
High Performance Digital Circuit

Techniques

by

Sayed Alireza Sadrossadat

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Applied Science

in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2009

c© Sayed Alireza Sadrossadat 2009

AUTHOR’S DECLARATION

I hereby declare that I am the sole author of this thesis. This is a true copy of the

thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Achieving high performance is one of the most difficult challenges in designing

digital circuits. Flip-flops and adders are key blocks in most digital systems and

must therefore be designed to yield highest performance. In this thesis, a new high

performance serial adder is developed while power consumption is attained. Also,

a statistical framework for the design of flip-flops is introduced that ensures that

such sequential circuits meet timing yield under performance criteria.

Firstly, a high performance serial adder is developed. The new adder is based on

the idea of having a constant delay for the addition of two operands. While

conventional adders exhibit logarithmic delay, the proposed adder works at a

constant delay order. In addition, the new adder’s hardware complexity is in a

linear order with the word length, which consequently exhibits less area and power

consumption as compared to conventional high performance adders. The thesis

demonstrates the underlying algorithm used for the new adder and followed by

simulation results.

Secondly, this thesis presents a statistical framework for the design of flip-flops

under process variations in order to maximize their timing yield. In nanometer

CMOS technologies, process variations significantly impact the timing

performance of sequential circuits which may eventually cause their malfunction.

Therefore, developing a framework for designing such circuits is inevitable. Our

framework generates the values of the nominal design parameters; i.e., the size of

gates and transmission gates of flip-flop such that maximum timing yield is

achieved for flip-flops. While previous works focused on improving the yield of

iii

flip-flops, less research was done to improve the timing yield in the presence of

process variations.

iv

Acknowledgments

First of all, I would like to thank my supervisor, Professor Mohab Anis and also

Professor Kumaraswamy Ponnambalam for their constant support, encouragement

and guidance throughout my Master’s program. It was my honor to work under

their supervision and guidance. I am thankful to Professor Andrew Morton and

Professor M. Anwar Hasan, the readers of my thesis, for their invaluable

suggestions and corrections.

I am also grateful to my friends and my colleagues for their encouragement when I

needed those the most. Also, I would like to have the best thanksgiving to my

parents for their faith in me during my stay abroad.

v

Table of Contents

List of Figures . ix

List of Tables . xi

1 Introduction 1

1.1 Motivation . 1

1.1.1 Importance of high performance computing 1

1.1.2 High performance serial adders 2

1.1.3 High performance flip-flops under process variations 3

1.2 List of Contributions . 4

1.2.1 Design of a high performance constant delay serial adder . . 4

1.2.2 Develop a framework for designing flip-flops under process

variations . 5

2 Background 6

2.1 High performance adders . 6

2.1.1 Algorithms and different kinds of adders 6

2.1.2 Kogge-Stone adder . 8

vi

2.2 High performance flip-flops under process variations 11

2.2.1 Process variations in the flip-flops and their impact on the

performance . 11

2.2.2 Statistical methods for improving flip-flop performance . . . 12

2.2.3 Different types of flip-flops 13

3 A High Performance Constant Delay Serial Adder 17

3.1 Introduction . 17

3.2 Proposed adder . 18

3.2.1 Main idea . 18

3.2.2 Addition of the 2d form numbers using 3d form representation 19

3.2.3 Addition of the 3d form numbers 24

3.2.4 Final operation - converting to conventional form 27

3.3 Comparison between CD and KS methods in serial addition 29

3.3.1 Delay comparison . 29

3.3.2 Area and power comparison 32

3.3.3 Brief algorithmic comparison with other similar adders . . . 34

3.4 Experimental results . 35

3.5 Conclusion . 37

4 Framework for Statistical Design of a Flip-Flop 38

4.1 Introduction . 38

4.2 Basic concepts . 39

4.3 Problem formulation . 46

vii

4.3.1 Statistical design . 46

4.3.2 Yield maximization . 47

4.4 Experimental results . 51

4.5 Conclusion . 55

5 Conclusions and Future Work 57

5.1 Conclusions . 57

5.2 Future work . 58

Bibliography 60

viii

List of Figures

2.1 Kogge-Stone adder . 9

2.2 Schematic example of a positive edge-triggered flip-flop [38] 13

2.3 Timing characteristics for a positive edge-triggered flip-flop [38] . . 14

2.4 Sense amplifier based flip-flop [38, 28] 15

2.5 Transmission gate based Master-Slave flip-flop 16

3.1 Conversion from 2d to 3d form . 19

3.2 Addition of several numbers in several clocks using proposed method 20

3.3 Addition of two 2d form numbers 21

3.4 (a) Gate level implementation of Ci+1 in the CD adder and (b) Gate

level implementation of Flagi in the CD adder. Note NBi is the ith

bit of the Negative Number. 23

3.5 Addition of A=101101 and B=10011 using 3d form representation. . 24

3.6 CD adder block for one output bit 28

3.7 CD adder for the addition of two n-bit operands. The first block from

the right side is used to produce carry in necessary cases. 28

ix

3.8 Comparison of the normalized delay of the KS and the proposed

adder when m=2 . 31

3.9 Comparison of the normalized delay of the KS and the proposed

adder when m=3 . 33

4.1 Master-Slave D flip-flop . 39

4.2 Variability of D-to-Q delay of flip-flop, σ = 807.3ps 40

4.3 Variability of Clock-to-Q delay, σ = 430.2ps 41

4.4 Setup and Hold time illustration . 42

4.5 Normalized simplified yield maximization method 52

4.6 Yield maximization method for T=12 and Area=500× 10−9 53

4.7 CDF of setup-time using the SPICE Monte Carlo simulation, mean

= 1.37ns and σ = 458.48ns . 55

x

List of Tables

3.1 Producing Sum for 2d form input 24

3.2 Producing Carry and Flag . 25

3.3 Producing Sum and NSum . 26

3.4 Comparison of the serial addition of 64 58-bit numbers in one clock

duration (addition of two 64-bit numbers) in the KS and CD methods

with the consideration of the register 36

4.1 Constant parameters of 45nm technology 52

4.2 Design constraints except area . 54

4.3 Experimental results for different threshold voltage variations . . . 54

xi

Chapter 1

Introduction

1.1 Motivation

1.1.1 Importance of high performance computing

From a system designer’s perspective, the performance of a digital circuit expresses

its computational ability. For instance, a microprocessor often is characterized by

the number of instructions it can execute per second. The performance metric

depends both on the architecture of a processor - for instance, the number of

instructions it can execute in parallel - and the actual design of logic circuitry.

When focusing on the pure design, performance is most often expressed by the

duration of the clock period (clock cycle time), or its rate (clock frequency).

There are lots of efforts that were done to gain high performance in digital circuits.

Different methods for achieving high performance consist of algorithm level

methods and circuit level methods. There are different kinds of algorithm and

circuit level methods that typically target combinational and sequential circuits.

As combinational circuits, adders which are used widely in digital systems are

1

investigated in this thesis to achieve high performance. As sequential circuits, the

design of high performance flip-flops is probed.

1.1.2 High performance serial adders

In microprocessors, the addition operation is used more than any other operations

such as multiplication and division. Also, serial implementation is an important

class of circuit design that consists of numerous applications including signal

processing. Serial architectures, which have serial data transmission and serial

computation, are pivotal in the design and implementation of VLSI signal

processors and the implementation of special-purpose processors [1] and therefore

are pivotal for getting high performance in several processors. In signal processing,

where high performance is crucial, the architectures are particularly appropriate

[1] due to serial data transmission, performance constraints, and implementation

costs. Generally, serial techniques are a composition of serial data transmissions

and serial calculations. When operands are serially received, during calculations,

the intermediate results pass to the arithmetic units serially, and mostly digit by

digit [2]. In [3], the analysis, provided by the simulation results, shows that serial

adders dissipate less power than the other ones and therefore this architecture can

be used to improve the performance of processors. Also, it is shown that serial

adders achieve a better Power-Delay-Product (PDP) and Energy-Delay-Product

(EDP) than other adders in nanometer technology [3]. It is reported in [4] that

serial adders might be better for low-power operations with redundancy for

enhancing reliability and for the goal of performance achievement, and therefore,

2

this architecture was chosen to be probed.

The primary problem of serial techniques is that they have higher delay than that

of other techniques. However serial techniques operate in lower power dissipation.

This problem motivates the development of a method for solving the delay

problem of serial additions to get higher performance in digital circuits. The new

method is faster than the fastest known serial addition technique, the Kogge Stone

adder, and consumes less power and is easy to implement.

