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ABSTRACT 

During the last three decades of coral reefs studies, the large areal coverage of 

data derived from satellite images has increasingly been used to complement the 

more detailed but spatially limited data produced by conventional fieldwork. 

Continuous improvement in sensor capabilities, along with the development of 

increasingly refined methods for image processing, has lead to ever more accurate 

maps of physical and biological variables of importance to reef ecology. 

 

During the same period, an abundance of field studies have documented statistical 

relationships between aspects of the reef habitat and its fish community. Despite 

numerous stochastic influences, such as spatially concentrated and temporally 

variable fish recruitment pulses or the selective and patchy mortality caused by 

fishing, several aspects of habitat have been shown to significantly influence the 

fish community. Fortunately the most important of these, water depth, the 

structural complexity of the reef, and the cover of live coral, are possible to 

estimate from currently available satellite imagery. 

 

The research presented in the following pages has combined the statistical 

relationships between the fish community and its habitat with the capability of 

satellite imagery to map that habitat, thereby answering the research question: 

 

How can remote sensing be used to map coral reef fish communities? 
 

In the process, a set of new techniques for predictive modeling of complex 

relationships have been compared, the influence of a range of habitat variables on 

the fish community quantified, the spatial scales at which the fish-habitat 

relationships are strongest have been explored, and new methods for deriving 

estimates of some aspects of the coral reef habitat from satellite imagery have 

been developed. The results presented in this thesis thus contribute to the further 

understanding of fish-habitat relationships, while providing a template for 

producing spatially explicit predictive models of fish community variables. This is 

not only of scientific interest, but also of substantial value to the conservation 

community that tries to protect the world’s remaining healthy coral reef 

ecosystems, and their fish communities, from an array of man-made influences. 
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A NOTE ON TERMINOLOGY 

In this thesis, several terms that do not have a single agreed upon definition are 

used. This section briefly describes the most common of these terms, in order to 

define their use in this thesis. 

 

Band: The terms ‘band’ and ‘channel’ are often used interchangeably to denote 

“the measurements of detectors on a remote sensor that fall within one 
particular wavelength interval”. The IKONOS sensor thus has 5 ‘bands’, four of 

them with wavelength intervals in the blue, green, red, near-infra-red spectra, 

respectively, and the last one covering one large interval from the blue to the 

near-infrared. 

 

Biodiversity: The term ‘biodiversity’ is often defined very broadly as “hereditarily 

based variation at all levels of organization” (Wilson 1997). As a more practical 

definition for this study, it is defined as “the diversity of the fish assemblage in 
the area of interest”, as calculated using one of the mathematical diversity 

indices in common use (Dickman 1968). The index used here is the Shannon-

Weaver index (Shannon 1948), which was chosen mainly due to its widespread use 

in the literature. 

 

Characteristic scale: The spatial scale at which two variables are most 

correlated. It is assumed to be the scale at which one or more important ecological 

processes linking the two variables. 

 

Fish community: Multiple definitions and measures of a ‘fish community’ are used 

in existing studies, for a comprehensive example see Friedlander and Parrish 

(1998). In this thesis, the ‘fish community’ is defined as “the totality of fish 
found within a given area at the time of observation”, and is used when 

describing more than the measure of biodiversity defined above. The ‘fish 
community’ is quantified using three measures: Species richness, species diversity, 

and total biomass. 

 

Habitat / Substrate: These two terms are often used interchangeably in the coral 

reef literature, as habitats are largely defined in terms of substrate type. I have 

used them interchangeably in discussion paragraphs, but distinguished between 
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them when naming variables. The in situ measures of variety have thus been 

named substrate diversity and substrate evenness, as they are based on direct 

observations of substrate covers. On the other hand, the IKONOS-based measures 

of variety at various spatial scales have been named ‘habitat variety’ as they are 

based on but not identical to the substrate classes, since most of the habitat 

classes contain a range of substrate types within them. 

 

Habitat diversity: This term is used to denote the remotely sensed measures of 

‘habitat variety’, when this variety is calculated as the Shannon Diversity Index 
on the basis of classified substrate types. 

 

Habitat richness: This term is used to denote the remotely sensed measures of 

‘habitat variety’, when this variety is calculated as the number of substrate 
types present within a given radius. 
 

Habitat variety: This term is used as a general reference to the concept of 
diversity of habitat types. As such, it covers both the terms ‘habitat richness’ 
and ‘habitat diversity’, which both relate to specific quantified measures of ‘habitat 
variety’. 
 

IKONOS: The IKONOS satellite is a commercial earth observation satellite, 

launched in 1999, which provides high-resolution satellite imagery from almost 

anywhere on Earth. The satellite can be programmed for specific acquisitions, or 

images can be acquired from a large library of previously recorded data. The term 

‘IKONOS’ is used to denote both the IKONOS satellite, and the sensor. 
 

Importance: The word ‘important’ is used in two ways in this thesis, one of which 

is in the meaning of crucial or significant (in the non-scientific sense). When 

referring specifically to the function of a habitat variable as an explanatory variable 

in a predictive model, the word is used to mean the influence that permutation 
of this variable has on the predictive performance of the model, quantified 
as the increased in RMSE the permutation causes. 
 

In situ / Remotely sensed: These terms are used repeatedly throughout the 

thesis to describe parts of the dataset and variables used in the analyses. “In situ” 

refers to data collected during fieldwork and variables derived from these data. 
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“Remotely sensed”, on the other hand, refers to data produced by the IKONOS 

satellite, and variables derived therefrom. 

 

R: Unfortunately the capital letter ‘R’ can be used with a range of different 

meanings in the scientific literature, often without sufficient explanation. Unless 

otherwise specified, in this thesis it is limited to mean correlation coefficient. In 

each case, it will be specified whether Pearson’s correlation coefficient or 

Spearman’s rank correlation coefficient has been used for the particular calculation. 

Pearson’s coefficient has been used whenever a linear relationship between the two 

variables could be assumed, whereas Spearman’s coefficient has been used when 

this assumption did not seem justifiable. Because many non-linear relationships 

between variables were identified in this study, Spearman’s coefficient has been 

used for the majority of calculations. Whenever the square – ‘R2’ – has been used, 

calculations are based on Pearson’s coefficient. The lowercase ‘r’, unless otherwise 

specified, is limited to mean the radius of a circle. Some calculations in the thesis 

are based on squares rather than circles, in these cases the ‘r’ is the half side 
length of the square. This is used as a rough parallel to the radius of a circle. 

Other (always specified) used of the letter ‘R’ include reflectance, and the 

statistical computing software package. Rugosity, a measure of the structural 

complexity of a surface, is not abbreviated. 

  

Remote sensing: ‘Remote sensing’ is often defined as “the science and art of 

obtaining information about an object, area, or phenomenon through the analysis 

of data acquired by a device that is not in contact with the object, area, or 

phenomenon under investigation” (Lillesand and Kiefer 1994), which then hinges 

on an unclear definition of “contact”. In this thesis, the term ‘remote sensing’ is 

confined to “the use of airborne or spaceborne instruments, detecting the 
emission or reflection of electromagnetic radiation from an object on 
Earth”. This is an operational definition for this thesis only, which specifically 

excludes acoustic instruments, or ground-based sensors. 

 

Scale: The term scale is used according to different conventions by people in the 

two fields of research this thesis bridges – remote sensing geographers, and coral 

reef biologists. In this thesis, it is used in two different ways. In the introduction, 

global, regional, and “reef” scales are referred to. These should be self-

explanatory. In the remainder of the thesis, “small scale” or “fine scale” refers to 

measurements made either within a relatively small area, or with relatively high 
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spatial frequency, depending on context. The scale in these cases should be seen 

in opposition to “large scale” or “coarse scale” measurements made either within a 

relatively large area or with low spatial frequency, again depending on context. 

This use most closely resembles the way the term is used by coral reef biologists, 

and care must therefore be taken by readers used to the geographic/cartographic 

convention. 

  

Substantial / Significant: These two terms are often used interchangeably. In 

this thesis, the term ‘substantial’ has been used to describe “a subjective, 
qualitative, assessment of importance”, whereas ‘significant’ has been 

consistently used to describe “statistical significance”. 
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CHAPTER 1: INTRODUCTION 

1.1 Coral reefs in decline 
Coral reefs exist in the warm and shallow waters off tropical coastlines. Built from 

the calcium carbonate skeletons of myriads of individual coral animals, the reefs 

create the largest biogenic structures on Earth, and form the home of close to one 

million marine species (Reaka-Kudla 1997). Biogenic shallow-water reefs have 

existed in various forms since the Carboniferous, and the current dominance of 

scleractinian corals began in the Triassic, more than 200 million years ago (Wood 

1998). However, despite their longevity through geologic time, coral reefs are 

currently in rapid decline across the globe. One fifth of all current coral reefs are 

considered degraded beyond their ability to recover, and more than half of the rest 

are headed in the same direction (Wilkinson 2004). The degradation can take 

different forms, but typically includes a loss of coral cover (Bruno and Selig 2007), 

an increased dominance of algae (Hughes 1994), and a flattening of the three-

dimensional structure of the reef (Graham et al. 2006b). 

 

The current situation has numerous causes, all arguably anthropogenic (Jackson 

2008). Local issues such as overfishing and use of destructive fishing methods, 

coral mining, sedimentation and nutrient enrichment all impact the reef-building 

corals negatively, while some (e.g. nutrient enrichment) at the same time improve 

conditions of life for their competitors (Lapointe 1997). These issues can be 

managed at the local scale through coastal management efforts, including 

designation of marine protected areas (Salm and Clark 2000), but other issues, 

global in nature, add to the list of threats: warming waters in the upper layers of 

the ocean cause mass coral bleaching events (Goreau and Hayes 1994; Hoegh-

Guldberg 1999), and ocean acidification reduces the ability of corals and other 

animals to precipitate their calcium carbonate skeletons and shells (Hughes et al. 

2003; Kleypas et al. 1999; Veron 2008). All in all, the future of coral reefs is bleak 

(Knowlton 2001). 

 

As coral reefs degrade, the animals that depend on them suffer the effects. More 

than 10,000 species of fish are dependent on coral reefs for their existence (Paulay 

1997), and their decline is not only an ethical problem, but of immediate 

importance to human society. Fish constitute an important source of income and 

protein to coastal communities (Brainerd 1994), they are a source of attraction for 
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dive and snorkel tourism, and they serve a range of ecological functions in reef 

ecosystems (Hughes 1994; Jackson et al. 2001). 

 

The effects of degrading reefs on their resident fish communities have been studied 

in both manipulated (Syms and Jones 2000) and natural settings (Friedlander and 

Parrish 1998), with a range of results sometimes including local extinction of 

species (Jones et al. 2004b). Collectively, the body of studies of fish-habitat 

relationships have shown that the specific relationships vary between individual 

reefs, between protected and unprotected areas, along spatial scales, and with 

absolute values of habitat variables (Syms and Jones 2000). This variation has so 

far precluded anything but broad conclusions, such as the benefit of live coral and 

structural complexity for the fish community (Knudby et al. 2007). However, one 

‘natural’ experiment - the widespread mass coral bleaching events following the 

1998 El Niño - has shed light on the likely future for many reefs. The bleaching-

induced loss of live coral is of immediate consequence to the corallivorous part of 

the fish fauna, and the subsequent breakdown of the reefs’ structural complexity, 

when coral skeletons erode and collapse, impact the rest of the resident fishes 

(Garpe et al. 2006; Graham et al. 2006b). 

 

1.2 MPAs and the use of remote sensing 
In the face of coral reef decline, the most widely adopted management response 

has been development of Marine Protected Areas (MPAs), protecting against local 

threats to both corals and fish. MPAs are designed to incorporate a range of 

habitats, species and areas of high biodiversity (Roberts et al. 2002), and are 

ideally incorporated into networks whose design is based on typical larval dispersal 

of critical species (Carr and Reed 1993). MPAs are therefore in need of accurate 

spatial information on both fish and coral distributions, and the influence of 

distribution and changes in habitat on the fish fauna. Spatial information can also 

be used by MPAs to determine the boundaries of a minimum effective area of 

protection, and to design zonation plans. Due to the relatively inaccessible nature 

of reef environments for fieldwork, remote sensing is the only tool that realistically 

can provide the needed spatial information. Passive optical remote sensing has 

been used since the launch of Landsat 1 (Smith et al. 1975) to outline the spatial 

distribution of geomorphologic zones (Andréfouët et al. 2001), dominant substrate 

types (Mumby et al. 1997b), reef community classes (Turner and Klaus 2005), and 

bathymetry (Lyzenga 1978; Stumpf et al. 2003). However, the link between the 
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remotely mapped benthic structures and the fish community that relies upon them 

has only rarely been made (Pittman et al. 2007; Purkis et al. 2008; Wedding et al. 

2008), and the actual use of remotely sensed habitat maps for MPA management 

has been limited to a few examples in highly developed countries (Newman and 

LeDrew 2008). Some questions remain, the answers to which will facilitate 

mapping of fish communities by remote sensing, and thereby increase the utility of 

this tool for coral reef MPA management. Three of these (henceforth: sub-

questions) will be addressed in chapters of this thesis. 

 

1.3 Sub-questions 
A) What is the statistical nature of fish-habitat relationships? Many studies have 

implicitly assumed linearity in fish-habitat relationships, and developed predictive 

models on that basis. Others have allowed for continuous but non-linear 

relationships, or used classification-based approaches with breakpoints for 

individual variables. In order to increase the practical value of such predictive 

models, this research aims to test various approaches to modeling fish-habitat 

relationships, both in terms of their relative predictive capability, and in terms of 

the habitat variables they identify is important for predicting the fish community. 

 

B) How accurately can habitat variables be estimated remotely, and at what spatial 

scales are these variables most predictive for the fish community? Because of the 

limitations of fieldwork on a coral reef, typically using SCUBA or snorkel gear, most 

studies have been limited to measuring habitat variables at small spatial scales. 

Both fish and habitat variables are typically sampled either through point counts 

with a typical radius of 5 m, or in transects with lengths of 20-50 m. However, 

both benthic and fish communities are influenced by physical processes at larger 

scales, and many fish species migrate well beyond such distances. Using remote 

sensing, this research adds to a small but growing body of literature that aims to 

find the spatial scales at which specific measures of habitat exert the greatest 

influence on the fish community, and interpret these scales in terms of their 

significance for reef ecology and conservation. 

 

C) How does remote sensing compare to traditional fieldwork for mapping a coral 

reef fish community? Remote sensing can provide a cost-effective alternative to 

traditional fieldwork for mapping and monitoring habitat variables. However, 

remote sensing is unable to map habitat as accurately and at as fine a spatial scale 
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as in situ surveys. If remote sensing is to be applied to map and monitor reef fish 

communities through its ability to map habitat, the accuracy it can provide, 

compared to traditional fieldwork, must be established. This research compares the 

predictive abilities of models based on remotely sensed data with similar models 

based on in situ data. 

 

1.4 Research question 
In combination, answers to the three sub-questions combined will answer the 

research question of this thesis: 

 

How can remote sensing be used to map coral reef fish communities? 
 

The wording of the question is meant to allow for investigation of all three sub-

questions, while arriving at a general conclusion about the possibility of mapping 

reef fish communities through their habitat. 

 

1.5 Thesis structure 
In chapters 2 and 3 we expand on the background for this research through a 

review of the existing literature and a description of Zanzibar, particularly the two 

reefs where the research took place, respectively. In chapter 4, we outline the 

methodology and the specific methods used for data collection, processing, and 

statistical analysis, along with a justification for their use. Chapters 5 through 7 

then deal with each of the sub-questions: comparing predictive models based on in 
situ data, deriving the most relevant spatial scales for remote sensing of fish 

habitat, and investigating the use of remote sensing for reef fish mapping. 

Discussions of methods and results are included in each of these chapters. In 

chapter 8 we provide a conclusion for the thesis by giving a synthetic answer to the 

research question, putting the research into context, and outlining promising 

avenues for future research. 
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CHAPTER 2: RESEARCH CONTEXT 

In this chapter we provide a background for the research through a review of the 

relevant existing literature with particular emphasis on studies of the relationships 

between reef fishes and their habitat, and the potentials and limitations of remote 

sensing of coral reefs. 

 

2.1 Global distribution of coral reefs and associated fishes 
At the global scale, coral reefs are limited to tropical nearshore areas with clear 

and shallow water and mean annual water temperature of 18 ºC or higher, roughly 

corresponding to the area between latitudes 30º north and south (Yonge 1940). 

Within this broad tropical belt, the occurrence of coral reefs is moderated by ocean 

currents, which govern the movement of nutrients, oxygen and coral larvae, in 

addition to the cold and warm water masses themselves. The current distribution 

of continents produces upwelling at the Eastern margins of the two major oceans, 

the Atlantic and the Indo-Pacific, reducing reef growth, while reefs flourish on the 

Western margins of the oceans (Hubbard 1997; Veron 1995). Factors such as tidal 

ranges, nutrient levels, and river outflows can restrict reef growth more locally, 

e.g. at the mouths of the Amazon and Orinoco rivers. The reef-building corals 

themselves have a wider distribution, extending into areas where their survival, 

though not reef-building, is possible (Wood 1983) (Figure 2.1). 

 

 

Figure 2.1: Global distribution of scleractinian corals (blue areas) and coral reefs (red 
areas) (Veron 2000). 

 

Within the areas conducive to reef building, spatial patterns of biodiversity, 

relatively constant within a human time-frame, have been established by 

numerous field expeditions (Veron 2000). Both the two major oceans have well-
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known centres of biodiversity, from which the richness of coral species gradually 

diminishes with the distance from the centre. In the Indo-Pacific, the large area of 

shallow seas formed by the archipelagos of Indonesia, the Philippines and New 

Guinea, the ‘coral triangle’, forms the centre of coral biodiversity (Bellwood and 

Hughes 2001; Briggs 1999), as the south western Caribbean does in the Atlantic. 

From the coral triangle, coral species richness gradually declines in any direction - 

towards the Western Indian Ocean, the Eastern Pacific, Japan or Southern Australia 

(Veron 1995) (Figure 2.2). A similar biogeographic pattern is found for reef fishes 

(Bellwood and Hughes 2001; Bellwood 2002), and for all other reef-associated taxa 

for which data are available (Paulay 1997). 

 

 

Figure 2.2: Global distribution of generic richness in scleractinian corals (Veron 1995). 
Because of the difficulty of field identification of corals to the species level, generic 
richness is typically used as a surrogate for species richness. 

 

At the scale of individual coral reefs or reef complexes, biodiversity is composed of 

a subset of the regionally available species, but these local spatial patterns of 

biodiversity are less well known, and subject to more rapid change. They are 

determined by a combination of the physical environment (Friedlander and Parrish 

1998), stochastic processes (Sale and Dybdahl 1975), and human intervention 

(Chapman and Kramer 1999). It is at this scale that most management 

interventions exist, and where conservation is easiest to implement and enforce. 

 

2.2 Reef-scale distribution of biodiversity  
At the scale of individual reefs, the spatial taxonomic covariance seen globally is 

less pronounced. Nevertheless, functional indicators have been proposed as 

surrogate measures of local spatial variations in biodiversity, typically for 

conservation planning purposes. These include fish species richness as an indicator 

for invertebrate and plant biodiversity (Ward et al. 1999) or for coral biodiversity 

(Beger et al. 2003), or molluscs as an indicator of the biodiversity of macroalgae 
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(Gladstone 2002). More importantly, some attributes of coral reef habitats 

themselves also co-vary with the biodiversity of fish and mobile invertebrate taxa, 

and can function equally well or better than species as biodiversity indicators 

(Mumby et al. 2008; Ward et al. 1999). This suggests that taxonomic covariance at 

the local scale can be due to co-varying habitat influences, and that the relevant 

habitat variables can influence local biodiversity strongly. However, the utility of 

habitat measures as surrogates for biodiversity are not ubiquitous (Stevens and 

Connolly 2004), and need to be established locally. 

 

2.2.1 Fish-habitat relationships on coral reefs 
Numerous studies have demonstrated statistical relationships between habitat 

variables and measures of the fish community on coral reefs (Knudby et al. 2007). 

Sea urchins and Conus sp. snail abundances have also been shown to co-vary with 

structural complexity (Kohn and Leviten 1976; McClanahan 1988). However, even 

within the scale of individual reefs, the strength of these relationships depends on 

spatial scale. So far a limited number of local scale effects have been shown on 

reefs, but the issue is of importance for practical conservation reasons, particularly 

in MPA design where the spatial extent of MPAs needs to match the scales of 

critical habitats and territory size of species within them (Kendall et al. 2004). 

Problems arise because the relevant fish-habitat relationships, as well as the 

relevant spatial scale, vary depending on species and life stage (Grober-Dunsmore 

et al. 2008; Sale 2002). Some fish migrate daily as adults, others migrate annually 

to spawn, and some migrate to find new habitat types during ontogenetic shifts. 

Nevertheless, aggregate fish community variables can show general trends that 

aggregate the information from individual species (Purkis et al. 2008).  

 

Causal mechanisms have been proposed for these relationships. The influence of 

depth has been related to disturbance, where wave action at shallow depths 

strongly favours wave-resistant and fast-colonizing coral species, whereas less 

disturbance and diminished light at greater depths favour slow-growing and 

metabolically more efficient species. The intermediate depth provides a habitat that 

houses representatives of both extremes, and thus maximizes species richness 

(Huston 1994). The positive influence of live coral cover on fish species richness 

has been related to larval settlement success, and to the survival of coral-dwelling 

and corallivorous species (Jones et al. 2004b). In addition, the live coral creates a 

structurally complex habitat that provides shelter for prey species and a range of 
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structural niches for species of varying body size (Friedlander and Parrish 1998). 

Increasing species richness with proximity to the reef edge may be related to the 

increasing availability of food items for planktivores at the reef edge. 

 

Relations between habitat and fish variables have also been shown to exist 

temporally. Experimentally, Syms and Jones (2000) noted a decline in fish 

abundance with loss of reef structure in a two-year experiment, results confirmed 

by an observational (non-experimental) 30-year study by Connell et al. (1997). 

Jones et al. (2004a) noted a decline in fish species richness with loss of live coral 

cover over 8 years in Papua New Guinea, with local extinction of species 

particularly dependent on coral. Impacts of the 1998 El Niño were studied in the 

Seychelles by Graham et al. (2006a), who found that bleaching-induced loss of live 

coral cover did not significantly impact species richness, though it did lead to 

possible local extinction of species highly dependent on coral. However, they also 

found that the subsequent loss of structural complexity, following erosion of 

bleached coral skeletons, did affect species richness significantly, changes in coral 

cover and structural complexity together explaining 57% of the decrease in species 

richness. They also found that small species were lost first, larger species only as 

more structure degraded. Garpe et al. (2006) confirmed these findings in Tanzania, 

and documented different responses from different functional groups, coral-

dependent species again suffering the greatest losses and possible local 

extinctions. 

