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Abstract 

Quorum sensing (QS) cell-cell communication systems are utilized by bacteria 

to coordinate their behaviour according to cell density. Several different types of QS 

signal molecules have been identified, among which acyl-homoserine lactones (AHLs) 

produced by Proteobacteria have been studied to the greatest extent. QS has been 

shown to be involved in many aspects of bacterial life, including virulence, 

bioluminescence, symbiosis, antibiotic production, swarming and swimming motility, 

biofilm formation, conjugation and growth inhibition. Although QS has been studied 

extensively in cultured microorganisms, little is known about the QS systems of 

uncultured microorganisms and the roles of these systems in microbial communities. 

To extend our knowledge of QS systems and to better understand the signalling that 

takes place in the natural environment, in the first part of this thesis, isolation and 

characterization of new QS systems from metagenomic libraries constructed using 

DNA from activated sludge and soil were described. Using an Agrobacterium biosensor 

strain, three cosmids (QS6-1, QS10-1 and QS10-2) that encode the production of QS 

signals were identified and DNA sequence analysis revealed that all three clones 

encode a novel luxI family AHL synthase and a luxR family transcriptional regulator. 

Thin layer chromatography revealed that these LuxI homolog proteins are able to 

synthesize multiple AHL signals. Tandem mass spectrometry analysis revealed that 

LuxIQS6-1 directs the synthesis of at least three AHLs, 3-O-C14:1 HSL, 3-O-C16:1 HSL 

and 3-O-C14 HSL; LuxIQS10-1 directs the synthesis of at least 3-O-C12 HSL and 3-O-

C14 HSL; while LuxIQS10-2 directs the synthesis of at least C8 HSL and C10 HSL. Two 
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possible new AHLs, C14:3 HSL and (?)-hydroxymethyl-3-O-C14 HSL, were also 

found to be synthesized by LuxIQS6-1.  

Agrobacterium tumefaciens is a plant pathogen that causes crown gall disease. 

Its ability to transfer and integrate foreign DNA into plant genome also makes it a 

useful tool for plant genetic engineering. Ethylene, the gaseous plant hormone, has 

been reported to be important for both crown gall development and A. tumefaciens 

mediated transformation efficiency to plants. ACC deaminase, an enzyme that can 

break down ACC, the direct precursor of ethylene biosynthesis in plants, is a 

mechanism used by some plant growth promoting bacteria (PGPB) to promote plant 

growth by reducing stress ethylene levels. In the second part of this thesis, the effect of 

ACC deaminase on A. tumefaciens induced crown gall development and on A. 

tumefaciens mediated transformation efficiency was studied. By either introduction of 

an ACC deaminase encoding gene into the virulent strain A. tumefaciens C58 or co-

inoculation of A. tumefaciens C58 with an ACC deaminase containing PGPB P. putida 

UW4, using different plant systems including tomato plants and castor bean plants, it 

was found that the presence of an ACC deaminase significantly inhibited crown gall 

development. It was also found that introduction of an acdS gene into the disarmed A. 

tumefaciens strain GV3101::pMP90 reduced the ethylene levels evolved by plants 

during infection and cocultivation process and increased the transformation efficiency 

of commercialized canola cultivars. The A. tumefaciens D3 strain was reported to 

contain an ACC deaminase encoding gene (acdS). In this study it was determined that 

this strain is an avirulent strain and shows plant growth promoting activity. When co-

inoculated with A. tumefaciens C58 on castor bean stems, both the wild type and the 
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acdS knockout mutant showed biocontrol activity and were able to significantly inhibit 

crown gall formation, with the wild type strain showing slightly better tumor inhibition 

effects. The mutation of acdS and its regulatory gene lrpL in A. tumefaciens D3 was 

also found to affect QS signal production of this strain, which indicates a cross talk 

between the two sets of genes.  
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Claims of contributions to knowledge 

 Using the Agrobacterium tumefaciens HC103(pJZ381) quorum sensing (QS) 

biosensor strain, three new QS systems, QS6-1, QS10-1 and QS10-2 were isolated 

from metagenomic libraries containing total community DNA from either activated 

sludge or from soil.  

 With the help of an in vitro transposition insertion mutagenesis system, about 7 kb 

of DNA sequences from each of the above mentioned clones were obtained, 

characterized and analyzed.  

  Sequence analysis revealed that each clone contains a luxI type acyl homoserine 

lactone (AHL) synthesis gene and a luxR type transcriptional regulator gene located 

adjacent to one another.  

 Transposon insertion mutagenesis revealed that mutation of the luxR homologs as 

well as mutation of the luxI homologs changes the behaviour of the metagenomic 

clones QS10-1 and QS10-2 so that they are no longer able to induce the biosensor 

strain to form blue colonies. This implies that similar to what has been observed in 

many LuxR/LuxI type QS systems, the two luxI homolog genes are regulated by 

their cognate LuxR homolog proteins. 

 Possible lux-box like elements were identified upstream of luxIQS6-1, luxIQS10-1 and 

luxRQS10-2. It is very likely that luxRQS10-2 and luxIQS10-2 and the two downstream 

genes encoding phytanoyl-CoA dioxygenase and a GntR family transcriptional 

regulator form an operon which is QS regulated. 

 xxi



 Phylogenetic analysis of the sequenced DNA fragments revealed that the genes 

encoded within QS6-1 and QS10-1 are closely related and are most probably from β 

or γ proteobacteria, while QS10-2 is most probably from α proteobacteria. 

 The three luxI homologs were subcloned and expressed in E. coli. The luxI 

homolog from QS6-1 was also subcloned and then expressed in A. tumefaciens 

HC103(pJZ381) under the transcriptional control of the lac promoter. The active 

signal compounds were extracted from the culture supernatants of different A. 

tumefaciens or E. coli strains expressing corresponding luxI homologs. Analytical 

thin layer chromatography (TLC) assay was performed to separate the signals. It 

was found that each LuxI homolog was able to direct synthesis of multiple AHLs. 

 The active signals were partially purified from TLC plates and then electrospray 

ionization mass spectrometry (ESI MS) and tandem MS were performed to 

elucidate the structures of the signal molecules synthesized by each LuxI homolog.  

 It was found that LuxIQS6-1 was able to direct the synthesis of 3-O-C14 HSL, 3-O-

C14:1 HSL, 3-O-C16:1 HSL and two new AHLs, C14:3 HSL and (?)-

hydroxymethyl-3-O-C14 HSL; LuxIQS10-1 was able to direct the synthesis of 3-O-

C12 HSL and 3-O-C14 HSL; and LuxIQS10-2 was able to direct synthesis of C8 HSL 

and C10 HSL.  

 When the three luxR homologs were expressed in E. coli, it was found that the 

presence of the cognate AHLs could significantly increase the solubility of 

LuxRQS10-1, suggesting that the LuxRQS10-1 requires the binding of the cognate 

AHLs for proper folding. LuxRQS6-1 and LuxRQS10-2 were mainly expressed in an 

insoluble form regardless of the presence or absence of the cognate AHLs.  

 xxii



 This is only the second report of the successful isolation of new QS systems from 

environmental samples using functional metagenomics. Compared to the first report 

(Williamson et al., 2005) in which only one QS clone (QS1) has been isolated, here 

three clones not closely related to any known species producing several unique 

AHL structures were identified. 

 It has been reported that A. tumefaciens infection induces ethylene levels in the 

crown gall tumor and that this increased level of ethylene plays an important role in 

crown gall development. Some plant growth promoting bacteria contain an enzyme, 

ACC deaminase, which can reduce the level of ACC, the immediate precursor in 

ethylene biosynthesis and therefore reduce the ethylene level in plants. When an 

ACC deaminase encoding gene from Pseudomonas putida UW4 under the 

transcriptional control of the E. coli lac promoter was introduced into the plant 

pathogen A. tumefaciens C58, it was found that compared to wild type A. 

tumefaciens C58, crown gall tumor development on castor bean plants induced by 

the strain expressing ACC deaminase was significantly inhibited. This indicates that 

the presence of ACC deaminase reduces the pathogenicity of A. tumefaciens C58. 

 Co-inoculation of A. tumefaciens C58 with wild-type P. putida UW4 (which 

produces ACC deaminase) showed a much greater amount of crown gall inhibition 

than when A. tumefaciens C58 was co-inoculated with an acdS knockout mutant of 

P. putida UW4. This again emphasizes the role that ACC deaminase plays in the 

inhibition of crown gall development.   

 Compared to inoculation with A. tumefaciens C58 alone, co-inoculation with A. 

tumefaciens C58 and the acdS knockout mutant strain of P. putida UW4 also 
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 An A. tumefaciens D3 strain was previously reported to contain a putative acdS 

gene. In this study, the ACC deaminase activity of this strain was characterized and 

was found to have an activity that is about 1/5th that of P. putida UW4 and about 4 

times that of Rhizobium leguminosarum bv. viciae 128Sm.  

 Using primers designed according to the conserved regions of the Ti or Ri plasmid, 

it was found that A. tumefaciens D3 strain does not contain a Ti or Ri plasmid. 

Virulence assays using carrot discs, tomato stems, castor bean stems, Arabidopsis 

stems, tobacco stems and canola stems all showed that A. tumefaciens D3 does not 

induce either tumors or hairy roots on these plants. These results indicate that A. 

tumefaciens D3 is an avirulent strain.  

 An acdS and lrpL double mutant strain of A. tumefaciens D3 was constructed by 

replacement of the C-terminal fragments of both genes with a tetracycline 

resistance gene. The mutant strain showed no ACC deaminase activity. 

Complementation of either lrpL or acdS or both lrpL and acdS revealed that 

consistent with what has been observed with numerous other species, the lrpL gene 

is the regulator of the acdS gene.  

 IAA and siderophore production assays performed on wild type and mutant strains 

of A. tumefaciens D3 revealed that the two strains showed similar IAA and 

siderophore production activity.  
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 A. tumefaciens D3 was found to produce an AHL QS signal that behaved similarly 

to C6 HSL, however, the AHL production of the A. tumefaciens D3 acdS lrpL 

mutant strain was severely reduced. Complementation of lrpL or acdS or both lrpL 

and acdS results in strains that produce an AHL that is different from that produced 

by the wild-type A. tumefaciens D3.  

 Gnotobiotic root elongation assay using canola revealed that A. tumefaciens D3 

promotes root elongation while the mutant strain does not.  

 Co-inoculation of A. tumefaciens D3 with pathogenic A. tumefaciens C58 indicated 

that although A. tumefaciens D3 has a lower level of ACC deaminase activity than 

P. putida UW4, it showed better biocontrol activity. With a 1:1 cell ratio of A. 

tumefaciens D3 and A. tumefaciens C58, crown gall development was almost totally 

inhibited. 

 Co-inoculation of the acdS knockout mutant strain of A. tumefaciens D3 with A. 

tumefaciens C58 also showed some crown gall tumor inhibition effects, indicating 

that besides the role of ACC deaminase other factors in A. tumefaciens D3 can 

affect A. tumefaciens C58 growth or pathogenicity. 

 The effect of ACC deaminase on A. tumefaciens mediated transformation efficiency 

was evaluated using three commercial canola cultivars. Of the three infection 

dilutions used (OD600=1; OD600=0.1, OD600=00.1), the optimal infection 

concentration of A. tumefaciens that yielded the highest transformation frequency 

for the cultivars Brassica napus cv. Westar and B. napus cv. 4414RR was found to 

be the OD600=1 dilution, and optimal infection concentration of A. tumefaciens for 

the cultivars B. napus cv. Hyola 401 was found to be the OD600=0.1 dilution. Under 
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 This is also the first transformation efficiency assay of the two important 

commercial canola cultivars B. napus cv. 4414RR and B. napus cv. Hyola 401 that 

are widely grown in North America, providing an important reference for future 

genetic modification of these cultivars.  
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Chapter 1 Overview of Projects 

 

Bacteria are ubiquitous on earth and can be found in almost any environment, 

ranging from soil to water, from hot springs to radioactive waste, from organic matter to 

live bodies of plants and animals, and even deep in the earth’s crust. It has been estimated 

that in one gram of a typical soil sample, there are about 40 million bacterial cells 

(Whitman et al, 1998); within an average healthy adult human body, the bacteria cell 

numbers are ten times the number of human cells (Sears, 2005). To date, the vast 

majority of bacteria have not been characterized, and less than 1% of the bacteria in most 

environments, which are from only half of the bacterial phyla, can be cultured in current 

laboratory conditions (Rappé et al., 2003). 

Bacteria play fundamental roles in the biogeochemical cycles of earth, including 

the nitrogen cycle, the carbon cycle, the sulphur cycle, the phosphorus cycle and the 

oxygen cycle, with many steps of these cycles depending on the functioning of bacteria. 

For example, bacteria provide essential functions in the nitrogen fixation, nitrification, 

denitrification and ammonification steps of the nitrogen cycle. Bacteria are also important 

for human beings. Some bacteria are plant or animal pathogens, while others are 

beneficial for plants or animals. Moreover, bacterial interactions with other members of 

the same species, with other species of bacteria, and with organisms from other 

kingdoms, including plants and animals, are important for their survival and function. 

Within or between bacterial species, bacteria can communicate with each other by 

producing, releasing and detecting small diffusible chemical molecules into the 

environment. By detecting the concentration of the signal molecules in the environment, 



bacteria can keep track of the population density of their own members and other species 

and thereby coordinate their behaviour accordingly. This cell-cell communication system 

of bacteria is called quorum sensing (QS). QS has been found in many of the cultured 

bacterial species, including both gram positive and negative species. Different types of 

signal molecules have been identified. Gram negative bacteria can produce and utilize 

acyl homoserine lactones (AHL), 2-alkyl-4-quinolones, long-chain fatty acids and fatty 

acid methyl esters as signal molecules; Gram positive bacteria can use linear, modified or 

cyclic peptides as signal molecules; while Streptomycetes synthesize c-butyrolactones 

such as A-factor as QS signals (Williams, 2007). Another type of QS signal is 

autoinducer 2 (AI-2), which is a group of interconvertible furanones derived from 

dihydroxypentanedione (DPD) (the product of the LuxS protein) and has been found to 

be synthesized by both Gram positive and negative bacteria and may be used for 

interspecies communication. As a mechanism of bacteria-bacteria interaction, QS has 

been reported to regulate a wide range of functions, including bioluminescence, biofilm 

formation, swimming and swarming motility, antibiotic production, exopolysaccharide 

(EPS) production, symbiosis, virulence of pathogenic organisms, pigmentation and 

sporulation (Diggle et al., 2007).  

At the present time, scientists do not know how to culture the majority of bacteria, 

thus it is possible that novel QS systems and signals are present among these uncultured 

bacteria. In this study, using an Agrobacterium tumefaciens QS biosensor strain 

HC103(pJZ381), metagenomic libraries previously constructed using total DNA from 

activated sludge or from soil (Wang et al., 2006) were screened for novel QS systems. 
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Isolation and characterization of several new LuxR/I type QS systems are presented in 

the first part of the thesis.  

Bacteria can also form complex association with other organisms, such as plants 

and animals. These relationships can be characterized as parasitism, mutualism or 

commensalism. Bacteria are correspondingly called pathogens, mutualists or 

commensals. Commensal bacteria have no effect on other organisms; pathogenic bacteria 

have an adverse effect on the organisms they associate with; and mutualists form a 

relationship with other organisms that is beneficial for both partners. Plant associated 

mutualist bacteria are called plant growth promoting bacteria (PGPB) which can promote 

plant growth using either direct or indirect mechanisms. Indirect mechanisms include the 

production of antibiotics to inhibit growth of plant pathogens, competition with plant 

pathogens and induction of plant systemic acquired resistance (Haas and Defago, 2005; 

van Loon et al., 2006). Direct mechanisms include production of plant growth hormones; 

nitrogen fixation; production of growth modulating enzymes; and enhancement of the 

acquisition of nutrients such as phosphorus, nitrogen and iron (Glick, 1995; Glick et al., 

1999). One direct mechanism that is utilized by many PGPB is the lowering of ethylene 

levels in plants by the production of the enzyme 1-aminocyclopropane-1-carboxylate 

(ACC) deaminase. 

Biotic and abiotic stresses such as pathogen attack, insect damage, mechanical 

wounding, drought, flooding, high salt and the presence of organic contaminants and 

heavy metals, induces the production of ethylene. This induced ethylene may exacerbate 

some of the effects of various stresses by initiating a senescence response and is called 

stress ethylene. ACC deaminase-containing PGPB can attach to plant tissues and break 
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down ACC, the direct precursor of ethylene biosynthesis in plants, into ammonia and α-

ketobutyrate which it can use as a nitrogen and carbon source. As a result, less ACC is 

available for conversion to ethylene in plants and the stress symptoms of plants are 

relieved.  

Agrobacterium tumefaciens is a plant pathogen that causes crown gall disease. It 

can transfer and integrate a strand of DNA (T-DNA) containing oncogenic genes (indole-

3-acitic acid (IAA) and cytokinin biosynthesis genes) and opine synthesis genes. 

Expression of the oncogenic genes in transformed plant cells results in the production of 

elevated levels of the plant hormones IAA and cytokinin, and as a consequence, induces 

unlimited cell division and forms tumor like tissue on the infection site of the plants 

called crown galls. The transformed plant cells also synthesize opine which can be used 

by A. tumefaciens as a carbon and energy source. The level of another plant hormone, 

ethylene is also enhanced in infected plant tissues. This increased level of ethylene plays 

an important role in crown gall development and it has been reported that application of 

ethylene inhibitors can inhibit crown gall development (Aloni et al., 1998; Wächter et al., 

1999). In the second part of this thesis, the possibility of using ACC deaminase or ACC 

deaminase-containing PGPB to control A. tumefaciens induced crown gall disease was 

investigated. An ACC deaminase encoding gene, acdS, from Pseudomonas putida UW4 

was introduced into A. tumefaciens C58, and the pathogenicity of the resulting strain was 

studied using carrot discs, tomato plants and castor bean plants. ACC deaminase-

containing P. putida UW4 and A. tumefaciens D3, and their corresponding acdS 

knockout mutants were also co-inoculated with A. tumefaciens C58 in tomato plants 
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and/or castor bean plants, and the tumor inhibition effects of the different strains were 

evaluated by comparison of the tumor size and tumor fresh weight.  

The ability of A. tumefaciens to transfer foreign DNA into the plant genome also 

makes it a very useful tool for plant genetic engineering. The oncogenic genes that are 

responsible for the pathogenicity of A. tumefaciens are not necessary for the transfer of T-

DNA. By modification of the Ti plasmid, including removing the oncogenic genes and 

opine synthesis genes, adding plant and bacteria selectable markers and multiple cloning 

sites, different disarmed A. tumefaciens strains (A. tumefaciens strains that are no longer 

virulent) and Ti plasmids have been developed for the introduction of foreign genes into 

plant genomes. A. tumefaciens mediated transformation has many advantages and has 

been widely used. However, for most commercial cultivars of crops, the transformation 

efficiency is very low thereby limiting its use. Among different factors that affect the 

transformation efficiency, ethylene inhibits gene delivery efficiency as well as plant 

regeneration frequency (Chakrabarty et al., 2002; Burgos and Alburquerque, 2003; Han 

et al., 2005; Petri et al., 2005; Seong et al., 2005). In this thesis, the effect of ACC 

deaminase on A. tumefaciens mediated transformation efficiency of commercial canola 

cultivars has also been studied.  
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Chapter 2 Isolation and Characterization of Novel Quorum Sensing Systems 

from Metagenomic Libraries 
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2.1 Introduction 

2.1.1 Quorum sensing 

 Quorum sensing (QS) is a term used to describe the cell-cell communication of 

bacteria. QS bacteria can produce and secrete into the environment small hormone-like 

chemical molecules. As the population density increases, the signal molecules 

accumulate, and when a certain threshold concentration is reached, bacteria can respond 

to them and alter gene expression and thus cell behaviour. QS was first described in the 

marine bacterium Vibrio fischeri (Nealson and Hastings, 1979) in 1979. Vibrio fischeri is 

a proteobacterial organism that can live freely in seawater as well as in symbiosis with 

certain fish or squid. In the symbiotic state, this organism colonizes the specialized light 

organs of the host and is responsible for the production of luminescent light. While the 

host provides nutrition for the bacteria, the luminescent light produced by the bacteria 

may help hide the shadows of the hosts on moonlit nights and protects them from 

predators. Studies of the molecular mechanism of bioluminescence of Vibrio fischeri 

revealed the presence of a LuxI-LuxR two component regulatory system. The LuxI 

protein can synthesize the small signal molecule N-acyl-homoserine lactone (AHL) 3-

oxo-C6 HSL, which can diffuse outside of the cell membrane. At low cell density, the 

AHL synthesis is limited. As the population density increases, the AHL molecules in the 

environment accumulate, and when a certain threshold concentration is reached, the 

AHLs can bind to the LuxR protein and the LuxR/AHL complex can activate the 

transcription of the lux operon thereby producing light. Since this system can detect the 

population density in the environment, it is called quorum sensing (QS) (Figure 2.1).  

 To date, QS has been found in many bacteria, including both Proteobacteria and 
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Firmicutes. QS systems that are homologous to the Vibrio fischeri LuxI-LuxR system 

have been experimentally identified and studied in more than 40 different Proteobacteria 

species (Table 2.1). Moreover, genome sequencing projects revealed that many more 

Proteobacteria may contain this type of QS system. In this system, the LuxI homolog is 

responsible for the synthesis of AHL signal molecules, while the LuxR homolog is an 

AHL dependent transcriptional regulator. Although all AHLs contain a core of the 

homoserine lactone ring, the acyl chain length, the degree of saturation of the acyl chain 

and the substitution position C3 determine the specificity of the AHL molecules (Figure 

2.2). Usually, each LuxR homolog can detect the AHLs produced by the cognate LuxI 

homolog, making the AHL dependent cell-cell communication system resonably specific. 

In many LuxI-LuxR type QS systems, the AHLs can drive their own production via an 

amplification loop leading to the AHL synthesis gene, the luxI homolog gene. Thus, the 

AHLs are sometime called autoinducers (Figure 2.3). QS has also been found in many 

Firmicutes including Staphylococcus species and Enterococcus species. However, rather 

than using AHLs, Gram-positive bacteria use modified oligopeptides as signal molecules 

(Cangelosi et al., 1991; Booth et al., 1996; Mayville et al., 1999; Nakayama et al., 2001). 

Another type of QS signal molecule, autoinducer 2 (AI-2), which was first identified in 

Vibrio harveyi, includes a family of interconvertible furanones derived from the same 

precursor molecule, the LuxS product, 4,5-dihydroxy-2,3-pentanedione (DPD). It has 

been reported to be produced by both Gram-positive and Gram-negative bacteria and is 

believed to be used for interspecies communication (Chen et al., 2002; Xavier and 

Bassler, 2003).  
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 QS allows bacteria to monitor the changes in the population number and/or 

community composition and respond to it. It enables the bacteria to communicate with 

each other and (to an extent) mimic multi-cellular organisms. It is involved in many 

aspects of bacterial life, including bioluminescence, virulence, symbiosis, antibiotic 

production, swarming and swimming motility, biofilm formation, conjugation and growth 

inhibition (Table 2.1). Quorum sensing influences a significant portion of bacterial 

transcriptome (4%-10%) and proteome (more than 20%) (Dunman et al., 2001; Arevalo-

Ferro et al., 2003; Schuster et al., 2003; Wagner et al., 2003) and is now considered to be 

fundamental to the functioning of bacterial strains.  

 

2.1.2 Quorum sensing in soil bacteria 

 Quorum sensing has been found in many soil bacteria and has been shown to play 

important roles in plant-microbe interactions. QS systems have been found in many 

phytopathogenic bacteria including Agrobacterium tumefaciens, Agrobacterium vitis, 

Agrobacterium rhizogenes, Pectobacterium carotovorum, Pantoea stewartii, 

Xanthomonas campestris and Ralstonia solanacearum, and regulate the virulence of 

those phytopathogenic bacteria, albeit using different mechanisms. QS systems have been 

implicated in controlling genes involved in major pathogenicity factors, such as 

exopolysaccharides (EPS), type III secretion system, and exoenzyme production, as well 

as in regulating genes involved in epiphytic fitness of the plant pathogen by the 

production of antibiotics or an increase of UV light resistance (Sharma et al. 2003; von 

Bodman et al. 2003). QS systems have also been characterized in many plant growth 

promoting bacteria (PGPB) including Burkholderia cepacia, Pseudomonas aureofaciens, 
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and Pseudomonas fluorescens (Lewenza et al. 2003; Pierson et al., 1994; Wood et al., 

1997). For example, QS has been shown to control protease and siderophore production 

in B. cepacia (Lewenza et al. 2003), and the production of phenazine antibiotics which 

inhibit Gaeumannomyces graminis var. tritici, the causative agent of wheat take-all 

disease, in P. aureofaciens 30-84 and P. fluorescens2-79 (Pierson et al., 1994; Wood et 

al., 1997). QS systems have also been found in rhizobial species including Rhizobium 

etli, Rhizobium leguminosarum and Sinorhizobium meliloti. Furthermore, mutant analysis 

showed that QS in rhizobia plays an important role in the symbiotic process (Gray et al., 

1996; Rosemeyer et al., 1998; Lithgow et al., 2000; Gurich and Gonzalez, 2009). 
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Figure 2.1. LuxI and LuxR QS system in Vibrio fischeri. At low cell density, the LuxI 

protein is expressed at low level and is able to direct synthesis of only small amount of 3-

O-C6 HSL. The concentration of the 3-O-C6 HSL in the environment is low and is not 

able to activate LuxR protein. The lux operon is not expressed, so there is no light 

production. At high cell density, the concentration of the 3-O-C6 HSL in the environment 

and inside the cell is high and can bind to LuxR protein and activate it. The activated 

LuxR protein binds to the lux box region and activates the transcription of lux operon. As 

a result luminescent light is produced. 
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Figure 2.2. Structure of QS signal molecules. A, the core molecule of AHLs. B, some 

examples of AHLs synthesized by different bacteria. C, two examples of AI-2 family 

signals. Structures were drawn using ChemBioDraw Ultra 11.0 software 

(http://www.cambridgesoft.com/software/ChemBioDraw/).  
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Figure 2.3. A model of AHL-mediated QS systems. The luxI and luxR genes are 

homologs of the V. fischeri AHL synthase and AHL receptor genes, respectively. The 

luxI homolog gene encodes the I protein which is an AHL synthase, while the luxR 

homolog gene encodes the R protein which is an AHL dependent transcriptional 

regulator. After binding to an AHL, the R protein is activated and regulates different 

target genes (including those involved in antibiotic production, symbiosis and virulence) 

in different bacterial species. In many (but not all) AHL-dependent QS systems, the 

AHLs can drive their own production via an amplification loop leading to the AHL 

synthesis gene, the luxI homolog gene. (Picture is from Williams, 2007) 
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Table 2.1. Some QS systems that have been studied experimentally. 

Organisms Name Protein ID AHL Products Function of the QS system Major reference 
Aeromonas 
hydrophila 

AhyI/ 
AhyR 

ABD59318/ 
ABD59317 

C4 
Extracellular protease, 
biofilm formation 

Swift et al., 1997; Swift 
et al., 1999b 

Aeromonas 
salmonicida 

AsaI/ 
AsaR 

P70774/ 
ABO91724 

C4 Extracellular protease Swift et al., 1997 

Agrobacterium. 
tumefaciens C58 

TraI/ 
TraR 

P33907/ 
P54294 

3-O-C8 Conjugation 
Piper et al., 1993; Hwang 
et al., 1994; Li et al., 
1998; Piper et al., 1999 

Agrobacterium. 
tumefaciens R10 

TraI/ 
TraR 

AAB95104/ 
AAC28121 

3-O-C8 Conjugation 
Fuqua and Winans, 1994; 
Fuqua et al., 1994 

Agrobacterium 
vitis F2/5 

AvsI/ 
AvsR 

AAY97862.1/ 
AAY97861.1 

C14:1, 3-O-C16:1 Virulence Hao and Burr, 2006 

Acidithiobacillus 
ferrooxidans 

AfeI/ 
AfeR 

AAZ20805.1/ 
AAV53702.2 

3-OH-C8, 3-OH-C10, 
3-OH-C12, C12, C14, 
3O-C14, 3-OH-C14, 
3-OH-C16 

Biofilm formation Rivas et al., 2005 

Azospirillum 
lipoferum TVV3 

AlpI/ 
AlpR 

ABD97989/ 
ABD97988 

3-O-C8, C8, 3-O-C10, 
3-OH-C10, C10 

unknown Vial et al., 2006 

Burkholderia 
cepacia 

CepI/ 
CepR 

Q9ZIU1/ 
Q9ZIU0 

C8 Protease, siderophore Lewenza et al., 1999 

Burkholderia. 
glumae 

TofI/ 
TofR 

CAM12357/ 
CAM12358 

C6, C8 
Production of lipid A and 
phytotoxin (toxoflavin) 

Kim et al., 2004; 
Devescovi et al., 2007 

Burkholderia  
mallei ATCC 
23344 

Bmal/ 
BmaR1 

YP_106161/ 
YP_102421.1 

C8 Virulence Duerkop et al., 2007 

Burkholderia. 
vietnamiensis 

BviI/ 
BviR 

ABK32015.1/ 
ABK32016.1 

C10 Unknown 
Conway and Greenberg, 
2002; Malott and Sokol, 
2007 



Burkholderia 
pseudomallei 
pp844 

BpsI/ 
BpsR 

AAM21707/ 
AAS90557 

C8, 3-O-C8, C10, 
3-OH-C10, 3-OH-C12 

dpsA and the oxidative 
stress response 

Lumjiaktase et al., 2006 

Chromobacteriu
m violaceum 

CviI/ 
CviR 

AAP32920.1/ 
AAP32919.1 

C6  
Exoenzymes, antibiotics, 
cyanide, violacein 

McClean et al., 1997 

Enterobacter 
agglomerans 

EagI/ 
EagR 

P33881/ 3-O-C6 Unkown Swift et al., 1993 

Erwinia. 
chrysanthemi 

EchI/ 
EchR 

Q46968/ 
Q46967 

3-O-C6 Pectinases Nasser et al., 1998 

Escherichia coli /SdiA /P07026  
Cell division, attaching and 
effacing lesion formation 

Sitnikov et al., 1996 

Mesorhizobium 
tianshanense 

MrtI/ 
MrtR 

AAZ32755/ 
AAZ32754 

Different strains 
produce different 
AHLs 

Symbiotic process(root hair 
adherence and root nodule 
formation) 

Zheng et al., 2006 and 
Cao et al. 2009 

Methylobacterim 
extorquens 

MsaI ABI17430.1 C14:1, C14:2 Unknown 
Nieto Penalver et al., 
2006 

Pectobacterium 
carotovorum ssp. 
carotovora 

CarI/ 
CarR 

P33880/ 
AAC45995 

3-O-C6 
Carbapenem antibiotic, 
exoenzymes 

Swift et al., 1993; 
McGowan et al., 1997; 
McGowan et al., 1998 

P. carotovorum 
ssp. carotovora 

ExpI/ 
ExpR 

P33882/ 
CAA56646 

3-O-C6  Exoenzymes 
Pirhonen et al., 1993; 
Andersson et al., 2000 

Pantoea stewartii 
EsaI/ 
EsaR 

P54656/ 
P54293 

3-O-C6 Exopolysaccharide 
Beck von Bodman and 
Farrand, 1995 

Pseudomonas 
aeruginosa 
PAO1 

LasI/ 
LasR 

P33883/ 
AAG04819 

3-O-C12 
Exoenzymes, Xcp, biofilm 
formation, RhlR, cell-cell 
spacing. 

