen biosynthesis through inhibition of 

aromatase alone.  This is because the reservoir of E1S is a source of estrogen when 

activated by STS, and estrogen stimulates tumour growth despite inhibition of its 

synthesis by aromatase.  The other factor is that inhibition of aromatase does not prevent 

production of an androgen named 5-androsetenediol (Adiol) that is able to bind to the 

estrogen receptor and stimulate growth of tumour cells (Poulin and Labrie, 1986).  As 

E1S represents a storage reservoir of E1, so too does the sulfated form of Adiol.  

Evidently, 90% of Adiol in post-menopausal women originates from DHEAS, whose 

desulfation is also catalyzed by STS (Poortman et al., 1980).  Thus, the strategy to 

curtail stimulation of ER+ tumour cells should include blocking the production of both 
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estrogen and Adiol.  In addition to blocking aromatase activity, steroid sulfatase activity 

must also be blocked. 

1.2.3 STS action in prostate cancer 

DHEAS is an androgen produced primarily by the adrenal cortex, and can be 

converted to testosterone and dihydrotestosterone in prostate tissue as shown in Figure 

1.6 (Harper et al., 1974, Boivin et al., 2000).  These two steroids stimulate prostate 

tumour growth (Labrie et al., 1996).  STS activity has been detected in prostatic gland 

where it serves as a major peripheral source of active androgen production (Farnsworth., 

1973).  In addition, STS activity has been demonstrated in a prostatic cancer cell line, 

LNCaP (Selcer et al., 2002).  When LNCaP cells were treated with a potent STS 

inhibitor, STS activity was almost completely blocked.  This example demonstrates a 

potential application of STS inhibitors as therapeutics for prostate cancer treatment. 
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Figure 1.6.  Biosynthetic pathway for the production of the androgens 
testosterone and dihydrotestosterone from DHEAS (3β-HSD/∆4,5 isomerase is 
3β-hydroxysteroid dehydrogenase/∆-4,5 isomerase) (Adapted from Boivin et al., 
2000). 
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1.2.4 STS and skin  

STS is also active in the epidermis where it plays a role in local androgen 

production.  A deficiency of STS is the cause of X-linked ichthosis (X-LI) and is further 

discussed in § 1.2.7.  Individuals with X-LI experience scaling of the skin and a 

thickened stratum corneum (Hernandez-Martin et al., 1999).  Lipids form an important 

part of the stratum structure, and their absence make desqamation, or skin flaking, more 

difficult, leading to scaling.  Without STS activity in the epidermis cholesterol sulfate 

accumulates as indicated by its higher than normal concentration in affected individuals 

compared to normal ones.  Development of STS inhibitors for treatment of other 

diseases may cause a side effect of reduced STS activity in the skin.  Treatment of X-LI 

is achieved through topical application of cholesterol cream and keratolytics such as 

ammonium lactate.   

 STS activity also plays a role in hair follicles by mediating conversion of 

DHEAS to 5α-dihydrotesterone, which activates the androgen receptor in hair follicles 

(Hoffman et al., 2001).  Individuals with androgenetic alopecia show elevated levels of 

DHEAS (Pitts et al., 1987).  It is proposed that there is a correlation between STS 

deficiency and androgenetic alopecia.  It has also been proposed that increased STS 

activity is correlated with acne vulgaris according to studies examining STS 

immunoreactivity in affected skin (Chen et al., 2002).  

1.2.5 STS and neurofunction 

In the brain, DHEAS and DHEA are suggested to act as a neurosteroid 

(Majewska et al., 1995; Baulieu and Robel, 1996).  It is thought that DHEAS acts as a γ-

aminobutyric acidA (GABAA) receptor antagonist, increasing neuronal excitability 
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(Park-Chung et al., 1999).  Conversely, DHEA acts as a GABAA receptor agonist (Park-

Chung et al., 1999).  Studies in rodents indicated that DHEAS and DHEA are formed in 

the brain, in addition to their production in the adrenal cortex.  However, a recent study 

on human temporal lobe biopsy samples showed that DHEA and DHEAS are not 

formed de novo in the brain due to lack of activity and mRNA expression of the 

enzymes essential for DHEA(S) synthesis (Steckelbroek et al., 2004).  Rather, DHEA 

production in the brain is likely due to STS conversion of DHEAS, as suggested by high 

levels of mRNA and strong activity of this enzyme.  It is hypothesized that DHEAS 

originates from peripheral sources and is transported across the blood-brain barrier (Kriz 

et al., 2008).  Other studies of the role of STS activity in the brain have shown that 

certain STS inhibitors enhanced learning and spatial memory in rats (Li et al., 1996; Le 

Roy et al., 1999).  

1.2.6 STS and the immune system 

There are reports that DHEA modulates regulation of T-helper (Th) cell 

maturation into Th1- but not Th2-type profile (Daynes et al., 1990; Rook et al., 1994).  

DHEA has the ability to prevent release of cytokines from Th2 cells in vitro, while 

DHEAS does not.  STS is present in macrophages and because it mediates conversion of 

DHEAS to DHEA, it has a significant effect in regulating part of the immune response 

(Daynes et al., 1993).   

1.2.7 Sulfatase deficiencies 

The physiological significance of the sulfatases is underscored by the breadth of 

diseases that result from their deficiency (Bilabio and Shapiro, 1995).  For example, 

point mutations to the arylsulfatase A (ARSA) gene cause a catalytic deficiency 
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resulting in a severe disorder of metabolic metabolism termed metachromatic 

leukodystrophy (MLD) (Kolodny et al., 1997).  The onset of this disorder may occur at 

any age and is caused by accumulation of cerebroside sulfates in the white matter of the 

central and peripheral nervous system with dire neurological outcome. 

Deficiency in arylsulfatase B (ARSB) is caused by genetic point mutations and 

results in a rare autosomal inherited disorder Maroteaux-Lamy syndrome.  It is a 

mucopolysaccharidosis characterized by accumulation of muclopolysaccarides in the 

skeletal and nervous system, clouded cornea and increased urinary excretion of 

dermatan sulfates (Evers et al., 1996).  ARSB deficicency may also have a role in cystic 

fibrosis, a condition characterized by excessive accumulation of secretions, including 

the sulfated glycosaminoglycans, chondroitin sulfate and dermatan sulfate (Tobacman et 

al., 2003).  There are efforts to treat sulfatase deficiencies in humans with functional 

recombinant enzymes. For example, galsulfatase is a recombinant form of human 

ARSB and has been approved in the United States for the treatment of 

mucopolysaccharidosis (Hopwood et al., 2006).  

Deficiency in STS due to a gene deletion and point mutations results in a 

condition called X-linked ichthyosis (XL-I) (Alperin and Shapiro, 1997).  This inborn 

error in metabolism is due to a complete deletion of the 146-kb STS gene and its 

substantial flanking regions.  Alternatively, XL-I can also result from point mutations 

within the STS gene, leading to a translation of a catalytically inactive STS protein 

(Alperin and Shapiro, 1997).  Specifically, seven point mutations of the STS gene have 

been reported, all of which are located near the C-terminal domain (Alperin and Shapiro, 

1997; Hernandez-Martin et al., 1999; Sugawara et al., 2000).  Six of these point 
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mutations produce amino acid substitutions and one premature termination of translation 

of the full length protein.  The six amino acid substitutions are Ser34Leu, Trp372Arg, 

Trp372Pro, His444Arg, Cys446Tyr and Gln560Pro.  The seventh mutation which 

consists of a 19-base pair insertion at nucleotide 1477 at the splice junction of exon 8 

and intron 8, produces a shift in the open reading frame and termination of protein 

translation at residue 427.  The six substitution mutations have been mapped them onto 

the three-dimensional structure of STS in Figure 1.7 (Ghosh, 2004).  The locations of 

these mutations occur near catalytically active amino acids or the enzyme’s membrane-

associating motifs and most likely destabilize the active site architecture to a point 

where the enzyme is inactivated.  Multiple sulfatase deficiency is manifested by large 

dark scales on the skin and by inreased stratum corneum thickness (Williams et al., 

1981).  Because cholesterol sulfate is one of the substrates of STS, there is a 5-fold 

increased concentration of this substance in the stratum corneum of individuals affected 

by XL-I compared to that of normal individuals. 

 

Figure 1.7.  X-LI point mutation sites depicted as amino acids in the wild-type 
enzyme (Ser341, Trp372, His444, Cys446 and Gln560).  Also shown are the 
catalytic residue, formylglycine 75 (FGly75), the bivalent cation Ca2+ and a 
modeled DHEA-sulfate are shown.  The two potential glycosylation sites (Asn47 
and Asn259) in this region are also shown, each with an N-acetyl glucosamine.  
(Obtained courtesy of Dr. D. Ghosh through personal communication.) 
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1.2.8 Crystal structure of STS 

The X-ray crystal structures of four sulfatases have been published.  There are 

structures for three human enzymes, arylsulfatase A (ARSA, Lukatela et al., 1998), 

arylsulfatase B (ARSB, Bond et al., 1997), and human placental steroid sulfatase (STS, 

Hernandez-Guzman et al., 2003).  There is one structure for a bacterial sulfatase, 

Pseudomonas aeruginosa arylsulfatase (PARS, Boltes et al., 2001).  There are also two 

more unpublished sulfatase crystal structures currently held in the Protein Data Bank 

(PDB), those for Bateroides fragilis
6 and Bacteroides thetaiotomicron

7.  An overlay of 

active site of human ARSs and PARS reveal a highly conserved architecture (Ghosh, 

2007). 

The crystal structure of human steroid sulfatase purified from placental 

microsomes was resolved to a 2.6 Å (Hernandez-Guzman et al., 2003).  As shown in 

Figure 1.8, the tertiary structure features two domains: a globular (55Å × 60Å × 70Å), 

polar domain and two antiparallel hydrophobic α-helices that protrude from the globular 

domain imparting to the structure an overall “mushroom-like” appearance.  The 40-Å 

long α-helices putatively span the membrane of the endoplasmic reticulum (ER) and 

anchor the protein to the lumen side.   

 The polar domain’s tertiary structure is comprised of two sub-domains with an 

α/β sandwich fold.  The first subdomain (SD1) winds around an 11-stranded mixed β-

sheet surrounded by 13 α-helices and helical turns that contain the catalytic core. The 

second subdomain (SD2) consists of 110 C-terminal residues that wind around a 4-

                                                 
6 Protein Data Bank ID number: 2qzu 
7 Protein Data Bank ID number: 3b5q 
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stranded antiparallel β-sheet and resides against turn and loop regions of the β-sheet in 

SD1.  The two putative anti-parallel helices, α8 and α9, stem from one side of the polar 

domain.  There are loop regions in STS that have proposed membrane association, for 

example between α4 and α5, and between β9 and α13.   

 

Figure 1.8.  Stereographic ribbon diagram of tertiary and secondary structure of 
STS. (Obtained courtesy of Dr. D. Ghosh through personal communication.) 
 

The 40-Å long hydrophobic helices, 8 and 9, putatively span the membrane of 

the ER and anchor the protein to the lumen side.  STS has 12 cysteine residues and 6 

disulfide bonds, all distributed in the globular polar domain.  Of functional significance 

is a disulfide bond termed a “zipper-lock” between Cys170-Cys242 near the lipid-

protein interface that is proposed to stabilize the putative antiparallel α-helices.  Because 

all cysteine residues forming disulfide bonds are located exclusively in the globular 
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polar domain, this suggests that the entire portion faces the lumen side of the ER, and 

not the reducing environment of the cytosol.  Further suggestion for the role of the 

antiparallel helices is the location of two residues, Lys183 and Arg184, near helices 8 

and 9.  The presence of two charged amino acids near a transmembrane helix has been 

previously observed (de Planque et al., 1999). 

The active site is buried deep in the polar globular portion of the enzyme in 

subdomain 1, which is proposed to lie close to the lumenal side of the membrane, 

suggesting that this architecture may play a role in catalysis.  As described in § 1.1.2, a 

key cysteine in sulfatases is post-translationally modified to a formylglycine (FGly) 

residue.  The FGly residue is covalently linked to a sulfate ester in the X-ray crystal 

structure.  A large spherical electron density at the center of the catalytic site near the 

FGS residue is assigned as a divalent cation, Ca2+, required for catalytic activity 

(Stevens et al., 1975).  The divalent metal ion was interpreted to be a Ca2+ as it was in 

the crystal structures of ARSB and PARS.  The crystal structure of ARSA depicted a 

Mg2+ ion, as did the structure of the Cys69Ala ARSA mutant complexed with p-

nitrocatechol sulfate substrate. 

 Catalytically important residues (please see § 1.2.11 for a discussion of the 

mechanism) are depicted in the crystal structure as shown in Figure 1.9.  The oxygen 

atoms of the side chains of Asp35, Asp36, Asp342, Gln343 and FGly75 are within 

contact distance (2.1 Å to 2.8 Å) to the Ca2+ ion to stabilize its charge.  Lys134, Lys368 

and Arg79 are in proximity (2.7 Å to 3.1 Å) to contact the sulfate oxygen atoms of the 

sulfated FGly residue. There are also two oxygen atoms of the sulfate FGly that are 

within coordination distance (2.7 Å) to the Ca2+ atom.  The crystal structure also depicts 
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other contacts of residues important for catalysis (please see § 1.2.11).  The imidazole 

ring of His136 is within H-bond distance (2.6 Å) of the oxygen atoms of one of the 

hydroxyl groups of the formylglycine hydrate, while the ε-nitrogen of His290 is a 2.6-Å 

distance away from a sulfate oxygen of the sulfated FGly. Finally, the His346 side chain 

is linked to side chains of Lys368 and Thr291 by a bridging water molecule.    

 

Figure 1.9.  Active site residues coordinated to the Ca2+ ion.  The formylglycine 
(FGly) is sulfated as depicted by the red oxygen and yellow sulfur atoms.  Active 
site residues His290, Gln 343, Lys134, Asp342, Asp35 and Asp36 are within 
contact distance of the Ca2+ ion. Distances range between 2.08 Å and 2.80 Å. 
(Obtained courtesy of Dr. D. Ghosh through personal communication.) 
 
The opposite end of the catalytic cleft of STS is bounded by the upper portions of the 

transmembrane helices 8 and 9.  It is thought that the opening to the active site is at the 

interface of the lipid bilayer and the globular polar domain of STS.  Near the proposed 

opening leading to the active site are a series of residues with hydrophobic side chains 

that form a “tunnel”: Phe178, Phe230, Phe233, Tyr236, and Phe237.  The proposed 

entrance to the active site is flanked by residues Arg98 and Thr99, the so-called “gate-
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keepers” to the “tunnel.” The inside of the active site opposite to the catalytic end is also 

lined with hydrophobic amino acids such as Phe104, Tyr493, Trp550, Phe553, Leu554, 

Trp555, and Trp558.  These residues are proposed to form the “steroid-binding” pocket 

as schematically indicated in Figure 1.9 and as shown in detail in Figure 1.10.  The 

contribution of the hydrophobic amino acid side chain residues to substrate binding is 

visualized by modelling estrone (E1) into the active site (Figure 1.10) (Ghosh, 2007).  

The residues Leu103 and Val486 sandwich the aromatic steroid A-ring and are believed 

to have importance in preferentially binding estrogen substrate compared to androgens. 

Further substrate recognition may be aided by a hydrogen bond between Arg98 and the 

17-keto functional group of the steroid D-ring. 

 

Figure 1.10.  STS active site lies at protein-lipid interface.  Estrone (E1, blue) is 
shown modeled into the active site in proximity to catalytic FGly (FGS75).  The 
opposite end of the substrate-binding pocket borders the anti-parallel α helices, 
α8 and α9. The steroid backbone is shown surrounded by residues in the 
hydrophobic binding pocket. (Obtained courtesy of Dr. D. Ghosh through 
personal communication.) 
 



 26 

The location of the active site in proximity to the protein-lipid bilayer interface 

presents several possible explanations for passage of the substrate into the active site 

(Hernandez-Guzman et al., 2003).  One proposed scenario depends on three flexible 

loops, as implicated by high temperature factors, which might open and close over the 

active site.  These loops are residues Thr470 to Thr495, Glu348 to Fly358 and 94 to 100.  

The first loop is a proposed “front swing door” directly covering the opening of the 

active site, while the second loop may constitute the “right swing door,” allowing 

alternative entry to or from the active site.  The third loop is proposed to act as the “left 

swing door.”  Another proposed mechanism for transport to and from the active site 

makes use of the putative transmembrane helices as a tunnel through the lipid bilayer.  

This type of substrate entry has been observed for other membrane-associated enzymes 

such as fatty acid amide hydrolase, squalene cyclase, and prostaglandin H2 synthase 

(Bracey et al., 2002; Picot et al., 1994; Wendt et al., 1997). 

1.2.9 Comparison of tertiary structures of sulfatases 

Sulfatases with known tertiary structures, STS, ARSA, ARSB and PARS, have 

sequence similarities ranging between 20% and 32% (Ghosh, 2004).  With the exception 

of the putative transmembrane domain, all structures possess a common general tertiary 

structure with respect to the globular polar domain as depicted by the schematic in 

Figure 1.11 comparing the overall folds of ARSA and STS.  As shown in Figure 1.12, 

the polar domains containing the catalytic site superimpose on one another very well.  

The overall fold of the polar domain of STS, the location and composition of the two β-

sheets in subdomain 1 and subdomain 2 of STS are the same in ARSA, ARSB and 

PARS.  There are some distinctions between the structures.  For example, the central β-
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sheet in subdomain 1 of STS has 11 strands, whereas there are 10 in other sulfatases.  

The missing transmembrane helices α8 and α9 of STS are replaced by a pair of 

antiparallel β-strands in ARSB. A similar loop region exists in the ARSA structure but 

with a decreased tendency to form antiparallel β-strands. 

STS        ARSA 

 

 
Figure 1.11.  Comparison of the overall folds of human STS and ARSA.  The 
similarities between the globular polar domain of STS and ARSA is evident. (a) 
STS and (b) ARSA.  Secondary structure elements are numbered. The circles 
represent α-helices, and the triangles are β-strands.  SD1: subdomain 1, SD2: 
subdomain 2, TM: transmembrane domain.  (Obtained courtesy of Dr. D. Ghosh 
through personal communication.) 
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Figure 1.12.  Comparison of the tertiary structures of four sulfatases. The 
structures are superimposed:  STS (green), ARSA (blue), ARSB (purple) and 
arylsulfatase from Pseudomonas aeruginosa (PARS) (yellow).  The active site 
Ca2+ cation is shown as a sphere. (Obtained courtesy of Dr. D. Ghosh through 
personal communication.) 
 

1.2.10. Comparison of active site structures of sulfatases 

The catalytic portion of the active site in STS is highly homologous to that of 

ARSA, ARSB and PARS.  There is strict conservation of nine of ten catalytically 

important residues in ARSA, ARSB, STS and PARS: Asp35, Asp36, FGly75, Arg79, 

Lys134, His136, His290, Asp342, and Lys368.  The spatial arrangement of these 

residues is also identical.  Superimposing α-carbon atom positions of these nine residues 

by least squares minimization results in a root mean square deviation (rmsd) of 0.4 Å, 

underscoring the theory of a conserved mechanism for sulfatases.  The tenth catalytic 

residue is Gln343 in STS and is an asparagine in ARSA, ARSB and PARS.  As shown 
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in Figure 1.13, there is a particularly significant overlap of the four active site residue 

side chains, Asp35, Asp36, Asp342, and Gln343 in STS with the equivalent residues in 

ARSA, ARSB and PARS.  The oxygen atoms of these residues provide contact to the 

bivalent cation. When the α-carbon atoms of these residues are superimposed by least 

squares fitting, a rmsd of 0.2 Å is observed.  There is also very close overlap in the 

position of the bivalent metal cation (rmsd ~0.3 Å), whose identity is a Ca2+ in the STS 

(Hernandez-Guzman et al., 2003), ARSB (Bond et al., 1997), and PARS structures 

(Boltes et al., 2001).  However, the metal ion was determined as an Mg2+ in the original 

structure of ARSA (Lukatela et al., 1998), as well as in the structure of a mutant 

Cys69Ala complexed with p-nitrocatechol sulfate (von Bulow et al., 2001).       

 

Figure 1.13.  Active site residues of sulfatases share a highly similar spatial 
arrangement.  Four active site residues of STS (green) are numbered and are 
shown superimposed on those of ARSA (blue), ARSB (purple), and PARS 
(yellow).  The sulfated FGly catalytic residue is depicted, as are four active site 
residues, Gln343, Asp342, Asp35, Asp36 and the Ca2+ metal center.  In PARS 
crystal structure the FGly residue is not covalently sulfated. (Obtained courtesy 
of Dr. D. Ghosh through personal communication.) 
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However, a recent structure of human placental ARSA depicted the bivalent metal 

cation as a Ca2+ instead of a Mg2+ (Chruszcz et al., 2003).   The authors suggest that all 

sulfatases most likely use Ca2+ as the bivalent metal ion and that the Mg2+ observed in 

the original structure was due to the high concentrations of magnesium ions during the 

purification.  It is not yet known if sulfate ester catalysis is affected by replacing the 

Ca2+ with another cation (Ghosh, 2007).  However, the site-directed mutagenesis studies 

of residues coordinating the metal ion in ARSA resulted in severe decreases in catalytic 

activity, highlighting the importance that the metal ion probably plays in substrate 

binding and sulfate ester bond hydrolysis.  Another notable feature of Figure 1.13 is the 

overlapping position of the FGly hydrate side chain and its sulfate ester in the structure 

of STS and ARSB.  However, while the FGly hydrate residue of the PARS structure lies 

in the same position as that of STS and ARSB, a sulfate ester bond is not observed, but 

rather the sulfate moiety is a 1.0 Å distance away.  The FGly residue of ARSA was 

depicted as a glycine in its original structure, and a chloride ion was modelled in the 

place where the sulfate ester group would otherwise be observed  (Lukatela et al., 1998). 

However, a subsequent structure of ARSA displayed an FGly hydrate residue covalently 

attached to a phosphate group (Chruszcz et al., 2003).  It was unclear whether the 

unexpected presence of a phosphate group is an artifact of crystallization, or whether the 

FGly residue may be phosphorylated at times.  Whether true resting state of the FGly 

residue in all sulfatases is sulfated or not is unknown.   

1.2.11 Catalytic mechanism of sulfatases 

The mechanism of sulfate ester catalysis by sulfatases is not fully understood, 

although much progress has been made.  The catalytic mechanism for sulfatases was 
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especially elusive prior to the discovery of the post-translationally installed catalytic 

FGly residue.  The elucidation of the first sulfatase crystal structure, that of ARSB, in 

1997 provided the first attempt to explain the mechanism (Bond et al., 1997).  This 

structure depicted an electron density near one of the hydroxyl groups of the FGly 

hydrate, and it was attributed to a covalent sulfate adduct, formylglycine sulfate (FGlyS).  

The authors reasoned that the enzyme may be in an equilibrium between the FGly 

aldehyde and the FGly sulfate, but that the resting state would most likely be that of the 

aldehyde, as shown in Figure 1.14.  The mechanism begins with addition of the sulfated 

substrate to the aldehyde by a nucleophilic attack of one of the oxygen atoms of the 

sulfate group on the electrophilic carbon atom of the FGly aldehyde.  The next step 

proposes that a nucleophile, such as an activated water molecule, cleaves the sulfur-

oxygen bond to allow the phenolic portion of the substrate to leave.  The resulting 

sulfated FGly hydrate might be the resting state of the enzyme, but it could undergo 

elimination of the sulfate group to the FGly aldehyde.  
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Figure 1.14.  Proposed catalytic mechanism for sulfatases based on ARSB 
crystal structure evidence.  Addition-hydrolysis (AH) mechanism proposed by 
Bond and coworkers (Bond et al., 1997). 
 

 

 Another mechanism for sulfate ester catalysis was proposed after the crystal 

structure of ARSA was resolved (Lukatela et al., 1997).  This mechanism consists of a 

transesterification-elimination (TE) sequence as shown in Figure 1.15.  
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Figure 1.15.  Proposed catalytic mechanism for sulfatases based on ARSA 
crystal structure evidence.  Transesterification-elimination (TE) mechanism 
proposed by Lukatela and coworkers (Lukatela et al., 1998). 
 

Support for the TE mechanism was gained after mutagenesis studies performed on 

ARSA and ARSB (Recksieck et al., 1998).  ARSA and ARSB were expressed with a 

site-specific mutation to a serine residue in place of the key cysteine that becomes post-

translationally modified to FGly.  It is known that the formylglycine generating enzyme 

(FGE) is unable to make the post-translational modification to serine.  The mutants were 

incubated with [35S]-para-nitrocatechol sulfate, as were the wild-type enzymes.  The 

wild-type ARSA and ARSB displayed no radioactivity.  However, the mutants exhibited 

a radiolabelled sulfated serine residue, which inactivated both ARSA and ARSB.  This 

meant that the first step of the reaction, transesterfication of the substrate to generate 

sulfated serine and release of the p-nitrocatechol was occurring.  However, the second 

“elimination” step involving subsequent release of the sulfate group was not possible 

due the lack of a second hydroxyl group on serine, as there normally would be on the 

formylglycine hydrate.  These results also disfavour the addition-hydrolysis mechanism 

proposed for ARSB in which an aldehyde is the resting state of the FGly residue.  It is 

unlikely that one of the oxygen atoms of the sulfated substrate would engage in 

nucleophilic attack of the serine hydroxyl group to generate a sulfo-serine residue.  

Further support for the TE mechanism was obtained from a recent co-crystal structure of 

para-nitrocatechol sulfate (pNCS) and an FGly-alanine ARSA mutant (von Bulow et al., 



 33 

2001). The mutant co-crystal structure super-imposed with the wild-type ARSA 

structure and notably displayed the sulfur atom of sulfate moiety of pNCS in an optimal 

distance (2.85 Å) and orientation from the Oγ1 hydroxyl group. This positioning would 

appropriately enable the sulfate group for in-line nucleophilic attack by the Oγ1 

hydroxyl group. 

Further support for the transesterification (TE) mechanism as the most likely one 

for sulfatase catalysis was based upon recent crystal structural evidence of PARS and 

mutagenesis studies performed on ARSA (Boltes et al., 2001).  As mentioned previously, 

the 1.3-Å resolution structure of PARS displayed a sulfate group in proximity to the 

FGly hydrate, but not engaged in a sulfate ester bond (Boltes et al., 2002).  The fact that 

a sulfate moiety was detected in the active site was attributed to the high concentrations 

of sulfate required to crystallized PARS, and suggests that the resting state of the FGly 

hydrate is not necessarily sulfated.  The crystal structure shows the sulfate group 

optimally position 2.96 Å away from FGly-Oγ1 and optimally oriented for nucleophilic 

attack. The detailed sulfatase mechanism proposed by Hanson et al., is depicted in 

Figure 1.16  and suggests the resting state is that of a FGly hydrate residue which is 

stabilized by hydrogen bonds to nearby HisA and AspC residues (Hanson et al., 2004).  

Surrounding positively charged residues and the metal cation assist in binding and 

orienting the sulfated substrate so that the sulfur atom is in line for nucleophilic attack 

by an oxygen atom of one the hydroxyl groups (HOγ1) from the FGly hydrate.  The 

transesterification is assisted by AspC, which acts as a general base in abstracting a 

proton from Oγ1.  The release of the phenolic portion of the substrate from the active 

site is promoted by proton transfer from HisB.  In an inversion of configuration, the 
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sulfate moeity is bound to Oγ1 in a sulfate ester bond.  Nearby HisA assists in 

abstracting a proton from Oγ2, which causes cleavage of the sulfate-oxygen bond and 

elimination of the sulfate group.  The FGly aldehyde is regenerated and rehydrated to 

restore the residue to the resting state. 

Figure 1.16.  Detailed mechanism for sulfatases, including STS, proposed by 
Hanson and coworkers (Hanson et al., 2004).    
 

1.3 STS Inhibitor development 

1.3.1 Reversible inhibitors 

 In the last fifteen years considerable attention has focused on the design of 

inhibitors of STS for the purpose of modulating intratumoral levels of estrogen and 

androgen in hormonal diseases, particularly hormone-dependent breast cancer.  There 

have been recent reviews of STS inhibitors (Purohit et al., 2003; Nussbaumer and 

Billich, 2004; Reed, et al., 2005; Day et al., 2009).  The field of inhibitors can be 
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divided into two general classes: irreversible arylsulfamate and reversible non-sulfamate 

inhibitors. 

 There are relatively few reversible inhibitors of STS reported.  Among the first 

reversible inhibitors were vanadate, 1.1, and sulfite, 1.2, whose structures are shown in 

Figure 1.17 and which reversibly inhibit STS activity with low micromolar potency 

(Dibbelt and Kuss, 1991).  In contrast, sulfate, 1.3, was only an inhibitor at very high 

concentration, which suggests that enzyme-catalyzed hydrolysis of the sulfate ester bond 

proceeds via a trigonal bipyramidal transition state.  This impacts the rational design of 

STS inhibitors by signifying that this transition state cannot be mimicked through a 

synthetic compound. 
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Figure 1.17.  Small inorganic inhibitors of STS (1.1-1.3). 
 

 The first rationally designed reversible inhibitors were substrate analogs of E1S, 

and were designed with a replacement of the 3-O-sulfate ester bridging oxygen atom by 

S, N, O and C as non-hydrolyzable linker atoms of the head group to the steroidal 

structure as shown in Table 1.2.  Overall, the inhibitory potencies of these analogs were 

weak, with a few examples showing moderate inhibition of placental microsomes and in 

some cases purified STS in the micromolar range.  Introduction of a sulfur atom in 

compounds 1.4-1.7 as a linker to the steroidal core did not provide a very effective 

inhibitory strategy (Li et al., 1994; Li et al., 1993).  Similarly, introduction of an �-

linked head group in compounds 1.9-1.10 provided moderate inhibition (Selcer et al., 

1995; Selcer et al., 1996).  The presence of a C-linked sulfate head group, 1.11, also 
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provided moderate inhibition of STS with a Ki of 140 µM when assayed with purified 

placental STS (Li et al., 1995).  A more effective E1S analog emerged when a phosphate 

group was introduced as a sulfate mimic (estrone-3-O-phosphate, E1P, 1.12).  E1P 

displayed a Ki value of 0.3 µM when assayed at pH 7 with purified placental STS (Li et 

al., 1995).  More detailed studies using partially purified STS revealed its potency is pH-

dependent with the Ki increasing from 0.1 µM at pH 6.0 to 5.0 µM at pH 8.0 (Anderson 

et al., 1997).     Its higher potency between pH 6 to 7 is attributed to the enzyme display- 

Table 1.2.  STS inhibitors as estrone-3-O-sulfate analogs. 

O

R  

 
Compound 

 
R 

 
Assay type 

% Inhibition 
or IC50 

 
Ki 

 
Reference 

1.4 -SO2Cl Placental 
microsomes 

92% at 300 µM 
65% at 60 µM 

ND Li et al., 1993 

  Purified STS  28 µM Dibbelt et al., 
1994 

1.5 -SO3
-K+ Placental 

microsomes 
40% at 300 µM ND Li et al., 1993 

1.6 -SO2NH2 Placental 
microsomes 

45% at 300 µM ND Li et al., 1993 

  Purified STS  110 µM Dibbelt et al., 
1994 

1.7 -SO2F Placental 
microsomes 

44% at 300 µM ND Li et al., 1993 

  Purified STS  35 µM Dibbelt et al., 
1994 

1.8 -SO2CH3 Placental 
microsomes 

36% at 300 µM ND Li et al., 1993 

  Purified STS  130 µM Dibbelt et al., 
1994 

1.9 -NHSO2CF3 Placental 
microsomes 

IC50 = 10.2 µM ND Selcer et al., 
1996  

1.10 -NHCOCF3 Placental 
microsomes 

lC50 = 8.7 µM ND Selcer et al., 
1996 

1.11 -CH2SO3
- Purified STS  140 µM Li et al., 1995 

1.12 -OPO3
2- Purified STS  0.3 µM Li et al., 1995 

1.13 -OPS(CH3)OH MCF-7 breast 
cancer cells 

lC50 = 100 nM ND Duncan et 
al., 1993 
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ing preference for the monoanionic charge of the phosphate group much over the 

dianionic form.  A variation of the estrone-3-O-phosphate derivative inhibitor was found 

to be the estrone methylthiophosphonate (1.13, E1-3-MTP) with an IC50 value of less 

than 100 nM. 