1.1.3 High performance flip-flops under process variations

In microprocessor and digital circuits, flip-flops are indisputably important circuit

blocks that are investigated here in order to achieve higher performance

consequently resulting in the higher performance of microprocessors and digital

circuits. On the other hand, variability in the device process parameters are

becoming more and more significant in nanometer technology. The growth of

variability can be attributed to multiple factors, including the control of the

manufacturing specifications, the emergence of new systematic

variation-generating mechanisms, and most importantly, the increase in

fundamental atomic-scale randomness such as variations in the number of dopants

in transistor channels [20]. Process variations impact the performance of devices

and consequently circuits. Therefore, timing yield loss due to variability has

become a challenging issue in nanometer technology. Yield loss augments design

costs because dies that do not meet performance requirements are rejected [21].

Circuits such as flip-flops that are designed small are highly sensitive to process

3

variations [22]. Moreover, flip-flops should be designed keeping in mind that they

embody a large percentage of a chip’s area. Because of the increased transistor

density in modern technology nodes (assuming flip-flops take up approximately 10

% of the chip’s area), large chips such as microprocessors or general purpose units

(GPUs) must hold at least a million flip-flops. Similar to statistical SRAM design,

uncertainties in the flip-flop timing parameters require the assignment of

appropriate safety margins. Therefore, the timing variability overhead of flip-flops

directly impacts the fastest achievable operational frequency in the design. Thus,

finding ways to limit the variability of flip-flop timing parameters is beneficial in

terms of performance and area constraints.

1.2 List of Contributions

1.2.1 Design of a high performance constant delay serial
adder

In this thesis, we propose a new high performance serial adder that achieves higher

performance than conventional methods. Therefore, the problem of the latency in

serial additions can be improved. The adder is based on the idea of a

Constant-Delay (CD) during the addition of operands, and will be shown to be

superior over the Kogge-Stone (KS). Also this method can be applied for

multiplication and parallel structures. We show that the new adder exhibits low

hardware complexity and power consumption.

4

1.2.2 Develop a framework for designing flip-flops under
process variations

In this thesis, a statistical framework for designing flip-flops under process

variations is introduced. The framework reports values of transistors widths that

maximize timing yield under area and performance constraints.

5

Chapter 2

Background

2.1 High performance adders

2.1.1 Algorithms and different kinds of adders

Adders are pivotal arithmetic blocks in most of digital circuits and they are built

with different algorithms that have different performances. All of the different

structures have a delay dependency on the bit-width of the operands, i.e., the

longer the operands, the later the results of the addition are ready, and the more

area and power. Therefore there is a tradeoff between performance and area.

Some structures perform the addition in a time linearly proportional to the

bit-width of the operands. The result is a small hardware-area production. Other

structure’s delay that can be achieved for the addition of two operands is

logarithmically dependant on the bit-width of the operands. The delay reduction

results in hardware complexity, and conveys that other aspects, area and power,

should be studied.

In [6], one of the earliest algorithms is introduced where a tree structure

6

(logarithmic delay) is used to do addition. In [7], two digit serial adders are

compared, one processes the operand digits and produces the least significant digit

first, and the other processes the operand digits and produces the most significant

digit first. In [8], a fast addition algorithm which they called ELM, a tree of

simple processors, requiring O(log2(n)) execution time is used. Here, n is the word

length. In [9], the shuffled serial adder is introduced and is derived from the

Kogge-Stone adder. The latency of this adder is proportional to log2(n), where is

the length of the operands. Furthermore, a generalized earliest-first (GEF)

addition algorithm is reported in [10]. This algorithm accelerates the carry

propagation addition (CPA) and schedules bit-level operations of the CPA in an

earliest-first manner to reduce the overall delay. In [11] a simple network for the

serial addition or subtraction of BCD numbers is described. The architecture

contains a binary adder and a correction system with another adder.

In the look-ahead type adders, the carries of each column are calculated by using

the values of the operands and only the input carry. In this type of adder, the

carry of each column is independent of the carries of the previous columns, and is

calculated separately. There are also logarithmic look-ahead adders that use the

look-ahead concept in a logarithmic manner, and produce the carry look-ahead

trees for conducting the addition [5].

In [16], a class of zero-deficiency prefix circuits which provide the minimum depth

for a given width, is discussed. Some researchers have saved one-logic level of

implementation, resulting in a faster and also higher performance for the

parallel-prefix addition [17].

7

Sparse trees are introduced to deliver the reduction in the hardware and area and

therefore, some degradation in performance. In [5], [14], the Brent-Kung adder is a

well-known structure of the look-ahead group that is optimized in terms of the

area [15]. In [5], the hybrid Kogge-Stone/ Brent-Kung adders are examined

regarding the tradeoffs between the hardware-area and the delay of operations and

performance. The Kogge-Stone adder is a member of the look-ahead group. The

Kogge-Stone tree requires much hardware area and many transistors [5], [12], [13]

and [15].

In [18], a performance evaluation analysis was carried out between flagged prefix

adders with other well-known prefix adders. Here, the Kogge-Stone adder is the

fastest with the highest performance and the Brent-Kung adder is the most

efficient in terms of power dissipation. Also, high performance VLSI adders have

been compared in the Energy-Delay space so that the appropriate selection is

possible at the beginning of the design process [19].

2.1.2 Kogge-Stone adder

The Kogge-Stone (KS) adder, one of the fastest adders, is now described in detail

to show how it can make addition faster. However, it sacrifices the area proficiency

goal. The Kogge-Stone adder comprises blocks: Generate (G), Propagate (P), and

Dot (D) operations. Generate block shows whether the input bit columns which

are given to this block, can generate the carry for the next column or not. Also,

Propagate block determines if the input bits that are related to the special

columns of bits, given to this block, can propagate a carry to the next column of

8

bit or not. D block is a composition of the P and G blocks of two subsequent

stages and produces the P and G products for the other stages which are shown in

Fig. 2.1 and according these definitions,

PStage3 = PStage1 · PStage2 (2.1)

and

GStage3 = GStage1 · PStage2 +GStage2. (2.2)

Figure 2.1: Kogge-Stone adder

9

For adding two n-bit numbers (A and B) by using Kogge-Stone (KS), first stage

produces G0, G1, ..., Gn−1 and P0, P1, ..., Pn−1 and intermediate sums, that are

S0, ..., Sn−1 (Si = Aii), by using the bits of the two numbers. Then, the other

log2(n) stages are used that each stage contains many D operations and combine

the different P and G of the previous stages. In the last stage, the final G and P

products are generated to find the result of addition of two numbers such that:

Final G products: G[1−0], G[2−0], ..., G[(n−1)−0]

and

Final P products: P[1−0], P[2−0], ..., P[(n−1)−0]

Now, the final carry input, arriving at each column, is calculated by combining

these G and P products with Cin by using G block, where Cin, is connected to its

input. Then, for the last stage, the final sum of each column is computed by using

XOR gate. The inputs of these gates are the final carries of the previous stage and

the intermediate sums. Fig. 2.1 is a graph of a Kogge-Stone adder that has the

minimum logic depth, resulting in a fast adder but with a large area. In this

figure, the intermediate nodes represent the D blocks. For doing serial addition,

several numbers of this adder should be used serially using a clock signal that in

each clock, a new number will be added by the result of the additions of the

previous clocks.

The proposed CD method is compared with Kogge-Stone method in this thesis

because the Kogge-Stone (KS) method yields a delay in the order of a logarithmic

function of the length of the words and because it is optimized in the timing issues

and is state of the art for high performance adders [3], [15]. However it requires

10

much area and power consumption.

The proposed method in this thesis is not only independent of the bit-width of the

operands (except the final converter) but significantly lower in delay, compared to

the fastest known ones so it can result in a better performance for digital circuits.

2.2 High performance flip-flops under process

variations

2.2.1 Process variations in the flip-flops and their impact
on the performance

Flip-flops play a pivotal role in the arithmetic blocks in most of digital circuits.

By the scaling of the flip-flops in nanometer technology, process variation becomes

more important in the performance of the flip-flop.

There are several sources of variations in the transistors of the flip-flops such as

random dopant fluctuation (RDF), channel length variation, line edge roughness

(LER), gate oxide thickness variations, oxide charge variations and channel width

variations. These parameters affect the threshold voltages of the transistors and

consequently can have impact on the current of the transistors. Variations in the

current of transistors can significantly impact on the performance and power

consumption of the flip-flops.

Because of the important role of flip-flops in timing behavior of sequential designs

and their performance, there has been a lot of research to increase design

robustness of flip-flops against variations. Therefore, the thrust has been to

modify a flip-flop’s architecture in order to ensure robustness against noise and

11

soft errors. However, less effort has been made to mitigate the effects of process

variations on flip-flops.

