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Abstract 

Neuroplasticity is a mechanism whereby the brain changes its configuration and function 

through experience. Short-term learning (i.e. minutes to hours) is associated with early 

phases of neuroplasticity whereby the cortical responses increase to common stimuli, and 

underlies long-term learning (i.e. days to weeks).  Tactile sensation is an important sense, 

therefore if it became compromised it would be valuable to have an understanding of the 

neural mechanisms that underlie tactile short-term learning, and other means to promote 

learning, such as the introduction of a second modality.  Having more knowledge in the 

area of somatosensory learning could then provide the means leading to long-term 

learning and potential recovery of function after brain injury such as stroke.  The focus of 

this thesis was to research the role of visual information on short-term somatosensory 

learning, and to understand the electrophysiological mechanisms that are associated with 

this modulation of learning within a single testing session.  

The methodology consisted of learning Morse code tactile patterns corresponding 

to English letters, and was broken up into two experiments.  The objective of the first 

experiment was to determine the functional benefit to performance of the temporal and 

spatial coupling of tactile and visual stimuli, and the second experiment was used to 

determine the electrophysiological mechanisms associated with the modulation of 

somatosensory processing by visual stimulation.  Given that there is a quantifiable 

measurement of learning, we hypothesized that tactile-visual cross-modal coupling will 

increase the learning outcome and provide functional benefit.  It has been shown (Eimer 

et al., 2001) that presenting a visual stimulus within the same spatial site as the 

corresponding tactile stimulus will enhance the measurable components, and better the 
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behavioural performance (Ohara et al., 2006).  The current results demonstrated that 

visual-tactile cross-modal association can have a positive effect on learning over a short 

period of time, and that presenting a visual stimulus prior to a tactile stimulus may be 

beneficial to performance during the early stages of learning.  Also, the results from the 

second experiment demonstrated an elevated and prolonged tactile P100, and a noticeably 

absent N140 component when tactile information was presented before visual 

information.  Further research, extending from this thesis, is needed to advance 

understanding of the performance and electrophysiological outcomes of visual-tactile 

cross-modal associations.  The findings of this study give insight into the performance 

and electrophysiological effects involved with short-term somatosensory learning, 

specifically how the manipulation of a visual stimulus, both spatially and temporally, can 

affect tactile learning as indicated through behavioural performance, and affect the 

electrophysiological mechanisms involved with somatosensory processing. 
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Introduction 

A considerable problem affecting the health of Canadians is stroke.  Stroke is the third 

leading cause of death in Canada with one stroke occurring every ten minutes, and while 

15% of stroke victims die, 40% are left with moderate to severe impairments (Heart and 

Stroke Foundation, 2008).  Somatosensory impairments can occur if there is ischemia or 

hemorrhage to the middle or anterior cerebral arteries supplying the postcentral gyrus 

where the primary somatosensory cortex (SI) is situated.  Damage to other areas such as 

the thalamus, the secondary somatosensory cortex (SII), and parietal association cortices 

could also hinder somatosensory function, as these structures are also involved with 

somatosensation.  Somatosensory problems persisting after damage would be failure of 

tactile sensitivity and loss of conscious proprioception.  Failure to recognize touch, pain 

or limb position can severely hinder independent living, and knowing that stroke victims 

may be left with these types of impairments makes inquiry into stroke rehabilitation a top 

priority for stroke research.  The more that is known about the contributors to 

neurorehabilitation, the more can be done about making the healing process more 

efficient and specific to a patient’s needs. 

 Neuroplasticity is the brain’s ability to reorganize its cortex through synaptic 

modifications, ultimately changing its structure and function, thus making neuroplasticity 

an imperative mechanism for rehabilitation.  There is collective verification (Hodzic et 

al., 2004; Pleger et al., 2001; Pleger et al., 2003) that short-term (i.e. minutes to hours) 

tactile learning is associated with detectable changes to the cortex.  If the neural 

mechanisms underlying tactile short-term learning were well understood then this could 

lead to the foundation of tactile long-term learning and recovery. Characterizing the 
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neural correlates of somatosensory processing and how additional aspects, such as task 

difficulty and coupling somatosensory with other modalities, is important in 

understanding the effects on tactile learning.  This study investigated a short-term tactile 

learning paradigm and how it influences the somatosensory cortex within a single 

session.  Tang et al. (2008) examined learning-related changes of a short-term vibrotactile 

discrimination paradigm.  The authors found that presenting subjects with a tactile 

learning paradigm over successive training and testing blocks, helped to improve their 

behavioural performance as error rate and reaction time both decreased from one testing 

session to the next, showing that learning had occurred.   Tang et al.’s (2008) study was 

focused on demonstrating the time course of visual-tactile learning as would be suitable 

for testing with fMRI (functional magnetic resonance imaging) and did not investigate 

the relationship between activation of the visual and somatosensory systems.  How 

different sense modalities influence one another is referred to as cross-modal. Cross-

modal effects can be very important for learning, as the manipulation of one modality can 

potentially affect the learning or performance outcome of another modality in tasks that 

are considered cross-modal. Therefore, to extend from the work of Tang et al. (2008) the 

studies is this thesis manipulated the relationship between the presentation of the pairs of 

visual and tactile stimuli, both temporally and spatially, and used electroencephalography 

(EEG) to investigate the cross-modal interaction between these systems with 

methodology similar to Tang et al. (2008).  Results from this study will allow a better 

understanding of how activity in one sensory system may modulate activity in another 

due to cross-modal interactions, specifically how introducing a visual stimulus with a 

tactile stimulus will affect somatosensory learning.  Understanding more about the cross-
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modal affects on learning could potentially be applied to rehabilitation because if it is 

known that introducing and manipulating a second modality can enhance the 

performance outcome of another modality and ultimately speed up the recovery process, 

this can be applied as multimodal tasks for rehabilitation. 
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Chapter 1: Review of relevant literature 

1.1 Somatosensory cortex organization 

Tactile stimulation is mediated by mechanoreceptors that detect a change in the form of 

the skin as an object contacts it.  These receptors convert this mechanical tactile 

stimulation to action potentials, which conduct through cutaneous afferent fibers to the 

primary somatosensory cortex via the dorsal column-medial lemniscus pathway (DCML).  

In this pathway, first order neurons are comprised of large diameter cutaneous afferents 

that ascend through the ipsilateral spinal cord (dorsal) to synapse in the dorsal column 

nuclei in the medulla.  Second order neurons originate here and their axons form the 

medial lemniscus that decussates to the contralateral side.  These neurons project to and 

synapse with third order neurons in the ventral posterior lateral nucleus (VPL) of the 

thalamus which in turn project to the primary somatosensory cortex (SI), situated in the 

postcentral gyrus of the parietal lobe (as cited in Kandel, Schwartz & Jessell, 2000, p. 

446).  

 SI is comprised of four Brodmann areas, 3a, 3b, 1, and 2.  The majority of the 

fibre projections from the VPL end up in areas 3a and 3b of SI, which then project to 

areas 1 and 2, however, there are some direct connections between VPL and areas 1 and 

2.  For the purposes of touch sensation, the information is propelled to areas 3b and 1. SI 

is also important because it sends projections to Brodmann areas 5 and 7 of the posterior 

parietal cortex, which are also significant for sensory processing.  Area 5 is involved with 

processing tactile information from the skin, along with proprioception from muscles and 

joints.  Area 7 gathers tactile, visual and proprioceptive information in order to 

incorporate stereognosis and vision.  Area 7 has also been found (Hyvarinen, 1981; 
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Hyvarinen, 1982) to have different functional parts, such as area 7a having purely visual 

and oculomotor responses, and area 7b being distinct in touch but also having vision 

represented together with somatosensory mechanisms.  The information processing that 

occurs in areas 5 and 7 of the posterior parietal cortex travel to motor areas for the 

purposes of sensory initiation and the guidance of movement (as cited in Kandel et al., 

2000, p. 452).  

 All four Brodmann areas of SI also connect to the secondary somatosensory 

cortex (SII) found on the bank of the lateral fissure.  SII is important because it relays 

tactile information to the insular cortex that will innervate areas of the temporal lobe 

important for tactile memory.  The rate and pattern of firing of SII neurons depends on 

the level of attention directed to the tactile stimuli. Thus SII controls the amount of tactile 

information to be sent to the temporal lobe for memory storage; not all information is 

stored, but only that which is behaviourally significant (as cited in Kandel et al., 2000, p. 

452).   

 At the cellular level, the cortex of SI is arranged into vertical columns expanding 

from the cortical surface to the white matter below.  The columns consist of six layers 

(labeled I, II, III, IV, V, and VI), and the neurons found within the columns all receive 

information from a common area of skin as well as respond to the same type of receptor.  

The neurons within the columns are aligned vertically and perpendicular to the cortical 

surface.  Afferents ascending from the thalamus project to layer IV on the stellate cell 

neurons, which project upwards to the cortical surface.  Pyramidal cells run parallel to the 

stellate cells and expand the thickness of the column as their dendrites are in contact with 

the axons of the stellate cells.  Thus the sensory information travels vertically within the 
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column, as well as out to subcortical nuclei; more specifically, layer VI relays back to the 

thalamus, while layers II and III project to other regions of cortex, and the subcortical 

regions receive input from layer V projections.  Through the projections arising from the 

different layers of the cortex, information about a stimulus can be transmitted to other 

areas of the brain (Favorov & Kelly, 1994a; Favorov & Kelly, 1994b). 

 When touching an object or holding it in the hand, no single sensory receptor 

conveys all of the pertinent information about that object to the brain.  The central 

nervous system must construct a perception of the object, using the discrete signals it 

receives from differing receptors that all sense a distinct attribute of the object.  