 

2.2.2 The statistical nature of fish-habitat relationships 

Despite the large amount of empirical data on fish-habitat relationships, their 

statistical nature remains poorly explored. Relationships between habitats and 

aggregate measures of the fish community are mediated by the species that form 

the community. These relationships change through time, and depend on the 

absolute values of the variables observed (Jones and Syms 1998). In addition, it is 

likely that numerous interaction effects exist between the relevant variables, one 

variable moderating the relationships between two other variables. For example, 

depth may have significant influence on fish species richness through its covariance 

with wave action, shelter space and food availability on the reef slope where high 

coral cover typically exists, but similarly may have no influence on fish species 

richness in a sandy lagoon area with typically low or no coral cover. 
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Despite this obvious complexity of relationships, most studies have assumed 

simple linear relationships between the studied variables, using methods of data 

analysis such as canonical correlation analysis (McCormick 1994), discriminant 

analysis (Ormond et al. 1996) or various forms of linear models (LM) (Chapman 

and Kramer 1999; Friedlander and Parrish 1998). Non-linearities in the 

relationships, as predicted theoretically by intermediate disturbance theory 

(Connell 1978) and shown empirically by Knudby et al. (2008), are dealt with by 

log or root transformations of independent or dependent variables when necessary, 

e.g. Kuffner et al. (2007). However, there is no theoretical basis for assuming 

linear relationships between habitat and fish variables in the first place (Jones and 

Syms 1998), and more complex models may therefore both provide a more 

realistic description and deeper ecological insight, and provide lower prediction 

error in predictive models. One example of a statistical model better suited to deal 

with non-linearities is the general additive model (GAM), which allows the additive 

use of different statistical models (e.g. linear, power, log, smoothing splines) 

(Knudby et al. 2008). However, the statistical models, both LM and GAM, are both 

unable to deal effectively with interaction effects, which is likely to limit their power 

to model ecological relationships on coral reefs. 

 

In addition to statistical models, a new suite of algorithmic models are becoming 

available, most of them developed in the field of Machine Learning. These models 

differ from those described above in that the nature of the modelled relationships 

is not pre-supposed through model selection, but rather learned through a set of 

training data. Algorithmic models, such as Artificial Neural Networks (ANN), 

Support Vector Machines (SVM), and a variety of Regression Trees (RT), have only 

recently been used to model fish community variables (Pittman et al. 2007; 

Pittman et al. 2009), and a thorough evaluation of the different models and their 

ability to produce interpretable results and useful predictive models is pending. 

 

Having determined the statistical nature and specific attributes of relationships 

between habitats and fish community measures for a given coral reef area, 

spatially distributed information on habitats will allow the distribution of these 

measures to be predicted in the form of a map. To derive spatial information on 

coral reef habitats, remote sensing has been the tool of choice since the first 

application of Landsat data (Smith et al. 1975). 
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2.3 Remote sensing of coral reefs1 
Most coral reef remote sensing research has not been carried out in the context of 

biodiversity, but has focused on mapping geomorphologic zones (Andréfouët and 

Guzman 2005; Smith 1975) or substrate types (Andréfouët et al. 2003; Mumby et 

al. 1997b). Nevertheless, the existing research has built a solid foundation from 

which biodiversity studies can benefit. 

 

Geomorphologic zones mapped with remote sensing typically include the forereef, 

reef crest, lagoon, backreef and patch reefs, as well as coral reef associated 

habitats such as seagrasses and mangroves; the classes used in a particular study 

depend on the site and the desired level of detail. Despite developments of semi-

automated systems (Suzuki et al. 2001), geomorphologic zones are typically 

mapped manually - outlined on a plot of original or classified data by an expert 

user (Andréfouët et al. 2001; Andréfouët and Guzman 2005). 

 

More automation has been possible for mapping substrate types. Based on the 

different spectral reflectance properties of substrate types such as coral, sand, 

algae, and seagrass, multi- and hyper-spectral instruments have been able to map 

these substrates to depths of 15-30 m in clear water (Mumby et al. 2004c). The 

level of detail that can be obtained, expressed as the number of classes that can 

be discriminated combined with the accuracy of the classification, depends on the 

platform and sensor type, and on environmental factors such as water depth and 

turbidity, the state of the sea surface, and the atmosphere (Mumby et al. 2004c). 

Early studies used Landsat TM and SPOT HRV sensors, which typically only allowed 

broad categories such as coral, sand, seagrass and algae to be discriminated. The 

better spatial resolution of the IKONOS and Quickbird satellites (Andréfouët et al. 

2003; Mumby and Edwards 2002), and developments of airborne and satellite-

based hyperspectral instruments (Kutser et al. 2003; Mumby et al. 1997b), have 

enabled mapping of more detailed classes while retaining satisfactory mapping 

accuracy (Mumby et al. 2004c). However, the dominant features of the spectral 

                                       
1 This section deals exclusively with passive airborne and spaceborne remote sensing. 

Shipborne acoustic remote sensing has found application on optically deep coral reefs, 

however, due to its very limited spatial coverage; acoustic instruments are usually not a 

cost-efficient alternative for coral reef studies. Active optical lidar instruments have also 

found application in mapping both depth and water optical properties, but are currently 

only available at a cost that precludes their general use. 
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signatures used to discriminate between typical coral reef substrates are in the 

part of the visible spectrum where water penetration is at its lowest, 550-700 nm 

(Kutser et al. 2003; Mobley 1994), which reduces the number of distinct substrate 

types that can be distinguished as depth increases (Capolsini et al. 2003; Hochberg 

and Atkinson 2003; Holden and LeDrew 1999). 

 

Only a few studies have related the mapped substrate types and geomorphologic 

zones to specific species or species assemblages. These studies do not infer the 

presence of particular species from the spectral reflectance of the area, but rather 

map classes of species assemblages in which particular species are known from 

field observations to be dominant (Purkis et al. 2006; Turner and Klaus 2005). The 

remotely sensed information thus functions more as geolocation of field 

observations than as the primary information source, and such studies require 

extensive fieldwork for each investigated site. 

 

2.4 Mapping habitat variables 
In addition to geomorphologic zones and substrate types, remote sensing has also 

proven its ability to map several of the habitat variables shown by field studies to 

influence the fish community, including depth, structural complexity, and live coral 

cover. Depth (Lyzenga 1978; Stumpf et al. 2003) and live coral cover (Joyce 

2004a; Joyce et al. 2003) are routinely mappable using remote sensing, whereas 

the mapping of structural complexity only recently has been explored (Pittman et 

al. 2007; Purkis et al. 2008). Field measures of these variables are typically 

necessary to calibrate remotely sensed values, and the issue of disparate spatial 

scales remains, particularly for structural complexity (Knudby and LeDrew 2007). 

 

2.4.1 Remote sensing of depth 

Methods for remotely sensing depth rely on the wavelength dependency of light 

attenuation in water. Longer wavelengths attenuate more rapidly (Mobley 1994), 

hence substrates located in deeper water will show a greater proportion of 

reflected light in shorter wavelengths (Lyzenga 1978). Variation in substrate 

spectral reflectance introduces error, which can, at least in theory, be mitigated 

when using hyperspectral data (Hedley and Mumby 2003). Water optical properties 

and substrates with very low reflectance introduce additional complications (Philpot 

1989; Stumpf et al. 2003), and depth mapping always requires in situ calibration. 
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2.4.2 Remote sensing of live coral cover 

Mapping of live coral cover has suffered from low levels of accuracy due to 

problems of sub-pixel heterogeneity and high spectral similarity between corals 

and other substrate types such as algae and seagrass. This spectral similarity, and 

the complicating influence of variations in water depth and optical properties, have 

hampered efforts to use spectral unmixing (Hedley and Mumby 2003), routinely 

used in terrestrial environments, to separate live coral from spectrally similar 

substrates. High accuracy with this approach is thus dependent on near-perfect 

conditions, i.e. hyperspectral imagery with high spatial resolution (≤1 m), clear 

and shallow water, independently known depth, and absence of brown macroalgae 

(Hedley et al. 2004; Mumby et al. 2004b). Despite these problems, some studies 

have been able to demonstrate success in mapping live coral cover. Isoun et al. 

(2003) used a classification-based approach, with seven classes based only on 

percentage live coral cover, and achieved 77% overall classification accuracy with 

airborne hyperspectral imagery. Newman et al. (2007) achieved similar levels of 

accuracy with four classes based on percentage live coral cover, using IKONOS 

data. Using hyperspectral data from CASI-2, Joyce (2004a) used an index-based 

approach to investigate correlations between live coral cover and spectral 

reflectance ratios and derivatives. Results achieved a coefficient of determination 

(R2) of 0.58, and showed that the optimum band ratio and derivative varied 

between ‘blue’ and ‘brown’ coral types (Hochberg et al. 2003b), and depended on 

resampling of the dataset, depth and water quality. 

 

Other habitat variables with known influences on species richness (e.g. distance to 

reef edge) are also mappable. There is thus ample scope for further exploring the 

potential of this approach to predict the spatial distribution of biodiversity on coral 

reefs. The development of methods for mapping habitat variables using remote 

sensing is based on correlations between measures of the given variables derived 

in situ and derived using remote sensing data. The following sections will outline 

how in situ and remote sensing-based data are collected for each habitat variable, 

and discuss potential issues that could arise when relating the two kinds of data. 
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2.4.3 Remote sensing of structural complexity 

The physical structure of coral reefs exists at a continuum of scales, ranging from 

the intricate structure of the coral skeleton, through the variety of structures 

formed by coral colonies, to the regional distribution of reef complexes. At scales 

available to remote sensing, structural complexity can be quantified using a variety 

of measures all calculated on the basis of a Digital Elevation Model (DEM), itself 

typically produced by the methods described above for remotely sensing depth. 

Once the DEM exists measures of structural complexity are limited only by the 

ingenuity of the investigator; existing measures include linear or triangulated 

rugosity, slope, curvature, fractal dimension and more (Brock et al. 2004; Kuffner 

et al. 2007; Pittman et al. 2009; Purkis et al. 2008). The spatial resolution of the 

remote sensor obviously determines the smallest spatial scale at which structural 

complexity can be resolved. Currently, no sensor can resolve structural complexity 

at the same spatial scales at which field studies have shown influence on fish 

biodiversity (Knudby et al. 2007), and results to date suggest that correlations 

between in situ and remotely sensed structural complexity depend both on the 

spatial scales compared and on the environment in question (Knudby and LeDrew 

2007; Kuffner et al. 2007; Wedding et al. 2008). 

 

2.4.4 Remote sensing of habitat variety 

In addition to mapping variables shown by field studies to influence fish 

biodiversity, remote sensing enables the quantification of other aspects of habitat 

not easily obtainable through field studies. One example is habitat variety (note: 

see terminology for definition of ‘habitat variety’), which can be quantified at a 

range of user-determined spatial scales using habitat maps (Purkis et al. 2008). No 

standardized procedure exists, and quantifications of habitat variety and their 

usefulness in biodiversity studies will depend on the number and relevance of 

substrate classes mapped, the measure used, and the spatial scales at which it is 

calculated. However, it is important to note that remote sensing in this case does 

not only estimate the value of a habitat variable that could be more accurately 

measured in situ, such as live coral cover, but enables quantification of a variable 

that is practically immeasurable in situ at scales beyond a few metres. 
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2.5 Mapping fish biodiversity 
Remote sensing thus offers an indirect approach to mapping the biodiversity of 

fishes on coral reefs. Relationships can be established between remotely sensed 

habitat variables and measures of fish biodiversity, allowing remotely sensed maps 

of habitat variables to extrapolate biodiversity values to areas not sampled in the 

field. 

 

Studying benthic organisms, Adjeroud et al. (2000) used SPOT satellite images to 

map pinnacle density, surface area, and hydrodynamic aperture of nine atolls in 

French Polynesia, and found that these explained part of the between-atoll 

variation in species richness of investigated taxa (corals, molluscs, echinoderms 

and algae). Similarly, Andréfouët and Guzman (2005) found a weak (non-

significant) correspondence between geomorphologic zones and the biodiversity of 

corals and octocorals, though only at specific spatial scales. 

 

The mobile nature of reef fishes may make spatial predictions of the biodiversity 

less accurate than for benthic organisms. Nevertheless, some promising results 

have been obtained. Kuffner et al. (2007), working on patch reefs in Biscayne Bay, 

used lidar-derived rugosity to predict fish species richness and abundance, with 

statistically significant but very weak results. Wedding et al. (2008), obtained 

stronger results in a similar lidar-based study in Hanauma Bay in Hawaii. Both 

studies illustrated the influence of spatial scale, though they arrived at different 

optimum scales for rugosity measurements (5 m and 25 m, respectively). Purkis et 

al. (2008), using IKONOS data, found that both remotely sensed habitat variety 

(quantified as Shannon evenness) and structural complexity showed significant 

relationships with fish species richness at a reef complex in Diego Garcia, and also 

demonstrated relationships with other measures of the fish community, such as 

abundance or richness of specific size classes. Optimum scales were found at 8 m 

for rugosity measurements, and 40 m for habitat variety. Pittman et al. (2007), 

working in Puerto Rico and the US Virgin Islands, combined several measures of 

both structural complexity and substrate availability into an RT model, variables 

entered at a range of scales from 5 m (bathymetric standard deviation) to 325 m 

(rugosity, seagrass areas, hard-bottom area). 

 

These studies demonstrate the possibility of predicting the spatial distribution of 

fish community variables. However, the sub-questions listed in chapter 1 remain to 



 15 

be answered for the tool to become operational. The research presented in this 

thesis seeks to answer these questions, through a study conducted at two reefs, 

one protected and one unprotected, both located in Zanzibar, Tanzania, East 

Africa. 

 

2.6 Summary 
Numerous studies have established statistical relationships between coral reef fish 

communities and their habitat. However, the exact relationships change with time, 

through space, and with the absolute values of the variables in question. A range 

of model types exist to describe these complex relationships. Some of these model 

types allow modeling of non-linear and non-smooth relationships, and some allow 

modeling of interaction effects. Remote sensing data can be used to produce maps 

of coral reef habitats, and to estimate some aspects of habitat, such as depth, 

structural complexity, live coral cover and habitat diversity, that have all been 

shown to influence the fish community. Some studies have shown that it is possible 

to use remote sensing data to make predictions about the spatial distribution of 

fish community variables, but the development of methods and models is still in its 

infancy, and has not yet moved beyond the research community. 

 

In this thesis, we present research that contributes to the understanding of fish-

habitat relationships and the different approaches to quantify them, as well as 

exploring the potential to use these relationships and remote sensing data to 

produce maps of fish community variables. The research is based on two reefs in 

Zanzibar; one is heavily impacted by fishing, most of the other is protected by a 

strictly enforced no-take marine park. 
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CHAPTER 3: STUDY AREA 

In this chapter we outline the context of the area in which the research took place, 

including the larger biogeographic context, some societal and political factors 

influencing the study site, and a more detailed description of the two reefs that are 

the focus of the study. 

 

3.1 East Africa and the Western Indian Ocean 
Zanzibar is located in central East Africa, at the extreme western end of the large 

Indo-Pacific biogeographic region. The climate is tropical, with two main seasons 

characterized by the prevailing winds. From November to March, northern ‘kaskazi’ 
winds prevail, bringing sporadic rains and high temperatures. The period from 

March is characterized by heavy rains, which last until the southern ‘kusi’ winds 

pick up in June, bringing cooler air and end to the rainy season. These southern 

winds in turn last until the next reversal of wind direction in November (Ngoile 

1990; Ngusaru 2002). 

 

East African waters are connected to the rest of the Indian Ocean by the South 

Equatorial Current, flowing westwards, connecting East Africa biogeographically to 

the Central and Eastern Indian Ocean. As such, the coral reefs of East Africa lie in 

the second most species rich region in the world, after the Western Pacific (Lieske 

and Myers 2001). The South Equatorial Current reaches the East African coast in 

the area around Northern Mozambique and Southern Tanzania, where it splits in 

two. The Mozambique current flows south, while the East African Coastal Current 

flows north, to Zanzibar and beyond (Ngusaru 2002) (Figure 3.1).The Zanzibar 

archipelago thus has a permanent northbound current, though currents in 

nearshore waters are often dominated by the tidal cycle (Ngoile 1990). 
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Figure 3.1: Overview of major ocean currents and monsoon winds in the Western Indian 
Ocean. Modified from Ngusaru (2002). 

 



 18 

3.2 Zanzibar 
Zanzibar consists of two main islands, Unguja and Pemba, with numerous smaller 

islands surrounding them. While Pemba is believed to be a part of the African 

continental plate that broke away 10 million years ago, Unguja and its surrounding 

islands are all raised Pleistocene reefs (Ngusaru 2002). Coral reefs around Unguja 

are dominated by the large fringing reef on the east coast, and a series of patch 

reefs and shorter fringing reefs around the islands and sand banks off the west 

coast (Horrill et al. 2000). 

 

3.2.1 Fishing 

Fishing is mostly small-scale in Zanzibar, with fishermen operating close to shore 

from small vessels, selling their fish immediately upon return to the local fish 

market (Jiddawi and Ohman 2002). The latest census for 2007 found 34,269 

fishermen in Zanzibar, or 3.5% of the population, with almost half of the vessels 

used being dugout canoes holding one or two people (Jiddawi and Khatib 2007). 

Nevertheless, fisheries contribute 6% of the GDP, provide 60% of the protein 

consumed by local communities (Cesar et al. 2003), and form an important cultural 

part of coastal livelihoods (Grootenhuis and Lopez 2003). A wide range of fishing 

techniques are used, including traps, hook and line, a variety of nets, and several 

illegal but widespread techniques using bottom seine nets, spear guns, poison or 

dynamite. The limited data available point towards the reef fishes in Zanzibar being 

over-exploited, at least in areas close to settlements from which fishing pressure 

declines with increasing distance (Jiddawi and Ohman 2002). 

 

3.2.2 Conservation 

Although some limited traditional management practices were in place before the 

revolution in 1964 (Horrill et al. 2000), formal marine conservation has had a short 

and mixed history in Zanzibar. The first steps were taken in 1989, when an 

agreement for exclusive use of Mnemba Island, close to north-eastern Unguja, was 

reached between the Zanzibari government and a private tourism developer 

(EcoAfrica 2005a). The exclusive use was formalized by a lease agreement in 

1992, which included a no-take zone extending 200 m from the mean high water 

mark of the island. In 2002 the no-take area was extended to 200 m beyond the 

reef crest and gazetted formally as an MPA. However, with only periodic 
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enforcement, conservation effects have not materialized, and reports of repeated 

fishing, appear regularly (EcoAfrica 2005a). In 1994 the area stretching 300 m 

west of Chumbe Island, close to south-western Unguja, was gazetted as another 

no-take MPA and management authority given to a private company, Chumbe 

Island Coral Park. Management is carried out by rangers stationed on the island, 

and after some initial difficulties the no-take zone is effectively managed (Muthiga 

et al. 2000). Then in 1997, a large area south of Unguja, Menai Bay, was gazetted 

as MPA. It is, however, not a no-take area, and restrictions on fishing are limited to 

a prohibition of ‘dago’, camping overnight on islands to continue fishing the next 

day. Menai Bay has also suffered from very limited enforcement, and conservation 

effects have not materialized (EcoAfrica 2005b). 

 

Pemba’s first MPA was established as a multiple-use marine reserve in 1998, which 

includes a no-take core zone. As on Chumbe Island, enforcement has been carried 

out by rangers based on the island, and despite initial difficulties the core zone has 

been effectively protected since 2001 (Tyler 2005). More recently, protection along 

Pemba’s entire west coast has been established through the creation of the Pemba 

Channel Conservation Area (PECCA), a large multiple-use marine reserve created 

in 2006. 

 

3.3 Two reefs, one protected and one unprotected 
Data for the research presented here were collected on two fringing reefs located 

near islands immediately west of Unguja, Chumbe and Bawe. The reefs are similar 

in many aspects; they are both fringing reefs surrounding raised coral islands, with 

well-developed geomorphologic structures, and coral growth reaching to depths of 

10-12 m (Knudby, pers. obs.) Both islands have tourism development in the form 

of low-volume, high-end resorts. However, their management histories are very 

different. 

 

3.3.1 Chumbe 

The reef on the western side of Chumbe, as described above, has been effectively 

protected from fishing since 1994, by rangers stationed on the island. Before its 

designation as an MPA this area was used by the military and fishing was not 

allowed, although anecdotal evidence suggests that enforcement was weak and 

fishing was more restricted by the reefs distant location in relation to local fishing 
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communities (Muthiga et al. 2000). In addition to enforcing the MPA, Chumbe 

Island Coral Park has operated an eco-resort on the island since 1998, and 

conducted guided snorkel tours on the reef for tourists and local schoolchildren. 

The resort has implemented several measures to reduce the tourism’s impact on 

the reef, including filtering of waste water and the collection and transportation of 

all trash to Unguja for proper disposal. The best developed part of Chumbe’s coral 

reef lies in the protected zone along the island’s western side, but the reef 

continues several km south of the island, before turning north again and forming a 

large lagoon on Chumbe’s east side. 

 

3.3.2 Bawe 

The reef around Bawe is slightly less developed geomorphologically, the reef on the 

island’s northern and eastern side consisting of a string of bommies rather than a 

well-formed reef crest. Bawe has never been protected against fishing, and 

fishermen are regularly observed on or off the reef, using both legal and illegal 

fishing gear (Knudby, pers. obs.) A resort also exists on the island, but no known 

measures are taken to limit the impact of tourism on the reef. The location of both 

islands, relative to Unguja and the Tanzanian mainland, is illustrated in Figure 3.2. 

 

 

Figure 3.2: The location of Chumbe and Bawe islands in relation to Unguja and the 
Tanzanian mainland. 
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3.4 Summary 
Reef fish are an important ingredient in the mixed livelihoods of the communities in 

Zanzibar, and specific results of relevance for marine management may therefore 

be of real benefit in the area. The choice of Chumbe and Bawe reefs as study sites 

for this research allows for a comparison between two important types of coral reef 

ecosystems: the exploited reef near human settlements whose fish fauna is heavily 

impacted by fishing and other human activity (Bawe), and the near-pristine reef 

that is currently under protection from local influences but remains open subjected 

to global-scale impacts such as increasingly warm and acid waters (Chumbe). This 

allows us to investigate whether the fish community can be modeled more 

accurately in one or the other of these ecosystems, and also allows us to assess 

the importance of protection for the fish community. 
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CHAPTER 4: DATA AND RESEARCH METHODS 

In this chapter we outline the research methodology, including methods used for 

both the collection and analysis of the data used. 