Gambello and Iglewski, 
1991  

Pseudomonas. 
aeruginosa 
PAO1 

RhlI/ 
RhiR 

P54291/ 
P54292 

C4  
Exoenzymes, cyanide, 
lectins, pyocyanin, 
rhamnolipid, type 4 pili. 

Winson et al., 1995; 
Latifi et al., 1996  

Pseudomonas 
aureofaciens 

PhzI/ 
PhzR 

AAC41535/ 
AAA21841 

C6 Phenazine antibiotic 
Pierson et al., 1994; 
Wood et al., 1997 
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Pseudomonas 
fluorescens 2-79 

PhzI/ 
PhzR 

Q51785/ 
Q51786 

Unknown Phenazine antibiotic Shaw et al., 1997 

P. fluorescens 
2P24 

PcoI/ 
PcoR 

AAT42217.1/ 
AAT42219.1 

3-O-C6, 3-O-C8 
Root colonization and 
suppress of plant disease 

Wei and Zhang, 2006; 
Yan et al., 2009a; Yan et 
al., 2009b 

P. fluorescens 
NCIMB 10586 

MupI/
MupR 

AAK28505.1/ 
AAK28504.1 

C6, C10, C14:1 Mupirocin production 
El-Sayed et al., 2001; 
Anastasakis and 
Antsaklis, 2008 

Pseudomonas. 
putida IsoF 

PpuI/ 
PpuR 

AAM75411.1/ 
AAM75413.1 

3-O-C6, 3-O-C8,  
3-O-C10 

Influences biofilm structural 
development 

Elasri et al., 2001; 
Steidle et al., 2002; 
Dubern et al., 2006 

Pseudomonas. 
syringae pv. 
tabaci 

PsyI/ 
PsyR 

P52990/ 
Q52408 

C6, 3-O-C6 Unknown Swift et al., 1999a 

Ralstonia 
solanacearum 

SolI/ 
SolR 

O30920/ 
O30919 

C8 Unknown Flavier et al., 1997 

Rhizobium etli 
RaiI/ 
RaiR 

O54451/ 
O54452 

Unknown 
Restriction of nodule 
number 

 Rosemeyer et al., 1998 

Rhizobium 
leguminosarum 
bv. viciae. 

CinI/ 
CinR 

AAF89990/ 
Q03316 

3-OH-7-cis-C14 
Nodulation, bacteriocin, 
stationary phase survival 

Gray et al., 1996; 
Lithgow et al., 2000 

Rhodobacter 
capsulatus 

GtaI/ RRC03805/ C14 HSL, C16 
Regulate gene transfer agent 
production 

Schaefer et al., 2002 

Rhodobacter 
sphaeroides 

CerI/ 
CerR 

O30761/ 
O30760 

7-cis-C14 
Community escape 
(Dispersal from aggregates) 

Puskas et al., 1997 

Serratia 
liquefaciens 

SwrI/ 
SwrR 

P52989/ C4 and C6 Swarming, protease, T1SS 

Eberl et al., 1996; 
Givskov et al., 1997; 
Lindum et al., 1998; 
Riedel et al., 2001 

Serratia 
plymuthica 

SphI/ 
SphR 

AAW27921/ 
AAW27922 

3-O-C6 (major), C6, 
C4 

Production of antibiotic 
pyrrolnitrin 

Liu et al., 2007 
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Sinorhizobium 
meliloti 1021 

TraI/ 
TraR 

AAR19278.1/ 
AAR19282.1 

different strains 
produce different 
AHLs 

Plasmid transfer 
Marketon and Gonzalez, 
2002 

S.meliloti 1021 
SinI/ 
SinR 

Smc00168/ 
Smc00170 

3-O-C14, C16, 
3-O-C16, C16:1, 
3-O-C16:1, C18 

Exopolysaccharide II 
synthesis, swarming 

Marketon et al., 2003; 
Gao et al., 2005 

Vibrio 
anguillarum  

VanI/ 
VanR 

P74945/ 
P74946 

3-O-C10 Unknown Milton et al., 1997 

Vibrio. fischeri 
LuxI/ 
LuxR 

CAA68562/ 
CAA68561 

3-O-C6 Bioluminescence 
Engebrecht and 
Silverman, 1987 

Yersinia 
enterocolitica 

YenI/ 
YenR 

P52988/ 
P54295 

3-O-C6, C6 Unknown Throup et al., 1995 

Yersinia pestis 
YpeI/ 
YpeR 

NP_404601/ 
NP_404602 

3-O-C8, 3-O-C6 Unknown Kirwan et al., 2006 

Yersinia 
pseudotuberculos
is 

YpsI/ 
YpsR 

Q9XDD0/ 
Q9XDD1 

3-O-C6 Motility, clumping Atkinson et al., 1999 

Yersinia 
pseudotuberculos
is 

YtbI/ 
YtbR 

AAC28704.2/ 
AAC28703.2 

C8, 3-O-C6, C6 Unknown Atkinson et al., 1999 

Yersinia ruckeri 
YukI/ 
YukR 

O87970/ 
O87971 

Unknown Unknown Atkinson et al., 1999 

Uncultured 
proteobacterium 
QS1 

QS1 
AAT90822.1/ 
AAT90827.1 

3-O-C6 Unknown Williamson et al., 2005 
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2.1.3 Metagenomics 

 Using current laboratory approaches, the vast majority of the world’s 

microorganisms can not be cultured (more than 99% in most soils) (Amann et al., 1995; 

Daniel, 2005). Those uncultured microorganisms may contain a large number of 

interesting genes and encoded products, such as novel enzymes, antibiotics and signal 

molecules. In order to characterize the metabolic capacity of the as-yet-uncultured 

organisms, culture-independent methods were introduced. Metagenomics, also referrered 

to as “community genomics” or “environmental genomics”, is the sequencing and analysis 

of DNA of microorganisms from a particular environment without culturing them 

(Handelsman et al., 1998; Rondon et al., 2000; Handelsman, 2004). Metagenomic libraries 

have been constructed by directly extracting DNA from environmental samples and 

cloning the extracted DNA into vectors that are maintained in a bacterial host. By directly 

sequencing or functionally screening metagenomic libraries, the genetic properties of those 

uncultured microrganisms can be analyzed. The vectors used include plasmids for small 

inserts (up to several kb of DNA), cosmids or fosmids for medium sized inserts (up to tens 

of kb of DNA), and bacterial artificial chromosomes (BAC) for large fragments (up to 150 

kb of DNA) (Sjöling et al. 2007). While E. coli is the most common host cell used, other 

bacterial hosts including Bacillus and Streptomyces sp. and some eukaryal hosts such as 

Saccharomyces, Pichia and Aspergillus have also been used (Sjöling et al. 2007).  

 Metagenomics studies can help to develop an understanding of the phylogenetic 

diversity of a certain habitat using 16S rRNA or other phylogenetically conserved genes. 

In this case, it is possible to monitor the effects of environmental conditions and changes 

on the diversity of microorganisms. Screening the metagenomic libraries may also enable 



researchers to recover novel enzymes and antibiotics that can be exploited for agricultural, 

industrial or medical applications. By examining genes/operons for nutrient acquisition, 

QS, central intermediary metabolism and other microbial processes, it is possible to gain 

an understanding of the microbial community responses and interactions, and reveal the 

basis for the success of particular organisms in their environment. Metagenomic studies 

have been applied in many different environments, including oceans (Venter et al., 2004; 

Hallam et al., 2004; Delong, 2005; Worden et al., 2006), soils (Handelsman et al., 1998; 

Rondon et al., 2000; Williamson et al., 2005; Wang et al., 2006), hot springs (Rhee et al., 

2005), acid mines (Tyson et al., 2004), and the human mouth (Diaz-Torres et al., 2003) 

and gastrointestinal tract (Breibart et al., 2003; Gill et al., 2006; Gloux et al., 2007). It is 

considered of particular value in the areas of medicine, alternative energy, environmental 

remediation, biotechnology, agriculture, biodefense and forensics (National Research 

Council, 2007).  

 
2.1.4 Previous studies of QS of uncultured microorganims 

In regard to QS, although it has been extensively studied in cultured 

microorganisms, only a few attempts have been made to study QS systems of uncultured 

organisms. In 2005, Williamson et al. (Williamson et al., 2005) first reported the isolation 

of new QS inducers from metagenomic libraries constructed using DNA from soil on the 

floodplain of the Tanana River in Alaska. They isolated a clone that encoded a LuxI family 

protein, which synthesizes the AHL 3-O-C6 HSL. A metagenomic analysis of the gypsy 

moth gut microbiota led to the identification of a gene that encodes a monooxygenase 

homologue. The gene product mediates an indole oxidation pathway and leads to 

production of signal mimics that induce QS (Guan et al., 2007). Most recently, the 
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screening of the metagenomic libraries generated using DNA from a pasture soil from 

France failed to find any AHL synthase, although one clone containing a quorum 

quenching lactonase was identified (Riaz et al., 2008). 

 

2.1.5 Objectives of this study.  

Metagenomic libraries were previously constructed using DNA from activated 

sludge and from soil in our lab into cosmid vector pRK7813 and maintained in E. coli 

HB101 (Wang et al., 2006). Four of the libraries, CX4 (activated sludge), CX6 (municipal 

waste), CX9 (soil) and CX10 (soil) (Table 2.2), which previous studies have shown to be 

of good quality (Wang et al. 2006), were screened in this study using an A. tumefaciens 

QS biosensor strain HC103(pJZ381) for novel QS inducers. Isolation, sequencing and 

characterization of three novel QS systems are described below.  
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2.2 Materials and Methods 

2.2.1 Metagenomic libraries, bacterial strains, plasmids and culture conditions. 

Metagenomic libraries used in this study are listed in Table 2.2. The bacterial 

strains, plasmids use in this study are listed in Table 2.3. Agrobacterium strains were 

cultured in Luria broth (LB) (Bertani, 1951) medium (10 g tryptone, 5 g yeast extract, 10 g 

NaCl) or ABM (Chilton et al., 1974) minimal medium at 28°C. When required, antibiotics 

were supplied as follows: gentamicin (Gm), 50 μg/ml; kanamycin (Km), 50 μg/ml; 

chloramphenicol (Cm), 17 μg/ml; tetracycline (Tc), 2 μg/ml. Escherichia coli strains were 

cultured in LB medium at 37°C. When necessary, antibiotics were supplied as follows: 

ampicillin (Ap), 100 μg/ml; Km, 100 μg/ml; Cm, 34 μg/ml; Tc, 20 μg/ml. 

 

2.2.2 Screening of metagenomic libraries. 

The Agrobacterium tumefaciens biosensor strain HC103(pJZ381) was used to 

screen the above mentioned libraries for novel QS inducers. Figure 2.4 shows the 

screening strategy that was used. The biosensor strain HC103(pJZ381) contains a traI 

nonpolar deletion and a traC-lacZ translational fusion on the Ti plasmid. In pJZ381, traR 

is overexpressed under the transcriptional control of the lac promoter of pBBR1MCS5. 

Unless it binds to AHL, the TraR protein is not stable and degrades quickly after it is 

synthesized (Zhu and Winans, 2001). When metagenomic clones were introduced into the 

biosensor strain, if QS inducer synthases were present, and the produced active signals 

could bind to the TraR protein and activate transcription of the traC-lacZ fusion, the 

bacterium would then form blue colonies in the presence of the indicator substrate X-Gal. 

However, if the metagenomic clone contains a lacZ gene, it would also enable the 
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biosensor strain to form blue colonies. Metagenomic clones were transferred to the 

biosensor strain A. tumefaciens HC103(pJZ381) by triparental mating using the helper 

strain E. coli DH5α(pRK600) (Finan et al., 1986). The transconjugants were selected and 

screened on LB agar containing 50 μg/ml of Gm, 2 μg/ml of Tc and 20 μg/ml of X-Gal. 

After 48-72 hours incubation at 28°C, plates were checked for blue colonies. Blue colonies 

were picked and then streak purified.  

The metagenomic plasmids from the identified blue colonies were transferred into 

E.coli DH5α by triparental mating using E. coli DH5α(pRK600) as the helper strain. The 

conjugants were selected on LB agar with Tc (20 μg/ml) at 37°C overnight (14h to16h), 

under which conditions the Agrobacterium strains can not form visible colonies in 14 to 16 

hours, and only E.coli DH5α that has obtained a metagenomic cosmid clone which confers 

resistance to tetracycline was able to form visible colonies. The colonies were streak 

purified once on LB agar with Tc (20 μg/ml), and then one single colony was inoculated 

into liquid LB medium with Tc and plasmids were extracted (Sambrook et al., 1989). The 

plasmids were digested using BamHI, and the digestion patterns were analyzed and those 

with the same digestion pattern were deemed to be the same clone.  

All unique plasmids were transferred back into A. tumefaciens HC103(pJZ381) by 

electroporation (Cangelosi et al. 1991) to confirm that they form blue colonies in presence 

of X-gal. In order to determine whether the metagenomic clones contain QS inducers or 

lacZ genes, plasmids from each of the unique clones were also electroporated into wild-

type A. tumefaciens C58 which does not contain a lacZ gene, and incubated at 28°C for 48 

to 72 hours. If the wild-type colonies turn blue on LB agar containing X-Gal, then the 

plasmid contains a lacZ gene, otherwise it contains QS genes. 
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Table 2.2. Metagenomic libraries used in this study. All four libraries were described in 

Wang et al. (2006) 

 

Libraries DNA source Vector 
No. of 

clones 

CX4 
Activated sludge DNA from Domtar 

Cornwall mill (pulp) 

Cosmid 

pRK7813 
3879 

CX6 
Activated sludge DNA from Vaudreuil 

(municipal waste) 

Cosmid 

pRK7813 
3322 

CX9 

DNA from soil samples collected from the 

banks of Laurel Creek, University of 

Waterloo Campus 

Cosmid 

pRK7813 
22180 

CX10 

DNA from soil samples collected from the 

banks of Laurel Creek, University of 

Waterloo Campus  

Cosmid 

pRK7813 
8696 
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Table 2.3. Bacterial strains and plasmids used in this study 

Strain or plasmid Relevant characteristics 
Reference or 

source 

Agrobacterium 

tumefaciens 
  

  HC103(pJZ381) 

HC103 is R10 based strain, the Ti plasmid 

contains a traC-lacZ translational fusion 

and a traI nonpolar deletion. In pJZ381, 

traR is under lac promoter of pBBR1MCS5. 

Kmr and Gmr 

This study 

  C58 Wild type strain  

(Goodner et al., 

2001), (Wood et 

al., 2001) 

Escherichia coli   

  DH5α recA1 and endA1 cloning strain Lab stock 

  DH5α(pRK600) 
DH5α strain containing helper plasmid 

pRK600, Cmr 
(Finan et al., 1986) 

  BL21(DE3) (λDE3) F- ompT hsdSB(rB
-mB

-) dcm gal Novagen 

Plasmid   

 pBluescript II 

SK(+) 
Cloning vector, Ampr 

(Alting-Mees and 

Short, 1989), 

(Alting-Mees et 

al., 1992) 

    pRK415 Broad host cloning vector, Tcr (Keen et al., 1988) 

  pET30(a+) IPTG-inducible expression vector; Kmr Novagen 

  pET30(b+) IPTG-inducible expression vector; Kmr Novagen 

     pRK6-1LuxI 

pRK415 derivative, carrying full-length 

PCR amplified luxIQS6-1 under the control of 

the lac promoter of pRK415, Tcr 

This study 
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     pET6-1LuxI 
pET30(a+) derivative, carrying full-length 

luxIQS6-1 under the T7 promoter, Kmr 
This study 

      pET10-1LuxI 
pET30(a+) derivative, carrying full-length 

luxIQS10-1 under the T7 promoter, Kmr 
This study 

      pET10-2LuxI 
pET30(b+) derivative, carrying full-length 

luxIQS10-2 under the T7 promoter, Kmr 
This study 

      pET6-1LuxR 
pET30(a+) derivative, carrying full-length 

luxRQS6-1 under the T7 promoter, Kmr 
This study 

      pET10-1LuxR 
pET30(a+) derivative, carrying full-length 

luxRQS10-1 under the T7 promoter, Kmr 
This study 

    pET10-2LuxR 
pET30(a+) derivative, carrying full-length 

luxRQS10-2 under the T7 promoter, Kmr 
This study 
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Figure 2.4. Screening of metagenomic libraries for QS inducer synthase using biosensor 

strain A. tumefaciens HC103(pJZ381). The Ti plamid contains a traI nonpolar deletion and 

a traC-lacZ translational fusion. In pJZ381, traR is overexpressed under control of the lac 

promoter of pBBR1MCS5. Without binding to AHL, the TraR protein is not stable and 

degrades quickly after synthesis. When metagenomic clones are introduced into the 

biosensor strain, if QS inducer synthases are present, the produced active signals bind to 

TraR protein and activate transcription of the traC-lacZ fusion, enabling the bacteria to 

form blue colonies in the presence of X-Gal. 
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2.2.3 Transposon insertiontional mutagenesis and sequencing of clones 

EZ-Tn5™ <KAN-2> and HyperMu™ <CHL-1> in vitro insertion kits were purchased 

from EPICENTRE Biotechnologies (Madison). In vitro transposon insertion of the 

metagenomic clones was performed according to the manual provided by the supplier. The 

mutagenized clones were transferred to the biosensor stain A. tumefaciens HC103(pJZ381) 

by electroporation. Transformants were incubated at 28°C on LB agar with appropriate 

antibiotics and 20 μg/ml of X-Gal. White colonies, indicating disruption of the QS genes, 

were picked and streak purified. The metagenomic clones from the white colonies were 

transferred to E. coli DH5α by triparental mating. Plasmids were extracted and sequenced 

using primers from the transposon: MUCHL-1 FP-1, MUCHL-1 RP-1, KAN-2 FP-1 and 

KAN-2 RP-1 (Table 2.4). Up and down stream regions were further sequenced using new 

primers designed from the sequenced area using a chromosome walking method. All 

primers used for sequencing are listed in Table 2.4. All sequencing was performed at 

MOBIX (McMaster University, Hamilton, ON, Canada) using an ABI 3730 DNA analyzer 

(Applied Biosystems) or at York University’s Core Facility for Molecular Biology 

(Department of Biology, York University, 4700 Keele Street, Toronto, ON, Canada).using 

ABI 373A Sequencer (Applied Biosystems)  
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Table 2.4. Primers  used for DNA sequencing. 

Name of primer Sequence (from 5’ to 3’) 
MUCHL-1 FP-1 CACAGGTATTTATTCGGTCGA  
MUCHL-1 RP-1 TGGAGGTAATAATTGACGATA  

KAN-2 FP-1 ACCTACAACAAAGCTCTCATCAACC  

KAN-2 RP-1 GCAATGTAACATCAGAGATTTTGAG 

6-1FP1 GGCACATTTCACTGGCAT 

6-1RP1  TGGCGATTCTGCGATGTT 

6-1FP2    GCCTCTTGGACTGACTAAGG 

6-1FP3    TCCAACACATTACAAGCGG 

6-1 FP4 CAGCGATTGCAGGACCGAGCCA 

6-1 RP4 AAGCTGGAGACCACCTCGATGTACG 

6-1 RP5  CTTCCTGTCGGTGCGTGT 

10-1FP1  CTTCGTGAAAAGGTTGCG 

10-1RP1  GGCACTTCCACATGCAGAT 

10-1FP2  ATCCAAGACGCTGTGGCAT 

10-1FP3  GCTATTGGCAGGAAAGTCG 

10-1 FP4  TGGAGCACTATCCGCAACTCACGC 

10-1 RP4 TGGCCGCCAGGATGCCCAGT 

10-1 FP5 ACGCCGCCCTTCACTCACCTCTTG 

10-1RP5 GTGTACAACGCCAGGCTCAT 

10-2FP1 CGATACAGACCCGACCAAA 

10-2RP1 TGGTGCCTTTCTTCTGGGA 

10-2FP2 TACGAGCAATGTTTCGCC  

10-2 FP3  AGTCATCTTGTCGGCAACC 

10-2 FP4 CCACGGATCGGCACATCG 

10-2 RP4 TCCGCATAACCGCCTCCCT 

10-2 FP5 GGTGTATCTCGGCTCGGTTA 

10-2 RP5 CGGCGGATAATGACCTTTAC 

10-2 FP6  ATCGGGTCACTGGCAGAGGAGC 

10-2 RP6  TCGCCGACCACGACGGAATA 
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2.2.4 Phylogenetic analysis  

All sequences used were obtained from Genbank or SwissProt. For LuxI and LuxR 

homologs, sequences with experimental evidence and sequences of top BlastP hits to 

NCBI non-redundant protein sequences were used. For LuxI homologs, 44 sequences with 

experimental evidence were used. When obtaining the top BlastP hits, for LuxIQS6-1 and 

LuxIQS10-1, sequences with a score of more than 120 (inclusive) were selected (12 and 18 

sequences were obtained respectively), while for LuxIQS10-2, sequences with a score of 

more than 88 (inclusive) were selected (15 sequences were obtained). Those LuxI 

homologue sequences were combined and redundant sequences were deleted. Finally, in 

total 70 sequences were used for multiple sequence alignment and phylogenetic analysis. 

For LuxR homologues, 42 sequences with experimental evidence were used. When 

obtaining top Blast hits, for LuxRQS6-1, sequences with a score of more than 100 

(inclusive) were selected (16 sequences); for LuxRQS10-1, sequences with a score of more 

than 115 (inclusive) were selected (13 sequences); while for LuxRQS10-2, sequences with a 

score of more than 95 (inclusive) were selected (14 sequences). After getting rid of the 

redundant sequences, 71 LuxR homologue protein sequences in total were used for the 

phylogenetic analysis. For other genes, sequences of top BlastP hits were obtained from 

Genbank. 

Multiple sequence alignments were performed using “Muscle” (version 3.6) 

(Edgar, 2004) and were refined by eye. Some gap containing areas were removed using 

BioEdit (Version 7.00) (Hall, 1999). The best fitting models were tested using Protest 

(Abascal et al., 2005). Phylogenetic tree topologies were determined using Phyml version 

2.4.4 (Guindon and Gascuel, 2003). Bootstrap values were obtained from 1000 replicates 
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employing Neighbour Joining (NJ) and Maximum Parsimony (MP) algorithms using 

PAUP 4.0b program (Swofford, 2000).  

 

2.2.5 β-Galactosidase activity assay 

Agrobacterium strains were grown to stationary phase in ABM minimal medium at 

28°C, then 50 μl of the stationary phase cultures were transferred to 5 ml ABM minimal 

medium and returned to a 28°C waterbath shaker. For the positive control, 3-O-C8 HSL 

was added to a final concentration of 10 nM to the HC103(pJZ381) culture at this point. 

Approximately 20 hours after subculture, the cultures were at exponential growth phase, β-

galactosidase activity assay was performed as described (Miller, 1972).  

 

2.2.6 Subcloning of luxI and luxR 

To subclone the luxI and luxR homologs, primers were designed to include the start 

and stop codons of the luxI or the luxR homolog genes (Table 2.5). KOD hot start DNA 

polymerase (Novagen) was used to amplify the fragment. The PCR fragments were 

purified (using QIAGEN PCR Purification Kit) and were ligated into the EcoRV site of 

pBluescriptII SK(+) (Alting-Mees and Short, 1989; Alting-Mees et al., 1992). Diagnostic 

PCR was performed using T7 primer and the forward or reverse primer of the 

corresponding gene to screen for insertions with appropriated orientations. Clones were 

sequenced and after they were confirmed that no mutation has been introduced, the DNA 

was digested with BamHI and HindIII and the excised luxI or the luxR gene fragment was 

gel purified (using QIAGEN Gel Purification Kit). The luxI or luxR gene was then ligated 

into BamHI and HindIII digested pET30a+ or pET30b+ to construct the corresponding 
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vectors, pET6-1LuxI, pET10-1LuxI, pET10-2LuxI, pET6-1LuxR, pET10-1LuxR and 

pET10-2LuxR (Table 2.3). Plasmid pRK6-1luxI was also constructed by inserting luxIQS6-1 

into BamHI and HindIII digested pRK415. 
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Table 2.5. Primers used to amplify luxI and luxR homologs. 

Name of primers Sequences 

luxIQS6-1 F ATGCATCACCAGATTTTTACG 

luxIQS6-1 R GGCTAGGCCGTTGCGTCC 

luxIQS10-1 F AAAGTTGTTACACATTCGCTCAGG 

luxIQS10-1 R GCAAATCCGGCTGTACTCCCT 

luxIQS10-2 F GCCGATGATTCTGATCATCAACGC 

luxIQS10-2 R TGTTTCTTTACGCGGCGATCTTT 

luxRQS6-1 F CGAAGACGTCGATCGGGTGC 

luxRQS6-1 R GCGCAGCTAGGTGATCAGTCC 

luxRQS10-1 F GAGGAAGGATTGACAATGACGAG 

luxRQS10-1 R GCCTCTAGACAATCAGTCCCATC 

luxRQS10-2 F AATCAGTTCGAAGTGGCGC 

luxRQS10-2 R GAGGGTCCGGAATCATGTTAG 
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2.2.7 Extraction of AHL and analytical TLC assay 

AHL standards (C6, C8, C10, C12, 3-O-C6, 3-O-C8) were purchased from Sigma-

Aldrich (St. Louis, MO). Agrobacterium strains were grown in 5 ml ABM medium or LB 

medium at 28°C with shaking for 48 to 72 hours until stationary phase was attained. E. 

coli strains BL21(DE3)(pET6-1LuxI), BL21(DE3)(pET10-1LuxI) and 

BL21(DE3)(pET10-2LuxI) were grown overnight at 37°C in LB medium with aeration 

and then subcultured (using a 1:50) to 20 ml LB and incubated for one hour at 37°C until 

the OD600 reached 0.4-0.5, then IPTG was added to a final concentration of 0.5 mM and 

incubated for 6 hours at 28°C. The AHLs produced were extracted and the TLC plates 

were developed mainly as described by Shaw et al. (1997). Briefly, 5 ml of the culture was 

centrifuged at 5000 x g for 10 min and the supernatant of the culture was extracted twice 

using an equal volume of ethyl acetate, and water was removed from the combined 

extracts using anhydrous MgSO4. The extractions were evaporated to dryness. Residues 

were then dissolved in 20 μl HPLC grade ethyl acetate. Two μl of AHL standards or 

samples were applied to C18 reverse phase TLC plates (200 μm layer, Whatman) and 

chromatographs were developed with methanol/water (70/30, vol/vol). Plates were dried 

and overlayed with a layer of 0.7% ABM agar containing the biosensor strain A. 

tumefaciens HC103(pJZ381) and X-Gal at a concentration of 40 μg/ml. The plates were 

incubated overnight at 28°C or until sufficient blue colour had developed, before the plates 

were dried and scanned.  

 

2.2.8 Preparative TLC and mass spectrometry  
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For A. tumefaciens strains HC103(pJZ381)(pQS6-1), HC103(pJZ381)(pQS10-1), 

HC103(pJZ381)(pQS10-2) and HC103(pJZ381)(pRK6-1LuxI), a single colony was 

inoculated into 5ml of LB medium and incubated at 28°C until the culture reached 

stationary phase, it was then transferred to 500 ml of LB medium in a 2 L flask and 

incubated for about 24 h until the culture reached early stationary phase. The supernatant 

from the 500 ml culture was extracted twice with equal volumes of ethyl acetate, and then 

the extracts were combined in a glass beaker and dried over anhydrous MgSO4. When 

about 10 ml of ethyl acetate was left, it was then filtered using Whatman filter paper to 

remove the magnesium sulphate, and then dried using a Savant Speed Vac. The residues 

were then dissolved in 50 μl of ethyl acetate.  

For E. coli strains BL21(DE3)(pET6-1LuxI), BL21(DE3)(pET10-1LuxI), and 

BL21(DE3)(pET10-2LuxI), 5 ml of overnight culture was transferred to 500 ml of LB 

medium and incubated at 37 °C for about one and a half hour until OD600 reached about 

0.4-0.5, then IPTG was added to a final concentration of 0.5 mM and the cells were 

incubated at 28 °C for 6 hours. Then the culture supernatant was extracted and dried as 

described above.  