Mechanoreceptors, for the sense of touch, all have unique nerve terminals for differing 

types of sensation.  The Meissner’s corpuscles are small rapidly adapting receptors found 

in the superficial layer of the skin, and are important for detecting subtle mechanical 

sensations.  The Merkel disk is the other small superficial receptor, but is slowly adapting 

to pressure put on the skin.  It is because of these superficial receptors that humans are 

able to execute subtle tactile discrimination.  There are two deep subcutaneous receptors 

known as the Pacinian corpuscle and the Ruffini endings, which are greater in size than 

the superficial mechanoreceptors.  The Pacinian corpuscles are rapidly adapting to fast 

skin indentations such as vibrations, and the Ruffini endings are slowly adapting to 

stretch of the skin.  The receptive field, the area of skin that activates a receptor, is 

different between superficial and deep receptors, in terms of shape and size.  A cluster of 

10-25 Meissner’s corpuscles or Merkel disks sends afferent signals to a single dorsal root 

ganglion that innervates the superficial layer of skin.  The receptive fields for these 

receptors range from 2 to 10 mm in diameter and are very localized.  A single Pacinian 
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corpuscle or Ruffini ending is found within the deep layers of skin tissue.  The receptive 

fields for these receptors are large with no distinctive border, but there is a central area 

situated above the receptor where there is maximum sensitivity to touch.  This allows the 

receptors to detect object properties from a global region of skin.  Mechanoreceptors, 

depending on whether they are rapidly or slowly adapting, represent the intensity of a 

stimulus in different ways depending on the firing rate of action potentials.  Slowly 

adapting receptors respond to pressure on the skin throughout the continuous application 

of the stimulus.  As more pressure is applied, the firing rate of the neurons producing 

action potentials increases.  Rapidly adapting receptors respond to the onset and offset of 

a stimulus, and the firing rate of a neuron is proportional to the speed of the stimulus on 

the skin.  At the level of the cortex, the cortical neurons receive information about the 

pressure and rate of skin indentation from the slowly adapting and rapidly adapting 

neurons.  Thus, the type of sensory modality and receptive field can define cortical 

neurons, much like mechanoreceptors, as each neuron receives afferents from 

mechanoreceptors in a particular region of the skin.  The cortical neurons that are 

connected to the receptors become excited when the area of skin housing those receptors 

is touched.  As mentioned, the neurons within a column of the cerebral cortex all gain 

input from the same areas of skin, and from one modality.  In area 3b of SI, the modality 

is touch sensation, thus its primary input is from cutaneous mechanoreceptors.  The 

column of cells representing a specific site of the skin is divided into two sections; one 

for input from rapidly adapting, and the other from slowly adapting.  Area 1 neurons are 

also important for touch sensation with its main input from rapidly adapting receptors (as 

cited in Kandel et al., 2000, pp. 454-462; Vallbo et al., 1984; Vallbo et al., 1995). 
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 Within the somatosensory cortex, columns of neurons are arranged 

topographically so that all Brodmann areas include an overall map of the body surface.  

The maps are arranged such that the proportion of a body part’s representation in the 

brain is relative to the sensitivity of body part to touch.  Areas such as the hand and 

mouth are represented more largely as they have an increased innervation density that is, 

there is more cortical tissue allotted to the processing of these regions of skin.  There is a 

general arrangement of the sensory maps whereby the most caudal areas of skin are found 

more medially in the map, and as the map moves more lateral the representations are 

from the more rostral regions.  A very important feature of cortical sensory maps is that 

they are not constant, but always changing depending on the individual’s external 

environment and behavioural experiences.  The process of plasticity leads to these 

changes (as cited in Kandel et al., 2000, pp. 459-462). 

 

1.2 Plasticity 

As described by Nudo (2006), “plasticity is the capability of the cerebral cortex to alter 

its functional organization as a result of experience”, thus the brain is capable of 

physiological and anatomical changes.  Plasticity, or neuroplasticity, occurs in both 

healthy and injured brains and is characterized by altered cortical maps, modulation of 

neurotransmitters, synaptogenesis, dendritic spine growth, and a change in synaptic 

strength.  These physiological and anatomical changes can occur due to natural 

stimulation of the senses through acquisition of skills. 

 Neuroplasticity involves long-term potentiation (LTP), a long lasting 

strengthening of the communication between two neurons in response to a repeated 
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stimulus.  LTP is important for learning and memory, and is brought on through 

persistent changes at the level of the synapse.  These synaptic changes come about by 

applying a repetitive stimulus that eventually allows for the growth of new proteins and 

an increase in the number of synaptic connections.  Learning and memory take place at 

the level of the synapse, and requires that there be synthesis of synaptic connections, 

therefore increasing the synaptic strength of a neuron will allow for long-term memory to 

occur (as cited in Lundy-Ekman, 2007, pp. 72-74).  However, LTP can also occur 

without any structural changes, but due to an increase in the amount of neurotransmitter 

released at the synaptic junction, lasting only a few hours. 

 LTP is important for visual, motor and somatosensory learning, and the 

mechanism behind LTP is as follows (Luscher et al., 2000):  due to a repeated 

stimulation, synapses that were once inactive now become active by calcium entering the 

postsynaptic neuron through NMDA receptors binding glutamate, an excitatory 

neurotransmitter.  An increase in calcium allows for the phosphorylation of non-

functional AMPA receptors, which can now be activated and inserted into the membrane 

of the postsynaptic neuron, creating new synapses.  Continuing the stimulation, the 

postsynaptic neuron will develop a new dendritic spine and eventually more synapses, 

thus making the connections between neurons stronger, and increasing memory and 

learning capacity.  These changes in synapses are what reorganize the cortical maps to 

disclose new functions.   

 Long-term potentiation can be broken up into an early phase and a late phase.  By 

applying a single train of stimuli or repeatedly performing the same task, this induces the 

early phase that lasts from one to three hours.  The features of the early phase are that it 
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does not involve the structural changes of forming new proteins or synapses.  What it 

represents is a functional change in the probability of neurotransmitter release caused by 

an increase in excitability due to the inhibition of inhibitory interneurons, allowing for the 

release of more neurotransmitter.  Thus, with the probability of more transmitters being 

released, the synaptic junction between the pre-synaptic neuron and the post-synaptic 

neuron can be facilitated ultimately enhancing learning for the time being.  The late phase 

of LTP is more persistent, and is brought on by four or more trains of stimuli causing it to 

last for a minimum of twenty-four hours.  The late phase involves structural changes 

through protein synthesis and the formation of new synapses (as cited in Kandel et al., 

2000, pp. 1262-1264). 

 

1.3 Event-related potentials in the somatosensory cortex 

An event-related potential (ERP) is known as “a potential related to cognitive or initiative 

processes” (Misulus, 1994) and is brought on by natural noninvasive stimuli.  ERPs 

reflect the arrival of information to the brain, or movement execution that, by using scalp 

electrodes can reveal the electric field that is induced by the event of interest. Interpreting 

the results of ERP experiments is insightful because diverse receptors have different 

speeds of conduction, and they convey distinct stimulus properties, as well, they travel in 

anatomically segregated pathways through the peripheral nerve, spinal cord and brain 

(Regan, 1989). Therefore, analyzing the components of ERPs gives an understanding of 

the capabilities of the brain’s afferent systems, making ERP traces helpful for clinical 

diagnosis as well as for research purposes. 
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 Somatosensory potentials can be evoked by an electrical stimulus to a peripheral 

nerve generating a high-quality signal-to-noise ratio that allows precise timing of neural 

events.  However, probing the somatosensory system this way does not allow for the 

stimulation of the sense receptors that would ordinarily respond to the stimuli, and so the 

sensitivity of the type of nerve fibers activated is undermined.  Electrical stimulation 

applied directly to the nerve will induce a heterogeneous cluster of afferent fibers from 

muscles, joints, skin, and deep tissue, in addition to muscle efferents, all compromising 

the characteristics of the ERP.  Natural stimulation of the somatosensory system permits 

true timing of sensory signals from sensory receptors to the cortex, and because it is 

purely the cutaneous afferent fibers being activated, natural stimuli provide a more 

intuitive understanding as to what is actually occurring within the brain’s afferent system. 

 

1.3.1 Somatosensory ERPs: The P100 and N140 

Common somatosensory ERP components are the P100 and the N140 as found in many 

research experiments involving tactile-visual cross-modal tasks (Eimer & Driver, 2000; 

Eimer & Driver, 2001; Ohara et al., 2006).  

 The N140 is a negative amplitude component that peaks at approximately 140 ms 

post-stimulus and has been found to occur within the range of 120-180 ms (Yamashiro et 

al., 2008).  The N140 component is believed to have multiple generators including 

bilateral generators within the secondary somatosensory cortices (Allison, McCarthy & 

Wood, 1992; Tarkka, Micheloyannis & Stokic, 1996).  Furthermore, when studying the 

topography of the N140 under different concentrations of cognitive challenge that is, 

focusing attention towards or away from the stimulated hand, García-Larrea et al. (1995) 
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found that the N140 distribution became more symmetrical across the two hemispheres as 

the subjects’ attention to their stimulated hand increased.  As well, it was evident that the 

N140 amplitude increased in size as the spatial orientation of attention was concentrated 

on the stimulated area.  Giaquinto and Fraioli (2003) also discovered that there was an 

enrichment of the N140 in stroke patients who were trained on spatial attention using 

cutaneous electrical stimuli.   

 Unlike the N140, the P100 is a positive amplitude component occurring 

approximately 100 ms after the onset of the stimulus with peak latency from 70-120 ms 

(Yamashiro et al., 2008). The P100 has been found (Tomberg at al., 2005) to be 

generated in the parietal cortex contralateral to the stimulated finger when using electrical 

brain mapping along with an attentional task of discriminating target tactile stimuli from 

non-target stimuli.  More specifically, the P100 was generated in Brodmann’s area 7b of 

the intraparietal cortex; an area accepting connection from Brodmann’s area 5 which 

ultimately receives connections from somatosensory areas 3b and 1 responsible for 

somatosensation.  The fact that area 7b receives connections from initial somatosensory 

processing centres indicates that this area, together with the P100, is important for higher-

order processing of somatosensory stimuli, and is enhanced by attention.  In fact, neurons 

in area 7 integrate tactile and vision that coincide within the same space (Kandel et al., 

2000).  Attention concerns the P100 when subjects concentrate on receiving a tactile 

stimulus compared to when the stimulus is unattended.  In an attended situation the 

amplitude of the P100 increases and in addition, this amplitude value decreases as the 

stimulus duration increases in time (Spackman et al., 2006). 
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 It is apparent that the N140 responds to spatial attention when tactile stimulation 

is applied to the hand, reflecting an increase in SII excitability.  Like the N140, the 

amplitude of the P100 tends to increase when attention is applied to a tactile stimulus, but 

is affected by the stimulus duration, overall reflecting the excitability of parietal higher-

order somatosensory processing. 

 

1.3.2 Visual-tactile cross-modal somatosensory ERPs 

It is often the case that an individual’s environment has more than one modality 

influencing them at once; hence research has looked into how somatosensory ERPs can 

also be modulated by multimodal stimuli.  Ohara et al. (2006) showed that a single tactile 

stimulus would affect the N140 differently when another task is performed.  Subjects 

were to match two stimuli, the first condition involving two tactile stimuli and the second 

condition involving a tactile stimulus with a visual stimulus.  With the ERPs being time-

locked to the onset of the first stimulus, the bimodal matching task caused an increase in 

the N140 amplitude in comparison to the unimodal task.  It has been proposed that the 

N140 is generated by sources within SII, thus as indicated by Ohara et al.’s (2006) 

results, the SII is suggested to be involved with higher order processing of cross-modal 

associations between tactile and visual modalities.  Ohara et al. (2006) advocate that the 

P100 may be involved with differing activities than those of the N140 since the P100 was 

not modulated to a significant extent with the cross-modal matching task.  The P100 

could be involved in conveying information from the tactile to the visual modality, since 

its amplitude was enriched with a cross-modal control task that involved no matching of 
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the two stimuli.  From this study, the tactile N140 and P100 can be altered by cross-

modal tasks involving the anticipation of a visual modality. 