2.2.2 Statistical methods for improving flip-flop
performance

A statistical analysis method has been proposed in [23] to extract the probability

mass function of the flip-flop’s setup-time and hold-time. Also, clock skew

scheduling is a technique that improves the operational frequency [24]. Typically,

statistical skew schedulers determine the relative clock arrival time to each register

to enhance the clock period [25] and timing yield loss [26] due to timing

constraints violations. However, skew scheduled designs are more sensitive to

unpredictable variations because of tight slacks in the combinational paths.

Moreover, clock tree construction is more difficult for clock skew scheduled designs

than zero skewed designs. Another approach to address delay variations in the

circuit is to use latch-based designs. Latches are more tolerant to delay variations,

because they have no hard boundary and are transparent for half a clock period.

In [27], a clock scheduling for latches has been presented to improve the timing

yield. However, latch-based designs do not satisfy digital designers, because such

designs usually need two separate clocks which mean a significant power and area

overhead. Furthermore, generating two non-overlapping clocks can be difficult in

high performance design.

12

2.2.3 Different types of flip-flops

There are several kinds of flip-flops. An edge-triggered flip-flop samples the data

input on one edge of the clock and keeps the sampled data on the output during

the remainder of the clock period. A simple Master-Slave flip-flop can be

constructed from two cascaded level-sensitive latches, as shown in Fig. 2.2. When

the clock signal is low the first latch, called master latch, is transparent and the

input is transferred to the intermediate node (X). The second latch, called the

slave latch, is opaque so the output (Q) is held at its previous state. When the

clock signal makes a low-to-high transition, the master latch becomes opaque, and

the slave latch becomes transparent, and the intermediate data at (X) is

transferred to the output (Q). The data on the output is valid for the remainder of

the clock period [28].

Figure 2.2: Schematic example of a positive edge-triggered flip-flop [38]
.

A timing diagram of a positive edge-triggered flip-flop is shown in Fig. 2.3 in

13

which, Setup-Time (Tsetup) is defined as the minimum time that the input data

should be available before the clock sampling edge arrival, Hold-Time (Thold) is

defined as the minimum time that the input data should be available after the

clock sampling edge arrival, Clock-to-output delay (TClk−Q) represents the delay

from the sampling clock edge (Clk) to the time, the latched data is valid at the

output (Q), Data-to-output delay (TD−Q) represents the delay from a transition of

the input data (D) to the time, the latched data is valid at the output (Q) [29].

Figure 2.3: Timing characteristics for a positive edge-triggered flip-flop [38]
.

Another kind of flip-flop is sense-amplifier based flip-flop, which is shown in Fig.

2.4, utilizes a sense-amplifier to sample the data [38, 28]. The advantage with the

sense-amplifier flip-flop is the low number of clock transistors, which gives low

clock load. One of the important drawbacks with the sense-amplifier flip-flop is

the pre-charged behavior of the sample stage, which is power-consuming especially

14

when the data activity on the inputs is low.

Figure 2.4: Sense amplifier based flip-flop [38, 28]

Fig. 2.5 shows a transmission gate based Master-Slave flip-flop that is a

combination of two level-sensitive latches and is used in this thesis as the main

circuit for investigating the effect of process variation on its timing yield. The

advantages of this flip-flop are simplicity and excellent race immunity [30].

15

Figure 2.5: Transmission gate based Master-Slave flip-flop

16

Chapter 3

A High Performance Constant
Delay Serial Adder

3.1 Introduction

In this chapter a new method for the addition of two operands in a serial addition

(using a clock signal) is proposed. Because the operation of addition is used more

than any other operation in a microprocessor and digital circuits, and high latency

is the drawback of serial addition techniques, there is a need for efforts for gaining

high performance serial adders. In serial addition the new method is independent

of bit-widths of the operands and can perform addition in a constant delay. It is

note-worthy that the Constant-Delay (CD) method significantly decreases the

adder’s hardware complexity. This is because the number of transistors has a

linear relationship with the lengths of the words.

The rest of this chapter is organized as follows: The proposed structure for the

addition of two operands with a constant delay is presented in section 3.2. In

section 3.3, a comparison of the proposed CD adder with the conventional

17

Kogge-Stone adder in serial addition is probed. In section 3.4 and 3.5 the results

and conclusions are presented.

3.2 Proposed adder

3.2.1 Main idea

As it was mentioned in the background section, the problems of the Kogge-Stone

(KS) method is its hardware complexity, large area and power consumption.

Suppose that two n-bit numbers, A0...n−1 and B0...n−1 are going to be added.

Assume each pair of Ai and Bi is a column. For the addition of each column we

have at most one carry that is sent to the next column. If a way can be found to

stop propagating the carry to the next column the operation of addition can be

performed faster. The main idea of the proposed adder is to use another digit, -1,

in addition to the conventional {0, 1} digits for the representation of the binary

numbers. Therefore, the proposal in this thesis is to represent each binary number

using three digits {1, 0, -1}(3d form). For representing an n-bit 3d form number,

two n-bit conventional form(2d form) numbers are used in this proposal. All of the

bits of the original number (except bits with the value of -1) create the first n-bit

number for the representaion of the 3d form number. The extra n-bit number is

called Negative Number. Each bit with the value of 1 in the Negative Number

demonstrates the existence of a bit with -1 value in the same position in the

original 3d form number. The other bits in Negative Number are 0. For example,

if B=10-10011-110 and should be converted to the 3d form, two 10-digit numbers

are appropriate. The first one is equal to 1000011010 and the extra one

18

(Negative Number) is equal to 0010000100. Fig. 3.1 clearly shows the conversion

from the 2d to the 3d form,

Figure 3.1: Conversion from 2d to 3d form

Now suppose that several numbers are going to be added in several clocks. In each

clock two numbers are added. Using the proposed method which is shown in Fig.

3.2, in the first clock two 2d form numbers are added and the result of first clock is

in 3d form. This addition requires a special adder which is described in details in

section 3.2.2. In the other clocks one 2d form number is added with a 3d form

number and the result is in 3d form and it requires another adder that is described

in details in section 3.2.3. In the last clock, there is a 3d form result that should

be converted to the 2d form. Here, there is a need for the final converter which is

described in section 3.2.4 in details.

3.2.2 Addition of the 2d form numbers using 3d form
representation

For the addition of two 2d form operands in the first clock, the bits are

decomposed to 1-bit sets or columns and the addition of them is startedin parallel.

19

Figure 3.2: Addition of several numbers in several clocks using proposed method

20

This procedure can be seen in Fig. 3.3.

Figure 3.3: Addition of two 2d form numbers

In order to prevent the carry propagation to the next columns, the cases, resulting

in the propagation of the carries to the other columns should be found. Therefore,

there are two cases: the first case is that both of the bits of one column are 1 and

second case is that one of the bits of one column is 1. A Flag bit for each column

is used to illustrate the condition of the addition regarding these cases. Therefore,

an AND gate and a XOR gate need to be used as shown in Fig. 3.3. If the result

of the 2-input AND gate is 1, a carry is propagated to the next column. If the

second case occurs, i.e., one of the bits of one of the columns is 1, it’s assumed

that the anticipated sum result for that column is 1 and therefore a carry is given

to the next column. In this case, a 1 in the corresponding Flag of that column is

21

saved. A Flag with the value of 1 illustrates that the result of the addition of the

current column is equal to one value greater than the real one. Therefore, to

obtain the real result, 1 should be subtracted from the denoted result. In the next

step, if both the input carries to the column and the Flag of that column are 1, i.e.

the AND result of them is 1, the result should be zero. It means that instead of

adding the input carry to the column with the result of the addition of that

column which itself is one unit greater than the real result, nothing is done and

the result is correct. If the input carry to the column is zero, while the Flag of

that column is 1, the result should be -1. In this way, no carry is propagated to

subsequent columns.

Fig. 3.4 shows a gate level implementation of Ci+1 and Flagi, which is used in this

thesis.

Now, two bits as the result bits are used, Sum and Negative Sum(NSum). The

Negative Sum(NSum) number is 1 where the Flag value is 1 and previous column

consists of two 0 bits. Because only in this case, which Flag is 1 and previous

column bits are 0, does the wrong carry 1 propagate to the next stages and a

subtraction is needed using NSum. For other Flag bits equal to 1, the right carry

(1) is propagated. The truth table of the previous conditions is listed in Table. 3.1.

⇒ Sumi = Flagi · Ci, (3.1)

By computing :

22

(a)

(b)

Figure 3.4: (a) Gate level implementation of Ci+1 in the CD adder and (b) Gate
level implementation of Flagi in the CD adder. Note NBi is the ith bit of the
Negative Number.