For a given sample, 50 μl of the extracts were applied in a series of spots to the 

bottom of a 20 x 20 cm2 C18 reverse phase TLC plate (Whatman) and developed using 

70:30 methanol:water. About 3 cm of the plate was removed from one side using a glass 

cutter and overlayed with biosensor strain A. tumefaciens HC103(pJZ381) and incubated 

overnight until sufficient blue colour developed. By comparison to the overlayed area of 

the TLC plate, the sillica matrix from the rest of the TLC plate at the corresponding 

positions was removed, transferred to a 1.5 ml Enpendorf tube, and extracted 3 times with 
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1 ml of 1:1 chloroform:dichloromethane. The extracts were centrifuged and then filtered 

through a 0.7 μm glass filter (Whatman) to remove any solid particles, and then dried 

using a Savant Speed Vac. The residues were dissolved in 20 μl of 1:1 acetonitrile:water 

with 0.2% formic acid. Electrospray ionization mass spectrometry (ESI MS) and ESI 

MS/MS were performed using a micromass Q-TOF ultima global mass spectrometer. 

Argon gas was used as the collision gas, and the collision energy was kept at 15 eV for all 

experiments. 

 

2.2.9 Expression of LuxR homologs in E. coli and determination of solubility.  

 To determine whether the LuxR homologs were expressed in E. coli, single 

colonies of E. coli BL21(DE3)(pET6-1luxR), E. coli BL21(DE3)(pET10-1luxR) and E. 

coli BL21(DE3)(pET10-2luxR) strains were inoculated into 5 ml LB medium with 

appropriate antibiotics and incubated overnight at 37°C and then subcultured using a 1:50 

ratio in 20 ml LB in 100 ml flasks and returned to the waterbath shaker for about 90 min 

until the OD600 of the cultures reached 0.4-0.5. Before adding IPTG, 1 ml of each culture 

was transferred to a 1.5 ml centrifuge tube and the cells were pelleted by centrifugation at 

8000 x g for 2 min (uninduced control). IPTG was added to the rest of the culture to a final 

concentration of 1 mM and protein expression was induced by incubation at 37°C for 3 h. 

Then 0.5 ml of the culture was pelleted as described above (induced total protein). An 

aliquot of 50μl of 1 x SDS loading buffer (0.045 M Tris·Cl, pH 6.8; 10% glycerol; 1% 

SDS; 0.01% bromophenol blue; 0.05 M DTT) was added to the pellets and vortexed to 

resuspend the cells. The cells were then boiled for 5 mins, cooled on ice, centrifuged at 

12000 x g for 1 min to get rid of the cell debris, and 20 μl of the supernatants were applied 
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to a SDS-PAGE (4% condensing gel, 12% separating gel) to separate the proteins. The 

gels were stained with Coomassie blue to help visualize the proteins bands.  

To determine whether the expressed LuxR homologs were in the soluble portion or 

formed inclusion bodies, the above mentioned E. coli strains were incubated in 5 ml LB 

medium at 37°C overnight, subcultured using a 1:50 ratio in 50 ml LB medium in 200 ml 

flasks, and incubated at 37°C for about 90 minutes until the OD600 reached 0.4-0.5. An 

aliquot of one ml was removed and pelleted (uninduced control, 50 μl of 1 x SDS loading 

buffer was added to resuspend the cells) before IPTG was added to a final concentration of 

0.5 mM, and the flasks were returned to a 28°C shaker water bath and incubated for 2 to 5 

h. Another ml aliquot was removed and pelleted and 100 μl of 1 x SDS loading buffer was 

added to resuspend the cells (induced total proteins). The rest of the cells were pelleted by 

centrifugation at 5000 x g for 10 min using a Sorval centrifuge, and the supernatants were 

discarded. The cell pellets were resuspended in 5 ml cell lysis buffer (50 mM NaH2PO4, 

300 mM NaCl, 10 mM imidazole, the pH was adjusted to 8.0 using NaOH), and lysozyme 

was added to a final concentration of 1mg/ml and incubated on ice for 30 min before 

sonication at 10 x 10 s with 10 s pauses at 200 W on ice. The lysate was centrifuged at 

10,000 g for 25 min at 4°C, the supernatant (the soluble part) was transferred to a new 

tube, and the pellet was resuspended in 5 ml lysis buffer (insoluble part). An equal volume 

of 2 x SDS loading buffer (0.09 M Tris·Cl, pH 6.8; 20% glycerol; 2% SDS; 0.02% 

bromophenol blue; 0.1 M DTT) was added to the soluble and insoluble extracts. All of the 

samples including uninduced control and induced total protein control were boiled for 5 

min, cooled on ice, centrifuged at 12,000 g for 1 min, and 20 μl of each sample was loaded 

onto a 12% SDS-PAGE. Alternatively, the E. coli cells were lysed using BugBuster® 
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master mix (Novagen) according to manufacturer’s instructions to obtain the soluble and 

insoluble extracts.  

In order to determine if the cognate AHLs are required for the LuxR protein to be 

expressed in the soluble portion of the cell extract, 30 mins before induction with 0.5 mM 

IPTG, AHLs extracted from an equal volume of culture supernatant of E.coli strains 

expressing corresponding luxI genes were added. Then the protein expression was induced 

at 28°C for 2.5 h with shaking. The cells were broken down as described above to 

determine the solubility of the proteins.  
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2.3 Results 

2.3.1 Screening of the metagenomic libraries for QS inducers 

In this study, four metagenomic libraries, CX4, CX6, CX9 and CX10 (Table 2.2), 

constructed using DNA from activated sludge or soil (Wang et al., 2006) were screened 

for QS inducer synthase as described. In the initial screening, not only QS inducers, which 

induces expression of traC-lacZ in A. tumefaciens HC103(pJZ381), but also lacZ genes, 

could be detected. After the initial screening, a number of colonies that were blue on LB 

agar containing X-gal were isolated from each library (Table 2.6). Since the signals were 

weak, the five weak blue colonies obtained from library CX4 were not further analyzed in 

this study. The plasmids from each of the isolated blue colonies were digested with BamHI 

to check whether they are unique clones or siblings of each other (Figure 2.5). It was found 

that the plasmids from the six blue colonies isolated from library CX6 showed exactly the 

same digestion pattern, thus were deemed to be from one unique clone (QS6-1), the 

plasmids from the six blue colonies isolated from library CX9 showed two different 

digestion patterns, 9-1 showed one digestion pattern and all of the others showed another 

digestion pattern, thus, there are two unique clones (QS9-1 and QS9-2). The six blue 

colonies from library CX10 also showed two digestion patterns, the isolates 10-1 and 10-6 

were from the same clone (QS10-1), and the others were from another clone (QS10-2). 

The plasmids from the five unique clones were then transferred back to the biosensor 

strain HC103(pJZ381) to confirm that they are positive. While all the other four plasmids 

were, as expected, able to make the biosensor strain to form blue colonies, the cosmid 

from the isolate QS9-1 was not, which means that it was a false positive result. The unique 

clones were then transferred to A. tumefaciens C58, which does not contain a lacZ gene, to 
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determine whether these isolates contain a lacZ gene. It was found that only the clone from 

QS9-2 encodes an environmental lacZ gene. Finally, three clones containing QS inducers 

were identified and named QS6-1, QS10-1 and QS10-2.  
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Figure 2.5. BamHI digestion pattern of isolated clones. M,  DNA/EcoRI and HindIII marker. 6-1, 6-2, 6-3, 6-4, 6-5 and 6-6; the six 

blue colonies isolated from library CX6. 9-1, 9-2, 9-3, 9-4 and 9-5; the five blue colonies isolated from library CX9. 10-1,10-2, 10-3, 

10-4, 10-5, 10-6; the 5 colonies isolated from library CX10. 
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Table 2.6. Screening of metagenomic libraries for QS autoinducers 

Library DNA source 
No. of 

clones 

No. colonies 

screened 

No. of blue 

colonies 
No. unique clones 

CX4 Pulp waste activated sludge 3879 ≈14000 5 (weak blue) ND (not further analyzed) 

CX6 
Municipal waste activated 

sludge 
3322 ≈5600 6 1 (QS6-1) 

CX9 
Soil collected from UW 

campus 
22180 ≈20000 6 

2 (one false positive, one with 

a lacZ gene) 

CX10 
Soil collected from UW 

campus 
8696 ≈16300 6 2 (QS10-1, QS10-2) 
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2.3.2 In vitro transposon insertional mutagenesis and sequencing results of the 

isolated QS systems  

 Since the cosmid clones contain inserts with an average size of more than 30 kb, 

to sequence the entire insert would be time consuming and costly. To help localize and 

sequence the QS signal synthase genes in the cosmid clones, in vitro transposition 

systems HyperMu™<CHL-1> insertion kit and the EZ-Tn5™<KAN-2> insertion kit 

(Epicenter) were used. After random mutagenesis and screening, one white clone for 

QS6-1, three for QS10-1 and four for QS10-2 were identified. DNA sequences were 

obtained from the transposon insertion sites using the transposon specific primers and 

adjacent sequences were then obtained utilizing a primer walking method. Finally, 7.6 kb, 

7.3 kb and 7.1 kb of sequences for QS6-1, QS10-1 and QS10-2 respectively were 

obtained. The sequences were deposited in the Genbank database under the following 

accession numbers: QS6-1, FJ041295; QS10-1, FJ041296; QS10-2, FJ041297. Figure 2.6 

shows the gene arrangements in each of the clones and the transposon insertion sites. All 

three clones contain a luxI family AHL synthase gene and a luxR family transcriptional 

regulator gene adjacent to one another.  

 Transposon insertional mutagenesis indicated that not only mutation of the luxI 

homologs, but also mutation of the luxR homologs in QS10-1 and QS10-2 (Figure 2.6) 

caused those two clones to lose the ability to induce the biosensor strain to turn blue. A 

similar phenomenon has been reported for other luxI-luxR family QS systems (Zheng et 

al., 2006). This may be explained by the fact that in many luxI-luxR type systems the luxI 

type genes are regulated by their cognate R proteins (Waters and Bassler, 2005; 

Williams, 2007). Mutation of the luxR homologs in QS10-1 and QS10-2 disrupted the 



positive regulation loop leading to their cognate AHL synthesis genes, so that only very 

low levels of AHLs were synthesized by the mutants even at high population density that 

could not be detected by the biosensor strain. Since the R protein usually binds to lux 

box-like sequences which are typically 20-bp inverted repeats close to or partially 

overlapping with the -35 box of the 70 promoter (Devine et al., 1988), the DNA 

sequences upstream of the luxI homologs were examined. Using promoter prediction 

software BPROM (Softberry, Inc., Mt. Kisco, NY) or SAK (Gordon et al., 2003), a 

possible 70 promoter was identified upstream of both the luxIQS6-1 and luxIQS10-1 regions. 

Possible lux-box-like sequences with imperfect dyad symmetry were also identified near 

the -35 box of both promoters (Figure 2.7 A). No promoter was predicted upstream of the 

luxIQS10-2 region. However, a possible 70 promoter was found upstream of the luxRQS10-2 

gene and a putative lux-box like sequence was also found close to the -35 box region 

(Figure 2.7 A). Considering that the luxRQS10-2 and the luxIQS10-2 are oriented in the same 

direction, and there is only 102 bp of intergenic region between them, it is possible that 

they form an operon. Comparison of the three possible lux-box like elements with known 

lux-box like sequences indicated conservation at certain residues as well as specificity 

(Figure 2.7 B). It was found that interruption of the acyl-CoA carboxylase biotin 

carboxylase subunit of QS10-2 also affects the AHL synthesis of that clone.   
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Figure 2.6. Gene arrangements on clones QS6-1, QS10-1 and QS10-2. The luxI homolog AHL synthase genes are highlighted in red, 

and the luxR homolog genes are highlighted in green. Black triangles indicate the position of transposon insertion sites.  
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Figure 2.7. Identification of 

luxI

elem

aeruginosa

Acidith

(Lewenza 

lux-box-like elements. A, lux-box-like elements upstream of 

QS6-1, luxIQS10-1 and luxRQS10-2. B, Comparison of elements with known lux-box-like 

ents from Ralstonia solanacearum SolI (Flavier et al., 1997), Pseudomonas 

 RhlI and LasI (Latifi et al., 1995), Vibrio fischeri LuxI (Devine, 1988), 

iobacillus ferrooxidans AfeI (Rivas et al., 2005), Burkholderia cepacia CepI 

et al., 1999). Sequences with more than 60% identity were shaded. 
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2.3.3 Bioinformatic analysis of the isolated clones 

 

2.3.3.1 BLAST search results of the LuxI and LuxR homologs    BLASTP 

searches against NCBI Non-redundant Protein Sequences database and TBLASTN 

searches against NCBI Environmental Samples database were performed, and it was 

found that the identified LuxI and LuxR homologs showed from 32% to 54% identity to 

their closest matches (Table 2.7). BLAST searches were also performed against the 

CAMERA All Metagenomic ORF Peptides database, the CAMERA All Metagenomic 

454 Reads, the CAMERA Non-Identical Peptide Sequences database, and the JGI all 

IMG genes database; in all cases, no sequence with a higher identity was found.  

 

2.3.3.2 Phylogenetic analysis.  In order to obtain information of the closest known 

relatives to the identified clones, phylogenetic analyses were performed. For the LuxI and 

LuxR homologs, sequences that have been experimentally determined together with those 

putative LuxI and LuxR homologs obtained from the top BLASTP hits against NCBI 

Non-redundant Protein Sequences database were used. For LuxI homologs, 44 sequences 

with experimental evidence of functionality were used. The top 12 to 18 sequences of the 

BLASTP hits to each of the three LuxI homologs were obtained from NCBI. After 

deleting redundant sequences, in total 70 sequences were used for multiple sequence 

alignment and phylogenetic analysis. For LuxR homologs, 42 sequences with 

experimental evidence of functionality were combined with 13 to 16 top BLASTP hits of 

each of the three LuxR homologs. After deleting redundant sequences, 71 LuxR 

homologue protein sequences in total were used for the phylogenetic analysis.  
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 The midpoint rooted maximum likelihood (ML) trees of LuxI and LuxR 

homologs showed similar topologies (Figure 2.8 A and B).  Most sequences from α 

proteobacteria grouped together; while sequences from β proteobacteria and γ 

proteobacteria are intermingled which is different from previously published 

phylogenetic analysis of LuxI and LuxR homologs (Gray and Garey, 2001; Lerat and 

Moran, 2004). This may be because more sequences from β proteobacteria and γ 

proteobacteria were used in this analysis. This reflects the relative close relationship of β 

and γ proteobacteria and suggests the relative frequent lateral gene transfer of the luxI 

and luxR genes between them. In both LuxI and LuxR homologs trees, QS6-1 and 

QS10-1 are grouped together. In fact, LuxIQS6-1 and LuxIQS10-1 showed 61% identity in 

amino acid sequence, and LuxRQS6-1 and LuxRQS10-1 showed 53% identity in amino acid 

sequence, both of which are higher than the sequence identities they showed to their 

closest matches from NCBI BLASTP search. They tend to group with β or γ 

proteobacteria. From the LuxI homolog tree, the most closely related species to QS6-1 

and QS10-1 is Nitrosospira multiformis. Both the LuxI and LuxR homolog of QS10-2 are 

grouped with sequences from α proteobacteria. However, they are not closely related to 

any known species.  

 In agreement with the LuxI and LuxR homolog protein, phylogenetic analysis 

of all other sequences from QS10-1 showed that it grouped with β proteobacteria (Figure 

2.10), and phylogenetic analysis of all other sequences from QS10-2 showed that it 

grouped with α proteobacteria (Figure 2.11 and Figure 2.12). However, for QS6-1, 

although most of its sequences group with β and γ proteobacteria, some sequences group 

with sequences from Flavobacteria (Figure 2.8 and Figure 2.9).  
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Table 2.7. Closest matches to the identified LuxI and LuxR homologs obtained from BLAST searches.  

Protein 

Closest match from NCBI nonredundant 

protein sequence database (BLASTP 

search)  

Closest match from NCBI Environmental 

Samples database (TBLASTN search)  

LuxIQS6-1  
AHL synthase of Nitrosospira multiformis 

ATCC 25196 (47% identity)  

Freshwater sediment metagenome 

lwFormaldehyde_BCIB15374_yl 

(ABSN01034438.1) (53% identity)  

LuxIQS10-1 Same as above (51% identity) Same as above (54% identity)  

LuxIQS10-2  
AHL synthase of Sphingomonas Sp. SKA58 

(37% identity)  

Marine metagenome ctg_1101668694332 

(AACY023886981.1) (37% identity)  

LuxRQS6-1 
LuxR family protein of Nitrococcus mobilis 

Nb-231 (34% identity)  

Marine metagenome 1096626424210 

(AACYo20346372.1) (26% identity)  

LuxRQS10-

1 

LuxR family protein of N. multiformis ATCC 

25196 (32% identity)  
Same as above (31% identity)  

LuxRQS10-

2  

LuxR family protein Sphingomonas Sp. 

SKA58 (37% identity)  

metagenome sequence XZS25054.x1 

(AAFX01052353.1) (41% identity)  

 
 



 50
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Figure 2.9. Phylogenetic analysis of sequences of QS6-1.  

A, Midpoint rooted ML tree of homolog sequences of QS6-1-1, transglutaminase-like enzyme; B, Midpoint rooted ML tree of 

homologs of QS6-1-7, hypothetical protein; C, Midpoint rooted ML tree of homologs of QS6-1-4, hypothetical protein. Tree 

topologies were determined using phyml version 2.4.4. Numbers at the nodes are bootstrap values obtained from 1000 replicates using 

PAUP (Version 4.0 b) under neighbour joining algorithm (heuristic search). Abbreviations used: A., Alteromonadales; B., 

Burkholderia; Br., Bradyrhizobium; Ca., Campylobacter; Ce., Cellulophaga;  F., Flavobacterium; G., Gramella; H., Hahella; Hs., 

Halorhodospira; M., Mesorhizobium;  Mc., Methylococcus; Ms., Magnetospirillum; P., Polaribacter ; Pc., Prosthecochloris; Pf., 

Psychroflexus; S., Shewanella; X., Xanthomonas; V., Vibrio. 
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Figure 2.10. Midpoint rooted ML tree of homologs of QS10-1-2, Mg-chelatase related 

protein.  Tree topology was determined using phyml version 2.4.4. Bootstrap values were 

obtained from using PAUP (Version 4.0 b) under neighbour joining algorithm (“Fast” 

stepwise-addition). Abbreviations:  Ac., Acidovorax; Ae, Aeromonas;  B ., Burkholderia; 

C., Comamonas; Cb., Chromobacterium; Ch., Chromohalobacter; Co., Coxiella; D., 

Delftia; Dc, Dechloromonas;  F., Francisella; H., Herminiimonas; J., 

Janthinobacterium; L., Leptothrix; Mb., Methylobacillus; Mc., Methylococcus;  Nc., 

Nitrococus; Ne., Neisseria; Ns., Nitrosomonas;  Nsc. Nitrosococcus; P., Polaromonas; 

R., Ralstonia; Rf., Rhodofera; T., Thiobacillus; V., Verminephrobacter; X, Xanthomonas. 
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Figure 2.11. ML tree of homologs of QS10-2-1, Zinc containing alcohol dehydrogenase 

protein. Tree topology was determined using phyml version 2.4.4. Bootstrap values were 

obtained from using PAUP (Version 4.0 b) under neighbour joining algorithm (full 

heuristic). Abbreviations: A., Acidovorax; Ag., Agrobacterium; Ar., Azorhizobium; B., 

Burkholderia; Bt. Bordetella; Co., Comamonas; Cu.,  Cupriavidus; D., Delftia; G., 

Granulibacter; H., Herminiimonas; Ho., Hoeflea; J., Janthinobacterium; Jb., Janibacter; 

Mb., Methylibium; Mr., Mesorhizobium; Ns., Nitrosospira; O., Oceanicola; Pa., 

Parvibaculum; Pn., Polynucleobacter; Po., Polaromonas; R., Rhizobium; Rb., 

Roseobacter; Rf., Rhodoferax; Rhb., Rhodobacterales; Rhs., Rhodospirillum; Rt., 

Ralstonia; S., Serratia; Sb., Solibacter; T., Thermobifida; V., Verminephrobacter; X., 

Xanthobacter; Y., Yersinia. 
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Figure 2.12. Phylogentic analysis of QS10-2-4 and QS10-2-5. A, ML tree of homologs of 

QS10-2-4, a phytonyl-CoA dioxygenase related protein. B, ML tree of homologs of 

QS10-2-5, a putative GntR family transcriptional regulator. Tree topologies were 

determined using phyml version 2.4.4. Bootstrap values were obtained from using PAUP 

(Version 4.0 b) under neighbour joining algorithm (full heuristic). Abbreviations:  B., 

Burkholderia; Bj., Beijerinckia; Bo, Bordetella; Br. Bradyrhizobium; E., Erythrobacter; 

M., Mesorhizobium; Mb., Mycobacterium; MGP, marine gamma proteobacterium; O., 

Oceanicaulis; Pb., Parvibaculum; Ps., Pseudomonas; Pa.,Pseudoalteromonas; R., 

Ralstonia; Rh. Rhizobium; Rv., Roseovarius; Sm., Sphingomonas ; Sp., Sphingopyxis; St., 

Streptomyces; T., Thermotoga; V., Verminephrobacter. 
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2.3.3.3 Sequence analysis of the key position of LuxI homologs.  

 It has been reported that the 140 position of the EsaI protein (the LuxI homolog 

in Pantoea stewartii), which is part of the active site of the acyl chain binding region, is 

critical for the specificity of the C3-substitution of AHLs (Watson et al., 2002). By 

comparing several other LuxI homologs, it was found that those that synthesize 3-O-

substituted AHLs usually contain a threonine (T) at the corresponding position. On the 

other hand, LuxI homologs that synthesize 3-OH-substituted AHLs contain a serine (S), 

and LuxI homologs that synthesize C3-unsubstituted AHLs could contain an alanine (A) 

or glycine (G) at this position (Watson et al., 2002). By aligning 43 LuxI homolog 

sequences that have been experimentally studied with the 3 LuxI homologs identified in 

this study, it was found that LuxIQS6-1 and LuxIQS10-1, together with LuxI homolog 

sequences that mainly synthesize 3-O-substituted AHLs, contain a T at the position 

corresponding to the 140 position of EsaI (Figure 2.13 group B). It was also found that, in 

addition to A and G, a phenylalanine (F) at that position is also conserved for synthesis of 

C3-unsubstitued AHLs. The LuxIQS10-2, which has later been shown to synthesize C8 

HSL and C10 HSL, together with the CviI of Chromobacterium violaceum, which 

synthesizes C6 HSL, contain an F at the corresponding position of T140 of EsaI (Figure 

2.13 group A). 
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Figure 2.13. Multiple sequence alignment of LuxI homologs with experimental evidence. 

Group A are sequences that mainly synthesize C3-unsubstituted AHLs. Group B are 

sequences that mainly synthesize 3-O-substituted AHLs. Group C are sequences that 

synthesize 3-OH-substituted AHLs. The red arrow indicates the corresponding position 

of the EsaI T140. 
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2.3.4 Expression of LuxI in E. coli.   LuxIQS6-1, LuxIQS10-1 and LuxIQS10-1 were 

subcloned into pET30a+ and pET30b+ to get pET6-1LuxI, pET10-1LuxI and pET10-

2LuxI. When induced with 0.5 mM IPTG for 5 h at 28ºC, all three proteins were able to 

be expressed at high levels (Figure 2.14). LuxIQS6-1 was also subcloned into the broad-

host-range vector pRK415 under the control of the lac promoter. When it was introduced 

into the biosensor strain HC103(pJZ381), it was expressed constitutively and enabled the 

biosensor strain to form blue colonies (Figure 2.15).  

 

2.3.5 β-galactosidase activity of the isolated clones.  When streaked on agar 

plates, HC103(pJZ381)(pQS10-1) and HC103(pJZ381)(pQS10-2) produced signals that  

diffused in agar and induce the biosensor strain adjacent to them to turn blue (Figure 2.16 

shows this phenomenon for HC103(pJZ381)(pQS10-1)), while diffusion of signals was 

not observed for HC103(pJZ381)(pQS6-1). When the luxIQS6-1 homolog gene was 

subcloned into the broad host vector pRK415 and expressed under the the control of the 

lac promoter, the diffusion of QS inducing signals was observed for the resulting strain A. 

tumefaciens HC103(pJZ381)(pRK6-1LuxI). 

 The isolated clones showed different levels of β-galactosidase activity (Figure 

2.17). Of the three isolated clones, QS6-1 showed the lowest activity, QS10-1 showed the 

highest activity, and QS10-2 showed an intermediate level of activity. When LuxI QS6-1 

was expressed under the control of the lac promoter in pRK6-1LuxI, the resulting strain 

A. tumefaciens HC103(pJZ381)(pRK6-1LuxI) showed a high level of activity.   
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Figure 2.14. LuxI expression in E. coli BL21(DE3). M, molecular weight marker, Un, 

uninduced total protein. In, induced total protein. 
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Figure 2.15. Construction of pRK6-1LuxI and expression of luxIQS6-1 in A. tumefaciens 

HC103(pJZ381). A. The map of the vector pRK415. luxIQS6-1 was inserted into the 

HindIII and BamHI sites of the vector and was expressed under the control of the lac 

promter. B. The plasmid pRK6-1LuxI was electroporated into the biosensor strain A. 

tumefaciens HC103(pJZ381), and the expression of luxIQS6-1 enables the biosensor strain 

to form blue colonies in presence of X-Gal. 
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Figure 2.16. Diffusion assay for HC103(pJZ381)(pQS10-1). A. tumefaciens 

HC103(pJZ381)(pQS10-1) (the top quarter of the plate) and the biosensor strain A. 

tumefaciens HC103(pJZ381) (the left and right quarters of the plate) were streaked on LB 

agar with Km (50 μg/ml), Gm (50 μg/ml) and X-Gal (20 μg/ml). After 2 days incubation 

at 28°C, A. tumefaciens HC103(pJZ381)(pQS10-1) was able to secrete diffusible signals 

to induce the colonies of the biosensor strain adjacent to it to turn blue (indicated by red 

arrows).  
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Figure 2.17. Activity of the isolated clones. 1, A. tumefaciens HC103(pJZ381)(pRK6-

1LuxI); 2, A. tumefaciens HC103(pJZ381)(pQS6-1); 3, A. tumefaciens 

HC103(pJZ381)(pQS10-1); 4, A. tumefaciens HC103(pJZ381)(pQS10-2); 5, A. 

tumefaciens HC103(pJZ381) + 10nM OOHL; 6, A. tumefaciens HC103(pJZ381). Error 

bars are standard error from 3 replicates of independent cultures. 
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2.3.6 Analytical TLC assay 

 In order to characterize the AHLs produced by each clone, an analytical TLC 

assay was performed as described in the Materials and Methods. Figure 2.18 shows the 

results of the TLC assay. On the TLC plate, 3-O-AHLs formed tailed spots while C3-

unsubstituted AHLs formed round spots (Figure 2.18 S1 and S2). When expressed in A. 

tumefaciens under its own promoter, no signal (lane 1) or only a very weak signal (lane 

1’) was detected for luxIQS6-1. When the luxIQS6-1 was subcloned into pRK415 under the 

lac promoter and expressed in A. tumefaciens, or into pET30a+ under the T7 promoter 

and expressed in E. coli, multiple signals were detected, including both short and long 

chain AHLs (lanes 2 and 3). LuxIQS10-1 directed synthesis of multiple AHLs when 

expressed in either A. tumefaciens or E. coli (lanes 4 and 5). Similar to the 3-O-AHL 

standards, the AHLs synthesized by both LuxIQS6-1 and LuxIQS10-1 tend to form tailed 

spots on the TLC plate. Extractions from A. tumefaciens HC103(pJZ381)(pQS10-2) 

showed two round spots on the TLC plate with similar shape and migration rate to C6-

HSL and C8-HSL (lane 6). When expressed in E. coli, some additional signals were 

detected with one of them showing similarity to C10-HSL (lane 8).  
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Figure 2.18. Analytical TLC assay. S1 and S2, standards: S1, 3-O-C6 HSL (2 pmol ) and 

3-O-C8 HSL(0.1 pmol); S2, C6 HSL(4000 pmol), C8 HSL(100 pmol), C10 HSL(1000 

pmol) and C12 HSL(9000 pmol). 1-8, condensed extractions of different strain cultures: 

1, HC103(pJZ381)(pQS6-1) (10 ml); 2, HC103(pJZ381)(pRK6-1LuxI) (5 ml); 3, 

BL21(DE3)(pET6-1LuxI) (2 ml); 4, HC103(pJZ381)(pQS10-1) (5 ml); 5, 

BL21(DE3)(pET10-1LuxI) (5 ml); 6, HC103(pJZ381)(pQS10-2) (5 ml); 7, 

BL21(DE3)(pET10-2LuxI)( 3 ml) ; 8, BL21(DE3)(pET10-2LuxI) (5 ml). The numbers in 

parenthesis are the corresponding volumes of culture supernatant extracted. The spots 

labeled from A to N were purified from preparative TLC plates and further analyzed 

using ESI MS and MS/MS. The spots labeled with “*” are unknown compounds and 

were not analyzed using ESI MS and MS/MS. 
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2.3.7 Preparative TLC and Mass spectrometry analysis 

 The active compounds at the corresponding spots (from A to M) on Figure 2.18 

were partially purified by removing the silica matrix from a preparative TLC plate and 

extracting and drying as described in the the Materials and Methods section. The residues 

were dissolved in 20 to 50 μl of 1:1 acetonitrile:water with 0.2 % formic acid and 

subjected to ESI mass spectrometry. Suspected peaks were then chosen to perform 

MS/MS to elucidate the structures. Aliquots of 20 pmol of standards (3-O-C6, 3-O-C8, 

C6, C8, C12, 3-O-C16:1) were also subjected to ESI MS and MS/MS. By comparison 

with the standards and data published in the literature, we were able to identify most of 

the active compounds synthesized by each LuxI homolog (Table 2.8). 

Figure 2.19 shows the MS and MS/MS results for compounds synthesized by 

LuxIQS6-1 at the corresponding spots D, E and F on analytical TLC plate (Figure 2.18). 