 In addition to substrate analogs of STS, certain product analogs such as 17α-

phenyl-or benzyl-substituted estradiol derivatives, 1.14 and 1.15 as illustrated in Figure 

1.18, have been shown to be reversible inhibitors of STS in homogenates of JEG cells 

and are the most potent reversible inhibitors to date, with Ki values in the low nanomolar 

range (Poirier and Boivin, 1998; Boivin et al., 2000).  The introduction of long alkyl 

chains at the 17-position of estradiol had the effect of increasing potency with increasing 

chain length up to octyl substitution (Boivin et al., 2000).  It was reasoned that the high 

affinity of these compounds may be attributed to the hydrophobic interactions between 

the alkyl or benzyl moiety at the 17-position and the transmembrane helix of STS.  

Recent efforts to design non-hydrolyzable E1S analogs include those of our 

(Taylor) group.  The introduction of difluoromethylene group, 1.16, as a hydrolytically 

stable linker of the sulfate group to the steroid core was developed (Lapierre et al., 2004) 

as a comparison to its non-fluorinated methylene sulfate ester estrone analog, 1.11, that 

was earlier described as a weak, mixed-type inhibitor (Li et al., 1995) (Figure 1.18).  

The result was that the presence of the two fluorine atoms provide a 10-fold higher 

potency compared to the non-fluorinated derivative and the inhibitor switches to a 

competitive mode of inhibition, with a moderate Ki of 57 µM.  In this series a tetrazole, 

1.18, and difluoromethylene tetrazole moiety, 1.17, were also examined as a sulfate 

surrogates, based on reports of tetrazole being an effective sulfate mimic in synthetic 



 38 

sulfotyrosine-bearing peptides targeting the cholecystokinin (CCK) receptor (Tilley et 

al., 1991).  The difluoromethylene tetrazole, 1.17, was about 4.5 times more potent than 
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Figure 1.18.  17α-substituted estrodiol derivative, 1.14 and 1.15, and non-
hydrolyzable estrone-3-O-sulfate (E1S) derivatives 1.16-1.18. 

 
its non-fluoronated analog, 1.18, which was a non-competitive inhibitor with a Ki of 73 

µM. These studies also revealed the difluoromethylene tetrazole, 1.17, displayed greater 

inhibitory potency than the difluoromethylene sulfate ester, 1.16, with a Ki value of 16 

µM. These structure-activity studies suggested that the enhanced affinity of the 

difluoromethylene derivatives may be due to favourable interactions between the 

fluorines and residues in the active site, such as His290. 

Apart from rational drug design, high-throughput screening has yielded three 

new classes of non-steroidal STS inhibitors (Figure 1.19): madurahydroxylactone 

thiosemicarbazones, aryl piperizines and arylsulfonylureas.  The thiosemicarbozones are 

derivatives of the natural product madurahydroxylactone (1.19) and were discovered by 

screening a library of analogs (Jutten et al., 2002).  The most potent inhibitor of the 
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series was 1.20 which showed IC50 value of 460 nM and a Ki of 350 nM against 

placental STS and behave as non-competitive inhibitors.  A separate screen conducted 

by Bayer identified aryl piperazines such as 1.21 as another novel class of STS 

inhibitors (Hejaz et al., 2004).  The most active hits from this screen are compounds 

1.21 and 1.22 which displayed IC50 values of 48 and 78 nM, respecitvely, against 

purified placental STS.  The mode of inhibition of these compounds was not 

investigated, however, it is expected that they would be reversible.  The third class of 

novel STS inhibitors discovered through high-throughput screening are the arylsulfones.  

Compound 1.23 was shown to behave as a reversible, purely competitive inhibitor of 

STS with a Ki value of 890 nM against purified STS.  Additional studies on derivatives 

of this compound showed that the hydrazide group was not essential for activity and that 

the corresponding analog lacking one nitrogen, 1.24, still resulted in a moderate 

inhibitor with a Ki of 2.4 µM. 
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Figure 1.19  STS inhibitors discovered by library screening. 
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1.3.2 Irreversible inhibitors 

A major advance in the field of STS inhibitor design came with the discovery 

that the sulfamate derivative of estrone-3-O-sulfate was a potent, irreversible inhibitor 

(Howarth et al., 1994).  This compound, estrone-3-O-sulfamate, became known as 

EMATE (1.25, Figure 1.20) and it displayed an IC50 value of 100 nM and a Ki value of 

670 nM when assayed against STS in placental microsomes (Purohit et al., 1995).  

Evaluation of EMATE in intact MCF-7 cells generated an IC50 of 65 pM (Purohit et al., 

1995).  Although the authors were attempting to design a potent reversible inhibitor, it 

behaved as a time- and concentration-dependent manner, and STS activity did not return 

after extensive dialysis.  In addition, high concentrations (50 µM) of estrone-3-O-sulfate 

substrate reduced the inhibitory action of EMATE, suggesting that the inhibitor must 

bind in the active site (Purohit et al., 1995).  Taken together, these experiments signify 

that EMATE was behaving as an irreversible inhibitor, which is often referred to as 

suicide inhibition or mechanism-based inhibition.  Although the data are consistent with 

an inactivation mechanism involving covalent attachment of the inhibitor to an active 

site residue, the mode of irreversible inhibition of sulfamate inhibitors of STS is still not 

fully elucidated.  Nevertheless, EMATE was the first representative of a highly potent 

STS inhibitor class, and a vast array of sulfamate derivatives have since been reported.   

O

OS

O

O
H2N

1.25 (EMATE)  

Figure 1.20.  Estrone-3-O-sulfamate (EMATE). 
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 Various mechanisms describing the inactivation of STS by aryl sulfamate 

inhibitors were initially proposed (Woo et al., 1996; Woo et al., 2000).  One of the first 

mechanisms was put forth by Potter and coworkers as shown in Figure 1.21.  It 

implicates the catalytic formylglycine in its aldehyde form as the resting state of the 

enzyme.  Addition of the aryl sulfamate to the enzyme yields, (A), the �-alkylsulfamate 

ester hemiaminal.  After loss of the corresponding phenol either an N-alkyl sulfamic 

acid hemiaminal (B) results or an iminosulfamic acid (D).  The Schiff base represented 

by (D) would be a dead-end complex and inactivate the enzyme from further catalysis.  

Similarly, (D) can also be reached by the imine represented by (C), and subsequent loss 

of the phenolic portion of the inhibitor. 
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Figure 1.21.  Addition of aryl sulfamate to aldehyde FGly residue as proposed 
by Woo and coworkers (Woo et al., 2000). 
 
However, it was later shown that cleavage of the ArO-S bond of the arylsulfamate is 

required for irreversible inhibition.  For example if the bridging oxygen atom of the 

sulfamate ester is replaced with a non-hydrolyzable group, irreversible inhibition is not 

observed (Woo et al., 1997).  The corresponding �-sulfamate, and S-sulfamate 

analogues are such examples.  An amended mechanism proposed by Bojarova et al., 
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implicates the FGly residue resting state as that of the formylglycine hydrate as shown 

in Figure 1.22 (Bojarova et al., 2008). This mechanism proposes an SN2 substitution 

where one of the oxygen atoms of the hydroxyl of the FGly hydrate attacks the sulfur 

atom of the aryl sulfamate substrate.  The ArO-S bond is cleaved and the corresponding 

phenol is released and an enzyme α-hydroxysulfamate is formed.  In step 1 the 

elimination of sulfamic acid from the sulfamoylated FGly hydrate generates the 

aldehyde FGly.  Free sulfamic acid subsequently reacts with the aldehyde to afford a 

stable Shiff’s base.  However, it should be noted that incubation of sulfamic acid to STS 

does not cause inactivation (Bojarova et al., 2008).  The alternative step 2 provides the 

possibility that the eliminated sulfamic acid can form a reactive amino sulfene that may 

be subject to attack by any nearby nucleophilic amino acid residue in the enzyme active 

site or elsewhere.   
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Figure 1.22  Proposed inactivation of STS by aryl sulfamate 
when FGly hydrate initiates attack on aryl sulfamate (Bojarova et 
al., 2008). 

 

 A third mechanism has been proposed based on studies involving a range of aryl 

sulfamates with Pseudomonas aeruoginosa aryl sulfatase (PARS), (Bojarova et al., 

2008).  The authors examined the differences in efficiency of PARS inactivation by nine 
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aryl sulfamates with different electron-donating and electron-withdrawing substituents 

that impart a range of pKa values to their corresponding parent phenols.  A linear free-

energy Bronsted plot of the pKa of the leaving group phenol of a range of aryl 

sulfamates versus their inactivation efficiency (log kinact/KI) has revealed a steep slope 

with linear character (βlg = -1.1 ± 0.2).  This represents that a high degree of charge 

development in transition state occurs as a result of cleavage of the ArO-S bond of the 

aryl sulfamate as the first step in the irreversible reaction.  The scission of the ArO-S 

bond has been previously examined by [3H]-labeled hydroxy group at the 17-position of 

EMATE (Nussbaumer and Billich, 2004).  STS activity was inhibited in a time- and 

concentration-dependent manner, however no association of the labeled inhibitor with 

the enzyme preparation was detected.  This is expected if the [3H]-estrone is released 

after cleavage of the ArO-S bond.    

 Further evidence of cleavage of the ArO-S was revealed by measuring the 

stoichiometry of the inactivation process by quantifying the release of the parent phenol 

after reaction with PARS (Bojarova et al., 2008).  The stoichiometry was measured that 

varied in the range 3–6, with the highest values being observed for the most potent 

inactivators. This result implies that multiple sulfamoylation events occur during the 

inactivation process and it was proposed that more than one reaction pathway might 

occur during inactivation.  A reaction mechanism that would result in multiple 

sulfamoylation events is shown in Figure 1.23. 
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Figure 1.23.  Elimination mechanism of the sulfamate moiety from aryl 
sulfamate resulting in multiple sulfamoylated amino acid residues. 

 
The authors propose that non-specific labelling may occur by elimination of the 

sulfamate assisted by acid and base residues, breaking the ArO-S bond and releasing the 

corresponding phenol and the amino sulfene, NH2SO2.  The reactive amino sulfene 

would be subject to non-specific attack by active site nucleophilic residues, forming any 

number of combinations of covalent attachment.  The potential for multiple pathways of 

inactivation and variable reaction stoichiometry is underscored by kinetic results 

obtained for aryl sulfamate inhibitors and STS.  A plot of log of percent enzyme activity 

remaining versus time for various concentrations of a number of different arylsulfate 

inhibitors all reveal biphasic kinetics.  Rapid loss of activity initially occurs followed by 

a slower second phase.  If only one inactivation mechanism was followed, a first-order 

loss of activity would be observed exclusively.  Most likely a specific inactivation event 

is responsible for the initial linear phase observed, such as mechanism 2 depicted in 

Figure 1.22, whereas a combination of inactivation events transpire to change the 

kinetic behaviour of the second phase.   

 Further support for the elimination mechanism shown in Figure 1.23 versus the 

SN2 mechanism shown in Figure 1.22 is that �,�-dialkyl-substitututed sulfamates such 

as compound 1.26 are not inactivators of STS (Howarth et al., 1994).  In this example 

the presence of an �-dimethyl substituent to EMATE would not allow elimination of the 
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sulfamate moeity, and no sulfamoylation of any residues would occur.  It is also possible 

that 1.26 cannot react with any active-site residues due to steric factors. 

O
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H3C
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Figure 1.24.  N,N-dimethyl-substituted EMATE, 1.26 

 EMATE can never be pursued as a potential therapeutic because it has the severe 

drawback of eliciting an estrogenic response in vivo (Billich et al., 2000).  A 3.5-fold 

increase in uterine weights was observed when EMATE was administered 

subcutaneously to ovarioectomized rats at a dose of 10 µg/day for 5 days.  This 

observed response is most likely because the phenolic portion released upon cleavage of 

the ArO-S bond in Figure 1.21 is estrone (E1)—a product whose metabolite, estradiol 

(E2), causes growth of breast cancer cells.  In fact, the adverse estrogenic effects due to 

EMATE and other estrogen sulfamates are greater than those observed upon E1 oral 

administration to rats (Elger et al., 1995).  The reason for the enhanced oral activity of 

estrogen sulfamates is due to their association with red blood cells (RBCs) which 

enables them to evade first pass metabolism during liver transit, in comparison to E1 

which is subject to hepatic metabolism (Howarth et al., 1994; Elger et al., 2001).  It was 

later revealed that estrogen sulfamates bind reversibly to carbonic anhydrase II (CA II) 

in RBCs (Ho et al., 2003) which is the reason they are protected from first pass 

metabolism.  CA II, which is normally inhibited by sulfonamides, is also inhibited by 

EMATE (and many other sulfamates) with an IC50 value of 25 nM (Ho et al., 2003).   
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The finding that EMATE elicits an estrogenic response in vivo led to the 

development of non-estrogenic inhibitors.  Many such compounds have been reported 

however, only the most significant of this class will be discussed here.  Coumarins, 

whose general structure is shown as 1.27 in Figure 1.25, were explored as STS 

inhibitors based on the structure of the known fluorogenic substrate for sulfatases, 4-

methylumbelliferyl sulfate (4-MUS, 1.28).  The bicyclic core of the coumarin rings are 

mimics for the A and B rings of the steroid scaffold. The introduction of a sulfamate to 

the C-7 position of a coumarin resulted in a potent, irreversible inhibitor without any 

adverse estrogenic outcome in vivo in ovarioectomized rats nor did it stimulate the 

growth of MCF-7 breast cancer cells (Purohit et al., 1996).  The compound, 4-

methylcoumarin-7-O-sulfamate, (1.29, Figure 1.25), was given the abbreviation 

COUMATE and displayed an IC50 of 380 nM in MCF-7 cells.  A series of COUMATE 

derivatives were made to examine structure-activity relationships and the three general 

observations were made (Woo et al., 1998; Woo et al., 2000).  First, the sulfamate 

substitution at only the C-7 position is inhibitory and the conjugation in the coumarin A-

ring is vital to inhibitory activity.  Lastly, COUMATE derivatives with longer alkyl 

substitutions to the C-3 and C-4 position are more potent than shorter alkyl substituents.  

Based on these results, further modifications to the bicyclic coumarin structure 

determined that a third ring appended to positions C-3 and C-4 improves potency of 

inhibition. These tricyclic coumarin sulfamates were named 665-COUMATE, 666-

COUMATE, 667-COUMATE, etc., based on the number of atoms in the third ring 

(Woo et al., 2000).  667-COUMATE, (1.30, Figure 1.25) was the best candidate from 

this class and exhibited an IC50 value of 8 nM on STS in a placental microsome 
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preparation.  This also represents a three- and 100-fold more potent inhibition value than 

EMATE and COUMATE, respectively.  Similar to EMATE, 667-COUMATE also has 

an irreversible inhibition profile.  No estrogenicity was observed during in vivo studies 

and 667-COUMATE recently completed a phase I clinical trial for the treatment of 

hormone-dependent breast cancer in post-menopausal women (Stanway et al., 2006).  

Researchers at Novartis have developed at wide variety of irreversible STS inhibitors 

based upon the chromenone scaffold.  Some of the compounds, such as compound 1.31, 

exhibit potencies that are as great or greater than 667-COUMATE though none of these 

compounds have reached clinical trials. 
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Figure 1.25.  The general structure of coumarin, 1.27, and its 
numbering scheme. 4-methylumbelliferyl sulfate, 4-MUS, 1.28, 
is an artificial fluorogenic substrate for sulfatases.  Non-
estrogenic aryl sulfamate inhibitors of STS: compound 1.29, 
COUMATE, and 1.30, 667-COUMATE.  Compound 1.31 is a 
chromenone-based inhibitor.   

 
There has been recent effort to to concomitantly block the production of estrogen 

via STS and aromatase through the action of a single inhibitor.  These dual aromatase 

and STS inhibitors (DASI) are based on the structure of a known aromatase inhibitor 
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and feature a sulfamate substituent (Woo et al., 2003). Two of the best representatives of 

this new class are 1.32 and 1.33 shown in Figure 1.26. Compound 1.32 exhibited an 

IC50 of 2.3 nM against STS, while compound 1.32 had an IC50 of 0.82 nM.  In terms of 

aromatase inhibition, the IC50 of compound 1.32 was 20 nM and that of compound 1.33 

was 39 nM. 

R
N

N

OS

N
N

O

O
H2N

CN

1.32, R = Cl

1.33, R = Br  

Figure 1.26.  Dual aromatase and steroid sulfatase inhibitors 
(DASIs), 1.32 and 1.33. 

 

1.4 Research Objectives 
  

STS and PTP1B share a common ancestor in the alkaline phosphatase 

superfamily but diverged to catalyze the hydrolysis of sulfate and phosphate monoester 

bonds with great substrate specificity in the cell and with diverse physiological outcome.   

STS plays a key role in regulating estrogen levels and is seen to have great potential as a 

therapeutic target for the treatment of hormone-dependent breast cancer, which accounts 

for 40% of post-menopausal cases.  PTP1B is key enzyme in the down regulation of 

insulin signaling and is a well-established target with tremendous potential for the 

development of therapeutics for the treatment of type II diabetes mellitus.  This doctoral 

thesis explores the development of reversible and irreversible inhibitors of STS and 

PTP1B with the goal of improving our understanding of substrate specificity of these 

enzymes and their mechanisms.  Elucidating the mechanism of enzymes is an important 
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process in the rational design of small molecule inhibitors.  One vital aspect to studying 

the kinetic behaviour of an enzyme’s interaction with an inhibitor is a source of purified 

enzyme.  We purified STS to homogeneity from human placenta by adapting a number 

of literature procedures as described in Chapter 2.  Boronic acid analogs of coumarins 

and of the cognate substrate of STS, estrone-3-O-sulfate, were examined as reversible 

inhibitors of STS and the results are reported in Chapter 3.  Chapter 4 explores our 

efforts to develop quinone methide-generating mechanism-based enzyme inhibitors of 

STS with the goal of using this strategy to develop proteomic probes for profiling the 

sulfatase family. The ability to profile the sulfatase family with specific probes should 

open an avenue for understanding the assignment of sulfatase function and may lead to 

the identification of potential new therapeutic sulfatase targets.  The major challenges 

facing the development of inhibitors of PTP1B is bioavailability and selectivity against 

other members of its highly structurally conserved family of protein tyrosine 

phosphatases.  Chapter 5 discusses our endeavours to understand substrate specificity of 

PTP1B by examining the difluoromethylenesulfonic acid (DFMS) group as a 

phosphotyrosine (pTyr) mimic in a non-peptidyl platform. The DFMS group is one of 

the best monoanionic pTyr mimics reported in the literature and is seen to have potential 

in addressing the bioavailability challenge.  Chapter 5 also presents our results in 

examining [sulfonamido(difluoromethyl)]-phenylalanine as neutral pTyr mimic in 

commonly used tripeptide and hexapeptide platforms used to assess the efficacy of a 

potential pTyr mimic.   
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Chapter 2 – Purification of Steroid Sulfatase 

 

 
2.1 Introduction 
 

In order to study inhibitors developed for STS a source of purified enzyme is 

necessary.  To generate accurate kinetic values for an inhibitor designed against an 

enzyme it is best to conduct these studies using purified enzyme, otherwise, there is a 

possibility that other enzymes in a mixture may confound the kinetic values obtained. 

Furthermore, it is sometimes necessary to know the exact concentration of enzyme for 

data analysis of certain types of inhibitors.  In the case of most reversible inhibitors the 

concentration of enzyme does not need to be factored into analysis as the free inhibitor 

concentration can be assumed to have the same magnitude as the total concentration of 

inhibitor added to the assay.  This assumption is safe to make because the total 

concentration of enzyme, [E]tot, is much smaller than the dissociation constant for the 

enzyme-inhibitor complex, Ki (Segel, 1976).  The interactions of such inhibitors are 

treated by Henri-Michaelis-Menten analysis.  However, in the case of tight binding 

inhibitors, the steady state assumption does not hold and the concentration of enzyme 

impacts analysis of its interaction with an inhibitor. As the name suggests, a tight-

binding inhibitor binds to its target enzyme with such high affinity that the concentration 

of free inhibitor in the assay is depleted in comparison to the total concentration of 

inhibitor added to the assay, due to formation of a strong enzyme–inhibitor interaction.  

As a general rule, whenever the Ki of an inhibitor is less than 1000 times the 

concentration of that of the enzyme, these steady state assumptions are not valid 

(Copeland, 2005; Dixon and Webb, 1979). 



 51 

However, only a few studies in the literature have reported inhibitor data using 

purified STS (Li et al., 1995; Dibbelt et al., 1994; Nussbaumer et al., 2002; Selcer et al., 

1997).  The majority of studies reported use the microsomal fraction from human 

placenta, or cell lysates from CHO cells expressing STS (Billich et al., 2000; Wolff et 

al., 2003), lysates from HEK-293 or homogenates from Jeg-3 cells expressing STS or 

expressing STS (Ciobanu et al., 2001).   

STS has been cloned and sequenced (Yen et al., 1987; Stein et al., 1989; 

GenBank accession numbers M16505 and J04964), however, there has not been much 

success in expressing STS in bacteria.  A report was made on an attempt to express STS 

in E. coli cells using a pGEX-2T system that produces a glutathione S-transferase (GST) 

fusion protein to facilitate purification (Purohit et al., 1998).  The authors obtained a 

plasmid carrying cDNA of STS and cloned this into a pUC19 vector, from which they 

eliminated the 5’-untranslated region and cloned the STS gene into a pGEX2T vector.  E. 

coli cells were successfully transformed with the recombinant STS-pGEX2T vector and 

induced, but when subjecting the cell lysate to glutathione affinity beads, the STS fusion 

protein was not recovered.  A protein whose molecular weight corresponded to that of 

STS (60-65 kDa) was detected only after adding sodium docecyl sulfate polyacrylamide 

gel electrophoresis (SDS-PAGE) loading buffer containing bromophenol blue to the 

affinity beads.  After cleaving the recovered protein with thrombin to liberate its 

glutathione tag the presumed STS had a molecular mass corresponding to about 60 kDa 

as estimated by PAGE.  The recovered enzyme was not catalytically active and it was 

reasoned that the recombinant fusion STS had such low recovery levels due its 
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hydrophobic nature and propensity to adhere non-specifically to surfaces during 

purification. 

Attempts to generate recombinant STS expression in E. coli in the Taylor and 

Guillemette labs met with similar challenges (Lapierre, 2003).  The STS gene was 

subcloned into a pET28a vector with an N-terminal histidine tag and was verified by 

restriction enzyme analysis and sequencing.  The vector was used to transform E. coli 

BL21(DE3) cells, however the STS histidine-tagged fusion protein was not isolated after 

passing the cell lysate through a Ni-charged column.  It was thought that translation of 

this mammalian protein was perhaps hampered because a significant percentage of 

codons in the STS gene are rare in E. coli.  The amounts of tRNA charged with a 

specific amino acid in E. coli are not available in equal amounts but rather are 

proportional to the frequency with which the codon appears in expressed genes (Kane, 

1995).  The major codons appear frequently in the genetic code, while the rare codons 

appear sparsely.  This presents a limitation when attempting to express mammalian 

proteins whose DNA sequence contains a significant amount codons that are rare in E. 

coli.  Translation of such mammalian mRNA in E. coli is thought to be problematic 

because the ribosome pauses at the rare codon and this results in mistranslated protein.  

The arginine codons AGG and AGA comprise 2.74% of the total STS codons and are 

designated rare because they are not frequently used within E. coli.  Their frequency of 

their use in E. coli is 1.4 and 2.1 per 1000 codons respectively (Kane, 1995).  There is 

evidence that these codons can impair the quality and reduce the quantity of the desired 

protein (Kane et al., 1993; Hua et al., 1994). 
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A strategy was adopted to address this codon bias where the construct was 

expressed in a strain of E. coli BL21(DE3)-RP that is enriched genes expressing 

arginine as well as proline tRNA to improve the translation of those rare codons.  

Nevertheless, STS protein was not isolated upon purification efforts.  It may have been 

expressed as insoluble aggregates as evidenced by a smeared band on a SDS-PAGE of 

cell debris from the crude cell lysate that tenuously corresponded to the molecular mass 

of STS.  Efforts to resolubilize these insoluble cell masses were not successful.   

Recently a report appeared in which cDNA of STS was successfully cloned into 

a pCEP4 vector that was used to transfect 293-EBNA cells (human embryonic kidney 

cells expressing Epstein Barr virus nuclear antigen-1) from which recombinant STS was 

purified as a hexa-histidine-tagged fusion protein in the presence of 0.5% Triton X-100 

detergent to solubilize the protein (Stengel et al., 2008).  Not only was a significant 

amount of purified active protein recovered (1.5 mg), but this method of transfection 

was also amenable to expressing mutant STS protein. This was the first report to 

successfully perform site-directed mutagenesis (SDM) studies on STS.  Prior to this the 

only SDM experiments performed on members of the sulfatase family were those 

performed using soluble aryl sulfatase A (Waldow et al., 1999) as well as on some 

lysosomal sulfatases, such as heparan-sulfatase (Villani et al., 2000) and iduronate 

sulfatases (Di Natale et al., 2000).  

It was our desire to obtain purified STS for the evaluation and analysis of our 

inhibitors.  We purified the protein from human placenta, as this tissue is readily 

available, inexpensive, and no specialized equipment is required as there would be for 

eukaryotic cell culture in the case of CHO or HEK expression.  There are several studies 
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on the purification of STS from human placenta (van der Loos et al., 1983; Noel et al., 

1983; Burns et al., 1983; Dibbelt et al., 1986; Vaccaro et al., 1987; Kawano et al., 1989; 

Shankaran et al., 1991; Suzuki et al., 1992; Purohit et al., 1998; Hernandez-Guzman et 

al., 2003).  These purified preparations have exhibited great variation in enzymatic 

properties, including the specific activity. 

One of the common procedures of these purification strategies involves an 

extraction of STS from its membrane environment.  STS is localized in the membrane of 

the endoplasmic reticulum (Conary et al., 1986).  When cells are disrupted the 

endoplasmic reticulum forms vesicles referred to as microsomes (Lodish et al., 1999).  

The membrane protein is isolated from the microsomal fraction by differential 

centrifugation at high centrifugal force, 100,000 × g.  

The extraction also requires a detergent which is an essential reagent in 

membrane protein biochemistry and is commonly used to disrupt biological membranes 

and separate desired proteins (Hunter et al., 2003; Prive, 2007).  Detergents are also 

important to maintain a desired membrane protein in a stable, functional, folded state in 

the absence of a membrane.  A good detergent will mimic the original lipid bilayer and 

allow the protein to exist in a stable and funcional state.  In the absence of a detergent or 

if a poor one is employed, most membrane proteins are subject to aggregation and 

quickly lose functional activity in an irreversible process that may be measured as a 

time-dependent loss of activity (Bowie, 2001).  A distinct physical property of a 

detergent is its ability to self-assemble into small, defined entities called micelles, unlike 

the extended structures of lipid bilayers.  Detergent micelles may consist of up to a few 

hundred molecules, and the number of molecules in a single micelle is termed its 
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aggregation number.  Another physical property of detergents is the number of 

monomers required for the minimal concentration to form a micelle, or the critical 

micelle concentration (CMC).  The CMC is a property that resulting from the 

amphipathic nature of detergent monomers that cause them to partition into micelles due 

to their limited solubility in water.  A detergent will behave as an effective solubilizing 

agent at concentrations above its CMC.  

Triton X-100 (2.1, octylphenolpoly(ethyleneglycolether)x , x=10, Figure 2.1) is the 

detergent used almost exclusively in the literature for solubilizing STS obtained from 

human placenta.  It is a detergent commonly used for solubilization of membrane 

proteins because its non-anionic charge makes it relatively mild, in comparison to 

harsher agents that carry a charge (Barbero et al., 1984).  The head group of a detergent 

interacts with a protein while the length of the alkyl chain affects the CMC and 

aggregation number.  Short chain alkyl detergents such as SDS are harsh protein 

denaturants, while longer chain alkyl maltosides are gentler.  Although, as longer chain 

alkyl detergents are gentler, they become less soluble.  The shorter the alkyl length, the 

higher the CMC, which requires high concentrations of these detergents to solubilize a 

membrane protein.  The CMC of Triton X-100 is 200 µM (Barbero et al., 1984; 

Schubert et al., 1983).   

2.1 

Figure 2.1  Structure of Triton X-100 detergent (x = 10). 

Once extraction of STS by solubilization from the membrane has been 

performed the enzyme is isolated by a combination of chromatography steps such as ion 

O CH2-CH2-O H
x



 56 

exchange chromatography, affinity chromatography and gel permeation.  All methods 

cited in the literature make use of anion exchange chromatography as the first step to 

separate STS from other aryl sulfatases (ARSs) also present in placenta.  Many methods 

employ concavallin A sepharose chromatography to take advantage of the glycoprotein 

nature of STS which binds to this resin with high affinity and is eluted with 10% 

methylmannoside (Vaccaro et al., 1987; Hernandez-Guzman et al., 2001).  Gel 

permeation chromatography such as Bio-Gel A-1.5m is often used as a final step to 

yield homogenous STS (Vaccaro et al., 1987; Hernandez-Guzman et al., 2001).   

Here a purification of STS from human placenta is presented based on the 

method of extraction reported by Hernandez-Guzman et al., and using an 

immunoaffinity chromatography procedure similar to that developed by researchers at 

Novartis. 
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2.2 Results and Discussion 

The method used by Hernandez-Guzman and coworkers was used to extract STS 

from human placenta.  Cell disruption of the placental tissue was achieved using a lysis 

buffer of 50 mM tris-HCl, pH 7, 0.25 M sucrose, pH 7.4.  To separate the cell debris 

from the cytosolic portion two successive fractionations were performed at 20,000 × g.  

The cell debris pellet was retained and combined from both fractionations and the 

desired STS membrane protein was solubilized by resuspension in 20 mM tris-HCl, pH 

7.4, 0.3% v/v Triton X-100.  Two successive fractionations at 100,000 × g were 

performed to isolate the microsomal organelles where STS resides in the membrane of 

the endoplasmic reticulum.  At this step the supernatant containing the solubilized STS 

was retained and combined from both fractionations and the cell pellet discarded.   

The first chromatography step employed a diethylaminoethyl (DEAE) anion 

exchange column.  This anion exchange column is used to elute the desired STS whose 

pI is 6.9 (Shankaran et al., 1991) and exists as an anion at the pH 7.4 of the equilibration 

buffer and it is eluted by chloride ion from NaCl.  Prior to applying the microsomal 

fraction to the 250 mL bed volume DEAE column, a dialysis step was performed to 

reduce the concentration of Triton X-100.  The microsomal fraction was dialyzed from 

its 20 mM tris-HCl, pH 7.4 buffer containing 0.3% Triton X-100 to a 20 mM tris, pH 7.4 

buffer that contains just 0.1% v/v Triton X-100.  The reason is that concentrations of 

Triton X-100 higher than 0.1% v/v Triton X-100 applied to the DEAE column do not 

allow the STS protein to adhere and the protein passes through in the void volume.  

Once the dialysate was applied to the DEAE equilibrated in 20 mM tris, pH 7.4, 0.1% 

v/v Triton X-100, it was washed with the same buffer for 5 column volumes.  Fractions 
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were collected immediately following application of the placental microsomal fraction 

to the column.  STS was eluted with 20 mM Tris-HCl (pH 7.4), 0.1 % v/v Triton X-100, 

and a linear gradient of 10 column volumes of increasing NaCl concentration of up to 1 

M. All fractions, including those collected from the void volume, were assayed for STS 

activity using 4-methylumbelliferyl sulfate (4-MUS, 2.2, Figure 2.2) a substrate that is 

widely used to assay STS and other sulfates (Roy, 1971).  In the 4-MUS assay 4-

methylumbelliferone (4-MU) is produced (Figure 2.2).  This species is not highly 

fluorescent (with excitation  at 360 nm and emission at 460 nm) while its deprotonated 

form is highly fluorescent.  Although the pKa of 4-MU is 7.8 there is still enough of the 

fluorescent anion present at pH 7.0 such that the reaction can be easily followed 

continuously and this is how we conducted our assays.  Some researchers prefer to run 

this assay as a stopped assay in which aliquots are withdrawn at various time intervals 

and added to a solution of base which increases the concentration of the fluorescent 

anion and therefore the sensitivity of the assay.   

O OOS

O

O

-O

STS & ARSs

HSO3
-

O OHO

H+

H+

O O-O

4-methylumbelliferyl 
sulfate (4-MUS)

4-methylumbelliferone 
(4-MU)

pKa = 7.8

λexcite = 360 nm

λemit = 460 nm

2.2 2.3  

Figure 2.2.  4-methylumbelliferyl sulfate (4-MUS) fluorogenic assay of STS and 
aryl sulfatases (ARSs). 

