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Abstract

Spectrum sharing is known as a key solution to accommodate the increasing number of

users and the growing demand for throughput in wireless networks. While spectrum shar-

ing improves the data rate in sparse networks, it suffers from interference of concurrent

links in dense networks. In fact, interference is the primary barrier to enhance the overall

throughput of the network, especially in the medium and high signal-to-noise ratios (SNRs).

Managing interference to overcome this barrier has emerged as a crucial step in developing

efficient wireless networks. This thesis deals with optimum and sub-optimum interference

management-cancelation in non-cooperative networks.

Several techniques for interference management including novel strategies such as inter-

ference alignment and structural coding are investigated. These methods are applied to

obtain optimum and sub-optimum coding strategies in such networks. It is shown that a

single strategy is not able to achieve the maximum throughput in all possible scenarios and

in fact a careful design is required to fully exploit all available resources in each realization

of the system.

This thesis begins with a complete investigation of the capacity region of the two-user

Gaussian interference channel. This channel models the basic interaction between two users

sharing the same spectrum for data communication. New outer bounds outperforming known

bounds are derived using Genie-aided techniques. It is proved that these outer bounds meet

the known inner bounds in some special cases, revealing the sum capacity of this channel

over a certain range of parameters which has not been known in the past.

A novel coding scheme applicable in networks with single antenna nodes is proposed next.

This scheme converts a single antenna system to an equivalent Multiple Input Multiple Out-

put (MIMO) system with fractional dimensions. Interference can be aligned along these

dimensions and higher multiplexing gains can be achieved. Tools from the field of Diophan-

tine approximation in number theory are used to show that the proposed coding scheme in

fact mimics the traditional schemes used in MIMO systems where each data stream is sent

along a direction and alignment happens when several streams are received along the same

direction. Two types of constellation are proposed for the encoding part, namely the single
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layer constellation and the multi-layer constellation. Using single layer constellations, the

coding scheme is applied to the two-user X channel. It is proved that the total Degrees-of-

Freedom (DOF), i.e. 4
3
, of the channel is achievable almost surely. This is the first example in

which it is shown that a time invariant single antenna system does not fall short of achieving

this known upper bound on the DOF. Using multi-layer constellations, the coding scheme is

applied to the symmetric three-user GIC. Achievable DOFs are derived for all channel gains.

It is observed that the DOF is everywhere discontinuous (as a function of the channel gain).

In particular, it is proved that for the irrational channel gains the achievable DOF meets

the upper bound of 3
2
. For the rational gains, the achievable DOF has a gap to the known

upper bounds. By allowing carry over from multiple layers, however, it is shown that higher

DOFs can be achieved for the latter.

The K-user single-antenna Gaussian Interference Channel (GIC) is considered, where the

channel coefficients are NOT necessarily time-variant or frequency selective. It is proved that

the total DOF of this channel is K
2

almost surely, i.e. each user enjoys half of its maximum

DOF. Indeed, we prove that the static time-invariant interference channels are rich enough

to allow simultaneous interference alignment at all receivers. To derive this result, we show

that single-antenna interference channels can be treated as pseudo multiple-antenna systems

with infinitely-many antennas. Such machinery enables us to prove that the real or complex

M ×M MIMO GIC achieves its total DOF, i.e., MK
2

, M ≥ 1. The pseudo multiple-antenna

systems are developed based on a recent result in the field of Diophantine approximation

which states that the convergence part of the Khintchine-Groshev theorem holds for points

on non-degenerate manifolds. As a byproduct of the scheme, the total DOFs of the K ×M

X channel and the uplink of cellular systems are derived.

Interference alignment requires perfect knowledge of channel state information at all

nodes. This requirement is sometimes infeasible and users invoke random coding to commu-

nicate with their corresponding receivers. Alternative interference management needs to be

implemented and this problem is addressed in the last part of the thesis. A coding scheme

for a single user communicating in a shared medium is proposed. Moreover, polynomial

time algorithms are proposed to obtain best achievable rates in the system. Successive rate

allocation for a K-user interference channel is performed using polynomial time algorithms.
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Chapter 1

Introduction

Interference management plays a crucial role in future wireless systems as the number of

users sharing the same spectrum is growing rapidly. In fact, an increase in the number of

users results in an increase in the amount of interference in the system. This interference

may cause a severe degradation in the system’s performance.

The study of interaction between non-cooperative users sharing the same channel goes

back to Shannon’s work on the two-way channel in [1]. His work was followed by several re-

searchers and the two-user interference channel emerged as a fundamental problem regarding

interaction between users causing interference in the networks. In this channel, two senders

transmit independent messages to their corresponding receivers via a common channel. The

characterization of the channel’s capacity region which reveals the acceptable rates in the

system has been an open problem for more than 40 years.

There are some special cases where the exact capacity region has been characterized.

These cases include the strong and very strong interference channels and a class of determin-

istic interference channels [2, 3, 4]. These examples revealed that the coding scheme achieving

the capacity region of each case differs from other schemes and there is no universal coding

applicable to all cases.

A limiting expression for the capacity region was obtained in [5] (see also [6]). Due

to excessive computational complexity, this expression can not be used directly to fully

characterize the capacity region. To show this, Cheng and Verdú proved that for the Gaussian

Multiple Access Channel (MAC), which can be considered as a special case of the GIC,1

the limiting expression fails to fully characterize the capacity region by relying only on

1In a special case of the Gaussian IC, the received signals at both receivers are statistically equivalent.

The capacity region of this channel is equivalent to that of the Gaussian MAC observed from one of the

receivers.

1



CHAPTER 1. INTRODUCTION 2

the Gaussian distributions [7]. There are, however, some special cases where the limiting

expressions can be optimized. For example, the sum capacity of the Gaussian MAC can

be achieved by relying on the simple scheme of Frequency/Time Division Multiple Access

(FDMA/TDMA) [8].

The achievablity of rates in the limiting expression comes from simple encoding and de-

coding strategies. Each sender encodes data by using a random codebook, and each receiver

decodes data by treating the interference as noise. In contrast, using more sophisticated

encoders and decoders may result in collapsing the limiting expression into a single letter

formula.

The idea of superposition coding originally developed by Cover in [9] was first applied

to the IC by Carleial [10]. He used superposition coding to split data at the senders and

successive decoding to decode data at the receivers. Incorporating joint typical decoding in

the receivers, Han and Kobayashi (HK) proposed an achievable rate region which is still the

best inner bound for the capacity region [11].

The HK scheme can be directly applied to the Gaussian IC. Nonetheless, there are two

sources of difficulties in characterizing the full HK achievable rate region. First, the optimal

distributions are unknown. Second, even if we confine the distributions to be Gaussian,

computation of the full HK region under the Gaussian distribution is still difficult due to

numerous degrees of freedom involved in the problem formulation. The main cause of this

complexity is the cardinality of the time-sharing parameter. Recently, Chong et al. [12] pre-

sented a simpler expression with less inequalities for the HK achievable region. Although the

new expression reduces the cardinality of the time-sharing parameter, it is still prohibitively

complex to find the full HK achievable region.

Among all interference channels, the two-user GIC is the most applicable and important

one. In fact, the capacity region of this channel has been open for several decades and still

researchers are trying to close the gap between the inner bounds and outer bounds known for

this channel. Although, the HK achievable scheme is still the best for this special case, many

outer bounds are derived based on some characteristics of Gaussian distributions. Among

numerous outer bounds, three of them are of special interest.

The first one obtained by Sato [13] was originally derived for the degraded Gaussian

IC. Sato showed that the capacity region of the degraded Gaussian IC is outer bounded

by a certain degraded broadcast channel whose capacity region is fully characterized. In

[14], Costa proved that the capacity region of the degraded Gaussian broadcast channel is

equivalent to that of the one-sided weak Gaussian IC. Hence, Sato outer bound can be used

for the one-sided Gaussian IC as well.

The second outer bound obtained for the weak Gaussian IC is due to Kramer [15].
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Kramer’s outer bound is based on the fact that removing one of the interfering links enlarges

the capacity region. Therefore, the capacity region of the two-user Gaussian IC is inside the

intersection of the capacity regions of the underlying one-sided Gaussian ICs. For the case

of weak Gaussian IC, the underlying one-sided IC is weak, for which the capacity region

is unknown. However, Kramer used the outer bound obtained by Sato to derive an outer

bound for the weak Gaussian IC.

The third outer bound due to Etkin, Tse, and Wang (ETW) is based on the Genie

aided technique [16]. A genie that provides some extra information to the receivers can only

enlarge the capacity region. The genie in the ETW scheme provides information about the

intended signal to the receiver. They showed that the proposed outer bound outperforms

other bounds over certain ranges of parameters. Moreover, using a similar method, they

presented an outer bound for the mixed Gaussian IC. Using these new outer bounds and

simple HK achievable scheme, they characterized the capacity region of this channel within

1 bit.

1.1 Interference Alignment

In contrary to the major research activities on the interference channels, c.f. [16, 17, 18, 19],

the problem of characterizing the capacity region of Gaussian Interference Channels (GIC) is

still open. As a major step, in [20], it is shown that in the two-user GIC, the Han-Kobayashi

(HK) scheme [11] achieves within one bit of the capacity region, as long as the interference

from the private message in the HK scheme is designed to be below the noise level.

The result of [16] has provided a clear understanding about the behavior of the two-user

GIC. However, it turns out that moving from the two-user scenario to a larger number of

users is a challenging task. Indeed, for K-user GIC (K > 2), the Han-Kobayashi approach

of managing the interference is not enough and we need to incorporate a new approach of

interference management known as Interference Alignment.

Interference Alignment is a solution for making the interference less severe at receivers by

merging the communication dimensions occupied by the interfering signal. In [21], Maddah-

Ali, Motahari, and Khandani introduced the concept of Interference Alignment and showed

its capability in achieving the full Degrees-Of-Freedom (DOF) for certain classes of two-user

X channels. Being simple and at the same time powerful, interference alignment provided

the spur for further research. Interference alignment is not only usable for lowering the

harmful effect of the interference, but it can also be applied to provide security in networks

as proposed in [22].

Interference Alignment in n-dimensional Euclidean spaces for n ≥ 2 is studied by several
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researchers, c.f. [21, 23, 24, 25]. In this method, at each receiver a subspace is dedicated to

interference, then the signaling is designed such that all the interfering signals are squeezed

in the interference sub-space. Such an approach saves some dimensions for communicating

desired signals, rather than wasting it due to the interference. Using this method, Cadambe

and Jafar showed that, contrary to the popular belief, aK-user Gaussian interference channel

with varying channel gains can achieve its total DOF which is K
2
. Later, in [26], it is shown

that the same result can be achieved using a simple approach based on a particular pairing

of the channel matrices. The assumption of varying channel gains, particularly noting that

all the gains should be known at the transmitters’ sides, is unrealistic which limits the

application of these important theoretical results in practice.

In [27], followed by [28, 29], the application of Interference Alignment is extended from

two or more spatial/temporal/frequency dimensions to one dimension, but at the signal

level. In [27], it is shown that lattice codes, rather than random Gaussian codes, are essential

parts of signaling for three-user time-invariant GICs. In [28], after aligning interference using

lattice codes the aggregated signal is decoded and its effect is subtracted from the received

signal. In fact, [28] shows that the very-strong interference region of the K-user GIC is

strictly larger than the corresponding region when alignment is not applied. In their scheme,

to make the interference less severe, transmitters use lattice codes to reduce the code-rate

of the interference which guarantees decodability of the interference at the receiver. In [29],

Sridharan et al. showed that the DOF of a class of 3-user GICs with fixed channel gains

can be greater than one. This result was obtained using layered lattice codes along with

successive decoding at the receiver.

In [30] and [31], the results from the field of Diophantine approximation in Number

Theory are used to show that interference can be aligned using properties of rational and

irrational numbers and their relations. They showed that the total DOF of some classes

of time-invariant single antenna interference channels can be achieved. In particular, Etkin

and Ordentlich in [30] proposed an upper bound on the total DOF which maintains the

properties of channel gains with respect to being rational or irrational. Using this upper

bound, surprisingly, they proved that the DOF is everywhere discontinuous for the class of

channels under investigation.

1.2 Summary of Dissertation and Main Contributions

This dissertation is about optimal/suboptimal coding designs for non-cooperative networks

in order to increase the system’s throughput. Four problems are considered. First, the

capacity region of the classic two-user Gaussian interference channel is studied. Second,
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interference alignment in one-dimensional spaces is investigated. Third, the DOF of the

K-user GIC is considered. Fourth, random coding schemes for non-cooperative network is

analyzed. A chapter is dedicated to each of these problems. In what follows, the main

contributions of this dissertation is presented.

Chapter 2: Two-user Gaussian Interference Channel

Chapter two is dedicated to characterization of the capacity region of the two-user Gaussian

IC. It also includes a comprehensive survey of known results for this channel. By introducing

the notion of admissible ICs, a new outer bounding technique for the two-user Gaussian IC

is proposed. The proposed technique relies on an extremal inequality recently proved by Liu

and Viswanath [32]. It is shown that by using this scheme, one can obtain tighter outer

bounds for both weak and mixed Gaussian ICs. More importantly, the sum capacity of the

Gaussian weak IC for a certain range of the channel parameters is derived. The summary of

results presented in this chapter is as follows.

• Weak Gaussian IC

1. The sum capacity of this channel is derived for a certain range of parameters (it

is called very weak interference regime). This is the first result obtained for the

Weak Gaussian IC in more than 30 years.

2. A new outer bound on the capacity region is obtained. It is proved that this

bound is tighter than previously known outer bounds.

3. It is proved that enlarging the simple HK achievable region using either FD/TD

or the time-sharing parameter results in the same region. This fact considerably

reduces the number of free parameters in the HK region.

• One-sided Weak Gaussian IC

1. A new proof for Sato’s outer bound on the capacity region is presented.

2. It is shown that similar to the weak Gaussian IC, enlarging by FD/TD or time-

sharing results in the same region. Hence, an explicit formula for the HK region

is obtained in this case.

• Mixed Gaussian IC

1. The sum capacity of the mixed Gaussian IC is derived for all ranges of channel

parameters.
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2. A new outer bound on the capacity region is obtained. This bound outperforms

other existing bounds over all ranges of underlying parameters.

3. It is shown that FD/TD and time-sharing may result in different enlargement for

the HK region. Moreover, an explicit expression for the simple HK achievable

rate region is derived.

Chapter 3: Interference Alignment in One Dimension

Chapter 3 studies interference alignment in real line by using structural codes. Several

important results are obtained by proposing a novel coding scheme. The main tool in

proving these results comes from the filed of Diophantine approximation in number theory.

The summary of the results presented in Chapter 3 is as follows.

• A Novel Coding Scheme

1. The scheme converts a single antenna system to an equivalent MIMO system with

fractional dimensions.

2. Two types of constellation are proposed for the encoding part, namely the single

layer constellation and the multi-layer constellation.

• The Two-user X Channel

1. It is proved that the degrees-of-freedom 4
3

is achievable almost surely. In other

words, the set of channel parameters that this DOF may not be feasible has

measure zero. This is an important result as this is a first example showing a

time varying channel is not needed to achieve the total DOF of the system.

2. It is shown that the DOF of the three-user GIC is greater than 4
3

by using the

proposed coding scheme.

• The Symmetric Three-user Gaussian IC

1. It is proved that for all irrational channel gains, the total DOF of 3
2

is achievable.

This is a the first example of the fully connected three-user Gaussian IC where

the total DOF is achieved without relying on the variations of the channel.

2. For rational gains, a new coding strategy is proposed where signal points are

selected from rational numbers represented to an appropriate base. By allowing

carry over, it is proved that higher DOF is achievable and this DOF only is related

to numerator or denominator of the channel gain.
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Chapter 4: K-user Gaussian Interference Channel

Chapter 4 analyzes the total DOF of the K-user GIC. By extending the coding scheme

proposed in Chapter 3, it is shown that interference alignment is possible simultaneously at

several receivers. This fact relies a recent result in the field of Diophantine approximation

which states that the convergence part of the Khintchine-Groshev theorem holds for points

on non-degenerate manifolds. The summary of the results presented in Chapter 4 is as

follows.

• A Novel Coding Scheme

1. It is proved that a single antenna transceiver can behave as a multiple antenna

node in high SNR regimes.

2. It is shown that simultaneous interference alignment at several receivers is possible

in single antenna systems.

• The Total DOF of The K-user GIC

1. The DOF of the K-user GIC is derived for the case where channel is fixed over

time/frequency.

2. As a byproduct, the DOF of MIMO GIC is also derived.

• Some Extensions

1. The total DOF of the K ×M X channel is derived and it is proved that KM
K+M−1

is achievable almost surely.

2. The total DOF of the uplink in a cellular system with M active users within each

cell is derived. It is shown that the DOF per cell equals M
M+1

which means in a

dense network all cells achieve one DOF and there is no need for frequency reuse

in the system.

Chapter 5: Random Coding and Interference Management

Chapter 5 deals with communication networks where users invoke random codes to transmit

their messages to the corresponding receivers. Receivers are allowed to decode the other

users’ messages to increase their own data rate. Using tools from Combinatorial Optimiza-

tion, several algorithms are proposed to find decodable users and allocate appropriate rates

to them. The summary of the results in Chapter 5 is as follows.
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• Polynomial Time Algorithms

1. An efficient algorithm is proposed by which a receiver can find the maximum

decodable subset of active transmitters in a system.

2. Focusing on a single user, an algorithm is proposed to allocate an achievable rate

considering the fact that the receiver either decodes the interference or treats it

as noise.

3. An algorithm for successive rate allocation in a channel with K users is provided.

Given some ordering on users, this algorithm allocated rates to users based on

their priority.



Chapter 2

Two-user Gaussian Interference

Channel

In this chapter, the capacity region of the two-user Gaussian Interference Channel (GIC) is

studied. Three classes of channels are considered: weak, one-sided, and mixed GICs. For the

weak GIC, a new outer bound on the capacity region is obtained that outperforms previously

known outer bounds. The sum capacity for a certain range of channel parameters is derived.

For this range, it is proved that using Gaussian codebooks and treating interference as noise

are optimal. It is shown that when Gaussian codebooks are used, the full Han-Kobayashi

achievable rate region can be obtained by using the naive Han-Kobayashi achievable scheme

over three frequency bands (equivalently, three subspaces). For the one-sided GIC, an al-

ternative proof for the Sato’s outer bound is presented. We derive the full Han-Kobayashi

achievable rate region when Gaussian codebooks are utilized. For the mixed GIC, a new

outer bound is obtained that outperforms previously known outer bounds. For this case, the

sum capacity for the entire range of channel parameters is derived. It is proved that the full

Han-Kobayashi achievable rate region using Gaussian codebooks is equivalent to that of the

one-sided GIC for a particular range of channel parameters.

This chapter is organized as follows. In Section 2.1, we present some basic definitions

and review the HK achievable region when Gaussian codebooks are used. We study the

time-sharing and the concavification methods as means to enlarge the basic HK achievable

region. We investigate conditions for which the two regions obtained from time-sharing and

concavification coincide. Finally, we consider an optimization problem based on an extremal

inequality and compute its optimal solution.

In Section 2.2, the notion of an admissible IC is introduced. Some classes of admissible

ICs for the two-user Gaussian case is studied and outer bounds on the capacity regions of

9
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these classes are computed. We also obtain the sum capacity of a specific class of admissible

IC where it is shown that using Gaussian codebooks and treating interference as noise is

optimal.

In Section 2.3, we study the capacity region of the weak GIC. We first derive the sum

capacity of this channel for a certain range of parameters where it is proved that users should

treat the interference as noise and transmit at their highest possible rates. We then derive

an outer bound on the capacity region which outperforms the known results. We finally

prove that the basic HK achievable region results in the same enlarged region by using either

time-sharing or concavification. This reduces the complexity of the characterization of the

full HK achievable region when Gaussian codebooks are used.

In Section 2.4, we study the capacity region of the one-sided GIC. We present a new

proof for the Sato outer bound using the extremal inequality. Then, we present methods to

simplify the HK achievable region such that the full region can be characterized.

In Section 2.5, we study the capacity region of the mixed GIC. We first obtain the sum

capacity of this channel and then derive an outer bound which outperforms other known

results. Finally, by investigating the HK achievable region for different cases, we prove that

for a certain range of channel parameters, the full HK achievable rate region using Gaussian

codebooks is equivalent to that of the one-sided IC. Finally, in Section 2.6, we conclude the

chapter.

2.1 Preliminaries

2.1.1 The Two-user Interference Channel

Definition 1 (two-user IC). A two-user discrete memoryless IC consists of two finite sets

X1 and X2 as input alphabets and two finite sets Y1 and Y2 as the corresponding output

alphabets. The channel is governed by conditional probability distributions ω(y1, y2|x1, x2)

where (x1, x2) ∈ X1 × X2 and (y1, y2) ∈ Y1 × Y2.

Definition 2 (capacity region of the two-user IC). A code (2nR1, 2nR2 , n, λn1 , λ
n
2) for the

two-user IC consists of the following components for User i ∈ {1, 2}:
1) A uniform distributed message set Mi ∈ [1, 2, ..., 2nRi].

2) A codebook Xi = {xi(1), xi(2), ..., xi(2
nRi)} where xi(·) ∈ X n

i .

3) An encoding function Fi : [1, 2, ..., 2nRi] → Xi.

4) A decoding function Gi : yi → [1, 2, ..., 2nRi].

5) The average probability of error λni = P(Gi(yi) 6= Mi).
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A rate pair (R1, R2) is achievable if there is a sequence of codes (2nR1, 2nR2, n, λn1 , λ
n
2)

with vanishing average error probabilities. The capacity region of the IC is defined to be the

closure of the set of achievable rates.

Let CIC denote the capacity region of the two-user IC. The limiting expression for CIC

can be stated as [6]

CIC = lim
n→∞

closure




⋃

P(Xn
1 )P(Xn

2 )

{

(R1, R2) |
R1 ≤ 1

n
I (Xn

1 ;Yn
1 )

R2 ≤ 1
n
I (Xn

2 ;Yn
2 )

}

 . (2.1)

In this chapter, we focus on the two-user GIC which can be represented in standard form

as [10, 33]

y1 = x1 +
√
ax2 + z1,

y2 =
√
bx1 + x2 + z2,

(2.2)

where xi and yi denote the input and output alphabets of User i ∈ {1, 2}, respectively, and

z1 ∼ N (0, 1), z2 ∼ N (0, 1) are standard Gaussian random variables. Constants a ≥ 0 and

b ≥ 0 represent the gains of the interference links. Furthermore, Transmitter i, i ∈ {1, 2},
is subject to the power constraint Pi. Achievable rates and the capacity region of the GIC

can be defined in a similar fashion as that of the general IC with the condition that the

codewords must satisfy their corresponding power constraints. The capacity region of the

two-user GIC is denoted by C . Clearly, C is a function of the parameters P1, P2, a, and b.

To emphasize this relationship, we may write C as C (P1, P2, a, b) as needed.

Remark 1. Since the capacity region of the general IC depends only on the marginal distri-

butions [33], the ICs can be classified into equivalent classes in which channels within a class

have the same capacity region. In particular, for the GIC given in (2.2), the choice of joint

distributions for the pair (z1, z2) does not affect the capacity region as long as the marginal

distributions remain Gaussian with zero mean and unit variance. Hence, without any loss of

generality, the random variables z1 and z2 can be assumed to be un-correlated.

Depending on the values of a and b, the two-user GIC is classified into weak, strong,

mixed, one-sided, and degraded GIC. In Figure 2.1, regions in ab-plane together with their

associated names are shown. Briefly, if 0 < a < 1 and 0 < b < 1, then the channel is called

weak GIC. If 1 ≤ a and 1 ≤ b, then the channel is called strong GIC. If either a = 0 or

b = 0, the channel is called one-sided GIC. If ab = 1, then the channel is called degraded

GIC. If either 0 < a < 1 and 1 ≤ b, or 0 < b < 1 and 1 ≤ a, then the channel is called mixed

GIC. Finally, the symmetric GIC (used throughout the chapter for illustration purposes)

corresponds to a = b and P1 = P2.
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Figure 2.1: Classes of the two-user ICs.

Among all classes shown in Figure 2.1, the capacity region of the strong GIC is fully

characterized [3, 2]. In this case, the capacity region can be stated as the collection of all

rate pairs (R1, R2) satisfying

R1 ≤ γ(P1),

R2 ≤ γ(P2),

R1 +R2 ≤ min {γ(P1 + aP2), γ(bP1 + P2)} .

2.1.2 Support Functions

Throughout this chapter, we use the following facts from convex analysis. There is a one

to one correspondence between any closed convex set and its support function [34]. The

support function of any set D ⊂ Rm is a function σD : Rm → R defined as

σD(c) = sup{ctR|R ∈ D}. (2.3)

We observe that σD is a convex function, since it is the pointwise supremum of a family of

linear functions. Clearly, if the set D is nonempty compact, then the sup is attained and can

be replaced by max. In this case, the solutions of (2.3) correspond to the boundary points

of D [34]. The following relation is the dual of (2.3) and holds when D is closed and convex

D = {R|ctR ≤ σD(c), ∀ c}. (2.4)

From (2.3), it is easy to show that if D ⊆ D′ then σD ≤ σD′ . The converse also holds

when D and D′ are closed and convex. In fact, by using (2.4) one can easily prove that if

σD ≤ σD′ then D ⊆ D′.
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2.1.3 Han-Kobayashi Achievable Region

The best inner bound for the two-user GIC is the full HK achievable region denoted by CHK

[11]. Despite having a single letter formula, CHK is not fully characterized yet. In fact, finding

the optimum distributions achieving boundary points of CHK is still an open problem. We

define G as a subset of CHK where Gaussian distributions are used for codebook generation.

Using a shorter description of CHK obtained in [12], G can be described as follows.

Let us first define G0 as the collection of all rate pairs (R1, R2) ∈ R2
+ satisfying

R1≤ ψ1 = γ

(
P1

1 + aβP2

)

, (2.5)

R2≤ ψ2 = γ

(
P2

1 + bαP1

)

, (2.6)

R1 +R2≤ ψ3 = min {ψ31, ψ32, ψ33} , (2.7)

2R1 +R2≤ ψ4 = γ

(
P1 + a(1 − β)P2

1 + aβP2

)

+ γ

(
αP1

1 + aβP2

)

+ γ

(
βP2 + b(1 − α)P1

1 + bαP1

)

,(2.8)

R1 + 2R2≤ ψ5 = γ

(
βP2

1 + bαP1

)

+ γ

(
P2 + b(1 − α)P1

1 + bαP1

)

+ γ

(
αP1 + a(1 − β)P2

1 + aβP2

)

,(2.9)

for fixed α ∈ [0, 1] and β ∈ [0, 1],1 and

ψ31= γ

(
P1 + a(1 − β)P2

1 + aβP2

)

+ γ

(
βP2

1 + bαP1

)

, (2.10)

ψ32= γ

(
αP1

1 + aβP2

)

+ γ

(
P2 + b(1 − α)P1

1 + bαP1

)

, (2.11)

ψ33= γ

(
αP1 + a(1 − β)P2

1 + aβP2

)

+ γ

(
βP2 + b(1 − α)P1

1 + bαP1

)

. (2.12)

The region G0 is a polytope and a function of four variables P1, P2, α, and β. To em-

phasize this relation, we may write G0(P1, P2, α, β) as needed. It is convenient to repre-

sent G0 in a matrix form as G0 =
{
R ∈ R2

+|AR ≤ Ψ(P1, P2, α, β)
}

where R = (R1, R2)
t,

Ψ = (ψ1, ψ2, ψ3, ψ4, ψ5)
t, and

A =

(

1 0 1 2 1

0 1 1 1 2

)t

.

Equivalently, G0 can be represented as the convex hull of its extreme points, i.e., G0(P1, P2, α, β) =

conv {r1, r2, . . . , rK}, where it is assumed that G0 has K extreme points. It is easy to show

that K ≤ 7.

1In the HK scheme, two independent messages are encoded at each transmitter, namely the common

message and the private message. α and β are the parameters that determine the amount of power allocated

to the common and private messages for the two users, i.e., αP1, βP2 and (1 − α)P1, (1 − β)P2 of the total

power is used for the transmission of the private/common messages to the first/second users, respectively.
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Now, G can be defined as a region obtained from enlarging G0 by making use of the

time-sharing parameter. By incorporating the time sharing parameter into the achievable

rate region, the feasible region of Ψ can be enlarged to its convex hull. In fact, G is the

collection of all rate pairs R = (R1, R2)
t ∈ R2

+ satisfying

AR≤
q
∑

i=1

λiΨ(P1i, P2i, αi, βi), (2.13)

where q ∈ N and

q
∑

i=1

λiP1i≤ P1, (2.14)

q
∑

i=1

λiP2i≤ P2, (2.15)

q
∑

i=1

λi= 1, (2.16)

λi ≥ 0, (αi, βi)∈ [0, 1]2; ∀i ∈ {1, . . . , q}. (2.17)

It is easy to show that G is a closed, bounded and convex region. In fact, the capacity

region C which contains G is inside the rectangle defined by inequalities R1 ≤ γ(P1) and

R2 ≤ γ(P2). Moreover, (0, 0), (γ(P1), 0), and (0, γ(P2)) are extreme points of both C and G .

Hence, to characterize G , we need to obtain all extreme points of G that are in the interior

of the first quadrant (the same argument holds for C ). In other words, we need to obtain

σG (c1, c2), the support function of G , either when 1 ≤ c1 and c2 = 1 or when c1 = 1 and

1 ≤ c2.

We also define G1 and G2 obtained by enlarging G0 in two different manners. The region

G1 is defined as

G1(P1, P2) =
⋃

(α,β)∈[0,1]2

G0(P1, P2, α, β). (2.18)

The region G1 is not necessarily a convex region. Hence, it can be further enlarged by

the convex hull operation. The region G2 is defined as the collection of all rate pairs R =

(R1, R2)
tR2

+ satisfying

R =

q′
∑

i=1

λiRi (2.19)
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where q′ ∈ N and

ARi≤ Ψ(P1i, P2i, αi, βi), (2.20)
q′
∑

i=1

λiP1i≤ P1, (2.21)

q′
∑

i=1

λiP2i≤ P2, (2.22)

q′
∑

i=1

λi= 1, (2.23)

λi ≥ 0, (αi, βi)∈ [0, 1]2; ∀i ∈ {1, . . . , q′}. (2.24)

It is easy to show that G2 is a closed, bounded and convex region. In fact, G2 is obtained

by using the simple method of TD/FD. To see this, let us divide the available frequency

band into q′ sub-bands where λi is the fraction of the width of the i’th band from the total

available frequency band and
∑q′

i=1 λi = 1. User 1 and 2 allocate P1i and P2i in the i’th

sub-band, respectively. Therefore, all rate pairs in G0(P1i, P2i, αi, βi) are achievable in the

i’th sub-band for fixed (αi, βi) ∈ [0, 1]2. Hence, all rate pairs in
∑q′

i=1 λiG0(P1i, P2i, αi, βi) are

achievable provided that
∑q′

i=1 λiP1i ≤ P1 and
∑q′

i=1 λiP2i ≤ P2.

Clearly, the chain of inclusions G0 ⊆ G1 ⊆ G2 ⊆ G ⊆ CHK ⊆ C always holds.

2.1.4 Concavification Versus Time-Sharing

The goals of this subsection are two-folded. First, we aim at providing some necessary con-

ditions such that G2 = G . Second, we bound q and q′ which are the number of parameters

involved in the descriptions of G and G2, respectively. However, we derive the required con-

ditions for the more general case where there are M users in the system. To this end, assume

an achievable scheme for an M-user channel where the power constraint P = [P1, P2, . . . , PM ]

is given. The corresponding achievable region can be represented as

D0(P,Θ) = {R|AR ≤ Ψ(P,Θ)} , (2.25)

where A is a K ×M matrix and Θ ∈ [0, 1]M . The region D0 is a polyhedron in general,

but for the purpose of this chapter, it suffices to assume that it is a polytope. Since D0 is

a convex region, the convex hull operation has no effect. However, it is possible to enlarge

D0 by using two different methods which are explained next. The first method is based on

using the time-sharing parameter. Let us denote the corresponding region as D which can
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be written as

D =

{

R|AR ≤
q
∑

i=1

λiΨ(Pi,Θi),

q
∑

i=1

λiPi ≤ P,

q
∑

i=1

λi = 1, λi ≥ 0,Θi ∈ [0, 1]M ∀i
}

, (2.26)

where q ∈ N.

In the second method, we use TD/FD to enlarge the achievable rate region. This results

in an achievable region D2 represented as

D2 =

{

R =

q′
∑

i=1

λiRi|ARi ≤ Ψ(Pi,Θi),

q′
∑

i=1

λiPi ≤ P,

q′
∑

i=1

λi = 1, λi ≥ 0,Θi ∈ [0, 1]M ∀i
}

,

(2.27)

where q′ ∈ N. We refer to this method as concavification. It can be readily shown that

D and D2 are closed and convex, and D2 ⊆ D. We are interested in situations where the

inverse inclusion holds.

The support function of D0 is a function of P, Θ, and c. Hence, we have

σD0(c,P,Θ) = max{ctR|AR ≤ Ψ(P,Θ)}. (2.28)

For fixed P and Θ, (2.28) is a linear program. This problem is feasible because R = 0

satisfies all constraints. Therefore, the strong duality in linear programming holds for this

problem [34, Problem 5.23]. Hence, we obtain [34, page 225]

σD0(c,P,Θ) = min{ytΨ(P,Θ)|Aty = c,y ≥ 0}. (2.29)

In general, ŷ, the minimizer of (2.29), is a function of P, Θ, and c. We say D0 possesses

the unique minimizer property if ŷ merely depends on c, for all c. In this case, we have

σD0(c,P,Θ) = ŷt(c)Ψ(P,Θ), (2.30)

where Atŷ = c. This condition means that for any c the extreme point of D0 maximizing the

objective ctR is an extreme point obtained by intersecting a set of specific hyperplanes. A

necessary condition for D0 to possess the unique minimizer property is that each inequality

in describing D0 is either redundant or active for all P and Θ.

Theorem 1. If D0 possesses the unique minimizer property, then D = D2.

Proof. Since D2 ⊆ D always holds, we need to show D ⊆ D2 which can be equivalently

verified by showing σD ≤ σD2 . The support function of D can be written as

σD(c,P) = max
{
ctR|R ∈ D

}
. (2.31)
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By fixing P, Pi’s, Θi’s, and λi’s, the above maximization becomes a linear program. Hence,

relying on weak duality of linear programming, we obtain

σD(c,P) ≤ min
Aty=c,y≥0

yt
q
∑

i=1

λiΨ(Pi,Θi). (2.32)

Clearly, ŷ(c), the solution of (2.29), is a feasible point for (2.32) and we have

σD(c,P) ≤ ŷt(c)

q
∑

i=1

λiΨ(Pi,Θi). (2.33)

Using (2.30), we obtain

σD(c,P) ≤
q
∑

i=1

λiσD0(c,Pi,Θi). (2.34)

Let us assume R̂i is the maximizer of (2.28). In this case, we have

σD(c,P) ≤
q
∑

i=1

λic
tR̂i. (2.35)

Hence, we have

σD(c,P) ≤ ct
q
∑

i=1

λiR̂i. (2.36)

By definition,
∑q

i=1 λiR̂i is a point in D2. Therefore, we conclude

σD(c,P) ≤ σD2(c,P). (2.37)

This completes the proof.