There are two AHLs identified from spot F (Figure 2.19 d, e and f). One showed exactly 

the same MS/MS pattern as a commercial sample of the compound N-3-oxo-hexadec-

11Z-enoyl-L-homoserine lactone (3-O-C16:1-Δ11cis-(L)-HSL) (Cayman Chemical) 

(Figure 2.19 b and e) which indicates it is 3-O-C16:1 HSL. The other is 3-oxo-

tetradecanoyl-homoserine lactone (3-O-C14 HSL) as it shows a similar MS/MS pattern to 

synthesized N-3-oxo-dodecanoyl-L-homoserine lactone (3-O-C12 HSL) (Cayman 

chemical), except that the molecular weight (MW) and all of the acyl chain derived 

fragments are 28 units bigger (corresponding to one C2H4 unit) (Figure 2.19 c and f). 

Another major AHL was identified from both spot D and E (Figure 2.19 g and i), and the 

MS/MS pattern (Figure 2.19 h) confirms that it is 3-O-C14:1 HSL, as it shows a pattern 

similar to 3-O-C16:1-Δ11cis-(L)-HSL except that the mass is 28 units smaller (Figure 
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2.19 b and h). Two minor AHLs were also identified from spot E, one with m/z 306 and 

another with m/z 356 during MS (Figure 2.19 i). The MS/MS pattern for the ion at m/z 

306 (Figure. 2.19 k) showed a similar pattern to that of the previously published C14:1 

HSL and C14:2 HSL (Nieto Penalver et al., 2006) except that the mass is 4 and 2 mass 

units smaller than C14:1 HSL and C14:2 HSL, respectively. This suggests that the AHL 

at m/z 306 contains 3 unsaturated bonds on the acyl chain, and is therefore likely to be a 

novel AHL, C14:3 HSL. When collisionally activated, the ion at m/z 356 gave a major 

peak at m/z 338 (Figure 2.19 j), which most likely results from losing a water molecule. 

According to the relative abundance of the ions at m/z 338 and 356, the molecule most 

probably contains an OH group. The peak at m/z 324 is 32 mass units smaller than the 

ion 356, which most probably results from losing a methanol moiety. All of the other 

peaks of the MS/MS spectrum are very similar to that of 3-O-C14:1 HSL. So the most 

probable structure of the compound at m/z 356.24 is (?)-hydroxymethyl-3-oxo-C14 HSL, 

which contains a -CH2OH.group substitution on the acyl chain of 3-O-C14 HSL. The 

exact position of the substitution needs further experiments to be determined. After losing 

a methanol, the compound will turn into 3-O-C14:1 HSL. Although the synthesized 

standard 3-O-C16:1 HSL does not give the adduct ion [M+MeOH+H] during MS, there 

is still possibility that the compound at m/z 356 is the adduct ion [M+MeOH+H] of 3-O-

C14:1 HSL, which is formed during TLC or MS assay. Further experiments are required 

to determine whether it is a new AHL synthesized by bacteria or just an adduct ion of 3-

O-C14:1 HSL and to determine the exact structure. 

The compound at spot I synthesized by LuxIQS10-2 showed a major peak at m/z 

298 during MS analysis and the MS/MS pattern is the same as the synthesized 3-O-C12 
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except there is an extra peak at m/z 175 (Figure 2.20 a and b). This is most probably from 

contamination by another compound produced by the E. coli host that showed the same 

m/z as 3-O-C12 HSL in MS. In fact, a control sample which is extracted from the same 

position of a TLC plate loaded with extracts from E. coli BL21(DE3) culture showed a 

peak at m/z 299 in the mass spectrum, and during MS/MS, it does give a major peak at 

m/z 175 (Figure 2.20 c). For the substance at spot K, the mass spectrum showed an ion 

with m/z of 326 and the fragmentation pattern confirmed that the active compound at spot 

K is 3-O-C14 HSL (Figure 2.20 d).  

The MS and MS/MS results for compounds at spot M synthesized by LuxIQS10-2 

exhibit exactly the same spectrum as the synthesized standard C8 HSL (Figure 2.21 a and 

b), confirming that the active compound at spot M is C8 HSL. The MS for the 

compounds at spot N showed a major ion at m/z 256 and the MS/MS analysis confirms 

that it is C10 HSL (Figure 2.21 c).  

According to spot shapes and Rf values, the active compounds at spots B and G 

are similar to 3-O-C8, spot L is similar to C6-HSL. The compounds at spot A showed a 

similar shape to 3-O-AHLs, but migrated faster than 3-O-C6 AHL, which could be the 

product of the recyclization of the open ringed 3-O-C6 AHL (Yates et al., 2002) 

(Agrobacterium can not detect C4 derivatives). ESI MS and MS/MS were tried twice for 

those samples, but no suspect AHLs was identified. The attempts to identify the active 

compounds at spots C and H were also not successful. This may be due to the low 

abundance of the active compounds, or due to the technical limitations of preparative 

TLC for purifying AHLs. There is also a possibility that these active compounds could be 
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some signal mimics other than AHLs. The spots marked with an asterisk (*) were not 

analyzed in this study. 
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Figure 2.19. ESI MS and MS/MS results of the active compounds produced by LuxIQS6-1 (at spot D, E and F on Figure 2.18). a, MS 

results for synthesized 3-O-C16:1-Δ11cis-(L)-HSL; b, MS/MS for synthesized 3-O-C16:1-Δ11cis-(L)-HSL; c, MS/MS for synthesized 

3-O-C12 HSL; d, MS for compounds purified from spot F in Figure 2.18; e, MS/MS for the ion at m/z 352.2 in panel d; f, MS/MS for 

the ion at m/z 326.2 in panel d; g, MS for compounds purified from spot D in Figure 2.18; h, MS/MS for the ion at m/z 324.2 in panel 

g and i; i, MS for the compound purified at spot E on TLC plate. j, MS/MS for the ion at m/z 356.2 in panel i; k, MS/MS for the ion at 

m/z 306.2 in panel i.  
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Figure 2.20. ESI MS and MS/MS results of the standard 3-O-C12 HSL and the active 

compounds produced by LuxIQS10-1 (at spot I and K on Figure 2.18). A, MS (left) and 

MS/MS (right) of synthetic 3-O-C12 HSL; B, MS (left) and MS/MS (right) of the active 

compounds at spot I. C, MS (left) and MS/MS (right) of control for spot I; D, MS (left) 

and MS/MS (right) of the active compounds at spot K. 
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Figure 2.21. ESI MS and MS/MS results of the standard C8-HSL and the AHLs produced 

by LuxIQS10-2 (at spot M and N on Figure 2.18). A, MS (left) and MS/MS (right) of 

synthetic C8 HSL; B, MS (left) and MS/MS (right) of the compounds at spot M; B, MS 

(left) and MS/MS (right) of the compounds at spot N. 
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Table 2.8. AHLs synthesized by each LuxI homolog. 
 

AHL synthase Identified AHLs (corresponding position on TLC) 

LuxIQS6-1 

3-O-C14:1 HSL (spot D and E), 3-O-C16:1 HSL (Spot F), 

3-O-C14 HSL (Spot F), C14:3 HSL (Spot E), 

(?)-hydroxymethyl-3-oxo-C14 HSL (?, 5 to 14) (Spot E) 

LuxIQS10-1  3-O-C12 HSL (spot I), 3-O-C14 HSL(spot K) 

LuxIQS10-2 C8 HSL (Spot M), C10 HSL (Spot N) 
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2.3.8 Expression of luxR homologs in E. coli 

The three luxR homologs were PCR amplified, spliced into the pET30a+ 

expression vector and then expressed in E. coli BL21(DE3). All three LuxR homologs 

were able to be expressed at a high level when induced with 1mM IPTG at 37 °C for 3 h 

(Figure 2.22, A). Different induction conditions have been tried, including using different 

IPTG concentrations (0.1 mM, 0.2 mM, 0.5 mM and 1mM), use of autoinduction 

medium (6 g/l Na2HPO4, 3 g/l KH2PO4, 20 g/l tryptone, 5 g/l yeast extract, 5 g/l NaCl, 

0.5 g/l glucose, 2 g/l lactose, and 6 g/l glycerol, pH was adjusted to 7.2), and different 

induction temperatures (37°C, 30°C, 28°C and 25°C). With all of these conditions, 

following expression in E. coli the LuxR protein was found mainly in the insoluble part 

of the cell extract (data not shown).  

To determine if the cognate AHLs are required for the LuxR protein to be 

expressed in the soluble portion of the cell extract, 30 mins before induction with 0.5 mM 

IPTG, AHLs extracted from equal volumes of culture supernatant of an E.coli strain 

expressing the corresponding luxI gene were added. Then the protein was induced at 

28°C for 2.5 h with shaking. It was found that the presence of cognate AHLs significantly 

increased the solubility of the LuxRQS10-1 homolog protein, and the amount of over-

expressed protein formed in the insoluble portion of the cell extract decreased 

correspondingly (Figure 2.22 B). However, the majority of LuxRQS6-1 and LuxRQS10-2 

were localized in the insoluble part regardless of the presence or absence of cognate 

AHLs (Figure 2.22 C and D).
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Figure 2.22. Expression of luxR homologs in E.coli BL21(DE3). A: Expression of LuxRQS6-1, LuxR QS10-1 and luxR QS10-2. Un, 

uninduced total protein. In, total protein induced with 1mM IPTG for 3 h at 37°C. B-C: Expression of LuxRQS6-1 (B), LuxR QS10-1 (C) 

and luxR QS10-2 (D) with and without the application of the cognate AHLs. Expression was induced with 0.5 mM IPTG for 2.5 h at 

28°C 
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2.4 Discussion 

In this study, three clones containing novel LuxI-LuxR type QS systems were 

obtained from environmental samples. Phylogenetic analysis of the protein sequences 

showed that, like all other known LuxI-LuxR systems, they most probably come from 

Proteobacteria, however, they are not closely related to LuxI-LuxR from any known and 

sequenced species (Figure 2.8). Phylogenetic analysis of the sequences of known LuxI-LuxR 

systems also revealed that  Proteobacteria tend to group together, while  and  

Proteobacteria are intermingled, which likely reflects the relatively frequent horizontal gene 

transfer (HGT) events between the later two. The CviI/R of Chromobacterium violacearum, 

as previously reported (Gray and Garey, 2001), groups with  Proteobacteria instead of  

Proteobacteria, which indicates that this may reflect HGT. 

 Possible lux box elements were identified in the promoter region of luxIQS6-1, 

luxIQS10-1 and luxRQS10-2. No other putative lux box elements were found in the characterized 

sequences. The gene luxIQS10-1 seems to form an operon with its downstream gene, encoding 

a hypothetical protein (QS10-1-5). The N-terminus of this protein contains a CheY-like 

signal receiver domain (REC), while the C-terminus contains the domain of an 

uncharacterized conserved protein. Based on the results of transposon insertional 

mutagenesis experiments and the short intergenic distance between them, the four genes in 

the clone QS10-2, luxRQS10-2, luxIQS10-2, phytanoyl-CoA dioxygenase (phyH) and gntR family 

transcriptional regulator, seem to form an operon which is QS regulated. The four gene 

homologs were in the same order and also contain very short intergenic regions in the 

genome of Sphingopyxis alaskensis RB2256 (NCBI genome projects, gene tags: Sala_2588, 

Sala_2589, Sala_2590 and Sala_2591). The gene phyH belongs to the sub-family of Fe(II)/α-



ketoglutarate-dependent hydroxylases, it catalyzes the α-hydroxylation of phytanoyl-CoA. Its 

role in bacteria is not very well understood, while the deficiency of the phyH homolog in 

humans causes Refsum's disease (Jansen et al. 2000). The GntR family of bacterial regulators 

is named after the GntR protein of Bacillus subtilis, a repressor of the gluconate operon 

(Haydon and Guest, 1991). This family of transcriptional regulators contains a conserved N-

terminal helix-turn-helix (HTH) DNA binding domain, a more heterologous C-teriminal 

effector binding and oligomerization domain, and is involved in different regulatory 

pathways (Rigali, et al. 2001). Transposon insertional mutagensis revealed that mutation of 

one of the downstream genes, the biotin carboxylase subunit of acetyl-CoA carboxylase, also 

affects the production of AHLs. This could be explained by the fact that acetyl-CoA 

carboxylase catalyzes the carboxylation of acetyl-CoA to produce malonyl-CoA, which is 

the first committed step in the biosynthesis of acyl-acyl carrier proteins (acyl-ACPs) used for 

fatty acid biosynthesis, while the AHL synthesis pathway shares the same pool of acyl-ACPs 

as fatty acid biosynthesis (Miller and Bassler, 2001).  

 Each of the LuxI homologs is able to direct the synthesis of multiple AHLs. One of 

the major AHLs produced by LuxIQS6-1 is 3-O-C16:1 HSL, which has been reported to be 

the AHL produced by the plant pathogen A. vitis F2/5 strain (Hao and Burr, 2006). Some 

possible AHLs with new structures have been shown to be synthesized by LuxIQS6-1, 

including an AHL with three unsaturated carbon bonds, C14:3 AHL, and a possible 

-CH2-OH substituted 3-O-C14 HSL. It was also found that AHLs synthesized by the same 

LuxI homolog in A. tumefaciens and in E. coli were slightly different (Figure 2.18). Not only 

is the relative abundance of each signal different, but also more AHLs were detected in the 

TLC assay when the genes were expressed in E. coli. A similar phenomenon was reported 

 85



for the LasI protein of P. aeruginosa (Gould et al., 2006). This could be due to the fact that 

the expression level is much higher in E. coli than in Agrobacterium, so that acyl-ACPs with 

lower affinities for the AHL synthase proteins could also be used to synthesize AHLs in E. 

coli. However, there is also a possibility that the expression host could affect the species of 

AHLs synthesized. Their different growth temperatures and growth rates, the difference in 

their protein synthesis and matrix transportation mechanisms, and different acyl-ACP pools 

in the cells could affect the synthesized species of AHLs.  

 It has been noted that for some LuxR homologs it is very difficult to get soluble 

protein expression, probably because of the membrane association properties of the proteins 

(Kaplan and Greenberg, 1987; Smith et al., 2003). In this study, when the three R proteins 

were overexpressed in E. coli, LuxRQS10-1 could be expressed in the soluble portion of the 

cell only in the presence of its cognate signalling AHLs. The dependence on cognate AHL 

for solubility was also reported for the TraR protein of A. tumefaciens (Zhu and Winans, 

2001), CepR protein of Burkholderia cenocepacia (Weingart et al., 2005), the LuxR protein 

of V. fischeri (Urbanowski et al., 2004) and the LasR protein of P. aeruginosa (Schuster et 

al., 2004; Bottomley et al., 2007). This means that LuxRQS10-1, like the above mentioned 

other R proteins, needs the binding of its cognate signalling ligand for proper protein folding. 

However the majority of the LuxRQS6-1 and LuxRQS10-1 remained insoluble even in the 

presence of cognate AHLs.  

 The LuxI and LuxR homologs of the three clones were able to synthesize and detect 

multiple signals with different structures and a wide range of chain lengths. This should 

make it possible to construct novel biosensor strains that can detect a broad range of AHLs. 
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These biosensor strains could be very useful in the screening and study of luxI-luxR type QS 

systems for both cultured and uncultured organisms.  

 Earlier attempts to isolate QS systems using functional metagenomics approaches 

were less successful than the present study in isolating novel AHL-based systems 

(Williamson et al., 2005; Riaz et al., 2008). The specificity of the biosensor systems often 

requires a cognate luxR to be cloned along with the luxI, as we demonstrated, and this would 

only occur if the genes are clustered on the same metagenomic library clone. Functional 

screening also requires that the genes are expressed in the surrogate host. Continuing the use 

of large-insert libraries, and screening in a number of biosensor strains of diverse genomic 

backgrounds, should result in increased numbers of novel QS systems isolated. 
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Chapter 3. The Effect of ACC Deaminase or ACC Deaminase Containing PGPB on 

Agrobacterium tumefaciens C58 Induced Crown Gall Development and on A. 

tumefaciens Mediated Transformation Efficiency  
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3.1 Introduction 

3.1.1 Ethylene, an important plant hormone. Although it was used in practice by 

ancient Egyptians, Hebrews and Chinese to stimulate the ripening of fruit, and even though, 

in 1864, gas leaks from street lights were found to change plant morphology, it was not until 

1901, that a Russian scientist, Dimitry Neljubow, found that the active component was 

ethylene, the smallest unsaturated hydrocarbon (Neljubow, 1901). It took another 30 more 

years for scientists to discover that plants can synthesize ethylene (Gane, 1934). In 1935, 

ethylene was proposed as the plant hormone responsible for fruit ripening (Crocker et al., 

1935). To date, ethylene has been shown to be produced by essentially all parts of higher 

plants and is considered to be an essential plant hormone. It is involved in a variety of plant 

developmental processes, including seed germination, root elongation, tissue differentiation, 

flowering and fruit ripening, senescence and abscission (Jackson and Osborne, 1970; 

Bleecker and Kende, 2000; Glick, 2004). It also plays an important role in biotic and abiotic 

stress responses, nodulation, and systemic resistance to pathogens (Bleecker and Kende, 

2000). In higher plants, ethylene is produced from L-methionine. Methionine is activated by 

ATP to form S-adenosylmethionine (SAM) through the catalytic activity of SAM synthase. 

Then, SAM is converted by the enzyme 1-aminocyclopropane-1-carboxylic acid (ACC) 

synthase to the non-protein amino acid ACC and 5-methylthioadenosine (MTA). ACC is 

converted to ethylene by ACC oxidase, while the MTA is diverted back into the Yang cycle 

and recycled to synthesize L-methionine (Figure 3.1) (Yang and Hoffman, 1984) so that the 

level of L-methinoine available to synthesize SAM remains the same even during higher 

rates of ethylene production (Abeles, 1992). It has been argued that formation of ACC is the 

rate-limiting step in ethylene biosynthesis (Bleecker and Kende, 2000) despite the fact that 
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the enzyme ACC oxidase, like ACC synthase, is also an induced enzyme.  

The production of ethylene is regulated by various developmental and environmental 

factors. For example, during seed germination, senescence of flowers and ripening of fruits, 

ethylene production is induced (Yang and Hoffman, 1984). Ethylene production can also be 

induced by environmental stresses (Hyodo, 1991), such as water stress, high salt, the 

presence of metals and organic contaminants, insect damage, disease and mechanical 

wounding, and the induced production of ethylene is called stressed ethylene. This stress 

ethylene may both alleviate and exacerbate some of the effects of various stresses, especially 

phytopathogens (Abeles, 1992). These contradictory results may be explained by the 

presence of two peaks of stress ethylene, a small peak that occurs close in time to the stress 

and a much larger peak that occurs some time later (Stearns and Glick, 2003; Pierik et al., 

2006; Glick et al., 2007). The first peak initiates a protective response by the plant, while the 

second peak initiates a senescence response. Ethylene can also interact with other plant 

hormones. For example, it is known that auxin and ethylene can interact with each other at 

many points. They promote each other’s biosynthesis by up-regulation of the biosynthesis 

genes (Swarup et al., 2002; Stepanova et al., 2005; Arteca and Arteca, 2008). There is also 

evidence that ethylene inhibits the expression of auxin response regulators and auxin 

transport (Lehman et al., 1996; Li et al., 2004; Prayitno et al., 2006). Cytokinin has also been 

reported to enhance ethylene biosynthesis (Babiker et al., 1993; Arteca and Arteca, 2008).  

 

3.1.2 ACC deaminase, a strategy used by PGPB to lower ethylene levels in plant.

 Plant growth promoting bacteria (PGPB) are a group of bacteria that can colonize 

root surfaces or plant tissues and benefit plant growth directly or indirectly. Indirect methods 
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include the production of antibiotics to inhibit growth of plant pathogens, competition with 

plant pathogens and induction of plant systemic acquired resistance (Haas and Defago, 2005; 

van Loon et al., 2006). Direct mechanisms include production of plant growth hormones; 

nitrogen fixation; production of growth modulating enzymes; and enhancement of nutritients 

acquisition, such as phosphorus, nitrogen and iron (Glick, 1995; Glick et al., 1999). One 

mechanism that is utilized by many PGPB is the lowering of ethylene levels in plants by the 

production of the enzyme ACC deaminase. After binding to the plant surface or interior, the 

PGPB can break down the ACC that is exuded by the plant cells into ammonia and α-

ketobutyrate, and use as nitrogen and carbon sources, respectively (Figure 3.2 a). PGPB that 

contain ACC deaminase act as a sink for ACC, the direct precursor of ethylene synthesis, 

reducing its overall concentration. Thus, less ACC is available for conversion to ethylene by 

ACC oxidase (Figure 3.2 b). Many ACC deaminase containing PGPB can also produce and 

secrete the plant hormone indole-3-acetic acid (IAA), part of which can be taken by plant 

cells and subsequently activate the transcription of ACC synthase, resulting in the production 

of increasing amounts of ACC (Glick et al., 1998).  

To date, many aspects of the plant growth promotion and plant stress reduction by 

ACC deaminase-containing PGPB have been reported, including promotion of nodulation 

(Ma et al., 2003a; Ma et al., 2004; Tittabutr et al., 2008), decreasing the severity of a range 

of different stresses including flooding (Grichko and Glick, 2000), heavy metals (Reed and 

Glick, 2005; Zhang et al., 2008), polycyclic aromatic hydrocarbons (Reed and Glick, 2005), 

pathogens (Wang et al., 2000; Belimov et al., 2007), drought (Mayak et al., 2004b; Arshad 

et al., 2008) and salt (Mayak et al., 2004a; Cheng et al., 2007; Nadeem et al., 2007; Zahir et 

al., 2009). 
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Figure 3.1. TheYang cycle and the ethylene biosynthesis pathway. Picture is from http://commons.wikimedia.org/wiki/File:Yang-cycle.png 
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Figure 3.2. A model of plant growth promotion by ACC deaminase-containing PGPB. A. 

Catalytic activity of ACC deaminase. B. PGPB model. PGPB can attach to the surface of a 

plant cell. It can degrade the ACC exuded from the plant cell to ammonia and α-

ketobutyrate. To maintain the equilibrium between the interior and external ACC levels, 

more ACC is exuded and drawn away from the ethylene synthesis pathway. Thus, PGPB that 

express ACC deaminase effectively reduces ethylene synthesis in plants. (Glick et al., 1998) 
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3.1.3 Agrobacterium sp. 

 Agrobacterium sp. is a Gram negative soil bacterium that can cause crown gall or 

hairy root disease of plants. Accordingly, the two major species have been named A. 

tumefaciens (Smith and Townsend, 1907) and A. rhizogenes (Riker et al., 1930), reflecting 

their distinctive pathogenic features. The avirulent strains were named A. radiobacter 

(Beijerinck and van Delden, 1902). The infectious ability relies on the presence of the 

extrachromosomal replicons, the Ti (tumor inducing) plasmid for A. tumefaciens and the Ri 

(root inducing) plasmid for A. rhizogenes. Since the plasmid can transfer between strains and 

can also be cured, the classification and nomenclature based on pathogenicity may not be 

consistent with the natural classification of Agrobacterium species (Young et al., 2001). 

More recently, based on numerical analysis of phenotypic characters (White, 1972; Kersters 

et al., 1973; Holmes and Roberts, 1981), biochemical and physiological analysis (Keane et 

al., 1970; Kersters et al., 1973; Kerr and Panagopoulos, 1977; Holmes and Roberts, 1981), 

fatty acid methyl ester profiles (Sawada et al., 1992; Jarvis et al., 1996), and 

electrophoregrams of soluble proteins (Kersters and De Ley, 1975), the Agrobacterium sp. 

were classified into three biovars: biovar I includes most A. tumefaciens and A. radiobacter 

strains; biovar II corresponds to A. rhizogenes; and biovar III are a group of Agrobacteria 

that have a narrow host range, and are mainly found in grapevines and is now named A.vitis 

(Young et al., 2001). However, due to its very widespread use and historical reasons, the 

former nomenclature is still widely used.  

 

3.1.3.1 A. tumefaciens is a plant pathogen that causes crown gall disease  
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A. tumefaciens causes crown gall disease of a wide range of dicotyledonous plants, 

especially members of the rose family such as apples, pears, peaches, cherries, almonds, 

raspberries and roses. Crown galls usually are callus shaped, and are not protected by an 

epidermis, thus increases evaporation. The vascular tissue near and upside the gall also 

changes dramatically; the vessel diameters decrease and rays remain unlignified and become 

multiseriate (Wächter et al., 1999; Veselov et al., 2003). The host stem downside of the 

tumor remains mainly unchanged. These features ensure water and nutrition supply priority 

to the tumors. Plants carrying tumors usually grow poorly and their fruit production is greatly 

reduced. Biovar III of Agrobacteria, A. vitus, causes the growth of galls on grapevines and is 

considered to be one of the major threats to the grape industry. 

A. tumefaciens contains a large plasmid called the Ti (tumor inducing) plasmid that is 

mainly responsible for crown gall disease. Wounded plants produce some phenolic 

compounds, which can be sensed by Agrobacterium and induce the production of virulence 

protein factors encoded by the vir region of the Ti plasmid. With the help of these virulence 

protein factors, Agrobacterium can transfer a strand of DNA (T-DNA) from the Ti plasmid 

into the host plant cell and integrate it into the plant genome. The T-DNA encodes some 

oncogenic genes, including IAA and cytokinin synthesis genes and also opine synthesis 

genes. The expression of the oncogenic genes in a plant promotes production of the plant 

hormones auxin and cytokinin, leading to a breakdown in the natural balance of plant 

hormone levels within a plant. The final result is unlimited cell division and the growth of 

tumors (Sigee, 1993; Tinland, 1996), while the expression of the opine synthesis genes 

provides an energy source for Agrobacterium. Since the oncogenic genes are integrated into 

the plant genome, even after the removal of the Agrobacterium, the infected plant cannot be 
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cured. Prevention is the only method to control the disease. A. radiobacter K84, which 

produces agrocin 84 which kills noplaine producing strains of A. tumefaciens, is one of the 

most successfully used biocontrol agents and has been commercialized and used world wide 

(Farrand, 1990).  

 

3.1.3.2 A. tumefaciens is a powerful tool for plant genetic engineering  Agrobacterium’s 

ability to transfer and integrate a strand of DNA into plants makes it a very useful tool for 

plant genetic engineering. Since the transfer of T-DNA does not require the oncogenic or 

opine synthesis genes between the T-DNA borders, engineering the Ti plasmid (by removing 

all the oncogenic genes between the T-borders, and adding a plant selectable marker gene 

and multicloning sites) allows Agrobacterium to be used to transfer foreign DNA to the plant 

genome. Ti plasmids and their host Agrobacterium strains that are no longer oncogenic are 

called “disarmed.”   

 Two types of Ti-plamid derived cloning vectors, the cointegrate cloning vector and 

the binary cloing vector have been developed to deliver foreign DNA into plants (Hille et al, 

1983). The cointegrate vector contains a replication origin for E. coli, a selectable marker, a 

T-DNA right border, a target gene and a sequence that is homologous to Ti plasmid. By 

homologous recombination, the cointegrate vector will be integrated into the disarmed Ti 

plasmid which cotains T-DNA left border and vir gene cluster, thus the recombinant plasmid 

contains the target gene between the T-DNA left and right boarders (Hille et al, 1983). After 

scientists discovered that the T-DNA and the virulence (vir) genes required for T-DNA 

processing and transfer could be separated into different vectors and that the transfer would 

still be effective, binary systems were developed (Fraley et al., 1983; Hoekema et al., 1983). 
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The T-DNA and the vir region were separated into two replicons, and the vector with the T-

DNA is usually called a binary vector, which is much smaller than Ti plasmid and can be 

maintained in both E. coli and Agrobacterium. Since then, many different A. tumefaciens 

strains and binary vector systems have been developed with different features, including 

some supervirulent strains used for transformation of recalcitrant plants (Hellens et al., 2000; 

Lee and Gelvin, 2008). To date, most dicot species can be transformed routinely by 

Agrobacterium-mediated transformation. In recent years, some monocot species such as rice, 

wheat, barley and maize, some gymnosperms (Norway spruce), and even fungi have been 

transformed via Agrobacterium-mediated transformation.  

 Compared with other plant transformation methods, such as transposon insertion, 

protoplast transformation, microprojectile bombardment or particle bombardment and 

infiltration, Agrobacterium-mediated transformation has several advantages. It results in 

stable transformation, it introduces single or low copy numbers of transgenes, which reduces 

transgene silencing, and it does not need any special equipment so that the transformation 

procedure is convenient to perform. However, for some recalcitrant dicot species and most 

monocot species, especially for trees, the transformation efficiency is still very low. 

Improving the transformation efficiency will further extend the range of plants that can be 

transformed via Agrobacterium (Cheng M. et al., 2004).   

3.1.3.3 Genome sequencing progress of Agrobacterium sp.  

 As an important plant pathogen, a unique organism to be able to perform trans-

kingdom DNA transfer, and a widely used tool for plant genetic engineering, several 

Agrobacterium strains have been fully sequenced or sequencing projects are in progress. A. 
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tumefaciens strain C58, which is a representative of the biovar I of agrobacteria has been 

fully sequenced in 2001(Goodner et al., 2001; Wood et al., 2001). Most recently, two other 

A. tumefaciens strains, the biocontrol agent A. radiobacter K84, a representative of biovar II, 

and A. vitis S4 which belongs to biovar III and mainly infects grapevines, are also been fully 

sequenced (Slater et al., 2009). The genome sequencing project for A. rhizogenes A4 is 

currently under progress (http://depts.washington.edu/agro/). 

 

3.1.4 Ethylene affects A. tumefaciens induced crown gall development  

3.1.4.1 A. tumefaciens infection induces sustained ethylene production  

 It has been reported that Agrobacterium infection induces sustained ethylene 

production. As early as the 1980s, scientists noticed that carrot discs inoculated with A. 

rhizogenes or A. tumefaciens produced more ethylene than non-inoculated control plants 

(Canfield, 1983; Goodman et al., 1986). More recently, it has been reported that the ethylene 

level from A. tumefaciens induced crown galls could be many times higher than that from 

non-tumorized stems. For example, the ethylene level from A. tumefaciens C58 induced stem 

tumors of Ricinus communis (castor bean) is 140 times greater than that emitted by non-

tumorized control stems (Wächter et al., 1999). In tomatoes, ethylene evolution from isolated 

internodes carrying galls was up to 50-fold greater than that from isolated internodes of 

control plants (Aloni et al., 1998). 