 
The elution profile in terms of STS activity versus fraction number in the 

presence of an increasing NaCl concentration is illustrated in Figure 2.3.  The STS 

eluted in a distinct peak between approximately 0.01 M and 0.35 M of NaCl.  
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Figure 2.3   Elution profile of STS activity by DEAE chromatography.  

 The active fractions from the DEAE column were combined and dialyzed into 

the equilibration buffer for the next chromatographic step, the 2-mL bed volume anti-

STS immunoaffinity resin containing covalently linked monoclonal antibodies of STS.  

Once dialyzed into 50 mM Hepes, pH 7.4, 1% v/v Triton X-100, the active STS fraction 

was applied to the immunoaffinity column pre-equilibrated in the same buffer.  The 1% 

concentration of Triton X-100 does not affect the ability of STS to bind to the 

immunoaffinity column.  The column was washed in 5 column volumes of the same 

equilibration buffer, followed by a wash with 5 column volumes of 20 mM Hepes, pH 

7.4, 100 mM NaCl, 0.1% v/v Triton X-100 to wash non-specifically bound proteins, and 

excess bound STS.  STS was eluted from the immunoaffinity column according to a 

procedure developed by Novartis.   This involved subjecting the column to 50 mM citric 

acid, pH 2.7, 140 mM NaCl, 0.1% v/v Triton X-100.  All fractions were collected and 

assayed for STS activity by withdrawing an aliquot from the fractions and diluting them 

into a solution of 100 mM tris buffer, pH 7.0, containing 200 µM MUS.  As illustrated 
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in the elution profile in Figure 2.4, the STS activity elutes in a distinct peak according 

to the linear drop in pH over 0.5 column volume from 7.4 to 2.7.  The pooled fractions 

were dialyzed into 20 mM tris, pH 7.4, 0.1% v/v Triton X-100 (storage buffer).  The 

specific activity of STS obtained by this method (method A) is shown in Table 2.1. 
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Figure 2.4   Elution profile of STS activity by anti-STS immunoaffinity 
chromatography. 
 
2.2.1 Study of the effect of neutralization of pH of STS after immunoaffinity 

purification 

 Dissociation of a protein ligand from its antibody in immunoaffinity 

chromatography is commonly performed by an abrupt and steep drop in pH (Sambrook 

and Russell, 2001).  Although we obtained STS with a good specific activity, as shown 

in Table 2.1, we were concerned that eluting STS from the immunoaffinity column 

using citric acid buffer at pH 2.7 might be harmful to the protein’s functional integrity 

and adversely effect its activity.  It has been shown that incubation of rat STS in 

glycine-HCl buffer at pH 2.5 for 1 h at 4oC completely inactivated the enzyme (Kawano 
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et al., 1989).  Vaccaro and coworkers reported that STS is unstable at acidic pH 

(Vaccaro et al., 1987).  Therefore, we conducted a study on the effect of the citric acid 

buffer, pH 2.7, on STS stability as measured by activity.  STS (40 nM) purified 

according to Novartis procedure was thawed on ice after removal from storage and 

incubated in the low pH elution buffer (50 mM citric acid, pH 2.7, 140 mM NaCl, 0.1% 

v/v Triton X-100) and compared to the same sample of enzyme incubated in enzyme 

storage buffer (20 mM tris, pH 7.4, 0.1% v/v Triton X-100).  Immediately an aliquot (5 

µL) was withdrawn from both enzyme samples and added to a 100 µL solution of 400 

µM 4-MUS (95 µL) in 0.10 M tris, pH 7.5 and the rate of production of fluorescent 

product 4-MU was followed as described in § 2.2.2.1.  There was virtually no activity 

remaining in the sample incubated in the low pH elution buffer compared to that of the 

control sample incubated in its enzyme storage buffer.  This illustrates that STS is very 

unstable in such acidic buffer.  However, since we are clearly able to obtain active 

enzyme purified using the Novartis procedure then some of the enzyme must have 

survived the acidic conditions used to elute it for the column.  It is possible that the 

concentration of the enzyme is important.  The concentration of the enzyme used (40 

nM) for the stability studies was 50-fold lower than that of the stock concentration of 

enzyme which elutes from the column.  Perhaps the enzyme that elutes during the 

purification procedure is more resilient toward the harsh acidic elution buffer due to the 

protective benefits from being more concentrated.  Nonetheless, it suggests that some 

portion of the STS activity may be lost during elution for the immunoaffinity column.  

An alternative to using low pH for removing the enzyme from the column is to go to 

high pH.  Kawano and coworkers have reported a purification of STS using 
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immunoaffinity chromatography (Kawano et al., 1989).  They eluted STS from the 

column using 10% dioxane containing 0.5 M NaCl, 20 mM tris, 0.3% v/v Triton X-100 

at pH 11.0.  In order to get pure STS, the material obtained from the imuunoaffinity 

column was subjected to high-pressure anion exchange chromatography.  We were 

hesitant to use this procedure since these workers did not report the purification-fold or 

even the specific activity of the enzyme.  We also did not wish to perform an additional 

purification step using HPLC. 

 To see if we could minimize the effects of the acidic buffer during elution from 

the immunoaffinity column we performed another STS purification except that instead 

of dialyzing the pooled fractions into storage buffer (20 mM tris, pH 7.4. 0.1% v/v 

Triton X-100) after the immunoaffinity column (method A, the Novartis procedure), we 

pooled all of the fractions after the column was complete and then neutralized the 

pooled fractions using concentrated NaOH (0.5 M) then dialyzed into storage buffer 

(method B).  A relatively high concentration of strong base was used to avoid diluting 

the purified protein too much.  However, the specific activity after this purification was 

considerably less than before (Table 2.1).  We performed another STS purification 

except each fraction from the immunoaffinity column was immediately neutralized with 

concentrated NaOH as soon as it was collected from the column.  The neutralized 

fractions were then pooled and dialyzed into storage buffer (method C).  This gave STS 

with a specific activity of 1.25 µmol 4-MU produced/mg/min in a buffer of 0.1 M tris, 

pH 7.0 at 22°C, which is three times and eight times higher than that of the dialysis 

method (“A”) and the pooled neutralization of (“B”) (Table 2.1). Consequently, all 

subsequent STS purifications were performed using method C. 
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Table 2.1.  Comparison of Specific Activities of three methods to neutralize STS 
after immununoaffinity purification. 

 

2.2.2 Evaluation of specific activity, molecular size, and kinetic parameters of 

STS and comparison to literature 

 The literature reports the specific activity of STS purified from placenta in terms 

of various substrates and assay methods such that a comparison between reports is 

difficult to make.  For example, Hernandez-Guzman and coworkers use the natural 

substrate, [7-3H]dehydroepiandrosterone sulfate (DHEAS), as a tritiated substrate in a 

radiometric assay to report specific activity in terms of the µmol 

dehydroepiandrosterone produced/min per mg of enzyme (Hernandez-Guzman et al., 

2001).   It would be advantageous to compare the specific activity we have determined 

for STS purified according to “method C” (Table 2.1) to that of Hernandez-Guzman, as 

we employed their method for the preparation of placental microsomes; however, we 

have used 4-MUS as a fluorogenic substrate in our assays.  Of the reports that employ 4-

MUS as a substrate, Shankaran et al., report a specific activity of 0.2 nmol 4-MU 

produced/mg/min in a buffer of 0.25 M tris-HCl, pH 7.3 at 37°C (Shankaran et al., 

1991).   Vaccaro et al., report a specific activity of 70 nmol 4-MU produced/mg/min in a 

buffer of 0.02 M tris, pH 6.8, pH 7.0 (Vaccaro et al., 1987).  It appears that the specific 

 
 

Sample 

 
Concentration 

(mg/mL) 

Specific Activity  

(µµµµmol 4-MU 
produced/mg/min) 

Purified STS method A 0.16 0.37 

Purified STS method B 0.15 0.16 

Purified STS method C 0.39 1.25 
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activity of the protein purified in our lab (1.25 µmol 4-MU produced/mg/min) is 6250- 

and 18-fold higher than that of Shankaran et al., and Vaccaro et al., respectively.  The 

method we used employs a fewer number of chromatographic steps than those employed 

by the authors mentioned here, and the overall decrease the purification time may 

prevent time-dependent loss of activity of the enzyme.  Ultimately, it does not seem that 

there is any detriment caused by exposure to the acidic elution buffer in the 

immunoaffinity chromatography step though it appears that neutralization of the 

individual fractions with NaOH as they elute from the column is best. 

 All of the purifications (using methods A, B and C) showed high purity by SDS-

PAGE.   The SDS-PAGE for the material obtained using method C is shown in Figure 

2.4.  It is important to note that the “shadow” bands that are present on our SDS-PAGE 

have also been reported by others and are attributed to the heterogeneity of the �-linked 

glycosylations present in STS (Dibbelt and Kuss, 1986; Hernandez-Guzman et al., 2001). 

In addition, Hernandez-Guzman et al., used the preparation of STS that shows faint 

shadow bands by SDS-PAGE to grow diffraction-quality crystals to elucidate the first 

X-ray crystal stucture of STS (Hernandez-Guzman et al., 2003).  The extra shadow 

bands also appear in a Western blot reported to us by these same authors in a personal 

communication, suggesting that these indeed correspond to molecular weight 

heterogeneity and are not contaminant proteins.  
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Figure 2.5  10% SDS-PAGE of purified steroid sulfatase. The gel 
was stained with PageBlue Protein Staining Solution according 
to the manufacturer’s instructions (Fermentas). The low molecular 
weight (LMW) marker is shown in the leftmost lane. Lane 1 
contains a sample obtained after anti-STS immunuaffinity 
chromatography by method “c.” The arrow denotes the major band 
in this lane at 68 kDa, attributed to STS. 
 

The molecular mass of the major band detected by the SDS-PAGE shown in 

Figure 2.5 is approximately 68 kDa which is in good agreement with the results 

reported by Hernandez-Guzman et al., who reported a molecular mass of 65 kDa based 

on SDS-PAGE and whose placental extraction method we followed.  There used to be 

conflicting evidence in the literature concerning the functional oligomer of STS, which 

had been reported as trimeric (Vaccaro et al., 1987), tetrameric (van der Loos et al., 

1983), and hexameric (Burns et al., 1983) according to gel filtration.  However, with the 
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publication of the crystal structure (Hernandez-Guzman et al., 2003) there now is 

agreement that the protein is a monomer, and the previous reports of multimeric forms 

were caused by variations in detergent solubilization (Vaccaro et al., 1987; Shankaran et 

al., 1991).  There is a wide range of molecular weights for the monomeric protein 

reported in the literature, 63-78 kDa, as illustrated in Table 2.2 and this is due to the 

various glycosylation states of the enzyme (Conary et al., 1986).  The sequence of STS 

predicts a 583 amino acid protein, including 21 residues on N-terminal signal peptide 

(Stein et al., 1989). The wide distribution of molecular mass is due to the four possible 

�-glycosylation sites on the enzyme (Stein et al., 1989).  

Table 2.2  Molecular mass for placental STS reported 
by SDS-PAGE in literature 
Molecular Mass (Da) Reference 

65,000 Hernandez-Guzman et al., 2001 
62,000 Kawano et al., 1989 
78,000 Vaccaro et al., 1987 
74,000 Burns et al., 1983 
78,6001 
72,0002 

Noel et al., 19831,  
Noel et al., 19832 

63,000 Van der Loos et al., 1983 
  

 The pH-dependence of kcat, Km and kcat/Km using 4-MUS as substrate are shown 

in Figures 2.6-2.8. The dependence of kcat on pH shows a bell-shaped profile with a 

maximum occurring at pH 8 (Figure 2.6).  The substrate has Km values ranging between 

100 and 180 µM pH 6.5 and 7.5, and then the values increase significantly with 

increasing pH (Figure 2.7).  kcat/Km shows a bell-shaped pH profile with a maximum at 

pH 7.5 (Figure 2.8).  The pH optima for hydrolysis of 4-MUS substrate for placental 

STS have been reported between 7.0 and 8.0, however, it is unclear on which parameters 

these optima are based.  For example, Dibbelt and Kuss report a pH optimum for 

hydrolysis of 4-MUS of 7.0, but the authors do not state whether this value is the 
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optimal pH for catalytic efficiency, kcat/Km, or some other kinetic parameter (Dibbelt and 

Kuss, 1986). Vaccaro et al., and Shankaran et al., report an optimum pH of 6.8 and 7.4, 

respectively, for the hydrolysis of 4-MUS substrate, but in both cases it is also unclear 

how this optimum is defined and under which assay conditions it was determined 

(Shankaran et al., 1991).  If we assume that the pH optima for 4-MUS hydrolysis 

reported in literature is in terms of kcat/Km, then the our value of pH 7.5 falls within the 

range of values reported.     
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Figure 2.6  pH profile of STS activity in terms of kcat 

measured with 4-methylumbelliferyl sulfate (4-MUS, 2.2) as 
substrate. 
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Figure 2.7  pH profile of Km values of 4-methylumbelliferyl 
sulfate (4-MUS, 2.2) for STS as a function of pH. 
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Figure 2.8.  pH profile of STS activity in terms of kcat/Km 

measured with 4-methylumbelliferyl sulfate (4-MUS, 2.2) as 
substrate. 

 
 A comparison of our determined Km value for 4-MUS, 180 µM, compares well 

with those reported under similar conditions in literature, as presented in Table 2.3.  Our 

value was determined at 22°C using a buffer of 0.1 M bis-tris propane, pH 7.0, 0.01% 

v/v Triton X-100 and the production of the hydrolysis product, 4-MU, 2.3, was followed 
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by fluorescence in a continuous mode.  Our value compares most closely to that 

reported by Kawano et al., who report a Km for 4-MUS of 190 µM at pH 7.0 in a buffer 

of 0.1 M imidazole-HCl containing 0.3% v/v Triton X-100 at 37°C.  Kawano and 

coworkers also performed their assay for determining Km in a discontinuous mode 

where the reaction was stopped by adding 0.5 M glycine-NaOH buffer (pH 10.3).  

Although the method used by Kawano et al., for determining the Km of 4-MUS substrate 

is different from ours in terms of the buffer system, Triton X-100 detergent 

concentration and the discontinuous mode, our values are very similar.   In contrast, the 

Km for 4-MUS of 100 µM reported by Vaccaro et al., is approximately 2-fold lower than 

that reported by our group and Kawano and coworkers.  The Km determined by Vaccaro 

et al. was determined using a buffer of 0.02 M imidazole HCl, pH 6.8 at 37°C, but 

similar to the method of Kawano et al., the assay was performed in a discontinuous 

manner with the addition of 1 M NaOH to basify the assay prior to measurement of 

fluorescent 4-MU. The differences in assay methods pertaining to buffer system, 

detergent concentration, temperature, pH and the mode of measurement of the 

hydrolyzed fluorescent product may account for the differences in Km values reported in 

the literature, however, the values that appear in Table 2.3 fall within a similar range of 

magnitude.  

Table 2.3 Comparison of literature Km values for 4-MUS 
substrate. 

Km (µµµµM) pH Reference 
180 7.0 Present study 
190 7.0 Kawano et al., 1989 
100 6.8 Vaccaro et al., 1987 
270 7.4 Shankaran et al., 1991 
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2.3 Conclusions 

The method we have used for purifying steroid sulfatase from human placenta 

represents an efficient adaptation of an established ion exchange chromatography 

method paired with an immunoaffinity method to yield a large quantity of highly 

purified enzyme, essential for the detailed inhibitor studies we envisage.  The manner in 

which the protein is returned to neutral pH after elution from the immunoaffinity 

column is an important consideration to ensuring optimally active STS.  The purified 

enzyme’s characteristics of molecular size, specific activity, pH optimum and Km of a 

commonly used fluorogenic substrate, 4-MUS, compare favorably to those reported in 

literature. 
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2.4 Experimental 

2.4.1 Materials  

 Biochemical reagents and buffers were obtained from Sigma Chemical Co. (St. 

Louis, Missouri) unless stated otherwise.  DEAE cellulose (DE-52) was obtained from 

Whatman (Maidstone, England).  Anti-STS monoclonal antibody was a gift from 

Novartis (Austria) and the procedure for the purification of STS by immunoaffinity 

chromatography was given to us by Dr. Andreas Billich at Novartis (Austria).  Protease 

inhibitor cocktail was obtained from Sigma.  The immunoaffinity column used to purify 

STS was prepared by coupling the purified anti-STS monoclonal antibody to CNBr-

activated Sepharose 4B (Pharmacia) according to the manufacturer instructions at a 

density of 10 mg/ml resin.  DC Protein Assay kit for Bradford protein determination was 

obtained from BioRad Laboratories (Richmond, California).  Gel electrophoresis silver-

staining kit was obtained from Invitrogen (Carlsbad, California).  Gel electrophoresis 

PageBlue Protein Staining Solution was obtained from Fermentas Life Science 

(Vilnius, Lithuania).  Fluorometric assays were performed using a SpectraMax Gemini 

XS plate reader equipped with SOFTmax® Pro Version 3.1.1 software from Molecular 

Devices (Sunnyvale, California). Human placenta was obtained from Credit Valley 

Hospital, Mississauga, Ontario, shortly after birth and immediately frozen at -80oC until 

purification, for no longer than two weeks.  

2.4.2 Methods 

2.4.2.1 Activity Assay 

Steroid sulfatase (STS) activity was assayed by the addition of 10 µL of sample 

to 90 µL of 0.1 M tris, pH 7.0, containing 400 µM 4-methylumbelliferyl sulfate (4-MUS, 
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2.2, Figure 2.2) in a 96-well black microtiter plate (Corning), similar to the method of 

Roy, 1971.  Production of fluorescent product, 4-methylumbelliferone (4-MU, 2.3), was 

monitored for 10 minutes by excitation (360 nm) and emmission (460 nm) using a 

fluorescence platereader (Gemini XS, Molecular Devices, Sunnyvale, CA).  Enzyme 

activity was monitored in terms of relative fluorescence units per second (RFUs/second) 

using a data acquisition software package, Softmax Pro 3.1.1. 

2.4.2.2 Homogenization and Chromatography 

200 g of full-term human placenta was homogenized and centrifuged according 

to the procedure of Hernandez-Guzman and coworkers (Hernandez-Guzman et al., 

2003).  After membranes were removed and umbillical cord was removed, the placenta 

was cut into small pieces and homogenized using a Brinkman polytron in 50 mM Tris 

HCl pH 7.5, 0.25 M sucrose, 1 g protease inhibitor cocktail (Sigma-Aldrich). The 

homogenate (400 mL) was centrifuged (20,000 × g, 30 minutes, 4°C), and the 

supernatant was discarded. The pellet was resuspended in the same buffer (300 mL) 

used in homogenization and subjected to a subsequent centrifugation (20,000 × g, 30 

minutes, 4°C).  The supernatant was discarded and the pellet was resuspended in an 

extraction buffer of 20 mM Tris HCl pH 7.4, 0.3% v/v Triton X-100 (300 mL) and 

subjected to ultracentrifugation (100,000 × g, 70 minutes, 4°C) to obtain the microsomal 

fraction.  After centrifugation the supernatant was saved while the pellet was 

resuspended in the same extraction buffer (200 mL) and subjected to a second ultra-

centrifugation (100,000 × g, 70 minutes, 4°C).  The resulting supernatant was pooled 

with that of the first ultracentrifugation and the pellet was discarded.  This microsomal 

fraction (400 mL) was dialyzed into 20 mM tris HCl, pH 7.4, 0.1% v/v Triton X-100 (4 
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L × 3) and then subjected to a DEAE column (250 mL of DE-52, Whatman) according 

to the procedure of Hernandez-Guzman et al.  After the dialysate was applied, the 

column was washed with 5 column volumes of 20 mM tris HCl, pH 7.4, 0.1% v/v Triton 

X-100.  Pooled fractions containing STS (250 mL) were dialyzed into 20 mM Hepes 

buffer, pH 7.4, 1% v/v Triton X-100 (2 L × 3).  To obtain pure STS, dialyzed fractions 

from the DEAE column were applied to a monoclonal anti-STS immunoaffinity column 

(2.5 mL) that had been pre-equilibrated with 10 column volumes of the dialysis buffer 

based on a method provided to us by Novartis.  The immunoaffinity column was 

prepared by coupling purified monoclonal antibody raised against STS to a CNBr-

activated Sepharose 4B at a concentration of 10 mg antibody per mL of resin according 

to the manufacturer’s instructions (Pharmacia).  The column was washed with 5 column 

volumes of the same buffer and then 10 column volumes of 20 mM Hepes, pH 7.4, 100 

mM NaCl, 0.1% v/v Triton X-100 and then eluted with 10 column volumes of 50 mM 

citric acid, pH 2.7, 140 mM NaCl, 0.1% v/v Triton X-100.  To neutralize fractions 

containing STS activity (10 mL), the Novartis procedure recommends basifying each 

fraction immediately.  Because the specific method to basify each fraction was indistinct 

we adopted three different methods and compared their effects on specific activity of 

STS as outlined here: 

A) Fractions containing STS activity were immediately pooled and were 

neutralized by dialysis into 20 mM Tris, pH 7.4, 0.1% v/v Triton X-100 (STS 

storage buffer).  

B) Fractions containing STS activity were immediately pooled and were 

neutralized by slow addition of 0.5 M NaOH until approximate neutrality was 
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reached as measured by litmus paper. Pooled fractions were immediately 

dialyzed into storage buffer. 

C) Fractions containing STS activity were immediately neutralized by slow 

addition of 0.5 M NaOH until approximate neutrality was reached as measured 

by litmus paper. Pooled fractions were immediately dialyzed into storage buffer. 

After STS from each neutralization method was dialyzed into storage buffer, the 

dialysate was divided into aliquots of 100 µL each and flash frozen in N2(l) and stored at 

-80°C until use.  STS from each neutralization method was purified to >95% 

homogeneity as judged by 10% SDS-PAGE (stained with PageBlue Protein Staining 

Solution, Fermentas Life Science).   

 To further test the stability of STS in low pH, a 40 nM concentration of STS 

purified by method “C” was incubated in both the immunaffinity elution buffer of 50 

mM citric acid, pH 2.7, 140 mM NaCl, 0.1% v/v Triton X-100, and the enzyme storage 

buffer of 20 mM tris, pH 7.4, 0.1% v/v Triton X-100.  Immediately, 5 µL aliquots were 

withdrawn in triplicate from both of the incubations and added to wells of a 96-well 

black microtiter plate containing 95 µL of 400 µM 4-MUS (approximately 2 × Km) in 

0.1 M tris, pH 7.5.  The change in pH of the assay due to the addition of the pH 2.7 

buffer was negligible. The production of fluorescent 4-MU product was measured 

according to the method described in § 2.4.2.1. 

2.4.2.4 Protein concentration determination 

The protein concentration was determined according to DC Biorad Laboratories 

(Richmond, CA) protein concentration determination kit instructions using bovine 

serum albumin (BSA) as a standard.  This colorimetric assay is for the determination of 
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protein concentration following solubilization with a detergent such as Triton X-100. 

The assay is based on the reaction of protein with an alkaline copper tartrate solution 

and Folin reagent (Bradford, 1976). 

2.4.2.5 Determining kinetic properties 

 To determine the Km of STS with 4-MUS a substrate, 90 µL of concentrations of 

4-MUS ranging from 83.3 µM – 500 µM in buffer containing 0.1 M tris, pH 7, 0.01% 

v/v Triton X-100 were in a 96-well black microtiter plate to which 10 µL of purified 

STS was added to a final concentration of 3 nM.  Production of fluorescent 4-MU was 

followed as described in § 2.2.2.1.  The Km value was determined from a plot of 1/v 

versus 1/[4-MUS] according to the method of Lineweaver-Burk.  

2.4.2.6 Determining pH-rate profile 

 A pH-rate profile was generated by performing assays to generate Lineweaver-

Burk plots as described in § 2.4.2.5.  A plot was determined for each pH at 6.5, 7, 7.5, 8, 

8.5, 9, 9.5 in 0.1 M bis-tris propane buffer whose buffering range is from 6.0 to 9.5 

(Eckert and Kunkel, 1991).  The Km and Vmax values were determined from the slopes 

and y-intercepts of 1/v versus 1/[4-MUS] Lineweaver-Burk graphs. The catalytic rate 

constant, kcat, at each pH was calculated by Vmax/Etot (Copeland, 2005). 
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Chapter 3 – Quinone Methide-Generating Active Site-

Directed Mechanism-Based Irreversible Inhibitors of 

Steroid Sulfatase
†
 

 
 
 
 

3.1 Introduction 

3.1.1 Mechanism-based enzyme inhibitors 

Mechanism-based enzyme inhibitors (MBIs) also referred to as suicide inhibitors 

(SIs) are compounds that are enzyme substrates yet produce an intermediate or product 

that reacts covalently with a residue(s) which results in the enzyme’s inactivation.  A 

general reaction scheme for SIs is shown in Figure 3.1.  The SI binds to the enzyme (E) 

to form an enzyme-SI complex (E—SI).  The enzyme becomes inactivated from further 

catalysis by converting the SI into an activated form (SI’) that becomes covalently 

attached to the enzyme (E—SI”).  In general, SIs are relatively unreactive in the absence 

of the enzyme and resemble either the natural product or substrate of an enzyme 

(Silverman, 1988). 

                                                 
† This chapter is based largely on the publication, “Multiple pathways for the 

irreversible inhibition of steroid sulfatase with quinone methide-generating suicide 
inhibitors,” which was published in the journal ChemBioChem (Ahmed et al., 2009).  
Express written consent was obtained from the publishers of ChemBioChem to 
reproduce the publication in whole or in part in association with this thesis, as noted in 
Appendix E. The publication must be cited and the copyright regulation must be stated 
as follows:  

 

Ahmed, V., Liu, Y., Taylor, S.D.  Multiple pathways for the irreversible 
inhibition of steroid sulfatase with quinone methide-generating suicide inhibitors. 
ChemBioChem, volume 10(9), pages 1457-61, 2009.  Copyright © 2009 Wiley-VCH 
Verlag GmbH & Co., KGaA, Weinheim, Germany. 
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Figure 3.1.  General reaction scheme for mechanism-based inactivators. 

 Recently, there has been a renewed interest in the development of SIs due to 

their use as activity-based probes (ABPs) for proteomic profiling.  Proteomics is a field 

that seeks to assign functional, evolutionary, and interactive relationships of the proteins 

encoded by a genome (Cravatt et al., 2008).  Developing small molecule substrates that 

are selective probes for a particular enzyme family is an important tool in chemical 

biology.  Activity-based profiling enables researchers to isolate new members of the 

target enzyme class and to analyze activity patterns both in normal physiology and in 

disease pathology (Fonovic and Bogyo, 2008; Cravatt et al., 2008).  ABPs for proteomic 

profiling have been developed for enzyme classes such as proteases, kinases, 

phosphatases, glycosidases, and oxidoreductases (Cravatt et al., 2008).  A schematic 

representation of how profiling works is shown in Figure 3.2.   The ABP consists of a 

trapping device, such as an SI, which is attached to a reporter (such as biotin) by a linker.  

The SI is designed to react with a specific family of proteins (i.e. glycosidases) but not 

with other proteins outside that specific family.  Whole cell extracts or lysates from 

healthy or diseased tissue are subjected to the probe which results in the covalent 

attachment of the probe to proteins belonging to the targeted family.  The mixture is 

separated by SDS-PAGE and then subjected to a reporter specific reagent (ie. 

streptavidin-horse radish peroxidase conjugate if biotin is the reporter group).  The 

reporter specific reagent is designed to be detected by fluorescence or some other 
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sensitive technique such that when it is attached to the reporter the proteins to which the 

reported is attached can be readily detected.  The proteins can be digested with a 

protease and sequenced.  This allows one to isolate new members of the target enzyme 

class and to analyze activity patterns both in normal physiology and in disease 

pathology.  

 

 

Figure 3.2.  General scheme for activity-based proteomic profiling. (Adapted 
from Cravatt, 2008.) 

 
 It is a long-term objective of the Taylor group to develop SIs as activity-based 

probes for the proteomic profiling of sulfatases.  The ability to profile the entire 
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sulfatase family on the basis of changes in their activity should open an avenue for both 

the assignment of sulfatase function and the identification of potential new therapeutic 

sulfatase targets.  There is an emerging interest in profiling prokaryotic and eukaryotic 

sulfatase activity due to their involvement in diverse physiological functions ranging 

from hormonal regulation, cellular degradation, intracellular communication, and 

signalling pathways (Hanson and Wong, 2004).  Sulfatases are also good candidates for 

this proteomic profiling strategy because their active sites are highly conserved and they 

are all believed to catalyze their respective desulfations by a common mechanism 

(Ghosh, 2007; O’Brien and Herschlag, 1998). The fact that most sulfatases are able to 

hydrolyze the sulfate ester bond of small molecule aryl sulfates that are non-natural 

substrates (Roy, 1971) makes this class of enzymes amenable toward proteomic 

profiling by activity-based probes.   

3.1.2 Quinone methide-generating suicide inhibitors 

In chapter 1 (§ 1.3.2) a major class of sulfatase suicide inhibitors was discussed, 

the aryl sulfamates, (ArOSO2NH2) (Nussbaumer and Billich, 2004).  Although they are 

potent irreversible STS inhibitors, it is unlikely that these compounds will ever be used 

as ABPs for profiling sulfatases since the ArO-S bond must be cleaved by the enzyme 

and so the phenolic portion of the substrate is released from the active site.  The species 

that ultimately labels the sulfatase is believed to be HN=SO2.  Thus no reporter group 

can be covalently attached to the enzyme using this class of SIs.  

Numerous SIs have been developed for a wide variety of enzymes (Silverman, 

1988).  In this thesis we will focus on a specific class of SIs called quinone methide-

generating SIs.  Quinone methide-generating SIs have previously been developed for a 
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variety of hydrolytic enzymes.  Among the first to use this class of SIs were Halazy and 

coworkers who demonstrated that di- and monofluoromethylaryl-β-glycosides were SIs 

of a β-glycosidase (Halazy et al., 1990).  An example of one of their inhibitors, 

compound 3.1, and its mechanism of action, is shown in Figure 3.3.  It is believed that 

the action of a glycosidase on compound 3.1 results in the formation of intermediate 3.2 

which spontaneously breaks down to give quinone methide 3.3.  This highly reactive 

species then reacts with an active site nucleophile(s) and inactivates the glycosidase.  

Many other SIs based on this strategy have been developed since their report.  Some  
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Figure 3.3.  Compound 3.1 as a quinone-methide generating SI of a 
glycosidase. 

examples are shown in Figure 3.4.  For example, Janda and coworkers used the bovine 

serum albumin (BSA) conjugate of compound 3.4 to screen a phage-Fab library of 9 × 

103 members to trap catalytic antibodies with galactosidase activity (Janda et al., 1997).  

Lo and coworkers designed compound 3.5 as an activity-based probe for glycosidases 

(Tsai et al., 2002).  Myers and Widlanski reported the use of 4-monofluoromethylphenyl 

phosphate (3.6) as a SI of prostatic acid phosphatase (Myers et al., 1993).  Shortly 

thereafter, Withers and coworkers demonstrated that 4-difluoromethylphenylphosphate 

was also a SI of human prostatic acid phosphatase as well as a phosphotyrosine 

phosphatase (Wang et al., 1994).  Cesaro-Tadic and coworkers screened a phage-display 

library comprised of 2 × 109 human catalytic antibodies exhibiting phosphatase turnover 
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by using 2-difluoromethylphenyl phosphate immobilized substrate, 3.7. (Cesaro-Tadic 

et al., 2003).  Lo and coworkers designed compound 3.8 as an activity-based probe for 

phosphatases (Lo et al., 2002).  All of these compounds inhibit their target enzymes by 

generating reactive quinone methides in the active site upon activation by their 

respective enzymes in a manner similar to that described in Figure 3.3.   
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Figure 3.4.  Examples of some quinone methide-generating SIs of glycosidases 
and phosphatases.  
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3.1.3 Objectives 

The objective of the work described in this chapter is to determine if quinone-

methide-generating SI’s can be developed for sulfatases using STS as a representative 

sulfatase.   If such inhibitors can be developed then an additional objective will be to 

determine if they exhibit properties that enable then to be used as activity based probes 

for proteomic studies.  These objectives will be achieved by subjecting STS to 

compounds 3.9-3.16 (Figure 3.5) followed by detailed kinetic studies.  Hydrolysis of 

the S–O bonds in 3.9-3.16 would produce quinone methides in the active site which 

could react with residues required for catalysis thus inactivating STS (as illustrated for 

compound 3.10 in Figure 3.6).  Should compounds 3.9-3.16 prove to be SIs of STS and 

exhibit kinetic properties that are amenable to proteomic studies then it is a long-term 

goal to use this class of inhibitors as activity-based probes for the proteomic profiling of 

sulfatases.  
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Figure 3.5.  Proposed quinone methide-generating inhibitors. 
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Figure 3.6.  Proposed mechanism for the inactivation of STS by compound 3.10. 

