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Abstract
The goal of this research is to achieve accurate characterization of multi-layered

soft tissues in three dimensions using focused ultrasound. The characterization of
the acoustic parameters of each tissue layer is formulated as recursive processes of
forward- and inverse- scattering.

Forward scattering deals with the modelling of focused ultrasound wave propa-
gation in multi-layered tissues, and the computation of the focused wave amplitudes
in the tissues based on the acoustic parameters of the tissue as generated by inverse
scattering. The model for mapping the tissue acoustic parameters to focused waves
is highly nonlinear and stochastic. In addition, solving (or inverting) the model
to obtain tissue acoustic parameters is an ill-posed problem. Therefore, a nonlin-
ear stochastic inverse scattering method is proposed such that no linearization and
mathematical inversion of the model are required.

Inverse scattering aims to estimate the tissue acoustic parameters based on the
forward scattering model and ultrasound measurements of the tissues. A multi-scale
stochastic filter (MSF) is proposed to perform inverse scattering. MSF generates
a set of tissue acoustic parameters, which are then mapped into focused wave am-
plitudes in the multi-layered tissues by forward scattering. The tissue acoustic
parameters are weighted by comparing their focused wave amplitudes to the ac-
tual ultrasound measurements. The weighted parameters are used to estimate a
weighted Gaussian mixture as the posterior probability density function (PDF) of
the parameters. This PDF is optimized to achieve minimum estimation error vari-
ance in the sense of the posterior Cramer-Rao bound. The optimized posterior PDF
is used to produce minimum mean-square-error estimates of the tissue acoustic pa-
rameters. As a result, both the estimation error and uncertainty of the parameters
are minimized.

PDF optimization is formulated based on a novel multi-scale PDF analysis
framework. This framework is founded based on exploiting the analogy between
PDFs and analog (or digital) signals. PDFs and signals are similar in the sense
that they represent characteristics of variables in their respective domains, except
that there are constraints imposed on PDFs. Therefore, it is reasonable to consider
a PDF as a signal that is subject to amplitude constraints, and as such apply signal
processing techniques to analyze the PDF.

The multi-scale PDF analysis framework is proposed to recursively decompose
an arbitrary PDF from its fine to coarse scales. The recursive decompositions
are designed so as to ensure that requirements such as PDF constraints, zero-
phase shift and non-creation of artifacts are satisfied. The relationship between the
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PDFs at consecutive scales is derived in order for the PDF optimization process
to recursively reconstruct the posterior PDF from its coarse to fine scales. At
each scale, PDF reconstruction aims to reduce the variances of the posterior PDF
Gaussian components, and as a result the confidence in the estimate is increased.
The overall posterior PDF variance reduction is guided by the posterior Cramer-
Rao bound.

A series of experiments is conducted to investigate the performance of the
proposed method on ultrasound multi-layered soft tissue characterization. Multi-
layered tissue phantoms that emulate ocular components of the eye are fabricated as
test subjects. Experimental results confirm that the proposed MSF inverse scatter-
ing approach is well suited for three-dimensional ultrasound tissue characterization.
In addition, performance comparisons between MSF and a state-of-the-art nonlin-
ear stochastic filter are conducted. Results show that MSF is more accurate and
less computational intensive than the state-of-the-art filter.
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Nomenclature

The following symbols and abbreviations are used in this thesis.

α Attenuation coefficient

m Slope of attenuation coefficient model for soft tissues

b Y-intercept of attenuation coefficient model for soft tissues

c Sound speed

ρ Mass density

f Frequency

ω Angular frequency

i Complex number; i also has other meanings when used as a super-
script or subscript depending on the context

ψ Acoustic wave pressure function in space-time domain

Ψ Acoustic wave pressure function in frequency domain

∇2 Laplacian operator

λe, µe Lame’s constants

B, G, Y Bulk, shear and Young’s modulus, respectively

k,
−→
k Wave number and wave vector, respectively

u Particle velocity in space-time domain

U Particle velocity in frequency domain
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Z Specific acoustic impedance

θi, θr, θt Angles of incident, reflected and transmitted waves, respectively

R Reflection coefficient

T Transmission coefficient

u0 Speed amplitude of the radially vibrating sphere source

r Average radius of radially vibrating sphere source

ψv Wave pressure attenuated due to the viscous drag of particles

νs, νb Shear and compressional viscosities, respectively

γ Ratio of specific heats

Cp Heat capacity at constant pressure

κ Thermal conductivity

ΨP
r,i, Ψ

P
r,s Incident and scattered plane wave at point r, respectively

nr Refractive index at point r

gr Free-space Green’s function at point r

Ψp
r,Bj jth order Born approximation of ΨP

r,s

J0 Zeroth order complex Bessel function

J0,re, J0,im Real and imaginary part of J0, respectively

d Thickness of tissue layer

an,f Measurement of the nth echo amplitudeat frequency f

N Gaussian distribution

ηf Measurement noise of frequency f

nη Number of Gaussian components used to represent measurement
noise distribution

wη
j , µ

η
j , v

η
j Weight, mean and variance of a Gaussian component of measure-

ment noise PDF, respectively
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ps PDF at scale s

ps+1 PDF at scale s+1 (or a low-pass version of ps)

ls Low-pass filter for PDF at scale s

vlps Covariance matrix of ls

xn Vector of tissue acoustic parameters

p (xn | an,1:f ) Posterior PDF of xn given an,1:f

nx Number of Gaussian components used to represent p (xn | an,1:f)

wx
n,f,j Weight of the jth Gaussian component of p (xn | an,1:f)
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Chapter 1

Introduction

Tissue characterization is the estimation of quantitative information of tissues from
their measurements. Characterization of tissues is essential for many real-world
medical applications such as eye examination, anatomies detection, tumor type
(benign or malignant) identification, intraoperative tissue assessment and coronary
artery calcification measurement. Generally speaking, techniques of tissue char-
acterization can be classified as invasive and noninvasive. Noninvasive techniques
are more desirable for patient comfort and are lower risk operations than the inva-
sive counterparts. Common noninvasive tissue characterization techniques include
magnetic resonance imaging, positron emission tomography, ultrasound and X-Ray.
Among these techniques, ultrasound is the most cost effective and safe measure-
ment modality. Therefore, this research is interested in ultrasound based tissue
characterization.

1.1 Ultrasound Tissue Characterization

Ultrasound tissue characterization is defined by Thijssen as [1]:

“The assessment by ultrasound of quantitative information about the
characteristics of biological tissues, and pathological changes thereof”.

Ultrasound tissue characterization is a research field with rich history. The first
publication on computer analysis of scattered ultrasound waveforms was in 1972 by
Mountford andWells [2]. The first symposium on ultrasound tissue characterization
was organized by the National Bureau of Standards in 1975 and the proceedings

1



were published in 1976 [3]. A large volume of scientific publications has been
devoted to this topic ever since.

Medical ultrasound research accounts for more than one quarter of medical
imaging studies in the world [4]. This popularity mainly comes from the safety
aspect of medical ultrasound. In addition, ultrasonic equipment is, in general, low
cost, mobile and convenient to use compared to other medical imaging modalities
such as MRI and X-ray. Moreover, ultrasound imaging has the advantage of vi-
sualizing the interior of a biological body in real-time without invasion, and hence
it is highly desirable for medical practices. The propagation of ultrasound waves
depends on the tissue acoustic properties. Anomalies affect these properties, for
example, tumors tend to have higher mass density than the corresponding normal
tissue. Taking advantage of the effect of anomalies on tissue acoustic properties,
quantitative imaging of the tissue acoustic properties is a potentially useful tech-
nique for diagnosing cancer and other diseases.

The conventional approach to ultrasound image formation is the pulse-echo
method, which simply displays the absolute value (commonly known as envelop) of
echoes to be the acoustic reflectivity distribution of the tissue [5]. This approach
ignores the phase information of the echoes. Another limitation of conventional
ultrasound image analysis is its heavy dependency on the operator. Ultrasound
image acquisition and interpretation require highly trained medical professionals
such as physicians and radiologists, and as such it tends to be a subjective process.
Different medical professionals may suggest different diagnosis for the same image.

The drawbacks of conventional ultrasound imaging can be relaxed using inverse
scattering methods. Instead of taking the envelop of echoes as the acoustic dis-
tribution, inverse scattering methods reconstruct the tissue acoustic properties by
exploiting their relation to the echoes and the complete echo waveform. It has been
reported that ultrasound tissue characterization using inverse scattering methods
achieve an order of magnitude improvement in image resolution compared to con-
ventional image based approaches [6]. Also, high degree of correlation between the
reconstructed acoustic property profile and the tissue pathology is reported [6]. Ac-
cording to Thijssen, inverse scattering methods that produce high resolution and
accuracy quantitative images of the tissue acoustic properties are the ultimate goal
of innovation in medical ultrasound [1]!

Although diffraction tomographic methods reported in the literature have demon-
strated high resolution and quantitative accuracy, these methods have not yet been
incorporated into commercially successful medical ultrasound imaging systems.
This is because these methods are based on narrow-band frequency reconstruc-
tion in the spectral domain, while current diagnostic ultrasound scanners employ
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wide-band time-domain signals and time-domain reconstruction is known to provide
increased point and contrast resolution [7].

1.2 Forward and Inverse Scattering

Forward scattering (also known as direct scattering) is a process of determining the
distribution of radiation waves in a medium based on the medium properties and the
physics of interaction between the waves and the medium. In the context of medical
ultrasound, the acoustic properties of a tissue and the mechanics of propagating
particle vibrations in the tissue are used to determine the distribution of ultrasound
waves in the tissue. Scatterings of the waves are caused by inhomogeneities or
scatterers, such as tumors and fat-muscle layer interfaces, in the tissue.

The distributions of scattered waves are modelled as multi-dimensional integral
equations. Therefore, forward scattering can be formulated as computing the equa-
tions given the knowledge of the tissue acoustic properties. The challenge of forward
scattering is to compute the equations efficiently. The problem of ultrasound tissue
characterization is to estimate the tissue acoustic properties given the knowledge of
the scattered waves. To solve this problem, an inverse process of forward scattering
is needed. This process is inverse scattering.

Inverse scattering is defined by Norton and Linzer as the task of deriving the
structure of an object from scattered radiations [8]. According to Colton et al.,
all the inverse scattering problems that are of significance in practical applica-
tions belong to the class of so-called ill-posed problems1 in the sense of Hadamard
[9, 10]. Traditionally, ill-posed problems involving partial differential equations of
mathematical physics, including inverse scattering, are considered to be of purely
academic interest and not worthwhile for extensive study [11].

1In the 1920’s, a French mathematician named Hadamard formulated that a mathematical
model of a physical phenomenon is well-posed if it satisfies the following three criteria [9]:

1. Existence: Every observation of the physical phenomenon has at least one corresponding
solution of the model

2. Uniqueness: For every observation of the physical phenomenon, the solution of the model
is unique

3. Continuity: The dependence of the solution of the model on the observation is continuous

Problems of solving models that are not well-posed based on the formulation of Hadamard are
called ill-posed problems.
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This view of inverse scattering problem has changed dramatically after the suc-
cessful development of the radar and sonar sensors during the Second World War.
Scientists and engineers then pose the following question: could more information
about a scattering object be inferred from its scattered waves than simply its lo-
cation? Subsequently, this problem has received considerable interest. However,
its progress has been rather slow due to the lack of a mathematical theory of in-
verse problems and computational capabilities to facilitate solution attempts, until
the introduction of regularization methods for solving linear ill-posed problems by
Tikhonov in the mid-1960’s [12].

Inverse scattering has been applied in various fields of nondestructive testing
using acoustics, such as sonar and ultrasound; electromagnetic, such as microwave;
and optical waves [13, 14]. Since the governing equations of these wave types
are mathematically equivalent, the same inverse scattering techniques apply. This
research is interested in inverse scattering in the context of ultrasound soft tissue
characterization. In the field of medical ultrasound, there are two main types
of inverse scattering, namely, reflection and diffraction tomography. Reflection
tomography operates on the waves reflected (also referred to as backscattered signals
or echoes) from the object, while diffraction tomography performs inversion based
on the wave transmitted through the object.

1.3 Three-dimensional Ultrasound

In addition to the disadvantages discussed in Section 1.1, other major limitations
of conventional ultrasound images, as reported in [15, 16, 17], are listed as follows:

• The inherently low dimensionality of ultrasound images constrains the repre-
sentation of three-dimensional (3D) human anatomy as two-dimensional (2D)
slices. Accurate geometric information of the anatomy in 3D is important for
many medical applications such as tumor development monitoring, surgery
and therapy planning. In order to develop a volumetric picture of the 3D
anatomy, diagnosticians must mentally integrate a series of 2D images. This
is a tiring and time-consuming process, which is prone to inaccuracy and
inconsistency.

• The size of tumors are currently estimated using its height, width, and length
measured from a few selected 2D images, which may not provide sufficient
spatial resolution to establish consistent and accurate estimates.
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• The poses (i.e., positions and orientations) of image planes are controlled
manually. Localizing the image planes and reproducing the exact poses at
a later time is practically impossible. This makes conventional ultrasound
imaging undesirable for monitoring disease progression, surgery and therapy
planning.

• Some 2D imaging poses are not possible because of patients’ anatomies, which
degrades the accuracy of diagnosis or staging of patients’ conditions.

The goal of 3D ultrasound (US) is to overcome the limitations of conventional
2D US images by providing an imaging technique that reduces the variability of the
conventional technique and allows the diagnostician to view the anatomy in 3D [18].
3D US imaging permits the segmentation of the desired structure in 3D allowing for
accurate and consistent estimates of anatomical geometry. It facilitates diagnosis
by providing an accurate volume measurement of the anatomy. It is especially
useful for tracking the evolution of lesion shape change in 3D, which enables much
more detailed analysis of complex lesions to identify whether they are benign or
malignant. Moreover, 3D US allows interactive viewing of the patient’s interior at
any arbitrary pose to improve the diagnosis and staging of cancer. Furthermore,
3D US improves 2D segmentation of an image [19]. The continuity of data in the
third dimension allows a more robust detection of object boundaries.

For these reasons, this research is interested in using wide-band incident waves
and time-domain based reflection tomography to achieve 3D ultrasound soft tissue
characterization.

1.4 Challenges

The challenges of ultrasound tissue characterization include the following.

• Nonlinearity:

Scattered fields in inhomogeneous media is modeled as a non-homogeneous
partial differential equation, which is highly nonlinear with respect to the tis-
sue acoustic properties. Solving this nonlinear equation for the tissue acoustic
properties is a challenging undertaking.

• Weak scattering assumption:

To relax the nonlinearity of the scattered field model, some characteristics of
scattered fields are assumed to be small and can thus be ignored (i.e., weak
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scattering assumption). However, this assumption is invalid for strong scatter-
ing, for instance in tissue anomalies such as tumors and lesions which produce
strong scattered fields. Ignoring certain characteristics of the scattered fields
degrades the accuracy of tissue characterization.

• Ill-posed problem:

As mentioned earlier, inverse scattering is an ill-posed problem, and as an
implication the mathematical inversion of the scattered field model does not
exist. Regularization methods have been introduced to alleviate this problem.
However, these methods rely on prior knowledge or asserted conditions that
may not be realistic. Also, a small amount of measurement noise may be
translated into large variations (or instability) in the results.

• Prior knowledge:

Prior knowledge of the tissue acoustic properties is typically required as initial
values for inverse scattering methods, especially for iterative methods. In
practice, such knowledge may be inaccurate or unavailable. Inappropriate
initial values for these methods often lead to slow convergence and sub-optimal
solutions.

• Speckle noise:

Speckle noise is an inherent characteristic of ultrasound imaging. It appears
as an interference pattern or texture, which does not entirely correspond
to the underlying tissue structure. Many speckle noise reduction methods
consider speckle noise as purely random noise. However, it is well-understood
that the formation of speckle noise is both random and deterministic [20].
The deterministic part of speckle noise is caused by a physical phenomenon
known as reverberation. Modeling and filtering speckle noise are still on-going
research areas.

• Information loss and ambiguities in conventional ultrasound images:

As mentioned in Section 1.1, many existing ultrasound imaging systems dis-
cretize the envelope of backscattered signals and display the discretized values
as grey levels. Substantial information of the signal waveform is lost in the
process of signal to image conversion. Complex biological materials are repre-
sented as grey levels only. As a result, severe ambiguities of tissue structures
and properties are present in conventional ultrasound images, and hence hin-
der accurate physical interpretation.
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1.5 Problem Formulation

The formulation of the inverse scattering problem for 3D ultrasound tissue char-
acterization considered in this research is presented in this section. A wideband
spherically focused ultrasound transducer is employed to illuminate a volume of
multi-layered soft tissue and to measure backscattered signals from the tissue. The
transducer sensing surface and the tissue layers are aligned to the x-y plane of the
coordinate system as shown in Figure 1.1. The tissue is discretized along the x-z
and y-z planes into a set of multi-layered tissues. The transducer is mounted on
a x-y manipulator (omitted from Figure 1.1) to perform B-scan of the tissue in
discrete intervals.

The tissue acoustic impedance mismatches are located at the layer interfaces.
For each discretized multi-layered tissue, the locations of its layers in the 3D space
are identified by the triplet x, y, z. The acoustic property of each layer is assumed
to be homogeneous, isotropic and characterized by three parameters, namely atten-
uation coefficient (αx,y,z), sound speed (cx,y,z) and mass density (ρx,y,z). It is well
known that the tissue attenuation coefficient is approximately a first order function
of frequency [21, 22, 23],

αx,y,z = mx,y,z f + bx,y,z (1.1)

where f is the frequency of ultrasound wave; mx,y,z and bx,y,z are the slope and y-
intercept of the attenuation coefficient model for soft tissues, respectively. It should
be noted that the attenuation coefficient of water is proportional to f2, unlike that
of soft tissues. The water attenuation coefficients in the relevant frequency range
are assumed known. No assumption is made on the prior statistics of mx,y,z, bx,y,z,
cx,y,z and ρx,y,z.

Let ax,y be a time series of backscattered signals measured by the transducer
at location x, y in the x − y plane. Given ax,y, the problem of inverse scattering
for 3D ultrasound tissue characterization is to reconstruct mx,y,z, bx,y,z, cx,y,z and
ρx,y,z. Note that there is no restriction on the number of layers in this problem
formulation.

Reconstruction of the tissue acoustic parameters is achieved by solving a forward
problem and an inverse problem recursively. In the forward problem, backscattered
signals of the multi-layered tissues are computed based on a set of estimated tissue
acoustic parameters. This problem is traditionally regarded as the “easy” problem.
However, computing the propagation of focused waves in a multi-layered medium
with planar interfaces is a complicated undertaking. This makes the forward prob-
lem a “hard” problem.
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The inverse problem, traditionally regarded as the “hard” problem, aims to
estimate a set of tissue acoustic parameters based on the actual measurements.
The inverse problem compares the backscattered signals produced by the forward
problem to the actual measurements, and adjusts the proposed tissue acoustic pa-
rameters based on an error criterion. The adjusted values replace the proposed
ones in the forward problem and another cycle begins until certain error criterion
is achieved.

Furthermore, reverberated echoes in the backscattered signals may severely de-
grade the accuracy of tissue characterization. Thus, the complex wave reverberation
phenomenon in the multi-layered tissue are modelled and a filter for the reverber-
ated echoes are developed.

1.6 Objectives

The primary goal of this research is to develop an ultrasound tissue characteri-
zation method that reconstructs accurate 3D maps of tissue acoustic parameters
in multi-layered soft tissues. In order to achieve the goal, the proposed method
must be designed to overcome the challenges identified in Section 1.4. The research
objectives are then defined as:

1. To improve estimation accuracy, the proposed method must be designed as a
nonlinear solver in which no linearization is involved. The wave propagation
equation is severely nonlinear with respect to the tissue acoustic parameters.
Some existing inverse scattering approaches linearize the equation to simplify
derivations but compromise the accuracy of acoustic parameter estimates.

2. To be applicable to tissues of various scattering characteristics, the proposed
method must be designed to eliminate the assumption of weak scattering.
Existing inverse scattering methods are commonly developed based on the
weak scattering assumption. However, this assumption limits the type of
tissues that can be examined.

3. As discussed previously, inverse scattering is an ill-posed problem, which im-
plies that mathematical inversion of the wave equation is not readily achiev-
able. To tackle this problem, the proposed method must be designed to
estimate the tissue acoustic parameters without performing mathematical in-
version of the wave equation.
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4. To eliminate the need for prior knowledge of the tissues, instead of inverting
the wave equation, the proposed method must be designed to search for the
tissue acoustic parameters solution space. The initial search point is critical to
the search accuracy, and this point is topically determined based on the prior
knowledge of the tissues. However, the prior knowledge may be unavailable or
inaccurate in practice. Therefore, the proposed method must also be designed
to generate the initial search point based on criteria other than the prior
knowledge.

5. To reduce speckle noise in the measurement signals, the proposed method
must be designed to model wave reverberations in multi-layered media and
to filter reverberated echoes from the signals. Speckle noise in the ultrasound
signals hinders the ability for inverse scattering methods to resolve tissue
structures.

6. To minimize information loss in input data, the proposed method must be
designed to analyze the signal waveforms rather than ultrasound images to
estimate the tissue acoustic parameters. Conventional ultrasound imaging
ignores the phase information of the measured signals and merely displays
the signal magnitudes. Since signal magnitudes are not unique representa-
tions of tissue structures, conventional ultrasound imaging is unable to convey
accurate information about the tissue acoustic parameters.

1.7 Thesis Organization

The remainder of this thesis is organized as follows:

• Chapter 2 presents the reviews of relevant background materials and litera-
ture.

• Chapter 3 introduces the overview of the proposed approach to inverse scat-
tering. This approach consists of preprocessing, modeling and a multi-scale
nonlinear stochastic filter. Descriptions of the preprocessing and derivations
of the models needed for the filter are also provided in this chapter.

• Chapter 4 demonstrates the derivations of the forward scattering problem
and the multi-scale nonlinear stochastic filter to solve the inverse scattering
problem.
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• Chapter 5 evaluates the performance of multi-scale nonlinear stochastic filter
using simulated data.

• Chapter 6 describes details of multi-layered tissue phantom development, ex-
perimental conditions, tissue characterization results produced by the filter
and result analysis.

• Chapter 7 concludes this research work and discusses future work related to
this research.
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Chapter 2

Background and Literature
Review

This chapter presents the background materials and literature review relevant to
this research. The background materials provide derivations of important equations
that model forward scattering in fluids and elastic media. The propagation of waves
at the media interfaces, the attenuation of waves and focused wave beam pattern
are also discussed. In addition to forward scattering, scattered field approximations
widely used in inverse scattering are described in detail, and the major drawbacks
of the approximations are highlighted.

The literature review gives an overview of existing ultrasound tissue characteri-
zation and inverse scattering methods. Variations of the inverse scattering methods
and their applications to ultrasound tissue characterization are described. One of
the major problems of ultrasound inverse scattering is the presence of speckle noise.
Review on speckle noise modelling and methods of speckle noise reduction are also
presented.

2.1 Background

2.1.1 Forward Scattering

Forward scattering is the modelling and computing the scattered wave patterns in
a medium with the knowledge of the properties of the medium.

Plane waves and spherical waves are commonly utilized in forward scattering
problems, since they are simple to model and can be used to represent complicated
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waves. The propagation of these waves in fluids and elastic media, as well as the
effect of viscosity in the media are reviewed.

Plane Waves in Fluids and Elastic Media

Let ψp be acoustic plane wave pressure in space-time form. The propagation of
ψp in a homogeneous, isotropic, nonattenuating medium can be described by the
following equation [24],

∇2ψp − 1

c2
∂2ψp

∂t2
= 0 (2.1)

where ∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
; x, y and z are Cartesian coordinates; c is the sound

speed of a homogeneous isotropic medium; t is time.

Equation 2.1 can also be expressed in terms of the elasticity of the medium,

(λe + 2µe)∇2ψp = ρ
∂2ψp

∂t2
(2.2)

where ρ is the mass density; λe and µe are the Lame’s constants [25],

λe = B − 2

3
G =

Y v

(1 + v) (1− 2v)
, (2.3)

µe = G =
Y

2 (1 + v)
, (2.4)

v is the ratio of transverse to axial deformations known as the Poisson’s ratio; B,
G and Y are the bulk, shear and Young’s moduli, respectively.

The propagations of plane waves in fluids and elastic media differ in the shear
support. In fluids, the normal components of stress are equal in all directions and
directional stress (i.e., shear stress) is not supported. Therefore, the shear modulus
for fluids is zero (G = 0). Substituting Equations 2.3 and 2.4 into Equation 2.2
and comparing the result to Equation 2.1, it can be easily deduced that the sound
speed of plane wave in a fluid is,

cf =

√
Bf

ρf
(2.5)

where cf , Bf and ρf are the sound speed, bulk modulus and density of the fluid,
respectively.
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For elastic media, the sound speed of plane wave propagation can be obtained
as,

1

c2e
=

ρe
Be +

4
3
Ge

ce =

√
Be +

4
3
Ge

ρe
(2.6)

where ce, Be, Ge and ρe are the sound speed, bulk modulus, shear modulus and
density of the elastic medium, respectively.

For elastic media like soft tissues, shear waves attenuate rather quickly such
that they are insignificant [26, 21]. Therefore, the sound speed of plane wave in a
soft tissue can be similar to that in a fluid,

ct =

√
Bt

ρt
(2.7)

where ct, Bt and ρt are the sound speed, bulk modulus and density of the soft
tissue, respectively.

The harmonic form of ψp is often a more convenient representation since most
forward and inverse wave approaches operate on each frequency component of the
wave individually. A frequency component of ψp can be obtained by taking the
Fourier transform of Equation 2.1 [27],

(
∇2 + k2

)
Ψp = 0 (2.8)

where k is the wave (or propagation) number, k = ω/c; ω is the angular frequency;
Ψp is the ω component of ψp. Since the wave equation in Equation 2.1 is linear in ψp,
the solution for ψp can be readily obtained as the superposition of the frequency
components’ solutions. It should be noted that Equation 2.8 is the celebrated
Helmholtz equation.

The solution of Equation 2.8 is,

Ψp = Ψp
+ +Ψp

− (2.9)

where

Ψp
+ = P p

+ e−i
−→
k ·−→r ; (2.10)

Ψp
− = P p

− e+i
−→
k ·−→r ; (2.11)
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Ψp
+ and Ψp

− are the ω components of ψp propagating in opposite directions; P p
+ and

P p
+ are pressure amplitudes of Ψp

+ and Ψp
−, respectively;

−→
k is a vector normal to

the wave front and is commonly known as the wave or propagation vector,

−→
k = kx x̂+ ky ŷ + kz ẑ, (2.12)

kx, ky and kz are projections of
−→
k onto the x, y and z axes, respectively; and these

projections satisfy the condition,
∥∥∥−→k

∥∥∥ = k =
√
k2x + k2y + k2z =

ω

c
; (2.13)

−→r is a position vector,
−→r = x x̂+ y ŷ + z ẑ, (2.14)

x̂, ŷ and ẑ are unit vectors parallel to the x, y and z axes, respectively.

The inner products in Equations 2.10 and 2.11 are,

−→
k · −→r = kr = kx x+ ky y + kz z,

and the notations of Ψp
+ and Ψp

− are simplified as,

Ψp
+ = P p

+ e−ikr (2.15)

Ψp
− = P p

− e+ikr (2.16)

The particle velocity caused by Ψp
+ can be obtained as,

−→
U p
+ =

P p
+

ρc
e−ikr (2.17)

where ρ is the mass density of a homogeneous isotropic medium.

The specific acoustic impedance associated with Ψp
+ is,

Zp
+ =

Ψp
+−→

U p
+

= ρc (2.18)

When a plane wave propagates normal to the z axis, the wave equation is
reduced to

∂2

∂z2
ψp − 1

c2
∂2ψp

∂t2
= 0
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It follows that the solutions of the wave in Equations 2.15 and 2.16 are also
reduced to

Ψp
+ = P p

+ e−ikzz (2.19)

Ψp
− = P p

− e+ikzz (2.20)

where kz = k = ω/c.

The specific acoustic impedances associated with Equations 2.19 and 2.20 are
identical to Equation 2.18.

Plane Wave Reflection and Transmission at an Elastic Solid-to-solid Pla-
nar Interface

When a plane wave impinges a planar interface between two elastic solids of different
specific acoustic impedances, the wave is reflected at and/or transmitted through
the interface depending on the acoustic impedances of the solids and the angle of
incident. Figure 2.1 illustrates plane wave reflection and transmission at a planar
interface parallel to the x-y plane. Let Ψi, Ψr and Ψt respectively be the incident,
reflected and transmitted plane waves at the interface;

−→
U i,

−→
U r and

−→
U t be the

particle velocities associated with Ψi, Ψr and Ψt, respectively; Pi, Pr and Pt be
pressure magnitudes of Ψi, Ψr and Ψt, respectively, at the interface; Z0 and Z1 be
the specific acoustic impedances of the solids; θi, θr and θt be the angles of incident,
reflection and transmission (or refraction), respectively; they are defined as angles
between the plane waves propagation directions and the z axis (i.e., normal vector
of the interface).

It is assumed that θi is not large enough to produce total internal reflection.
The angle of reflection, θr, is equal to the incident wave angle, θi,

θr = θi (2.21)

The angle of transmission is determined by Snell’s law,

sin (θi)

sin (θt)
=

c0
c1

(2.22)

where c0 and c1 are the sound speeds of the solids shown in Figure 2.1.

At the interface, the wave pressures and particle velocities of the two solids
must be identical. Otherwise, the media will be tear apart from each other at the
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interface. The LHS of the interface contains the incident and reflected waves, and
the RHS contain the transmitted one. The wave pressures and particle velocities
at the interface can be modelled as,

Pi + Pr = Pt (2.23)
−→
U i cos (θi)−

−→
U r cos (θr) =

−→
U t cos (θt) (2.24)

It should be noted that, pressures act in all directions and they are independent
of the angles. The converse is true for the particle velocities.

The pressure magnitudes of Ψr and Ψt are directly proportional to that of Ψi,

Pr = R Pi (2.25)

Pt = T Pi (2.26)

where R and T are the reflection and transmission coefficients, respectively.