 Attention is a factor that modulates somatosensory ERPs, consequently Eimer and 

Driver (2000) sought to test for cross-modal ties between touch and vision in response to 

endogenous spatial attention by having subjects detect a tactile or visual stimulus on an 

attended side while ignoring stimuli of the unattended side.  The results indicated that 

when tactile stimuli were attended to there was an enhanced N140 that was largest in the 

tactile attended condition and less prominent in the condition where vision was the 

primary attended and touch was the secondary attended stimulus.  Also, when vision was 

the attended modality, without touch, the N140 enhancement was not apparent.  

Similarly, spatial attention to touch was able to modulate visual ERPs lending evidence 

towards tactile-visual cross-modal connections in spatial attention. However, cross-modal 

ties from vision to touch were not apparent when attention was concentrated entirely on 

vision, but only when touch had some relevance, indicating that unless it is pertinent to 

cross-modal spatial attention, touch may be decoupled from visually dominant attention.  

These findings were not the same for visual modalities that were found to always be 

coupled to touch even when vision was not relevant to the tactile spatial attention.   

 Eimer et al. (2001) went a step further to determine how the tactile-visual cross-

modal links would be affected under a different posture that is, with the hands crossed.  

They wanted to determine just how these cross-modal links are mediated, and proposed 

that if the cross-modal links between vision and touch are determined by initial 

hemispheric projections then their results would indicate that paying attention to a hand 

in the crossed position would still enhance visual ERPs on the same side as if the hand 
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were uncrossed.  In contrast, they stated that if cross-modal links from touch to vision are 

mediated by external locations that are common to the two modalities, then they expected 

that there would be elevated visual ERPs in the opposite side to that of uncrossed hands.  

They found that the visual ERPs (P1, N1, and P2, at occipital sites, and N1 at midline 

sites) were enhanced on the tactually attended side in the uncrossed condition, and 

analogous results took place in the crossed hands position where the attention to tactile 

stimulation enhanced the visual responses on the side where the attended hand was 

placed.  This outcome indicates that cross-modal links between touch and vision are not 

mediated by hemispheric projections but rather by the immediacy of the visual stimulus 

to the position of the focused hand.  However, these results were not found for the 

somatosensory ERP N140, which actually was absent or reversed when hands were 

crossed compared to uncrossed.  The results of this study suggest that placing the hands 

in a crossed position cause a disturbance to attentional effects within touch, however the 

cross-modal effects upon vision were not disturbed.  

 The results of these studies signify that somatosensory ERPs can be altered by 

anticipation of a visual stimulus or even the spatial attention applied to touch.  Also, that 

the cross-modal relations from touch to vision are controlled by common external 

locations of the two modalities.  Hand posture also has significance in controlling 

somatosensory ERPs by downgrading or eliminating them when the hands are crossed, a 

feature that is quite the opposite for visual ERPs. 
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1.3.3 Other somatosensory event-related potentials  

In addition to the N140 and P100 there are other ERPs that occur in response to tactile 

stimuli.  The P300 is a late positive potential, widely distributed in response to attending 

to an oddball paradigm whereby target stimuli are presented randomly amongst constant 

non-target stimuli.  The P300 has been found (Tarkka et al., 1996) to occur with bilateral 

representations in the medial temporal lobes, hippocampal or parahippocampal regions, 

and contralateral insular cortex, which is prominent in memory.  Valeriani et al. (2001) 

also found there to be more than one generator of the P300, and similar to Tarkka et al. 

(1996) they found bilateral generators in the medial temporal areas, and in the 

contralateral temporal lobe.  Although the P300 is generated in response to 

somatosensory stimuli it is not specific to this modality because it can also be elicited by 

auditory and visual stimuli.  Much more is still to be learned about the P300 as a 

somatosensory evoked potential, as most studies concentrating on the P300 are designed 

around auditory and visual modalities as the primary stimuli. 

 Earlier somatosensory potentials have also been recorded (Josiassen et al., 1990) 

that include the N20, P30, P45, and N60, and have thought to be generated by 

prerolandic, postcentral and subcortical regions.  They have been found to respond to 

attentional effects of the modality as early as the P30.  The N20 however, is non-

responsive to attentional effects suggesting that the gating of the subcortical 

thalamocortical connection is not regulated by attention to stimuli in the somatosensory 

modality.  However, these early potentials were generated by direct stimulation to the 

median nerve, setting in motion unspecific fibers and bypassing the sensory receptors 

causing a reduction in the natural discrimination of the ERP signal.  In a protocol 



 17 

involving genuine stimuli to the sensory receptors, somatosensory ERPs earlier than 

approximately 50-60 ms would not be expected.  Reasoning behind the lack of early 

potentials may be due to a steady commencement with mechanical stimulations as 

opposed to an abrupt onset with electrical stimulation exciting complete nerve bundles 

instead of mechanoreceptors that would allocate receptor adaptation and conduction 

velocity affecting the overall timing (Schubert et al., 2008).  The earliest reliable potential 

measured in response to tactile stimulation has been the P50, a positive deflection 

occurring 50 ms after initial stimulation.  This was brought on by bilaterally stimulating 

the index fingers with Braille to test tactile spatial-selective attention and measured 

simultaneously with EEG and fMRI.  The results indicate the P50 EEG tracing to be 

enhanced by spatial attention and that this amplification correlates with an enlargement in 

fMRI BOLD signal located in the contralateral SI (Schubert et al., 2008).  The results 

also indicate a correlation between attention on early and late potentials (i.e. P100) with 

BOLD signal indicating that tactile spatial attention can improve processing in SI during 

an early course of the signal as well as during a later passage of the signal when higher 

cortical areas allow re-entrant feedback to SI. 

 

1.3.4 Characteristics of tactile stimuli 

When the sensory system receives tactile information from the environment it must sort 

out different traits about the stimulus to be correlated with the sensation of touch that is 

seen within an ERP tracing.  Current somatosensory studies, eliciting an ERP response to 

natural stimuli within a lab setting, are mainly done through vibrotactile or punctate 

stimuli.  Most protocols call for repeated stimuli, and these are easy to administer to the 
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volar surface of the finger tip(s) (usually the index finger) where there are many sensory 

receptors.  Punctate stimuli can be described as a ‘tap’ on the surface of the skin, usually 

driven by a single rod attached to a solenoid (Eimer & Driver, 2000; Eimer et al., 2001), 

or possibly many rods at once (Schubert et al., 2000).  Contact time on the surface of the 

skin, as well as the intensity of the punctate stimulus can vary from one study to the next.  

A vibrating apparatus can induce vibrotactile stimuli, which can be custom-built for the 

purposes of the study. Vibrotactile stimulations can operate at a consistent frequency 

(Spackman et al., 2006), or in the case of tactile discrimination frequency studies can be 

done using different frequencies (Ohara et al., 2006;).  Overall, these are methods in 

which somatosensory ERPs can be measured in response to natural tactile stimuli. 

 

1.4 Evidence for adaptations to learning in the somatosensory cortex 

1.4.1 Working memory 

The capability of retaining and influencing information on the order of seconds, is known 

as working memory or short-term memory, and is a large contributor to learning because 

it is involved with cognitive processes such as attention, perception and action (Harris et 

al., 2002).  Working memory tasks have been shown to involve the prefrontal cortex as 

the major contributor to managing what information is stored in memory.  Kostopoulos et 

al. (2007) specifically found the midventrolateral prefrontal cortex to be involved with 

“active controlled retrieval processing” important for making understood tactile 

information stored in memory.  They state that sensory information about a tactile 

stimulus is first administered in SI, which then contributes to the parietal opercular region 

for SII processing as well as the rostral inferior parietal lobe for an overall achievement 
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of tactile perception.  The secondary somatosensory regions are connected to the 

prefrontal cortex bidirectionally, thus the midventrolateral cortex can relay information 

with SII and the rostral inferior parietal lobe.  Furthermore, Harris et al. (2002), when 

researching tactile memory, found that SI is not only involved with working memory for 

semantics but is fundamental in tactile working memory for the retention of sensory 

information.  This implies that not only are SI neurons important for early somatosensory 

processing, but they also have a role in storing information contributing to working 

memory.  It has also been suggested that in the same way SI is topographically organized 

for representing stimuli, these topographical regions contribute to the retention of sensory 

information as one stimulus can be compared to another by the retention of the memory 

trace over a delay period (Harris et al., 2001). 

 

1.4.2 Short-term learning in the primary somatosensory cortex 

Learning experiments involving the motor cortical regions show that skill learning is 

dependent upon the stage of acquisition that is, there is a fast learning stage where 

improvement is evident within the initial session, leading into a between-session slow 

learning stage where performance gains come from continued practice (Floyer-Lea & 

Matthews, 2005; Karni et al., 1995; Karni et al., 1998).  This time course of plastic events 

is what establishes the location of skill acquisition in long-term memory.  Similarly, 

understanding the neural mechanisms that underlie short-term tactile learning will allow a 

better understanding of the long-term learning of tactile stimuli.   

 There are studies that associate measurable cortical modifications as the result of 

tactile learning in the short-term.  Hodzic et al. (2004) demonstrated that perceptual 
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learning could be induced passively without the use of reinforcement or attention.  By 

having subjects receive passive tactile coactivation to the index finger for a period of 3 

hours, Hodzic et al. were able to use fMRI to measure a two-to-threefold expansion of the 

representation in contralateral SI and SII cortex.  As well, there was a positive correlation 

between the enlargement of the represented area in SI and the performance of spatial 

discrimination; those participants who had the largest shift in cortical representation were 

the ones with the greatest improvement in performance.  However, frequency 

discrimination performance decreased after the tactile passive coactivation bout, possibly 

suggesting that the best way to acquire new skills is to learn with attended effort as 

opposed to passively without attention.  In similar studies (Pleger et al., 2001; Pleger et 

al., 2003) involving short-term, non-attended coactivation to the index finger, there were 

results parallel to those of Hodzic et al. (2003).  A linear relationship developed between 

spatial discrimination threshold and cortical reorganization; subjects who demonstrated a 

large gain in spatial discrimination also had an enlarged representation of the 

corresponding stimulated finger within SI.  Ragert et al. (2008) were able to demonstrate 

that perceptual learning takes place depending on the frequency of the tactile stimulation.  