Corollary 1 (Han [35]). If D0 is a polymatroid, then D=D2.

Proof. It is easy to show that D0 possesses the unique minimizer property. In fact, for given

c, ŷ can be obtained in a greedy fashion independent of P and Θ.

In what follows, we upper bound q and q′.

Theorem 2. The cardinality of the time-sharing parameter q in (2.26) is less than M+K+1,

where M and K are the dimensions of P and Ψ(P), respectively. Moreover, if Ψ(P) is a

continuous function of P, then q ≤M +K.
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Proof. Let us define E as

E =

{
q
∑

i=1

λiΨ(Pi,Θi)|
q
∑

i=1

λiPi ≤ P,

q
∑

i=1

λi = 1, λi ≥ 0,Θi ∈ [0, 1]M ∀i
}

. (2.38)

In fact, E is the collection of all possible bounds for D. To prove q ≤M +K + 1, we define

another region E1 as

E1 = {(P′,S′)|0 ≤ P′,S′ = Ψ(P′,Θ′),Θ′ ∈ [0, 1]M}. (2.39)

As a direct consequence of Caratheodory’s theorem [36], the convex hull of E1 denoted by

conv E1 can be obtained by convex combinations of no more than M +K + 1 points in E1.

Moreover, if Ψ(P′,Θ′) is continuous, then M +K points are sufficient due to the extension

of Caratheodory’s theorem [36]. Now, we define the region Ê as

Ê = {S′|(P′,S′) ∈ conv E1,P
′ ≤ P}. (2.40)

Clearly, Ê ⊆ E. To show the other inclusion, let us consider a point in E, say S =
∑q

i=1 λiΨ(Pi,Θi). Since (Pi,Ψ(Pi,Θi)) is a point in E1,
∑q

i=1 λi(Pi,Ψ(Pi,Θi)) belongs to

conv E1. Having
∑q

i=1 λiPi ≤ P, we conclude
∑q

i=1 λiΨ(Pi,Θ) ∈ Ê. Hence, E ⊆ Ê. This

completes the proof.

Corollary 2 (Etkin, Parakh, and Tse [37]). For the M-user GIC where users use Gaussian

codebooks for data transmission and treat the interference as noise, the cardinality of the

time-sharing parameter is less than 2M .

Proof. In this case, D0 = {R|R ≤ Ψ(P)} where both P and Ψ(P) have dimension M and

Ψ(P) is a continuous function of P. Applying Theorem 2 yields the desired result.

In the following theorem, we obtain an upper bound on q′.

Theorem 3. To characterize boundary points of D2, it suffices to set q′ ≤M + 1.

Proof. Let us assume R̂ is a boundary point of D2. Hence, there exists c such that

σD2(c,P) = max
R∈D2

ctR = ctR̂, (2.41)

where R̂ =
∑q′

i=1 λ̂iR̂i and the optimum is achieved for the set of parameters Θ̂i, λ̂i, and P̂i.

The optimization problem in (2.41) can be written as

σD2(c,P) =max

q′∑

i=1

λig(c,Pi) (2.42)

subject to:

q′
∑

i=1

λi = 1,

q′
∑

i=1

λiPi ≤ P,

0 ≤ λi, 0 ≤ Pi, ∀i ∈ {1, 2, . . . , q′},
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where g(c,P) is defined as

g(c,P) =max ctR (2.43)

subject to: AR ≤ Ψ(P,Θ), 0 ≤ Θ ≤ 1.

In fact, σD2(c,P) in (2.42) can be viewed as the result of the concavification of g(c,P)

[36]. Hence, using Theorem 2.16 in [36], we conclude that q′ ≤M + 1.

Remarkable point about Theorem 3 is that the upper bound on q′ is independent of the

number of inequalities involved in the description of the achievable rate region.

Corollary 3. For the M-user GIC where users use Gaussian codebooks and treat the inter-

ference as noise, we have D2 = D and q = q′ = M + 1.

Proof. As of Corollary 2, D0 = {R|R ≤ Ψ(P)} where both P and Ψ(P) have dimension

M . It is easy to show that D0 possesses the unique minimizer property. Hence, D = D2.

Applying Theorem 3 yields the desired result.

2.1.5 Extremal Inequality

In [32], the following optimization problem is studied:

W = max
QX�S

h(X + Z1) − µh(X + Z2), (2.44)

where h(Y) is the differential entropy of Y. Z1 and Z2 are n-dimensional Gaussian random

vectors with the strictly positive definite covariance matrices QZ1 and QZ2 , respectively. The

optimization is over all random vectors X independent of Z1 and Z2. X is also subject to

the covariance matrix constraint QX � S, where S is a positive definite matrix. In [32],

it is shown that for all µ ≥ 1, this optimization problem has a Gaussian optimal solution

for all positive definite matrices QZ1 and QZ2 . However, for 0 ≤ µ < 1 this optimization

problem has a Gaussian optimal solution provided QZ1 � QZ2 , i.e., QZ2 −QZ1 is a positive

semi-definite matrix. It is worth noting that for µ = 1 this problem when QZ1 � QZ2 is

studied under the name of the worse additive noise [38, 39].

In this chapter, we consider a special case of (2.44) where Z1 and Z2 have the covariance

matrices N1I and N2I, respectively, and the trace constraint is considered, i.e.,

W = max
tr{QX}≤nP

h(X + Z1) − µh(X + Z2). (2.45)

In the following lemma, we provide the optimal solution for the above optimization problem

when N1 ≤ N2.
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Lemma 1. If N1 ≤ N2, the optimal solution of (2.45) is i.i.d. Gaussian for all 0 ≤ µ and

we have

1. For 0 ≤ µ ≤ N2+P
N1+P

, the optimum covariance matrix is PI and the optimum value is

W =
n

2
log [(2πe)(P +N1)] −

µn

2
log [(2πe)(P +N2)] . (2.46)

2. For N2+P
N1+P

< µ ≤ N2

N1
, the optimum covariance matrix is N2−µN1

µ−1
I and the optimum value

is

W =
n

2
log

[

(2πe)
N2 −N1

µ− 1

]

− µn

2
log

[
µ(2πe)(N2 −N1)

µ− 1

]

. (2.47)

3. For N2

N1
< µ, the optimum covariance matrix is 0 and the optimum value is

W =
n

2
log(2πeN1) −

µn

2
log(2πeN2). (2.48)

Proof. From the general result for (2.44), we know that the optimum input distribution is

Gaussian. Hence, we need to solve the following maximization problem:

W =max
1

2
log ((2πe)n|QX +N1I|) −

µ

2
log ((2πe)n|QX +N2I|) (2.49)

subject to: 0 � QX, tr{QX} ≤ nP.

Since QX is a positive semi-definite matrix, it can be decomposed as QX = UΛU t, where

Λ is a diagonal matrix with nonnegative entries and U is a unitary matrix, i.e., UU t =

I. Substituting QX = UΛU t in (2.49) and using the identities tr{AB} = tr{BA} and

|AB + I| = |BA+ I|, we obtain

W =max
1

2
log ((2πe)n|Λ +N1I|) −

µ

2
log ((2πe)n|Λ +N2I|) (2.50)

subject to: 0 � Λ, tr{Λ} ≤ nP.

This optimization problem can be simplified as

W =max
n

2

n∑

i=1

[log(2πe)(λi +N1) − µ log(2πe)(λi +N2)] (2.51)

subject to: 0 ≤ λi ∀i,
n∑

i=1

λi ≤ nP.

By introducing Lagrange multipliers ψ and Φ = {φ1, φ2, . . . , φn}, we obtain

L(Λ, ψ,Φ) = max
n

2

n∑

i=1

[log(2πe)(λi +N1) − µ log(2πe)(λi +N2)]

+ ψ

(

nP −
n∑

i=1

λi

)

+

n∑

i=1

φiλi. (2.52)
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µ

Figure 2.2: Optimum variance versus µ.

The first order KKT necessary conditions for the optimum solution of (2.52) can be written

as

1

λi +N1
− µ

λi +N2
− ψ + φi =0, ∀i ∈ {1, 2, . . . , n}, (2.53)

ψ

(

nP −
n∑

i=1

λi

)

=0, (2.54)

φiλi =0, ∀i ∈ {1, 2, . . . , n}. (2.55)

It is easy to show that when N1 ≤ N2, λ = λ1 = . . . = λn and the only solution for λ is

λ =







P, if 0 ≤ µ ≤ N2+P
N1+P

N2−µN1

µ−1
, if N2+P

N1+P
< µ ≤ N2

N1

0, if N2

N1
< µ

(2.56)

Substituting λ into the objective function yields the desired result.

In Figure 2.2, the optimum variance as a function of µ is plotted. This figure shows that

for any value of µ ≤ P+N2

P+N1
, we need to use the maximum power to optimize the objective

function, whereas for µ > P+N2

P+N1
, we use less power than what is permissible.

Lemma 2. If N1 > N2, the optimal solution of (2.45) is i.i.d. Gaussian for all 1 ≤ µ. In

this case, the optimum variance is 0 and the optimum W is

W =
n

2
log(2πeN1) −

µn

2
log(2πeN2). (2.57)

Proof. The proof is similar to that of Lemma 1 and we omit it here.
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Corollary 4. For µ = 1, the optimal solution of (2.45) is i.i.d. Gaussian and the optimum

W is

W =







n
2

log
(
P+N1

P+N2

)

, if N1 ≤ N2

n
2

log
(
N1

N2

)

, if N1 > N2.
(2.58)

We frequently apply the following optimization problem in the rest of the chapter:

fh(P,N1, N2, a, µ) = max
tr{QX}≤nP

h(X + Z1) − µh(
√
aX + Z2), (2.59)

where N1 ≤ N2/a. Using the identity h(AX) = log(|A|) + h(X), (2.59) can be written as

fh(P,N1, N2, a, µ) =
µn

2
log a+ max

tr{QX}≤nP
h(X + Z1) − µh(X +

Z2√
a
). (2.60)

Now, Lemma 1 can be applied to obtain

fh(P,N1, N2, a, µ) =







1
2
log [(2πe)(P +N1)] − µ

2
log [(2πe)(aP +N2)] if 0 ≤ µ ≤ P+N2/a

P+N1

1
2
log
[

(2πe)N2/a−N1

µ−1

]

− µ
2

log
[
aµ(2πe)(N2/a−N1)

µ−1

]

if P+N2/a
P+N1

< µ ≤ N2

aN1

1
2
log(2πeN1) − µ

2
log(2πeN2) if N2

aN1
< µ

(2.61)

2.2 Admissible Channels

In this section, we aim at building ICs whose capacity regions contain the capacity region of

the two-user GIC, i.e., C . Since we ultimately use these to outer bound C , these ICs need

to have a tractable expression (or a tractable outer bound) for their capacity regions.

Let us consider an IC with the same input letters as that of C and the output letters ỹ1

and ỹ2 for Users 1 and 2, respectively. The capacity region of this channel, say C ′, contains

C if

I(xn1 ; yn1 ) ≤I(xn1 ; ỹn1 ), (2.62)

I(xn2 ; yn2 ) ≤I(xn2 ; ỹn2 ), (2.63)

for all p(xn1 )p(xn2 ) and for all n ∈ N.

One way to satisfy (2.62) and (2.63) is to provide some extra information to either one or

to both receivers. This technique is known as Genie aided outer bounding. In [15], Kramer

has used such a genie to provide some extra information to both receivers such that they can

decode both users’ messages. Since the capacity region of this new interference channel is

equivalent to that of the Compound Multiple Access Channel whose capacity region is known,



CHAPTER 2. TWO-USER GAUSSIAN INTERFERENCE CHANNEL 23

ŷ1

ŷ2

ỹ1

ỹ2
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ω(ỹ1, ỹ2|x1, x2)

x1
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Figure 2.3: An admissible channel. f1 and f2 are deterministic functions.

reference [15] obtains an outer bound on the capacity region. To obtain a tighter outer bound,

reference [15] further uses the fact that if a genie provides the exact information about the

interfering signal to one of the receivers, then the new channel becomes the one-sided GIC.

Although the capacity region of the one-sided GIC is unknown for all ranges of parameters,

there exists an outer bound for it due to Sato and Costa [40, 14] that can be applied to

the original channel. In [20], Etkin et al. use a different genie that provides some extra

information about the intended signal. Even though at first glance their proposed method

appears to be far from achieving a tight bound, they have shown that the corresponding

bound is tighter than the one due to Kramer for certain ranges of parameters.

Next, we introduce the notion of admissible channels to satisfy (2.62) and (2.63).

Definition 3 (Admissible Channel). An IC C ′ with input letter xi and output letter ỹi for

User i ∈ {1, 2} is an admissible channel if there exist two deterministic functions ŷn1 = f1(ỹ
n
1 )

and ŷn2 = f2(ỹ
n
2 ) such that

I(xn1 ; yn1 ) ≤I(xn1 ; ŷn1 ), (2.64)

I(xn2 ; yn2 ) ≤I(xn2 ; ŷn2 ) (2.65)

hold for all p(xn1 )p(xn2 ) and for all n ∈ N. E denotes the collection of all admissible channels

(see Figure 2.3).

Due to the data processing inequality, (2.64) and (2.65) imply (2.62) and (2.63), respec-

tively. Hence, the capacity region of an admissible channel is an outer bound to the original

IC.

Remark 2. Genie aided channels are among admissible channels. To see this, let us assume

a genie provides s1 and s2 as side information for User 1 and 2, respectively. In this case,

ỹi = (yi, si) for i ∈ {1, 2}. By choosing fi(yi, si) = yi, we observe that ŷi = yi, and hence,

(2.64) and (2.65) trivially hold.
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To obtain the tightest outer bound, we need to find the intersection of the capacity

regions of all admissible channels. Nonetheless, it may happen that finding the capacity

region of an admissible channel is as hard as that of the original one (in fact, based on the

definition, the channel itself is one of its admissible channels). Hence, we need to find classes

of admissible channels, say F , which possess two important properties. First, their capacity

regions are close to C . Second, either their exact capacity regions are computable or there

exist good outer bounds for them. Since F ⊆ E , we have

C ⊆
⋂

F

C
′. (2.66)

Recall that there is a one to one correspondence between a closed convex set and its support

function. Since C is closed and convex, there is a one to one correspondence between C and

σC . In fact, boundary points of C correspond to the solutions of the following optimization

problem

σC (c1, c2) = max
(R1,R2)∈C

c1R1 + c2R2. (2.67)

Since we are interested in the boundary points excluding the R1 and R2 axes, it suffices to

consider 0 ≤ c1 and 0 ≤ c2 where c1 + c2 = 1.

Since C ⊆ C ′, we have

σC (c1, c2) ≤ σC ′(c1, c2). (2.68)

Taking the minimum of the right hand side, we obtain

σC (c1, c2) ≤ min
C ′∈F

σC ′(c1, c2), (2.69)

which can be written as

σC (c1, c2) ≤ min
C ′∈F

max
(R1,R2)∈C ′

c1R1 + c2R2. (2.70)

For convenience, we use the following two optimization problems

σC (µ, 1) = max
(R1,R2)∈C

µR1 +R2, (2.71)

σC (1, µ) = max
(R1,R2)∈C

R1 + µR2, (2.72)

where 1 ≤ µ. It is easy to show that the solutions of (2.71) and (2.72) correspond to the

boundary points of the capacity region.

In the rest of this section, we introduce classes of admissible channels and obtain upper

bounds on σC ′(µ, 1) and σC ′(1, µ).
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Admissible Channel f2(ỹ22, ỹ21) = (1 −√
g2)ỹ22 +

√
g2ỹ21

ŷ1

ŷ2

f1(ỹ1) = ỹ1

ỹ1
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z21

z22

√
a
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√
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Figure 2.4: Class A1 admissible channels.

2.2.1 Classes of Admissible Channels

Class A1

This class is designed to obtain an upper bound on σC (µ, 1). Therefore, we need to find a

tight upper bound on σC ′(µ, 1). A member of this class is a channel in which User 1 has one

transmit and one receive antenna whereas User 2 has one transmit antenna and two receive

antennas (see Figure 2.4). The channel model can be written as

ỹ1 = x1 +
√
ax2 + z1,

ỹ21 = x2 +
√
b′x1 + z21,

ỹ22 = x2 + z22,

(2.73)

where ỹ1 is the signal at the first receiver, ỹ21 and ỹ22 are the signals at the second receiver,

z1 is additive Gaussian noise with unit variance, z21 and z22 are additive Gaussian noise

with variances N21 and N22, respectively. Transmitters 1 and 2 are subject to the power

constraints of P1 and P2, respectively.

To investigate admissibility conditions in (2.64) and (2.65), we introduce two determin-

istic functions f1 and f2 as follows (see Figure 2.4)

f1(ỹ
n
1 )= ỹn1 , (2.74)

f2(ỹ
n
22, ỹ

n
21)= (1 −√

g2)ỹ
n
22 +

√
g2ỹ

n
21, (2.75)

where 0 ≤ g2. For g2 = 0, the channel can be converted to the one-sided GIC by letting

N21 → ∞ and N22 = 1. Hence, Class A1 contains the one-sided GIC obtained by removing
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the link between Transmitter 1 and Receiver 2. Using f1 and f2, we obtain

ŷn1 =xn1 +
√
axn2 + zn1 , (2.76)

ŷn2 =
√

b′g2x
n
1 + xn2 + (1 −√

g2)z
n
22 +

√
g2z

n
21. (2.77)

Hence, this channel is admissible if the corresponding parameters satisfy

b′g2 = b,

(1 −√
g2)

2N22 + g2N21 = 1.
(2.78)

We further add the following constraints to the conditions of the channels in Class A1:

b′ ≤ N21,

aN22 ≤ 1.
(2.79)

Although these additional conditions reduce the number of admissible channels within the

class, they are needed to get a closed form formula for an upper bound on σC ′(µ, 1). In the

following lemma, we obtain the required upper bound.

Lemma 3. For the channels modeled by (2.73) and satisfying (2.79), we have

σC ′(µ, 1) ≤min
µ1

2
log [2πe(P1 + aP2 + 1)] +

1

2
log

(
N21

N22
+
b′P1

N22
+

P2

P2 +N22

)

(2.80)

− µ2

2
log(2πe) + µ2fh

(

P1, 1, N21, b
′,

1

µ2

)

+ fh(P2, N22, 1, a, µ1)

subject to: µ1 + µ2 = µ, µ1, µ2 ≥ 0.

Proof. Let us assume R1 and R2 are achievable rates for User 1 and 2, respectively. Further-

more, we split µ into µ1 ≥ 0 and µ2 ≥ 0 such that µ = µ1 + µ2. Using Fano’s inequality, we

obtain

n(µR1 +R2) ≤µI(xn1 ; ỹn1 ) + I(xn2 ; ỹn22, ỹ
n
21) + nεn

=µ1I(x
n
1 ; ỹn1 ) + µ2I(x

n
1 ; ỹn1 ) + I(xn2 ; ỹn22, ỹ

n
21) + nεn

(a)

≤µ1I(x
n
1 ; ỹn1 ) + µ2I(x

n
1 ; ỹn1 |xn2 ) + I(xn2 ; ỹn22, ỹ

n
21) + nεn

=µ1I(x
n
1 ; ỹn1 ) + µ2I(x

n
1 ; ỹn1 |xn2 ) + I(xn2 ; ỹn21|ỹn22) + I(xn2 ; ỹn22) + nεn

=µ1h(ỹ
n
1 ) − µ1h(ỹ

n
1 |xn1 ) + µ2h(ỹ

n
1 |xn2 ) − µ2h(ỹ

n
1 |xn1 , xn2 )

+h(ỹn21|ỹn22) − h(ỹn21|xn2 , ỹn22) + h(ỹn22) − h(ỹn22|xn2 ) + nεn

=
[
µ1h(ỹ

n
1 ) − µ2h(ỹ

n
1 |xn1 , xn2 )

]
+
[
µ2h(ỹ

n
1 |xn2 ) − h(ỹn21|xn2 , ỹn22)

]

+
[
h(ỹn21|ỹn22) − h(ỹn22|xn2 )

]
+
[
h(ỹn22) − µ1h(ỹ

n
1 |xn1 )

]
+ nεn, (2.81)



CHAPTER 2. TWO-USER GAUSSIAN INTERFERENCE CHANNEL 27

where (a) follows from the fact that xn1 and xn2 are independent. Now, we separately upper

bound the terms within each bracket in (2.81).

To maximize the terms within the first bracket, we use the fact that Gaussian distribution

maximizes the differential entropy subject to a constraint on the covariance matrix. Hence,

we have

µ1h(ỹ
n
1 ) − µ2h(ỹ

n
1 |xn1 , xn2 )= µ1h(x

n
1 +

√
axn2 + zn1 ) − µ2h(z

n
1 )

≤ µ1n

2
log [2πe(P1 + aP2 + 1)] − µ2n

2
log(2πe). (2.82)

Since b′ ≤ N21, we can make use of Lemma 1 to upper bound the second bracket. In this

case, we have

µ2h(ỹ
n
1 |xn2 ) − h(ỹn21|xn2 , ỹn22)= µ2

(

h(xn1 + zn1 ) − 1

µ2
h(
√
b′xn1 + zn21)

)

≤ µ2nfh

(

P1, 1, N21, b
′,

1

µ2

)

, (2.83)

where fh is defined in (2.61).

We upper bound the terms within the third bracket as follows [20]:

h(ỹn21|ỹn22) − h(ỹn22|xn2 )
(a)

≤
n∑

i=1

h(ỹ21[i]|ỹ22[i]) − h(zn22)

(b)

≤
n∑

i=1

1

2
log

[

2πe

(

N21 + b′P1[i] +
P2[i]N22

P2[i] +N22

)]

− n

2
log (2πeN22)

(c)

≤n

2
log

[

2πe

(

N21 +
1

n

n∑

i=1

b′P1[i] +
1
n

∑n
i=1 P2[i]N22

1
n

∑n
i=1 P2[i] +N22

)]

− n

2
log (2πeN22)

≤n
2

log

[

2πe

(

N21 + b′P1 +
P2N22

P2 +N22

)]

− n

2
log (2πeN22)

≤n
2

log

(
N21

N22
+
b′P1

N22
+

P2

P2 +N22

)

, (2.84)

where (a) follows from the chain rule and the fact that removing independent conditions does

not decrease differential entropy, (b) follows from the fact that Gaussian distribution max-

imizes the conditional entropy for a given covariance matrix, and (c) follows from Jensen’s

inequality.

For the last bracket, we again make use of the definition of fh. In fact, since aN22 ≤ 1,

we have

h(ỹn22) − µ1h(ỹ
n
1 |xn1 )= h(xn2 + zn22) − µ1h(

√
axn2 + zn1 )

≤ nfh(P2, N22, 1, a, µ1). (2.85)
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Admissible Channel

f1(ỹ11, ỹ12) = (1 −√
g1)ỹ11 +

√
g1ỹ12

√
a′

x2

x1

ỹ2

ỹ12

ỹ11

f2(ỹ2) = ỹ2

ŷ1

ŷ2

√
g1

1 −√
g1

z11

z12

z2

√
b

Figure 2.5: Class A2 admissible channels.

Adding all inequalities, we obtain

µR1 +R2 ≤
µ1

2
log [2πe(P1 + aP2 + 1)] − µ2

2
log(2πe) +

1

2
log

(
N21

N22
+
b′P1

N22
+

P2

P2 +N22

)

+µ2fh

(

P1, 1, N21, b
′,

1

µ2

)

+ fh(P2, N22, 1, a, µ1), (2.86)

where the fact that εn → 0 as n→ ∞ is used to eliminate εn form the right hand side of the

inequality. Now, by taking the minimum of the right hand side of (4.16) over all µ1 and µ2,

we obtain the desired result. This completes the proof.

Class A2

This class is the complement of Class A1 in the sense that we use it to upper bound σC (1, µ).

A member of this class is a channel in which User 1 is equipped with one transmit and two

receive antennas, whereas User 2 is equipped with one antenna at both transmitter and

receiver sides (see Figure 2.5). The channel model can be written as

ỹ11 = x1 + z11,

ỹ12 = x1 +
√
a′x2 + z12,

ỹ2 = x2 +
√
bx1 + z2,

(2.87)

where ỹ11 and ỹ12 are the signals at the first receiver, ỹ2 is the signal at the second receiver,

z2 is additive Gaussian noise with unit variance, z11 and z12 are additive Gaussian noise with

variances N11 and N12, respectively. Transmitter 1 and 2 are subject to the power constraints

P1 and P2, respectively.
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For this class, we consider two linear functions f1 and f2 as follows (see Figure 2.5):

f1(ỹ
n
11, ỹ

n
12)= (1 −√

g1)ỹ
n
11 +

√
g1ỹ

n
12, (2.88)

f2(ỹ
n
2 )= ỹn2 . (2.89)

Similar to Class A1, when g1 = 0, the admissible channels in Class A2 become the one-sided

GIC by letting N12 → ∞ and N11 = 1. Therefore, we have

ŷn1 =xn1 +
√

a′g1x
n
2 + (1 −√

g1)z
n
11 +

√
g1z

n
12, (2.90)

ŷn2 =
√
bxn1 + xn2 + zn2 . (2.91)

We conclude that the channel modeled by (2.87) is admissible if the corresponding pa-

rameters satisfy

a′g1 = a,

(1 −√
g1)

2N11 + g1N12 = 1.
(2.92)

Similar to Class A1, we further add the following constraints to the conditions of Class A2

channels:
a′ ≤ N12,

bN11 ≤ 1.
(2.93)

In the following lemma, we obtain the required upper bound.

Lemma 4. For the channels modeled by (2.87) and satisfying (2.93), we have

σC ′(1, µ) ≤min
µ1

2
log [2πe(bP1 + P2 + 1)] +

1

2
log

(
N12

N11
+
a′P2

N11
+

P1

P1 +N11

)

(2.94)

− µ2

2
log(2πe) + µ2fh

(

P2, 1, N12, a
′,

1

µ2

)

+ fh(P1, N11, 1, b, µ1)

subject to: µ1 + µ2 = µ, µ1, µ2 ≥ 0.

Proof. The proof is similar to that of Lemma 3 and we omit it here.

Class B

A member of this class is a channel with one transmit antenna and two receive antennas for

each user modeled by (see Figure 2.6)

ỹ11 = x1 + z11,

ỹ12 = x1 +
√
a′x2 + z12,

ỹ21 = x2 +
√
b′x1 + z21,

ỹ22 = x2 + z22,

(2.95)
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Admissible Channel

ỹ12

x2

x1

z11

z12

z21

z22

ỹ22

ỹ21

ỹ11

√
g1

1 −√
g1

ŷ1

ŷ2

1 −√
g2

√
g2

√
b′

√
a′

f1(ỹ11, ỹ12) = (1 −√
g1)ỹ11 +

√
g1ỹ12

f2(ỹ22, ỹ21) = (1 −√
g2)ỹ22 +

√
g2ỹ21

Figure 2.6: Class B admissible channels.

where ỹ11 and ỹ12 are the signals at the first receiver, ỹ21 and ỹ22 are the signals at the second

receiver, and zij is additive Gaussian noise with variance Nij for i, j ∈ {1, 2}. Transmitter 1

and 2 are subject to the power constraints P1 and P2, respectively. In fact, this channel is

designed to upper bound both σC (µ, 1) and σC (1, µ).

Next, we investigate admissibility of this channel and the conditions that must be imposed

on the underlying parameters. Let us consider two linear deterministic functions f1 and f2

with parameters 0 ≤ g1 and 0 ≤ g2, respectively, as follows (see Figure 2.6)

f1(ỹ
n
11, ỹ

n
12)= (1 −√

g1)ỹ
n
11 +

√
g1ỹ

n
12, (2.96)

f2(ỹ
n
22, ỹ

n
21)= (1 −√

g2)ỹ
n
22 +

√
g2ỹ

n
21. (2.97)

Therefore, we have

ŷn1 =xn1 +
√

a′g1x
n
2 + (1 −√

g1)z
n
11 +

√
g1z

n
12, (2.98)

ŷn2 =
√

b′g2x
n
1 + xn2 + (1 −√

g2)z
n
22 +

√
g2z

n
21. (2.99)

To satisfy (2.64) and (2.65), it suffices to have

a′g1 = a,

b′g2 = b,

(1 −√
g1)

2N11 + g1N12 = 1,

(1 −√
g2)

2N22 + g2N21 = 1.

(2.100)

Hence, a channel modeled by (2.95) is admissible if there exist two nonnegative numbers g1

and g2 such that the equalities in (2.100) are satisfied. We further add the following two
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constraints to the equality conditions in (2.100):

b′N11 ≤ N21,

a′N22 ≤ N12.
(2.101)

Although adding more constraints reduces the number of the admissible channels, it enables

us to compute an outer bound on σC ′(µ, 1) and σC ′(1, µ).

Lemma 5. For the channels modeled by (2.95) and satisfying (2.101), we have

σC ′(µ, 1) ≤µγ
(
P1

N11
+

P1

a′P2 +N12

)

+ γ

(
P2

N22
+

P2

b′P1 +N21

)

+fh(P2, N22, N12, a
′, µ) +

µ

2
log((2πe)(a′P2 +N12))

−1

2
log((2πe)(P2 +N22)), (2.102)

σC ′(1, µ) ≤γ
(
P1

N11
+

P1

a′P2 +N12

)

+ µγ

(
P2

N22
+

P2

b′P1 +N21

)

+fh(P1, N11, N21, b
′, µ) +

µ

2
log((2πe)(b′P1 +N21))

−1

2
log((2πe)(P1 +N11)). (2.103)

Proof. We only upper bound σC ′(µ, 1) and an upper bound on σC ′(1, µ) can be similarly

obtained. Let us assume R1 and R2 are achievable rates for User 1 and User 2, respectively.

Using Fano’s inequality, we obtain

n(µR1 +R2) ≤µI(xn1 ; ỹn11, ỹ
n
12) + I(xn2 ; ỹn22, ỹ

n
21) + nεn

=µI(xn1 ; ỹn12|ỹn11) + µI(xn1 ; ỹ
n
11)

+I(xn2 ; ỹn21|ỹn22, ) + I(xn2 ; ỹn22) + nεn

=µh(ỹn12|ỹn11) − µh(ỹn12|xn1 , ỹn11) + µh(ỹn11) − µh(ỹn11|xn1 )

+h(ỹn21|ỹn22) − h(ỹn21|xn2 , ỹn22) + h(ỹn22) − h(ỹn22|xn2 ) + nεn

=
[
µh(ỹn12|ỹn11) − µh(ỹn11|xn1 )

]
+
[
h(ỹn21|ỹn22) − h(ỹn22|xn2 )

]

+
[
µh(ỹn11) − h(ỹn21|xn2 , ỹn22)

]
+
[
h(ỹn22) − µh(ỹn12|xn1 , ỹn11)

]
+ nεn. (2.104)

Next, we upper bound the terms within each bracket in (2.104) separately. For the first
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bracket, we have

µh(ỹn12|ỹn11) − µh(ỹn11|xn1 )
(a)

≤µ
n∑

i=1

h(ỹ12[i]|ỹ11[i]) −
µn

2
log (2πeN11)

(b)

≤µ
n∑

i=1

1

2
log

[

2πe

(

N12 + a′P2[i] +
P1[i]N11

P1[i] +N11

)]

− µn

2
log (2πeN11)

(c)

≤µn

2
log

[

2πe

(

N12 +
1

n

n∑

i=1

a′P2[i] +
1
n

∑n
i=1 P1[i]N11

1
n

∑n
i=1 P1[i] +N11

)]

− µn

2
log (2πeN11)

≤µn
2

log

[

2πe

(

N12 + a′P2 +
P1N11

P1 +N11

)]

− µn

2
log (2πeN11)

=
µn

2
log

(
N12

N11
+
a′P2

N11
+

P1

P1 +N11

)

, (2.105)

where (a) follows from the chain rule and the fact that removing independent conditions

increases differential entropy, (b) follows from the fact that Gaussian distribution optimizes

conditional entropy for a given covariance matrix, and (c) follows form Jenson’s inequality.

Similarly, the terms within the second bracket can be upper bounded as

h(ỹn21|ỹn22) − h(ỹn22|xn2 ) ≤ n

2
log

(
N21

N22
+
b′P1

N22
+

P2

P2 +N22

)

. (2.106)

Using Lemma 1 and the fact that N11 ≤ N21/b
′, the terms within the third bracket can

be upper bounded as

µh(ỹn11) − h(ỹn21|xn2 , ỹn22)= µ

(

h(xn1 + zn11) −
1

µ
h(
√
b′xn1 + zn21)

)

≤ µnfh

(

P1, N11, N21, b
′,

1

µ

)

. (2.107)

Since 1 ≤ µ, from (2.61) we obtain

µh(ỹn11) − h(ỹn21|xn2 , ỹn22) ≤
µn

2
log((2πe)(P1 +N11)) −

n

2
log((2πe)(b′P1 +N21)). (2.108)

For the last bracket, again we use Lemma 1 to obtain

h(ỹn22) − µh(ỹn12|xn1 , ỹn11)= h(xn2 + zn22) − µh(
√
a′xn2 + zn12)

≤ nfh(P2, N22, N12, a
′, µ). (2.109)

Adding all inequalities, we have

µR1 +R2 ≤
µ

2
log

(
N12

N11
+
a′P2

N11
+

P1

P1 +N11

)

+
1

2
log

(
N21

N22
+
b′P1

N22
+

P2

P2 +N22

)

+
µ

2
log((2πe)(P1 +N11)) −

1

2
log((2πe)(b′P1 +N21))

+fh(P2, N22, N12, a
′, µ), (2.110)
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where the fact that εn → 0 as n→ ∞ is used to eliminate εn from the right hand side of the

inequality. By rearranging the terms, we obtain

µR1 +R2 ≤µγ
(
P1

N11
+

P1

a′P2 +N12

)

+ γ

(
P2

N22
+

P2

b′P1 +N21

)

+fh(P2, N22, N12, a
′, µ) +

µ

2
log((2πe)(a′P2 +N12)) −

1

2
log((2πe)(P2 +N22)).

This completes the proof.

