
Symmetry Induction in Computational Intelligence

by

Mario Ventresca

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Systems Design Engineering

Waterloo, Ontario, Canada, 2009

c©Mario Ventresca 2009

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including

any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Symmetry has been a very useful tool to researchers in various scientific fields. At its most basic, symmetry

refers to the invariance of an object to some transformation, or set of transformations. Usually one searches

for, and uses information concerning an existing symmetry within given data, structure or concept to

somehow improve algorithm performance or compress the search space.

This thesis examines the effects of imposing or inducing symmetry on a search space. That is, the

question being asked is whether only existing symmetries can be useful, or whether changing reference

to an intuition-based definition of symmetry over the evaluation function can also be of use. Within the

context of optimization, symmetry induction as defined in this thesis will have the effect of equating the

evaluation of a set of given objects.

Group theory is employed to explore possible symmetrical structures inherent in a search space. Ad-

ditionally, conditions when the search space can have a symmetry induced on it are examined. The idea

of a neighborhood structure then leads to the idea of opposition-based computing which aims to induce a

symmetry of the evaluation function. In this context, the search space can be seen as having a symmetry

imposed on it. To be useful, it is shown that an opposite map must be defined such that it equates elements

of the search space which have a relatively large difference in their respective evaluations. Using this idea

a general framework for employing opposition-based ideas is proposed. To show the efficacy of these ideas,

the framework is applied to popular computational intelligence algorithms within the areas of Monte Carlo

optimization, estimation of distribution and neural network learning.

The first example application focuses on simulated annealing, a popular Monte Carlo optimization algo-

rithm. At a given iteration, symmetry is induced on the system by considering opposite neighbors. Using

this technique, a temporary symmetry over the neighborhood region is induced. This simple algorithm

is benchmarked using common real optimization problems and compared against traditional simulated

annealing as well as a randomized version. The results highlight improvements in accuracy, reliability and

convergence rate. An application to image thresholding further confirms the results.

Another example application, population-based incremental learning, is rooted in estimation of distri-

bution algorithms. A major problem with these techniques is a rapid loss of diversity within the samples

after a relatively low number of iterations. The opposite sample is introduced as a remedy to this problem.

After proving an increased diversity, a new probability update procedure is designed. This opposition-

based version of the algorithm is benchmarked using common binary optimization problems which have

characteristics of deceptivity and attractive basins characteristic of difficult real world problems. Exper-

iments reveal improvements in diversity, accuracy, reliability and convergence rate over the traditional

approach. Ten instances of the traveling salesman problem and six image thresholding problems are used

to further highlight the improvements.

Finally, gradient-based learning for feedforward neural networks is improved using opposition-based

ideas. The opposite transfer function is presented as a simple adaptive neuron which easily allows for

iii

efficiently jumping in weight space. It is shown that each possible opposite network represents a unique

input-output mapping, each having an associated effect on the numerical conditioning of the network.

Experiments confirm the potential of opposite networks during pre- and early training stages. A heuristic

for efficiently selecting one opposite network per epoch is presented. Benchmarking focuses on common

classification problems and reveals improvements in accuracy, reliability, convergence rate and generaliza-

tion ability over common backpropagation variants. To further show the potential, the heuristic is applied

to resilient propagation where similar improvements are also found.

iv

Acknowledgments

I cannot overstate my gratitude to my supervisor Dr. Hamid Tizhoosh. This dissertation began as an idea

we discussed in September 2005 when I first joined the University of Waterloo. He allowed me a great

deal of independence about the direction and goals of the thesis and was always supportive and ensured I

kept on track with my ideas. Throughout these four years his encouragement, sound advice, great ideas

and company have made this an excellent experience. The emphasis he places on quality publications and

exposure to conferences has also greatly contributed to furthering my academic career. I look forward to

further research and interactions with him.

The decision of Dr. Beatrice Ombuki-Berman to hire an undergraduate student who knocked on her

office door one afternoon has proven one of the most influential in my career. From that day, I have learned

so much and hope that in the future I will give the same opportunity to my own students. I am very

happy that we have developed a friendship over these many years.

A big thank you must be sent to all my teachers and professors over the many, many years prior to

joining the University of Waterloo. Among the many, special acknowledgment to Professor Brian Ross of

Brock University whom has provided many letters of reference since my undergraduate days.

I would also like to extend an appreciation to my external examiner Dr. Weber, who flew from Chile to

provide his knowledge and insight on this thesis. My committee members from Waterloo; Drs. Eliasmith,

Fieguth and Karray additionally provided their valuable comments during my comprehensive examination.

Each brought constructive criticism and without doubt this thesis is much better for their expertise.

A grateful thank you to the Natural Sciences and Engineering Research Council of Canada (NSERC),

the Ontario Graduate Scholarship Program (OGSST) and the University of Waterloo for providing funding

for my research is also in order. This support allowed me to concentrate on my research without the added

stress of financial issues.

I proudly and with great sincerity thank my family (Dad, Babbo, Grandma, Cat, Steph, Matt, Jenna,

Aunt Rose, Uncle Joe and Alicia) for their constant support and understanding. Working on my PhD has

meant that I was not able to be with them nearly as much as I would like, but I always kept them in my

thoughts.

My friends from before I could count, those who knew me before I could drive and those whom I am

very grateful to have met throughout my university education all deserve a huge thanks for their patience.

I wasn’t available to hang out often, especially over the past year, so thanks for understanding.

For too many things to list, I must lastly but certainly not anywhere near least, thank Dagmara; my

travel buddy, my goofball, my partner in crime, my love.

v

Contents

List of Tables x

List of Figures xii

1 Introduction 1

1.1 Symmetry . 1

1.1.1 Symmetry and Computational Intelligence . 2

1.1.2 Inducing Symmetry . 4

1.1.3 Symmetry and Opposition . 4

1.2 Overview of Results . 6

1.2.1 Part 1 - Motivations and Theory . 6

1.2.2 Part 2 - Example Applications . 8

1.2.3 Summary of Main Contributions . 9

I Motivations and Theory 11

2 Group Theory and Search Space Symmetry 12

2.1 A Short Exploration of Group Theory . 12

2.1.1 Basic Concepts . 13

2.1.2 The Symmetry and Permutation Groups . 15

2.2 Search Space Symmetry . 16

2.2.1 Conditions for Compatibility of S and G . 18

2.2.2 Neighborhood Structures . 21

2.3 Implied Symmetry Reduction Algorithm . 22

3 Opposition-Based Computing 23

3.1 Opposition . 24

vi

3.1.1 The Opposition Map . 24

3.1.2 Examples . 25

3.1.3 Conditions for a Good Opposition Map . 28

3.2 Computational Issues . 29

3.2.1 Partition Generation and Evaluation . 29

3.2.2 Uses of Opposition . 30

3.2.3 Convergence . 31

3.2.4 Summary of the Implied Framework . 33

3.3 Comparison to Existing Methods . 33

3.3.1 Antithetic Variates . 34

3.3.2 Quasi-Randomness and Low-Discrepancy Sequences 34

3.3.3 Similarity Functions . 35

3.4 Looking Forward . 36

II Example Applications 37

4 Monte Carlo Optimization 38

4.1 Background . 38

4.1.1 Simulated Annealing . 38

4.2 Opposition-Based Simulated Annealing . 41

4.2.1 Opposite Neighbors . 41

4.2.2 The Algorithm . 42

4.3 Benchmarking . 42

4.3.1 The Test Functions . 42

4.3.2 Experimental Setup . 44

4.3.3 Problem Dimensionality . 45

4.3.4 Neighborhood Function . 47

4.3.5 Neighborhood Randomness . 48

4.3.6 Cooling Schedule Effect . 50

4.4 Image Thresholding . 54

4.4.1 Results . 54

4.5 Summary . 55

5 Estimation of Distribution Algorithms 58

5.1 Background . 58

5.1.1 Population-Based Incremental Learning . 59

5.2 Oppositional Population-Based Incremental Learning . 61

vii

5.2.1 Improved Diversity . 62

5.2.2 Proposed Use for Opposite Guessing Strategy . 65

5.2.3 Alternate Probability Update Rule . 67

5.2.4 Summary of the Proposed Algorithm . 69

5.3 Benchmarking . 69

5.3.1 The Test Functions . 71

5.3.2 Diversity . 72

5.3.3 Parameter Control . 74

5.3.4 Accuracy . 76

5.3.5 Summary of Results . 79

5.4 The Traveling Salesman Problem . 82

5.5 Image Thresholding . 84

5.5.1 Parameter Settings . 85

5.5.2 Results . 86

5.6 Summary . 87

6 Gradient-Based Learning 89

6.1 Background . 89

6.1.1 Notations and Definitions . 90

6.1.2 Symmetric Structural Transformations . 91

6.1.3 Adaptive Transfer Functions . 91

6.2 Opposite Transfer Functions . 93

6.2.1 Network Irreducibility . 94

6.2.2 Changes in the Jacobian and Hessian . 97

6.3 Opposition-Based Gradient Learning . 98

6.3.1 An Exhaustive Approach . 98

6.3.2 The Proposed Framework . 99

6.4 Pre- and Early Training . 101

6.4.1 Experimental Setup . 102

6.4.2 Before Training . 102

6.4.3 During Early Training . 105

6.5 Comparing Variants of Backpropagation . 107

6.5.1 Experimental Setup . 107

6.5.2 Training . 108

6.5.3 Generalization Ability . 110

6.6 Training Over-Sized Networks . 110

6.6.1 Function Call Overhead Analysis . 112

viii

6.6.2 Expected Improvements . 113

6.6.3 Layer Size and Number . 118

6.6.4 Backpropagation Variants . 119

6.6.5 Generalization Ability . 119

6.7 Resilient Propagation . 119

6.7.1 Training . 120

6.7.2 Generalization Ability . 121

6.8 Summary . 122

7 Conclusions 125

Appendix

A Computing Effect Size 127

Bibliography 128

ix

List of Tables

3.1 Comparing Φa and Φb paired sampling strategies against a random sampler. In both situa-

tions the random sampler is outperformed. 26

3.2 The effect of Φa and Φb on the Bowl and Humps functions. All values were determined over

10,000,000 sampling iterations. 26

3.3 Comparing the probabilities of different sampling strategies on the Bowl and Humps functions. 28

4.1 Results for experiments on dimensionality with fixed variable change=1. 45

4.2 Results for experiments on neighborhood with fixed dimensionality = 100. 48

4.3 Comparing OSA vs RSA, fixed dimension=100. 50

4.4 Comparing results for traditional simulated annealing (SA), randomized neighbor (RSA)

and opposition-based (OSA) for various parameters of the linear cooling schedule. 51

4.5 Comparing results for traditional simulated annealing (SA), randomized neighbor (RSA)

and opposition-based (OSA) for various parameters of the exponential cooling schedule. . . 53