 There are several sources of elevated ethylene levels. The expression of the 

oncogenic genes in transformed plant cells results in overproduction of auxin and cytokinin. 

It is known that high levels of auxin and cytokinin can stimulate the transcription of ACC 

synthase (Nakagawa et al., 1991; Olson et al., 1991; Yoon et al., 1997), one of the critical 
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enzymes for ethylene biosynthesis, so it has been proposed that the elevated production of 

ethylene is a secondary result of auxin and cytokinin synthesis in the transformed tissue. 

Recently scientists found that the Agrobacterium-plant interaction alone can induce elevated 

ethylene production. Using disarmed Agrobacterium (Agrobacterium without the tms genes) 

to transform plant or plant tissues, scientists still observed elevated ethylene production from 

the plant or explant, although compared to the ethylene levels in crown galls, it is much 

lower. For example, Ezura et al. reported that ethylene production from cotyledonary 

explants excised from the melon cotyledon was significantly increased by the disarmed 

Agrobacterium inoculation and reached 2.5 times that of the control after 90 minutes (Ezura 

H, 2000). 

 

3.1.4.2 Induced level of ethylene affects crown gall morphogenesis 

 In addition to auxin and cytokinin, the induced production of ethylene also plays an 

important role in crown gall morphogenesis and affects the severity of the crown gall 

disease. Aloni et al’s research on the anatomical structures of Agrobacterium induced crown 

galls revealed that the galls are not unorganized, but have a sophisticated vascular network 

connected to the host plant and that vascularization is a general requirement for the growth of 

the tumors (Aloni, 1995; Aloni et al., 1997; Ullrich and Aloni, 2000). Ethylene plays an 

essential role in the differentiation and development of the tumors (Ullrich and Aloni, 2000). 

In the ethylene insensitive Never ripe mutant of tomato infected by A. tumefaciens, the 

growth of the gall was severely suppressed (Aloni et al., 1998). In Ricinus communis and 

tomatoes, by exogenous application of ethrel (a chemical which is converted to ethylene in 

plants) to the wounded stem, anatomical changes developed similar to those previously 
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observed on the stem near the gall (Yamamoto et al., 1987; Yamamoto and Kozlowski, 

1987; Aloni et al., 1998; Wächter et al., 1999). 

 

3.1.4.3 Study of the effect of ACC deaminase on crown gall disease  

 As reviewed above, A. tumefaciens infection induces ethylene production in plants, 

and this increased level of ethylene is critical for crown gall tumor development and the 

severity of crown gall disease. Searching of A. tumefaciens C58 genome sequence revealed 

that it contains no putative ACC deaminase gene. One of our hypotheses is that the presence 

of an ACC deaminase enzyme, which can help reduce ethylene levels, will help to inhibit 

crown gall development and may be useful in controlling crown gall disease. To test this 

hypothesis, an ACC deaminase gene from the PGPB P. putida UW4, which showed a high 

level of ACC deaminase activity, was introduced into A. tumefaciens C58, and the virulence 

of the resulting strain was analyzed using carrot discs, tomato stems and castor bean stems. 

Wild type or an acdS- mutant strain of P. putida UW4 was also co-inoculated with A. 

tumefaciens C58 to study their effects on crown gall disease.  

 

3.1.5 A. tumefaciens D3, an Agrobacterium strain contains ACC deaminase gene 

 Although ACC deaminase encoding genes have not been found in the sequenced 

Agrobacterium genomes, there is an A. tumefaciens strain D3 which was reported to contain 

a putative ACC deaminase gene (Trott et al., 2001). This strain was first isolated from soil 

(Stuttgart, Germany) using an enrichment method for nitrile-hydrolysing bacteria and was 

found to contain nitrile hydratase and amidase activity (Layh et al., 1997). Using API and 

BIOLOG tests, strain D3 was taxonomically classified and named as A. tumefaciens (Layh et 
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al., 1997). Later, when cloning the amidase gene, a putative acdS gene and lrpL gene were 

found upstream of the amidase encoding gene (Genbank accession number: AF3155580, 

ORF3 and ORF2) (Trott et al., 2001). As in P. putida UW4 (Grichko and Glick, 2000; Li 

and Glick, 2001) and Rhizobium leguminosarum bv. viciae (Ma et al., 2003a) and many 

other species (Duan et al. 2009; Sun et al, 2009), the acdS and lrpL are located immediately 

next to each other and are oriented in the opposite direction. However, unlike in those 

strains, the lrpL gene is located downstream of the acdS structural gene in strain D3. It has 

been shown that in P. putida UW4 and R. leguminosarum bv. viciae, mutation of the lrpL 

gene affects the ACC deaminase activity of these strains (Grichko and Glick, 2000; Li and 

Glick, 2001; Ma et al., 2003 a), and it was proposed that the LrpL protein can bind ACC and 

regulate the transcription of the acdS gene (Ma et al. 2003 a).  

 The production of ACC deaminase is mainly considered as a strategy used by PGPB 

to promote plant growth. It is interesting to study why a plant pathogen might contain such a 

gene. In this study, a series of experiments were performed to characterize A. tumefaciens 

D3. First, an ACC deaminase activity assay was performed to test whether the putative acdS 

gene encodes an active ACC deaminase, and if so to characterize its activity. One lrpL and 

acdS double mutant strain D3-1 was constructed and characterized. To study whether the 

LrpL protein is the regulator of the acdS gene, the mutations were complemented using lrpL 

or acdS alone or both genes and ACC deaminase activity of the resulting strains were 

characterized. Then the A. tumefaciens D3 strain was studied for its virulence using both 

molecular techniques and virulence assays on various plant species. The wild type and lrpL 

and acdS double mutant strain of A. tumefaciens D3 were also studied for their biocontrol 

activity towards A. tumefaciens C58 induced crown gall disease using castor bean stems.  
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3.1.6 Ethylene affects A. tumefaciens mediated transformation efficiency. 

 As a useful tool for plant genetic engineering, A. tumefaciens mediated 

transformation has many advantages compared with other methods. However, the low 

transformation efficiency with many commercially important crops is the major factor 

limiting its use. A lot of effort has been made to improve A. tumefaciens mediated 

transformation efficiency with various plant species, including construction of supervirulent 

A. tumefaciens strains and Ti plasmids, use of different plant material, and optimization of 

transformation and regeneration procedures (Cheng M. et al., 2004). Among the different 

factors affecting A. tumefaciens mediated transformation efficiency, ethylene was found to 

be one thing that affected both the gene delivery efficiency and plant regeneration efficiency.  

 

3.1.6.1 Ethylene inhibits A. tumefaciens mediated gene delivery efficiency and plant 

regeneration efficiency  

 Various plant materials have been used for Agrobacterium mediated transformation. 

For example, some plants (such as Arabidopsis) can be transformed using a floral dip 

method: the flowers are dipped into an Agrobacterium cell suspension and the germline cells 

of the plants are transformed so that the transgenic seeds can then be screened. For most 

other plants, explants cut from hypocotyls, cotyledons, stems, leaves, roots or embryos are 

used, and the transformed explants or tissues are then regenerated using plant tissue culture 

methods. The ethylene level is increased during the transformation and regeneration process 

for the following reasons: the cutting of the plant material causes mechanical wounding, 

which induces the production of stress ethylene; Agrobacterium infection increases ethylene 

biosynthesis (Ezura, 2000); and during tissue culture, addition of plant hormones such as 2,4-
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Dichlorophenoxyacetic acid (2,4-D) also induces ethylene levels (Garcia and Einset, 1983). 

The elevated level of ethylene has been reported to inhibit both gene delivery efficiency and 

plant regeneration efficiency.  

 Aminoethoxyvinylglycine (AVG), an inhibitor of the enzyme ACC synthase, and 

silver ions and 1-methylcyclopropane (MCP), which inhibit ethylene binding to its receptor, 

are the most widely used ethylene inhibitors. It has been reported that application of AVG or 

Ag+ can improve transformation efficiency of many plant species, such as bottle gourd, 

cauliflower, apricot, and apple (Chakrabarty et al., 2002; Burgos and Alburquerque, 2003; 

Han et al., 2005; Petri et al., 2005; Seong et al., 2005), while application of ACC or ethylene 

to the cocultivation medium reduces Agrobacterium-mediated gene transfer efficiency 

(Ezura, 2000). Most recently, it has been reported that introduction of ACC deaminase into 

A. tumefaciens increases the efficiency of the transient gene transfer to melon cotyledon 

explants (Nonaka et al., 2008a). One possible mechanism underlining this is that ethylene 

suppresses vir gene expression of A. tumefaciens (Nonaka et al., 2008b). In some cases, the 

lack of efficient regeneration systems is the major limiting factor preventing the development 

of gene transfer technologies for many plants (Burgos and Alburquerque, 2003). The 

enhanced production of ethylene causes necrosis of the explants during histoculture, and 

many studies indicate that ethylene inhibitors can improve organogenesis and thereby 

improve transformation efficiency (Chi et al., 1990; Chraibi et al., 1991; Burgos and 

Alburquerque, 2003; Petri et al., 2005; Seong et al., 2005). 

 

3.1.6.2 Canola, an important crop with increasing demand for genetic modification 
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 Canola (Brassica napus L.) is an oilseed crop developed from the rapeseed (Brassica 

rapa) through conventional breeding. Natural rapeseed oil contains a high concentration of 

erucic acid and is not suitable for human consumption. In the 1970s, plant breeders in 

Saskatchewan, Canada developed a variety of rapeseed with low erucic acid and named it 

Canola, from Canadian oil, low acid. Since then, canola has been improved in many aspects, 

including both nutritional contents and disease and pathogen resistance. Today, canola oil is 

considered to be one of the healthiest cooking oils due to its low saturated fat content, high 

monounsaturated fat content, and the presence of omega-3 fatty acids. Canola is now one of 

the most important sources of vegetable oil, ranked second worldwide only to soybeans 

(Raymer, 2002). It is produced extensively in Canada, Europe, Asia, Australia, and the 

United States. The high protein content also makes canola an excellent source for livestock 

feed. In recent years, canola oil has also been used as a source for manufacturing biodiesel, 

which is a renewable fuel and helps reduce greenhouse gas. 

 As it is such an important crop, there is increasing interest in improving canola 

breeding. Compared with conventional breeding, which is time consuming, genetic 

engineering of canola provides an alternative to produce new cultivars in a relatively short 

time. As a close relative to Arabidopsis thaliana, a model plant whose genome has been fully 

sequenced and studied extensively, canola can benefit from the information obtained from 

Arabidopsis study (Ostergaard et al., 2006). Various transformation methods have been used 

to genetically modify canola, including microinjection, microprojectile bombardment, 

electroportion and A. tumefaciens-mediated transformation. Among these methods, A. 

tumefaciens-mediated transformation is usually the method of choice because of its ease and 

cost effectiveness.  
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Many properties of canola have been modified by genetic engineering, including 

improving oil quality (Facciotti et al., 1999; Knutzon et al., 1999; Stoutjesdijk et al., 2000; 

Katavic et al., 2001; Liu et al., 2001), introducing herbicide resistance features (Oelck et al., 

1991), and making it insect (Stewart et al., 1996) or fungal resistant (Grison et al., 1996). 

Some of the genetically modified cultivars are commercially available. For example, in 2007, 

80% of the canola growing in western Canada included genetically modified herbicide 

resistance cultivars (Canola Council of Canada, 2009). In recent years, researchers have 

moved into new directions in genetically modifying canola, including making it tolerant to 

heavy metals and other toxic compounds so that it can be used as a component of 

phytoremediation protocols (Basu et al., 2001), using it to produce pharmaceutically active 

proteins and edible vaccines (Giddings et al., 2000), and also improving it as a source for 

producing biofuel (http://www.canolacouncil.org/biodiesel/). 

Many studies have been performed to improve canola’s transformation efficiency. 

Among the plant tissues used, such as cotyledons, hypocotyl segments, mature plant stem 

segments, leaves, seedling root segments, and protoplasts, the first two have been proved to 

be the best materials for transformation and regeneration (Cardoza and Stewart, 2003; Zhang 

and Bhalla, 2004; Zhang et al., 2005; Bhalla and Singh, 2008). By optimizing the pre-

conditioning and cocultivation time, Cardoza and Stewart have reported increasing the 

transformation efficiency of B. napus cv. Westar from 4% to 25% using hypocotyl explants 

(Cardoza and Stewart, 2003). Using cotyledon explants, a 33% of transformation efficiency 

was reported for B. napus cv. Westar (Zhang et al., 2005). While most of the studies used the 

model cultivar B. napus cv.Westar, which is an old spring cultivar and is no longer grown in 

the fields due to some agronomic deficiencies, the transformation and regeneration of canola 
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is genotype dependent, and the commercialized cultivars are often recalcitrant to 

transformation. It is, therefore, important to evaluate and optimize the transformation 

protocols for commercialized cultivars.  

 

3.1.6.3 Study of the effect of ACC deaminase on A. tumefaciens mediated 

transformation efficiency to Canola hypocotyls.  

As stated above, ethylene inhibits A. tumefaciens mediated gene delivery efficiency 

and plant regeneration efficiency. Most transformation protocols require the addition of 

AgNO3 to the tissue culture medium to inhibit ethylene production and obtain higher 

transformation rates (De Block et al., 1989; Cardoza and Stewart, 2003; Bhalla and Singh, 

2008). Here it is hypothesized that the introduction of an ACC deaminase gene into A. 

tumefaciens will help its ability to genetically transform plants cells. By introducing an ACC 

deaminase gene into A. tumefaciens GV3101::pMP90, a disarmed strain that contains an A. 

tumefaciens C58 chromosome background and a Ti plasmid derived from pTiC58(Koncz and 

Schell, 1986), the transformation efficiency of the resulting strain on the model canola 

cultivar Westar as well as two cultivars that have been commercialized in Canada, the 

hybrids Hyola 401 and 4414RR, was evaluated using hypocotyl explants.  

 

3.1.7 Conclusion 

 A. tumefaciens as a plant pathogen causes crown gall disease by transferring and 

integrating oncogenic genes into plant genomes. The overproduction of the plant hormones 

auxin and cytokinin induces the biosynthesis of another plant hormone, ethylene; together, 

these plant hormones define the morphogenesis of crown galls and trigger the corresponding 
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responses of the plants carrying crown galls. An ACC deaminase gene, which can help to 

reduce ethylene level in plants by breaking down ACC, was introduced from the PGPB P. 

putida UW4 into wild type A. tumefaciens C58 and the effects of ACC deaminase on crown 

gall development was studied using tomato and castor bean plants. As an alternative means 

of studying the effect of ACC deaminase on crown gall development, the wild type P. putida 

UW4 and the acdS knockout mutant strain of P. putida UW4 were co-inoculated with A. 

tumefaciens C58, and their effects on crown gall development were also studied.  

 A. tumefaciens strain D3 has been reported to contain a putative acdS gene. To 

elucidate why a plant pathogen would contain this activity, the ACC deaminase activity, the 

root elongation promotion ability and the virulence of that strain was also studied. The wild 

type and the mutant strains were co-inoculated with A. tumefaciens C58 on wounded castor 

bean stems and their biocontrol activity was studied.  

 Disarmed A. tumefaciens is used by scientists to transfer foreign DNA into plant 

genomes and serves as a useful tool for plant genetic engineering. Although the oncogenic 

genes have been removed from the Ti plasmid, Agrobacterium infection still induces 

ethylene synthesis in plants (Ezura et al., 2000). Cutting of plant tissue before agrobacterium 

infection and histoculture processes also induce stress ethylene production. The enhanced 

levels of ethylene affect both DNA transfer and plant regeneration efficiency. The ACC 

deaminase gene was also introduced into a disarmed A. tumefaciens strain 

GV3101::pMP90(pPZP-eGFP), and the transformation efficiency of the resulting strain was 

evaluated using canola hypocotyls.  
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3.2 Materials and Methods 

 

3.2.1 Bacterial strains and plasmids used in this study and growth conditions 

 The bacterial strains and plasmids used in this study are listed in Table 3.1. A. 

tumefaciens strains were cultured in MG/L (Garfinkel and Nester, 1980) or LB medium (10 g 

tryptone, 5 g yeast extract, 10 g NaCl) at 28°C. M9 minimal medium (Atlas, 1993) 

supplemented with 0.3 mg of biotin ml-1 was used to grow A. tumefaciens cells prior to being 

assayed for ACC deaminase activity. When required, antibiotics were supplied at the 

following concentration: rifampicin (Rf), 50 μg/ml; spectinomycin (Sp), 50 g/ml; 

streptomycin (Sm), 20 g/ml; kanamycin (Km), 50 g/ml; and tetracycline (Tc), 2 μg/ml. P. 

putida strains were grown at 30°C in TSB medium (Difco Laboratories, Detroit, MI) or LB 

medium. DF minimal salts medium (Dworkin and Foster, 1958) was used for the assay of 

ACC deaminase activity. When required, 20 μg/ml of tetracycline was used. E. coli strains 

were grown at 37°C in LB medium. When required, antibiotics were supplied at the 

following concentrations: ampicillin (Ap) 100 μg/ml; Tc, 20 μg/ml; Km, 50 μg/ml; Sm, 50 

μg/ml; Sp, 50 μg/ml; chloromphenical (Cm) 17 μg/ml.  

 

3.2.2 Construction of strains 

 To construct A. tumefaciens C58(pRK415), A. tumefaciens C58(pRKACC), A. 

tumefaciens C58(pRKLACC), or A. tumefaciens C58(pWM2), plasmid pRK415, pRKACC, 

pRKLACC or pWM2 was electroporated into electrocompetent cells of A. tumefaciens C58, 

and was selected on LB agar with 2 μg/ml tetracycline. Since A. tumefaciens C58 gives rise 

to spontaneous mutants that are resistant to tetracycline at a high frequency, colony PCR or 
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plasmid minipreps was performed to confirm that the corresponding plasmid was transferred 

to the bacterium. Primers used for pRKLACC were: UW4acdS-F, acgttatccgttgaccttcg; and 

UW4acdS-R, cgaaacaggaagctgtaggc. Primers used for pWM2 were: RLacdS-F, 

ggcaaggtcgacatctatgc; and RLacdS-R, ggcttgccattcagctatg. To confirm the transfer of 

pRK415, Tcr Agrobacterium colonies were picked and plasmids were extracted and used to 

transform E. coli DH5α. Agrobacterium colonies that contain plasmids able to transform E. 

coli DH5α to tetracycline resistance were selected.  

 The binary vectors pPZP-eGFP, which contains a CAMV 35S promoter driven eGFP 

gene (reporter) and a plant selectable marker bar gene driven by an ocs promoter, (kindly 

provided by Dr. Barbara Moffatt in Department of Biology, University of Waterloo) was 

electroporated into A. tumefaciens GV3101::pMP90 to obtain the strain 

GV3101::pMP90(pPZPeGFP). The plasmid pRKLACC or the empty vector pRK415, was 

then electroporated into A. tumefaciens GV3101::pMP90(pPZP-EGFP) to obtain the strain 

YH-1, which is GV3101::pMP90(pPZP-eGFP)(pRK415), and the strain YH-2, which is 

GV3101::pMP90 (pPZP-EGFP)(pRKLACC). DNA minipreps and agarose gel 

electrophoresis were performed to confirm the transfer of the plasmids. Since the plasmid 

pRK415/pRKLACC and pPZP-eGFP belong to different incompatibility groups, they can 

simultaneously be maintained stably in A. tumefaciens.  

 A. tumefaciens D3 was obtained from Deutsche Sammlung von Mikroorganismen 

(DSM) (Braunschweig, Germany) (Agrobacterium tumefaciens D3 DSM 9674). Figure 3.3 

shows a schematic representation of the construction of the A. tumefaciens D3-1, the acdS 

and lrpL double mutant strain. The lrpL and acdS gene were PCR amplified using KOD hot 

start DNA polymerase with the following primers: D3F, cattcaaagggctaccgaaa; D3R, 

 110



ggggtcatggtaccaatctg. The 1.5 kb fragment was ligated into the HincII site of pBluescriptII 

SK(+) to get pYH1. Then the resulting plasmid was digested with HincII to get rid of the 536 

bp covering the C termini of the lrp regulator gene and acdS gene, and a tetracycline 

resistance encoding gene (from pBR322) was inserted into the HincII sites to obtain pYH2. 

The 2.2 kb fragment containing the N-termini of both lrpL and acdS and the tetracycline 

resistance gene was amplified using KOD hot start DNA polymerase using the primers D3F 

and D3R, and ligated into the SmaI site of pK19mobSacB plasmid to obtain pYH3. The 

plasmid pK19mobSacB is a broad host range vector containing a modified sacB gene from 

Bacillus subtilis which encodes the enzyme levansucrase and confers sucrose sensitivity to 

the bacteria expressing that gene. Plasmid pYH3 was conjugated into A. tumefaciens D3 

using triparental mating. Since the A. tumefaciens D3 strain is resistant to ampicillin (150 

g/ml), the transconjugants were selected on LB with Ap (150 g/ml, which counter selects 

against the donor and helper) and Tc (5 g/ml, to select for the presence of the plasmid 

pYH3). The resulting strain A. tumefaciens D3(pYH3) was then grown in liquid LB medium 

with 5 g/ml of tetracycline for 24 h to allow homologous recombination to occur between 

the wild type lrpL and acdS genes and the disrupted ones on the plasmid. Then, 100 l of 

serial dilutions of the culture were spread on LB agar with 5 g/ml of tetracycline and 5% 

sucrose to select for the mutants. Since the sacB gene confers sensitivity to sucrose, only the 

mutant resulting from a double crossover that contains a tetracycline resistance gene on the 

chromosome will be able to grow on this medium. The replacement of the wild type acdS 

gene in the mutant was then confirmed by PCR using genomic DNA as template. 

 To complement the lrpL and acdS mutations, the following primers were used to 

amplify the lrpL gene and its promter (lrpL-F, lrpL-R), the acdS gene and its promoter 
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(acdS-F, acdS-R), and both the lrpL and acdS gene and their promoters (lrpL-F, acdS-R) as 

shown in Figure 3.4: LrpL-F, tggcaggtcccgatttgtgg; LrpL-R, tttgctgatgttcggcactttt; acdS-F, 

tcaagattcgcgtcagcagc; acdS-R, gaaggttctttacgcccacc. KOD hot start DNA polymerase was 

used to amplify those fragments, and PCR products were gel purified and ligated into EcoRV 

digested broad host vector pBBR1MCS-2 (Kmr) (Kovach et al. 1995) to obtain pYH4 

(containing lrpL and it’s promoter), pYH5 (containing acdS and it’s promoter) and pYH6 

(containing both lrpL and acdS and their promoters). The three plasmids were then 

transferred to A. tumefaciens D3-1 by tri-parental conjugation using E. coli DH5α(pRK600) 

as the helper strain, and the conjugants were seletected on LB with ampicillin (150 μg/ml, 

counter selecting against the donor and helper E. coli strains) and kanamycin (80 μg/ml, to 

select for the presence of the plasmid pYH4, pYH5, or pYH6). The resulting strains were 

named A. tumefaciens D3-2 (D3-1 containing pYH4), D3-3 (D3-1 containing pYH5), and 

D3-4 (D3-1 containing pYH6).  
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Table 3.1. Strains and plasmids used in the study 

Plasmid or Bacterium Relevant features Reference or source 

Plasmids      

  pSP329 RP4 replicon, Broad-host-range vector, Tcr   Cangelosi et al., 1991 

  pWM2  
pSP329 containing the acdS and lrpL genes of  Rhizobium 

leguminosarum bv. viciae 128Sm, Tcr 

Ma et al., 2003b; Ma et 

al., 2004 

  pRK415 Broad-host-range vector, P incompatibility group, Tcr  Keen et al., 1988 

  pRKLACC 
pRK415 containing the acdS gene from Pseudomonas putida UW4 

under control of the lac promoter, Tcr 
Shah et al., 1998 

  pPZP-eGFP 

pPZP-RCS2 base T-DNA binary vector containing 2x35S promoter 

driven eGFP gene and osc promoter driven bar gene in the T-DNA 

region. pVS1 incompatibility group plasmid. Spr and Smr in 

bacteria, phoshinotricin (PPT) resistance in plants. 

Provided by Dr. Barbara 

Moffatt 

  pBluescript II SK(+) Cloning vector, Ampr Stratagene  

  pYH1 
pBluescriptII containing 1.5 kb fragment of acdS and lrpL of A. 

tumefaciens D3 at HincII site.  
This study 

  pYH2 
pYH1 with a tetracycline resistance gene replaced the 536 bp of the 

acdS and lrpL genes between the HincII sites. 
This study 



  pYH3 

pK19mobSacB with the 2.2 kb fragment containing a tetracycline 

resistance gene disrupted acdS and lrpL from pYH2 inserted into 

the SmaI restriction site. 

This study 

  pBBR1MCS-2 Broad host cloning vector. Km r.  Kovach et al. 1995 

  pYH4 

pBBR1MCS-2 with 862 bp sequence containing lrpL gene and 302 

bp upstream promoter sequence of A. tumefaciens D3 inserted into 

the EcoRV site.  

This study 

  pYH5 

pBBR1MCS-2 with 1505 bp sequence containing acdS gene and 

314 bp upstream promoter sequence of A. tumefaciens D3 inserted 

into the EcoRV site.  

This study 

  pYH6 

pBBR1MCS-2 with 2152 bp sequence containing both the acdS and 

the lrpL gene and their promoters of A. tumefaciens D3 inserted into 

the EcoRV site.  

This study 

Bacteria   

A. tumefaciens strains   

C58  
Initially isolated from cherry tree crown gall. Genome has been 

fully sequenced 

Goodner et a., 2001; 

Wood et al., 2001 

C58(pRK415)  A. tumefaciens C58 containing plasmid pRK415, Tcr 
This study 

 

C58(pRKLACC) A. tumefaciens C58 containing plasmid pRKLACC, Tcr This study 
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C58(pWM2)           A. tumefaciens C58 containing plasmid pWM2, Tcr This study 

GV3101::pMP90 
A disarmed A. tumefaciens strain with C58 chromosome 

background and Ti plasmid derived from pTiC58. Rifr 
Koncz and Schell, 1986 

GV3101::pMP90(pPZPeGFP) GV3101::pMP90 containing pPZPeGFP. This study 

YH-1 
GV3101::pMP90(pPZPeGFP)(pRK415), GV3101::pMP90 

containing pPZPeGFP and pRK415.  
This study 

YH-2 
GV3101::pMP90(pPZPeGFP)(pRKLACC), GV3101::pMP90 

containing pPZPeGFP and pRKLACC 
This study 

D3 Isolated from soil in area of Stuttgart, Germany 

Deutsche Sammlung von 

Mikroorganismen (DSM 

9674), Trott et al., 2001. 

D3-1 

acdS and lrpLdouble mutant of strain D3. The C terminal region of 

both acdS and lrpL between the HincII restriction sites were 

replaced with the tetA gene from pBR322. Tcr 

This study 

D3-2 D3-1 containing pYH4 This study 

D3-3 D3-1 containing pYH5 This study 

D3-4 D3-1 containing pYH6 This study 

Pseudomonas putida strains    

UW4 
Plant growth-promoting bacterium with high ACC deaminase 

activity 
Glick et al. 1995 
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UW4(acdS-)  
P. putida UW4 with a tetracycline resistance gene inserted into the 

acdS gene. It has no ACC deaminase activity. Tcr  
Giddings et al, 2000 

Escherichia coli strains   

DH5α recA1 and endA1 cloning strain Hanahan, 1983 

DH5α(pRK600) DH5α strain containing helper plasmid pRK600, Cmr Finan et al., 1986 
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Figure 3.3. Schematic representation of the construction of the lrpL and acdS double mutant. Wild type acdS and lrpL were PCR 

amplified using primers D3F and D3R, and the 1.5 kb fragment was ligated into the HincII site of pBluescript II SK(+) to yield pYH1. 

A 536 bp fragment between the two HincII sites covering both the C terminal region of lrpL and acdS was excised and a tetA gene 

from pBR322 encoding tetracycline resistance was ligated into the HincII digested pYH1 vector to yield pYH2. The 2.2 kb fragment 

containg the tetA disrupted acdS and lrpL was PCR amplified using D3F and D3R primers and was ligated into the SmaI site of the 

pK19mobsacB to obtain the replacement vector pYH3, which was then transferred into A. tumefaciens D3 by triparental conjugation. 

After 24 h of incubation in LB medium with Tc (5 g/ml) to allow the double homologous recombination to occur, the mutant was 

selected on LB medium containig Tc (5 g/ml) and 5% sucrose. 
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Figure 3.4. Schematic reprentation of the complementation of lrpL and acdS mutations. The gene lrpL and its promoter were amplified 

using primer lrpL-F and lrpL-R, and the PCR fragement was inserted into the EcoRV site of pBBR1-MCS2 to obtain pYH4. The gene 

acdS and its promoter were amplified using primers acdS-F and acdS-R and the amplified fragment was ligated into the EcoRV site of 

pBBR1-MCS2 to obtain pYH5. The lrpL and acdS gene and their promoters were amplified using primers lrpL-F and acdS-R and the 

PCR fragment was inserted into into the EcoRV site of pBBR1-MCS2 to obtain pYH6.  
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3.2.3 Plant varieties  

 Castor bean (Ricinus comunis Zanzibariensis) seeds were from Floribunda Seed 

Company (Indian River, ON, Canada). Tomato (Lycopersicon esculentum, cultivar 

Beefsteak) seeds were obtained from Ontario Seed Company (Waterloo, ON, Canada). 

Tobacco (Nicotiana tabacum cv. Xanthi) seeds were kindly provided by Dr. Saleh Shah 

(Alberta Research Council), Arabidopsis (Arabidopsis thaliana, cv. Columbia) seeds 

were provided by Dr. Barbara Moffat (Dept. of Biology, University of Waterloo). Canola 

seeds (Brassica napus cv. Westar, cv. Thunder, cv. Hyola401, and cv. 4414RR) were 

kindly provided by BrettYoung Seeds, Inc. (Winnipeg, MB, Canada). 