The relationship between R and T can be obtained by substituting Equations
2.25 and 2.26 into Equation 2.23,

Pi +R Pi = T Pi

1 +R = T (2.27)

It follows that the acoustic impedances of the two media must also be identical
at the interface,

Pi +R Pi
−→
U i cos (θi)−

−→
U r cos (θr)

=
T Pi

−→
U t cos (θt)

(2.28)

From Equation 2.17, the particle velocities are expressed in terms of wave pres-
sures,

Z0 (Pi +R Pi)

Pi cos (θi)− R Pi cos (θr)
=

T Pi Z1
T Pi cos (θt)

Z0 (1 +R)

cos (θi)− R cos (θr)
=

Z1
cos (θt)

R =
Z1/cos (θt)− Z0/cos (θi)

Z0/cos (θi) + Z1/cos (θt)
(2.29)

T = 1 +R

=
2Z1/cos (θt)

Z0/cos (θi) + Z1/cos (θt)
(2.30)
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where Z0 = ρ0c0; Z1 = ρ1c1.

It is straight forward to see that when the plane wave propagates perpendicular
to the interface(i.e., θi = 0), R and T are simplified to

R =
Z1 − Z0
Z0 + Z1

(2.31)

T =
2Z1

Z0 + Z1
(2.32)

When R < 0, phase of the reflected wave is shifted 180◦ relative to the incident
wave. Also, when T > 1, it may be strange at first to learn that the transmitted
waves have higher magnitude than the incident waves. In this case, the transmitted
wave power is only a fraction of that of the incident wave [28].

Plane Wave Reflection and Transmission at an Elastic Fluid-to-solid Pla-
nar Interface

The transmission of plane waves at a fluid-solid planar interface may be different
from that at a solid-solid planar interface as discussed in Section 2.1.1. The porosity
and elastic of the solid determine the nature of wave transmission as one of the
following three refraction types [24],

1. when the solid is isotropic and its sound speed is much lower than that of the
fluid, the transmitted wave propagates perpendicular to the interface since θt
is effectively 0 for c0 ≫ c1,

2. when the acoustic impedance of the solid is similar to that of the fluid, the
transmitted wave propagates in the same manner as that at the solid-to-solid
interface, and

3. when the solid is rigid, the transmitted wave is divided into a compressional
and a transverse wave that travel at different speeds and in different directions.

In this work, the solid is a soft tissue that has similar acoustic properties as
water, so that plane wave transmission at the water and soft tissue interface belongs
to the second refraction type. Detail discussions of the first and third refraction
types are out of the scope of this work.
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Figure 2.2: Spherical coordinate system

Spherical Waves

In addition to plane waves, background knowledge of spherical waves is needed in
the derivation of focused wave propagation in multi-layered tissues later.

Waves of spherical shape can be modelled more conveniently in a spherical
coordinate system as illustrated in Figure 2.2. Let ψs be the spherical wave pressure.
Since ψs is symmetrical about all axes, ψs is function of −→r but not of φ and θ [24],

∇2ψs − 1

c2
∂2ψs

∂t2
= 0 (2.33)

where ∇2 = ∂2

∂r2
+ 2

r
∂
∂r
; r = ‖−→r ‖ =

√
x2 + y2 + z2, −→r = (r, θ, φ).

The general solution of Equation 2.33 consists of a diverging wave from the point
source and a converging wave to the source. In most applications, the diverging
wave is of interests. The harmonic form of the diverging spherical wave is,

Ψs = iρcu0
r

r
kr e−ikr (2.34)

where ρ is the mass density of a homogeneous isotropic medium; u0 is the speed
amplitude of the radially vibrating sphere source with angular frequency ω and
average radius of the vibrating sphere source r, u = u0e

iωt. It is assumed that the
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displacement of the sphere surface vibration is much less than r (i.e., u0/ω ≪ r),

and u can be measured at r;
−→
k = (k, θ, φ).

The specific acoustic impedance associated with spherical waves, Zs, is of great
interests since it determines the reflection and transmission of the waves. It can be
obtained through the relationship between wave pressure and particle velocity,

−→
U s,

Zs =
Ψs

−→
U s

(2.35)

where
−→
U s =

(
1− i

kr

)
Ψs

ρc
r̂ (2.36)

It should be noted that the particle speed of spherical wave is out of phase with
the pressure. It then follows from Equations 2.34 to 2.36 that,

Zs = ρc
(kr)2 + ikr

1 + (kr)2
(2.37)

The complex acoustic impedance implies that the diverging wave front dilutes
the wave energy as the wave propagates. The angle between the real and complex
axis can be interpreted as the phase difference between Ψs and

−→
U s.

Wave Attenuation Due to Viscosity in Elastic Media

When acoustic waves propagate in elastic media like soft tissues, some of the waves’
energy is transferred into heat. This phenomenon is also known as absorption. In
Sections 2.1.1 and 2.1.1, the wave equations are derived under the assumption of
viscosity-free tissue so that no loss of waves’ energy was taken into account. In
actual elastic media, however, some wave energy must be consumed to overcome
the resistance due to viscosity in order for the wave to propagate. The following
derivations of wave attenuation are valid for both plane and spherical waves. The
loss of energy is modeled as an attenuation of wave pressure, which is realized by
introducing a term for loss of pressure in the wave equation as [21],

∇2 (ψ − ψv)− 1

c2
∂2

∂t2
(ψ − ψv) = 0 (2.38)

where ψv is the wave pressure attenuated due to the viscous drag of particles. This
pressure is dependent on the tissue viscosity and the spatial variation of particle
velocity [29] as

ψv =

(
4νs
3

+ νb +
γ − 1

Cp
κ

)
∇u (2.39)
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where νs and νb are the dynamic coefficients of shear and compressional viscosities,
respectively; γ, Cp and κ are the ratio of specific heats, heat capacity at constant
pressure and thermal conductivity of the medium, respectively; since κ≪ νs (and
νb), it is customary to neglect the term, κ (γ − 1) /Cp,

ψv ≃
(
4νs
3

+ νb

)
∇u (2.40)

Using the relation between particle velocity and pressure, ∇u = − 1
ρc2

∂ψ
∂t
, ψv can

be expressed in terms of pressure as,

ψv ≃ −
(
4

3
νs + νb

)
1

ρc2
∂ψ

∂t
(2.41)

Let β =
(
4
3
νs + νb

)
1
ρc2

to simplify notation, and substitute Equation 2.41 into
Equation 2.38,

∇2

(
ψ + β

∂ψ

∂t

)
− 1

c2
∂2

∂t2

(
ψ + β

∂ψ

∂t

)
= 0 (2.42)

As mentioned above, the frequency component of ψ is more desirable for sub-
sequent analysis. It can be obtained by taking the Fourier transform of Equation
2.42,

∇2 (Ψ + iωβΨ)− 1

c2
(
i2ω2Ψ+ i2ω2βΨ

)
= 0

[
∇2 (1 + iωβ) +

1

c2
(
ω2 + ω2β

)]
Ψ = 0

[
∇2 +

ω2

c2
1 + β

1 + iωβ

]
Ψ = 0

[
∇2 + k2

(1 + β) (1− iωβ)

1 + ω2β2

]
Ψ = 0 (2.43)

For media such as water and soft tissues, the values β is much smaller than 1.
For instance, the value of β for water is β =

(
4
3
0.7× 10−3 + 2× 10−3

)
/15002 =

1.3× 10−9. Therefore, Equation 2.43 can be simplified as,
[
∇2 + k2

1− iωβ

1 + ω2β2

]
Ψ = 0 (2.44)
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The solutions of Ψ are exponential functions of the coefficient, k2 1−iωβ
1+ω2β2

. This
coefficient should be written as follows to facilitate solving for Ψ,

(k − iα)2 = k2
1− iωβ

1 + ω2β2

k2 − 2ikα− α2 =
k2

1 + ω2β2
− i

k2ωβ

1 + ω2β2
(2.45)

where α is the attenuation coefficient for the wave at frequency ω.

The solutions of Ψ can be written as,

Ψ = Ψ+ +Ψ−

Ψ+ = P+ e−i(k−iα)r

Ψ− = P− e+i(k−iα)r

α can be derived from the imaginary component of Equation 2.45,

2kα =
k2ωβ

1 + ω2β2

α =
kωβ

2
(
1 + ω2β2

) (2.46)

Substitute β into Equation 2.46,

α =
kω

(
4
3
νs + νb

)
1
ρc2

2
(
1 + ω2

(
4
3
νs + νb

)2 1
ρ2c4

)

=
ω2
(
4
3
νs + νb

)
ρc

2ρ2c4 + 2ω2
(
4
3
νs + νb

)2 (2.47)

For low frequency waves, 2ρ2c4 ≫ 2ω2
(
4
3
νs + νb

)2
and α can be simplified as,

α =

(
4
3
νs + νb

)
ω2

2ρc3
(2.48)

The effect of wave attenuation can be incorporated in the plane and spherical
wave equations simply by replacing k with k − iα,

k → k − iα, (2.49)

kx → kx − iαx, (2.50)

ky → ky − iαy, (2.51)

kz → kz − iαz, (2.52)
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where αx, αy and αz are projections of α normal to the wave front on the x, y and
z axes, α2 = α2x + α2y + α2z.

Some remarks on wave attenuation are in order. In Section 2.1.1, the acoustic
impedance in Equation 2.18 is a real number assuming lossless plane wave. However,
in this section wave pressure is attenuated due to viscosity. The question posed is as
follows: does the acoustic impedance now become a complex number? In this case,
the particle velocity and wave pressure are slightly out of phase since some wave’s
energy is spent to combat the viscosity effect. Consequently, the acoustic impedance
should be complex. This phase mismatch is often quite small for soft tissues, so
that the complex component is negligible. Therefore, the acoustic impedance is
considered as a real number.

Another remark is regarding the relationship between attenuation coefficient
and frequency of waves. Due to the relaxation effects for most soft tissues, νs and
νb have different frequency characteristics and can be modelled as,

νs =
νl

1 + (ω/ωs)
2 , νb =

ν l

1 + (ω/ωb)
2 (2.53)

where νl is the low-frequency viscosity; ωs and ωb are respectively the angular
frequencies at which νs and νb = 0.5 νl.

Equation 2.53 is only applicable to soft tissues. The attenuation coefficient for
viscous fluids (not tissues) shown in Equation 2.48 is proportional to the square of
frequency. This explains why the depth of wave penetration decreases exponentially
as frequency increases. On the other hand, for soft tissues (i.e., Equation 2.53
is valid), the viscosity are not constant and decrease as frequency increases. The
decreasing viscosities counteract the increasing frequency (i.e., ω2) in Equation 2.48.
As a result, the attenuation coefficient is roughly linearly proportional to frequency.
This implies high frequency acoustic waves are able to convey material property
information of greater depths in soft tissues than in viscous fluids.

Focused Wave Beam Pattern

In this research, soft tissues are characterized using focused ultrasound produced by
a spherically focused ultrasound transducer as mentioned in Section 1.5. Modelling
of the wave beam pattern radiated by a spherically focused ultrasound transducer is
essential for forward scattering. The model describing focused waves propagation
in a homogenous soft tissue is derived in this section. The wave beam pattern
produced by a spherically focused ultrasound transducer is modelled based on the
following assumptions.
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• Pressure field sources1 are mounted on a baffle, which is a perfectly rigid
boundary, so that the pressures generated by the pressure field sources and
reflected by the baffle are in phase and have twice the amplitude in the half-
space of the source [24],

• the radiating surface of the transducer vibrates uniformly with speed u0e
iωt

normal to the surface [30],

• since the pressure amplitude level is low, cavitation and/or nonlinear effects
of the tissue can be ignored, and

• no Lamb waves propagate on the radiating surface of the transducer [31].

The radiating surface of the transducer can be considered as a composition of
many pressure field sources emitting spherical waves of the same amplitude and
phase. The harmonic form of the focused waves at any point in a homogeneous,
isotropic tissue in front of the transducer surface is described by the Rayleigh-
Sommerfeld integral [31],

Ψf (r, θ, t) = i
ρ0ωu0r

2
c

2π
eiωt

∫ 2π

0

∫ a

0

e−i(k−iα)r
′

r′
sin (θ0) dθ0 dφ0 (2.54)

where Ψf (r, θ, t) is the focused wave pressure at angular frequency ω, which is
suppressed to simplify notations; r is the distance between the transducer surface
center and a point of interest in the tissue; rc is the radius of curvature of the
transducer; θ, θ0 and φ0 are angles used in focused wave modelling as shown in
Figure 2.3; k = ω/c; c and α are the sound speed and attenuation coefficient of the
tissue;

r′ =

{
r2 + 2r2c

[(
1− r cosθ

rc

)
(1− cosθ0)−

r sinθ

rc
sinθ0 cosφ0

]}1/2

The tissue attenuation coefficient can be expressed as a first order function of
the frequency of ultrasound wave as in Equation 1.1.

The Rayleigh-Sommerfeld integral in Equation 2.54 can be approximated as a
single integral equation to gain computational efficiency [31],

Ψf (r, θ, t) = i
ρ0ωu0r

2
c

2πr
ei(ωt−kr)−αr ×

∫ a

0

e(−ik−α)r
′′

J0 ((k − iα) rc sinθ sinθ0) sinθ0 dθ0 (2.55)

1A pressure field source is small compared to a wavelength of the field produced.
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Figure 2.3: Configuration of spherically focused transducer in homogeneous medium
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where r′′ = r2c
r

(
1− r

rc
cosθ

)
(1− cosθ0); J0 (·) is the zeroth order complex Bessel

function [30].

The focused wave pressure amplitude in the Cartesian coordinates is of interest,
since the tissue layers are flat. The focused wave pressure is the magnitude of Ψf

in Equation 2.55, and Ψf is transformed to Cartesian coordinates as,

∣∣Ψf (z, x)
∣∣ = ρ0ωu0r

2
c√

z2 + x2
e−α

√
z2+x2

√
J20,re (z, x) + J20,im (z, x) (2.56)

where J0,re (·) and J0,im (·) are respectively the real and imaginary parts of J0 (·),

J0,re (z, x) =

∫ a

0

e−αr
′′

[U0 (γ, ϕ) sin (kr′′)−

V0 (γ, ϕ) cos (kr
′′)] sinθ0 dθ0

J0,re (z, x) =

∫ a

0

e−αr
′′

[U0 (γ, ϕ) cos (kr
′′)−

V0 (γ, ϕ) sin (kr′′)] sinθ0 dθ0

U0 ((θ) , ϕ) and V0 ((θ) , ϕ) are respectively the real and imaginary parts of the
zeroth order complex Bessel function [30]; γ = k rc sinθ0 x

cosϕ
√
z2+x2

; ϕ = tan−1 (−α/k);
r′′ = −zrc+r2c√

z2+x2
(1− cosθ0).

The focused wave pressure amplitude of a circular surface having an area πr2a
on the X-Y plane located at (0, 0, z) can be computed as,

∣∣Ψf (z)
∣∣ = π

(∫ ra

0

∣∣Ψf (z, x)
∣∣ dx

)2
(2.57)

The wave beam is modelled as the sum of many pressure field sources emitting
spherical waves on the transducer surface. The spherical waves interfere each other
causing extensive fluctuations in the wave beam amplitude and phase in the region
near the transducer surface known as the near field (or Fresnel zone). As the
spherical waves propagate further away from the transducer surface, the spherical
wave fronts become more similar to each other. Hence, fluctuations in the wave
beam are reduced. The region beyond the near field, where the wave beam pattern
becomes uniform, is known as the far field (or Fraunhofer zone) [32].

2.1.2 Inverse Scattering

Inverse scattering is the reverse of forward scattering. Given the measurements of
scattered waves from a medium, inverse scattering determines the properties of the
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medium.

A major challenge of inverse scattering is solving the nonlinear equation de-
scribing the relationship between the scattered waves and medium properties. It
is well known that this equation cannot be solved analytically. Born approxima-
tion is developed to linearize the equation enabling analytical solution based on the
assumption of weak scattering. Ever since Born approximation was developed, it
has become the basis of most inverse scattering methods. Therefore, understanding
Born approximation is the first step to review existing inverse scattering methods.

Born Approximation

The wave satisfying the Helmholtz equation in Equation 2.8 for homogeneous media
is reprinted here for convenience,

(
∇2 + k2r

)
ΨP

r = 0 (2.58)

where the subscript r denotes a point in the medium; ΨP
r and kr are the wave and

wave number at point r; specification of the point is needed for later use.

For inhomogeneous media, Ψp
r and kr can be explicitly expressed in terms of

their components as,

Ψp
r = ΨP

r,i +ΨP
r,s (2.59)

kr = knr = k (1 + nr,δ) (2.60)

where ΨP
r,i and ΨP

r,s are the incident and scattered waves, respectively; ΨP
r,i repre-

sents the ΨP
r component that corresponds to the medium’s homogeneities, while

ΨP
r,s is associated with the inhomogeneities; k is the average wave number of the

medium; nr is the refractive index of the medium at r, nr = c
cr
; c is the average

sound speed of the media; nr,δ is the deviation of refractive index at r.

Substituting Equations 2.59 and 2.60 into Equation 2.58, the Helmholtz equa-
tion becomes,

(
∇2 + k2

) (
ΨP

r,i +ΨP
r,s

)
= −k2

(
n2r,δ − 2nr,δ

) (
ΨP

r,i +ΨP
r,s

)
(2.61)

= −k2
(
n2r − 1

) (
ΨP

r,i +ΨP
r,s

)

Due to the homogeneities of media, the incident field in Equation 2.61 is equiv-
alent to Equation 2.58, (

∇2 + k2
)
Ψp

r,i = 0 (2.62)
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Based on Equation 2.15, the solution of Ψp
r,i can be written as,

Ψp
r,i = P p

+ e−ikr (2.63)

Consequently, Equation 2.61 can be simplified as,
(
∇2 + k2

)
Ψp

r,s = −k2
(
n2r − 1

)
Ψp

r (2.64)

Now the objective is to solve the scattered field, Ψp
r,s, in Equation 2.64. However,

no known method is available to solve Ψp
r,s directly. According to [33], the solution

of Ψp
r,s can be expressed in terms of the free-space Green’s function as,

Ψp
r,s =

∫
gr−r′ k

2
(
n2r′ − 1

)
Ψp

r′ dr
′ (2.65)

=

∫
gr−r′ k

2
(
n2r′ − 1

)
ΨP

r′,i dr
′ +

∫
gr−r′ k

2
(
n2r′ − 1

)
Ψp

r′,s dr
′ (2.66)

where gr is the free-space Green’s function,

gr−r′ =
eik(r−r

′)

4π (r − r′)
(2.67)

The right-hand side of Equation 2.66 is not readily the solution of Ψp
r,s, since

it is a function of the scattered field itself. This solution can be obtained through
approximation. Assuming the magnitudes of Ψp

r′,s are small relative to that of
Ψp

r′,i, the integral associated with Ψp
r′,s can be ignored and Equation 2.66 can be

approximated as,

Ψp
r,s ≈ Ψp

r,B1 =

∫
gr−r′ k

2
(
n2r′ − 1

)
Ψp

r′,i dr
′ (2.68)

where Ψω
r,B1 is the first order Born approximation of the scattered field. Higher

order Born approximation may be used to obtain better approximation,

Ψp
r,B2 =

∫
gr−r′ k

2
(
n2r′ − 1

) (
Ψp

r′,i +Ψp
r′,B1

)
dr′

Ψp
r,Bj+1 =

∫
gr−r′ k

2
(
n2r′ − 1

) (
Ψp

r′,i +Ψp
r′,Bj

)
dr′ (2.69)

where Ψp
r,Bj is the jth order Born approximation.

In addition to Born approximation, the solution of scattered field can be approx-
imated by the Rytov approximation [34]. Although it is derived based on slightly
different assumptions compared to Born approximation, their resulting form of ap-
proximations are quite similar [35].
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Extended Born Approximation

The extended Born approximation [36] is developed to overcome some of the limita-
tions associated with the Born and Rytov approximations. The extension involves
incorporating a high-frequency approximation of the scattered field to the scatter-
ing measurements at more than one frequency. The extended Born approximation
begins with invoking the far-field form of the Green’s function. The far-field version
of the scattered field in Equation 2.65 can be written as,

Ψp
r̂,s =

∫
eikr̂·r

′

k2
(
n2r′ − 1

)
Ψp

r′ dr
′ (2.70)

where r̂ = r−r′
|r−r′| .

Equation 2.70 is manipulated into the form of a Fourier integral to take advan-
tage of the numerical efficiency of the fast Fourier transform (FFT),

Ψp
r̂,s =

∫
eik(r−r

′) k2
(
n2r′ − 1

)
Ψp

r′ e
ikr′ e−ikr

′

dr′ (2.71)

where Ψp
r′ e

ikr′ is defined as a distorting function denoted as Ψp
r′,D, which compen-

sates for the difference between the incident field and the total field. Equation 2.71
is rewritten as,

Ψp
r̂,s =

∫
eik(r−r

′) k2
(
n2r′ − 1

)
Ψp

r′,D e−ikr
′

dr′

= k2
∫ (

n2r′ − 1
)
Ψp

r′,D e−ik(k̂−r̂)r
′

dr′

= k2 F
[(
n2r′ − 1

)
Ψp

r′,D

]

where k̂ is the direction of wave propagation; F [·] denotes Fourier transform in

domain of k
(
k̂ − r̂

)
.

It is important to note that when the Born approximation is valid (i.e., scattering
is weak and can be ignored), the distorting function is constant due to Equation
2.63,

Ψp
r,D = Ψp

r e
ikr

= P e−ikr eikr

= P
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and an inverse Fourier transform can be used to reconstruct the refractive index dis-
tribution. However, when the Born approximation is invalid the distorting function
must be estimated for inversion. Based on the WKB high-frequency approximation
[37], the total field can be represented as,

Ψp
r = e−ikSr

, and the distorting function becomes,

Ψp
r,D = e−ik(Sr−k̂r)

where Sr is the wavefront of Ψp
r and is a function of k̂.

The problem of far-field scattered field approximation is now transformed to the
approximation of the quantity Sr − k̂r. To simplify Sr − k̂r, it is expressed in the
form of a power series

Sr − k̂r =
n∑

j=0

ajr
j, n =∞

where aj is a coefficient of the power series. A convenient way to approximate
this quantity is to assume only the coefficient a0 is significant, such that all other
coefficients can be ignored. The distorting function and the scattered field are
approximated as

Ψp
r,D = e−ika0

Ψp
r̂,s = k2 e−ika0 F

[
n2r′ − 1

]

The coefficient a0 can be estimated based on the phase difference between the
measured far-field scattered data at two wave numbers, k1 and k2, in the forward
direction, r̂ = k̂ [36]. This may be expressed as

a0 = −k1
φk2 − φk1
k2 − k1

where φk1 and φk2 are the phases of the measured far-field scattered data at k1 and
k2, respectively; k2 − k1 is assumed to be small.

Note that a0 is dependent on k̂ and frequency. After estimating a0 for each k̂
in each frequency, the entire spectrum is then inverse Fourier transformed to recon-
struct the refractive index, nr, distribution of the medium. In practice, the validity
of the extended Born approximation depends on the medium. Nevertheless, it is
expected to be a better approximation than the conventional Born approximation
in which the distorting function is simply taken as a constant.
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2.2 Literature Review

2.2.1 Ultrasound Tissue Characterization

Conventional ultrasound imaging uses the pulse-echo method which can only re-
solve structures that are larger than the wavelength of the incident wave. Inverse
scattering of the ultrasound signals, on the other hand, is capable of reconstructing
structural details smaller than the wavelength. This leads to significant improve-
ments in resolution and has many potential applications in tissue characterization.

Some of the recent applications of ultrasound tissue characterization are re-
viewed in the following. Parsons et al. [38] employ the normalized power spectrum
of backscattered signals to study the development of changes occurring in venous
thrombosis. Davison et al. [39] delineate the effects of treatment with enzyme in-
hibitors on the material properties of the heart using the integrated backscatter (IB)
obtained through acoustic microscopy. Stetson and Sommer [40] investigate the cor-
relations between the backscattered signal frequency contents and both benign and
malignant liver anomalies. Noritomi et al. [41] distinguish among the components
of advanced carotid plaques based on spectral analysis of echoes. Lin et al. [42]
detect multi-vessel coronary artery diseases and the recanalization of infract-related
artery with IB, and identify viable myocardium and residual ischemia with IB and
echocardiography [43]. They in [44] delineate the alterations in the cyclic changes
of myocardial ultrasonic IB in patients who received angioplasty. Lee et al. [45]
discriminate between the carotid plaques between asymptomatic and symptomatic
patients according to three parameters of the backscattered signal power spectrum.
Schmitz et al. [46] perform prostatic carcinoma detection by processing radio-
frequency ultrasonic echo signals. Cespedes et al. [47] propose the addition of local
compliance information to intravascular ultrasound to determine the composition
of atheroma. Lin et al. [48] utilize weighted amplitude of the cyclic modulation
of IB to detect jeopardized or salvageable myocardium in patients having chronic
coronary artery disease. Huber et al. [49] evaluate the diagnostic value of computer-
assisted texture analysis in the examination of solid breast masses. Kondo et al.
[50] demonstrate the analysis of transeptal variation IB to predict the efficacy of
beta-blocker treatment in dilated cardiomyopathy. Masuyama et al. [51] monitor
the chaotic behavior of damaged myocardium in dilated cardiomyopathy patients
by a time-delay embedding technique. Scheipers et al. [52] propose a system for
prostate diagnosis based on multi-feature ultrasound tissue characterization. Ku-
tay et al. [53] investigate the parameters of the power-law shot noise model for
ultrasound RF echoes proposed in [54] as features for breast cancer detection.
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2.2.2 Inverse Scattering Techniques

Kechribaris et al. [55] present a comprehensive overview of techniques for inverse
scattering. Part of their discussions on the progress in this field is adopted here.
Born and extended Born approximations provide a linear relationship between the
measured scattered data and the scattering object material properties for the case
of weak scattering. This linear relationship is a basis for the Fourier diffraction
and reflection theorems (FDT and FRT) [27]. Subsequently, many spectral based
inverse scattering techniques including the filtered back-propagation [56] and di-
rect Fourier algorithms [57] have been developed in the light of FDT and FRT.
Although mathematically straightforward and computationally efficient, these al-
gorithms perform poorly for strong scattering media reconstruction [58] due to the
underlying weak scattering assumption. Examples of strong scattering soft tissues
are microvasculature (arterioles), collagen matrix of parenchymal tissues and fat
lobes near the surface of the breast tissue.

Attempts have been made to improve the accuracy of approximation based
methods using iterative optimization. The approximated scattered field integral
equation is first discretized into a more solvable system of equations. Common
means of producing a discrete representation of integral equation are finite differ-
ence and moment methods [59]. Each equation in the discretized representation is
solved through iterative optimization with the objective of minimizing the difference
between the measured and the estimated scattered fields. Borup et al. [60] develop
a reconstruction technique based on the Gaussian-Newton iteration method. Roger
[61] presents a Newton-Kantorovich (NK) method in which a Newton-type iterative
optimization scheme is used to adjust an a priori contrast distribution. Wang and
Chew propose a Born iterative method (BIM) that successively and independently
solves each of the system equations [62]. They in [63] develop a distorted Born it-
erative method (DBIM) to improve BIM by updating the Green’s function at every
iteration. Numerical simulations show that DBIM is capable of faster convergence,
but is less robust to noise contamination compared to BIM. Convergence and sta-
bility assessments are conducted on NK and show that it is equivalent to DBIM
[64]. Liu et al. [65] introduce the coarse resolution initial value (CRIV) and quad-
riphase source (QS) methods to increase the rate of convergence of the BIM. CRIV
uses BIM for a coarse grid of the object to quickly estimate the initial solution.
The solution of a coarse grid is used as the initial value of the next finer grid with
additional iterations until the solution of the finest grid is obtained. QS performs
four reconstructions in parallel based on the fields measured from each side of the
object. The four reconstruction results are averaged to obtain the final image.

It has been shown that both BIM and DBIM diverge for strongly scatter media.
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Haddadin and Ebbini [66] alleviate this problem by extending DBIM in a multi-
frequency sense. At low frequencies, DBIM converges to solutions that are close to
the actual values, but with a poor spatial resolution. These solutions serve as the
initial point at higher frequencies to improve the spatial resolution.

The formulation of inverse scattering in high frequency bands is quite different
from that of the low frequency bands due to the significant change in the physics of
wave propagation. Yang et al. [67] modify the extended Born approximation (EBA)
to emphasize the material property that contributes to considerable scattered field
variations in the microwave spectrum. The feasibility of the modified EBA for
high frequencies is demonstrated through simulations. They in [68] incorporate the
modified EBA in a wavelet based inversion algorithm [69] that is designed for low
frequency cases, and apply it to a high frequency application. Their simulations
results demonstrate the computational effectiveness of the algorithm.

Mast et al. [7] present a time-domain inverse scattering method that recon-
structs the sound speed contrast of a medium directly in the time domain. They
show that time-domain inverse scattering method is more efficient than multi-
frequency diffraction tomography methods and is more efficient than single-frequency
based methods in some cases. Results of synthetic data demonstrate that the ac-
curacy of time-domain reconstruction method is superior to single-frequency re-
constructions for objects whose size and contrast are similar to those found in
medical applications. However, time-gain compensation and aberration correction
[70] methods are needed to reduce error associated with medium absorption and
weak scattering approximations.

2.2.3 Inverse Scattering Techniques for Ultrasound Tissue
Characterization

Recent techniques of inverse scattering developed for ultrasound tissue characteri-
zation are reviewed. Santosh et al. [71] propose the use of iterative distorted wave
Born approximation (IDWBA) method to analyze high frequency (10MHz) ultra-
sound reflection data to reconstruct high resolution images of human eye in vivo.
They are able to resolve profiles of the acoustic impedance of 300um thick retina
with features of 50um. Unlike retina, most tissue structures of interest including
small tumors and arterial plaque deposits are of greater thickness and are ob-
structed by intervening tissues that have large attenuation coefficients and acoustic
impedance differences. In [72], they model a fatty plaque deposit on the wall of
a carotid artery under a 2.5 cm thick layer of tissue. A plane-wave Born approxi-
mation (PWBA) inverse scattering method is used instead of the IDWBA method,
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which is more accurate but more cumbersome to implement, since the targeted tis-
sue is weakly scattered. Compensation for the attenuation of the intervening tissue
is also implemented.

Tobocman et al. [73] analyze backscattered signals from aorta specimens that
are shielded from the ultrasound transducer by a human tissue specimen, which
is about 1.25 cm thick. A PWBA deconvolved inverse scattering [74] method in
conjunction with compensation for the distortion due to the frequency dependent
attenuation of the intervening tissue are used. Visual examinations of the resultant
acoustic impedance profiles show definite correlation to the specimens’ pathology.
Bedekar et al. [75] also utilize the PWBA deconvolved inverse scattering method to
estimate relative acoustic impedance from the reflected pulses of some left anterior
descending coronary artery specimens. Based on relative acoustic impedance values,
they are able to distinguish between fibrolipidic and lipid core regions.