3.2 Results and Discussion 

3.2.1 General criteria for SIs.  

SIs are evaluated experimentally by the following characteristics: (1) time- and 

concentration-dependent inactivation (ideally, loss of activity should follow pseudo-first 

order kinetics); (2) saturation inhibition kinetics; (3) substrate protection; and (4) 

exogenous nucleophiles do not affect rates of inactivation (Silverman, 1988).  Evidence 

for these characteristics indirectly supports modification of the enzyme by covalent 

attachment of the inhibitor.  When possible, it is also desirable to obtain additional 

evidence for covalent modification by identifying the amino acid residue bearing the 

covently attached molecule after enzymatically digesting the putatively covalently 

modified enzyme and isolating the peptide fragment.  
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3.2.2 Evaluation of time- and concentration-dependence of compounds 3.10 and 

3.11. 

Compounds 3.9-3.12 were prepared by Yong Liu in the Taylor group.  I 

examined for time- and concentration-dependent STS inhibition by incubating the 

compounds with STS at pH 7.0 in 100 mM tris buffer containing 0.01% Triton X-100 

(assay buffer).  Aliquots were withdrawn at various time intervals and diluted 50-fold 

into a solution of a high concentration (20 × Km) of 4-methylumbelliferyl sulfate (4-

MUS) in the same buffer and STS activity was determined by following the production 

of 4-methylumbelliferone by fluorimetry.  The amount of STS activity remaining was 

compared to that of a control containing no inhibitor (for details see § 3.4.3).  The 

reason that the enzyme-inhibitor incubation is significantly diluted into an excess 

concentration of substrate is to “quench” any further inactivation events and to allow 

measurement of the remaining active, free enzyme (Silverman, 1988). 

The monofluoromethyl steroid derivatives, 3.10 and 3.11, were studied first.  

The 2-monofluoromethyl derivative 3.10 exhibited time- and concentration-dependent 

inhibition as illustrated in Figure 3.7A.  At 100 µM of 3.10 almost all STS activity was 

abolished within 20 minutes. The rate of inactivation did not increase at concentrations 

above 100 µM and this plateau is indicative of saturation kinetics (Silverman, 1988).   

At concentrations between 12.5 and 50 µM of inhibitor the inhibition occurred relatively 

rapidly within the first few minutes but then slowed and eventually reached a plateau.  

This behaviour has been observed in previous studies of SIs of sulfatases, for example, 

in members of the aryl sulfamate inhibitor class (Purohit et al., 1995).  This suggests that 

multiple inactivation events are occurring with non-catalytic amino acid residues or 
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other nucleophiles such as water, and only above a certain concentration of inhibitor is 

there enough quinone methide generated to react with catalytic amino acids, resulting in 

irreversible inhibition of the enzyme.  Alternatively, this suggests the inhibitor is rapidly 

consumed and that much of the resulting quinone methide diffuses from the active site 

and has a high partition ratio.  The partition ratio is the ratio of the number of times the 

inhibitors are turned over to the number of enzyme inactivation events (k3/k4 in Figure 

3.1) (Silverman, 1988).  In the initial five minutes pseudo-first order reaction rates were 

observed (Figure 3.7B) from which a KI of 68 µM and a kinact of 0.34 min-1 (kinact/KI of 

5000 M-1 min-1) were derived for 3.10 using the method of Kitz and Wilson  (Figure 

3.7B inset) (Kitz and Wilson, 1962).  The KI for inactivation of an enzyme by a SI is 

determined experimentally as described in § 3.4.3, by observing the effect on the rate of 

inactivation due to a change in the inactivator concentration.  In contrast, the Ki for 

reversible inhibitors is defined as the dissociation constant for the enzyme-reversible 

inhibitor complex, and is experimentally determined by examining the rate of of 

conversion of subsaturable concentrations of substrate to product in the presence of a 

constant amount of inhibitor (Silverman, 1988). Only if k2 shown in Figure 3.1 is rate-

determining (when k1 and k-1 are much greater than k2), the KI fo SIs is analogous to the 

Ki term for reversible inhibitors, and represents the dissociation of the E-SI complex 

(Silverman, 1988).  However, the rate of inactivation by a SI is determined by the rates 

of k2 and k4 depicted in Figure 3.1, so if k4 becomes even partially rate-determining, 

then the value of KI increases and KI and Ki are no longer equal.  Conceptually, KI is the 

concentration of the inactivator that produces half the maximum rate of inactivation 
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(Silverman, 1988). The rate of inactivation, kinact, is a combination of rate constants, k2 

and k4, and is experimentally determined as described in § 3.4.3. 

 

Figure 3.7. Time- and concentration-dependent inhibition of STS with inhibitor 
3.10 over 20 minutes (A) and 5 minutes (B). Inset in B: Kitz-Wilson plot.  For 
details see § 3.4.3.   
 

The 4-monofluoromethyl derivative, 3.11, exhibited behaviour similar to that of 

the 2-monofluoromethyl derivative, compound 3.10, as illustrated in Figure 3.8A.  

There is a pseudo-first order loss of activity with respect to time for all concentrations 

examined, followed by a plateau.  As with compound 3.10, this suggests that multiple 

inactivation events are required for irreversible inhibition or that the quinone methide is 
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rapidly consumed and also has a high partiton ratio.  The initial twenty minutes of the 

pseudo-first order reaction rates (Figure 3.8B) were used to generate a Kitz-Wilson plot 

and yield a KI of 3.4 µM and a kinact of 0.056 min-1 for 3.11 (kinact/KI of 1.6 x 104 M-1 

min-1).   
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Figure 3.8.  Time- and concentration-dependent inhibition of STS with inhibitor 
3.11 over 20 minutes (A) and 5 minutes (B).  Inset in B: Kitz-Wilson plot. For 
details see § 3.4.3. 
 

3.2.3 Active site protection and trapping experiments for compounds 3.10 and 

 3.11. 

To demonstrate that time- and concentration-dependent loss of activity with 
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performed.  This involves incubating the enzyme with its normal substrate or a known 

reversible competitive inhibitor concomitant with the proposed inactivator.  If the 

inhibitor requires STS activation for inhibition the competitive inhibitor should compete 

for binding in the active site and prevent the proposed inactivator from being activated 

by STS and so a decrease in the rate of inactivation should be seen with increasing 

concentration of competitive inhibitor.  For our studies we used a well-established 

competitive inhibitor of STS, estrone-3-O-phosphate (E1P), which, under our assay 

conditions (0.1 M tris, pH 7.0, 0.01% Triton X-100) has a Ki of 1 µM (Anderson et al., 

1995).  STS could indeed be protected against inactivation by 100 µM of 3.10 and 3.11 

with E1P as illustrated in Figure 3.9A and 3.9B.  This indicates that irreversible 

inhibition by these compounds requires active site binding and enzymatic activation.   
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Figure 3.9.  Inactivation of STS in the presence of E1P and compound 3.10 (A) 
and compound 3.11 (B). See §3.4.5 for details.   
 

A mechanism-based inhibitor must be activated in the active site without release 

into solution and potential re-entry (Silverman, 1988).  Otherwise, any inactivation 

observed may be due to attachment to a residue on the enzyme other than the active site 

or due to the reactive species leaving the active site and then re-entering the active site 

after having been modified through reacting with other species in solution.  To 

demonstrate that neither of these situations is responsible for inactivation, the enzyme 

and inhibitor are incubated with an exogenous nucleophile to “trap” any activated 

inhibitor that might escape from the active site.  Once trapped by the nucleophile the 
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rate of inactivation observed should decrease. Commonly used nucleophiles for these 

experiments are thiols such as β-mercaptoethanol (β-ME) or glutathione (Silverman, 

1988).  It is sometimes preferable to use a bulkier thiol such as glutathione because 

small thiols such as β-ME can sometimes compete with the inhibitor for the active site, 

which would defeat the purpose of the experiment. Prior to examining glutathione as an 

electrophilic trapping agent, its effect on STS activity was examined.  A 5 mM 

concentration of glutathione or β-ME in assay buffer was incubated with STS and the 

activity was immediately measured using 1 mM of 4-MUS fluorogenic substrate.  Only 

40% of STS activity remained compared to control and one hour later only 27% of 

activity remained.  In contrast, with β-ME more than 80% of STS activity remained 

after one hour of incubation of STS.  Consequently, β-ME was used for our trapping 

experiments.  Incubation of 100 µM of each 3.10 or 3.11 with STS in the presence of 5 

mM β-ME resulted in little or no decrease in the rate of inactivation as shown in 

Figures 3.10A and 3.10B.  This is consistent with the proposed activated species, the 

quinone methide, reacting with active site residues.  This test demonstrates that the 

activated species was not released from the active site prior to inactivation and fits the 

description for a mechanism-based inhibitor. 
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Figure 3.10.  Inactivation of STS in the presence of β-ME and compound 3.10 
(A) and compound 3.11 (B). For details see § 3.4.6.  
 

3.2.4 Irreversibility of inhibition of STS by compounds 3.10 and 3.11. 

In addition to irreversible inhibitors that form a stable covalent bond in the active 

site of their target enzyme, mechanism-based inhibitors include a category of inhibitors 

termed tight binding inhibitors.  It is important to note that tight-binding inhibitors can 

also exhibit time- and concentration-dependent inhibition, reduced inactivation rates in 

the presence of a competitive inhibitor and display unaffected inactivation rates in the 

presence of exogenous nucleophiles.  However, because their mode of inhibition is 
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reversible, extensive dialysis of the inhibited enzyme will restore its activity. In order to 

distinguish between a tight-binding inhibitor and a irreversible inhibitor, dialysis of the 

enzyme-inhibitor complex is an essential experiment.  Following inactivation of STS by 

100 µM each of compounds 3.10 and 3.11 for 1 hour under our usual conditions, an 

extensive dialysis amounting to a 1012-fold dilution over a 24-hour period of the 

enzyme-inhibitor solution was performed in conjunction with a control in the absence of 

inhibitor.  No appreciable STS activity could be recovered after extensive dialysis, 

emphasizing the irreversibility of the inhibition by these compounds.   

3.2.5 Evaluation of time- and concentration-dependence for compound 3.9. 

The 2-difluoromethyl derivative, 3.9, was examined for time-dependent 

inhibition at 10 µM, however, no significant inhibition was observed.  To determine 

whether the compound was even a substrate for the enzyme, 10 µM of 3.9 was 

incubated with STS and aliquots were withdrawn at t = 0, 2 and 5 minutes and analyzed 

by HPLC.  The chromatogram obtained after 2 minutes of incubation shows two peaks 

(Figure 3.11).  Peak “A” (tR = 12 min) corresponds to compound 3.9, according to a 

control, and peak “B” (tR = 34 min) is reasoned to be a product of the enzyme-catalyzed 

reaction, as its concentration increases in the chromatogram obtained after 5 minutes, 

while that of the starting material, peak “A,” is abolished.  
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Figure 3.11.  RP-HPLC analysis of the reaction of compound 3.9 with STS.  I: 
10 µM compound 3.9 in assay buffer.  Peak A corresponds to compound 3.9 (tR 
= 12 min); II: 10 µM 2-FE1 in assay buffer containing 2 % DMSO.  Peak B 
corresponds to 2-FE1 (tR = 34 min); (III and IV): 10 µM compound 3.9 with STS 
in assay buffer after 2 min reaction (III) and 5 min reaction (IV).  See § 3.4.11 for 
details. 
 

The possible products that may result after STS-catalyzed cleavage of the S-O 

bond of 3.9 is illustrated in Figure 3.12.  If the initial hydrolysis product, 2-

difluoromethyl estrone (2-diFME1), were to dissociate from the active site prior to 

formation of the reactive quinine methide, 3.20, the species would quickly react with 

water in solution and form 2-formylestrone (2-FE1).  To validate whether the identity of 
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peak “B” could be 2-FE1, the compound was synthesized (Liu et al., 2004) and analyzed 

by HPLC under the same conditions.  Its retention time (tR = 34 min) corresponds to that 

observed for peak “B.”  This evidence suggests that compound 3.9 is a substrate of STS 

where the S-O bond is cleaved, but instead of following a pathway leading to covalent 

attachment and inactivation of the enzyme, the reactive quinone methide species is not 

formed rapidly enough prior to diffusing out of the active site and breaking down in 

solution to form 2-FE1.  The potential of 3.9 as a reversible inhibitor was examined.  

The Lineweaver-Burk plot for compound 3.9 is shown in Figure 3.13. Mixed inhibition 

is observed and a Ki of 3.7 ± 0.4 µM and αKi of 1.6 ± 0.3 µM are obtained from the 

replots shown in insets A and B, respectively, of Figure 3.13. 
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Figure 3.12.  Possible products of reaction of 3.9 with STS. 
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Figure 3.13.  Lineweaver-Burk plot for compound 3.9.  Inset A: replot of slopes 
of Lineweaver-Burk plot versus concentration of 3.9.  Inset B: replot of y-
intercept of Lineweaver-Burk plot versus concentration of 3.9.  See § 3.4.4 for 
details. 
 
3.2.6 Evaluation of time- and concentration-dependence, effect of exogenous 

nucleophiles and active site protection for compound 3.12. 

 In contrast to the 2-difluoromethyl derivative 3.9, the 4-difluoromethyl 

derivative 3.12 displayed time- and concentration-dependent STS inhibition as 

illustrated in Figure 3.14A.  However, unlike irreversible inhibitors 3.10 and 3.11, an 

initial lag phase was observed followed by loss of activity which did not follow pseudo-

first order kinetics.  To determine if exogenous nucleophiles had any effect on the rate 

of inactivation, 3.12 was incubated with STS in the presence of 5 mM β-ME.  This 

resulted in a significant decrease in the rate of deactivation and a change in the 

inactivation kinetics to pseudo-first order (Figure 3.15).  The mode of action of 3.12 is 

most likely active-site directed as E1P protected STS against inactivation (Figure 3.16).  

Only 2-3 % of STS activity could be recovered after extensive dialysis (1012-fold 

dilution over 24 h) after a 1 hour incubation of STS with 3.12.  Taken together, these 

results suggest that upon cleavage of the S-O bond, a reactive species was accumulating 
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in solution and then re-entering the active site and inactivating the enzyme (Silverman, 

1988). 
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Figure 3.14.  Time- and concentration-dependent inhibition of STS with inhibitor 
3.12.  See § 3.4.3 for details. 
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Figure 3.15.  Inactivation of STS in the presence of inhibitor 3.12 and β-ME.  
See § 3.4.6 for details.  
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Figure 3.16.  Inactivation of STS with inhibitor 3.12 in the presence of E1P.  
See § 3.4.5 for details. 
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3.2.7 Monitoring reaction products and intermediates produced by incubation of 

compound 3.12 and STS by HPLC  

 To monitor the reaction products of compound 3.12 and determine the identity of 

possible intermediates, 10 µM of 3.12 was incubated with STS and aliquots were 

removed at various time points and analyzed by RP-HPLC (Figure 3.17).  Compound 

3.12 elutes as peak “A” (tR = 15 minutes) as shown by a control in chromatogram I in 

Figure 3.17.  After 5 minutes of incubation of 3.12 with STS, chromatogram IV shows 

a dimished peak “A” corresponding to 3.12, and two additional peaks (“B” and “C”) that 

most likely correspond to an intermediate or a product.  After 10 minutes of incubation 

the amount of compound 3.12 corresponding to peak “A,” is significantly dimished as is 

peak “B,” while peak “C” has increased in area.  Finally, after 30 minutes of incubation 

peaks “A” and “B” are no longer remaining, while peak “C” has grown in area.    
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Figure 3.17  RP-HPLC analysis of the reaction of inhibitor 3.12 with STS.  I: 10 
µM Inhibitor 3.12 in assay buffer.  Peak A corresponds to inhibitor 3.12 (tR = 15 
min);  II:  10 µM inhibitor 4-FE1 in assay buffer containing 2% DMSO.  Peak C 
corresponds to 4-FE1 (tR = 38 min).  III:  25 µM 4-diFME1 in assay buffer.  Peak 
B corresponds to 4-diFME1 (tR = 33 min).  Although the 4-diFME1 was injected 
into the HPLC within 15s of dissolving it in the assay buffer, some 
decomposition to 4-FE1 had occurred in this time interval as evidenced by the 
presence of peak C.  IV-VI:  10 µM inhibitor 3.12 with STS in assay buffer after 
5 min reaction (IV), 10 min reaction (V), and 30 minutes reaction (VI).  VII: 
Reaction of 10 µM inhibitor 3.12 with STS in reaction buffer after 5 min spiked 
with 25 µM 4-diFME1. See § 3.4.11 for details. 
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Figure 3.18.  Potential modes of inhibition by compound 3.12 and its breakdown 
product, 4-formylestrone (4-FE1).  
 

STS-catalyzed cleavage of the S-O bond in 3.12 results in the formation of 4-

difluoromethyl estrone (4-diFME1) (Figure 3.18).  If 4-diFME1 remains bound in the 

active site it undergoes elimination of one of the fluorine atoms and forms the reactive 

quinone methide, 3.21, which can be attacked by a nearby nucleophilic active site 

residue and form the covalent adduct shown in Figure 3.18.  Alternatively, if 4-diFME1 

diffuses out of the active site prior to elimination of one of its fluorine atoms, the 
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quinone methide, 3.21, can potentially re-enter the active site.  However, 3.21 should be 

highly reactive and it is more likely that it would react with water in solution and form 

4-formylestrone (4-FE1) before it could enter the active site.  Similarly, once 3.21 is 

formed in the active site it is unlikely that it would diffuse out of the active site before 

reacting with an active site residue and forming a covalent adduct.  The intermediate, 4-

diFME1 and the breakdown product, 4-FE1, were synthesized in the Taylor lab (Liu et 

al., 2007) and examined by HPLC (Figure 3.17).  Chromatogram III was obtained for 

4-FE1 and its retention time (tR = 38 min) corresponds to that of peak “C” in 

chromatograms IV-VI. Chromatogram II was obtained for 4-diFME1 and its retention 

time (tR = 33 min) is the same as that obtained for peak “B” in chromatograms IV-VI, 

providing evidence this intermediate is formed but that it rapidly breaks down to 4-FE1, 

peak “C,” in solution.  Because 4-diFME1, the initial enzymatic hydrolysis product, 

could be detected by HPLC this indicates that this species is able to diffuse out of the 

active site.  The identity of 4-diFME1 was further supported by incubating 3.12 and STS 

for 5 minutes and “spiking” the incubation with 25 µM of 4-diFME1 prior to HPLC 

injection.  As shown in chromatogram VI, peak “B” corresponding to 4-diFME1 

becomes larger in concentration in comparison with the 5 minute time point in V, as 

does peak “C” due to the rapid breakdown of 4-diFME1 to 4-FE1.   

3.2.8 Examination of 4-FE1 as a time- and concentration-dependent  inhibitor of 

 STS 

Aldehydes have been known to inhibit enzymes sometimes as very potent tight 

binding inhibitors (Dax et al., 2005).  Therefore it is possible that 4-FE1 is responsible 

for part of the time-dependent STS inhibition with 3.12.  4-FE1 was examined for time- 
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and concentration-dependent STS inhibition.  Incubation of STS with 4-FE1 showed 

that 4-FE1 actually does impart time- and concentration-dependent inhibition as 

illustrated in Figure 3.19A.  At low concentrations (< 1 µM) of 4-FE1 the inactivation 

plateaus after about 40 minutes while at higher concentrations (≥ 1 µM) pseudo-first 

order behaviour was observed throughout and almost complete inactivation could be 

achieved within 60 minutes with just 5 µM.  This behaviour may be due to multiple 

labelling events that are both productive and unproductive towards inactivation.  

Extensive dialysis (1012-fold dilution over 24 h) of the 4-FE1-inactivated enzyme 

resulted in the recovery of only 5% activity indicating that 4-FE1 is essentially an 

irreversible inhibitor.  A Kitz-Wilson analysis using the initial reaction rates (first 30 

minutes) yielded a KI of 1.5 µM and a kinact of 0.65 min-1 (kinact/KI of 4.3 x 106 M-1 min-1) 

(Figure 3.19B).  This analysis treats the inactivation process as irreversible which is 

reasonable since only a small amount of activity was recovered after 24 h of extensive 

dialysis.  However, the slight recovery of activity suggests that a more accurate 

description of 4-FE1 is that it is a slow tight-binding inhibitor of STS with a very slow 

off-rate (koff).  Ideally, if STS stability permitted (which it does not), the koff rate could 

be measured as activity completely returned after days or even weeks.  E1P protected 

STS against inhibition by 4-FE1 indicating the 4-FE1 was reacting with an active site 

residue (Figure 3.20).  β-ME (5 mM) had no effect on the inhibition with 4-FE1 

revealing that the effect of β-ME on the inhibition with compound 3.12 was most likely 

due to β-ME reacting with quinone methide 3.17 (Figure 3.21).  Thus, the lag phase 

seen with inhibitor 3.8 in Figure 3.14 is most likely due to the time required for 

sufficient 4-FE1 to accumulate in solution and then enter the active site and inhibit STS.  
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The fact that some inhibition still occurs in the presence of 5 mM β-ME indicates that 

some inhibition by the quinone methide 3.21 is occurring though it appears that 

inhibition by 4-FE1 is the dominant inhibitory pathway. 
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Figure 3.19.  Time- and concentration-dependence of STS by 4-FE1 over 60 
minutes (A), and 30 minutes (B).  Inset in B: Kitz-Wilson plot. See § 3.4.3 for 
details.   
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Figure 3.20.  Inactivation of STS in the presence of E1P and 4-FE1. See § 3.4.5 
for details. 
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Figure 3.21.  Inactivation of STS in the presence of β-ME and compound 4-FE1. 
See § 3.4.6 for details.  
 

3.2.9 Specificity of inhibition of STS by formylated steroids 

As described in § 3.2.4, compound 3.9 is an STS substrate and produces 2-

formylestrone (2-FE1) as a product as demonstrated by HPLC experiments.  However, 

no inhibition of STS was found when subjected to 10 µM 3.9.  This suggests that 2-FE1 

is not an STS inhibitor and that inhibition of STS with A-ring-formylated estrones must 

exhibit some specificity for the formyl group at the 4-position.  To confirm this both 2-

FE1 and estra-1,3,5(10)-triene-17-one-3-carbaldehyde (3.22) (Figure 3.22), prepared by 
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Yong Liu in the Taylor group (Liu, Y., 2007), were examined as time-dependent STS 

inhibitors.  Incubation of STS with 10 µM 2-FE1 and 3.22 did not result in time-

dependent inhibition (Figure 3.23).  We were unable to perform accurate studies with 2-

FE1, 3.22, and 4-FE1 at concentrations greater than 10 µM due to the tendency these 

compounds to precipitate out at higher concentrations.  It is possible that 2-FE1 and 3.22 

are inhibitors of STS at concentrations greater than 10 µM.   
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Figure 3.22.  Estra-1,3,5(10)-triene-17-one-3-carbaldehyde (3.22). 
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Figure 3.23.  A comparison of time-dependent inhibition of STS by formylated 
estrones. See § 3.4.3 for details.  
 

It is possible that the mechanism for inactivation of STS by 4-FE1 involves 

formation of a Schiff base with a residue(s) bearing a side chain amine as shown in 

Figure 3.24.  The active site in STS contains several amino acids that are capable of 

Schiff base formation with an aldehyde: Lys134, Lys368 and Arg79 (Figure 3.25).  

There is evidence that certain compounds bearing aldehyde functional groups are 
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capable of modulating almost irreversible inhibition by forming a stable Schiff base 

adduct with a nearby amine in the active site (Dax et al., 2005).  For example, 1-

hydroxy-2-naphthaldehyde 6-phosphate (HNA-P, 3.23, Figure 3.26) inhibits rabbit 

muscle fructose-1,6-bisphosphate aldolase in a time- and concentration-dependent 

manner by forming a Schiff base with active site residue Lys107. This mode of 

inhibition is supported by enzyme kinetics, UV/visible difference spectroscopy, site-

directed mutagenesis, and electrospray mass spectrometry.  Enzyme activity of the 

aldolase was only recovered slowly over the course of days by dialysis of the enzyme-

inhibitor complex.   
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Figure 3.24.  Schiff base formation between a residue on STS and 4-FE1. 

 

Figure 3.25.  Active site of STS (courtesy of Dr. Debashis Ghosh). 
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Figure 3.26.  1-hydroxy-2-naphthaldehyde 6-phosphate (HNA-P, 3.23), a time-
dependent inhibitor of fructose-1,6-bisphosphate aldolase (Dax et al., 2005) 

 
A common tactic for determining whether aldehyde-bearing inhibitors form 

Schiff bases with residues is to subject the inactivated enzyme to NaBH4 with results in 

the reduction of the Schiff base to a stable amine.  The mixture is then subjected to 

dialysis and then the activity of the enzyme is determined.  If the Schiff base between 

the enzyme and the inhibitor was reduced by NaBH4, it would not be reversibly 

hydrolyzed by extensive dialysis and activity would not be expected to return.  If the 

interaction between the inhibitor and the enzyme was not due to a Schiff base but rather 

a reversible tight-binding interaction, some or all activity would be expected to return 

after dialysis.  Although only 5% of STS activity was recoverable upon extensive 

dialysis of an STS solution that had been subjected to 4-FE1 for 1 h, we reasoned that 

perhaps no activity at all would be recovered if the STS-4-FE1 complex was subjected 

to NaBH4.  First, the effect of 5.0 mM NaBH4 on STS activity was examined, according 

to the method described by Blonski et al. for determining Schiff’s base formation 

between rabbit muscle aldolase and 3.23 (Blonski, 1995).  However, STS is not stable in 

the presence of NaBH4 and so we were unable to undertake this study.  It is possible 

than the formylglycine hydrate is in equilibrium with formylglycine which might be 

reduced by NaBH4.  Although we could not do a kinetic analysis in the presence of 

NaBH4, it should be possible to subject the STS–4-FE1 complex to NaBH4 and then, 
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after dialysis, subject it to tryptic digest and then sequence the resulting fragments using 

mass spectrometry.  This will enable us to determine if Schiff base formation is indeed 

occurring and identify the active amino acid that is being modified.  Such studies are 

currently in progress in the Taylor group.  In the meantime, we can only speculate as to 

the site of inactivation.  Our collaborator, Dr. Debashis Ghosh at the Hauptman-

Woodward Medical Research Institute, Buffalo, NY, whose laboratory elucidated the 

only crystal stucture of STS (Hernandez-Guzman et al., 2003) has attempted to obtain 

an X-ray crystal structure of the putative 4-FE1 and STS complex.  However, no such 

structure has emerged to date with 4-FE1 or with any other substrate or inhibitor.  

Modelling studies with STS and 4-FE1 are also in progress in the Taylor group. 

3.2.10   2- and 4-Hydroxymethylestrone as STS inhibitors. 

 The observation that 4-FE1 and 2-FE1 are produced upon STS hydrolysis of 

3.12 and 3.9 raises the possibility that a similar process is occurring with the 

monofluoromethyl estrone derivatives (3.10 and 3.11).  The possible breakdown 

products of 3.10 and 3.11 are illustrated in Figure 3.27, using 3.10 as an example. 

Should some of the initial hydrolysis product 3.17 leave the active site it would 

eventually breakdown in solution, via quinone methide 3.18, to 2-hydroxymethyl 

estrone, (3.24).  The analogous product of 3.11 is 4-hydroxymethyl estrone (3.25).  

HPLC analysis of the reaction of STS with 3.6 and 3.7 reveals that both hydroxymethyl 

compounds, 3.24 and 3.25, are produced (Figures 3.28 and 3.29) which suggests that 

that the partition ratio for compounds 3.10 and 3.11 must be significant.  However, no 

lag phase was observed during the inactivation of STS with 3.10 and 3.11 which 

suggests that neither 3.24 nor 3.25 are time-dependent inhibitors of STS.  Nevertheless, 
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time-dependent loss of activity due to 3.24 and 3.25 was examined and none observed.   

Both were found to be reversible inhibitors with IC50 values of 218 µM for 3.24 and 158 

µM for 3.25 (see Appendix A for details). 
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Figure 3.27.  2-Hydroxymethyl estrone (3.24), and 4-hydroxymethyl estrone, 
(3.25), are potential products of hydrolysis of compounds 3.10 and 3.11, 
respectively. 
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Figure 3.28.  RP-HPLC analysis of the reaction of compound 3.10 with STS.  I: 
100 µM 3.10 in assay buffer.  Peak A corresponds to compound 3.10 (tR = 8 
min); II: 100 µM 2-hydroxymethylestrone (3.24) in assay buffer.  Peak B 
corresponds to 3.24 (tR = 16 min); III and IV) : 100 µM compound 3.10 with STS 
in assay buffer after 2 min (III) and 30 min (IV) reaction.  See § 3.4.11 for details. 
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Figure 3.29.  RP-HPLC analysis of the reaction of compound 3.11 with STS.  I: 
100 µM compound 3.11 in assay buffer.  Peak A corresponds to compound 3.11 
(tR =39 min); II: 100 µM 4-hydroxymethylestrone (3.25) in assay buffer.  Peak B 
corresponds to 3.25 (tR = 44 min); III and IV: 100 µM compound 3.11 with STS 
in assay buffer after 15 minutes reaction (III) and 60 minutes reaction (IV).  See 
§ 3.4.11 for details. 
 

 The finding that the monofluoro derivatives (3.10 and 3.11) function as classic 

suicide inhibitors while the difluoro derivatives, compound 3.9 and, to a lesser extent 

compound 3.12, cannot be explained by the difference in stability between the 

difluoromethylestrones (2- and 4-diFME1, Figures 3.12 and 3.18) compared to the 

monofluoromethylestrones (such as compound 3.17 in Figure 3.27).  It is not believed 

that the enzyme assists in catalyzing elimination of fluoride (Betley et al., 2002; Myers 
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et al., 1995; Born et al., 1995). p-Difluoromethylphenol is known to be more stable than 

its monofluoro analogue (Wang et al., 1994) and it is likely that 2- and 4-diFME1 are 

more stable than their monofluoromethyl counterparts in that they break down to form 

their quinone methide slower than their monofluoromethyl counterparts.  This is 

supported by the fact that we were able to prepare 4-diFME1 but unable to prepare 4-

monofluoromethylestrone.  Thus, the more stable 2-diFME1 and 4-diFME1 

intermediates have more time to diffuse out of the active site (kdiss) before 

decomposition to the corresponding quinone methides (kelim) as illustrated in Figures 

3.12 and 3.18.   

3.2.11 Screening of coumarin derivatives 3.13-3.16 as time-dependent STS 

inhibitors  

Based on successfully demonstrating that some of our quinone methide-

generating estrone derivatives function as mechanism-based irreversible inhibitors, we 

then turned our attention to coumarin derivatives, 3.13-3.16.  Aryl sulfamate STS 

inhibitors based on the coumarin platform have been shown to be highly potent STS 

inhibitors (see chapter 1, § 1.3.2 for a discussion on this class of inhibitors).  

Consequently, it was anticipated that the ortho-substituted mono- and difluoromethyl 

coumarin sulfates 3.13-3.16 would show similar, if not more potent inhibition of STS 

compared to compounds 3.9-3.12.  In addition, coumarins present the attractive feature 

of having fluorogenic properties (Musa et al., 2008).  This makes them very attractive 

candidates as activity-based probes for proteomic studies since unlike other activity-

based proteomic probes that have been developed, which bear a functional group, linker 

region and reporter group, the quinone methide-generating coumarins should act both as 
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a chemical tag and reporter.  Another attractive feature of using a coumarin scaffold for 

proteomic studies is that sulfatases in general (not just STS) are capable of hydrolyzing 

coumarin sulfates (Ahmed et al., 2005). 

To begin, compounds 3.13-3.16 were screened for time-dependent inhibition of 

STS by incubating them (250 µM) with STS in 0.1M tris, pH 7, 0.01% Triton X-100, 

5% DMSO.  The STS activity remaining after one hour was determined by withdrawing 

aliquots from the mixtures and diluting them into a solution 4-MUS (4 mM) in the same 

buffer and following the production of 4-MU.  For compounds 3.13, 3.15 and 3.16, the 

percent amount of STS activity remaining compared to that in the absence of inhibitors 

ranged between 78-86%, while compound 3.14 displayed only 21% of activity 

remaining. 