 

4.1 Research approach 
In order to answer the research question of this thesis, each of the sub-questions 

is answered in sequence. To answer sub-question A, a range of models are 

developed to predict the three fish community variables from the in situ habitat 

data. The accuracy of predictions from each model type is compared, and the most 

important habitat variables identified. To answer sub-question B, habitat variables 

from the remotely sensed data are extracted at a range of spatial scales, and 

characteristic scales of response, scales where the correlation between fish and 

habitat variable were strongest, are derived. To answer sub-question C, a reduced 

range of predictive models is subsequently developed to predict the fish community 

variables from the remotely sensed habitat data, and the identification of important 

habitat variables is repeated with this dataset. Two spatial scales are chosen for 

model development with remotely sensed habitat data, one using data at the finest 

scale offered by IKONOS data, the other using a subset of the IKONOS data that is 

limited to the spatial scales that would be available from Landsat TM data. The 

data collection, along with processing and analysis, is described below. Field and 

remote sensing data were collected for both Chumbe and Bawe reefs, using 

identical methods, so the two datasets are treated as one in the processing and 

described as such in the following. 

 

4.2 In situ data 
The methods used to answer sub-question A are described below in four sections. 

4.2.1 and 4.2.2 describe the data on fish community and habitat, respectively, 

used in this study, and section 4.4 describes the statistical and algorithmic models 

developed, and their comparison. All in situ data were collected during a period of 

3 months, between mid-September and mid-December 2007. The complete data 

set can be obtained by contacting the chair of the Department of Geography and 

Environmental Management at the University of Waterloo. 
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4.2.1 Fish data 

Data on the fish community at each site were collected using a modified version of 

the point count method of Bohnsack and Bannerot (1986), yielding geolocated data 

of the abundance and minimum, mean and maximum fork length for each species 

present. Fieldwork at sites with water depth <8 m was carried out snorkelling; 

SCUBA was used for deeper sites. At each site, the observer rests passively on the 

surface (or sits passively on the bottom if using SCUBA) at the centre of the site. 

The observations are separated into two five-minute intervals. While approaching 

the site, and for the first five-minute interval, during which the observer slowly 

rotates to look in all directions, all fish species observed within a radius of 5 m of 

the centre of the site are noted on a dive slate. Only fish with fork length >5 cm 

were noted. During the second five-minute interval the number and average size 

(fork length) of individuals is noted for each species. If a species was observed as 

present during the first five minutes but cannot be found during the second five 

minutes, the number and average size is retrieved from memory. If a species is 

observed only during the second five-minute interval, it is not recorded. The 

location of each site was initially found by snorkelling in a random direction for a 

random number of fin kicks from the previous site. After more than 80% of the 

data had been collected on Chumbe, the locations of sites were plotted on a 

satellite image, and conspicuous habitats with no or few data points were 

specifically targeted for the remainder of the sites, along with the highly variable 

habitat along the reef edge. Logistical constraints for fieldwork on Bawe did not 

allow such planning, and field sites were clustered around anchoring sites near the 

reef, although care was taken to represent all major substrate types in the field 

data. This procedure results in a sampling design that is deliberately (but sub-

optimally) stratified by substrate type, reef, and geomorphologic zone, habitat 

variables that are easy to derive from the satellite image. However, at the same 

time the sampling design is not deliberately stratified along other possible (and 

possibly more important) axes such as depth, live coral cover, structural 

complexity etc. The ultimate distribution of field sites, representing the 

compromise between ideal sampling design and logistical constraint, is illustrated 

in Figure 4.1 and Figure 4.2. Fish surveys were practised for a period of two weeks 

before data collection began, to become familiar with the methods and the fish 

species in the region. At any time, fieldwork was aborted if visibility fell below 8 m. 

Based on this dataset, the biomass for each species was calculated using the mean 

length and the equation: 
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Figure 4.1: Field sites distributed in clusters on the reef area around Bawe Island. 

 

 (eq. 1) 

 

where W is the weight of the fish in grams, L is the length of the fish in cm, and A 

(g/cm3) and B (unitless) are parameters derived for each species from published 

values on Fishbase (Froese and Pauly 2008). When species-specific values for A 

and B were not available, average values from other species within the genera, or 

family, were used. Three often used measures of the fish community were then 

derived for each site. Total biomass was derived by adding the biomass values of 

each species, species richness was calculated as a simple count of species, and 

the diversity was derived by calculating Shannon’s Diversity Index, expressed as: 

 

 (eq. 2) 
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Figure 4.2: Field sites distributed on the reef around Chumbe Island. 

 

where pi is the proportion of the total biomass in each species, i is the species, and 

s is the total number of species (Ludwig and Reynolds 1988). Each species was 

represented by its biomass rather than the traditionally used abundance in 

equation 2, in order to improve the ecological relevance of the diversity measure 

(Wilhm 1968), and to reduce bias in the calculation, caused by schools of Chromis 
spp. with hundreds of individuals. 
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These three measures by no means constitute a full description of the fish 

community, and more targeted measures, e.g. presence/absence of species of 

interest, biomass and diversity of functional groups etc., can be derived as 

necessary in future studies. The flow of data processing is illustrated in Figure 4.3. 

A visual assessment of frequency distribution was carried out for each fish variable 

and log-transformations were applied as necessary to avoid extreme distributions. 

 

 

Figure 4.3: Processing flow for fish data. Data are in ellipses, processing steps in boxes. 
Some simple processing, e.g. counting the number of species in a list, has been omitted. 
Variables used in the subsequent analysis have bold borders. 
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4.2.2 Habitat data 

At the sites of the fish point counts, a number of habitat data were also collected, 

following the fish survey. For each site, maximum and minimum depth was 

measured by placing a dive computer on the substrate for five seconds before 

recording the value. A Garmin Etrex GPS on a float was used for geolocation, and 

rugosity was assessed using a visual scale of 0-5 following the method of Wilson et 

al. (2007) with one modification. Two scales were adopted, the coarse rugosity 

scale focusing on rugosity caused by large reef elements such as small patch reefs 

and large boulder corals, the fine rugosity scale focusing on rugosity caused by 

small reef elements such as branching and digitate corals. Substrate photos 

covering the 5 metre radius were then taken, and time, visibility and current 

strength and direction were noted. 

 

Depth data were transformed to depth at mean tide level by deriving the tidal 

stage at the time of data collection from local tide tables provided for Zanzibar 

port, and applying a simple correction. Based on the corrected depth data, the 

average depth, as well as the depth range, was calculated. 

 

The substrate photos were then processed in CPCe (Kohler and Gill 2006), to 

derive the percentage cover of the following substrate types: branching coral, 
digitate coral, massive coral, encrusting coral, foliose coral, turf algae, 

macroalgae, dead coral, sand, seagrass, rubble, pavement, and other 
(mostly sponges). Based on the values of these variables, the total algae and total 

live coral cover of any growth form was calculated, the total number of coral 
growth forms was recorded, and the substrate diversity was calculated 

following equation 2, with pi representing the proportion of each substrate type. In 

addition, substrate evenness was calculated as: 

 

 (eq. 3) 

 

where S is the total number of substrate types present and H’ is the Shannon 

diversity. Two further variables were added to the dataset, the reef variable 

(‘Chumbe’ or ‘Bawe’) describing where the data were collected, and the 

conservation status variable (‘protected’ or ‘unprotected’). The flow of data 

processing is illustrated in Figure 4.4. A visual assessment of frequency distribution 
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was carried out for each habitat variable and log-transformations were applied as 

necessary to avoid extreme distributions. 

 

 

Figure 4.4: Processing flow for habitat data. Graphic conventions are similar to those used 
in Figure 4.3. 

 

4.2.3 Note on geolocation 

The Garmin eTrex used for geolocation of the field sites has an estimated 

horizontal accuracy of 5-7 m. Many of the shallow-water areas in the study area 

have substrates with small patch sizes compared to this accuracy. The GPS-based 

geolocation of all field sites was therefore assessed against the true-colour 

composite of the IKONOS image, and corrected if possible or discarded if necessary 

(Phinn et al. 2008). Correction was carried out where an obvious fit between field 

and satellite data could be obtained by moving the field site no more than 6 m so 
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the error was clearly identifiable and the correction justified. Examples include a 

field site GPS-located in the deep sandy area just off the reef edge while notes 

state that the site was in a coral-dominated area on the reef edge, or a site with 

100% seagrass cover, GPS-located a few metres away from a dense seagrass bed 

on the imagery. In order to avoid having to make such corrections it is suggested 

that, whenever possible, a differential GPS system is used to geolocate field data in 

similarly patchy environments. 

 

4.3 Remote sensing data 
The following sections describe the satellite-derived data used, in combination with 

the field data, to answer sub-questions B and C. The satellite data were used to 

produce a set of remotely sensed habitat variables, which can function as 

independent variables in predictive models. Each of these new independent 

variables will be outlined in the following section. 

 

IKONOS data were used in this study because they combine relative affordability 

(as opposed to airborne hyperspectral data) with high spatial resolution (as 

opposed to Landsat data). IKONOS data would therefore be a reasonable choice of 

remote sensing data for organisations or project with a serious desire to map one 

or more reefs in great detail (Andréfouët et al. 2003; Mumby and Edwards 2002). 

In addition to producing the set of remotely sensed habitat variables at the best 

spatial resolution IKONOS data offer, a subset of the IKONOS data limited to the 

spatial scales that would be available with Landsat TM data, was created by a 

simple coarsening of the spatial scale of each habitat variable to match the spatial 

resolution of Landsat data. The coarsening of the spatial scale was applied after 

derivation of each habitat variable, and therefore does not take into account the 

different classification accuracy, spectral resolution, or atmospheric and geometric 

accuracy that would have been achievable with a real Landsat dataset. It is thus 

likely to produce optimistic estimates of what would be obtained from real Landsat 

data. In the following, this subset of the IKONOS data, at Landsat TM spatial 

scales, is referred to as “simulated Landsat data”. 

 

4.3.1 Satellite imagery 

For each of the habitat variables measured in situ, it was considered whether it 

would be possible to estimate the variables using IKONOS data. Some variables, 
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e.g. coral growth forms, have been shown by previous investigations to influence 

the reflectance spectra when these are measured in situ, probably as a result of 

internal shading (Joyce and Phinn 2002; Minghelli-Roman et al. 2002). However, 

the internal shading is not always detectable (Holden and LeDrew 1999), and it is 

not clear how upscaling to airborne or satellite measurements could be achieved. 

Other variables, as described in chapter 2, are more easily mappable with remote 

sensing. This section describes the satellite imagery used in this study, the image 

processing applied, and the habitat variables derived from the imagery. 

 

Two IKONOS images were used for this study. The image covering Bawe Island 

(henceforth: Bawe image) was acquired on 31 October, 2005, at a 19º off-nadir 

angle, with nearly cloud-free conditions in the area of interest. The image covering 

Chumbe Island (henceforth: Chumbe image) was acquired on 20 October, 2007, at 

a 20º off-nadir angle, with perfectly cloud-free conditions in the area of interest. 

Both images were provided in GeoTIFF format, at full radiometric resolution (11 

bit), at a pixel size of 4 m, re-sampled from the original data using the cubic 

convolution method. Both images are cloud-free in the areas of interest, and 

recorded on days of good water clarity (features known to be at depths >10 m are 

distinguishable in both images). 

 

The Bawe image predates the field data by 2 years, whereas the Chumbe image 

was acquired during the period of field data collection. The coral reef on Bawe, and 

its fish community, may have changed during this two-year period, introducing an 

error when mapping the habitat variables of the reef, sampled in 2007, using this 

image. However, change on reefs happens slowly in the absence of major 

disturbances or phase shifts. No major disturbance, such as a severe storm, a 

mass bleaching event or a Crown-of-Thorns Starfish (COTS) outbreak, has been 

observed on Bawe in the period between October 2005 and October 2007. This 

absence of substantial disturbance justifies the use of the image in this study. 

 

4.3.2 Processing 

The two images were processed using very similar procedures, described in detail 

below. 
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4.3.2.1 Datum, projection, and geometric correction 

The choice of datum for this study was difficult. The Zanzibari government uses the 

Arc1960 datum, and therefore this datum is also adopted by Zanzibari research 

institutions and research produced by development projects carried out in 

collaboration with Zanzibari government partners. Most research by foreign 

research groups, however, is carried out using the WGS-84 datum, and this was 

also the datum used for the original satellite imagery. ArcGIS provides a tool for 

conversion between the two datums, but simple tests using this tool showed that it 

produced large errors in the areas of interest to this study. Ultimately, the difficulty 

with conversion meant that it was necessary to use the WGS-84 datum for this 

research. UTM was chosen as the projection and coordinate system. 

 

Geometric correction of both images was performed in ENVI (ITT Visual 

Information Solutions 2007), using more than 30 field-collected ground control 

points (GCPs) for each image. These were collected with a Garmin eTrex handheld 

GPS, with a typical absolute accuracy, as estimated by the GPS unit, of 5-7 m. For 

the Chumbe image, the panchromatic band was available in addition to the four 

monochromatic bands (Blue, Green, Red, Near-Infrared), and the higher resolution 

of the panchromatic band allowed more small and recognisable features to be used 

for GCPs, ultimately producing a very high rectification accuracy of RMSE=0.96 m. 

For the Bawe image, only the monochromatic bands were available, and a 

rectification accuracy of RMSE=2.52 m was achieved. Considering the absolute 

accuracy of the GPS unit, these rectification accuracies are very acceptable. 

 

4.3.2.2 Atmospheric correction 

Both images were atmospherically corrected to produce surface reflectance values 

using the Atcor2 algorithm as implemented in Geomatica (PCI Geomatics 2003) 

with the latest available calibration coefficients (Spaceimaging 2001). The use of 

advanced atmospheric correction algorithms (Atcor2 is based on MODTRAN code) 

can be problematic when lack of information about the state of the atmosphere 

requires the use of standard atmospheric models which may or may not be 

appropriate. For example, in some cases inappropriate parameterization can lead 

to obvious errors such as negative surface reflectance values. Simpler methods 

such as dark pixel subtraction may therefore be preferable. In this study, Atcor 2 

was implemented using the “Tropical Maritime” standard atmosphere, 20 km 
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visibility. The “tropical” is an obvious choice, and the coastal location of the study 

site, on the border between the Indian Ocean and the African landmass, justifies 

the “maritime” choice. The 20 km visibility was based on experience from the area 

(from Chumbe Island the African mainland is 25 km away and can be seen on rare 

occasions). The adjacency value was left at its default 1 km value. The resulting 

surface reflectance values were checked for negative values (there were none) and 

evaluated against typical values of recognizable substrate types, with which they fit 

well.  

 

4.3.2.3 Deglinting 

The images were then corrected for specular reflection of sunlight off the sea 

surface, also called sun-glint, a serious confounding factor for remote sensing 

when the sea surface is not flat. The method of Hedley et al. (2005) was chosen 

for its robustness and ease of application. This method is a modification of an 

original method (Hochberg et al. 2003a), which relies on the high absorption in 

water of Near-Infrared (NIR) radiation. The method assumes that NIR radiation 

recorded by the sensor is composed of specular reflection off the water surface, in 

addition to a small amount of ambient “noise”, and that the amount of specular 

reflection in other wavelengths is proportional to that found for NIR radiation. The 

exact proportional relationships between specular reflection in the NIR and other 

regions is found by calibration in an area of deep water, where no influence from 

the substrate is ensured, and then used to correct reflectance values in the non-

NIR bands in the entire image. 

 

4.3.2.4 Water column correction 

As sunlight passes through the water column, both before and after its reflection 

off the substrate, it is attenuated by dissolved and particulate matter in the water, 

and by the water itself. This attenuation depends on the water constituents and the 

depth. Attenuation reduces the intensity of the light, and because it is wavelength-

dependent it also changes the light’s spectral composition. Because the focus in 

remote sensing of coral reefs is typically the substrate, not the water itself, this 

attenuation needs to be corrected for. 

 

A simple and useful method to perform this correction was developed by Lyzenga 

(1978; 1981). The intensity of light will, according to Beer’s Law, decay 
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exponentially with increasing depth. Lyzenga’s method applies a natural logarithm 

to reflectance values recorded by the sensor, in order to linearise the relationship 

between reflectance and depth (radiance values could be used instead of 

reflectance values to achieve the same results). A well-defined substrate is then 

chosen, typically bare sand, and log-transformed reflectance values are derived, 

from two bands, from a range of depths. These values are then used to create a bi-

plot, where the values from the band with the longest wavelength are put on the x-

axis and values from the other band on the y-axis. If the water has been 

homogeneous in the area chosen, and the substrate well-defined, the points will 

form a line. The slope of this line equals the ratio of attenuation coefficients for the 

two chosen bands, and this ratio can be used to calculate Lyzenga’s depth-

invariant index (DII) of bottom type for all pixels in the image, using the following 

equation: 

 

 (eq.4) 

 

where R is reflectance values (unitless), i and j are the two bands in question, and 

ki/kj is the ratio of attenuation coefficients (units cancel out). The DII has been 

shown to improve the discrimination of bottom types on coral reefs (Mumby et al. 

1998), and has become a standard image processing component in remote sensing 

studies of nearshore environments (Green et al. 2000). The image-wide application 

of the DII assumed a homogeneous water body, an assumption that is clearly 

violated if turbidity varies, e.g. due to inputs from rivers or urban areas. However, 

without spatially distributed measurements of water constituents at the time of 

image acquisition, remote sensing of the benthos in areas of varying depth relies 

on this assumption, and it is up to the investigator to assess the feasibility of the 

approach. In this study, no heterogeneity was observed in the water for either 

image, and the water column correction was applied as described above. 

 

4.3.3 Substrate classifications 
Substrate classifications, often called habitat maps, were developed for each image 

using both the field data described above, and an additional set of field data 

collected purposely for substrate classification. 302 and 425 field observations 

were available for classification of the Bawe and Chumbe images, respectively. For 

each image, half of the field observations were used to develop a Maximum 
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Likelihood classifier (Figure 4.5 and Figure 4.6), and the other half was used to 

assess the accuracy of the resulting classification. The Maximum Likelihood 

classifier was chosen based on a comparison with Minimum Distance and 

Parallelepiped classifiers in which it produced the highest overall classification 

accuracy (79.5% vs. 72.1% for Minimum Distance and 70.8% for Parallelepiped, 

for Chumbe Island). 

 

 

Figure 4.5: Field sites used for classification of the Bawe image. 

 

The classes used for each image classification differ slightly, to reflect the 

difference in dominant substrate types on each reef. Both classifications used 

‘Deep Water’, ‘Dense Coral’ (>40% coral cover), ‘Sparse Coral’ (5%-40% coral 

cover), ‘Pavement’, ‘Sand’ (depth<5m) and ‘Deep Sand’ (depth>5m). In addition 

to these classes, ‘Dense Seagrass’ (aboveground seagrass biomass>250g/m2) and 

‘Sparse Seagrass’ (aboveground seagrass biomass 5-250g/m2) were added to the 
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Chumbe classification, as seagrass beds of varying density are found all around 

Chumbe Island. In addition, ‘Exposed Sand’ was added to the Chumbe 

classification, as the spectral signature of these areas differed substantially from 

sandy areas covered by even very shallow water. Neither seagrass nor exposed 

sand was found on Bawe, where instead the ‘Macroalgae’ class was included, as 

brown erect macroalgae were found to dominate the substrate in large areas. 

These classes were used to cover all ecologically important substrate types, and at 

the same time ensure a high spectral separability between the classes. 

 

 

Figure 4.6: Field sites used for classification of the Chumbe image. 
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Despite the use of the DII as the basis for the classifications, which would ideally 

avoid the need for a separate class for sand at greater depth, the ‘Deep Sand’ class 

was found to improve the identification of sandy substrates at depths greater than 

5 m. After classification both this class and the ‘Exposed Sand’ class were 

combined with the ‘Sand’ class to form a combined class for sand substrates 

regardless of depth. Based on the substrate classifications, a new independent 

variable was developed for each field site, to designate the substrate type at the 

site. 

4.3.4 Determination of geomorphologic zones 
The degree of reef development varies between different areas on the two reefs, 

but both reefs have one section of somewhat developed fringing reef, with areas 

that can be separated into those on or very near the reef crest, and those on the 

reef flat. On Bawe, this area extends along the northern and western sides of the 

island, and on Chumbe along the western side. A narrow forereef also exists, but 

coral growth ceases very rapidly with increasing water depth and the developed 

part of the forereef is typically only a few metres wide. It was therefore not 

included as a geomorphologic zone in this study. The reef could therefore be 

separated into three distinct zones, the reef crest, the reef flat, and areas with no 

recognisable reef zones. An independent variable was developed, to designate the 

geomorphologic zone that each field site was located within. 

 

4.3.5 Estimation of live coral cover 

Most studies involving remote sensing of coral reefs have mapped coral cover 

through a straight-forward classification separating “coral” or “coral-dominated” 

areas from other areas. Though such maps may be useful for some purposes, the 

inability to differentiate between areas with widely differing live coral cover would 

be a drawback in this study. Other studies have sought greater detail by defining 

multiple classes on the basis of coral cover. Isoun et al. (2003) used seven such 

classes and achieved a remarkable classification accuracy (77%), though this was 

only possible using narrow bands (10 nm FWHM) optimized for discrimination of 

reef benthos and captured from a low-flying aircraft. Newman et al. (2007) used 

four broader classes and two IKONOS images, and achieved classification 

accuracies of 78% and 81%. However, for this study a more detailed discrimination 

of live coral cover was desirable. Joyce (2004b) obtained such detail by developing 

correlations between live coral cover and reflectance ratios/derivatives obtained 
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from airborne hyperspectral data. She found that the optimum band 

ratio/derivative, i.e. the one producing the highest correlation with live coral cover, 

varied between blue and brown coral types (Hochberg et al. 2003b), but obtained a 

(Pearson) correlation coefficient of R=-0.76 between the optimum band ratio and 

live coral cover of both colour types, in shallow areas of Heron Reef, Australia. 

However, a band-ratio approach may suffer from the influence of several spectrally 

similar non-coral substrates such as seagrasses and algae. Spectral unmixing of 

hyperspectral data can in theory enable differentiation of these substrate types and 

produce a live coral cover estimate for individual pixels (Hedley and Mumby 2003; 

Hedley et al. 2004), but problems if depth variation and noise remain (Mumby et 

al. 2004b). Even if these are solved, spectral unmixing of these substrate types is 

only feasible using hyperspectral data, which are not currently available to most 

users. 

 

In order to achieve the highest level of detail in the mapping of live coral cover, 

while being limited to IKONOS data, this study applied an approach similar to that 

employed by Joyce (2004b). To produce a spatially distributed estimate of live 

coral cover, the DII was extracted from each field site where coral cover was 

higher than 5% (i.e. sites that formed the basis for the ‘Dense Coral’ and ‘Sparse 

Coral’ substrate classes described above). A linear model was then fitted to the two 

variables using half the data points, and the other half of the data points were used 

for accuracy estimation. The model was then used to produce estimates of coral 

cover for all pixels classified in the two coral classes, while pixels classified in non-

coral classes were excluded. This was carried out for the two reefs independently, 

as the relationship between the DII and live coral cover depends on the apparent 

optical properties of the water overlying the reef, and so must be calibrated 

individually for each image.  