 

3.2.4 Plant growth conditions 

 The soil used was Pro-Mix BX general purpose growth medium (Premier 

Horticulture, Rivière-du-Loup, Quebec, Canada), a peat-based soil used for the 

cultivation of a variety of plants. It contains sphagnum peat moss (75%–85%, by 

volume), perlite, vermiculite macronutrients (calcium, magnesium, nitrogen, phosphorus, 

potassium, sulphur), micronutrients (boron, copper, iron, manganese, molybdenum, zinc), 

dolomitic limestone, calcite limestone, and a wetting agent. The soil pH was 

approximately 6.0. 

 Similar sized castor bean seeds were selected and soaked in water for 2-3 days 

and then were sowed in Pro-Mix BX soil in 6 inch plastic pots about 5 cm deep. Tomato 

seeds were first sowed in an eight inch plastic pot, and after germination, seedlings were 

first transplanted to 2.5 inch pots and then to 6 inch plastic pots containing Pro-Mix BX 

soil. Plants were grown in a growth chamber with 16 h of light at 25°C, with a light 



intensity of 250 μmol m-2 s-1 from cool-white fluorescent lamps (Sylvania), 8 h of dark at 

22°C, or in green house with temperatures that ranged from 18°C to 26°C and 10 to 14 h 

of daylight.  

 

3.2.5 ACC deaminase activity assay 

 To measure the ACC deaminase activity, bacterial strains were first grown in 10 

ml of LB medium with appropriate antibiotics at 28°C for approximately 24-40 h, i.e. 

until stationary phase. Cells were centrifuged at 5000 x g for 10 min and washed twice 

with M9 minimal salts (without a nitrogen source), then resuspended in 10 ml M9 

minimal medium with 5 mM ACC as the sole nitrogen source and incubated at room 

temperature for 40 h with shaking. Cells were then centrifuged for 10 min at 5000 x g and 

washed twice with 0.1 M Tris-HCl (pH 7.6) before ACC deaminase activity was 

determined by measuring the production of α-ketobutyrate as described previously 

(Honma and Shimomura, 1978; Penrose and Glick, 2003). 

 

3.2.6 Virulence assay of A. tumefaciens 

 A. tumefaciens strains were grown at 28°C with aeration in LB broth containing 

the appropriate antibiotics until late log phase (OD600 reached about 2). Cells were 

pelleted by centrifugation, resuspended in fresh LB medium and normalized to 

OD600=2.0. When serial dilutions were performed, fresh LB medium was used to dilute 

the culture.  

 Carrots purchased from a local supermarket were peeled and the ends were cut 

off. To surface sterilized them, the peeled carrots were first washed with soap and water, 
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rinsed with sterile distilled water, soaked in 10% commercial bleach for 20 min, rinsed 

with 70% ethanol, and finally rinsed 3 times with sterile distilled water. The carrots were 

cut into slices about 0.5 cm thick with a sterilized knife, and put onto 1.5% water agar in 

100 x 20 mm Petri plates, with the basal surface facing upwards. Approximately 4-5 

carrot discs can be placed on each plate. Aliquots of 15μl of the various A. tumefaciens 

suspensions were applied to the basal surface of each carrot disc and incubated at room 

temperature (~22°C) for 3 weeks.  

 Inoculation of tomato stems followed the procedure described by Aloni et al 

(1998). A V-shaped wound was made, with a single edged razor blade, in the middle of 

the main stem of three to four week old tomato plants. The wound reached about half of 

the stem width. Aliquots of 10 μl of the bacterial suspensions were applied to the 

wounded site with a pipette.  

 Inoculation of castor bean stems was as described by Aloni et al (1998). After the 

first pair of true leaves had appeared, castor bean hypocotyls were V-shape wounded, 

with a single edged razor blade, about 2 cm below the cotyledons, 10 μl of the bacterial 

suspensions (about 5 x 107 cells for the non-diluted culture) were then inoculated.  

 To test the virulence of A. tumefaciens D3, it was also inoculated on tobacco 

stems, canola stems and Arabidopsis stems using a toothpick to poke a small hole in the 

stems of these plants and apply the cell pellet. 

 The inoculated plants were grown in a growth chamber (16 h of light at 25°C, 

with a light intensity of 250 μmol m-2 s-1, 8 h of dark at 22°C) for 3 to 6 weeks before the 

tumor size and the extent of plant growth were examined.  
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3.2.7 Biocontrol assay of P. putida UW4 and A. tumefaciens D3 

 To study the effects of P. putida UW4 or A. tumefaciens D3 on the crown gall 

disease caused by A. tumefaciens C58, the bacterial cells were grown in LB medium until 

they reached early stationary phase, the culture was then diluted with LB medium to 

OD600=2.0. Tomato plants or castor bean plants were grown and cut as described in the 

virulence assay (sec 2.2.6), 10 μl of the A. tumefaciens C58 suspensions were mixed with 

10 or 20 μl of the culture suspension of UW4 or D3 and were applied onto the plant to get 

1:1 or 1:2 ratio of co-inoculation (C58:UW4 or C58:D3). Thus, for example, when co-

inoculating A. tumefaciens C58 and P. putida UW4 using a 1:1 ratio, 10 μl of each was 

applied to the same plant stem. Inoculated plants were grown in a growth chamber (16 h 

of light at 25°C, with a light intensity of 250 μmol m-2 s-1, 8 h of dark at 22°C) for 3 to 6 

weeks before examined for the presence and size of the crown gall tumors.  

 

3.2.8 Recovery of bacteria from the crown gall tumor 

 Approximately 0.1 g of fresh tumor tissue induced by A. tumefaciens C58, or A. 

tumefaciens C58(pRKLACC) was removed, weighed and macerated in a sterile saline 

solution, and following serial dilution, 100 μl of each dilution was spread on LB plates 

and incubated at 28°C overnight. Colonies were counted and colony forming units per 

gram of tumor tissue were calculated.  

 

3.2.9 Siderophore production assay 

 Siderophore produced by the wild type A. tumefaciens D3 and the mutant D3-1 

strain was analyzed using CAS (Chrome azurol S) agar (Alexander and Zuberer, 1991). 

 123



The Fe-CAS-HDTMA dye complex gives the medium a chracteristic blue color, and the 

siderophores produced by bacteria can remove Fe from the Fe-CAS-HDTMA dye 

complex so that orange halos are developed around siderophore producing bacterial 

colonies.  

 One single colony of wild type or lrpL and acdS double mutant A. tumefaciens D3 

strain was inoculated in 5 ml LB medium and incubated for 24 h at 28C, then 2 μl of 

each culture suspension were spotted on the center of each quarter of the CAS agar plate, 

and incubated for 48 h at 28C. The diameters of the orange halos were measured to 

determine the relative amount of siderophre production by the strains.  

 

3.2.10 IAA production assay 

 IAA produced by the wild type and acdS- mutant strains was measured according 

to Patten and Glick (2002) with some modifications. Single colonies of the wild type and 

acdS- mutant strains of A. tumefaciens D3 were inoculated in 5 ml M9 minimal medium 

and incubated at 28C for 24 h, and then 20 l aliquots were transferred to 5 ml M9 

minimal medium supplemented with the following concentrations of L-tryptophan 

(Sigma-Aldrich, St. Louis, MO): 50, 100, 200 and 500 g/ml. After another 42 h 

incubation at 28C, the optical density of each culture was measured at 600nm. The 

cultures were centrifuged at 6000 x g for 10 mins to remove the cells and a 50 l aliquot 

of each culture supernatant was mixed with 200 l of Salkowski’s reagent (150 ml 

concentrated H2SO4, 250 ml distilled H2O, and 7.5 ml of 0.5 M FeCl36H20 (Gordon and 

Weber, 1951)) in a 96 well microplate and incubated at room temperature for 20 min 
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before the absorbance at 535 nm was measured. Three replicates were performed for each 

sample.  

 

3.2.11 Extraction of AHLs and analytical TLC assay.  

 A. tumefaciens strains D3, D3-1, D3-2, D3-3 and D3-4 were inoculated in 5 ml 

LB medium and incubated at 28C for about 24 h until the cultures reached early 

stationary phase, then 200 l of each culture were transferred to 20 ml LB in a 100 ml 

flask and incubated for about 14 h until the cultures reached stationary phase. The QS 

signal AHLs were then extracted using ethyl acetate and analytical TLC assay was 

peformed as described in sec 2.2.7.  

 

3.2.12 Gnotobiotic root elongation assay 

 To study the plant growth promotion ability of different strains, a gnotobiotic root 

elongation assay was performed as described (Penrose and Glick, 2003). P. putida UW4, 

A. tumefaciens D3 and A. tumefaciens D3-1 were first grown in 10 ml LB medium for 

about 24 hour at 28C until the cultures reached early stationary phase. The cells were 

pelleted (5000 x g, 10 min) and washed twice with M9 minimal medium (without a 

nitrogen source) and then resuspended in 10 ml M9 minimal medium supplemented with 

3 mM ACC as the sole nitrogen source and returned to a waterbath shaker at 28°C for 24 

h to induce ACC deaminase activity. The bacterial cells were pelleted again and then 

resuspended in sterile 0.03 M MgSO4 and was adjusted to OD600 = 0.15.  

 Seed-pack growth pouches (Northrup King Co., Minneapolis, MN, USA) were 

wrapped in aluminium foil in groups of 10 and autoclaved at 121°C for 15 min. Just 
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before use, 12 ml of sterile distilled water were added to each growth pouch. Canola 

seeds (Brassica napus cv. Thuder) were disinfected as following: seeds were soaked in 

70% ethanol for 1 min, then in 20% commercial bleach for 15 min at room temperature 

with shaking at intervals, and finally the seeds were rinsed five times with sterile distilled 

water for five times.  

 The seeds were placed in petri plates and incubated at room temperature for 1 h 

with one of the following treatments: P. putida UW4 suspension, A. tumefaciens D3 

suspension, D3-1 suspension and sterile 0.03 M MgSO4 (used as a negative control). 

Following the incubation period, eight seeds were placed in each growth pouch with 

sterilized forceps and 18 pouches were used for each treatment. The pouches were 

incubated upright in a growth chamber (Conviron CMP 3244; Controlled Environments 

Ltd, Winnipeg, MB, Canada) under the following conditions: 20 ± 1°C, 12 h of light (18 

µmol m−2 s−1) and 12 h of dark. The root lengths were measured one week later. 

 

3.2.13 PCR detection of the presence of a Ti or Ri plasmid in A. tumefaciens D3  

 Total DNA of A. tumefaciens C58 (positive control) and A. tumefaciens D3 were 

extracted using a commercial genomic DNA purification kit (Promega, Madison, WI). 

Then, PCR was performed using two pairs of primers that are designed for detection of 

tumorigenic or rhizogenic Agrobacterium and have been proven to be both sensitive and 

specific to detect whether A. tumefaciens D3 contains a Ti or Ri plasmid. Primer pair 1: 

designed from tms2 gene (Pulawska and Sobiczewski, 2005): tms2F1, 

tttcagctgctagggccacatcag; and tms2R2, tcgccatggaaacgccggagtagg. Primer pair 2 
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designed from the virC operon (Sawada et al., 1995): VCF, atcatttgtagcgact; and VCR, 

agctcaaagctgcttc.  

 

3.2.14 A. tumefaciens mediated transformation and regeneration process of canola 

3.2.14.1 Media used for tranformation and regeneration 

 Seed germination medium: 0.5 x MS basal salt medium (Sigma-Aldrich, St. 

Louis, MO) with 10 g/l of sucrose, adjusted to pH5.8 using 2N NaOH and solidified 

with 4 g/l of phytagel (Sigma-Aldrich, St. Louis, MO).  

 Cocultivation medium: MS medium with 1mg/l 2,4-D (Sigma-Aldrich, St. Louis, 

MO), and 30 g/l sucrose and solidified with 4 g/l of phytagel (Sigma-Aldrich, St. 

Louis, MO). The pH is adjusted to 5.8. 

 Agrobacterium resuspension and infection medium: MS medium with 50 M of 

acetosyringone (Sigma-Aldrich, St. Louis, MO). The pH is adjusted to 5.8.  

 Callus induction medium: Cocultivation medium with 500 mg/l carbenicillin 

(Fisher scientific, Ottawa, ON) and 20 mg/l phophinotricin (PPT) (Sigma-Aldrich, St. 

Louis, MO).  

 Organogenesis medium A (OA): MS medium (pH5.8) with 4 mg/l BAP (Sigma), 

2 mg/l zeatin (Fisher scientific, Ottawa, ON), 5 mg/l silver nitrate (Sigma-Aldrich, St. 

Louis, MO), 500 mg/l carbenicillin and 20 mg/l PPT, 30 g/l sucrose and solidified 

with 4 g/l phytagel.  

 Organogenesis medium B (OB): Same as organogenesis medium A but no silver 

nitrate was added.  
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 Shoot regeneration medium: MS medium (pH5.8) with 3 mg/l BAP, 2 mg/l 

zeatin, antibiotics as above and 30 g/l sucrose and 4 g/l phytagel.  

 Shoot elongation medium: MS medium (pH5.8) with 0.05 mg/l BAP and 30 g/l 

sucrose antibiotics as above and 5 g/l phytagel.   

 Rooting medium: 0.5 x MS salts, 10 mg/l sucrose, 5 g/l phytagel and 0.5 mg/l 

indole-3-butyric acid (IBA) (Sigma-Aldrich, St. Louis, MO). Antibiotics added as 

above. The pH is adjusted to 5.8. 

 

3.2.14.2 Transformation protocol 

 Seeds of B. napus cv. Westar, B. napus cv. Hyola 401 and B. napus 4414 RR 

were kindly provided by the BrettYoung Seed Company. Seeds were surface 

sterilized by soaking in 70% ethanol for 1 min, followed by 20% commercial bleach 

for 20 min. The seeds were then rinsed 4 times with sterilized distilled water and 

planted at a density of 10-12 seeds per Petri dish (100 x 25 mm) (Fisher scientific, 

Ottawa, ON) on the seed germination medium. Seeds were germinated at 22-25C in 

darkness for 5 days for cv. Westar, 6 days for cv. 4414 RR, and 7 days for cv.Hyola 

401.  

 The transformation and regeneration protocol was modified from Cardoza and 

Stewart (2003).  

1. Hypocotyls from 5-6 day old seedlings were cut into about 1 cm pieces and 

placed on the cocultivation medium in 100 x 15 mm Petri dishes and preconditioned 

for 3 days. Approximately 20 explants were placed on each Petri dish.  
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2. Single colonies of A. tumefaciens strains YH-1 and YH-2 were grown at 28C in 

5ml LB medium with 50 g/ml of Rf, 50 g/ml Sp, 20 g/ml Sm and 2 g/ml Tc for 

about 2 days until reached early stationary phase. Culture aliquots of 100 l were 

transferred to 50 ml LB medium with the same antibiotics and subcultured overnight 

until the culture reached OD600  1. The cells were pelleted, resuspended in the 

infection medium and normalized to OD600 = 1 to get the 1x dilution. Serial dilutions 

were then performed using the infection medium to obtain 10-1 x and 10-2 x. 

3. Approximately 100-150 of the preconditioned explants were transferred to an 

empty Petri dish and 15 ml of an Agrobacterium suspension was added to the Petri 

dish to infect for 30 minutes, with gentle shaking.  

4. The explants were then transferred to the cocultivation medium and co-cultured 

for 48 h.  

5. The explants were then transferred to the callus induction medium supplemented 

with 500 mg/l carbenicillin (to kill Agrobacterium) and 20 mg/l phosphinothricin 

(PPT) (to select for transformed explant). 

6. Two weeks later, the explants were transferred to the organogenesis medium with 

(OA) or without AgNO3 (OB). 

7. After another two weeks, the calli were transferred to shoot induction medium.  

8. The calli were transferred to new shoot induction medium every 2 weeks until 

shoots emerged (usually 3-6 weeks). The shoots were then transferred to shoot 

elongation medium in 100 x 25 mm Petri dishes. With 4-5 shoots in each plate. 

9. After another 2 weeks, the elongated shoots were transferred to the rooting 

medium. 
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10. The transformed plants were then transferred to Pro-Mix soil in 6-inch pots and 

grown in a greenhouse. 

Plant tissue cultures were maintained in a growth chamber with 25C, 16 h of light 

and 8 h of dark, with a light intensity of 40 μmol m-2 s-1 from cool-white fluorescent 

lamps.  

 

3.2.14.3 Calculation of stable transformation efficiency  

 The stable transformation efficiency was caculated using the following formula: 

Transformation efficiency (TE): TE =
number of transgenic plants obtained

number of explants used for transformation
 

 

3.2.15 Estimation of bacterial population in plant tissue 

 Two days after infection with various dilutions of A. tumefaciens strain YH-1 or 

YH-2 and cocultivation on the cocultivation medium (MS with 1mg/L 2,4-D), the 

Agrobacterium population per gram of canola hypocotyl explants was estimated. Firstly, 

20 explants from each treatment were aseptically transferred to a sterile ependorf tube, 

weighed, and macerated using a flame sterilized motar and pestle. Then, sterile saline 

solution was used to prepare serial dilutions (10-1 to 10-7). Aliquots of 100 l of each 

dilution were spread on LB agar with antibiotics. After 48 h of incubation at 28C, 

colonies were counted, and the colony-forming units (CFU) per gram of plant tissue were 

calculated. Three repeats with a total of about 60 hypocotyl segments from two 

independent experiments were performed for each treatment.  

 

3.2.16 Detection of ethylene level using gas chromatography (GC) 
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 One week old canola hypocotyls were cut into 1 cm fragments and infected 

immediately with Agrobacterium. After infection, 40 to 50 explants were transferred to a 

25 ml glass vial, carefully weighed, sealed with a rubber stopper, and incubated for 24 h 

at 25C. For each treatment, 5 replicates were used. To analyze the ethylene level, 1 ml of 

the gas from each glass vial was removed using a plastic syringe and analyzed using a 

GC-17A equipped with an aluminum oxide column (Agilent technologies, HP-AL/M, 

30m x 0.537mm x 15 m) and a hydrogen flame ionization detector under the following 

conditions: injector temperature, 90C; column temperature, 50C; detector temperature, 

110C; carrier gas, Helium; and a flow rate of 5.8 ml/min. Ethylene standard was 

purchased from Alltech associates Inc (1000 ppm in Helium), and was diluted using 

Helium. The ethylene concentration in gas samples was estimated by comparing the area 

below the peaks to areas given by 1 ml of diluted ethylene standards. Ethylene production 

rates (pmol ethylene/gram fresh weight/h) were then calculated as following: 

Since NC2H4 =VC2H4/Vmol, (NC2H4, moles of C2H4; VC2H4, volume of C2H4; Vmol, molar 

volume of an ideal gas),  

and VC2H4 = VTotal x [C2H4] in ppm,  

so, NC2H4 = VTotal x [C2H4] ppm /Vmol. 

VTotal =25 ml, 

Under standard laboratory conditions (25oC (298K) and 101.3kPa (1atm)), 1 mole of an 

ideal gas (Vmol) has a volume of 24.47 liters.  

1ppm = 1/106 volume of air=10-6 volume of air 

So NC2H4 = (25ml x [C2H4] x 10-6 )/24.47 L= (25 x [C2H4] x 10-9)/24.47=1.022 x [C2H4] x 

10-9 mole=1.022 x [C2H4] x103 pmol  
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Ethylene evolution rate= NC2H4(pmol)/fresh weight (g)/time (h)= 1.022 x [C2H4] x103 

pmol/ fresh weight (g)/time (h). 

 

3.2.17 Other general protocols 

3.2.17.1 Bacterial genomic DNA extraction and plasmid extraction 

 Bacterial genomic DNA was extracted using Wizard Genomic DNA purification 

kit (Promega, Madison WI). Plasmid DNA was extracted using Wizard plus SV 

Miniprep DNA purification kit (Promega, Madison WI) or using alkaline lysis 

method (Sambrook et al., 1989).  

 

3.2.17.2 Plant genomic DNA extraction 

  Plant genomic DNA was isolated using the CTAB method (Doyle and Doyle, 

1990). About 1 g of fresh leaf tissue was frozen in liquid nitrogen and then was 

grounded to fine powder with a liquid nitrogen-cooled mortar and pestle. Then 0.2 g 

of the ground powder was transferred to a 1.5 ml Eppendorf tube and 650 l of 1.5 x 

CTAB buffer (1.5% cetyl trimethylammonium bromide (CTAB), 75mM Tris-HCl 

(pH8.0), 15mM ethylenediaminetetraacetic acid (EDTA) (PH8.0), 1.05 M NaCl) was 

added to it and mixted by votex. The mixture was incubated at 65C for 20 min. After 

incubation, the cell debris was spun down by centrifugation at 12000 x g for 5 min, 

and the supernatant was transferred to a new 1.5 ml Eppendorf tube. The supernatant 

was extracted once with an eaqual volume of 25:24:1 (phenol:chloroform:isoamyl 

alcohol) and then with an equal volume of 24:1 (chloroform:iso amyl alcohol). The 

supernatant was then transferred to a new tube and the genomic DNA was 
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precipitated by adding 1/10 volume of 3 M sodium acetate (pH 5.2) and 2 volume of 

absolute ethanol, incubated at -20C for 2 h and centrifuged at 12000 x g for 10 min. 

The supernatant was discarded and the pellet was washed with 70% ethanol once and 

air dried for 10 min at room temperature. The DNA was resuspend in 100 l sterile 

DNase free water, and RNaseA was added to a final concentration of 10 ng/ml and 

incubated for 30 min at 37C to remove RNA.  

 

3.2.17.3 Gel purification of DNA fragments 

 Gel purification of DNA fragments were performed using Wizard SV. Gel and 

PCR cleanup kit (Promega, Madison, WI) according to the manufacturer’s manual.  

 

3.2.17.4 Klenow fill in of sticky ends 

 DNA sticky ends were made blunt ended using Klenow fragment (Fermentas, 

Burlington, ON) under the following conditions (20 l system): 500 ng of DNA to be 

blunt ended, 2 l of 10 x reaction buffer, 1 l of 0.5 mM mixture of dNTPs, Klenow 

fragment (10 u), and sufficient double distilled H2O to adjust the total volume to 20 

l. The mixture was incubated at room temperature for 30 min, and then incubated at 

75C for 10 min to inactivate the enzyme.  

 

3.2.17.5 CIAP dephosphorylation of linearized plasmid DNA 

 Calf intestinal alkaline phosphatase (CIAP) was purchased from Fermentas 

(Burlington, ON). The CIAP treatment of linearized plasmid was carried out as 

following: 
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 Linearized DNA sample (90 l) (~1 μg) 

 10x CIAP buffer (15 l) 

 CIAP diluted in 1x CIAP buffer (0.01 unit/pmol ends)  

 Add double distilled H2O to a final volume of 150 l.  

 The mixture was incubated at 37C for 1 h and then 2 l of 0.5 M EDTA buffer 

(pH8.0) was added to stop the reaction. The mixture was extracted with one volume 

of phenol:chloroform (25:24) and then with one volume of 24:1 chloroform:isoamyl 

alcohol. The supernatant was transferred to a new tube and DNA was precipitated by 

adding 0.1 volume of 3 M sodium acetate buffer (pH5.2), 2 volumes of chilled 

ethanol, incubated at -20C for 2 h, and then centrifuged at 15000 x g for 10 min. The 

pellet was then rinsed with 70 % ethanol and dried before and the DNA was 

redissolved in 30 l of double distilled H2O.  

 

3.2.17.6 Electrocompetent Agrobacterium preparation and Electroporation 

process 

To prepare electrocompetent A. tumefaciens cells, a single colony of an A. 

tumefaciens strain was grown in 5ml of liquid LB medium with appropriate antitiotics 

at 28ºC with shaking until the cells reached stationary phase, then 2 ml of the culture 

was transferred to 200 ml of fresh medium and returned to the 28ºC waterbath shaker 

until the OD600 reached 0.8 to 1. The culture was centrifuged at 4ºC using Sorvall 

rotor SLA1500 for 5 min at 5000 rpm, the cell pellet was resuspended and washed 

once with 100 ml of ice cold 0.1 mM HEPES buffer in double distilled H2O, 

centrifuged as above, and then the cell pellet was washed twice with 100 ml of ice-
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cold 0.1 mM HEPES buffer in 10% glycerol. Finally, the cell pellet was resuspended 

in 1 ml of 0.1 mM HEPES in 10% glycerol and aliquoted into 100 μl volumes. To 

perform electroporation, 2 μl of the plasmids pWM2, pRK415, pRKACC or 

pRKLACC (about 300 ng) was added to 100 μl of the competent cells and transferred 

to the bottom of a pre-chilled 2 mm eletroporation cuvette (Fisherscitific, Ottwa, 

ON), and transfer of the plasmid to Agrobacterium cells was achieved using a Gene 

Pulser (Bio-rad, Hercules, CA) at 2.5 kV, 400 ohms, and 25 μF. Following 

electroporation, 1 ml of LB was added immediately and transferred to a test tube and 

allowed to recover for 2 h at 28ºC before spreading onto LB agar with antibiotics to 

select for transformants. The plates were incubated at 28ºC for about 2 days until 

colonies appeared.  

 

3.2.17.7 Tri-parental conjugation 

 E. coli DH5(pRK600) was used as the helper strain for all the tri-parental 

conjugation experiments performed in this study. The donor strain, the helper strain 

and the recipient strain were grown to stationary phase in LB medium with 

appropriate antibiotics, then 1 ml of each culture was transferred to a 1.5 ml 

microcentrifuge tube and then centrifuged at 5000 x g for 5 min, the supernatant was 

discarded and the cell pellet was resuspended in 1 ml LB medium and then 

centrifuged at 5000 x g for 5 min to wash the cells. Each of the three cell pellets was 

then resuspended in 1 ml LB and mixed together. The cells mixture was filtered onto 

a sterile nitrocellulose membrane (0.45 m, Whatman) held in a filter unit using a 

sterile plastic syringe. The membrane was incubated on top of LB agar at appropriate 
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temperature for 8 h, the cells were washed off from the membrane, serial dilutions 

were performed, and 100 μl of each dilution was spread onto LB agar with 

appropriate antibiotics to select for the conjugants.  

 

3.2.17.8 Primer design 

 All primers were designed using the commercial software Primer Premier 5.0 

(http://www.premierbiosoft.com/primerdesign/). 
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3.3 Results 

 

3.3.1 ACC deaminase and ACC deaminase containing PGPB inhibit A. tumefaciens 

C58 induced crown gall development. 

 

3.3.1.1 Construction and characterization of A. tumefaciens strains 

 Several plasmids containing an acdS gene from P. putida UW4 (high activity) or 

from Rhizobium leguminosarum bv. viciae 128Sm (low activity) were introduced into A. 

tumefaciens C58. Plasmid pWM2 contains the acdS and its regulatory sequence from R. 

leguminosarum bv. viciae 128Sm in the broad-host-range vector pSP329 (Ma et al., 

2003b; Ma et al., 2004). Plasmid pRKACC contains the acdS gene with its promoter and 

regulatory sequence from P. putida UW4 in the broad-host-range vector pRK415 (Shah 

et al., 1998), while pRKLACC contains the acdS gene from P. putida UW4 under the 

control of the E. coli lac promoter in pRK415 (Holguin and Glick, 2001). Since there is 

no lac repressor in A. tumefaciens C58, the acdS gene from pRKLACC is expressed 

constitutively. When the ACC deaminase activity of the Agrobacterium strains was 

determined (Figure 3.5), the results showed that, as expected, wild-type A. tumefaciens 

C58 and the strain containing an empty vector C58(pRK415) have no ACC deaminase 

activity, the strain with the plasmid pRKLACC or pRKACC exhibits a high level of ACC 

deaminase activity, which is similar to that of wild type P. putida UW4, while the strain 

with pWM2 shows a low level of activity. It was also confirmed that P. putida UW4-

acdS- has no ACC deaminase activity. 
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 The growth rates of different strains in MG/L or LB medium were also examined. 

For strains with plasmids, 2 μg/ml of tetracycline was added. It was found that the growth 

rates in complete medium of the different strains were similar regardless of the presence 

of any plasmid.  

 

3.3.1.2. Virulence assay using carrot discs 

  Carrots were surface sterilized and sliced into ~4 mm thick discs. A. tumefaciens 

strains were grown up to stationary phase and the cultures were adjusted to OD600 = 2 

using fresh LB medium. Serial dilutions of the Agrobacteria cultures were prepared and 

an aliquot of 15 μl of each dilution was applied on the basal surface of each carrot disc. 

The inoculated carrot discs were then incubated on top of 1.5% water agar at room 

temperature (~22°C) for 3 weeks before the tumor-inducing ability of the strains was 

determined by counting the number of carrot discs carrying tumors as well as the number 

of tumors on each disc. The results showed that there was no significant difference in the 

tumor-inducing ability among the wild type strain C58, the strain with the empty vector 

C58(pRK415) and the strain with an ACC deaminase encoding gene C58(pRKLACC) 

(Figure 3.6). 

 

3.3.1.3 Virulence assay using tomato stems. 

  Since it has previously been observed that ethylene levels are low before and 

shortly after Agrobacterium infection, and only after the tumor has been initiated does the 

ethylene level begin to increase dramatically (Goodman et al., 1986; Aloni, 1995; 

Wächter et al., 1999), it is likely that ethylene plays a more important role in tumor 
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development than in tumor initiation. Therefore, tomato plants and castor bean plants 

were used to evaluate the effect of ACC deaminase on the later phases of crown gall 

development.  

 Tomato plants are known to be very sensitive to ethylene, and it has been reported 

that crown gall development was severely diminished in ethylene insensitive Never ripe 

mutant tomato plants (Aloni et al., 1998). To study the effects of the presence of an acdS 

encoding gene in the pathogenicity of A. tumefaciens, wild-type tomato stems were 

inoculated with different A. tumefaciens strains with or without an acdS gene, and the 

size and fresh weight of the induced tumors were quantified four weeks after inoculation. 