4.6 Value-to-reach (VTR) for comparing RSA and OSA. 54

4.7 Summary results for RSA vs. OSA with respect to the required number of iterations needed

to reach the VTR. 55

5.1 Goldberg’s 3-bit deceptive Evaluation Values. 72

5.2 Whitley’s 3-bit attractor Values. 72

5.3 Whitley’s 4-bit attractor Evaluation Values. 73

5.4 Whitley’s 4-bit deceptive Evaluation Values. 73

5.5 Comparing Whitley’s 3-bit attractor results for a minimization problem. 79

5.6 Comparing Goldberg’s 3-bit deceptive results. 80

5.7 Comparing Whitley’s 4-bit attractor results. 81

5.8 Comparing Whitley’s 4-bit deceptive results. 83

5.9 The average improvement in results over all test instances. Positive values are results where

OPBIL outperformed PBIL. 84

5.10 Results for the 10 TSP problem instances. 85

x

5.11 Value-to-reach (VTR) for comparing PBIL and OPBIL. 85

5.12 Parameter settings for image thresholding experiments. 87

5.13 Summary results for PBIL vs. OPBIL with respect to required iterations calls. 87

6.1 The benchmark data and the number of hidden layers used. 102

6.2 A comparison of Er(X) for each problem. 104

6.3 A comparison of rank(J) for each problem. 104

6.4 A comparison of κ for each problem. 105

6.5 The data used for comparing variants of backpropagation. The input and output sizes, in

addition to the number of patterns is presented. 112

6.6 Comparing GDM with and without opposite transfer functions (OGDM). 113

6.7 Comparing GDX with and without opposite transfer functions (OGDX). 114

6.8 Comparing the generalization ability of GDM without and with opposite transfer functions

(OGDM). 114

6.9 Comparing the generalization ability of GDX without and with opposite transfer functions

(OGDX). 115

6.10 Comparing data sets and network sizes. 115

6.11 The average number of attempted opposite transformations (Trans), average extra epochs

and probability a flip led to an improvement in network error. 115

6.12 Summary of final error results when varying layer size. 118

6.13 Confusion matrix results (nrm/otf). The training error is given in parentheses beside the

data set name. 120

6.14 Comparing RP with and without opposite transfer functions (ORP). 121

6.15 Comparing the generalization ability of RP without and with opposite transfer functions

(ORP). 122

xi

List of Figures

1.1 Symmetry inducing effect on a function, where symmetry is induced by Φ(x) = 2− x. . . . 5

3.1 The effect of Φa and Φb on two hypothetical evaluation functions. 27

4.1 Influence of dimensionality on convergence of OSA on the Schwefel function. 46

4.2 Convergence of OSA versus SA on the De Jong function of dimensionality 25. 47

4.3 Influence of neighbor generation on convergence of 100-dimensional OSA for the Alpine

function. 49

4.4 The images used to benchmark the algorithms. 57

5.1 The perception of opposites within a sample. 66

5.2 All-pairs-diversity for the Goldberg deceptive function with 100 dimensions and 4 samples

per iteration. 74

5.3 The convergence curve of results obtained by each algorithm on Goldberg’s function with

100 dimensions and 4 samples. 75

5.4 The convergence curve of results obtained by each algorithm on Goldberg’s function with

100 dimensions and 20 samples. 76

5.5 The effect of varying ρ on OPBIL results for the Goldberg 3-bit deceptive problem with 100

dimensions. For all experiments τ = 0.0005. 77

5.6 The effect of varying τ on OPBIL results for the Goldberg 3-bit deceptive problem with 100

dimensions. For all experiments ρ = 0.05. 78

5.7 A comparison of the convergence of PBIL and the two OPBIL algorithms on Whitley’s 4-bit

attractor problem where D = 200 and S = 20. 82

5.8 Comparing OPBIL vs. GA vs. PBIL for the kroA100 TSP instance. 86

6.1 Random sampling results for four benchmark problems. 103

6.2 A comparison of the probability a transfer function combination will yield the minimum

error at the given epoch. 106

xii

6.3 Comparing the probability of transfer function combination (00...0) of yielding the lowest

error for the five benchmark problems. 107

6.4 Comparing the difference in error between the trained network and the opposite network

with minimum error. 108

6.5 Comparing the difference in rank between the trained network and opposite networks. . . . 109

6.6 A comparison of the difference in condition between the trained network and its opposite

networks. 110

6.7 Example convergence curves for GDM and OGDM for the cancer problem. 111

6.8 Example convergence curve for GDX and OGDX for the iris problem. 111

6.9 The average number of neurons which undergo the opposite transformation per epoch for

the cancer dataset. Similar behavior was observed for all data sets. 116

6.10 The average relative improvement over the previous network performance (MSE). Only cases

where a transfer flip was successful are considered. 117

6.11 Comparing the proposed method performance for networks trained with gradient descent

using adaptive learning rate (GDA) and adaptive learning rate with momentum (GDX). . . 123

6.12 Comparing the convergence of RP and ORP for the arcene problem. 124

xiii

Chapter 1

Introduction

Numerous biological, natural or man-made structures and concepts exhibit symmetries as a fundamental

design principle or as an essential aspect of their function [69]. Whether by evolution or design, symmetry

implies potential structural efficiencies that make it universally appealing. Much of our understanding of

the world is based on the perception and recognition of shared or repeated structures [53, 54]. As will

be discused, the use of symmetry information has recently attracted the attention of many researchers in

machine learning and computational intelligence.

In this thesis the idea of inducing symmetry via opposition-based computing concepts is explored with

respect to computational intelligence algorithms. Symmetry in the search space is implicit in the proposed

methods. Hence, a discussion of group theory is essential for providing an in-depth understanding. The

actual mathematics of group theory are not required for chapters focusing on experimental verification,

however, these symmetric structures are present nonetheless.

1.1 Symmetry

Symmetry is often used to convey two main lines of thought. Aristotle spoke of a sense or harmonious or

esthetically pleasing balance reflecting beauty or perfection [69]. Unfortunately, this is a very imprecise

definition which cannot be directly employed computationally. A more specific meaning refers to pattern

self-similarity which can be demonstrated or proven using formal rules [148]. Depending on the context,

these rules of symmetry will have different natures. For example, with respect to geometric transformations,

spatial relationships or as an aspect of more abstract concepts such as language or music.

Symmetry has proven very useful for simplifying the mathematical description of physical phenomena

[119]. At its simplest, symmetry occurs at the geometric level where objects exhibit symmetry when they

are invariant to a transformation such as rotation or reflection. In many cases the symmetry being tested

1

or employed is biased by our perceptions of reality. But, in actuality there may exist an infinite number

of possible relationships that fit the definition of symmetry.

Computational intelligence and machine learning algorithms employ a solution representation (for

example, a feature vector) to represent the problem under consideration. While these representations are

abstractions of reality they nonetheless capture the essence of a physical system. To be more precise, a

classical physical system [119]:

1. is identified by all possible configurations {Sγ}, for γ running over the coordinates or parameters,

2. has a time evolution described as

αt : Sγ → αtSγ ≡ Sγ(t). (1.1)

and a symmetry of the system is a transformation of the coordinates/parameters g : γ → gγ that:

1. induces an invertible map

g : Sγ → gSγ ≡ Sgγ , (1.2)

2. does not change the dynamical behavior

αtgSγ = αtSgγ ≡ S(gγ)(t) = Sgy(t) = gαtSγ . (1.3)

Group theory is the standard mathematical language used to describe symmetry. The requirement of

an object to remain invariant with respect to a transformation group can impose restrictions on the form

of the system. This thesis will use this property throughout, as will be shown in subsequent chapters.

Group theory will be discussed further in Chapter 2.

1.1.1 Symmetry and Computational Intelligence

Recently, the application of symmetry-based methods to computational intelligence and machine learning

has been attracting much research attention (see below). These methods can be used in a variety of

ways to simplify and understand data or to adjust the behavior of the learning algorithm. One of the

key challenges to turning the concept of symmetry into a computationally useful tool is to determine and

adapt methods to the noisy, but nearly regular real world.

Vetter et al. [143] describe that general a priori knowledge of the world allows humans to recognize

3D objects significantly easier when they exhibit some degree of symmetry. They explain how symmetry-

induced virtual views lead to the observed results. More specifically, humans use their intuitive knowledge

to recognize shapes by inducing virtual views of the object. In [117] the facial symmetries of humans is

analyzed using group theory. An algorithm is proposed which employs this information for face recognition

by symmetry sensing from photographs.

2

The relatively new field of computational symmetry focuses on the practice of representing, detecting

and reasoning about symmetry [64]. The reasons to study computational symmetry include:

1. symmetry seems to exist everywhere,

2. symmetry implies a structure which can be either helpful or harmful,

3. computation of symmetry is challenging,

4. few computational tools exist for dealing with real-world symmetries.

Using a variety of applications including robotics, periodic pattern perception and neuroradiology the

power of group-theoretic-based methods was shown [64].

In [124], a probabilistic technique is proposed which reconstructs 3D surfaces from range images. The

algorithm exploits the fact that most shapes possess symmetries which can be deduced even from the

partial view gathered from the limited range images. More specifically, the method searches a restricted

space of possible symmetries for the transformation which will most probably yield the true 3D shape.

Ramakrishna and Mow [90] analyze the group structure of the 2-dimensional sidelobe-invariant trans-

formations for binary arrays. Using this characterization an efficient and exhaustive backtracking search

algorithm is proposed which is able to reduce the search space. As a consequence, all optimal binary arrays

with minimum peak sidelobe levels consisting of up to 49 elements are obtained and tabulated.

The application of group theoretic methods to metaheuristic local search for partitioning problems

was examined in [9, 23, 55]. Group theory is used to characterize the underlying inter- and intra-orbit

structures. The resulting theory is shown successful by extending the Tabu search algorithm and testing

it on 65 benchmark instances of the unicost set covering problem.

General purpose graph symmetry problems require a quadratic runtime with respect to the number of

symmetries and are of limited use on very large, sparse, symmetric graphs. Darga et al. [25] propose a

faster symmetry discovery algorithm which further exploits the present symmetries. The results improved

on the previous approaches runtime from multiple days to less than a second.

Exploitation of symmetries in real-time dynamic programming was examined in [76]. The approach

finds that real world problems exhibit a high degree of symmetry which leads to a high amount of redun-

dancy in the Markov decision process. The authors propose an efficient algorithm capable of exploiting

these symmetries which is able to significantly improve overall execution time.

In [98] the role of search space symmetries on the design of evolutionary operators for the simple

genetic algorithm is discussed. The authors use group theory to describe the concept of a mixing matrix

which they use to determine properties of crossover and mutation methods. Situations when the operator

commutes with the search space are paid special attention as they do not constrict the search.

In [57], Kondor concentrates on (a) learning on domains which have a non-trivial algebraic structure,

and (b) learning in the presence of invariance. Drawing on many aspects of group theory a general

3

framework for incorporating the ideas into support vector machines and Gaussian kernels is proposed. The

efficacy of the approach is highlighted using ranking/matching and machine vision problems, although the

framework is general enough to be applied to other problems and algorithms.

Most recently, evolutionary symmetric modular neural networks were proposed [130]. The paper utilizes

group theory to represent symmetry and systematically search for it which improves the system’s evolvabil-

ity. The efficacy of the approach is shown for a quadruped robot in physically realistic systems. Evolved

controllers are faster than those designed by hand and versus random mutations (versus symmetric).

1.1.2 Inducing Symmetry

The process of inducing symmetry commonly refers to the application of a symmetry transformation to

some object [148]. That is, the transformation will cause a symmetry where one may not have been

previously present. The typical process of determining which symmetries are valid for the object involves

inducing various transformations and selecting the most probable outcome based on prior knowledge or

according to some evaluation method. Example 1.1 shows the effect of inducing a symmetry on a given

evaluation function.

Example 1.1 (Inducing symmetry.) Consider a real-valued system and a symmetry transformation

Φ : R→ R which takes real valued input and maps it to a single real value. The original function

f(x) =
1

(x− 3)2 + .01
+

1

((x− 9)2 + .04
− 6 (1.4)

is transformed using Φ(x) = min(f(x), f(2 − x)), where x ∈ [0, 2]. The resulting impact on f(x) can be

graphically seen in Figure 1.1.

If an optimization or learning algorithm was employed to discover the minimum of a function f(x), it

may find it simpler to instead consider the transformed function. Here, it is assumed that x is bounded

and f(x) cannot have a limit at ±∞. In subsequent chapters this concept will be formalized and conditions

on its success will be given.

1.1.3 Symmetry and Opposition

As discussed above, determining and exploiting regularities in an environment can have various benefits.

However, in many cases it may not be possible to efficiently determine the most useful search space

invariance unless prior information is available. Should a symmetry be found to exist the common approach

is to compress the invariant states, which consequently reduces the search space size. That is, the search

space S is partitioned into equivalence classes and search is conducted on the compressed space. This

approach has recently been shown to have high potential in developmental and curiosity-driven robotics

[107, 108].

4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−10

0

10

20

30

40

50

60

70

80

90

100

x

f(
x)

Original Function

Induced Function

Figure 1.1: Symmetry inducing effect on a function, where symmetry is induced by Φ(x) = 2− x.

Very large search spaces tend to be inefficient to search completely. As such, various stochastic and

concrete algorithms have been proposed which approximate the desired goal. Using symmetries to compress

the search space will reduce the number of states. However, if the evaluation of symmetric elements

is identical then there is no change in the respective probability distribution. Of course, a reduced S
nevertheless should have a positive influence on a given algorithm.

The alternative view examined in this thesis is to induce a symmetry on non-equal elements of the

evaluation1 function, such as that presented in Example 1.1. Converse to the traditional approach, this

idea effectively acts as a filter over possible evaluations (and hence the associated solutions in the search

space) such that the probability distribution over fitness values favors the desired goal2.

Opposition, more specifically opposition-based computing [127], has the effect of inducing a symme-

try such that the probability distribution of evaluations is skewed as much as possible to reflect the

goal(s) of the algorithm. This is accomplished by defining a neighborhood structure between elements

of low and high evaluation. By simultaneously considering these alternatives, with respect to the prob-

lem (min/maximization) the theoretically most skewed distribution will be attained which will have the

greatest chance of positively influencing the search. Another important consequence is that a reduction in

search space is also attained. These ideas are highlighted by Figure 1.1 for a minimization problem.

There exists a large amount of research focusing on the integration of a priori and expert knowledge

1Depending on the algorithm being employed this will be the error surface, fitness landscape, etc.
2For example, consider minimization. A more desirable probability distribution is one which is skewed towards lower

evaluations being more probable.