When given a high frequency (20Hz) stimulus vs. a low frequency (1Hz) for 20 minutes, 

the high frequency was able to decrease two-point spatial discrimination and had lasting 

effects 24 hours later.  The low frequency impaired performance.  They related this 

increase and decrease in performance to long-term potentiation and long-term depression 

respectively which are mechanisms underlying cortical plasticity and learning.  Much like 

the previous studies however, there was no attention involved with the task, which along 

with higher frequency stimulation could further the learning effects. 
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 The present studies on short-term tactile learning are limited and need to be 

expanded because not much is known about this topic.  An obvious factor that needs to 

be looked into is attention and its role in tactile learning as many of the present studies 

involve passive learning.  Other possible inquiries include the physiological mechanisms 

driving an increase in learning, which would give insight into what is actually happening 

at the cortical level when acquisition occurs.  As well, how tactile learning becomes 

affected by other modalities such as vision.  These are all areas in which this study 

aspired to investigate. 



 22 

Chapter 2: Research objectives and hypotheses 

The aim of this thesis was twofold.  The first aim was to determine if there is a functional 

benefit to tactile-visual coupling during tactile learning.  Furthermore, presuming an 

interaction between vision and tactile stimuli, we wanted to determine how tactile-visual 

spatial attention, and stimulus order effects tactile learning. The second aim was to 

understand the electrophysiological mechanisms associated with the modulation of 

somatosensory processing by visual stimulation.  Two separate experiments were 

conducted to address these objectives. 

 The objective of the first experiment was to determine the learning effects and 

functional benefit to performance of temporal manipulation and spatial coupling of tactile 

and visual stimuli during a tactile learning paradigm.  Specifically, it was hypothesized 

that coupling vision with tactile stimuli will result in a decrease in the number of errors 

and reaction time (RT) from block-to-block until a learning curve is reached. 

Furthermore, it was hypothesized that presenting tactile and visual stimuli within the 

same spatial location as well as presenting a visual stimulus before a tactile stimulus, will 

be associated with an increase in performance, reflected by an increase in the rate of 

learning. 

 The objective of study two was to determine the electrophysiological mechanisms 

associated with the modulation of somatosensory processing by visual stimulation.  It 

was hypothesized that presentation of the visual stimuli prior to the tactile stimuli would 

enhance somatosensory-related ERP amplitudes through bottom-up processing from 

visual to tactile processing streams, based on the work of Ohara et al. (2006). 
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It was further hypothesized that as the visual stimulus is paired with a tactile stimulus 

within the same spatial location, the amplitude of somatosensory-related ERPs will 

increase compared to when the visual stimulus is presented near the opposite hand not 

receiving the tactile stimulation.  Evidence comes from Eimer et al. (2001) who found 

that visual stimuli with the tactile stimuli enhanced somatosensory ERPs, and that these 

cross-modal spatial relations between vision and touch are based on the common location 

that they share.  

 



 24 

Chapter 3: Study One: Short-term learning of visual-tactile associations: An 
investigation of behavioural performance 

 
Overview:  Research looking into the cross-modal associations between vision and touch 

has determined much about the interaction between these two modalities; that they are 

dependent on sharing a similar location in space, that tactile effects can be decoupled if 

not relevant to a visually dominant task, and performance increases over a short 

timeframe when these two modalities are cross-modally presented.  The current study 

investigated how vision affects somatosensory learning behaviourally, when learning was 

dependent upon the manipulation of the spatial location and temporal order of the stimuli.  

It was hypothesized that staging the two modalities within a common location, and 

preceding the tactile stimulus with a visual one, would boost performance representing an 

enhancement in learning.  Participants were taxed with a Morse code learning paradigm, 

where they had to associate a visual letter of the English alphabet with a tactile dot/dash 

punctate stimulus on their left index finger.  The task consisted of training and testing 

sessions to represent skill learning and skill assessment respectively.  Four conditions 

were tested: two whereby spatial location of the visual stimulus was manipulated, and 

two whereby stimulus order was manipulated.  The significant result was an elevated 

performance when the visual preceded the tactile stimulus during the early stages of 

learning.  The overall conclusion was that tactile-visual learning can occur over a short 

period of time, and that early stages of learning may benefit from presenting the visual 

stimulus prior to the tactile stimulus.   
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3.1 Introduction 

In a study done by Tang et al. (2008), it was shown that vibrotactile learning could 

increase within a single short-term (45 min) session.  Specifically, the session involved 

participants learning a tactile version of Morse code; matching a dot/dash tactile pattern 

to a visual letter of the English alphabet, and consisted of marked training and testing 

components.  What resulted was a training-reliant decrease in error rate and reaction time 

within a single session, which was also evident at retesting sessions.  The authors 

advocate that the methodology used is fitting for evaluating neurological changes 

connected to short-term vibrotactile learning.  Learning occurs at the junction between 

two neurons through the process of LTP, a component of neuroplasticity whereby 

repeated stimulation results in an increased firing rate between neurons to the point where 

new synapses are formed.  These structural changes can last on the order of days to 

weeks, however the learning involved with Tang et al.’s (2008) study comes through the 

early phase of LTP.  During this phase there are no structural changes, but a repeated 

stimulus results in an increase in the probability of neurotrasmitter released at the 

junction between two nerves by inhibiting inhibitory interneurons.  This will result in a 

facilitation of the communication between the nerves that ultimately increases learning 

for the time being (a few hours).  The authors focused on demonstrating the time course 

of the visual-tactile learning, however they did not investigate the relationship between 

activation of the visual and somatosensory systems.  When two different systems interact 

and influence one another, they are known to have cross-modal associations.  Cross-

modal relationships can be very effective as one sensory system can modulate and have 

some bearing on learning and performance within the other system.  The purpose of this 
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study was to extend from the work of Tang et al. (2008) to investigate how vision affects 

somatosensory learning behaviourally when participants are taxed with a Morse code 

vibrotactile paradigm within a short-term session, and where learning, in this case the 

short-term effects due to early phase LTP, is dependent upon the cross-modal interactions 

between tactile and vision as they are manipulated spatially and temporally. 

In a previous study on tactile-visual cross-modal associations, Ohara et al. (2006) 

looked at somatosensory discrimination based on the expectation of a previously paired 

visual stimulus.  Their behavioural results indicated that there was enhanced performance 

when subjects had to discriminate between 2 stimuli in a cross-modal task (visual and 

tactile) compared to a unimodal task (tactile and tactile). They attributed this 

enhancement to top-down processing or the cognitive expectation of the visual stimulus 

when it was presented after the tactile stimulus, and that these cross-modal changes have 

their greatest effect in SII cortex where higher level processing occurs.  Dionne et al. 

(2009) showed increased activation in SI during simultaneous visual-tactile stimulation 

compared to unimodal stimulation when all stimuli were relevant for a subsequent motor 

response. This is supportive of the possibility of bottom up effects of visual processing on 

the modulation of somatosensory information.  Along the same lines, Meehan et al. 

(2009), when looking at intermodal spatiotemporal properties, determined that changes 

within the processing of early somatosensation were reflective of intermodal sensory 

gating, characteristic of bottom-up processing.  Furthermore, it has been found (Eimer et 

al., 2001) that cross-modal links between somatosensory and vision are dependent upon 

the tactile and visual stimuli being presented within a common location in space.  Thus, 

from these previous outcomes, it was hypothesized that when participants are presented 
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with a Morse code vibrotactile paradigm that couples vision with tactile stimuli, this will 

cause learning to occur over time until a learning curve has been reached.  Similarly, 

presenting a visual stimulus before a tactile stimulus would result in enhanced 

performance through sensory driven (bottom-up) processing as the visual stimulus primes 

the somatosensory system.  Furthermore, presenting the visual and tactile stimuli within 

the same spatial location would also improve behavioural performance. 

 

3.2 Materials and methods 

3.2.1 Subjects 

Twenty healthy volunteers were tested (13 females, 7 males; age range 19 to 33 years; 

average 24.25 years).  Exclusion criteria were skilled knowledge of Morse code, or the 

presence of any neurological diseases.  All subjects gave their informed consent to 

participate in the study, and the experimental procedures were approved by the Office of 

Research Ethics at the University of Waterloo. 

 

3.2.2 Experimental procedure 

Tactile Stimuli  

Tactile stimuli were presented via a custom-built, vibrotactile device; a modified speaker 

mounted within a plastic box with a surface area large enough for the entire hand to rest. 

Participants were instructed to place their left index finger over a hole in the box 

approximately 1cm in diameter.  Within the hole was a dowel attached to the center of 

the speaker’s diaphragm and placed flush with the hole.  The dowel acted as a tactile 

hammer to present tactile patterns in the form of standardized Morse code stimuli.  The 
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stimuli were received by the volar surface of the left distal phalanx of the second digit.  

The tactile hammer was controlled by custom LabVIEW software (National Instruments; 

Austin, Texas, USA) producing stimulus waveforms that were converted to an analog 

signal (DAQCard 6024E, National Instruments, Austin, TX), which was then amplified 

(Bryston 2B-LP, Peterborough, Ontario, Canada).  The vibrotactile stimuli consisted of 

short and long durations corresponding to the dots (.) (duration = 250ms) and dashes (-) 

(duration = 750ms) of standard Morse code, respectively (Table 1).  The dots and dashes 

were arranged in combinations to represent Morse code letters corresponding to the 

English alphabet.  The stimuli were delivered with an inter-element duration of 125 ms.  

 

Manipulation of Task Difficulty 

Tactile stimulus patterns were characterized as being either easy or hard depending on 

the complexity of the characteristic patterns.  Easy letters are those with only one 

transition occurring between dots and dashes that take place at either the beginning or the 

end of the tactile pattern.  The hard letters are those with more than one transition within 

the entire pattern (Table 1).  The criteria for easy and hard patterns were in accordance to 

the method used by Tang et al. (2008).  Easy patterns were verified by the early 

production of a learning curve, whereas the hard patterns resulted in a learning curve that 

progressed slower than that of the easy patterns.  More specifically, the average reaction 

time and error rates were found to be greater for hard discriminations than easy ones.  

Four specific four letter sets (AYTV, BZPL, HEFC, IXOQ) were randomly selected prior 

to the study and all contained easy and hard discriminators in the ratio of 1:3 

respectively.  The easy/hard ratio, as put forth by Tang et al. (2008), was chosen in order 
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to expand the discrimination challenge for each letter set, and allow for varying degrees 

of difficulty during testing. 

 

Visual Stimuli 

Visual stimuli were in the form of letters of the English alphabet that correspond to the 

tactile stimuli (Table 1).  Participants had to learn the association between the tactile and 

the visual stimuli as the individual letters were precise identifiers for each tactile pattern.  

The letters were presented by way of a computer monitor placed in front of the subjects.  

In some cases the visual stimulus was coupled with the tactile stimulus by presenting the 

letter on the left side of the computer monitor screen, whereas in other cases the two 

modalities were not coupled and the visual letter was presented on the right side of the 

computer screen. 