 

The spatial scale of the live coral cover estimates was then varied by applying 

averaging filter of varying kernel sizes to the DII values on each reef. The remotely 

sensed live coral cover estimations at a range of spatial scales were added as 

independent variables in the set of remotely sensed habitat variables. Although 

these measurements are based on square pixel windows, the term “radius” has 

been used for consistency of description between variables. The “radius” of these 

windows is considered to be half the side length of the square. 
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4.3.6 Estimation of depth and rugosity 

Depth was calculated for each pixel using the ratio algorithm of Stumpf et al. 

(2003). This method, like the calculation of the DII, relies on the wavelength 

dependency of water attenuation. Longer wavelengths attenuate more rapidly 

(Mobley 1994), hence substrates located in deeper water will show a greater 

proportion of reflected light in shorter wavelengths. This property is used to 

develop a linear transformation of the ratio between log-transformed reflectances, 

using known depth values for calibration (Stumpf et al. 2003): 

 

 (eq.5) 

 

where R is reflectance (unitless), i and j are the two bands used for the depth 

estimation, and n, mo and m1 are manually tuneable constants. n is chosen to 

ensure only positive logarithms and a linear response with depth, m0 and m1 are 

optimized iteratively to minimize error. The ratio algorithm has been developed 

and tested to work on bottom types with different albedos, and is the state-of-the-

art method for bathymetric mapping with multispectral remote sensing data. In 

this study we used depth measurements from the same field observations used for 

the classification and its accuracy assessment to tune the constants. The remotely 

sensed depth estimation was added as an independent variable in the set of 

remotely sensed habitat variables. 

 

The structural complexity in different parts of the reef can be calculated by using 

the spatially distributed depth estimates produced by equation 5. In this study, 

structural complexity was quantified as area-based rugosity, calculated as the 

actual surface area divided by the area of a hypothetical flat surface covering the 

same area. This is a straight-forward three-dimensional extension of the two-

dimensional rugosity typically calculated in situ using the chain method (Luckhurst 

and Luckhurst 1978; Risk 1972). NOAA’s Benthic Terrain Modeler, based on 

algorithms by Jenness (2002), was used for the calculations. The Benthic Terrain 

Modeler builds a Triangulated Irregular Network (TIN) from the depth estimates 

produced by equation 5. For a given point in the TIN, the actual surface area is 

calculated using a 3x3 pixel window by adding the surface area of all portions of 

individual triangles that fall within the boundaries of the centre pixel (Jenness 

2002) (Figure 4.7). 
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Figure 4.7: A graphical illustration of the principle behind the rugosity calculations of the 
Benthic Terrain Modeler (Jenness 2002). 

 

The spatial scale of the rugosity estimates was varied by gradually coarsening the 

spatial resolution of the depth estimations. Rugosity estimates from each spatial 

scale were added as independent variables in the set of remotely sensed habitat 

variables. As for live coral cover, the term “radius” has been used for consistency 

of description between variables, considering the “radius” to be half the side length 

of the square. 

 

4.3.7 Estimation of habitat variety 

Habitat variety was derived from the substrate classifications described above, 

using two separate metrics, one simply calculating the number of substrate types 

within a given radius of the point (“habitat richness”), the other calculating 

Shannon’s diversity index (eq. 2) with pi being the proportion of the substrate type 

‘i’ within a set radius around the data point (“habitat diversity”). Focal statistics in 

ArcGIS were used to calculate habitat richness, and NOAA’s Diversity Calculator, an 

extension to ArcGIS, was used for the point-calculations of habitat diversity (Buja 

2008). For the habitat diversity calculations, the substrate classifications were first 
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transformed into vectorised polygons, with contiguous pixels of the same substrate 

class forming each polygon. Figure 4.8 illustrates the geometry of both measures 

of habitat variety. Unfortunately the Diversity Calculator was unable to calculate 

the habitat diversity measure for image layers, so a custom Python script was 

developed for this purpose. This script is available from the author on request 

(knudby@gmail.com). 

 

 

Figure 4.8: The geometry behind habitat variety calculations. Each colour represents a 
separate substrate type. With an IKONOS pixel size of 4 m, this example illustrates the 
calculation with a radius of 10 m. 

 

The values of both habitat variety metrics depend on the level of detail in the 

substrate classification used as input, as more classes will lead to higher values in 

both metrics. In addition, more detailed breakdown of density classes within a 

given substrate type (e.g. if five coral classes were used instead of two) will 

increase output values in areas with such substrate types (e.g. coral areas). Much 

manipulation is therefore possible when designing the substrate classification that 

forms the input of the habitat variety calculations. For this study, the substrate 

classes were chosen partly on the basis of spectral separability, without which the 

accuracy of the habitat maps decreases and all subsequent calculations similarly 

lose accuracy. In addition, classes were chosen to cover what was considered the 

ecologically important substrate types in the habitat maps, which can be 

considered necessary for subsequent derivation of ecologically meaningful habitat 

variety indices. 
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Due to the different number, and kind, of classes used in classifications of the two 

reefs, the variety indices are not perfectly comparable (Kendall and Miller 2008). 

However, the different number of classes reflects a real difference in the number of 

major substrate types present on each reef, and calculations based on the 

substrate classifications described above are therefore justified. The different kinds 

of substrates (macroalgae on Bawe and seagrass on Chumbe), will similarly 

influence the relationship between the variety indices and the fish community, as 

the two habitat types provide different contributions to the ecology of the reef. This 

issue has not been addressed here, but is worthy of further exploration. Neither 

has the uneven difference between substrate types been addressed (e.g. ‘Dense 

Coral’ is more different from ‘Exposed Sand’ than it is from ‘Sparse Coral’) (Mumby 

2001; Pittman et al. 2007). 

 

Table 4.1: List of variables derived from field data. Log-transformations indicated by *. 

Fish community In situ habitat Remotely sensed habitat 
Species richness Branching coral cover* Substrate class 

Biomass* Digitate coral cover* Geomorphologic zone 
Diversity  Massive coral cover* Depth 

 Encrusting coral cover* Live coral cover, 2-26 m radius 
 Foliose coral cover* Rugosity, 6-300 m radius* 
 Live coral cover Habitat richness, 5-80 m radius 
 Dead coral cover Habitat richness, 90-200 m radius* 

 
Number of coral growth 

forms* 
Habitat diversity, 5-10 m radius* 

 Turf algae cover* Habitat diversity, 20-60 m radius 
 Macroalgae cover* Habitat diversity, 70-200 m radius* 
 Total algae cover*  
 Sand cover*  
 Seagrass cover*  
 Rubble cover*  
 Pavement cover*  
 Other cover*  
 Coarse rugosity  
 Fine rugosity  
 Average depth*  
 Depth range*  
 Substrate diversity  
 Substrate evenness  
 Reef  
 Protection status  
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The spatial scale of the habitat variety estimates was varied by changing the radius 

used for their calculation. Habitat variety estimates at a range of spatial scales 

were then added as independent variables in the set of remotely sensed habitat 

variables. 

 

A visual assessment of frequency distribution was carried out for each remotely 

sensed habitat variable and log-transformations were applied as necessary to avoid 

extreme distributions. A complete list of the variables used in this study, and their 

transformation, is found in Table 4.1. 

4.4 Predictive models 
Two types of models were developed, some with explicit assumptions about the 

nature of the statistical relationship between independent and dependent variables 

(LM and GAM), others based on algorithmic model development with no prior 

assumptions about the nature of the relationship (tree-based models and the 

support vector machine) (Breiman 2001b). The models are described below. All 

models and related data processing were implemented in the free statistics 

software package “R” (R Core Development Team 2008), and its contributed 

packages. 

 

4.4.1 Linear Model (LM) 

As discussed in chapter 2, linear models are the most prominent in the literature 

relating measures of fish communities to their habitat. The linear model was here 

developed as a multiple linear regression model, as implemented in R’s ‘stats’ 

package (R Core Development Team 2008). The model is developed through 

combined forward and backward variable selection, and the Akaike Information 

Criterion (AIC) is used to determine variable inclusion/exclusion (Akaike 1974). 

 

4.4.2 General Additive Model (GAM) 

The general additive model is an extension of the LM, allowing individual 

independent variables to be transformed before addition to the model. Any 

transformation can theoretically be included in a GAM, however, in this study only 

cubic smoothing splines have been used. The transformations can improve the 

predictive model when relationships between habitat variables and the fish 
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community are non-linear. Also here the model is developed through combined 

forward and backward variable selection, and the AIC is used to determine both 

variable inclusion/exclusion and, if a variable is included, whether it should be 

included linearly or non-linearly. The transformations applied in this study are local 

spline smoothers of two equivalent degrees of freedom. Due to computational 

limitations, the number of independent variables for the GAM models had to be 

reduced to a maximum of 17. Exclusion of in situ variables was based on suspected 

co-linearities in the variables, and on results from the existing literature.  

 

Table 4.2: List of in situ and remotely sensed habitat variables excluded from GAM models. 

In situ and remotely sensed habitat variables omitted from GAM models 

Foliose coral cover Live coral cover (6, 14, 22 m) 

Encrusting coral cover Rugosity (12, 18, 24, 30, 60, 75, 

112.5, 225, 300 m) 

Algae cover Habitat diversity (5, 20, 30, 40, 60, 

70, 90, 100, 150, 175, 200 m) 

Pavement cover Habitat richness (all scales) 

Seagrass cover  

Other cover  

Substrate evenness  

 

The excluded remotely sensed variables were chosen to allow similar spatial scales 

to remain in the model. Remotely sensed habitat richness was completely excluded 

from the models to allow for a variety of habitat diversity scales to be included. 

The variables listed in Table 4.2 were excluded from this model type. The GAM 

model was implemented in R’s ‘gam’ package (Hastie 2008). 

 

4.4.3 Tree-based models 

A number of tree-based models have also been used in this study. Regression trees 

are constructed by recursively splitting the dataset into two subsets using any 

possible split, according to a decision rule such as achieving maximum 

homogeneity, typically defined as maximum reduction of RMSE. The partitioning is 

continued until a stopping criterion is met or until a partition consists of only one 

observation. The mean response value for each group is then assigned as the 

predicted value for all observations in the group. The ultimate size of the groups, 



 44 

and the number of splits, are determined by the model developer (De'ath and 

Fabricius 2000). Because of their structure, tree-based models deal efficiently with 

non-linearities including non-smooth functions, and they are also well suited to 

model interaction effects. However, they are also sensitive to small changes in the 

training data (Hastie et al. 2001), so a variety of methods have been used to 

stabilize them. Three of these have been employed in this study. 

 

4.4.3.1 Bagging 

The first tree-based method used here, called bootstrap aggregating (Bagging), 

trains multiple regression trees using bootstrap samples as training sets, and then 

averages the predictions from each tree to arrive at the bagged predictions 

(Breiman 1996). The Bagging model is implemented R’s ‘ipred’ package (Peters 

and Hothorn 2007), with 100 individual trees grown until their nodes are pure (i.e. 

consisting of a single observation). 

 

4.4.3.2 Random forest 

Another tree-based approach is the Random forest, which also trains multiple 

regression trees using bootstrapped training sets. However, Random forests differ 

from Bagging in that each split is determined using only a random sub-sample of 

the available independent variables (Breiman 2001a). The Random forest model is 

implemented in R’s ‘randomForest’ package (Liaw and Wiener 2002) with the 

default settings (500 trees, one third of the explanatory variables examined in 

each split). 

 

4.4.3.3 Boosted trees 

The last tree-based approach used in this study, Boosted trees, develops multiple 

regression trees by iteratively fitting new trees to the prediction errors of the 

existing tree assemblage. Existing trees are not changed through iterations, and 

the final model is a linear combination of all the trees in the assemblage (Elith et 

al. 2008). Hyperparameters for the Boosted trees (number of trees used and the 

‘shrinkage’ variable) were tuned with internal cross-validation, and the Boosted 

trees model is implemented using R’s ‘gbm’ (Generalized Boosted regression 

Models) package (Ridgeway 2007).  
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4.4.4 Support Vector Machine (SVM) 

The last model developed was the SVM, a novel machine-learning technique that 

can represent nonlinear effects and interactions between variables. It projects the 

explanatory variables into a higher-dimensional feature space, where the 

prediction problem has a linear solution (Moguerza and Muñoz 2006). The γ and ε 

parameters of the support vector machine are tuned automatically using an 

internal cross-validation procedure. We implement a complete grid search over 

(ε,γ), evaluating each parameter in 7 exponential steps from 0.001 to 1.0. The 

SVM model is implemented with libsvm in R’s ‘e1071’ package (Chang and Lin 

2009). 

 

4.5 Model comparison 
Models were processed for each dependent variable at the three spatial scales, 

using in situ data, IKONOS data, and simulated Landsat data. In addition, one set 

of models was developed using a combination of all datasets. The models were 

compared in terms of their prediction accuracy and precision. Accuracy was 

quantified as RMSE, and precision as standard deviation around the mean error. 

The models are known to be different because of their different structures, and a 

statistically significant difference between model accuracies would thus always be 

obtainable by increasing the number of model runs (Brenning 2009). Significance 

tests were therefore applied only to test whether the differences between models 

observed with the 100 repetitions used in this study were non-random. Paired t-
tests with unequal variances were used, and the Simes procedure was applied to 

keep the false-discovery rate (FDR) at the 5% level (Benjamini and Hochberg 

1995; Simes 1986). In addition, the models were compared in terms of their 

interpretability, specifically their ability to identify important independent variables. 

3 data points, the only ones classified in the ‘pavement’ substrate class, had to be 

removed from the processing based on remotely sensed data to avoid processing 

errors. 

 

4.5.1 Resampling methods 

Two resampling methods were used for accuracy estimation, boot-strap and cross-

validation (Efron and Tibshirani 1993). Resampling methods are used to provide 

most honest estimates of the prediction error that can be expected when a given 
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model is applied to new data – data that were not used to developed the model. 

Due to the issue of resampling with replacement in boot-strapping, which is a 

greater problem in relatively small datasets (here n=144), the results obtained 

using cross-validation are used as primary results, though results obtained using 

boot-strapping will be discussed when differing from the primary results. Estimates 

of prediction accuracy were calculated using methods as similar as possible given 

this range of model types, as explained below. 

 

4.5.1.1 Bootstrapping 

Boot-strapping addresses the problem of estimating how a predictive model will 

perform on a future, yet unknown, data set. This is done by generating 

independently samples training and test data sets, randomly drawing points from 

the original data set, with replacement, to until both training and test sets contain 

the same number of observations as the original data set. The training set is then 

used for fitting a model, and tested on the test set. The procedure is repeated a 

number of times, here 100, and the performance measure from each repetition is 

averaged to estimate the model’s predictive performance. In this study, predictive 

performance is quantified as the Root Mean Square Error (RMSE) of predictions. In 

each repetition, we use the same training and test samples for all modelling 

techniques so detecting pairwise differences in the performances of different 

techniques is a paired-sample problem. 

 

4.5.1.2 Cross-validation 

Because of the drawing with replacement involved in boot-strapping, a number of 

data points will be included in both the training and test sets, which is likely to 

overestimate the performance of the model on a future dataset. Another method, 

cross-validation, designates the training and test sets differently, with the aim of 

providing a more realistic estimation of the predictive performance of the model. In 

cross-validation, the dataset is split randomly into a number of groups (k) of equal 

size, here k=10 is used. A training set is then formed by combining all except one 

of these groups, with the last group forming the test set to derive performance 

measures (Efron and Gong 1983; Efron and Tibshirani 1993). In this way, the 

training and test sets contain completely different data points. Cross-validation 

thus works similarly to the approach typically taken with large data sets, 

separating the data into training and test sets, but it does so in a manner that 
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retains 90% of the total data for model development. This makes it less “wasteful”, 

particularly important to use with small data sets such as the one used in this 

thesis (n=144). As in bootstrapping, the procedure of splitting the data set into 

training and test sets and assessing prediction error is repeated 100 times, and the 

performance measure (RMSE) is averaged to get a true estimate of the 

performance of the model. 

 

4.5.2 Spatial autocorrelation 
Both fish and habitat data from coral reefs are almost certain to be spatially 

autocorrelated. If the spatial autocorrelation remains in the residuals of predictive 

models the assumption of independent and identically distributed residuals, 

fundamental to many statistical techniques, is violated (Dormann et al. 2007). This 

may bias parameter estimates for the individual models, and possibly relative 

model performance. In this study, we used semi-variograms to analyze the spatial 

autocorrelation of all model residuals, and found that is was negligible for all 

models.  

 

4.6 Identifying important habitat variables 
For ecological interpretation and practical conservation use of the fish-habitat 

models, it is important to identify the most influential habitat variables, i.e. those 

that have high predictive power in the models. These important aspects of habitat 

can then become targets for conservation management, or the subject of further 

ecological studies. However, there is no standardized measure of variable 

importance across the range of model types investigated here. For linear models, 

coefficients in the model can give a picture of the importance of each model in 

relation to its range of variation, but such measures are not available for other 

models. When using resampling methods as in this study, the frequency with which 

a given variable is included in the resulting model can be considered a measure of 

variable importance, which is applicable across the range of models (Brenning 

2009). However, the frequency of selection does not indicate the influence the 

variable has on model predictions. Several complications exist for an unbiased 

identification of important variables across this range of model types.  

 

In multi-variable models, the selection of an individual variable is influenced by the 

other variables present in the dataset, particularly those highly correlated to the 
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variable in question (Murray and Conner 2009). For example, three habitat 

variables in our dataset quantify an aspect of the physical structure of the reef 

(‘depth range’, ‘coarse rugosity’, and ‘fine rugosity’). Though these variables 

quantify slightly different aspects of physical structure, they are highly correlated, 

and when one of them has been included in a model the others are less likely to be 

included as well. Variable selection also depends on model structure, as predictor 

variables that exhibit non-linear relationships with response variables are more 

likely to be included in GAM than in LM models, and variables which may only 

become important through interaction effects are only likely to be included in tree-

based models. Finally, variable selection depends on the quantification of the 

variable, particularly in tree-based models where continuous variables are more 

likely to be selected than discrete or binary variables (Strobl et al. 2007), because 

of the much larger number of possible splits possible in continuous variables. 

 

Keeping these limitations in mind, variable importance is assessed in this study by 

permuting individual variables and quantifying the reduction of prediction accuracy 

caused by the permutations. This method can be standardized for all model types, 

and provides a direct measure of the influence of the information contained in the 

original variable values. A limited set of model types was used for the identification 

of important habitat variables. The LM model was selected because it is the most 

commonly used, the GAM because it illustrates the effect of non-linearity, and the 

Bagging model was chosen as the median-performing tree-based model (see 

chapter 5). 

 

4.7 Determining the characteristic scale of response 
Although determining the characteristic scale at which fish variables respond to the 

habitat was not necessary as input for the development of IKONOS-based 

predictive models, it provides valuable insight on its own. The scale at which a 

given habitat variable is most predictive of the fish community is likely to indicate 

the scale of the ecological processes that influence the community, such as daily 

migration distances, recruitment patterns etc. (Holland et al. 2004). Identification 

of these spatial scales is therefore important. However, caution must be taken with 

interpretation of the predictive ability of habitat variables on the aggregate 

measures of the fish community used here, as these communities are a composite 

of different fish species with different life histories and behaviours (Pittman et al. 

2007). The characteristic scale was derived by calculating correlations between the 



 49 

fish variables and remotely sensed habitat variables quantified at different spatial 

scales. The scale at which the remotely sensed habitat variables obtained the 

highest correlation with the fish variable was then designated the characteristic 

scale. Because many variables could not be transformed to approximate normality, 

Spearman rank order correlations were used for the calculations. Spatial 

autocorrelation of residuals was checked visually by examining semi-variograms. A 

list of variables used in this investigation is found in Table 4.3. 

 

Table 4.3: List of variables used for investigations of the characteristic scale of response. 

In situ habitat variables Remotely sensed habitat variables 

Coarse rugosity 
Fine rugosity 
Depth range 

Rugosity (6-300 m radius) 

Live coral cover Live coral cover (2-26 m radius) 

Substrate diversity 
Habitat richness (5-200 m radius) 
Habitat diversity (5-200 m radius) 

 

A similar investigation was carried out using in situ habitat variables as response 

variables. Although the correlations here must be assumed to decline with 

increasing difference between the spatial scales of the two measurements, the 

ability of IKONOS data to produce estimates of habitat variables measured in situ 

is important in itself. Not all remotely sensed variables were comparable to an in 
situ measurement (e.g. ‘Substrate class’), and not all in situ habitat variables had 

been estimated using the IKONOS data (e.g. ‘Number of coral growth forms’). A 

list of variables used in this comparison is found in Table 4.4. 

 

Table 4.4: List of variables used for comparison of remotely sensed and in situ habitat 
variables. 

In situ habitat variables Remotely sensed habitat variables 

Coarse rugosity 
Fine rugosity 
Depth range 

Rugosity (6-300 m radius) 

Live coral cover Live coral cover (2-26 m radius) 

Substrate diversity 
Habitat richness (5-200 m radius) 
Habitat diversity (5-200 m radius) 
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4.8 Summary 
The research presented in this thesis is based on the combination of three data 

sets and a wide range of methods for data processing and analysis, all of which 

have been described in this chapter. The three data sets include two that derive 

from fieldwork – the in situ fish data and in situ habitat data – as well as the 

remote sensing data which consist of two IKONOS images. Collection of both in situ 

data sets, as well as pre-processing of the IKONOS images, followed tried and 

tested methods. Fish data were collected at 144 sites using the point count 

method, and habitat data were collected for the same sites using a range of 

established methods including visual estimates of structural complexity and 

random point counts from substrate photos. From each of the raw data sets, a 

range of variables describing the fish community and the habitat was derived. The 

IKONOS-based estimation of depth, rugosity, and habitat richness and diversity 

was also based on established methods, while a linear regression approach, using 

Lyzenga’s depth-invariant index, was developed and tuned for each image to 

predict live coral cover. The spatial scale of all IKONOS-based estimates of habitat 

variables was then varied to determine the characteristic scale of response for each 

relevant variable pair. A range of new machine-learning approaches and traditional 

statistical models were employed to quantify fish-habitat relationships, and their 

predictive power and identification of important habitat variables were 

investigated. 
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CHAPTER 5: FISH-HABITAT RELATIONSHIPS 

In this chapter, we provide descriptive statistics of the fish communities and 

habitats of the two reefs, a comparison of the predictive models based on in situ 

data. We also derive habitat variables with relatively strong influences on the fish 

community, as well as investigate the influence variable type and model selection 

has on the identification of important variables. Together, this constitutes an 

answer to sub-question A.  