Yamada [76, 77] presents a technique to reconstruct quasi 3D sound velocity
slices of a weak scattering spherical object based on backward propagation of Rytov
approximation and a spatial filter. The measurement system collects 3D data of the
object by transmitting and receiving acoustic waves over the cylindrical aperture
around a single rotational axis. Simulations of a lossless medium demonstrate
satisfactory results for practical condition of the sound velocity variation (+/-10%)
and potential for actual clinical breast cancer screening test.

Kwon and Jeong [78] point out that many inverse scattering techniques con-
sider simple models that describe the measured field as functions of tissue inhomo-
geneities in terms of only the sound speed (or refractive index) [76, 77], or density
and compressibility fluctuations [79, 80, 81, 82, 83]. Kuroiwa and Yamada [84]
extend the previous work [76, 77] to emphasize on the reconstruction of tissue at-
tenuation. However, for larger values of sound velocity and attenuation contrast
(i.e., strong scattering), their estimated sound velocity and attenuation images be-
come imprecise. Yamada then in [85, 86] presents a compensation method for
extending the limit of the weak scattering approximation. Kim and Yamada [87]
realize that acquiring scattered fields at 360◦ around soft tissues such as organs
in Yamada’s previous work is impractical for clinical applications. They mitigate
this issue by placing a reflection plate behind the tissue and modifying the inverse
scattering technique accordingly. Simulated data from an elliptical object show
that the precision of the reconstructed parameters is not yet satisfactory for the
purposes of medical diagnostic applications.

Berggren et al. [88] suggest to reconstruct separate images of tissue sound
speed, density and absorption through a nonlinear formulation of the inverse scat-
tering problem in order to obtain the accuracy for quantitative clinical ultrasound
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imaging. They present a method of inverting the Helmholtz equation based on
moment discretizations and iterative techniques. Kwon and Jeong [78] carry out
computer simulations to solve the three acoustic parameters as the solution of
an inhomogeneous Helmholtz equation using the sinc basis moment method and
Newton-Raphson method. They find out that tissue density is rather difficult to
reconstruct compared to the other two parameters.

2.2.4 Speckle Noise Modelling and Reduction Methods

When an ultrasound impulse penetrates a medium with multiple inhomogeneities,
part of the impulse energy is reflected by an inhomogeneity and the rest transmits
through it creating multiple impulses with various propagation directions, phase
characteristics and attenuated amplitudes. These impulses are repeatedly divided
into their reflection and transmission components when they encounter other in-
homogeneities. This process is known as reverberation and it continues until the
energy levels of the impulses become negligible. As a result, multiple reflected
impulses (i.e., echoes) from nearby inhomogeneities arrive at the transducer with
small differences in phase and amplitude, which are measured as their superposition.
Since many of these echoes do not uniquely correspond to the inhomogeneities, they
are considered as speckle noise. Anderson and Trahey [20] describe speckle noise
as random, deterministic, interference pattern in ultrasound signals formed with
coherent radiations of a medium containing many sub-resolution scatterers. It has
been shown that the presence of speckle noise reduces the detectability of lesions
approximately by a factor of eight [89]. Therefore, speckle noise is responsible for
the poor resolution of ultrasound compared to X-ray and MRI.

In the context of biological tissues, reverberation has been described as a ran-
dom walk of impulses among the inhomogeneities within a mass of tissues. If each
step in the random walk is considered to be an independent and identically distrib-
uted random variable, the sum over many such steps obeys a Gaussian probability
distribution function (PDF) according to the Central Limit Theorem. The envelope
magnitude and phase of echoes follow a Rayleigh and uniform PDFs, respectively
[90, 91, 1]. At low densities of inhomogeneities, the distribution of magnitudes are
changed from Rayleigh to K-distribution [92]. For tissues that have regular pat-
terns such as liver triads, the distribution of speckle noise becomes a Rician PDF
instead of a Rayleigh PDF [93, 94, 95].

Many speckle noise reduction methods have been reported in the literatures
and some of these methods in recent years are reviewed in the following. Hokland
and Taxt [96] develop a harmonic imaging algorithm that suppresses speckle based
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on a multi-component scattering model. The backscattered signals are modeled
by two orthogonal and independent harmonic oscillation functions. The estimated
energies of these functions are presented as gray level values of the resulted image.
Results of experiments using phantom and tissues in vivo indicate that this algo-
rithm produces high signal-to-noise ratio and tissue contrast but blurrier images
than conventional methods. Karaman et al. [97] present an adaptive smoothing
method based on appropriately shaped and sized local kernels for speckle reduction
in B-scan ultrasound images. A kernel is determined using a local statistics based
region growing technique for each pixel. Their simulation results show that this
method is capable of reducing speckle noise and preserving the resolvable details.
Prager et al. [98] analyze speckle noise in ultrasound images using fractional order
statistics and the homodyned k-distribution instead of second order powers of the
homodyned k-distribution, or lower order powers of the more limited k-distribution.
They conclude that the discrimination of speckle noise is more effective when the
powers of distribution are greater than or equal to one.

Suhm et al. [99] investigate the effect of adaptive speckle noise filtering on ul-
trasound tissue characterization by comparing the characterization results obtained
before and after filtering. Two filters are implemented; one is based on a multi-
variate comparator while the other is a local statistics filter. The characterization
results show only slight improvements for the multivariate comparator based filter,
but degradation for the local statistics filter since the signal is overly smoothened.

Tobocman et al. [100] conduct comparative studies between the traditional
pulse-echo method and the Born approximation deconvolved inverse scattering
(BADIS) technique developed in [73] for analyzing ultrasound pulse reflections
from plastic phantoms and soft tissue specimens. In short, the BADIS technique
deconvolves the incident pulse from the reflected pulse, and uses the resulting im-
pulse response to reconstruct a profile of the acoustic impedance distribution of the
medium. Their results demonstrate improvements in resolution of the tissue struc-
tures that can be fairly well approximated by layered media over the area of the
focussed ultrasound beam. However, they report the profiles of acoustic impedance
resulted from the BADIS technique are free of speckle noise without any quanti-
tative measure between the actual and reconstructed acoustic impedance profiles.
Moreover, no explicit modelling of speckle noise is found in this paper. Further-
more, they intentionally emphasize the free of speckle aspect in the paper titled
“Free of speckle ultrasound images of small tissue structures”.

Kharin et al. [101] combine the BADIS technique developed in [73] and second
harmonic backscattered signals to reconstruct the acoustic impedances of plastic
film phantoms relative to that of water. In [5], they apply the same technique for
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in vitro porcine gastroesophageal junction. Without proofs, they state that the
second harmonic of the incident pulse is generated in backscattered signals as a
result of incident waveform distortion and accumulation of inhomogeneities in the
medium along the propagation path. A model for analyzing the second harmonic
signals is developed by including a second harmonic term in the formulation for one-
dimensional pulses. In this method, an appropriate tissue attenuation coefficient
must be chosen by the user. Similar to [100], they display the reconstructed images
of the tissue and claim that less speckle noise is obtained only by inspections. This
paper is titled “Free of speckle ultrasonic imaging of soft tissue with account of
second harmonic signal”. However, there is no description of the effect of speckle
noise in the model. The reduction of speckle noise seems to be merely the by-
product of this approach.

Saha et al. [102] comment on the validity of the integration range for calculating
Born reflection amplitude in the BADIS formulation and make modifications to the
approach presented in [5] and [100] for a wider range of applications. Numerical
comparisons of approximation errors between the modified formulation and that of
the previous papers for the case of an one-dimensional homogeneous layer. Results
show that the errors produced by [5] and [100] can be quite large even for weak
scatterers with thin layers, while the modified formulation yields negligibly small
errors even for comparatively thick layers.

In contrast to being an unwanted noise, the change of speckle noise has been
used as an indicator of tissue motion. Based on the tissue motion due to external
forces, the mechanical properties of tissue can be reconstructed to form an elastic-
ity image of the tissue. Elasticity imaging is proposed as an alternative diagnostic
method for many pathologies including breast cancers [103]. O’Donnell et al. [104]
introduce a method that measures tissue motion and strain fields over a wide dy-
namic range. Yeung et al. [105] develop a multilevel motion model-based approach
for speckle tracking that overcomes the problem of the traditional single-level block
matching methods. Lawu and Ueda [106] investigate motion artifacts produced by
a rotating tissue using a speckle tracking method. Ohashi et al. [107] make use of
the shift and variation of the speckle noise pattern in the B-mode images to esti-
mate tissue motion for 3D tomographic reconstruction. Carmo et al. [108] enhance
the positioning accuracy of 3D ultrasound image plane by means of speckle decorre-
lation. Jeong and Kwon [109] calculate the relative tissue stiffness by determining
the standard deviation and/or the range pixel values of speckle noise patterns over
a certain number of consecutive B-mode images.
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2.3 Summary

This chapter first reviews forward scattering of plane, spherical and focused waves
in various homogenous media. Fundamentals of inverse scattering theorems and
methods derived based on the Born and extended Born approximations are then
discussed. Recent clinical applications and methods of inverse scattering developed
for ultrasound soft tissue characterization are also presented. In addition, descrip-
tions of speckle noise formation, its statistical properties and reduction methods
are discussed. Based on this review, it can be concluded that the major drawbacks
of traditional inverse scattering methods are the weak scattering assumption in-
herited from Born based approximation, inaccurate modelling of speckle noise, and
computational efficiency. In recognition of these drawbacks, an inverse scattering
approach is presented in the next chapter that eliminates the reliance on Born based
approximation and models speckle noise accurately in a novel way.
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Chapter 3

Methodology Overview,
Preprocessing and Modeling

A method is proposed to deal with some of the challenges in the field and short-
comings of existing methods discussed in Chapters 1 and 2. The proposed method
comprises a number of components, each of which performs tasks designed to solve
issues in the problem of ultrasound tissue characterization. Overview of the method
is depicted in Figure 3.1. The method begins with conditioning the backscattered
signals by filtering noise outside of the transducer frequency range. The design
specifications and characteristics of the noise filter are presented in Section 3.1.
The backscattered signals contain echoes that carry information of tissues in their
propagation paths. It is important to analyze these echoes individually to isolate
information associated with different paths. Each of these echoes is detected from
the signals in Section 3.2. The resulting echoes are processed by the multi-scale
stochastic filter (MSF), which is specifically developed to estimate parameters that
are nonlinearly related to the measurements. This is the case of ultrasound tis-
sue characterization. MSF will be discussed in details in Section 4.2.2. The MSF
formulation requires models of the measurements and measurement noise. These
models are derived in Sections 4.1.1 and 4.1.3. Figure 3.1 shows a much simpli-
fied schematics of MSF to maintain clarity of the methodology overview. Some
of the echoes in the backscattered signals are the results of reverberation. These
echoes convey redundant information, which severely degrade the accuracy of tissue
characterization. To solve this problem, a model is developed to describe the rela-
tionship between tissue acoustic parameters and propagation paths of each echo in a
hierarchical structure called Echotree. Reverberated echoes can be identified based
on the tissue acoustic parameters estimated by MSF and the Echotree. The rever-
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berated echoes are then removed from the input of MSF. MSF and reverberation
filter are executed recursively.

3.1 Noise Filter

All ultrasound signals are first bandpass filtered to remove noise frequency contents
out of the transducer frequency range. The bandpass filter is designed using the
Parks-McClellan optimal FIR filter algorithm [110] with the following parameters:

• Frequency band edges: 0, 5MHz, 100MHz and 110MHz,

• Stopband ripple: 0.0005V, and

• Passband ripple: 0.0005V.

It should be noted that filter frequency characteristics are commonly specified
as cutoff frequencies. However, filter frequency characteristics are specified as band
edges in [110]. Therefore, the same filter frequency specification conventions are
used here. The resulting filter order is 732. A forward-reverse filtering technique
is employed to achieve zero-phase filtering of the ultrasound signals [111]. The
magnitude and phase responses are depicted in Figure 3.2.

3.2 Echo Detection

In addition to noise filtering, detection of individual echoes from backscattered sig-
nals is needed for sound speed and attenuation coefficient measurements. Echoes
are detected based on their oscillation characteristics. The oscillations of echoes
can be characterized by the phases and magnitudes of overshoots and undershoots.
Since the largest consecutive overshoot and undershoot are convenient to be recog-
nized, their time difference and magnitude ratio are employed as features for echo
detection as illustrated in Figure 3.3. The range of these features among echoes are
identified experimentally. When a consecutive overshoot-undershoot pair having
features within the range is found, an echo is considered detected. The beginning
and end of the echo are then identified for subsequent processing. This echo de-
tection method is designed for tissue layers of sufficient thicknesses such that no
echoes are superimposed.
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Figure 3.1: Overview of methodology
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The algorithm developed for echo detection is presented as follows. Let S be
a sequence of backscattered signals; tmin is the minimum time period between a
consecutive overshoot-undershoot pair; rmin and rmax are the minimum and max-
imum values of the ratio between the largest consecutive overshoot and undershoot;
nmax be the maximum absolute noise amplitude; echot be the time of arrival of
each detected echo in S; echo be the echoes extracted in S;

function [echot, echo] = EchoDetect (S, tmin, rmin, rmax, noise)

len = length(S)

dS = gradient(S);

i = 1; e = 1;

while (i <= len− 1),

% Find zero-crossing point

if (sign (S (i)) == sign (S (i+ 1))),

i = i+ 1;

continue;

end

% Search for either undershoot or overshoot before i

j = i;

while (j > 1 & sign (dS (j − 1)) == sign (dS (j))),

j = j − 1;

end

% Search for either undershoot or overshoot after i

k = i+ 1;

while (k < len & sign (dS (k)) == sign (dS (k + 1))),

k = k + 1;

end

Sj = abs (S(j))

Sk = abs (S(k))

r = max (Sj, Sk) /min (Sj, Sk) ;

if (k − j > tmin & r > rmin & r < rmax & Sj > nmax & Sk > nmax),
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% Search for the beginning of echo

m = j − tmin;

while (any (S (m : j)) > nmax & j > 1),

j = j − 1;

m = j − tmin;

if (m < 1), m = 1; end

end

echot (e) = j;

% Search for the end of echo

n = k + tmin;

while (any (S (k : n)) > nmax & k < len),

k = k + 1;

n = k + tmin;

if (n > len), n = len; end

end

% Extract echo from S to echo

echo (e, 1 : k − j + 1) = S (j : k) ;

e = e+ 1;

% Remove echo from S

S (j : k) = 0;

end

i = k;

end

3.3 Reverberation Modeling

An inherent characteristic of backscattered ultrasound measurements of multi-
layered media is the presence of reverberated echoes. Since reverberated echoes
do not uniquely correspond to the media structures, these echoes must be filtered
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to improve the accuracy of media characterization. In order to realize reverberated
echo filtering, a model of these echoes is needed.

Modeling of reverberated echoes frommulti-layered media has been developed in
[112, 113]. However, this model has no provision for predicting the number of echoes
and the arrival time of each echo, which are important for reverberation filtering.
In this research, a reverberated echo modeling approach is proposed to enable the
prediction of the number of echoes and echo arrival time. In this approach, a data
structure is designed to represent the reverberation path and acoustic parameters
involved in the path for each echo.

The acoustic property of each tissue layer is assumed to be homogeneous and
isotropic characterized by three parameters, αx,y,z, ρx,y,z and cx,y,z. To alleviate
demonstration, only the first three tissue layers in the Z axis are considered. The
interface between neighboring layers signifies the acoustic interface mismatch (AIM)
between them as shown in Figure 3.4.

The pattern of reverberation closely resembles an unbalanced binary tree shown
in Figure 3.5. Each node of this tree represents an AIM and has at most two
descendents, left and right. The left and right descendents correspond to two AIMs
that are closer to and further away from the transducer than the parent as shown
in Figure 3.4. For example, the left and right descendents of AIM 2 are always
AIM 1 and AIM 3, respectively. AIM 2 is located in between AIM 1 and AIM 3.
The number of leaf nodes (i.e., nodes with zero AIM in tree levels greater than
one) equals the total number of echoes received by the transducer. These nodes are
labeled as Ei for echo number i. Each branch contains information that governs how
the wave propagates from a parent to a descendent and the wave characteristics. A
labelR or T is assigned to each branch to indicate whether the propagation direction
(PD) is reflection or transmission from the parent to the descendent, respectively.
In addition, each branch is associated with the acoustic property parameters of the
tissue layer between the parent and descendent AIMs. For example, the branch
connecting between AIM 2 and AIM 3 is associated with αx,y,2, cx,y,2 and ρx,y,2.
These parameters are not shown in Figure 3.5 to maintain clarity. The entire
history of wave propagation, reverberated echoes and acoustic parameters of the
tissues can be captured in this tree, which is referred to as EchoTree.

The minimum levels in EchoTree required to capture at least one echo from
the last AIM (i.e., the AIM furthest away from the transducer) is two times the
number of AIM plus one. Figure 3.5 demonstrates an example of four AIMs. In
this example, nine levels indexing from zero to eight are needed to describe an echo
reflected from the last AIM (i.e., AIM 4). Before E9 is received by the transducer,
it penetrates AIM 0 to 3 twice (in both forward and backward directions) and is
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Echo Echo reverberation path & direction
1 AIM 0 1 0

PD T R
2 AIM 0 1 2 1 0

PD T T R T
3 AIM 0 1 2 1 2 1 0

PD T T R R R T
4 AIM 0 1 2 3 2 1 0

PD T T T R T T
5 AIM 0 1 2 1 2 1 2 1 0

PD T T R R R R R T
6 AIM 0 1 2 1 2 3 2 1 0

PD T T R R T R T T
7 AIM 0 1 2 3 2 1 2 1 0

PD T T T R T R T T
8 AIM 0 1 2 3 2 3 2 1 0

PD T T T R R T T T
9 AIM 0 1 2 3 4 3 2 1 0

PD T T T T R T T T

Table 3.1: List of echo reverberation paths and directions in a discretized tissue
with four acoustic impedance mismatches

reflected from AIM 4. Therefore, in total nine AIMs are involved in the propagation
path. The complete echo reverberation paths and propagation directions can be
extracted from EchoTree and is listed in Table 3.1.

A measurement model of backscattered signals that takes reverberation into ac-
count can now be derived according to the structure of EchoTree. A backscattered
signal comprises a certain number of completely or partially superimposed reverber-
ated echoes. When more than one echo arrive at the transducer at the same time,
they are completely superimposed. On the other hand, partial superimposition of
echoes occur if one (or more) echo reaches the transducer before the previous echo
waveforms thoroughly subside. The number of echoes in a backscattered signal
depends on the number of AIMs. As the quantity of AIMs (or tissue layers) con-
sidered increases, the number of potential scatterers also increases. Consequently,
more echoes are created in the measurement model. An algorithm is implemented
to build EchoTrees of various number of AIMs. Experiments on the relationship
between the number of echoes in a backscattered signal and that of AIMs are con-
ducted. Figure 3.6 shows the number of these echoes is an exponential function of
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Figure 3.6: Relationship between number of echoes in a backscattered signal and
number of acuostic impedance mismatches

the number of AIMs. Notice that the number of echoes grows rapidly to 4862 even
with only ten AIMs. Enormous amounts of computational power and resources
are required to process and store information of such a large scale of echoes. In
practice, the energy of waves attenuates very quickly since the reflection coefficients
among soft tissues are likely to be small except for lung tissues because of air sacs.
Therefore, it is reasonable to only consider the echoes with a few reflections in
their reverberation paths. The number of echoes with three or less reflections in
their propagation history as function of AIM size is plotted in Figure 3.7. In this
case, the number of echoes grows in a much slower rate compared to that in Figure
3.6, and the computation requirements can be greatly reduced. This model will be
adopted hereafter in this research.
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3.4 Reverberation Filtering

Reverberation filtering commences after the second echo, since the first two echoes
are not reverberated echoes as shown in Section 3.3. MSF estimates the tissue
acoustic parameters of the first two tissue layers estimated based on the first two
echoes. The resulting parameters are embedded to the corresponding branches
of the Echotree, such that the arrival times and waveforms of all reverberated
echoes due to the first two tissue layers can be modeled. These arrival times and
waveforms compared to that of the echoes detected in Section 3.2. If the difference
between the arrival time (and waveform) of a detected echo and that of any modeled
counterparts within the user defined tolerances, the echo is discarded from the MSF
input. The operations of reverberation filtering are repeated upon the completion
of the acoustic parameter estimation for every subsequent tissue layer by MSF.

3.5 Summary

The overview of method developed for tissue characterization provides a map of
the components involved and their relationships. The method is organized as three
major parts: preprocessing, MSF and reverberation filtering. Preprocessing deals
with bandpass filtering the backscattered signal to noise outside of the ultrasound
transducer’s frequency range. In addition to noise filtering, individual echoes in
the backscattered signals are detected as inputs of MSF. It is a statistics based
nonlinear filter that estimates tissue acoustic parameters based on the echo inputs
and models of the measurement, measurement noise, acoustic parameter transition
and transition noise. The MSF acoustic parameter estimates of each tissue layer is
used to model subsequent reverberation echoes in conjunction with the Echotree.
Filtering of reverberated echoes is achieved by removing the MSF input echoes that
match the modeled echoes. MSF and reverberation filtering are interconnected
processes that are executed recursively. Details of preprocessing, derivations of
models and reverberation filtering are reported in this chapter. The formulation
and operations of MSF will be presented in the next chapter.
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Chapter 4

Forward and Inverse Scattering

Forward and inverse scattering are dual processes in the context of ultrasound tissue
characterization. Forward scattering is a task of computing wave pressures in tissues
of known acoustic parameters. The estimation of the tissue acoustic parameters
based on the wave pressures is known as inverse scattering. The proposed forward
and inverse scattering methods are presented in this chapter.

4.1 Forward Scattering

This research employs focused ultrasound to characterize multi-layered soft tissues.
The forward scattering of focused waves in the tissues is modeled in this section.

4.1.1 Focused Transducer and Multi-layered Tissue

A wide-band spherically focused ultrasound transducer is employed to illuminate
multi-layered soft tissues and to measure backscattered signals from the tissues
as shown in Figure 4.1. Since the dimensions of cells are small relative to the
ultrasound wave lengths used in this research, each tissue layer is modeled as a
homogenous, isotropic medium. Soft tissues support the propagations of both lon-
gitudinal1 and shear2 waves. However, shear waves attenuate quickly in soft tissue
like media, such that they are insignificant for the purpose of ultrasound [26, 21].
Therefore, only longitudinal waves are considered. The transducer sensing surface

1Longitudinal (also known as compressional) waves propagate parallel to the Z-axis
2Shear (also known as transverse) waves propagate perpendicular to the Z-axis
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Figure 4.1: Configuration of ultrasound characterization of a multi-layered medium

and all tissue layer interfaces are normal to the Z axis. Ultrasound waves propagate
through the layers and reflect at the interfaces back to the transducer along the Z
axis. The X-Y dimensions of each layer is larger than the ultrasound beam width,
so that the tissue layers are considered as unbounded media.

4.1.2 Modeling of FocusedWaves in Multi-layered Soft Tis-
sues

The forward problem is viewed in this research work as modelling of the wave beam
produced by the spherically focused transducer and the wave pressures reflected at
the interfaces of tissue layers. The model describing focused waves propagation in
a homogeneous soft tissue is derived in Section 2.1.1. This model is extended to
accommodate the reflections and transmissions of focused waves at the interfaces
of the tissue layers in this section.

Methods of computing reflection and transmission coefficients for focused waves
in multi-layered soft tissues have been proposed, for instance, in [114] and [115].
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However, as discussed in Section 2.1.1, it is well known that computing these coef-
ficients for plane waves in planar layered media is the most efficient. The establish-
ment of focused wave pressure amplitude on the X-Y plane in Equation 2.57 lends
itself to model the focused waves as amplitude modulated plane waves. The com-
putations of reflection and transmission coefficients for plane waves in multi-layered
soft tissues are presented in the following.

The wave propagation paths are described by the Echotree in Section 3.3. When
the wave propagates from a parent node (i.e., AIM) to one of its two descendants,
the wave pressure amplitude is attenuated and is scaled by either a reflection or
a transmission coefficient associated with the Echotree branch. For instance, the
overall reflection-transmission coefficient of the first echo shown in Figure 3.4 can
be modeled as follows:

S1 = Tt→0R0←1 T0→t (4.1)

where

• Tt→0 and T0→t are the transmission coefficients from the ultrasound transducer
to the coupling material and vice versa: Tt→0 and T0→t are close to 1,

• R0←1 is the reflection coefficient from layer 1 to the coupling material: R0←1 =
(Z1 − Z0) / (Z1 + Z0),

• Z0 and Z1 are the acoustic impedances of layers 0 and 1, respectively: Z0 =
c0ρ0 and Z1 = c1ρ1,

• c0 and c1 are the sound speeds of the coupling material and layer 1, respec-
tively,

• ρ0 and ρ1 are the densities of the coupling material and layer 1, respectively,

It follows that the overall reflection-transmission coefficient of the second echo
in Figure 3.4 can be modeled as,

S2 = Tt→0 T0→1R1←2 T1→0 T0→t (4.2)

where

• T0→1 and T1→0 are the transmission coefficients from the coupling material to
layer 1 and vice versa: T0→1 = 2Z1/ (Z1 + Z0), T1→0 = 2Z0/ (Z1 + Z0),

• R1←2 is the reflection coefficient from layer 2 back to layer 1: R1←2 =
(Z2 − Z1) / (Z2 + Z1),
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• Z2 is the acoustic impedance of layer 2: Z2 = c2ρ2,

• c2 and ρ2 are the sound speed and density of layer 2, respectively.

Once the overall coefficients of the first two layers are estimated, all reverber-
ated echoes due to these layers (eg. the third and fourth echoes) can be filtered
by searching the Echotree as described in Section 3.4. Reverberated echoes due to
subsequent layers can also be filtered in a similar way. Therefore, models of rever-
berated echoes are unnecessary. The third non-reverberated echo can be modelled
as,

S3 = Tt→0 T0→1 T1→2R2←−3 T2→1 T1→0 T0→t (4.3)

where

• T1→2 and T2→1 are the transmission coefficients from layers 1 to 2 and vice
versa: T1→2 = 2Z2/ (Z2 + Z1), T2→1 = 2Z1/ (Z1 + Z2),

• R2←3 is the reflection coefficient from layer 3 back to layer 2: R2←3 =
(Z3 − Z2) / (Z3 + Z2),

• Z3 is the acoustic impedance of layer 3: Z3 = c3ρ3,

• c3 and ρ3 are the phase velocity and mass density of layer 3, respectively.

Equations 4.1 to 4.3 show that the overall reflection-transmission coefficients of
non-reverberated echoes follow certain patterns and can be generalized as,

Sn+1 =
n∏

j=1

(Tj−1→j Tj→j−1) Rn←n+1

=
n∏

j=1

(
2Zj

Zj + Zj−1

2Zj−1
Zj−1 + Zj

)
Zn+1 − Zn

Zn+1 + Zn
(4.4)

where n is the index of layer at which an wave is reflected.

The overall reflection-transmission coefficient is expressed in terms of acoustic
impedances rather than the products of sound speeds and densities. This is be-
cause non-unique combinations of sound speeds and densities can produce the
same acoustic impedance. If a feasible combination is found to yield a pressure
amplitude that is very closed to the measurement, it may be far away from the
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true combination. Therefore, it is more desirable to perform estimation in terms
of acoustic impedance. In addition to reflections and transmissions, focused wave
pressure amplitudes are affected by the attenuation and diffraction in each layer of
the multi-layered tissues. Computing the attenuations and diffractions of focused
waves in multi-layer tissues is a challenge, since the angles of diffraction change as
the waves propagate through layers at various sound speeds. This also has an im-
pact on attenuation as the diffraction angle is related to the wave traveling distance
within a layer. However, Equation 2.57 only describes attenuation and diffraction
of focused wave in a homogeneous soft tissue.

A method is proposed based on Equation 2.57 to compute the attenuation and
diffraction of focused waves in a multi-layered tissue. This method divides the
propagation path of each echo into segments, and computes the attenuation and
diffraction of focused waves in each segment individually. The resulting waves in
these segments are combined to obtain the waves in the entire propagation path.
For instance, the second echo propagates from the transducer through layers 0 and
1, and is reflected at the layer 1-2 interface back to the transducer through layers
1 and 0 as shown in Figure 4.2. The propagation path of this echo is divided into
four segments. The first and fourth segments of the path have opposite directions
and are located in layer 0. The second and third path segments reside in layer 1
with opposite directions. The attenuation and diffraction of focused waves in each
of these path segments are computed as:

1. ∣∣∣Ψf
p1

∣∣∣ =
∣∣∣Ψf

0 (d0)
∣∣∣ (4.5)

where
∣∣∣Ψf

p1

∣∣∣ is the focused wave amplitude at the end of the first path segment;

the subscript 0 of
∣∣∣Ψf

0 (·)
∣∣∣ denotes that the acoustic parameters of layer 0 are

used in this equation, the subscript is explicitly shown here, but is implicit
in Equation 2.57; d0 is the thickness of layer 0, d0 = t0c0/2; t0 is the arrival
time of the first echo.

2.
∣∣∣Ψf

p2

∣∣∣ =

∣∣∣Ψf
1 (d0 + d1)

∣∣∣
∣∣∣Ψf

1 (d0)
∣∣∣

(4.6)

where
∣∣∣Ψf

p2

∣∣∣ is the focused wave amplitude at the end of the second path

segment; the subscript 1 of
∣∣∣Ψf

1 (·)
∣∣∣ denotes that the acoustic parameters of
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layer 1 are used in this equation, the subscript is explicitly shown here, but
is implicit in Equation 2.57; d1 is the thickness of layer 1, d1 = (t1 − t0) c1/2;
t1 is the arrival time of the second echo.

3.
∣∣∣Ψf

p3

∣∣∣ =

∣∣∣Ψf
1 (d0 + 2d1)

∣∣∣
∣∣∣Ψf

1 (d0 + d1)
∣∣∣

(4.7)

where
∣∣∣Ψf

p3

∣∣∣ is the focused wave amplitude at the end of the third path seg-
ment.

4.
∣∣∣Ψf

p4

∣∣∣ =

∣∣∣Ψf
0 (2d0 + 2d1)

∣∣∣
∣∣∣Ψf

0 (d0 + 2d1)
∣∣∣

(4.8)

where
∣∣∣Ψf

p4

∣∣∣ is the focused wave amplitude at the end of the fourth path
segment.