3.2.12 Kinetic studies with compound 3.14. 

As compound 3.14 was the most promising compound of the series, it was 

selected for detailed kinetic studies.  As shown in Figure 3.30, incubation of 3.14 with 

STS imparts a pseudo-first order loss of activity, which is the hallmark behaviour of a 

true mechanism-based irreversible inhibitor.  The inset of Figure 3.30 represents the 

Kitz-Wilson analysis of the initial rates of the first 40 minutes, resulting in a KI = 219 

µM and kinact = 0.038 min-1 (kinact/KI = M-1 min-1).   
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Figure 3.30.  Time- and concentration-dependent inhibition of STS by 3.14. 
Inset: Kitz-Wilson plot. See § 3.4.3 for details. 
 

To demonstrate that 3.14 requires activation by STS, the inactivation rates in the 

presence of E1P were compared to those in its absence.  As illustrated in Figure 3.31A 

increasing concentrations of E1P reduce the observed rate of inactivation of STS 

incubated with 3.14.  These results indicate that irreversible inhibition by this compound 

requires active site binding and enzymatic activation.  To demonstrate that exogenous 

nucleophiles do not affect the inactivation rates, STS was incubated in the presence of 5 

mM β-ME and 3.14. As depicted in Figure 3.31B, the inactivation rate is not affected.  

This confirms that inhibition by 3.14 leading to a putative irreversible adduct is due to 

binding, catalysis, and inactivation solely within the active site and without any 

electrophilic species diffusing from the active site and subsequently re-entering or due to 

non-specific labelling on the enzyme surface.  Finally, extensive dialysis of STS (1012-

fold dilution over 24 h) after being inactivated with 500 µM of 3.14 revealed no 

recovery of activity compared to that of a dialyzed sample of untreated STS.  Taken 
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together with the protection and nucleophilic trapping experiments, these results support 

a mechanism-based irreversible mode of action for 3.14. 
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Figure 3.31 (A) Inactivation of STS in the presence of 3.14 and E1P (B) 
Inactivation of STS in the presence of 3.14 and β-ME.  See § 3.4.5 and § 3.4.6 
for details.  
 

3.2.13 Determination of the partition ratio for compound 3.14 

 As mentioned earlier, the partition ratio is a measurement of the number of 

times turnover of the suicide inhibitor (SI) will lead to a product molecule (P) being 

released from the active site for each time the enzyme is inactivated (E—I”).  In the 

development of a mechanism-based irreversible inhibitor, an event that results in a 

species partitioning from the active site is non-productive if a dead-end covalent 

complex with the enzyme is not the outcome. The partition coefficient is really a 
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measure of the efficiency of the inactivator.  An “ideal” irreversible inhibitor has a 

partition ratio, k3/k4 (Figure 3.1) of zero, signifying that every turnover leads to 

inactivated enzyme.  In order for compound 3.14 to be developed into an activity-based 

probe for proteomic studies, one feature it must exhibit is a very low partition ratio 

(preferably zero).  If it has a high partition ratio then this would mean that a significant 

quantity of the quinone methide would be generated outside the active site which would 

result in non-specific labelling of other proteins.   
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Figure 3.32.  Potential hydrolysis products of 3.14. 

 Experimentally, the partition coefficient may be determined as the ratio of the 

amount of product generated (Ptot), to the total initial enzyme concentration (Eo), once 

the enzyme has been completely inactivated, Ptot/Eo, independent of the initial 
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inactivator concentration.  This method allows for direct determination of the partition 

ratio if the product is readily detected in real time, for example spectrophotometrically.  

As shown in Figure 3.32, hydrolysis of the sulfate ester bond of 3.14 produces an 

intermediate, 3.26, that can follow an alternative pathway to covalent inactivation of the 

enzyme as discussed for compounds 3.9-3.12.  Intermediate 3.26 can dissociate out of 

the active site and undergo elimination of the fluoride ion, forming quinone methide 

3.27, which reacts with water in solution to form the 6-hydroxymethylcoumarin (3.28).  

Unlike the breakdown products of the estrone derivatives, compound 3.28 has the 

particular attribute of being highly fluorescent (Figure 3.33).  When excited at 360 nm 

(λex) compound 3.28 exhibits a maximal emission wavelength (λem) at 460 nm in 0.100 

M tris at pH 7.0.  This is in contrast to inhibitor 3.14 which does not exhibit any 

significant fluorescence under these conditions (Figure 3.33).  As shown in Figure 3.34, 

a large increase in fluorescence was observed when 500 µM 3.14 is hydrolyzed by 2 nM 

STS in 0.1 M tris, pH 7, 0.1% Triton X-100.  After about 3.8 hours fluorescence 

production reached a plateau.  The addition of an additional 500 µM of 3.14 after 5 h did 

not result in any further increase in fluorescence indicating that all STS activity was 

abolished.  Non-enzymatic hydrolysis of 3.14 was not observed over the five hour time 

course of the experiment.  The enzyme-inhibitor fluorescence was measured after 

dialysis of the enzyme-inhibitor solution which removed unhydrolyzed inhibitor and 

3.28.  The fluorescence of enzyme-inhibitor complex was low (~131 RFU) in 

comparison to the large increase in fluorescence observed (5471 RFU) due to the 

production of 3.28 after 5 hours.  The enzyme solution in the absence of inhibitor before 
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and after dialysis has very little fluorescence ~20 RFUs (the “blank” buffer solution has 

a fluorescence of ~10 RFUs).  

 The inset standard curve of 3.28 in Figure 3.34 was used to calculate the amount 

of 3.28 produced during the STS reaction.  This reveals a partition ratio of 6675 which is 

very large.  This signifies that for each inactivation event there were 6675 molecules of 

3.28 being released into solution.  This high partition ratio does not bode well for using 

this coumarin scaffold as a basis for activity-based proteomic profiling of sulfatases 

since non-specific labeling of other proteins will probably occur. 
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Figure 3.33.  Relative fluorescence of 50 µM coumarins 3.28 and 3.14 versus 
λem in 0.1 M tris, pH 7.0, 5% DMSO, 0.01% Triton X-100. (λex = 360 nm).  See § 
3.4.9 for details.  

 
Figure 3.34  Change in fluorescence with time during the reaction of STS with 
500 µM 3.14 in 0.1 M tris, pH 7.0, 0.1 % Triton X-100.  Inset: Standard curve of 
3.28.  See § 3.4.9 and § 3.4.10 for details. 
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3.2.14 Potential for quinone methide-generating SIs as activity-based proteomic 

profiling probes 

 While our work was in progress two other research groups examined the 

potential of quinone methide-generating SIs as probes for proteomic studies on 

sulfatases.  The first of these studies, from the Wong group at Scripps, examined ortho- 

or para-difluoromethylphenyl sulfate as time-dependent inhibitors of a sulfatase from P. 

aeruginosa (PARS) (Hanson et al., 2006).  However, no irreversible inhibition was 

observed with these relatively simple compounds.  Nevertheless, this same group 

demonstrated that cyclic sulfamates such as compound 3.29 were SIs of PARS (Figure 

3.35).  They exhibited a much lower affinity for PARS compared to phenylsulfamate 

(PhOSO2NH2) and a slower rate of inactivation of PARS compared to phenylsulfamate.  

Although their mechanism of action was not elucidated, several mechanisms were 

proposed including that illustrated in Figure 3.35 in which the phenolic portion remains 

attached to the enzyme.  Should the phenolic portion remain attached to the enzyme then 

it raises the possibility that these cyclic sulfamates could be employed as activity-based 

probes for proteomic studies. 
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Figure 3.35.  Proposed mechanism for the irreversible inhibition of STS by 
compound 3.29. 
 
 The second report, from Lu et al, involves the development of an activity-based 

probe, 3.30, for STS based on para-monofluoromethylphenyl sulfate shown in Figure 

3.36 (Lu et al., 2007).  This probe has the standard four structural features of an activity 
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based probe: a sulfate recognition moiety, a latent quinone methide-generating trapping 

device, a linker region and a biotin reporter group.  When the probe is hydrolyzed by a 

target sulfatase, the released intermediate undergoes a rapid elimination of one of the 

fluorine atoms to generate a reactive quinone methide.  The quinone methide reacts with 

an active site residue in the target to present a biotinylated enzyme.  To test their probe, 

the authors used CHO cells to express STS. The crude microsomal fraction containing 

STS was applied to a resin containing the immobilized probe, to which STS and any 

target sulfatases would become trapped.  After incubation and washing to remove 

unbound proteins, the trapped target biotinylated proteins were cleaved from the resin 

and subjected to gel electrophoresis.  A Western blot using streptavidin-horseradish 

peroxidase enabled visualization of the biotinylated target proteins.  While the desired 

STS was successfully trapped and biotinylated, unfortunately analysis of the other 

elecrophoretic bands revealed that so were several other non-sulfatase proteins.  The 

quinone methide or its precursor was reasoned to have diffused out of the active site 

after sulfate ester hydrolysis by STS.  The finding that both our steroidal and coumarin 

based SIs can exhibit high partition ratios raises serious concerns as to the general utility 

of activity-based probes of this type for proteomic profiling.   
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Figure 3.36. The structure of an activity-based probe for steroid sulfatase 
proposed by Lu and coworkers (Lu et al., 2007). 
 

3.3 Conclusions and Future Work 

 We have demonstrated that quinone-methide-generating SIs can be developed 

for STS in that compounds 3.10, 3.11 and 3.14 exhibited characteristics that are 

consistent with suicide inhibition.  However, we also demonstrated that the partition 

ratio for these compounds can be very high.  Thus, it is unlikely that this class of 

compounds will ever be used as ABPs for proteomic studies.   

 Although it is disappointing that quinone-methide-generating SIs are not suitable 

as ABPs for proteomic profiling of sulfatases, an important discovery did result from 

our studies in that the inhibition of STS by one of our compounds, 3.12, involves an 

unexpected process in which the main inactivation pathway does not entail reaction of a 
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quinone methide with an active site nucleophile and this has led to the discovery of 4-

FE1 as a novel and almost irreversible STS inhibitor.  As mentioned in § 3.12, 

difluoromethyl-based suicide inhibitors operating by generation of quinone methides 

have been reported for other hydrolytic enzymes and some are currently being examined 

as activity-based probes for proteomic studies.  To our knowledge, this is the first 

example where this class of inactivator functions by generating an aldehyde which acts 

as an almost irreversible inhibitor.  These studies also underscore the need for a careful 

kinetic analysis of the inactivation process such that the inhibitory mechanism can be 

properly addressed.  

 The finding that 4-FE1 is a potent tight-binding STS inhibitor has prompted 

further development of this class of compounds as STS inhibitors.  For example, 

aldehydes 3.31-3.33 (Figure 3.37) have been prepared in the Taylor lab and I have 

performed some preliminary inhibition studies with them (See Appendix A for details).  

At 10 µM compound 3.31 does not exhibit time and concentration-dependent inhibition 

while compound 3.32 does, albeit much weaker than 4-FE1.  Compound 3.31 is a highly 

potent STS inhibitor with an IC50 of approximately 62 nM.  Further studies with 

compound 3.33 are in progress in the Taylor group to determine if the inhibition is time 

and concentration-dependent and if it is irreversible and active site directed.  We are 

also making other compounds similar to compound 3.33 to further improve potency.  

We have also examined compound 3.34 as an inhibitor of STS anticipating that if a 

lysine or arginine is positioned in close proximity to the 4-position then perhaps it would 

form a salt bridge with the COOH group in 3.34 and so 3.34 would be a potent inhibitor.  

However, compound 3.34 has an IC50 of about 215 µM.  Modelling studies to determine 
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the feasibility of 4-FE1 forming a Schiff’s base with active site residues are also in 

progress. 
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Figure 3.37.  Structures of compounds 3.31-3.34. 
 

 Ideally, the Taylor group would like to determine which residues are being 

modified by each of the inhibitors described here.  The modern approach for 

accomplishing this is to subject the inactivated enzyme to a protease.  The resulting 

peptides are separated and sequenced using liquid chromatograph (LC) in conjunction 

with MS (LC-MS).  In the absence of an LC-MS at the University of Waterloo, one may 

have to do this the old-fashioned way.  This would involve preparing the inhibitors with 

a radiolabel and then subjecting STS to these radiolabelled inhibitors.  The inactivated 

STS would be digested by a protease and then the radiolabelled peptides would be 

isolated and sequenced either by Edman degradation or by mass spectrometry (MS).  I 

have attempted to determine how many residues are being modified by some of our 

inhibitors by determining the molecular weight of inactivated STS (inactivated by our 

inhibitors) and free (active) STS using MS.  However, I was not been able to obtain a 

mass spectrum of free or inactivated STS using either electrospray ionization (ESI) or 

MALDI techniques.  STS is a membrane associated enzyme and it is well known that 
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obtaining the mass spectrum of membrane associated enzyme can be problematic.  The 

mass spectrum of STS has never been reported.   

3.4 Experimental 

3.4.1 General 

 Compounds 3.9-3.16, 3.22, 3.24, 3.25, 3.28, 3.31-3.34, 4-FE1, 2-FE1 and E1P 

were prepared by Yong Liu in the Taylor group (Liu et al., 2004; Liu et al., 2007; Liu, 

Y., Ph.D. thesis, 2007, University of Waterloo).  4-diFME1 was prepared by Dr. Scott 

Taylor.  STS was purified as previously described (Ahmed et al., 2005). All buffers and 

assay reagents were purchased from Sigma Aldrich (Milwaukee, WI, USA).  All 

fluorescent measurements were carried out on a SpectraMax GeminiXS® fluorimeter 

(Molecular Devices, Sunnyvale, CA, USA) at 22 oC in black microtiter plates from 

Corning (Corning, MA, USA).  Microdialysis units were purchased from Thermo 

Scientific Inc. (Rockford, IL, USA). HPLC studies were carried out on a Waters 

(Milford, MA, USA) 600 HPLC system equipped with a Waters 2487 dual wavelength 

detector set to 270 nm and a Phenomex (Torrance, CA, USA) Jupiter® analytical 

reversed-phase C-18 column.  4-methylumbelliferyl sulfate (4-MUS) was purchased 

form MP Biomedicals (Solon, Ohio, USA), and 4-MU was prepared by Yong Liu in the 

Taylor group.  All determinations were carried out in triplicate and errors reported as the 

standard deviation.  

3.4.2 Preliminary screening of compounds 3.13-3.16 

Compounds 3.13-3.16 were screened for time-dependent inhibition by 

incubating 250 µM of each compound with 90 nM STS at 22°C in a 100 µL solution 

containing 0.1M tris, pH 7, 0.01% Triton X-100 (assay buffer) containing 5% DMSO.  
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Controls which did not contain inhibitor were also performed.  Immediately upon 

addition of inhibitor and one hour later a 4 µL aliquots were removed at various time 

intervals and added to the wells of a 96-well microtiter plate containing 196 µL of 4 mM 

of 4-methylumbelliferyl sulfate (4-MUS), approximately 20 × Km, (Ahmed et al., 2005), 

in assay buffer.  The production of the fluorescent product, 4-methylumbelliferone (4-

MU), was followed for 10 minutes (λex = 360 nm, λem = 460 nm) at 22 oC.  The percent 

activity of STS in the presence of inhibitor after each time interval was calculated as a 

percentage of activity in the absence of inhibitor.   

3.4.3 General procedure for the determination of time and concentration-

 dependent inhibition of STS 

 To 90 µL solutions of various concentrations of compounds 3.9-3.12, 3.14, in 

buffer containing 0.1 M tris, pH 7.0 or the same buffer containing 2% DMSO (for 4-FE1) 

a 10 µL solution of 2 µM STS in 20 mM tris, pH 7.4, 0.1% Triton X-100 was added.  

Controls which did not contain inhibitor were performed for all experiments.  These 

mixtures were allowed to incubate at 22 oC and 4 µL aliquots were removed at various 

time intervals and added to the wells of a 96-well microtiter plate containing 196 µL of 

4 mM of 4-MUS sulfate in assay buffer.  The production of the fluorescent product, 4-

methylumbelliferone (4-MU), was followed as described in § 3.4.2.  The percent activity 

remaining as a function of time was plotted as a semilog graph.  For inhibitors 3.10, 3.11, 

3.14 and 4-FE1, the slopes of the initial linear portions of these plots which represent the 

pseudo-first order rate constants (kobs) of the early part of the reaction, were used to 

generate a Kitz-Wilson double reciprocal plot for compounds 3.10, 3.11, 3.14 and 4-FE1.  

Equation 3.1 was used to calculate the inhibition constant, KI. 
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The plot of the reciprocals of the observed inhibition rate constants (kobs) against the 

reciprocals of the inhibitor concentrations gave a straight line, from which the rate 

constant for inhibition, KI, was determined from the intersection on the x-axis at -1/KI 

and the rate constant for inhibition, kinact, was determined from the intersection on the y-

axis at 1/kinact.  

3.4.4 Lineweaver-Burk analysis of compound 3.9 

 A 4 mM stock solution of the inhibitor was made in 0.1 M tris, pH 7.0, from 

which dilutions of 50 µM, 25 µM and 10 µM were made. 10 µL of each fixed 

concentration of inhibitor was added to the wells of a 96-well microtiter plate containing 

70 µL of 0.1 M tris, pH 7.0 and 10 µL of 4-MUS substrate (833 µM to 5 mM) in the 

same buffer. A control was made in which inhibitor storage buffer was added instead. 

The assay was initiated with 10 µL of 40 nM STS stored in 20 mM tris, pH 7.4, 0.1% 

Triton X-100. A control was made in which enzyme storage buffer was added instead. 

Therefore, the final fixed concentration of inhibitor in the assay was 1, 2.5 and 5 µM for 

each 4-MUS concentration ranging between 83.3-500 µM (0.5-3 times the Km value at 

pH 7).  The final concentration of enzyme in the assay was 4 nM in 0.092 M tris, pH 7.0, 

0.01% Triton X-100.  The production of the fluorescent product, 4-MU, was followed as 

described in § 3.4.2.  The rates of relative fluorescence at each substrate concentration 

were subjected to Lineweaver-Burk analysis in Microsoft Excel to determine mode of 

inhibition and related constants, Ki and αKi. These data were plotted as Lineweaver–

Burk graphs and Ki and αKi values were calculated from replots of the slopes or 
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intercepts of the Lineweaver–Burk graphs according to the equations for mixed and 

competitive inhibition. 

 3.4.5  Time and concentration-dependent inhibition of STS in the presence of 

 estrone-3-O-phosphate (E1P) (protection experiments) 

 Protection studies with E1P were performed in the same manner as that 

described above for the time and concentration-dependent inhibition studies (§ 3.4.3) 

except various amounts of E1P was present in the incubation mixtures.  The 

concentrations of the inhibitors were 100 µM for inhibitors 3.10 and 3.11, 10 µM for 

inhibitor 3.12, 5 µM for 4-FE1 and 500 µM for 3.14. 

3.4.6 Time and concentration-dependent inhibition of STS in the presence of ββββ-

mercaptoethanol (ββββ-ME) (trapping experiments) 

 Before these studies were performed the effect of 5 mM β-ME on STS activity 

was determined.  This was accomplished by first preparing a solution of STS (200 nM) 

in assay buffer containing 5 mM β-ME at 22oC.  Within 10 seconds of preparing this 

solution a concentrated stock solution of MUS in assay buffer was added such that the 

final concentration of 4-MUS was 1 mM and STS activity was immediately determined 

by measurement of fluorescent 4-MU product in the usual manner.  This experiment was 

then repeated except the STS/β-ME solution was allowed to incubate at 22oC for 60 

minutes before the 4-MUS was added and activity determined.  After subjecting STS to 

5 mM β-ME for 10 seconds the STS activity was found to be equal to that of a control 

which did not contain β-ME.  After subjecting STS to 5 mM β-ME for one hour STS 

retained 83% of the activity exhibited by the control reaction indicating that 5 mM β-

ME does not seriously affect STS activity within a one hour time frame.  We also 



 127 

examined glutathione as a potential nucleophile for these studies by performing the 

above experiments except glutathione (GSH) was used in place of β-ME.  However, it 

was found that after subjecting STS to 5 mM glutathione for 10 seconds and one hour 

only 40% (after 10 seconds) and 27% (after one hour) of the activity remained compared 

to the control reaction indicating that 5 mM glutathione has a very detrimental affect on 

STS activity. We also determined the stability of the inhibitors in assay buffer 

containing β-ME by preparing a 4.8 mM solution of the inhibitors in assay buffer 

containing 2.4 M of β-ME and then analyzing the mixture by 19F NMR at various time 

intervals.  None of the inhibitors showed any discernable decomposition after 8 hours.   

 Time- and concentration-dependent inhibition studies of STS by compounds 

3.10-3.12, 3.14 and 4-FE1 in the presence of β-ME were performed in the same manner 

as that described above for the time and concentration-dependent inhibition studies (§ 

3.4.3) except 5 mM β-ME was present in the incubation mixtures.  The concentrations 

of the inhibitors were 100 µM for compounds 3.10 and 3.11, 10 µM for inhibitor 3.12, 5 

µM for 4-FE1 and 500 µM for 3.14. 

3.4.7 Dialysis experiments 

 STS (200 nM) was incubated with inhibitor (100 µM of 3.10 and 3.11, 10 µM of 

3.12, 10 µM of 4-FE1, 500 µM of 3.14) in assay buffer (200 µL) for inhibitors 3.10-3.12, 

3.14 or assay buffer containing 2% DMSO (200 µL) for 4-FE1.  The mixture was 

allowed to incubate for 1 hour.  A control was also performed in an identical manner 

except that it did not contain inhibitor.  4 µL aliquots were withdrawn and STS activity 

determined as described in § 3.4.2.  Almost no activity remained for all of the mixtures.  

The remaining incubation mixtures were dialyzed in microdialysis units into 1 L of 0.1 
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M tris, pH 7, 0.1 % Triton at 4°C.  The dialysis proceeded for 24 hours with the dialysis 

buffer changed after 3, 6 and 9 hours.  After 24 h, aliquots (4 µL) were withdrawn from 

the incubation mixtures and diluted into 196 µL of 4 mM MUS in 0.1 M tris, pH 7 and 

STS activity followed as described in § 3.4.2.  No activity was recovered with inhibitors 

3.10 and 3.11 or 3.14.  Only 2% activity was recovered with inhibitor 3.12 and 5% 

activity was recovered with inhibitor 4-FE1.   

3.4.8 Effect of �aBH4 on STS activity 

 The effect of 5.0 mM NaBH4 on enzymatic activity was examined according to a 

procedure described by Blonski et al., 1995 for trapping Schiff base adducts between an 

aldehyde inhibitor and rabbit muscle aldolase enzyme.  5 µL of a 0.1 M solution of 

NaBH4 in 0.1 NaOH was added to a 95 µL volume of 210 nM STS in 0.1 M tris, pH 7, 

0.01% Triton X-100, which gives a final concentration of 5 mM NaBH4 and 200 nM 

STS in 0.1 M tris, pH 7, 0.01% Triton X-100.  A control was prepared containing no 

NaBH4 but with the addition of 5 µL of 0.1 M NaOH, while another control was 

prepared containing no addition of NaBH4 nor 0.1 M NaOH.  Activity of STS was 

measured by withdrawing 4 µL from each solution immediately into the wells of a 96-

well microtiter plate containing 196 µL of 4 mM MUS in 0.1 M tris, pH 7.4.  The 

production of 4-MU was followed as described in § 3.4.2.  The addition of 0.1 M NaOH 

did not affect the activity of STS, while the addition of 5 mM NaBH4 reduced STS 

activity by more than 50% compared to the control. 

3.4.9 Generation of standard curve for coumarin 3.28 

 The emission spectrum of 3.28 was first determined by measuring the 

fluorescence of a 50 µM solution of 3.28 and 3.10 in 0.1 M tris, pH 7.0, 0.1% Triton X-
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100 containing 5% DMSO.  The excitation wavelength (λex) was held constant at 360 

nm and the emission spectrum (λem) was collected at 20 nm intervals between 370 nm 

and 700 nm using a 360 nm cutoff wavelength.  The maximum emission occurred at 460 

nm.  Accordingly, a standard curve of 3.28 was generated by measuring the endpoint 

fluorescence readout (λex = 360 nm, λem = 460 nm) of 0.024-25 µM solutions in 0.1 M 

tris, pH 7.0, 0.1% Triton X-100.  The equation of the line obtained from a plot of 

relative fluorescence units (RFUs) versus µmoles 3.28 generated is  y = 4 × 106 x + 131. 

See Figure 3.34 inset. 

3.4.10 Determination of partition coefficient of compound 3.14 

 A reaction mixture consisting of STS (2 nM) and 500 µM of inhibitor 3.14 (total 

volume of 100 µL) in 0.1 M tris, pH 7, 0.1% Triton X-100 was prepared and the 

production of fluorescent product was followed (λex = 360 nm, λem = 460 nm).  Controls 

which consisted of STS but no inhibitor (control 1) or inhibitor but no STS(control 2) 

were also run.  After about 3.8 hours fluorescence production reached a plateau.  After 5 

hours an additional 500 µM of 3.14 was added to the reaction mixture.  No further 

increase in fluorescence was observed indicating that all STS activity was abolished.  To 

ensure that STS activity did not diminish over 5 hours in the absence of the inhibitor , 4-

MUS (final concentration 200 µM) was added to the wells of Control 1 and the 

production of fluorescent 4-MU product was followed in the usual way as described in § 

3.2.2 and compared to that of a fresh sample of STS.  No significant amount of activity 

was lost over the 5 hours.  Non-enzymatic hydrolysis of 3.14 was not observed over the 

course of the assay as determined by control 2.  After the addition of the second aliquot 

of 3.10, the remaining incubation mixtures were dialyzed in microdialysis units into a    



 130 

1 L buffer of 0.1 M tris, pH 7, 0.1 % Triton at 4°C.  The dialysis proceeded for 24 hours 

with the dialysis buffer changed after 3, 6 and 9 hours to remove unhydrolyzed inhibitor 

and coumarin 3.28 and the volume and fluorescence of the dialyzed mixture was 

determined (λex = 360 nm, λem = 460 nm).  The fluorescence of the dialyzed mixture 

(131 RFUs) was subtracted from that of the undialyzed mixture (5471 RFU’s) to give 

the RFU’s (5347) that are attributable to coumarin 3.28 released into solution during the 

reaction.  From this value and the standard curve the amount of MU released into 

solution was calculated and from this value the parting coefficient determined. 

3.4.11 Monitoring the reactions of compounds 3.9-3.12 with STS by HPLC 

 Compounds 3.9 (10 µM), 3.10 (100 µM), 3.11 (100 µM) or 3.12 (10 µM) were 

incubated with STS (200 nM) in assay buffer (100 mM tris, pH 7, 0.01% Triton X-100) 

at 22 oC.  Aliquots were withdrawn after various time intervals and injected into an 

HPLC equipped with a C-18 reversed phase analytical column and a UV detector set at 

270 nm.  Compound 3.12 and 2-formyl estrone (2-FE1) were eluted from the column 

using an isocratic gradient consisting of 55% of 0.1% TFA/H2O/45% CH3CN over 45 

minutes at 1 mL/minute.  The retention times for compounds 3.9 and 2-FE1 are 12 and 

34 minutes respectively.  Compound 3.10 and 2-hydroxymethylestrone (3.24) were 

eluted from the column using an isocratic gradient consisting of 65% of 0.1% 

TFA/H2O/35% CH3CN over 45 minutes at 1 mL/minute.  The retention times for 

compounds 3.10 and 3.24 are 8 and 16 minutes respectively.  Compound 3.11 and 4-

hydroxymethylestrone (3.25) were eluted from the column using an isocratic gradient 

consisting of 72 % of 0.1 % TFA/H2O/28 % CH3CN over 45 minutes at 1 mL/minute.  

The retention times for compounds 3.11 and 3.25 are 39 and 44 minutes respectively.  
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Compound 3.12, 4-difluoromethylestrone (4-diFME1) and 4-FE1 were eluted from the 

column using n isocratic gradient consisting of 55% of 0.1% TFA/H2O/45% CH3CN 

over 45 minutes at 1 mL/minute was employed.  The retention times for compounds 

3.12, 4-difluoromethylestrone (4-diFME1) and 4-FE1 are 15, 33 and 38 minutes 

respectively. 
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Chapter 4 – Boronic acids as Inhibitors of Steroid 

Sulfatase
†
 

 

 

 

4.1 Introduction 

4.1.1 Boronic acids as enzyme inhibitors 

 The past 15 years has seen tremendous research in the development of inhibitors 

of STS (Purohit et al., 2003; Nussbaumer and Billich, 2004; Winum et al., 2005; Reed, 

et al., 2005; Day et al., 2009).  As discussed in chapter 1, the vast majority of STS 

inhibitors are aryl sulfamates (Ar–SO2NH2) which act as irreversible suicide inhibitors 

(see chapter 1 § 1.3.2).  In comparison to irreversible sulfamate inhibitors, far fewer 

reversible STS inhibitors have been developed (see chapter 1 § 1.3.1).  Many reversible 

STS inhibitors have been obtained by replacing the sulfate group of estrone or estradiol 

with O-, �-, or S-linked sulfate surrogates as shown in Table 1.2 in Chapter 1 

(Nussbaumer and Billich, 2004; Winum et al., 2005).  However, for the most part, these 

have not proven to be highly effective inhibitors with the vast majority exhibiting Ki or 

IC50 values in mid-to low µM range with the better ones being around 10 µM.  In 

addition, the vast majority of these were never examined with pure enzyme and the 

                                                 
† This chapter is based largely on the publication, “Boronic acids as inhibitors of 

steroid sulfatase,” which was published in the journal Bioorganic and Medicinal 

Chemistry (Ahmed et al., 2006).  The publishers of Bioorganic and Medicinal 

Chemistry allow authors to reproduce a journal publication in whole or in part in 
association with a thesis, as noted in Appendix F.  The publication must be cited and the 
copyright regulation must be stated as follows:  

 
Ahmed, V., Liu, Y., Silvestro, C., Taylor, S.D. Boronic acids as inhibitors of 

steroid sulfatase. Bioorganic and Medicinal Chemistry, volume 14, pages 8564-73, 2006.  
Copyright © 2006 Elsevier B.V.  
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modality of inhibition was not determined.  Reversible inhibitors that do not bear a 

sulfate mimic have also been developed.  Among the most noteworthy of this class of 

inhibitors are those developed by Poirier and coworkers who reported that certain 17-α-

benzyl-substituted estradiol derivatives, such as 4.1 and 4.2 in Figure 4.1, are reversible 

STS inhibitors (see also chapter 1, § 1.3.1).  Some of these compounds, which were 

tested using homogenates of JEG-3 cells instead of purified enzyme, are the most potent 

reversible inhibitors reported to date with IC50 values in the low nM range (Poirier et al., 

1998; Boivin et al., 2000).  The modality of inhibition was not reported. 

. 

HO

HO

HO

HO

4.1 4.2  

Figure 4.1   Examples of potent 17α-benzyl estradiol inhibitors of STS reported  
by Poirier and coworkers (Poirier et al., 1998) 

 Boronic acids have been used for many years as inhibitors and probes of 

enzymes and proteins, such as serine proteases.  These inhibitors, some of which have Ki  

values in the subnanomolar range, function by forming reversible covalent adducts with 

active site residues, such as the crucial serine residue (adduct 4.3) or an active site 

histidine residue (adduct 4.4) as shown in Figure 4.2.  The inhibition of the boronic acid 

with a serine protease actually proceeds through a two-step, time-dependent inhibition 

mechanism (Kettner and Shenvi, 1984).  The first step is rapid and involves binding of 

the inhibitor and formation of a covalent tetrahedral adduct with the active site serine. 

This is followed by a second slow step in which the enzyme undergoes a conformational 

change or isomerization to increase the interaction of the inhibitor with the proteolytic 

active site. 
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Figure 4.2.  Proposed mechanism of inhibition of serine protease enzymes by 
boronic acids. 
 
Recently, a highly potent and selective protease inhibitor in the form of a peptidyl 

boronic acid, called Bortizomid (4.5, Figure 4.3), has been approved by the FDA for 

treatment of relapsed and refractory multiple myeloma (Yang et al., 2003).  Bortezomib 

binds in the catalytic site of the 26S proteasome which, in normal cells, regulates protein 

expression and function by degrading of ubiquitinylated proteins and cleansing the cell 

of abnormal or misfolded proteins.  Proteasome inhibitors have anti-tumor activity by 

inducing apoptosis as a result of the regulated degradation of pro-growth cell cycle 

proteins.   