A unique feature of the channels within Class B is that for 1 ≤ µ ≤ P2+N12/a′

P2+N22
and

1 ≤ µ ≤ P1+N21/b′

P1+N11
, the upper bounds in (2.102) and (2.103) become, respectively,

µR1 +R2 ≤µγ
(
P1

N11

+
P1

a′P2 +N12

)

+ γ

(
P2

N22

+
P2

b′P1 +N21

)

(2.111)

and

R1 + µR2 ≤γ
(
P1

N11
+

P1

a′P2 +N12

)

+ µγ

(
P2

N22
+

P2

b′P1 +N21

)

. (2.112)

On the other hand, if the receivers treat the interference as noise, it can be shown that

R1 = γ

(
P1

N11

+
P1

a′P2 +N12

)

(2.113)

and

R2 = γ

(
P2

N22
+

P2

b′P1 +N21

)

(2.114)

are achievable. Comparing upper bounds and achievable rates, we conclude that the upper

bounds are indeed tight. In fact, this property is first observed by Etkin et al. in [20]. We

summarize this result in the following theorem:

Theorem 4. The sum capacity in Class B is attained when transmitters use Gaussian code-

books and receivers treat the interference as noise. In this case, the sum capacity is

C
′
sum

=γ

(
P1

N11

+
P1

a′P2 +N12

)

+ γ

(
P2

N22

+
P2

b′P1 +N21

)

. (2.115)

Proof. By substituting µ = 1 in (3.15), we obtain the desired result.
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Class C

Class C is designed to upper bound σC (µ, 1) for the mixed GIC where 1 ≤ b. Class C is similar

to Class A1 (see Figure 2.4), however we impose different constraints on the parameters of

the channels within Class C. These constraints assist us in providing upper bounds by using

the fact that at one of the receivers both signals are decodable.

For channels in Class C, we use the same model that is given in (2.73). Therefore, similar

to channels in Class A1, this channel is admissible if the corresponding parameters satisfy

b′g2 = b,

(1 −√
g2)

2N22 + g2N21 = 1.
(2.116)

Next, we change the constraints in (2.79) as

b′ ≥ N21,

aN22 ≤ 1.
(2.117)

Through this change of constraints, the second receiver after decoding its own signal will

have a less noisy version of the first user’s signal, and consequently, it is able to decode the

signal of the first user as well as its own signal. Relying on this observation, we have the

following lemma.

Lemma 6. For a channel in Class C, we have

σC ′(µ, 1) ≤µ− 1

2
log (2πe(P1 + aP2 + 1)) +

1

2
log

(

2πe

(
P2N22

P2 +N22
+ b′P1 +N21

))

− 1

2
log(2πeN21) −

1

2
log(2πeN22) + fh(P2, N22, 1, a, µ− 1). (2.118)

Proof. Since the second user is able to decode both users’ messages, we have

R1≤
1

n
I(xn1 ; ỹn1 ), (2.119)

R1≤
1

n
I(xn1 ; ỹn21, ỹ

n
22|xn2 ), (2.120)

R2≤
1

n
I(xn2 ; ỹn21, ỹ

n
22|xn1 ), (2.121)

R1 +R2≤
1

n
I(xn1 , x

n
2 ; ỹn21, ỹ

n
22). (2.122)

From aN22 ≤ 1, we have I(xn1 ; ỹn1 ) ≤ I(xn1 ; ỹn21|xn2 ) = I(xn1 ; ỹn21, ỹ
n
22|xn2 ). Hence, (2.120) is

redundant. It can be shown that

µR1 +R2 ≤
µ− 1

n
I(xn1 ; ỹn1 ) +

1

n
I(xn1 , x

n
2 ; ỹn21, ỹ

n
22). (2.123)
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Hence, we have

µR1 +R2≤
µ− 1

n
h(ỹn1 ) − µ− 1

n
h(ỹn1 |xn1 ) +

1

n
h(ỹn21, ỹ

n
22) −

1

n
h(ỹn21, ỹ

n
22|xn1 , xn2 )

=
µ− 1

n
h(ỹn1 ) +

1

n
h(ỹn21|ỹn22) −

1

n
h(ỹn21, ỹ

n
22|xn1 , xn2 )

+

[
1

n
h(ỹn22) −

µ− 1

n
h(ỹn1 |xn1 )

]

. (2.124)

Next, we bound the different terms in (2.124). For the first term, we have

µ− 1

n
h(ỹn1 ) ≤ µ− 1

2
log (2πe(P1 + aP2 + 1)) . (2.125)

The second term can be bounded as

1

n
h(ỹn21|ỹn22) ≤

1

2
log

(

2πe

(
P2N22

P2 +N22

+ b′P1 +N21

))

. (2.126)

The third term can be bounded as

1

n
h(ỹn21, ỹ

n
22|xn1 , xn2 ) =

1

2
log(2πeN21) +

1

2
log(2πeN22). (2.127)

The last terms can be bounded as

1

n
h(ỹn22) −

µ− 1

n
h(ỹn1 |xn1 )=

1

n
h(xn2 + zn22) −

µ− 1

n
h(
√
axn2 + z1) (2.128)

≤ fh(P2, N22, 1, a, µ− 1). (2.129)

Adding all inequalities, we obtain the desired result.

2.3 Weak Gaussian Interference Channel

In this section, we focus on the weak GIC. We first obtain the sum capacity of this channel

for a certain range of parameters. Then, we obtain an outer bound on the capacity region

which is tighter than the previously known outer bounds. Finally, we show that time-sharing

and concavification result in the same achievable region for Gaussian codebooks.

2.3.1 Sum Capacity

In this subsection, we use the Class B channels to obtain the sum capacity of the weak IC

for a certain range of parameters. To this end, let us consider the following minimization
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problem:

W =min γ

(
P1

N11
+

P1

a′P2 +N12

)

+ γ

(
P2

N22
+

P2

b′P1 +N21

)

(2.130)

subject to:

a′g1 = a

b′g2 = b

b′N11 ≤ N21

a′N22 ≤ N12

(1 −√
g1)

2N11 + g1N12 = 1

(1 −√
g2)

2N22 + g2N21 = 1

0 ≤ [a′, b′, g1, g2, N11, N12, N22, N21].

The objective function in (2.130) is the sum capacity of Class B channels obtained in Theorem

4. The constraints are the combination of (2.100) and (2.101) where applied to confirm the

admissibility of the channel and to validate the sum capacity result. Since every channel in

the class is admissible, we have Csum ≤ W . Substituting S1 = g1N12 and S2 = g2N21, we

have

W =min γ

(
(1 −√

g1)
2P1

1 − S1

+
g1P1

aP2 + S1

)

+ γ

(
(1 −√

g2)
2P2

1 − S2

+
g2P2

bP1 + S2

)

(2.131)

subject to:
b(1 − S1)

(1 −√
g1)2

≤ S2 < 1

a(1 − S2)

(1 −√
g2)2

≤ S1 < 1

0 < [g1, g2].

By first minimizing with respect to g1 and g2, the optimization problem (2.131) can be

decomposed as

W =minW1 +W2 (2.132)

subject to: 0 < S1 < 1, 0 < S2 < 1,

where W1 is defined as

W1 =min
g1

γ

(
(1 −√

g1)
2P1

1 − S1
+

g1P1

aP2 + S1

)

(2.133)

subject to:
b(1 − S1)

S2
≤ (1 −√

g1)
2, 0 < g1.
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Similarly, W2 is defined as

W2 =min
g2

γ

(
(1 −√

g2)
2P2

1 − S2

+
g2P2

bP1 + S2

)

(2.134)

subject to:
a(1 − S2)

S1
≤ (1 −√

g2)
2, 0 < g2.

The optimization problems (2.133) and (2.134) are easy to solve. In fact, we have

W1 =







γ
(

P1

1+aP2

)

if
√
b(1 + aP2) ≤

√

S2(1 − S1)

γ

(

bP1

S2
+

(1−
√
b(1−S1)/S2)2P1

aP2+S1

)

Otherwise
(2.135)

W2 =







γ
(

P2

1+bP1

)

if
√
a(1 + bP1) ≤

√

S1(1 − S2)

γ

(

aP2

S1
+

(1−
√
a(1−S2)/S1)2P2

bP1+S2

)

Otherwise.
(2.136)

From (2.135) and (2.136), we observe that for S1 and S2 satisfying
√
b(1 + aP2) ≤

√

S2(1 − S1) and
√
a(1 + bP1) ≤

√

S1(1 − S2), the objective function becomes independent

of S1 and S2. In this case, we have

W = γ

(
P1

1 + aP2

)

+ γ

(
P2

1 + bP1

)

, (2.137)

which is achievable by treating interference as noise. In the following theorem, we prove that

it is possible to find a certain range of parameters such that there exist S1 and S2 yielding

(2.137).

Theorem 5. The sum capacity of the two-user GIC is

Csum = γ

(
P1

1 + aP2

)

+ γ

(
P2

1 + bP1

)

, (2.138)

for the range of parameters satisfying

√
bP1 +

√
aP2 ≤

1 −√
a−

√
b√

ab
. (2.139)

Proof. Let us fix a and b, and define D as

D =

{

(P1, P2)|P1 ≤
√

S1(1 − S2)

b
√
a

− 1

b
, P2 ≤

√

S2(1 − S1)

a
√
b

− 1

a
, 0 < S1 < 1, 0 < S2 < 1

}

.

(2.140)
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In fact, if D is feasible then there exist 0 < S1 < 1 and 0 < S2 < 1 satisfying
√
b(1 + aP2) ≤

√

S2(1 − S1) and
√
a(1 + bP1) ≤

√

S1(1 − S2). Therefore, the sum capacity of the channel

for all feasible points is attained due to (2.137).

We claim that D = D′, where D′ is defined as

D′ =

{

(P1, P2)|
√
bP1 +

√
aP2 ≤

1 −√
a−

√
b√

ab

}

. (2.141)

To show D′ ⊆ D, we set S1 = 1 − S2 in (2.140) to get

{

(P1, P2)|P1 ≤
S1

b
√
a
− 1

b
, P2 ≤

1 − S1

a
√
b

− 1

a
, 0 < S1 < 1

}

⊆ D. (2.142)

It is easy to show that the left hand side of the above equation is another representation of

the region D′. Hence, we have D′ ⊆ D.

To show D ⊆ D′, it suffices to prove that for any (P1, P2) ∈ D,
√
bP1 +

√
aP2 ≤ 1−√

a−
√
b√

ab

holds. To this end, we introduce the following maximization problem:

J = max
(P1,P2)∈D

√
bP1 +

√
aP2, (2.143)

which can be written as

J = max
(S1,S2)∈(0,1)2

√

S1(1 − S2) +
√

S2(1 − S1)√
ab

− 1√
a
− 1√

b
. (2.144)

It is easy to show that the solution to the above optimization problem is

J =
1√
ab

− 1√
a
− 1√

b
. (2.145)

Hence, we deduce that D ⊆ D′. This completes the proof.

Remark 3. The above sum capacity result for the weak GIC (see also [41]) has been estab-

lished independently in [18] and [19].

As an example, let us consider the symmetric GIC. In this case, the constraint in (2.139)

becomes

P ≤ 1 − 2
√
a

2a
√
a
. (2.146)

In Figure 2.7, the admissible region for P , where treating interference as noise is optimal,

versus
√
a is plotted. For a fixed P and all 0 ≤ a ≤ 1, the upper bound in (2.130) and

the lower bound when receivers treat the interference as noise are plotted in Figure 2.8. We

observe that up to a certain value of a, the upper bound coincides with the lower bound.
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a

Figure 2.7: The shaded area is the region where treating interference as noise is optimal for

obtaining the sum capacity of the symmetric GIC.

a

2
1

R
R

7
21

PP

Figure 2.8: The upper bound obtained by solving (2.130). The lower bound is obtained by

treating the interference as noise.
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2.3.2 New Outer Bound

For the weak GIC, there are two outer bounds that are tighter than the other known bounds.

The first one, due to Kramer [15], is obtained by relying on the fact that the capacity region

of the GIC is inside the capacity regions of the two underlying one-sided GICs. Even though

the capacity region of the one-sided GIC is unknown, there exists an outer bound for this

channel that can be used instead. Kramers’ outer bound is the intersection of two regions

E1 and E2. E1 is the collection of all rate pairs (R1, R2) satisfying

R1≤ γ

(
(1 − β)P ′

βP ′ + 1/a

)

, (2.147)

R2≤ γ(βP ′), (2.148)

for all β ∈ [0, βmax], where P ′ = P1/a+P2 and βmax = P2

P ′(1+P1)
. Similarly, E2 is the collection

of all rate pairs (R1, R2) satisfying

R1≤ γ(αP ′′), (2.149)

R2≤ γ

(
(1 − α)P ′′

αP ′′ + 1/b

)

, (2.150)

for all α ∈ [0, αmax], where P ′′ = P1 + P2/b and αmax = P1

P ′′(1+P2)
.

The second outer bound, due to Etkin et al. [20], is obtained by using Genie aided

technique to upper bound different linear combinations of rates that appear in the HK

achievable region. Their outer bound is the union of all rate pairs (R1, R2) satisfying

R1≤ γ(P1), (2.151)

R2≤ γ(P2), (2.152)

R1 +R2≤ γ(P1) + γ

(
P2

1 + bP1

)

, (2.153)

R1 +R2≤ γ(P2) + γ

(
P1

1 + aP2

)

, (2.154)

R1 +R2≤ γ

(

aP2 +
P1

1 + bP1

)

+ γ

(

bP1 +
P2

1 + aP2

)

, (2.155)

2R1 +R2≤ γ(P1 + aP2) + γ

(

bP1 +
P2

1 + aP2

)

+ 0.5 log

(
1 + P1

1 + bP1

)

, (2.156)

R1 + 2R2≤ γ(bP1 + P2) + γ

(

aP2 +
P1

1 + bP1

)

+ 0.5 log

(
1 + P2

1 + aP2

)

. (2.157)

In the outer bound proposed here, we derive an upper bound on all linear combinations

of the rates. Recall that to obtain the boundary points of the capacity region C , it suffices

to calculate σC (µ, 1) and σC (1, µ) for all 1 ≤ µ. To this end, we make use of channels in
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A1 and B classes and channels in A2 and B classes to obtain upper bounds on σC (µ, 1) and

σC (1, µ), respectively.

In order to obtain an upper bound on σC (µ, 1), we introduce two optimization problems

as follows. The first optimization problem is written as

W1(µ) =min
µ1

2
log [2πe(P1 + aP2 + 1)] − µ2

2
log(2πe) + µ2fh

(

P1, 1, N21, b
′,

1

µ2

)

(2.158)

+
1

2
log

(
N21

N22
+
b′P1

N22
+

P2

P2 +N22

)

+ fh(P2, N22, 1, a, µ1)

subject to:

µ1 + µ2 = µ

b′g2 = b

b′ ≤ N21

aN22 ≤ 1

(1 −√
g2)

2N22 + g2N21 = 1

0 ≤ [µ1, µ2, b
′, g2, N22, N21].

In fact, the objective of the above minimization problem is an upper bound on the support

function of a channel within Class A1 which is obtained in Lemma 3. The constraints are

the combination of (2.78) and (2.79) which are applied to guarantee the admissibility of the

channel and to validate the upper bound obtained in Lemma 3. Hence, σC (µ, 1) ≤ W1(µ).

By using a new variable S = (1 −√
g2)

2N22, we obtain

W1(µ) =min
µ1

2
log [2πe(P1 + aP2 + 1)] + µ2fh

(

P1, 1,
1 − S

g2

,
b

g2

,
1

µ2

)

(2.159)

+
1

2
log

[

(1 −√
g2)

2(
1 − S + bP1

g2S
+

P2

(1 −√
g2)2P2 + S

)

]

− µ2

2
log(2πe)

+ fh(P2,
S

(1 −√
g2)2

, 1, a, µ1)

subject to:

µ1 + µ2 = µ

S ≤ 1 − b

S ≤ (1 −√
g2)

2

a
0 ≤ [µ1, µ2, S, g2].
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The second optimization problem is written as

W2(µ) =minµγ

(
P1

N11
+

P1

a′P2 +N12

)

+ γ

(
P2

N22
+

P2

b′P1 +N21

)

(2.160)

+
µ

2
log((2πe)(a′P2 +N12)) −

1

2
log((2πe)(P2 +N22))

+ fh(P2, N22, N12, a
′, µ)

subject to:

a′g1 = a

b′g2 = b

b′N11 ≤ N21

a′N22 ≤ N12

(1 −√
g1)

2N11 + g1N12 = 1

(1 −√
g2)

2N22 + g2N21 = 1

0 ≤ [a′, b′, g1, g2, N11, N12, N22, N21].

For this problem, Class B channels are used. In fact, the objective value is the upper bound

on the support function of channels within the class obtained in Lemma 5 and the constraints

are defined to obtain the closed form formula for the upper bound and to confirm that the

channels are admissible. Hence, we deduce σC (µ, 1) ≤ W2(µ). By using new variables

S1 = g1N12 and S2 = g2N21 , we obtain

W2(µ) =minµγ

(
(1 −√

g1)
2P1

1 − S1
+

g1P1

aP2 + S1

)

+ γ

(
(1 −√

g2)
2P2

1 − S2
+

g2P2

bP1 + S2

)

(2.161)

+ fh

(

P2,
1 − S2

(1 −√
g2)2

,
S1

g1
,
a

g1
, µ

)

+
µ

2
log

(

(2πe)(
aP2 + S1

g1
)

)

− 1

2
log

(

(2πe)(P2 +
1 − S2

(1 −√
g2)2

)

)

subject to:
b(1 − S1)

(1 −√
g1)2

≤ S2 < 1

a(1 − S2)

(1 −√
g2)2

≤ S1 < 1

0 < [g1, g2].

In a similar fashion, one can introduce two other optimization problems, say W̃1(µ) and

W̃2(µ), to obtain upper bounds on σC (1, µ) by using the upper bounds on the support

functions of channels in Class A2 and Class B.
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r3

r2

r1

r4

R
2

R1

r′1

R1 + 2R2 = ψ5

R2 = ψ2

R1 +R2 = ψ3

2R1 +R2 = ψ4

R1 = ψ1

r′4r′5

r′2

r′3

r′6

Figure 2.9: G0 for the weak GIC. r1, r2, r3, and r4 are extreme points of G0 in the interior of

the first quadrant.

Theorem 6 (New Outer Bound). For any rate pair (R1, R2) achievable for the two-user

weak GIC, the inequalities

µ1R1 +R2 ≤W (µ1) = min{W1(µ1),W2(µ1)}, (2.162)

R1 + µ2R2 ≤ W̃ (µ2) = min{W̃1(µ2), W̃2(µ2)}, (2.163)

hold for all 1 ≤ µ1, µ2.

To obtain an upper bound on the sum rate, we can apply the following inequality:

Csum ≤ min
1≤µ1,µ2

(µ2 − 1)W (µ1) + (µ1 − 1)W̃ (µ2)

µ1µ2 − 1
. (2.164)

2.3.3 Han-Kobayashi Achievable region

In this sub-section, we aim at characterizing G for the weak GIC. To this end, we first inves-

tigate some properties of G0(P1, P2, α, β). First of all, we show that none of the inequalities

in describing G0 is redundant. In Figure 2.9, all possible extreme points are shown. It is easy

to prove that r′i /∈ G0 for i ∈ {1, 2, . . . , 6}. For instance, we consider r′6 =
(

2ψ4−ψ5

3
, 2ψ5−ψ4

3

)
.

Since ψ31 + ψ32 + ψ33 = ψ4 + ψ5 (see Section II.C), we have

ψ3= min{ψ31, ψ32, ψ33}
≤ 1

3
(ψ31 + ψ32 + ψ33)

=
1

3
(ψ4 + ψ5).
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However, 1
3
(ψ4 + ψ5) is the sum of the components of r′6. Therefore, r′6 violates (2.7) in

the definition of the HK achievable region. Hence, r′6 /∈ G0. As another example, let us

consider r′1 = (ψ1, ψ3 − ψ1). We claim that r′1 violates (2.8). To this end, we need to show

that ψ4 ≤ ψ3 + ψ1. However, it is easy to see that ψ4 ≤ ψ31 + ψ1, ψ4 ≤ ψ32 + ψ1, and

ψ4 ≤ ψ33 + ψ1 reduce to 0 ≤ (1 − α)(1 − b+ β(1 − ab)P2), 0 ≤ (1 − β)(1 − a + (1 − ab)P1),

and 0 ≤ (1 − α)(1 − β)aP2, respectively. Therefore, r′1 /∈ G0.

We conclude that G has four extreme points in the interior of the first quadrant, namely

r1= (ψ1, ψ4 − 2ψ1), (2.165)

r2= (ψ4 − ψ3, 2ψ3 − ψ4), (2.166)

r3= (2ψ3 − ψ5, ψ5 − ψ3), (2.167)

r4= (ψ5 − 2ψ2, ψ2). (2.168)

Most importantly, G0 possesses the unique minimizer property. To prove this, we need

to show that ŷ, the minimizer of the optimization problem

σD0(c1, c2, P1, P2, α, β)= max{c1R1 + c2R2|AR ≤ Ψ(P1, P2, α, β)}
= min{ytΨ(P1, P2, α, β)|Aty = (c1, c2)

t,y ≥ 0}, (2.169)

is independent of the parameters P1, P2, α, and β and only depends on c1 and c2. We first

consider the case (c1, c2) = (µ, 1) for all 1 ≤ µ. It can be shown that for 2 < µ, the maximum

of (3.18) is attained at r1 regardless of P1, P2, α, and β. Therefore, the dual program has

the minimizer ŷ = (µ− 2, 0, 0, 1, 0)t which is clearly independent of P1, P2, α, and β. In this

case, we have

σD0(µ, 1, P1, P2, α, β) = (µ− 2)ψ1 + ψ4, 2 < µ. (2.170)

For 1 ≤ µ ≤ 2, one can show that r2 and ŷ = (0, 0, 2 − µ, µ − 1, 0)t are the maximizer and

the minimizer of (3.18), respectively. In this case, we have

σD0(µ, 1, P1, P2, α, β) = (2 − µ)ψ3 + (µ− 1)ψ4, 1 ≤ µ ≤ 2. (2.171)

Next, we consider the case (c1, c2) = (1, µ) for all 1 ≤ µ. Again, it can be shown that for

2 < µ and 1 ≤ µ ≤ 2, ŷ = (0, µ− 2, 0, 0, 1)t and ŷ = (0, 0, 2− µ, 0, µ− 1)t minimizes (3.18),

respectively. Hence, we have

σD0(1, µ, P1, P2, α, β)= (µ− 2)ψ2 + ψ5, if 2 < µ, (2.172)

σD0(1, µ, P1, P2, α, β)= (2 − µ)ψ3 + (µ− 1)ψ5, if 1 ≤ µ ≤ 2. (2.173)

We conclude that the solutions of the dual program are always independent of P1, P2, α,

and β. Hence, G0 possesses the unique minimizer property.
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Theorem 7. For the two-user weak GIC, time-sharing and concavification result in the same

region. In other words, G can be fully characterized by using TD/FD and allocating power

over three different dimensions.

Proof. Since G0 possesses the unique minimizer property, from Theorem 1, we deduce that

G = G2. Moreover, using Theorem 3, the number of frequency bands is at most three.

To obtain the support function of G2, we need to obtain g(c1, c2, P1, P2, α, β) defined in

(2.43). Since G0 possesses the unique minimizer property, (2.43) can be simplified. Let us

consider the case where (c1, c2) = (µ, 1) for µ > 2. It can be shown that for this case

g = max
(α,β)∈[0,1]2

(µ− 2)ψ1(P1, P2, α, β) + ψ4(P1, P2, α, β). (2.174)

Substituting into (2.42), we obtain

σG2(µ, 1, P1, P2) =max
3∑

i=1

λi [(µ− 2)ψ1(P1i, P2i, αi, βi) + ψ4(P1i, P2i, αi, βi)] (2.175)

subject to:
3∑

i=1

λi = 1

3∑

i=1

λiP1i ≤ P1

3∑

i=1

λiP2i ≤ P2

0 ≤ λi, 0 ≤ P1i, 0 ≤ P2i, ∀i ∈ {1, 2, 3}
0 ≤ αi ≤ 1, 0 ≤ βi ≤ 1, ∀i ∈ {1, 2, 3}.

For other ranges of (c1, c2), a similar optimization problem can be formed. It is worth

noting that even though the number of parameters in characterizing G is reduced, it is still

prohibitively difficult to characterize boundary points of G . In Figures (2.10) and (2.11),

different bounds for the symmetric weak GIC are plotted. As shown in these figures, the

new outer bound is tighter than the previously known bounds.

2.4 One-sided Gaussian Interference Channels

Throughout this section, we consider the one-sided GIC obtained by setting b = 0, i.e, the

second receiver incurs no interference from the first transmitter. One can further split the
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Figure 2.10: Comparison between different bounds for the symmetric weak GIC when P = 7

and a = 0.2.

Figure 2.11: Comparison between different bounds for the symmetric weak GIC when P =

100 and a = 0.1.
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class of one-sided ICs into two subclasses: the strong one-sided IC and the weak one-sided

IC. For the former, a ≥ 1 and the capacity region is fully characterized [33]. In this case,

the capacity region is the union of all rate pairs (R1, R2) satisfying

R1≤ γ(P1),

R2≤ γ(P2),

R1 +R2≤ γ(P1 + aP2).

For the latter, a < 1 and the full characterization of the capacity region is still an open

problem. Therefore, we always assume a < 1. Three important results were proved for

this channel. The first one, proved by Costa in [14], states that the capacity region of the

weak one-sided IC is equivalent to that of the degraded IC with an appropriate change of

parameters. The second one, proved by Sato in [13], states that the capacity region of

the degraded GIC is outer bounded by the capacity region of a certain degraded broadcast

channel. The third one, proved by Sason in [33], characterizes the sum capacity by combining

Costa’s and Sato’s results.

In this section, we provide an alternative proof for the outer bound obtained by Sato.

We then characterize the full HK achievable region where Gaussian codebooks are used, i.e.,

G .

2.4.1 Sum Capacity

For the sake of completeness, we first state the sum capacity result obtained by Sason.

Theorem 8 (Sason). The rate pair
(

γ
(

P1

1+aP2

)

, γ(P2)
)

is an extreme point of the capacity

region of the one-sided GIC. Moreover, the sum capacity of the channel is attained at this

point.

2.4.2 Outer Bound

In [13], Sato derived an outer bound on the capacity of the degraded IC. This outer bound

can be used for the weak one-sided IC as well. This is due to Costa’s result which states

that the capacity region of the degraded GIC is equivalent to that of the weak one-sided IC

with an appropriate change of parameters.

Theorem 9 (Sato). If the rate pair (R1, R2) belongs to the capacity region of the weak

one-sided IC, then it satisfies

R1 ≤ γ
(

(1−β)P
1/a+βP

)

,

R2 ≤ γ(βP ),
(2.176)
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for all β ∈ [0, 1] where P = P1/a+ P2.

Proof. Since the sum capacity is attained at the point where User 2 transmits at its max-

imum rate R2 = γ(P2), other boundary points of the capacity region can be obtained by

characterizing the solutions of σC (µ, 1) = max {µR1 +R2|(R1, R2) ∈ C } for all 1 ≤ µ. Using

Fano’s inequality, we have

n(µR1 +R2) ≤µI(xn1 ; yn1 ) + I(xn2 ; yn2 ) + nεn

=µh(yn1 ) − µh(yn1 |xn1 ) + h(yn2 ) − h(yn2 |xn2 ) + nεn

=[µh(xn1 +
√
axn2 + zn1 ) − h(zn2 )] + [h(xn2 + zn2 ) − µh(

√
axn2 + zn1 )] + nεn

(a)

≤µn

2
log [2πe(P1 + aP2 + 1)] − n

2
log(2πe) + [h(xn2 + zn2 ) − µh(

√
axn2 + zn1 )]

+ nεn
(b)

≤µn
2

log [2πe(P1 + aP2 + 1)] − n

2
log(2πe) + nfh(P2, 1, 1, a, µ) + nεn,

where (a) follows from the fact that Gaussian distribution maximizes the differential entropy

for a given constraint on the covariance matrix and (b) follows from the definition of fh in

(2.59).

Depending on the value of µ, we consider the following two cases:

1- For 1 ≤ µ ≤ P2+1/a
P2+1

, we have

µR1 +R2 ≤ µγ

(
P1

1 + aP2

)

+ γ(P2). (2.177)

In fact, the point
(

γ
(

P1

1+aP2

)

, γ(P2)
)

which is achievable by treating interference as noise

at Receiver 1, satisfies (2.177) with equality. Therefore, it belongs to the capacity region.

Moreover, by setting µ = 1, we deduce that this point corresponds to the sum capacity of

the one-sided GIC. This is in fact an alternative proof for Sason’s result.

2- For P2+1/a
P2+1

< µ ≤ 1
a
, we have

µR1 +R2 ≤
µ

2
log (P1 + aP2 + 1) +

1

2
log

(
1/a− 1

µ− 1

)

− µ

2
log

(
aµ(1/a− 1)

µ− 1

)

. (2.178)

Equivalently, we have

µR1 +R2 ≤
µ

2
log

(
(aP + 1)(µ− 1)

µ(1 − a)

)

+
1

2
log

(
1/a− 1

µ− 1

)

, (2.179)

where P = P1/a+P2. Let us define E1 as the set of all rate pairs (R1, R2) satisfying (2.179),

i.e.

E1 = {(R1, R2)|µR1 +R2 ≤
µ

2
log

(
(aP + 1)(µ− 1)

µ(1 − a)

)

+
1

2
log

(
1/a− 1

µ− 1

)

,

∀µ :
P2 + 1/a

P2 + 1
< µ ≤ 1

a
}. (2.180)
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We claim that E1 is the dual representation of the region defined in the statement of the

theorem, see (2.4). To this end, we define E2 as

E2 =

{

(R1, R2)|R1 ≤ γ

(
(1 − β)P

1/a+ βP

)

, R2 ≤ γ(βP ), ∀β ∈ [0, 1]

}

. (2.181)

We evaluate the support function of E2 as

σE2(µ, 1) = max {µR1 +R2|(R1, R2) ∈ E2} . (2.182)

It is easy to show that β = 1/a−1
P (µ−1)

maximizes the above optimization problem. Therefore,

we have

σE2(µ, 1) =
µ

2
log

(
(aP + 1)(µ− 1)

µ(1 − a)

)

+
1

2
log

(
1/a− 1

µ− 1

)

. (2.183)

Since E2 is a closed convex set, we can use (2.4) to obtain its dual representation which is

indeed equivalent to (4.21). This completes the proof.

2.4.3 Han-Kobayashi Achievable Region

In this subsection, we characterize G0, G1, G2, and G for the weak one-sided GIC. G0 can be

characterized as follows. Since there is no link between Transmitter 1 and Receiver 2, User

1’s message in the HK achievable region is only the private message, i.e., α = 1. In this case,

we have

ψ1= γ

(
P1

1 + aβP2

)

, (2.184)

ψ2= γ(P2), (2.185)

ψ31= γ

(
P1 + a(1 − β)P2

1 + aβP2

)

+ γ(βP2), (2.186)

ψ32= γ

(
P1

1 + aβP2

)

+ γ(P2), (2.187)

ψ33= γ

(
P1 + a(1 − β)P2

1 + aβP2

)

+ γ(βP2), (2.188)

ψ4= γ

(
P1 + a(1 − β)P2

1 + aβP2

)

+ γ

(
P1

1 + aβP2

)

+ γ(βP2), (2.189)

ψ5= γ(βP2) + γ(P2) + γ

(
P1 + a(1 − β)P2

1 + aβP2

)

, (2.190)
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It is easy to show that ψ3 = min{ψ31, ψ32, ψ33} = ψ31, ψ31 + ψ1 = ψ4, ψ31 + ψ2 = ψ5. Hence,

G0 can be represented as all rate pairs (R1, R2) satisfying

R1≤ γ

(
P1

1 + aβP2

)

, (2.191)

R2≤ γ(P2), (2.192)

R1 +R2≤ γ

(
P1 + a(1 − β)P2

1 + aβP2

)

+ γ(βP2). (2.193)

We claim that G2 = G . To prove this, we need to show that G0 possesses the unique

minimizer property. G0 is a pentagon with two extreme points in the interior of the first

quadrant, namely r1 and r2 where

r1=

(

γ

(
P1

1 + aβP2

)

, γ

(
(1 − β)aP2

1 + P1 + βaP2

)

+ γ(βP2)

)

, (2.194)

r2=

(

γ

(
P1 + a(1 − β)P2

1 + aβP2

)

+ γ(βP2) − γ(P2), γ(P2)

)

. (2.195)

Using the above, it can be verified that G0 possesses the unique minimizer property.

Next, we can use the optimization problem in (2.42) to obtain the support function of

G . However, we only need to consider (c1, c2) = (µ, 1) for µ > 1. Therefore, we have

g(µ, 1, P1, P2, β) = max
0≤β≤1

µγ

(
P1

1 + βaP2

)

+ γ(βP2) + γ

(
(1 − β)aP2

1 + P1 + βaP2

)

. (2.196)

Substituting into (2.42), we conclude that boundary points of G can be characterized by

solving the following optimization problem:

W =max
3∑

i=1

λi

[

µγ

(
P1i

1 + βiaP2i

)

+ γ(βiP2i) + γ

(
(1 − βi)aP2i

1 + P1i + βiaP2i

)]

(2.197)

subject to:
3∑

i=1

λi = 1

3∑

i=1

λiP1i ≤ P1

3∑

i=1

λiP2i ≤ P2

0 ≤ βi ≤ 1, ∀i ∈ {1, 2, 3}
0 ≤ [P1i, P2i, λi], ∀i ∈ {1, 2, 3}.

For the sake of completeness, we provide a simple description for G1 in the next lemma.
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Lemma 7. The region G1 can be represented as the collection of all rate pairs (R1, R2)

satisfying

R1≤ γ

(
P1

1 + aβ ′P2

)

, (2.198)

R2≤ γ(β ′P2) + γ

(
a(1 − β ′)P2

1 + P1 + aβ ′P2

)

, (2.199)

for all β ′ ∈ [0, 1]. Moreover, G1 is convex and any point that lies on its boundary can be

achieved by using superposition coding and successive decoding.

Proof. Let E denote the set defined in the above lemma. It is easy to show that E is convex

and E ⊆ G1. To prove the reverse inclusion, it suffices to show that the extreme points of

G0, r1 and r2 (see (2.194) and (2.195)) are inside E for all β ∈ [0, 1]. By setting β ′ = β, we

see that r1 ∈ E. To prove r2 ∈ E, we set β ′ = 1. We conclude that r2 ∈ E if the following

inequality holds

γ

(
P1 + a(1 − β)P2

1 + aβP2

)

+ γ(βP2) − γ(P2) ≤ γ

(
P1

1 + aP2

)

, (2.200)

for all β ∈ [0, 1]. However, (2.200) reduces to 0 ≤ (1 − a)(1 − β)P2 which holds for all

β ∈ [0, 1]. Hence, G1 ⊆ E. Using these facts, it is straightforward to show that the boundary

points G1 are achievable by using superposition coding and successive decoding.