It should be noted that
∣∣∣Ψf

p2

∣∣∣,
∣∣∣Ψf

p3

∣∣∣ and
∣∣∣Ψf

p4

∣∣∣ are calculated as ratios of the

focused wave amplitudes. These ratios represent the reduction of focused wave
amplitudes in the respective path segments. In addition, path segments three and
four are reflection paths. These segments are treated as transmission paths with
appropriate distances from the transducer, since the reduction of focused wave
amplitudes for reflection and transmission paths are equivalent. The wave pressure
amplitude of the second echo can be computed based on the path segment results
as,

∣∣∣Ψf
e2

∣∣∣ =
2∏

j=1

(Tj−1→j Tj→j−1) R2←2+1

4∏

j=1

∣∣∣Ψf
pj

∣∣∣ (4.9)

It follows that the wave pressure amplitude of the nth non-reverberated echo
can be generalized as,

∣∣Ψf
en

∣∣ =
n∏

j=1

(Tj−1→j Tj→j−1) Rn←n+1

2n∏

j=1

∣∣∣Ψf
pj

∣∣∣ (4.10)

The acoustical vibrations of echoes are transformed into electronic signals. The
measurement of electronic signals are linearly proportional to the pressure ampli-
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tudes. Also, the inevitable measurement noise is assumed additive. The measure-
ment model of echo pressure amplitude is defined as,

an ∝
∣∣Ψf

en

∣∣+ η (4.11)

where η is the measurement noise, the model of η is described in Section 4.1.3. It
should be noted that

∣∣Ψf
en

∣∣ and η are frequency dependent.

4.1.3 Measurement Noise Modelling

The measurement noise model describes the statistical characteristics of the signals
measured without tissue samples. As the measurement model is frequency specific,
the noise model becomes the statistical model of the noise frequency content. This
model is assumed to be a Gaussian mixture,

η ∼
nη∑

j=1

wη
j N

(
η;µη

j , v
η
j

)
(4.12)

where nη is the number of Gaussian component; wη
j is the weight of each Gaussian

component, wη
j > 0 and

∑nη
j wη

j = 1; N
(
η;µη

j , v
η
j

)
is a Gaussian distribution with

mean, µη
j , and variance, vηj .

The parameters of the Gaussian mixture are estimated using the expectation
maximization algorithm [116]. Determining the optimal number of Gaussian com-
ponents for modelling is out of the scope of this research. The experiment conducted
to acquire signals for measurement noise modeling and the resulting Gaussian mix-
ture parameters are reported in Section 6.4.3.

4.2 Inverse Scattering

Inverse scattering aims to estimate the tissue acoustic parameters based on the
forward scattering model and ultrasound measurements of the tissues. The for-
ward scattering model is nonlinear with respect to the tissue acoustic parameters
and stochastic. The task of estimating parameters in a nonlinear stochastic model
based on measurements related to the parameters is known as nonlinear stochastic
filtering (NSF). The goal of NSF is to obtain parameter estimates that minimizes
the estimation errors and uncertainties. NSF can be formulated into estimating a
posterior PDF of the parameters that minimizes the estimation errors and error
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Figure 4.2: Forward scattering of focused waves in multi-layered medium
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covariance. Bayesian based approaches can be applied to solve NSF problems since
the Bayes’ theorem provides a framework for incorporating new measurements to
update the posterior probability density function (PDF). However, the posterior
PDF, generally speaking, cannot be analytically determined in the Bayesian for-
mulation. Since the mid-1960’s a great deal of work in the field of NSF has been
devoted to realizing the estimation schemes of the posterior PDF. These schemes
include: Gaussian sum filters, grid-based methods, extended Kalman filter (EKF),
unscented Kalman filter (UKF) and particle filter (PF) [117]. EKF and UKF have
been embedded in the formulation of PF to create unscented particle filter (UPF)
[118], Gaussian particle filter (GPF) [119, 120] and Gaussian sum particle filter
(GSPF) [121]. Although optimal density functions have been derived for some spe-
cial cases [122, 123, 124], devising methods for obtaining optimal posterior PDFs
that minimize estimation error covariance in general remains an open problem.
Hence, developing a filter that constructs such optimal posterior PDF for the gen-
eral case, and for tissue acoustic parameter estimation as a special case, constitutes
a significant focus of this thesis.

In the proposed filter formulation, the scale-space theory for signals [125] is
adopted as a framework for representing a posterior PDF in multiple scale levels.
In the context of PDF, a scale describes the spread of the function or covariance
of the random variables. In Section 4.2.1, a framework of multi-scale PDF analysis
is developed with the goal to decompose a PDF from fine to coarse scales and to
reconstruct the PDF from coarse to fine scales. The framework employs multi-scale
PDF reconstruction to optimize posterior PDF, and is referred to as the Multi-
scale Stochastic Filter (MSF). The formulations of MSF and the optimization of
posterior PDF are presented in Section 4.2.2.

4.2.1 Multi-scale Probability Density Function analysis

Let ps be a PDF of x, such that

∫ +∞

−∞
ps (x) dx = 1 (4.13)

ps (x) � 0 (4.14)

where the subscript s denotes the scale level of the PDF, which will be discussed
in detail later.

In this thesis, a nontraditional view of PDF is adopted. Mathematically speak-
ing, a PDF conveys probabilistic information on a random variable in the domain
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of the random variable analogous to the way a physical model conveys character-
istics of the physical quantity commonly in the form of electrical signals in time,
space and/or frequency domains. This analogy leads to the interpretation of ps
as a signal subject to the constraints in Equations 4.13 and 4.14 in the domain
of x. Therefore, it is logical and conceivable to treat and analyze ps using signal
processing techniques.

Low-pass filtering of ps can be defined as,
∫ +∞

−∞
ls (τ ) ps (x− τ ) dτ = ps+1 (x) (4.15)

where ls is a low-pass kernel; ps+1 is the low frequency component of ps obtained as
a response of ls. For the purpose of PDF frequency analysis, the desired properties
of ps+1 are defined next. These properties serve as the bases for designing ls.

Properties of PDF Low Frequency Components

The desired properties of ps+1 are defined as follows:

1. PDF characteristics inheritance: ps+1 inherits the PDF characteristics of ps,

∫ +∞

−∞
ps+1 (x) dx = 1 (4.16)

ps+1 (x) � 0 (4.17)

where ps+1 is also a PDF.

2. Zero phase shift: ps+1 is defined to be a linear phase response of ps. It
preserves the integrity of the probabilistic information of x,

θs+1 (f) = θs (f) (4.18)

where f is the spatial frequency of x; θs+1 (f) and θs (f) are the phase angles
of the Fourier transforms of ps+1 and ps, at f , respectively.

3. Strict smoothing3 of probabilistic information: ps+1 is delineated as the strictly
smoothed representation of ps. The significant of strict smoothing is that all
features of ps+1 originate from and correspond to that of ps. In other words,

3Strict smoothing refers to suppression of sharp features such as, peaks and valleys, (i.e. high
frequency components) without generating such features in the smoothing process.
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this property also preserves the integrity of probability information. Let p′s
and p′s+1 respectively be the 1st derivatives of ps and ps+1 with respect to x.
Assuming p′s and p′s+1 exist, strict smoothing implies that both p′s and p′s+1
must be zero at all peaks and valleys of ps,

p
′

s (x) = p
′

s+1 (x) = 0, ∀x ∈ {xpeak} ∪ {xvalley} (4.19)

Design of PDF Low-pass Kernel

The design of a low-pass kernel, ls, is organized into two steps: 1) deriving the
constraints imposed on ls based on the properties of ps+1, and 2) identifying and
selecting the kernel generating functions that satisfy the derived constraints.

PDF Low-pass Kernel Constraints The constraints imposed on ls are derived
as follows:

1. To obtain the property in Equation 4.16, ls must satisfy:

∫ +∞

−∞
ls (τ) dτ = 1 (4.20)

2. To obtain the property in Equation 4.17, ls must satisfy:

ls (x) � 0 (4.21)

3. To obtain the property in Equation 4.18, ls must satisfy:

ls (x) = ls (−x) (4.22)

4. To obtain the property in Equation 4.19, ls must satisfy:

l′s (x) =




≥ 0, x < 0
= 0, x = 0
≤ 0, x > 0

(4.23)

Constraints on ls in Equations 4.20, 4.21 and 4.22 imply that ls must be increas-
ing from −∞ to 0 and decreasing from 0 to +∞. Derivations of the PDF low-pass
kernel constraints are presented in Appendix 7.1.

64



Identification and selection of low-pass kernel generating function The
constraints in Equations 4.20, 4.21, 4.22 and 4.23 infer ls to be,

1. a PDF,

2. symmetric about x = 0,

3. first order differentiable,

4. a unimodal function that has the maximum at x = 0, and

5. asymptotically and monotonically decreasing to 0 as x approaches +∞ and
−∞ from 0.

Some candidate functions that satisfy the constraints and characteristics above
are identified below. Let β be an appropriate coefficient,

• Exponential4: β exp (−x2)

• Hyperbolic4: β sech2 (πx) , β sech2 (πx) , βx cosech (πx)

• Inverse trigonometric4: β arctan (1/2π2x2)

• Reciprocal4: β /1 + x2

• Student’s t distribution:
Γ( ι+12 )

Γ( ι2)
√
πι
(
1+χ2

ι

) ι+1
2

, where ι ∈ R
1
≥0 is a constant;

Γ (n) = (n− 1)! is a gamma function.

• Zero-mean Gaussian PDF: 1√
2πσ2

exp
(
− x2

2σ2

)
, where σ ∈ R1≥0 is the standard

deviation of x.

• Zero-mean generalized Gaussian PDF: Γ(3/γ)1/2

σ(2/γ)Γ(1/γ)3/2
exp

(
−
(
Γ(3/γ)
Γ(1/γ)

)γ/2 ∥∥x
σ

∥∥γ
)
,

where γ is a positive constant.

Although these functions are valid candidates for the low-pass kernel in theory,
however, some of them are more advantageous in practice. The desirable practical
criteria are such that ls should be:

4Sketches of these functions are displayed in [126]
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• computationally tractable,

• readily expandable to multi-dimensions,

• a continuous function to facilitate analytical analysis for continuous PDFs,

• expedient for Fourier transform (i.e., ls has known closed-form solution for
Fourier transform), and

• facilitating closed-form solutions for filtering arbitrary PDFs, which can be
represented by Gaussian mixture models (GMMs).

Among the candidate functions, the zero-mean Gaussian (ZMG) PDF meets all
the desirable practical criteria. Therefore, ZMG PDF is selected as the low-pass
kernel generating function,

ls (x) = N
(
x; 0, vlps

)
(4.24)

=
1

(2π)dx/2
∣∣∣vlps

∣∣∣
1/2

exp

(
−1

2
xTvlp −1s x

)

where vlps is the covariance matrix that determines the width of ls (i.e., the frequency
characteristics of ls); superscripts T and −1 are transpose and matrix inversion,
respectively; |·| denotes matrix determinant.

Multi-scale Decomposition and Reconstruction of PDF

The properties of the low frequency PDF component defined in Section 4.2.1 lead
to the formulation of ZMG PDF as the low-pass kernel generating function. Co-
incidently, ZMG PDF is also derived as the low-pass kernel based on different
properties in a multi-scale representation of signals known as scale-space. In 1983,
Witkin first proposed the scale-space representation for 1D signals [125]. This rep-
resentation has been extended for discrete 2D signals (or images) by Koenderink
[127]. Since then it has been extensively used in the areas of computer vision and
image processing.

According to Lindeberg, the utmost important feature of scale-space is the non-
creation of new structure, which stipulates that the disappearance of fine-scale
features must be monotonic as the scale increases [128]. This feature corresponds
to the strict smoothing property defined in Section 4.2.1. Non-creation of a new
structure is formulated based on the characteristics of zero-crossings in the second
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order derivative of the signal with increasing scale [129, 130, 131], and based on a
structure of low-pass kernel called semi-group [132, 133]. In the proposed multi-
scale PDF analysis formulation, the strict smoothing property is formalized as
the relationship between the first order derivative of the original PDF and its low
frequency component shown in Equation 4.19. Other properties inherited from the
scale-space theory are described in [128].

The multi-scale decomposition of PDF in the sense of scale-space is presented
here. To facilitate a generic analysis, ps is represented by a GMM,

ps (x) =
nx∑

j=1

ws,j ps,j (x) (4.25)

=
nx∑

j=1

ws,j N
(
x;µx

s,j, v
x
s,j

)

=
nx∑

j=1

ws,j

exp
(
−1
2

(
x− µx

s,j

)T
vx −1
s,j

(
x− µx

s,j

))

(2π)dx/2
∣∣vxs,j

∣∣1/2

where nx is the number of Gaussian PDFs used to represent ps; ws,j is the weight
of the jth component of ps,

∑nx
j=1ws,j = 1; ps,j denotes a Gaussian component of

ps; µs,j and vs,j are the mean and covariance matrix of the jth Gaussian component
of ps, respectively.

A set of nx low-pass filters is defined as,

{ls,1 (x) , · · · , ls,nx (x)} (4.26)

=
{
N
(
x; 0, vlps,1

)
, · · · , N

(
x; 0, vlps,nx

)}
(4.27)

A coarser scale of ps is defined as the decomposition of each Gaussian component
of ps using a respective low-pass filter,

ps+1 (x) =
nx∑

j=1

ws,j ls,j (x)⊛ ps,j (x) (4.28)

=
nx∑

j=1

ws+1,j ps+1,j (x)

=
nx∑

j=1

ws+1,j N
(
x;µx

s+1,j , v
x
s+1,j

)
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where ⊛ denotes a convolution operator; ws+1,j is the weight of the jth component
of ps+1,

∑nx
j=1ws+1,j = 1; ps+1,j denotes a Gaussian component of ps+1; µs+1,j and

vs+1,j are the mean and covariance matrix of the jth Gaussian component of ps+1,
respectively.

The closed-form solution of ps+1 can be derived as,

Ps+1 (f) =
nx∑

j=1

ws,j Ls,j (f) Ps,j (f) (4.29)

=
nx∑

j=1

(
ws,j exp

(
−2π2 fT vlps,j f

)
∗

exp
(
−i2πµs,j − 2π2fT vxs,j f

))

ps+1 (x) =
nx∑

j=1

ws,j

exp

(
−1
2
∆xTs,j

(
vxs,j + vlps,j

)−1
∆xs,j

)

(2π)nx/2
∣∣∣vxs,j + vlps,j

∣∣∣
1/2

(4.30)

=
nx∑

j=1

ws+1,j N
(
x;µx

s+1,j, v
x
s+1,j

)

where Ls,j, Ps,j and Ps+1 are the Fourier transforms of ls,j, ps,j and ps+1, respec-
tively; ∆xs,j = x−µx

s,j. Based on Equations 4.25 and 4.30, the coarse scale weight,
mean and covariance are related to their counter parts in a finer scale can be derived
as,

ws+1,j = ws,j (4.31)

µx
s+1,j = µx

s,j (4.32)

vxs+1,j = vxs,j + vlps,j (4.33)

As mentioned above, ps+1,j is the low frequency component of ps,j and ls,j is the
low-pass kernel at scale level s, s ∈ {0, 1, 2, · · · , c}; the finest and coarsest scales
are indicated by s = 0 and s = c, respectively. The coarsest scale of ps,j can be
obtained by recursive strict smoothing,

· · · ⊛ ls+2,j ⊛ ls+1,j ⊛ ls,j ⊛ ps,j = pc,j = u (4.34)

where u is a uniform PDF; x is suppressed for clarity.

The intended application of tissue acoustic parameter estimation requires recon-
structing a fine scale PDF from its coarse scale components. With the information
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of ps+1 and ls,1:nx, ps can be reconstructed based on Equations 4.31, 4.32 and 4.33.
Figure 4.3 illustrates multi-scale PDF decompositions and reconstructions, in which
single low-pass filters are depicted for simplicity. An alterative ps reconstruction
method is based on ps+1 and the corresponding high frequency PDF components.
However, computing these components is not of interest of this research work.

Relationship Between Scale and Filter Frequency

Although scale-space operations are heavily dependent on frequency filtering, the
relationship between scale and the filter’s 3dB cutoff frequency is not explicitly
stated in scale-space literatures. This relationship can be derived from the Fourier
transform of ls,

Ls = exp
(
−2π2 fT vlps f

)

1/
√
2 = exp

(
−2π2 fT

3db v
lp
s f3db

)

0.0176 = fT
3db v

lp
s f3db (4.35)

where f3db is the cutoff frequency of ls. For dx = 1, it is straightforward to obtain
a unique solution,

0.0176 = f 23dbσ
2
s

f3db =
0.133

σs
(4.36)

where σs is the standard deviation of ls. For dx > 1, f3db is a coordinate that
satisfies Equation 4.35 on a contour in 2D, a surface in 3D, a volume in 4D, and
so on. For 1D case, Equation 4.36 shows that the 3dB cutoff frequency is inversely
proportional to scale parameter, σs. In other words, at each scale level the low-pass
kernel standard deviation controls the frequency attenuation rate of the low-pass
filter. The frequency characteristics of ls in relation to σs in 1D are illustrated in
Figure 4.4.

4.2.2 Multi-scale Stochastic Filtering

MSF is formulated to achieve optimal estimation of tissue acoustic parameters
based on the information available. In the preprocessing stage, the waveform of
each ultrasound echo is extracted from the backscattered signals. Each waveform
contains multiple measurements of backscattered signals and information on the
acoustic parameters of each tissue layer along the wave propagation path. The
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attenuation coefficients vary with frequencies, and as such the frequency contents
of the measurements are considered. The measurement model in Equation 4.11
used in the MSF formulation is recalled below for convenience,

an,f =
∣∣Ψf

en

∣∣+ ηf
= h (xn) + ηf

where the frequency dependencies of an and η are shown explicitly;
∣∣Ψf

en

∣∣ is a func-
tion of the parameters m0:n−1, b0:n−1,c0:n and Z0:n; the only unknown parameters in∣∣Ψf

en

∣∣ are mn−1, bn−1, cn and Zn; the rest of the parameters are either determined
in the preprocessing stage or are previous estimation results;

∣∣Ψf
en

∣∣ is expressed as
a function, h (xn), of xn for notation convenience; η is the measurement noise and
its statistical model is shown in Equation 4.12.

Here the acoustic parameters to be estimated are denoted as xn to simplify no-
tation, xn =

[
mn−1 bn−1 cn Zn

]T
. The objective of MSF is to achieve optimal

estimation of xn in the sense of minimummean-square error (MMSE) and minimum
estimation covariance. Let {an,1 , · · · , an,f} be a set of echo frequency amplitudes
related to tissue layer n, and the frequencies of the amplitudes are indexed from 1
to f . The set is denoted as an,1:f to compact the notation, an,1:f � {an,1 , · · · , an,f}.
The MMSE estimate of xn can be formulated as a minimization problem,

min
x̂n

∫
[xn − x̂n]

T [xn − x̂n] p (xn|an,1:f) dxn (4.37)

where x̂n is the MMSE estimate of xn; p (xn|an,1:f) is the posterior PDF of xn. It
is straightforward to derive the solution of Equation 4.37 as,

x̂n =

∫
xn p (xn|an,1:f) dxn (4.38)

Since p (xn|an,1:f) is unknown for this application, deriving MSF is transformed
into a problem of finding p (xn|an,1:f). In general, p (xn|an,1:f) can be expressed in
a recursive form [134],

p (xn|an,1:f) =
p (an,f |xn) p (xn|an,1:f−1)∫

p (an,f |xn) p (xn|an,1:f−1) dxn
(4.39)

where

• p (xn|an,1:f) is also represented as a GMM to substantiate a general formula-
tion as discussed in Section 4.2.1,

p (xn|an,1:f ) =
nx∑

j=1

wx
n,f,j N

(
xn;µ

x
n,f,j, v

x
n,f,j

)
(4.40)
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where nx is the number of Gaussian PDFs used to represent p (xn|an,1:f);
wx
n,f,j, µ

x
n,f,j and vxn,f,j are the weight, mean and covariance matrix of the jth

Gaussian component of p (xn|an,1:f ), respectively; wx
n,f,j > 0,

∑nx
j=1w

x
n,f,j = 1.

• p (an,f |xn) is the likelihood PDF, which can be derived based on Equations
4.11 and 4.12,

p (an,f |xn) =
nη∑

j=1

wη
n,f,j N

(
an,f ;h (xn) + µη

n,f,j , v
η
n,f,j

)
(4.41)

where the parameters except for xn in h are suppressed to simplify the nota-
tions.

• p (xn|an,1:f−1) is the prior PDF of xn given the set of measurements in the
frequency domain, an,1:f−1. Since xn is frequency independent, it follows that
p (xn|an,1:f−1) is the previous posterior PDF of xn,

p (xn|an,1:f−1) =
nx∑

j=1

wx
n,f−1,j N

(
xn;µ

x
n,f−1,j, v

x
n,f−1,j

)
(4.42)

The prior PDF is required in order to compute the posterior PDF given the
first measurement (i.e., p (xn|an,1)). p (xn|an,1) can be estimated using the following
steps:

1. Generate uniformly distributed random samples of xn within the user defined
range.

2. Evaluate the samples by calculating the likelihoods of them causing an,1 using
Equation 4.41. These likelihoods are normalized and used as sample weights.

3. p (xn|an,1), is estimated as a Gaussian mixture using the expectation maxi-
mization algorithm [116] based on the samples and their weights.

The posterior PDF is proportional to the product of p (an,f |xn) and p (xn|an,1:f−1).
The analytical expression of the posterior PDF, in general, cannot be obtained due
to the nonlinearity of the measurement model (i.e., h (xn)) in p (an,f |xn). However,
the posterior PDF can be computed numerically. Recall that p (an,f |xn) produces
probability densities that reveal how likely the actual measurement to appear given
the values of xn. From another perspective, these probability densities can be inter-
preted as indications of how close are the estimated xn (i.e., h (xn)) and the actual
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measurement. In other words, p (an,f |xn) weights xn according to the similarity be-
tween an,f and h (xn). Therefore, p (xn|an,1:f) can be computed numerically based
on random samples of xn generated by p (xn|an,1:f−1) and the normalized weights of
the samples produced by p (an,f |xn). These random samples and weights are then
employed to estimate the nx component GMM as p (xn|an,1:f) using expectation
maximization [116].

Although MMSE estimates can be obtained using p (xn|an,1:f ), p (xn|an,1:f ) is
not the optimal distribution for minimizing the state estimation covariance. In
recognition of this issue, a method is proposed to find the optimal distribution for
minimizing estimation error covariance based on p (xn|an,1:f), posterior Cramer-Rao
bound and multi-scale PDF analysis.

Optimal PDF for Minimum Estimation Covariance

Assuming the random samples drawn from p (xn|an,1:f ) are independent, x̂n is an
unbiased estimate and converges to the true xn according to the law of large numbers
[135],

E (xn − x̂n) = 0 (4.43)

pr (|xn − x̂n| < ε) ≥ 1− 1

4nsε
−→
ns→∞

1 (4.44)

where pr (·) denotes probability; ε is a positive constant; ns denotes number of
random samples.

For an unbiased estimate, the posterior Cramer-Rao bound (PCRB) is well
known as the lower bound of the estimation covariance. Therefore, it is logical to
evaluate the estimation uncertainty of MSF based on PCRB. The optimal MSF un-
certainty is achieved when the difference between estimation covariance and PCRB
are minimized. This can be formulated as a problem of PDF optimization as follows,

min
q(xn|an,1:f)

tr
(
E
{
∆x̂n ∆x̂Tn

}
− F−1

n,f

)
(4.45)

where q (xn|an,1:f ) is the conditional PDF of xn that minimizes the difference be-
tween the estimation covariance and the PCRB; ∆x̂n = x̂n − xn; tr (·) denotes a
trace operator; F−1

n is the inverse of the posterior Fisher information matrix.

The Fisher information matrix is defined as,

Fn,f = −E
{
∇ ∇T log p (an,f |xn) |xn

}
(4.46)

= −
∫ {

∇ ∇T log p (an,f |xn) |xn
}
p (xn|an,1:f) dxn (4.47)
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It should be noted that for applications whose transition model of xn is stochas-
tic, Fn,f can be obtained recursively based on the work of Tichavsky in [136].

The solution of Equation 4.45 is q (xn|an,1:f) that satisfies,

E
{
[x̂n − xn] [x̂n − xn]

T
}
= F−1

n,f (4.48)

The unbiased estimate property in Equation 4.43 implies that E (xn) = x̂n. The
expectation term in Equation 4.48 can be written as,

E
(
x̂nx̂

T
n − x̂nx

T
n − xnx̂

T
n + xnx

T
n

)

= x̂nx̂
T
n − x̂nE

(
xTn
)
− E (xn) x̂

T
n + E

(
xnx

T
n

)

= x̂nx̂
T
n − x̂nx̂

T
n − x̂nx̂

T
n + E

(
xnx

T
n

)

= E
(
xnx

T
n

)
− x̂nx̂

T
n (4.49)

Substituting Equation 4.49 into Equation 4.48 and denoting x̂n as µ̂
q
n,f , we have,

E
{
xn xTn

}
− µ̂q

n,f µ̂qT
n,f = F−1

n,f (4.50)

The expectation in Equation 4.50 can be calculated as,

E
{
xn xTn

}
=

∫
xn xTn q (xn|an,1:f) dxn (4.51)

Similar to p (xn|an,1:f ), q (xn|an,1:f ) is represented by a GMM for general formu-
lation,

q (xn|an,1:f ) =
nx∑

j=1

wq
n,f,j qj (xn|an,1:f) (4.52)

=
nx∑

j=1

wq
n,f,j N

(
xn;µ

q
n,f,j, v

q
n,f,j

)

where qj is the jth Gaussian component of q; wq
n,f,j, µ

q
n,f,j and vqn,f,j are the weight,

mean and covariance matrix of qj, respectively;
∑nx

j=1 w
q
n,f,j = 1.
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Based on Equation 4.52, Equation 4.51 can be written as,

E
{
xn xTn

}
=

∫
xn xTn

nx∑

j=1

wq
n,f,j N

(
xn;µ

q
n,f,j , v

q
n,f,j

)
dxn

=
nx∑

j=1

wq
n,f,j

∫
xn xTn N

(
xn;µ

q
n,f,j , v

q
n,f,j

)
dxn

=
nx∑

j=1

wq
n,f,j√

2π
dx−1

(
vqn,f,j + µq

n,f,j µ
qT
n,f,j

)

=
nx∑

j=1

wq
n,f,j

(
vqn,f,j + µq

n,f,j µ
qT
n,f,j

)
(4.53)

where 1/
√
2π

dx−1
is a constant for all nx Gaussian components and therefore it

vanishes in the process of weight normalization.

Substituting Equation 4.53 into Equation 4.50, we have,

nx∑

j=1

wq
n,f,j

(
vqn,f,j + µq

n,f,j µ
qT
n,f,j

)
− µ̂q

n,f µ̂qT
n,f = F−1

n,f (4.54)

Since q (xn|an,1:f ) is optimized to minimize the estimation error covariance with
respect to F−1

n,f , which is computed based on p (xn|an,1:f ). This implies the overall
covariance of q (xn|an,1:f) must be less than that of p (xn|an,1:f) while retaining
similar properties of p (xn|an,1:f ) to preserve estimation integrity. Mathematically,
it can be modelled as low-pass filtering q (xn|an,1:f) to produce p (xn|an,1:f) subject
to the constraint that the difference between the covariances of p (xn|an,1:f ) and
that of q (xn|an,1:f) is positive definite. Realizing that the mathematical model and
constraints are satisfied by the multi-scale PDF decomposition from a fine scale
s to a coarser scale s + 1 in Equation 4.28. Therefore, the framework of multi-
scale PDF analysis in Section 4.2.1 is well suited for the formulation of q (xn|an,1:f)
optimization,

ln,f,j (xn) ⊛ qj (xn|an,1:f ) = pj (xn|an,1:f ) , ∀ j = {1, · · · , nx} (4.55)

where ln,f,j is a PDF low-pass filter,

ln,f,j (xn) = N
(
xn; 0, v

lp
n,f,j

)
(4.56)
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The weight and mean of each q (xn,f |an,1:f) Gaussian component are recon-
structed based on the relations in Equations 4.31 and 4.32 to preserve estimation
integrity,

wq
n,f,j = wx

n,f,j (4.57)

µq
n,f,j = µn,f,j (4.58)

The expectation of xn (i.e., E (xn)) or µ̂
q
n,f in Equation 4.54 can be obtained as,

µ̂q
n,f =

nx∑

j=1

wq
n,f,j µ

q
n,f,j (4.59)

Rearranging Equation 4.54, we have,

nx∑

j=1

wq
n,f,j v

q
n,f,j = F−1

n,f + µ̂q
n,f µ̂qT

n,f −
nx∑

j=1

wq
n,f,j µ

q
n,f,j µ

qT
n,f,j (4.60)

Equation 4.60 shows the solution of the weighted sum of vqn,f,j instead of the
individual vqn,f,j ∀ j = {1, · · · , nx}. To ensure each vqn,f,j is positive definite and
is reconstructed to preserve estimation integrity, the relationship between a coarse
scale covariance and its finer scale counterpart in Equation 4.33 is imposed,

vxn,f,j = vqn,f,j + vlpn,f,j

vqn,f,j = vxn,f,j − vlpn,f,j (4.61)

subject to Equation 4.60 and the positive definite constraints as follows,

vlpn,f,j > 0 (4.62)

vxn,f,j − vlpn,f,j > 0 (4.63)

Substituting Equation 4.61 into Equation 4.60, yields

nx∑

j=1

wq
n,f,j

(
vxn,f,j − vlpn,f,j

)
(4.64)

= F−1
n,f + µ̂q

n,f µ̂qT
n,f −

nx∑

j=1

wq
n,f,j µ

q
n,f,j µ

qT
n,f,j

77



nx∑

j=1

wq
n,f,jv

lp
n,f,j (4.65)

=
nx∑

j=1

wq
n,f,j v

x
n,f,j − F−1

n,f − µ̂q
n,f µ̂qT

n,f +
nx∑

j=1

wq
n,f,j µ

q
n,f,j µ

qT
n,f,j

Let Vn,f =
∑nx

j=1w
q
n,f,j vxn,f,j − F−1

n,f − µ̂q
n,f µ̂qT

n,f +
∑nx

j=1w
q
n,f,j µq

n,f,j µqT
n,f,j for

conciseness,

nx∑

j=1

wq
n,f,j v

lp
n,f,j = Vn,f (4.66)

Expanding Vn,f to a nx component weighted sum,

nx∑

j=1

wq
n,f,j v

lp
n,f,j =

nx∑

j=1

wV
n,f,j Vn,f

vlpn,f,j =
(
wV
n,f,j/w

q
n,f,j

)
Vn,f (4.67)

where wV
n,f,j is a weight satisfying the constraint,

nx∑

j=1

wV
n,f,j = 1 (4.68)

In addition, wV
n,f,j must be positive in order to satisfy constraint in Equation

4.62,
wV
n,f,j > 0 (4.69)

To ensure that the constraint in Equation 4.63 is satisfied, we substitute Equa-
tion 4.67 into Equation 4.63 to determine any further constraint must be imposed
on wV

n,f,j,

vxn,f,j −
(
wV
n,f,j/w

q
n,f,j

)
Vn,f > 0

wq
n,f,j v

x
n,f,j V

−1
n,f > wV

n,f,jI

wV
n,f,jI − wq

n,f,j v
x
n,f,j V

−1
n,f < 0 (4.70)

where I is an identity matrix.
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The inequality in Equation 4.70 reveals that wV
n,f,j must be less than any eigen

value of the positive definite matrix wq
n,f,j v

x
n,f,j V

−1
n,f ,

wV
n,f,j < λn,f,j (4.71)

where λn,f,j is an eigen value of wq
n,f,j v

x
n,f,j V

−1
n,f .