The experiments were repeated three times with three to five replicates for each 

treatment. All experiments were performed under controlled conditions in a growth 

chamber; similar results were obtained with each replicate (Figure 3.7).  

 Unexpectedly, in terms of tumor size and fresh weight, there was no significant 

difference between the wild-type A. tumefaciens C58, the strain with the empty vector 

C58(pRK415), and the strain with ACC deaminase activity C58(pRKLACC). One 

possible explanation is that the level of ACC deaminase in the Agrobacterium cells was 

not sufficient to lower the ethylene in the infected plants to a level that could significantly 

modulate the tumor development. Another possibility was that since the Agrobacterium 

with an acdS gene can use ACC as nitrogen source, it may survive/proliferate better in 

the tumor than the wild type. Although we inoculated the same number of cells on the 

plant stem, after the first several days of inoculation, A. tumefaciens C58(pRKLACC) 

might survive better and proliferate faster on the plant stem, and infect more plant cells. 

Thus, although the ACC and ethylene levels may have been reduced to a greater extent in 
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the tumor induced by A. tumefaciens C58(pRKLACC) than in tumors induced by A. 

tumefaciens C58 or A. tumefaciens C58(pRK415), the increased number of 

Agrobacterium cells could counteract the effect of the lowered ethylene on the total 

tumor fresh weight. To test this possibility, Agrobacterium cells were recovered from 

four-week old tumors and the colony forming units (CFU) per gram of tumor tissue were 

calculated. In fact, it was found that there were approximately twenty times more 

bacterial cells in the tumor induced by A. tumefaciens C58(pRKLACC) than bacterial 

cells in the tumor induced by A. tumefaciens C58 (i.e., 8.2  1.4 x 106 CFU per gram vs. 

4.2  1.1 x 105 CFU per gram. Data was obtained from 3 independent tumors for each 

treatment). 

 Since expressing acdS in Agrobacterium makes the bacteria grow better on the 

wounded plant stem, it becomes difficult to evaluate any inhibitory effects of ACC 

deaminase on crown gall development. To obviate this problem, wild-type A. tumefaciens 

C58 was co-inoculated with either wild-type ACC deaminase-containing plant growth 

promoting bacteria P. putida UW4 or P. putida UW4-acdS- (the ACC deaminase minus 

mutant of this bacterium), using a 1:1 ratio of cell numbers. The only difference between 

P. putida UW4 and P. putida UW4-acdS- is that the latter has no ACC deaminase 

activity. The results showed that in both cases the tumor fresh weight was significantly 

reduced (Figure 3.7). A comparison of the tumor fresh weight for the co-inoculation of A. 

tumefaciens C58 with wild-type and mutant P. putida UW4 indicates that the tumor fresh 

weight is about 20-30 percent lower when A. tumefaciens C58 is co-inoculated with wild-

type P. putida UW4 than with P. putida UW4-acdS-. This means that ACC deaminase 

contributes to the inhibition of crown gall tumor development. However, even the mutant 
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strain of P. putida UW4 has a significant effect on reducing tumor growth. The fresh 

weight of the tumor is only about half of that inoculated with A. tumefaciens C58 alone 

(Figure 3.7 B). This suggests that mechanisms other than ACC deaminase are operative 

in this case. To investigate whether these effects are unique to tomato plants, additional 

experiments were performed with castor beans.  
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Figure 3.5. ACC deaminase activity assay of different strains. Abbreviations: C58, A. 

tumefaciens C58; C58(pRK415), A. tumefaciens C58(pRK415); C58(pRKACC), A. 

tumefaciens C58(pRKACC); C58(pRKLACC), A. tumefaciens C58(pRKLACC); UW4: 

P. putida UW4; UW4-acdS-, P. putida UW4-acdS-. The bars are standard errors from 3 

independent test. 
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Figure 3.6. Carrot discs inoculated with different dilutions of A. tumefaciens strains. 

Pictures were taken three weeks after inoculation. Row 1 to Row 3, carrot discs 

inoculated with 10-2 (row 1), 10-3 (row 2) or 10-4 (row 3) dilution of OD600 = 2 cultures of 

A. tumefaciens C58 (left), A. tumefaciens C58(pRK415) (middle) and A. tumefaciens 

C58(pRKLACC) (right)..
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Figure 3.7. Virulence assay using tomato stems. A: Example of four week old crown gall 

tumors on wild type tomato stems induced by different treatments: 1, A. tumefaciens C58; 

2, A. tumefaciens C58(pRK415); 3, A. tumefaciens C58(pRKLACC); 4, A. tumefaciens 

C58 and P. putida UW4-acdS-; 5, A. tumefaciens C58 and P. putida UW4; 6, saline water 

control. The bar at the bottom represents 1 cm. B: Fresh weight of tumors on tomato 

stems induced by different treatments as indicated. The results were obtained from 6 

plants for each treatment. The bars are standard errors.  
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3.3.1.4 Virulence assay using castor bean stems 

 Infection of castor bean plants by A. tumefaciens C58 results in the formation of 

large tumors on the stem as well as the inhibition of plant growth (Figure 3.8). This 

makes it an attractive system to examine the effects of various treatments on tumor 

growth. Castor bean plants were inoculated with different Agrobacterium strains with or 

without acdS, and after four to six weeks, tumor size as well as plant growth were 

measured. The experiment was repeated five times, each time with three to five replicates 

for each treatment. Since seed size can affect growth of the castor bean plants, seeds of 

similar size were used for each replicate. The size of the tumors induced by wild-type A. 

tumefaciens C58 at different times can vary substantially. Thus, the data for each time 

point was analyzed separately and it was found that although the absolute values were 

different, the trends were the same. The tumors induced by strain A. tumefaciens 

C58(pRKLACC) were always smaller than the tumors induced by wild-type strain A. 

tumefaciens C58 or strain A. tumefaciens C58(pRK415), and the castor bean plants 

inoculated with A. tumefaciens C58(pRKLACC) always grew better than plants 

inoculated with A. tumefaciens C58 or A. tumefaciens C58(pRK415). Figure 3.9 and 

Figure 3.10 showed the results of one experiment. Figure 3.11 showed results from 

another experiment. The variation notwithstanding, in all cases, the results showed that 

the size of the tumor is significantly reduced when the ACC deaminase gene is expressed 

in A. tumefaciens. For the plants inoculated with A. tumefaciens C58(pRKLACC), the 

shoot length is 20-30% greater than plants inoculated with A. tumefaciens C58 or A. 

tumefaciens C58(pRK415) (Figure 3.10).  
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 Similar to what has been found using tomato plants, when Agrobacterium cells 

were recovered from the tumor, there were about twenty times more Agrobacterium cells 

for every gram of tumor induced by strain A. tumefaciens C58(pRKLACC) than was 

found when wild-type A. tumefaciens C58 was used (i.e., 7.9  1.2 x 106 vs. 2.6  0.9 x 

105. Data was obtained from 3 independent tumors for each treatment).  

 In order to obviate the complication that A. tumefaciens C58 expressing an acdS 

gene proliferated to a greater extent within the tumor than the wild-type, A. tumefaciens 

C58 was co-inoculated with either P. putida UW4 (wild-type) or UW4-acdS- (acdS 

knockout mutant). The experiments were performed with three or five replicates for each 

treatment and repeated twice. The data in Figure 3.12 is from one experiment. Consistent 

with the results observed using tomato stems, tumor size was significantly reduced when 

the plants were co-inoculated with A. tumefaciens and P. putida UW4 using a 1:1 ratio 

(Figure 3.12 A). The wild-type P. putida UW4 with ACC deaminase activity was more 

effective than P. putida UW4-acdS- in inhibiting tumor development. The tumor fresh 

weight was reduced about 40% when P. putida UW4-acdS- was applied and by 

approximately 55% reduced when wild-type P. putida UW4 was applied (Figure 3.12 B). 
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Figure 3.8. Growth of castor bean plants with and without tumor. Left, six week old 

castor bean plants with a four week old tumor caused by A. tumefaciens C58. Right, six 

week old castor bean plants that are not infected with A. tumefaciens C58. 
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Figure 3.9. Crown gall tumors induced by A. tumefaciens C58, A. tumefaciens 

C58(pRK415) and A. tumefaciens C58(pRKLACC). Four week (first row), Five week 

(second row) and six week (third row) old tumors on castor bean stems induced by A. 

tumefaciens C58 (left column), A. tumefaciens C58(pRK415) (middle column) or A. 

tumefaciens C58(pRKLACC) (right column). The bar at the bottom represents 1 cm. 
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Figure 3.10. Length of castor bean stems from the tumor induced by different treatments 

(or the wound site of control plants) to the shoot apex (cm). Treatments: C58, A. 

tumefaciens C58; C58(pRK415), A. tumefaciens C58(pRK415); C58(pRKLACC), A. 

tumefaciens C58(pRKLACC); Control, uninoculated control. The results were obtained 

from 3 replicates for each treatment. The vertical bars that do not possess the same letter 

(a or b) are statistically different (Student’s t test with  < 0.05).  The error bars are 

standard errors. The plants were from the same experiment as those shown in Figure 3.9. 
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Figure 3.11. Six week old castor bean tumors induced by A. tumefaciens C58 (first row) 

or A. tumefaciens C58(pRKLACC) (second row). Each treatment includes three repeats 

(from left to right). The bar at the bottom represents 1 cm. 
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Figure 3.12. Co-inoculation of A. tumefaciens C58 with P. putida UW4 or UW4-acdS-. 

A, typical four week (upper row) and six week (lower row) old castor bean tumors 

resulting from inoculation with A. tumefaciens C58 alone (left column), or co-inoculation 

of A. tumefaciens C58 with a 1:1 ratio of either P. putida UW4-acdS- (middle column) or 

P. putida UW4 (right column). The bar at the bottom represents 1 cm. B, fresh weight of 

six week old castor bean plant stem tumors resulting from the corresponding treatment 

indicated. The results were obtained from 3 replicates for each treatment.  
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3.3.2 An ACC deaminase containing A. tumefaciens strain D3 shows plant growth 

promoting activity and biocontrol activity to crown gall disease 

 

3.3.2.1 Characterization of the ACC deaminase activity of the wild type A. 

tumefaciens D3 strain.  

 Although Trott et.al. (2001) reported that A. tumefaciens D3 strain contains a 

putative ACC deaminase gene and the DNA sequence analysis revealed that it shows 

66.9% amino acid sequence identity to the ACC deaminase protein of Pseudomonas. sp. 

strain ACP (Q00740) (Trott et. al. 2001), no ACC deaminase activity assay was 

performed. To test whether the putative acdS gene encodes an active ACC deaminase 

enzyme, and to characterize the activity, an in vitro ACC deaminase activity assay was 

performed as described in the Materials and Methods. It was found that A. tumefaciens 

D3 displays ACC deaminase activity that is about four times that of R. leguminosarum 

bv. viciae 128Sm, but only about 1/5th of the activity found in strain P. putida UW4 

(Figure 3.13). 

 

3.3.2.2 Construction and characterization of lrpL and acdS knockout mutant. 

 Similar to what has been observed in P. putida UW4 (Grichko and Glick, 2000; 

Li and Glick, 2001) and R. leguminosarum bv. viciae 128Sm (Ma et al., 2003a) and many 

other species (Duan et al, 2009; Prigent-Combaret et al., 2008), the lrpL and acdS genes 

are located adjacent to each other and oriented in the opposite direction. However, unlike 

what has been found in many other species, the lrpL gene is located downstream of the 

acdS gene. The C-terminal fragments of both of the lrpL and acdS genes were replaced 
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with a tetracycline resistance gene to construct the acdS and lrpL double mutant strain A. 

tumefaciens D3-1 as described in the Materials and Methods. Replacement of the wild 

type lrpL and acdS genes in the mutant was confirmed by PCR using primers D3-F and 

D3-R (Figure 3.14). As expected, when using the wild type D3 genomic DNA as the 

template, a 1.5 kb fragment containing the wild type acdS and lrpL genes was amplified, 

while when using the genomic DNA of the mutant strain D3-1 as the template, a PCR 

fragment of 2.2 kb which encodes the N terminal fragments of the acdS and lrpL genes 

and the inserted tetA gene was obtained. An ACC deaminase activity assay confirmed 

that the mutant strain lost the ability to degrade ACC (Figure 3.13). Since it had been 

previously found that mutation of the acdS gene in Burkholderia phytofirmans PsJN 

affects the siderophore and IAA production of the bacterium (Sun et al, 2009), the wild 

type strain A. tumefaciens D3 and the mutant strain A. tumefaciens D3-1 were analyzed 

for their ability to produce siderophores and IAA. Unlike in B. phytofirmans PsJN, it was 

found that there is no difference between the wild type and mutant strains of A. 

tumefaciens D3 in terms of both siderophore and IAA production (Figure 3.15 and Figure 

3.16). However, when the QS signal acyl homoserine lactones (AHLs) were extracted 

from the culture supernatants and analyzed using thin layer chromatography (TLC), it 

was found that the wild type D3 strain produced and secreted a major AHL that shows a 

migration rate and shape that is similar to the compound C6 HSL, while the mutant strain 

D3-1 is severely reduced in its ability to produce this compound (Figure 3.17 lane D3 and 

D3-1).  

 

3.3.2.3 Complementation of the D3-1 mutant. 
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To complement the lrpL and/or acdS mutations of A. tumefaciens D3-1, pYH4, 

pYH5 and pYH6 were constructed by inserting the lrpL gene from A. tumefaciens D3 and 

its upstream promoter (pYH4), the acdS gene from A. tumefaciens D3 and its upstream 

promoter (pYH5), or both the lrpL and acdS genes and their upstream promoters (pYH6) 

into the EcoRV site of the broad host vector pBBR1MCS-2. Insertions of these fragments 

were confirmed by restriction digestion using restricition enzymes EcoRI and HindIII 

(Figure 3.18 A). As expected, digestion of pYH4 gave a fragment of about 860 bp, an 

insert of about 1.5 kb was excised from pYH5, and digestion of pYH6 showed an insert 

of about 2.1 kb. The clones were sequenced to confirm that no mutation was introduced. 

The plasmids were introduced into to A. tumefaciens D3-1 by conjugation to obtain A. 

tumefaciens D3-2 (containing lrpL in pYH4), A. tumefaciens D3-3 (containing acdS in 

pYH5) and A. tumefaciens D3-4 (containing lrpL and acdS in pYH6). By performing 

minipreps and agarose gel electrophoresis, the presence of the corresponding plasmids in 

those strains was confirmed (Figure 3.18 B). When inoculated in M9 minimal medium 

with ACC as the sole nitrogen source, it was found that only the wild type strain A. 

tumefaciens D3 and strain A. tumefaciens D3-4 in which both the lrpL and acdS genes 

were complemented were able to show obvious growth (Figure 3.19 A). An ACC 

deaminase activity assay revealed that A. tumefaciens D3-4 has a level of ACC 

deaminase activity that is about twice that of the wild type A. tumefaciens D3 strain; 

strain A. tumefaciens D3-3 in which the acdS and its promoter were provided in plasmid 

pYH5 showed a level of ACC deaminase activity that is about 1/5th of that found in the 

wild type A. tumefaciens D3 strain; while A. tumefaciens D3-1 and A. tumefaciens D3-2 

showed no detectable activity (Figure 3.19 B). This result is consistent with the notion 
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that similar to what has been demonstrated in P. putida UW4 (Grichko and Glick, 2000; 

Li and Glick, 2001) and R. leguminosarum (Ma et al., 2003 a), the lrpL gene is the 

regulator of the acdS gene in A. tumefaciens D3.  

In order to study whether the complementation of the lrpL and/or acdS genes 

would be able to restore the QS signal production ability of A. tumefaciens D3-1, the 

culture supernatants of A. tumefaciens D3-2, D3-3 and D3-4 were extracted twice with 

equal volumes of ethyl acetate, and the extractions were analyzed using TLC. It was 

found that all three strains were able to produce an active signal that formed a tailed spot 

that migrated on a TLC plate in a manner that was similar to 3-O-C8 HSL (Figure 3.17).  
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Figure 3.13. ACC deaminase activity assay: UW4, Pseudomonas putida UW4; 128Sm, 

Rhizobium leguminosarum bv. viciae 128Sm; D3, A. tumefaciens D3; D3-1, lrpL and 

acdS double mutant strain A. tumefaciens D3-1. Bars were standard errors from 3 

replicates.  
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 Figure 3.14. PCR confirmation of the construction of the A. tumefaciens D3-1 mutant 

strain. M, molecular weight marker (GeneRuler 1kb DNA Ladder, Fermentas, 

Burlington, ON). Lane 1, PCR product using the total DNA of wild type A. 

tumefaciens D3 as template. Lane 2, PCR product using the total DNA of A. 

tumefaciens D3-1 as template. 
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Figure 3.15. Siderophore production assay of the wild type A. tumefaciens D3 strain 

and the mutant D3-1 strain. All the orange halo diameters were estimated to be ~1.3-

1.4 cm, and the colony diameters were ~0.5 cm.  
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IAA production ((g/ml/OD600 unit) Tryptophan 

concentration (g/ml) Wild type (D3) Mutant (D3-1) 

50 14.23  0.44 11.72  0.24 

100 27.85  0.8 27.5  0.16 

200 31.69  0.36 32.34  0.53 

500 53.89  0.7 56.39  0.51 

 

Figure 3.16. IAA production of the wild type A. tumefaciens D3 (solid bars) and acdS 

and lrpL mutant D3-1 strain (empty bars) when supplied with different concentrations 

of tryptophan. Bars represent standard errors obtained from 3 replicates. 
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Figure 3.17. Analytical TLC assay of QS signals produced by A. tumefaciens strain 

D3 and D3-1. S1, synthetic standards 3-O-C6 HSL and 3-O-C8 HSL. S2, synthetic 

standards C6 HSL, C8 HSL, and C10 HSL. D3, D3-1, D3-2, D3-3 and D3-4: AHLs 

extracted from 5 ml of A. tumefaciens D3, D3-1, D3-2, D3-3 or D3-4 stationary phase 

culture supernatant 
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Figure 3.18. Construction of A. tumefaciens strains D3-2, D3-3 and D3-4. 

A. EcoRI and HindIII digestions of pYH4, pYH5 and pYH6. Lane M, molecular weight 

marker (GeneRuler 1kp DNA Ladder, Fermentas, Burlington, ON); Lane 1, pYH4; land 

2, pYH5; and lane 3, pYH6.  

B, Minipreps from A. tumefaciens D3-2, D3-3 and D3-4. Lane M, molecular weight 

marker (GeneRuler 1kp DNA Ladder, Fermentas, Burlington, ON); lane 1-3, control for 

plasmids pYH4 (lane 1), pYH5 (lane 2) and  pYH6; lane 4 (lane 3); lane 4-6, plasmids 

exacted from A. tumefaciens D3-2 (lane 4), D3-3 (lane 5) and  D3-4 (lane 6).  
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Figure 3.19. ACC deaminase activity assay of strains A. tumefaciens D3, D3-1, D3-2, 

D3-3 and D3-4.  

A. Growth of A. tumefaciens D3, D3-1, D3-2, D3-3 and D3-4 in M9 minimal medium 

with ACC as the sole nitrogen source.  

B. ACC deaminase activity of A. tumefaciens D3, D3-1, D3-2, D3-3 and D3-4. Bars are 

standard errors from 3 replicates.  
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3.3.2.4 Gnotobiotic root elongation assay 

 A gnotobiotic root elongation assay was performed for the wild type A. 

tumefaciens D3 strain and the lrpL and acdS double mutant strain A. tumefaciens D3-1. 

P. putida UW4 was used as a positive control. Canola seeds were sterilized and treated 

with suspensions of P. putida UW4, A. tumefaciens D3, A. tumefaciens D3-1 or 0.03 M 

MgSO4 buffer (as negative control) before transfer to sterile growth pouches and 

incubation in a growth chamber at 20 1C as described in Sec 3.2.12. The root lengths 

of the canola seedlings were measured one week later. It was found that the average root 

length treated with A. tumefaciens D3-1 is similar to that treated with MgSO4 buffer 

(average length is 6.09 and 6.12 cm respectively), while the average root length treated 

with wild type A. tumefaciens D3 strain is 7.07 cm, and the average root length treated 

with P. putida UW4 is 8.13 cm, both of which are significantly longer than the previous 

two treatments (student t test, p<0.001) (Figure 3.21). This result indicates that wild type 

A. tumefaciens D3 promotes canola (Brasica napus cv. Thunder) root elongation to a 

lesser degree than P. putida UW4, while the acdS mutant strain A. tumefaciens D3-1 

shows no root elongation promotion activity. 
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Figure 3.20. Gnotobiotic root elongation assay.  

A. One-week-old canola seedlings germinated from seeds treated with P. putida 

UW4, A. tumefaciens D3, A. tumefaciens D3-1 or MgSO4 buffer.  

B. Average root length of one-week-old canola after treatment with P. putida UW4, 

A. tumefaciens D3, A. tumefaciens D3-1 or MgSO4 buffer. Error bars represent 

standard errors obtained from about 100 samples. The bars labelled with different 

letters were significantly different from one another (student t-test, p<0.001).  
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3.3.2.5 PCR detection of the presence of a Ti or Ri plasmid and virulence assay 

The A. tumefaciens strain D3 was taxonomically classified and named according 

to the API and BIOLOG tests (Layh et al., 1997); however, there are no reports regarding 

the virulence of this strain. To test its virulence, firstly, two pairs of primers that were 

designed for detection of tumorigenic or rhizogenic Agrobacterium and have been proven 

to be both sensitive and specific were used to detect whether A. tumefaciens D3 contains 

a Ti or Ri plasmid. Primer pair 1 was designed from the conserved region of tms2 gene 

(Pulawska and Sobiczewski, 2005): tms2F1, tttcagctgctagggccacat ag; and tms2R2, tcg 

ccatggaaacgccggagtagg. Primer pair 2 was designed according to the conserved region of 

the virC operon (Sawada et al., 1995):VCF, atcatttgtagcgact; and VCR, agctcaaagctgcttc. 

The PCR results using primer pair 1 showed that there was no product that was amplified 

from the genomic DNA of A. tumefaciens D3, while for the virulent strain C58, there was 

a specific band at a size of about 800 bp. Using primer pair 2, A. tumefaciens C58 showed 

a specific PCR product at the size of about 750 bp, while for strain D3, no specific PCR 

product was detected (Figure 3.21).  

 Secondly, a virulence assay was performed using carrot discs, tomato 

(Lycopersicon esculentum, cv. Beefsteak) stems, and castor bean (Ricinus comunis 

Zanzibariensis) stems. It was found that A. tumefaciens D3 does not induce tumors or 

hairy roots on any of these plants (Figure 3.22). A virulence assay was also performed 

using tobacco (Nicotiana tabacum cv. Xanthi) stems, canola (Brassica napus cv. Westar) 

stems and Arabidopsis (Arabidposis thaliana, cv. Columbia) stems; similarly none of 

these plants showed any tumors or hairy roots (data not shown).  
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3.3.2.6 Biocontrol assay 

 To study whether A. tumefaciens D3 can inhibit the crown gall disease caused by 

A. tumefaciens C58, a biocontrol assay was performed using castor bean plants as 

described in the Materials and Methods (Sec 2.2.7). For comparison, P. putida UW4 was 

also co-inoculated with A. tumefaciens C58. Four weeks after inoculation, the tumor sizes 

were examined (Figure 3.23). Consistent with the results presented earlier (Sec 3.3.1.4), 

co-inoculation of P. putida UW4 with A. tumefaciens C58 significantly inhibited the 

tumor development (Figure 3.23 row 2 and row 3). Inoculation using a 2:1 (UW4:C58) 

cell number ratio provides better inhibition of the crown gall disease than using a 1:1 

(UW4:C58) cell number ratio. The results also showed that, in comparison to P. putdia 

UW4, although A. tumefaciens D3 has a lower level of ACC deaminase activity, it 

exhibits a better biocontrol activity towards A. tumefaciens C58 induced crown gall 

disease. The tumor was almost completely inhibited when co-inoculated using either a 

1:1 (D3:C58) or a 2:1 (D3:C58) cell number ratio (Figure 3.23 row 4 and 5).  

 To investigate if ACC deaminase is critical for the biocontrol activity, in a second 

experiment, the lrpL and acdS mutant strain A. tumefaciens D3-1 was also co-inoculated 

with A. tumefaciens C58 using a 1:1 cell number ratio on wounded castor bean plant 

stems. It was found that although the wild type D3 strain shows a slightly better 

biocontrol activity than the mutant strain D3-1, in these experiments the difference is not 

significant (Figure 3.24).  
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Figure 3.21. PCR detection of the presence of a Ti or Ri plasmid in A. tumefaciens D3.  

A. PCR results using primer pair 1: Lane M, molecular weight markers (GeneRuler 100 

bp DNA Ladder, Fermentas, Burlington, ON); lane 1, genomic DNA of A. tumefaciens 

D3; lane 2, genomic DNA of A. tumefaciens C58; lane 3, PCR product for A. tumefaciens 

D3; lane 4, PCR result for A. tumefaciens C58.  

B. PCR results using primer pair 2: Lane M, molecular weight markers (λ 

DNA/EcoRI+HindIII, Fermentas, Burlington, ON); lane 1, PCR product for A. 

tumefaciens C58; lane 2. PCR result for A. tumefaciens D3. 
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Figure 3.22. Virulence assay of A. tumefaciens D3. Row 1, carrot discs three weeks 

after inoculation with A. tumefaciens C58 (left) or A. tumefaciens D3 (right). Row 2, 

tomato stems three weeks after inoculation with A. tumefaciens C58 (left) or A. 

tumefaciens D3 (right). Row 3, castor bean stems four weeks after inoculation with A. 

tumefaciens C58 (left) or A. tumefaciens D3 (right).  
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Figure 3.23. Biocontrol activity assay of A. tumefaciens D3 using castor bean plant 

stems. The castor bean plant stems were V-shape wounded and were inoculated with 

10 l of A. tumefaciens C58 culture suspension alone (row1), or with a mixture of A. 

tumefaciens C58 and P. putida UW4 (row 2 and row 3), or a mixture of A. 

tumefaciens C58 and A. tumefaciens D3 (row 4 and row 5), using a 1:1 ratio (10 μl of 

each culture suspension) or 2:1 ratio (20 μl of UW4/D3 and 10 μl of C58 culture 

suspension). The control plants were inoculated with LB medium. The pictures were 

taken four weeks after inoculation.  
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Figure 3.24. Biocontrol activity assay of A. tumefaciens D3 and D3-1 strains. 

Row 1, inoculated with 10 l of A. tumefaciens C58 culture suspension alone. 

Row 2, co-inoculation of A. tumefaciens C58 and A. tumefaciens D3 using a 1:1 cell 

number ratio (10 μl of each culture suspension). 

Row 3, co-inoculation of A. tumefaciens C58 and A. tumefaciens D3-1 using a 1:1 

cell number ratio (10 μl of each culture suspension). 

Row 4, control that is inoculated with fresh LB medium. 

Plants were grown in a greenhouse. The pictures were taken four weeks after 

inoculation. 
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3.3.3 ACC deaminase improves A. tumefaciens mediated transformation efficiency 

to canola 

 

3.3.3.1 Construction and characterization of A. tumefaciens strains.  

A. tumefaciens strains GV3101::pMP90(pPZP-eGFP), YH-1 and YH-2 were 

constructed as described in the Materials and Methods. The presence of the plasmids was 

confirmed by performing plasmid minipreps and agarose gel electrophoresis (Figure 3.25 

A). When inoculated in M9 minimal medium with ACC as the sole nitrogen source, 

strain A. tumefaciens YH-2, which contains an ACC deaminase gene, was able to grow, 

while the Agrobacterium strain with the empty plasmid pRK415 (YH-1) could not grow 

(Figure 3.25, B), which indicated that the ACC deaminase gene was expressed and active 

in A. tumefaciens YH-2. During an in vitro ACC deaminase activity assay, the A. 

tumefaciens strain YH-2 showed an activity of about 2.5 mol -ketobutyrate/mg 

protein/hour, while the strains GV3101::pMP90(pPZP-eGFP) and YH-1 showed no 

detectable activity (Figure 3.25, C).  

 

3.3.3.2 Transformation efficiency assay 

 The canola hypocotyl segments were transformed and regenerated as described in 

the Materials and Methods. Figure 3.26 shows the different stages of the transformation 

and regeneration process. When observed using a fluorescent microscope, the transgenic 

calli and shoots were able to produce faint green fluorescence (data not shown). Since the 

untransformed control calli and shoots were also able to produce some background 

fluorescence, the genomic DNA was extracted from the regenerated plants and PCR was 
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performed using primers specific for the eGFP gene to confirm its presence in the 

transgenic plants. It was found that all of the 11 randomly selected regenerated plants 

contain the eGFP gene (Figure 3.27). Transformation frequencies were determined using 

the following formula: Transformation frequency = the number of transgenic plants 

obtained / the number of hypocotyl segments used for transformation.  

Table 3.2 shows the transformation frequencies obtained for the three canola 

cultivars using different dilutions of A. tumefaciens YH-1 orYH-2. Of the three dilutions 

used, when using organogenesis medium A (OA), for both strains YH-1 and YH-2, the 

cultivars Westar and 4414 RR showed the highest transformation frequency when using 

1x dilution (OD600 = 1 culture suspension), while for Hyola 401, the optimal condition 

was 0.1x dilution (OD600 = 0.1 culture suspension). The presence of the ACC deaminase 

gene in strain YH-2 significantly increased the transformation frequency of all three 

cultivars when optimal dilutions were used. For the Westar cultivar, using A. tumefaciens 

YH-1, the highest transformation frequency obtained was 8.66%, while the A. 

tumefaciens strain YH-2 gave a peak transformation frequency of 13.16%. For the canola 

cultivar 4414RR, the presence of ACC deaminase increased the transformation frequency 

from 8.64% to 12.35%. For the cultivar Holya 401, when using a 0.1x dilution, the A. 

tumefaciens YH-1 gave a transformation frequency of 2.92%, while A. tumefaciens YH-2 

gave a transformation frequency of 6.5%.  