5

into computational intelligence (for examples see [2, 34, 62, 75, 93, 106, 120]). One may then ask whether

opposition should be distinguished from other forms of this knowledge. In a given context, oppositional

knowledge is very special as its processing bears virtually no uncertainty. For instance, let x1, x̆1 ∈ S.

If x1 is known to have a large evaluation then its opposite x̆1 must have a low evaluation (even without

actually observing it) and one of these can be quickly dismissed. By recognizing oppositional elements and

concepts this special type of a priori knowledge is recovered.

1.2 Overview of Results

In this thesis the relationship between symmetry and opposition-based computing is explored within the

context of computational intelligence. Firstly, group theory is used to describe the existence of symmetry

in S and conditions when symmetry can be induced. The next theoretical step involves understanding

the role of opposition-based computing and when it should succeed. Experimental evidence using Monte

Carlo optimization, estimation of distribution and gradient-based learning algorithms is provided in the

second part of the thesis.

1.2.1 Part 1 - Motivations and Theory

Chapter 2: Group Theory and Search Space Symmetry This chapter will introduce group theory

and some basic definitions and notations as well as provide a formalization of the symmetry concept. The

relationship between the symmetry and permutation groups is described, as is their ability to partition

the search space into equivalence classes.

The case where a group action G is isomorphic to S is given special attention. This formulation focuses

on the issue of the search space itself being a group structure. Many popular combinatorial optimization

problems have search spaces of this type. For example, the traveling salesman, job shop scheduling or

vehicle routing problems. Discretized real function optimization problems can also have group structured

search spaces. In this case discretization is required to ensure that S is countable as it is an assumption

for all proofs. Alternatively, topological or Lie groups [45] could have been employed for real-valued search

spaces. However, to maintain cohesiveness in the thesis only countable search spaces are assumed.

It is also interesting to determine when S can be given a group structure compatible with G. Here,

compatability refers to the ability to map all group actions of G to an element of S. Three cases were

discerned:

1. There exists at least one element of the search space where different group actions result in different

outcomes.

2. Only the identity leaves elements unchanged.

3. The only permutation of the search space which is commutative with the group action is the identity.

6

The neighborhood structure assigns to each element a neighbor element, and is given as a possible

source for any symmetries present in the search space. Furthermore, the idea of defining the neighborhood

structure on S is outlined as a means for inducing symmetry on the search space. Taking these symmetries

into account, a simple algorithm which searches the space for a target value is also given.

Chapter 3: Opposition-Based Computing Here, the idea of neighborhood structures to induce

symmetries on a search space is expanded as an early motivation for opposition-based computing (OBC).

Central to this idea is the concept of an opposite map that defines pairs of elements to be considered

opposite. As the previous chapter describes, this causes a partitioning of the search space into equivalence

classes and hence is a permutation group structure. Examples are given to highlight the potential of a

proposed naive algorithm (which forms the basis for a general OBC framework).

Requirements for a good opposite map are explored. The necessary condition is that the probability

of paired opposite guesses yielding a more desirable result is greater than randomly choosing two guesses.

From this, the optimal choice of opposite map is implied to be that which maximizes the distance between

the original expected value and that of the transformed/symmetrized search space. The notions of degree

of opposition, degree of competition and opposition mining are defined.

Computational issues and overhead of employing the opposite map are investigated as well. The two

main issues focus on computing the most desirable element of a partition and balancing the convergence

rate with sample diversity (i.e. exploration versus exploitation). With reference to the latter concern,

algorithm A has an inherent convergence behavior which induces stronger bias as the search progresses.

Increasing sample diversity will tend to slow this rate but will allow for greater exploration of the search

space. Assuming A tends towards a relatively good optima the usefulness of diversity will diminish with

the number of iterations. Hence, employing opposite strategies will not only require defining an opposite

map, but a diversity-convergence control mechanism may also be needed.

To show the uniqueness of opposition a comparison to existing approaches is given. Antithetic variates

are often used in Monte Carlo simulation as a variance reduction technique. The central tenet is to develop

a mapping which is used to select elements (Xi, Xj) which are negatively correlated. In this way variance

reduction over N > 1 samples X is accomplished since

var(

N
∑

i=1

Xi) =

N
∑

i=1

var(Xi) + 2
∑

i<j

cov(Xi, Xj), (1.5)

will have a negative covariance term. This differs from OBC with respect to construction of a monotonic

function where (Xi, Xj) are sampled from. Further but not discussed in this thesis, is the fact that OBC

can be used to capture more abstract concepts such as those expressed linguistically.

A comparison to low-discrepancy sequences is also performed. These techniques attempt to yield a

uniform sampling of a given space. There is no relationship to evaluation of solutions which exist in that

7

space. Additionally, uniform sampling is not likely to yield the best opposite map, although heuristically

using a low-sample version of this idea may be beneficial in some situations. The final comparison is

with respect to dis/similarity functions, particularly in the context of statistical learning. These methods

attempt to learn the target concept given a matrix of similarity between all pairs of features. Using a

similar argument as for low-discrepancy sequences, the lack of consideration of evaluation distinguishes

OBC.

1.2.2 Part 2 - Example Applications

Chapter 4: Monte Carlo Optimization Monte Carlo optimization refers to simulation-based ap-

proaches to determining the minimum or maximum of some unknown function. Due to the lack of infor-

mation regarding the evaluation function analytical techniques tend to play an insignificant role, resulting

in the loss of a guaranteed outcome. Hence, efficient simulation methods for improving accuracy and

precision have become very important.

One popular Monte Carlo optimization method is simulated annealing. Using this technique as an

example, the concept of an opposite neighbor is examined. In this case, elements are considered opposite if

they lie on different sides of the current solution being examined. That is, if solution matrix X1 is opposite

of matrix X2, given solution R if X1 = R±X2 for all row values. The diversity-control mechanism employed

during algorithm convergence reduces the number of rows where X1 6= X2 according to an exponentially

decreasing function. Improvements in accuracy, reliability and convergence time will be shown, especially

as the problem dimensionality increases.

Chapter 5: Estimation of Distribution Techniques which aim to determine the probability distri-

bution for each parameter of a representation are termed estimation of distribution algorithms. These

methods operate via continually resampling from and updating the respective distributions until some

termination criteria have been met. Many of these approaches have seen excellent success in a variety of

application areas.

This second application of opposition-based computing will focus on population-based incremental

learning. This algorithm uses a reinforcement learning-like update of the estimated distributions and is

primarily focused on solving problems of the form {0, 1}n → R. A major issue with this technique (and

estimation of distribution algorithms in general) is maintaining diversity between samplings, resulting in

an oft observed premature convergence.

Expanding on the concept of the opposite neighbor, the idea of an opposite sample is introduced.

Its improvement with respect to random sampling and all-pairs diversity using the Hamming distance is

proven. In concert with the opposite population, an alternative update rule is proposed as the diversity-

convergence mechanism. Results will show improvements in diversity, accuracy, reliability and convergence

time, especially as the problem dimensionality increases.

8

Chapter 6: Gradient-Based Learning The final application of opposition-based techniques considers

gradient-based learning in feedforward neural networks. The most popular method to accomplish learning

in these neural models is backpropagation. Unfortunately, this algorithm tends to be much slower than

alternatives and often converges to local optima. Various strategies have been developed to improve the

results, including incorporation of second-order information, regularization, adaptive transfer functions,

and heuristic methods.

In this chapter, a heuristic method based on restricted adaptive transfer functions is proposed. Specif-

ically, an opposite transfer function is introduced as a means to efficiently alter the input/output mapping

represented by the network. Due to existing symmetries in the neural network structure and error surface

it is proven that considering opposite networks (the set of all permutations of opposite transfer function

state) under the assumption of minimality will be composed of unique networks. That is, each opposite

network represents a unique input-output mapping. A further consequence is an effect on the Jacobian

and Hessian matrices, which have a direct impact on learning accuracy, generalization and convergence

rate. It is possible to escape local optima and areas of the error surface where learning progresses at a

relatively slow rate by considering opposite networks.

Theoretically, the proposed framework can be used in association with any learning algorithm. The

requirements mainly focus on deciding the heuristic for efficiently selecting a single network from the set

of opposite networks. Function call overhead, as determined by the number of weight updates/epochs is

a major concern since a gradient-based method is essentially guaranteed to lead to an improvement in

network performance. Hence, the heuristic must be determined such that

Pr
(

min(Er(xt), Er(x̆t)) < min(Er(xt), Er(xt+1))
)

> 0.5 (1.6)

for error function Er(·) where t represents an epoch and x ∈ R
n is a matrix of n network parameters (i.e.

weights and biases). That is, the (xt, x̆t) pair at a given iteration must outperform the (xt, xt+1) to be

successful. Backpropagation variants and resilient propagation are shown to yield statistically significant

improvements in accuracy and generalization ability. Moreover, these results magnify as the problem

complexity increases.

1.2.3 Summary of Main Contributions

The main contributions of this thesis are summarized as follows:

• Search space symmetry: Describing symmetry of the search space, without regard to the evalu-

ation method using group theory. The foundations for Opposition-Based computing are explained

using existing concepts.

• Formal outline of opposition: Providing a mathematical description of the concept of opposition

within the context of optimization. Opposition is described as a symmetry inducing transformation

9

over the evaluation function which often results in a more desirable function.

• Necessary conditions for opposition: Provides conditions where OBC should outperform ran-

dom sampling and the optimal choice of opposite map.

• Opposition-based simulated annealing: Propose the use of opposite neighbors and use them to

improve accuracy, reliability and convergence rate of simulated annealing.

• Oppositional population-based incremental learning: Propose the use of opposite samples

and use them to improve diversity, accuracy, reliability and convergence rate of population-based

incremental learning.

• Opposite transfer functions: Propose the use of opposite transfer functions and use them to

improve accuracy, reliability, convergence rate and generalization ability of gradient-based learning

for feedforward neural networks.

10

Part I

Motivations and Theory

11

Chapter 2

Group Theory and Search Space

Symmetry

Group theory is a well developed branch of mathematics which studies abstract structures. An enormous

amount of this literature focuses on the concept of symmetry and it has broad applications in a variety of

scientific fields [43, 81, 82, 96, 97, 148]. This chapter provides an introduction to the required concepts

with respect to the thesis goals. The main texts and theoretical content on which this chapter is based

are Rose [95], Zassenhaus [158], Weyl [148] and Rowe et al. [98, 99].

This chapter introduces the concept of symmetry induction from a group-theoretic standpoint. Con-

ditions which must exist for the search space itself to be a group structure are shown. Additionally, the

conditions when a search space is compatible with a group structure will be analyzed. Using the concept

of a neighborhood structure, an algorithm is derived which partitions and reduces the search space size.

These results are important to outline as they are fundamental to the proposed use of opposition-based

computing in Chapter 3.

2.1 A Short Exploration of Group Theory

Although at first glance the concept of a group seems simplistic, group theory is actually one of the

cornerstones of modern mathematics, and is the preferred language for describing symmetry. A group is

composed of a set G and an associated binary operation · : G×G→ G which satisfies the following specific

axioms:

1. For all a, b,∈ G, a · b ∈ G (closure).

2. For all a, b, c ∈ G, (a · b) · c = a · (b · c) (associativity).

12

3. There exists an e ∈ G such that for all a ∈ G, a · e = a = e · a (identity).

4. For each a ∈ G there exists an element a−1 such that a · a−1 = a−1 · a = e (inverse).

For readability, it is common that the · is omitted such that a · b is simply denoted ab. In some circum-

stances this can have a detrimental effect on readability, but for consistency this notation will be adopted

throughout. The following properties hold for all groups:

1. The identity is unique.

2. For each a ∈ G, the inverse a−1 is unique.

3. For all a, b ∈ G, equations ax = b and ya = b have unique solutions, x = a−1b and y = ba−1,

respectively.

4. For all a ∈ G, ax = ax′ =⇒ x = x′, and ya = y′a =⇒ y = y′.

5. For all a, b ∈ G, (a−1)−1 = a and (ab)1 = b1a1.

where x, y are elements being acted on.

Group theory is composed of specialized areas of study which depend on whether G is finite or infinite,

discrete or continuous. Finite groups have a finite number of elements. The cardinality (or order) of such

a group is commonly denoted #G or |G|. Infinite, but countable groups have been widely researched, for

example the integers Z using arithmetic addition as the binary operation.

Uncountable groups have also been studied. In this case, G is associated with a topology1. The

topology is defined such that the inverse and binary operation of G are continuous maps: f(a) = a−1

for f : G → G and g(a, b) = ab for g : G × G → G, respectively. The real numbers form a topological

group using its usual topology2 and addition as a binary operation. If a group also satisfies the axiom of

commutativity (for all a, b ∈ G, ab = ba) it is termed Abelian and are also known as commutative groups.