The task of optimizing the posterior PDF now is transformed into finding the set{
wV
n,f,1, · · · , wV

n,f,nx

}
that satisfies Equations 4.68, 4.69 and 4.71. A bisection search

is used to obtaining
{
wV
n,f,1, · · · , wV

n,f,nx

}
instead of the computational intensive V −1

n,f

and λn,f,j.

The filtering scheme of MSF is illustrated in Figure 4.5. Analysis on the conver-
gence of estimation covariance is presented in Section 4.2.2. Algorithms of posterior
PDF optimization and the proposed MSF are presented in Sections 4.2.2 and 4.2.2,
respectively.

Convergence of estimation covariance

This section demonstrates how the MSF formulation reduces the error covariance
of the estimated acoustic parameters within a tissue layer. At each frequency,
two filtering processes are carried out recursively, namely, correction and PDF
optimization. The correction process employs the actual measurement information
to obtain the posterior PDF by adjusting the prior PDF. The covariance matrix in
each Gaussian component of the prior PDF is that of the previous posterior PDF.
The posterior PDF is linearly proportional to the product of the likelihood and
prior PDFs,

p (xn|an,1:f ) ∝ p (an,f |xn) p (xn|an,1:f−1) (4.72)

Both likelihood and prior PDFs in Equations 4.41 and 4.42 are represented by
GMMs and are reprinted here for convenience,

p (an,f |xn) =

nη∑

j=1

wη
n,f,j N

(
an,f ;h (xn) + µη

n,f,j, v
η
n,f,j

)

p (xn|an,1:f−1) =
nx∑

j=1

wx
n,f−1,j N

(
xn;µ

x
n,f−1,j , v

x
n,f−1,j

)

The nonlinear measurement model is linearized around the previous estimate of
xn (i.e., x̂′n) in order to express p (an,f |xn) in terms of xn explicitly. Let Hn be the
Jacobian of h (xn) (i.e., ∂h/∂xn|x̂′n). The linearized measurement model is,
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Figure 4.5: Schematic of multi-scale stochastic filtering
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∆an,f = Hn xn + ηf (4.73)

where ∆an,f = an,f − h (x̂′n) +Hn x̂′n.

The likelihood PDF of the linearized measurement model can be written as,

p (∆an,f |xn) =
nη∑

j=1

wη
n,f,j N

(
∆an,f ;Hn xn + µη

n,f,j , v
η
n,f,j

)
(4.74)

Substituting Equations 4.74 and 4.42 into Equation 4.72, we have,

p (xn|an,1:f) ∝
nη∑

i=1

nx∑

j=1

wη
n,f,i w

x
n,f−1,j N

(
∆an,f ;Hn xn + µη

n,f,i, v
η
n,f,i

)
∗ (4.75)

N
(
xn;µ

x
n,f,j−1, v

x
n,f−1,j

)
(4.76)

The product of Gaussian PDFs in Equation 4.75 can be expressed as,

exp
{
−1
2

[
∆an,f −Hn xn − µη

n,f,i

]T
vηn,f,i

−1 [∆an,f −Hn xn − µη
n,f,i

]}

(2π)dz/2
∣∣vηn,f,i

∣∣1/2 (4.77)

∗
exp

{
−1
2

[
xn − µx

n,f−1,j
]T

vxn,f−1,j
−1 [xn − µx

n,f−1,j
]}

(2π)dx/2
∣∣vxn,f−1,j

∣∣1/2

Let Mn = Hn

(
HT

n Hn

)−1
. The term xn in the first Gaussian PDF in Equation

4.77 can be separated by multiplying MT
n Mn and

[
MT

n Mn

]−1
in its exponent term.

The product in Equation 4.77 is proportional to,

∝
exp

{
−1
2

[
xn − µη′

n,f,i

]T [
MT

n vηn,f,i Mn

]−1 [
xn − µη′

n,f,i

]}

(2π)dx/2
∣∣MT

n vηn,f,i Mn

∣∣1/2 (4.78)

∗
exp

{
−1
2

[
xn − µx

n,f−1,j
]T

vxn,f−1,j
−1 [xn − µx

n,f−1,j
]}

(2π)da/2
∣∣vxn,f−1,j

∣∣1/2

∝
exp

{
−1
2

[
xn − µx

n,f,i,j

]T
vxn,f,i,j

−1 [xn − µx
n,f,i,j

]}

(2π)dx/2
∣∣vxn,f,i,j

∣∣1/2 (4.79)
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where

µx
n,f,i,j = vxn,f,i,j

{[
MT

n vηn,f,i Mn

]−1
µη′
n,f,i + vxn,f−1,j

−1 µx
n,f−1,j

}
(4.80)

µη′
n,f,i = Mn

(
∆an,f − µη

n,f,i

)
(4.81)

vxn,f,i,j =
[
vxn,f−1,j +MT

n vηn,f,i Mn

]−1
MT

n vηn,f,i Mn vxn,f−1,j (4.82)

Equations 4.80 and 4.81 show that the posterior PDF Gaussian mixture means(
i.e., µx

n,f,1···nη,1···nx

)
are weighted sums of the measurement noise PDF Gaussian

mixture means
(
i.e., µη

n,f,1···nη

)
and the previous posterior PDF Gaussian mix-

ture means
(
i.e., µx

n,f−1,1···nx
)
. When the variation of µη

n,f,1···nη is less than that of
µx
n,f−1,1···nx, which is true particularly at coarse scales, the variation of µx

n,f,1···nη,1···nx
is less than that of µx

n,f−1,1···nx. Therefore, the covariances of posterior PDFGaussian
mixture means do not increase as the scale becomes finer (or as more measurements
are available),

E
{
∆µx

n,f−1,j ∆µxT
n,f−1,j

}
− E

{
∆µx

n,f,i,j ∆µxT
n,f,i,j

}
� 0 (4.83)

where ∆µx
n,f−1,j = µx

n,f−1,j−E
(
µx
n,f−1,j

)
, ∀ j; ∆µx

n,f,i,j = µx
n,f,i,j−E

(
µx
n,f,i,j

)
, ∀ i, j;

� 0 denotes positive semi-definiteness.

The covariance matrices of the posterior PDF Gaussian mixture, vxn,f,1···nη,1···nx,
are products of MT

n vηn,f,1···nη Mn and vxn,f−1,1···nx and the inverse of their sum. It is
straight forward to realize that,

MT
n vηn,f,i Mn − vxn,f,i,j > 0

vxn,f−1,j − vxn,f,i,j > 0 (4.84)

where > 0 denotes positive definiteness.

This implies that the uncertainty of each posterior PDF Gaussian component
is less than that of the previous posterior PDF due to the information gain from
the measurement despite its own uncertainty (i.e., measurement noise).

The optimized PDF (i.e., q (xn|an,1:f )) is obtained based on the inverse of the
Fisher information matrix

(
i.e., F−1

n,f

)
, which is a function of p (xn|an,1:f). p (xn|an,1:f)

is dependent on p (xn|an,1:f−1). Thus, p (xn|an,1:f ) is also dependent on q (xn|an,1:f−1).
These recursive dependences are represented as,

q (xn|an,1:f) ←− F−1
n,f ←− p (xn|an,1:f ) (4.85)

p (xn|an,1:f) ←− q (xn|an,1:f−1) (4.86)
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As the mean covariance reduces in the correction process in Equation 4.83,
p (xn|an,1:f) converges to a unimodal distribution. Based on Equations 4.57, 4.58
and 4.85, q (xn|an,1:f) approaches a unimodal distribution,

lim
f→∞

nx∑

j=1

wq
n,f,j µ

q
n,f,j µ

qT
n,f,j − µ̂q

n,f µ̂qT
n,f = 0 (4.87)

Based on Equation 4.87, the overall covariance of q (xn|an,1:f) decreases as the
number of measurement increases. It follows from Equations 4.85 and 4.86 that
F−1
n,f is smaller than that of the previous frequency,

F−1
n,f−1 − F−1

n,f ≥ 0 (4.88)

Substituting Equation 4.87 into Equation 4.60, we have,

lim
f→∞

nx∑

j=1

wq
n,f,j v

q
n,f,j (4.89)

= lim
f→∞

F−1
n,f + µ̂q

n,f µ̂qT
n,f −

nx∑

j=1

wq
n,f,j µ̂

q
n,f,j µ̂

qT
n,f,j

= F−1
n,f (4.90)

Expand F−1
n,f to a weighted sum,

lim
f→∞

nx∑

j=1

wq
n,f,j v

q
n,f,j =

nx∑

j=1

wq
n,f,j F

−1
n,f

lim
f→∞

vqn,f,j = F−1
n,f (4.91)

The results derived for the convergence of estimation error covariance in Equa-
tions 4.88 and 4.91 are consistent with the reduction of covariance in the multi-scale
PDF reconstruction in Equation 4.33 and in the PDF reconstruction in Equation
4.61.

PDF Optimization Algorithm

Optimization of posterior PDF is implemented by the following algorithm.
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[Fn,f , q (xn|an,1:f)] = OptimizePDF (f, nx, Fn,f−1, p (xn|an,1:f))
{

If f == 1 {
Fn,f = −

∫ {
∇xn∇xTn log p (xn|an,f)

}
p (xn|an,f) dxn,f }

Else {
Compute Fn,f using Equation 4.46}

F−1
n,f = inv (Fn,f)

For j = 1, · · · , nx {
wq
n,f,j = wx

n,f,j

µq
n,f,j = µn,f,j }

µ̂q
n,f =

∑nx
j=1 w

q
n,f,jµ

q
n,f,j

Vn,f =
∑nx

j=1w
q
n,f,j v

x
n,f,j − F−1

n,f − µ̂q
n,f µ̂

qT
n,f +

∑nx
j=1w

q
n,f,j µ

q
n,f,j µ

qT
n,f,j

For j = 1, · · · , nx {
wV
n,f,j = wq

n,f,j

low = 0; high = 1

V V
n,f,j =

(
wV
n,f,j/w

q
n,f,j

)
Vn,f }

while
∣∣vxn,f,j − V V

n,f,j

∣∣ ≤ 0 ∪min
(
diag

(
V V
n,f,j

))
≤ 0 {

If
∣∣vxn,f,j − V V

n,f,j

∣∣ > 0 ∪min
(
diag

(
V V
n,f,j

))
> 0 {

low = wV
n,f,j }

Else {
high = wV

n,f,j }
wV
n,f,j = 0.5(low + high)

V V
n,f,j =

(
wV
n,f,j/w

q
n,f,j

)
vxn,f }

For j = 1, · · · , nx {
wV
n,f,j = wV

n,f,j/
∑nx

k=1w
V
n,f,k

V V
n,f,j =

(
wV
n,f,j/w

q
n,f,j

)
Vn,f

vqn,f,j = vxn,f,j − V V
n,f,j }

q (xn|an,1:f ) =
∑nx

j=1w
q
n,f,jN

(
xn;µ

q
n,f,j, v

q
n,f,j

)

}
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Multi-scale Stochastic Filter Algorithm

MSF is realized by the following algorithm.

[x̂n] = MSF
(
xminn , xmaxn , ns, an,1:nf , nf , p

(
ηf
))

{
For f = 1 : nf

If f == 1 {
x1:nsn ∼ u

(
xminn , xmaxn

)
}

Else {
p (xn|an,1:f−1) =

∑nx
j=1w

x
n,f−1,j N

(
xn;µ

x
n,f−1,j, v

x
n,f−1,j

)

x1:nsn ∼ p (xn|an,1:f−1) }
w = 0

For i = 1 : ns {
wi
f =

∑nη
j=1w

η
n,f,j N

(
an,f ;h (x

i
n) + µη

n,f,j , v
η
n,f,j

)

w = w + wi
f }

w1:nsf = w1:nsf /w

n1:nsf = round
(
ns w

1:ns
f

)

indices = find
(
n1:nsf > 0

)

windices
f = windices

f /sum
(
windices
f

)

nx = length (indices)

p (xn|an,1:f) = EM_GM
(
windices
f , xindicesn

)

[Fn,f , q (xn|an,1:f)] = OptimizePDF (· · · )
x̂n =

∑nx
j=1w

q
n,f,j µ

q
n,f,j

filter reverberated echoes using the method discussed in Section 3.4

p (xn|an,1:f) = q (xn|an,1:f) =
∑nx

j=1w
x
n,f,j N

(
xn;µ

x
n,f,j, v

x
n,f,j

)

}
This algorithm does not assume the distribution p (x0) to be known. A set of

ns random samples are generated by a uniform distribution and are mapped in the
range between the maximum and minimum of xn (defined by the user). These sam-
ples are weighted by the likelihood function. The weighted samples are employed
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to estimate a nx component GMM as p (xn), using expectation maximization [116],
which is implemented by the function EM_GM . The value of nx is determined by
the number of samples that have significant normalized weights.

It is important to note that, unlike particle filtering, the MSF algorithm does not
propagate random samples along with time. Therefore, MSF eliminates the particle
filtering inherent problem of degeneracy and sample impoverishment, which lead to
poor estimates as only one particle contributes to the estimation.

4.2.3 Quantitative Evaluation of Multi-scale Stochastic Fil-
ter

In order to conduct a quantitative evaluation of the proposed method, MSF is
compared to a state-of-the-art NSF (i.e., Gaussian sum particle filter (GSPF))
reported in [121]. There are three types of GSPF, namely, GSPF-I, GSPF-II and
GSPF-III. GSPF-I is designed for systems with Gaussian noise models. GSPF-
II and GSPF-III are developed for systems with Gaussian mixture noise models
using different approaches. Since the noise model considered in this research is
a Gaussian mixture model, as discussed in Section 4.1.3, and GSPF-II has been
tested thoroughly in [121], GSPF-II is implemented to compare against MSF.

GSPF-II employes a bank of Gaussian particle filters (GPFs) to estimate the
posterior PDF. Each GPF estimates one Gaussian component of the posterior PDF
[119]. Each GPF requires the so-called importance density to generate random sam-
ples for estimating the parameters of a posterior PDF Gaussian component. The
importance density is problem dependent and is unknown in general. A Unscented
Kalman filter (UKF) is used to estimate the importance density as a Gaussian PDF
by each GPF. UKF applies unscented transformation in the extended Kalman fil-
tering framework to obtain the importance density that represents local statistics
of the parameters to be estimated [137].

Since GSPF-II was applied to estimation problems in the literature other than
tissue characterization, the performance of MSF is first compared to that of GSPF-
II based on these applications. The performance of MSF on tissue characterization
is then compared to that of GSPF-II later in Sections 6.4.5 and 6.4.6. Two esti-
mation problems reported in [121] are bearing-only tracking and univariate nonsta-
tionary growth and frequency demodulation.
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Bearings-only Tracking

Bearings-only tracking (BT), also known as target motion analysis [117], is a prac-
tical problem of particular interests in surveillance applications [138, 139, 140]. The
objective of BT is to estimate the kinematics of a moving target, typically positions
and velocities, based on noisy angle measurements relative to the sensor. The dis-
tance between the target and the sensor, however, is not measured. Problems of BT
can be classified into two categories: non-maneuvering and maneuvering targets.
The main difference between them is that the kinematic models of non-maneuvering
targets remain unchanged, while the kinematics of maneuvering targets may be
modelled by several regimes [141, 142]. For each of these categories, tracking algo-
rithms using single and multiple sensors have been proposed [117]. Since a GPF
based method has been applied to non-maneuvering target BT [119] with single
sensor, a similar application is employed in this paper to facilitate performance
comparison.

Let xt be the relative target kinematics with respect to that of a sensor, xt =[
ox,t oy,t os,t

]T
, where ox,t and oy,t are the relative x and y Cartesian coordinates

of the target at time t; os,t is the relative speed at which the object travels in both
x and y directions at time t. The relative kinematics of the target are governed by,

xt =

{
At−1 xt−1 + ξt−1, ∀ t− 1 = i nz

xt−1, ∀ t− 1 �= i nz
(4.92)

where At−1 describes the dynamics of the parameters to be estimated; ξt−1 is white
noise with stationary statistics, ξt−1 ∼ N

(
ξt−1; 0,Φξ

)
; 0 is a zero vector; Φξ is a

covariance matrix;

At−1 =




1 0 0.3 (13− t)
0 1 −1
0 0 1


 , Φξ =




σ2ξ 0 0
0 σ2ξ 0
0 0 2σ2ξ




The measurements of the sensor are modelled as,

zt = arctan (oy,t/ox,t) + ηt (4.93)

where zt is the measurement acquired at time t; ηt is white noise with stationary
statistics, ηt ∼ 0.5N

(
ηt; 0, σ

2
η

)
+0.5N

(
ηt; 0, 2σ

2
η

)
; the values of σξ and ση are shown

in Tables 4.1, 4.2, 4.3 and 4.4.

The objective of the BT problem is to estimate xt based on the models in
Equations 4.92 and 4.93, zt and noise statistics. This BT problem is simulated for
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24 time steps, t ∈ {1, · · · , 24}, with the prior PDF, p (x0) = n−1x
∑nx N (x0;µ0,Φ0),

µ0 =
[
0 2 0.08

]T
, Φ0 is a 3×3 diagonal matrix with 0.1 as its diagonal elements.

The maximum and minimum of xt are
[
2 2 0.09

]T
and

[
0 0 0.07

]T
.

A set of experiments are designed to test the performances of MSF and GSPF-II
under various conditions:

1. numbers of Gaussian PDFs and samples used to estimate posterior PDF and
states,

2. low and high noise levels,

3. known and unknown prior PDF, in case of unknown prior PDF, the prior
PDF estimated by MSF is applied to GSPF-II, and

4. number of measurements available in the time period between state transitions
(only applicable for MSF). The numbers of these measurements tested are one
and five, which are denoted by nz = 1 and nz = 5 , respectively.

For each of these conditions, MSF and GSPF-II are executed 50 times to obtain
performance statistics. Let ôx,t,e, ôy,t,e and ôs,t,e be the estimates of ox,t, oy,t and
os,t, respectively, from either MSF or GSPF-II. The mean square error (MSE) of
ôx,t,e, ôy,t,e and ôs,t,e are computed as:

õx = E
{
E
[
(ox,t − ôx,t,e)

2 |t
]
|e
}
,

õy = E
{
E
[
(oy,t − ôy,t,e)

2 |t
]
|e
}
,

õs = E
{
E
[
(os,t − ôs,t,e)

2 |t
]
|e
}
,

∀ t ∈ {1, · · · , 24}
∀ e ∈ {1, · · · , 50}

where õx, õy and õs are the averaged MSE of ôx,t,e, ôy,t,e and ôs,t,e, respectively.

The resulting õx, õy and õs from MSF and GSPF-II under various conditions
are presented in Tables 4.1, 4.2, 4.3 and 4.4. Let ôx,t, ôy,t and ôs,t be the averaged
ôx,t,e, ôy,t,e and ôs,t,e with respect to e; δx,t, δy,t and δs,t be the standard deviations
of ôx,t,e, ôy,t,e and ôs,t,e with respect to e. The resulting ôx,t (±δx,t), ôy,t (±δy,t) and
ôs,t (±δs,t) from MSF and GSPF-II at nx = 8 and ns = 100 under various conditions
are shown in Figures 4.6, 4.7, 4.8 and 4.9.

Univariate Nonstationary Growth Model

The univariate nonstationary growth model (UNGM) is a highly nonlinear function,
which is of interest in many areas including econometrics, control and aerospace
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nz = 1 σξ = 0.01, ση = 0.005
MSF GSPF-II

nx ns õx õy õs õx õy õs
4 20 5.17e-2 1.17e-2 1.37e-5 1.13 1.45e-1 8.48e-3

100 5.84e-3 1.17e-3 3.64e-6 1.24 1.57e-1 1.14e-2
8 20 1.97e-2 4.43e-3 1.14e-5 9.17e-1 1.12e-1 7.26e-3

100 2.40e-3 4.59e-4 1.83e-6 1.04 1.30e-1 8.41e-3
16 20 1.14e-2 2.08e-3 1.05e-5 7.41e-1 9.08e-2 5.34e-3

100 1.17e-3 2.24e-4 9.99e-7 8.17e-1 1.01e-1 6.43e-3

Table 4.1: BT MSE of MSF and GSPF-II with low noise intensity and known prior
PDF

nz = 1 σξ = 0.1, ση = 0.05
MSF GSPF-II

nx ns õx õy õs õx õy õs
4 20 6.62e-2 1.41e-2 3.96e-6 4.41 7.05e-1 5.72e-2

100 7.34e-3 1.78e-3 8.73e-7 2.75 3.62e-1 2.89e-2
8 20 3.95e-2 7.50e-3 1.81e-6 1.86 2.60e-1 2.01e-2

100 3.81e-3 7.65e-4 3.78e-7 1.81 2.35e-1 2.12e-2
16 20 4.45e-2 7.22e-3 7.48e-7 1.22 1.85e-1 1.43e-2

100 4.55e-3 6.86e-4 1.72e-7 1.30 1.84e-1 1.36e-2

Table 4.2: BT MSE of MSF and GSPF-II with high noise intensity and known prior
PDF

nz = 5 σξ = 0.01, ση = 0.005 σξ = 0.1, ση = 0.05
MSF MSF

nx ns õx õy õs õx õy õz
4 20 1.14e-2 2.13e-3 5.72e-6 3.18e-2 5.74e-3 3.16e-6

100 1.27e-3 2.45e-4 1.59e-6 9.80e-3 1.91e-3 1.08e-6
8 20 3.64e-3 6.96e-4 4.40e-6 3.52e-2 5.52e-3 2.07e-6

100 4.55e-4 9.39e-5 9.33e-7 5.69e-3 1.04e-3 6.43e-7
16 20 1.80e-3 3.70e-4 3.07e-6 2.90e-2 4.47e-3 9.57e-7

100 2.58e-4 5.41e-5 5.05e-7 8.69e-3 1.12e-3 4.04e-7

Table 4.3: BT MSE of MSF with nz=5, low and high noise intensity and known
prior PDF
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nz = 1 σξ = 0.01, ση = 0.005
MSF GSPF-II

nx ns õx õy õs õx õy õs
8 100 3.10e-3 1.57e-2 1.59e-6 2.26 0.33 0.01

Table 4.4: BT MSE of MSF and GSPF-II with low noise intensity and unknown
prior PDF
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Figure 4.6: BT x and y coordinates of target estimated by a) MSF and b) GSPF-II,
target speed estimated by c) MSF and d) GSPF-II with low noise intensity, known
prior PDFs, nz = 1, nx = 8 and ns = 100.
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Figure 4.7: BT x and y coordinates of target estimated by a) MSF and b) GSPF-II,
target speed estimated by c) MSF and d) GSPF-II with high noise intensity, known
prior PDFs, nz = 1, nx = 8 and ns = 100.
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Figure 4.8: BT x and y coordinates of target estimated by MSF with a) low and
b) high noise intensities, target speed estimated by MSF with c) low and d) high
noise intensities, known prior PDFs, nz = 5, nx = 8 and ns = 100
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Figure 4.9: BT x and y coordinates of target estimated by a) MSF and b) GSPF-
II; target speed estimated by c) MSF and d) GSPF-II with low noise intensity,
unknown prior PDFs, nz = 1, nx = 8 and ns = 100
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[143, 144, 145]. The UNGM is defined as,

xt =





0.5xt−1 + 25 xt−1
1+x2t−1

+ 8 cos(1.2(t− 1)) + ξt−1,

∀ t− 1 = i nz

χt−1, ∀ t− 1 �= i nz

(4.94)

zt =
x2t
20

+ ηt (4.95)

where xt is a parameter to be estimated; zt is the measurement acquired at time t;
ξt−1 and ηt are white noise with stationary statistics, ξt−1 ∼ 0.8N

(
ξt−1; 0, 0.1

)
+

0.2N
(
ξt−1; 0, 1

)
and ηt ∼ N (0, 1).

This UNGM problem is simulated for 50 time steps, t ∈ {1, · · · , 50}, with the
prior PDF, p (x0) = n−1x

∑nx N (x0; 0.1, 0.1). The maximum and minimum of xt
are 16 and -18. A set of experiments are designed to test the performances of MSF
and GSPF-II under similar conditions as in Section 4.2.3. For each condition, MSF
and GSPF-II are executed 50 times to obtain performance statistics. Let x̂t,e be
the estimates of xt from either MSF or GSPF-II. The MSE of x̂t,e is computed as:

x̃ = E
{
E
[
(xt − x̂t,e)

2 |t
]
|e
}
,
∀ t ∈ {1, · · · , 50}
∀ e ∈ {1, · · · , 50}

where x̃ is the averaged MSE of x̂t,e.

The resulting x̃ from MSF and GSPF-II under various conditions are presented
in Table 4.5. The resulting averaged x̂t,e with respect to e from MSF and GSPF-II
at nx = 16 and ns = 100 under various conditions are shown in Figures 4.10 and
4.11. The standard deviations of x̂t,e with respect to e are plotted as error bars in
these figures.

Discussion

The performances of MSF and GSPF-II are analyzed based on the simulation re-
sults.

• Posterior PDF Estimation Method

The effects of posterior PDF estimation method on estimation accuracy for
both filters are indicated by the averaged MSE below computed from Tables
4.1, 4.2 and 4.4 for BT; from Table 4.5 for UNGM,
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Figure 4.10: BT x and y coordinates of target estimated by a) MSF and b) GSPF-
II; target speed estimated by c) MSF and d) GSPF-II with low noise intensity,
unknown prior PDFs, nz = 1, nx = 8 and ns = 100
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Figure 4.11: BT x and y coordinates of target estimated by a) MSF and b) GSPF-
II; target speed estimated by c) MSF and d) GSPF-II with low noise intensity,
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x̃ Known Prior PDF Unknown Prior PDF
nz = 1 nz = 5 nz = 1 nz = 5

nx ns MSF GSPF-II MSF MSF GSPF-II MSF
8 20 3.82e-2 4.99 2.05 2.26 10.96 3.41

100 3.92e-2 5.09 2.94 2.26 10.78 5.69
16 20 3.43e-2 3.41 0.79 2.25 8.22 3.79

100 2.32e-2 2.94 1.50 2.26 7.16 2.92
32 20 4.48e-2 1.63 3.05e-1 2.26 4.92 2.60

100 2.91e-2 1.20 3.34e-1 2.26 5.50 2.59

Table 4.5: UNGM MSE of MSF (nz=1 and nz=5) and GSPF-II with known and
unknown prior PDF

Application Avg. MSE
MSF GSPF-II

BT 8.44e-3 6.33e-1
UNGM 1.15 5.57

It is apparent that the average MSE produced by MSF are only a small
fraction relative to that of GSPF-II for BT (also see Figures 4.6, 4.7 and 4.9)
and UNGM (also see Figures 4.10 and 4.11).

The method of posterior PDF estimation is considered as one of the most
critical elements in NSF. GSPF-II employes a bank of GPF to estimate a
Gaussian mixture as the posterior PDF. Each GPF independently estimates
a Gaussian component of the mixture based on an importance density, which
is generated by an UKF to capture local statistics of the state.

MSF estimates the posterior PDF using a sampling technique. The pos-
terior PDF is then optimized based on multi-scale PDF reconstruction to
achieve minimum estimation error variance in the sense of posterior Cramer-
Rao bound. In addition, all Gaussian components of the posterior PDF are
collectively optimized to capture the state statistics globally. Therefore, the
posterior PDF estimation method of MSF is able to produce more accurate
estimates than that of GSPF-II.

• Number of Gaussian Components and Samples

The number of Gaussian components (i.e., nx) and samples (i.e., ns) used to
estimate the posterior PDF and state estimate for both filters are of great
practical interests. The averaged MSE rates, E (dx̃/dnx) and E (dx̃/dns), for
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both filters are calculated based on data in Tables 4.1 and 4.2 for BT and
Table 4.5 for UNGM as follows,

Application E (dx̃/dnx) E (dx̃/dns)
MSF GSPF-II MSF GSPF-II

BT -8.82e-4 -5.68e-2 -1.74e-4 -1.16e-3
UNGM -2.61e-4 -2.24e-1 -3.29e-5 -3.04e-3

The negative MSE rates indicate that the estimation errors decrease as nx

and/or ns increase. These results are expected, since the posterior PDF can
be estimated more accurately using more Gaussian components. Also, the
convergence of state estimation requires large number of samples as suggested
by Monte-Carlo integration and the law of large numbers. The error rates
produced by MSF are consistently smaller than that of GSPF-II by about two
orders of magnitude on average. This reveals an advantageous characteristic
of MSF over GSPF-II in practice. That is, the estimation accuracy of MSF
is relatively less sensitive to nx and ns, so that small nx and ns can be used
in MSF to relax computation power needed while maintaining the estimation
accuracy.

• Noise Level

The impacts of noise level on both filters are analyzed by the average MSE
computed from Tables 4.1 and 4.2 as follows,

Noise level Avg. MSE
MSF GSPF-II

Low 6.24e-3 3.70e-1
High 1.10e-2 8.58e-1

High/Low 1.76 2.32

These results convey that the estimates yielded by MSF are two orders of
magnitude more accurate than GSPF-II even in the case of high noise level.
In addition, the ratios between the averaged MSE at high and low noise
levels show that MSF is less sensitive to noise compared to GSPF-II. This is
confirmed by Figures 4.6 and 4.7.