 

Response 

In order to obtain behavioural data as a measurement of learning, subjects had to make a 

response using a plastic device outfitted with two buttons that were mapped to one of two 

responses: match and no match.  The participants indicated their response by pressing one 

of the two buttons corresponding to the second and third digits of their right hand.  Using 

the second digit indicated a match and using their third digit indicated no match between 

the tactile and visual stimuli presented.  The response system was only utilized during the 

testing sessions of study one. 
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Behavioural Investigation 

The design of this experiment consisted of skill acquisition followed by skill assessment, 

which represented training and testing segments respectively.  There were four 

conditions: spatially coupled-visual first (SCV), spatially coupled-tactile first (SCT), 

spatially uncoupled-visual first (SUV), and spatially uncoupled-tactile first (SUT).  There 

were three training blocks, each one followed by a testing block for each of the four 

conditions so that the experimental period consisted of a total of twenty-four blocks (6 for 

each of the four experimental conditions) (Figure 1).  By using training blocks followed 

by testing blocks, this allowed insight into short-term learning over consecutive blocks. 

 

Training 

 The intention of the training sessions was so that subjects could learn the association 

between the Morse code tactile stimulus and the corresponding visual letter. Training 

involved subjects receiving a tactile dot-dash combination that matched with a 

corresponding visual stimulus (Table 1). There were four conditions, two whereby spatial 

location of the visual stimulus was manipulated, and two whereby stimulus order was 

manipulated, in which the stimuli are presented: spatially coupled, where the visual 

stimulus was presented on the left side of the computer monitor within the same spatial 

vicinity as the tactile stimulus; spatially uncoupled, where the visual stimulus was 

presented on the right side of the computer monitor within the opposite spatial location as 

the tactile stimulus; visual first, where the visual stimulus was presented 200 ms prior to 

the onset of the tactile stimulus; and tactile fist, where the tactile stimulus was presented 

prior to the visual stimulus, with 125 ms between the two stimuli.  
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The four training conditions are based on coupling a spatial location condition 

with a stimulus order condition, and each block consisted of four letters in the ratio of 1:3 

representing easy vs. hard letters respectively. A ratio of 1:3 was used in order to 

maximize discrimination challenge as put forth by Tang et al. (2008).   Throughout each 

of the four conditions of training, corresponding tactile and visual stimuli were presented 

every 5 seconds, for a total duration of 80 seconds so that each pair of stimuli are presented 

four times for a total of 16 stimuli per training block.  The same 4 letters were presented 

randomly in each of the three training blocks.  A different set of letters were assigned to be 

used in each training condition based on a balanced Latin square design such that all four 

training conditions were paired with each letter set an equal number of times across 

subjects.  The same letter set that was trained was tested for learning effects during the 

testing phase.  The importance of using such a design was confirmed by 1-way ANOVAs 

with letter set as the factor (AYTV, IXOQ, BZPL, HEFC) and number of errors for each 

test (block 1, block 2, block 3) as the dependent measure.  Results indicated that letter set 

was significant for test blocks 1 and 2 (F3,57 = 4.38, p = 0.0076; F3,57 = 3.16, p = 0.03, 

respectively), but not test block 3 (F3,57 = 1.43, p = 0.24) (Appendix 1).  This suggests 

that some letter sets were more difficult to learn initially but that after sufficient training, 

subjects learned each set equally well.  Using the balanced Latin square design should 

have eliminated this as a potential confounding factor.  Subjects were informed to pay 

attention to the visual and the tactile stimulation in order to learn the proper tactile pattern 

that matches with the appropriate letter.  No response was required during the training 

session.  See Figure 2 for the experimental time course of the training sessions. 
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Testing 

The testing blocks determined if there were any functional benefits of manipulating 

spatial and tactile aspects of tactile-visual associations.  It was predicted that learning will 

occur such that there will be an increase in the performance from one testing period to the 

next until a plateau in performance is reached.  The purpose of the testing blocks was to 

evaluate the (collective) learning outcome of the training block(s).  The testing blocks 

required the subjects to discriminate between matching (meaningful) and non-matching 

(meaningless) tactile-visual stimuli presented at random.  The same 1:3 easy vs. hard 

patterns were presented as in the training block, within the center of the computer screen.  

There were a total of 32 stimulus pairs with a new pair presented every 5 seconds for a 

total time of 160 seconds per testing block.  The tactile stimuli always preceded the visual 

stimulus as the visual stimulus acted as the ‘go’ signal for the response.  A response was 

required whereby subjects had to press one of two buttons based on their decision of a 

match or no match between the tactile and visual stimuli, and were asked to create a 

response as quickly and accurately as possible.  No performance feedback was given to 

the subjects at any time during the course of the experiment in order to prevent explicit 

learning.  In order to determine a learning effect, reaction time (RT) was measured in 

milliseconds (ms) as well as the number or errors.  A decrease in RT and the number of 

errors would be reflective of learning.  Overall, study 1 took 48 minutes to complete 

(Figure 1).  See Figure 3 for the experimental time course of the testing sessions. 
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3.2.3 Data aquisition 

Behavioural performance measurements that were acquired were reaction time and 

accuracy when the participants would press one of two buttons; match or no match, 

during the testing phase.  The behavioural performance measurements were collected by 

custom LabVIEW software (National Instruments; Austin, Texas, USA), and further 

processed using Microsoft Excel (Microsoft Corporation, Redmond, Washington, USA). 

 

3.2.4 Data analysis 

To test the hypothesis that tactile learning will occur across testing blocks, a 2-way 

analysis of variance (ANOVA) with condition (SCV, SCT, SUV, SUT) and test (block 1, 

block 2, block 3) as factors were performed on the number of errors made at each testing 

block, as well 2-way ANOVAs with condition and test as factors were performed on the 

reaction times.  To test the hypothesis that the spatial location (visual stimulus coupled 

with tactile stimulus) and temporal order (visual stimulus presented before the tactile 

stimulus) have an effect on learning, separate 2-way ANOVAs with spatial location 

(coupled, uncoupled) and temporal order (visual first, tactile first) as factors were 

performed on the differences in the number of errors between test blocks 1 and 2, 2 and 3, 

and test blocks 1 and 3.  Similarly, 2-way ANOVAs with spatial location and temporal 

order as factors were performed on the differences in reaction time between test blocks 1 

and 2, 2 and 3, and test blocks 1 and 3.  Significant ANOVAs for all hypotheses were 

followed up with post hoc testing, which consisted of a Tukey test.  All statistical tests 

were performed using SAS 9.1 (SAS Institute Inc., Cary, NC, USA). 
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3.3 Results 

Figure 4 depicts the average number or errors and reaction time of the twenty subjects at 

each testing block.  The ANOVA for the number of errors revealed a main effect of test 

block (F2, 38 = 32.12, p < 0.0001) but not condition (F3, 57 = 0.39, p = 0.76), suggesting 

that learning of the tactile-visual associations occurred over the session but that this was 

not influenced by the different conditions.  Post hoc Tukey tests revealed test block one 

(mean = 6.8) to be significantly different than test blocks 2 and 3 (means = 3.7 and 3.2 

respectively).  There was no interaction between test and condition (p = 0.19).  The 

ANOVA for reaction time also had a significant main effect of test block (F2,38 = 44.12, p 

< 0.0001) but not condition (F3,57 = 0.65, p = 0.59).  Post hoc tests revealed all test blocks 

to be significantly different from one another (test block 1 mean = 957.68 ms, test block 

2 mean = 850.7 ms, test block 3 mean = 807.6 ms).  There was no interaction effect 

between test and condition (p = 0.32). 

 In order to test the second hypothesis separate 2-way ANOVAs with spatial 

location (coupled, uncoupled) and temporal order (visual first, tactile first) as factors 

were performed on the differences in the number of errors, and the differences in reaction 

time between test blocks 1 and 2, 2 and 3, and test blocks 1 and 3.  This analysis was 

performed, as there was a lot of variability between subjects in the performance on the 

first test block.  Therefore, taking the differences normalizes the error results of each 

individual to themselves.  The 2-way ANOVA on differences in the number of errors 

between test blocks 1 and 2 revealed a main effect of temporal order of the stimuli (F1,19 

= 4.52, p = 0.04) but not spatial location (F1,19 = 0.04, p = 0.84) (Figures 5 & 6).  

Specifically, subjects improved to a larger degree following training where the visual 
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stimulus was presented prior to the tactile stimulus (mean = 4.2), than when the tactile 

stimulus was presented prior to the visual stimulus (mean = 2.0).  There was no 

interaction between spatial location and temporal order (p = 0.35) (Appendix 2).  For the 

ANOVAs on the differences in errors between test blocks 2 and 3, and 1 and 3, there was 

neither a main effect of temporal order of the stimuli (F1,19 = 1.01, p = 0.32 and F1,19 = 

2.25, p = 0.15, respectively) nor the spatial location (F1,19 = 3.74, p = 0.07 and F1,19 = 

0.55, p = 0.47, respectively) (Figures 5 & 6), and no interaction between spatial location 

and temporal order (p = 0.78 and p = 0.44, respectively).  The 2-way ANOVA on the 

differences in reaction time between test blocks 1 and 2 revealed a main effect of 

temporal order (F1,19 = 5.40, p = 0.03) but not spatial location (F1,19 = 0.00 p = 0.95).  

Specifically, subjects improved to a larger degree when visual was presented first (mean 

= 104.72 ms) than when the tactile stimulus was presented first (mean = 73.24 ms).  

There was no interaction between spatial location and temporal order (p = 0.93) (Figures 

5 & 6).  For the ANOVAs on the differences in reaction time between test blocks 2 and 3, 

and 1 and 3, there was neither a main effect of temporal order of the stimuli (F1,19 = 1.17, 

p = 0.29 and F1,19 = 1.28, p = 0.27, respectively) nor the spatial location (F1,19 = 2.37, p = 

0.14 and F1,19 = 1.50, p = 0.24, respectively), and no interaction between spatial location 

and temporal order (p = 0.89 and p = 0.85, respectively) (Figures 5 & 6). 

 
3.4 Discussion 

In this study, behavioural effects of tactile-visual associative learning were measured.  It 

was hypothesized that learning would develop from one test to the next until a learning 

curve is reached.  It was also hypothesized that learning would develop more so by 

presenting the visual stimulus prior to and coupled with the tactile stimulus.  Learning 
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was measured by an increase in performance of error rate and reaction time.  The main 

findings of this study were improved behavioural performance from one test session to 

the next, and when visual stimuli were presented prior to tactile stimuli in support of the 

hypothesis.  The results of this study support the hypothesis that learning occurs across 

test blocks.  As depicted in Figure 4, the average number of errors and reaction time for 

each condition decreases from one test block to the next, indicating that on average, the 

subjects are learning the associations between the tactile and the visual stimuli with each 

subsequent training session.  The hypothesis that temporal manipulation of the stimuli 

will impact learning was only supported by the results for the differences in error and 

reaction time between test 1 and 2, and not tests 2 and 3 or 1 and 3.  With that said, it was 

the visual presented first that made the impact on learning, and not so much the tactile 

presented first.  Similarly, the hypothesis that having the tactile and visual stimuli 

spatially coupled would increase learning compared to when they were not coupled, was 

not made apparent.  However, when looking at the means, they suggest that temporal 

order is greater for spatially coupled than spatially uncoupled for both test 1 and 2 

difference, and test 1 and 3 differences (Figure 6). 