N

N

O

N
H

O

H
N B

OH

OH

4.5  

Figure 4.3.  Structure of Bortizomid. 

Unlike serine proteases, aryl sulfatases (ARSs) do not have an active site serine 

residue when in their catalytically active form.  Instead, all eukaryotic ARSs have an 

active site formylglycine hydrate which is a result of a post-translational enzymatic 

modification of a cysteine residue (see chapter 1 § 1.1.2).  Addition of water to the 



 135 

aldehyde yields the formylglycine hydrate which is required for catalysis (Schmidt et al., 

1995; von Figura et al., 1998).  There is a very high degree of sequence and structural 

homology at the active site such that their active sites are almost superimposable, hence 

it is believed that all ARSs function by a common mechanism (Hanson et al., 2004).  

Several mechanisms have been proposed for ARSs as detailed in chapter 1 (§ 1.2.11).  

The most widely accepted involves attack of one of the alcohol groups of the hydrate on 

the sulfur atom of the substrate resulting in displacement of the hydroxyl or phenolic 

portion of the substrate and formation of a sulfated hydrate (see chapter 1 § 1.2.11, 

Figure 1.16).  Elimination of the sulfate from the hydrate yields inorganic sulfate and 

formylglycine which is then rehydrated. 

4.1.2 Objectives 

In light of the mechanism proposed for sulfatases, we reasoned that boronic 

acids might act as potent inhibitors of STS by forming reversible covalent adducts with 

the active site hydrate and/or histidine residues in a manner similar to serine proteases.  

For example, a boronic acid might form a covalent adduct with one of the hydroxyl 

groups of the formylglycine hydrate as shown in reaction 1 in Figure 4.4.  It is possible 

that the resulting covalent adduct depicted as “A” could then react with the second 

hydroxyl group of the formylglycine hydrate to form “B,” or it could react with a nearby 

histidine residue to form the adduct represented by “D.”  Adduct “D” could potentially 

be reached through reaction 2, where the nucleophilic nitrogen atom of a nearby 

histidine residue would attack the boron atom of the boronic acid derivative to afford the 

adduct shown in “C,” which may be able to react with one of the hydroxyl groups of the 
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formylglycine hydrate.  The objective of this work is to evaluate boronic acids as 

inhibitors of STS using steroidal and non-steroidal boronic acids 4.6-4.9 (Figure 4.5). 
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Figure 4.4.  Proposed mechanism of inhibition of STS by boronic acids. 
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Figure 4.5.  Proposed boronic acid inhibitors of STS, 4.6-4.9.  
Chromenone 4.10 and coumarin 4.11 were also prepared and 
examined for comparison of their activities with their boronic acid 
counterparts. 
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4.2 Results and Discussion 
 

For these studies boronic acid analogs were examined with the boronic acid 

group attached to three different scaffolds: a steroid scaffold (compounds 4.6 and 4.7), a 

coumarin scaffold (compound 4.8) and a chromenone scaffold (compound 4.9).  These 

scaffolds were chosen since aryl sulfamate STS inhibitors based on these scaffolds have 

proven to be highly potent (see chapter 1 § 1.3).  Compound 4.7 was prepared since 

compound 4.1 is a potent reversible inhibitor of STS.   

Inhibition studies were carried out using purified STS in tris buffer containing 

5% DMSO with 4-MUS as substrate.  Ki or IC50 values determined for boronic acids 

4.6–4.9 as well as for estrone (E1), steroid derivative 4.1, and chromenone 4.10 are 

given in Table 4.1.  

 

Table 4.1.  Ki or IC50 values for compounds 4.1, 4.6-4.10 and E1. 

Inhibitor pH Ki or IC50 (µM) αKi (µM) 

4.6 7.0 2.8 ± 0.4a n/ac 

4.6 7.5 2.1 ± 0.3a n/ac 

4.6 8.0 3.8 ± 0.5a n/ac 

4.6 8.5 7.0 ± 0.6a n/ac 

4.6 8.8 6.8 ± 0.8a n/ac 

4.7 7.0 0.25 ± 0.2a 0.30 ± 0.02 

4.8 7.0 171 ± 9b n.d.d 

4.9 7.0 86 ± 4b n.d.d 

Estrone (E1) 7.0 63 ± 2b 111 ± 14 

4.1 7.0 0.25 ± 0.02a 0.42 ± 0.01 

4.10 7.0 4.6 ± 0.8a 40 ± 4 
a Ki 

b IC50 
c n/a, not applicable  d n.d., not determined 
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Compound 4.6 can be considered as the boronic acid analog of estrone sulfate 

(E1S), a natural substrate of STS.  Compound 4.6 is a mainly competitive STS inhibitor 

with a Ki of 2.8 µM at pH 7.0 (Figures 4.6).  The Km for E1S in 0.1 M Tris–HCl, 0.1% 

Triton X-100, at pH 7.5 is 95 µM (Billich et al., 2004).  Dibbelt et al. have shown, using 

[35S]-labeled dehydroepiandrosterone sulfate (DHEAS) as substrate, that E1S is an 

inhibitor of STS exhibiting mixed inhibition with a Ki of about 1 µM in 0.1 M Tris–

acetate at pH 7.0 (Dibbelt et al., 1994).  Thus, it appears that compound 4.6 has an 

affinity for STS that is about equal to E1S.  E1 itself is mainly a non-competitive 

inhibitor with a Ki of 63 µM and αKi of 110 µM (Figure 4.7).  Thus, replacing the 3-OH 

of E1 with a boronic acid moiety resulted in about 23-fold increase in potency and 

changes the modality of inhibition from noncompetitive to mainly competitive. 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

-0.010 -0.005 0.000 0.005 0.010

1/[MUS]  (1/µM)

1/
v

 (
se

c/
R

F
U

)

0 µM

20 µM

15 µM

10 µM

5 µM

2.5 µM

  

Figure 4.6.  Lineweaver-Burk plot for boronic acid 4.6 at pH 7.0 (see Appendix 
B for the replot of this data that was used to determine the Ki) 
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Figure 4.7.  Lineweaver-Burk plot for E1 at pH 7.0 (see Appendix B for replots 
of this data that were used to determine the Ki and αKi).   
 

Comparing the potency of 4.6 with those of many other estrone derivatives 

bearing sulfate surrogates that have appeared in the literature is difficult since very few 

have been examined with pure enzyme and the modality of inhibition was rarely 

determined.  Nevertheless, a comparison of 4.6 with other estrone derivatives bearing 

sulfate surrogates whose Ki or IC50 values have been determined using pure enzyme or 

placental microsomes reveals that compound 4.6 is one of the most potent inhibitors of 

this class (see chapter 1, Table 1.2).  Moreover, compound 4.6 is a mainly competitive 

inhibitor which is in contrast to many other estrone derivatives bearing sulfate 

surrogates which often exhibit noncompetitive or mixed inhibition (Liu et al., 2005; 

Lapierre et al., 2004; Dibbelt et al., 1994; Li et al., 1995).  Estrone phosphate (E1P) is 

one of the better estrone-based STS reversible competitive inhibitors bearing a sulfate 

surrogate (Li et al., 1995; Anderson et al., 1995).  Under our assay conditions, we 

determined E1P to have an IC50 of 5 µM at pH 7.0 (see Appendix B for details). Thus, 

compound 4.6 is as potent as E1P at pH 7.0. 
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In most instances, the inhibition of serine proteases with boronic acids is very 

pH-dependent.  Bender has reported that the inhibition of subtilisin with benzene 

boronic acid increases significantly between pH 6.0 and 8.0, and then rapidly decreases 

at pH > 8.0 (Philip et al., 1971).  The increase in inhibition from pH 6.0 to 8.0 was 

attributed to the increase in the concentration of a reactive residue in the active site such 

as histidine or serine while the decrease was attributed to a decrease in the concentration 

of the reactive trigonal form of the boronic acid inhibitor. We have observed a modest 

decrease in inhibitor potency as the pH increases from pH 7.5 to 8.5 then levels off as 

the pH increases to 8.8 (Table 4.1).  The inhibition remains mainly competitive 

throughout this pH range and even at pH 8.8 compound 4.6 is still a good inhibitor with 

a Ki of 6.8 µM (Figure 4.8.  See also Appendix B for Lineweaver-Burk plots at pH 

values 7.5-8.5 and replots).  It is unlikely that it is the tetrahedral hydrated form of 4.6 

that binds since the concentration of this species should increase with increasing pH and 

one would expect an increase in inhibition as the 
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Figure 4.8.  Lineweaver-Burk plot for boronic acid 4.6 at pH 8.8 (see Appendix 
B for the replot of this data that were used to determine the Ki).   
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pH increases. Moreover, this decrease in inhibition is not due to a decrease in the 

trigonal form of the inhibitor since its pKa should be similar to that of 4-methylphenyl 

boronic acid which is 9.3 (Torsell et al., 1964).  The slight increase in Ki with pH found 

with compound 4.6 is in contrast to the large increase in Ki with pH exhibited by E1P 

whose Ki increases over 50-fold between pH 7.0 and 8.5 (Anderson et al., 1995). This 

large increase is a result of the enzyme’s preference to bind the monoanionic form of 

estrone phosphate. 

Although our results do not allow us to unambiguously determine whether a 

reversible covalent adduct is formed between 4.6 and STS, it appears that formation of 

such an adduct is unlikely for several reasons.  First of all, simple aryl boronic acids are 

generally modest serine protease inhibitors with Ki values ranging from the millimolar 

to low micromolar depending on the enzyme and the substituents on the boronic acid.  

However, peptide boronic acids that have the primary specificity requirement for the 

protease are much more potent inhibitors with Ki values sometimes extending into the 

subnanomolar range and exhibit an affinity for the protease that is many orders of 

magnitude greater than the corresponding substrate. Although 4.6 is a good inhibitor, it 

does not exhibit an affinity for STS that is orders of magnitude greater than that of E1S.  

Second, peptide boronic acid inhibitors show kinetic properties corresponding to the 

mechanism for slow-binding inhibitors (Kettner et al., 1984).  STS assays performed in 

the presence of compound 4.6 exhibited a linear increase in product with time during the 

entire time course of the assays (10 min).  Preincubation of 4.6 with STS for up to 60 

min did not result in an increase in potency. These results suggest that compound 4.6 is 

not a slow-binding inhibitor.  Moreover, the inhibition was found to be immediately 
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reversible as demonstrated by experiments in which the activity was recovered by 

dilution into a solution containing a large excess of substrate (4-MUS).  Finally, as 

pointed out above, the effect of pH on the Ki of inhibitor 4.6 is not typical of a boronic 

acid inhibitor that forms a covalent adduct with its target enzyme.   If 4.6 does form a 

reversible adduct this adduct is not as stable as that observed with the peptide boronic 

acid inhibitors of serine proteases.  Boronic acid inhibitors of serine proteases are 

considered to be transition state analog inhibitors in that they mimic the tetrahedral 

transition state formed during the reaction. The reaction of STS with E1S does not 

proceed by a tetrahedral transition state. The transition state for the cleavage of the S–O 

bond of the substrate probably resembles a trigonal bipyramidal intermediate as shown 

in Chapter 1 in Figure 1.13. This may explain why compound 4.6 is not as potent an 

inhibitor of STS as the peptide boronic acids are of serine proteases. Nevertheless, 

compound 4.6 is still one of the best estrone-based STS inhibitors bearing a sulfate 

surrogate ever reported. 

Since boronic acid inhibitor 4.6 was considerably more potent than estrone, 

compound 4.7 was prepared in the anticipation that substitution of the 3-OH moiety in 

4.1 with a boronic acid would also result in a significant increase in inhibitory potency. 

Compound 4.7 is a 10-fold more potent inhibitor than compound 4.6 with a Ki of 252 

nM.  However, compounds 4.7 and 4.1 exhibited almost identical Ki values and both 

were mainly non-competitive inhibitors of STS with both inhibitors exhibiting similar 

affinities for both the free and substrate bound forms of the enzyme (Figures 4.9 and 

4.10).  These results suggest that both 4.7 and 4.4 preferably bind in a region outside the 
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Figure 4.9.   Lineweaver-Burk plot for boronic acid 4.7 at pH 7.0 (see Appendix 
B for replots of this data that were used to determine the Ki and αKi).  
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Figure 4.10.   Lineweaver-Burk plot for 4.1 at pH 7.0 (see Appendix B for replots 
of this data that were used to determine the Ki and αKi).  
 
active site.  It has been suggested that the high affinity of estradiol derivatives bearing 

benzyl groups at the 17-position for STS is a result of the benzyl group extending into a 

hydrophobic channel between the two antiparallel helices that are believed to insert into 

the membrane of the endoplasmic reticulum (Nussbaumer et al., 2004).  Since our 

results with compounds 4.1 and 4.7 suggest that these compounds can bind in an area 

outside the active site, it is possible that they bind in the channel between the helices and 
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block the entrance to the active which is a small tunnel at the top of the two helices 

(Hernandez-Guzman et al., 2003). 

IC50 values were determined for coumarin and chromenone boronic acids 4.8 and 

4.9 at pH 7.0.  Both of these compounds were relatively poor STS inhibitors with the 

coumarin having an IC50 of 171 µM and the chromenone having an IC50 of 86 µM (see 

appendix B for IC50 plots).  We also determined the IC50 of chromenone 4.10 to see if 

the substitution of the phenolic group in 4.10 with a boronic acid group had any effect 

on inhibitor potency as found with compound 4.6.  The poor solubility and high 

fluorescence of coumarin 4.11 prevented us from determining its IC50.  Surprisingly, 

compound 4.10 exhibited an IC50 of 6 µM which is 14 times less than its boronic acid 

analog 4.9.  A more detailed kinetic analysis revealed that it exhibits mixed inhibition 

(Figure 4.11) with a Ki of 4.6 µM and an αKi of 40 µM and the inhibition is reversible.  

Thus, this compound is much more  
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Figure 4.11.  Lineweaver-Burk analysis for 4.10 at pH 7.0 (see Appendix B for 
replots of this data that were used to determine the Ki and αKi).  
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potent than its boronic acid analog and almost as potent as steroid boronic acid 4.6.  

Like the compounds reported by Poirier and coworkers (such as 4.1 and 4.2), 

chromenone 4.10 does not require a sulfate mimic to exhibit good potency. Horvath and 

coworkers have demonstrated the potential of the chromenone platform for obtaining 

reversible STS inhibitors (Horvath et al., 2004).  These workers examined a series of 6-

substituted 2-(1-adamantyl)-4-chromenones as STS inhibitors (Horvath et al., 2004).  

Those bearing non-ionizable or very weakly acidic moieties at the 6-position, such as 

4.11 and 4.12, were modest reversible inhibitors of STS with Ki values generally greater 

than 50 µM.  The 6-COOH derivative was the most potent of the series having Ki of 

about 500 nM.  The 6-OH derivative was not examined. Although chromenone 4.10 is 

20-fold less potent than compound 4.1 it is a smaller, non-steroidal compound and could 

be used as a lead to the development of yet more potent reversible STS inhibitors. 

O

O

R

4.11, R = COOH, Ki = 500 nM

4.12, R = COCH2OH, Ki = 3.2 µM  

Figure 4.12.  Structures of compounds 4.11 and 4.12. 

4.3 Conclusions and Future Work 

In summary, several novel steroidal and non-steroidal boronic acids were 

examined as inhibitors of STS.  The potency of these compounds and their mode of 

inhibition varied dramatically.  It appears that the boronic acid moiety must be attached 

to a platform very closely resembling a natural substrate in order for it to impart any 

beneficial effect on binding affinity. Thus, estrone boronic acid 4.6 is a good 
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competitive inhibitor of STS even at basic pH.  The fact that this compound exhibits a 

good affinity for STS even at basic pHs may be significant in terms of obtaining the 

crystal structure of an inhibitor-STS complex.  The structure of an STS-inhibitor 

complex has not yet been reported.  Such a structure would be very useful for rational 

inhibitor design.  However, one of the potential difficulties in obtaining the structure of 

an STS-inhibitor complex is that the enzyme is crystallized at pH 8.5 where its affinity 

for ligands is often far from optimal (Liu et al., 2005).  However, since 4.6 binds to STS 

with a good affinity at basic pHs, this compound may enable one to obtain the structure 

of an STS inhibitor complex.  Compound 4.7, an estradiol derivative which, in addition 

to the boronic acid group at the 3-position also bears a benzyl group at the 17-position, 

was a potent non-competitive STS inhibitor.  However, the fact that compound 4.7 and 

its phenolic precursor 4.1 have similar affinities and are non-competitive inhibitors 

suggests that these compounds bind in a region outside the active site, possibly in the 

hydrophobic channel between the two membrane-spanning helices.  The existence of a 

hydrophobic second binding site has also been suggested by Poirier’s group, who 

initially developed the 17α-substituted estradiol derivatives such as 4.1 (Boivin et al., 

1998).  At that time they suggested that a hydrophobic pocket may exist in the enzyme 

in proximity to the steroid D-ring based upon structure-activity relationships studies of 

their 17α-substituted estradiol derivatives with STS in homogenates of JEG cells.  The 

results of the studies reported here have provided the impetus for Poirier and coworkers 

(Fournier and Poirier, 2009) to design bivalent STS inhibitors that they anticipate will 

occupy the active site as well as the postulated allosteric site.  Crystallographic studies 
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with compounds 4.6 and 4.7 and STS are in progress in collaboration with Debashis 

Ghosh, Hauptmann-Woodward Institute, Buffalo, New York.   

The coumarin and chromenone boronic acids 4.8 and 4.9 were not good 

inhibitors. However, the chromenone precursor to 4.8, compound 4.10, is a remarkably 

good STS inhibitor.  An obvious direction for future studies entails using compound 

4.10  as a lead to the development of yet more potent reversible non-steroidal STS 

inhibitors that do not bear a sulfate mimic. 

4.4 Experimental 

4.4.1 General. 

 Compounds 4.6-4.11 were prepared by Yong Liu in the Taylor group (Liu et al., 

2005).  STS was purified as previously described (Ahmed et al., 2005). All buffers and 

assay reagents were purchased form Sigma Aldrich (Milwaukee, WI, USA).  All 

fluorescent measurements were carried out on a SpectraMax GeminiXS® fluorimeter 

(Molecular Devices, Sunnyvale, CA, USA) at 22 oC in black microtiter plates from 

Corning (Corning, MA, USA).  All determinations were carried out in triplicate and 

errors reported as the standard deviation.  

4.4.2 Determination of Ki and ααααKi values for compounds 4.1, 4.6, 4.7 and 4.10 

 An appropriate volume of a MUS stock solution in 0.1 M Tris–HCl of desired 

pH was added to the wells of a 96-well microtiter plate containing 0.1 M Tris–HCl 

buffer of the same pH such that the total volume was 80 µL. To the wells was added 10 

µL of a stock solution of inhibitor in 50% DMSO. For a control, 10 µL of 50% DMSO 

was added instead.  The assay was initiated by the addition of 10 µL STS (115 nM stock 

solution in 20 mM Tris–HCl, pH 7.4, 0.1% Triton X-100).  To detect non-enzymatic 
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hydrolysis of the substrate 10 µL of 20 mM Tris–HCl, pH 7.4, 0.1% Triton X-100 was 

added instead. The final volume of the assay was 100 µL. The final concentration of 

buffer was 92 mM TrisHCl, 0.01% Triton X-100, and 5% DMSO.  The final enzyme 

concentration was 11.5 nM.  For studies with compound 4.6 at pH 7.0, 7.5, and 8.0, the 

final concentration of MUS was 83.3–500 µM, or approximately 0.5–3 times the Km 

value at pH 7 and 7.5 (145 µM at pH 7.0; 170 µM at pH 7.4) and 0.25–1.5 times the Km 

value at pH 8.0 (338 µM).  For studies with compound 4.6 at pH 8.5 and 8.8, the final 

concentration of 4-MUS ranged between 100 and 2500 µM or approximately 0.1–3 

times the Km value (830 µM, pH 8.5; 980 µM, pH 8.8).  The final concentration of 

inhibitor was 0.5–4 times Ki.  The reactions were followed by detection of fluorescent 

product, 4-methylumbelliferone (excitation 360 nm, emission, 460 nm), over 10 min at 

30°C.  Each reaction was performed in triplicate. Additional controls were performed in 

an identical manner but did not contain STS.  Initial rates (v) were determined by taking 

the slopes of plots of the change in relative fluorescence units with time.  These data 

were plotted as Lineweaver–Burk graphs and Ki values were calculated from replots of 

the slopes or intercepts of the Lineweaver–Burk graphs according to the equations for 

mixed and competitive inhibition. 

4.4.3 Determination of IC50s for compounds 4.8, 4.9, and 4.10.  

Ten microliters of inhibitor stock solutions in 50% DMSO were added to the 

wells of a 96-well microtiter plate containing 70 µL of 0.1 M Tris, pH 7.0.  10 µL of a 

2.0 mM MUS stock solution in 0.1 M Tris–HCl, pH 7.0, was added. The assay was 

initiated by adding 10 µL STS (115 nM stock solution in 20 mM Tris–HCl, pH 7.4, 

0.1% Triton X-100).  The concentration of inhibitor ranged from 7 to 250 µM. The final 
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concentration of 4-MUS was 200 µM. The reaction was followed as described above. 

Eleven concentrations of inhibitor bracketing the IC50 value were used for each 

compound. The initial rates of enzyme activity in relative fluorescence units per second 

(RFU/s) were used to determine the IC50.  The ratio of the initial rate in the presence of 

inhibitor (Vi) to that in the absence of inhibitor (Vo) was calculated and plotted as a 

semi-log curve in Grafit (Erithacus Software, Surrey, U.K.), from which the IC50 value 

was calculated based on the following equation: Vi = Vo/[1 + ([I]/IC50)S] + B, where: Vi 

is the initial rate of reaction at an inhibitor concentration concentration of [I]; Vo is the 

velocity in the absence of inhibitor; B is background and s is the slope factor. 
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Chapter 5 – An assessment of the sulfonic acid and 

sulphonamide groups as phosphotyrosine mimics for 

PTP1B Inhibition
†
 

 

5.1 Introduction: Protein Tyrosine Phosphatases 

The cellular equilibrium of protein tyrosine phosphorylation is mediated through 

the opposing chemical reactions of protein tyrosine kinases (PTKs) and protein tyrosine 

phosphatases (PTPs) (Figure 5.1A, Tonks, 2006).  PTPs catalyze the hydrolysis of 

phosphate monoester bonds via a two-step reaction involving formation (k2) of a 

covalent phosphocysteine intermediate and its subsequent breakdown (k3) (Figure 5.1B, 

Guan and Dixon, 1991; Cho et al., 1992). Important insights into protein tyrosine 

phosphorylation mediated cellular signalling has stemmed from research focussing on 

PTKs which are commonly accepted as the initiators of signalling pathways and their 
                                                 

† The experimental section of this chapter is based largely on the publications, 
“Enantioselective synthesis of protected L-4-[sulfonamido(difluoromethyl)]-
phenylalanine and L-4-[sulfonamido-(methyl)]phenylalanine and an examination of 
hexa- and tripeptide platforms for evaluating pTyr mimics for PTP1B inhibition,” and 
“A re-examination of the difluoromethylenesulfonic acid group as a phosphotyrosine 
mimic for PTP1B inhibition,” which were published in The Journal of Organic 

Chemistry and Bioorganic and Medicinal Chemistry, respectively (Hill et al., 2006; 
Hussain et al., 2008).  The publishers of both of these journals allow authors to 
reproduce a journal publication in whole or in part in association with a thesis, as noted 
in Appendix G.  The publication must be cited and the copyright regulation must be 
stated as follows:  

 
Hill, B., Ahmed, V., Bates, D., Taylor, S.D.  Enantioselective synthesis of 

protected L-4-[sulfonamido(difluoromethyl)]phenylalanine and L-4-[sulfonamido-
(methyl)]phenylalanine and an examination of hexa- and tripeptide platforms for 
evaluating pTyr mimics for PTP1B inhibition.  Journal of Organic Chemistry, volume, 
pages, 2006.  Copyright © 2008 Amercian Chemical Society. 

 
Hussain, M., Ahmed, V., Hill, B., Ahmed, Z., Taylor, S.D. A re-examination of 

the difluoromethylenesulfonic acid group as a phosphotyrosine mimic for PTP1B 
inhibition. Bioorganic and Medicinal Chemistry, volume 16, pages 6764-6777, 2008.  
Copyright © 2008 Elsevier B.V.  
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cascades  (Hunter, 2000).  Aberrant phosphorylation due to an imbalance in PTK and 

PTP function is linked to human diseases including cancer, diabetes, obesity and 

inflammation and autoimmunity (Zhang, 2001; Arena, 2005; Begovich et al., 2004).  

For example, the expression and activation of receptor tyrosine kinases such as the 

epidermal growth factor (EGFR), and the oncogene non-receptor tyrosine kinases, Src 

and Abl, are causative factors in cancer (Krause and Van Etten, 2005).  As a result, 

PTPs were initially thought to occupy a small cellular housekeeping role in the reversal 

of PTK action, and were merely the products of tumor suppressor genes.  However, 

PTPs have come to be regarded as important regulators and effectors of cellular protein 

tyrosine phosphorylation in collaboration with PTKs (Jiang and Zhang, 2008).   It 

should also be noted that in certain cases PTPs can also potentiate instead of antagonize 

PTK action (Zheng et al., 1992).  

There are 107 members of the PTP family in the human genome and all are 

characterized by an 11 residue signature sequence, (I/V)HCXAGXXR(S/T/G), which 

includes the active site catalytic cysteine residue (Alonso et al., 2004).  The PTP 

superfamily can be divided into four subfamilies: (1) classical phosphotyrosine (pTyr)-

specific PTPs, (2) dual-specificity phosphatases (DSPs), (3) Cdc25 phosphatases, and 

(4) low molecular weight (LMW) PTPs (Alonso et al., 2004).   

The classical PTPs were discovered due to their ability to desphosphorylate 

proteins bearing a pTyr residue, and this class can further be divided into subcellular 

localization of receptor and non-receptor PTPs (RPTPs and NRPTPs, respectively).  An 

important member of the RPTP class includes cluster for differentiation 45 (CD45), 
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which activates src family PTKs through dephosphorylation with the effect of initiating 

downstream signalling processes in stimulated T and B cells (Pingel and Thomas, 1989).  
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Figure 5.1  (A) Protein phosphorylation is regulated by the dual 
action of protein tyrosine kinases (PTKs) and protein tyrosine 
phosphatases (PTPs).  (B) General reaction scheme for the PTP 
reaction that catalyzes phosphate ester hydrolysis via a covalent 
phosphsocysteine intermediate.  The reaction proceeds through a 
two-step mechanism involving formation (k2) and breakdown (k3) 
of the phospho-enzyme intermediate (E–P). 
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subfamily are the phosphatase of regenerating liver (PRL) phosphatases, which promote 

cell growth and tumor metastases (Stephens et al., 2005), and SHP2 phosphatase, which 

is named for its two Src homology domains and a PTP domain (Anderson et al., 1990; 

Marounet et al., 2000). SHP2 is involved in signaling events downstream of receptors 

for growth factors, cytokines, hormones that direct the control of cell growth, 

differentiation, migration and death (Qu, 2000).   

Dual-specificity PTPs are able to hydrolyze phosphoserine (pSer) and 

phosphothreonine (pThr) residues in addition to pTyr residues, such as VH1- and 

Cdc14-like DSPs.  The DSP subfamily also includes phosphatase and tesin homolog 

(PTEN) and myotubularin, which hydrolyze phosphoinositides.   

The Cdc25 phosphatases, which are positive regulators of cell cycle progression, 

also exhibit dual specificity toward protein substrates, however, they are classified in a 

separate family because they are more distantly related to other members of the PTP 

family based on structure and sequence. The LMW PTPs have no significant sequence 

homology with other members of the PTP superfamily beyond their phosphatase 

signature sequence.   

The cellular pathways regulated by tyrosine phosphorylation offer a rich source 

of drug targets for treatment of associated diseases.  The major phosphatase targets 

identified to date as therapeutic targets include Cdc25, SHP2, PRL and PTP1B  (Jiang 

and Zhang, 2008).   PTP1B is the subject of the studies presented in this Chapter. 

5.1.1 PTP1B as a drug target for diabetes and obesity 

 PTP1B is recognized for its role as a negative regulator in both insulin and leptin 

signalling (Figure 5.2).  PTP1B dephosphorylates activated insulin receptor (IR) or 
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insulin receptor substrates (IRS) and the downstream result is glucose uptake 

(Bandyopadhyay et al., 1997; Dadke et al., 2000; Goldstein et al., 2000).  Support for 

PTP1B’s role as a negative effector of insulin-mediated signalling is derived from 

studies where overexpression of PTP1B in cell cultures decreases insulin-stimulated 

phosphorylation of the IR (Ahmad et al., 1995; Kenner et al., 1996; Byon et al., 1998).  

Conversely, when diabetic mice are treated with PTP1B antisense oligonucleotides, a 

reduction in the expression of PTP1B is achieved and the effect is a decrease in fat, 

plasma insulin and blood glucose levels (Zinker et al., 2002).  Mice that lack PTP1B 

through a double-knockout of the PTP1B gene (PTP1B-/-) display an enhanced 

sensitivity to insulin, and have improved glycemic control, and most interestingly are 

more resistant to weight gain when fed a high-fat diet compared to wild-type mice 

(Echelby, M., 1999; Klaman et al., 2000). This resistance to weight gain is unexpected 

as insulin is also an anabolic factor, and an increased insulin sensitivity can also lead to 

increased weight gain.  It was later shown that PTP1B can also bind to and 

dephosphorylate Janus kinase 2 (JAK2), which is downstream of the leptin receptor, 

ObR (Zabolotny et al., 2002; Cheng et al., 2002).  Leptin is a peptide hormone that plays 

a central role in feeding and adiposity (Ahima and Flier, 2000).  The leptin receptor 

(ObR) belongs to the class of type I cytokine receptors that use and associated JAK to 

transmit signals to downstream molecules (Tartaglia, 1997).  Once leptin binds to ObR, 

the receptor becomes phosphorylated and JAK2 becomes activated, and leads to 

activation of the transcription 3 protein (Stat3).  Once activated, Stat3 becomes 

phosphorylated, allowing it to homodimerize, leading to subsequent translocation to the 

nucleus where it mediates transcription of target genes that control the negative 
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feedback loop of leptin signaling. Therefore, the finding that resistance to diet-induced 

obesity observed in PTP1B-/- mice is likely to be associated with increased energy 

expenditure because of enhanced leptin sensitivity.  Altogether these studies show 

strong support that inhibition of PTP1B is an effective strategy for treating metabolic 

diseases such as type 2 diabetes and obesity. 

 

Figure 5.2  The role of PTP1B in insulin and leptin signalling (Adapted from 
Zhang and Zhang, 2000). 
 

5.1.2 The PTP1B protein: catalytic and regulatory domains 

PTP1B (E.C. 3.1.3.48) specifically catalyzes the phosphate ester hydrolysis of 

phophotyrosine (pTyr)-containing proteins and peptides (Tonks et al., 1988).  Free pTyr 

is a relatively poor substrate (5.1, Km = 5 mM) in comparison to peptides bearing pTyr. 
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The Km value for free pTyr is three to four orders of magnitude higher than the best 

protein/peptide substrates, suggesting that the major determinant of specificity is a pTyr 

residue in the context of a peptide platform (Tonks et al., 1988; Zhang et al., 1993; 

Zhang et al., 1994). The sequence surrounding Tyr992 of the epidermal growth factor 

receptor (Rotin et al., 1992; McNamara et al., 1993), has been established to have high 

affinity for PTP1B (Figure 5.3).  As a result the hexapeptide, DADE-pY-L-NH2, 5.2 

(Km = 3.6 µM for PTP1B), has been one of the most commonly used peptides for 

probing substrate specificity and inhibition of PTPs (Zhang et al., 1993; Zhang et al., 

1994). 
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Figure 5.3  Phosphotyrosine and its position in a hexapeptide portion 
of the epidermal growth factor receptor (EFG).  