• Dependency on Prior PDF

Prior PDF of the state is required for both filters. However, the prior PDF
may be inaccurate or unknown in real world applications. Therefore, the filter
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dependency on prior PDF is an important practical issue ones must address.
The average MSE for both filters with and without prior PDF are obtained
based on Tables 4.1 and 4.4 for BT, and Table 4.5 for UNGM,

Application Known prior PDF Unknown prior PDF
Avg. MSE Avg. MSE

MSF GSPF-II MSF GSPF-II
BT 6.24e-3 3.70e-1 6.27e-3 8.67e-1

UNGM 3.48e-2 3.21 2.26 7.92

For BT, the average MSF estimation errors are almost the same regardless of
the prior PDF availability. However, the averaged GSPF-II estimation error
without prior PDF is more than twice of that with prior PDF. When the prior
PDF is unknown, MSF employs the expectation maximization algorithm to
estimate a GMM as the prior PDF based on uniform random samples and the
measurement at the first time step. The same prior PDF estimated by MSF is
applied to GSPF-II. As illustrated in Figure 4.9, the estimation error is large
at the first time step due to noisy measurement and insufficient number of
samples. MSF is able to reduce the estimation error very quickly at the second
time step. On the contrary, GSPF-II is unable to correct the estimation errors
and it propagates the errors throughout the rest of the simulation. This
demonstrates the effectiveness of optimizing the posterior PDF at every time
step.

For UNGM, there is a large difference of the average MSE between known
and unknown prior PDF for both filters. The likelihood function of UNGM
bimodal because of the square term in the measurement model (i.e., Equation
4.95). At the first time step, the EM_GM function is able to estimate the
bimodal prior PDF. However, the state is estimated as the weighted sum
of samples generated by the bimodal PDF, which is equal to the value in
between the two peaks. The estimated prior PDF for UNGM peaks at 10 and
-10, which causes the state estimate to be 0 at the first time step. Figure 4.9
shows the large estimation errors for both filters are mainly contributed from
the first time step.

• Estimation Consistency

Both filters compute state estimates based on random samples. Deviations
of the state estimates among trials are expected. It is highly desirable to
produce consistent estimates, or estimates with small deviations. The +/- one
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standard deviations of state estimates for both filters are plotted in Figures
4.6, 4.7 and 4.9 for BT and Figures 4.10 and 4.11 for UNGM.

These figures clearly show that the deviations of the estimates produced by
MSF are consistently smaller than that of GSPF-II for all cases of noise
levels and the availability of prior PDF. The highly consistent MSF estimates
are achieved by the minimization of estimation error variance through the
covariance reduction in the process of posterior PDF optimization derived
based on multi-scale PDF reconstruction.

• Number of Scales

Number of scale refers to the number of measurements available in between
state transitions. The performances of MSF using one and five scales are
calculated based on Tables 4.1 to 4.5 as follows,

Application MSF
Avg. MSE

nz = 1 nz = 5
BT 8.62e-3 4.51e-3

UNGM 1.15 2.41

The average MSE produced by MSF with five scales is about two times lower
than that with one scale for BT. The converse is true for UNGM due to the
multimodal likelihood distributions in these applications as mentioned previ-
ously. This will be discussed in more details later. The MSF performances
with respect to the number of scales for BT are discussed in more details in
the following.

Application: BT MSF
Filter char. Performance nz = 1 nz = 5

nx E (dx̃/dnx) -8.82e-4 -1.59e-4
ns E (dx̃/dns) -1.74e-4 -7.02e-5

Noise: Low Avg. MSE 6.24e-3 1.25e-3
Noise: High Avg. MSE 1.10e-2 7.78e-3
Known5 Avg. MSE 9.54e-4 1.83e-4
Unknown6 Avg. MSE 6.27e-3 -

8Known prior PDF
6Unknown prior PDF
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The performance of MSF with five scales improve about four times compared
to that with one scale on average. The estimation consistencies of MSF with
one and five scales can be observed from Figures 4.6, 4.7 and 4.8. For low
noise level, the state estimates produced by MSF with five scales are clearly
more consistent than that with one scale. In the case of high noise level, the
estimation consistencies are similar for both number of scales.

These results correspond well to the convergence of estimation covariance in
Section 4.2.2. At each scale, the estimation error covariance is minimized to
improve the estimation consistency. As the number of scale increases, more
such minimizations are allowed to take place. Consequently, the estimation
covariance reduces asymptotically and the state estimate converges to the
true state.

• Time complexity

In addition to estimation accuracy, time complexity is an important perfor-
mance measure for a filtering algorithm. The time complexities of MSF and
GSPF-II can be described in terms of the big-O complexity index (also com-
monly known as big-O notation) [146]. Let dx and ns, respectively, be the
dimension of the tissue acoustic parameter vector and number of random sam-
ples of the parameters; nx and nη, respectively, be the number of Gaussian
components representing the posterior and measurement noise PDFs. The
big-O time complexities of MSF and GSPF-II are expressed in terms of dx,
ns, nx and nη. Tables 4.6 and 4.7 depict the big-O time complexity analyses
of the filters. The time complexities of MSF and GSPF-II are respectively
derived as O(nx ns) and O (nx (d

3
x + ns)) based on the assumptions stated in

the tables. These assumptions are valid for the parameter estimation prob-
lems discussed above and the tissue characterization problem formulated in
this thesis. The time complexity of MSF is smaller than that of GSPF-II by
O (nx d

3
x), since GSPF-II executes UKF nx times to estimate the importance

densities in the posterior PDF estimation process and the time complexity
of UKF is d3x [147]. On the other hand, MSF does not require UKF in its
posterior PDF estimation process. For problems where dx is large such that
d3x ≃ ns, O (nx d

3
x) is significant relative to O (nx ns). As a result, the time

complexity of GSPF-II is significantly larger than that of MSF for these prob-
lems.
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MSF
Operation Description Complexity
Random ns number of random samples are generated from the O (ns)
sample posterior PDF of the previous iteration.

generation
Sample Probability densities of ns number of random samples O(ns nη)

evaluation are computed from a nη component Gaussian mixture
likelihood PDF.

Posterior A posterior PDF is estimated using an expectation
PDF maximization algorithm, which consists of two main

estimation steps in each iteration,
- expectation: computes probability densities of ns O(ns nx)
number of random samples from a nx component
Gaussian mixture

- maximization: computes means and covariance O(ns nx)
matrices of a nx component Gaussian mixture based
on the random samples

Posterior A PDF is obtained to minimize estimation uncertainty
PDF based on posterior Cramer-Rao bound, which involves

optimization - computing a Fisher information matrix based on ns O(ns)
number of random samples from a nx component
Gaussian mixture,

- inverting the matrix using the Coppersmith— O(d2.376x )
Winograd algorithm, and

- solving Equation 4.84 for W V
n,f,1:n. O(nx)

Estimation The estimates of parameter are computed as the O(nx)
computation weighted sum of the optimized posterior PDF

Gaussian component means.
Overall time complexity: O(ns nx) for nη ≪ ns nx and d2.376x ≪ ns nx

Table 4.6: Time complexity of MSF
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GPF
Operation Description Complexity
Importance A UKF is used to estimate the importance density as O (d3x)
density a Gaussian PDF based on unscented transformation.

estimation
Random ns number of random samples are generated from the O (ns)
sample importance density.

generation
Sample ns number of random samples are weighted using O (ns nη)
weight the nη component Gaussian mixture likelihood PDF,

computation importance density and respective posterior PDF
Gaussian component of the previous iteration.

Weight The weights of ns number of random samples are O (ns)
normalization normalized.
Mean and The mean and covariance of the respective Gaussian O (ns)
covariance component of the posterior PDF are estimated.
estimation

Overall time complexity: O (d3x + ns) for nη ≪ d3x
GSPF-II

Gaussian A bank of nx GPFs are executed to estimate a nx O (nx

mixture component Gaussian mixture posterior PDF. (d3x + ns))
posterior
PDF

estimation
Estimation The estimates of parameter are computed as the O (nx)
computation weighted sum of the optimized posterior PDF

Gaussian component means.
Overall time complexity: O (nx (d

3
x + ns)) for nη ≪ d3x

Table 4.7: Time complexity of GSPF-II
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4.3 Summary

Forward scattering of focused waves in multi-layered tissues is formulated as the
propagation of pressure amplitude modulated plane waves through the tissues. The
pressure amplitudes of plane waves are computed by a set of sub-problems, which
compute the reductions of wave pressure amplitude in the layers individually. The
models developed for these problems are combined as the measurement model used
in the inverse scattering method. In addition, Gaussian mixture is employed to
model the statistics of measurement noise.

MSF is developed to achieve not only MMSE estimate, but also minimum es-
timation error variance by optimizing the posterior PDF. The optimal posterior
PDF is determined based on a novel framework of multi-scale PDF analysis, which
is embedded in the MSF formulation to minimize the estimation error covariances
subject to the Cramer-Rao bounds. The multi-scale PDF analysis is developed to
examine the frequency characteristics of any arbitrary PDF that can be represented
by a GMM. It is decomposed recursively using a set of low-pass filters. Based on
the criteria and constraints imposed to retain the properties of PDF, these filters
are derived as Gaussian PDFs. The use of Gaussian PDFs as low-pass filters is well
known in the scale-space theory. Each decomposition can be considered as a scale.
In addition to multi-scale PDF decomposition, the reconstruction of PDF in the
multi-scale framework is also established.

The MSF formulation specifically for tissue acoustic parameter estimation is
presented. For each ultrasound echo frequency measurement, a minimization of es-
timation error covariance is performed in which the posterior PDF is reconstructed
based on multi-scale PDF reconstruction. In each scale of PDF reconstruction,
the covariance of each Gaussian component of the posterior PDF is guaranteed to
reduce. As more measurements become available, the estimation error covariance
converges to the inverse of Fisher information matrix.

Performance comparisons between MSF and a state-of-the-art NSF, GSPF-II,
are performed on parameter estimation problems reported in the literature. Re-
sults show that MSF is over 3.5 times more accurate than GSPF-II. In addition,
MSF is relatively less sensitive to noise level, prior knowledge of the parameters,
numbers of random samples and Gaussian components representing the posterior
PDF compared to GSPF-II. Furthermore, the time complexity of MSF is smaller
than that of GSPF-II. The time complexity difference between these filters become
significant as the dimension of the parameters to be estimated increases.
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Chapter 5

Analysis of MSF Based on Plane
Wave Simulation

This chapter analyzes the behavior and performance of MSF based on simulated
data. Simulation based analysis has the advantage of isolating errors due to mod-
eling from MSF. In addition, simulation allows the control of signal-to-noise ratio
(SNR) in order to evaluate the robustness of MSF. SNR control may not be pos-
sible to realize in physical experiments. In what follows, the simulation of wave
propagation in a multi-layered tissue (i.e., the forward scattering problem) is first
described. The MSF estimates of the acoustic parameters of the tissue using var-
ious random sample sizes and SNR values are then presented. The behavior and
performance of MSF are analyzed under various sample sizes and SNR values.

5.1 Plane Wave Modelling of Forward Scattering

Problem

The incident wave of the seven-layered tissue shown in Figure 4.1 is simulated as a
plane wave, which can be represented in harmonic form,

ψp
inc = IF

{
∑

ω

Ψp
inc,ω

}
(5.1)

where ψp
inc is the incident wave pressure in the time domain; Ψp

inc,ω is the inci-
dent plane wave pressure at frequency ω, the subscript ω is suppressed to simplify
notations, Ψp

inc,ω → Ψp
inc; IF denotes inverse Fourier transform.
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The incident wave is simulated using plane wave instead of focused wave used
in Section 4, since the computations of plane wave are much more efficient than
that of focused wave. Also, plane wave based simulations of wave propagation in
multi-layered media have been widely accepted in the research community. The
measurement model for plane wave is different from that for focused wave. Let
αi, ci, ρi respectively be the attenuation coefficient, sound speed and density of
layer number i of the tissue. After the plane wave penetrates through layer i, the
magnitude of the wave is attenuated based on αi and the thickness of the layer. At
the interface between layers i and i+1, part of the wave magnitude is reflected and
the rest is transmitted proportional to the reflection and transmission coefficients.
For example, the magnitude of the wave reflected at the interface between layers 1
and 2 is computed as,

|Ψp
1| = exp (−α0 c0∆t0 − α1 c1∆t1) T0→1 T1→0 R1←2 |Ψp

inc| (5.2)

where ∆t0 = t0 − tinc; ∆t1 = t1 − t0; tinc is the time at which the incident wave
is transmitted; t0 and t1 are respectively the arrival time of waves reflected at the
layer 0-1 and 1-2 interfaces; α0 is the attenuation coefficient of water, the coupling
material between the transducer and tissue; T0→1 and T1→0 are the transmission
coefficients from layer 0 to 1 and from layer 1 to 0, respectively; R1←2 is the reflection
coefficient from layer 2 to 1. T0→1, T1→0 and R1←2 are functions of c0, c1, c2, ρ0, ρ1
and ρ2.

At each frequency, the magnitude of the wave reflected from the interface be-
tween layers i and i+ 1 can be derived as,

|Ψp
i | = exp

(
−

i∑

j=0

αj cj∆tj

)
i∏

j=1

(Tj−1→j Tj→j−1) Ri←i+1 |Ψp
inc| (5.3)

A multi-layered tissue is simulated based on the acoustic properties of the tissue
phantoms developed in this research. Details of tissue phantom development will
be presented in Section 6.3. A seven-layered tissue phantom is developed to mimic
the tissue layers of mammalian eye along the optical axis. The sound speeds and
densities of the tissue phantoms are presented in Tables 5.1 and 5.2. As mentioned
in Section 1.5 that attenuation coefficients of soft tissues are approximately first
order functions of frequency. αi is expressed as,

αi = mi f + bi (5.4)

where f is the frequency of the simulated ultrasound wave; mi and bi are the slope
and y-intercept of the attenuation model, respectively. mi and bi of the tissue
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Tissue phantom Sound speed
(m/s)

Mean Std
Cornea 1585.6 2.087
Aqueous humor 1518.4 3.978
Lens 1597.7 4.513
Vitreous humor 1534.6 9.865
Retina 1550.0 8.204
Choroid 1551.0 4.382
Sclera 1597.2 5.738

Table 5.1: Sound speeds of tissue phantoms

Tissue phantom Density
(g/ml)

Mean Std
Cornea 1.060 1.863e-3
Aqueous humor 1.007 4.775e-3
Lens 1.112 4.757e-3
Vitreous humor 1.010 1.508e-3
Retina 1.032 4.676e-3
Choroid 1.047 8.406e-3
Sclera 1.077 2.471e-3

Table 5.2: Mass densities of tissue phantoms

Tissue phantom Slope Y-intercept
(1/(m MHz)) (1/m)

Mean Mean
Cornea 2.48e-6 40.6600
Aqueous humor 2.48e-6 3.0871
Lens 2.47e-6 77.1070
Vitreous humor 2.46e-6 8.2263
Retina 2.49e-6 16.9776
Choroid 2.50e-6 26.1580
Sclera 2.50e-6 47.2794

Table 5.3: Slopes and y-intercepts of attenuation coefficient models of tissue phan-
toms
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Figure 5.1: Simulated echoes of the seven-layered eye phantom

phantoms are listed in Table 5.3. It is noted that the standard deviations of mi

and bi are unavailable since they are model fitted parameters.

Based on the acoustic parameters of the tissue and the wave propagation paths
of the Echotree, the simulated echoes of the tissue are shown in Figure 5.1. The
amplitudes of the echoes are normalized with respect to the absolute maximum
amplitude of the echo signals. The beginning of each echo is detected by the
algorithm discussed in Section 3.2 and is marked by a circle. It should be noted that
eight echoes are detected. The propagation paths of these echoes are investigated.
Each of these paths involves only one reflection, which implies that the echoes
uniquely correspond to the layer interfaces and no reverberation echo is detected.
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5.2 MSF Inverse Scattering of the Simulated Prob-

lem

Given the simulated ultrasound echoes of the multi-layered tissue, estimation of the
tissue acoustic parameters is an inverse scattering problem. As discussed in Section
4.1.1, it is advantageous to first estimate acoustic impedances instead of densities
and then compute densities based on the estimated acoustic impedances and sound
speeds. Therefore, the parameters to be estimated for each layer of the tissue are
defined as mi, bi, ci and Zi. For each layer, MSF performs recursive estimation of
the parameters. In each iteration, the parameter space is randomly sampled. These
samples are weighted as their likelihood of producing the new measurement (i.e.,
echo magnitude in the frequency domain) acquired in the iteration. The weighted
samples are used to construct a posterior PDF of the parameters. The posterior
PDF is optimized based on the Cramer-Rao bound. Uncertainty of measurements
are simulated by adding noise to the ultrasound echoes. Noise is generated using
the noise model in Equation 4.12.

5.3 Results and Analysis

MSF is applied to solve the inverse problem described in Section 5.2 using three
random sample sizes (ns = 50, 100 and 200) and three SNRs (3db, 6db and 12db).
The number of random samples used in the experiments are chosen to be similar
to that used by the state-of-the-art filter (i.e., GSPF-II) in [121]. The optimal
number of random samples is dependent on the definition of optimality and may
vary largely for different optimality definitions. Determining the optimal number
of random samples is out of the scope of this research. For each random sample
size and SNR, MSF is executed twenty times to obtain the statistics of estimation.
The estimation error percentages of the acoustic parameters are presented in Tables
5.4 to 5.12. In addition, the measured and estimated acoustic parameters for 100
random samples and 6db SNR are depicted in Figures 5.2 to 5.5.

MSF estimates four acoustic parameters for each layer of the tissue. The es-
timation errors of these parameters decrease as either or both of random sample
size and SNR increase. The trend of estimation error reduction is expected, since
larger amount of random samples is capable of exploring the solution space in
higher resolution to achieve more accurate estimates. In addition, when the noise
level decreases, the samples closed to the measured values are given higher weights
(i.e., likelihoods of the samples being the measured acoustic parameters given the
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No. of samples: Estimation error percentage
50 Attenuation coef. model Sound speed Density

SNR = 3db Slope Y-intercept
Eye layer Mean Std Mean Std Mean Std Mean Std
Cornea 0.169 0.652 6.197 0.187 1.186 0.305 -1.171 0.297

Aqueous humor -0.140 0.738 -1.035 5.313 0.953 0.711 -1.031 0.698
Lens 0.758 0.597 -7.367 5.326 -0.358 1.278 0.443 1.297

Vitreous humor 0.918 0.342 11.602 5.517 -1.147 1.968 1.488 2.115
Retina -0.405 0.186 12.324 5.675 -1.573 0.700 1.852 0.813
Choroid -1.008 0.387 4.927 3.442 3.022 0.553 -2.710 0.452
Sclera -0.766 0.255 -2.737 3.371 0.474 1.509 -0.236 1.499

Absolute average: 0.595 0.451 6.598 4.119 1.245 1.004 1.276 1.025

Table 5.4: MSF acoustic parameter estimation errors based on plane wave simula-
tion, 50 random samples and 3db SNR

No. of samples: Estimation error percentage
100 Attenuation coef. model Sound speed Density

SNR = 3db Slope Y-intercept
Eye layer Mean Std Mean Std Mean Std Mean Std
Cornea 0.200 0.643 -1.090 1.748 0.224 0.185 -0.223 0.184

Aqueous humor -0.169 0.647 4.192 2.259 1.034 1.019 -1.007 1.017
Lens 0.653 0.498 -5.452 0.831 0.793 0.942 -0.762 0.914

Vitreous humor 0.933 0.284 5.285 6.308 -2.038 0.753 2.269 0.680
Retina -0.306 0.113 3.826 2.409 -1.304 0.133 1.457 0.155
Choroid -1.046 0.263 5.478 2.156 1.402 0.682 -1.270 0.644
Sclera -0.639 0.297 5.749 1.808 0.402 1.313 -0.335 1.320

Absolute average: 0.564 0.392 4.439 2.503 1.028 0.718 1.046 0.702

Table 5.5: MSF acoustic parameter estimation errors based on plane wave simula-
tion, 100 random samples and 3db SNR
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No. of samples: Estimation error percentage
200 Attenuation coef. model Sound speed Density

SNR = 3db Slope Y-intercept
Eye layer Mean Std Mean Std Mean Std Mean Std
Cornea 0.022 0.329 2.827 0.928 -0.202 0.297 0.203 0.299

Aqueous humor 0.052 0.152 -5.911 0.432 1.853 0.143 -1.843 0.142
Lens 0.530 0.219 -3.511 1.847 0.030 0.933 -0.001 0.928

Vitreous humor 0.911 0.161 4.754 3.561 -1.222 0.343 1.337 0.294
Retina -0.557 0.169 2.534 4.020 0.039 0.931 0.047 0.904
Choroid -1.045 0.203 2.193 3.202 0.309 1.101 -0.228 1.054
Sclera -0.688 0.319 2.636 3.750 -0.530 1.046 0.579 1.079

Absolute average: 0.543 0.222 3.481 2.534 0.598 0.685 0.606 0.671

Table 5.6: MSF acoustic parameter estimation errors based on plane wave simula-
tion, 200 random samples and 3db SNR

No. of samples: Estimation error percentage
50 Attenuation coef. model Sound speed Density

SNR = 6db Slope Y-intercept
Eye layer Mean Std Mean Std Mean Std Mean Std
Cornea -0.095 0.650 6.131 0.212 1.265 0.288 -1.243 0.271

Aqueous humor -0.082 0.803 -1.058 5.422 0.766 0.841 -0.837 0.831
Lens 0.896 1.019 -7.268 3.881 -0.534 0.793 0.622 0.813

Vitreous humor 1.173 0.571 10.235 5.862 -0.839 1.836 1.175 1.912
Retina -0.334 0.348 10.821 3.615 0.267 0.607 -0.013 0.584
Choroid -0.916 0.376 7.192 2.923 1.546 1.575 -1.204 1.466
Sclera -0.404 0.283 -4.145 1.959 -1.546 0.168 1.895 0.233

Absolute average: 0.557 0.579 6.693 3.411 0.966 0.873 0.999 0.873

Table 5.7: MSF acoustic parameter estimation errors based on plane wave simula-
tion, 50 random samples and 6db SNR
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No. of samples: Estimation error percentage
100 Attenuation coef. model Sound speed Density

SNR = 6db Slope Y-intercept
Eye layer Mean Std Mean Std Mean Std Mean Std
Cornea 0.134 0.213 -2.929 1.726 0.149 0.367 -0.147 0.366

Aqueous humor -0.139 0.184 6.662 2.539 1.385 0.111 -1.338 0.111
Lens 0.452 0.056 -4.622 1.763 1.403 0.565 -1.310 0.550

Vitreous humor 1.095 0.128 8.314 2.428 -1.370 0.914 1.601 1.012
Retina -0.444 0.090 4.925 1.345 0.702 0.419 -0.521 0.411
Choroid -0.991 0.292 4.019 1.002 0.280 0.462 -0.111 0.455
Sclera -0.421 0.308 -2.602 3.000 -0.048 1.974 0.236 2.032

Absolute average: 0.525 0.181 4.867 1.972 0.762 0.687 0.752 0.705

Table 5.8: MSF acoustic parameter estimation errors based on plane wave simula-
tion, 100 random samples and 6db SNR

No. of samples: Estimation error percentage
200 Attenuation coef. model Sound speed Density

SNR = 6db Slope Y-intercept
Eye layer Mean Std Mean Std Mean Std Mean Std
Cornea -0.071 0.426 -3.062 1.238 -1.373 0.257 1.393 0.264

Aqueous humor 0.123 0.480 5.705 2.410 1.699 0.484 -1.600 0.461
Lens 0.426 0.779 -2.459 1.816 0.720 0.811 -0.699 0.808

Vitreous humor 0.917 0.433 4.597 4.947 -0.923 0.945 1.049 0.995
Retina -0.272 0.159 2.797 4.134 -0.151 0.349 0.235 0.266
Choroid -0.865 0.308 1.673 3.743 0.389 0.828 -0.308 0.795
Sclera -0.634 0.301 1.166 4.879 -0.447 1.309 0.505 1.304

Absolute average: 0.473 0.412 3.066 3.310 0.815 0.712 0.827 0.699

Table 5.9: MSF acoustic parameter estimation errors based on plane wave simula-
tion, 200 random samples and 6db SNR
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No. of samples: Estimation error percentage
50 Attenuation coef. model Sound speed Density

SNR = 12db Slope Y-intercept
Eye layer Mean Std Mean Std Mean Std Mean Std
Cornea -0.073 0.358 5.915 0.955 1.506 0.395 -1.483 0.385

Aqueous humor 0.102 0.128 -0.739 5.345 0.782 0.856 -0.861 0.855
Lens 0.456 0.295 -0.832 1.961 -1.344 0.482 1.433 0.510

Vitreous humor 0.817 0.154 -0.597 4.591 0.576 0.569 -0.524 0.537
Retina -0.527 0.208 5.309 3.361 0.004 0.347 0.111 0.303
Choroid -0.973 0.223 4.113 4.334 0.261 1.102 -0.106 1.148
Sclera -0.462 0.200 -7.255 0.447 -1.348 0.719 1.626 0.764

Absolute average: 0.487 0.224 3.537 2.999 0.832 0.639 0.878 0.643

Table 5.10: MSF acoustic parameter estimation errors based on plane wave simu-
lation, 50 random samples and 12db SNR

No. of samples: Estimation error percentage
100 Attenuation coef. model Sound speed Density

SNR = 12db Slope Y-intercept
Eye layer Mean Std Mean Std Mean Std Mean Std
Cornea -0.094 0.417 -2.042 2.206 0.218 0.248 -0.217 0.248

Aqueous humor -0.026 0.308 4.184 3.401 1.122 0.435 -1.090 0.416
Lens 0.345 0.591 -4.086 1.728 0.478 0.971 -0.422 0.971

Vitreous humor 0.968 0.261 6.524 4.665 -0.423 0.505 0.613 0.530
Retina -0.475 0.159 3.759 3.466 0.904 0.509 -0.738 0.550
Choroid -0.847 0.210 4.035 4.230 0.509 0.514 -0.361 0.492
Sclera -0.493 0.395 -1.454 5.634 -0.030 1.580 0.180 1.560

Absolute average: 0.464 0.334 3.727 3.619 0.527 0.680 0.517 0.681

Table 5.11: MSF acoustic parameter estimation errors based on plane wave simu-
lation, 100 random samples and 12db SNR
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Figure 5.2: Comparison between the measured and MSF estimated slope of atten-
uation coefficient model based on plane wave simulation, 100 random samples and
6db SNR
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Figure 5.3: Comparison between the measured and MSF estimated y-intercept of
attenuation coefficient model based on plane wave simulation, 100 random samples
and 6db SNR
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Figure 5.4: Comparison between the measured and MSF estimated sound speed
based on plane wave simulation, 100 random samples and 6db SNR
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Figure 5.5: Comparison between the measured and MSF estimated density based
on plane wave simulation, 100 random samples and 6db SNR
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No. of samples: Estimation error percentage
200 Attenuation coef. model Sound speed Density

SNR = 12db Slope Y-intercept
Eye layer Mean Std Mean Std Mean Std Mean Std
Cornea 0.053 0.317 -1.002 0.659 -1.026 0.220 1.037 0.224

Aqueous humor 0.083 0.135 3.212 0.883 0.555 0.801 -0.506 0.803
Lens 0.262 0.261 -1.982 2.664 1.022 0.391 -1.008 0.391

Vitreous humor 0.822 0.179 3.641 4.096 -0.287 0.615 0.349 0.667
Retina -0.446 0.248 2.238 4.224 0.080 0.932 -0.021 0.848
Choroid -0.772 0.119 1.214 2.072 0.003 1.298 0.064 1.346
Sclera -0.692 0.345 -2.231 5.058 -0.247 1.143 0.307 1.083

Absolute average: 0.447 0.229 2.217 2.808 0.460 0.771 0.470 0.766

Table 5.12: MSF acoustic parameter estimation errors based on plane wave simu-
lation, 200 random samples and 12db SNR

information of noisy measurements). The samples with high weights are used to
construct the posterior PDF of the parameters. Moreover, the average reduction
of estimation error with respect to the increase of random samples is 17% per 50
samples. This error reduction is small relative to the random sample increase of
100% (i.e., increase from 50 to 100 and from 100 to 200). Therefore, the estimation
accuracy of MSF can be considered insensitive to the size of random samples. Fur-
thermore, the estimation error of these three parameters increase for later layers of
the tissue (i.e., layers further away from the transducer). This is because MSF esti-
mates acoustic parameter recursively, as such the estimation results of the previous
layers are used in the estimation of the current layer. Therefore, the estimation
error accumulate through the layers.

5.4 Summary

MSF is tested using a simulated inverse scattering problem in order to analyze the
behavior and performance of MSF in the absence of physical modeling uncertainties.
Results show that MSF achieves an average absolute estimation error of 1.6%. Also,
MSF is not heavily dependent on the size of random samples and SNR.
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Chapter 6

Investigation on Multi-layered
Tissue Phantoms

In order to evaluate the acoustic parameter estimation accuracy of MSF, calibrated
test subjects with acoustic characteristics comparable to that of the real tissues
are needed. Since ultrasound is widely accepted for clinical eye examination and
the eye is a multi-layered organ, ocular tissues are chosen for testing. Although
ocular tissues are available, they are inadequate test subjects since their acoustic
characteristics can be affected by many factors including freshness and medical
conditions of the animals. Therefore, it is necessary to develop tissue phantoms
with stable acoustic characteristics as test subjects. The development of tissue
phantoms requires the acoustic parameters of real tissues. A brief background
on the anatomy of the mammalian eye is presented. Real cow eye tissues are
characterized. Tissue phantoms of the cow eye are fabricated based on the tissue
characteristics. A series of experiments are conducted to characterize the tissue
phantoms using ultrasound. The equipment and its settings used for acquiring
ultrasound echoes from the phantoms are presented. They are followed by the
phantom acoustic parameter estimation results produced by MSF.

6.1 Anatomy of the Eye

Ultrasound testing of the eye focuses on the ocular structures along the optical axis.
For mammalian eyes, there are seven ocular layers along the optical axis, namely
cornea, anterior chamber, lens, posterior chamber, retina, choroid and sclera. Brief
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descriptions of these layers are presented below. Details of the anatomy of the eye
can be found in [148, 149]. These layers are depicted in Figure 6.11.

1. Cornea is a avascular, transparent tissue that covers one-sixth of the anterior
surface of the eyeball. In addition, it refracts the entering light as part of the
eye focusing system.