NSumi = Flagi · Ai−1 ·Bi−1 (3.2)

= (Ai ⊕Bi) · Ai−1 ·Bi−1.

Fig. 3.5 shows an example of the addition of two 2d form numbers (A=101101 and

23

Table 3.1: Producing Sum for 2d form input

Flagi Ci Sumi

0 0 0

0 1 1

1 1 0

1 0 0

B=10011) using 3d form representation.

Figure 3.5: Addition of A=101101 and B=10011 using 3d form representation.

3.2.3 Addition of the 3d form numbers

This addition operation is similar to the one in the previous section, but one of the

two inputs are in the 3d form and the other is in the 2d form. Hence, for the serial

addition, in the middle of additions, there are two numbers to be added which the

24

first one is in the 2d form and the other is the result of the calculation of the

previous additions that is in the 3d form. Theorem1 shows that the result of the

addition of one 2d number with one 3d number is in the 3d form.

Theorem1 : the result of the addition of one 2d number (A) with one 3d number

(B) is in the 3d form.

Proof : For each pair of digits, one digit of A and one digit of B, should be added

and there are six possible choices: (0,0), (0,1), (0,-1), (1,0), (1,1), and (1,-1). The

result of the addition of all of these choices are in this set {-1, 0, 1, 2} and no

results such as -2 exist such that the result is in the 3d form.

Consider that in the middle of the serial addition, where two numbers are added,

one in the 2d form and the other in the 3d form. This addition is similar to the

addition of two numbers in the 2d form, we can do addition in 3d form but this

small difference: another input, Negative B(NB0...n−1) is included which is the

extra n-bit number of the 3d form number.

Table 3.2: Producing Carry and Flag

NBi Ai Bi Ci+1 Flagi

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 1 0

1 0 0 0 1

1 1 0 0 0

Table 3.2 and Table 3.3 is the summary of the addition operation in the 3d form.

25

Table 3.3: Producing Sum and NSum

Flagi Ci Sumi NSumi

0 0 0 0

0 1 1 0

1 1 0 0

1 0 0 1

The relation between the inputs and the outputs are expressed as follows:

Ci+1 = (Ai +Bi) ·NBi (3.3)

⇒ Ci = (Ai−1 +Bi−1) +NBi−1,

F lagi = (Ai ⊕Bi) ·NBi + Ai ·Bi ·NBi (3.4)

⇒ Flagi = ((Ai ⊕Bi) +NBi) · ((Ai +Bi) ·NBi),

Sumi = Flagi · Ci (3.5)

⇒ Sumi = Flagi + Ci,

and

NSumi = Ci · Flagi (3.6)

⇒ NSumi = Flagi + Ci.

In fact, there is no extra conversion process for converting from 2d to 3d form and

26

vice versa in several clocks of serial addition except the final operation during the

last clock of serial addition in which the 3d number result should be converted into

a regular 2d form that is explained in details in the next section. So there is no

power consumption for conversion in several clocks but there is power

consumption for the adder that is used in final operation as a converter that is

calculated in section 3.4. In the first clock two numbers are added and by using

the result of first clock in the next clock, without any conversion process, the

result of second clock will be in 3d form and similarly for other clocks there is no

need for conversion operation. More details about number of transistors and

hardware comparisons is explained in section 3.3.2.

Fig. 3.6 shows one block of the proposed CD adder method that produces Sumi

and NSumi and Fig. 3.7 is a block diagram of an n-bit proposed adder. In Fig.

3.7, A−1 and B−1 and NB−1 represent the input carry to the adder so that if

A−1 = B−1 = 0, the input carry is 0, and if one of A−1 or B−1 is equal to 0 and

the other is equal to 1, the input carry is 1. In these cases NB−1 is equal to 0.

3.2.4 Final operation - converting to conventional form

Suppose there are m n-bit numbers to be added in a serial manner by using a

clock signal. In each clock the proposed CD adder is used and the results of each

clock is in the 3d form. In the final clock, when all of the m numbers are added,

the result is still in 3d form and should be converted to the conventional form

(2d). The result includes 2 numbers, Sum and NSum, that each has n+ log2 (m)

bits length because the result of addition of m n-bit numbers is less than

27

Figure 3.6: CD adder block for one output bit

Figure 3.7: CD adder for the addition of two n-bit operands. The first block from
the right side is used to produce carry in necessary cases.

m× 2n = 2log2 (m)+n. NSum conveys that in each position, its bits are 1, a

subtraction needs to be done. Therefore, for converting to 2d form, NSum should

be subtracted from Sum, which can be done by adding Sum by the 2’s

28

complement of NSum, in order to invert all the bits of NSum, and then adding the

inverted NSum and also a carry equal to 1. Now the final stage contains an

n+ log2 (m) simple inverters and a n+ log2 (m) bit adder. The final operation is

not a constant delay procedure but it will be shown in section 3.3.1 that the whole

adder in several clocks, if m and n as the number of operands and word length

respectively, have some relation (that are met in many practical cases), will

perform addition in a time less than a constant delay for every word length.

3.3 Comparison between CD and KS methods

in serial addition

3.3.1 Delay comparison

For addition of m n-bit numbers, a n+ log2 (m)-bit adder is required. In the

n+ log2 (m) bit Kogge-Stone(KS) adder, log2 (n+ log2 (m)) stages also exist on

top of the first stage, producing a primary Sum, P, and G, where all have a delay

equivalent to the XOR gate delay. Here, the last two stages produce the final

carries and final sum that each have a delay equivalent to the XOR gate delay.

Each of the log2 (n+ log2 (m)) stages has a D operation. Such an operation

combines two different P and G blocks. The delay of this block is equivalent to the

delay of the AND gate. Also, the OR gate and the AND gate delays are supposed

to be equal to (δ). For the CMOS implementation of the three gates, D operation

has a delay equivalent to the XOR gate delay. As a result, the KS delay is

29

KS = XOR delay × (log
n+logm

2
2 +3). (3.7)

According to (3.3), (3.4), (3.5), and (3.6), the CD adder exhibits a delay equal to

CD = XOR delay + 3× δ. (3.8)

To do addition of m n-bit numbers using the CD adder in several clocks with a

Kogge-Stone adder as the final conversion circuit block, the total delay is

expressed as

Total = (m− 1)× (XOR delay + 3× δ) +XOR delay × (log
n+logm

2
2 +3)). (3.9)

Thus, the delay of each addition by the CD adder in a clock, using the final KS

adder, is equal to (3.9), divided by (m-1) and the following is attained:

Final CD = XOR delay + 3× δ +XOR delay × (log
n+logm

2
2 +3)

/
m− 1.

(3.10)

Then, assuming that the XOR delay is equal to 2δ such that

m = 2⇒

{
KS=(2 logn+1

2 +6)×δ

CD=(5+(2 logn+1
2 +6)/1)×δ

(3.11)

⇒ ∀n ≥ 1→ CD > KS

30

Ignoring which numbers to be added, Fig. 3.8 reflects the above equations as the

delays for KS and proposed CD adder when m=2. It can be seen that if just 2

numbers are added serially, CD method is not faster than KS method, but if m is

greater than or equal to 3, the proposed CD works faster than KS method for

serial additions as it can be seen in Fig. 3.9.

Figure 3.8: Comparison of the normalized delay of the KS and the proposed adder
when m=2

The delay of KS and proposed for m=3 is computed by

31

m = 3⇒

{
KS=(2 logn+1.58

2 +6)×δ

CD=(5+(2 logn+1.58
2 +6)/2)×δ

(3.12)

⇒ ∀n ≥ 2.42→ CD < KS

m ≥ 4⇒ (∀n ≥ 1→ CD < KS).

Similar to fig. 3.8, ignoring which numbers to be added, fig. 3.9 reflects the above

equations as the delays for KS and CD adder when m=3. Fig. 3.8 and 3.9 were

selected to be shown because for m=2 and m=3, the CD adder has the worst

scenario in terms of delay compared to KS adder and by increasing m, the CD

adder performs faster and faster compared to KS adder.

So, if m ≥ 3, almost in all the conditions(n ≥ 3), the proposed CD adder works

faster than the KS adder. According to (3.7) and (3.10), if

(log
n+log2(m)
2 +3) ≤ m− 1⇒ n ≤ 2m−4 − logm2 , the Final CD is a delay less than a

constant value that is equal to 2XOR + 3δ. If m ≥ n+ 5, ∀n ≥ 2 the newly

developed method has a delay less than the constant value of 2XOR + 3δ.