The integers Z under addition represent an example of an Abelian group.

2.1.1 Basic Concepts

Definition 1 (Conjugate) Given group G, elements a, b ∈ G are termed conjugate if there is some g ∈ G

such that g−1ag = b.

Being an equivalency relation, conjugacy partitions G into equivalence classes. That is, every element of

G will belong to only one equivalence class. An element a ∈ G belongs to a conjugacy class Cl determined

by

1A topology on a set X is a system T of subsets of X such that ∅ ∈ T and X ∈ T , and T is closed with respect to arbitrary
unions and finite intersections [74].

2The standard topology T on R is defined according to U ⊆ R ∈ T if for every point x ∈ U , there is some ε > 0 such that
(x − ε, x + ε) ⊆ U .

13

Cl(a) = {g−1ag|g ∈ G}. (2.1)

Definition 2 (Isomorphic) Two groups G and H are isomorphic, denoted G ∼= H, if there exists a one-

to-one mapping φ : G → H such that φ(a) ∗ φ(b) = φ(a · b) for all a, b ∈ G. Where ∗, · are the respective

binary operations of G and H.

Due to the focus on structure versus group elements, isomorphic groups are considered and referred to

as the same group.

Definition 3 (Homomorphism) Given groups G and H a homomorphism h : G → H is such that for

all a, b ∈ G, h(ab) = h(a)h(b). The group operation on the left hand and right hand side are of group G

and H, respectively.

Homomorphisms typically are many-to-one functions which preserve the identity and inverse mapping.

An isomorphism is a homomorphism that has an inverse (that is also a homomorphism).

Definition 4 (Automorphism) An automorphism is a homomorphism from a group to itself, h : G→ G.

Definition 5 (Subgroup) A subset H ⊆ G is a subgroup if it is a group under the operation of G,

denoted as H ≤ G. H must be closed under ·, contain the identity element e as well as the inverse

g−1 ∈ H, ∀g ∈ H.

Definition 6 (Group Action) Let G be a group and X a nonempty set. If there exists a map φ : G×X →
X such that

1. φ(e, x) = x.

2. φ(g, φ(h, x)) = φ(gh, x) for all g, h ∈ G.

then φ is called a group action.

Often the group action will be abbreviated as G(X), implying the group G acts on set X . A group

action will partition X into disjoint orbits.

Definition 7 (Orbit) Let g ∈ G and x ∈ X. The subset of X obtained by the action of all operations in

G on x is called the orbit of x, i.e.

O(x, G) = {φ(g, x)|g ∈ G}.

If x1, x2 ∈ X are in the same orbit then there exists g ∈ G such that φ(g, x1) = x2. That is, the orbit is

the set of conjugates of an element x ∈ X .

14

Definition 8 (Compatible Group Structure) Let G be a permutation group acting on a countable set

X. Then, X has a group structure compatible with G(X) if there exists a binary operation with identity

element defined on X and a function ρ : G→ X such that ∀g ∈ G and w ∈ X,

g(w) = ρ(g)w. (2.2)

2.1.2 The Symmetry and Permutation Groups

A prime example of a group action (Definition 6) is when X = {1, . . . , n} is the set being acted on. In

this situation we are considering all n! permutations (a bijection of X onto itself). Under composition of

mappings, the set of all permutations forms the symmetric group Sn of degree n. For σ1, σ2 ∈ Sn, σ2σ1

represents the operations of permuting X according to σ1 followed by σ2. Cayley’s Theorem [158] states

that every group G is isomorphic to a subgroup of Sn.

There exists different methods to represent elements of Sn. A two-line notation employs a 2×n matrix

where the first row corresponds to the X = {1, . . . , n} elements and the second row is its image under the

permutation operation, as seen in Example 2.1.

Example 2.1 (Two-line representation) A permutation operation on X = {1, . . . , n} is according to

α 7→ ((3α) mod 5 + 1) mod 5. Then, its two-line representation is given as

σ =

(

0 1 2 3 4

1 4 2 0 3

)

,

where σ ∈ S5. This represents the relationship σ(0) = 1, σ(1) = 4, σ(2) = 2, σ(3) = 0 and σ(4) = 3.

A more compact method of specifying permutations utilizes the fact that any permutation can be

written as a combination of cycles (an ordered subset s1, . . . , sk of X = {1, . . . , n} such that σ(si)=si+1

for i < k and σ(sk) = s1). Cycles of length one need not be explicitly noted as it is understood that the

element is fixed. A list of the lengths of cycles making up σ is the cycle type.

Example 2.2 (Cycle representation) Using the same permutation of Example 2.1. This permutation

can be written as a product of disjoint cycles. The resulting product of cycles representation is

σ = (0143)(2) = (0143)

as (2) is understood to be fixed.

Example 2.2 can also be expressed as an element of the factorized group S5 = S4 × S1.

15

2.2 Search Space Symmetry

Let G be a group which acts on search space S. Then, there exists a mapping G × S → S such that for

all x, y ∈ G and w ∈ S,

(xy)(w) = x(y(w)), and (x−1x)(w) = (xx−1)(w) = w, (2.3)

where the inverse of x is denoted x−1. Each element of G represents a bijection of S and thus G is a

permutation group. The group action on S will be denoted G(S) and it is assumed to be transitive3.

Definition 9 (Reduced) A transitive group action G(S) will be called reduced if {x ∈ G : ∀w ∈
S, x(w) = w} = 0, where 0 denotes the identity.

That is, all group actions leave the identity unchanged. Unless otherwise noted it will be assumed that

G(S) is reduced. Example 2.3 highlights the idea of search space symmetry for fixed length binary strings

of length ℓ = 6 under bitwise addition modulo 2.

Example 2.3 (Search Space Symmetry) Let S be the space of fixed length binary strings of length

ℓ = 6 and let · be the operation of bitwise addition modulo 2 (i.e. XOR). In this case S has a group

structure and the group action on itself will be composition of group actions, u(v) = uv for u, v ∈ S.
Let the identity be 000000 and take u = 101101 and v = 100010, then

u(v) = 101101(100010) = 101101⊕ 100010 = 001111. (2.4)

The following theorem shows that G(S) and 0 ∈ S determine the isomorphism ρ (Definition 8) and

the group operation on S. To show an isomorphism ρ must be shown to be one-to-one and onto as well as

satisfy the main condition of Definition 2.

Theorem 2.2.1 Let G(S) be reduced and let S have a group structure compatible with it. Then, G ∼= S
by ρ : G→ S [99].

Proof Assume that ρ is not onto. Then, there must exist some w ∈ S such that for all x ∈ G

w 6= ρ(x) = ρ(x)0 = x(0). (2.5)

But this contradicts the assumption that G is transitive. Hence, ρ is onto.

Further, ρ(x) = ρ(x′) implies that for all w ∈ S,

x(w) = ρ(x)w = ρ(x′)w = x′(w). (2.6)

3That is, for every u, v ∈ S there exists an x ∈ G such that x(u) = v.

16

Thus x = x′ and ρ is also one-to-one. Furthermore,

ρ(xx′) = ρ(xx′)0

= (xx′)(0)

= x(x′(0))

= ρ(x)x′(0)

= ρ(x)(ρ(x′)0)

= ρ(x)ρ(x′)

(2.7)

Therefore, ρ is a group isomorphism.

The only possibility is for ρ(x) = ρ(x)0 = x(0). Additionally, if G(S) is reduced then the group

operation on S is completely determined by the compatible group structure (as stated in Definition 8) and

as is highlighted in the following example.

Example 2.4 (Determining ρ) Consider the following table representing a hypothetical search space,

where the five rows of numbers each correspond to an ordering of S = {A, B, C, D}:

A B C D
1 2 3 4
3 2 1 4
2 4 1 3
3 1 2 4
4 1 3 2

Such a situation is common in optimization. For example, the Traveling Salesman Problem where

each row represents the visitation order of the salesman to cities A through D. Row 2 corresponds to the

salesman traveling from C → B → A→ D, and implicitly D → C.

The group G which acts on S can also be written in a similar style:

A B C D
A B C D
C B A D
B D A C
C A B D
D A C B

17

Examining G results in defining ρ : G → S according to A 7→ 1, B 7→ 2, C 7→ 3, D 7→ 4. This gives

ρ(g) = g(0), for the identity 1 → A, 2 → B, 3 → C, 4 → D. Then, the group operation on S will be

ab = ρ−1(a)(b), which is isomorphic to G.

2.2.1 Conditions for Compatibility of S and G

This theorem describes when the search space can be given a group structure compatible with G, as

described in the previous section. Identifying whether this can be done without having to explicitly

examine S and G in a manner similar to Example 2.4 can be very time saving. It is necessary to first

define a set R of permutations of S such that for all x ∈ G,

g ∈ R⇐⇒ gx = xg. (2.8)

So, R contains only elements which commute with G. In this case it is not necessary for a permutation

σ ∈ S to also be an element of G.

In total three conditions for compatibility of S and G have been identified. All focus on the ability of

ρ to leave the identity unchanged or to allow for navigation in the search space. The first states that there

exists at least one element of the search space where different group actions will produce different results.

That is, there is some neighborhood which exists in the search space (neighborhoods will be discussed

in the next section). The second equivalence states that only the identity leaves elements unchanged.

And, the final statement dictates that R(S) be reduced. Essentially, the only permutation of S which is

commutative with G is the identity.

Theorem 2.2.2 If G(S) is reduced then the following statements are equivalent [99]:

1. S has a group structure compatible with G(S).

2. There exists an identity element 0 ∈ S such that for all x, x′ ∈ G, x(0) = x′(0) implies that x = x′.

3. For all w ∈ S the set {x ∈ G(S) : x(w) = w} contains only the identity 0.

4. R(S) is reduced.

Proof (1⇐⇒ 2): ρ will be a one-to-one function if S has a group structure that is compatible with G(S).

Then, x(0) = x′(0) implies

ρ(x) = ρ(x′) =⇒ x = x′ (2.9)

where x ∈ G. Conversely, let the identity be defined as 0 ∈ S such that for all x, x′ ∈ G results in

x(0) = x′(0) =⇒ x = x′.

18

Define ρ : G→ S as φ(x) = x(0). Since G acts transitively, ρ will be onto. The definition of the binary

operation follows from Definition 8 as, ρ(x)w = x(w). Thus, the binary operation is well-defined since

ρ(x) = ρ(x′) =⇒ x(0) = x′(0) =⇒ x = x′. (2.10)

(2⇐⇒ 3): From the problem statement,

xh(0) = x′h(0) =⇒ xh = x′h =⇒ x = x′, (2.11)

where h(0) is an arbitrary element of S. Therefore, for all w ∈ S,

x(w) = x′(w) =⇒ x = x′ (2.12)

which is equivalent to

x−1x′(w) = w =⇒ x−1x′ = 0 (2.13)

which is in turn equivalent to

x−1x′ 6= 0 =⇒ x−1x′(w) 6= w (2.14)

(4 =⇒ 3): Since R is a permutation group on S it will be reduced iff it is transitive. So, suppose that R

is transitive and that x(w) = w. Then, for all g ∈ R,

x(g(w)) = g(x(w)) = g(w). (2.15)

A consequence of the transitivity of R, is that g(w) can be any arbitrary element of S and so x must

be the identity.

(1 =⇒ 4): The hypothesis and Theorem 2.2.1 demand that S be a group. Given arbitrary b ∈ S, define

the permutation gb as

gb(z) = zb (2.16)

where gb ∈ R since ∀x ∈ G,

gb(x(w)) = gb(ρ(x)w)

= ρ(x)wb

= x(wb)

= x(gb(w))

. (2.17)

19

Given any u, v ∈ S and let b = u−1v. Then, gb(u) = uu−1v = v. Therefore, R(S) must be transitive

and therefore is reduced.

If all conditions hold, then a corollary to this exists. Particularly, R(S) can be chosen such that the

group operation is the reverse of the operation induced on G.

Corollary 1 Assume all conditions of Theorem 2.2.2 hold. Then, the group operation of R(S) can be

selected such that it is the reverse of the group operation of G. Moreover, G is antiisomorphic to R [99].