2. The anterior chamber is filled with a watery liquid from blood filtration known
as the aqueous humor. It is absorbed back to the circulation through a ve-
nous ring at the base of the cornea. Aqueous humor helps maintaining the
intraocular pressure, refracts light, and provides nutrients to the avascular
cornea and lens.

3. Lens is a transparent, biconvex, flexible disc attached to the ciliary muscles,
which control the curvature of the lens to focus light onto the retina.

4. Posterior chamber occupies four-fifths the eyeball in length. It is filled with
a transparent, gelatinous substance known as the vitreous humor. The func-
tions of vitreous humor include maintaining pressure within the eye and hold-
ing the lens and the retina in place. Vitreous humor does not circulate like
aqueous humor.

5. Retina consists of two layers, namely an outer pigmented layer and an in-
ner sensory layer. The pigmented layer is attached to the choroid, and they
prevent light reflection within the eye. The sensory layer contains photore-
ceptor cells called rods and cones, and numerous neurons. In general, rods are
twenty times more prevalent than cones and are responsible for light sensing
to provide colorless blurry image. On the other hand, cones produce sharp
colored vision given sufficient light source.

6. Choroid is a very thin, highly vascular, heavily pigmented layer firmly at-
tached to the retina. Because of the heavy pigmentation, it appears black in
color to absorb entering light and to avoid reflection for vision interference.

7. Sclera is an opaque, white, dense fibrous outer layer of the eye wall. Exter-
nally, a small anterior portion of sclera can be seen as the white part of the
eye surrounding the cornea, and the posterior of sclera provides attachment
sites for the extrinsic muscles involved in eyeball movements. It also helps
maintain the shape of the eye. Internally, sclera is loosely attached to choroid
and protects the internal structure of the eye.

1The source of this figure is http://en.wikipedia.org/wiki/Eye.
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Figure 6.1: Anatomy of the eye

6.2 Characterization of Eye Tissues

The eye tissue acoustic characteristics of interest in this work are sound speed,
attenuation coefficient and density. Data of ocular tissue sound speeds and atten-
uation coefficients found in the literature [150, 151, 152, 23, 153] are summarized
in Tables 6.1 and 6.2. However, data of ocular tissue densities are scarce. Ex-
periments on ocular tissue density measurements are conducted by our research
collaborators. Bovine eyes are employed because they can be purchased from a
beef processing plant nearby (Better Beef Ltd., Guelph, Ontario, Canada). Bovine
eyes within a few hours after slaughtered are dissected to extract the seven tissues
along the optical path, namely cornea, aqueous humor, lens, vitreous humor, retina,
choroid and sclera, as illustrated in Tables 6.3 and 6.4. Except for aqueous humor
and vitreous humor, all excised tissues are first preserved in a mixture of Medium
199 (Sigma M3769-1), Fetal Bovine Serum (Sigma F1051), penicillin, L-Glutamine,
HEPES and sodium bicarbonate. Densities of these tissues are measured using a
solution density comparison method [154]. Brief descriptions of this method are
presented here. Solutions of various concentrations are made by dissolving different
amounts of sucrose (Sigma S1174) in Medium 199 (Sigma M3769-1). These tissues
are carefully immersed in the sucrose solutions of various concentrations. All visible
air bubbles on the surface of the immersed tissue are removed. When the tissue
floats, its density is less than that of the solution. The converse is true when the
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Ocular tissue Sound speed (m/s)
Human Porcine

Mean range Std range Mean range Std range
Cornea 1553.0 - 1632.1 3.0 - 15.5 1555.0 - 1595.0 2.0 - 12.0
Aqueous humor 1510.4 - 1514.3 3.9 - 8.6 - -
Lens 1538.1 - 1645.0 1.2 - 16 1610.0 - 1677.0 2.0 - 10.7
Vitreous humor 1503.0 - 1530.0 0.5 - 7.3 1497.0 - 1531.0 1.0 - 20.0
Retina 1538.0 - 1576.5 20 - 38 1532.0 - 1548.5 4.0 - 15.1
Choroid 1530.8 - 1527.0 16 1546.8 - 1523.0 19.5
Sclera 1583.0 - 1745.0 10 - 55 1604.0 - 1661.0 2.0 - 11.1

Table 6.1: Sound speeds in normal ocluar tissues taken from the literature

Ocular tissue Attenuation coefficient (dB/(cm MHz))
Human Porcine

Mean Std Mean Std
Cornea 0.78 0.39 1.15 0.14
Aqueous humor - - - -
Lens 1.19 0.29 1.33 0.15
Vitreous humor - - - -
Retina 1.15 0.42 0.83 0.31
Choroid 0.95 0.4 1.56 0.29
Sclera 0.97 0.22 1.68 0.31

Table 6.2: Attenuation coefficients of ocluar tissues taken from literature

tissue sinks. The initial concentration of sucrose solution is determined as the con-
centration at which the bovine eye ball is suspended in the solution. The upper and
lower density bounds of each tissue are first determined by testing it with solutions
of various concentrations until it floats and sinks. A bisection search of the tissue
density is then performed. The search is terminated when the adjustment of the
solution concentration is within 1%. The densities of aqueous humor and vitreous
humor are gauged based on their weight and volume. The measurements of bovine
ocular layer densities are reported in Table 6.5.

Thicknesses of the ocular tissues are also needed for the eye phantom devel-
opment. Although the thicknesses of some excised ocular tissues can be gauged
by a caliber, the measurements are unreliable due to tissue compressibility. Also,
aqueous humor and vitreous humor are liquid-like substances, their shapes and
thicknesses can only be maintained within intact eyes. A convenient way to access

122



Step 1 - extract aqueous humor Step 2 - remove muscles
by a syringe surrounding the eye

Step 3 - cut the eye in half Step 4 - extract vitreous humor

Step 5 - extract lens Step 6 - extract Cornea

Table 6.3: Illustration of bovine ocular layer dissections part 1
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Step 7 - extract retina Step 8 - extract choroid

Step 9 - extract sclera

Table 6.4: Illustration of bovine ocular layer dissections part 2

Ocular tissue Density (g/ml) Thickness (mm)
Mean Std Mean Std

Cornea 1.061 0.004 1.840 0.029
Aqueous humor 1.005 0.012 3.066 0.104
Lens 1.104 0.001 10.695 0.111
Vitreous humor 1.007 0.010 17.142 0.096
Retina 1.033 0.002 0.829 0.039
Choroid 1.052 0.002 0.279 0.004
Sclera 1.076 0.003 1.881 0.043

Table 6.5: Density and thickness measurements of bovine ocluar tissues
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Figure 6.2: Bovine eyes frozen for ocluar layer thickness measurements

all ocular tissues and to maintain their shapes is to cut a frozen eyeball along its
optical path. Bovine eyes are frozen, as shown in Figure 6.2, in a cryostat and cut
in two halves along their optical paths. The cross sections of eye balls are imaged
by a digital camera using four mega pixel resolution as displayed in Figure 6.3. The
the ocular thicknesses are measured using a software called ImageJ. The resulting
ocular thicknesses are shown in Table 6.5.

6.3 Development of Tissue Phantoms

The development of a tissue phantom involves material selection and fabrication,
which are described in the subsequent sections.
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Figure 6.3: Cross section of a bovine eye used for ocluar thickness measurements

6.3.1 Phantom Material Selection

A number of materials have been used to construct phantoms of some ocular tissues
in the literature including acrylamide/bis-acrylamide (acrylamide/bis) [155, 156]
and silicone based materials [157]. For making non-ocular tissue phantoms, agar
[158, 159, 160, 161, 162] and gelatin [163, 164, 165, 166, 167, 168] based materials
have been used extensively.

Recipes of tissue phantoms are commonly specified as concentrations by weight,
which are equivalent to the densities of materials. These materials are tested
to determine if they can be used to fabricate phantoms of the densities of ocu-
lar tissues shown in Table 6.5. Protocol two in [155] is implemented using 40%
(weight/volume) 29:1 acrylamide/bis solution (VWR) with various amounts of de-
ionized water. The highest density obtained is slightly larger than 1.03 g/ml. Higher
density acrylamide/bis solutions can be obtained by mixing acrylamide/bis powder
with de-ionized water. However, acrylamide/bis powder is a neural toxin and is
carcinogenic. To avoid potential health risks, acrylamide/bis powder is not con-
sidered in this work. In addition, a silicone elastomer called Sylgard 184 (Dow
Corning) is investigated. The density of this material is also approximately 1.03
g/ml. Furthermore, various concentrations of agar and gelatin solutions are made
by mixing Agarose (Sigma A9539) and gelatin (Sigma-Aldrich G2500) powders and
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de-ionized water. These solutions are heated until the powder is completely dis-
solved. At high concentrations, both solutions become quite viscous such that air
bubbles produced by heating the solutions are trapped.

Although both agar and gelatin solutions are too viscous for our application
at high concentrations, it can be observed that gelatin solutions are less viscous
than that of agar. For this reason, gelatin is selected as a phantom ingredient. We
then investigate making high concentration gelatin solutions with smaller amount
of gelatin powder to reduce viscosity. The key to achieving this is to find a chem-
ical that polymerizes with gelatin in water and is water soluble in large quantities
without greatly increasing the solution viscosity. One such chemical came to mind
is sucrose, which polymerizes with gelatin and hence they are common ingredients
of various foods. Also, sucrose is known for its high dissolvability in water with-
out greatly increasing the viscosity of a solution. Therefore, sucrose is selected as
another ingredient of the eye phantom. Experimentations are conducted to investi-
gate the effect of the ratio between gelatin and sucrose on polymerization, solution
viscosity and phantom consistency. It can be concluded that the mix with equal
amounts of gelatin and sucrose yields the best results.

6.3.2 Phantom Fabrication

Each layer of the eye phantom is fabricated by mixing appropriate amounts of
gelatin, sucrose and water to obtain the densities of ocular tissues shown in Table
6.5. Powders of gelatin (Sigma-Aldrich G2500) and sucrose (Sigma S1174) are
added in a clean, dry 100ml Erlenmeyer flask to the weights specified in Table
6.6. The weights of gelatin and sucrose are gauged by a precision balance (Mettler
Toledo AL204 analytical balance). Degased water is added to the flask to reach
100ml. The degased water is also de-ionized and filtered. The gelatin-sucrose-water
mixture is heated in a microwave oven until the gelatin and sucrose are completely
dissolved (i.e., the powders become transparent) and before boiling. The heated
solution is then degased using a vacuum system until no air bubbles are produced.
Polymerization takes place in the vacuum system to form a solid as the solution
cools down. The solid is heated by a microwave oven until it is just melted.

Two tissue phantoms are fabricated in this work as test subjects. The first
is a seven-layered phantom that emulates the mammalian eye along the optical
path. The second is a 4 × 3 × 4 phantom array that comprises various combina-
tions of ocular layers. For seven-layered phantom, the procedures described above
are performed seven times to fabricate the gelatin-sucrose solutions of the ocular
tissue phantoms listed in Table 6.6. This phantom is constructed by dispensing
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Tissue phantom Weight (g)
Gelatin Sucrose

Cornea 9.277 9.269
Aqueous humor 2.522 2.513
Lens 14.578 14.574
Vitreous humor 2.716 2.708
Retina 5.843 5.842
Choroid 8.208 8.210
Sclera 11.120 11.125

Table 6.6: Ingredient weights of tissue phantoms

the solutions of its layers one at a time in a container in the sequence illustrated
in Figure 6.4. The container is a well (i.e., cylindrical opening with 35mm diame-
ter) of a 6-well microtiter plate (BD Falcon). After dispensing the solution of each
layer, the 6-well plate is placed on a leveling platform (self made) to ensure the
tissue phantom surface is parallel to the bottom of the plate. The 6-well plate with
the leveling platform is kept in a refrigerator for thirty minutes to facilitate poly-
merization. The dispensed solution volumes are proportional to the ocular tissue
thicknesses shown in Table 6.5. Theoretically, the thinnest phantom (i.e., choroid,
0.279mm thick) requires only 0.268ml (π × 1.752 × 0.279× 0.01) of the solution to
build the thickness in the well. Practically, 0.268ml of the solution is insufficient
to sustain a layer at the well center due to meniscus effect. The minimum solution
volume needed to sustain a layer at the well center is experimentally determined
as 1.18ml. The volumes of the solutions are scaled based on ocular layer thickness
measurements, while keeping the thickness of phantom eye less than the height of
the well. The actual dispensed solution volumes are listed in Table 6.7. It should
be noted that some of the solution is adhered on the inside of the pipette tip due
to its viscosity, so that the actual dispensed volumes are less than the value shown.

For the 4 × 3 × 4 phantom array, a 4 × 3 grid is created by two 6-well mi-
crotiter plates (BD Falcon). Each of these plates has six wells arranged in two
rows and three columns. Four ocular tissue phantom layers are deposited in each
of these twelve wells. The sequence of layers is different for each well. Each layer
is formed by 3ml (or 3cm^3) of gelatin and sucrose solution, which is measured
and dispensed by a pipette (Eppendorf). The thickness of each layer can be cal-
culated as 3/ (π × 1.752) = 3.1cm2. As mentioned above, the solution is attached
on the inside of the pipette tip due to its viscosity. Therefore, the layer thickness

2The radius of each well is 1.75cm.
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Figure 6.4: The tissue phantom deposit sequence for the second experiment

Tissue phantom Volume (ml)
Cornea 1.33
Aqueous humor 1.45
Lens 2.18
Vitreous humor 2.80
Retina 1.23
Choroid 1.18
Sclera 1.34

Table 6.7: Volumes of gelatin-sucrose solutions used to fabricate tissue phantoms
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Figure 6.5: Fabricated tissue phantoms: 4x3x4 array on the left and 7-layer on the
right

is expect to be less than 31mm. For each layer deposit, the 6-well plate is placed
on a leveling platform (self made) to ensure the tissue phantom layer is parallel to
the bottom of the plate. The 6-well plate with the leveling platform is kept in a
refrigerator for thirty minutes to facilitate polymerization. The sequence of layers
and the fabricated phantom array are shown in Figures 6.6 and 6.5, respectively.

6.4 Experimental Validation

As mention previously, the eye phantom is developed as a calibrated model to
evaluate the estimation accuracy of MSF. Therefore, the phantom must be charac-
terized to validate the similarity of acoustic parameters between the phantom and
real ocular tissues. Experiments are conducted to characterize the phantom using
ultrasound. The experimental setup and results are discussed in the following.

6.4.1 Experimental Setup

The experimental setup employed to realize ultrasound characterization of the eye
phantom includes A) an electronics system that emits and receives ultrasound sig-
nals to and from the phantom, B) a mechanical system that aligns the surfaces
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Pulser-receiver Oscilloscope
Pulse frequency: 1kHz Sampling rate: 1GS/s
Gain: 39db Coupling: AC
Energy setting: 4 Sweep average: 500
Damping setting: 3 Bandwidth: full
Filtering: none Probe attenuation: 1

Noise filter: none
offset: 0
Trigger: negative edge, -500mV

Table 6.8: Settings of pulser-receiver and oscilloscope

of the ultrasound transducer and phantom, setups that are designed for C) sound
speed and D) attenuation coefficient measurements, and E) software that processes
ultrasound signals. These systems and setup are described in the following.

A) Ultrasound system

The ultrasound system comprises of three components shown in Figure 6.7:
polymer immersion transducer (Olympus PI35-2-R 1.00), pulser-receiver (Olym-
pus 5073PR) and digital oscilloscope (Lecroy WaveRunner 64Xi). These com-
ponents are connected in series. The transducer converts the high voltage
pulses generated by the pulser-receiver to acoustic waves, and transforms
acoustic echoes from the tissue phantoms to analog signals. The pulser-
receiver also amplifies and filters the signal from the transducer. The os-
cilloscope serves as an analog-to-digital converter, a signal display device as
well as a data logger. The settings of pulser-receiver and oscilloscope used in
the experiments are listed in Table 6.8.

B) Mechanical system

The mechanical system consists of four components: transducer mount, five-
degree-of-freedom manipulator, water tank and leveling platform. The trans-
ducer mount is a circular plate with a transducer fitting at the center and
perpendicular to the plate surfaces. The diameter of the circular plate is
larger than the opening of the tissue phantom container (i.e., a well of 6-well
microtiter plate) to limit the transducer from getting into the opening to pro-
tect and to prevent compressing the tissue phantoms. The transducer mount
is coupled to the five-degree-of-freedom manipulator that adjusts the pose of
the transducer to gain good signal strength. The tissue phantom container
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Figure 6.7: Electrical system of the ultrasound echo acquisition equipment
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Figure 6.8: Mechanical system of the ultrasound echo acquisition equipment

is placed on the leveling platform for orientation adjustment to improve sig-
nal quality. The transducer, transducer mount, tissue phantoms and leveling
platform are immersed in distilled and filtered water for acoustic coupling.
The mechanical system is depicted in Figure 6.8.

C) Sound Speed Measurement Setup

The thickness of tissue phantom is crucial for its sound speed measurement.
Precise thickness of a phantom is obtained by molding it in a special design
container depicted in Figure 6.9. This container is made of three layers of
lexan and plexiglass, since these materials are widely available and are trans-
parent so that inspection for air bubbles is made possible. The layers are
attached together by an adhesive. The middle layer is machined to create
an opening of the container. The thicknesses of the layers and container are
measured by a digital micrometer to calculate the distance between the in-
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ner surfaces of the container. This distance determines the thickness of the
phantom. The layer between the phantom and transducer is chosen to be
thin, as illustrated in Figure 6.10, to reduce the attenuation of ultrasound
signal transmitting through it. Also, lexan is used for this layer instead of
plexiglass, since the difference of acoustic impedance between lexan and wa-
ter is less than that between plexiglass and water. Therefore, the power of
ultrasound signal transmits through the water-lexan interface is higher than
that of the water-plexiglass interface. On the other hand, thicker pieces of
plexiglass are used for other layers to strengthen the container and to increase
the power of ultrasound echo at the phantom-plexiglass interface.

D) Attenuation Coefficient Measurement Setup

Attenuation coefficients of an eye phantom layer are measured based on the
magnitudes of echoes from the phantom of various thicknesses. Three thick-
nesses of each eye phantom layer are obtained by depositing 2ml, 3.5ml and
5ml of the corresponding gelatin-sucrose solution into a row of a 6-well plate
as demonstrated in Figure 6.11. The thicknesses of these phantoms are de-
termined as 2.079mm, 3.638mm and 5.197mm. The ultrasound transducer
active surface is aligned to be parallel to the surfaces of the phantoms using
the mechanical system. The same distance is maintained between the ultra-
sound transducer surface and each phantom surface to eliminate variation of
signal attenuation due to the water in between these surfaces.

6.4.2 Frequency Contents of Incident Waves

The wave form of the incident wave is obtained from the backscattered signals
from a mirror finished surface of a stainless steel plate. The mirror finished surface
is positioned in parallel and one inch from the transducer. Twenty sets of 1024
backscattered signal samples of the stainless steel plate are collected, and the mean
of these sets is preprocessed by the bandpass filter described in Section 3.1. The
frequency contents of the incident wave are shown in Figure 6.12.

6.4.3 Measurement Noise Characterization

The statistical model of measurement noise data is assumed to be a Gaussian mix-
ture. The parameters of the Gaussian mixture are estimated using expectation
maximization [116]. Data of measurement noise are acquired using the equipment
described in Section 6.4.1 with the absence of tissue phantom. Twenty sets of 1024
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Figure 6.9: Container used for sound speed measurement
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Figure 6.10: Schematics of sound speed measurement setup
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Figure 6.11: Attenuation coefficient measurement setup
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Figure 6.12: Frequency contents of incident wave
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Gaussian mixture Gaussian component
parameter 1 2
Weight 0.3546 0.6454
Mean 0.3523e-4 0.1905e-4
Variance 1.3956e-10 6.6024e-11

Table 6.9: Parameters of Gaussian mixture for measurement noise model

measurement noise samples are collected, and the mean of these sets is taken for
modelling. The resulting mean data (i.e., 1024 samples) is preprocessed by the
bandpass filter described in Section 3.1. Since the measurement model is estab-
lished in the frequency domain, the noise model is the statistical model of the noise
frequency content. Ideally, a noise model should be established for each frequency.
However, it is a cumbersome undertaking. In addition, fast Fourier transforms of
each of these sets (not shown) reveal that the noise frequency contents are fairly
uniform in the transducer’s frequency range. Therefore, one measurement noise
model is applied to all frequencies. Determining the optimal number of Gaussian
components for modelling is out of the scope of this research. Experiments of noise
model estimation using one to ten Gaussian components are conducted, and for
each number of Gaussian component the model estimation is repeated ten times.
Figure 6.13 shows the averaged likelihoods, which increase with the number of
Gaussian components as expected. The largest likelihood increase is from one to
two Gaussian components, and the computing power required for MSF decreases
with the number of components. Therefore, Gaussian mixture of two components
is selected as the measurement noise model. The Gaussian parameters estimated
for this noise model are listed in Table 6.9.

6.4.4 Ultrasound Eye Phantom Layer Characterization

Measurement procedures and results of density, sound speed and attenuation coef-
ficients of the eye phantom layers are presented in the following. The measurement
results of these parameters are compared to data in the literature.

A) Sound Speed

Sound speed is measured based on the time for the wave to propagate through
the eye phantom layer and the thickness of the layer. Containers are fabricated
to mold the phantoms to known thicknesses. The sound speed of each eye
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phantom layer can be calculated as,

c =
d

0.5(t2 − t1)
(6.1)

where c is the sound speed of an eye phantom layer; d is the distance be-
tween the inner lexan and plexiglass surfaces; t1 and t2 are the time at which
the transducer receives echoes from the inner lexan and plexiglass surfaces.
Sound speed measurements of the eye phantom layers are reported in Table
6.10. Reference data of ocular tissue sound speeds and attenuation coefficients
are available since the early 60’s [169, 170, 171, 172, 151, 152, 23]. The sound
speeds and attenuation coefficients of the phantoms are compared to the more
recent data in [23]. Since [23] only focuses on the acoustic parameters of hu-
man and porcine ocular tissues, the parameters of the phantoms are examined
with respect to that of these tissues. The parameters of aqueous humor are
not reported in [23]. Therefore, no comparisons to aqueous humor are made.
Except for vitreous and choroid, the phantom sound speeds are between that
of human and porcine ocular tissues as depicted in Figure 6.14. The sound
speed of the choroid phantom is within the range of that of porcine. The
average, smallest and largest absolute difference between the sound speeds
of eye phantom layers, human and porcine ocular tissues are shown in Table
6.11. It should be noted that the sound speed differences between human and
porcine ocular tissues are larger than that between human ocular tissues and
phantoms, as well as that between porcine ocular tissues and phantoms. This
indicates that the sound speeds of the phantoms are more similar to that of
both human and porcine ocular tissues than the ocular tissue sound speeds
between these species.

B) Attenuation Coefficient

Attenuation coefficient is frequency dependant. For each frequency f , the
attenuation coefficient of an eye phantom layer can be calculated as,

αf = log10

(
ai,f
aj,f

)
/ (−2 (di − dj)) (6.2)

where αf is the attenuation coefficient of an eye phantom layer at f ; di and
dj are the thicknesses of the phantom; ai,f and aj,f are the amplitudes of the
f component of echoes from the interface between 6-well plate and di- and
dj-thick phantoms, respectively.
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Tissue phantom Sound speed
(m/s)

Mean Std
Cornea 1585.6 2.087
Aqueous humor 1518.4 3.978
Lens 1597.7 4.513
Vitreous humor 1534.6 9.865
Retina 1550.0 8.204
Choroid 1551.0 4.382
Sclera 1597.2 5.738

Table 6.10: Sound speed measurements of tissue phantoms

Cornea Lens Vitreous Retina Choroid Sclera
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Figure 6.14: Comparisons between the sound speed measurements of eye phantom
layers and ocular tissues of human and porcine based on literature data
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Sound speed difference (%)
Average Smallest Largest

HT 0.96 0.013 (sclera) 1.68 (retina)
PT 1.39 0.097 (retina) 3.42 (sclera)
HP 1.82 0.81 (lens) 3.56 (sclera)

Table 6.11: Phase velocity differences between human and tissue phantoms (HT),
porcine and tissue phantoms (PT) and human and porcine (HP)

Attenuation coefficient difference (%)
Average Smallest Largest

HT 38.90 21.38 (cornea) 59.51 (lens)
PT 55.15 36.17 (retina) 69.96 (lens)
HP 52.28 19.39 (lens) 92.70 (choroid)

Table 6.12: Attenuation coefficient differences between human and tissue phantoms
(HT), porcine and tissue phantoms (PT) and human and porcine (HP)

The attenuation coefficients of the eye phantom layers are shown in Figure
6.15 and are compared to that of the human and porcine ocular tissues data
in [23] as shown in Figure 6.16. The average, smallest and largest absolute
difference between the attenuation coefficients of the phantoms, human and
porcine ocular tissues are shown in Table 6.12. Similar to sound speed, the
attenuation coefficients of the phantoms are more similar to that of both hu-
man and porcine ocular tissues than the ocular tissue attenuation coefficients
between these species.

The average sound speeds and attenuation coefficients of the phantom and
human eye are more similar than that of human and porcine eyes. Porcine
eye has been recommended as an animal model for human eye [23, 152].
Therefore, it can be concluded that the eye phantom is a good model of
mammalian eyes, and is a better model for human eye than porcine eye for
the purpose of ultrasound eye characterization method evaluation.

C) Density

Densities of eye phantom layers are measured using a density meter (Mettler
Toledo AL204 analytical balance and density determination kit). Detail pro-
cedures of density measurements can be found in the density meter manual.
Measurements of the phantom densities are reported in Table 6.13. Since data
of ocular tissue densities are scarce, the phantom densities are only compared
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Figure 6.15: Attenuation coefficient measurements of tissue phantoms
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Figure 6.16: Comparisons between the attenuation coefficient measurements of
tissue phantoms and ocular tissues of human and porcine at 20 MHz based on
literature data
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Tissue phantom Density
(g/ml)

Mean Std
Cornea 1.060 1.863e-3
Aqueous humor 1.007 4.775e-3
Lens 1.112 4.757e-3
Vitreous humor 1.010 1.508e-3
Retina 1.032 4.676e-3
Choroid 1.047 8.406e-3
Sclera 1.077 2.471e-3

Table 6.13: Mass density measurements of tissue phantoms

to that of the bovine ocular tissues in Table 6.5. Figure 6.17 shows that
phantom densities closely follow to that of the bovine tissues. The average,
smallest and largest absolute difference between the densities of the bovine
ocular tissues and phantoms are 0.28%, 0.093% (sclera) and 0.72% (lens).

6.4.5 Seven-layered Tissue Phantom Acoustic Parameter
Estimation

The seven-layered tissue phantom described in Section 6.3.2 is employed as the test
subject to compare the performances of MSF and GSPF-II. Backscattered signals
of the tissue phantom array are acquired using the equipment described in Section
6.4.1. Twenty sets of 20002 samples of the backscattered signals are recorded. Each
of the twenty sets is preprocessed by the bandpass filter described in Section 3.1.
The averaged backscattered signals are shown in Figure 6.18. The amplitudes of
the echoes are normalized with respect to the absolute maximum amplitude of the
echo signals. The circle markers indicate the beginning of detected echoes.

The parameters used in MSF and GSPF-II are listed below.

• Measurement noise model: the statistical model obtained in Section 6.4.3

• Minimum andmaximum of the slope of attenuation coefficient model: 2.45×10−6
and 2.51×10−6(Hz m)−1

• Minimum and maximum of the constant attenuation coefficient model: 3.00
and 78.00m−1
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Figure 6.17: Comparisons between the density measurements of tissue phantoms
and bovine ocular tissues
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Figure 6.18: Backscattered signals of 7-layered tissue phantom
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• Minimum and maximum of sound speed: 1500 and 1620m/s

• Minimum and maximum of acoustic impedance: 1.40×109 and 1.92×109g/(s
m2)

• Number of random samples: 50, 100 and 200. The number of random samples
used in the experiments are chosen to be similar to that used by the state-of-
the-art filter (i.e., GSPF-II) in [121]. The optimal number of random samples
is dependent on the definition of optimality and may vary largely for different
optimality definitions. Determining the optimal number of random samples
is out of the scope of this research.

• Frequencies at which the estimations take place: 7 frequencies from 6.13 to
27.61MHz with 1.53MHz increments

The presentations of estimation results are organized as follows:

• The statistics of acoustic parameter estimation errors based on the three
random sample sizes are listed in Tables 6.14, 6.15 and 6.16

• The measured and estimated acoustic parameters are in depicted Figures 6.19,
6.20, 6.21 and 6.22

6.4.6 Four-layered Tissue Phantom Array Acoustic Para-
meter Estimation

The 4x3x4 tissue phantom array described in Section 6.3.2 is employed as the test
subject to compare the performances of MSF and GSPF-II. Backscattered signals
of the tissue phantom array are acquired using the equipment described in Section
6.4.1. For each of the twelve four-layer array, twenty sets of 20002 samples of the
backscattered signals are recorded. Each of the twenty sets is preprocessed by the
bandpass filter described in Section 3.1. The averaged backscattered signals of each
of the twelve four-layer array are shown from Figures 6.23 to 6.26. The amplitudes
of the echoes are normalized with respect to the absolute maximum amplitude of
the echo signals. The circle markers indicate the beginning of detected echoes.