 The finding that tactile-visual association learning occurs from one test block to 

the next until a learning curve is reached replicates the results of Tang et al. (2008).  They 

found an enhancement of behavioural performance as a result of consecutive test periods, 

as error rate and reaction time both decreased to form a learning curve.  As shown in 

Figure 4, the average error rate and reaction time tracings decreased to form a learning 

curve by test block 3 much like Tang et al. (2008) as the training was very similar with 

the exception of the manipulation of visual and tactile stimuli.  The purpose of Tang et al. 
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(2008) was to build a model capable of looking at the neural correlates of short-term 

tactile-visual associative learning.  Tang’s Morse code paradigm resulted in methodology 

suitable for achieving investigations into short-term tactile-visual learning, and so this 

methodology was used for the current study.  Consequently, the performance results 

obtained were very much expected and are indicative that learning can and is occurring 

over a short period of time. 

Temporal order of the modalities did have an effect on the early stages of 

learning, as visual presented before tactile stimuli resulted in the greatest performance 

change, a result that was hypothesized; visual first was expected to positively affect 

learning primarily through bottom up processing.  Bottom up processing was 

demonstrated by Dionne et al. (2009) who conducted an fMRI investigation into the SI 

manipulation of bimodal (tactile + visual) versus unimodal stimulation.  The SI BOLD 

signal was increased during the bimodal task, what they explained not to be driven by 

top-down higher order multimodal areas based on the results of their whole-brain 

analysis, but by the low-level sensory-to-sensory connectivity between somatosensory 

and visual processing locations; it was the bottom-up processing of incoming tactile and 

visual stimuli that caused the increased SI activity during the bimodal task.  The source of 

their argument comes from the fact that attention was kept constant and so it could not 

account for the changes observed in SI, and that the changes had to be driven by bottom-

up and not top-down processing.  Furthermore, Meehan et al. (2009) used somatosensory 

evoked potentials (SEP) to test the intermodal (tactile and visual) influences within 

somatosensory processing within SI and to determine how spatiotemporal relationships 

between bimodal stimuli influence SI.  Their results showed a decrease in the early SEP 
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when the bimodal stimuli shared a greater spatial relationship, and an increase in the 

early SEP when the bimodal stimuli shared a greater temporal synchrony.  The 

conclusion from their results characterizes intermodal somatosensory gating reflective of 

bottom-up processing as these changes take place in SI, the generator of the early SEP 

component.   

In a task somewhat more similar to that used in the present study, Ohara et al. 

(2006) looked at a tactile-visual cross-modal task, they found that behavioural 

performance increased when the tactile stimulus was presented before the visual stimulus, 

a result they attributed to top-down processing caused by the cognitive expectation of the 

visual stimulus when it was presented after the tactile stimulus.  Our results were only 

significant for the temporal differences between test 1 and 2, suggesting that vision 

presented before tactile does have more of a learning effect than tactile presented before 

vision, at least during the early stages.  When asked whether they felt one condition was 

easier to learn over another, the number of subjects who found tactile first or visual first 

to be easier than the other, was quite similar.  Four of the subjects found that when the 

tactile was presented first, this made it easier to learn the associations because it gave 

time to guess the letter before it appeared.  Three individuals found it easiest to learn 

when the visual stimulus was presented before the tactile, and the other 13 individuals 

were indifferent as to what temporal order was easiest to learn, and felt the discrimination 

challenge to be similar across conditions.  As the majority of subjects felt that there was 

no difference between tactile first and visual first, this is reflected in the results at the 

later stages of learning, where there was no significant difference between the two 

temporal orders. 
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It was found that spatial location does not significantly affect learning, and the 

proposition that having the two modalities within the same spatial vicinity would have 

the greatest learning outcome was not supported.  Based on previous research (Spence et 

al., 2000 (Experiment 6); Eimer et al., 2001) cross-modal links between vision and touch 

are established on common external locations rather than anatomical hemispheric 

activation, and that sharing a familiar location would have the potential to influence 

activity in one another.  Although the spatial location was found not to be significant, the 

mean results suggest what was hypothesized; that when the two stimuli are coupled 

together within the same spatial location, learning is improved more so than when they 

are uncoupled, and from the results on temporal order, this occurs more when the visual 

stimulus is presented first (Appendix 2).  It could be that because attention was not 

directed specifically to a stimulated side as in an oddball paradigm, that the spatial 

location was not significant.  Slight attention would be directed to the side where the 

visual stimulus lay, but participants were not focused completely to a certain side while 

ignoring the other.  As the mean results are enhanced more so when the two modalities 

are coupled, this shows that cross-modal links may exist between vision and touch, and 

that they are more affected when the two senses have a spatial location in common. 

A reasoning behind the findings of this study is the fact that learning strategy 

between subjects was not controlled for.  Many individuals reported learning the dot/dash 

patterns by paying attention to the tactile sensation, whereas the majority of subjects 

would visualize the dots and dashes as they were receiving them.  A couple of individuals 

would learn by judging the length of the pattern and compare it to the other pattern 

lengths within that letter set, what’s more, some subjects would make a “musical tune” 
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from the dots and dashes even though they could not hear due to white noise.  Thus, each 

individual had a different way of remembering the associations between tactile and vision 

during the training sessions.  By having subjects training with different strategies, some 

of the mentioned strategies may be better learning tactics than others, resulting in various 

individuals being better skilled at the task than others.  However, because a particular 

learning approach was not assigned, the subjects were able to use the tactic that they felt 

was easiest for them in order to learn the task, therefore all subjects would have 

completed the associations between tactile and vision to the best of their ability.  This 

was different than Ohara et al.’s (2006) study where all subjects were trained beforehand 

to ensure that they all used the same strategy for task performance.  The participants in 

the Ohara et al. (2006) study were subjected to the task even before recording began as 

all subjects had to reach an 85% correct rate (CR) in order to move on with the actual 

recording of the task.  Therefore, this would not so much be a measure of learning, but of 

discrimination as the task was already learned.   

During the initial stages of learning, when the visual modality was presented prior 

to the tactile modality, this was found to be a resource for learning.  As this was what was 

hypothesized, it can be said that bottom-up processing is occurring at this stage whereby 

the visual system primes the somatosensory system.  Learning at this stage is easily 

influenced as the stimuli are very new, therefore subjects would have used all of the 

information given to them (i.e. tactile and visual) in order to learn the task, however at 

later stages of learning, where there was found to be no benefit of temporal order, the 

visual stimulus may not have been as relevant for learning and may have even become a 

distractor to subjects.  The thought behind this is that participants have known the 
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English alphabet their entire lives, and therefore did not feel challenged when receiving 

the letters as a visual resulting in them not having to concentrate as much visually to help 

them learn the tactile patterns.  Research shows that focusing on task-relevant 

information and ignoring distracters is reflected in the enhancement and suppression of 

neural activity related to working memory, such that when there is an increased memory 

load a rise in performance is not dependent upon the enhancement of relevant 

information but the filtering of irrelevant information by neural suppression (Zanto and 

Gazzaley, 2009).  Similarly, the focus on a single sensory modality results in behavioural 

decrements and decreased cortical activations responsible for processing unattended 

sensory stimuli, a strategy known as cross-modal deactivation (Mozolic et al., 2008).  

Thus it could be because of an increased memory load due to the novelty of the tactile 

stimuli, along with the expertise of the visual stimuli, that participants are concentrating 

more so on the tactile stimulus, and the visual stimulus becomes suppressed due to 

familiarity.  However, the participants know that the visual stimulus is important to 

learning the task, and that is why at the subsequent testing blocks, the tactile first 

condition does not become significant over the visual first condition, but there simply 

becomes no difference between the temporal order of the two modalities. 

Different testing strategies were also used between this study and the previous 

ones on cross-modal associations between vision and touch.  Previous studies (Eimer and 

Driver, 2000; Eimer et al., 2001; Ohara et al, 2006) all used an oddball paradigm where 

subjects differentiate between target and non-target stimuli.  The methodology used here 

was that of associative learning whereby subjects have to correlate between two 

modalities.  The differences between a cross-modal task that involves choosing to attend 
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to one type of stimulus while ignoring the other type, and a cross-modal task where 

information from both modalities is required, may account for differences between the 

previous studies and this one. 

 This study determined the behavioural effects of introducing a visual stimulus to a 

tactile learning paradigm, and how alterations to the visual modality affect tactile 

learning.  As predicted from Tang et al. (2008), learning occurred over subsequent testing 

sessions as subjects acquired the knowledge to recognize the associations between the 

tactile and visual stimuli.  It was also shown that presenting the visual stimulus prior to 

the tactile stimulus was beneficial to performance at least during the initial stages of 

learning.  This became indifferent by the final testing stage.  Also, contrary to the 

hypothesis, having the visual and tactile stimuli within the same spatial vicinity did not 

improve performance.  In summary, during the early stage of a cross-modal learning 

paradigm, presenting a visual stimulus prior to a tactile stimulus can results in enhanced 

learning due to bottom-up processing.   

It is also important to determine what is occurring at the level of the cortex, 

specifically what is happening to the somatosensory ERP traces due to cross-modal links 

between vision and touch as the visual stimulus is manipulated.  An encephalography 

approach will give insight into the latency and amplitude alterations to the somatosensory 

ERP, brought on by making temporal and spatial manipulations to one of the modalities 

within a cross-modal pair.  Study two addresses this topic.  
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Easy Hard 
A _ _ _ _ C _ . _ . Y _ . _ _ X _ . . _ 

B _ . . . E . . _ _ L . _ . . Z _ _ . . 

H . . . . F . . _ . P . _ _ . O _ _ . . _ 

I _ _ _ . T . _ . _ Q _ _ . _ V . . _ _ . 