Figure 2.12 compares different bounds for the one-sided GIC.

2.5 Mixed Gaussian Interference Channels

In this section, we focus on the mixed Gaussian Interference channel. We first characterize

the sum capacity of this channel. Then, we provide an outer bound on the capacity region.

Finally, we investigate the HK achievable region. Without loss of generality, we assume

a < 1 and b ≥ 1.

2.5.1 Sum Capacity

Theorem 10. The sum capacity of the mixed GIC with a < 1 and b ≥ 1 can be stated as

Csum = γ (P2) + min

{

γ

(
P1

1 + aP2

)

, γ

(
bP1

1 + P2

)}

. (2.201)



CHAPTER 2. TWO-USER GAUSSIAN INTERFERENCE CHANNEL 52

1

Figure 2.12: Comparison between different bounds for the one-sided GIC when P1 = 1,

P2 = 7, and a = 0.4.
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Proof. We need to prove the achievablity and converse for the theorem.

Achievablity part: Transmitter 1 sends a common message to both receivers, while the

first user’s signal is considered as noise at both receivers. In this case, the rate

R1 = min

{

γ

(
P1

1 + aP2

)

, γ

(
bP1

1 + P2

)}

(2.202)

is achievable. At Receiver 2, the signal from Transmitter 1 can be decoded and removed.

Therefore, User 2 is left with a channel without interference and it can communicate at its

maximum rate which is

R2 = γ(P2). (2.203)

By adding (2.202) and (2.203), we obtain the desired result.

Converse part: The sum capacity of the GIC is upper bounded by that of the two

underlying one-sided GICs. Hence, we can obtain two upper bounds on the sum rate. We

first remove the interfering link between Transmitter 1 and Receiver 2. In this case, we have

a one-sided GIC with weak interference. The sum capacity of this channel is known [33].

Hence, we have

Csum ≤ γ(P2) + γ

(
P1

1 + aP2

)

. (2.204)

By removing the interfering link between Transmitter 2 and Receiver 1, we obtain a one-

sided GIC with strong interference. The sum capacity of this channel is known. Hence, we

have

Csum ≤ γ (bP1 + P2) , (2.205)

which equivalently can be written as

Csum ≤ γ(P2) + γ

(
bP1

1 + P2

)

. (2.206)

By taking the minimum of the right hand sides of (2.204) and (2.206), we obtain

Csum ≤ γ (P2) + min

{

γ

(
P1

1 + aP2

)

, γ

(
bP1

1 + P2

)}

. (2.207)

This completes the proof.

Remark 4. In an independent work [18], the sum capacity of the mixed GIC is obtained

for a certain range of parameters, whereas in the above theorem, we characterize the sum

capacity of this channel for the entire range of its parameters (see also [41]).



CHAPTER 2. TWO-USER GAUSSIAN INTERFERENCE CHANNEL 54

By comparing γ
(

P1

1+aP2

)

with γ
(

bP1

1+P2

)

, we observe that if 1 + P2 ≤ b + abP2, then the

sum capacity corresponds to the sum capacity of the one-sided weak GIC, whereas if 1+P2 >

b+ abP2, then the sum capacity corresponds to the sum capacity of the one-sided strong IC.

Similar to the one-sided GIC, since the sum capacity is attained at the point where User 2

transmits at its maximum rate R2 = γ(P2), other boundary points of the capacity region

can be obtained by characterizing the solutions of σC (µ, 1) = max {µR1 +R2|(R1, R2) ∈ C }
for all 1 ≤ µ.

2.5.2 New Outer Bound

The Genie aided technique is used by Etkin et al. in [20] to obtain an outer bound on the

capacity of the mixed GIC. This bound is the union of all rate pairs (R1, R2) satisfying

R1≤ γ(P1), (2.208)

R2≤ γ(P2), (2.209)

R1 +R2≤ γ(P2) + γ

(
P1

1 + aP2

)

, (2.210)

R1 +R2≤ γ(P2 + bP1), (2.211)

2R1 +R2≤ γ(P1 + aP2) + γ

(

bP1 +
P2

1 + aP2

)

+ γ

(
P1

1 + bP1

)

. (2.212)

The capacity region of the mixed GIC is inside the intersection of the capacity regions of

the two underlying one-sided GICs. Removing the link between Transmitter 1 and Receiver

2 results in a weak one-sided GIC whose outer bound E1 is the collection of all rate pairs

(R1, R2) satisfying

R1≤ γ

(
(1 − β)P ′

βP ′ + 1/a

)

, (2.213)

R2≤ γ(βP ′), (2.214)

for all β ∈ [0, βmax], where P ′ = P1/a + P2 and βmax = P2

P ′(1+P1)
. On the other hand,

removing the link between Transmitter 2 and Receiver 1 results in a strong one-sided GIC

whose capacity region E2 is fully characterized as the collection of all rate pairs (R1, R2)

satisfying

R1≤ γ(bP1), (2.215)

R2≤ γ (P2) , (2.216)

R1 +R2≤ γ(bP1 + P2). (2.217)
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Using the channels in Class C, we upper bound σC (µ, 1) based on the following optimiza-

tion problem:

W (µ) =min
µ− 1

2
log (2πe(P1 + aP2 + 1)) − 1

2
log(2πeN21) −

1

2
log(2πeN22) (2.218)

+
1

2
log

(

2πe

(
P2N22

P2 +N22
+ b′P1 +N21

))

+ fh(P2, N22, 1, a, µ− 1)

subject to:

b′g2 = b

b′ ≥ N21

aN22 ≤ 1

(1 −√
g2)

2N22 + g2N21 = 1

0 ≤ [b′, g2, N22, N21].

By substituting S = g2N21, we obtain

W (µ) =min
µ− 1

2
log (2πe(P1 + aP2 + 1)) − 1

2
log

(
2πe(1 − S)

(1 −√
g2)2

)

(2.219)

+
1

2
log

(

2πe

(
P2(1 − S)

(1 −√
g2)2P2 + 1 − S

+
bP1 + S

g2

))

+ fh

(

P2,
1 − S

(1 −√
g2)2

, 1, a, µ− 1

)

− 1

2
log

(
2πeS

g2

)

subject to:

S < 1

a(1 − S) ≤ (1 −√
g2)

2

0 ≤ [S, g2].

Hence, we have the following theorem that provides an outer bound on the capacity

region of the mixed GIC.

Theorem 11. For any rate pair (R1, R2) achievable for the two-user mixed GIC, (R1, R2) ∈
E1

⋂
E2. Moreover, the inequality

µR1 +R2 ≤W (µ) (2.220)

holds for all 1 ≤ µ.

2.5.3 Han-Kobayashi Achievable Region

In this subsection, we study the HK achievable region for the mixed GIC. Receiver 2 after

decoding its own signal will have a less noisy version of the first user’s signal, and conse-

quently, it is able to decode the signal of the first user as well as its own signal. Hence, User
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R1

R2

γ(P2)
r4

r3

r2

r1

G ′
0

Alternating Regions

Figure 2.13: The new region G ′
0 which is obtained by enlarging G0.

1 associates all its power to the common message. User 2, on the other hand, allocates βP2

and (1 − β)P2 of its total power to its private and common messages, respectively, where

β ∈ [0, 1]. Therefore, we have

ψ1= γ

(
P1

1 + aβP2

)

, (2.221)

ψ2= γ(P2), (2.222)

ψ31= γ

(
P1 + a(1 − β)P2

1 + aβP2

)

+ γ(βP2), (2.223)

ψ32= γ(P2 + bP1), (2.224)

ψ33= γ

(
a(1 − β)P2

1 + aβP2

)

+ γ(βP2 + bP1), (2.225)

ψ4= γ

(
P1 + a(1 − β)P2

1 + aβP2

)

+ γ(βP2 + bP1), (2.226)

ψ5= γ(βP2) + γ(P2 + bP1) + γ

(
a(1 − β)P2

1 + aβP2

)

. (2.227)

Due to the fact that the sum capacity is attained at the point where the second user

transmits at its maximum rate, the last inequality in the description of the HK achievable

region can be removed. Although the point r′5 = (ψ3−γ(P2), γ(P1)) in Figure 2.9 may not be

in G0, this point is always achievable due to the sum capacity result. Hence, we can enlarge

G0 by removing r3 and r4. Let us denote the resulting region as G ′
0. Moreover, one can show

that r′2, r
′
3, r

′
4, and r′6 are still outside G ′

0. However, for the mixed GIC, it is possible that

r′1 belongs to G ′
0. In Figure 2.13, two alternative cases for the region G ′

0 along with the new
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labeling of its extreme points are plotted. The new extreme points can be written as

r1= (ψ1, ψ4 − 2ψ1),

r2= (ψ1, ψ3 − ψ1),

r3= (ψ4 − ψ3, 2ψ3 − ψ4),

r4= (ψ3 − ψ2, ψ2).

In fact, we have either G ′
0 = conv{r1, r3, r4} or G ′

0 = conv{r2, r4}.
To simplify the characterization of G1, we consider three cases:

Case I: 1 + P2 ≤ b+ abP2.

Case II: 1 + P2 > b+ abP2 and 1 − a ≤ abP1.

Case III: 1 + P2 > b+ abP2 and 1 − a > abP1.

Case I (1 + P2 ≤ b+ abP2): In this case, ψ3 = ψ31. Moreover, it is easy to verify that

ψ31 + ψ1 ≤ ψ4 which means (2.8) is redundant for the entire range of parameters. Hence,

G ′
0 = conv{r2, r4} consists of all rate pairs (R1, R2) satisfying

R1≤ γ

(
P1

1 + aβP2

)

, (2.228)

R2≤ γ (P2) , (2.229)

R1 +R2≤ γ

(
P1 + a(1 − β)P2

1 + aβP2

)

+ γ(βP2), (2.230)

where β ∈ [0, 1]. Using a reasoning similar to the one used to express boundary points of G1

for the one-sided GIC, we can express boundary points of G1 as

R1≤ γ

(
P1

1 + aβP2

)

, (2.231)

R2≤ γ(βP2) + γ

(
a(1 − β)P2

1 + P1 + aβP2

)

, (2.232)

for all β ∈ [0, 1].

Theorem 12. For the mixed GIC satisfying 1 ≤ ab, region G is equivalent to that of the one

sided GIC obtained from removing the interfering link between Transmitter 1 and Receiver

2.

Proof. If 1 ≤ ab, then 1 + P2 ≤ b + abP2 holds for all P1 and P2. Hence, G ′
0(P1, P2, β) is a

pentagon defined by (2.228), (2.229), and (2.229). Comparing with the corresponding region

for the one-sided GIC, we see that G ′
0 is equivalent to G0 obtained for the one-sided GIC.

This directly implies that G is the same for both channels.
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Case II (1 + P2 > b+ abP2 and 1 − a ≤ abP1): In this case, ψ3 = min{ψ31, ψ32}. It can

be shown that G1 is the union of three regions E1, E2, and E3, i.e, G0 = E1

⋃
E2

⋃
E3.

Region E1 is the union of all rate pairs (R1, R2) satisfying

R1≤ γ

(
P1

1 + aβP2

)

, (2.233)

R2≤ γ(βP2) + γ

(
a(1 − β)P2

1 + P1 + aβP2

)

. (2.234)

for all β ∈ [0, b−1
(1−ab)P2

]. Region E2 is the union of all rate pairs (R1, R2) satisfying

R1≤ γ

(
bP1

1 + βP2

)

, (2.235)

R2≤ γ

(
P1 + a(1 − β)P2

1 + aβP2

)

+ γ(βP2) − γ

(
bP1

1 + βP2

)

. (2.236)

for all β ∈ [ b−1
(1−ab)P2

, (b−1)P1+(1−a)P2

(1−ab)P1P2+(1−a)P2
]. Region E3 is the union of all rate pairs (R1, R2)

satisfying

R1≤ γ

(

bP1(1 + (1−ab)P1

1−a )

1 + bP1 + P2

)

, (2.237)

R2≤ γ (P2) , (2.238)

R1 +R2≤ γ(bP1 + P2). (2.239)

Case III (1 + P2 > b+ abP2 and 1 − a > abP1): In this case, ψ3 = min{ψ31, ψ32}. Sim-

ilar to Case II, we have G1 = E1

⋃
E2

⋃
E3, where regions E1, E2, and E3 are defined as

follows. Region E1 is the union of all rate pairs (R1, R2) satisfying

R1≤ γ

(
P1

1 + aβP2

)

, (2.240)

R2≤ γ(βP2) + γ

(
a(1 − β)P2

1 + P1 + aβP2

)

. (2.241)

for all β ∈ [0, b−1
(1−ab)P2

]. Region E2 is the union of all rate pairs (R1, R2) satisfying

R1≤ γ

(
P1

1 + aβP2

)

, (2.242)

R2≤ γ

(
a(1 − β)P2

1 + P1 + aβP2

)

+ γ(βP2 + bP1) − γ

(
P1

1 + aβP2

)

. (2.243)

for all β ∈ [ b−1
(1−ab)P2

, 1]. Region E3 is the union of all rate pairs (R1, R2) satisfying

R1≤ γ

(
P1

1 + aP2

)

, (2.244)

R2≤ γ (P2) , (2.245)

R1 +R2≤ γ(bP1 + P2). (2.246)
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Figure 2.14: Comparison between different bounds for the mixed GIC when 1+P2 ≤ b+abP2

(Case I) for P1 = 7, P2 = 7, a = 0.6, and b = 2.

Figure 2.15: Comparison between different bounds for the mixed GIC when 1+P2 > b+abP2

and 1 − a ≤ abP1 (Case II) for P1 = 7, P2 = 7, a = 0.4, and b = 1.5.



CHAPTER 2. TWO-USER GAUSSIAN INTERFERENCE CHANNEL 60

Figure 2.16: Comparison between different bounds for the mixed GIC when 1+P2 > b+abP2

and 1 − a > abP1 (Case III) for P1 = 7, P2 = 700, a = 0.01, and b = 1.5.
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Remark 5. Region E3 in Case II and Case III represents a facet that belongs to the capacity

region of the mixed GIC. It is important to note that, surprisingly, this facet is achievable

when the second transmitter uses both the common message and the private message. In fact,

this is the first GIC where both common and private messages are used to achieve points on

the boundary of the capacity region.

Different bounds are compared for the mixed GIC for Cases I, II, and III in Figures 2.14,

2.15, and 2.16, respectively.

2.6 Conclusion

We have studied the capacity region of the two-user GIC. The sum capacities, inner bounds,

and outer bounds have been considered for three classes of channels: weak, one-sided, and

mixed GIC. We have used admissible channels as the main tool for deriving outer bounds

on the capacity regions.

For the weak GIC, we have derived the sum capacity for a certain range of channel

parameters. In this range, the sum capacity is attained when Gaussian codebooks are used

and interference is treated as noise. Moreover, we have derived a new outer bound on the

capacity region. This outer bound is tighter than the Kramer’s bound and the ETW’s

bound. Regarding inner bounds, we have reduced the computational complexity of the HK

achievable region. In fact, we have shown that when Gaussian codebooks are used, the full

HK achievable region can be obtained by using the naive HK achievable scheme over three

frequency bands.

For the one-sided GIC, we have presented an alternative proof for the Sato’s outer bound.

We have also derived the full HK achievable region when Gaussian codebooks are used.

For the mixed GIC, we have derived the sum capacity for the entire range of its pa-

rameters. Moreover, we have presented a new outer bound on the capacity region that

outperforms ETW’s bound. We have proved that the full HK achievable region using Gaus-

sian codebooks is equivalent to that of the one-sided GIC for a particular range of channel

gains. We have also derived a facet that belongs to the capacity region for a certain range

of parameters. Surprisingly, this facet is obtainable when one of the transmitters uses both

the common message and the private message.



Chapter 3

Interference Alignment in One

Dimension

The first examples of interference alignment in one-dimensional spaces are reported in [30]

and [31] where the results from the field of Diophantine approximation in number theory are

used to show that interference can be aligned using properties of rational and irrational num-

bers and their relations. They showed that the total DOF of some classes of time-invariant

single antenna interference channels can be achieved. In particular, Etkin and Ordentlich in

[30] proposed an upper bound on the total DOF which maintains the properties of channel

gains with respect to being rational or irrational. Using this upper bound, surprisingly, they

proved that the DOF is everywhere discontinuous. This chapter broadens the applications

of interference alignment. In fact, we will show that it is possible to perform alignment in

single dimensional systems such as time-invariant networks equipped with single antennas

at all nodes.

The organization of this chapter is as follows. In Section II, we summarize the main

contributions of this chapter. In Section III, we propose a novel coding scheme in which

data streams are encoded using constellation points from integers and transmitted in the

directions of irrational numbers. Two types of constellation designs are considered, namely

the single layer and the multi-layer constellations. It is shown that the coding provides

sufficient tools to accomplish interference alignment in one-dimensional spaces.

Throughout Section V, the single layer constellation is incorporated in the coding scheme.

First, the performance of a decoder is analyzed using the Khintchine-Groshev theorem in

number theory. It is shown that under some regularity conditions data streams can carry

data with fractional multiplexing gains. The two-user X channel is considered as the first

example in which the single layer constellation is incorporated in the coding scheme. It is

62
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proved that for this channel the total DOF of 4
3

is attainable almost surely. For the K-user

GIC, achievable DOFs are characterized for some classes of channels. Finally, it is proved

that the DOF of 4
3

is achievable for the three-user GIC almost surely.

Throughout Section V, the multi-layer constellation is incorporated in the coding scheme.

The channel under investigation is the symmetric three-user GIC. An achievable DOF is

derived for all channel gains. Viewed as a function of the channel gain, this achievable

DOF is everywhere discontinuous. It is shown that the total DOF of 3
2

is achievable for

all irrational gains. For rational gains, the achievable rate has a gap to the available upper

bounds. In Section VII, we conclude the chapter.

3.1 Main Contributions

In this chapter, we are primarily interested in characterizing the total DOF of the two-user

X channel and the K-user GIC. Let C denote the capacity region of the K-user GIC (a

similar argument can be used for the X channel). The DOF region denoted by R associated

with the channel is in fact the shape of C in the high SNR regime scaled by log SNR. All

extreme points of R can be identified by solving the following optimization problem:

rλ = lim
SNR→∞

max
R∈C

λtR

log SNR
. (3.1)

The total DOF refers to the case where λ = {1, 1, . . . , 1}, i.e., the sum-rate is concerned.

Throughout this chapter, rsum denotes the total DOF of the system. In what follows, we

summarize main contributions of this chapter regarding the total DOF of the X channel and

the K-user GIC.

3.1.1 Bringing Another Dimension to the Picture: Rational Di-

mension

Proposed in [21], the first example of interference alignment is done in Euclidean spaces.

Briefly, the n-dimensional Euclidean space (n ≥ 2) available at a receiver is partitioned into

two subspaces. A subspace is dedicated to interference and all interfering users are forced to

respect this constraint. The major technique is to reduce the dimension of this subspace so

that the available dimension in the signal subspace allows higher data rate for the intended

users. Alignment using structural codes is also considered by several researchers [27, 29].

Structural interference alignment is used to make the interference caused by users less severe
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by reducing the number of possible codewords at receivers. Even though useable in one-

dimensional spaces, this technique does not allow transmission of different data streams as

there is only one dimension available for transmission.

In this chapter, we show that there exist available dimensions (called rational dimensions)

in one-dimensional spaces which open new ways of transmitting several data streams from

a transmitter and interference alignment at the receiver. A coding scheme that provides

sufficient tools to incorporate the rational dimensions in transmission is proposed. This

coding scheme relies on the fact that irrational numbers can play the role of directions in

Euclidean spaces and data can be sent by using rational numbers. This fact is proved by

using the results of Hurwitz, Khintchine, and Groshev obtained in the field of Diophantine

Approximation. In the encoding part, two types of constellation are used to modulate data

streams. Type I or single layer constellation refers to the case where all integer points in

an interval are chosen as constellation points. Despite its simplicity, it is shown that the

single layer constellation is capable of achieving the total DOF of several channels. Type II

or multi-layer constellation refers to the case that a subset of integer points in an interval is

chosen as constellation points. Being able of achieving the total DOF of some channels, this

constellation is more useful when all channel gains are rational.

3.1.2 Breaking the Ice: Alignment in One dimension

Obtained results regarding the total DOF of networks are based on interference alignment

in n-dimensional Euclidean spaces where n ≥ 2, c.f. [21, 23, 24, 42, 43, 44]. For example

in [24], the total DOF of the K-user Gaussian interference channel is derived when each

transmitter and receiver is equipped with a single antenna. In order to be able to align the

interference, however, it is assumed that the channel is varying. This in fact means that

nodes are equipped with multiple antennas and channel coefficients are diagonal matrices.

Recently, [30] and [31] independently reported that the total DOF of some classes of fully

connected GICs can be achieved. Although being time invariant, these classes have measure

zero with respect to Lebesque measure. In this chapter, we prove that the total DOF of

time invariant two-user X channel which is 4
3

can be attained almost surely. In other words,

the set of channels that this DOF can not be achieved has measure zero. This is done by

incorporating rational dimensions in transmission. In fact, two independent data streams

from each transmitter are send, while at each receiver two interfering streams are aligned.

This achieves the multiplexing gain of 1
3

per data streams and the total of 4
3

for the system.

We also prove that the same DOF can be achieved for the three-user GIC. However, for this

case there is a gap between the available upper bound, i.e. 3
2
, and the achievable DOF.



CHAPTER 3. INTERFERENCE ALIGNMENT IN ONE DIMENSION 65

3.1.3 K-user GICs: Channel Gains May Help

In [30], it is shown that the total DOF of a K-user GIC interference channel can be achieved

almost surely when all the cross links have rational gains while the direct links have irrational

gains. This result is generalized by introducing the concept of rational dimensions. The

rational dimension of a set of numbers is defined as the dimension of numbers over the field

of rational numbers. For example, if all numbers are rational then the dimension is one. We

show that if the cross links arriving at a receiver has rational dimension m or less and it

is the case for all receivers then the total DOF of K
m+1

is achievable. In special case where

m = 1, it collapses to the result of Etkin and Ordentlich.

3.1.4 Strange Behavior: Discontinuity of DOF

To highlight some important features of the three-user GIC, the symmetric case in which

the channel is governed by a single channel gain is considered. First, it is proved that when

the channel gain is irrational then the total DOF of the channel can be achieved. This is

obtained by using multi-layer constellations in encoding together with Hurwitz’s theorem in

the analysis. There is, however, a subtle difference between this result and the one obtained

for the K-user GIC. Here, we prove that the result holds for all irrational numbers while in

the K-user case we prove that it holds for almost all real numbers. In fact, there may be

some irrational numbers not satisfying the requirements of the K-user case.

When the channel gain is rational then more sophisticated multi-layer constellation design

is required to achieve higher performance. The reason is that interference and data are

sharing the same dimension and splitting them requires more structure in constellations. We

propose a multi-layer constellation in which besides satisfying the requirement of splitting

interference and data, points are packed efficiently in the real line. This is accomplished by

allowing carry over from different levels. Being much simpler in design, avoiding carry over,

however, results in lower DOF. We show that the DOF is roughly related to the maximum

of numerator and denominator, but it is always less than 3
2
.

Viewing the total DOF of the channel as a function of the channel gain, we observe that

this function is everywhere discontinuous which means it is discontinuous at all points. This

is a strange behavior as in all previous results the DOF is a continuous function almost

everywhere. Although this is only achievable, the result of Etkin an Ordentlich in [30]

confirms that this is in fact the case.
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3.2 Coding Scheme

In this section, a coding scheme for data transmission in a shared medium is proposed. It is

assumed that the channel is real, additive, and time invariant. The Additive White Gaussian

Noise (AWGN) with variance σ2 is added to the received signals at all receivers. Moreover,

transmitters are subject to the power constraint P . The Signal to Noise Ratio (SNR) is

defined as SNR = P
σ2 .

The proposed coding is rather general and can be applied to several communication

systems as it will be explored in details in the following sections. In what follows, the

encoding and decoding parts of the scheme are explained. The important features unique to

the scheme are also investigated.

3.2.1 Encoding

A transmitter limits its input symbols to a finite set which is called the transmit constellation.

Even though it has access to the continuum of real numbers, restriction to a finite set has

the benefit of easy and feasible interference management. Having a set of finite points as

input symbols, however, does not rule out transmission of multiple data streams from a

single transmitter. In fact, there are situations where a transmitter wishes to send data to

several receivers (such as the X channel) or having multiple data streams intended for a

single receiver increases the throughput of the system (such as the interference channel). In

what follows, it is shown how a finite set of points can accommodate different data streams.

Let us first explain the encoding of a single data stream. The transmitter selects a

constellation Ui to send the data stream i. The constellation points are chosen from integer

points, i.e., Ui ⊂ Z. It is assumed that Ui is a bounded set. Hence, there is a constant Qi

such that Ui ⊂ [−Qi, Qi]. The cardinality of Ui which limits the rate of data stream i is

denoted by |Ui|.
Two choices for the constellation Ui are considered. The first one, referred to as Type

I or single layer constellation, corresponds to the case where all integers between −Qi and

Qi are selected. This is a simple choice yet capable of achieving the total DOF of several

channels.

In the second one, referred to as Type II or multi-layer constellation, constellation points

are represented to a base W ∈ N. In other words, a point in the constellation can be written

as

ui(b) =
L−1∑

k=0

blW
l, (3.2)
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where bl ∈ {0, 1, . . . , a − 1} and l ∈ {1, 2, . . . , L − 1}. b = (b0, . . . , bL−1) is in fact another

way of expressing ui in W -array representation. a is the upper limit on the digits and clearly

a < W . In fact, if a = W then Type II constellation renders itself as Type I constellation

which is not of interest. Each constellation point can be expressed by L digits and each digit

carries independent message. Each of these digits is referred to as a layer of data. In other

words, Type II constellation carries L layers of information.

Having formed the constellation, the transmitter constructs a random codebook for data

stream i with rate Ri. This can be accomplished by choosing a probability distribution on

the input alphabets. The uniform distribution is the first candidate and it is selected here

for the sake of brevity.

In general, the transmitter wishes to send L data streams to one or several receivers. It

first constructs L data streams using the above procedure. Then, it combines them using a

linear combination of all data streams. The transmit signal can be represented by

u = T1u1 + T2u2 + . . .+ TLuL, (3.3)

where ui ∈ Ui carries information for data stream i. Ti is a constant real number that

functions as a separator splitting data stream i from the transmit signal. In fact, one can

make an analogy between single and multiple antenna systems by regarding that the data

stream i is in fact transmitted in the direction Ti.

Ti’s are rationally independent, i.e., the equation T1x1 + T2x2 + . . . + TLxL = 0 has no

rational solutions. This independence is due to the fact that a unique map from constellation

points to the message sets is required. By relying on this independence, any real number

u belonging to the set of constellation points is uniquely decomposable as u =
∑L

i=1 Tiui.

Observe that if there is another possible decomposition u =
∑L

i=1 Tiu
′
i then it forces Ti’s to

be rationally dependent.

To adjust the power, the transmitter multiplies the signal by a constant A, i.e., the

transmit signal is x = Au.

3.2.2 Received Signal and Interference Alignment

A receiver in the system may observe a signal which is a linear combination of several data

streams and AWGN. The received signal in its general form can be represented as

y = g0u0 + g1u1 + . . .+ gMuM
︸ ︷︷ ︸

I

+z, (3.4)

where ui is the received signal corresponding to the data stream i and z is the AWGN

with covariance σ2. gi is a constant which encapsulates several multiplicative factors from a
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transmitter to the receiver. Without loss of generality, it is assumed that the receiver wishes

to decode the first data stream u0 which is encoded with rate R0. The rest of data streams

is the interference for the intended data stream and is denoted by I.

The proposed encoding scheme is not optimal in general. However, it provides sufficient

tools to accomplish interference alignment in the network which in turn maximizes the

throughput of the system. In n-dimensional Euclidean spaces (n ≥ 2), two interfering

signals are aligned when they receive in the same direction at the receiver. In general, m

signals are aligned at a receiver if they span a subspace with dimension less than m. We

claim that, surprisingly, similar arguments can be applied in one-dimensional spaces. The

definition of aligned data streams is needed first.

Definition 4 (Aligned Data Streams). Two data streams ui and uj are said to be aligned at

a receiver if the receiver observes a rational combination of them.

As it will be shown in the following sections, if two streams are aligned, then their effect

at the receiver is similar to a single data stream at high SNR regimes. This is due to the

fact that rational numbers form a field and therefore the sum of constellations is again a

constellation from Q with enlarged cardinality.

To increase R0, it is desirable to align data streams in the interference part of the signal,

i.e. I. The interference alignment in its simplest form happens when several data streams

arrive at the receiver with similar coefficients, e.g. I = gu1 + gu2 + . . .+ guM . In this case,

the data streams can be bundled to a single stream with the same coefficient. It is possible to

extend this simple case of interference alignment to more general cases. First, the following

definition is needed.

Definition 5 (Rational Dimension). The rational dimension of a set of real numbers {h1, h2,

. . . , hM} is m if there exists a set of real numbers {H1, H2, . . . , Hm} such that each hi can be

represented as a rational combination of Hj’s, i.e., hi = αi1H1 +αi2H2 + . . .+αimHm where

αik ∈ Q for all k ∈ {1, 2, . . . , m}. In particular, {h1, h2, . . . , hM} are rationally independent

if the rational dimension is M , i.e., none of the numbers can be represented as the rational

combination of other numbers.

Remark 6. In the above definition, one can replace the set of rational numbers with integers

as multiplication of irrational numbers with integers results in irrational numbers. Therefore,

two alternative definitions are used in this chapter.

In fact, the rational dimension is the effective dimension seen at the receiver. To see this,

suppose that the coefficients in the interference part of the signal I = g1u1+g2u2+. . .+gMuM
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has rational dimension m with bases {G1, . . . , Gm}. Therefore, each gi for i ∈ {1, 2, . . . ,M}
can be written as gi = αi1G1+αi2G2+ . . .+αimGm where αik is an integer. Plugging into the

equation, it is easy to see that I can be represented as I = G1I1 +G2I2 + . . .+GmIm where

Ik is a linear combination of data streams with integer coefficient. In fact, if the coefficients

have dimension m then the interference part of the signal occupies m rational dimensions

and one dimension is available for the signal. On the other hand, since the dimension is one,

it can be concluded that the multiplexing gain of the intended data stream is 1
m+1

. In one

extreme case the rational dimension is one and all coefficients are an integer multiple of a

real number and m = 1.

3.2.3 Decoding

After rearranging the interference part of the signal, the received signal can be represented

as

y = G0u0 +G1I1 + . . .+GmIm + z, (3.5)

where G0 = g0 to unify the notation. In what follows, the decoding scheme used to decode

u1 from y is explained. It is worth noting that if the receiver is interested in more than one

data stream, then it performs the same decoding procedure for each data stream.

At the receiver, the received signal is first passed through a hard decoder. The hard

decoder looks at the received constellation Ur = G0U0 + G1I1 + . . . + GmIm and maps the

received signal to the nearest point in the constellation. This changes the continuous channel

to a discrete one in which the input symbols are from the transmit constellation U1 and the

output symbols are from the received constellation.

Remark 7. Ij is the constellation due to single or multiple data streams. Since it is as-

sumed that in the latter case it is a linear combination of multiple data streams with integer

coefficients, it can be concluded that Ij ⊂ Z for j ∈ {1, 2, . . . , m}.

To bound the performance of the decoder, it is assumed that the received constellation

has the property that there is a many-to-one map from Ur to U0. This in fact implies that if

there is no additive noise in the channel then the receiver can decode the data stream with

zero error probability. This property is called property Γ. It is assumed that this property

holds for all received constellations. To satisfy this requirement at all receivers, usually a

careful transmit constellation design is needed at all transmitters.

Let dmin denote the minimum distance in the received constellation. Having Property

Γ, the receiver passes the output of the hard decoder through the many-to-one map from

Ur to U0. The output is called û1. Now, a joint-typical decoder can be used to decode
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the data stream from a block of û0s. To calculate the achievable rate of this scheme, the

error probability of transmitting a symbol from U0 and receiving another symbol, i.e. Pe =

Pr{Û0 6= U0} is bounded as:

Pe≤ Q

(
dmin

2σ

)

≤ exp

(

−d
2
min

8σ2

)

. (3.6)

Now, Pe can be used to lower bound the rate achievable for the data stream. In [30],

Etkin and Ordentlich used Fano’s inequality to obtain a lower bound on the achievable rate

which is tight in high SNR regimes. Following similar steps, one can obtain

R0= I(Û0, U0)

= H(U0) −H(U0|Û0)
a
≥ H(U0) − 1 − Pe log |U0|
b

≥ log |U0| − 1 − Pe log |U0| (3.7)

where (a) follows from Fano’s inequality and (b) follows from the fact that U1 has the uniform

distribution. To have multiplexing gain of at least r0, |U1| needs to scale as SNRr0 . Moreover,

if Pe scales as exp (SNR−ε) for an ε > 0, then it can be shown that R0

log SNR
approaches r0 at

high SNR regimes.

Remark 8. After interference alignment the interference term has no longer the uniform

distribution. However, the lower bound on the achievable rate given in (4.12) is indepen-

dent of the probability distributions of the interference terms. It is possible to obtain better

performance provided the distribution of the interference is exploited.

3.3 Single Layer Constellation

In this section, the single layer constellation is used to modulate all data streams at all

transmitters. Even though it is the simplest form of constellation, it is powerful enough to

provide interference alignment which in turn increases the throughput of the system. Before

deriving important results regarding DOF of the X and interference channels using this

constellation, the performance of a typical decoder is analyzed. The attempt is to make the

analysis universal and applicable to both channels.

3.3.1 Performance Analysis: The Khintchine-Groshev Theorem

The decoding scheme proposed in the previous section is used to decode the data stream u0

from the received signal in (3.5). To satisfy Property Γ, it is assumed that {G0, G1, . . . , Gm}



CHAPTER 3. INTERFERENCE ALIGNMENT IN ONE DIMENSION 71

are independent over rational numbers. Due to this independence, any point in the re-

ceived constellation has a unique representation in the bases {G0, G1, . . . , Gm} and therefore

Property Γ holds in this case.

Remark 9. In a random environment, it is easy to show that the set of {G0, G1, . . . , Gm}
being dependent has measure zero (with respect to Lebesgue measure). Hence, in this section

it is assumed that Property Γ holds unless otherwise stated.