3.3.2 Area and power comparison

An n+ log2(m) bit KS adder has log2 (n+ log2(m)) stages [33]. In each stage,

O(n+ logm2) is the hardware(number of transistors) such that the total hardware

in the KS adder is

KS Hardware = O((n+ logm2)× log
n+logm

2
2).

In the CD adder, the n+ logm2 blocks, like which is used in Fig. 3.6, are necessary

32

Figure 3.9: Comparison of the normalized delay of the KS and the proposed adder
when m=3

and this block contains O(1) hardware. So, the total hardware of the proposed CD

is calculated by

CD Hardware = O(n+ logm2).

The proposed CD adder is not only superior in terms of the delay order, to the

Kogge-Stone (KS), but also in terms of the hardware order and power. The

proposed CD adder can be expanded for addition of larger numbers so easily

because in each clock, CD adder blocks for different digits are independent and

33

just by placing the exact copy of the block at the end of the two numbers, it can

be expanded to (n+1)-bit adder. So, CD adder shows so much lower hardware

complexity compared to KS adder.

3.3.3 Brief algorithmic comparison with other similar
adders

In [31], similar concept of 0,1, and -1 digits is described. In [34], a redundant

binary Multiplication-and-Accumulation (MAC) unit is proposed. In MAC

implementation, a redundant binary multiplier and redundant binary adder has

been used [35, 36]. The structure of the redundant binary multiplier and the

redundant binary adder are similar to the proposed structure in [31]. The

proposed adder in [31] is appropriate for fast multiplication and division but not

in serial additions and multioperand additions. The problem with this method

compared to the proposal in this thesis is that for representing a simple output

equal to 1 in a special significance, another output bit equal to 1 has been used

that has a higher significance and generates another problem [32]. The authors use

two digits for representation of each output that are with different significances,

like the full adder, and for each addition in the serial addition, the converter in

[32] is needed to be used and the delay of a converter has a linear relationship with

the word length. To reduce this delay, as it is explained in [31], a high number of

transistors and a large area are required. This method in [31] works a little faster

than the carry look-ahead adder and with a much larger area. It is note worthy

that the proposed CD method produces two digits of output, each with the same

34

significance, and does not produce any output for the more significant ones. It can

be used in each serial addition (except the last addition) without conversion, and

consequently works in a constant latency.

The comparison between the power dissipation of the proposed CD and

Kogge-Stone (KS) techniques using Cadence simulator is discussed in the next

section.

3.4 Experimental results

In this thesis, a serial adder that can add many numbers in several clocks is

realized. A master-slave positive edge register is employed for keeping the output

results of each clock. This register is composed of two positive level-sensitive

latches and negative level-sensitive latches. The bulk of the transistors is

connected to the source. The sizing of the transistors is done for both the KS and

proposed CD method in the same way, i.e., the sizing for the worst-case delay and

equivalent to the ratio of the PMOS and NMOS in an inverter for a pull-up and

pull-down network (The width of the PMOS should be two times bigger than the

NMOS in an inverter).

The simulation and implementation were done using Cadence software and

schematic was used as circuit design style. The delay is calculated from 50 % of

the input to 50 % of the output in 180nm technology and 1.8v supply voltage in a

100MHz clock. The new method is implemented by using the CMOS technique

and the AND, OR, XOR, and NOT gates, according to (3.3), (3.4), (3.5) and (3.6).

A comparison of these results reveals that the improvement ratio for the delay is

35

Table 3.4: Comparison of the serial addition of 64 58-bit numbers in one clock
duration (addition of two 64-bit numbers) in the KS and CD methods with the
consideration of the register

KS CD

Delay (ps) 1508.5 524.86

Average Power (mW) 6.96 3.93

Number of Transistors 8492 5330

65.2% and for the average power dissipation is 43.53%. This improvement makes

sense according to (3.7) and (3.10) for n=58 and m=64, because proposed CD

adder in each addition of serial additions works with a constant delay but KS

works with a logarithmic delay. It was used 64 words each with 58-bit length

because the result of addition of these numbers is a number with

′58 + log2(64) = 64′ bit width and a 64-bit adder should be used to add them up in

64 clocks. The numbers that were added for KS adder are

258− 1 = 288230376151711743 in addition to 63 equal numbers that are

257− 1 = 144115188075855871. It was seen in simulation that addition of these

numbers has the lowest delay for KS adder. Also for proposed CD adder, it was

used 63 equal numbers that are 258− 1 = 144115188075855871 in addition to one

3d form number in the first clock (suppose (A1, NA1)), that both A1 and NA1 are

equal to 258− 1 = 144115188075855871. It was seen in simulation that the

addition of these numbers has the highest delay for the proposed CD adder,

compared to the addition of other numbers. So comparing the lowest delay for KS

adder and the highest delay for CD adder, with the same word with, results the

worst case scenario of improvement.

36

3.5 Conclusion

In this chapter, a new algorithm for serial addition and comparison of the

performance and power dissipation of the proposed method with other high

performance adders in serial additions are developed and discussed. The proposed

adder, CD adder, is not only better than Kogge-Stone (KS) method in terms of

latency but also is better in terms of power dissipation in serial additions. Also, if

the number of operands becomes a little more than the word length, the proposed

method performs addition in a constant latency.

In the next chapter, the statistical design of a Master-Slave D flip-flop will be

investigated in details to gain maximum timing yield for setup-time and hold-time

under process variations.

37

Chapter 4

Framework for Statistical Design
of a Flip-Flop

4.1 Introduction

The uncertainty of gate delays due to process variation causes considerable

uncertainty in the performance metrics of flip-flops. Because flip-flops are designed

small, process variation can cause significant effects in the timing yield of them. In

this thesis, it’s assumed that the widths of transistors in flip-flops have variations

and the effect of the widths of transistors is taken into account.

In order to assess how different metrics of flip flop performance are sensitive to

process variation, the behavior of the flip-flop shown in fig. 4.1 is simulated by

SPICE Monte Carlo simulation. Fig. 4.2 shows how the signal propagation delay

from input D to node QM (TDQM) varies due to variation of the widths of

transistors. Consequently, setup-time, which is limited by TDQM, becomes

uncertain and results in timing violations. Further to setup-time, as shown in fig.

4.3, clock-to-output (Clock-to-Q) delay becomes uncertain and impacts on the

38

design operational frequency.

Figure 4.1: Master-Slave D flip-flop

Uncertainty in flip-flop’s characteristics can significantly decline timing yield

because around 10 % of all design components are flip-flops and they directly

impact on operational frequency. Therefore, it is crucial to desin robust flip-flops

against process variation.

In this chapter statistical design of a Master-Slave flip-flop using a yield

maximization method is investigated and valuable results have been found. The

objective of this chapter is to propose a method to increase the flip-flop robustness

against variations in the widths of transistors. To achieve this goal, it is attempted

to determine the flip flop’s gate sizes considering performance and area constraints.

4.2 Basic concepts

A Master-Slave flip-flop architecture, shown in Fig. 4.1, is chosen as the case

study in this thesis. For the rest of the chapter, the equations and performance

39

Figure 4.2: Variability of D-to-Q delay of flip-flop, σ = 807.3ps

metrics are expressed in relation to the selected architecture and the effect of

variations on the widths of transistors in timing yield is studied.

Conventionally, the minimum clock period of a design (Tclk) is restricted by the

following constraints:

∀(i, j) ∈ subsequent flip− flops of design : skewi − skewj +Dmax
ij ≤ Tclk − Tsetup

skewj − skewi + Thold ≤ Dmin
ij

(4.1)

40

Figure 4.3: Variability of Clock-to-Q delay, σ = 430.2ps

where skewi and skewj are the clock arrival times of the flip-flops and Dmax
ij and

Dmin
ij are the maximum and minimum combinational delays between subsequent

flip-flops. In above Equations, Tsetup and Thold represent setup-time and hold-time

of flip-flop which are considered as the timing parameters of flip-flops.

The setup-time is defined as the latest allowed data arrival with respect to the

clock edge in order to correctly capture the data. The hold-time is defined as the

earliest time after the clock edge is triggered, at which the input is allowed to be

changed. An example is shown in Fig. 4.4.

41

Figure 4.4: Setup and Hold time illustration

According to Fig. 4.1, both setup-time and hold-time can be specified in terms of

the delay of different components of flip flop as:

Tsetup = 3×Delayinv +Delaytgate (4.2)

where Delayinv and Delaytgate represent propagation delay of inverter and

transmission gate, respectively.

For analyzing the design constraints that will be discussed in the next section,

42

three parameters that are functions of some constant parameters are considered.