 

5.1 Fish communities and habitats on Chumbe and Bawe 

5.1.1 Fish communities 
The fish communities on the two reefs show marked differences, as would be 

expected from their different conservation status and the heavy fishing pressure in 

the area. Average biomass values for Chumbe are more than double those of 

Bawe, and major target species of the local fishery (Jiddawi and Ohman 2002) 

show even greater differences between the two reefs, with some families 

completely absent from Bawe (Table 5.1). Though these results depend on the 

location of the specific sites from which data for this study were collected and 

therefore cannot be taken as true means of the reefs, they agree with previous 

findings for the same reefs (Lanshammar 2004; Persson and Tryman 2003). 

 

Table 5.1: A comparison of average biomass values (g/100 m2) of sites on the two reefs, 
for commonly fished species. The top six families are all commonly fished. Serranidae and 
Balistidae are families with desirable target species, though their current rarity means that 
they constitute a small percentage of the local fishery. 

Family Chumbe Bawe Ratio 
Mullidae 180.0 74.9 2.4 

Siganidae 8.7 0 ∞ 
Lutjanidae 190.2 24.2 7.9 
Scaridae 359.3 56.4 6.4 

Lethrinidae 184.6 83.4 2.2 
Acanthuridae 402.3 13.1 30.6 

Serranidae 191.5 17.4 11.0 
Balistidae 89.9 0 ∞ 
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Differences in species richness were smaller, with an average of 17.5 species per 

site on Chumbe vs. 14.8 on Bawe, and the Shannon diversity measure was found 

to be practically identical, with 2.53 on Chumbe and 2.55 on Bawe. These results 

also correspond to findings of previous studies in the area (Tyler 2005). 

 

Table 5.2: Summary of minimum, mean and maximum values for each fish and habitat 
variable on the two reefs. 

Variable name 
Minimum 

(Bawe/Chumbe) 
Mean 

(Bawe/Chumbe) 
Maximum 

(Bawe/Chumbe) 
Fish species richness 0.0/0.0 14.8/17.5 30.0/38.0 

Fish biomass (g/100m2) 0.0/0.0 1454/3763 7796/24476 
Fish diversity 0.0/0.0 2.55/2.53 3.93/3.80 

Branching coral cover (%) 0.0/0.0 1.3/5.8 18.0/86.4 
Digitate coral cover (%) 0.0/0.0 12.8/8.4 62.4/64.0 
Massive coral cover (%) 0.0/0.0 10.5/9.2 83.2/44.8 

Encrusting coral cover (%) 0.0/0.0 1.4/2.4 8.8/24.8 
Foliose coral cover (%) 0.0/0.0 0.3/1.2 8.0/52.0 

Live coral cover (%) 0.0/0.0 26.4/29.8 83.2/92.0 
Dead coral cover (%) 0.0/0.0 24.6/6.5 92.0/48.0 

Number of coral growth forms 0.0/0.0 2.5/3.0 5.0/5.0 
Turf algae cover (%) 0.0/0.0 0.0/3.6 0.0/16.9 

Macroalgae cover (%) 0.0/0.0 0.4/0.8 11.2/20.0 
Total algae cover (%) 0.0/0.0 0.4/4.4 11.2/20.0 

Sand cover (%) 0.0/0.0 35.6/24.0 96.0/92.0 
Seagrass cover (%) 0.0/0.0 0.0/1.8 0.0/68.0 
Rubble cover (%) 0.0/0.0 7.2/5.2 44.0/57.6 

Pavement cover (%) 0.0/0.0 1.0/26.1 12.0/88.0 
Other cover (%) 0.0/0.0 4.8/1.6 83.2/18.4 
Coarse rugosity 0.0/0.0 1.4/1.7 4.0/5.0 

Fine rugosity 0.0/0.0 1.8/1.6 5.0/5.0 
Average depth (m) 0.6/1.4 3.0/3.6 8.9/10.1 
Depth range (m) 0.0/0.1 1.2/1.6 5.8/7.2 

Substrate diversity 0.17/0.28 0.98/1.16 1.50/1.84 
Substrate evenness 0.24/0.22 0.65/0.68 0.99/1.00 

 

5.1.2 Habitats 

A comparison of habitat variables also illustrates differences between the two 

reefs. The cover of live coral has marginally higher average values on Chumbe 

(29.8%) than on Bawe (26.4%); the opposite is true for dead coral cover. In 

addition, Chumbe has substantially higher average values of both pavement and 
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seagrass, the latter of which is completely absent from Bawe. Minimum, mean and 

maximum values for all variables are tabulated in Table 5.2. 

 

5.2 Prediction of the fish community from habitat 
variables 

Results from the 100 runs of each model, predicting values of each of the 

dependent fish variables from in situ habitat data, are presented in Figure 5.1. 

Results will be discussed primarily with reference to those obtained using the 

cross-validation resampling method, as this tends to produce more honest 

accuracy estimates with relatively small datasets (as this one, n=144) (Efron and 

Gong 1983), though results from both resampling methods are reported. 

 

 

5.2.1 Model accuracies 
All models perform better on average than a simple predictor that predicts the 

average value of the variables for all sites (Table 5.3). However, there is a 

substantial difference between the performances of the individual models. The 

model accuracies, expressed as the average RMSE (Figure 5.1), differ between 

resampling methods in that bootstrap resampling results in a lower average and 

larger range of RMSE values. However, the relative accuracy of each model type is 

generally consistent for the two resampling methods, with only the predictive 

models for biomass, resampled using the cross-validation method, differing 

markedly. 

 

Table 5.3: Average RMSE values for an 'average predictor' model. 

 Bootstrap Cross-validation 
Fish species richness 7.80 7.72 

(log) Fish biomass 0.670 0.628 
Fish diversity 0.811 0.792 

 

5.2.1.1 Description of model differences 

For all dependent variables and both resampling methods, the GAM model 

performs better than the LM, which is outperformed by all the other models except 

for one case (SVM predictions of biomass using cross-validation). The poor 
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performance of the LM, as opposed to the GAM, is an indication that non-linearity 

is common in the modelled fish-habitat relationships. This non-linearity is best 

illustrated by the individual relationships (Knudby et al. 2008), three examples of 

which are presented in Figure 5.2. 
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Figure 5.1: Results from 100 runs of the six models for each dependent variable. Results 
are shown using both cross-validation and bootstrapping resampling methods. 

 

 

Figure 5.2: Examples of non-linear relationships between fish species richness and three 
habitat variables. Similar relationships exist for the other two fish variables. Lines are 
inserted to aid interpretation. 

 

Except for the models predicting biomass using cross-validation resampling, all 

three tree-based models outperform both the LM and the GAM in terms of 

prediction accuracy. Tree-based models are known to be superior in dealing with 

interaction effects (Breiman et al. 1984; De'ath and Fabricius 2000), which are 

likely to occur in nearshore environments (Pittman et al. 2007). Two examples of 

interaction effects are illustrated here on partial plots, using the data from this 

study. At shallow depths (<4 m) there is no significant influence of conservation 

status on fish species richness, but at greater depths (>4 m) the effect is obvious 

and statistically significant (see Figure 5.3). This is probably partly due to the fact 

that most fishing (eliminated in protected areas) is conducted in the zone that 

naturally contains the greatest species richness – just off the reef edge where 

depths on the two reefs sampled here range from 4 to 10 m. A change with depth 

is also seen for the relationships between the variable ‘coarse rugosity’ and fish 

species richness (see Figure 5.4). At shallow depths (<4 m) there is a significant 

positive correlation between the two variables, but at greater depths (>4 m) this 

correlation weakens, with even a suggestion of negative correlation at the greatest 

depths (>6 m). 
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Figure 5.3: First example of an interaction effect. At shallow depths (<4 m) conservation 
status has no significant influence on fish species richness, whereas the effect is 
significant at greater depths (>4 m). 

 

 

Figure 5.4: Second example of an interaction effect. The variable ‘coarse rugosity’ has 
significant positive influence on fish species richness at shallow depths (<4 m), but not at 
greater depths (>4 m). 
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Of the tree-based models, the Random forest model is superior to the others, 

except for predictions of biomass using cross-validation. Random forests have 

previously been shown competitive with both Bagging and boosting (Breiman 

2001a), which is confirmed here. This is an important result because the use of 

Boosted trees recently has received attention in ecology (De'ath 2007; Elith et al. 

2008), including for prediction of marine fish community variables (Pittman et al. 

2007; Pittman et al. 2009). The SVM performed equally well or worse than the 

tree-based models for every dependent variable, and was consistently 

outperformed by the Random forest. 

 

However, the GAM, together with the Boosted trees, outperforms the other tree-

based models when predicting fish biomass. It is not clear why the GAM model 

performs better with fish biomass as response variable, or why the Boosted trees 

outperform the Random forest for this variable. Biomass, as opposed to the two 

other dependent variables, can be heavily influenced by a few large individuals at 

the site, or a large school entering the site during the period of observation. It is 

possible that the cubic smoothing splines applied in the GAM model are particularly 

suited to dealing with this issue, as opposed to the tree-based models’ binary 

splits, which only employ “greater than” and “less than” decision structures. 

However, the superiority of the GAM model for this particular dependent variable 

and resampling method warrants more detailed examination if confirmed with 

other datasets. It is also surprising that the choice of resampling method can 

influence relative model performance so strongly. 

 

5.2.1.2 Tests of difference between model prediction accuracies 

Results from the t-tests show that all except one model pair produce significantly 

different prediction accuracies (p < Simes-corrected α). Only the GAM and Boosted 

trees models for fish biomass were not significantly different. 

 

5.2.2 Model precision 

In addition to high accuracy, precision (stability) is a desirable characteristic for 

any predictive model. For prediction of fish species richness, the Random forest 

model achieved the lowest standard deviation of estimates (0.067), and can thus 

be considered the best predictive model both in terms of accuracy and precision. 

The SVM also achieved high precision (standard deviation of estimates=0.085). For 
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prediction of biomass, the SVM achieved the lowest standard deviation of estimates 

(0.008), followed closely by the Boosted trees (0.011), but differences were small 

between all models with Bagging showing the highest standard deviation at 0.016. 

For fish diversity predictions, three models achieved very similar precision, with the 

SVM, Bagging and the Random forest all having standard deviations of 0.011. For 

all of the dependent variables, the most accurate model is also one of the most 

precise. Although outliers exist (see Figure 5.1) none are extreme, and model 

selection can therefore be based on accuracy without compromising on precision. 

 

5.2.3 Finding the important habitat variables 
As a basis for interpretation only, correlations of individual habitat and fish 

variables (excluding ‘Conservation status’ and ‘Reef’) are presented in Table 5.4. A 

summary of variable importance, derived from the permutation of individual 

variables in models predicting each fish variable, is shown in Figure 5.5.  

 

Table 5.4: Correlation coefficients obtained between individual habitat and fish variables. 

Variable Fish species richness Fish biomass Fish diversity 
Branching coral cover 0.18 0.01 0.21 
Digitate coral cover 0.22 0.24 0.25 
Massive coral cover 0.34 0.22 0.21 

Encrusting coral cover 0.24 0.19 0.13 
Foliose coral cover 0.04 0.05 0.10 

# of coral growth forms 0.57 0.40 0.44 
Turf algae 0.21 0.15 0.16 

Macroalgae -0.07 -0.03 -0.17 
Depth 0.30 0.34 0.15 

Depth range 0.52 0.53 0.36 
Coarse rugosity 0.59 0.55 0.49 

Fine rugosity 0.34 0.26 0.37 
Substrate diversity 0.28 0.12 0.26 
Substrate evenness 0.08 -0.02 0.07 

Live coral cover 0.50 0.39 0.43 
Dead coral cover 0.14 -0.11 0.30 

Algae cover 0.14 0.11 0.04 
Sand cover -0.50 -0.34 -0.41 

Rubble cover -0.18 -0.08 -0.15 
Seagrass cover -0.16 -0.18 -0.17 
Pavement cover 0.01 0.12 -0.12 

Other cover -0.02 -0.03 -0.02 
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Figure 5.5: Summary of variable importance for all combinations of response variable, for 
LM, GAM and Bagging models. The boxes and whiskers in this and all similar figures are 
drawn to according to Tukey’s definitions. The centre-line marks the median value, the two 
ends of a box mark the first and third quartiles, whiskers mark end of 3/2 of the 
interquartile range, circles mark outliers (outside whiskers). 
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The ‘depth range’ variable is important for all combinations of response variable 

and model type, and indeed has the highest importance in 7 of the 9 combinations. 

The importance of other variables, however, differs substantially between model 

types and response variables. For all models of fish species richness, the ‘depth 

range’ variable is complemented by a series of variables with minor importance, 

including ‘depth’, ‘substrate diversity’, ‘live coral cover’, ‘number of coral growth 

forms’, ‘coarse rugosity’, ‘dead coral’, and ‘sand’. 

 

For the fish biomass response variable, substantial difference is seen between the 

model types. In the LM model, ‘conservation status’ is important along with the 

‘number of coral growth forms’, and a few other variables of minor importance. The 

importance of ‘conservation status’ for fish biomass is best explained by the local 

MPA effectively protecting large-bodied fishes, which are rarely seen outside the 

MPA boundary. The ‘number of coral growth forms’ is more likely to be a proxy-

variable describing proximity to the reef edge, where greater variety of coral 

growth forms is seen along with greater fish biomass (Knudby, pers. obs.). The 

same variables are important in the GAM model, whereas ‘conservation status’ has 

lost importance in the Bagging model and been replaced by ‘live coral cover’. These 

two variables are themselves closely related, as live coral cover is much higher 

within the MPA than outside it. 

 

Models of fish diversity show greater differences in variable importance. A number 

of unsuspected variables are important in the LM model, such as ‘algae’, ‘turf 

algae’, and ‘dead coral’, along with ‘depth range’ and a series of variables with 

minor importance. The two variables related to algae cover have most likely 

become important in the LM because their distributions are far from normal, and 

the permutations are therefore more likely to cause a dramatic effect on 

predictions, particularly with the RMSE used as measure of model performance. 

The algae variables lose importance in the GAM model, probably because its 

transformation of these skewed variables limits the impact of permutations, and in 

the Bagging model which is less sensitive to extreme values. In the GAM model, 

‘depth range’ is again the most important variable, followed by ‘dead coral’ and 

‘coarse rugosity’. The ‘depth range’ variable is even more dominant in the Bagging 

model, along with ‘live coral cover’ and ‘dead coral’ which both have minor 

importance. 
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5.3 Discussion 

5.3.1 Model types 

The comparison of model accuracies demonstrates the improvement in predictive 

performance that can be achieved with models that are able to incorporate non-

linear relationships and interaction effects. The only difference between the LM and 

GAM models is the ability of GAM models to incorporate non-linear transformations 

of the input data, and this lead GAM to consistently outperform LM in this study. 

This is not surprising given known linearities in individual fish-habitat relationships 

(Knudby et al. 2008), but points to the importance of accepting and incorporating 

non-linearities when modeling fish-habitat relationships.  

 

Similarly, the superiority of the tree-based models for predicting fish species 

richness and diversity suggests that incorporation of interaction effects is important 

and leads to higher prediction accuracy. The other feature that distinguishes the 

tree-based models is their reliance on binary splits rather than continuous 

functions. The models’ relative performance suggests that this structure may be 

beneficial for modeling fish species richness and diversity, but not fish biomass. 

Compared to the other response variables, fish biomass has more extreme values, 

caused by the presence of a few large individuals or a school of medium-sized 

fishes passing through a site during data collection. The “larger than or smaller 

than” decision rules used in tree-based models are unable to successfully predict 

these extreme values, and the ability of the GAM model’s smoothing splines to do 

so may be the reason for its superior performance in the prediction of the fish 

biomass variable. The reason for this difference may ultimately lie in the better 

ability of the less flexible GAM to extrapolate relationships learned on cross-

validation samples with some spectrum bias towards smaller fish. Spectrum bias 

between training and test samples is more likely to occur in partitioning 

approaches such as cross-validation than in bootstrapping, i.e. simulating 

independent random sampling. This might help explain the differences in error 

estimation results between cross-validation and the bootstrap in the case of fish 

biomass. 

 

To my knowledge, this study is the first to compare a range of predictive modelling 

techniques for coral reef fish community variables, but similar comparative studies 

have been conducted in forest environments. Moisen and Frescino (2002), studying 

a variety of discrete and continuous response variables describing forest state, 
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found that GAM and Multivariate Adaptive Regression Splines (MARS) both 

outperformed regression trees in all performance measures, however, no ensemble 

technique was used for the regression trees. Another study by Moisen et al. (2006) 

found that boosted trees outperformed both GAM and individual regression trees 

for predictions of tree basal area. Prasad et el. (2006) evaluated single regression 

trees against bagging and random forests as well as mars, and found that both 

bagging and random forests outperform the other models for predicting basal area, 

with random forests outperforming bagging slightly. These studies reinforce the 

necessity of applying ensemble techniques to regression trees, but do not provide 

a strong foundation for general conclusions about the relative performance of 

model types. Several comparison studies also exist for species distribution 

modelling (e.g. Elith et al. 2006; Guisan et al. 2007). Although these are not 

directly comparable because of their binary response variables and different 

performance measures, they lend some support to the strong performance of tree-

based ensemble techniques. 

 

5.3.2 Important variables and model types 

To my knowledge, this study is the first to use a permutation-based approach to 

assess variable importance across a range of multi-variable model types. This 

approach was inspired by the need to derive a measure of variable importance 

applicable to all the structurally different model types used in this study, some of 

which are gaining increasing popularity in the ecological modelling community. A 

similar approach is implemented in R’s ‘randomForest’ package, and has 

successfully been applied to support vector machines (Taylor 2009). More specific 

variable importance measures exist for individual model types. For example, 

variable importance can be derived for linear models by comparing the coefficients 

of determination of individual predictor-response variable pairs, or through a range 

of methods designed for linear multi-variable models (Graham 2003; Murray and 

Conner 2009), however, these methods are not applicable to GAMs. For tree-based 

models, variable importance can also be measured as the reduction in prediction 

error achieved by the split at each node (Friedman 2001). This measure can be 

averaged for ensemble techniques, as implemented in R’s ‘gbm’ package, but is 

only applicable to tree-based models. We propose a wider adoption of a 

permutation-based approach to assessing variable importance due to its 

transparency and applicability across model types. 

 



 63 

Keeping in mind the limitations involved in determining variable importance, the 

comparison between response variables and model types reveals a difference in 

the number of variables each model identifies as important. The LM model 

identifies the greatest number of important variables. This is most likely due to its 

sensitivity to non-normally distributed variables, whose extreme values cause large 

areas when the variables are permuted and are therefore identified as important. 

The importance of ‘algae’ and ‘turf algae’ in determining fish diversity is neither 

supported by other studies, nor by the GAM and Bagging models, and must be 

considered artifacts arising from the combination of methods used to determine 

variable importance and the specific frequency distributions of the variables in the 

dataset used. The Bagging model identifies fewer important variables than the 

GAM, and seems to have a bias towards continuous (as opposed to binary or 

discrete) variables, as has been shown for Random forests (Strobl et al. 2007). The 

‘live coral cover’ variable has probably been preferred over ‘conservation status’ in 

the Bagging model of fish biomass because it is continuous, as opposed to the 

binary ‘conservation status’ variable. This allows a large number of possible splits 

in the regression trees, as opposed to only one possible split for a binary variable. 

A similar situation is seen for the fish diversity models, where the importance of 

the ‘depth range’ and ‘live coral cover’ variables (both continuous) are increased in 

the Bagging model as opposed to the GAM, while the importance of the ‘coarse 

rugosity’ and ‘number of coral growth forms’ variables (both discrete) are 

decreased, along with the ‘depth’ variable. Identified variable importance is thus 

dependent on the set of variables included in the dataset, their frequency 

distribution, their scale of measurement and number of categories, and on the 

model type. These dependencies are rarely mentioned in the literature, possibly 

because a standardized tool for comparison, such as the permutation-based 

approach used here, has not previously been available. Given the potential use of 

“important variables” as conservation targets or objects of further scientific inquiry, 

the influence on model type on variable importance needs to be studied further. 

 

The range of model types available and their relative predictive performance, as 

well as the intricacies of determining variable importance, are important for the 

practical use of predictive models. In the oceans, where large data sets are costly 

to obtain and the distributional patterns of species and ecological relationships 

between organisms and their environment must often be inferred from the limited 

available data, predictive models are crucial as input to conservation management 

(Leathwick et al. 2006). Our results, based on coral reefs with their high 
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biodiversity and numerous interactions, provide strong support for the use of tree-

based ensemble techniques when developing predictive models in such 

environments. Given the relative ease of developing these models in freely 

available software, practitioners are no longer forced to rely on simplistic linear 

models for modelling of their highly complex environments. The one problem 

caused by the use of ensemble techniques is a loss of interpretability, otherwise a 

strength of regression trees. This is only partly compensated by the variable 

importance measure, and it is suggested that individual regression trees be created 

and visualized for better interpretation of model structure and interaction effects. 

 

5.3.2.1 The influence of conservation status 

The positive effect of effective protection (e.g. through MPAs) on fish community 

variables has been shown in numerous studies (Halpern 2003). These studies use a 

variety of sampling designs, habitat and fish variables, and analytical models, and 

comparison between individual studies is therefore difficult. Previous studies 

conducted on the reefs around Chumbe Island and nearby areas  show a positive 

effect of Chumbe Island Coral Park on both fish biomass and species richness 

(Lanshammar 2004; Tyler 2005), though substantial habitat differences between 

protected and unprotected areas make firm conclusions difficult to draw. The 

influence of protection on fish species richness is not supported by the results 

presented in this study, as the ‘Conservation status’ variable was not identified as 

important by any of the three model types. The influence on fish biomass, 

however, is supported, although the magnitude of the ‘Conservation status’ 

variable’s influence on biomass is strongly dependent on model type (see Figure 

5.5). The difference between the importance of this variable in the three models of 

fish biomass illustrates the complexity of assessing the importance of a single 

variable in an environment as complex as a coral reef, but it is worth noting that 

the importance of this variable is substantial in the most accurate model (GAM). 

Furthermore, the importance of ‘Live coral cover’ in the Bagging model can be 

considered an indirect support for the importance of protection, since the fishing 

methods used in the area influence live coral cover negatively, and the high coral 

cover inside the protected area is thus likely to partly be a result of protection from 

fishing. 
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5.3.2.2 Comparison with findings from other studies 

Keeping in mind the limitations of the methods used to find important/influential 

habitat variables as well as the range of variables and methods used in other 

studies, comparison between the habitat variables identified as important in 

different studies is not straight-forward. Results from a number of studies point to 

three variables that have repeatedly been found to influence reef fish communities 

– depth, structural complexity, and live coral cover. 