To use the lower bound on the data rate given in (4.12), one needs to calculate the min-

imum distance between points in the received constellation. Let us assume each stream in

(3.5) is bounded (as it is the case since transmit constellations are bounded by the assump-

tion). In particular, U0 = [−Q0, Q0] and Ij = [−Qj , Qj] for all j ∈ {1, 2, . . . , m}. Since

points in the received constellation are irregular, finding dmin is not easy in general. Thanks

to the theorems of Khintchine and Groshev, however, it is possible to lower bound the min-

imum distance. As it will be shown later, using this lower bound at high SNR regimes is

asymptotically optimum. We digress here and explain some background needed for stating

the theorem of Khintchine and Groshev.

The field of Diophantine approximation in number theory deals with approximation of

real numbers with rational numbers. The reader is referred to [45, 46] and the references

therein. The Khintchine theorem is one of the cornerstones in this field. It gives a criteria

for a given function ψ : N → R+ and real number α such that |p + αq| < ψ(|q|) has either

infinitely many solutions or at most finitely many solutions for (p, q) ∈ Z2. Let A(ψ) denote

the set of real numbers α such that |p+αq| < ψ(|q|) has infinitely many solutions in integers.

The theorem has two parts. The first part is the convergent part and states that if ψ(|q|) is

convergent, i.e.,
∞∑

q=1

ψ(q) <∞

then A(ψ) has measure zero with respect to Lebesque measure. This part can be rephrased

in more convenient way as follows. For almost all real numbers, |p + αq| > ψ(|q|) holds for

all (p, q) ∈ Z2 except for finitely many of them. Since the number of integers violating the

inequality is finite, one can find a constant κ such that

|p+ αq| > κψ(|q|)

holds for all integers p and q almost surely. The divergent part of the theorem states that

A(ψ) has the full measure, i.e. the set R−A(ψ) has measure zero, provided ψ is decreasing

and ψ(|q|) is divergent, i.e.,
∞∑

q=1

ψ(q) = ∞.
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There is an extension to Khintchine’s theorem which regards the approximation of linear

forms. Let α = (α1, α2, . . . , αm) and q = (q1, q2, . . . , qm) denote an m-tuple in Rm and Zm,

respectively. Let Am(ψ) denote the set of m-tuple real numbers α such that

|p+ α1q1 + α2q2 + . . .+ αmqm| < ψ(|q|∞) (3.8)

has infinitely many solutions for p ∈ Z and q ∈ Zm. |q|∞ is the supremum norm of q defined

as maxi |qi|. The following theorem gives the Lebesque measure of the set Am(ψ).

Theorem 13 (Khintchine-Groshev). Let ψ : N → R+. Then the set Am(ψ) has measure

zero provided
∞∑

q=1

qm−1ψ(q) <∞, (3.9)

and has the full measure if

∞∑

q=1

qm−1ψ(q) = ∞ and ψ is monotonic. (3.10)

In this chapter, the convergent part of the theorem is used. Moreover, given an arbitrary

ε > 0 the function ψ(q) = 1
qm+ε satisfies (4.2). In fact, the convergent part of the theorem

used in this chapter can be stated as follows. For almost all m-tuple real numbers there

exists a constant κ such that

|p+ α1q1 + α2q2 + . . .+ αmqm| >
κ

(maxi |qi|)m+ε
(3.11)

holds for all p ∈ Z and q ∈ Zm.

The Khintchine-Groshev theorem can be used to bound the minimum distance of points

in the received constellation. In fact, a point in the received constellation has a linear form,

i.e., ur = G0u0 +G1I1 + . . .+GmIm. Dividing by G0 and using (4.5), one can conclude that

dmin >
κG0

(maxi∈{1,...,m}Qi)m+ε
(3.12)

The probability of error in hard decoding, see (4.11), can be bounded as

Pe < exp

(

− (κG0)
2

8σ2(maxi∈{1,...,m}Qi)2m+2ε

)

. (3.13)

Let us assume Qi for i ∈ {0, 1, . . . , m} is bγiP
1−ε

2(m+1+ε) c where γi is a constant. Moreover, ε

is the constant appeared in (4.5). We also assume that G0 = γP
m+2ε

2(m+1+ε) . As it will be shown

later, these assumptions are realistic and can be applied to the coding schemes proposed
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in this chapter. It is worth mentioning that in this chapter it is assumed that each data

stream carries the same rate in the asymptotic case of high SNR, i.e., they have the same

multiplexing gain. However, in more general cases one may consider different multiplexing

gains for different data streams. Substituting in (4.16) yields

Pe < exp (−δP ε) , (3.14)

where δ is a constant and a function of γ, κ, σ, and γi’s. The lower bound obtained in (4.12)

for the achievable rate becomes

R0> (1 − Pe) log |U0| − 1
a
= (1 − exp (−δP ε)) log(2bγiP

1−ε
2(m+1+ε) c) − 1

>
(1 − ε) (1 − exp (−δP ε))

2(m+ 1 + ε)
(log(P ) + ϑ) − 1 (3.15)

where (a) follows from the fact that |U′| = 2Q0 and ϑ is a constant. The multiplexing gain

of the data stream u0 can be computed using (3.15) as follows

r0= lim
P→∞

R0

0.5 log(P )

>
1 − ε

m+ 1 + ε
. (3.16)

Since ε can be made arbitrarily small, we can conclude that r = 1
m+1

is indeed achievable.

In the following theorem, this result and its required conditions are summarized.

Theorem 14. A receiver can reliably decode the data stream u0 with multiplexing gain 1
m+1

from the received signal y = G0u0+G1I1+. . .+GmIm+z if the following regularity conditions

are satisfied:

1. G0 = γP
m+2ε

2(m+1+ε) where γ is a constant.

2. u0 ∈ [−Q0, Q0] where Q0 = bγ0P
1−ε

2(m+1+ε) c and γ0 is a constant. Moreover, the uniform

distribution is used to construct the random codebook.

3. For i ∈ {1, 2, . . . , m}, Ii ∈ [−Qi, Qi] where Qi = bγiP
1−ε

2(m+1+ε) c and γi is a constant.

4. Gis for i ∈ {0, 1, . . . ,m } are independent over rational numbers.

5. {G1

G0
, G2

G0
, . . . , Gm

G0
} is among m-tuples that satisfy (4.5).

Moreover, the last two conditions hold almost surely.
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Figure 3.1: The two-user X channel: Transmitter 1 sends data streams U1 and V1 to Receiver

1 and 2, respectively. Similarly, Transmitter 2 sends data streams U2 and V2 to Receiver 1

and 2, respectively.

3.3.2 Two-user X channel: DOF = 4
3

is Achievable Almost Surely

The proposed coding scheme using the single layer constellation is applied to the two-user

X channel as the first example. The two-user X channel is introduced in [21] where the

first explicit interference alignment is used to achieve the total DOF of a class of MIMO

X channels. In this channel, see Figure 3.1, there are two transmitters and two receivers.

Transmitter 1 wishes to send data streams U1 and V1 to Receivers 1 and 2, respectively. Simi-

larly, Transmitter 1 wishes to send data streams U2 and V2 to Receivers 1 and 2, respectively.

The input-output relation of the channel can be stated as

y1= h11x1 + h12x2 + z1,

y2= h21x1 + h22x2 + z2,

where z1 and z2 are AWGN with variance σ2. x1 and x2 are input symbols of Transmitter 1

and 2, respectively. Input signals are subject to the power constraint P . hij is the channel

gain from Transmitter j to Receiver i. Moreover, channel gains are assumed to be constant

over time. y1 and y2 are received signals at Receiver 1 and 2, respectively.

In [23], an upper bound on the DOF of the channel is obtained. This upper bound for the

single antenna case is 4
3
. We will show that this upper bound is in fact achievable. If each

data stream occupies 1
3

of DOF then the total DOF becomes 4
3
. Therefore, it is assumed that

all data streams, i.e. U1, U2, V1 and V2, use the same constellation with integer points from

interval [−Q,Q] with Q = bγP 1−ε
2(3+ε) c where γ and ε are two arbitrary constants. Transmitter

1 (respectively 2) encodes the data streams U1 and V1 (respectively U2 and V2) utilizing the

encoding scheme proposed in the previous section. The following linear combinations are

used to send the data streams through the channel.

x1 = G(h22u1 + h12v1), (3.17)

x2 = G(h21u2 + h11v2), (3.18)
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where G is the normalizing factor. To find G, one needs to calculate the transmit power

of User 1 and 2. It is easy to show that there exists a constant γ′ such that G = γ′P
2+2ε

2(3+ε)

normalizes the transmit power to be less than P at both receivers.

After rearranging, the received signal can be written as

y1= Gh11h22u1 +Gh12h21u2 +Gh11h12(v1 + v2
︸ ︷︷ ︸

I1

) + z1,

y2= Gh21h22(u1 + u2
︸ ︷︷ ︸

I2

) +Gh12h21v1 +Gh11h22v2 + z2.

Now, it becomes clear why the linear combinations in (3.17) and (3.18) are used to combine

the data streams at the transmitters. In fact, the data streams V1 and V2 not intended for

Receiver 1 arrive with the same coefficients at Receiver 1. In other words, they are aligned at

the receiver and hence their effect can be regarded as a single data stream. Let I1 denote the

sum v1 + v2. Clearly, I1 is an integer and belongs to [−2Q 2Q]. Receiver 1 wishes to decode

U1 and U2. As proposed in the previous section, each data stream is decode separately at the

receiver. Therefore, decoding of the data stream U1 is first considered. It is easy to see that

all regularity conditions given in Theorem 14 are satisfied with m = 2. Hence, Receiver 1 can

reliably decode U1 which has the multiplexing gain of 1
3
. Similarly, Receiver 2 can decode U2

which has the multiplexing gain of 1
3
. A similar phenomenon happens in the second receiver.

Therefore, we have proved the following theorem.

Theorem 15. The DOF of the two-user X channel is 4
3

almost surely.

3.3.3 K-user Gaussian Interference Channel: Special Cases

The K-user GIC models a network in which K transmitter-receiver pairs (users) sharing a

common bandwidth wish to have reliable communication at maximum rate. The channel’s

input-output relation can be stated as, see Figure 4.1,

y1= h11x1 + h12x2 + . . .+ h1KxK + z1,

y2= h21x1 + h22x2 + . . .+ h2KxK + z2,
... =

...
...

. . .
... (3.19)

yK= hK1x1 + hK2x2 + . . .+ hKKxK + zK ,

where xi and yi are input and output symbols of User i for i ∈ {1, 2, . . . , K}, respectively.

zi is AWGN with variance σ2 for i ∈ {1, 2, . . . , K}. Transmitters are subject to the power

constraint P .
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Figure 3.2: The K-user GIC. User i for i ∈ {1, 2, . . . , K} wishes to communicate with its

corresponding receiver while receiving interference from other users.

An upper bound on the DOF of this channel is obtained in [24]. The upper bound states

that the total DOF of the channel is less than K
2

which means each user can at most use

one half of its maximum DOF. This upper bound can be achieved by using single layer

constellation in special case where all cross gains are rational numbers [30]. This is due to

the fact that these coefficients lie on a single rational dimensional space and therefore the

effect of the interference caused by several transmitters behaves as that of interference caused

by a single transmitter. Using a single data stream, one can deduce that the multiplexing

gain of 1
2

is achievable for each user.

Restriction to transmission of single data streams is not optimal in general. As an example

showing this fact, in the next subsection, it is proved that by having multiple data streams

one can obtain higher DOF. However, using single data streams has the advantage of simple

analysis. We are interested in the DOF of the system when each user employs a single data

stream. The following theorem states the result. This in fact generalizes the result obtained

in [30].

Theorem 16. The DOF of K
m+1

is achievable for the K-user Gaussian interference channel

using the single data stream transmission scheme provided the set of cross gains at each

receiver has the rational dimension of at most m.

Proof. To communicate with its corresponding receiver, each transmitter transmits one data

stream modulated with single layer constellation. It is assumed that all users use the same

constellation, i.e., Ui = [−Q Q] for i ∈ {1, 2, . . . , K}. We claim that under the conditions

assumed in the theorem each transmitter can achieve the multiplexing gain of 1
m+1

. To

accommodate this data rate, Q is set to bP 1−ε
2(m+1+ε) c. The transmit signal from Transmitter i
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is xi = Gui for i ∈ {1, 2, . . . , k} where G is the normalizing factor and equals γP
m+2ε

2(m+1+ε) and

γ is a constant. Due to the symmetry obtained by proposed coding scheme, it is sufficient to

analyze the performance of the first user. The received signal at Receiver 1 can be represented

as

y1 = G(h11u1 + h1Ku2 + . . .+ h1KuK) + z1. (3.20)

Let us assume the rational dimension of (h12, h13, . . . , h1K) is less than m. Hence, there exists

a set of real numbers (g1, g2, . . . , gm) such that each h1j can be represented as

h1j =
m∑

l=1

αjlgl, (3.21)

where αjl ∈ Z for j ∈ {2, . . . , K} and l ∈ {1, 2, . . . , m}. Substituting in (3.20) and rearrang-

ing yields

y1 = G(h11u1 + g1I1 + . . .+ gmIm) + z1. (3.22)

where Il ∈ Z for l ∈ {1, 2, . . . , m} and

Il =

K∑

j=2

αjluj. (3.23)

It is easy to prove that there is a constant γl such that Il ∈ [−Ql Ql] for l ∈ {1, 2, . . . , m}
where Ql = bγlP

1−ε
2(m+1+ε) c. Receiver 1 decodes its corresponding data stream from received

signal in (3.22) using the decoding scheme proposed in the previous section. By one-to-one

correspondence with regularity conditions in Theorem 14, one can deduce that Receiver one

is able to decode the data stream u1 and in fact the multiplexing gain of 1
m+1

is achievable

almost surely. Due to the symmetry, we can conclude that the DOF of K
m+1

is achievable for

the system. This completes the proof.

3.3.4 Three-user Gaussian Interference Channel: DOF = 4
3 is Achiev-

able Almost Surely

In this subsection, we consider the three-user GIC. First, the following model is defined as

the standard model for the channel.

Definition 6. The three-user interference channel is called standard if it can be represented

as

y1= G1x1 + x2 + x3 + z1

y2= G2x2 + x1 + x3 + z2 (3.24)

y3= G3x3 + x1 +G0x2 + z3,
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where xi for User i is subject to the power constraint P . zi at Receiver i is AWGN with

variance σ2.

In the following lemma, it is proved that in fact characterizing the DOF of the standard

channel causes no harm on the generalization of the problem.

Lemma 8. For every three-user GIC there exists a standard channel with the same DOF.

Proof. The channel model is the special case of that of K-user GIC in (4.19) where K = 3,

i.e., the input-output relation can be written as

y1= h11x1 + h12x2 + h13x3 + z1

y2= h21x1 + h22x2 + h23x3 + z2 (3.25)

y3= h31x1 + h32x2 + h33x3 + z3.

Clearly, linear operations at transmitters and receivers do not affect the capacity region of

the channel. Hence, we adopt the following linear operations:

1. Transmitter 1 sends x1 = h23h12

h21
x̃1 to the channel and Receiver 1 divides the received

signal by h12h13.

2. Transmitter 2 sends x2 = h13x̃2 to the channel and Receiver 2 divides the received

signal by h12h23.

3. Transmitter 3 sends x3 = h12x̃3 to the channel and Receiver 3 divides the received

signal by h21

h12h23h31
.

If ỹi for i ∈ {1, 2, 3} denotes the output of Receiver i after above operations then it is easy

to see that from input x̃i to output ỹi the channel behaves as (4.21), i.e., it can be written

as

ỹ1= G1x̃1 + x̃2 + x̃3 + z̃1

ỹ2= G2x̃2 + x̃1 + x̃3 + z̃2 (3.26)

ỹ3= G3x̃3 + x̃1 +G0x̃2 + z̃3,

where z̃i is the Gaussian noise at Receiver i for i ∈ {1, 2, 3} with variance σ2
i = δiσ

2 where

δi is constant depending on the channel coefficients. Similarly, the input power constraint

of Transmitter i for i ∈ {1, 2, 3} becomes Pi = γiP where γi is constant depending on the
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channel coefficients. Moreover, the channel coefficients can be written as

G0 =
h13h21h32

h12h23h31
,

G1 =
h11h12h23

h12h21h13

,

G2 =
h22h13

h12h23
,

G3 =
h33h12h21

h12h23h31
.

Since the above operations change the input powers as well as the noise variances, the

completion of the theorem requires additional steps to make the power constraints as well as

noise variances all equal. Notice that increasing (resp. decreasing) the power and decreas-

ing (resp. increasing) the noise variance enlarges (resp. shrinks) the capacity region of the

channel. Therefore, two channels are defined as follows. In the first channel with the same

input-output relation as of (3.26) the power constraints at all transmitters and the noise vari-

ances at all receivers are set to max{P1, P2, P3} and min{σ2
1, σ

2
2, σ

2
3}, respectively. Similarly,

in the second channel the power constraints and noise variances are set to max{P1, P2, P3}
and min{σ2

1 , σ
2
2, σ

2
3}, respectively. The capacity region of the channel is sandwiched between

that of these two channels. Moreover, at high power regimes the SNRs of these two channel

differ by a constant multiplicative factor. Hence, they share the same DOF and either of

them can be used as the desired channel. This completes the proof.

Having the standard model, a special case that the total DOF of the channel can be

achieved is identified in the following theorem.

Theorem 17. If the channel gain G0 in (4.21) is rational then the DOF of 3
2

is achievable

almost surely.

Proof. If G0 is rational, then the set of cross gains at each receiver takes up one rational

dimension. Applying Theorem 16 with m = 1 gives the desired result.

In general, the event of having rational G0 has probability zero. The following theorem

concerns the general case.

Theorem 18. The DOF of 4
3

is achievable for the three-user GIC almost surely.

Proof. The encoding used to prove this theorem is asymmetrical. User 1 encodes two data

streams while User 2 and 3 encode only one data stream. In fact, the transmit constellation

of Users 1,2, and 3 are U1 + G0U ′
1, U2, and U2, respectively. It is assumed that U1, U ′

1, U2,
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U3 are single layer constellation with points in [−Q Q]. We claim that each data stream can

carry data with multiplexing gain of 1
3
, and since there are four data streams, the DOF of

4
3

is achievable. To accommodate such rate Q = bγP 1−ε
2(3+ε) c where γ and ε are two arbitrary

constants. The input signals from Transmitters 1, 2, and 3 are x1 = A(u1 +G0u
′
1), x2 = Au2,

and x3 = Au3, respectively. A is the normalizing factor which controls the output power of all

transmitters. It can be readily shown that there exists a constant γ′ such that A = γ′P
2+2ε

2(3+ε) .

The decoding at Receivers are performed differently. The received signal at Receiver 1

can be represented as

y1 = A(G1u1 +G1G0u
′
1 + I1) + z1, (3.27)

where I1 = u2 + u3 is the interference caused by Users 2 and 3. Clearly I1 ∈ [−2Q 2Q].

Receiver 1 is interested in both u1 and u′1 and performs the proposed decoding scheme for

each of them separately. By applying Theorem 14, one can deduce that each of data streams

u1 and u′1 can accommodate 1
2

of multiplexing gain.

The received signal at Receiver 2 can be represented as

y2 = A(G2u2 + I2 +G0u
′
1) + z2, (3.28)

where I2 = u1 + u3 is the aligned part of the interference caused by Users 2 and 3 and

I2 ∈ [−2Q 2Q]. Receiver 2 is interested in u2 while I2 and u′1 are interference. An application

of Theorem 14 shows that the multiplexing gain of 1
3

is achievable for data stream u2.

Finally, the received signal at Receiver 3 can be represented as

y3 = A(G3u3 + u1 +G0I3) + z2, (3.29)

where I3 = u′1 + u2 is the aligned part of the interference caused by Users 2 and 3 and

I3 ∈ [−2Q 2Q]. Receiver 3 is interested in u3 while I3 and u1 are interference. Again by

using Theorem 14, one can deduce that the multiplexing gain of 1
3

is achievable for data

stream u3. This completes the proof.

3.4 multi-layer Constellation

In this section, multi-layer constellations are incorporated in the encoding scheme. Here, the

focus would be on the symmetric three-user GIC. This channel is modeled by:

y1= x1 + h(x2 + x3) + z1

y2= x2 + h(x3 + x1) + z2 (3.30)

y3= x3 + h(x1 + x2) + z3
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where xi and yi are the transmit and the received signals of User i, respectively. The additive

noise zi for i ∈ {1, 2, 3} is Gaussian distributed with zero mean and variance σ2. Users are

subject to the power constraints P .

This channel is among channels satisfying conditions of Theorem 17. Hence, one can

deduce that the total DOF of 3
2

is achievable for this channel almost surely. The reason for

considering the symmetric case is to reveal some aspects of multi-layer constellations. In this

section, we obtain an achievable DOF for all channel gains. For example, it will be shown the

multi-layer constellation is capable of achieving the total DOF of 3
2

for all irrational gains.

As pointed out in Section 3.2, in multi-layer constellations, constellation points are se-

lected from points represented in the base W ∈ N. Since the channel is symmetric, all

transmitters use the same constellation U in which a point can be represented as

u(b) =
L−1∑

k=0

blW
l, (3.31)

where bl ∈ {0, 1, . . . , a−1} for all l ∈ {0, 2, . . . , L−1}. b represents the vector (b0, b1, . . . , bL−1).

a is the factor which controls the number of constellation points. We assume a < W . There-

fore, all constellation points in (3.31) are distinct and the size of the constellation is |U| = aL.

Hence, the maximum rate possible for this data stream is bounded by L log a.

A random codebook is generated by randomly choosing points form C using the uniform

distribution. This can be accomplished by imposing a uniform distribution on each bl.

The signal transmitted by User 1,2, and 3 are respectively x1 = Au(b), x2 = Au(b′), and

x3 = Au(b′′). A is the normalizing factor and controls the output power.

Remark 10. The multi-layer constellation used in this chapter has DC component. In fact,

this component needs to be removed at all transmitters. However, it only duplicates the

achievable rate and has no effect as far as the DOF is concerned.

To obtain A, one needs to compute the input power. Since bl and bj are independent for

l 6= j, we have the following chain of inequalities

E[X2
1 ]= A2W 2(L−1)

L−1∑

l=0

E
[
b2l
]
W−2l

≤ A2W 2(L−1) (a− 1)(2a− 1)

6

∞∑

l=0

W−2l

≤ A2W 2(L−1)a
2

3
× 1

1 −W−2

≤ A2a2W 2L

W 2 − 1
.
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Hence, if A =

√
(W 2−1)P

aWL then E [X2
i ] ≤ P which is the desired power constraint.

Due to the symmetry of the system, it suffices to analyze the first user’s performance.

The received constellation signal at Receiver 1 can be written as

y1 = A

L−1∑

l=0

(

bl + hIl

)

W l + z1, (3.32)

where Il = b′l+b
′′
l is the interference caused by Transmitters 1 and 2. Clearly, the interference

is aligned and Il ∈ {0, 1, . . . , 2(a − 1)}. A point in the received constellation Ur can be

represented as

ur(b, I) = A
L−1∑

l=0

(

bl + hIl

)

W l, (3.33)

where I represents the vector (I0, I1, . . . , IL−1). As pointed out before the received constel-

lation needs to satisfy Property Γ. Here, Property Γ translates into the following relation:

Γ : ur(b, I) 6= ur(b̃, Ĩ) iff (b, I) 6= (b̃, Ĩ),

which means that the receiver is able to extract both b1 and I1 from the received constella-

tion.

Using (4.12) to bound the achievable rate, the total DOF of the channel can be written

as

rsum= lim
P→∞

3R1

0.5 logP

≥ lim
P→∞

3 (log |U| − 1 − Pe log |U|)
0.5 logP

= lim
P→∞

3L(1 − Pe) log a

0.5 logP
, (3.34)

where Pe depends on the minimum distance in the received constellation dmin as of (4.11).

In fact, to obtain the maximum rate we need to select the design parameters a, W , and L.

Selection of these parameters needs to provide 1) Property Γ in the received constellation, 2)

exponential decrease in Pe as P goes to infinity, 3) maximum achievable DOF of the system.

In the following, we investigate the relation between these factors for rational and irrational

channel gains separately.

3.4.1 Rational Channel Gains

In this subsection, we prove the following theorem which provides an achievable DOF for

the symmetric three-user GIC with rational gains.
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Theorem 19. The following DOF is achievable for the symmetric three-user GIC where the

channel gain is rational, i.e. h = n
m

:

rsum =







3 log(n)
log(n(2n−1))

if 2n ≥ m,

3 log(s+1)
log((s+1)(2s+1))

if 2n < m and m = 2s+ 1,

3 log(s)
log(2s2−n)

if 2n < m and m = 2s.

Since h is rational, it can be represented as h = n
m

where (m,n) = 1. In this case,

Equation (3.33) can be written as

ur(b, I) =
A

m

L−1∑

l=0

(

mbl + nIl

)

W l. (3.35)

The theorem is proved by partitioning the set of rational numbers in three subsets and

analyzing the performance of the system in each of them. Let us first assume that Property

Γ holds for given W and a. To obtain the total DOF of the system, one needs to derive the

minimum distance in the received constellation. It is also easy to show that dmin = A
m

. Using

(4.11), the bound on the error probability is

Pe< exp

(

− (W 2 − 1)P

8(amσ)2W 2L

)

.

Let L be set as

L = b log (P 0.5−ε)

log(W )
c, (3.36)

where ε > 0 is an arbitrary constant. Clearly, with this choice of K, P2 ≤ exp (−γP 2ε) where

γ is a constant. This results in Pe → 0 as SNR → ∞. By using (3.34), the DOF of the

system can be derived as

rsum= lim
P→∞

3L(1 − Pe) log a

0.5 logP

= lim
P→∞

3L log(a)

0.5 logP

= lim
P→∞

b log(P 0.5−ε)
logW

c log a

0.5 logP

=
log a

logW
(1 − 2ε). (3.37)

Since ε can be chosen arbitrarily small, the DOF of the system can be written as

rsum =
3 log a

logW
. (3.38)
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Table 3.1: Relation between a and W to satisfy Property Γ.

h = n/m a W

Case I 2n ≥ m n n(2n − 1)

Case II 2n < m and m = 2s + 1 s + 1 (s + 1)(2s + 1)

Case III 2n < m and m = 2s s 2s2 − n

From (3.38), one can deduce that in order to maximize the total DOF of the system one

needs to maximize a and minimize W while respecting Property Γ. In fact, if it is possible

to have W = a2 then the upper bound of 3
2

can be touched. However, it is not possible in

this case. The above theorem states that W and a can have the relation given in Table 3.1.

Even though the relation is quadratic for all cases, the achievable DOF is always below the

upper bound.

To complete the proof of Theorem 19, it is sufficient to prove that Property Γ holds for

the cases given in Table 3.1.

Lemma 9. Property Γ holds for all cases shown in Table 3.1.

Proof. This lemma is proved by induction on L. To show that the lemma holds for L = 0,

it is sufficient to prove that the equation

m(b0 − b̃0) + n(I0 − Ĩ0) = 0 (3.39)

has no nontrivial solution when b0, b̃0 ∈ {0, 1, . . . , a − 1}, and I0, Ĩ0 ∈ {0, 1, . . . , 2(a − 1)}.
In fact, two necessary conditions for the equation (3.39) to have a solution are I0 − Ĩ0 is

divisible by m and b0 − b̃0 is divisible by n. We can prove that this equation has no solution

if one of the two conditions does not hold. We consider each case separately.

Case I: In this case a = n. Using the fact that −(n − 1) ≤ b0 − b̃0 ≤ n − 1, one can

deduce that n - (b0 − b̃0).

Case II: In this case a = s+1 where m = 2s+1. Using the fact that −2s ≤ I0 − Ĩ0 ≤ 2s,

one can deduce that m - (I0 − Ĩ0).

Case III: In this case a = s where m = 2s. Using the fact that −2(s − 1) ≤ I0 − Ĩ0 ≤
2(s− 1), one can deduce that m - (I0 − Ĩ0).

Now, it is assumed that the statement of the lemma holds for L − 1. To show it also

holds for L, one needs to prove the equation

A

m

L∑

l=0

(

m(bl − b̃l) + n(Il − Ĩl)
)

W l = 0 (3.40)
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has no nontrivial solution. Equivalently, (3.40) can be written as

m(b0 − b̃0) + n(I0 − Ĩ0)

= W

(
L−1∑

l=0

(

m(bl+1 − b̃l+1) + n(Il+1 − Ĩl+1)
)

W l

)

. (3.41)

In two steps, we prove that the above equation has no solution. First, it is assumed that

the right hand side of (3.41) is zero. Due to inductive assumption, it results in bl = b̃l and

Il = Ĩl for all l ∈ {1, 2, . . . , L− 1}. In addition, (3.41) reduces to

m(b0 − b̃0) + n(I0 − Ĩ0) = 0. (3.42)

It was already shown that the above equation has no solution except the trivial one b0 = b̃0

and I0 = Ĩ0. Notice that this step holds for all three cases.

Second, it is assumed that the right hand side of (3.41) is non-zero. Now, (3.41) can be

written as

m(b0 − b̃0) + n(I0 − Ĩ0) = cW, (3.43)

where c ∈ Z and c 6= 0. We prove that (3.43) has no nontrivial solution in each three cases.

Case I: Since W = n(2n− 1) in this case, n divides n(I0 − Ĩ0) as well as cW , but it can

not divide m(b0 − b̃0) because (m,n) = 1 and −(n− 1) ≤ b0 − b̃0 ≤ n− 1. Hence, (3.43) has

a solution if b0 = b̃0 which contradicts the fact that n|I0 − Ĩ0| < |c|W .

Case II: In this case W = (s + 1)(2s + 1) and m = 2s + 1. Hence, 2s + 1 divides

both m(b0 − b̃0) and cW whereas it can not divide n(I0 − Ĩ0). This is due to the fact that

(2n,m = 2s+ 1) = 1 and −2s ≤ I0 − Ĩ0 ≤ 2s. Hence, (3.43) has a solution if I0 = Ĩ0 which

contradicts the fact that m|b0 − b̃0| < |c|W .

Case III: In this case W = 2s2 − n and m = 2s. Due to the symmetry and the fact that

∣
∣
∣m(b0 − b̃0) + n(I0 − Ĩ0)

∣
∣
∣ < 2W, (3.44)

it suffices to assume l = 1. Substituting W = 2s2 − n, Equation (3.43) can equivalently be

written as

2s(b0 − b̃0) + n(I0 − Ĩ0 + 1) = 2s2. (3.45)

It is easy to observe that 2s divides 2s(b0−b̃0) as well as 2s2, but it can not divide n(I0−Ĩ0+1)

because (2s, n) = 1 and −(2s−1) ≤ I0−Ĩ0 ≤ 2s−1. Hence, (3.43) has a solution if I0+1 = Ĩ0

which is impossible because 2s|b0 − b̃0| < 2s2. This completes the proof.
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3.4.2 Irrational Channel Gains

In this subsection, it is shown that when the symmetric channel gain is irrational then the

total DOF of the system is achievable, i.e., rsum = 3
2
. This result relies on a theorem in the

field of Diophantine approximation due to Hurwitz. The theorem states as follows.

Theorem 20 (Hurwitz [46]). There exist infinitely many solutions in integers m and n to

the Diophantine inequality

| n
m

− h |< 1

m2
√

5
, (3.46)

for a given irrational h.

Hurwitz’s theorem approximates an irrational number by a rational one and the goodness

of the approximation is measured by the size of the denominator.

Theorem 21. The total DOF of 3
2

for the symmetric three-user GIC is achievable for all

irrational channel gains.

Remark 11. This result can be readily extended to the symmetric K-user GIC. In fact, it is

easy to show that if the symmetric channel gain is irrational, then K
2

is an achievable DOF.

For an irrational channel gain h, let us assume m and n are two integers satisfying (3.46).

Therefore, h = n
m

+ δ where |δ| < 1
m2

√
5
. To transmit data, W is chosen as

W =
⌈2(1 + 2h)(a− 1)

1
m
− 4(a− 1)|δ|

⌉

+ 1, (3.47)

where a = bm1−ε
√

5
4

c and ε is an arbitrary positive number. The following chain of inequalities

shows that W is positive.

4(a− 1)|δ|≤ 4(a− 1)

m2
√

5

≤ 4a

m2
√

5

≤ m1−ε

m2

≤ 1

m
.

In the following lemma, it is proved that the received constellation possesses Property Γ.

Lemma 10. The received constellation in (3.33) possesses Property Γ.
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Proof. Suppose there are (b, I) and (b̃, Ĩ) such that their corresponding constellation points

are the same. Hence, we have

h = −m
∑L−1

l=0 (bl − b̃l)W
l

n
∑K

k=0(Il − Ĩl)W l
, (3.48)

which is a contradiction, because the right hand side is a rational number whereas the left

hand side is an irrational number. This completes the proof.

To characterize the total DOF of the system, we need to derive the minimum distance

of points in the received constellation. In the following lemma, the minimum distance is

obtained.

Lemma 11. The minimum distance among the received constellation points with L levels of

coding is lower-bounded as dmin ≥ A
(

1
m
− 4(a− 1)|δ|

)
.

Proof. This lemma is also proved by induction on L. In order to emphasize that the minimum

distance is a function of L, we may write dmin(L). For L = 0, we have

dmin(0) = min
Ω

A|b̂0 − hÎ0|, (3.49)

where b̂0 = b0 − b̃0, Î0 = Ĩ0 − I0, and Ω is defined as

Ω = {(b̂0, Î0) : |b̂0| ≤ 2(a− 1), |Î0| ≤ 4(a− 1)}.

Since h = n
m

+ δ, we have

dmin(0)= min
Ω

A
∣
∣
∣b̂0 −

n

m
Î0 − δÎ0

∣
∣
∣ (3.50)

≥ min
Ω

A
∣
∣
∣b̂0 +

n

m
Î0

∣
∣
∣− max

Ω
A|δÎ0|. (3.51)

Since |Î0| ≤ 4(a− 1), we have

dmin(0) ≥ A

(
1

m
− 4(a− 1)|δ|

)

, (3.52)

which is the desired result.

Now, it is assumed that the statement in the lemma holds for any L− 1 level code. We

need to show it also holds for L level codes. The difference between two distinct constellation

points is written as

∆ = AW
L−1∑

l=0

(b̂l+1 − hÎl+1)W
l + A(b̂0 − hÎ0). (3.53)
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Let us assume the first term in (3.53) is zero. In this case, the minimum distance can be

lower-bounded as

dmin(L) ≥ min
Ω

A
∣
∣
∣b̂0 − hÎ0

∣
∣
∣ . (3.54)

The minimization problem is equivalent to that of case L = 0. Hence,

dmin(L) ≥ A

(
1

m
− 4(a− 1)|δ|

)

, (3.55)

which is the desired result. If the first term in (3.53) is non-zero, then its absolute value is

at least dmin(L− 1). By the assumption of induction, we have

dmin(L− 1) ≥ A

(
1

m
− 4(a− 1)|δ|

)

. (3.56)

Therefore, we can obtain the following chain of inequalities

dmin(K)= min |∆|

≥Wdmin(K − 1) − maxA
∣
∣
∣b̂0 − hÎ0

∣
∣
∣

≥ AW (
1

m
− 4(a− 1)|δ|)
− 2A(1 + 2h)(a− 1)

≥ A(
1

m
− 4(a− 1)|δ|)×

(

W − 2(1 + 2h)(a− 1)
1
m
− 4(a− 1)|δ|

)

≥ A(
1

m
− 4(a− 1)|δ|).