1. Maximum area as a function of the widths of transistors (Area-Max)

2. Setup-time (Ts)

3. Delay of flip-flop (Td)

Now the task is to find these parameters. For achieving a better delay, the gate

sizing should occur on the pass-transistor and inverter gates. Therefore, it is

assumed that the width of a PMOS transistor in both the pass-transistor and

inverter gates are twice the width of an NMOS for the “critical path” sizing [38].

Here, the new parameter, the width of the gate, is defined. The width of the gate

is assumed to be equal to the width of the NMOS (Wn), simplifying the

calculations (Wp = 2×Wn). In the rest of the chapter Wi stands for the width of

inverter gate and Wt represents the width of the pass-transistor gate in the circuit

of Fig. 4.1. It’s assumed that the maximum area (Area-Max) is the summation of

the widths of all of the gates. Area-Max, setup-time and the delay of the flip-flop

are obtained as follows:

1. Area-Max =
∑
Wi +

∑
Wt

2. Ts = Tinv1 + Tinv3 + Tinv4 + Tpass1

3. Td = Tinv6 + Tpass3

Thus, the delays of all of the gates must be found. Because deep sub-micron

technology (45nm) is used in this thesis, it’s assumed that the operational region

of the transistors in this flip-flop is velocity saturation. For each pass-transistor

and inverter, according to the calculations in [38],

43

Tpass(j) = 0.69× (Req−pass(j))× (Co−pass(j)) (4.3)

and

Tinv(i) = 0.69×Req−inv(i) × Co−inv(i)

for (1 < i < 6) and (1 < j < 4),

where, Req−pass(j) is the equivalent resistance of the pass-transistor and Co−pass(j) is

the output capacitance of the pass-transistor [38]. Also,

Cin−inv(i) = 2× Cox × Leff ×Wi, (4.4)

Cin−pass(j) = 2× (Cj × Ls ×Wt) + Cjsw × (Cj × Ls +Wt)

for (1 < i < 6) and (1 < j < 4).

where, Cox is the capacitance of the gate oxide of the transistors, Leff is the

effective channel length of the transistors, Cj is the zero-bias bottom bulk

capacitance of the transistors, Cjsw is the zero-bias sidewalk bulk capacitance of

the transistors and Ls is the sidewalk length of the transistors. According to Fig.

4.1, the following equations for the input and output capacitance of the inverters

and pass-transistors is obtained. The input (or output) capacitance of a

pass-transistor or an inverter is calculated by using the capacitance of all the

44

gates, connected to their input (or output) node. The following equations are

required to find the setup-time and the delay the flip-flop (assumption is

transistors are working in the velocity saturation operational region):

Ids(n/p) = ((Vdd − VT0)× VDSAT (n/p) − V 2
DSAT (n/p)/2)× kn/p/(Leff ×Wi), (4.5)

Req(n/p) = 0.75× Vdd × (1− 7/9× λ(n/p) × Vdd),

and

Req−inv = (Reqn/Idsn+Reqp/Idsp)/2, [38]

where Ids(n/p) is the drain source current of the NMOS or PMOS, Req(n/p) is the

equivalent resistance of the NMOS or PMOS, and Req−inv is the total resistance of

the inverter. By using equations, Tinv is found. Also, by using the following

equations, Tpass can be obtained [38]:

R(n or p) = Leff/(k(n/p) ×Wt × (Vdd − VT0)) (4.6)

and

Req−pass = Rn ×Rp/(Rn +Rp),

where, R(n or p) is the resistance of a PMOS or NMOS in the pass-transistor, and

Req−pass is the total resistance of the pass-transistor. By finding Tinv and Tpass, the

45

setup-time and the delay of the flip-flop can be calculated. Consequently, all of the

deterministic problems can be analyzed.

4.3 Problem formulation

The problem here is finding the best values as the widths of gates of a

Master-Slave flip-flop, which is shown in Fig. 4.1, to gaining the maximum timing

yield under the gate width variations.

4.3.1 Statistical design

Design parameters

In this thesis, according to Fig. 4.1 the design parameters are the widths of the

gates that are Wi(j)(1 < j < 6) for the inverters, and the Wt(i)(1 < i < 4) for the

pass-transistors, and these are random variables. This problem has ten design

variables, a large number. Also, Ts and Td are found using equations 4.4-4.7.

Design constraints

There are three constraints in this problem. The first one is about the Area-Max,

the second one is about the setup-time, and the third one is about the delay of the

flip-flop. The fourth and fifth constraints are used for considering a minimum size

for the width of each of the gates. As a result, the following constraints are

attained:

1.
∑
Wi +

∑
Wt < Area

2. Ts < Setup− Time

46

3. Td < Hold− Time

4. Wi(j) > Minimum Inverters Width ,(1 < j < 6)

5. Wt(i) > Minimum Pass− transistor Width ,(1 < i < 4)

Above constraints are shown in Fig. 4.5. The constant values of Area,

Setup-Time, Delay, Minimum Inverters Width, and Minimum Pass-transistor

Width are shown in Table. 4.2. The next section is the discussion of the applied

yield maximization method, proposed in this thesis.

4.3.2 Yield maximization

Polyhedral approximation of the constraint region

The usage of the original constraints for analyzing is difficult, because they are

nonlinear. Consequently, the first step is approximating the original constraints by

the linear constraints. In this step, ∂(Ts)/∂(Wi(j)) for all (1 < j < 6),

∂(Ts)/∂(Wt(i)) for all (1 < i < 4), ∂(Td)/∂(Wi(j)) for all (1 < j < 6), and

∂(Td)/∂(Wt(i)) for all (1 < i < 4) should be taken for the approximation of the

original constraints to allow the use of the Taylor series. For the Taylor series

approximation, partial derivatives of all the variables should be taken. By using

random vector x in the feasible region, the original constraints can be

approximated by [39]-[40] computing

hi(x) ≈ hi(x
∗) + gi(x

∗)T (x− x∗), (4.7)

47

where gi(x
∗) is the gradient vector of h, and hi is the ith original constraint. At

first glance, point x∗ is on the surface hi(x) = 0 and has the minimal distance

from xc, which is the center of the initial tolerance box and is shown in Fig. 4.5.

For finding the best match for the approximated linear constraints, an

optimization problem should be solved [39]-[40] as follows:

min β = [(x− xc)T (x− xc)]
1
2 , (4.8)

subject to hi(x) = 0.

By solving this optimization problem, some linear constraints are found to solve

the yield maximization problem instead of using the original ones.

Modeling arbitrary distributions

For traditional designs, it is assumed that symmetrical distributions simplify the

solution process. In this case, the maximum volume box corresponds to the

maximum yield that can be attained which is shown in Fig. 4.5. But, if

Probability Density Function (PDF) is nonsymmetrical, the maximum volume box

does not correspond to the maximum yield. Thus, the calculation of the yield

involves the evaluation of a multi-dimensional probability integral by quadrature

or Monte-Carlo-based methods, which is computationally expensive [41]. Here,

Kumaraswamy’s distribution [42] is used for approximating a Double-Bounded

Probability Density Function (DB-PDF) for physically bounded variables such

48

that

f(z) = abza−1(1− za)b−1 (4.9)

and

z = x−xmin

xmax−xmin , xmin ≤ x ≤ xmax.

where, xmin and xmax are the maximum and minimum possible values for the

probabilistic variable x. DB-PDF can take different shape by using different values

for ’a’ and ’b’. The integral of the DB-PDF; i.e., CDF (Cumulative Density

Function), can be calculated according to [42]

F (z) = 1− (1− za)b. (4.10)

Yield maximization

For the given Wmax
i , Wmin

i , Wmax
t and Wmin

t , and the nominal design that is the

center of the tolerance box, the tolerance box can be found from the following

representations:

Ti(j) = Wmax
i(j) −Wmin

i(j) (1 < j < 6) (4.11)

49

and

Tt(i) = Wmax
t(i) −Wmin

t(i) (1 < i < 4),

where Ti(j) is the tolerance box width for the ith inverter, and Tt(j) is the tolerance

box width for the jth pass-transistor.