Proof If G(S) is reduced and conditions 1 through 4 hold then condition 2 will also hold for R instead of

G, since for all k ∈ R,

g(0) = g′(0)⇒ kg(0) = kg′(0)⇒ g(k(0)) = g′(k(0))⇒ g = g′ (2.18)

Therefore, the search space S has a group operation ·′ and isomorphism ρ′ : R → S induced on it such

that for all k ∈ R and w ∈ S,

k(w) = ρ′(k) ·′ w. (2.19)

The argument given in (1 =⇒ 4) shows that for every w ∈ S, the permutation gw defined by gw(z) = zw

will be an element of R. If the identity elements of (S, ·) and (S, ·′) are the same then ρ′(gw) = gw(0) =

0w = w. However, since (1⇐⇒ 2) and (2⇐⇒ 3) show that the choice of identity is arbitrary, this can be

easily accomplished. Then, it follows that

w ·′ z = ρ′(ρ′−1(w)) ·′ z

= (ρ′−1(w))(z)

= (ρ′−1(ρ′(gw)))(z)

= (gw)(z)

= zw

(2.20)

Finally, the map x 7→ gx represents an antimorphism,

gxx′(z) = zxx′ = (gx(z))x′ = gx′(gx(z)) = gx′gx(z) (2.21)

Thus, conditions for the existence of search space symmetries have been given. The next section

discusses a possible manner in which symmetries may arise or be imposed on a search space.

20

2.2.2 Neighborhood Structures

The previous sections formalized the concept of search space symmetry within the mathematics of group

theory. Conditions on when the search space is itself a group were also given. However, this does not

describe a possible source for the symmetries. This section will use the concept of a neighborhood structure

[100] to describe this phenomenon.

Definition 10 (Neighborhood Function) A neighborhood function is a mapping η : S → S which as-

signs a neighbor η(w) to each w ∈ S.

It is possible for w ∈ S to have more than one neighbor. If there exists a set O of neighborhood

functions which generate a set,

N(w) = {η(w) : η ∈ O} ⊂ S (2.22)

then every w ∈ S has a set of neighbors. This structure captures symmetries on the search space. Moreover,

this structure represents an automorphism since if u, w ∈ S are related by a neighborhood function then

any permutation of these elements will form a symmetry group. Hence, for Ni=1...m neighborhoods,

Ni ∩Nj = ∅ and

S =
m
⋃

i=1

Ni. (2.23)

That is, each neighborhood represents a cycle of a permutation of S. As a corollary, for finite S,

|S| =
m
∑

i=1

|Ni|. (2.24)

The group acting on Sn is factorized as Sn1 × · · · × Snm
, where

m
∑

i=1

ni = n. (2.25)

Example 2.5 highlights this concept where S is composed of three symmetry groups.

Example 2.5 If the problem representation is of size n = 8 and n1 = 3, n2 = 3, n3 = 2 and m = 3 then

a possible solution could be x = (210|101|43). The group acting on x is S3 × S3 × S2. The orbit to which

x is a member of contains all solutions which are composed of each partition having elements 2, 1, 0 and

1, 0, 1 and 4, 3, respectively.

Therefore, if a search space has existing neighborhood structures it will contain symmetry. Importantly,

there is no restriction on whether the symmetries pre-exist or whether the search space is transformed such

21

that they will exist. In either case, the following section describes a naive search algorithm which accounts

for symmetries in the search space.

2.3 Implied Symmetry Reduction Algorithm

Assume there exists a search space S with imposed group structure, as defined above, with a neighborhood

structure represented as an element of the permutation group. Further, assume S has m cycles (where each

is an equivalence relation) defined on it. Since each element of the cycle shares the same neighborhood

structure and the group action generating the symmetry is known, only a single element need be stored.

This compression yields a reduction in storage space requirements; it also implies a reduction in the state

space. This compressed space S′ will form subgroup, S′ ≤ S.

The framework implied by the above is given in Algorithm 1, under the assumption that symmetry

exists in S. In line 1 the transformation which defines search space symmetry is searched for, and assigned

to F . This mapping represents the partitioning of S, which is some element of the permutation group. In

lines 3-7, m iterations of the sampling procedure are conducted. This process iterates through all cycles

to search for the desired element.

Algorithm 1 Implied sampling framework.

1: F = Detect symmetry of S
2: B∗ = current best solution.
3: for all cycle ci ∈ F do
4: if ci is more desirable than B∗ then
5: Let B∗ = ci.
6: end if
7: end for

Traditionally, the symmetric nature of the space is unknown a priori and detection methods are required

in order to exploit it [28, 29, 79]. However, this thesis proposes the a priori induction of symmetry over S
with respect to the evaluation function, therefore foregoing the often computationally expensive detection

process. The next chapter discusses the concept of Opposition-Based Computing and its relationship to

symmetry induction with respect to the context of computational intelligence.

22

Chapter 3

Opposition-Based Computing

The previous chapter described the existence of symmetry in the search space and provided conditions

when S is itself a group. Using neighborhood structures it was shown that the search space can be

partitioned and a simple iterative algorithm for searching the reduced search space was presented. This

chapter will focus on the neighborhood function and its implications within the context of optimization.

The goal of any optimization algorithm is to discover the minimum or maximum of some function

f : S → R acting on search space S. Without loss of generality, the following will assume a minimization

problem. That is,

x∗ = argmin
x∈S

f(x). (3.1)

The previous chapter described an algorithm for partitioning and searching S. Extending that situation

to arbitrary neighborhood structures ci leads to the following formulation:

x∗ =arg min
x∈S

f(x)

=arg min(arg min
x∈c1

f(x), . . . , arg min
x∈cr

f(x)),
(3.2)

where each ci represent a cycle or neighborhood structure. Although, there exists an associated com-

putational overhead to compute the argmin function. For relatively large search spaces, such as those

characteristic of NP-hard problems, possible benefits will be shown to arise.

Theoretically, this concept can be reapplied until only the globally optimal element(s) remain. That

is, S can be transformed as above and compressed by retaining only a single element from each ci. This

more compact space can be continuously compressed in a similar fashion until only the optima are present.

Unfortunately, the computational cost associated with such an operation is very large as it is equivalent

23

to an exhaustive search.

3.1 Opposition

The search space for NP-hard or sufficiently large problems becomes infeasible to efficiently search. Con-

sequently, countless concrete and stochastic optimization algorithms have been proposed (see [109] for a

good review). As the problem size increases and concrete solutions become infeasible the need increases

for efficient, accurate and reliable stochastic optimization methods.

Algorithm 1 of Chapter 2 can be easily restated to accommodate the formulation of Equation (3.2),

as is shown in Algorithm 2. However, there remains an open question regarding the choice of each ci.

In general, this decision could involve analytical techniques, prior knowledge, intuition or online learning.

However, NP-hard problems render analytical techniques infeasible, and no assumptions are made about

prior knowledge. Of the remaining options, this thesis explores an intuitive approach and leaves online

learning for future work.

Algorithm 2 Implied search procedure.

1: Determine ci.
2: B∗ = current best solution.
3: for all cycles ci do
4: if argminx∈ci

f(x) is more desirable than B∗ then
5: Let B∗ = argminx∈ci

f(x).
6: end if
7: end for

3.1.1 The Opposition Map

According to the American Heritage Dictionary opposite is defined as, “being the other of two complemen-

tary or mutually exclusive things” and oppositional as “placement opposite to or in contrast with another”

[1]. The latter implies simultaneous consideration of the opposite entities. Opposition-Based Computing

(OBC) uses this as motivation to determine a partition/neighborhood structure of S by imposing a sym-

metry on f(S) [125, 127].

Definition 11 (Opposition Map) Given search space S. Any bijective function Φ : S → S can serve as

an opposition map if for x1, x2 ∈ S then Φ(x1) = x2 =⇒ Φ(x2) = x1. The elements x1 6= x2 are considered

opposites.

The accepted notation for opposites is x̆, which represents x̆ = Φ(x). It has been shown in [88] that a

possible choice for the opposition map is

24

Φ(x) = a + b− x, (3.3)

where x1 ∈ [a, b] and a < b ∈ R. Assuming there exists an optimal solution x∗ ∈ [a, b], a sampling strategy

according to (x1, x̆1) was shown to yield a higher probability of being closer to x∗ than selecting a random

(x1, x2), where x2 ∈ [a, b]. Specifically it was proven that when samples are drawn according to a uniform

distribution that,

Pr (min(|x1 − x∗|, |x̆1 − x∗|) < min(|x1 − x∗|, |x2 − x∗)) = 0.5833, (3.4)

where | · | denoted the Euclidean distance measure. However, Equation (3.3) is not the only mapping where

the probability of Equation (3.4) > 0.5. Another possibility could be,

Φ(x) =

(

x +
b− a

2

)

mod (b− a). (3.5)

3.1.2 Examples

Sampling at random has been long acknowledged as a poor strategy in many situations [65]. This is because

of the susceptibility to sampling error due to randomness of the selection process and the poor reflection

on the actual population. A minimization of this effect can be achieved by increasing the sample size,

however this may not always be computationally or practically feasible. Thus, more powerful techniques

have been proposed [65].

Within the context of optimization in computational intelligence purely random sampling remains the

standard method1 as usually either computational, analytical or a priori knowledge is required for more

advanced sampling strategies. That is, computational intelligence algorithms often aim to minimize the

user-required information in favor of flexibility in the framework. Many methods aim to efficiently minimize

the effects of random sampling. For example, Tabu Search [37] proposes to store recent solutions in a list.

If an element of the list is encountered during the search it is automatically rejected. In this way it is

hoped that attractive basins on the evaluation surface are not re-searched by the algorithm.

Table 3.1 compares a uniform random sampling strategy to those implied in Equations (3.3) and (3.5),

denoted as Φa and Φb, respectively. The simulation compares the strategies over 2, 5 and 10 dimensional

problems containing 1, 2 and 5 optimal solutions which are distributed i.i.d. over the interval [0, 1], per

dimension. Results are presented as a triple < A, B, C > where

• A: Pr (min(x1, x2) = min(x1, x̆1)),

• B: Pr (min(x1, x2) > min(x1, x̆1)),

1As a consequence examples in this section focus on a comparison to random sampling.

25

• B: Pr (min(x1, x2) < min(x1, x̆1)).

Each experiment was run for 1, 000 trials, each containing 10, 000 samples. The values presented represent

the averaged results. Utilizing the paired sampling strategies yield a higher probability of being closer to

an optimal solution, as seen in Table 3.1. Although, this benefit decreases with the number of optimal

solutions. For this example Φb seems to be a more desirable mapping, but both methods show improvements

over basic random sampling.

Table 3.1: Comparing Φa and Φb paired sampling strategies against a random sampler. In both situations
the random sampler is outperformed.

Number of Optimal Solutions
Method 1 2 5

2 Dimensions
Φa < 0.358, 0.358, 0.283 > < 0.344, 0.343, 0.313 > < 0.338, 0.338, 0.321 >
Φb < 0.364, 0.364, 0.273 > < 0.355, 0.355, 0.291 > < 0.344, 0.344, 0.312 >

5 Dimensions
Φa < 0.361, 0.361, 0.278 > < 0.346, 0.346, 0.309 > < 0.334, 0.334, 0.332 >
Φb < 0.359, 0.359, 0.282 > < 0.353, 0.354, 0.293 > < 0.347, 0.347, 0.307 >

10 Dimensions
Φa < 0.361, 0.362, 0.277 > < 0.345, 0.345, 0.310 > < 0.332, 0.332, 0.336 >
Φb < 0.344, 0.360, 0.296 > < 0.343, 0.358, 0.299 > < 0.340, 0.356, 0.304 >

Figure 3.1 extends the simulation of Table 3.1 to two continuous functions (termed Bowl and Humps,

respectively) where it is assumed the optimal is unknown. In this situation measuring the distance to

optimality is impossible and only a comparison of the evaluation is made. The opposition mappings Φa

and Φb are applied for each row, hence the opposite of the plot is determined by a transformation in the

x-axis. The statistics in Table 3.2 show the effect of the respective opposite maps. Using the results from

the 10,000,000 samples it becomes very clear that an improvement in mean and standard deviation is

observed, assuming a maximization problem.

Table 3.2: The effect of Φa and Φb on the Bowl and Humps functions. All values were determined over
10,000,000 sampling iterations.

Function Mean Std. Dev. Min Max
random(Bowl) 0.126 0.708 -1.000 1.000

Φa(Bowl) 0.173 0.699 -0.999 1.000
Φb(Bowl) 0.519 0.545 -0.999 1.000

random(Humps) 0.356 1.891 -6.539 8.100
Φa(Humps) 0.852 1.728 -5.856 8.100
Φb(Humps) 1.436 1.758 -0.194 8.100

To further examine whether the transformed spaces could be more effective than paired random sam-

pling on the original space a comparison between the probabilities of success are determined, similar to

26

Figure 3.1: The effect of Φa and Φb on two hypothetical evaluation functions. Figure (a) and (b) are
the original functions, (c) and (d) are transformed using Φb and (e) and (f) use Φa, respectively. The
evaluation functions are represented by m× n matrices and both opposite maps act on a given row (each
i = 1, ..., m row has the opposite map applied to it).

27

those in Table 3.1. In this instance it is found that for the Bowl and Humps functions the probability of

paired random sampling outperforming the opposition-based method is less than 0.005 for either problem.