 
PTP1B was named for its tyrosine phosphatase activity in a specific fraction 

resolved by ion-exchange chromatography of a human placenta homogenate (Tonks et 

al., 1988; Tonks et al., 1988).   It was originally purified as a catalytic domain of 37 kDa, 

however, it was later determined that cDNA-encoded PTP1B consists of a full-length 

form of the protein that comprises an additional 114 residues on the C-terminal side of 

the catalytic domain (Brown-Shimer et al., 1990; Chernoff et al., 1990; Guan et al., 
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1990).   The C-terminal 35 residues are predominantly hydrophobic in nature and act to 

target the enzyme to the cytoplasmic face of the endoplasmic reticulum (Frangioni et al., 

1992).  It is thought that targeting PTPs to specific subcellular locations contributes to 

the regulation of their function by restricting the spectrum of substrates which they can 

access, and has been referred to as a “zip code” model within the PTP family (Mauro 

and Dixon, 1994; Tonks, 2003).  The C-terminal segment may also have a regulatory 

role as illustrated by proteolytic cleavage by calpain to generate a soluble 42 kDa form 

of the enzyme (Frangioni et al., 1993).  This truncated PTP1B lacking 75 residues from 

the C-terminus including the ER-targeting motif is associated with enhanced PTP 

activity, suggesting that the C-terminus suppresses catalytic function.  PTP1B exists as a 

phosphoprotein in vivo with several Ser/Thr phosphorylation sites identified in the 

regulatory C-terminal segment (Flint et al., 1993).  Phosphorylation of Ser378 by 

protein kinase C (PKC) was observed as well as cell cycle-dependent phosphorylation of 

Ser352 and Ser386.  The mechanism through which PTP1B function is regulated by 

phosphorylation is unclear, although changes in activity are associated with changes in 

phosphorylation.  The phosphorylation of members of the PTP family is viewed as a 

regulatory mechanism for activation and inhibition of PTP function (Alonso et al., 2004). 

5.1.3 Catalytic mechanism and structure of PTP1B  

The three-dimensional crystal structures of PTP catalytic domains share highly 

conserved features, even though variation exists in the primary structures (Barford et al., 

1998; Stuckey et al., 1994; Jia et al., 1995).  The PTPs share a common α + β tertiary 

structure of with highly twisted mixed β-sheet flanked by α-helices on both sides 

(Figure 5.4).  The PTP active site is located within a ~9-Å deep crevice on the protein 
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surface. At the bottom of the active site is the phosphate-binding loop (P-loop) formed 

by the signature motif.  Several loops on the surface of PTP1B surround the active site 

and influence substrate binding and catalysis (Barford et al, 1994; Jia et al., 1995).  For 

example, a substrate recognition loop contains Arg47 and Tyr46.  The Q-loop contains 

conserved Gln282, which is involved in coordinating and activating an active site water 

molecule for E-P hydrolysis.  A WPD loop is adjacent to the P-loop and contains 

invariant Asp181 and Trp. Substrate binding triggers a conformational change whereby 

the WPD loop is brought 10-Å toward the active site, covering it like a flap, and placing 

Asp181 in close proximity to the scissile oxygen of the substrate.  Asp181 acts as a 

general acid/base in catalysis. The dynamic movement of the WPD-loop to the 

phosphate-binding site upon substrate binding is supported by resonance Raman and 

fluorescence spectroscopic studies in addition to deuterium/hydrogen exchange 

monitored by mass spectrometry (Zhang et al., 1997; Juszczak et al., 1997; Wang et al., 

1998).   
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Figure 5.4  Ribbon diagram of the PTP1B tertiary structure. The image was 
generated based on the first 2.8-Å resolution crystal structure of human PTP1B 
(Barford et al., 1994; pdb code: 2HNP), using PyMOL (DeLano, 2002; 
http:\pymol.org).   
  
 

A two-step mechanism for PTP-mediated catalysis has been proposed based on 

extensive kinetic and crystallographic evidence provided by several research groups.  

The active site nucleophile is an invariant Cys residue in the PTP signature motif 

(H/V)C(X5)R(S/T).  The signature sequence forms a semicircular structure about the 

tyrosyl phosphate group to stabilize the negatively charged phosphoryl group and by an 

actual ionic bond to the Arg residue in the signature motif  (Bradshaw et al., 1998).  

Site-directed mutagenesis studies reveal that substitution of the Cys residue completely 

abbrogates PTP activity and eliminate the enzyme’s ability to form the phosphoenzyme 

intermediate (Guan and Dixon, 1991).  Its unique environment gives the catalytic 

cysteine a low pKa, enhancing its role as a nucleophile. The first step of the mechanism 
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for PTPs involves a nucleophilic attack by the sulfur atom of Cys215, in reference to 

PTP1B, on the phosphorus atom of the phosphotyrosine substrate (Figure 5.5).  The 

invariant Arg221 residue makes bidentate hydrogen bonds with the phosphoryl 

oxyanions in the substrate through its guanidinium group and plays an important role in 

both substrate binding and transition state stabilization during hydrolysis. The 

phosphorus-oxygen bond is cleaved and protonation of the tyrosyl-leaving group is 

assisted by Asp181 acting as a general acid.  This results in formation of a cysteinyl-

phosphate catalytic intermediate.  The second step involves hydrolysis of the catalytic 

intermediate to release the phosphate group, which is mediated by an water molecule 

coordinated to Gln262 and activated by Asp181, functioning as a general base.   
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Figure 5.5  Catalytic mechanism and transition state of PTP reaction as 
proposed by Zhang, Z.-Y. (Zhang, Z.-Y., 2003). 
 

PTP1B also contains a unique second pTyr binding site (Puius et al., 1997).  The 

second site was discovered by co-crystallizing a Cys115Ser mutant PTP1B with bis-

(para-phosphophenyl) methane (BPPM, 5.1,  Figure 5.6).  BPPM was one of the 

highest-affinity low-molecular weight non-peptidic substrates identified for PTP1B at 

that time. The second site (Arg24 and Arg254) lies within a region that is not conserved 

among PTPs.  As a result, the presence of this second site has been exploited to develop 

highly specific bidentate inhibitors that are tethered together to bind both the active site 

and the adjacent noncatalytic site (Zhang et al., 2002). 
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Figure 5.6  bis-(para-phosphophenyl) methane (BPPM). 

 

5.1.4 PTP1B reversible oxidation 

 It had been known for a long time that the catalytic cysteine of PTP1B and 

related classical PTPs are highly susceptible to oxidation in vitro and studies require the 

use of reducing agents such as dithiothreitol (DTT) (Denu et al., 1998).  Thus, it had 

been speculated that oxidation could play a role in vivo if PTP1B is exposed to 

oxidizing agents in the cell.  Detailed X-ray crystallographic and kinetic studies 

provided evidence that such oxidation does indeed occur.  The most likely result of 

oxidation of the catalytic site cysteine would be a stable sulfenic acid derivative (Figure 

5.7); however, it was most unexpected that the sulfenic acid rapidly transforms into a 

sulfenyl amide ring involving the adjacent serine residue (Salmeen et al., 2003; van 

Montfort et al., 2003).  This sulfenyl amide is resistant to further oxidation, which would 

be irreversible, and instead becomes readily reduced back to its catalytically active 

cysteine form in the presence of a reducing agent such as glutathione (GSH) or DTT. 
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Figure 5.7  (A) Schematic illustration of interrelationship of redox states of 
PTP1B.  (B) Proposed mechanism for generating the sulphenyl-amide bond. 
“Nu” represent a general nucleophilic reducing agent such as glutathione (GSH) 
or dithiothreitol (DTT).  
 

5.1.5 PTP1B Inhibitor Development  

The established role of PTP1B in leptin and insulin signaling has made this 

enzyme a therapeutic target for the development of inhibitors.  One of the challenges in 

developing PTP1B-based small-molecule therapeutics is selectivity.  The conserved 

nature of the pTyr-binding active site of PTPs has hindered the development of selective 

inhibitors of PTP1B. However, substrate binding studies have shown that pTyr alone is 

not sufficient for high-affinity binding and that residues adjacent to the pTyr in a peptide 

are significant to substrate recognition to PTPs (Zhang, 2002). Another major issue in 
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developing therapeutics directed at PTP1B is bioavailability. The charged nature of pTyr 

mimics has reduced their cell permeability and limited their therapeutic application.  

This has led to an intense search for phosphate mimics that are less highly charged yet 

still contribute significantly to inhibitor potency when incorporated into a small 

molecule platform. 

5.1.5.1 Phosphotyrosine mimics 

Phosphoryl groups are not suitable for incorporation into potential inhibitors of 

PTP1B due to the hydrolytic lability of the phosphate ester bond in the presence of other 

phosphatases in vivo. The design and synthesis of hydrolytically stable phosphotyrosine 

(pTyr) mimetics has expanded in recent years to the point where it has become almost 

an entire field of study unto itself and dozens of such mimics have been reported (Burke 

and Lee, 2003).  The most apparent way to overcome phosphoryl hydrolysis is by 

replacement of the phosphate ester linkage by a stable isostere, or mimic.  For example, 

the phosphonomethyl phenylalanine (Pmp, 5.3, Figure 5.8) has the bridging oxygen 

atom of a phosphate ester replaced by a methylene group (Marsigne et al., 1988).  

Incorporation of this group into a peptide 5.4 results in a compound that is stable to 

enzymatic hydrolysis, however the peptide exhibits a 25-fold lower affinity for PTP1B 

(IC50 = 200 µM) compared to its parent compound, 5.2 (Burke et al., 1994).  The loss of 

affinity was suggested to be due to the increase in pKa and a net reduction in formal 

charge of the phosphonate whose charge is -1.5 at pH 7, compared to the -2 charge of 

the phosphate analog. The lower affinity of the phosphonate was also deemed to be due 

to the loss of hydrogen bonding interactions between the phosphate ester bridging 

oxygen atom and nearby residues. To overcome the drawbacks of this phosphonate, α-
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fluorines were introduced onto the bridging methylene group.  Incorporating α-fluorines 

onto aliphatic phosphonates was previously shown to enhance the efficacy of phosphate 

mimics (Blackburn, 1981; Blackburn, 1983).  The development of the α,α-

difluoromethylenephosphonic acid (DFMP or F2Pmp, CF2PO3
2-, 5.5) group is one of the 

earliest and still one of the most effective phosphate mimics (Burke et al., 1994; Kole et 

al., 1995; Chen et al., 1995).  A wide variety of potent PTP1B inhibitors, such as peptide 

5.6 (Ki = 24 nM; Huyer et al., 1998) and small molecule 5.7 (IC50 = 8 nM; Romsicki et 

al., 2004), have been prepared bearing this mimic.  Overall, the F2Pmp can exhibit an 

approximate 1000-fold enhancement in affinity relative to Pmp (Burke et al., 1994).  

The improvement in affinity of the F2Pmp-containing peptide over its Pmp analog 

validated the assumption that pKa values are important for PTP1B binding.  Separate 

studies on benzylic phosphonates indicated that pKa2 values were lowered by one unit 

for each α-fluorine present (Smyth et al., 1992), such that at pH 7 the F2Pmp would be 

completely ionized just as pTyr is at neutral pH.  However, subsequent pH studies (Chen 

et al., 1995), computational studies, and X-ray crystallographic studies (Burke et al., 

1996) involving a F2Pmp-bearing inhibitor complexed to PTP1B strongly suggest that 

the effect of the fluorines is due to interaction of the fluorines with residues in the active 

site and is not due to pKa effects. 
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Figure 5.8  Non-hydrolyzable phosphate mimics. 

However, the drawback to incorporating the F2Pmp group into a small molecule 

or peptidyl platform intended for therapeutic use is the dianionic nature of this mimic, 

which limits its cell permeability (Burke et al., 2003).  An alternative strategy is to 

develop non-phosphorus-containing pTyr mimics to replicate the phosphate 

functionality.  For example, Desmarais and coworkers examined a series of peptides 
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bearing sulfotyrosine (5.8, sTyr or sY, Figure 5.9) as PTP1B inhibitors and found that 

even relatively simple peptides, such as Ac-DE(sY)L-NH2, 5.9, are good reversible 

competitive inhibitors with IC50 values in the low µM range which indicates that these 

peptides bind almost as well as the best peptide substrates (Desmarais et al., 1998).  

These results suggested that the substitution of the phosphorus in pTyr for a sulfur (to 

sTyr) does not have a serious deleterious effect on ligand binding.  
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Figure 5.9  Sulfotyrosine (sTyr) mimics of phosphotyrosine (pTyr). 

Consequently, the Taylor group recently developed difluorosulfono-

methylphenylalanine (F2Smp, 5.10, Figure 5.10) and demonstrated that is the most 

effective nonhydrolyzable monoanionic pTyr mimic for PTP1B inhibition when 

incorporated into the EGF hexapeptide platform, 5.11 (Leung et al., 2002).  
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Figure 5.10 Non-hydrolyzable phosphate mimic, 
difluorosulfonomethylphenylalanine (F2Smp). 

 
It was reasoned that the F2Smp goup would be an effective monoanionic phosphate 

mimic for several reasons.  For example, it has been shown that peptide 5.6 is almost 

1000 times more effective as a pTyr mimic than the corresponding peptide bearing the 

non-fluorinated analog, 5.4.  Although the F2Smp-bearing peptide 5.11 was found to be 

over 100-fold (IC50 = 10 µM) less potent a competitive PTP1B inhibitor than peptide 

5.4, the F2Smp group is still a much more effective phosphate mimic than other 

monoanionic mimics that have been evaluated in this hexapeptide platform (Leung et 

al., 2002; Gao et al., 2000).  Interestingly, this 100-fold difference in potency was in 

stark contrast to the only 6-fold difference in potency between naphthyl sulfonate 

compound 5.12 (IC50 = 175 µM) and its phosphonate analog 5.13 (IC50 = 35 µM, Figure 

5.10), two relatively simple non-peptidyl competitive inhibitors (Kotoris et al., 1998).  

One possible reason for the 100-fold versus 6-fold difference is that the peptide scaffold 

may be preventing the F2Smp residue from forming optimal interactions in the active 

site as suggested by Gao and coworkers for other monoanionic pTyr mimics (Gao et al., 

2000). However, neither compound 5.12 nor 5.13 was a highly potent inhibitor and, 
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consequently, this simple naphthyl platform may not be the most effective platform for 

assessing the F2Smp group as a phosphate mimic in a non-peptidyl platform.   

Alternative pTyr mimics also include those which bear a carboxylic acid moiety, 

such as O-malonyl tyrosine (OMT, 5.14, Figure 5.11, Kole et al., 1995; Ye et al., 1995) 

and fluoro-O-malonyl tyrosine (FOMT, 5.15, Figure 5.11, Burke et al., 1996), that 

contain two geminal carboxylic acid groups to replicate the dianionic charge of the 

phosphate, but which still present challenges to bioavailability.  It was proposed that the 

charged malonyl carboxyl groups could also be synthesized as their ester form, and 

converted to the free carboxyl groups once inside the cell via the action of cytoplasmic 

esterases (Ye et al., 1995).   However, this did not occur because introducing the OMT-

containing peptide to esterase treatment resulted in removal of only one ester (Akamatsu 

et al., 1995).  An improvement in potency of OMT is achieved by translocating one of 

the carboxylic acid groups from OMT from its geminal position to the aryl 3-position to 

result in compound 5.16 (Figure 5.11, Burke et al., 1998), which has a Ki of 3.6 µM 

when incorporated into the DADE-X-LNH2 hexapeptide (Burke et al., 1998; Larsen et 

al., 2002).   

O

NH2

COOH

O OH

OH

O
O

NH2

COOH

O OH

OH

O

F

5.14, OMT 5.15, FOMT

O

NH2

COOH

OH

O

5.16

O

OH

 

Figure 5.11  Carboxylic acid-containing phosphate mimics. 
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However, many carboxylic acid-based monoanionic pTyr mimics are not 

particularly effective in the EGF hexapeptide platform (Gao et al., 2000).  Gao and 

coworkers have provided a possible explanation as to why the D-A-D-E-X-LNH2 

peptides bearing certain pTyr mimics have a poor affinity for PTP1B (Gao et al., 2000).  

Although the peptide provides beneficial binding contacts with residues outside of the 

active site, it limits the depth of insertion and freedom of the pTyr mimic within the 

catalytic pocket.  Hence it was suggested that studies using this hexapeptide platform 

may not allow one to assess the true effectiveness of certain pTyr mimics (Gao et al., 

2000).  More recently, Lee and coworkers demonstrated that a wide variety of 

monoanionic and dianionic pTyr mimics exhibiting poor affinity for PTP1B in the 

hexapeptide platform were considerably more effective in tripeptide platforms such as 

Fmoc-Glu(OBn)-X-LNH2 (5.17, Figure 5.12; Lee et al., 2003; Lee et al., 2005).  Fmoc 

and Bn are abbreviations for 9H-fluoren-9-ylmethoxycarbonyl and benzyl, respectively, 

and are protecting groups commonly used in solid phase peptide synthesis (SPPS).  

However, none of the candidates examined in the 5.17 tripeptide platform were as 

potent as the F2Pmp-bearing hexapeptide (Lee et al., 2003; Lee et al., 2005).  Similar 

results were also found when these tripeptides were examined as inhibitors of PTP from 

Yersinia pestis (YopH).  On the basis of these results, it was suggested that certain 

monoanionic COOH-based pTyr mimics, which were considered to be of limited utility 

based on the hexapeptide studies, were indeed good pTyr mimics (Lee et al., 2003).  The 

difference in potency between several of the monoanionic and dianionic mimics studied 

by Lee at al, when incorporated into the tripeptide mentioned above, was surprisingly 

small.  Indeed, tripeptides bearing monoanionic carboxylic acid-based mimics exhibited 



 171 

affinities for PTP1B only 2-3–fold greater than the analogous F2Pmp-bearing tripeptide 

(Lee et al., 2003; Lee et al., 2005). 
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Figure 5.12 Tripeptide display platform examined by Lee and 
coworkers (Lee et al., 2003; Lee et al., 2005) 

 

5.1.5.2 Bidentate ligands  

The design of bidentate ligands that bind in both the PTP catalytic site and the 

unique adjacent site has enhanced affinity and specificity against other PTPs.  Potent 

bidentate ligands has been discovered through library screening (Shen et al., 2001).  One 

of the first libraries screened was comprised of compounds containing a pTyr group to 

ensure biased association with the pTyr recognition active site. The pTyr compounds 

were linked by a set of 23 structurally diverse linkers to a structurally diverse set of 

eight aryl acids designed to potentially interact with the second subsite.  The library was 

screened against a mutant PTP1B expressing a catalytically inactive Cys215Ser site-

directed substitution, as the pTyr-containing compounds are hydrolyzable.  The 

candidate with the greatest affinity for the mutant PTP1B was identified and the non-

hyrolyzable F2Pmp analog, compound 5.18 (Figure 5.13) was synthesized and assayed 
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against wild-type PTP1B.  The result was the most potent PTP1B inhibitor identified to 

date, with a Ki of 2.4 nM.  It was also the most selective inhibitor, exhibiting a 

selectivity of 1000- to 10,000-fold preference for PTP1B in a panel of other PTPs (Shen 

et al., 2001).  One exception in the panel was T-cell PTP (TCPTP), which has a 77% 

identical sequence homology to PTP1B.  Only a 10-fold selectivity was observed for 

PTP1B over TCPTP.  Because compound 5.18 carries five negative charges at neutral 

pH, it would not be likely to cross a cell membrane.  Cell permeability was improved by 

introducing a highly lipophilic fatty acid group to compound 5.18 to form compound 

5.19 (Figure 5.13, Xie et al., 2003), and also by introducing the cell penetrating peptide, 

(D)Arg8, via disulfide bridge to form 5.20 (Figure 5.13; Lee et al., 2005).  A pro-drug 

approach based on 5.18 was also used to address cell permeability (Boutselis et al., 

2007).  Prodrugs are designed to mask the negative charge enabling the compound to 

pass through the cell membrane, and once inside the cell, the protecting group is 

hydrolyzed to regenerate the original intended inhibitor. Compound 5.21 was prepared 

and studied for cellular delivery of a phosphonate-based compound (Figure 5.13).  

Studies with each of these cell permeable compounds showed that they can increase 

insulin signaling and result in improved insulin-stimulated glucose uptake (Xie et al., 

2003; Lee et al., 2005; Boutselis et al., 2007).   

To understand the structural basis for the selectivity of compound 5.18 for 

PTP1B over other PTPs, a derivative, 5.22 (Figure 5.13), was synthesized and studied.   

Structural analysis of the interactions between PTP1B and 5.22 revealed that the 

nonhydrolyzable F2Pmp occupies the pTyr-binding active site while the distal 4-

phosphonodifluoromethyl phenylacetyl group participates in van der Waals and ionic 
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contacts with a proximal non-catalytic site lined by Lys41, Arg47 and Asp48.  In 

comparison to other PTPs, the residues of PTP1B interacting with compound 5.22 are 

not unique, however, it is reasoned that it is the combination of all contacts which 

impart selectivity (Sun et al., 2003).   
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Figure 5.13  Bidentate ligands developed as inhibitors of PTP1B. 
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 More recent development of dual site inhibitors of PTP1B has involved rational 

design efforts that led to the discovery of the 1,2,5-thiadiazolidin-3-one-1,1-dioxide 

group as a novel pTyr mimic (Black et a., 2005).  The compound was incorporated into 

a dipeptide structure shown as 5.23 and has a Ki of 0.19 µM (Figure 5.14; Combs et al., 

2005).  Further development of the isothiazolidinone group as a pTyr mimic led to 

compound 5.24 which has an IC50 of 40 nM (Figure 5.14, Yue et al., 2006).  Non-

peptidyl inhibitors bearing the isothiazolidinone group were also developed to improve 

cell permeability and oral bioavailability.  One particularly good example of a candidate 

is compound 5.25 (Figure 5.14), which displayed an IC50 of 35 nM.  It was also able to 

cross the cell membrane and increase phosphorylation of the insulin receptor (Combs et 

al., 2006). 

 

AcHN

O

H
N

O

NH2

S
N
H

O

O

O

H
N

O

N
H

C5H11

O

H
NO

O

S NH

O

O

O

S

H
N

O O

N

HN

S N
H

O

O

O

5.23 5.24

5.25  

Figure 5.14 Isothiazolidinone-based inhibitors of PTP1B. 



 176 

5.1.5 Objectives 

As discussed in section 5.1.4.1, the Taylor group previously examined the 

difluoromethyl sulfonic acid (5.9, F2Smp, –CF2SO3
-, Figure 5.10) group as a phosphate 

mimic for PTP1B inhibition (Kotoris et al., 1998; Leung et al., 2002).  The first 

objective of the studies presented in this chapter is to make a more complete assessment 

of the F2Smp group as a phosphate mimic for PTP1B inhibition, by replacing the F2Pmp 

group in a potent a non-peptidyl competitive inhibitor, such as compound 5.7 (Figure 

5.8; Romsicki et al., 2004), with a F2Smp group and then we will compare their 

inhibitory potencies.  Here I describe inhibition studies of inhibitor 5.7, its F2Smp 

analog 5.26, and its non-fluorinated methylenesulfonyl analog 5.27.  The development 

of two other derivatives, 5.28 and 5.29, in which the sulfonamide moiety in compounds 

5.7 and 5.26 is replaced with a difluoromethylenesulfonamide group, is also described. 

Inhibition studies with these compounds and PTP1B reveal surprising results concerning 

the use of benzylic sulfonates as PTP1B inhibitors. 
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-1,  R' = SO2NH2

5.28, R = CF2PO4
-2,  R' = CF2SO2NH2

5.29, R = CF2SO3
-1,  R' = CF2SO2NH2  

Figure 5.15  Structure of proposed sulfonate and difluorosulfonate inhibitors. 

The second set of studies presented here have the objective to examine the 

inhibition potency of a neutral phosphotyrosine mimic when incorporated into the 

tripeptide, Fmoc-Glu(OBn)-X-LNH2 (5.17, Figure 5.12), in comparison to its 
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incorporation into the more commonly used peptide for examining phosphate mimics, 

DADE-X-LNH2.  As mentioned in section 5.1.4.1, Lee and coworkers observed that the 

potency between several monoanionic and dianionic mimics incorporated into the 

tripeptide, 5.17, was surprisingly small (Lee et al., 2003).  These results lead one to 

question whether a neutral pTyr mimic could also be effective in the tripeptide platform. 

An effective neutral pTyr mimic would be very useful in increasing the bioavailability 

of PTP inhibitors.  Neutral pTyr mimics are rare. Researchers at Sugen have suggested, 

on the basis of studies with nonpeptidyl PTP1B inhibitors, that the trifluoro-

methylsulfonamido group is an effective neutral phosphate mimic (Huang et al., 2003).  

We chose to examine the sulfonamide 5.30 (Figure 5.16) as a potential pTyr mimic. 

The sulfonamide group has found widespread use as a pharmacophore in medicinal 

chemistry and numerous bioactive agents bear this functionality (Bowman et al., 1979). 

It has a geometry similar to that of the phosphate group yet does not bear a negative 

charge. 
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Figure 5.16 Phosphotyrosine mimics. 
 

Recently, Chen and coworkers reported the development of amino acid 5.30 and its 

incorporation into the D-A-D-E-X-L-NH2 platform (Chen et al., 2003). Although this 

peptide was found to be a very poor inhibitor of PTP1B, this amino acid was never 
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examined as a pTyr mimic in the Fmoc-Glu(OBn)-X-LNH2 platform (5.17, Figure 

5.12), where the potential constraints of the hexapeptide platform mentioned above may 

not be as severe.  As previously mentioned, Burke and co-workers have shown that 

peptides bearing F2Pmp can be up to 1000-fold more potent PTP1B inhibitors than their 

nonfluorinated analogues (Burke et al., 1994; Kole et al., 1995; Chen et al., 1995).  

Consequently, the fluorinated analogue of 5.30, compound 5.31 (Figure 5.16), will be 

examined as a pTyr mimic.  Here, I report the evaluation of amino acids 5.30 and 5.31 

incorporated into the hexapeptide platform to make peptides 5.32 and 5.33 (Figure 

5.17).  Amino acids 5.30 and 5.31 were also incorporated into the tripeptide platform, 

5.17, described above to yield 5.34 and 5.35 (Figure 5.17) and were examined as 

inhibitors of PTP1B.   
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Figure 5.17 Proposed inhibitors of PTP1B. 
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5.2 Results and Discussion 

5.2.1 Inhibition studies with compounds 5.26-5.29 

IC50 determinations were carried out under conditions similar to those reported 

by Merck Frosst for compound 5.7 (50 mM Bis–Tris HCl buffer, pH 6.3 containing 2% 

glycerol, 0.1% Triton X-100, 4% DMSO, 4.5 mM DTT and 1.8 mM EDTA; Romsicki 

et al., 2004; Montalibet et al., 2005) with the only significant difference being the 

presence of 4% DMSO and that 6,8-difluoro-4-methylumbelliferyl phosphate (diFMUP, 

5.36, see § 5.4.3, Figure 5.23) was used as substrate at Km concentration (5 µM; 

Montalibet et al., 2005).  It should be noted that although only compound 5.29, a 

relatively hydrophobic compound, required the presence of 4% DMSO in the assay mix 

for solublization, we elected to have 4% DMSO present for assaying all of the 

compounds so that a direct comparision between the IC50 values could be made. The 

IC50 for compound 5.7 under our conditions (6 nM) is similar to that reported by Merck 

Frosst for this compound (8 nM) in the absence of DMSO which indicates that the 

presence of 4% DMSO in the assay mixture does not significantly affect ligand binding.  

Moreover, the Km of the substrate, diFMUP, under our conditions was found to be the 

same (5 µM) as that determined by Merck Frosst in the absence of DMSO.  Although 

none of the new compounds (5.26–5.29) were as potent as the parent compound 5.7, 

some surprising and informative results were obtained (Table 5.1). Compound 5.26 is a 

1000-fold less potent inhibitor than its phosphonate analog, compound 5.7. This large 

difference in potency prompted us to examine whether the modality of inhibition of 

sulfonate 5.26 was different from that of competitive inhibitors 5.7, 5.12, 5.13 and 5.26. 

However, sulfonate 5.26 also behaved as a mainly competitive inhibitor with a Ki of 
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10.6 µM and inhibition was reversible (Figure 5.18). Surprisingly, inhibition studies 

with the nonfluorinated analog of inhibitor 5.26, compound 5.27, revealed that it has an 

IC50 that is almost the same as that of compound 5.26.  

 

 

Figure 5.18 Lineweaver-Burk plot for the inhibition of PTP1B with inhibitor 5.26 
in 50 mM Bis-Tris HCl, pH 6.3, 20% glycerol, 5 mM DTT, 2 mM EDTA, 0.1% 
Triton X-100. (●) 0 µM, (■) 5 µM, (▲) 10 µM, (▼) 20 µM.  See Appendix C for 
replot to determine Ki. 
 
 
Table 5.1  Inhibition of PTP1B with compounds 5.7 and 5.26-5.29. 

Compound IC50 (µµµµM) Ki (µµµµM) 

5.7 0.0060 ± 0.0004 ND 
5.26 13 ± 3 10.6 ± 0.4 
5.27 19 ± 3 10.3 ± 1.8 
5.28 0.030 ± 0.002 0.024 ± 0.003 
5.29 6.0 ± 0.4 3.3 ± 0.5 
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Figure 5.19 Structure of peptide 5.37. 

 More detailed studies with inhibitor 5.27 revealed that it too is a competitive 

inhibitor with a Ki of 10.3 µM which is essentially the same as that of compound 5.26.  

The non-fluorinated analog of peptide 5.9, peptide 5.37 (Figure 5.19), was never 

examined as a PTP1B inhibitor.  However, the non-fluorinated analog of inhibitor 5.12 

exhibited only 10% inhibition at 500 µM (Kotoris et al., 1998) which indicates that the 

fluorines in inhibitor 5.12 contribute significantly to the binding of compound 5.12 to 

PTP1B.  Therefore, we had assumed that the fluorines in peptide 5.9 were also making a 

significant contribution to the potency of this peptide.  To determine if this is indeed the 

case, we prepared peptide 5.37 and examined it, as well as peptide 5.9, as PTP1B 

inhibitors under the conditions described above.  Under these conditions, peptide 5.9 

exhibited an IC50 of 24 µM.  Most significantly, the IC50 of peptide 5.37 was 44 µM, 

which is less than two-fold higher than that of peptide 5.9.  Thus, our previous 

assumption that the fluorines in peptide 5.9 contributed significantly to its potency was 

incorrect. The inability of the fluorines in inhibitors 5.9 and 5.12 to make beneficial 

contacts with active site residues may partly explain the very large (100- to 1000-fold) 

difference in potency between these compounds and their F2Pmp analogs.  It is also 
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possible that this large difference in potency between the S2Pmp and F2Pmp inhibitors is 

because the F2Pmp group is dianionic at pH 6.5 and PTP1B prefers to bind the dianionic 

F2Pmp-based inhibitors as opposed to the monoanionic S2Pmp-based inhibitors. 

However, as mentioned earlier, previous studies suggest that PTP1B binds the 

monoanionic and dianionic forms of F2Pmp-bearing inhibitors equally well (Chen et al., 

1995; Burke et al., 1996).  On the other hand, compound 5.12 is much smaller than 

peptide 5.9 and compound 5.26, and so compound 5.12 may have greater freedom of 

motion in the active site.  If so, then this may allow the fluorines in inhibitor 5.12 to 

make some beneficial contacts with active site residues while residues in peptide 5.9 and 

moieties in compound 5.26 outside the active site may restrict the mobility of the aryl- 

S2Pmp group in the active site which could limit the ability of the fluorines to make 

beneficial contacts. It is worth mentioning that, with the exception of 

sulfonodifluoromethylphenylalanine (in peptide 5.9), sulfonomethylphenylalanine (in 

peptide 5.33) is a considerably more effective pTyr mimic than other monoanionic pTyr 

mimics that have been examined in this hexapeptide (DADE-X-LNH2, X = pTyr mimic) 

platform (Gao et al., 2000).  In compounds 5.28 and 5.29 the sulfonamide moiety in 

compounds 5.7 and 5.26 is replaced with a difluoromethylenesulfonamide group.  This 

modification was pursued since this allowed us to increase the hydrophobicity of these 

compounds while at the same time lowering the pKa of the sulfonamide by about three 

orders of magnitude (from 10.5 to 7.5) by making just a minor structural change (Trepka 

et al., 1974; Blackburn et al., 2005).  Phosphonate inhibitor 5.28 exhibited a 5-fold 

increase in IC50 compared to compound 5.7 (Table 5.1). Further studies revealed that 

5.28 is a competitive inhibitor with a Ki of 24 nM, still a very potent inhibitor. However, 
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sulfonate 5.29 exhibited a slight decrease in IC50 compared to sulfonate 5.26 (Table 

5.1). Moreover, inhibitor 5.29 exhibited reversible mixed inhibition (Figure 5.20) with a 

Ki of 3.3 µM and an αKi of 12.5 µM indicating that this more hydrophobic compound is 

probably binding somewhat differently to PTP1B compared to compound 5.28 and this 

may account for their different trends in Ki values. 