Table 1: Morse code letters and their corresponding dot and dash patterns 
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Figure 1: Study one blocking procedure 
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Figure 2: Study one training procedure 
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Figure 3: Study one testing procedure 
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Figure 4: (A) Average (N = 20) number or errors, as a percentage of the number of Test stimuli (32), 

at each test block (B) Average (N = 20) reaction time at each test block. 
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Figure 5: The average (N = 20) change in the number of errors between tests 1 & 2 (A), 2 & 3 (B), 
and tests 1 & 3 (C) for temporal order (visual first and tactile first) at spatial location (coupled (SC) 
and uncoupled (SU)).  The average (N=20) change in reaction time between tests 1 & 2 (D), 2 & 3 

(E), and test 1 & 3 (F) for temporal order at spatial location. 
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Figure 6: The change in the number of errors (A) and change in reaction time (B) at temporal 
conditions tactile first and visual first taken by collapsing across spatial location (coupled and 

uncoupled) for the differences between tests 1 &2, 2&3, and tests 1 & 3. 
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Chapter 4: Study Two: Visual-tactile associations: An investigation of 
electrophysiological mechanisms 
 

Overview:  The influence of different modalities on one another may also be represented 

at the level of the cortex as cross-modal relations between vision and touch show event 

related potential enhancements when these two modalities are represented cross-modally.  

The intent of this current study was to investigate changes to somatosensory-related ERPs 

in response to the manipulation of temporal order and spatial location of the modalities.  

It was hypothesized that preceding a tactile stimulus with a visual one, and having the 

two modalities coupled within a common spatial location, would result in an 

enhancement of the somatosensory related ERPs.  Participants were given a Morse code 

paradigm and had to pay attention to the associations between a visual letter of the 

English alphabet, and a tactile dot/dash punctate stimulus on their left index finger.  

Because leaning was not to be measured, it was made impossible due to the number of 

stimuli. Four conditions were tested: two whereby spatial location of the visual stimulus 

was manipulated, and two whereby stimulus order was manipulated. The lack of spatial 

location, in study one, affecting the cross-modal interaction was noted, causing a collapse 

across the spatial differences and making the temporal order a primary concern.  The 

main findings were a significant P100 amplitude and latency in conditions where the 

tactile stimulus was presented before the visual, as well as a noticeably absent N140 

amplitude in the same condition, concluding that presenting a tactile stimulus prior to a 

visual one may have an attentional effect on the P100, however further research is 

needed. 
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4.1 Introduction 

The importance of this study was to see how the manipulation of the visual stimulus, as 

in study one, would affect the somatosensory tactile ERPs.  Eimer and Driver (2000) 

determined the existence of cross-modal links between vision and touch in a study where 

subjects were responsible for detecting a tactile or visual target on an attended side, 

altogether ignoring stimuli of an irrelevant modality on the unattended side.  When 

compared with unattended stimuli, tactile stimuli at attended locations elicited enhanced 

negativity of the ERP in all conditions where tactile sensation was relevant, giving notion 

to the fact that cross-modal links do exist between vision and touch.  Eimer et al. (2001) 

also found these links to exist as tactile ERPs were enhanced when the tactile and visual 

stimuli shared common external locations.  Ohara et al. (2006) looked at somatosensory 

discrimination based on the expectation of a previously paired visual stimulus.  ERP 

results indicate an enhancement when subjects had to discriminate between a cross-modal 

task (visual and tactile) rather than a unimodal task (tactile and tactile). They contribute 

this enhancement to top-down processing or the cognitive expectation of the visual 

stimulus when it was presented after the tactile stimulus.  From these previous results, the 

initial hypothesis was that presenting the visual and tactile stimuli within the same spatial 

location would enhance the amplitude of the somatosensory ERPs, and that introducing 

the visual stimuli before the tactile stimuli will enhance the ERP amplitudes through 

bottom-up processing from visual to tactile, based on Ohara et al. (2006).  The results 

from study one specifically found behavioural evidence that temporal order of the tactile 

and visual stimuli had a beneficial effect to learning during the initial stages.  The 

importance of study two was to expand from the results of study one and provide an ERP 
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experiment that would investigate the underlying mechanisms involved with the cross-

modal associations with vision and touch.  

 

4.2 Materials and methods 

4.2.1 Subjects 

Twelve healthy volunteers were tested (9 females, 3 males; age range 20 to 36 years; 

average 23.67 years).  Exclusion criteria were skilled knowledge of Morse code, or the 

presence of any neurological diseases.  All subjects gave their informed consent to 

participate in the study, and the experimental procedures were approved by the Office of 

Research Ethics at the University of Waterloo. 

 

4.2.2 Experimental procedure 

This study was designed to test the ERP response of somatosensory-visual associations 

based on spatial location and stimulus order.  It was anticipated that coupling visual with 

tactile stimuli, and presenting the visual stimuli prior to the tactile stimuli, would enhance 

the somatosensory ERPs. 

 The same four conditions as in study one (SCV, SCT, SUV, SUT) were presented, 

including additional conditions, tactile only and visual only.  In the tactile only condition 

subjects received tactile stimulation, in the form of Morse code patterns, without any 

associated visual letters to represent the patterns.  Subjects were required to look at a 

marker in the middle of the computer monitor as they received stimulations, and pay 

attention to the tactile patterns without relating the patterns to a corresponding letter.  

This allowed for a baseline measurement of the somatosensory ERPs to tactile patterns 
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alone, and was used as a comparison to when the visual stimuli were introduced.  Similar 

to the tactile only condition, the visual only condition involved visual stimuli in the 

absence of tactile stimuli, allowing for a baseline measurement of visual ERPs. 

 All six conditions were presented based on a Latin Square design, and each 

condition was presented in two blocks of 50 stimuli, with each condition presented once 

before being presented a second time.  Approximately 600 stimuli were needed to obtain 

around 100 artifact-free (free of eye blinks and large muscle movements) trials to average 

for each condition.  All letters of the English alphabet were presented at random so that 

learning would not occur. 

 In order to keep the participants motivated, a pseudo test, similar to study one 

(Figure 3), was implemented after every two conditions, however no behavioural 

performance data was collected. 

Participants received 70 dB of white noise (70 dB; Stim2, Neuroscan, 

Compumedics USA, Ltd. Corporation, Charlotte, NC, USA) throughout the experiment, 

to avoid any vibrotactile tracking by means of audition.  See Figure 7 for the overall 

experimental design. 

 

4.2.3 Data acquisition  

Electroencephalographic (EEG) data was recorded from 32 electrode sites (Acti-cap, 

Brain Products, Germany) in accordance with the international 10-20 system for 

electrode placement, and were referenced to AFZ for collection and then re-referenced to 

linked mastoid electrodes in the analysis phase.  All channel recordings had impedances 

of 5 kΩ or less.  EEG was amplified (20,000x), filtered (1-100 Hz) and digitized (500 
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Hz) (Synamps2, NeuroScan 4.3, Compumedics, Charlotte, North Carolina, USA) before 

being stored for off-line analysis.  Any EEG that contained ocular and/or movement 

artifacts was excluded by the experimenter from the analysis process by first visually 

inspecting it and then manually eliminating those components consistent with 

topographies for eye blinks and movements.  ERPs were extracted by averaging together 

epochs time locked to the presentation of the tactile stimulus (-100 to 1000 ms).  ERPs 

were baseline corrected post-stimulus and filtered using a bandpass filter (1-30 Hz).  

Approximately 80 artifact free stimuli were then used to derive the ERPs for each subject 

and condition. 

 

4.2.4 Data Analysis 

The results from study one concluded that spatial location does not affect tactile-visual 

associated learning, therefore for the analysis of study two results, the four conditions 

were collapsed into two based on temporal order (visual first, tactile first), which had 

shown an effect in study one for the initial stages of learning.  A one-way repeated 

measures ANOVA was used to test the effects of the conditions (tactile only, tactile first, 

and visual first) on each of the ERP amplitudes and latencies of the expected components 

(P60, N80, P100, and N140) at electrode sites CP4, FZ, CZ, PZ.  It was hypothesized that 

ERP amplitudes would be influenced by the order of stimulus presentation that is, an 

enhancement of the associated somatosensory ERPs as vision precedes tactile. Significant 

ANOVAs were followed up with a Tukey post hoc test.  Subjects were excluded from the 

ANOVAs if they did not present a particular component in either two or more of the 
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conditions.  All statistical tests were performed using SAS 9.1 (SAS Institute Inc., Cary, 

NC, USA). 

 

4.3 Results 

P60 & N80  

The P60 was quantified at the CP4 location because this is where it was maximal 

overlying the contralateral SI.  Average amplitudes were 1.3µV, 0.9µV and 0.7µV for the 

tactile only, visual first, and tactile first conditions, respectively.  The average latencies 

were 62.18ms, 55.09ms, and 54.36ms for the visual first, tactile only, and tactile first 

conditions, respectively.  Although at electrode site CP4, the P60 ERP was apparent, 

there was no significant effect of task condition on either the amplitude (F2,20 = 0.86, p = 

0.44) or the latency (F2,20 = 0.84, p = 0.45). At electrode site CP4, the N80 ERP was 

apparent however, there was no significant effect of task condition on either the 

amplitude (F2,20 = 2.38, p = 0.12) or the latency (F2,20 = 0.94, p = 0.41). 

 

P100 

The P100 amplitude, at CP4, showed a significant change (F2,18 = 7.45, p = 

0.004), and post hoc analysis (Tukey test) confirms that contrary to the hypothesis the  

tactile first condition had the greatest amplitude (mean = 2.9 µV) and was significantly 

greater than either the tactile only (mean = 1.2µV) or visual first (mean = 0.5µV) 

conditions (Figures 8 & 10).  The topography graph (Figure 10) of the P100 at electrode 

site CP4 shows a similar distribution across conditions.  There is a positive bilateral 

spread across the parietal region, but perhaps the greatest difference between the 
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conditions is the large positive midline within the tactile first condition.  This main 

difference coincides with the ERP trace.  The P100 latency, at CP4, was also significant 

(F2,18 = 7.91, p = 0.0034), and post hoc analysis (Tukey test) showed that the P100 

latency in the tactile only condition was significantly different (mean = 71.2ms) than 

either tactile first (mean = 141.4ms) or visual first (mean = 117.2ms) (Figures 8 & 10). 

At electrode site FZ the P100 latency was significant (F2,22 = 11.09, p = 0.0005), and a 

Tukey test showed that the tactile only condition (mean = 55.67ms) was significantly 

different from tactile first and visual first conditions (means = 117.67 and 101.17 ms 

respectively) showing that the frontal distribution only emerges under the bimodal 

conditions. Also at CZ P100 amplitude was significant (F2,22 = 6.11, p = 0.008), with 

tactile first (mean = 3.7µV) being significantly different from both of the other conditions 

(visual first mean = 1.8µV, and tactile only mean = 1.6µV) as shown by the Tukey test.  

The P100 latency was also significant (F2,22 = 5.59, p = 0.01) with tactile first (mean = 

126ms) being significantly different than tactile only (mean = 86ms) as shown by the 

Tukey test. 