The probability of one of the oppositionally mapped evaluation functions yielding a more desirable value

is greater than 0.76 in both cases. This is strong evidence supporting the use of oppositional concepts.

However, the next section will provide a more rigorous explanation of the conditions which should be met

in order for such a transformation to yield success.

Table 3.3: Comparing the probabilities of different sampling strategies on the Bowl and Humps functions.
Using traditional random sampling is significantly worse for this situation where a maximization problem
is under consideration.

Function Bowl Humps
Φa < 0.168, 0.000, 0.831 > < 0.155, 0.000, 0.844 >
Φb < 0.235, 0.003, 0.761 > < 0.187, 0.004, 0.807 >

3.1.3 Conditions for a Good Opposition Map

The above examples highlight the possible benefit of opposition-based ideas compared to random sampling.

In this section general conditions where one should expect an improvement in performance (with respect to

evaluation) when comparing paired i.i.d. random sampling versus the dependant sampling of opposition.

Without loss of generality, a minimization problem is assumed. Typically, an improvement can be expected

if the opposition map Φ is designed such that for n samples,

Pr
(

min(d(x1, x
∗), . . . , d(xn/2, x

∗), d(x̆1, x
∗), . . . , d(x̆n/2, x

∗)) < min(d(x1, x
∗), . . . , d(xn, x∗))

)

> 0.5 (3.6)

for distance metric d(·, ·) and all optimal solutions x∗ ∈ S [88, 137]. However, in the context of optimization

the distance metric is inapplicable as the optimal solutions are often unknown. Disregarding the distance

to an optimal solution in lieu of only the evaluation leads to,

Pr
(

min(f(x1), . . . , f(xn/2), f(x̆1), . . . , f(x̆n/2)) < min(f(x1), . . . , f(xn))
)

> 0.5, (3.7)

where f(·) is the evaluation function. Assuming Equation 3.7 is satisfied, it implies that

E[min(f(x1), . . . , f(xn/2), f(x̆1), . . . , f(x̆n/2))] < E[min(f(x1), . . . , f(xn))]. (3.8)

Hence, the most desirable choice of the opposition map Φ∗ will maximize this difference,

Φ∗ = arg max
Φ

E[min(f(x1), . . . , f(xn/2), f(x̆1), . . . , f(x̆n/2))] − E[min(f(x1), . . . , f(xn))], (3.9)

28

where Φ is implied in the breve notation. That is, the opposition mapping which has the greatest impact

on the expected outcome. Since there exists infinitely possible opposite maps solving Equation (3.9) is

impossible without sufficient prior information. In practice, an intuition-based function has been found to

yield benefits (see Section 3.4).

3.2 Computational Issues

In this section, computational issues related to the aforementioned motivations and theory are presented

and a general algorithmic framework is described.

3.2.1 Partition Generation and Evaluation

There remain some issues related to computational overhead concerning the opposition map. One partic-

ular question arises as a result of the assumed search space size. It is enormous and therefore becomes

impractical to physically transform entirely. Indeed, uncountable search spaces would be impossible to

transform unless the exact form of the space in known. Instead, the transformation will be applied as

needed during the search process. That is, computing the arg min value for a given partition will be

accomplished when any element of that partition is examined.

It follows that a major concern of opposition map design is to ensure that partition sizes do not cause

excessive overhead, rendering the method too slow. Of course, as the number of elements per partition

increases there will likely be a diminishing return of Equation 3.8, which is also an important issue. In

the context of learning (versus sampling) this becomes an especially important issue because for a given

learning iteration t > 0, it should be that

Pr
(

min(f(xt), f(x̆t)) < min(f(xt), f(xt+1))
)

> 0.5. (3.10)

At any given t the opposition-based technique should be more likely to have a lower evaluation. For the

terminal iteration this should definitely hold, otherwise the opposition-based technique will not be useful.

Another, more subtle computational cost occurs during the generation of opposites. Specifically, the

execution of Φ may involve algorithms to select a single element from the partition or generating opposite

elements may be costly. This is an important consideration since it directly affects the running time of the

algorithm. As a design principle, it is suggested to keep the sample and opposite generation methods as

close as possible with respect to computational cost. If such a situation arises that additional computational

cost is required, the final outcome must warrant the cost. That is, the ends must justify the means.

The choice of opposition map is crucial to the amount of success one can expect for opposition-based

techniques. This thesis investigates an intuitive/heuristic approach, however it is also possible to incor-

porate a strategy which has the ability to mine the search space in order to determine the entities with

29

maximum evaluation difference. This opposition mining can be accomplished either a priori or online. In

either case, efficiency will be a major issue to be addressed.

Definition 12 (Opposition Mining) Opposition mining refers to the offline or online discovery of Φ∗.

The approximate opposition map is represented as Υ .

3.2.2 Uses of Opposition

One may also desire to relate concepts which are known not to be opposite, but perhaps there is only a small

logical difference which leads to a nearly opposite relationship. The concept of a degree of opposition can

be used to measure this situation. Example 3.1 highlights one of its possible uses in comparing linguistic

terminology.

Definition 13 (Degree of Opposition) Let Φ be an opposition map and x1, x2 ∈ S be selected such

that x1 6= Φ(x2). Then, the relationship between x1 and x2 is not opposite, but can be described as partial

opposition, determined by a function τ : f(x1), f(x2) → [0, 1], where as τ → 1, x1, x2 become closer to

being opposite given evaluation function f : S → R.

Example 3.1 (Ordering according to τ) Consider the following statements:

s1 = “Everybody likes apples”

s2 = “Nobody likes apples”

s3 = “Some people like apples”

s4 = “Some people do not like apples”

and let the frame of reference be s1. Then, the logical differences to statements s2 − s4 can be ascertained

and even used to order the four statements with respect to s1. The resultant ordering will be τ(s1, s4) <

τ(s1, s3) < τ(s1, s2). In this case τ(s1, s2) = 1.

The application of opposition-based concepts to optimization implies a zero-sum situation having a

single winner (the best solution found in a partition) and many losers (the other elements). This is

a highly competitive situation. However the possibility exists for more cooperative uses of opposites. In

these situations the grouped elements will combine according to some user-defined rule. An example which

will be discussed below is antithetic sampling where the goal is to lower the variance of mean estimation.

The degree of competition quantifies this competitiveness of elements within a partition.

Definition 14 (Degree of Competition) Let x1, x2 ∈ S be arbitrarily selected such that x1 = Φ(x2).

With inherent respect to the algorithm employing opposition, Σ, the degree at which x1, x2 compete for

30

use in Σ is given by the function ζ : x1, x2|Σ → [0, 1]. Values of ζ closer to 1 indicate a more competitive

situation.

The following simple examples describe competitive and cooperative opposition. More complicated

forms may arise when many opposites are considered and some compete, while others cooperate. Alterna-

tively, one of the competing solutions could be more heavily weighted than the others.

Example 3.2 (Ordering according to ζ) Using Example 3.1, a competitive use for opposition would be

searching for the statement which conveys the minimum number of people that like apples. If the opposites

were defined arbitrarily according to s1 = Φ(s3) and s2 = Φ(s4) then s3 and s2 are mordesirable. This

situation has ζ = 1.

Conversely, let the goal be to approximate “about half of people like apples”. Then, each pairing will

aim to return a reasonable solution. Perhaps the evaluation function will be defined as:

(s1, s3) = “At least one person likes apples, and one person dislikes them”

(s2, s4) = “A group of people like apples, and a group do not”

The arguments have been revised to try and satisfy the original statements, resulting in different ap-

proximations to the target statement. Here ζ = 0, as both of the competing opposites contribute an equal

amount of their knowledge to the new evaluation.

3.2.3 Convergence

Thus far opposition-based ideas have focused on a random sampling-based assumption. However, in

practical and efficient optimization methods, such as those in computational intelligence, this sampling is

rarely unbiased. Specifically, each algorithm will introduce bias towards different optima in its own way,

thus providing a specific solution to the diversity-convergence (exploration/exploitation) problem.

The basic framework which most computational intelligence algorithms can be described as is given in

Algorithm 3. Line 1 refers to any preprocessing of the data, parameters, search space, etc that may be

required. For instance, neural network learning may perform standardization of the data and principal

component analysis in addition to initial weight generation. The main loop is iterated through t = 1...n

times, and the three steps within it may occur in any permutation. In line 3, at least one element from S
is selected according to some selection mechanism, including random sampling. A genetic algorithm will

perform the operations of crossover and mutation during this phase. The final two stages of the main loop

(lines 4 and 5) represent some selection mechanism where the best solution(s) found are retained and any

algorithm parameters are accordingly adjusted. Bayesian Optimization Algorithms [80] will update beliefs

31

at this stage. The final step performs any postprocessing such as evaluation with respect to test data or

transformation to the original space.

Algorithm 3 Basic framework of most computational intelligence algorithms.

1: Preprocessing.
2: for all t = 1...n do
3: Sample at least one element from the search space.
4: Comparison of element(s) with best solution(s).
5: Update algorithm parameters.
6: end for
7: Postprocessing.

Sample selection and algorithm parameters usually have a great influence on each other and guide the

search towards optima. This bias will impact the influence of opposite elements. Assume that algorithm

A considers a subset or window, W ⊂ S at each iteration. Bias will reduce the size of W as t → ∞.

Assuming that W contains a reasonable solution it would be most desirable to ensure most of the sampled

elements lie within its bounds. For diversity maintenance a small proportion of samples could exist outside

W , however the chances of yielding a desirable outcome are likely minimal.

Let Rd ⊂ R
d be a d-dimensional problem representation and r1 ∈ Rd be arbitrarily selected such that

r1 ∈ W . The opposite will initially be computed with reference to the window W = S, i.e. the entire

search space. However, as A decreases the size of the window, the likelihood of r̆1 6∈ W increases. Hence,

there exists three possibilities:

1. Consider opposites only during early stages of the search, when W is relatively large.

2. Allow the definition of Φ to vary with respect to the size of W .

3. Allow Φ to vary with respect to the iteration t.

The first case only requires defining some constant t′ > 0 such that for t > t′ opposites are no

longer considered. Alternatively, redefining Φ is not so straightforward. Three possible directions can be

distinguished:

1. Determine the bounds [ai, bi] for W at each dimension i = 1...d. Then, generate opposite solutions

with respect to these bounds.

2. Select 0 < c ≤ d dimensions and consider the full range of S for determining the opposite of each c.

That is, there will exist d− c values where r1 = r̆1.

3. A combination of the above two methods which will consider a subset of dimensions and generate

the opposite solution with respect to the bounds of W or S.

32

The strategy which will yield the best results can vary with each optimization algorithm and problem

instance being addressed. At this point user experimentation and intuition is the swiftest course of action.

Essentially, opposition provides a means for jumping to more desirable solutions, however, the manner

in which this feedback is employed is based on the parent algorithm. Therefore, the convergence rate

or behaviour is very unlikely to be significantly impacted. Due to this, proof of convergence for each of

the algorithms has not been explored. Although, the number of iterations required to achieve a target

evaluation will be shown to be improved.

3.2.4 Summary of the Implied Framework

The computational issues of partition evaluation, use of opposition and convergence imply a general frame-

work which opposition-based optimization (as a subset of opposition-based computing for the particular

case of optimization) can be described under. The outline follows that of Algorithm 3 but includes

opposition-based requirements and is presented in Algorithm 4.

Line 2 performs opposition mining to determine some approximation Υ to the optimal opposite map

Φ∗. If no mining is employed, it is assumed that some function Φ has been defined. The generation of

opposites is performed in line 5 according to one of the strategies described in the previous section. Finally,

line 8 updates any parameters Φ requires to generate opposite solutions.

Algorithm 4 Basic framework of opposition-based computational intelligence algorithms.

1: Preprocessing.
2: Opposition mining.
3: for all t = 1...n do
4: Sample at least one element from the search space.
5: Generate opposite sample.
6: Comparison of element with best known.
7: Update algorithm parameters.
8: Update opposition-based parameters.
9: end for

10: Postprocessing.

3.3 Comparison to Existing Methods

Intuition concerning opposites may sometimes involve the application of existing techniques. However,

they are distinguishable from the opposition-based computing concept. The most notable techniques are

antithetic variates, low-discrepancy/quasi-random sequences and dis/similarity functions.

33

3.3.1 Antithetic Variates

Suppose we desire to estimate ξ = E[f] = E[Y1, Y2] with an unbiased estimator

ξ̂ =
Y1 + Y2

2
. (3.11)

If Y1, Y2 are i.i.d. then var(ξ̂) = var(Y1 + Y2)/2. However, if cov(Y1, Y2) < 0 then the variance can be

further reduced.