If W l
i and W u

i define the bottom left and top right corner of the yield box that is

the smaller box in Fig. 4.5, the yield is calculated by [39]-[40]

Y ield(xr, xl, xu) =
n∏
j=1

Pr{xlj ≤ xj ≤ xuj } (4.12)

and

=
n∏
j=1

[
F
(
xu

j−xr
j

tj

)
− F

(
xl

j−xr
j

tj

)]
,

where x refers to Wi and Wt, and xr refers to the bottom left corner of the

tolerance box. Also F(x) can be found by using the integral of Kumaraswamy’s

distribution. Now, with a given tolerance box, the objective is to move this box

such that the yield is maximized. Finally, the optimization problem is [39]-[40],

max Y ield(xr, xl, xu), (4.13)

subject to

A+xu − A−xl ≤ C,

50

xr ≥ xmin,

xl ≥ xr,

xu − xl ≥ t,

and

xr + t ≤ xmax.

where x refers to Wi and Wt, and xr refers to the bottom left corner of the

tolerance box. Ai, as the transpose of the gradient vector (g in equation 4.7), can

be calculated by the linearization of the performance constraint (hi) at a given

vector x. A+ and A− are the upper and lower bounds of the same performance

constraint, and C refers to the constant terms in the linearization. Fig. 4.5

illustrates the ideas that have been discussed in this thesis.

By solving the above optimization problem using Matlab, maximum yield can be

found.

4.4 Experimental results

In this thesis, 45 nanometer technology for the statistical design of a flip-flop is

chosen. The feasible region in this problem is a ten-dimensional space that cannot

be plotted. Therefore, a two dimensional feasible region is drawn in Fig. 4.6. This

work can be easily extended to other technologies and other circuits. Table 4.1

lists the constant parameters of this technology [37]. The previously discussed

51

Figure 4.5: Normalized simplified yield maximization method

timing yield maximization method is implemented in Matlab.

Table 4.1: Constant parameters of 45nm technology

Parameter Value Parameter Value

Ls 80× 10−9 µn 350×10−4

Cj 5×10−4 µp 100×10−4

Cjsw 5×10−10 Leff 17.5×10−9

λn 0.1 VT0 0.18

λp 0.2 VDSATn 33.23× 10−3

εox 1.4× 10−12 VDSATp 94.15× 10−3

Tox 1.1× 10−9 Vdd 1

52

Figure 4.6: Yield maximization method for T=12 and Area=500× 10−9

For the design constraints in Table 4.2, the details about the experimental results

for different tolerance boxes and different values as Area are summarized in Table

4.3. Design variables are supposed to have normal distributions. The Setup-Time

and Delay are assumed to be about 20% more than the mean of setup-time and

hold-time, which are simulated by SPICE Monte Carlo simulation. Also,

Minimum Inverter Widths and Minimum Pass-transistor Widths are assumed to

be 20% less than the minimum possible value for the corresponding probabilistic

width. Considering the above assumptions and using the paper [43], in which the

area supposed to be the summation of widths of transistors, 500nm is found by

scaling the parameters in [43].

According to the ITRS [20], the gate dimension variations are assumed to have a

53

Table 4.2: Design constraints except area
Constraint Setup-Time Hold-Time Minimum Minimum

Inverters Widths Pass-transistors Widths

Value 2.8×10−9 1.3×10−9 30×10−9 30×10−9

Table 4.3: Experimental results for different threshold voltage variations
Tolerance Area Design Variables (nm) Yield

(%) (nm) WI1 WI2 WI3 WI4 WI5 WI6 WT1 WT2 WT3 WT4 (%)
12 500 46.8 46.8 46.8 46.8 46.8 46.8 46.8 46.8 46.8 46.8 100
12 480 46.8 46.8 46.8 46.8 46.8 46.8 46.8 46.8 46.8 46.8 98.9
15 500 48.15 48.15 48.15 48.15 48.15 48.15 48.15 48.15 48.15 48.15 99.9
15 480 48.15 48.15 48.15 48.15 48.15 48.15 48.15 48.15 48.15 48.15 56.3

value of 12 % of the physical gate length. The simulations are conducted by using

two different numbers as the Area. Fig. 4.6 shows the timing yield maximization

results for the first tolerance box width, 12 %, and the area, 500× 10−9 in two

dimensions. For the area equal to 500× 10−9, 100 % yield is obtained. It can be

seen in Table 4.3 that the sizing of the flip-flop is required to obtain a 100 % yield.

Also in Table 4.3, when the the right hand side number in the constraint for Area

(first constraint in the main problem) becomes smaller, a smaller yield is attained

because feasible region becomes smaller. Also, it can be seen from Table. 4.3 that

for higher percentage of tolerances, less yield can be attained. A SPICE Monte

Carlo simulation has been done using the nominal values (nominal widths of the

gates) of the flip-flop in the problem and confirms that the timing yield, which is

found by SPICE Monte Carlo simulation, is close to the timing yield that is found

by mathematical simulation of the problem in Matlab. Fig. 4.7 shows the CDF

(Cumulative Distribution Function) of the obtained results from SPICE Monte

54

Carlo simulation. It can be seen in Fig. 4.7 that by using the Setup-Time value

from the Table 4.2 (2.8ns), the probability of constraint number 2 (constraint of

setup-time) to be valid, is 100% that conveys 100% timing yield.

Figure 4.7: CDF of setup-time using the SPICE Monte Carlo simulation, mean =
1.37ns and σ = 458.48ns

4.5 Conclusion

In this chapter in order to achieve maximum timing yield for setup/hold-time

under variation of the widths of transistors, the statistical design of a flip-flop is

discussed. This method can also be used for other kinds of flip-flops and digital

blocks and with different kind of constraints such as power dissipation and

55

different kind of technologies. It’s needed only some changes in the constraints of

the statistical problem to be done.

In the next chapter, conclusions for all of the developed methods in this thesis and

also suggestion for the future work will be discussed.

56

Chapter 5

Conclusions and Future Work

5.1 Conclusions

To date, carry look-ahead adders are the fastest, and the Kogge-Stone is viewed as

being optimized in terms of delay [15]. However, serial addition techniques surpass

other techniques in relation to the power dissipation, but still have the problem of

high delay. In this study the proposed Constant-Delay (CD) adder, is a very fast

and low power adder that can work faster than the recognized methods for serial

additions. As well, it can work with a lower power than that of the famous

Kogge-Stone adder. The point of interest is that if the number of operands in the

serial addition is slightly more than the word length, the proposed CD adder acts

like a constant adder for each single addition during the serial additions. The

hardware of the proposed CD adder has a linear relationship with the word length,

without sacrificing the area or power, when the delay is optimized. Moreover, the

proposed CD technique has a delay that is independent of the length of the words

and each bit of the result is calculated separately from the others. Therefore, if

57

many numbers are going to be added in several clocks, some of the blocks can be

turned OFF for calculating the most significant bits foregoing the first clocks of

serial addition and using the lower width clock, at the first clocks and then turn

them ON at the last clocks and use wider clocks at the end. This power saving

and delay is not possible in the other methods. After the algorithmic proof for the

novel method is introduced, the new method and the Kogge-Stone method are

implemented for addition of 64 58-bit numbers. The results confirm that the

significant difference between our method and the Kogge-Stone method in serial

addition is not only in the delay aspect but also the power issue. In fact, the

proposed CD is almost three times faster and consumes half the power of the

Kogge-Stone method.

Also in this thesis, a statistical method to flip-flop design is proposed. The

method accounts for the manufacturing variability in the transistor widths. In

addition, the sizes of flip-flop’s gates are chosen such that they satisfy the

constraints of performance and area. The newly developed method is flexible and

involves small mathematical computations. According to experiments on the

proposed flip-flop design, there is no timing yield loss due to gate width variations.

The method can be extended to include the impact of other sources of variability

such as the oxide thickness fluctuation and line-edge roughness.

5.2 Future work

In this thesis, two robust digital circuit techniques have been probed. In the first

case that is talking about serial additions, the future work is the investigation on

58

the parallel and the tree-structure additions. Parallel additions are not energy

efficient but they are faster than serial additions. Also, in the second part of the

thesis, statistical design of important and most usable blocks in digital circuits can

be investigated for the future works.

59

Bibliography

[1] M. J. Irwin and R. M. Owens, “A case for digit serial VLSI signal processing,”

J. VLSI Signal Processing, no. 1, pp. 321-334, 1990.

[2] S. Cotofana and S. Vassiliadis, “Periodic Symmetric Functions, Serial

Addition, and Multiplication with Neural Networks,” IEEE Trans. on Neural

Networks vol. 9, no. 6, November 1998.

[3] V. Beiu, S. Aunet, J. Nyathi, R. R. Rydberg, and W. Ibrahim, “Serial

Addition: Locally Connected Architectures,” IEEE Trans. on Circuits and

Systems-II: Regular Papers, vol. 54, no. 11, November 2007.

[4] V. Beiu1, S. Aunet, J. Nyathi1, R. R. Rydberg, and A. Djupdal, “On the

Advantages of Serial Architectures for Low-Power Reliable Computations,” in

IEEE International Conference on Application-Specific Systems, Architecture

Processors, pp. 276-281, July 2005.