This completes the proof.

Having a lower bound on the minimum distance, we can derive an upper bound for the

error probability as follows

Pe< exp

(
d2

min

8σ2

)

≤ exp

(

−A
2( 1
m
− 4(a− 1)|δ|)2

8σ2

)

. (3.57)

Due to Hurwitz’s theorem, there are infinitely many solutions for (3.46), i.e., there is a

sequence of m converging to infinity and satisfying (3.46). Therefore, there exists a sequence

of P ’s converging to infinity and satisfying m = blog(P )c. We take the limit in (4.12) with

respect to this sequence. L is again chosen as

L = b log (P 0.5−ε)

log(W )
c, (3.58)
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To show that Pe decays exponentially with respect to P , we consider the following chain

of inequalities

Pe≤ exp

(

−(W 2 − 1)P

8a2σ2W 2L
(

1

m
− 4(a− 1)|δ|)2

)

≤ exp

(

−W
2 − 1

8a2σ2
(

1

m
− 4(a− 1)|δ|)2P 2ε

)

(a)' exp
(
−γP 2ε

)
→ 0 as P → ∞

where (a) comes from the fact that W 2−1
8a2σ2 ( 1

m
− 4(a− 1)|δ|)2 approaches a constant, say γ, as

P → ∞. The total DOF can be calculated using (4.12) as follows

rsum= lim
P→∞

3L log(a)

0.5 logP

= lim
P→∞

3 log(a)

log(W )
(1 − 2ε)

=
3

2
(1 − ε)(1 − 2ε).

Since ε can be chosen arbitrarily small, rsum = 3
2

is achievable.

3.5 Conclusion

We proposed a novel coding scheme in which data is modulated using constellation carved

from rational points and directed by multiplying by irrational numbers. Using tools from the

field of Diophantine approximation in number theory, in particular the Khintchine-Groshev

and Hurwitz theorems, we proved that the proposed coding scheme achieves the total DOF

of several channels. We considered the single layer and multi-layer constellations for the

encoding part.

Using the single layer constellation, we proved that the time-invariant two-user X channel

and three-user GIC achieve the DOF of 4
3

alike. However, for the former it meets the upper

bound which means that the total DOF of the two-user X channel is established. This is

the first example in which it is shown that a time invariant single antenna system does not

fall short of achieving its total DOF.

Using the multi-layer constellation, we derived an achievable DOF for the symmetric

three-user GIC. We showed that this achievable DOF is an everywhere discontinuous function

with respect to the channel gain. In particular, we proved that for the irrational channel

gains the achievable DOF meets the upper bound 3
2

and for the rational gains, even by

allowing carry over from multiple layers, the achievable DOF has a gap to the available

upper bounds.



Chapter 4

K-user Gaussian Interference Channel

The first example of interference alignment in one-dimensional spaces which mimics that of

n-dimensional spaces (n > 2) is presented in Chapter 3. Using irrational numbers as transmit

directions and applying the Khintchine-Groshev theorem, we showed that the two-user X

channel achieves its total DOF. This is the first channel in which no variations in coefficients

over time or frequency and no multiple antennas are required to achieve the total DOF. This

is because rational dimensions in one-dimensional spaces can play the role of real dimensions

in more-than-two dimensional spaces. In this paper, we take one step forward and prove that

the total DOF of the K-user GIC can be achieved without the need for channel variation

over time/frequency/space, i.e., it is shown that the total DOF of this channel is K
2

and each

user can enjoys half of its maximum DOF. Indeed, we prove that the static time-invariant

interference channels are rich enough which allow simultaneous interference alignment at

all receivers. To derive this result, we show that single-antenna interference channels can

be treated as pseudo multiple-antenna systems with infinitely-many antennas, as many as

rationally-independent irrational numbers. Such machinery enables us to prove that the real

or complex M ×M Multiple Input Multiple Output (MIMO) GIC achieves its total DOF,

i.e., MK
2

, M ≥ 1. The pseudo multiple-antenna systems are developed based on a recent

result in the field of Diophantine approximation which states that the convergence part of

the Khintchine-Groshev theorem holds for points on non-degenerate manifolds.

This chapter is organized as follows: In Section 4.1, the main theorem of this paper is

stated and some discussions are followed. In Section 4.2, some background on the field of

Diophantine approximation and in particular the Khintchine-Groshev type theorems are pre-

sented. Section 4.3 describes the coding scheme used to prove the main theorem. Moreover,

the performance analysis based on recent results in the field of Diophantine approximation

is presented. In Section 4.4, the main theorem of the paper is proved. In Section 4.5, we

90
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obtain the total DOFs of the K×M X channel as well as the uplink communication scenario

in cellular systems. Finally, Section 4.6 concludes the paper.

4.1 Main Contributions and Discussions

The main theorem of this paper concerns the total DOF of the K-user GIC and stated as

follows:

Theorem 22. The total DOF of the K-user GIC with real and time invariant channel

coefficients is K
2

for almost all cases.

Using similar approaches the following theorems are also proved in this chapter.

Theorem 23. The total DOF of the K×M X channel with real and time invariant channel

coefficients is KM
K+M−1

for almost all cases.

Theorem 24. The total DOF of the uplink of a cellular systems with K cells and M users

within each cell is KM
M+1

. In other words, achievable DOF per cell is M
M+1

which approaches

one as the number of active users approaches to infinity.

4.1.1 Pseudo Multiple-Antenna Systems

It has been known that the multiple-antenna, time-varying, and/or frequency-selective chan-

nels provide enough freedom which allows us to choose appropriate signaling directions to

maximize the channel gains, and avoiding or aligning interference. In contrary, it was com-

monly believed that time-invariant frequency-flat single-antenna channels are restrictive in

the sense that it prevents us to play with directions. Here, we develop a machinery that trans-

forms the single-antenna systems to pseudo multiple-antenna systems with infinite-many an-

tennas. Indeed the number of available dimensions in the resultant pseudo multiple-antenna

systems is as many as rationally-independent irrational numbers. We see that the pseudo

multiple-antenna channels is rich enough in a sense that it mimics the behavior of real multi-

dimensional systems (in time/frequency/space) and for example allows us to simultaneously

align interference at all receivers of static single-antenna channels.

Time, frequency, and space are known as the basic dimensions for communications. In [21,

23, 24, 25], the freedom provided by these dimensions are utilized to align the interferences

and provide interference-free links for signals. In [27], it is shown that we are not restricted

to time/frequency/space dimensions for interference alignment. In fact, in [27], it is shown

that if the favorite signals and interfering signals are received in different power level, and
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form a nested lattice at the receiver, then we can decode the signal without decoding the

interference. In this paper, we propose a signaling scheme which is distinguished from the

aforementioned schemes in the following senses: (i) Unlike [21, 23, 24, 25], in this scheme,

signal and interference are not separated in time/frequency/space dimensions. In fact, similar

to the scheme of [27], both signal and interference are received in a single communication

dimension. (ii) On the other hand, unlike [27], the signal and interference are not separated

based on the received power level. Indeed, in the proposed scheme in some cases, both

signal and interference have a comparable power. Roughly speaking, in this scheme, signal

and interference are modulated over different irrational numbers which are separable at the

receiver. We will show that irrational numbers in the field of real numbers are rich enough

to achieve the full DOF of time-invariant interference channels.

4.1.2 Almost All vs All Cases

In the statement of the theorem, it is emphasized that K
2

is achievable for almost all cases.

It means the collection of all possible h in which the total DOF K
2

may not be achieved has

measure zero. In other words, if all channel gains are drawn independently from a random

distribution then almost surely all of them are irrational and satisfy properties required for

achieving the total DOF of the channel.

In other extreme, if all channel gains are rational then the total DOF is strictly less than
k
2
. This is due to the recent upper bound on the total DOF obtained by Etkin and Ordentlich

in [30]. This result together with Theorem 22 implies that the total DOF of the channel is

everywhere discontinuous with respect to channel coefficients. This is due to the fact that

for any set of channel gains one can find a set of rational numbers arbitrarily close to it.

This behavior is unique to this channel (or related networks with single antennas). In fact,

almost all total DOFs obtained for MIMO systems are discontinuous at a point or on a set

of measure zero. However, none of them is everywhere discontinuous.

It cannot be concluded that for all cases where the theorem is silent about the total DOF

of K
2

is not achievable. In fact, it is proved that there are some cases where the total DOF

can be achieved and those cases are out of the scope of the theorem, c.f., [30, 31, 47]. As an

example, the total DOF can be achieved by using a single layer constellation at transmitters

in the special case where all cross gains are rational numbers and all direct gains are algebraic

irrationals (this is the case for almost all irrationals)[30]. This is due to the fact that cross

gains lie on a single rational dimension and therefore the effect of the interference caused by

several transmitters behaves as that of interference caused by a single transmitter. Using

a single data stream, one can deduce that the multiplexing gain of 1
2

is achievable for each
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user.

4.1.3 Time Varying versus Time-Invariant Channels

Cadambe and Jafar in their paper [24] proved that the total DOF of the time-varying K-

user GIC can be achieved. This interesting result reveals that in a non-cooperative network

each user can enjoy half of its maximum possible multiplexing gain. It is shown that the

variation of the channel in time, if it is fast enough to be assumed independent, provides

enough freedom to align the interference. However, such an assumption about variation of

wireless channels is not practically realistic. Moreover, it imposes inadmissible delay to the

system, specially when we note that wireless channels are changing slowly.

Here, we propose a signaling scheme which achieves the full DOF in almost all realizations

of the channel, without imposing any delay to the system or requiring channel variation.

Indeed, the channel can be static over time and still it is possible to achieve the total DOF

of the channel.

4.1.4 MIMO and Complex Coefficients Cases

Let us consider the K-user MIMO GIC where each node in the network is equipped with M

antennas. The upper bound on the total DOF states that at most MK
2

is achievable for this

channel. Except for the three-user case where Cadambe and Jafar in [24] through explicit

interference alignment showed that 3M
2

is achievable, the total DOF of K-user MIMO GIC

with static channel states is not considered in the literature. Again if we assume time-variant

channels, however, this upper bound can be achieved, see [24].

The applicability of the theorem is not restricted to the single antenna case. In fact, we

can also show that for the K-user MIMO GIC the total DOF of the channel can be achieved

for almost all cases. This can be proved by simply viewing a single user as M virtual users in

which a transmit antenna is paired with a receive antenna. Using separate encoding (resp.

decoding) at all transmit (resp. receive) antennas, the channel becomes a MK-user single

antenna GIC. Applying the theorem to this channel, we conclude that the total of MK
2

is

achievable and this meets the upper bound.

Needless to say that the result is also applicable to channels (either single or multiple

antennas) with complex coefficients. In fact, the real and imaginary parts of the input and

the output can be paired. This converts the channel to 2K virtual users. Therefore, the

total DOF of the channel can be achieved by a simple application of the theorem.

It is worth noting that joint processing between all antennas and/or real-imaginary parts

at a transmitter increases the achievable sum rate of the channel. However, at high SNR
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regimes this increase vanishes and the total DOF of the channel can be achieved by separate

coding over all available dimensions.

4.2 Diophantine Approximation: Khintchine-Groshev

Type Theorems

In number theory, the field of Diophantine approximation deals with approximation of real

numbers with rational numbers. The reader is referred to [45, 46] and the references therein.

The Khintchine theorem is one of the cornerstones in this field. It gives a criterion for a

given function ψ : N → R+ and real number v such that |p+vq| < ψ(|q|) has either infinitely

many solutions or at most finitely many solutions for (p, q) ∈ Z2. Let A(ψ) denote the set

of real numbers such that |p + vq| < ψ(|v|) has infinitely many solutions in integers. The

theorem has two parts. The first part is the convergence part and states that if ψ(|q|) is

convergent, i.e.,
∞∑

q=1

ψ(q) <∞

then A(ψ) has measure zero with respect to Lebesque measure. This part can be rephrased

in more convenient way as follows. For almost all real numbers, |p + vq| > ψ(|q|) holds for

all (p, q) ∈ Z2 except for finitely many of them. Since the number of integers violating the

inequality is finite, one can find a constant κ such that

|p+ vq| > κψ(|q|)

holds for all integers p and q almost surely. The divergence part of the theorem states that

A(ψ) has the full measure, i.e. the set R−A(ψ) has measure zero, provided ψ is decreasing

and ψ(|q|) is divergent, i.e.,
∞∑

q=1

ψ(q) = ∞.

There is an extension to Khintchine’s theorem due to Groshev which regards approxima-

tion of linear forms. Let v = (v1, v2, . . . , vm) and q = (q1, q2, . . . , qm) denote an m-tuple in

Rm and Zm, respectively. Let Am(ψ) denote the set of m-tuple real numbers g such that

|p+ v · q| < ψ(|q|∞) (4.1)

has infinitely many solutions for p ∈ Z and q ∈ Zm. |q|∞ is the supremum norm of q defined

as maxi |qi|. The following theorem gives the Lebesque measure of the set Am(ψ).
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Theorem 25 (Khintchine-Groshev). Let ψ : N → R+. Then the set Am(ψ) has measure

zero provided
∞∑

q=1

qm−1ψ(q) <∞, (4.2)

and has the full measure if

∞∑

q=1

qm−1ψ(q) = ∞ and ψ is monotonic. (4.3)

In [47], Theorem 25 is used to prove that the total DOF of the two-user X channel can

be achieved using a simple coding scheme. It is also proved that the three-user GIC can

achieve the DOF of 4
3

almost surely. Note that Theorem 25 does not include the case where

elements of v are related. It turned out that such a shortcoming in this theorem prevented

us to prove the achievablity of 3
2

for three-user GIC. Let us assume v lies on a manifold

with dimension less than m in Rm. In this case, the theorem may not be correct as the

measure of the manifold is zero with respect to Lebesque measure. Recently, [48] and [49]

independently extended the convergence part of the theorem to the class of non-degenerate

manifolds. However, a subclass of non-degenerate manifolds is sufficient for the proofs of

the results in this paper. Therefore, in the following theorem we state the theorem in its

simplest form by limiting the scope of it.

Theorem 26 ([48] and [49]). Let n ≤ m, v = (v1, v2, . . . , vn) ∈ Rn, and g1, g2, . . . , gm be

functions from Rn to R with the following conditions:

1. gi for i ∈ {1, 2, . . . , m} is analytic,

2. 1, g1, g2, . . . , gm are linearly independent over R.

For any monotonic function ψ : N → R+ such that
∑∞

q=1 q
m−1ψ(q) <∞ the inequality

|p+ q1g1(v) + q2g2(v) + . . .+ qmgm(v)| < ψ(|q|∞) (4.4)

has at most finitely many solutions (p,q) ∈ Z × Zm for almost all v ∈ Rn.

Throughout this paper, the function ψ(q) is chosen as 1
qm+ε for an arbitrary ε > 0. Clearly,

this function satisfies (4.2) and is an appropriate candidate for the theorem. If all conditions

of the theorem hold then one can find a constant κ such that for almost all v ∈ Rn

|p+ q1g1(v) + q2g2(v) + . . .+ qmgm(v)| > κ

(maxi |qi|)m+ε
(4.5)

holds for all p ∈ Z and q ∈ Zm.
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One class of functions satisfying the conditions in Theorem 26 is of special interest. Let

G(v) denote the set of all monomials with variables from the set v = {v1, v2, . . . , vn}. In

other words, a function g belongs to G(v) if it can be represented as g = vs11 v
s2
2 · · · vsm

n for

some nonnegative integers s1, s2, . . . , sn. It is easy to show that any collection of functions

from G(v) satisfies the conditions of Theorem 26. More specifically, all functions belonging

to G(v) are analytic. Moreover, a set of monomials are independent over R as long as they

are distinct. As a special case when set v has only one member, i.e. v = {v}, then we have

G(v) = {1, v, v2, v3, . . .}.

4.3 Coding Scheme and Performance Analysis

Remember in the multiple-antenna systems, the transmitted signal is a linear combination

of some vectors (or directions), where data is embedded in the coefficients of the linear

combinations. Independency of the vectors allows us to decode the data streams transmitted

in each direction and to avoid interference from data streams transmitted in other directions.

Note that the vectors or directions are chosen as a function of channel parameters.

Roughly speaking here in the proposed signaling scheme, the transmitted signal is a linear

combination of some irrational numbers, where data is embedded in the coefficients of the

linear combination. Mimicking the terminology of multiple-antenna systems, we call each of

these irrational numbers as a direction. Here again, these directions are independent, in a

sense that any of them cannot be written as a rational combination of the others. We will

show that this independency keeps the different data streams separated at the receivers, as

long as the coefficients of the linear combination are selected from the rational or equivalently

the integer numbers. Like multiple-antenna systems, these directions are functions of channel

coefficients. Initially, we proposed this signaling scheme in [47].

In what follows, we formally describe the signaling and coding scheme.

Encoding: Let us assume Transmitter i for i ∈ {1, 2, . . . , K} wishes to send Li data

streams to its corresponding receiver. Moreover, each stream carries data with multiplexing

gain of approximately 1
m

for a constant m ∈ N. Notice that m is independent of i’s and Li’s.

In other words, we assume that all data streams in the system have the same multiplexing

gain.

Let us first explain the encoding of a single data stream. The transmitter selects the

constellation C = (−Q,Q)Z as the set of input symbols. Even though it has access to the

continuum of real numbers, restriction to a finite set has the benefit of easy and feasible

interference alignment. Let us assume Q = γP
1−ε

2(m+ε) where γ is a constant. Notice that since

the number of input symbols are bounded by 2Q−1, the data stream modulated by C can at
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most provide 1−ε
m+ε

DOF. We will show that at high SNR regimes this DOF can be achieved.

Having formed the constellation, Transmitter i for i ∈ {1, 2, . . . , K} constructs a random

codebook for data stream l for l ∈ {1, 2, . . . , Li} with rate Ril. This can be accomplished by

choosing a probability distribution on the input alphabets. The uniform distribution is the

first candidate and it is selected for the sake of simplicity. Note that since the constellation

is symmetrical by assumption, the expectation of the uniform distribution is zero and the

transmit signal has no DC component. The power consumed by the data stream l can be

loosely upper-bounded as Q2.

To send Li data streams, Transmitter i first constructs Li independent single data streams

by following the above procedure for each data stream. Then, it combines them using a linear

combination of all data streams. The transmit signal from Transmitter i can be represented

as

xi = A

Li−1∑

l=0

Tiluil, (4.6)

where uil ∈ U carries information for l’s data stream of User i. Til is a constant real

number which plays as the role of a vector that the data stream l is transmitted in that

direction, see [47]. Til’s are functions of channel coefficients. We will choose Til’s as mono-

mials with variables from channel coefficients, i.e., Til ∈ G(h) for all i ∈ {1, 2, . . . , K} and

l ∈ {0, 1, . . . , Li − 1}. Til’s are also chosen to be independent over rational numbers , i.e.,

the equation Ti1w1 + Ti2w2 + · · ·+ TiLi
wLi

= 0 has no rational solutions. This independency

is provides a one-to-one mapping from constellation points uil’s and transmit signal xi. In

other words, a transmit sinal xi is uniquely decomposable as u = A
∑Li−1

l=0 Tiluil. Observe

that if there is another possible decomposition xi = A
∑Li−1

i=0 Tilu
′
il then it forces Til’s to be

dependent. The parameter A controls the input power of all users. In what follows, we

show how to choose a unique A for all transmitters, independent of Li’s, by calculating the

upper-bound of the input power of all users. We start with the following chain of inequalities

E[x2
i ]

(a)
= A2

Li−1∑

l=0

T 2
ilE
[
u2
il

]

(b)

≤ A2Q2

(
Li−1∑

l=0

T 2
il

)

= A2Q2λ2
i

where (a) follows from the fact that all data streams are independent and (b) follows from

the fact that u2
il ≤ Q2 for all i ∈ {1, 2, . . . , K} and l ∈ {0, 1, . . . , Li − 1}. We use a short-

hand notation λi as λi =
∑Li

l=0 T
2
il. Since each Til depends only on channel coefficients which
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are constants, λi for i ∈ {1, 2, . . . , K} is a constant. To satisfy the power constraint, it is

required that

A ≤ P
1
2

Qλi
for all i ∈ {1, 2, . . . , K}. Clearly, it is sufficient to choose

A =
ζP

1
2

Q

where ζ = mini
1
λi

. By assumption Q = γP
1−ε

2(m+ε) . Hence, we have

A = ξP
m−1+2ε
2(m+ε) , (4.7)

where ξ = ζ
γ
.

In fact, A and Q are two important design parameters in the encoding. Q controls the

cardinality of the input constellation which in turn provides the maximum achievable rate

for individual data streams. Here, the cardinality of the constellation grows roughly with

P
1

2m . On the other hand, A controls the minimum distance in the received constellation

which in turn affects the performance. Our calculation reveals that no matter how many

data streams each transmitter is intended to send, Q and A only depend on m which is the

reciprocal of the multiplexing gain of each data streams.

Received Signal and Interference Alignment: The received signal at Receiver j can

be represented as

yj = A
( Lj−1
∑

l=0

hjjTjlujl +

K∑

i=1&i6=j

Li−1∑

l=0

hjiTiluil

︸ ︷︷ ︸

Ij

)

+ zj, (4.8)

where Ij is the aggregated interference caused by all users. Since Til ∈ G(h), one can conclude

that the received direction for data stream uil is again a member of G(h), i.e., hjiTil ∈ G(h).

The maximum number of received directions in Ij is
∑K

i=1&i6=j Li. However, it is possible

that some of the directions becomes equivalent which results in reduction in the number

of received directions. In fact, the design in the transmit directions aims at reducing the

number of received directions in all Ij ’s and the more the merrier. If a number of data

streams arrives at the same direction then we say that they are aligned. As it will be shown

later, the behavior of aligned data streams mimics that of a single data stream as far as the

DOF is concerned. Let us assume, the total number of received directions in Ij is L′
j , i.e.,

we have

Ij =

L′

j−1
∑

l=0

T ′
jlu

′
jl, (4.9)
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where T ′
jl’s are received directions and u′jl is the sum of data streams arriving at direction

T ′
jl. If fjl data streams arrive at the direction T ′

jl then u′jl ∈ (−fjlQ, fjlQ)Z. To have a

uniform bound, let us define f = max(j,l) fjl and U ′ = (−fQ, fQ)Z. Clearly, u′jl ∈ U ′ for all

j ∈ {1, 2, . . . , K} and l ∈ {0, 1, . . . , L′
j − 1}.

Decoding: After rearranging the interference part of the signal, the received signal at

Receiver j can be represented as

yj = A





Lj−1
∑

l=0

hjjTjlujl +

L′

j−1
∑

l=0

T ′
jlu

′
jl



 + zj. (4.10)

We assume that Lj + L′
j ≤ m for all j ∈ {1, 2, . . . , K}. Receiver j is interested in data

streams ujl for all l ∈ {0, 1, . . . , Lj − 1}.
The data stream ujl for a given l is decoded as follows. The received signal is first passed

through a hard decoder. The hard decoder looks at the received constellation

Vj = A





Lj−1
∑

l=0

hjjTjlU +

L′

j−1
∑

l=0

T ′
jlU ′





and maps the received signal to the nearest point in the constellation. This changes the

continuous channel to a discrete one in which the input symbols are from the transmit

constellation U and the output symbols are from the received constellation Vj.
It is assumed that the received constellation has the property that there is a many-to-one

map from Vj to Uj =
∑Lj−1

l=0 hjjTjlU . Recall that the transmit directions are chosen in such

a way that all ujl’s can be recovered uniquely from Uj . This in fact implies that if there is

no additive noise in the channel then the receiver can decode all intended data streams with

zero error probability. This property holds, for example, when hjjTjl’s and T ′
jl are all distinct

and linearly independent over rational numbers. Throughout this chapter, we always design

the transmit directions in such a way that this condition holds.

The equivalent channel between ujl and the output of the hard decoder ûjl becomes a

discrete channel and a joint-typical decoder can be used to decode the data stream from a

block of ûjl’s. To decode another data stream, Receiver j performs the same procedure used

for decoding ujl. In fact, joint-decoding is not used to decode all intended data streams.

Performance Analysis: Let djmin
denote the minimum distance in the received con-

stellation Vj. The average error probability in the equivalent discrete channel from input ujl

to output ûjl , i.e. Pe = Pr{ûjl 6= ujl} is bounded as:

Pe≤ Q

(
djmin

2

)

≤ exp

(

−d
2
jmin

8

)

. (4.11)
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Pe can be used to lower bound the rate achievable for the data stream ujl. In [30], Etkin

and Ordentlich used Fano’s inequality to obtain a lower bound on the achievable rate which

is tight in high SNR regimes. Following similar steps, one can obtain

Rjl= I(ûjl, ujl)

= H(ujl) −H(ujl|ûjl)
(a)

≥ H(ujl) − 1 − Pe log |U|
(b)
= (1 − Pe) log |U| − 1
(c)
= (1 − Pe) log(2Q− 1) − 1, (4.12)

where (a) follows from Fano’s inequality, (b) follows from the fact that ujl has a uniform

distribution on its range, and (c) follows from the fact that |U| which is the number of integers

in the interval [−Q,Q] is bounded by 2Q−1. Let us assume that Pe → 0 as P → ∞. Under

this condition, the achievable multiplexing gain from data stream ujl can be obtained as

follows:

rjl= lim
P→∞

Rjl

0.5 logP

≥ lim
P→∞

logQ

0.5 logP
(a)
=

1 − ε

m+ ε
, (4.13)

where (a) follows from the fact that Q = γP
1−ε

2(m+ε) . Since ε > 0 is an arbitrary constant, the

multiplexing gain of 1
m

is achievable for the data stream ujl.

Provided that all intended data streams can be successfully decoded at all receivers, the

achievable DOF of User i can be written as Li

m
. However, it is achievable under the condition

that Pe → 0 as P → ∞ and it needs to be shown. To this end, one requires to calculate the

minimum distance between points in the received constellation.

Recall that Lj + L′
j ≤ m and hjjTjl’s and T ′

jl’s are all distinct and monomials with

variables from the channel coefficients. Theorem 26 can be applied to obtain a lower bound

on the minimum distance. Let us assume that one of the directions in hjjTjl’s or T ′
jl’ is 1.

Then a point in Vj can be represented as

v=A



v0 +

Lj+Lj−1
∑

l=1

T̂lvl



 , (4.14)

where T̂l’s are all distinct monomials at receiver j. Moreover, vl for all l ∈ {0, 1, . . . , Lj +

L′
j−1} are bounded by (−fQ, fQ)Z. Therefore, the difference between any two point in the
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received constellation Vj can be bounded using (4.5) as follows:

djmin
>

κA

(2fQ)Lj+L′

j−1+ε
.

Since Lj + L′
j ≤ m, we have

djmin
>

κA

(2fQ)m−1+ε
. (4.15)

The probability of error in hard decoding (see (4.11)) can be bounded as

Pe < exp

(

−η
(

A

Qm−1+ε

)2
)

, (4.16)

where η is a constant and a function of γ, κ, σ, and γis.

Substituting A and Q in (4.16) yields

Pe < exp (−ηP ε) , (4.17)

which shows that Pe has the desired property.

The following theorem summarizes the conditions needed to achieve the multiplexing

gain of 1
m

per data stream.

Theorem 27. Consider K-user GICs parameterized by the channel coefficient vector h.

Transmitter i sends Li data stream along directions Ti = {Ti0, Ti2, . . . , Ti(Li−1)} for all

i ∈ {1, 2, . . . , K}. Moreover, the interference part of the received signal at Receiver i

has L′
i effective data streams with received directions T ′

i = {T ′
i0, T

′
i2, . . . , T

′
i(L′

i−1)} for all

i ∈ {1, 2, . . . , K}. Let the following conditions for all i ∈ {1, 2, . . . , K} hold:

C1 Components of Ti are distinct member of G(h) and linearly independent over the field of

rational numbers.

C2 Components of hiiTi and T ′
i are all distinct.

C3 One of the elements of either hiiTi or T ′
i is 1.

Then, by encoding each data stream using the constellation U = (−Q,Q)Z where Q =

γP
1−ε

2(m+ε) and γ is a constant, the following DOF is achievable for almost all channels:

rsum =
L1 + L2 + · · · + LK

m
, (4.18)

where m is the maximum received directions among all receivers, i.e., m = maxi Li + L′
i.
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Figure 4.1: The K-user GIC. User i for i ∈ {1, 2, . . . , K} wishes to communicate with its

corresponding receiver while receiving interference from other users.

Remark 12. If C2 holds then the measure of the event ”components of hiiTi and T ′
i are

dependent over the field of rational numbers” is zero.

Remark 13. If C3 does not hold then by adding a virtual data stream in the direction 1 at

the receiver, one can conclude that 1
m+1

is achievable for all data streams.

Theorem 27 implies that the most difficult part of the design is the selection of transmit

directions for all users. This is due to the fact that random selection results in m =
∑K

i=1 Li

received directions which in turn provides 1 DOF for the channel. A careful design is needed

to reduce the number of received directions at all users. In the following sections, we provide

such a design for the K-user GIC.

4.4 K-user Gaussian Interference Channel

4.4.1 System Model

The K-user GIC models a network in which K transmitter-receiver pairs (users) sharing

a common bandwidth wish to have reliable communication at their maximum rates. The

channel’s input-output relation can be stated as follows, see Figure 4.1,

y1= h11x1 + h12x2 + . . .+ h1KxK + z1,

y2= h21x1 + h22x2 + . . .+ h2KxK + z2,
... =

...
...

. . .
... (4.19)

yK= hK1x1 + hK2x2 + . . .+ hKKxK + zK ,
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where xi and yi are input and output symbols of User i for i ∈ {1, 2, . . . , K}, respectively. zi is

Additive White Gaussian Noise (AWGN) with unit variance for i ∈ {1, 2, . . . , K}. Transmit-

ters are subject to the power constraint P . hji represents the channel gain between Transmit-

ter i and Receiver j. It is assumed that all channel gains are real and time invariant. The set

of all channel gains is denoted by h, i.e., h = {h11, . . . , h1K , h21, . . . , h2K , . . . , hK1, . . . , hKK}.
Since the noise variances are normalized, the Signal to Noise Ratio (SNR) is equivalent to

the input power P . Hence, we use them interchangeably throughout this chapter.

In this chapter, we are primarily interested in characterizing the total DOF of the K-user

GIC. Let C denote the capacity region of this channel. The DOF region associated with the

channel is in fact the shape of C in high SNR regimes scaled by log SNR. Let us denote

the DOF region by R. All extreme points of R can be identified by solving the following

optimization problem:

rλ = lim
SNR→∞

max
R∈C

λtR

log SNR
. (4.20)

The total DOF refers to the case where λ = {1, 1, . . . , 1}, i.e., the sum-rate is concerned.

Throughout this chapter, rsum denotes the total DOF of the system.

An upper bound on the DOF of this channel is obtained in [24]. The upper bound states

that the total DOF of the channel is less than K
2

which means each user can at most enjoy

one half of its maximum DOF.

4.4.2 Three-user Gaussian Interference Channel: DOF = 3
2 is

Achievable

In this section, we consider the three-user GIC and explain in detail that by an appropriate

selection of transmit directions, the DOF of 3
2

is achievable for almost all cases. We will

explain in more detail that by an appropriate selection of transmit directions, this DOF can

be achieved.

In [47], we defined the standard model of the three-user GIC. The definition is as follows:

Definition 7. The three-user interference channel is called standard if it can be represented

as

y1= G1x1 + x2 + x3 + z1

y2= G2x2 + x1 + x3 + z2 (4.21)

y3= G3x3 + x1 +G0x2 + z3,

where xi for User i is subject to the power constraint P . zi at Receiver i is AWGN with unit

variance.
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In [47], it is also proved that every three-user GIC has an equivalent standard channel

as far as the DOF is concerned. The parameters in the standard channel is related to the

parameters of the original one thorough the following equations.

G0 =
h13h21h32

h12h23h31

,

G1 =
h11h12h23

h12h21h13

,

G2 =
h22h13

h12h23
,

G3 =
h33h12h21

h12h23h31
.

As mentioned in the previous section, transmit directions are monomials with variables

from channel coefficients. For the three user case, we only use GO as the generator of transmit

directions. Therefore, transmit directions are selected from the set G(G0) which is a subset

of G(G0, G1, G2, G3). Clearly, G(G0) = {1, G0, G
2
0, G

3
0, · · · }.

We consider two different cases based on the value ofG0 being algebraic or transcendental.

Although the measure of being algebraic is zero, we prove that for each case the total DOF

can be achieved if the transmit and receive directions satisfy the conditions of Theorem 27.

We start with the case where G0 is algebraic.

Case I: G0 is algebraic

By definition, if G0 is algebraic then it is a root of a polynomial with integer coefficients.

Let us assume G0 satisfies

adG
d
0 + ad−1G

d−1
0 + . . .+ a1G0 + a0 = 0, (4.22)

where ad, ad−1, . . . , a0 are integers. In other words, the set T = {1, G0, G
2
0, . . . , G

d−1
0 } is

a basis for G(G0) over rational numbers. Therefore, as the transmit directions need to be

independent over the field of rational numbers, the transmitters are restricted to choose their

transmit directions among numbers in T . We assume that all transmitters transmit along

all directions in T , i.e., Ti = T for all i ∈ {1, 2, 3}. By this selection, C1 in Theorem 27

holds for all transmitters.

In this case, Transmitter i sends Li = d data streams as follows

xi = A
d−1∑

j=0

Gj
0uij, (4.23)
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for all i ∈ {1, 2, 3}. The received signal at Receiver 1 can be written as

y1 = A

(
d−1∑

j=0

G1G
j
0u1j +

d−1∑

j=0

Gj
0u

′
1j

)

+ z1, (4.24)

where u′1j = u2j +u3j for all j ∈ {0, 1, . . . , d− 1}. The signals from Transmitters 2 and 3 are

aligned and the number of received directions is L′
1 = d. Moreover C2 and C3 in Theorem

27 hold for this receiver. Since the received signal at Receiver 2 is similar to that of Receiver

1, we can deduce that L′
2 = d and C2 and C3 hold.