One method to accomplish this is through the use of a monotonic function h. First, generate Y1 as an

i.i.d. value as before, but utilizing h the two variables become h(Y1) and h(1 − Y1), which are monotonic

over interval [0,1]. Then,

ξ̂ =
h(Y1) + h(Y2)

2
(3.12)

will be an unbiased estimator of E[f].

Opposition is similar in its selection of elements with different evaluations. However, antithetic variates

require a predesigned monotonic function. Although [101] shows that one exists, no guidelines are provided.

It is assumed prior knowledge, or left as an analytical exercise to derive should the form of S be known.

Therefore, a key difference is that opposition-based computing allows arbitrary definition of opposites or

online learning of the relationship. Moreover, using the OBC techniques one effectively compresses the

search space by grouping elements into equivalence classes and giving a single representative value. No

such compression is present when using antithetic variates.

Further, opposition extends beyond the generation of solutions in random sampling-based algorithms.

It can also be applied to algorithm behavior and can be used to relate concepts expressed linguistically,

where no evidence has been found that antithetic variates have such applications.

3.3.2 Quasi-Randomness and Low-Discrepancy Sequences

These methods aim to combine the randomness from pseudorandom generators which select values i.i.d.

with the advantages of generating points distributed in a grid-like fashion. The goal is to uniformly

distribute values over the search space by achieving a low-discrepancy. This is achieved at the cost of

statistical independence.

The discrepancy of a sequence is a measure of its uniformity and can be calculated via [41]:

DN(X) = sup
I∈J

∣

∣

∣

∣

|B ∩X |
N

− λd(B)

∣

∣

∣

∣

(3.13)

where λd is the d-dimensional Lebesque measure, |B ∩X | is the number of points of X = (x1, ..., xN) that

fall into interval I, and J is the set of d-dimensional intervals defined as:

34

d
∏

i=1

[ai, bi) = {x ∈ ℜd : ai ≤ xi ≤ bi} (3.14)

for 0 ≤ ai < bi ≤ 1. That is, the actual number of points within each interval for a given sample is close to

the statistically expected number. Such sequences have been widely studied in quasi-Monte Carlo methods

[61].

Opposition may utilize low-discrepancy sequences in some situations. Though in general, these se-

quences are simply a means for attaining uniform distribution and are static once determined, which is

a major contrast with opposites (see Section 3.2.3). Further, opposition-based techniques simultaneously

consider a low number of points (usually 2) in order to induce a symmetric evaluation function and improve

performance of the sampling algorithm, whereas quasi-random sequences often are concerned with many

more points (usually in the 100s or 1000s).

Quasi-randomness has been employed to incorporate diversity in a sampling procedure. These methods

have been applied to evolutionary algorithms where it was found that by a performance study of the

different sampling methods such as Uniform, Normal, Halton, Sobol and Faure that low-discrepancy is

valuable only for low-dimensional (d < 10) and thus non-highly-sparse populations [67].

3.3.3 Similarity Functions

Learning, especially in a statistical context, has been recently examined using the concept of similarity

and dissimilarity functions [6, 144, 145]. Instead of an algorithm being presented with feature vectors, it

is presented with a matrix which quantifies the similarity or dissimilarity between all pairs of data items.

It is assumed that K is some distance metric between points of S.

Definition 15 (Similarity Function) A similarity function over S is any pairwise function K : S×S →
[−1, 1]. If K is symmetric then K(x, x′) = K(x′, x) for all x, x′ ∈ S.

As stated above, an opposite map aims to group items which have a very different evaluation. Some-

times this is attained by grouping dissimilar solution representations. However, one very common as-

sumption of statistical learning is that similarly featured samples yield a similar result (the smoothness

assumption [17]). Dis/similarity functions are often employed in unsupervised or semi-supervised learn-

ing situations where the problem assumptions differ from those of opposition. Specifically, opposition is

concerned with grouping elements of the search space with respect to the evaluation function, whereas

dis/similarity functions focus on grouping similar items with respect to features.

35

3.4 Looking Forward

The remaining chapters explore the use of intuitive knowledge concerning the opposition map design.

Heuristic methods for updating the definition of Φ will be given and rigorously tested. Being intuitive,

there is only strong circumstantial evidence to support the heuristic choice, but according to Equation 3.7

many such opposite mappings could be successful. All the algorithms in subsequent chapters fit within

the framework of Algorithm 4.

It is important to note that opposition-based ideas have been previously applied with success. Re-

inforcement learning defining opposite states and actions was one of the first examples [84, 126]. It has

subsequently been improved [114–116] and applied to various problems with promising outcomes [68, 105].

Another example, improving differential evolution has been explored in [85–87]. The idea uses a specific

example of opposite map (given in Equation (3.3)) and has been shown to outperform differential evolution

for many benchmark problems. This thesis will append simulated annealing (Chapter 4), population-based

incremental learning (Chapter 5), backpropgation and resilient propagation variants (Chapter 6) to this

list.

Each subsequent chapter will focus on improving traditional versions of the aforementioned algorithms.

It is acknowledged that various flavors of each method exist, however, it was not feasible to examine each

version. Thus, it was decided to focus on the common framework (i.e. the traditional algorithm) shared

by each family of computational intelligence algorithm explored in this thesis. Consequently, the outcomes

of the algorithms will probably not be to the quality of a state-of-the-art approach. However, each chapter

will briefly discuss state-of-the-art implementations which can be investigated for future work. The choice

to investigate traditional versions of several algorithms as opposed to an in-depth analysis focusing on a

particular one was made to highlight the generality of the proposed framework discussed in Section 3.2.4.

36

Part II

Example Applications

37

Chapter 4

Monte Carlo Optimization

This chapter will discuss the application of opposition-based computing to a popular Monte Carlo optimiza-

tion algorithm, simulated annealing. The opposite neighbor is introduced as a basic strategy to highlight

the potential of the ideas considered in the previous chapters. Despite its simplicity, improvements in

accuracy, precision and convergence rate will be achieved. Various benchmarking tests are conducted to

validate the approach. An application to image thresholding is also presented. Most of the results of this

chapter appear in [140].

4.1 Background

Without loss of generality, assume a maximization problem. Monte Carlo optimization methods take a

simulation-based approach to determining

θ∗ = arg max
θ∈Θ

f(θ) (4.1)

for some evaluation function f(·) and parameter space Θ. In this simulation-based approach analytical

properties play a lesser role than many alternative numerical optimization methods. The use of Monte Carlo

simulation methods have increased in popularity recently due to their relaxed constraints on Θ and f(·).
However, the tradeoff is a lack of guarantee in computed result (within feasible time constraints). Hence,

methods which are capable of improving the accuracy, precision and convergence rate are of importance.

4.1.1 Simulated Annealing

Simulated Annealing (SA) is a Monte Carlo optimization technique which takes motivation from the

annealing process of cooling molten substances, for example to harden steel [14, 56]. An effect of careful

38

cooling of the substance is the condensing of matter into a crystalline solid. This annealing process can

be regarded as an algorithm which optimizes the stability of the final crystalline solid. Whether the state

of minimum free energy is actually reached will depend on the rate of temperature decrease.

The probability for the system to be in state s ∈ S at a certain temperature T with free energy E(s)

is described by the Boltzmann distribution

PrT (s) =
1

Z
e

−E(s)
kT (4.2)

where

Z =
∑

s∈S

e
−E(s)

kT (4.3)

is a normalization constant and k is the Boltzmann constant. Given two states s1, s2 ∈ S a possible

probability of moving from s1 to s2 is calculated using

PrT (s) = max(1, e
−(E(s2)−E(s1))

kT). (4.4)

The simulated annealing algorithm will employ Equation (4.4) to probabilistically accept a candidate

solution.

Algorithm 5 shows the SA algorithm and presupposes the existence of an energy function E(s) which

computes the quality of a given solution. In Line 7 a neighbor sn of s is generated via a user-defined

procedure and is evaluated using the energy function in Line 8. Lines 9 - 12 monitor whether sn represents

a new best solution to the optimization process.

The approach then uses Equation (4.4) as a rule to accept sn as the new search focus, where U(0, 1)

represents a randomly generated value from a uniform distribution over interval (0, 1). To simulate the

slow annealing process of its inspiration a user determined temperature update function must be provided

(Line 17). It has been shown that an annealing schedule like

T =
a

b + log(i)
(4.5)

for a, b > 0 will yield the globally optimal solution, given infinite time [44]. Unfortunately, the available

computation time is finite. Therefore, alternative cooling methods have been proposed [78]. The two main

cooling schedules are

• Arithmetic:

T = a− bi

where a is the initial temperature and b is the temperature decrease decrement. Normally, the initial

temperature is problem dependant and b ∈ [0.01, 0.2].

39

Algorithm 5 Simulated Annealing

Require: k := constant
Require: T := initial temperature
1: s = s0

2: es = E(s)
3: s∗ = s
4: e∗ = e
5: n = 0
6: while termination criteria not satisfied do
7: sn = neighbor(s)
8: en = E(sn)
9: if en ≤ e∗ then

10: s∗ = sn

11: e∗ = en

12: end if
13: if U(0, 1) ≤ exp(−(es − en)/kT) then
14: s = sn

15: es = en

16: end if
17: T = update(T)
18: n = n + 1
19: end while

• Exponential:

T = abi

where a is an initial temperature and b ∈ [0.8, 0.999] is the cooling factor.

Algorithm 5 represents the standard framework for simulated annealing, however, many advances have

been proposed. Adaptive simulated annealing [50] allows the algorithm parameters associated with the

cooling schedule and neighbor selection to be adjusted according to the progress of the algorithm. The

resulting approach is more efficient and less sensitive to parameter selection of SA.

The application of chaos to simulated annealing has also been investigated [70], resulting in Chaotic

Simulated Annealing. Chaotic systems are used during the initialization and neighborhood generation

procedures. Benchmark results show an improvement in convergence and efficiency while also being easy

to implement.

Ill-shaped energy functions can slow the convergence of simulated annealing. To minimizae this effect

stochastic tunneling algorithms were proposed [146]. The basic idea is to transform the energy function

such that the size of undesirable “energy wells” are reduced. Generally, the transformed function is defined

beforehand and often requires a priori knowledge.

Sample-sort simulated annealing represents another advanced approach [123]. This method maintains

an array of samplers, each operating at a static temperature. At each iteration a subset of the samplers’

40

solutions is accepted and traditional simulated annealing is applied to them. Another large sample-based

algorithm based on SA is coupled simulated annealing. In these approaches each sampler can make

improvements is based on the other samplers. Both of these algorithms have shown improvements in

solution quality over traditional simulated annealing.

Parallel simulated annealing algorithms have also been investigated [89] where two general parallel

algorithms were proposed. Using job-shop scheduling and the traveling salesman problems it was shown

that superlinear speedups can be attained.

Recently, the quantum annealing method has attracted attention for optimization of discrete combina-

torial optimization problems [4, 26]. This approach has a very similar framework to simulated annealing

although the temperature parameter of SA is replaced by a “tunneling field strength” value. One of the

consequences of the field strength is to determine the search radius for neighborhood generation, similarly

to adaptive simulated annealing.

4.2 Opposition-Based Simulated Annealing

This section will describe the concept of an opposite neighbor and its influence on the target evaluation

function. The manner in which the diversity-convergence issue is handled is discussed and an algorithm is

proposed.

4.2.1 Opposite Neighbors

Section 3.2.3 of Chapter 3 described three directions which can be followed when determining the dynamics

of the opposite map, Φ. Here, opposites are determined with respect to the bounds of the current search

window, W ⊂ S. Given s ∈ S a neighbor x will be generated, its parameter values determine the bounds

of the search window. Then, an opposite will exist on the opposite side of the search window.

Consider s ∈ R
d, for d > 0. Let a neighbor x be generated according to the following rule

xi = si + U(−∆i, ∆i). (4.6)

The search window W is defined such that ±∆ defines the boundary around the current solution, si,

i.e. W = [si − ∆, si + ∆] for all i = 1 . . . d. An opposite will be defined as the element located at the

opposite side of the window with respect to s. For example if S = [−5, 5]3 and s =< 2.5, 1.3, 0.3 > and

the randomly generated neighbor x =< 2.3, 0.5, 1.1 > then x̆ =< 2.7, 2.1,−0.5 >. Evaluation is then

performed by simultaneously considering x and x̆.

Also, as described in Chapter 3, the usefulness of considering opposite solutions will diminish with

respect to the convergence of the parent algorithm. The heuristic decision used in this instance has been

chosen to be based on a monotonically decreasing function. Specifically,

41

Pr(consider opposite) ≤ e
−n

C (4.7)

for C > 0 a constant and n is the current iteration of SA.

4.2.2 The Algorithm

The opposition-based simulated annealing algorithm serves as an example of how even a simplistic defini-

tion of opposite map and diversity-convergence control mechanism can be employed to improve computa-

tional intelligence algorithms.