 

In this study, ‘depth’ was found to have a minor influence in LM and GAM models 

of fish species richness and diversity, but not biomass. This supports its importance 

for these two response variables (Friedlander and Parrish 1998; Huston 1994), but 

its exclusion from all Bagging models (which produce superior prediction accuracies 

for the two response variables in question) suggests that the inclusion of ‘depth’ in 

LM and GAM models may be a result of the relative simplicity of these model types, 

rather than a result of the importance of the ‘depth’ per se. Paradoxically, ‘depth’ is 

known to control the relationship between other variables (see Figure 5.3 and 

Figure 5.4), which should increase its importance in the Bagging model type. The 

geomorphologic structure of the reefs around Chumbe and Bawe islands may also 

explain the limited importance of depth in this study. Both reefs consist of a 

relatively extensive shallow reef flat area, a narrow reef crest, and a very limited 

fore reef. Most depth variation therefore exists between the sites on/near the reef 

crest and those on the reef flat, and several other variables, including those 

quantifying structural complexity and coral cover, are likely to also discriminate 

between these two parts of the reef. 

 

Structural complexity, quantified most effectively in this study as ‘depth range’, 

was an important variable in all models for all response variables, which supports 

previous findings (Friedlander and Parrish 1998; Luckhurst and Luckhurst 1978; 

Risk 1972). Although not measured using the exact same methods and over the 

same spatial scales, the results presented here also support those of McCormick 

(1994), who found that substratum height difference, compared to other measures 

of structural complexity, correlated strongly with fish community variables. 

However, the continuous nature of the variable, as opposed to the two discrete 

variables used as alternative measured of structural complexity (‘fine rugosity’ and 

‘coarse rugosity’) may also be the reason for the importance of the ‘depth range’ 

variable over the other two. 
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Live coral cover was identified as important, though weakly, in all models of 

species richness, and Bagging models of all response variables. The model-

independent influence on species richness provides strong support for the influence 

of this variable, and is probably best explained by the live coral both providing food 

for corallivorous fishes (Garpe and Ohman 2003) and creating a fine-scale 

structure on the reef that provides shelter space for small fishes and juveniles of 

larger species (Lindahl et al. 2001). Its inclusion in Bagging models of both fish 

biomass and diversity, but not in the LM and GAM models for the same response 

variables, suggests that it is correlated with other variables and that the choice of 

variable to be included depends on model type, possibly on the basis of variable 

type (continuous, discrete or binary). Likely competing habitat variables are 

‘Conservation status’ for the biomass models, and ‘coarse rugosity’ or ‘number of 

coral growth forms’ for the diversity models. These variables are all discrete or 

binary, and are all identified in the respective LM and GAM models, but not (or only 

with very limited importance) in the Bagging models. 

 

In addition to these three variables, the ‘number of growth forms’ and the ‘dead 

coral cover’ variables were identified as important in some models. The ‘number of 

coral growth forms’ has previously been identified as important for the abundance 

of damselfishes (Ormond et al. 1996), whereas in the models presented here it 

was identified as influencing biomass. The causality behind this relationships is 

speculative, but it may be caused by the ‘number of coral growth forms’ 

functioning as a proxy for the distance to the reef edge, a zone where both the 

‘number of coral growth forms’ and the ‘fish biomass’ variable have high values. 

 

The variable ‘dead coral cover’ has been found to influence other aspects of the 

fish community such as the abundance of wrasses (Garpe and Ohman 2003), 

whereas it was identified as important for fish diversity in the results presented 

here. The causality behind this relationship is also speculative, and warrants 

further investigation. 

 

Other variables were also identified as important in LM models (the ‘algae’, 

‘macroalgae’ and ‘turf algae’ variables, as well as ‘encrusting coral cover’ and 

‘substrate diversity’). Although these variables may have real influence on the fish 

community, the fact that they are only identified as important in the LM models 
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suggests that their importance is an artifact caused by their non-normal 

distributions and the LM model structure. 

 

5.4 Summary 
Sub-question A was “What is the statistical nature of fish-habitat relationships?”. 

The results presented in this chapter show that the relationships are complex, non-

linear and involves interactions between several habitat variables. However, they 

also illustrate that with data on the right habitat variables it is possible to develop 

predictive models of the fish community that significantly outperform an average-

predictor. The complexity of the fish-habitat relationships leads tree-based 

ensemble technique to outperform the other model types tested here. 

 

The chapter also presented an assessment of the influence each habitat variable 

has in predicting the fish community variables. Care must be taken when assessing 

the importance of individual habitat variables because of collinearity between 

them, particularly if using models that assume linear relationships or no interaction 

effects. Nevertheless, our results point to the importance of several variables also 

identified in other studies. In our bagging model, structural complexity quantified 

as ‘depth range’ is the main habitat influence on the fish community, although 

minor influences are seen from conservation status, coarse rugosity, live coral 

cover, dead coral cover, and the number of coral growth forms. ‘Conservation 

status’, of particular interest because MPAs are the primary management tool 

limiting human impacts on reef fish communities, has minor importance on fish 

biomass, and virtually no influence on species richness or diversity. ‘Reef’, the 

variable describing the location of a field site, has virtually no influence. This is 

encouraging because it suggests that extrapolation of predictions to reefs not 

sampled during fieldwork, although untested, could be feasible.  
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CHAPTER 6: REMOTE SENSING OF HABITAT 
VARIABLES 

In this chapter we examine the accuracy with which some habitat variables 

measured in situ can be estimated with the use of IKONOS imagery. The results 

provide a first indication of the utility of remote sensing for spatial predictions of 

the fish community. Secondly, in order to investigate the optimum spatial scale at 

which these variables can be remotely sensed, the spatial scale of remote 

observations is varied and the influence of this variation on estimates of both in 
situ habitat variables and fish community variables is investigated. This provides 

an answer to sub-question B. 

 

Only a few of the habitat variables measured in situ are investigated in this 

chapter, as several of them are not feasible to estimate with IKONOS data, or with 

any other currently available remote sensing data. Estimations may be obtained for 

some of these “difficult” variables (e.g. the number of coral growth forms), but 

only indirectly through correlations with other variables that lend themselves more 

to remote estimation (e.g. live coral cover). This chapter will focus on those habitat 

variables that have the potential to be estimated directly using IKONOS imagery. 

Although the classification of substrate types around the two islands was not in 

itself an important result of the study, it is also presented in this chapter because it 

forms the basis for both the mapping of live coral cover and habitat variety, both 

variables discussed later in the chapter. The substrate maps of Bawe and Chumbe 

that are the results of the classifications are shown in Figure 6.1 and Figure 6.2, 

respectively. 
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Figure 6.1: Result of Maximum Likelihood Classification, Bawe Island. Note scale difference 
between Figure 6.1 and Figure 6.2. 
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Figure 6.2: Result of Maximum Likelihood Classification, Chumbe Island. Note scale 
difference between Figure 6.1 and Figure 6.2. 
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6.1 Remote sensing of live coral cover 
As outlined in chapter 4, a linear model was developed for each IKONOS image, 

and hence for each reef, predicting live coral cover values from the depth-invariant 

index. A scatterplot showing the relationship between these two variables for each 

reef is shown in Figure 6.3. It is clear from the figure that the difference in image 

attributes such as viewing geometry and water turbidity at the time of image 

capture causes a different specific relationship between the two variables. The two 

linear models were then used to predict live coral cover for each pixel classified as 

either ‘sparse coral’ or ‘dense coral’ on each reef, as shown in Figure 6.4 and 

Figure 6.5. Pixels not classified in either of those two categories were assumed to 

have no live coral cover. The use of linear regression with a response variable in 

percentage units may introduce bias, especially given the relative prevalence of 

values near 0%. However, we feel that the good fit, reasonable spread of live coral 

cover values in the field data, and the fact that the regression is only applied in 

areas classified as coral cover, justify the use of linear rather than logistic 

regression. 
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Figure 6.3: Linear relationships between the depth-invariant index and live coral cover on 
the two reefs. 

 

 

Figure 6.4: Spatially distributed prediction of live coral cover for Bawe Island. Coral areas 
are shown in red, overlaid on a true-color composite of the original data. 
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Figure 6.5: Spatially distributed prediction of live coral cover for Chumbe Island. Coral 
areas are shown in red, overlaid on a true-color composite of the original data. 
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6.1.1 Accuracy of IKONOS-based live coral cover estimates 

In order to assess the accuracy of the live coral cover estimates, two separate 

issues must be taken into account. First the accuracy of the classification must be 

considered with respect to the coral areas, and secondly the quantitative estimate 

of live coral cover within the areas classified as coral must be estimated. 

 

6.1.1.1 Assessing the classification accuracy 

The confusion matrices for both classifications are presented in Table 6.1 and Table 

6.2. As a function of limited time and equipment for fieldwork, the number of 

samples per class available for accuracy assessment is substantially lower than the 

50 suggested as a rule of thumb by Congalton (1991). This questions the 

confidence one can have in the assessment. However, a reverse use of the two 

datasets (using the test data for classification and the classification data for 

accuracy assessment) provided similar results, in support of the accuracy 

assessment reported here. The relatively small study area also means that the 

number of data points collected provided a reasonable coverage of the area (see 

Figure 4.5 and Figure 4.6). 

 

In order to assess the coral areas together, the two coral classes are combined into 

one, and the user and producer accuracies are calculated for the combined classes. 

On Bawe, the producer accuracy, i.e. the fraction of actual coral pixels classified in 

one of the two coral classes, was 87.0%. The user accuracy, i.e. the fraction of 

pixels classified in one of the two coral classes that actually contain coral, was 

80.0%. On Chumbe, the values were 92.6% and 62.5% respectively, indicating an 

overestimation of the total coral area. The confusion matrix for Chumbe (Table 

6.2) reveals that the low user accuracy for Chumbe is due to substantial confusion 

between sparse coral and sparse seagrass. Investigation of the 10 points that 

actual contain sparse seagrass but are classified as coral (italicized in Table 6.2) 

reveals that these points are all located in the area immediately southeast of 

Chumbe Island (see Figure 6.5), where the patchy nature of the substrates made 

contextual editing unfeasible. It is therefore likely that a substantial part of the 

area classified as coral in that part of the image is actually covered by seagrass. 

Given the dominance of chlorophyll a absorption from both corals and seagrasses, 

the relatively low cover values that both classes represent, and the range of the 

classes (5-40% coral cover and 0-250 g/m2 aboveground seagrass biomass, 
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respectively), the difficulty in discriminating between these two classes is not 

surprising. However, around Bawe, and in most areas around Chumbe, the areas 

dominated by coral have been mapped with an accuracy that compares favourably 

to other studies (Andréfouët et al. 2003; Mumby et al. 2004c). 

 

Table 6.1: Confusion matrix for classification of shallow-water habitats around Bawe 
Island. Field data in columns, classification results in rows. 

 
Pave-
ment 

Shallow 
Sand 

Deep 
Sand 

Sparse 
Coral 

Dense 
Coral 

Macro-
algae 

Deep 
Water 

Total 

Pavement 7 0 0 1 0 4 0 12 
Shallow Sand 0 20 0 2 0 0 0 22 

Deep Sand 0 0 39 0 0 0 0 39 
Sparse Coral 1 2 0 6 2 0 0 11 
Dense Coral 0 0 0 2 10 0 2 14 
Macroalgae 1 0 0 0 0 30 0 31 
Deep Water 0 0 0 0 0 0 20 20 

Total 9 22 39 11 12 34 22 149 

 

 

Table 6.2: Confusion matrix for classification of shallow-water habitats around Chumbe 
Island. Field data in columns, classification results in rows. 

 
Pave-
ment 

Exposed 
Sand 

Deep 
Sand 

Sparse 
Coral 

Dense 
Seagras

s 

Sparse 
Seagras

s 

Shallow 
Sand 

Dense 
Coral 

Deep 
Water 

Total 

Pavement 34 0 0 0 0 12 0 0 0 46 
Exposed Sand 0 7 0 0 0 0 0 0 0 7 

Deep Sand 0 0 22 0 0 0 0 1 0 23 
Sparse Coral 1 0 0 11 2 10 0 4 0 28 

Dense 
Seagrass 

0 0 0 0 9 2 0 0 0 11 
Sparse 

Seagrass 
2 0 0 0 5 23 0 0 0 30 

Shallow Sand 0 0 0 0 0 2 24 0 0 26 
Dense Coral 0 0 0 1 0 1 0 9 0 11 
Deep Water 0 0 0 0 0 0 0 0 28 28 

Total 37 7 22 12 16 50 25 14 28 210 

 

 

6.1.1.2 Assessing the accuracy of live coral cover estimations 

Within the areas classified as coral, live coral cover was estimated with an RMSE of 

21.65 percentage points on Bawe (Pearson R=0.49), and an RMSE of 18.32 

percentage points on Chumbe (Pearson R=0.76). Though the results from Bawe 

show a significant correlation between real and predicted live coral cover 
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(p=0.003), the predictive power of the model is only slightly better than that of an 

“average-predictor” (RMSE of 23.50 percentage points). This poor performance is 

mainly attributable to the inclusion of two data points from the area of dense coral 

immediately southwest of Bawe Island. At the time of fieldwork, this area was 

dominated by rubble and recently settled soft corals, suggesting that a recent 

disturbance had killed what hard coral was there, and re-colonisation of the 

substrate was ongoing. Although this area therefore was likely to have contained 

relatively dense coral cover at the time of image acquisition (2 years before 

fieldwork), the high values of coral cover predicted by the depth-invariant index 

were not present in the field data. Excluding these two points from the analysis 

would yield an RMSE of 16.77 percentage points for Bawe (Pearson R=0.69). The 

results from Chumbe compare more favourably with an “average-predictor” (RMSE 

of 29.96 percentage points). The results also compare reasonably well to those 

obtained by Joyce (2004b) (Pearson R=-0.76), especially considering that she used 

airborne data with spectral bands tuned to optimize water penetration and 

differentiation between typical coral reef substrates. 

 

The most likely explanation for the ability of IKONOS data to predict live coral 

cover around Bawe and Chumbe islands, despite the acknowledged difficulties 

associated with multispectral satellite data for this purpose, is the low cover of 

spectrally similar substrates such as algae and seagrasses within the areas 

classified as coral. In addition, turbidity is low in both images, and the analysis is 

limited to areas with a maximum depth of 10.1 m due to the fact that coral 

development in the area is very limited below this depth. 

 

6.1.2 Live coral cover estimates and their spatial variation 

The influence of the spatial scale of IKONOS-based estimations of live coral cover 

is shown in Figure 6.6. The correlation with in situ estimates of live coral cover 

drops gradually as the spatial scale of IKONOS-based observations is increased 

beyond the 6 m radius. This is not surprising, since the spatial scale of the 

IKONOS-based observations becomes increasingly different from that of the in situ 

observations, which are based on substrate photos from the 5 metre-radius field 

site. 
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Figure 6.6: Correlations between IKONOS-based live coral cover estimates and in situ 
estimates of live coral cover, fish species richness, fish biomass and fish diversity, 
respectively. Spearman rank correlation coefficients shown on y-axis. 

 

With only slight differences, similar trends are seen for correlations with the three 

fish variables. Compared to in situ live coral cover estimates, all correlations with 

fish variables are reduced when live coral cover is estimated from the IKONOS data 

(compare with Table 5.4). The trends illustrate that the reduced accuracy of 

IKONOS-based estimates affect the correlations with the fish variables, even when 

estimates are made at a similar spatial scale. More importantly, they illustrate that 

it is the coral cover in the immediate vicinity of the field site (e.g. within the 5 
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metre radius used in this study) that influences the fish community and that coral 

beyond this radius is of limited importance. 

 

A likely explanation for this is that those fishes most dependent on the coral cover 

fall into two groups, the obligate corallivores that depend on the coral for food, and 

the herbivorous damselfishes that depend on the coral for shelter. Both these 

groups have limited mobility and are therefore little influenced by coral cover more 

than 5 m away from the centre of their territory. 

 

6.2 Remote sensing of depth and rugosity 
As outlined in chapter 4, remotely sensed estimates of depth form the foundation 

of rugosity estimates, and their precision is therefore paramount. In situ depth 

measurements were estimated from the IKONOS imagery with an RMSE of 1.07 m 

(R2=0.73), which is in the range of previously reported results (Lyzenga et al. 

2006; Muslim and Foody 2008; Purkis et al. 2008; Stumpf et al. 2003; Su et al. 

2008). Several issues reduced the accuracy with which depth could be estimated in 

our study. The original IKONOS data contained a substantial amount of noise, and 

the study area contains a range of substrate types that differ strongly in spectral 

reflectance characteristics. This creates a difficult situation for remotely sensed 

depth estimation, only partly mitigated by existing methods (Su et al. 2008). In 

addition, the geolocation accuracy of the field sites (5-7 m) is a problem that may 

not have been completed resolved by the correction of GPS coordinates. 

 

Remotely sensed estimates of rugosity differ between the in situ measures. At the 

6 m radius, the depth range was estimated best (R2=0.46), with both coarse 

rugosity (R2=0.28) and fine rugosity (R2=0.13) obtaining substantially lower 

coefficients of determination. Despite these relatively low values, all predictors 

performed substantially better than average-predictors when considering the RMSE 

values of predictions (1.08 vs. 1.59 for depth range, 1.02 vs. 1.20 for coarse 

rugosity, and 1.34 vs. 1.44 for fine rugosity). 

 

6.2.1 Rugosity estimates and their spatial variation 

The influence of the spatial scale of depth estimates was not investigated in a 

manner similar to that of live coral cover estimates, but rugosity estimates were 

derived from depth estimates at a range of scales. The remote estimations of 
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rugosity and live coral cover differ in one important aspect. Estimates of live coral 

cover were formed by a simple averaging of the mapped live coral cover in the 

area in question, whereas the estimates of rugosity are calculated by a gradual 

coarsening of the pixel size. This coarsening will progressively reduce the 

importance of fine-scale depth variations (e.g. from large coral heads on the reef 

flat) while increasing the importance of coarse-scale variations (e.g. the transition 

from the shallow reef flat to the deep areas off the reef crest). In this way, a 

rugosity estimate is formed which is qualitatively different from a simple 

aggregation of in situ observations. 

 

The influence of the spatial scale of these IKONOS-based estimates of rugosity is 

shown in Figure 6.7. Correlations show similar trends for most variables, with 

highest correlation coefficients at the smallest radius (6 m), decreasing sharply 

until the radius is around 100 m, then decreasing more slowly until the largest 

radius included in the study (300 m). However, there are a few notable exceptions 

to this rule. The correlation with coarse rugosity has a local maximum at the 112.5 

m radius, after a local minimum at the 60 m radius. This pattern is unique to the 

combination of these two variables. The correlation with fish biomass is the only 

one to have its maximum at a large spatial scale (150 m radius). A map of rugosity 

at the 6 m and 150 m scales for Chumbe provides a visual clue to the difference in 

relative dominance by different reef features as the spatial scale changes (Figure 

6.8). Smaller features on the reef flat west of the island are visible in the left 

image (6 m radius), along with artifacts from the island edge and the dense 

seagrass bed east of the island, where depth calculations suffered from large 

errors. These features are not discernable in the right image (150 m radius), where 

the reef edge is the all-dominating feature. Maximum correlations with the three 

fish variables are roughly similar, ranging from (Spearman) R=0.42 for fish 

diversity to (Spearman) R=0.51 for fish species richness. 
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Figure 6.7: Correlations between IKONOS-based rugosity estimates and in situ estimates of 
depth range, coarse rugosity, fine rugosity, fish species richness, fish biomass and fish 
diversity, respectively. Spearman rank correlation coefficients shown on y-axis. 
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Figure 6.8: IKONOS-based rugosity estimates of areas around Chumbe Island, at pixel 
sizes of 8 and 150 m, respectively. The two maps cover the exact same area. Note the 
details on the reef flat west and south of the island in the left image (8 metre pixel size), 
and the complete dominance of the reef edge on the right image (150 metre pixel size). 

 

6.3 Remote sensing of habitat variety 
Remotely sensed estimation of the in situ substrate diversity variable was not 

considered feasible, and the results confirm this (see Figure 6.9). Regardless of the 

habitat variety measure used and the scale of calculation, the correlation with in 
situ substrate diversity is barely significant. This is not surprising, as the 

calculations of in situ and remotely sensed variety variables are based on different 

categories. The in situ estimates of substrate diversity are based on a large 

number of specific substrate types observed in situ (e.g. individual coral growth 

forms), whereas the remotely sensed estimates of habitat variety are based on 

broader habitat types, most of which contain a mix of substrates (e.g. ‘sparse 

coral’). 
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6.3.1 Habitat variety estimates and their spatial variation 

The influence of spatial scale on correlations between habitat variety and four 

variables, in situ observations of substrate diversity and the three fish variables, is 

shown in Figure 6.9. Correlations are low for most variables, barely reaching 

statistical significance. The highest correlation is obtained with the fish diversity 

variable, which shows relatively high correlations with habitat diversity at the small 

spatial scales, the optimum being obtained using a 10 m radius. This correlation 

(Spearman R=0.27) is similar to that obtained by the in situ observations of 

substrate diversity (Spearman R=0.26, see Table 5.4). Given that the correlation 

with substrate diversity is near 0 at this scale (Figure 6.9), it is highly likely that 

the relationship between fish diversity and habitat diversity at the 10 m scale is 

based on an ecological relationship most appropriately observed at this spatial 

scale. The large difference in the spatial scale of measurement of in situ and 

remotely sensed habitat variables, and the fact that the substrate types that form 

the bases for the diversity calculations differ, suggest that these two variables 

represent somewhat unrelated quantifications of habitat diversity. Their very low 

correlation supports this view. The habitat variety measures should therefore not 

be seen as direct estimates of in situ substrate diversity, but rather as an 

extension of the diversity concept applied at large spatial scales. 

 

6.3.1.1 Comparison of the variety measures 

The two measures of habitat variety show some difference in their correlations with 

the three fish community variables, but neither generally outperforms the other. 

The habitat richness seems to perform better at large spatial scales whereas the 

habitat diversity measure performs better at small scales. This could suggest that 

the proportion of each substrate type (included in the diversity but not in the 

richness calculation) is important at small spatial scales (<100 m) but not at large 

ones (>100 m), though the reason for such a pattern is unclear. The habitat 

richness measure also produces more erratic correlations. This may be caused by a 

higher sensitivity to noise, which is reflected in the substrate classifications as 

individual incorrectly classified pixels. For these reasons, and due to the similar 

performance of the two measures, the habitat richness measure was excluded from 

further analysis and discussion. 
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Figure 6.9: Correlations between IKONOS-based habitat variety estimates and in situ 
estimates of substrate diversity, fish species richness, fish biomass and fish diversity, 
respectively. The habitat richness measure is shown in red; the habitat diversity measure 
in blue. Spearman rank correlation coefficients shown on y-axis. 