The parameters used in MSF and GSPF-II are identical to that listed in Section
6.4.5. The estimation errors based on 100 random samples are shown in Figures
6.27, 6.28, 6.29 and 6.30.
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MSF estimation error percentage
No. of samples: Attenuation coef. model Sound speed Density

50 Slope Y-intercept
Phantom layer Mean Std Mean Std Mean Std Mean Std

Cornea 0.167 0.418 -4.178 0.622 -1.168 0.477 1.184 0.489
Aqueous humor 0.149 0.419 16.988 3.138 1.154 0.292 -1.014 0.332

Lens 0.436 0.336 -3.710 1.468 0.178 0.833 -0.189 0.830
Vitreous humor 0.894 0.126 19.594 9.936 0.030 0.775 0.387 0.765

Retina -0.423 0.071 14.278 6.337 0.620 0.588 -0.239 0.608
Choroid -0.969 0.177 6.889 4.542 0.618 1.055 -0.235 0.971
Sclera -0.780 0.304 -3.973 4.063 -2.400 1.166 2.913 1.329

Abs. average: 0.546 0.265 9.944 4.301 0.881 0.741 0.880 0.761
GSPF-II estimation error percentage

No. of samples: Attenuation coef. model Sound speed Density
50 Slope Y-intercept

Phantom layer Mean Std Mean Std Mean Std Mean Std
Cornea 0.053 0.255 0.352 0.628 0.381 1.752 -0.181 2.456

Aqueous humor -0.027 0.814 1.736 17.560 -0.542 1.637 0.271 1.291
Lens 0.611 0.964 0.727 2.482 1.153 1.056 -0.495 1.299

Vitreous humor 1.030 0.172 3.728 20.773 0.180 2.199 0.018 1.177
Retina -0.427 0.950 49.363 24.788 -0.948 2.048 1.845 3.469
Choroid -1.023 0.495 72.477 10.743 5.889 2.861 1.976 2.313
Sclera -0.629 0.755 63.254 1.186 0.602 2.066 5.483 2.812

Abs. average: 0.542 0.629 27.376 11.166 1.385 1.945 1.467 2.117

Table 6.14: MSF and GSPF-II acoustic parameter estimation errors based on 7-
layered tissue phantom, focused wave and 50 random samples
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MSF estimation error percentage
No. of samples: Attenuation coef. model Sound speed Density

100 Slope Y-intercept
Phantom layer Mean Std Mean Std Mean Std Mean Std

Cornea 0.087 0.224 3.031 3.162 -0.438 0.581 0.443 0.587
Aqueous humor 0.039 0.175 -1.665 8.821 0.326 0.514 -0.374 0.504

Lens 0.656 0.169 -4.154 2.253 0.906 0.815 -0.875 0.810
Vitreous humor 0.836 0.138 8.734 5.046 0.706 0.565 -0.494 0.474

Retina -0.497 0.117 6.595 4.422 1.167 0.573 -0.957 0.554
Choroid -0.920 0.255 5.315 4.143 0.895 0.597 -0.689 0.698
Sclera -0.710 0.389 -5.052 0.773 -1.392 1.280 1.710 1.491

Abs. average: 0.535 0.210 4.935 4.089 0.833 0.704 0.792 0.731
GSPF-II estimation error percentage

No. of samples: Attenuation coef. model Sound speed Density
100 Slope Y-intercept

Phantom layer Mean Std Mean Std Mean Std Mean Std
Cornea -0.062 0.451 -0.541 1.121 0.379 3.067 -0.186 0.621

Aqueous humor 0.070 0.729 9.547 10.354 0.454 1.766 -0.198 0.700
Lens 0.483 0.688 -2.127 2.163 0.464 1.008 -0.121 1.740

Vitreous humor 0.906 0.671 4.607 14.578 0.094 1.865 0.117 1.146
Retina -0.549 0.445 41.484 18.216 0.922 2.298 0.781 2.231
Choroid -0.913 0.214 62.276 9.261 4.771 0.264 1.803 2.496
Sclera -0.583 0.557 63.952 1.075 0.405 1.721 4.876 4.787

Abs. average: 0.509 0.536 26.362 8.110 1.070 1.713 1.155 1.960

Table 6.15: MSF and GSPF-II acoustic parameter estimation errors based on 7-
layered tissue phantom, focused wave and 100 random samples
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MSF estimation error percentage
No. of samples: Attenuation coef. model Sound speed Density

200 Slope Y-intercept
Phantom layer Mean Std Mean Std Mean Std Mean Std

Cornea 0.094 0.320 3.434 1.051 -0.572 0.394 0.582 0.409
Aqueous humor 0.079 0.196 -2.364 1.009 0.111 0.575 -0.149 0.548

Lens 0.573 0.210 -0.791 0.665 0.468 1.132 -0.435 1.136
Vitreous humor 0.861 0.135 -2.757 7.043 -0.548 0.413 0.511 0.459

Retina -0.439 0.144 0.941 4.381 0.066 1.012 -0.094 1.045
Choroid -0.784 0.183 -3.585 2.368 0.295 0.602 -0.343 0.675
Sclera -0.578 0.189 0.642 1.127 0.853 0.180 -0.940 0.351

Abs. average: 0.487 0.197 2.073 2.521 0.416 0.615 0.437 0.660
GSPF-II estimation error percentage

No. of samples: Attenuation coef. model Sound speed Density
200 Slope Y-intercept

Phantom layer Mean Std Mean Std Mean Std Mean Std
Cornea -0.157 0.652 -0.654 0.918 -0.423 0.811 0.217 1.378

Aqueous humor -0.148 0.315 7.238 4.400 0.095 0.916 -0.022 1.398
Lens 0.283 0.460 -0.494 2.599 -0.186 1.877 0.075 1.003

Vitreous humor 0.994 0.841 2.400 11.529 0.030 1.585 0.114 0.957
Retina -0.453 0.707 29.799 14.152 0.219 3.250 0.761 2.020
Choroid -0.850 0.510 65.515 18.368 4.761 1.226 2.084 1.761
Sclera -0.671 0.220 61.857 1.507 0.823 1.326 5.164 1.368

Abs. average: 0.508 0.529 23.994 7.639 0.934 1.570 1.205 1.412

Table 6.16: MSF and GSPF-II acoustic parameter estimation errors based on 7-
layered tissue phantom, focused wave and 200 random samples

153



Cornea Aqueous Lens Vitreous Retina Choroid Sclera
2.45

2.46

2.47

2.48

2.49

2.5

2.51

x 10
-6

S
lo
p
e 
o
f 
at
te
n
. 
co
ef
f.
 m

o
d
el
 (
(H

z 
m
)

-1
)

(a)

Measured value

MSF estimated value @ ns=50

MSF estimated value @ ns=100

MSF estimated value @ ns=200

Cornea Aqueous Lens Vitreous Retina Choroid Sclera
2.45

2.46

2.47

2.48

2.49

2.5

2.51

x 10
-6

S
lo
p
e 
o
f 
at
te
n
. 
co
ef
f.
 m

o
d
el
 (
(H

z 
m
)

-1
)

Eye phantom layer

(b)

Measured value

GSPF-II estimated value @ ns=50

GSPF-II estimated value @ ns=100

GSPF-II estimated value @ ns=200

Figure 6.19: Comparison between the measured, (a) MSF and (b) GSPF-II esti-
mated slope of attenuation coefficient model based on 7-layered tissue phantom and
focused wave
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Figure 6.20: Comparison between the measured, (a) MSF and (b) GSPF-II esti-
mated y-intercept of attenuation coefficient model based on 7-layered tissue phan-
tom and focused wave
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Figure 6.21: Comparison between the measured, (a) MSF and (b) GSPF-II esti-
mated sound speed based on 7-layered tissue phantom and focused wave
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Figure 6.23: Backscattered signals of row 1 of 4-layered tissue phantom array

158



3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5

x 10
-5

-1

-0.5

0

0.5

1

Row=2, column=1

3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5

x 10
-5

-1

-0.5

0

0.5

1

N
o
rm

al
iz
ed
 u
lt
ra
so
u
n
d
 e
ch
o

Row=2, column=2

3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5

x 10
-5

-1

-0.5

0

0.5

1

Time (s)

Row=2, column=3

Figure 6.24: Backscattered signals of row 2 of 4-layered tissue phantom array
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Figure 6.25: Backscattered signals of row 3 of 4-layered tissue phantom array
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Figure 6.26: Backscattered signals of row 4 of 4-layered tissue phantom array
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Figure 6.27: Estimation error percentage means of (a) MSF and (b) GSPF-II,
and standard deviations of (c) MSF and (d) GSPF-II of the slopes of attenuation
coefficient model based on 4-layered tissue phantom array, focused wave and 100
random samples
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Figure 6.28: Estimation error percentage means of (a) MSF and (b) GSPF-II, and
standard deviations of (c) MSF and (d) GSPF-II of the y-intercepts of attenuation
coefficient model based on 4-layered tissue phantom array, focused wave and 100
random samples.
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Figure 6.29: Estimation error percentage means of (a) MSF and (b) GSPF-II, and
standard deviations of (c) MSF and (d) GSPF-II of sound speeds based on 4-layered
tissue phantom array, focused wave and 100 random samples
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Figure 6.30: Estimation error percentage means of (a) MSF and (b) GSPF-II, and
standard deviations of (c) MSF and (d) GSPF-II of densities based on 4-layered
tissue phantom array, focused wave and 100 random samples
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6.5 Analysis of Tissue Phantoms Echoes andMSF

Performance

The characteristics of ultrasound echoes from tissue phantoms and the performance
of MSF for tissue acoustic parameter estimation are analyzed in the following.

6.5.1 Characteristics of Ultrasound Echoes fromTissue Phan-
toms

Based on the backscattered signals of the tissue phantoms shown in Sections 6.4.5
and 6.4.6, for each multi-layered tissue phantom, the number of echoes is always one
more than the number of its layers. Eight echoes are recorded from the seven-layered
tissue phantom as shown in Figure 6.18, and five echoes are recorded from each of
the 4× 3 array of four-layered tissue phantoms as graphed in Figures 6.23 to 6.26.
The first and last echoes of each tissue phantom are produced at the water-phantom
interface and the phantom-container interface. The rest of echoes are produced at
the layer interfaces within the phantoms. Although the amplitudes of some echoes
are too small to be displayed, these echoes can be detected since amplitude ratio is
used as the echo detection feature. The reasons of small amplitudes of these echoes
are twofold. First, the echoes are produced at the interfaces between layers having
similar acoustic impedances, so that the reflection coefficients of these layers are
small relative to other layers. Second, the echoes are reflected from layer interfaces
that are further away from the transducer. Since focused waves diffract as they
travel away from the transducer, diffractions of waves reduce the energy of echoes
sensed by the transducer. Diffraction is the main difference between plane waves
and focused waves. Plane waves do not diffract, so that the amplitudes of plane
wave echoes do not decrease rapidly as illustrated in Figure 5.1.

Wave reverberation in the phantoms is another issue of interest for analyzing
the phantom ultrasound response. Wave reverberation is a physical phenomenon
of wave propagation. When an ultrasound wave penetrates into phantom layers
of various acoustic impedances, part of the wave energy is reflected at each layer
interface and the rest is transmitted through the interface creating multiple waves
with various propagation directions, phase characteristics and attenuated ampli-
tudes. These waves are repeatedly divided into their reflection and transmission
components when they encounter other interfaces. This process continues until the
energy levels of the impulses become negligible. As a result, multiple reflected waves
(i.e., echoes) may have similar phase characteristics, and the transducer registers
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their superposition instead of individual echoes. Since many of these echoes do
not uniquely correspond to the tissue structure, they are part of the backscattered
signal noise. In fact, it is well-understood that the formation of speckle noise is
both random and deterministic [20]. Wave reverberation can be considered as the
deterministic component of speckle noise. Figures in Sections 6.4.5 and 6.4.6 show
that all echoes in the backscattered signals of the phantoms are separated from
each other, and the number of echoes is identical to the number of layers plus one.
No reverberated echo is observed, which implies that the acoustic properties of the
phantom layers yield negligible wave reverberation.

6.5.2 Number of Gaussian Components in the Estimation
of Posterior PDF

Determining the optimal number of Gaussian components of the posterior PDF
is out of the scope of this research. The number of Gaussian component, nx, is
commonly chosen by the user or determined experimentally. Instead of passing the
responsibility of finding nx to the user, our approach utilizes the measurements to
guide the MSF algorithm to determine nx autonomously. At each iteration, MSF
generates ns number of random samples, and they are weighted based on their
likelihoods to produce the measurement. The samples with normalized weights less
than n−1s are discarded. On the other hand, The samples with normalized weights
greater than or equal to n−1s are retained for posterior PDF estimation. The value
n−1s represents the average normalized weight of a set of ns samples. The number of
Gaussian component, nx, is determined as the number the samples retained. The
advantage of this approach is the flexibility to adapt to the measurements. For
this application, the value of nx is mostly below 8. It should be noted that the
determined value nx used by MSF is by no means optimal.

6.5.3 Effect of Random Sample Size on Estimation Accu-
racy

The number of random samples, ns, used to estimate the posterior PDF and pa-
rameter estimates is of great practical interest. Based on data shown in Tables
5.4 to 5.12 and Tables 6.14 to 6.16, the average estimation error percentages con-
sistently decrease as ns increases. These results are expected, since more random
samples increase the chance of finding more accurate parameters. In addition, the
convergence of estimation requires large number of samples as suggested by Monte-
Carlo integration and the law of large numbers. Moreover, the average reduction
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of estimation error with respect to the increase of random samples is 18.7% per 50
samples for MSF considering both simulation and physical experiments. This error
reduction is relatively small compared to 100% increase of ns (i.e., increase from
50 to 100 and from 100 to 200). This implies that the estimation accuracy of MSF
is not heavily dependent on ns, so that smaller ns may be used in MSF to relax
computation power needed while maintaining the estimation accuracy.

6.5.4 Effect of Tissue Phantom Layer Sequence on Estima-
tion Accuracy

In order to examine the effect of tissue phantom layer sequence on the tissue acoustic
parameter estimation accuracy, the four-layered tissue phantom array is made with
the four tissue phantoms layered in different sequences. The four selected tissue
phantoms can be grouped in two pairs. The tissue phantom acoustic parameters
are similar within each pair and are far apart across the pairs.

The results shown in Figures 6.27, 6.28, 6.29 and 6.30 reveal similar patterns
of estimation errors between MSF and GSPF-II. For the slope of attenuation coef-
ficient model (i.e., m), estimation errors for vitreous humor are the largest. Since
the forward scattering model is relatively less sensitive to m, the estimates of m
are determined as the mean of the random samples of m, which is the mid value
of the range of m. The value of m for vitreous humor is much lower than the mid
value of the range of m. Therefore, the estimation errors of m of vitreous humor
become large.

For other three tissue acoustic parameters, no particular patterns of estimation
errors among the tissue phantom array elements is observed. This indicates that
the estimation accuracies of MSF and GSPF-II are independent of the tissue layer
sequence. On the other hand, a trend of increasing estimation errors with respect
to tissue phantom layers can be observed for y-intercept of attenuation coefficient
model, sound speed and density. This is because echo waveforms are functions of
the acoustic parameters of all layers in the propagation paths, so that the parameter
estimate of a layer is affected by that of the previous layer. Therefore, the estimation
errors are accumulated.
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6.5.5 Posterior PDF Estimation and Analysis of Prior In-
formation Dependency

The method of posterior PDF estimation is considered as one of the most critical
elements in nonlinear stochastic filtering. Here brief comparisons of the posterior
PDF estimation method are made between MSF and well known stochastic filters
such as unscented particle filter (UPF) [118], Gaussian particle filter (GPF) [119,
120] and Gaussian sum particle filter (GSPF) [121]. UPF uses an unscented Kalman
filter (UKF)3 to estimate an importance density (ID)4 as a Gaussian PDF for each
particle. GPF employes an extended Kalman filter (EKF) or UKF for ID estimation
for problems with Gaussian noise only. GSPF utilizes a bank of GPFs to filter
systems with GMM noise processes. In effect, GSPF estimates the posterior PDF
as a GMM, which is a general PDF representation. There are three types of GSPF.
The second type, GSPF-II, is considered since it is designed for general noise model
in the form of GMM. GSPF-II employes a bank of GPF to estimate the posterior
PDF in parallel, and each GPF estimates one Gaussian component of the posterior
PDF. The ID in each GPF is estimated as a Gaussian PDF using an UKF. In
the GSPF-II algorithm, each ID is generated individually to capture local state
statistics based on statistical linearization and without optimization. On the other
hand, MSF estimates the posterior PDF using a sampling technique and optimizes
the PDF to minimize estimation error variance in the sense of posterior Cramer-
Rao bound based on multi-scale PDF reconstruction. In addition, all Gaussian
components of the posterior PDF are collectively optimized to capture the state
statistics globally.

Generally speaking, the prior PDF of the parameters to be estimated is re-
quired for stochastic filtering. Unfortunately, the prior PDF may be inaccurate or
unknown in real world applications including tissue characterization. Therefore,
the filter dependency on prior PDF is an important practical issue one must ad-
dress. The results presented in Sections 6.4.6 and 6.4.5 demonstrate the estimation
accuracy of MSF in the absence of the prior PDF. When the prior PDF is unknown,
MSF employs the expectation maximization algorithm to estimate a GMM as the
prior PDF based on random samples generated by an uniform distribution (or the
coarsest scale PDF) and likelihood evaluations of the samples.

3UKF applies unscented transformation (UT) [173] in the extended Kalman filter framework
to obtain a Gaussian PDF that represents local statistics of the parameters to be estimated based
on statistical linearization.

4Importance density
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6.6 Summary

This chapter reports a series of experiments performed to evaluate the tissue acoustic
parameter estimation accuracy of MSF. The acoustic parameters of eye tissues are
measured, and ocular tissue phantoms are fabricated based on these measurements.
Ultrasound based measurements of the phantom acoustic parameters are obtained
to compare to the MSF estimation results. MSF is applied to estimate the acoustic
parameters of a seven-layered tissue phantom and a four-layered tissue phantom
array. A state-of-the-art NSF (i.e., GSPF-II) is applied to the same estimation
problems as MSF for comparison. Results show that MSF and GSPF-II, respec-
tively, achieve average absolute estimation errors of 1.9% and 7.2%. MSF is 3.8
(7.2/1.9 = 3.8) times more accurate than GSPF-II for tissue acoustic parameter
estimation. Estimation results and experimental setup used are also presented.
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Chapter 7

Conclusions and Future Work

In this thesis, an inverse scattering approach is developed to tackle the problem
of ultrasound tissue characterization. This approach estimates the tissue acoustic
parameters based on ultrasound measurements of the tissues and a forward scat-
tering model that maps the parameters to the measurements. This model is highly
nonlinear with respect to the parameters and stochastic. In addition, inverting this
model is an ill-posed problem. Thus, a nonlinear stochastic method that does not
require inversion of this model is desirable for performing inverse scattering.

A multi-scale stochastic filter (MSF) is proposed to realize inverse scattering.
MSF is formulated based on a multi-scale PDF analysis framework, which provides
mechanisms for recursively decomposing (reconstructing) a PDF from a fine scale
to the coarsest scale (from the coarsest scale to a fine scale). MSF generates a
set of initial random samples of the parameters using the coarsest scale PDF (i.e.,
uniform distribution) of the parameters and evaluates the samples based on the
forward scattering model, actual ultrasound measurement and measurement noise
statistics. Some of the samples are then selected according to the evaluation results
to estimate the posterior PDF. In order to minimize the estimation uncertainty of
the parameters, the posterior PDF is optimized by reconstructing it from its current
scale to a finer scale. PDF reconstruction minimizes the estimation uncertainty
based on the posterior Cramer-Rao bound. The filtering process is repeated for
each ultrasound measurement.

MSF satisfies the inverse scattering method design criteria by eliminating the
dependence on prior statistics of the parameters, weak scattering assumption, lin-
earization and mathematical inversion of the forward scattering model from its
formulation. Model linearization and weak scattering assumption are the bases of
many existing methods, which simplify the forward scattering process to enable
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the mathematical inversion of the model. However, simplification of the process
compromises the accuracy of parameter estimation. Instead of inverting the model
to obtain the parameters, MSF estimates the PDF of the parameters by sampling
the parameter solution space and evaluating the samples based on measurements.
Therefore, no model linearization and no weak scattering assumption are needed.
MSF does not depend on the prior statistics of the parameters, since the multi-scale
formulation is designed to utilize a uniform distribution as the initial PDF.

The proposed inverse scattering method is validated on multi-layered soft tis-
sues using pulse-echo mode focused ultrasound. A seven-layered eye phantom and
a four-layered ocular tissue phantom array are developed as test subjects. MSF and
a state-of-the-art NSF are applied to estimate the acoustic parameters of each layer
of the tissue phantoms. Experimental results show that MSF achieves an average
absolute estimation error of 1.9%, and MSF is 3.8 times more accurate than the
state-of-the-art NSF. In addition, the estimation accuracy of MSF is independent
of the tissue phantom layer sequence. Moreover, MSF do not rely on the prior sta-
tistics of the parameters, which may be unknown or inaccurate in practice. MSF
is formulated to employ the coarsest scale PDF as the initial statistics of the para-
meters. Furthermore, it is shown that the estimation error of MSF is not heavily
dependent on the number of random samples and signal-to-noise ratio.

7.1 Future work

Based on this research, suggestions of future research work are listed in the follow-
ing:

1. Time series modelling and soft computing techniques can be applied to im-
prove ultrasound signal deconvolution. Although, deconvolution of ultrasound
signals has been a popular research field and many techniques have been de-
veloped including [174, 175, 176, 177]. These techniques are derived based
on an assumption that the reflectivity of material is convolved with a point
spread function (PSF) with some invariant assumptions. However, PSF in
reality is different for each echo due to attenuation and/or dispersion of the
ultrasound wave. Therefore, the accuracy of these techniques are limited.
In our experiments, layers of retina and choroid in animal eyes are too thin
to obtain separate echoes for clinical ultrasound systems. Ultrasound echoes
from these layers are superimposed so that obtaining the time of arrival and
waveforms of these echoes is a problem. Ultrasound echoes can be modelled
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by time series methods and to predict echoes in backscattered signals. Exper-
iments are performed to model echoes with various ARMA models. Genetic
algorithm is employed to search for the best parameters of these models.
Results show that the output-error (OE) model produces the best fit. The
resulting OE model is able to accurately predict some echoes of backscattered
signal, but fails to do so for echoes that are severely attenuated. Therefore,
more investigation is needed to improve this deconvolution method.

2. Wavelet based ultrasound deconvolution methods have been developed [178,
175, 179]. In general, these methods exploit the similarity between ultrasound
echo model and wavelet structure, as well as the suitability of wavelet for
deconvolution applications. Although these methods demonstrate acceptable
accuracy, they all seem to ignore one of the most important issue in using
wavelet. That is, the selection of the optimal wavelet basis for the application.
In [180], the critical issue of wavelet basis selection is addressed for ultrasound
foreign body classification based on information theory. Results confirm that
the classification accuracy yielded by the optimal wavelet basis is far more
superior than that of the suboptimal one. Therefore, great enhancement to
the existing wavelet based deconvolution methods is expected if the optimal
wavelet basis selection is implemented. Furthermore, it would be interesting
to design the optimal wavelet basis for the specific ultrasound transducer
and/or system.

3. In ultrasound research, resolution of the media structure under test is still one
of the biggest limiting factors. The resolution is greatly dependent on the echo
frequency range. For time domain analysis, the frequency range of echo should
be as wide as possible in order to obtain high resolution pulses. In the past
few decades, wide band ultrasound transducers have been developed [181, 182,
183, 184]. Despite of the intensive research effort, there must be a limitation
for physical devices. Realizing that ultrasound instrumentation consists of
both the transducer and electronics system. Analog and/or digital filters can
be developed to amplify the frequency contents outside of the transducer’s
range. A challenge of such filters is to reduce noise sensitivity and maintain
stability. This type of filter is commonly known as the equalizer in the field of
communication. One may wish to modify the design of equalizer for ultrasonic
systems.

4. When the measurement model is nonlinear, obtaining the close-form solu-
tion of Fisher information matrix may not be possible as in the case of this
research. The matrix can be computed numerically using Monte-carlo inte-
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gration with good accuracy. However, it is a highly computational demand-
ing process and is the computational bottleneck of MSF. Methods that relax
the computational requirement are highly desirable. An idea is to approxi-
mate the nonlinear measurement model or related PDFs by multidimensional
spline, which can differentiated and integrated analytically. This may be of
great interests to mathematician and computer scientists

5. In addition to algorithmic computational speed enhancement as described
above, dedicated hardware including FPGA or ASIC can be designed to han-
dle the intense computation needs of MSF. Dedicated hardware has been
developed for computational intensive stochastic filters including particle fil-
tering [185, 186, 187, 188]. Since both MSF and particle filtering are sample
based, it is expected that hardware implementation of MSF is a feasible re-
search project.

6. The Echotree and reverberation filtering are developed to remove reverber-
ated echoes for multi-layer media in general. The backscattered signals of the
multi-layer tissue phantoms do not exhibit any reverberated echoes. There-
fore, the performance of Echotree and reverberation filtering are not thor-
oughly examined. To ensure reverberated echoes are present in the backscat-
tered signals, flat parallel glass pieces should be used as the test subjects
under water since glass has much higher acoustic impedance than water in
general. The advantages of glass are their smooth surfaces, stability in water
and various temperatures, as well as incompressibility for the ease of accurate
thickness measurements.

7. One of the challenges encountered in this research is the sound speed measure-
ments of retina and choroid. As mentioned these ocular layers are too thin, so
that the ultrasound echoes of their front and back surfaces are superimposed.
Consequently, the time of arrival of these echoes cannot be identified to calcu-
late the sound speed. Although research has been conducted to measure the
sound speeds of human and porcine ocular tissues [22, 23], the measurements
are done at much higher frequencies than the clinical ultrasound. Extrapola-
tion can be used to estimate the speeds at lower frequencies. The estimation
is prone to noise and errors. When the ultrasound deconvolution research
discussed above is developed, clinical measurements of retina’s and choroid’s
sound speeds are made possible by recovering the reflectivity function and
the echo time of arrival.

174



Bibliography

[1] J. Thijssen, “Ultrasonic speckle formation, analysis and processing applied
to tissue characterization,” Pattern Recognition Letters, vol. 24, no. 4, pp.
659—675, 2003.

[2] R. A. Mountford and P. Wells, “Ultrasonic liver scanning: The a-scan in the
normal and cirrhosis,” Physics in Medicine and Biology, vol. 17, pp. 261—269,
1972.

[3] M. Linzer, Ed., Ultrasonic tissue characterization I. Special Publication,
gaithersburg, Maryland, USA, 1976. National Bureau of Standards.

[4] Z. F. Lu, “Cardiovascular ultrasound imgaging - a survey of technical de-
velopment,” Journal of X-Ray Science and Technology, vol. 11, pp. 133—139,
2003.

[5] N. Kharin, D. Driscoll, andW. Tobocman, “Free of speckle ultrasonic imaging
of soft tissue with account of second harmonic signal,” Physics in Medicine
and Biology, vol. 48, pp. 3239—3260, 2003.

[6] W. Tobocman, “In vivo biomicroscopy with ultrasound,” Current Topics in
Acoustics, vol. 1, pp. 247—265, 1994.

[7] T. D. Mast, Lin Feng, and R. C. Waag, “Time-domain ultrasound diffraction
tomography,” in Ultrasonics Symposium, Caesars Tahoe, NV, USA, October
1999, vol. 2, pp. 1617—1620, IEEE.

[8] S. J. Norton and M. Linzer, “Ultrasonic reflectivity imaging in three dimen-
sions: Exact inverse scattering solutions for plane, cylindrical, and spherical
apertures,” IEEE Transactions on Biomedical Engineering, vol. BME-28, no.
2, pp. 202—220, 1981.

175



[9] J. Hadamard, Lectures on the Cauchy Problem in Linear Partial Differential
Equations, Yale University Press, New Haven, 1923.

[10] Houssem Haddar David Colton and Michele Piana, “The linear sampling
method in inverse electromagnetic scattering theory,” Inverse Problems, vol.
19, pp. S105ŰS137, 2003.
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Appendix A -
Derivations of PDF Low-pass
Kernel Constraints

1. Derivations of contraint in Equation 4.20,
∫ +∞

−∞
ls (τ) dτ = 1

Proof. Substitute Equation 4.15 into Equation 4.16,
∫ +∞

−∞

∫ +∞

−∞
ls (τ) ps (x− τ) dτ dx =

∫ +∞

−∞
ps+1 (x) dx

∫ +∞

−∞

∫ +∞

−∞
ls (τ) ps (x− τ) dτ dx = 1 (7.1)

Rearrange the left-hand-side (LHS) of Equation 7.1 as,
∫ +∞

−∞

∫ +∞

−∞
ls (τ ) ps (x− τ ) dx dτ = 1 (7.2)

Since ls (τ ) is independent of x, ls (τ) can be moved out of the inner integral
as, ∫ +∞

−∞
ls (τ)

∫ +∞

−∞
ps (x− τ ) dx dτ = 1 (7.3)

Since ps (x− τ ) is a shifted version of the PDF ps (x), the inner integral is
equal to one and Equation 7.3 can be expressed as,

∫ +∞

−∞
ls (τ) dτ = 1
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2. Derivations of contraint in Equation 4.21,

ls (x) � 0

Proof. Substitute Equation 4.15 into Equation 4.17,
∫ +∞

−∞
ls (τ) ps (x− τ) dτ � 0 (7.4)

Since ps is nonnegative, one way to satisfy Equation 7.4 is to restrict ls to be
nonnegative.

3. Derivations of contraint in Equation 4.22,

ls (x) = ls (−x)

Proof. The Fourier transform of Equation 4.15 is,

Ls (f) Ps (f) = Ps+1 (f) (7.5)

where Ls denotes the Fourier transform of ls.

Expand Equation 7.5 in terms of real and imaginary terms,

(Re (Ls) + i Im (Ls)) (Re (Ps) + i Im (Ps)) (7.6)

= Re (Ps+1) + i Im (Ps+1)

where i =
√
−1 is a complex number; f is omitted to maintain clarity.

Let Im (Ls) be zero, and collect the real and imaginary terms of Equation 7.6
separately,

Re (Ls) Re (Ps) = Re (Ps+1) (7.7)

Re (Ls) Im (Ps) = Im (Ps+1) (7.8)

It follows that the phase angles of Ps+1 and Ps are identical when Im (Ls) = 0,

Im (Ps) /Re (Ps) = Im (Ps+1) /Re (Ps+1) (7.9)

Express Im (Ls) in terms of ls,

Im (Ls) =

∫ +∞

−∞
ls (x) sin(2πfx) dx (7.10)

Since sine is an odd function (i.e. sin (f) = − sin (−f)), ls must be an even
function to make Im (Ls) equal to zero.
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4. Derivations of contraint in Equation 4.23,

l′s (x) =





≥ 0, x < 0
= 0, x = 0
≤ 0, x > 0

Proof. Express p′s+1 (x) in Equation 4.19 as a convolution integral,

∫ +∞

−∞
l′s (τ ) ps (x− τ ) dτ = p′s+1 (x) , (7.11)

where l′s is the 1st derivative of ls; it is important to note that l′s is an odd
function based on Equation 4.22,

ls (x) = ls (−x)
∂ ls (x)

∂x
=

∂ ls (−x)
∂x

l′s (x) = −l′s (−x) (7.12)

Since ps (x) is non-negative by definition, in order for p′s+1 (x) = 0, ∀x ∈
{xpeak} ∪ {xvalley}, l′s must produce both positive and negative values.
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