It is well known that omitting the ethylene inhibitor AgNO3 from the 

organogenesis medium severely inhibits plant regeneration and thus the transformation 

efficiency (Eapen and George, 1997). To study whether the introduction of an acdS gene 

can replace the role of AgNO3, the transformation efficiency was also compared for the 
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two A. tumefaciens strains YH-1 and YH-2 using organogenesis medium B (OB) which 

does not contain AgNO3. Similar to the results obtained using OA medium 

(organogenesis medium with AgNO3), the presence of ACC deaminase in A. tumefaciens 

YH-2 increases the transformation efficiency. For example, for the cultivar 4414RR, 

when transformed with a 1x dilution of A. tumefaciens YH-1, when OB organogenesis 

medium was used, of the 111 explants used for transformation, no transgenic plants were 

obtained, while for A. tumefaciens YH-2, which contains an ACC deaminase gene, a 

transformation frequency of 2.94% was obtained. However, compared to using OA 

medium, the transformation frequency obtained with both A. tumefaciens YH-1 and 

YH-2 strains were significantly lower, which indicates that the presence of ACC 

deaminase can only partially replace AgNO3 in inhibiting ethylene levels and promoting 

transformation frequency.  

 

3.3.3.3 ACC deaminase reduces the ethylene level during the infection and 

cocultivation process.  

To determine whether the presence of an acdS gene in A. tumefaciens can reduce 

the ethylene levels produced by the infected plant tissues, the amounts of ethylene 

evolved from the plant tissues treated with A. tumefaciens YH-1, YH-2 or infection 

medium alone were measured by gas chromatography. One week old canola (cv. 

4414RR) seedling hypocotyls were cut into about 1 cm fragments and were treated with 

OD600 = 1 suspension of A. tumefaciens YH-1 or YH-2 in infection medium or infection 

medium alone (uninfected control) for 30 minutes at room temperature (~22°C), and then 

50 hypocotyl segments (about 0.4-0.5g) from each treatment were transferred to a 25 ml 
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sterile glass vial and sealed tightly with a rubber stopper. After 24 hours incubation at 

25C in a growth chamber with dim light, the amounts of ethylene evolved were 

determined using gas chromotography. It was found that A. tumefaciens infection induces 

ethylene evolution from plant tissues to a level that is more than twice that of the 

uninfected control (Figure 3.28). Comparing the two strains, A. tumefaciens YH-1 and 

YH-2, it was found that the presence of an acdS gene in A. tumefaciens YH-2 

significantly reduced the amount of ethylene evolved from infected plant tissues (student 

t test, p<0.05) (Figure 3.28). 

 

3.3.3.4 Estimation of A. tumefaciens populations 

 To study whether the presence of an acdS gene affected Agrobacterium 

proliferation during the transformation process, bacterial populations in the infected plant 

tissues were estimated two days after infection. Both of the canola cultivars 4414RR and 

Hyola 401 tested gave similar results (Table 3.3). It was found that when plants were 

infected with either an OD600 = 1 or OD600 = 0.1 culture suspension (about 5 x 108 or 5 x 

107 cell per ml, respectively), after two days of cocultivation on MS with 2,4-D (1 mg/l ) 

medium, both A. tumefaciens YH-1 and A. tumefaciens YH-2 were able to propagate to a 

population of about 109 CFU/gram fresh weight of plant tissue. When plants were 

infected with an OD600 = 0.01 culture suspension, after two days of cocultivation, both A. 

tumefaciens strains were able to propagate to a population of about 108 CFU/gram fresh 

weight of plant tissue. This result indicates, unlike what is observed with crown gall 

tumors (Sec 3.3.1), that ACC deaminase does not have a significant effect on the growth 

rate of A. tumefaciens during the cocultivation process. 
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Figure 3.25. Construction and characterization of strains GV3101::pMP90(eGFP), YH-1 

and YH-2.  

A. Minipreps of plasmids. M, 1kb DNA ladder (Fermentas, Burlington, ON. ; 1, plasmid 

pPZP-eGFP; 2, plasmid extracted from GV3101::pMP90(pPZP-eGFP); 3, plasmids 

extracted from A. tumefaciens YH-1; 4, plasmids extracted from A. tumefaciens YH-2. 

B. Growth of A. tumefaciens YH-1 (tube 1, no growth, indicated by clearance of the 

medium) and YH-2 (tube 2, growth indicated by turbidity of the medium) in M9 minimal 

medium with ACC as the sole nitrogen source.  

C. ACC deaminase activity assay of the A. tumefaciens strains: 1, A. tumefaciens 

GV3101::pMP90(pPZP-eGFP); 2, A. tumefaciens YH-1; 3, A. tumefaciens YH-2. Bars 

indicate standard deviation of two independent assays. 
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Figure 3.26. Transformation and regeneration process.  

A. Canola seedling hypocotyls were cut into 1 cm fragments and then preconditioned by 

growth on cocultivation medium.  

B. After two weeks, the infected hypocotyl segments were incubated on callus induction 

medium. 

C. After an additional two weeks, hypocotyls were incubated on organogenesis medium.  

D. After two weeks further incubation, hypocotyls were transferred to shoot induction 

medium.  

E. One induced shoot.  

F. One of the transgenic shoots after two weeks incubation on shoot elongation medium.  

G. One rooted transgenic plant (two weeks after transferring to rooting medium).  

H. One transgenic plant after transferring to soil for two weeks.  

I. One transgenic canola plant after transferring to soil for six weeks.  
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Figure 3.27. PCR confirmation of transgenesis using specific primers to amplify the 

eGFP gene. 

M, 1 kb DNA ladder. 1-11, PCR products using the genomic DNA of 11 randomly 

selected regenerated plants as template DNA. –Ve, PCR product using the genomic DNA 

of wild type Canola (cv. Westar) as template, serves as a negative control. +Ve, PCR 

product using plasmid pPZP-eGFP as template DNA, serves as positive control.  
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Table 3.2. Transformation frequency assay. 

Canola  

Agrobacterium 

strain and 

concentration  

Organogenesis 

medium 

 # of 

explants 

tested 

# of 

transgenic 

plants 

obtained 

Transformation 

frequency 

1x YH-1 OA 358 31 8.66% 

1x YH-2 OA 342 45 13.16% 

0.1x YH-1 OA 239 6 2.51% 

0.1x YH-2 OA 282 13 4.61% 

0.01x YH-1 OA 209 9 4.31% 

cv. Westar 

0.01x YH-2 OA 242 9 3.72% 

1x YH-1 OA 220 19 8.64% 

1x YH-2 OA 243 30 12.35% 

1x YH-1 OB 111 0 0.00% 

1x YH-2 OB 136 4 2.94% 

0.1x YH-1 OA 109 5 4.59% 

0.1 x YH-2 OA 116 9 7.76% 

0.1x YH-1 OB 128 2 1.56% 

cv. 4414RR 

0.1x YH-2 OB 117 4 3.42% 

1x YH-1 OA 184 6 3.26% 

1x YH-2 OA 180 4 2.22% 

0.1x YH-1 OA 171 5 2.92% 

0.1x YH-2 OA 200 13 6.50% 

0.01x YH-1 OA 109 2 1.83% 

0.01x YH-2 OA 122 3 2.46% 

1 xYH-1 OB 104 0 0.00% 

cv. Hyola 

401 

1 xYH-2 OB 109 0 0.00% 
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A. tumefaciens strain C2H4 (pmol/h/g) 
YH-1 48.0480 ± 2.43 
YH-2 38.9400 ± 1.18 
Control 19.2500 ± 4.08 

 

Figure 3.28. Ethylene evolution levels from canola (cv. 4414RR) hypocotyls following 

different treatments. YH-1, infection with A. tumefaciens strain YH-1 culture suspension 

(OD600 = 1). YH-2, infection with A. tumefaciens strain YH-2 culture suspension (OD600 

= 1). Control, treated with infection medium alone. Error bars represent standard error of 

the mean from 5 replicates.  
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Table 3.3. Estimation of A. tumefaciens populations. 

Canola 
Agrobacterium strains and 
concentration CFU/g fresh weight 
1x YH-1 1.21 x109 
1x YH-2 1.54x109 
0.1x YH-1 6.10 x108 
0.1x YH-2 1.12 x109 
0.01x YH-1 8.00 x107 

cv. 4414RR 

0.01x YH-2 3.20 x108 
1x YH-1 1.08 x109 
1x YH-2 2.02 x109 
0.1x YH-1 2.11 x109 
0.1x YH-2 1.41 x109 
0.01x YH-1 3.00 x108 

cv. Hyola 401 

0.01x YH-2 4.90 x108 
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3.4 Discussion 

3.4.1 Ethylene and Agrobacterium growth 

It has been reported that the low levels of ethylene initially synthesized by plants 

when challenged with pathogens may inhibit bacterial growth by triggering the 

expression of genes involved in the plant defence system such as chitinase, β-1,3-

glucanase and pathogen related gene 1 (PR1) (Deikman, 1997; Glick et al., 2007). For 

example, it has been reported that bacterial growth in the ethylene insensitive 

Arabidopsis mutants ein2 and coi1 was increased about 7 to 10 times more than in wild 

type Arabidopsis (Norman-Setterblad et al., 2000). Similarly, the growth of the plant 

pathogen Xanthomonas campestris in the highly ethylene sensitive tomato plant mutant 

LeETR4AS, was inhibited about 10 fold more than in the wild type tomato plants (Ciardi, 

2001). However, in conflict with these findings, using the melon cotyledon segments, 

Nonaka et al. reported that inclusion of ACC in the germination and cocultivation 

medium, increased ethylene evolution by the plant tissue, but did not inhibit A. 

tumefaciens growth (Nonaka et al. 2008 b).  

 In the present study, an ACC deaminase encoding gene from P. putida UW4 was 

introduced into A. tumefaciens C58 to construct the strain A. tumefaciens 

C58(pRKLACC) which can help reduce ethylene levels evolved by plants during the 

infection process. Using both tomato plants and castor bean plants, it was found that there 

were approximately twenty times more bacterial cells in the tumor induced by A. 

tumefaciens C58(pRKLACC) than there were bacterial cells in the tumor induced by A. 

tumefaciens C58 five weeks after infection. One reason for this could be, as discussed 

above, that when the presence of ACC deaminase in A. tumefaciens C58(pRKLACC) 
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reduced ethylene levels, the expression of plant defence genes was also reduced, so that 

the modified A. tumefaciens that expressed ACC deaminase is less inhibited than the wild 

type A. tumefaciens C58. Alternatively, A. tumefaciens C58(pRKLACC) could use ACC 

as a nitrogen and carbon source and thereby survive better and proliferate faster in the 

tumor than the wild type strain.  

 To study whether the presence of ACC deaminase in disarmed A. tumefaciens 

could increase the bacterial population size in the infected plant tissue, two days after 

infection with different dilutions of strains A. tumefaciens YH-1 and YH-2, the bacterial 

population sizes per gram of canola hypocotyl segments were estimated. The results 

showed that there was no significant difference between the two strains, which means 

that the presence of ACC deaminase in A. tumefaciens YH-2 does not make it proliferate 

better during the cocultivation process. This result agrees with the results obtained by 

Nonaka et al. (2008 b) that inclusion of ACC in the cocultivation medium does not 

inhibit the growth of A. tumefaciens.  

 The controversy in the literature and of the results obtained in crown galls and in 

plant tissue culture may be explained by the fact that the tissue culture environment is 

very different from intact plants. The cocultivation medium used in tissue culture 

contains sufficient nutrients to support the growth of the bacteria, while in the plant 

tumor, the conditions are very different. Compared to intact plants, the plant segments 

may react differently to ethylene, and may not induce the expression of plant defence 

genes that can inhibit bacterial growth.  

 
3.4.2 Ethylene and crown gall development 
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As reviewed in the introduction, A. tumefaciens infection induces sustained 

ethylene production in plants, and this increased level of ethylene is critical for crown 

gall tumor development as well as the severity of the crown gall disease (Aloni, 1995; 

Aloni et al., 1997; Ullrich and Aloni, 2000). For example, it was reported that the growth 

of crown galls in the ethylene insensitive Never ripe mutant of tomato plants was 

severely suppressed (Aloni et al., 1998). Thus, reducing the level of ethylene helps to 

inhibit crown gall development. However, reducing the ethylene level also promotes the 

gene delivery efficiency of Agrobacterium, and the application of ethylene inhibitors in 

the transformation and regeneration process help increase A. tumefaciens mediated 

transformation efficiency (Chakrabarty et al., 2002; Ezura H, 2000; Burgos and 

Alburquerque, 2003; Han et al., 2005; Petri et al., 2005; Seong et al., 2005; (Nonaka et 

al., 2008a). Recently it was reported that ethylene may inhibit the expression of the A. 

tumefaciens virulence genes, and the frequency of tumor formation in ethylene 

insensitive Arabidopsis is higher than in wild type Arabidopsis plants (Nonoka et al. 

2008 b). The apparently contradictory results may be explained by the possibility of 

different levels of ethylene affecting these processes and the different roles ethylene plays 

at different stages of A. tumefaciens infection and crown gall development. For example, 

following the first week after infection, the ethylene level evolved from the tumors on 

castor bean stems is very low. As the infection proceeds, the level of ethylene continues 

to increase and reaches a peak around week five before it begins to drop (Wächer et al. 

1999). A similar pattern was found for tomato stem tumors and tumors on carrot discs 

(Aloni et al. 1995; Goodman et al. 1986). The data are consistent with the possibility that 

at the initial infection stage, the relatively low level of ethylene acts as a signal to trigger 
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the expression of plant defence genes. Thus, in the ethylene insensitive mutant plants, the 

frequency of tumor occurrence is higher (Nonaka. et al. 2008 b); while after the tumor 

has been initiated and during the later stages of crown gall development, the high level of 

ethylene promotes the differentiation and development of the crown gall tumor and 

increases the severity of the crown gall disease, so that tumor development in the 

ethylene insensitive plants is greatly inhibited (Aloni et al., 1998).  

In this study, the acdS gene from P. putida UW4 was introduced into the virulent 

strain A. tumefaciens C58. In order to evaluate the effect of ACC deaminase on plant 

tumor induction and development following A. tumefaciens infection, carrot discs, tomato 

stems and castor bean stems were used as experimental systems. The results using carrot 

discs indicated that there is no significant difference in the number of tumors induced 

between the wild type A. tumefaciens C58 strain and the ACC deaminase-producing 

strain A. tumefaciens C58(pRKLACC). The results using tomato stems also indicated that 

the tumor fresh weight was not significantly affected when acdS was expressed in A. 

tumefaciens C58, while the results using castor bean stems showed that the tumor size 

was significantly reduced and the plants grew better when ACC deaminase activity was 

present in Agrobacterium. The difference between the results observed with different 

plants  could be a consequence of the different sensitivity and response of these plants to 

ethylene (Pierik et al. 2006). In the cases of both tomato stems and castor bean stems, A. 

tumefaciens C58(pRKLACC) proliferated to a much greater extent in the tumor than did 

the strains without ACC deaminase. This may partly explain why tumor development 

was not dramatically diminished when acdS was present in Agrobacterium while tumor 

development was severely inhibited in ethylene insensitive Never ripe tomato mutant 
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plants (Aloni et al. 1998) and application of the ethylene inhibitor AVG almost totally 

inhibited tumor growth in castor bean plants (Wächner et al. 1999). Another possible 

reason for the smaller than expected effect of introducing the acdS gene into A. 

tumefaciens could be that the level of ACC deaminase was insufficient to reduce the 

ethylene to a level that would severely decrease tumor development. 

As an alternative to directly introducing an acdS gene into A. tumefaciens, the 

ACC deaminase-containing PGPB P. putida UW4 or the acdS mutant strain P. putida 

UW4-acdS- was co-inoculated with A. tumefaciens C58 on tomato and castor bean stems. 

In both cases, tumor development was significantly decreased by the co-inoculation with 

the wild-type P. putida UW4 being more effective than the acdS knockout mutant in 

inhibiting tumor development in terms of reducing tumor fresh weight. Castor bean 

plants also grew better when wild type P. putida UW4 was used. These results confirm 

that ethylene does promote tumor development, and indicate that ACC deaminase from 

an exogenous PGPB can be used to inhibit crown gall development and to relieve some 

of the stress symptoms of plants carrying crown galls.  

The acdS gene from P. putida UW4 was also introduced into the disarmed A. 

tumefaciens strain GV3101::pMP90(pPZP-eGFP) and the effect of ACC deaminase on A. 

tumefaciens mediated transformation efficiency was analyzed using canola hypocotyl 

segments. The presence of the acdS gene was found to be able to significantly reduce the 

ethylene levels evolved by the plant tissues during the infection and cocultivation 

process. In addition, a much higher transformation frequency was obtained with the A. 

tumefaciens strain containing ACC deaminase for all three canola cultivars used. This 

implies, as suggested in the literature, that at the initial stage of Agrobacterium infection, 
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ethylene inhibits the gene delivery efficiency. Thus, ACC deaminase which acts to reduce 

plant ethylene levels, can be used to promote the transformation frequency of recalcitrant 

plants by promoting the gene delivery efficiency and maybe also the plant regeneration 

efficiency.  

 

3.4.3 PGPB and crown gall disease 

 When co-inoculated with A. tumefaciens C58, both the wild type and the acdS- 

mutant strains of P. putida UW4 inhibited crown gall tumor development. Co-inoculation 

of A. tumefaciens C58 with wild-type P. putida UW4 inhibited tumor development more 

than 50% on both tomato and castor bean stems, while co-inoculation of A. tumefaciens 

C58 with P. putida UW4(acdS-) inhibited the tumor development by about 40% on both 

tomato and castor bean stems. Although the wild type P. putida UW4 demonstrates 

superior tumor inhibition effects, the mutant strain also significantly inhibits tumor 

formation.  

 The A. tumefaciens strain D3, which contains an acdS gene in its genome, was 

proven to be an avirulent strain and was shown to be able to promote root elongation 

under gnotobiotic conditions. An acdS- mutant strain A. tumefaciens D3-1 was 

constructed and characterized. When co-inoculated with A. tumefaciens C58 on castor 

bean stems, both wild type A. tumefaciens D3 and the mutant A. tumefaciens D3-1 were 

able to significantly inhibit tumor development, with wild type A. tumefaciens D3 

showing slightly better biocontrol activity than the mutant A. tumefaciens D3-1. 

Compared to P. putida UW4, which can reduce the tumor size about 50%, A. tumefaciens 

D3 showed a better biocontrol activity towards A. tumefaciens C58 in that it almost 
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totally inhibited tumor formation despite having a lower level of ACC deaminase 

activity.  

 These results indicate that besides ACC deaminase, there are other factors in these 

two potential biocontrol strains that can affect A. tumefaciens C58 growth or 

pathogenicity. One possibility is that P. putida UW4 or A. tumefaciens D3 might produce 

some chemical compounds that inhibit the growth or kill the A. tumefaciens C58 cells. 

However, preliminary experiments make this possibility unlikely since neither P. putida 

UW4 or A. tumefaciens D3 culture filtrates have any effect on A. tumefaciens C58 growth 

or survival. It is also possible that the two PGPB might produce proteins that are capable 

of degrading QS signals produced by A. tumefaciens that are related to A. tumefaciens 

pathogenicity. Another, more likely, possibility is that the two potential biocontrol strains 

grow faster, or attach with a greater affinity to surfaces of the plant stems, therefore 

outcompeting A. tumefaciens C58 for binding to the stem. In this regard, it was recently 

reported (An et al. 2006) that during a study of the coculture of A. tumefaciens C58 and 

P. aeruginosa, P. aeruginosa can outgrow A. tumefaciens C58. In fact, after co-

inoculation with a 1:1 ratio (A. tumefaciens:P. aeruginosa), in the mature biofilm, the 

biomass of A. tumefaciens was found to represent only about 1% of the total biomass (An 

et al. 2006). 

 

3.4.4 ACC deaminase and QS in A. tumefaciens D3.  

A. tumefaciens D3 has been reported to contain a putative acdS gene and an lrpL 

gene located adjacent to each and oriented in opposite directions on a megaplasmid (Trott 

et al. 2001). In this study, it was found that this strain displays a higher level of ACC 
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deaminase activity than R. leguminosarum bv. viciae 128Sm, although lower than P. 

putida UW4. An lrpL and acdS double mutant strain D3-1 was constructed by replacing 

the C-termini of both genes with a tetA gene. When complemented with the acdS and its 

promoter alone, the resulting strain D3-3 showed only very low level of ACC deaminase 

activity, while when complement with both the lrpL and acdS genes, the ACC deaminase 

activity was fully restored. This result indicates that like in P. putida UW4 and R. 

leguminosarum bv. viciae and other species, the lrpL gene is also the regulator of acdS 

gene, although unlike in those strains, the lrpL is located downstream of the acdS gene in 

A. tumefaciens D3. In strain D3-3, when only acdS gene and its promoter is provided, 

with the absence of its regulator (the lrpL gene), only very basic level of AcdS is 

expressed and thus the strain shows very low level of ACC deaminase activity, while in 

D3-4, when both the acdS and its regulator (the lrpL gene) are provided, the ACC 

deaminase activity is fully restored. Due to the multicopy nature of the plasmid pYH6, 

the D3-4 strain shows higher activity than the wild type strain (Figure 3.19).  

It was found that the wild A. tumefaciens D3 synthesized a QS signal that shows a 

similar shape and migration rate to C6 HSL during TLC assay. Interestingly, in the acdS 

and lrpL double mutant A. tumefaciens D3-1, the QS signal production or secretion was 

significantly reduced. When the mutant was complemented with lrpL or acdS or both of 

these genes, the resulting strains produced an AHL that on TLC plates appeared to be 

similar to 3-O-C8 HSL. It is unclear at this point why deletion of lrpL or acdS affects the 

synthesis or secretion of QS signal in A. tumefaciens D3, and why complementation of 

lrpL and/or acdS would make it produce a different AHL. Futher experiments need to be 
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done in the future to determine the exact mechanism of the cross talk of the two 

regulatory systems. 
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Chapter 4 Conclusions and Future Directions 

 

 In the first part of this study, four metagenomic libraries constructed using total 

DNA from activated sludge or soil were screened for novel QS signal synthesis genes 

using an A. tumefaciens biosensor strain. One clone (QS6-1) from municipal waste 

activated sludge metagenomic library CX6, and two clones (QS10-1 and QS10-2) from 

soil metagenomic library CX10 were isolated. Sequencing results revealed that all three 

clones contain new LuxR/LuxI type QS systems. The majority of AHLs produced by 

each LuxI homolog were characterized by TLC assay, ESI MS and MS/MS. Two new 

AHL signals, C14:3 HSL and (?)-hydroxymethyl-3-oxo-C14 HSL were identified to be 

synthesized by LuxIQS6-1. These findings broaden the range of bacterial species that 

contain LuxR/LuxI type QS systems, add to the knowledge of the structures of AHLs that 

are synthesized and used by bacteria as QS signals, indicate the prevalence of QS 

containing-bacteria in the natural environment and demonstrate the usefulness of 

functional screening in the isolation of new QS systems from uncultured bacterial 

species. However, the following aspects need to be further investigated in the future. 

First, the exact structures of the newly discovered AHL signals need to be 

determined. The positions and geometries (cis or trans) of the unsaturated carbon bonds 

in C14:3 HSL, and the position of the hydroxymethyl (CH2OH) group substitution in (?)-

hydroxymethyl-3-oxo-C14 HSL remain to be elaborated. This might be done by 

performing HPLC purification followed by nuclear magnetic resonance (NMR) 

spectroscopy.  
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 Second, although all three LuxR homologs were expressed in E. coil using the 

pET30 system, only LuxRQS10-1 was able to be expressed in the soluble portion of the cell 

lysate. In the future, different AHL and IPTG concentrations, lower expression 

temperatures, and different expression vectors and host strains need to be tried in an 

effort to obtain the soluble expression of LuxRQS6-1 and LuxRQS10-2.  

In this study, putative lux-box like elements that are LuxR homolog binding sites 

were identified in the promoter regions of luxIQS6-1, luxIQS10-1 and luxRQS10-2 by sequence 

analysis. In the future, using the purified active LuxR homologs, by performing a protein-

DNA binding assay, the putative function of predicated lux-box elements may be 

confirmed. Using this method, other new LuxR homolog binding DNA sequences in 

these clones could also be identified and therefore the QS regulated target genes could be 

determined in these clones.  

 Third, transposon insertion mutagenesis of the gene encoding the biotin 

carboxylase subunit of acetyl-CoA carboxylase of the clone QS10-2 was found to affect 

the production of AHLs. This could be explained by the fact that acetyl-CoA carboxylase 

is an enzyme that catalyzes the carboxylation of acetyl-CoA to produce malonyl-CoA, 

which is the first committed step in the biosynthesis of long chain fatty acid, while AHL 

synthesis requires the intermediate of fatty acid biosynthesis pathway, the acyl-acyl 

carrier proteins (Miller and Bassler, 2001). In the future, it would be interesting to obtain 

the sequence of the other two subunits of the acetyl-CoA carboxylase enzyme in QS10-2, 

the carboxyl carrier protein and the carboxyl transferase, and study the activity of this 

enzyme. Since mutation of the acetyl-CoA carboxylase of the clone QS10-2 affects AHL 

production even in the presence of the homolog enzyme of the expression host A. 
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tumefaciens HC103(pJZ381), it indicates that LuxIQS10-2 requires the presence of its own 

acetyl-CoA carboxylase for the synthesis of AHLs. It would also be interesting to study 

the mechanism of this specificity. 

 Fourth, the biosensor strain used in this study are most sensitive for the detection 

of medium to long chain AHLs, and can not detect AHLs with C4 chain length and other 

types of QS signals. Future studies might benefit from the use of other QS biosensor 

strains that have different sensitivities to AHLs and strains that can detect other types of 

QS signals. In this way, more novel QS systems might be identified.  

Finally, the three QS systems were able to synthesize and detect multiple AHLs, 

including some new AHL structures, and the three luxI homologs seem to be regulated by 

their cognate LuxR homolog proteins. By construction of fusions of the LuxR homolog 

regulated promoters with a reporter gene (such as lacZ), and overexpression of the luxR 

homolog gene in the same host, new biosensor strains could be constructed. These new 

biosensor strains may be useful in the screening and study of luxI-luxR type QS systems 

from both cultured and uncultured bacteria. 

 In the second part of this thesis, the effect of ACC deaminase on the pathogenicity 

of virulent A. tumefaciens strain C58 and on A. tumefaciens mediated transformation 

efficiency were studied. It was found that introduction of ACC deaminase into disarmed 

A. tumefaciens strain GV3101::pMP90 significantly increased the A. tumefaciens-

mediated transformation frequency of the commercial canola cultivars B. napus cv. 

4414RR and B. napus cv. Hyola 401. This finding confirms and extends the results 

reported by Nonaka et al. (2008a) that ACC deaminase increases A. tumefaciens 

facilitated gene delivery efficiency to melon cotyledons, and suggests that ACC 
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deaminase could be used as a general mechanism to improve A. tumefaciens-mediated 

transformation efficiency of various recalcitrant plants. This is also the first 

transformation efficiency assay of the two widely grown spring canola cultivars, and the 

data obtained should provide a very useful reference in the future genetic modification of 

these canola cultivars. 

It was also found that introduction of ACC deaminase into the virulent strain A. 

tumefaciens C58 or co-inoculation of A. tumefaciens C58 with the ACC deaminase-

containing PGPB P. putida UW4 significantly inhibits crown gall development in both 

tomato and castor bean plants. These results confirm the findings that ethylene plays an 

important role in crown gall development (Aloni, 1995; Aloni et al., 1997; Ullrich and 

Aloni, 2000) and suggests the possibility of using ACC deaminase as a mechanism to 

control crown gall disease.  

A. tumefaciens D3 was shown to be an avirulent strain with ACC deaminase 

activity and was able to promote canola root elongation under gnotobiotic conditions. 

When co-inoculated with A. tumefaciens C58, it shows better biocontrol activity than the 

PGPB P. putida UW4. Crown gall development was almost totally inhibited when A. 

tumefaciens C58 was co-inoculated with a 1:1 cell ratio of A. tumefaciens D3. However, 

it was found that the acdS mutant strain of A. tumefaciens D3 was also able to 

significantly inhibit crown gall development. This means that in addition to the role of 

ACC deaminase, other mechanisms present in A. tumefaciens D3 can act to inhibit the 

growth or reduce the pathogenicity of A. tumefaciens C58. Additional experiments need 

to be done to determine the precise nature of these other mechanisms. This 

notwithstanding, A. tumefaciens D3 has the potential to be developed as a biocontrol 
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agent towards crown gall disease. To date, the only commercialized biocontrol agent for 

crown gall disease is A. radiobacter K84, which produces agrocin 84 that kills nopaline  

producing A. tumefaciens strains but is not effective for other types of pathogenic A. 

tumefaciens strains. The ability of A. tumefaciens D3 to inhibit crown gall development 

as well as to promote plant growth might make it a better biocontrol agent than A. 

tumefaciens K84. In addition, unlike A. tumefaciens K84, it is unnecessary to genetically 

engineer A. tumefaciens D3. 

 Construction and complementation of the acdS and lrpL double mutant strain of 

A. tumefaciens D3 revealed that like many other bacteria that express ACC deaminase 

(Duan et al, 2009; Grichko and Glick, 2000; Li and Glick, 2001; Ma et al., 2003a; 

Prigent-Combaret et al., 2008; Sun et al, 2009), the lrpL gene is involved in the 

regulation of the acdS gene. It was also found that in the double mutant strain D3-1, the 

production of the AHL QS signal was inhibited which indicates that there is cross talk 

between these two regulatory systems. Additional experiments are required to determine 

the exact mechanism of this cross talk. As a first step, proteomic analysis using two-

dimensional differential gel electrophoresis could be performed to identify differentially 

expressed proteins in the lrpL and acdS double mutant strain A. tumefaciens D3-1. Then 

mutagenesis, complementation and overexpression of the identified differentially 

expressed target proteins could be performed in an effort to elucidate the regulatory 

network. In this regard, it is also interesting to study whether the cross talk between ACC 

deaminase and QS is unique to A. tumefaciens D3 or whether this mechanism also exists 

in other organisms.  
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