 

Due to a lack of functionality for diversity calculations in available software 

packages, it is currently easier to produce maps of habitat richness than for habitat 

diversity. Maps of habitat richness are shown in for Bawe in Figure 6.10 and for 

Chumbe in Figure 6.11. Both figures have been calculated using a 30 m radius. A 

summary of characteristic scales for each relationship is provided in Table 6.3. 
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Figure 6.10: Map of habitat richness around Bawe Island. For each pixel, the map shows 
the number of different substrate types present within a 30 m radius. 
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Figure 6.11: Map of habitat richness around Chumbe Island. For each pixel, the map shows 
the number of different substrate types present within a 30 m radius. 
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Table 6.3: Characteristic scales for fish-habitat relationships. 

 Fish species richness Fish biomass Fish diversity 
Live coral cover 2 m 2 m 2 m 

Rugosity 6 m 150 m 6 m 
Habitat diversity 10 m 60 m 10 m 
Habitat richness 10 m 200 m 5 m 

 

6.4 Discussion 

6.4.1 Remote sensing of live coral cover 

To my knowledge, this study is the first to estimate live coral cover directly from 

Lyzenga’s (1978) depth-invariant index. This is surprising, given that a similar 

approach has proven effective for estimating seagrass biomass (Mumby et al. 

1997a) and that coral’s spectral signature differs substantially from the typical 

background signal (a sandy substrate), just as the spectral signature of seagrass 

does. We show that live coral cover can be estimated from the depth-invariant 

index, and that despite a relatively large RMSE the estimates are better than an 

average-predictor. In addition, we show that the resulting variables, as expected, 

are correlated with both live coral cover measured in situ and with the three 

response variables used here. The reason this result has been possible may be due 

to the very limited growth of algae in the study area. An area covered by algae is 

spectrally similar to coral, and when algae and coral grow in close proximity, the 

approach taken in this study is unlikely to work well. However, with the limited 

growth of algae, and a good spatial separation between coral and seagrass, the 

study area used here can be considered near optimum for IKONOS-based 

estimation of live coral cover. Hyperspectral sensors, however, have the ability to 

discriminate between the coral and algae using spectral unmixing (Goodman and 

Ustin 2007; Hedley et al. 2004), and are more likely to provide remotely sensed 

estimates of live coral cover in the future. However, the greatest potential for 

improvement mapping of live coral cover probably lies in combined 

hyperspectral/lidar systems, with their improved ability to separate the spectral 

influence of the water column from independent measurements of depth and water 

optical properties (Feygels et al. 2003; Tuell and Park 2004; Tuell et al. 2005), 

although practical applications of this technology have yet to emerge. 
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6.4.2 Remote sensing of depth and rugosity 

The RMSE of depth estimates achieved (1.07 m) is comparable to that achieved by 

other studies deriving depth from IKONOS data in areas with spatial heterogeneity 

of substrate types and reflectance characteristics (Lyzenga et al. 2006; Muslim and 

Foody 2008; Stumpf et al. 2003; Su et al. 2008). Despite the theoretical potential 

to better separate the effects on reflectance of depth and substrate using 

hyperspectral imagery, improvements in the accuracy of depth estimates have 

been limited (Brando et al. 2009; Goodman and Ustin 2007; Klonowski et al. 2007; 

Lee et al. 2001; Lee et al. 1999). Lidar instruments, on the other hand, routinely 

produce spatially distributed depth estimates with RMSE values around 15 cm, and 

the development and application of this technology holds the greater potential for 

producing accurate high-density depth estimates over large areas. However, errors 

in depth estimates were shown by Su et al. (2008) to be spatially autocorrelated, 

which limits the impact of imprecise depth estimates on rugosity values. A 

comparison of prediction errors from models using rugosity values derived from 

IKONOS and lidar data, for the same set of response variables, would shed further 

light on the importance of precise depth predictions. In addition, lidar instruments 

are able to map water depth, and hence rugosity, as depths up to 70 m in clear 

water (Finkl et al. 2005), more than 3 times that of passive optical instruments. 

For a general application of the predictive models we worked with, that may prove 

to be of greater importance than the precision of depth estimates. 

 

6.4.3 Remote sensing of habitat diversity 

The habitat diversity variable used in our study is a measure of the alpha-diversity 

of habitats within the radius of observation, calculated on the basis of a habitat 

map with user-defined classes. In addition to investigating the influence of 

variations in radius (as in our study), there is thus room for experimentation with 

both thematic resolution of the map (number and kind of classes), as well as the 

quantification of diversity (e.g. the two measures used in our study). Although the 

influence of variations in thematic and spatial resolution has been investigated for 

habitat maps (Kendall and Miller 2008), the subsequent influence on predictability 

of fish community variables has not been investigated. In addition, quantification 

of habitat diversity can be expanded to take functional differences between habitat 

types into consideration, e.g. producing a higher diversity value in areas where 

both seagrass and coral is present than in areas where sparse coral and dense 
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coral is present (Mumby 2001). In addition, a measure of beta-diversity (i.e. the 

change in habitat similarity along a gradient) may provide further information on 

the influence of habitat diversity in structuring fish communities (Harborne et al. 

2006). The improvement in performance of predictive models that such habitat 

variables can bring has yet to be investigated. 

 

6.4.4 Characteristic scale of the relationship between rugosity 
and fish species richness 

Despite its utility for conservation planning, a limited number of studies have 

documented scale effects on fish-habitat relationships on coral reefs. The results 

presented here therefore add to a small but growing number of studies that 

together contribute to understanding the spatial scales of statistical relationships 

and ecological processes on coral reefs. A synthesis of research in this field is 

provided below. Due to the paucity of studies involving spatial scale variation and 

the variables live coral cover and fish biomass, the synthesis will focus on the 

remaining variables.  

 

Purkis et al. (2008) investigated the influence of scale on relationships between 

IKONOS-based rugosity and fish community variables in Diego Garcia. Fish 

community variables included species richness as well as overall species 

abundance and a range of measures based on size, territoriality and diet. They 

found that the characteristic scale (kernel radius) for the rugosity-fish species 

richness relationship was 8 m. Characteristic scales for relationships with a number 

of other fish community variables in their study vary, but remain around the 8-20 

m scale. These values correspond reasonably well with the results presented in 

chapters 6 and 7. Wedding et al. (2008), working with lidar-derived rugosity in 

Hawaii, reported slightly larger characteristic scales for rugosity-fish community 

relationships (37.5 m for both fish species richness and biomass, and no significant 

results for fish diversity), but very similar correlation coefficients at smaller scales 

do not allow confident inference of characteristic scales from their results. This is 

somewhat similar to our results, where correlation coefficients are similar for scales 

between 6 m and 24 m (see Figure 6.7). Also working with lidar-derived rugosity, 

Kuffner et al. (2007) found the highest correlations with fish species richness at a 

2.5 m radius, though the coefficient of determination was very low. However, the 

environment in this study, a series of patch reefs in Florida, differ substantially 

from the continuous reefs studied by others, which is a likely cause of both the 
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weak results and small characteristic scale. A study by Pittman et al. (2007) 

departs slightly from the others in using a regression tree approach as opposed to 

some form of linear regression, and by working at larger spatial scales. Using two 

measures of structural complexity (rugosity and bathymetric variance), the pruned 

regression tree used only two variables, rugosity at 42.5 m scale, and bathymetric 

variance at 22.5 m scale.  

 

The results of these studies have been summarized in Table 6.4, but no specific 

scale can be derived as optimum from this set of studies. The difference in specific 

species surveyed in each study, and the range of environmental conditions such as 

reef type and depth, are likely explanations for this. Nevertheless, two 

observations can be made. Firstly, the smallest of the investigated scales only 

provide the best correlation in the present study, where differences between 

results up to the 24 m scale are negligible. In addition, two of the studies found 

the characteristic scale to be larger than 30 m. This could indicate that medium 

resolution data (15-20 m pixel size) may achieve similar results as those achieved 

in our study with IKONOS data. Secondly, the range of characteristic scales does 

not exceed 50 m for any study, despite 3 of the studies investigating variables at 

much larger scales. Although not pointing to a single characteristic scale where the 

relationship between rugosity and fish species richness is best observed, these 

observations suggest a range of likely characteristic scales for environments similar 

to those investigated in the reported studies. 

 

Table 6.4: Characteristic scales for relationships between remotely sensed rugosity and 
fish species richness from recent studies. Note that for several studies, other scales than 
the one noted obtained very similar correlations between the two variables. 

Study Characteris
tic scale 

Scale range 
investigated 

Reef type Depth 
range 

Our study 6 m 6-300 m Continuous reef 0-10 m 
Kuffner et al. (2007) 2.5 m 1-5 m Patch reefs 3.5-5.5 m 
Pittman et al. (2007) 42.5 m 7.5-322.5 m Mix 1-30 m 
Purkis et al. (2008) 8 m 4-200 m Continuous reef 4-6 m 

Wedding et al. (2008) 37.5 m 6-37.5 m Continuous reef 1-24 m 
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6.4.5 Characteristic scale of the relationship between habitat 
variety and fish species richness 

Even fewer studies have investigated the influence of habitat variety on reef fish 

communities. Pittman et al. (2004) showed that several indices of landscape 

structure, particularly the abundance of seagrass and mangrove habitat, influence 

the juvenile fish and prawn community in mangroves and seagrasses in Deception 

Bay, Australia. The study also determined that using 300 m radii as the basis for 

calculations of habitat indices was significantly better than using 100 m radii, 

giving a first indication of characteristic scale. Purkis et al. (2008) also investigated 

the relationship between habitat evenness and fish community variables, and 

found the characteristic scale for the habitat evenness-fish species richness 

relationship to be 40 m, although the statistical significance of the relationship was 

not investigated. Another study (Pittman et al. 2007) investigated but found no 

significant correlations between habitat richness and the fish community. Results 

from the available studies are summarized in Table 6.5. Although a characteristic 

scale is presented for the present study, it should be kept in mind that following 

multiple-testing correction, the correlation coefficients found in this study are not 

statistically significant. 

 

Table 6.5: Characteristic scales for relationships between remotely sensed habitat diversity 
and fish species richness from recent studies. Note: Habitat variety has been quantified 
using different approaches in all four studies. N.S. = no significant relationships found. 

Study Characteristic 
scale 

Scale range 
investigated 

Reef type Depth 
range 

Our study 10 m (N.S.) 5-200 m Continuous reef 0-10 m 
Pittman et al. (2004) 300 m 100 m, 300 m Tidal flat 3.5-5.5 m 
Pittman et al. (2007) N.S. 31.8 m Mix 1-30 m 
Purkis et al. (2008) 40 m 4-200 m Continuous reef 4-6 m 

 

As for the rugosity variable, these studies do not converge on a common 

characteristic scale, but they do suggest that habitat variety is best quantified at 

larger spatial scales than rugosity. It is also noteworthy that the one other study 

that failed to find significant relationships (Pittman et al. 2007) was conducted at a 

large number of sites covering a mix of reef types, and it is possible that a single 

measure was unable to adequately describe habitat diversity for this range of 

environments. More studies, covering a range of habitat variety measures, reef 

environments, and spatial scales are necessary to enable conclusions to be drawn 

in this area.  
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6.4.6 The targeted landscape approach 

A number of other studies have specifically targeted fish-habitat relationships that 

are based on known ecological links, such as the relationship between fish species 

richness/abundance on a reef and the presence of nearby spawning/nursery 

grounds (Nagelkerken et al. 2000). However, most have not been spatially explicit 

enough to infer the characteristic scales of those relationships. Dorenbosch et al. 

(2004) showed an influence from nearby bays with seagrass and mangrove 

habitats on the abundance of a number of reef fish species in Curaçao, but focused 

on fish species with a known seagrass dependence and did not analyse sites based 

on exact distances to the bays. Similarly, Mumby et al. (2004a) similarly showed 

influence on reef fish community structure from nearby mangroves, but contrasted 

reefs that had nearby mangroves with reefs separated from mangroves by more 

than 15 km. Though such studies are valuable, they do not allow inference of the 

spatial scales (distances) at seagrass beds and mangroves can function as nursery 

habitats for reef fish. One exception is the study by Grober-Dunsmore et al. 

(2007), who specifically investigated the spatial scale of seagrass-reef fish 

relationships, and found an influence on reef fish species richness from the amount 

of seagrass cover in radii as great as 1 km, though the characteristic scale was 250 

m (range: 100 m-1 km). The characteristic scale may in this case reflect the 

distance young adults migrating from seagrass beds to reefs typically are able to 

cover. Such studies are needed for more substrate types (e.g. mangroves), from 

more regions of the world, and for functional groups and individual fish species. 

 

6.5 Summary 
Sub-question B was “How accurately can habitat variables be estimated remotely, 
and at what spatial scales are these variables most predictive for the fish 
community?”. The results presented in this chapter answer the first part of that 

question for the variables live coral cover, depth, structural complexity (‘depth 

range’), and substrate diversity. RMSE values for IKONOS-based estimates of 

these variables are roughly 20 percentage points for live coral cover, 1 m for 

depth, and 1 m for depth range, all with Spearman R values above 0.6. Although 

further improvement of these values is possible with improved data sources, our 

results indicate that IKONOS data do provide a means to create fairly accurate and 

spatially explicit estimates (maps) of these three variables. This is not the case for 
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the in situ measure of substrate diversity, with which the IKONOS-based measures 

of habitat richness and diversity are not significantly correlated. Nevertheless, the 

remotely sensed measures of habitat variety show significant correlations with the 

three fish community variables. 

 

The second part of the question was answered by comparing correlations between 

the fish community variables and the remotely sensed habitat variables at a range 

of spatial scales. For both fish species richness and diversity, the fine spatial scales 

(radii < 10 m) produced the highest correlations for all habitat variables, indicating 

that it is the immediate environment that influences these two aspects of the fish 

community. For fish biomass, however, calculations at coarse spatial scales 

produced the highest correlations for rugosity (radius = 150 m) and habitat 

diversity (radius = 60 m, not statistically significant), although it was still the finest 

spatial scale that produced the highest correlation with live coral cover (radius = 2 

m). The biomass variable is highly influenced by large individuals and roaming 

schools of medium-sized fish, both of which are most commonly found near the 

reef edge. The coarse scale rugosity calculations most likely achieve improved 

correlations with the biomass variable by eliminating high frequency noise as well 

as the fine scale rugosity on the reef flat, and focusing on the coarse scale rugosity 

caused by the change in depth from the reef flat to the deep areas outside the 

reef. 
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CHAPTER 7: REMOTE SENSING OF REEF FISHES 

In this chapter we bring together the predictive model types compared in chapter 5 

and the remotely sensed estimates of habitat variables from chapter 6. Only 

results obtained with cross-validation resampling are presented in this chapter. The 

performance of all six model types is compared using four different sets of habitat 

variables as input data: 1) the in situ data already analyzed in chapter 5, 2) the 

full range of habitat variables derived from IKONOS data, 3) a subset of the habitat 

variables, limited to the spatial scales obtainable from Landsat TM imagery, called 

the simulated Landsat data, and 4) all habitat variables, both in situ and remotely 

sensed. 

 

We then focus on the question of which remotely sensed habitat variables are 

important for predictions of the fish community. The volume of the variable 

importance results makes reporting all of them unfeasible, and thus only selected 

results are reported here, though summary plots of all results are available upon 

request. First, the Bagging model is used to illustrate those variables important for 

models based on the IKONOS data set, because it is the median-performing tree-

based models and provides near-optimum prediction accuracy. For spatially 

distributed predictive models of the fish community, the identified variables will be 

important to derive as accurately as possible from IKONOS (or other) satellite 

imagery. Secondly, results from all model types predicting species richness using 

the “All” data set are used to further illustrate the influence of model type on 

variable importance. The “All” data set is used to also derive those remotely 

sensed habitat variables that not only estimate important in situ variables, but 

provide complementary information to the “in situ” data set.  

 

Together, the comparison of prediction accuracies and habitat variable importance 

provides insight into the ability of remote sensing to produce spatially distributed 

predictions of fish community variables, and its ability to derive habitat variables of 

importance to the fish community, both those that operate inside and outside the 

range of spatial scales accessible with conventional fieldwork. Together, these 

investigations provide an answer to sub-question C. Finally, as an example of what 

the approach can produce, and map of species richness around Chumbe Island, 

predicted with the Bagging model and the IKONOS data set, is presented. 
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7.1 Comparison of predictive model accuracy by data set 
The distributions of prediction accuracies for all models types, data set and 

response variables are shown in Figure 7.1; median values are also provided in 

Table 7.1. The prediction accuracies of models developed from in situ data have 

already been discussed in chapter 5, and they form a benchmark against which to 

compare the accuracies produced by models based on remote sensing data.  

 

Figure 7.1: Prediction accuracies for all models types, input data, and response variable. 
Note the variation in y-axis ranges between plots. 
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The other benchmark against which to compare these models is the prediction 

accuracy of an “average-predictor”, shown in Table 5.3, only predictive models 

with significantly lower RMSE values than the “average-predictor” can be worth 

developing. 

 

The pattern of relative performance of model types based on in situ data is 

generally also found when the models are based on the other 3 data sets. As such, 

the LM consistently performs worse than any other model type, only occasionally 

beating the SVM, which itself is also generally outperformed by the GAM and the 

tree-based models. The tree-based models generally outperform the GAM, with a 

few exceptions including the following combinations: IKONOS - species richness, in 
situ – biomass, and simulated Landsat – diversity. The Random forest consistently 

performs worse than Bagging and Boosted trees when predicting biomass, while no 

other consistent trend is seen among the tree-based models. 

 

Table 7.1: Median RMSE values for predictive models by input data, model type, and 
response variable. 

Species Richness 

 LM GAM Bagging Random forest Boosted trees SVM 

in situ 5.84 5.60 5.20 5.07 5.26 5.57 

IKONOS 7.22 6.51 6.53 6.53 6.58 6.82 

Landsat 7.19 6.97 6.85 6.84 6.80 6.91 

All 6.61 5.61 5.17 5.03 5.21 5.55 

Biomass 

 LM GAM Bagging Random forest Boosted trees SVM 

in situ 0.564 0.513 0.523 0.531 0.513 0.570 

IKONOS 0.613 0.598 0.591 0.598 0.588 0.618 

Landsat 0.663 0.636 0.607 0.610 0.604 0.619 

All 0.607 0.522 0.519 0.530 0.519 0.561 

Diversity 

 LM GAM Bagging Random forest Boosted trees SVM 

in situ 0.699 0.611 0.580 0.570 0.605 0.665 

IKONOS 0.745 0.745 0.719 0.729 0.735 0.735 

Landsat 0.753 0.753 0.755 0.757 0.750 0.768 

All 0.614 0.614 0.587 0.579 0.595 0.646 
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The model types differ in their ability to utilize the remotely sensed data in addition 

to the in situ data. One extreme is shown by the GAM, which produces less 

accurate predictions of all three response variables when using the “All” as 

opposed to the “in situ” data set. This may be due to the necessary exclusion of 

variables when working with the “All” data set, a problem that could be mitigated 

by iteratively searching for the variable combination that would produce the 

optimum result. The same pattern is seen for the LM models of species richness 

and biomass, and the (Bagging – diversity), (Random forest – diversity) and 

(Boosted trees – biomass) combinations. The other extreme is shown by the SVM, 

which produces the most accurate predictions for all response variables when using 

the “All” data set.  

 

7.1.1 Models predicting species richness 

Predictions from the Bagging model have been used to compare the results 

obtained with the 4 different data sets. The Bagging model has been chosen 

because it is the median-performing tree-based model for most predictions. All 

differences described in this section are statistically significant (p<0.01). IKONOS-

based Bagging models of fish species richness produce significantly higher 

prediction errors than do the models based on in situ data, IKONOS-based models 

(RMSE=6.53, R2=0.30) providing only 47% of the reduction in RMSE over the 

average-predictor (RMSE=7.72) seen in models based on in situ data (RMSE=5.20) 

(Figure 7.2). As expected, the models based on simulated Landsat data produce 

the highest errors. The improvement in predictive performance from adding 

remotely sensed data to the in situ data (the “All” data set) is very modest, 

reducing the RMSE from 5.20 to 5.17. 

 

7.1.2 Models predicting biomass 
A similar trend is seen for predictive models of biomass, where the IKONOS-based 

models (RMSE=0.591, R2=0.25) provide only 35% of the improvement over the 

average-predictor (RMSE=0.628) compared to models based on in situ data 

(RMSE=0.523). Again, models based on simulated Landsat data produce the least 

accurate predictions, and the improvement in accuracy gained from adding 

remotely sensed data to the in situ data is modest, reducing RMSE to 0.519 (Figure 

7.3). 
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Figure 7.2: Comparison of species richness prediction accuracy from Bagging models using 
the four different data sets. 

 

 

Figure 7.3: Comparison of biomass prediction accuracy from Bagging models using the four 
different data sets. 
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7.1.3 Models predicting diversity 

The pattern for predictions of diversity is also similar to that of species richness. 

IKONOS-based models (RMSE=0.719, R2=0.23) provide 34% of the accuracy 

improvement over the average-predictor (RMSE=0.792) as compared to the in 
situ-based models (RMSE=0.580), and the models based on simulated Landsat 

perform slightly worse than those based on IKONOS data. However, the addition of 

remotely sensed data to the in situ data actually reduces accuracy for predictions 

of diversity, increasing RMSE to 0.587 (Figure 7.4), probably due to overfitting with 

the large number of variables in the “All” data set. 

 

 

Figure 7.4: Comparison of diversity prediction accuracy from Bagging models using the 
four different data sets. 

 

Together, these results illustrate not only the importance of spatial resolution, but 

also underline that an improved remote sensing-based estimation of the habitat 

variables observed in situ is likely to improve predictions. Such improved 

estimation is likely to come from a combination of improved spatial and spectral 

resolution of future sensors, most promisingly the improved derivation of depth 

and substrate composition possible with hyperspectral data. 
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7.2 Variable importance results 
The results presented in this section will be limited to two foci. The first part will 

focus on the variables important for models based on the IKONOS data set, using 

the Bagging model. The second part will focus on those remotely sensed variables 

important in models using the “All” dataset, which will give an indication of which 

variables provide complementary information to that which can be obtained in situ. 