The received signal at Receiver 3 can be written as

y3 = A

(
d−1∑

j=0

G3G
j
0u3j +

d∑

j=0

Gj
0u

′
3j

)

+ z3, (4.25)

where u′3j = u2j + u1(j−1) for j ∈ {1, 2, . . . , d− 1}, u′30 = u20, and u′3d = u1d. The number of

received directions from interfering users is d + 1. However, they are not independent over

the filed of rational numbers. Using (4.22), Gd
0 can be represented as a linear combination

of {1, G0, G
2
0, . . . , G

d−1
0 } with rational coefficients. Multiplying both sides of (4.25) by ad, we

have

ỹ3 = A

(
d−1∑

j=0

adG3G
j
0u3j +

d−1∑

j=0

Gj
0adu

′
3j + adG

d
0u

′
3d

)

+ z̃3, (4.26)

where ỹ3 = ady3 and z̃3 = adz3. Substituting form (4.25), we obtain

ỹ3 = A







d−1∑

j=0

adG3G
j
0u3j +

d−1∑

j=0

Gj
0(adu

′
3j − aju

′
3d

︸ ︷︷ ︸

u′′j

)







+ z̃3. (4.27)

Clearly, L′
3 = d and C2 and C3 hold for this receiver as well.

The maximum number received directions at all receivers is m = 2d. Since C1, C2, and

C3 hold at all receivers, by applying Theorem 27 we conclude that the total DOF of 3
2

is

achievable for almost all cases.

Remark 14. In a special case, d = 1 in (4.22). In other words, G0 is a rational number.

This case is considered in [30] and it is proved that it can achieve the total DOF of the

channel.

Case II: G0 is transcendental

If G0 is transcendental then all members of G(G0) are linearly independent over the filed of

rational numbers. Hence, we are not limited to any subset of G(G0) as far as the independence
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of transmit directions is concerned. We will show that 3n+1
2n+1

is an achievable DOF for any

n ∈ N. To this end, we propose a design which is not symmetrical.

Transmitter 1 uses the set of directions T1 = {1, G0, G
2
0, . . . , G

n
0} to transmit L1 = n+ 1

to its corresponding receiver. Clearly T1 satisfies C1. The transmit signal form User 1 can

be written as

x1 = A
n∑

j=0

Gj
0u1j.

Transmitters 2 and 3 transmit in L2 = L3 = n directions using T2 = T3 = {1, G0, G
2
0, . . . , G

n−1
0 }.

Clearly both T2 and T3 satisfy C1. The transmit signals can be expressed as

x2 = A

n−1∑

j=0

Gj
0u2j

and

x3 = A

n−1∑

j=0

Gj
0u3j.

The received signal at Receiver 1 can be expressed as:

y1 = A

(
n∑

j=0

G1G
j
0u1j +

n−1∑

j=0

Gj
0u

′
1j

)

+ z1, (4.28)

where u′1j = u2j + u3j . In fact, transmit signals from Users 2 and 3 are aligned at Receiver

1. This is due to the fact that out of 2n possible received directions only n directions are

effective, i.e., L′
1 = n. One can also confirm that C2 and C3 hold at Receiver 1.

The received signal at Receiver 2 can be expressed as:

y2 = A

(
n−1∑

j=0

G2G
j
0u2j +

n∑

j=0

Gj
0u

′
2j

)

+ z2, (4.29)

where u′2j = u1j + u3j for all j ∈ {0, 1, . . . , n− 1} and u′2n = u1n. At Receiver 2, transmitted

signals from Users 1 and 3 are aligned and the number of effective received directions is

L′
2 = n+ 1. Moreover, it can be easily seen that C2 and C3 hold at Receiver 2.

The received signal at Receiver 3 can be expressed as:

y3 = A

(
n−1∑

j=0

G3G
j
0u3j +

n∑

j=0

Gj
0u

′
3j

)

+ z3, (4.30)

where u′3j = u1j + u2j for all j ∈ {1, 2, . . . , n} and u′30 = u10. At Receiver 3, transmitted

signals from Users 1 and 2 are aligned and the number of effective received directions is

L′
2 = n+ 1. Clearly, C2 and C3 hold for Receiver 3.
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Since C1, C2, and C3 hold at all users, we only need to obtain the number of maximum

received directions at all receivers. To this end, we observe that

m = max{L1 + L′
1, L2 + L′

2, L3 + L′
3} = 2n+ 1

. Therefore, an application of Theorem 27 reveals that the following DOF is achievable.

rsum=
L1 + L2 + L3

m

=
3n+ 1

2n+ 1
. (4.31)

Since n is an arbitrary integer, one can conclude that 3
2

is achievable for the three-user GIC

almost surely.

4.4.3 K-user Gaussian Interference Channel: DOF = K
2 is Achiev-

able

In this section, we prove the main theorem of this chapter, i.e., the DOF of K
2

is achievable

for the K-user GIC. As pointed out in Section 4.3, we need to design the transit directions

of all transmitters in such a way that they satisfy the conditions of Theorem 27. Recall that

all transmit directions are monomials with variables in h. We reserve the direct gains and do

not use them as generating variables. The reason is that C2 in Theorem 27 requires that all

received directions be distinct. By setting aside the direct gains, a transmit direction from

the intended user is multiplied by the direct gain and therefore it is distinct from all other

transmit directions (by C1 all transmit directions from a user are distinct).

We assume that all channel gains are transcendental. In one hand, since the measure

of being algebraic is zero, this assumption is innocuous. On the other hand, as we learned

from the three-user case algebraic gains are beneficial as they reduce the number of transmit

directions required to achieve the total DOF of the channel.

We start with selecting the transmit directions for User i. A direction T ∈ G(h) is chosen

as the transmit direction for User i if it can be represented as

T =

K∏

j=1

K∏

l=1

h
sjl

jl , (4.32)

where sjl’s are integers satisfying






sjj = 0 ∀ j ∈ {1, 2, . . . , K}
0 ≤ sji ≤ n− 1 ∀ j ∈ {1, 2, . . . , K} & j 6= i

0 ≤ sjl ≤ n Otherwise.
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The set of all transmit directions is denoted by Ti. It is easy to show that the cardinality of

this set is

Li = nK−1(n + 1)(K−1)2. (4.33)

Clearly, Ti satisfies C1 for all i ∈ {1, 2, . . . , K}.
To compute L′

i (the number of independent received directions due to interference), we

investigate the effect of Transmitter k on Receiver i. Let us first define Tr as the set of

directions represented by (4.32) and satisfying






sjj = 0 ∀ j ∈ {1, 2, . . . , K}
0 ≤ sjl ≤ n Otherwise.

(4.34)

We claim that Tik, the set of received directions at Receiver i due to Transmitter k, is a

subset of Tr. In fact, all transmit directions of Transmitter k arrive at Receiver i multiplied

by hik. Based on the selection of transmit directions, however, the maximum power of hik in

all members of Tik is n− 1. Therefore, none of the received directions violates the condition

(4.44) and this proves the claim.

Since Tr is not related to User k, one can conclude that Tik ⊆ Tr for all k ∈ {1, 2, . . . , K}
and k 6= i. Hence, we deduce that all interfering users are aligned in the directions of Tr.
Now, L′

i can be obtained by counting the members of Tr. It is easy to show that

L′
i = (n+ 1)K(K−1). (4.35)

The received directions at Receiver i are members of hiiTi and Tr. Since hii does not

appear in members of Tr, the members of hiiTi and Tr are distinct. Therefore, C2 holds at

Receiver i. Since all the received directions are irrationals, C3 does not hold at Receiver i.

Since C1 and C2 hold for all users, we can apply Theorem 27 to obtain the DOF of the

channel. We have

rsum=
L1 + L2 + . . .+ LK

m+ 1

=
KnK−1(n+ 1)(K−1)2

m+ 1
(4.36)

where m is

m= max
i
Li + L′

i

= nK−1(n + 1)(K−1)2 + (n+ 1)K(K−1). (4.37)

Combining the two equations, we obtain

rsum =
K

1 + (n+1
n

)K−1 + 1

nK−1(n+1)(K−1)2

. (4.38)

Since n can be arbitrary large, we conclude that K
2

is achievable for the K-user GIC.
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4.5 Some Extensions

In this section, we use the proposed coding scheme to characterize the total DOF of the

uplink communication scenario in cellular systems and the K ×M X channel.

4.5.1 Cellular Systems: Uplink

System Model

In a cellular network, an area is partitioned into several cells and within each cell there is a

base station serving users inside the cell. There are two modes of operation. In the uplink

mode, users within a cell transmit independent messages to the base station in the cell;

whereas in the downlink mode, the base station broadcast independent messages to all users

inside the cell. In this section, we only consider the uplink mode. Information theoretically,

the uplink mode corresponds to a network in which several Multiple Access Channels (MAC)

share the same spectrum for data transmission. Let us assume there exist M users in each

MAC and there are K MACs in the network. The received signal at the base station in Cell

k can be represented as

yk =
M∑

l=1

hk(kl)xkl

︸ ︷︷ ︸

users within the cell

+
K∑

i=1&i6=k
Iki

︸ ︷︷ ︸

intra cell interference

+zk (4.39)

where Iki is the aggregate interference from all users in Cell i, i.e.,

Iki =

M∑

l=1

hk(il)xil. (4.40)

Let Cup denote the capacity region of this channel. The DOF region associated with the

channel can be defined as the shape of the region in high SNR regimes scaled by log SNR.

Let us denote the DOF region by Rup. We are primarily interested in the main facet of the

DOF region defined as:

rup = lim
SNR→∞

max
R∈Cup

∑K
k=1

∑M
l=1Rkl

log SNR
, (4.41)

where Rkl is an achievable rate for the l’th user in Cell k.

The Total DOF of KM
M+1

is Achievable

To obtain an upper bound on the total DOF of this channel, we assume that all users within

a cell can cooperate. This cooperation converts the uplink mode to a MISO K-user GIC
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with M antennas at the transmitters and one antenna at the receives. An upper bound on

the DOF of the MISO K-user GIC is obtained in [44]. The upper bound states that the

total DOF of the channel is less than KM
M+1

. We will show that this DOF is achievable.

We start with selecting the transmit directions of the m’th user in Cell k. A direction

T ∈ G(H) (H is the set of all channel gains) is chosen as the transmit direction for this user

if it can be represented as

T =

K∏

j=1

K∏

i=1

M∏

l=1

h
sj(il)

j(il) , (4.42)

where sj(il)’s are integers satisfying






sj(jl) = 0 ∀ j ∈ {1, 2, . . . , K} & l ∈ {1, 2, . . . ,M}
0 ≤ sj(km) ≤ n− 1 ∀ j ∈ {1, 2, . . . , K} & j 6= k

0 ≤ sj(il) ≤ n Otherwise.

The set of all transmit directions is denoted by Tkm. It is easy to show that the cardinality

of this set is

Lkm = nK−1(n+ 1)(KM−1)(K−1). (4.43)

Clearly, Tkm satisfies C1.

We claim that all signals from non-intended cells are aligned at all base stations. In order

to prove the claim, we introduce Ti as the set of received direction due to interference at the

i’th base stations. Clearly,

Ti =
K⋃

k=1&k 6=i

M⋃

m=1

(hi(km)Tkm).

Let us define T as the set of directions represented by (4.42) and satisfying






sj(jl) = 0 ∀ j ∈ {1, 2, . . . , K} & l ∈ {1, 2, . . . ,M}
0 ≤ sj(il) ≤ n Otherwise.

(4.44)

We claim that Ti ⊆ T . In fact, all transmit directions of the m’th user in Cell k arrive at

Receiver i multiplied by hi(km). Based on the selection of transmit directions, however, the

maximum power of hi(km) in all members of Tkm is n − 1. Therefore, none of the received

directions violates the condition (4.44) and this proves the claim.

Since T is not related to the i’s base station, one can conclude that Ti ⊆ T for all

i ∈ {1, 2, . . . , K}. Hence, we deduce that all interfering users are aligned in the directions of

T . Now, L′
i can be obtained by counting the members of Tr. It is easy to show that

L′
i = (n+ 1)MK(K−1). (4.45)
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Figure 4.2: The K × M X Channel. User i for i ∈ {1, 2, . . . , K} wishes to transmit an

independent message mji to Receiver j for all j ∈ {1, 2, . . . ,M}.

The total number of received directions at the i’th base stations is
∑M

l=1Lil + L′
i. Since

C1 and C2 hold at all base stations, we can to obtain the total DOF of the channel as

rsum=

∑K
k=1

∑M
m=1 Lkm

MnK−1(n+ 1)(KM−1)(K−1) + (n+ 1)MK(K−1) + 1

=
MKnK−1(n + 1)(KM−1)(K−1)

MnK−1(n+ 1)(KM−1)(K−1) + (n+ 1)MK(K−1) + 1

=
MK

M +
(
n+1
n

)K−1
+ 1

nK−1(n+1)(KM−1)(K−1)

. (4.46)

Since n can be arbitrary large, we conclude that MK
M+1

is achievable for the uplink of a cellular

system.

4.5.2 K ×M X Channel

System Model

The K ×M X channel models a network in which K transmitters wish to communicate

with M receivers. Unlike the interference channel, each transmitter has a messages for

each receiver. In other words, Transmitter i for all i ∈ {1, 2, . . . , K} wishes to transmit an

independent message to Receiver j for all j ∈ {1, 2, . . . ,M}. The message transmitted by

Transmitter i and intended for Receiver j is denoted by mji. The channel’s input-output
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relation can be stated as follows, see Figure 4.2,

y1= h11x1 + h12x2 + . . .+ h1KxK + z1,

y2= h21x1 + h22x2 + . . .+ h2KxK + z2,
... =

...
...

. . .
... (4.47)

yM= hM1x1 + hM2x2 + . . .+ hMKxK + zM ,

where xi and yi are input and output symbols of User i for i ∈ {1, 2, . . . , K}, respectively.

zi is Additive White Gaussian Noise (AWGN) with unit variance for i ∈ {1, 2, . . . , K}.
Transmitters are subject to the power constraint P . hji represents the channel gain between

Transmitter i and Receiver j. It is assumed that all channel gains are real and time invariant.

Let CX denote the capacity region of this channel. The DOF region associated with the

channel can be defined as the shape of the region in high SNR regimes scaled by log SNR.

Let us denote the DOF region by RX . We are primarily interested in the main facet of the

DOF region defined as:

rXsum = lim
SNR→∞

max
R∈CX

∑K
i=1

∑M
j=1Rij

log SNR
, (4.48)

where Rij is an achievable rate for the message mij and R is the set of all achievable rates.

The DOF achievable by the message mij is denoted by rij .

The Total DOF of KM
K+M−1

is Achievable

An upper bound on the DOF of this channel is obtained in [25]. The upper bound states

that the total DOF of the channel is less than KM
K+M−1

which means each message can at most

achieve 1
K+M−1

of DOF. We will show that this DOF is achievable. To this end, Transmitter

i for all i ∈ {1, 2, . . . , K} transmits M signals along M directions as follows:

xi =

M∑

j=1

hjixji, (4.49)

where xji is the signal carrying the message mji. Let us focus on the signals intended for

Receiver 1, i.e., x11, x12, . . . , x1K . The received signals due to these transmit signals can be

written as

ỹ1= h2
11x11 + h2

12x12 + . . .+ h2
1Kx1K

I21= (h21h11)x11 + (h22h12)x12 + . . .+ (h2Kh1K)x1K

... =
...

...
. . .

... (4.50)

IM1= (hM1h11)x11 + (hM2h12)x12 + . . .+ (hM1h1K)x1K .
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Since x11, x12, . . . , x1K are not intended for Receiver j for all j ∈ {2, 3, . . . ,M}, Ij1 is a part of

interference at Receiver j. We claim that we can align all interfering signals x11, x12, . . . , x1K

at all Receivers j ∈ {2, 3, . . . ,M}.
Let H1 denote the set of all coefficients appeared in I21, I31, . . . , IM1, i.e., H1 = {(h21h11),

(h22h12), . . . , (hM2h12), hM1h1K)}. H1 has (M − 1)K members. The set of all monomials

with variables in H1 is denoted by G(H1). Let T1 denote a subset of G(H1) consisting of

monomials represented by

T =
K∏

i=1

M∏

j=1

(hjih1i)
sji , (4.51)

where 





s1i = 0 ∀ i ∈ {1, 2, . . . , K}
0 ≤ sji ≤ n Otherwise.

Clearly, T1 has (n+ 1)(M−1)K members.

The message m1i for i ∈ {1, 2, . . . , K} is transmitted along directions in T1i where T1i ⊂
T1. A direction T in T1i can be represented as

T =
K∏

l=1

M∏

j=1

(hjlh1l)
sjl , (4.52)

where 





s1l = 0 ∀ l ∈ {1, 2, . . . , K}
0 ≤ sji ≤ n− 1 ∀ j ∈ {1, 2, . . . ,M} & j 6= 1

0 ≤ sjl ≤ n Otherwise.

It is easy to show that the cardinality of T1i is nM−1(n+1)(M−1)(K−1). The received directions

due to x1i at all receivers belong to T1. In fact, x1i arrives at receiver j multiplied by (hjih1i)

and since the power of (hjih1i) in all directions in x1i is less than n we conclude that the

received directions are all in T1. Therefore, all transmit signals are aligned and the total

number of directions in Ij1 for all j ∈ {2, 3, . . . ,M} is (n+ 1)(M−1)K .

A similar argument can be applied for signals intended for Receiver j for all j ∈ {2, 3, . . . ,M}.
Therefore, the received signals can be represented as

y1= ỹ1 + I12 + I13 + . . .+ I1M + z1,

y2= ỹ2 + I21 + I23 + . . .+ I2M + z2,
... =

...
...

. . .
... (4.53)

yM= ỹM + IM1 + IM2 + . . .+ I(M−1)M + z1,
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where Iji is the part of interference caused by all messages intended for Receiver i at Receiver

j. Due to symmetry, we only consider the received directions at Receiver 1. At Receiver 1,

there are M1 interfering signals each of which consisting of at most (n+1)(M−1)K directions.

Therefore, the total number of interfering directions is L′
1 = (M − 1)(n+ 1)(M−1)K . On the

other hand, ỹ1 consists ofKnM−1(n+1)(M−1)(K−1) directions. This is due to the fact that ỹ1 =

h2
11x11+h

2
12x12+. . .+h

2
1Kx1K and x1i for all i ∈ {1, 2, . . . , K} consists of nM−1(n+1)(M−1)(K−1)

directions. Therefore, the total number of received directions is

L = (M − 1)(n+ 1)(M−1)K +KnM−1(n+ 1)(M−1)(K−1).

Using Theorem 27, we can conclude that

rXsum ≥ KMnM−1(n+ 1)(M−1)(K−1)

KnM−1(n+ 1)(M−1)(K−1) + (M − 1)(n+ 1)(M−1)K + 1
(4.54)

is achievable for the X channel. By rearranging, we obtain

rXsum ≥ KM

K + (M − 1)
(
n+1
n

)M−1
+ 1

nM−1(n+1)(M−1)(K−1)

. (4.55)

Since (4.55) holds for all n, we obtain

rXsum =
KM

K +M − 1
, (4.56)

which is the desired result. In a special case, M = K and the total DOF is K2

2K−1
. This shows

that as the number of transmitter and receivers increases the DOFs of X and GIC behave

similarly.

4.6 Conclusion

In this chapter, we have considered the K-user Gaussian Interference Channel (GIC). We

have proved that the total DOF of the system can be achieved with a static channel. This

result is obtained by proposing a new coding scheme in which several fractional dimen-

sions are imbedded into a single real line. These fractional dimensions play the role of

integral dimensions in Euclidean spaces. This fact is supported by a recent extension of

the Khintchine-Groshev theorem for the non-degenerate manifolds. The total DOF of the

MIMO case as well as the complex case is also achieved by a simple application of the main

result.



Chapter 5

Random Coding and Interference

Management

In this chapter, point-to-point communication in an environment where several users sharing

the same channel is studied. First, the interaction between users is ignored and assumed

that all users except the desired user are transmitting using known coding schemes. The

intended user who incurs interference from a number of interfering users tries to maximize its

achievable rate. It is also assumed that interfering users use single codebooks, to be defined

later, for data transmission. These codebooks are generated randomly and independent of

each other. Therefore, interference alignment is not possible as it requires joint design for

all users’ coding schemes. Having information about the rates and codebooks of interfering

users, the receiver is allowed to decode interfering messages. This in turn means that the

signal transmitted from any interfering user is either decoded or considered as noise.

We propose the following method to obtain an achievable rate for the channel. Assuming

its own data is decoded successfully, the receiver finds the maximum decodable subset of

interfering users. By a maximum decodable subset, we mean a set of users that are decodable

at the receiver, regarding the rest as noise and any decodable set is a proper subset of it. It

is shown that this task can be accomplished by using a polynomial time algorithm. Once the

receiver obtains the maximum decodable subset, it can partition the interfering users into two

disjoint subsets, namely decodable users and non-decodable users. Then, the transmitter’s

rate is chosen such that the intended signal can be jointly decoded with the set of decodable

users. We also propose a polynomial time algorithm to find the maximum achievable rate

obtainable by this method.

To obtain the maximum achievable rate, one needs to find the maximum decodable subset

of interfering users. Due to the large number of possible choices, having efficient algorithms

115
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that find the set of decodable users with maximum cardinality is desired. To this end, an

algorithm that enables the receiver to accomplish this task in polynomial time is proposed

in this chapter.

It must be noted that the model described above can also be used as a suitable model

for the cognitive radio that is defined as a radio aware of its surroundings, c.f., [50] and [51].

In this case, the intended user can be considered as a secondary user and other interfering

users as primary users, refer to [50] for basic definitions. To satisfy the assumption of

cognitive radios that no secondary user should harm the primary users’ communications,

we assume that the effect of the secondary user on the primary users is negligible. This

assumption is realistic when the secondary user is equipped with a low power transmitter

or not allowed to transmit higher than some certain power level. Hence, the secondary user

tries to communicate at the maximum rate, while its receiver knows the codebooks and rates

of primary users.

As an application, this model is used in successive rate allocation for the K-user Gaus-

sian IC. A polynomial time algorithm is proposed for such rate allocation. In fact, given

an ordering on users one requires to characterize achievable rate region for the K-user IC

where each transmitter is allowed to transmit data by using a single codebook and each

receiver is allowed to decode any subset of interfering users. However, as this task is difficult

to accomplish in general, other criteria other than priority on users are considered in the

literature. The state of the art work for deriving achievable rate vectors treats interfering

users as noise [52, 37, 53, 54, 55, 56, 57, 58, 59]. For example, in [37] the K-user Gaussian

IC is studied where transmitters are allowed to allocate different powers in different band-

widths and receivers treat interference as noise. Recently, in [60, 61], successive interference

cancelation is studied. For example, in [60] the optimal order of decoding that maximizes

the minimum rate among all users is obtained.

Throughout this chapter, several converse theorems are proved. It is worth mentioning

that these proofs are only true in a loose sense, i.e., when it is assumed that random codes

are used by all users and there is no cooperation in coding design between users. In fact,

structural codes may perform in regimes outside those that a converse theorem is established.

The organization of this chapter is as follows. In Section 5.1, the system model and

some background materials are introduced. In Section 5.2, a discrete memoryless channel

consisting of K transmitters and one receiver is considered. It is assumed that the users’ rate

vector is not necessarily inside the capacity region of the Multiple Access Channel (MAC)

seen at the receiver side which results in failure of the receiver to reliably decode all the data

streams. The receiver’s task, however, is to find a maximum decodable subset of transmitters

so that their data can be decoded from the received signal. A polynomial-time algorithm
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which finds the maximum decodable subset of users is proposed.

In Section 5.3, single-user data transmission over a channel with K − 1 interfering users

is considered. First a lower bound and an upper bound on the capacity of this channel is

obtained. Then, a method that characterizes an achievable rate for the channel is proposed.

This achievable rate is a function of other users’ rates. It is proved that this function is

piecewise linear.

In Section 5.4, additive channels where the interference caused by other users is Gaussian

are considered. It is proved that for this case, the Gaussian codebook achieves the capacity

where each interfering user is either decoded or treated as noise by the receiver.

In Section 5.5, applications of the proposed algorithms to the K-user Gaussian IC are

investigated. First a polynomial time algorithm that characterizes points obtainable from

successive maximization of users’ rates is developed. Then the notion of one-sided Gaussian

ICs to the K-user case is generalized. A point on the boundary of the capacity region of this

channel is characterized. Finally the capacity of the strong one-sided K-user Gaussian IC is

obtained. In Section 5.6, the chapter is concluded.

5.1 Preliminaries

5.1.1 System Model

We consider single-user data transmission over a channel S with K − 1 interfering users.

S is specified by the transition probability function ω(y1|x1, x2, . . . , xK) where xi ∈ Xi

is the input letter to the channel from the i’th user and y1 ∈ Y1 is the output letter re-

ceived by the receiver, see Figure 5.1. The set of users’ indices is denoted by E. x1 is

the input letter from the intended user and xi for i = 2, 3, . . . , K are input letters from

interfering users. We assume that the interfering users transmit data at the rate vector

R−1 = [R2, R3, . . . , RK ] by using single codebooks generated randomly from the joint prob-

ability distribution pX2(x2)pX3(x3) · · ·pXK
(xK). We are interested in characterizing the ca-

pacity of this channel.

We also consider the continuous Gaussian case modeled by

y1 = x1 + x2 + · · · + xK + z, (5.1)

where x1 and y1 denote transmitted and received symbols, respectively. xi, i = 2, 3, . . . , K,

is the input symbol corresponding to the i’th interfering user that uses a single Gaussian

codebook with power Pi and rate Ri. z is the additive white Gaussian noise with variance N .
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· · ·

x1

x2 x3 x4 xM

y1ω(y1|x1, x2, · · · , xM)

Figure 5.1: Single user in an interfering medium. x1 is the input letter from the intended

user and xi, i = 2, 3, . . . , K, is the input symbol corresponding to the i’th interfering user.

The transmitter is subject to the average power P1 and tries to send data at the maximum

rate R1.

5.1.2 Submodular Functions

Definition 8. Let E be a finite nonempty set. A function f : 2E → R is called a submodular

function if it satisfies

f(V ∪ U) + f(V ∩ U) ≤ f(V ) + f(U), (5.2)

for any V, U ⊆ E. A function f is called supermodular if −f is submodular. A modular

function is a function which is both submodular and supermodular.

Submodular functions are one of the most important objects in discrete optimization.

In fact, they play the same role in discrete optimization as convex functions do in the

continuous case [62]. Besides having a polynomial-time algorithm based on the ellipsoid

method [63], there are combinatorial algorithms for minimizing submodular functions in

strongly polynomial time, c.f. [62] and [64].

If a submodular function is nondecreasing, i.e. f(U) ≤ f(V ) if U ⊆ V , and f(∅) = 0,

then the associated polyhedron

B(f) = {x|x(U) ≤ f(U), ∀U ⊆ E,x ≥ 0}, (5.3)

is a polymatroid. Likewise, if a supermodular function is nondecreasing and f(∅) = 0, then

the associated polyhedron

G(f) = {x|x(U) ≥ f(U), ∀U ⊆ E}, (5.4)

is a contra-polymatroid.
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5.1.3 Properties of Mutual Information for Independent Random

Variables

In this subsection, we review some important equalities and inequalities in Information

Theory. We consider K independent random variables X1, X2, . . . , XK . Moreover, let E =

{1, 2, . . . , K} denote the set of random variables’ indices. For any random variable Y , we

have the following properties:

1) Chain Rule: For any disjoint subsets U and V , we have the following inequality:

I(XU∪V ;Y ) = I(XV ;Y |XU) + I(XU ;Y ). (5.5)

2) Independent Conditioning Inequality : For any disjoint subsets U and V , the following

inequality holds:

I(XU ;Y ) ≤ I(XU ;Y |XV ). (5.6)

3) Polymatroidal Property : In [35], it is shown that the set function σ(U) = I(XU ;Y |XU)

is submodular and nondecreasing, i.e.,

σ(U ∪ V ) + σ(U ∩ V ) ≤ σ(U) + σ(V ), ∀U, V ⊆ E. (5.7)

Hence, its associated polyhedron is a polymatroid.

4) Contra-polymatroidal Property : We claim that the set function ρ defined as ρ(U) =

I(XU ;Y ) is a supermodular function. To this end, fix any arbitrarily subsets U and V . Let

S = U ∩ V . From the chain rule, we have

I(XU∪V ;Y ) = I(XU ;Y ) + I(XV \U ;Y |XU), (5.8)

which can equivalently be written as

ρ(U ∪ V ) = ρ(U) + I(XV \S;Y |XU\S,XS). (5.9)

From Independent Conditioning Property, we have I(XV \S ;Y |XS) ≤ I(XV \S;Y |XU\S,XS).

Hence,

ρ(U ∪ V ) ≥ ρ(U) + I(XV \S;Y |XS). (5.10)

Adding ρ(U ∩ V ) = ρ(S) to both sides, we obtain

ρ(U ∪ V ) + ρ(U ∩ V ) ≥ ρ(U) + I(XV \S;Y |XS) + I(XS;Y ). (5.11)

Since I(XV \S;Y |XS) + I(XS;Y ) = I(XV ;Y ), we have

ρ(U ∪ V ) + ρ(U ∩ V ) ≥ ρ(U) + ρ(V ), (5.12)

as claimed. It is easy to show that ρ is nondecreasing and hence its associated polyhedron

is a contra-polymatroid.
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5.1.4 Multiple Access Capacity Region

One of the most important results in Information Theory is the characterization of the

capacity region of the MAC [65, 66]. The capacity region of a MAC can be represented as

follows. We define P as the collection of all probability distributions which can be written

as P(x1, x2, . . . , xK , y) = p(x1)p(x2) · · · p(xK)ω(y|x1, x2, . . . , xK), where ω(y|x1, x2, . . . , xK) is

the channel transition probability function. Now, the capacity region of a MAC is

CMAC = conv

(
⋃

P∈P

CMAC(P)

)

, (5.13)

where conv(·) denotes convex hull operation, and CMAC(P) is defined as

CMAC(P) = {R|R(U) ≤ I(XU ;Y |XU), ∀ U ⊆ E}. (5.14)

Using the polymatroidal property of the mutual information, it is easy to show that

CMAC(P) is a polymatroid. It is worth noting that even though CMAC is the union of polyma-

troids, it is not necessarily a polymatroid. However, CMAC is a polymatroid for the K-user

Gaussian MAC modeled by

y = x1 + x2 + · · · + xK + z, (5.15)

where y is the received symbol, xi is the transmitted symbol of user i, and z is additive white

Gaussian noise with zero mean and variance N . User i is also subject to an average power

constraint Pi. The capacity region of the K-user Gaussian MAC can be stated as

CGMAC = {R|R(U) ≤ γ

(
P(U)

N

)

, ∀ U ⊆ E}, (5.16)

where γ(x) = 0.5 log2(1 + x).

5.2 Maximum Decodable Subset

In this section, we consider a discrete memoryless channel consisting of K transmitters

with input alphabet Xi for the ith transmitter and one receiver with output alphabet Y

where each transmitter uses a single codebook for data transmission. This channel is spec-

ified by the transition probability function ω(y|x1, x2, . . . , xK) where xi ∈ Xi is the input

letter to the channel from the ith transmitter and y ∈ Y is the output letter received

by the receiver, see Figure 5.2. The random codebooks used for data transmission at the

rate vector R = [R1, R2, . . . , RK ] are generated by using the joint probability distribution

pX1(x1)pX2(x2) · · ·pXK
(xK) for random variables X1, X2, . . . , XK .
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x1

x2

xM

y
ω(y|x1, x2, . . . , xM)...

Figure 5.2: Transmitter i uses a random codebook for data transmission at rate Ri. Re-

ceiver’s task is to find the maximum decodable subset of users.

The rate vector R may fall outside of the capacity region of the MAC seen at the receiver

side which results in failure to reliably decode all data streams. The receiver’s task, however,

is to find a decodable subset of transmitters so that their data can be decoded from the

received signal. To this end, the receiver partitions the set of transmitters into two disjoint

parts and tries to jointly decode the data sent by the transmitters within the first partition,

while considering the signals of transmitters in the second partition as noise.

In what follows, we compute the complexity of finding a decodable subset of transmitters

by an exhaustive search. Let E = {1, 2, . . . , K} denote the set of transmitters’ indices. There

are 2K ways to partition E into two subsets; and to verify that a subset V with cardinality

k is decodable, 2k−1 inequalities must be verified due to (5.14). Hence, in general, the total

number of inequalities to be checked is

K∑

k=0

(
K

k

)

(2k − 1) = 3K − 2K ,

which is exponential in the number of users.

Definition 9 (Maximum decodable subset). A set of transmitters is a maximal decodable

subset if all transmitters in the subset are jointly decodable by the receiver, and is not a

proper subset of any other decodable subset. If the maximal decodable subset is unique, we

call it the maximum decodable subset.

Lemma 12. For any channel, there is a maximum decodable subset.

Proof. Suppose the receiver is able to decode two subsets of transmitters, namely U and V ,

such that none of them is a subset of the other. U and V are proper subsets of their union

U ∪V . Besides, their union is decodable by the receiver. This contradicts the fact that both

subsets are maximal.
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We first describe some properties of the maximum decodable subset. There are two

cases of special interest. The first case occurs when all transmitters are decodable by the

receiver, i.e., the maximum decodable subset is the set E. In this case, the transmitters’

rates must satisfy the inequalities given in (5.14). In the second case, however, none of the

transmitters is decodable by the receiver, i.e., the maximum decodable subset is empty. The

following Lemma shows that for the second case the rate vector R must be in a certain

contra-polymatroid.

Lemma 13. None of the signals is decodable by the receiver if and only if transmitters’ rates

satisfy

R(U) > I(XU ;Y ), ∀ U ⊆ E. (5.17)

Moreover, the region of the rate vectors satisfying above inequalities forms a contra-polymatroid.

Proof. We first prove that if a rate vector R satisfies (5.17), then none of the signals are

decodable. To this end, we assume that V is the maximum decodable subset and V 6= ∅.
Since V is a decodable subset, we have the following constraints on the rates of the members

of V .

R(T ) ≤ I(XT ;Y |XV \T ), ∀ T ⊆ V. (5.18)

By substituting T = V in the above equation, we have

R(V ) ≤ I(XV ;Y ), (5.19)

which is a contradiction and this completes the “if” part of the proof.

Next, we need to prove that if the inequalities in (5.17) are not satisfied, there is at least

a transmitter which is decodable. Suppose there are some subsets that do not satisfy (5.17).

Assume W has the minimum cardinality among all and satisfies

R(W ) ≤ I(XW ;Y ). (5.20)

If |W | = 1, then the transmitter in W is decodable by considering everything else as noise

which is the desired result. Hence, we assume |W | > 1. If all members of W are jointly

decodable, then we have found a decodable subset. Otherwise, there must be a subset of W ,

say V , satisfying

R(V ) > I(XV ;Y |XW\V ). (5.21)

By decomposing the mutual information in (5.20), we obtain

R(W ) ≤ I(XV ;Y |XW\V ) + I(XW\V ;Y ). (5.22)
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From the minimality of |W |, we have

R(W\V ) > I(XW\V ;Y ). (5.23)

By combining the two inequalities (5.21) and (5.23) and considering the fact that R(W ) =

R(W\V ) + R(V ), we conclude that

R(W )> I(XW\V ;Y ) + I(XV ;Y |XW\V ), (5.24)

> I(XW ;Y ), (5.25)

which is a contradiction. This completes the “only if” part of the proof.