 

N140 

The N140 ERP was determined to be significant (F2,18 = 3.91, p = 0.04) in 

amplitude at the CP4 electrode site.  Furthermore, post hoc analysis (Tukey test) showed 

that the tactile first (mean = -0.7µV) condition was significantly different from the tactile 

only (mean = -2.2µV) condition, but not significantly different than the visual first (mean 

= -1.8µV) (Figures 9 & 10).  The topographical distribution (Figure 10) for the N140 at 

electrode site CP4 has similar distribution across the tactile only and visual first 
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conditions.  The greatest negativities are apparent within the frontal region. At electrode 

site FZ the N140 latency was significant (F2,18 = 5.89, p = 0.01) and Tukey test showed 

tactile first (mean = 172.8ms) to be significantly different from the tactile only condition 

(mean = 98ms). 

 

4.4 Discussion 

In this study, the electroencephalographic response to tactile-visual associations was 

measured.  It was hypothesized that presenting the visual stimulus prior to the tactile as 

well as the presentation of the visual stimulus within the same spatial location as the 

tactile modality would enhance the somatosensory ERPs.  However, due to the results of 

study one where spatial location of the tactile-visual association was found not to be 

significant, the results of study two are based on the collapsed effect of temporal order.  

Thus, combining the two conditions whereby tactile was presented first (SUT + SCT) and 

visual was presented first (SUV + SCV) gives results based on temporal order only 

(tactile first vs. visual first).  The main findings of this study were a significantly 

enhanced P100 amplitude and latency, at electrode site CP4, in the tactile first condition 

over the other two conditions and to the point where the N140 was not present in this 

condition. 

 There were no significant effects of the modality manipulations on P60 amplitude 

suggesting that there were no differences at the early stages of processing between 

conditions.  This is similar to other experiments (Eimer and Driver, 2000; Eimer et al., 

2001; Ohara et al., 2006) on the cross-modal relations between vision and touch, and is 

representative of a lack of higher order activity at an early stage. 



 58 

At electrode site CP4, situated over the primary somatosensory cortex, the P100 

was found to have a significant amplitude change in the tactile first condition over tactile 

only and visual first.  This result is opposite to that hypothesized whereby the visual first 

condition would result in the significant amplitude difference. Ohara et al. (2006) found 

P100 to have a significantly higher amplitude during a tactile-visual cross-modal control 

tasks compared to tactile-tactile unimodal control tasks, and no significant change in the 

tactile-visual cross-modal delayed matching-to-sample task over the tactile-tactile 

unimodal delayed matching-to-sample task.  They state from their results that the P100 

may only be involved in the transfer of cross-modal information.  However the difference 

in comparison to the present study is the level of challenge.  Ohara et al. (2006) used a 

matching task where subjects had to distinguish between two modalities each with two 

levels of information, whereas the subjects in the present study had to distinguish 

between 26 different dot/dash patterns and their corresponding letters.  Also, the Ohara et 

al. (2006) methodology had subjects already exposed to the task before recording, 

therefore the task to them was not novel, as in this case.  As a result the enhancement of 

the P100 in the tactile first condition, and the suppression of the P100 in the visual-first 

condition, may be due to the focus on learning the tactile patterns and finding the visual 

letters as a distractor because they are already learned through experience.  Different 

subjects than those from study one participated in study two because measuring learning 

was not the goal of this study, but to determine the mechanism behind tactile-visual 

interactions.  Therefore, the task would be novel to these subjects resulting in the visual 

stimulus as a distractor.  Although this study was not measuring learning, subjects did not 

know this, and were given a testing session just so they would pay attention to the task.  
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However, they could have been using learning strategies similar to the subjects in study 

one, where all learning strategies involved focus on the tactile pattern in order to learn the 

task.  Whether it was concentrating on the tactile stimulation, visualizing the dot/dash 

patterns or trying to judge the length of the patterns, focus would have been on the tactile 

and not the visual.  Even though the tasks were identical for both the tactile first and 

visual first conditions (they both involved the twenty-six letters of the English alphabet), 

the task may have been more difficult when the tactile was presented first because when 

given a tactile pattern it would be hard to distinguish it as a letter from the other twenty-

five patterns representing a letter because there is more information given and harder to 

keep the patterns of dots and dashes in mind.  Whereas when given a visual letter first, 

subjects are already familiar with it and wouldn’t find it a challenge to know what letter 

is presented.  The P100 is known to increase in amplitude when subjects concentrate on 

receiving a tactile stimulus (Spackman et al., 2006), and this can account for the great 

increase in the P100 amplitude when the tactile dot/dash pattern is presented first, as 

there is great concentration to try and learn this novel task.  In relation to Dionne et al. 

(2009), who purposely kept the attentional requirements within their bimodal task the 

same in order for the relevance of the modalities to be equal, the attentional demands 

between the different modalities within the current task was not equal, and the relevance 

of the tactile stimuli seemed to be greater than the visual. 

An unexpected result that was not hypothesized was a change in the latency of the 

P100 at electrode CP4.  The tactile first and visual first were both found to be 

significantly different from tactile only.  This could be due to a sustained focus on 

learning the tactile pattern because as previously mentioned it was a difficult task. 
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The N140 amplitude also does not support the hypothesis that visual first would 

enhance amplitude, as the tactile first condition was the only condition found to be 

significantly different from the tactile only condition. The N140 has been shown to 

increase in amplitude the more attention there is concentrated on the stimulated hand 

(Garcia-Larrea et al., 1995).  From this, it can only be suggested that subjects were not 

concentrating on their stimulated finger during the tactile first condition, as in this 

condition the N140 is absent.  This seems unlikely, as was mentioned previously through 

subjects’ learning strategies that all attention was focused on the tactile stimulus.  It could 

be that because the tactile stimulus is focused on intently, as represented by the enlarged 

and prolonged P100, that the P100 overthrows the N140.  This could imply that cross-

modal associations are not occurring, as it is just the somatosensory stimulus getting 

processed, whereas the visual stimulus is being ignored.  This could all be due to the 

difficulty of the task. 

Certainly, more research is needed to investigate the precise mechanisms driving 

these tactile-visual cross-modal interactions.  Possible future directions are mentioned in 

the next section of this thesis. 
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Figure 7: Study two experimental design 
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 Figure 8: Mean P100 ERP amplitudes (A) and latencies (B) at electrode site CP4 
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Figure 9: Mean N140 amplitudes at electrode site CP4 
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Figure 10: Grand-averaged somatosensory ERPs elicited at electrode site CP4 in the Tactile Only, 
Tactile First, and Visual First conditions, by tactile stimuli to the left index finger. 
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Chapter 5: General discussion 

5.1 Limitations and future directions 

The two studies that made up this thesis involved visual stimuli consisting of letters of 

the English alphabet.  Although consistent with the idea of Morse code and the previous 

study (Tang et al., 2008) on which this research extended from, the letters would have 

been too familiarized by the participants through life-long exposure.  As a result, the 

visual stimulus may well have been treated as irrelevant during a cross-modal task where 

both types of stimuli were important for performance.  Previous studies (Eimer and 

Driver, 2000; Eimer et al., 2001) of cross-modal relationships between vision and touch 

all involved a task where concentration was focused on a single modality while ignoring 

the other (oddball paradigm). Thus, it would be appealing to perform this task with visual 

stimuli completely novel to the participants such that concentration would be required 

equally upon both modalities.  If this were the case, it could be predicted that spatial 

location may have a learning effect because participants would have to concentrate on the 

visual stimulus without ignoring it or treating it as a distractor.  If the novel visual 

stimulus is coupled with the tactile stimulus within the same spatial location this could 

enhance performance because cross-modal associations are mediated by external 

locations that are common between the modalities (Eimer et al., 2001).  Similarly, the 

temporal order may find conditions in which vision is presented first to be beneficial to 

performance, as vision would be equally important to the task, and the visual stimulus 

would then prime the somatosensory with information that is imperative for the 

somatosensory learning. 
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 It would also be important to conduct further studies into the electrophysiological 

mechanisms behind tactile-visual cross-modal associations.  Study two attempted to look 

at this however, similar to study one, the task involved a visual stimulus that was too 

familiar to participants, which could have caused it to be treated as a distractor and 

become irrelevant to the task.  The task may also have been too challenging (with 26 

different dot/dash patterns to distinguish) which may have resulted in an elevated and 

prolonged P100 during the tactile first condition, due to attention focused on the tactile 

stimulus alone.  It would be interesting to conduct a study whereby a fewer number of 

stimuli pairs are presented to make the task easier and allow the focus to be equal 

between modalities, therefore, the P100 amplitude and latency may diminish over time 

and the N140 may become present. 

 

5.2 Conclusion 

Overall, the results of this thesis provide evidence for cross-modal relationships between 

vision and somatosensation, as they are manipulated both spatially and temporally.  

Specifically, that a common spatial location between the two modalities may not be 

required to enhance learning, and the presentation of the visual stimulus prior to the 

tactile stimulus may enhance learning at the beginning stages.  Reasoning for these 

results may be the familiarity of the visual stimulus causing it to be more of a distractor 

than an aid to the task.  The findings also elucidate possible mechanisms that underlie 

temporal modulation, but give rationale into continued investigation into the factors that 

influence cross-modal associations between vision and touch. 
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Appendices 

Appendix 1  

For study one a different set of letters were assigned to be used in each training condition 

based on a balanced Latin square design such that all four training conditions were paired 

with each letter set an equal number of times across subjects.  The same letter set that was 

trained was tested for learning effects during the testing phase.  The importance of using 

such a design was confirmed by 1-way ANOVAs with letter set as the factor (AYTV, 

IXOQ, BZPL, HEFC) and number of errors for each test (block 1, block 2, block 3) as 

the dependent measure.  Results indicated that letter set was significant for test blocks 1 

and 2 (F3,57 = 4.38, p = 0.0076; F3,57 = 3.16, p = 0.03, respectively), but not test block 3 

(F3,57 = 1.43, p = 0.24). 

 
Appendix 1 Figure:  Study one’s mean (N = 20) number of errors per letter set at each 

testing block.  
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Appendix 2 

Although the 2-way ANOVA on the differences in the number of errors between test 

blocks 1 and 2 revealed that there was no interaction between spatial location and 

temporal order (p = 0.35), Figure 5A seems to show that the effect of temporal order is 

driven by one spatial location.  However, the post hoc Tukey test does not directly test 

this in the 2-way ANOVA, therefore separate 1-way ANOVAs for each spatial location 

were used to test the effect of temporal order on the number of errors made on the 

difference between test blocks 1 and 2.  The results conclude that temporal order is 

significant when the stimuli are spatially coupled (F1,19 = 8.08, p = 0.01), however 

temporal order is not significant when the tactile and visual stimuli are uncoupled (F 1,19 

= 0.51, p = 0.48). 

 
Appendix 2 Figure:  The average (N = 20) change in the number of errors 

between tests 1 and 2 for temporal order at specific spatial locations. 