[5] B. Parhami, Introduction to Parallel Processing, Algorithms and Architectures.

New York: Kluwer Academic Publishers, 2002, pp. 157-161.

60

[6] J. Sklansky, “Conditional sum addition logic,” IRE Trans. Electron. Comput.,

vol. EC-9, no. 6, pp. 226-231, 1960.

[7] M. J. Irwin and R. M. Owens, “A Comparison of Two Digit Serial VLSI

Adders,” in IEEE International Conference on Computer Design: VLSI in

Computers and Processors, pp. 227-229, October 1988.

[8] T. P. Kelliher, R. M. Owens, M. J. Irwin, and T.-T. Hwang, “ELM-A Fast

Addition Algorithm Discovered by a Program,” in IEEE Trans. on Computers,

vol. 41, no. 9, September 1992.

[9] G. P. Saggese, A. G. M. Strollo, N. Mazzocca, and D. De Caro, “Shuffled serial

adder: an area-latency effective serial adder,” in International Conference on

Electronics, Circuits and Systems, vol. 2, pp. 607-610, September 2002.

[10] Wen-Chang Yeh and Chein-Wei Jen, “Generalized Earliest-First Fast

Addition Algorithm,” in IEEE Trans. on Computers, vol. 52, no. 10, October

2003.

[11] J. D. Nicoud, “B.C.D. serial adder/subtractor,” in Electronics Letters, vol. 5,

pp. 686-687, December 1969.

[12] P. M. Kogge and H. S. Stone, “A parallel algorithm for the efficient solution

of a general class of recurrence equations,” IEEE Transactions on Computers,

vol. 22, no. 8, pp. 786-793, Aug. 1973.

[13] S. Knowles, “A family of adders,” in Proc. I5th IEEE Symp. Computer

Architecture, pp. 277-281, June 2001.

61

[14] R.P. Brent and H.T. Kung, “A regular layout for parallel adders,” IEEE

Trans. Computer, vol. C-31, no. 3, pp. 260-264, Mar. 1982.

[15] S. Das and S. P. Khatri, “A Novel Hybrid Parallel-Prefix Adder Architecture

with Efficient Timing-Area Characteristic,” in IEEE Trans. VLSI Systems, vol.

16, no. 3, March 2008.

[16] H. Zhu, C. K. Cheng, and R. Graham, “On the construction of zerodeficiency

parallel prefix circuits with minimum depth,” ACM Trans. Des. Autom.

Electron. Syst., vol. 11, no. 2, pp. 387-409, 2006.

[17] G. Dimitrakopoulos and D. Nikolos, “High-speed parallel-prefix VLSI ling

adders,” IEEE Trans. Comput., vol. 54, no. 2, pp. 225-231, Feb. 2005.

[18] V. Dave, E. Oruklu, and J. Saniie, “Performance evaluation of flagged prefix

adders for constant addition,” in Proc. IEEE Int. Conf. Electro/ Inf. Technol.,

2006, pp. 415-420.

[19] Vojin G. Oklobdzija, Bart R. Zeydel, Hoang Q. Dao, Sanu Mathew, and Ram

Krishnamurthy, “Comparison of High-Performance VLSI Adders in the

Energy-Delay Space,” in IEEE Trans. VLSI Systems, vol. 13, no. 6, June 2005.

[20] International Technology Roadmap for

Semiconductors, http://www.itrs.net/, 2006.

[21] Vishvanathan, C. P. Ravikumar, and Vinod, Menezes, ”Design Technology

Challenges in the Sub-100 Nanometer Era,” in The periodical of the VLSI

society of India - VLSI Vision, vol. 1, no. 1, 2005.

62

[22] M. Hansson, A. Alvandpour, S. K. Hsu, and R. K. Krishnamurthy, ”A process

variation tolerant technique for sub-70nm latches and llip-flops”, In Proc. of

NORCHIP, pp. 149-152, 2005.

[23] S. Hatami, H. Abrishami, M. Pedram, “Statistical Timing Analysis of

Flip-flops Considering Codependent Setup and Hold Times,” In Proc. Of

GLSVLSI, pp. 101-106, 2008.

[24] J. P. Fishburn, “Clock skew optimization,” IEEE Transactions on

Computers, 1990, vol. 39, pp. 945-951.

[25] C. Lin, H. Zhou, “Clock skew scheduling with delay padding for prescribed

skew domains,” In Proc. of ASP-DAC, pp. 541-546, 2007.

[26] G. Venkataraman, C. N. Sze, and J. Hu, “Skew scheduling and clock routing

for improved tolerance to process variation,” In Proc. of ASP-DAC, pp.

594-599, 2005.

[27] A. P. Hurst and R. K. Brayton, “Latch based design under process variation,”

In Proc. of IWLS, 2006.

[28] B. Voss and M. Glesner, “A low Power Sinusoidal Clock,” IEEE Internaional

Symposium on Circuits and Systems, vol. 4, pp. 108-111, 2001.

[29] Hassan Mostafa, Mohab Anis, and Mohamed Elmasry, “Comparative

Analysis of Timing Yield Improvement under Process Variations of Flip-Flops

Circuits,” IEEE Computer Society Annual Symposium on VLSI (ISVLSI

2009), pp.133-138, 2009.

63

[30] V. Stojanovic, and V. G. Oklobdzija, “Comprehensive Analysis of

Master-Slave Latches and Flip-Flops for High Performance and Low Power

Systems,” IEEE Journal of Solid-State Circuits, vol.34, no. 4, pp. 536-548,

1999.

[31] H. R. Srinivas and Keshab K. Parhi, “A Fast VLSI Adder Architecture,” in

IEEE Journal of Solid-State Circuits, vol 21. no. 5 . May 1992.

[32] H. R. Srinivas, Bapiraju Vinnakota, and Keshab K. Parhi, “A C-Testable

Carry-Free Divider,” in IEEE Trans. on Very Large Scale Integration (VLSI)

Systems, vol. 2, no. 4. December 1994.

[33] S. Ghosh, P. Ndai, and K. Roy, “A Novel Low Overhead Fault Tolerant

Kogge-Stone Adder Using Adaptive Clocking,” Design, Automation and Test

in Europe, pp. 366-371, March 2008.

[34] Xiaoping Huang, Wen-Jung Liu, and Belle W. Y. Wei, “A High-Performance

CMOS Redundant Binary Multiplication-and-Accumulation (MAC) Unit,” in

IEEE Transactions on Circuits and Systems-I, vol. 41, no. 1, January 1994.

[35] Masakazu Yamashina, Junichi Goto, Fuyuki Okamoto, Kouichi Ando, Hachiro

Yamada, Tadahiko Horiuchi, Kimiko Nakamura, and Tadayoshi Enomoto, “A

200-MHZ 16-bit super high-speed signal processor (SSSP) LSI, in IEEE J.

Solid-state Circuits, vol. 24, Dec. 1989.

[36] Junichi Goto, Kouichi Ando, Toshiaki Inoue, Masaki Ishida, Masakazu

Yamashina, Hachiro Yamada, and Tadayoshi Enomoto, “A 250-MHZ 16b

64

I-million transistor BiCMOS super-high-speed video signal processor, in ISSCC

Dig. of Tech. Papers, pp. 254-255, Feb. 1991.

[37] Predictive Technology Models for 45nm, “http://www.eas.asu.edu/ ptm.”

[38] J. Rabaey, A. Chandrakasan and B. Nikolic, Digital Integrated Circuits: A

Design Perspective, 2/e, Prentice Hall, 2003.

[39] A. Seifi, K. Ponnambalam and J. Vlach, “Maximization of manufacturing

yield of systems with arbitrary distributions of component values”, Annuals of

Operational Research (99) 2000, pp 373-383.

[40] K. Ponnambalam, A. Seifi, and J. Vlach, “Probabilistic design of systems

with general distributions of parameters”, Intl’ J. of Circuit Theory and Appl.

29(6) 2001, pp 527-536.

[41] S. Director, P. Feldmann,“Optimization of Parametric Yield: A tutorial,”

IEEE Custom Integrated Circuits Conference, 1992, pp. 3.1.1-3.1.8.

[42] P. Kumaraswamy, “A generalized probability density function for

double-bounded random processes,” Journal of Hydrology(46), 1980, pp. 79-88.

[43] V. Stojanovic, and V. G. Oklobdjija, “Comparative Analysis of Master-Slave

Latches and Flip-Flops for High Performance and Low Power Systems,” IEEE

Journal of Solid-State Circuits, vol. 34, no. 5, pp. 712-716, 1999.

65