 

Figure 5.20  Lineweaver-Burk plot for the inhibition of PTP1B with inhibitor 5.29 
in 50 mM Bis-Tris HCl, pH 6.3, 20% glycerol, 5 mM DTT, 2 mM EDTA, 0.1% 
Triton X-100. (●) 0 µM, (■) 2.5 µM, (▲) 5 µM, (▼) 10 µM. Please see Appendix 
C for replot to determine Ki. 
 
 
 Although monoanionic inhibitors 5.26, 5.27, and 5.29 are considerably less 

potent than their phosphonate counterparts, they compare favorably, in terms of their 

affinity for PTP1B, to the majority of the best non-peptidyl monoanionic PTP1B 

inhibitors that have been reported in the literature. Amarasinghe and coworkers reported 

a monoanionic sulfamide PTP1B inhibitor with an IC50 of 2.3 µM though the mode of 

inhibition was not reported (Figure 5.21, Amarasinghe et al., 2006).  Researchers at 

Abbott have reported monoanionic inhibitors bearing either a 2-

(hydroxyphenoxy)phenyl acetic acid moiety or a isoxazole carboxylic acid group with 
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Ki values of 6–9 µM (Figure 5.21, Xin et al., 2006; Liu et al., 2003).  Researchers at 

Sunesis have reported a monoanionic pyrazine carboxylic acid-based PTP1B 

competitive inhibitor with a Ki of 4 µM (Figure 5.21, Erlanson et al., 2003).  

N

N

OHO
O

H
N

O

H
N

S N
H

O

BrOH3CON
H

S

O

O

O-

O OCH3

HO

O

O

OH

NHAc

O

N
H

O OH

O OMe
F

O

N

O

O

OH

OH

OO

Amarasinghe et al., 2006 Erlanson et al., 2003

Xin et al., 2003 Liu et al., 2003

5.38 5.39

5.40 5.41

 

Figure 5.21 Examples of monoanionic inhibitors of PTP1B recently reported in 
literature. 
 
 However, it should be noted that neither our sulfonate inhibitors nor any of the other 

above mentioned monoanionic inhibitors are as potent as the monoanionic inhibitors 

bearing the (S)-isothiazolidinone phosphate mimic recently reported by workers at 

Incyte (Figure 5.14, Douty et al., 2008). Although the (S)-isothiazolidinone phosphate 

mimic has never been examined in the DADE-X-LNH2 platform, studies with other 

smaller peptides as well as with non-peptidyl compounds bearing this moiety suggest 

that it is the most effective monoanionic phosphate reported to date and appears to be 

even more effective than the F2Pmp group. 
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5.2.2  Inhibition studies with compounds 5.32-5.35, 5.11, 5.42, 5.43. 

IC50 values of compounds 5.32 to 5.35 and 5.42 to 5.43 with PTP1B were 

performed in bis-tris buffer at pH 6.5, containing 15 mM NaCl, 2 mM EDTA, 0.001% 

Triton X-100 and 7.5% DMSO using 6,8-difluoro-4-methylumbelliferyl phosphate (5.36, 

diFMUP, see § 5.4.3, Figure 5.23) as substrate at Km concentration.  IC50 values are 

given in Table 5.2 (See appendix C for IC50 curves).  Hexapeptides 5.32 and 5.33 

showed no inhibition even at 1.0 mM.  These results are consistent with those of Chen et 

al. concerning peptide 5.32, which showed that this compound was a very poor inhibitor 

of PTP1B (Chen et al., 2003).   

 
Table 5.2.  Inhibition of PTP1B with peptides 5.32-5.35, 5.42, 5.43, and 5.11.  
Compound   Peptide IC50 (µµµµM) 

5.32 DADE-5.30-LNH2   0% inhibition at 1 mM 
5.33 DADE-5.31-LNH2   0% inhibition at 1 mM 
5.34 FmocGlu(OBn)-5.30-LNH2   3.4 ± 0.4 
5.35 FmocGlu(OBn)-5.31-LNH2 6.4 ± 1.0 
5.42 FmocGlu(OBn)-5.10-LNH2 7.4 ± 1 
5.11 DADE-5.10-LNH2 

a 10 ± 1 a 
5.43 FmocGlu(OBn)-Phe-LNH2 4.1 ± 1.0 
a From Leung et al., 2002. 
 
However, tripeptides 5.34 and 5.35 exhibited IC50 values of 3.4 and 6.4 µM, 

respectively.  Clearly, the fluorines in peptides 5.33 and 5.35 had little or no impact on 

inhibitor potency.  We also prepared tripeptide 5.42 bearing F2Smp (5.10) and found 

that it exhibited an IC50 similar to 5.34 and 5.35 as well as hexapeptide 5.11 (Leung et 

al., 2002).  Indeed, the IC50 values for tripeptides 5.34, 5.35, 5.42 are, in general, not 

significantly different from those reported by Lee et al., for a variety of monoanionic 

carboxylic acid-based pTyr mimics, as well as F2Pmp (5.5), in the same tripeptide 

platform (Lee et al., 2003).  The similarity of the IC50 values of tripeptides 5.34 and 5.35 
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to tripeptide 5.42 and to those of Lee et al., prompted us to question if the pTyr mimics 

were contributing at all to the potency of the tripeptides.  An examination of the data 

reported by Lee et al., revealed that tripeptide FmocGlu(OBn)-Phe-LNH2 (5.43), a 

control in which no phosphate mimic is present on the phenylalanine side chain, had not 

been evaluated as a PTP1B inhibitor.  Therefore, we synthesized peptide 5.43 and 

evaluated it as a PTP1B inhibitor.  This peptide exhibited an IC50 of 4.1 µM which is 

similar to the IC50 values for 5.34, 5.35, and 5.42 and many of the tripeptides reported 

by Lee et al., with PTP1B.  This result raises the possibility that the phosphate “mimic” 

portion of the tripeptide inhibitors contributes little or not at all to their inhibitory 

potency.  It is possible that the phosphate-mimicking portion of these tripeptides does 

not bind or binds very poorly in the active site or elsewhere on the protein and that the 

majority of the binding energy is a result of the interaction of a hydrophobic group on 

the inhibitor with a hydrophobic region on the protein.  Lee et al. have recently shown 

that the presence of a hydrophobic aromatic hydrocarbon moeity at the N-terminus was 

important for obtaining good PTP1B inhibition with their tripeptides (Lee et al., 2005). 

 Lee et al. examined in some detail the inhibition kinetics of the outer membrane 

phosphatase derived from Yersinia pestis (YopH) with tripeptide 5.44 (Figure 5.22) 

which has an IC50 of 1.8-2.8 µM with PTP1B (Lee et al.,, 2003; Lee et al., 2005).  It did 

not exhibit a strictly competitive mode of inhibition. It showed a steep IC50 curve with a 

slope factor of 3-5 depending upon the enzyme concentration suggesting that more than 

one molecule of inhibitor binds to YopH.  IC50 values increased as the concentration of 

YopH increased.  They also observed a time dependency in that preincubation with 

YopH for 5 minutes decreased the IC50 from 3.2 to 1.5 µM. Treatment of YopH with 
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200 µM inhibitor 5.44 for 30 minutes followed by dilution into excess substrate resulted 

in a 40% loss of activity. It is interesting to note that some of these phenomena were 

also encountered with hydrophobic inhibitor 5.45 (Figure 5.22) and PTP1B in that it too 

displayed time-dependent inhibition and non-classical inhibition patterns (Johnson et al., 

2002; Wrobel et al., 1999). Using 5.42 as a model inhibitor, we have found that some of 

the above phenomena encountered with 5.44 and 5.45 also occur with PTP1B.  A 

Lineweaver-Burk plot did not exhibit classical inhibition patterns and we were unable to 

determine a Ki from the plot. The IC50 values depended upon PTP1B concentration.  At 

1.5 nM enzyme, the IC50 of 5.42 was 4.3 µM while at 12 nM enzyme the IC50 increased 

to 12 µM, however, the slope factors were 1.2-1.4.  We did not observe a significant 

time dependence upon inhibition. We also examined the reversibility of inhibition by 

incubating 150 nM PTP1B with 50 µM of 5.42 for either 15 seconds or 60 minutes and 

then diluting the mixture 50-fold into a solution containing 1.0 mM diFMUP (5.36) and 

assaying enzyme activity.  In each case, only 5-10% of the activity was recovered.  

Moreover, even after extensive dialysis, no activity was recovered.  As pointed out by 

Lee et al., and others, these results are consistent with the properties associated with 

nonspecific promiscuous inhibitors (McGovern et al., 2002; McGovern et al., 2003).  

Recent studies have shown that enzyme inhibition can occur due to a process of colloid 

formation (McGovern et al., 2002; McGovern et al., 2003).  Dynamic light scattering 

measurements by Lee et al., on one of their FmocGlu(OBn)-X-LNH2 tripeptides bearing 

a monoanionic pTyr mimic suggested that colloid formation was not occurring. 

Although inhibition by colloid formation has never been demonstrated to occur with 

PTP1B inhibitors of any kind, such a phenomenon cannot be ruled out with the 
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tripeptides examined here or others examined by Lee and coworkers.  However, these 

researchers also point out that some of the observed effects are not as pronounced as 

previously reported for promiscuous inhibitors (Lee et al., 2003). 
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Figure 5.22  Tripeptide inhibitor 5.44 of YopH and PTP1B and a hydrophobic 
inhibitor 5.45 of PTP1B. 

 
5.3 Conclusions and Future Work 

The F2Smp-bearing inhibitor 5.26 was a much less potent PTP1B inhibitor than 

phosphonate 5.7. Replacing the distal sulfonamide moiety with a 

difluoromethylenesulfonamide group in compound 5.7 did not yield a more potent 

inhibitor though this substitution in compound 5.26 did yield a slightly better inhibitor. 

Surprisingly, inhibition studies with the non-fluorinated sulfonates, compound 5.27 and 

peptide 5.37 bearing sulfonomethylphenylalanine, revealed that the fluorines had little 

effect on the potency of the F2Smp-bearing inhibitors which was in contrast to our 

previously held assumption that the fluorines in F2Smp-bearing inhibitors contributed 

significantly to their potency. This may in part explain the large difference in potency 

between the F2Smp and F2Pmp bearing compounds. These results also show that 
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sulfonodifluoromethylphenylalanine (Liu et al., 2001), is one of the best monoanionic 

pTyr mimics reported so far when examined in the context of the DADE-X-LNH2  

platform. 

Although the tripeptides bearing the pTyr mimics, 5.30 and 5.31, were relatively 

good inhibitors, our results suggest that the phosphate mimicking portion of the 

tripeptides may not be contributing significantly to their potency.  Moreover, studies 

with inhibitor 5.42 reveals that this class of tripeptide inhibitor exhibits nonclassical 

inhibition patterns with PTP1B. As mentioned above, it has been suggested that the 

hexapeptide platform may limit the depth of insertion and freedom of the pTyr mimic 

within the catalytic pocket and this may result in artificially low potencies for certain 

pTyr mimics (Gao et al., 2000; Lee et al., 2003).  These results do not suggest that this 

hypothesis is incorrect though they do raise serious questions as to the value of the 

FmocGlu(OBn)-X-LNH2 peptide as a platform for assessing pTyr mimics for PTP1B 

inhibition. Indeed, our results emphasize an important point about assessing pTyr 

mimics in any platform in that it is prudent to compare the platform bearing the pTyr 

mimic to the analogous structure lacking the phosphate mimicking portion. 

 Although amino acids 5.30 and 5.31 were not good pTyr mimics for PTP1B, 

they may also prove to be useful in the development of inhibitors and probes of other 

enzymes. Chen et al. have shown that peptide 5.32 was a modest inhibitor of Yersinia 

PTP (Chen et al., 2003).  The presence of fluorines α to the sulfonamide moiety might 

enhance its potency with Yersinia PTP. It is also worthy of note that tyrosine sulfation 

has been recognized as an important post-translational modification (Kehoe et al., 2000). 

The growing list of proteins that bind to sulfotyrosine include viral proteins that 
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recognize sulfated receptor proteins on cell surfaces (Farzan et al., 1999; Farzan et al., 

2000).  Hence, a need has also arisen for hydrolytically stable sulfotyrosine mimics.  We 

have recently demonstrated that the difluoromethylenesulfonamide group is a relatively 

good nonhydrolyzable replacement of the sulfate group in estrone sulfate in that this 

species is a relatively good reversible inhibitor of steroid sulfatase (Liu et al., 2005). 

Thus, amino acid 5.31 may prove to be an effective sTyr mimic and useful in the 

development of inhibitors of protein-protein interactions. 

5.4  Experimental  

5.4.1 Materials 

 HiTrapTM Blue and HiTrapTM Q were obtained from Amersham Pharmacia 

Biotech.  A pFLAG plasmid expressing the catalytic domain (residues 1-298) of human 

PTP1B was a generous gift from Merck Frosst Centre for Therapeutic Research, Pointe-

Claire-Dorval, QC.  Compounds 5.26-5.29 were synthesized by Munawar Hussain of 

the Taylor group. Compounds 5.32-5.35 were synthesized by Dr. Bryan Hill of the 

Taylor group. Centrifugation was performed using a Beckman Avanti J-25I centrifuge 

(Mississauga, ON) or a Beckman Coulter Avanti JE centrifuge (Fullerton, CA, USA).  

5.4.1 Purification of PTP1B 

A pFLAG plasmid expressing the catalytic domain (residues 1–298) of human 

PTP1B  was expressed in BL21 (DE3) cells and purified according to a two-step 

purification protocol (HiTrapTM blue affinity column and HiTrapTM Sepharose Q anion 

exchange column) previously described by Asante-Appiah (Assante-Appiah et al., 

2001).  Cells were grown at 37°C and 250 r.p.m. to an optical density (OD) of 0.7 at 600 

nm in Luria Bertani (LB) broth supplemented with 100 mg/ml ampicillin (LB-Amp). 
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The culture was then induced by addition of isopropyl-1-thio-β-D-galactopyranoside 

(IPTG) to a final concentration of 1 mM.  Cells were harvested 3 h post-induction.  

Bacteria cells were dissolved in lysis buffer containing 20 mM tris, pH 7.5, 0.1 mM 

EDTA, 5 mM dithiothreitol (DTT), 10 µM phenylmethansulfonyl fluoride (PMSF) and 

protease inhibitors (CompleteTM Protease Inhibitor Cocktail, Roche).  Lysis was 

achieved by passage through a high-pressure homogenizer cell.  The supernatant was 

retained following centrifugation of the cell lysate and applied to a HiTrapTM blue 

affinity column (5 mL volume) equilibrated in 20 mM tris, pH 7.5, 0.1 mM EDTA, 5 

mM DTT. Following a five-column volume wash in equilibration buffer, elution was 

performed in ten column volumes of a linear gradient of 20 mM tris, pH 7.5, 0.1 mM 

EDTA, 2 M NaCl, 5 mM DTT, the active fractions were pooled and dialyzed into 20 

mM tris, pH 7.5, 0.1 mM EDTA, 5 mM DTT, before applying to a HiTrapTM Sepharose 

Q anion exchange column. Following a wash step of five column volumes of 

equilibration buffer, the protein was eluted with a ten column volume linear gradient of 

increasing 20 mM tris, pH 7.5, 0.1 mM EDTA, 2 M NaCl and 5 mM DTT. The resulting 

homogenous protein was judged to be >95% pure according to a 10% SDS-PAGE and 

dialyzed for storage into 20 mM Tris-HCl, 0.1 mM EDTA, 5 mM DTT, 150 mM NaCl, 

20% (v/v) glycerol at a pH of 7.5.  Dialyzed protein was divided into 20 µL aliquots and 

flash frozen in for storage at -80°C.  All purification steps were carried out at 4°C or on 

ice. 

5.4.3 Kinetic Assays 

PTP1B activity was assayed using 6,8-difluoro-4-methylumbelliferyl phosphate 

(5.36, diFMUP, Invitrogen, Figure 5.23) a fluorogenic substrate and following the 
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production of the fluorescent product, 8-difluoro-4-methylumbelliferoe (diFMU, 

excitation wavelength of 360 nm and an emission wavelength of 460 nm) (Gee et al., 

1999).  

O OO

F

F

P

O

O-

-O

PTPs

O OHO

F

F

Pi H+
O O-O

F

FpKa = 4.9

λex  = 360 nm

λem = 460 nm6,8-difluoro-4-methylumbelliferyl phosphate
(diFMUP)

5.36

 

Figure 5.23.  Fluorogenic assay for PTP1B. 

5.4.2 IC50 and Ki determinations of compounds 5.7, 5.26 to 5.29 

Stock solutions of the inhibitors were prepared in 40% DMSO/60% buffer 

containing 50 mM Bis–Tris HCl, pH 6.3.  10 µL of each inhibitor stock solution was 

added to the wells of a 96-well microtiter plate containing 90 µL of 5.5 µM diFMUP in 

50 mM Bis–Tris HCl, pH 6.3, 5 mM DTT, and 2 mM EDTA. The reactions were 

initiated at 25°C with 10 µL of a 30 nM solution of PTP1B in a buffer containing 50 

mM Bis–Tris HCl, pH 6.3, 20% glycerol, 5 mM DTT, 2 mM EDTA, and 0.1% Triton 

X-100. The production of fluorescent product diFMU was monitored for 10 min using a 

spectrofluorimeter platereader with excitation and emission at 360 nm and 460 nm, 

respectively. The initial rates of enzyme activity in relative fluorescence units per 

second (RFU/s) were used to determine the IC50 and Ki values. For IC50 values, the ratio 

of the initial rate in the presence of inhibitor (Vi) to that in the absence of inhibitor (Vo) 

was calculated and plotted as a semi-log curve in Grafit, from which the IC50 value was 

calculated based on the following equation: Vi = Vo/[1 + ([I]/IC50)
S] + B, where Vi is the 
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initial rate of reaction at an inhibitor concentration of [I]; Vo is the velocity in the 

absence of inhibitor; B is background and s is the slope factor equal to Vo - B.  For the 

Ki values, data were plotted as Lineweaver–Burk graphs and Ki values were calculated 

from replots of the slopes or intercepts of the Lineweaver–Burk graphs according to the 

equations for mixed or competitive inhibition. 

5.4.3 IC50 Determinations for compounds 5.32 to 5.35, and 5.42 and 5.43 

Ten microliters of a solution of a stock solution of inhibitor in DMSO-water was 

added to the wells of a microtiter plate containing 70 µL of 0.1 M bis-tris, pH 6.3, 2 mM 

EDTA, 5 mM DTT, 0.001% Triton.  A control was prepared by adding 10 µL of 

DMSO-water instead of inhibitor.  To this, 10 µL of 200 µM diFMUP (5.36, see § 5.4.3, 

Figure 5.17) stock in 2% DMSO was added to bring the volume up to 90 µL.  The assay 

was initiated by the addition of 10 µL of PTP1B stored in 20 mM tris, pH 7.5, 150 mM 

NaCl, 5 mM DTT, 0.1 mM EDTA, and 20% glycerol.  A control was performed by 

adding 10 µL of enzyme storage buffer. The final concentration of inhibitor in the assay 

wells was 100, 80, 60, 40, 20, 15, 10, 5, 2.5, 1, 0.5, and 0 µM. The final concentration of 

DMSO was 7.5%. The final concentration of diFMUP substrate in the assay was 20 µM, 

the previously determined Km value under these conditions. The final concentration of 

PTP1B ranged from 1.5 to 3.0 to 6.0 nM. The production of fluorescent product diFMU 

was monitored for 10 min at 30°C using a spectrofluorometer platereader with 

excitation and emission at 360 and 460 nm, respectively. The initial rates of enzyme 

activity in relative fluorescence units per second (RFU/s) were used to determine the 

IC50. The ratio of the initial rate in the presence of inhibitor (Vi) to that in the absence of 

inhibitor (Vo) was calculated and plotted as a semilog curve in Grafit, from which the 



 194 

IC50 value was calculated based on the following equation: Vi = Vo/[1 + ([I]/IC50)
S] + B, 

where Vi is the initial rate of reaction at an inhibitor concentration of [I], Vo is the 

velocity in the absence of inhibitor, B is background, and s is the slope factor equal to Vo 

- B. 

5.4.4 Assay for Time-Dependent Inhibition with Inhibitor 5.42 

The IC50 of 5.38 was determined using the procedure described above except the 

inhibitor solutions were incubated with PTP1B (3 nM) for 30 min at 30°C before 

initiation of the reaction with DiFMUP (20 µM final concentration). 

5.4.5 Assay for Irreversible Inhibition with Inhibitor 5.42 

10 µL of a 500 µM stock solution of 5.42 in DMSO-water was added to 80 µL 

of 0.1 M bis-tris, pH 6.3, 2 mM EDTA, 5 mM DTT, 0.001% Triton, and 10 µL of 1.5 

µM PTP1B. A control was similarly made with 10 µL of DMSO-water instead of 

inhibitor. Upon initiation of the reaction at t = 0 and after 20, 40, and 60 min of 

incubation, a 2 µL aliquot was withdrawn at t = 15 s and t = 60 minutes and added to a 

96-well microtiter plate containing 98 µL of 1.0 mM diFMUP (approximately 50 × Km) 

in 0.1 M bis-tris, pH 6.3, 2 mM EDTA, 5 mM DTT, 0.001% Triton for a 50-fold 

dilution of the incubation mixture. The final concentration of the inhibitor in the assay 

was 1 mM, and the final concentration of enzyme was 150 nM. The production of 

diFMU was followed for 10 min as described above. The percent of activity remaining 

in the presence of inhibitor compared to that of the control was determined. After the 

aliquot was withdrawn from the preincubation mixture after 60 minutes, the remainder 

was transferred to a dialysis membrane (10 kDa cutoff, SpectraPor) and dialyzed against 

500 mL of 0.1 M bis-tris, pH 6.3, 2 mM EDTA, 5 mM DTT, 0.001% Triton X-100, 
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changed twice over 24 h at 4 °C. At 24 h the amount of activity remaining in the 

enzyme-inhibitor mixture and its control was measured by withdrawing 2 µL into 98 µL 

of 1 mM diFMUP (approximately 50 × Km) in 0.1 M bis-tris, pH 6.3, 2 mM EDTA, 5 

mM DTT, 0.01% Triton X-100 as described above. 
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Appendix A – Preliminary kinetic studies for compounds 3.24, 

3.25 and 3.32-3.34 

 
A.1. General procedure for IC50 determinations of compounds 3.24, 3.25, 3.33 

and 3.34. 

 10 µL of solutions of various concentrations of the inhibitors in DMSO/0.1 M 

tris, pH 7.0 (1:1) (for compounds 3.24, 3.25 and 3.33) or 0.1 M tris, pH 7.0 (for 

compound 3.34) were added to the wells of a microtiter plate containing 80 µL of 250 

µM 4-MUS in 0.1 M tris, pH 7.0.  The reaction was initiated by the addition of 10 µL of 

40 nM STS stored in 20 mM tris, pH 7.4, 0.1% Triton X-100 to a final concentration of 

4 nM STS and 200 µM 4-MUS (Km concentration) in 0.1 M tris, pH 7.0, 0.01% Triton 

X-100, 5% DMSO. The production of 4-MU was followed for 10 minutes (λex = 360 nm, 

λem = 460 nm) at 22oC.  The percent activity of STS in the presence of inhibitor after 

each time interval was calculated as a percentage of activity in the absence of inhibitor.  

IC50 plots of % activity versus log concentration of the inhibitor are shown Figures A1-

A4 below.  The initial rates of enzyme activity in relative fluorescence units per second 

(RFUs/sec) were used to determine the IC50.  The ratio of the initial rate in the presence 

of inhibitor (Vi) to that in the absence of inhibitor (Vo) was calculated and plotted as a 

semi-log curve in Grafit (Erithacus Software, Surrey, U.K.), from which the IC50 value 

was calculated based on the following equation: Vi = Vo/[1 + ([I]/IC50)S] + B, where: Vi 

is the initial rate of reaction at an inhibitor concentration concentration of [I]; Vo is the 

velocity in the absence of inhibitor; B is background and s is the slope factor. 
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Figure A.1.  IC50 plot for compound 3.24.  Inhibitor concentrations range from 
11-400 µM.  IC50 = 218 ± 12 µM. 
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Figure A.2. IC50 plot for compound 3.25.  Inhibitor concentrations range from 
15-400 µM.  IC50 = 158 ± 17 µM. 
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Figure A.3.  IC50 plot for compound 3.33.  Inhibitor concentrations range from 2-
1000 µM.  IC50 = 62 ± 7 nM. 
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Figure A.4.  IC50 plot for compound 3.33.  Inhibitor concentrations range from 
22-400 µM.  IC50 = 215 ± 8 µM. 
 

A.2 Preliminary studies on the time- and concentration-dependent inhibition of 

STS with compound 3.32. 

 This was determined using the same procedure as that used for 4-FE1 (§ 3.4.3).  

The results are shown in Figure A.5 below.   
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Figure A.5.  Time- and concentration-dependent inhibition of STS with inhibitor 
3.32 over 30 minutes.   
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Appendix B – Supplementary Figures for Compounds 4.6, 4.7, 

4.10, 4.11 
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Figure B.1.  Replot of the data from Figure 4.6 to determine the Ki of inhibitor 4.6 at 
pH 7.0. 
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Figure B.2.   Lineweaver-Burk plot of inhibitor 4.6 at pH 7.5. 
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Figure B.3.  Replot of the data from Figure B.2 to determine the Ki of inhibitor 4.6 at 
pH 7.5. 
 



 228 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

-0.004 0.001 0.006 0.011

1/[MUS]  (1/µM)

1
/v

 (
se

c/
R

F
U

)

0 µM

20 µM

15 µM

10 µM

5 µM

2.5 µM

 
Figure B.4.  Lineweaver-Burk plot of inhibitor 4.6 at pH 8.0. 
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Figure B.5.  Replot of the data from Figure B.4 to determine the Ki of inhibitor 4.6 at 
pH 8.0. 
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Figure B.6.   Lineweaver-Burk plot of inhibitor 4.6 at pH 8.5. 
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Figure B.7.  Replot of the data from Figure B.6 to determine the Ki of inhibitor 4.6 at 
pH 8.5. 
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Figure B.8.  Replot of the data from Figure 4.8 to determine the Ki of inhibitor 4.6 at 
pH 8.8. 
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Figure B.9.  Replot of the data from Figure 4.9 to determine the Ki of inhibitor 4.7 at 
pH 7.0. 
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Figure B.10.  Replot of the data from Figure 4.9 to determine the αKi of inhibitor 4.7 at 
pH 7.0. 
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Figure B.11.  Replot of the data from Figure 4.7 to determine the Ki of inhibitor estrone 
(E1) at pH 7.0. 
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Figure B.12.  Replot of the data from Figure 4.7 to determine the αKi of inhibitor 
estrone (E1) at pH 7.0. 
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Figure B.13.  Replot of the data from Figure 4.10 to determine the Ki of inhibitor 4.1 at 
pH 7.0. 
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Figure B.14.  Replot of the data from Figure 4.10 to determine the αKi of inhibitor 4.1 
at pH 7.0. 
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Figure B.15.  Replot of the data from Figure 4.11 to determine the Ki of inhibitor 4.10 
at pH 7.0. 
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Figure B.16.  Replot of the data from Figure 4.11 to determine the αKi of inhibitor 4.10 
at pH 7.0. 
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Figure B.17.  IC50 plot for inhibitor 4.8 at pH 7.0. 
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Figure B.18.  IC50 plot for inhibitor 4.9 at pH 7.0. 
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Appendix C – Supplementary Figures for Compounds 5.26, 

5.27, 5.28, 5.29, 5.34, and 5.42 
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Figure C.1.  Replot of the data from Figure 5.19 to determine the Ki of inhibitor 5.26. 
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Figure C.2.  Lineweaver-Burk plot of compound 5.27. 
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Figure C.3.  Replot of the data from Figure C.2 to determine the Ki of inhibitor 5.27. 
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Figure C.4.  Lineweaver-Burk plot of compound 5.28. 
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Figure C.5.  Replot of the data from Figure C.4 to determine the Ki of inhibitor 5.28. 
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Figure C.6.  Replot of the data from Figure 5.21 to determine the Ki of inhibitor 5.29. 
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Figure C.7.  IC50 of compound 5.42 using 3 nM PTP1B.  
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Figure C.8.  IC50 of compound 5.42 using 1.5 nM PTP1B. 
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Figure C.9.  IC50 of compound 5.42 using 6.0 nM PTP1B. 
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Figure C.10.  IC50 of compound 5.34. 
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Figure C.11.  IC50 of compound 5.35. 
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Figure C.12.  IC50 of compound 5.43. 
 
 
 
 
 

 



 239 

Appendix D — Permission to reproduce Figures 1.7 to 1.13 

obtained by personal communication with a collaborator 

 
 
The following is correspondence I received from Dr. Debashis Ghosh, a collaborator, 
regarding my request to use the material appearing in Figures 1.7 to 1.13 in association 
with this thesis: 
 
 
September 2, 2009 
 
Hi Vanessa, 
 
You certainly have my permission to use any of those figures as you please.  I can send 
you the originals. These .tif files are large (~1-5MB each) and cannot be sent by email.  
I'll burn a CD/DVD and mail to you, let's say by next week.  Please send me your 
mailing address. 
 
Best wishes, 
 
Debashis Ghosh, Ph.D. 
Associate Member/Professor of Oncology, Pharmacology & Therapeutics 
Roswell Park Cancer Institute 
Senior Scientist, Hauptman-Woodward Institute 
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Appendix E — Permission to reproduce copyright material in 

Chapter 3 in association with this thesis 
 
The following is correspondence I received from Ms. Bettina Loycke, the copyright and 
licensing manager of Wiley-VCH, regarding my request to use material appearing in 
Chapter 3 of this thesis: 
 

 
August 24, 2009 
 
Dear Customer 
  
Thank you for your request. 
  
We hereby grant permission for the requested use expected that due credit 
is given to the original source. 
 
For material published before 2007 additionally: Please note that the 
author's permission is also required. 
 
If material appears within our work with credit to another source, 
authorisation from that source must be obtained. 
  
Credit must include the following components: 
- Books: Author(s)/ Editor(s) Name(s): Title of the Book. Page(s). 
Publication  year. Copyright Wiley-VCH Verlag GmbH & Co. KGaA. 
Reproduced with permission. 
  
- Journals: Author(s) Name(s): Title of the Article. Name of the Journal. 
Publication  year. Volume. Page(s). Copyright Wiley-VCH Verlag GmbH 
& Co. KGaA. Reproduced with permission. 
  
With kind regards 
  
Bettina Loycke 
Copyright & Licensing Manager 
Wiley-VCH Verlag GmbH & Co. KGaA 
Boschstr. 12  
69469 Weinheim 
Germany 
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Appendix F — Permission to reproduce copyright material in 

Chapter 4 in association with this thesis 
 
 
 
The following statement appears on the Elsevier website, www.elsevier.com, regarding 
journal author rights and permissions: 
 

“As a journal author, you retain rights for large number of author uses, 
including use by your employing institute or company. These rights are 
retained and permitted without the need to obtain specific permission from 
Elsevier. These include: 
 
• the right to include the journal article, in full or in part, in a thesis or 

dissertation” 
 

Elsevier Global Rights Department 
  

 



 242 

Appendix G — Permission to reproduce copyright material in 

Chapter 5 in association with this thesis 
 
 
The following statement appears on the Elsevier website, www.elsevier.com, regarding 
journal author rights and permissions: 
 

“As a journal author, you retain rights for large number of author uses, 
including use by your employing institute or company. These rights are 
retained and permitted without the need to obtain specific permission from 
Elsevier. These include: 
 
• the right to include the journal article, in full or in part, in a thesis or 

dissertation” 
 

Elsevier Global Rights Department 
  
  

 
 
The following statement appears on the American Chemical Society (ACS) website, 
www.pubs.acs.org, regarding author rights and permissions: 
 
 

“Thank you for your request for permission to include your paper(s) or 
portions of text from your paper(s) in your thesis. Permission is now 
automatically granted; please pay special attention to the implications 
paragraph below. The Copyright Subcommittee of the Joint Board/Council 
Committees on Publications approved the following:  
 
Copyright permission for published and submitted material from theses 
and dissertations  
ACS extends blanket permission to students to include in their theses and 
dissertations their own articles, or portions thereof, that have been 
published in ACS journals or submitted to ACS journals for publication, 
provided that the ACS copyright credit line is noted on the appropriate 
page(s).” 
 

American Chemical Society 