It is easy to see that the function on the right hand side of (5.17) is a supermodu-

lar function and monotone, hence the region formed by rates satisfying (5.17) is a contra-

polymatroid.

In the following theorem, the characterization of the maximum decodable subset is pre-

sented.

Theorem 28. A subset S ⊆ E is a maximum decodable subset if and only if the transmitters’

rates satisfy the following inequalities

R(V )≤ I(XV ;Y |XS\V ), ∀ V ⊆ S, (5.26)

R(U)> I(XU ;Y |XS), ∀ U ⊆ S. (5.27)

Proof. Inequality (5.26) corresponds to the capacity region of the MAC for members of S

considering members of S as noise. Hence, the members of S are decodable iff the inequalities

in (5.26) are satisfied. The set S is a maximum decodable subset if no other transmitters

in S is decodable by the receiver. Now, by applying Lemma 13 and considering that all

members of S are decoded, we conclude that none of the transmitters in S is decodable iff

the inequalities in (5.27) are satisfied. This completes the proof.

For a given maximum decodable subset S ⊆ E, we define DS as

DS = {R|R(T ) ≤ I(XV ;Y |XS\V ), ∀ V ⊆ S,

R(U) > I(XU ;Y |XS), ∀ U ⊆ S}. (5.28)

DS is a polyhedron because it is the intersection of finitely many half spaces. By Theorem

28, DS consists of all rate vectors with the same maximum decodable subset S. Since for any

rate vector there is an associated maximum decodable subset, we have ∪S⊆EDS = RK
+ . This
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means that RK
+ is represented as the union of finitely many polyhedral sets. An example for

the case of the additive two-user Gaussian channel is given in Figure 5.3.

The result of this section can be directly extended to continuous channels. The most

applicable class of continuous channels is the additive Gaussian channel defined by

y = x1 + x2 + · · · + xK + z, (5.29)

where z is an additive Gaussian noise with zero mean and variance N . We assume users

transmit at rates R = [R1, . . . , RK ] using Gaussian codebooks with average powers P =

[P1, . . . , PK ]. In the following example, we apply the result of Theorem 28 to a two-user

additive Gaussian channel.

Example 1. Consider a two-user additive Gaussian channel where the received signal can

be written as y = x1 +x2 +z. In this case, E has four subsets, namely S1 = {1, 2}, S2 = {1},
S3 = {2}, and S4 = ∅. By applying Theorem 28, we obtain the following conditions for the

subsets of E to be the maximum decodable subset.

1. S1 is the maximum decodable subset. In this case, the conditions R1 ≤ γ(P1

N
), R2 ≤

γ(P2

N
), and R1 +R2 ≤ γ(P1+P2

N
) must be satisfied.

2. S2 is the maximum decodable subset. In this case, the conditions R1 ≤ γ
(

P1

P2+N

)

and

R2 > γ
(
P2

N

)
must be satisfied.

3. S3 is the maximum decodable subset. In this case, the conditions R2 ≤ γ
(

P2

P1+N

)

and

R1 > γ
(
P1

N

)
must be satisfied.

4. S4 is the maximum decodable subset. In this case, the conditions R1 > γ( P1

P2+N
),

R2 > γ( P2

P1+N
), and R1 +R2 > γ(P1+P2

N
) must be satisfied.

The set of conditions described above partitions R2
+ into four regions, as illustrated in

Figure 5.3. It can be seen from the figure that D{1,2} is a polymatroid corresponding to the

capacity region of a two-user MAC and D∅ is a contra-polymatroid according to Lemma 13.

The above example shows that finding the maximum decodable subset is equivalent to

finding the region where the transmitters’ rate vector belongs to. Since the number of regions

grows exponentially with the number of transmitters, finding a polynomial-time algorithm

for solving the problem is desired. To this end, we first define the function f : 2E → R as

follows

f(V ) = I(XV ;Y |XV ) −R(V ), (5.30)

where V ⊆ E.
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R2

R1

D{1}

D∅

D{2}

D{1,2}

Figure 5.3: Decision regions used for determining the maximum decodable subset for a two-

user additive Gaussian Channel. For any rate in D{1,2}, the receiver can decode both signals.

For rates in D{1} and D{2}, the receiver is able to decode transmitters 1 and 2, respectively.

Finally, the receiver can decode neither 1 nor 2 for any rate in D∅.

Lemma 14. The function f defined in (5.30) is a submodular function.

Proof. The result directly follows from the modularity of R and the submodularity of mutual

information.

Since there are polynomial-time algorithms for minimizing any submodular functions,

c.f., [62] and [64], the following optimization problem can be solved efficiently:

f(W ) = min
V⊆E

f(V ). (5.31)

If the minimum of f in (5.31) is zero, then all transmitters are decodable by the receiver due

to (5.14). Otherwise, there is at least one transmitter in the set E which is not decodable.

In the following theorem, we prove that indeed all members of the minimizer of f are not

decodable, and they need to be considered as noise.

Theorem 29. No member of the subset W that minimizes f in (5.31) is decodable by the re-

ceiver, provided that the minimum in (5.31) is not zero and the minimum cardinal minimizer

is used. In fact, all members of W must be considered as noise, i.e., if S is the maximum

decodable subset then W ∩ S = ∅.

Proof. We first partition the minimizer subset W into two disjoint sets U and T where

U = W ∩ S and T = W\S, see Figure 5.4. We need to show that U = ∅. Suppose U is
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E

W S

T = W\S U = W ∩ S

Figure 5.4: E is the ground set. S is the maximum decodable subset. W is the minimizer

of f in (5.31).

nonempty. Hence |U | ≥ 1 and |T | < |W |. Since U is a subset of S, from (5.26), we have

R(U) ≤ I(XU ;Y |XS\U). (5.32)

The inclusion S\U ⊆ W and independence of random variables imply I(XU ;Y |XS\U) ≤
I(XU ;Y |XW ). Hence,

R(U) ≤ I(XU ;Y |XW ). (5.33)

From the definition of f in (5.30), we have

f(W ) = I(XW ;Y |XW ) − R(W ). (5.34)

From the chain rule and the fact that T and U partition W into two disjoint subsets, we

have the following equation

I(XW ;Y |XW )= I(XT ;Y |XW ,XU) + I(XU ;Y |XW ),

= I(XT ;Y |XT ) + I(XU ;Y |XW ). (5.35)

Substituting (5.35) into (5.34) and using R(W ) = R(T ) + R(U), we obtain

f(W ) = f(T ) + I(XU ;Y |XW ) −R(U). (5.36)

Using the inequality (5.33), we conclude that

f(T ) ≤ f(W ). (5.37)

If f(T ) < f(W ), then it contradicts the optimality of W , and if f(T ) = f(W ), then it

contradicts the fact that |W | has minimum cardinality among all minimizers. This completes

the proof.



CHAPTER 5. RANDOM CODING AND INTERFERENCE MANAGEMENT 127

By applying Theorem 29 and using the well-known submodular function minimization

algorithms as a subroutine, c.f. [64] and [62], we propose the following polynomial-time

algorithm for finding the maximum decodable subset.

Algorithm 1 (Finding the maximum decodable subset).

1. Set S = E.

2. Find W such that

f(W ) = min
V⊆S

f(V ),

where f is

f(V ) = I(XV ;Y |XS\V ) −R(V ). (5.38)

3. If W = ∅ STOP. S is the maximal decodable subset. Otherwise, S\W −→ S.

4. If S = ∅ STOP. No subset of E is decodable. Otherwise, GO TO step 2.

Theorem 30. Algorithm 1 converges to the maximum decodable subset in polynomial time.

Proof. Since in each iteration W is a nonempty set (otherwise, the algorithm stops), this

algorithm converges at most in |E| iterations. Furthermore, in each iteration, we need to

minimize a submodular function which can be done in polynomial time [62]. Hence, the

total running time of the algorithm is polynomial in time.

5.3 An Achievable Rate

In this section, we propose a method to obtain an achievable rate for the channel S . We

also provide a polynomial time algorithm to characterize this achievable rate. A lower bound

for the capacity of S can be obtained by considering interfering users in E as noise and

optimizing over all input distributions. Hence, we have

max
p(x1)

I(X1;Y1) ≤ C, (5.39)

where C denotes the capacity of S . Now, we assume that regardless of the input distribution,

the receiver is able to decode all interfering users considering its own signal as noise. By this

assumption, an upper bound on the capacity can be obtained as follows

C ≤ max
p(x1)

I(X1;Y1|XE\1). (5.40)
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Let us assume that the transmitter uses pX1(x1) to generate a single random codebook.

We need to find the maximum achievable rateR1. IfR1 is an achievable rate, then the receiver

can successfully decode its intended data. After decoding its own signal, the receiver can

search in the set E\{1} for the maximum decodable subset S ⊆ E\{1}. This procedure can

be done efficiently using Algorithm 1. Let us define V = E\(S ∪ {1}). V is the set of users

that receiver treats as noise. From (5.26), we have

R(U) ≤ I(XU ;Y1|XS∪{1}\U), ∀U ⊆ S. (5.41)

To find R1, we consider the MAC consisting of user 1 and the users in S, while the users

in V are considered as noise. From (5.14), the rate vector R is achievable if

R(U) ≤ I(XU ;Y1|XS∪{1}\U), ∀U ⊆ S ∪ {1}. (5.42)

Since half of the inequalities in (5.42) are satisfied by (5.41) and the only unknown parameter

is R1, we can maximize the user’s rate based on the following optimization problem:

R1(R−1)= min
U⊆S

I(X1,XU ;Y1|XS\U) − R(U). (5.43)

The optimization problem (5.43) is again a submodular function minimization and can be

solved by polynomial-time algorithms.

In the following, we summarize the above procedure.

Algorithm 2 (finding an achievable rate).

1. Given p(x1), find the maximum decodable subset S among interfering users by using

Algorithm 1 and assuming that the user’s data is decoded.

2. Solve the submodular function minimization in (5.43).

As a by-product of the above algorithm, we can find the subset of interfering users that

can be first decoded at the receiver and its effect can be removed.

Proposition 1. If U minimizes (5.43), then the receiver is capable of decoding all users in

W = S\U by considering everything else as noise.

Proof. At the first step, one needs to decode W . This requires,

R(T ) ≤ I(XT ;Y1|XW\T ), ∀T ⊆W. (5.44)

Suppose there is a subset T ? that does not satisfy (5.44), that is,

R(T ?) > I(XT ? ;Y1|XW\T ?). (5.45)
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Hence,

R̃1
4
=I(X1,XU∪T ? ;Y1|XS\(U∪T ?)) − R(U ∪ T ?)
(a)
=I(X1,XU ;Y1|XS\U) −R(U)

+I(XT ? ;Y1|XW\T ?) − R(T ?)
(b)
=R1(R−1) + I(XT ?;Y1|XW\T ?) − R(T ?)
(c)
<R1(R−1), (5.46)

where (a) follows from the chain rule and the fact that (S\(U ∪ T ?)) ∪ T ? = S\U and

S\(U ∪ T ?) = W\T ?, (b) follows from the definition of R1(R−1) and minimality of U , and

(c) follows form (5.45). The last inequality contradicts the fact that U is the solution for the

minimization problem in (5.43). This completes the proof.

In light of Proposition 1, the set E is decomposable into three disjoint subsets, namely

V , U ∪ {1}, and W . V is the complement of S ∪ {1}, namely the union of the maximum

decodable subset S and the intended user. Therefore, the receiver is not able to decode the

interfering users in V and considers them as noise. W is the part of S that the receiver can

decode by considering everything else as noise. U ∪ {1} is the subset of users that need to

be decoded jointly after removing the effect of W .

As indicated in (5.43), the achievable rate is a function of interfering users’ rates. In

order to derive some properties of this function, we need the following definition.

Definition 10 (piecewise linear functions [36]). A function f : RK → R is piecewise linear

if firstly its domain can be represented as the union of finitely many polyhedral sets, and

secondly f is “affine” within each polyhedral set, i.e., f(x) = aTx + b for some vector a and

scalar b.

In the following theorem, we summarize some properties of R1 as a function of R−1.

Theorem 31. The function R1(R−1) defined in (5.43) is piecewise linear. More precisely,

R1(R−1) consists of at most 3K−1 collection of affine functions.

Proof. Likewise (5.28), let us define the region DS as

DS = {R−1|R(T ) ≤ I(XT ;Y1|XS\T , X1), ∀ T ⊆ S,

R(U) > I(XU ;Y1|XS, X1), ∀ U ⊆ V }, (5.47)

where V = E\(S ∪ {1}). Due to (5.43), the function R1(R−1) is defined as the pointwise

minimum of 2|S| affine functions over the polyhedral setDS. As a result, R1(R−1) is piecewise

linear, continuous, and concave over DS, c.f., Theorem 2.49 in [36].
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Figure 5.5: The function R1(R−1) for a channel with two interfering users

Since R1(R−1) is a piecewise linear function over each DS and ∪S⊆E\{1}D
S = RK−1

+ , it

is a piecewise linear function over RK−1
+ . Moreover, each polyhedron DS is divided into at

most 2|S| sub-polyhedra in each of which R1 is an affine function. Hence, the total number

of components is not more than

K−1∑

|S|=0

2|S|
(
K − 1

|S|

)

= 3K−1. (5.48)

This completes the proof.

It is worth noting that, although R1 is a concave function over each DS, it is not a

concave function over RK−1
+ .

Example 2. Consider an additive channel y1 = x1 + x2 + x3 + z1 where all users use

Gaussian codebooks for data transmission. In this case, the maximum decodable subset of

interfering users is a subset of {2, 3}. Hence, there are four regions D∅, D{2}, D{3}, and

D{2,3} where R1(R2, R3) is a concave function over each of them. For instance, R1(R2, R3) =

γ
(

P1

P2+P3+N1

)

over D∅ and R1(R2, R3) = γ
(

P1

P2+N1

)

− g(R3) over D{3} where g(R3) is either

R3 or 0. In Fig. 5.5, an example of the function R1(R2, R3) for this channel is illustrated.

As depicted in the figure, R1(R2, R3) is a piecewise linear and continuous function. It also

consists of 9 components, i.e., 3K−1 for K = 3.

Example 3. In this example, we consider binary adder channel with K−1 interfering users.

The channel model can be written as y1 = x1 ⊕x2 ⊕ . . .⊕xK . We further assume that users’
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codebooks are randomly chosen from Bernouli sequences with p(0) = p(1) = 0.5. In this case,

it is easy to show that

R1(R−1) = [1 −R(E\{1})]+ , (5.49)

where [a]+ = a if a ≥ 0 and 0 otherwise. This reflects the fact that the function R1(R−1)

may have less than 3K−1 components.

5.4 Channel’s Capacity for the Gaussian Case

In this section, we prove that provided using Gaussian distribution for codebook generation,

the achievable rate obtained in the previous section is indeed the capacity (in the loose sense)

of the additive channel with Gaussian noise and K − 1 Gaussian interfering users.

To show that any rate above C (the output of Algorithm 2 where p(x1) is Gaussian) is

not achievable, we construct a degraded broadcast channel and show that if a rate R1 > C

is achievable, then one can communicate reliably outside the capacity region of this channel

which is a contradiction. The following lemma assists us in constructing such a degraded

channel.

Lemma 15. For any set of independent Gaussian codebooks with power vector P = [P1, P2,

. . . , PK ] and rate vector R = [R1, R2, . . . , RK ], there is a K-user Gaussian broadcast channel

with the following properties:

1. The transmitter’s total power is P(E).

2. There are L noise levels: N1 < N2 < . . . < NL.

3. Users are partitioned into L disjoint subsets, that is, E =
⋃L
i=1 Ui. All users in Ui have

the same noise level Ni, for i = {1, 2, . . . , L}.

4. The rate vector R lies on the boundary of the capacity region. R is achievable using

Gaussian codebooks with powers in one to one correspondence with the components of

P.

Proof. We aim at building a Gaussian broadcast channel with x as input and ŷ1, ŷ2, . . . , ŷL

as outputs, where ŷi = x+ ni and ni is additive white Gaussian noise with variance Ni. To

this end, we first construct a K-user Gaussian MAC with noise level N and transmit power

vector P with the property that the rate vector R is achievable. Hence,

R(T ) ≤ γ

(
P(T )

N

)

, ∀T ⊆ E. (5.50)
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By monotonicity of γ, it is always possible to find an N such that the rate vector R is

achievable. Indeed, R is achievable for any N ∈ [0, N1], where N1 corresponds to the case

that for any noise above N1 at least one of the inequalities in (5.50) turns to equality. Let U1

denote the set of users for which the corresponding inequality in (5.50) turns to equality with

noise level N1 (in case of having more than one equality we choose the maximum cardinal

subset), i.e.,

R(U1) = γ

(
P(U1)

N1

)

. (5.51)

Now, we correspond users in U1 to the output of the Gaussian channel ŷ1 = x + n1, where

n1 is additive Gaussian noise with variance N1.

Let us consider a set T ⊆ E\U1. Using (5.50) for the set of users in T ∪ U1 yields

R(T ∪ U1) < γ

(
P(T ∪ U1)

N1

)

. (5.52)

By plugging (5.51), we obtain

R(T ) < γ

(
P(T )

N1 + P(U1)

)

, ∀T ⊆ E\U1. (5.53)

We can apply the same procedure to (5.53), i.e., we increase N1 until one of the inequali-

ties turns to equality. Let N2 denote the maximum noise level satisfying (5.53) with equality.

Clearly, N1 < N2. If U2 denotes the set of users satisfying (5.53) with equality, then we have

R(U2) = γ

(
P(U2)

N2 + P(U1)

)

. (5.54)

By plugging in (5.53), we obtain

R(T ) < γ

(
P(T )

N1 + P(U1) + P(U2)

)

, ∀T ⊆ E\U1 ∪ U2. (5.55)

Now, we correspond users in U2 to the output of the Gaussian channel ŷ2 = x + n2, where

n2 is additive Gaussian noise with variance N2.

By repeating the above procedure, we can construct a set of channels with noise levels

N1 < N2 < . . . < NL and associate set of users U1, U2, . . . , UL with E =
⋃L
j=1 Uj such that

R(Ui)= γ

(

P(Ui)

Ni + P(
⋃i−1
j=1Uj)

)

, (5.56)

R(T )≤ γ

(

P(T )

Ni + P(
⋃i−1
j=1Uj)

)

, ∀T ⊆ Ui, (5.57)

R(T )< γ

(

P(T )

Ni + P(
⋃i
j=1Uj)

)

, ∀T ⊆
L⋃

j=i+1

Uj . (5.58)
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Now, assume that the transmitter with total power P(E) uses K-level Gaussian code-

books for data broadcasting. The transmitted signal can be written as x = x1+x2+. . .+xK ,

where xl is a Gaussian codeword with power Pl and rate Rl and contains information for

l’th user. The received signal at noise level Ni can be written as ŷi = x + ni. The set

of inequalities in (5.58) implies that all users at noise level Ni can decode data streams of

users in
⋃L
j=i+1 Uj considering everything else as noise. By removing the effect of users in

⋃L
j=i+1Uj from the received signal, the set of inequalities in (5.57) implies that all users in Ui

can decode their own signal considering users in
⋃i−1
j=1 Uj as noise. In other words, all users

at the same level of noise can decode their signals by first decoding the users at upper levels

and removing their effect and considering users at lower levels as Gaussian noise. Hence, we

obtain a Gaussian broadcast channel in which the rate vector R is achievable and Gaussian

codebooks are constructed according to the power vector P. It remains to show that R is on

the boundary of the capacity region. The capacity region of the Gaussian broadcast channel

is fully characterized and there is an explicit expression for boundary points, c.f. [8]. The

equalities in (5.56) guarantee that the rate vector R lies on the boundary of the capacity

region. This completes the proof.

Theorem 32. The rate C, the output of Algorithm 2, is the capacity of the channel described

in (5.1).

Proof. We rewrite the achievable rate given in Algorithm 2 by using the Gaussian distribution

as codebook generator. As discussed earlier, the set of users can be partitioned into three

subsets V , U ∪ {1}, and W .

W is the subset of interfering users that the receiver can decode considering everything

else as noise. Since the Gaussian noise is the worst noise for additive channels, c.f. [39] and

[38], and W is decodable when other users are considered as Gaussian noise, W is decodable

for any arbitrary distribution for intended user. As a result, interfering users in W can be

completely eliminated regardless of the input codebook.

V is the complement of the maximum decodable subset and must be considered as noise.

From (5.27), we have

R(T ) > γ

(
P(T )

N + P(V \T )

)

, ∀T ⊆ V. (5.59)

U is the solution to the minimization problem in (5.43). Hence, we have

C + R(U)= γ

(
P1 + P(U)

N + P(V )

)

. (5.60)

We apply Lemma 15 to the set of users in V with associated power vector P(V ) and rate

vector R(V ). Let N1 < N2 < . . . < NL denote the noise levels and U1, U2, . . . , UL denote
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the collection of subsets of users associated to each level of noise for the Gaussian broadcast

channel with the properties given in Lemma 15. We claim that NL < N . To verify this, we

substitute UL into (5.56) and (5.59). Hence, we obtain

γ

(
P(UL)

NL + P(V \UL)

)

> γ

(
P(UL)

N + P(V \UL)

)

(5.61)

which results in NL < N .

Next, we add UL+1 = U ∪ {1} as a set of new users to the Gaussian broadcast channel

with noise level NL+1 = N and increase the transmitter’s total power by P1 + P(U). It

is easy to verify that the conditions in (5.56), (5.57), and (5.58) are still satisfied with new

broadcast channel. Consequently, the rate vector lies on the boundary of the capacity region.

Therefore, reliable data transmission at any rate above C results in reliable data transmission

outside the capacity region which is a contradiction. This completes the proof.

5.5 Applications for the K-user Gaussian IC

In this section, we apply the proposed algorithms to the K-user Gaussian IC modeled by

yi =
K∑

i=1

hijxj + zi, (5.62)

where xj is the transmitted symbol of user j and hij denotes the link’s gain between the j’th

transmitter and the i’th receiver. zi is additive white Gaussian noise with zero mean and

variance Ni. User i is also subject to an average power constraint Pi. The capacity region

of this channel is denoted by CGIC .

It is more convenient to write the system model in matrix form as

y = Hx + z, (5.63)

where y = [y1, y2, . . . , yK ]T and x = [x1, x2, . . . , xK ]T denote the output and input vectors,

respectively. H = [hij ] is the matrix of links’ gains, and z = [z1, z2, . . . , zK ]T is the Gaussian

noise vector which has a diagonal covariance matrix. By scaling transformations, it is possible

to write the channel model (5.63) in standard form where the noise variances and diagonal

elements of H are one [10].

Let us assume each transmitter is allowed to transmit data by using a single Gaussian

codebook and each receiver is allowed to decode any subset of interfering users. Let Ψ denote

the set of decoding strategies. By a decoding strategy ψ = {S1, S2, . . . , SK} ∈ Ψ, we mean

that the receiver i tries to decode all users’ data in Si. Clearly, Si ⊆ E and i ∈ Si. Since
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there are 2K−1 possible choices for each Si, we have 2K(K−1) possible strategies in total.

Hence, |Ψ| = 2K(K−1).

Given a strategy, a rate vector R is achievable with respect to that strategy if every

receiver can reliably decode its associated users. Therefore, an achievable rate region Cψ can

be defined as a set of all rate vectors that are achievable with respect to the strategy ψ. Let

Co =
⋃

ψ∈Ψ Cψ. Clearly, Co ⊆ CGIC and it can be shown that Co is not convex in general.

5.5.1 Some Extreme Points of Co

Given an ordering π of users, we aim at maximizing users’ rates in accordance with π. In

general, there are K! orderings of users which result in K! not necessarily distinct achievable

rates in the capacity region. Due to the polymatroidal property of the capacity region of

the Gaussian MAC, every permutation leads to a distinct achievable rate vector; whereas,

Co is not a polymatroid and hence there may be some permutations that lead to the same

achievable rate vector. Without loss of generality, we may assume the order is the same as

that of users’ indices, i.e., permutation matrix is identity.

Setting the first user’s rate to its maximum value R1 = γ (P1) imposes some constraints

on the other user’s rates as they must be decoded by the first receiver. The reason is that

R1 is achievable if the first receiver can decode all the interfering users by considering its

own signal as noise and eliminating their effects from the received signal.

Maximization of the second user’s rate is more delicate, since its transmission should

not affect the first user’s data rate. However, we have the choice of lowering other users’

rates as much as needed. Hence, we assume users in the set {3, 4, . . . , K} are decoded

at the first and second receivers by considering everything else as noise and their effects

are removed. R2 must be chosen such that both receivers can decode it. The maximum

decodable subset at the first receiver is {1} by the assumption. For the second user, we can

find the maximum decodable subset of interfering users which in this case is either ∅ or {1}.
Now, we can run Algorithm 2 at both receivers to find an achievable rate for each receiver.

Clearly, the minimum of the two achievable rates are achievable and we set R2 to this value.

Besides, we obtain the strategy ψ(2) = {S(2)
1 , S

(2)
2 } in which R1 and R2 are achievable, where

S
(2)
1 , S

(2)
2 ⊆ E(2) and E(i) = {1, 2, . . . , i}.

To maximize the rate of user i, we proceed as follows. We treat users above index i as

they do not exist, i.e., we put constraints on their rates in such a way that all the receivers

with indices in E(i) can decode them first and remove their effects. From maximization of

users’ rates in the previous steps, we have RE(i−1) and its corresponding achievable strategy

ψ(i−1) = {S(i−1)
1 , . . . , S

(i−1)
i−1 }, where S

(i−1)
j ⊆ E(i−1), ∀j ∈ E(i−1). Ri must be chosen such
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that all receivers in E(i) can decode it. The maximum decodable subset of interfering users

is given by ψ(i−1) for all receivers in E(i−1). We can also find the maximum decodable subset

of interfering users at receiver i by running Algorithm 1. Let S
(i−1)
i denote this subset. From

(5.43), Ri is achievable at the receiver j ∈ E(i), if it is less than Rij which is defined as

Rij = min
U⊆S(i−1)

j

γ

(

h2
jiPi +

∑

k∈U h
2
jkPk

1 +
∑

k∈E(i−1)\S(i−1)
j

h2
jkPk

)

−R(U). (5.64)

Hence, Ri can be chosen as the minimum of all Rijs. For the next step, we need a new

achievable strategy. It is easy to see that ψ(i) = {S(i−1)
1 ∪ {i}, . . . , S(i−1)

i−1 ∪ {i}, S(i−1)
i ∪ {i}}

is the proper strategy at step i. Now, we can iterate until the last user.

Algorithm 3 (successive maximization of users’ rates).

1. Set R1 = γ (P1) and S
(1)
1 = {1}.

2. For i = 2 : K, do:

(a) Find the maximum decodable subset of interfering users S
(i−1)
i in the set E(i−1)

for receiver i assuming that users in the set E\E(i−1) are decoded and their effects

are removed.

(b) Solve the following optimization problem

Ri = min
j∈E(i)

Rij , (5.65)

where Rij is defined in (5.64).

(c) S
(i)
j = S

(i−1)
j ∪ {i}, for all j ∈ E(i).

For the sake of completeness, in the following theorem, we state that the above algorithm

finishes in polynomial time.

Theorem 33. Algorithm 3 converges to an extreme point of Co in polynomial time.

Proof. At the i’th iteration, we need to solve i submodular function minimizations. Hence,

in total, a submodular function minimization subroutine is invoked for K(K + 1)/2 times.

Moreover, at each step, we need to find the maximum decodable subset which can be ac-

complished in polynomial time based on Theorem 28. Hence, Algorithm 3 converges to an

extreme point of Co in polynomial time.
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It is worth noting that for the two-user Gaussian IC in the case of strong and very strong

interference [33], the output of Algorithm 3 is a point on the boundary of the capacity

region. In the case of weak interference, however, the output of Algorithm 3 coincides with

Costa’s result in [14]. Unfortunately, the optimality of the result claimed by Costa has not

been proved yet [33]. As a result, proving the optimality of extreme points obtained from

Algorithm 3 has at least the same level of difficulty as that of the two-user case.

5.5.2 Generalized One-sided Gaussian IC

Parallel to the definition of the one-sided Gaussian IC [14], we define the generalized one-sided

Gaussian IC as one in which the channel matrix H can be represented as a triangular matrix

by row permutations. For the sake of simplicity, we always assume that H is lower triangular.

Hence, the first user incurs no interference from other users, i.e., y1 = x1 + z1, the second

user incurs interference only form the first user, i.e., y2 = h21x1 + x2 + z2, and in general,

user i incurs interference from preceding users, i.e., yi = hi1x1 + . . .+ hi(i−1)xi−1 + xi + zi.

The capacity region of strong and very strong two-user Gaussian ICs is known and cor-

responds to the capacity of the corresponding compound MAC where both receivers decode

both users’ messages [3] [2]. Therefore, for the K-user case, it is interesting to find similar

situations where the capacity is achievable when all receivers decode all messages sent by all

transmitters. However, by a counter example, it is easy to show that having the condition

h2
ij ≥ 1, ∀i, j ∈ E, is not sufficient to establish similar results. To find similar situations, we

define the strong generalized one-sided Gaussian IC as the channel with triangular channel

matrix H with the property that h2
ik ≥ h2

jk whenever i ≥ j. In the following theorem, we

prove that the capacity region of the strong generalized one-sided Gaussian IC can be fully

characterized.

Theorem 34. The capacity region of the strong generalized Z Gaussian IC is
⋂

i∈E CMAC(i),

where CMAC(i) denotes the capacity region of the MAC seen at the ith receiver.

Proof. This theorem can be also proved by induction on the number of users. For a single

user, it is trivial. We assume that for a channel with m − 1 users and a triangular channel

matrix, the capacity region is
⋂

i∈E\{m} CMAC(i). Now, we add a new user which does not

interfere with other users and only receives interference from all other users. Let CGIC denote

the capacity region of K-user Gaussian IC. It suffices to show that for any rate vector R =

[R−m, Rm] in CGIC(m), receiver m is able to decode all users’ messages. The idea that we use

here is similar to the idea of Han and Kobayashi for proving the capacity region of strong and

very strong two-user Gaussian ICs [11]. Since R−m is achievable and there is no interference
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from user m, we have R−m ∈ ⋂i∈E\{m} CMAC(i). In particular, R−m ∈ CMAC(m−1). Hence,

receiver m−1 which has ym−1 = h(m−1)1x1+· · ·+h(m−1)(m−2)xm−2+xm−1+zm−1 as the received

signal can jointly decode all users in the set E\{m}. Since Rm is decodable by the mth

receiver, it can be removed from the received signal ym = hm1x1+· · ·+hK(m−1)xm−1+xm+zm.

Now, receiver m can try to decode other users’ data from ỹm = hm1x1+· · ·+hm(m−1)xm−1+zm.

Let C̃MAC(m−1) denote the capacity of this MAC. By hypothesis, h2
ik ≥ h2

jk whenever i ≥ j.

Therefore, C̃MAC(m−1) ⊆ CMAC(m−1). Hence, receiver m is able to decode the rate vector

R−m. This completes the proof.

5.6 Conclusion

We investigated data transmission over a channel with K − 1 interfering users. By estab-

lishing certain properties of the maximum decodable subset, we proposed a polynomial time

algorithm that separates the interfering users into two disjoint parts: the users that the

receiver is able to jointly decode their messages and its complement. We introduced an opti-

mization problem that gives an achievable rate for this channel. We proposed a polynomial

time algorithm for solving this optimization problem. We also established the capacity of

the additive Gaussian channel with Gaussian interfering users and showed that the Gaussian

distribution is optimal and the proposed achievable rate is the capacity of this channel.

As an application of this method, we investigated data transmission for the case of K-

user interference channel when transmitters use single codebooks for data transmission, and

receivers are allowed to decode other users’ messages. We then introduced an achievable

rate region Co. We obtained some extreme points of Co by successive maximization of users’

rates. Finally, we obtained the capacity region of the strong generalized one-sided Gaussian

IC.



Chapter 6

Future Research Directions

In this chapter, some interesting problems that emerge from this dissertation are discussed.

These problems can provide the spur to further research.

6.1 Interference Channels

6.1.1 The Two-user Case

The capacity region of the two-user Gaussian IC is far from being fully characterized. Even

though the best achievable scheme is due to HK, the best input distributions are not known.

In fact, Gaussian distributions may not be optimal for all channel parameters. The outer

bounds presented in the thesis are generally optimal when the sum capacity is concerned. It

is interesting to see if it can provide sufficient tools to derive other points on the boundary

of the capacity region.

6.1.2 The Three-user Case

The DOF of the three-user Gaussian channel is not known when all channel gains are rational.

In fact, the coding scheme presented for the symmetric case may not be optimal as there is

no tight upper bound for this case. It would be a very interesting problem to see if there

is a universal coding scheme that gives the best DOF for this case. In order to prove such

statement, one needs to obtain a sufficiently tight upper bound on the sum capacity so as in

the high SNR regimes provides a tight bound on the DOF.

139
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6.1.3 The K-user Case

The coding scheme used for the three-user with rational coefficient case can be brought to

the K-user Gaussian IC. In fact, in wireless systems channel estimation is always performed

with finite precision and therefore it is rational. Hence, as the case of three-user, a careful

design is needed to achieve higher multiplexing gains in the channel. It is also interesting to

obtain the relation between the channel coefficients and achievable DOFs.

6.2 Interference Alignment

With the advent of interference alignment, new directions in interference management came

to existance as Interference alignment emerged as a promising method to mitigate the effect

of interference in a network.

The major drawback regarding interference alignment is that it needs full channel state

information to realize its full potential. Therefore, practical applications are only possible

when efficient feedback strategies are designed and carefully analyzed.

The concept of relaying in wireless networks has recently attracted many researchers in

the areas of communications, networking and information theory. It is demonstrated that

employing relays improves the coverage and reliability in a wireless network. One promising

research direction would be analyzing the interaction between relay networks and interference

channels. In future wireless networks, a node can operate as a sender, a receiver and/or a

relay. In order to increase the throughput of these networks, therefore, traditional and new

schemes should be combined in an efficient way. Relay assisted interference alignment could

be a potential path to advanced interference management.

Providing a secure communication network is of fundamental importance in future. A

secure system can be obtained by sacrificing available resources. But as the resources are

scarce this results in tremendous loss in the throughput of the system. Interference alignment,

however, can be used in a different fashion to provide security and performance at the same

time. This time, interference caused by several users can be accumulated for the eavesdropper

while it can be aligned for the intended users to increase the available Degrees-of-Freedom.
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