 

 

7.2.1 Important variables from the IKONOS data set 

As seen with the in situ data set, the important variables for predicting species 

richness and diversity are similar, and the importance is concentrated on fewer 

variables than is the case for predicting biomass. The dominant predictor for both 

species richness and diversity is rugosity at the finest scale possible (r=6 m), 

which is also the IKONOS-based variable most highly correlated with the in situ 

‘depth range’ (Spearman R=0.65). Other variables provide minor contributions, 

including rugosity at the second-finest scale (r=12 m), depth, and substrate class, 

as well as habitat diversity at relatively fine scales (r=10 m and r=20 m) and, to a 

very small degree, live coral cover (r=2 m) (Figure 7.5). For biomass predictions, 

the fine scale rugosity (r=6m) is also the most important variable, but is followed 

closely by rugosity at two coarse scales (r=225m and r=300m), as well as fine 

scale habitat diversity (r=10m) and depth. Substrate class, along with a few other 

variables (rugosity (r=45m), habitat diversity (r=20m)), provide minor 

contributions.
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Figure 7.5: Variable importance from Bagging models based on the IKONOS data set.
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7.2.2 Remotely sensed variables with complementary 
information from the “All” data set 

Variable importance for all models predicting species richness with the “All” data 

set is shown in Figures 34-36. As presented earlier for models based on in situ data 

(Figure 5.5), variables identified as important in the LM differs substantially from 

those identified in other models. As such, the two most important variables in the 

LM model are identified as remotely sensed ‘habitat diversity’ (r=60 and 70 m). 

Remotely sensed live coral cover (r=14 and 18 m) have a small, though highly 

variable, importance, along with several variables measured in situ (‘depth’, ‘depth 

range’, ‘substrate diversity’, live coral cover’, and ‘# of growth forms’). Important 

variables in the GAM model more closely resemble those from the models based on 

in situ data, with ‘depth range’ being the dominant variable and minor importance 

seen for ‘depth’, ‘coarse rugosity’, ‘substrate diversity’ and ‘live coral’. Of the 

remotely sensed variables, only the ‘substrate class’ has minor importance (Figure 

7.6). However, interpretation of the results from the GAM model is complicated by 

the computational limitation of 17 habitat variables in this model. Models not 

included in the model have zero importance, as seen in Figure 7.6. Results from 

the Random forest model (Figure 7.7) resemble those of the GAM, with only 

rugosity (r=6 m), of the remotely sensed variables, having minor importance. 

 

In the Bagging model, no remotely sensed variables have importance significantly 

different from zero. Similar results are also seen in the Boosted trees model Figure 

7.8, where the remotely sensed variables have very little importance. Variable 

importance in the SVM is different, though, with importance spread over a larger 

number of variables, and both rugosity (r=45 m) and remotely sensed depth have 

some importance. 

 

Across all model types except LM, remotely sensed variables thus have little 

importance, i.e. they provide little complementary information to that already 

contained in the in situ variables. The importance of ‘habitat diversity’ (r=60 and 

70 m) in the LM model is probably an artifact caused by the sensitivity of this 

model to variables with outliers, which the ‘habitat diversity’ variable has at the 60 

and 70 m radii. The best performing models (the tree-based models in general, 

Random forest in particular), show that of the remotely sensed variables only 

rugosity (at varying radii depending on model) has some importance. 
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Figure 7.6: Variable importance for species richness prediction using the LM and GAM 
models, based on "All" data. The many variables with zero influence in the GAM models are 
caused by the maximum of 17 variables that could be included in this model. 
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Figure 7.7: Variable importance for species richness prediction using the Bagging and 
Random forest models, based on "All" data. 
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Figure 7.8: Variable importance for species richness prediction using the Boosted trees and 
SVM models, based on "All" data. 
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7.3 Map of predicted species richness, Chumbe Island 
Using the Bagging model and the IKONOS data set, Figure 7.9 shows spatially 

distributed predictions of fish species richness in the reef areas around Chumbe 

Island. Based on knowledge of the area, the Bagging model seems to produce very 

reasonable predictions for the area not covered by the field data. The map shows 

many fish species near the edge of the reef west of the island (green area), and 

fewer species in the deeper waters off the reef (pale blue area). Sandy areas 

stretching north-east from the island’s north tip has few species (blue areas), 

except at the seagrass-covered edges of the sand bar (green and orange areas).  

 

However, the predictions in the lagoon east of Chumbe (large grey area) are 

probably too high. This area has a flat and sandy bottom, and a very sparse fish 

fauna. Some noise is also seen in the south-west corner of the image, where high 

predictions result from erroneously high rugosity estimates. 

 

7.4 Discussion 
The largest contribution of remote sensing to predictive modelling of fish 

community variables is undoubtedly the spatial coverage of remotely sensed data, 

which allows predictive models to become spatially distributed and explicit. 

However, our results show that this spatial coverage comes at a price – increased 

prediction errors. Prediction errors increase because, compared to the habitat 

variables derived from in situ data, habitat variables derived from the remotely 

sensed information are relatively poorer estimates of the aspects of the habitat 

that influence the fish community. However, the spatial coverage of remotely 

sensed data also allows users to derive information about the habitat at spatial 

scales not measurable with traditional field-based methods.  The net effect on 

prediction error therefore depends on how closely remotely sensed habitat 

variables can quantify the aspects of habitat that influence the fish community 

(chapter 6), as well as the ability of predictive models to utilize the additional 

information remotely sensed data provide at coarse spatial scales. 
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Figure 7.9: Map showing predicted fish species richness around Chumbe Island. 
Calculations done with Bagging model and IKONOS data set. 
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7.4.1 Predictive performance of IKONOS-based models 

For all three response variables, the predictive models using IKONOS data 

performed significantly worse than the ones using in situ data. Using the “average-

predictor” as a benchmark, they reduced prediction errors by only 47%, 35%, and 

34% when compared to the models using in situ data, for species richness, 

biomass, and diversity, respectively. A comparison with results from other studies 

is shown in Table 7.2, but the comparison is not straight-forward because all other 

studies in the table report coefficients of determination calculated on all or part of 

the data set used to train the predictive model, and use a variety of models. As 

such, studies that fit models closely to the training data will report higher 

correlations than studies that use more parsimonious model types. For the sake of 

comparison, R2 values from this study, calculated on the training set, have 

therefore been provided in Table 7.2 in parentheses, and the model type employed 

by each study indicated. The difference between results achieved with different 

model types is also illustrated in Table 7.3, where the coefficients of determination 

of values of this study (based on IKONOS data) are reported as calculated on both 

training and test data sets. Further complicating a comparison, the studies 

compared in Table 7.2 use a variety of remotely sensed data, including 

bathymetric lidar and a coastal relief model derived from a combination of data 

sources for depth estimation. 

 

Table 7.2: Comparison of predictive performance achieved by recent studies predicting fish 
community variables from remotely sensed data. Coefficients of determination for this 
study are provided along with values (in parentheses) obtained from testing accuracy on 
the training set. * Wedding et al. (2008) report their results with Spearman rank 
correlations (R) – these values have been squared here for a rough comparison with the 
coefficients of determination from other studies. 

Study Response 
variable 

Coefficient of 
determination 

Model type Data 
type 

Our study Spp. richness 0.30 (0.74) Bagging IKONOS 
Pittman et al. (2009) Spp. richness 0.64 Boosted trees Lidar 
Pittman et al. (2007) Spp. richness 0.48-0.56 Regression Tree TIN 

Wedding et al. (2008)* Spp. richness 0.44 LM Lidar 
Our study Biomass 0.25 (0.64) Bagging IKONOS 

Pittman et al. (2009) Biomass 0.46 Boosted trees Lidar 
Wedding et al. (2008)* Biomass 0.42 LM Lidar 

Our study Diversity 0.23 (0.69) Bagging IKONOS 
Wedding et al. (2008)* Diversity 0.17 LM Lidar 
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Table 7.3: Coefficients of determination for IKONOS-based models of all three fish 
community variables. Calculations based on test data outside parentheses, calculations 
based on training data in parentheses. 

 Species 
richness 

Biomass Diversity 

LM 0.23 (0.54) 0.24 (0.50) 0.16 (0.46) 
GAM 0.32 (0.50) 0.26 (0.47) 0.20 (0.43) 

Bagging 0.30 (0.74) 0.25 (0.64) 0.23 (0.69) 
Random forest 0.30 (0.93) 0.23 (0.91) 0.21 (0.93) 
Boosted trees 0.29 (0.60) 0.26 (0.66) 0.19 (0.50) 

SVM 0.24 (0.50) 0.18 (0.45) 0.20 (0.49) 

 

From this variety of data sources, model types and results reporting, the one 

discernable pattern is that higher coefficients of determination are obtained for 

species richness than for the other response variables. Reasons for this pattern are 

speculative, but possibly related to a lower variability in field observations of 

species richness, which is less sensitive to the passing of schools of fish during 

data collection. More comparable studies are needed to better establish the 

predictions errors and coefficients of determination that can be expected from 

spatial predictive mapping of fish communities, but the studies reviewed in Table 

7.2, representing reef environments in the Indian Ocean, the Pacific, and the 

Caribbean, suggest that prediction is indeed possible, across regions. Furthermore, 

the comparison suggests that, although coefficients of determination are small 

(0.23 – 0.30) when tested on test data as in this study, IKONOS data can provide 

predictions that are comparable to the more expensive lidar data. This is 

encouraging for practical application of spatial predictive models. 

 

7.4.2 Variable importance in IKONOS-based models 

7.4.2.1 Rugosity 

Regardless of response variable, the most important habitat variable in the 

Bagging model was rugosity at the finest scale obtainable with IKONOS imagery 

(r=6 m). This supports the dominant influence of structural complexity in shaping 

the fish communities, which is also shown by the high importance of the ‘depth 

range’ variable for all models based on in situ data. Although the ‘substrate class’ 

variable also has substantial importance for biomass predictions (along with the 

‘depth’ variable itself), this indicates that a precise derivation of depth, used for 

rugosity calculations, is crucial for IKONOS-based predictions of any of the 
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response variables. For example, the noise seen in the south-west corner of Figure 

7.9 is directly caused by image noise that resulted in unreasonably high rugosity 

estimates for some pixels. 

 

7.4.2.2 Live coral cover 

The importance of live coral cover was low for predictions of species richness, and 

near zero or even slightly negative for predictions of biomass and diversity 

(although live coral cover at some radius was the most important variable in both 

LM and GAM models of diversity). Given its importance in models based on in situ 

data, where it was the second-most important variable for all response variables, 

the reduced importance when estimated from the IKONOS data must be attributed 

to the lower precision with which it can be estimated remotely as compared to the 

other (competing) variables. Despite the correlations obtained between the depth-

invariant index and live coral cover in this study, predictions performed only 

marginally better than an average-predictor, and correlations between the 

response variables and the remotely sensed live coral cover variable were 

substantially lower than those obtained with live coral cover measured in situ 

(Table 5.4). 

7.4.2.3 Habitat diversity 

Using IKONOS data and the Bagging model, habitat diversity showed very modest 

importance for species richness, but substantial importance for both biomass and 

diversity, where habitat diversity at r=10 m was the second most important 

variable. This variation in the importance of habitat diversity for the different 

response variables mirrors the variation in correlations between habitat diversity 

and each response variable individually (see Figure 6.9). It is interesting to note 

that although these individual correlations are lower for habitat diversity (Figure 

6.9) than they are for live coral cover (Figure 6.6), the importance of the habitat 

diversity variable in the Bagging models is higher than that of live coral cover. This 

is most likely due to the two variables’ different collinearity with rugosity. The 

highest values of live coral cover on the two reefs is found near the reef edges, 

where rugosity is also high. The collinearity of rugosity (r=6 m) and live coral 

cover (r=2 m) (Spearman R=0.27) therefore reduces the importance of the latter 

in a multi-variable model. Habitat diversity (r=10 m), on the other hand, is higher 

away from the reef edge (see Figure 6.10 and Figure 6.11), though these display 

habitat richness the spatial pattern of habitat diversity can be assumed to be 
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similar). This variable therefore suffers less from colinearity with rugosity (r=6 m) 

(Spearman R=-0.06), and provides more complementary. 

 

7.4.3 Complementarity of remotely sensed information 

The low importance of all remotely sensed variables for models based on the “All” 

data set (except for the LM model) is an indication that all three response variables 

are influenced mainly by their immediate environment and that larger-scale habitat 

effects, at least those investigated in this study, have limited influence. The few 

studies available so far have not converged on a characteristic scale at which the 

response variable used in this study respond to their habitat (see Table 6.4 and 

Table 6.5), but the differences observed in correlations between predictor and 

response variable with changing scale (see Figure 6.6, Figure 6.7 and Figure 6.9) 

support the conclusion that the most immediate environment influences the fish 

community most strongly, which reduces the role of remote sensing to that of 

providing spatial coverage of predictions, not new insight into the effect of habitat 

on structuring fish communities. However, specific influences of habitat on the fish 

community, over large spatial scales, have been documented in studies designed 

to investigate the importance of seagrasses and mangroves, (see section 6.4.6 ). 

In order to improve predictive models such influences should be specifically tested 

for, and incorporated in predictive models as variables, along other habitat 

variables observed at an increasing range of spatial scales. 

 

7.5 Summary 
Sub-question C was “How does remote sensing compare to traditional fieldwork for 
mapping a coral reef fish community?”. Part of the answer to this question follows 

directly from the fact that the coverage of field data is limited to the sites at which 

the fieldwork has been carried out, whereas remote sensing provides a spatially 

continuous coverage of data over large areas. Because of the influence the habitat 

has on the fish community, and because of the heterogeneous spatial patterns in 

which coral reef habitats exist, the use of interpolation approaches to create 

spatially distributed predictions of fish community variables from field data is 

unlikely to be successful. A short answer to sub-question C therefore is that 

traditional fieldwork cannot produce data from which maps of the fish community 

can be made, whereas remote sensing can. 
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The more relevant question, therefore, is how the performance of remote sensing’s 

spatially explicit predictive models of the fish community compare to those that 

can be produced from in situ data. The results shown in this chapter clearly 

indicate that the inaccuracy introduced when estimating habitat variables with 

IKONOS data has led to reduced predictive performance of models based on 

IKONOS data, compared to those based on in situ data. For all predictive models 

based on IKONOS data, rugosity at the finest spatial scale (6 m radius) was 

identified as the most important predictor. But this variable only approximates the 

‘depth range’ variable available to in situ-based models, which was identified as the 

most important in all tree-based models based on the “All” data set. This 

approximation leads to higher RMSE values in the models based on IKONOS data. 

As a quantitative measure of relative model performance, we have used the 

reduction in RMSE value that a model achieves when compared to an average-

predictor. Using that measure, models based on IKONOS data achieve only 47% of 

the performance that a model based on in situ data does. The same values for fish 

biomass and diversity are 35% and 34%, respectively. Models based on simulated 

Landsat data perform even worse. Despite these low numbers, models based on 

IKONOS data can still produce credible maps of the spatial distribution of fish 

community variables, as seen in the map of fish species richness around Chumbe 

Island (Figure 7.9). Results from other studies suggest that this is also the case for 

reef environments in other parts of the world, and when using airborne lidar data 

instead of IKONOS images. The last question, whether or not such maps are 

sufficiently accurate and precise to be useful in a management context, is dealt 

with in the following, and last, chapter. 
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CHAPTER 8: CONCLUSION 

In this thesis, we have presented a series of steps for the development of spatially 

explicit predictive models that use information about the coral reef habitat to 

predict three variables describing the fish community: species richness, biomass, 

and diversity. We have tested the predictive performance of six model types that 

include both traditional parametric and new non-parametric machine-learning 

approaches, and we have used a permutation-based approach to quantify the 

contribution of each variable to the model predictions, thereby both identifying the 

habitat variables that are most important for predicting the fish community 

variables, and illustrating the profound influence of model structure on variable 

importance. We have investigated the importance of the spatial scale of the habitat 

data used for model development, and ultimately produced a map predicting fish 

species richness in the nearshore environment around Chumbe Island, Zanzibar. 

The thesis thus forms a comprehensive answer to the research question posed in 

chapter 1: 

 

How can remote sensing be used to map coral reef fish communities? 
 

The research conducted to answer this question, described in the preceding 

chapters, has led to several results that contribute to the body of knowledge in the 

fields of geography, remote sensing in particular, and coral reef studies. The most 

important contributions to these areas are summarised below: 

 

 The complex ecological relationships between fish communities and their 

habitat require equally complex approaches for their modeling. Assumptions 

of linearity and additive effects do not hold true, and the use of simplistic 

model types such as multiple linear regression lead to unnecessarily poor 

predictions of fish community variables. Of the model types tested in our 

study, tree-based ensemble techniques generally outperform others, and 

their adoption in the ecological modeling community is therefore likely to 

improve predictive models of both coral reef fish communities and other 

dependent variables with complex relationships to their predictors. 

 

 The importance of a habitat variable in a multi-variable predictive model is 

dependent on a number of factors. These include the frequency distribution 
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and quantification (binary, discrete, or continuous) of the variable, 

collinearity with other variables available for model development, and model 

type. Interpretation of variable importance is therefore far from straight-

forward, and uncritical interpretation of model outputs can lead to 

unqualified and misleading conclusions. This is particularly important 

because the derivation of important variables from multi-variable predictive 

models is used by the conservation community to target “important” 

features of the coral reef habitat for protection. Another application of 

variable importance measures is to “correct for habitat influences” in order 

to identify the importance of other factors such as management regimes 

(e.g. protection). Such corrections are likely to lead to misleading 

conclusions unless the numerous factors that influence variable importance 

are properly accounted for. 

 

 Keeping these limitations in mind, structural complexity stands out as an 

aspect of habitat that has a large influence on the fish community. For all 

fish community variables and all model types other than the LM, ‘depth 

range’ was the most important variable in models based on in situ data, and  

similarly rugosity, calculated at the smallest spatial scale, was the most 

important variable in models based on IKONOS data. This not only confirms 

numerous field studies that show similar results, but also show that IKONOS 

data are able, albeit imperfectly, to estimate the structural complexity that 

influences the fish community. 

 

 Conservation status, whether a site is located inside or outside an MPA, has 

negligible importance for fish species richness and diversity, whereas its 

importance for fish biomass is significant. This conclusion is surprising, and 

contradicted both by the personal experience of the author and by species 

lists compiled for the two reefs studied. Its validity may be limited to the 

measure of alpha-diversity (and richness) and the small field sites used in 

this study, and merits further attention. 

 

 The fish community is best predicted (and hence considered mainly 

influenced) by habitat at the local scale, although fish biomass is also 

influenced by proximity to the reef edge which is best quantified at larger 

spatial scales. 
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 It is possible to derive estimates of water depth, structural complexity and 

live coral cover from IKONOS data. Although these estimates do not 

correlate as well with the fish community variables as their in situ 

counterparts do, they all contribute to IKONOS-based predictions of at least 

one of these variables. 

 

 In addition, measures of habitat diversity can also be derived from substrate 

classifications based on IKONOS data. Although not all of these measures 

are significantly correlated with the fish community variables themselves, 

they nevertheless contribute significantly to IKONOS-based predictions of all 

the fish community variables. 

 

 Spatially explicit predictive models of fish species richness, biomass, and 

diversity, can be produced from IKONOS data. Although their predictive 

performance is limited when compared to models using in situ data, the 

resulting maps produce reasonable predictions, and are likely to be useful 

for management. 

 

These results are encouraging, not only because they individually contribute to the 

body of knowledge in geography, remote sensing and coral reef studies, but 

because together they illustrate how maps of the fish community can be produced 

with IKONOS data (and how accurate such maps can be). They can thus be 

expected to accelerate the adoption of remote sensing data in spatial ecology, 

including spatially explicit predictive modeling. However, the research presented in 

this thesis also points to areas that merit further attention. The importance of 

structural complexity suggests that the use of sensors that enable precise mapping 

of depth at sufficiently fine spatial scales (e.g. airborne lidar) can improve 

predictive performance, but a direct comparison between prediction errors from 

models based on IKONOS and lidar data has yet to be made. Similarly, the 

importance of scale for remotely sensed habitat variables suggests that improved 

spatial resolution (e.g. from Geoeye-1 launched in 2008 or Worldview-2 to be 

launched October 6, 2009, both with <2 m spatial resolution) may improve 

predictive performance. In addition, the development of habitat diversity measures 

that better quantify diversity as it is relevant for structuring the fish community are 

likely to lead to improvements. Better incorporation of the landscape ecology 

approach, identifying areas that provide habitat for juveniles, feeding grounds, 
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spawning aggregation sites etc., also has the potential to improve spatial predictive 

models. 

 

A different approach, predicting presence/absence of individual species, also holds 

great potential because of its immediate applicability to conservation of 

endangered/keystone/icon species. A species-based approach is likely to lead to 

greater ecological insight, as individual species respond to different aspects of the 

habitat in different ways, and at different spatial scales. Important habitat 

variables, and the characteristic scales of response to them, are therefore more 

easily linked to their causal mechanisms (such as daily migration distance, critical 

habitat for a particular life stage or activity) when studied at the species level. The 

maximum distance and the minimum spatial extent at which seagrasses and 

mangroves influences reef fish also needs to be more clearly identified, and 

differentiated by fish species. The species-based approach to spatial predictive 

modeling, mainly employed as species distribution modeling, is already relatively 

mature in terrestrial environments, often employed to create scenarios of future 

change in the distribution of a specific species with projected climate change. This 

approach has yet to be applied to coral reef environments, and field studies of fish-

habitat relationships have mostly focused on aggregate measures such as those 

used in our study, or on functional groups based on diet. However, the importance 

of individual species for ecosystem function (e.g. parrotfishes as dominant grazers 

on Caribbean reefs and triggerfishes as the last predators of sea urchins in East 

Africa) is becoming increasingly clear, and predictions of the change in their 

distributions, with climate change or with other human impacts, will be important 

for conservation management. For example, the poleward movement of coral 

species distributions has already been documented on the Great Barrier Reef, and 

similar changes are likely to be happening, unnoticed and undocumented, on most 

reefs around the world. An improved understanding of how such changes in 

habitat, caused by direct or indirect human impacts, influences the distributions of 

species will be an important contribution of spatial predictive modeling, along with 

any practical application of the maps that it can produce. 

 

Ultimately it remains to be seen whether the predictive performance of models 

based on IKONOS data is sufficient for the approach to be widely adopted in coral 

reef management efforts. Given the numerous potential avenues of improvement 

discussed above, it is encouraging that the approach has already been adopted by 

the Wildlife Conservation Society for their ecosystem-based coral reef conservation 
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project in Fiji. Part of this project involves the further development of an existing 

network of MPAs, a task for which the spatial distribution of fish community 

variables will provide important input. The application of the research approach in 

Fiji will also provide an evaluation of its performance in another environment, an 

environment with more than 500 species of reef fish spread over almost 1000 km2, 

and with a complex pattern of fishing effort and a third form of conservation status 

– seasonal fishing closures. 

 

In conclusion, there is potential for improvements in both the sources of remote 

sensing data, and the derivation of habitat variables from such data, to reduce 

errors in spatially explicit predictive models, but even at the current level of 

predictive performance IKONOS-based maps of fish community variables are 

sufficiently accurate to be useful for coral reef management efforts. 
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