Algorithm 6 presents the opposition-based simulated annealing (OSA) approach. As highlighted in

Chapter 3, the parent framework remains as it was with opposition-based concepts added. In this case,

the additional steps are found in lines 8 - 10. The function opposite(i, si) will generate a guess that is

opposite to neighbor si with respect to the present search focus s, according to rules in the previous section.

The best of the neighbors and its corresponding evaluation ei are retained.

The probability of employing the opposite guess is not obvious from Algorithm 6. It is implemented

in the opposite(i, si) function according to the exponential decay explained above (Equation 4.7). In this

case, no update of opposition parameters is needed since only the present iteration is required by the

diversity control mechanism.

4.3 Benchmarking

In this section the performance of OSA is benchmarked versus traditional SA with regard to problem

dimensionality, neighborhood size and randomness (versus opposition). The effect of arithmetic and ex-

ponential cooling schedules is also examined.

The selected six benchmark functions are commonly available in literature and popular for benchmark-

ing new procedures. The results have been averaged over 250 runs of length 5000. For experiments using

the OSA algorithm, the constant C = 500 was empirically decided, but not tuned to optimality. This

resulted in an additional 500 calls to the evaluate(sg) function, which will be taken into consideration

when comparing the algorithms.

4.3.1 The Test Functions

Six common real optimization functions, which are to be minimized, have been utilized to benchmark the

OSA algorithm.

1. The sphere problem [27]:

sphere(x) =
n
∑

i=1

xi
2 (4.8)

42

Algorithm 6 Opposition-Based Simulated Annealing

Require: k := constant
Require: C := constant
Require: T := initial temperature
1: s = s0

2: es = E(s)
3: s∗ = s
4: e∗ = e
5: i = 0
6: while termination criteria not satisfied do
7: sg = neighbor(s)
8: so = opposite(i, si)
9: si = arg min(E(sg), E(so))

10: ei = E(si)
11: if ei ≤ e∗ then
12: s∗ = si

13: e∗ = ei

14: end if
15: if U(0, 1) ≤ exp(−(es − ei)/kT) then
16: s = si

17: es = ei

18: end if
19: T = update(T)
20: i = i + 1
21: end while

where −5.12 ≤ xi ≤ 5.12. The minimum of this function is 0 and occurs at x = 0, ..., 0.

2. Rosenbrock’s Valley function [27]:

rosenbrock(x) =

n−1
∑

i=1

[100(xi+1 − x2
i)

2 + (1− xi)
2] (4.9)

where −2 ≤ xi ≤ 2. This function has a minimum at x = 1, ...1, with a corresponding value of 0.

3. A solution to Rastrigin’s function [73] is defined over −5.12 ≤ xi ≤ 5.12. The optimal value of this

function is rastrigin(0, ..., 0) = 0.

rastrigin(x) = 10n +

n
∑

i=1

(x2
i − 10 cos(2πxi)) (4.10)

4. Schwefel function [111], which is bounded according to −10 ≤ xi ≤ 10. The function has a minimum

43

at schwefel(0, ..., 0) = 0.

schwefel(x) =

n
∑

i=1

|xi|+
n
∏

i=1

|xi| (4.11)

5. Alpine function:

alpine(x) =
n
∑

i=1

|xi sin(xi) + 0.1xi| (4.12)

where −10 ≤ xi ≤ 10. The minimum of this function occurs at alpine(0, ..., 0) = 0.

6. De Jong’s noiseless function #4 [27]:

dejong(x) =
n
∑

i=1

ixi
4 (4.13)

where −1.28 ≤ xi ≤ 1.28. The corresponding minimum value is also found at dejong(0, ..., 0) = 0.

4.3.2 Experimental Setup

This section will describe the behavior of the functions needed for OSA to operate, as described in Section

4.2. Specifically, it outlines the neighbor(), update() and opposite() functions. Unless otherwise noted,

these functions and any parameters will remain constant.

Neighborhood Function A neighbor of some current guess s ∈ S is generated using the neighbor(s)

function. Specifically, select m of the n variables in guess s and add a uniform random value ±∆ where

∆ = (L+H)/15, where L and H represent the lower and upper bound of the current problem, respectively.

This operator is not optimal, but performs well on each test function.

Temperature Update Fundamental to the operation of simulated annealing is the temperature update

function, update(T). It has been empirically decided to update the temperature according to an exponential

rule

T i = α · T i−1 (4.14)

for iteration i. Initially, set the decay constant α = 0.95.

Determining Opposites As mentioned in Section 4.2, a dynamic reference point in determining op-

posites, which is accomplished by the opposite(i, sg) function is utilized. Here, sg is a neighbor of s as

generated by the neighbor(s) function. An opposite of sg with respect to s is a point s̆o directly opposite

to s with respect to W . This can be summarized,

44

s̆o = sg,i ± ∆̆ (4.15)

where ∆̆ represents the opposite value added to the ith variable of sg to arrive at sn by the neighbor

function.

4.3.3 Problem Dimensionality

Here, the dimensionality of each benchmark function is varied in order to determine the sensitivity of

OSA to various sized problems. The results will be compared to those found with traditional simulated

annealing. The neighbor function will alter only 1 variable for these experiments. The results for varying

the problem dimensionality size of {10, 25, 50, 100} are presented in Table 4.1.

Table 4.1: Results for experiments on dimensionality with fixed variable change=1. The bold values
represent a statistically significant results at 0.95 confidence. The final column reports Cohen’s d-statistic.

SA OSA
dim µ σ µ σ Effect

sphere
10 0.000 0.000 0.000 0.000 0.00
25 0.001 0.000 0.001 0.000 0.00
50 0.007 0.002 0.005 0.002 0.452,m
100 0.269 0.045 0.151 0.049 0.781,ℓ

rosenbrock
10 7.678 0.689 7.674 0.682 0.003
25 38.218 2.578 35.465 2.391 0.484,ℓ
50 89.842 4.211 87.762 4.167 0.241,s
100 263.658 6.638 240.794 6.087 0.874,ℓ

rastrigin
10 82.371 24.925 63.258 22.654 0.372,m
25 215.611 31.620 182.938 22.001 0.514,ℓ
50 422.267 46.710 390.629 34.155 0.361,m
100 849.204 57.428 776.422 48.165 0.566,ℓ

schwefel
10 0.028 0.009 0.025 0.009 0.164,s
25 0.178 0.036 0.159 0.033 0.265,s
50 0.793 0.114 0.692 0.093 0.437,m
100 4.633 1.144 3.550 0.572 0.514,ℓ

alpine
10 0.128 0.056 0.099 0.047 0.270,s
25 0.798 0.225 0.682 0.225 0.250,s
50 3.080 0.614 2.809 0.512 0.233,s
100 12.789 1.935 11.139 1.674 0.415,m

dejong
10 0.000 0.000 0.000 0.000 0.000
25 0.000 0.000 0.000 0.000 0.000
50 0.000 0.000 0.000 0.000 0.000
100 0.138 0.991 0.019 0.143 0.084

The results found using OSA show a much lower expected value (µ) and standard deviation (σ) than

45

those found with SA. In each case the results of the OSA approach are more desirable than those found

with SA. For the 24 experiments 19 were better using OSA, and 5 were equal (for > 3 decimal places OSA

outperforms SA on all the experiments).

The null hypothesis that the two means are equal was tested using a t-test with a confidence value of

0.95. From the results it is found that many are statistically significant. Additionally, the results found

by OSA exhibited a lower standard deviation, meaning that the results are more reliable. Overall, OSA is

able to at least improve on all solutions.

Using Cohen’s d-statistic (See Appendix A) the practical importance of the results is ascertained. That

is, whether the results are merely statistically significant or whether the actual differences are practically

“small” (s), “medium” (m) or “large” (ℓ). The final column of Table 4.1 provides this information. It is

seen that 6/24 = 0.25 of the results yield a small improvement, 5/24 = 0.21 are medium and 6/24 = 0.25

represent a large improvement. Thus, OSA has found practical improvements on 17/24 = 0.71 of all test

functions.

Figure 4.1 shows the influence of dimensionality on convergence of the OSA algorithm for the Schwefel

function. Increasing the dimensionality has the typical effect of requiring more computation time for the

algorithm to converge. The behavior of the convergence curve is also very similar as the dimensionality

increases.

Figure 4.1: Influence of dimensionality on convergence of OSA on the Schwefel function.

46

A comparison of the convergence of the OSA and SA algorithms on the 25-dimensional De Jong function

is presented in Figure 4.2. Although both approaches eventually achieve a similar final result, the OSA

approach exhibits a much more rapid convergence. This characteristic curve is can also be seen above in

Figure 4.1 for the Schwefel function.

Figure 4.2: Convergence of OSA versus SA on the De Jong function of dimensionality 25.

4.3.4 Neighborhood Function

This experiment is aimed to discover the degree to which the neighborhood function influences the outcome

of OSA. All experiments were run for a fixed dimensionality of 100 and the number of variables altered by

the neighbor(s) function varied from {1, 3, 5}.
Table 4.2 lists these results, where the items in bold represent statistically significant results. As with

the dimensionality experiments, the average OSA outcomes are relatively low compared to those achieved

with SA. In fact, all results obtained using the OSA algorithm were more desirable than those reached using

SA. A t-test with a 0.9 confidence level confirmed that all the results are indeed statistically significant.

Furthermore, the standard deviations of results found via the OSA algorithm are also relatively low, and

so the results are more reliable.

The final column of Table 4.2 provides the results of calculating Cohen’s d-statistic (Appendix A).

47

These results show that 3/18 = 0.17 of the results show a small practical improvement, 9/18 = 0.50 can

be classified as medium and 5/18 = 0.28 are found to be large. Thus, 17/18 = 0.94 of the test functions

were practically improved using the opposition-based algorithm.

Table 4.2: Results for experiments on neighborhood with fixed dimensionality = 100. The bold values
represent a statistically significant results at 0.9 confidence. The final column reports Cohen’s d-statistic.

SA OSA
neigh. µ σ µ σ Effect

sphere
1 0.269 0.045 0.151 0.048 0.785,ℓ
3 0.909 0.111 0.818 0.094 0.405,m
5 1.846 0.187 1.727 0.177 0.311,s

rosenbrock
1 273.658 46.382 220.794 43.877 0.505,ℓ
3 229.613 42.386 181.011 32.081 0.543,ℓ
5 212.753 36.991 166.079 29.565 0.577,ℓ

rastrigin
1 849.204 77.428 806.422 76.165 0.268,s
3 882.186 76.033 832.605 79.160 0.304,s
5 957.445 72.301 899.624 73.026 0.370,m

schwefel
1 4.633 1.144 3.550 0.572 0.514,ℓ
3 14.018 1.091 13.095 0.991 0.405,m
5 20.406 1.334 19.428 1.318 0.346,m

alpine
1 12.789 1.935 11.139 1.674 0.415,m
3 35.514 4.500 31.862 4.192 0.387,m
5 55.293 6.538 49.644 5.989 0.431,m

dejong
1 0.138 0.991 0.019 0.143 0.084
3 0.004 0.001 0.003 0.001 0.447,m
5 0.017 0.003 0.015 0.003 0.316,m

The influence of the number of variables altered at each call of the neighbor(s) function can be seen

in Figure 4.3 for the Alpine function. When the neighbor function only perturbs a single variable the

algorithm converges more rapidly than when more variables are considered. This is reasonable since the

likelihood of escaping a local optima is lower if the operator makes only a small change to the solution.

Nevertheless, the behavior of the convergence curve is relatively similar.

4.3.5 Neighborhood Randomness

Without loss of generality, Yao [155] described that increasing the neighborhood size corresponds to a

higher probability of arriving at a global minimum. To examine whether the observed improvements

shown above are a result of opposition or just increased neighborhood size they are compared against the

results obtained by a randomized version of OSA. If the results obtained by OSA are of higher quality, then

they are not simply due to a larger neighborhood but rather due to opposition. The randomized version

is easily implemented by replacing line 8 in Algorithm 6 with neighbor(s). This effectively generates

48

Figure 4.3: Influence of neighbor generation on convergence of 100-dimensional OSA for the Alpine func-
tion.

two random, independent neighbors. In the following this randomized simulated annealing algorithm is

denoted RSA.

The results for this experiment are presented in Table 4.3 for fixed dimensionality of 100. Also, the

number of variables altered by each call to the neighbor function is varied, as above. Most of the final

results obtained with OSA are relatively lower than those obtained with RSA. In total 14/18=78% results

favored OSA, 2/18=11% for RSA and 2/18=11% were equal. The rosenbrock experiments yielded a

slightly more favorable result for the RSA algorithm. However, according to a t-test at a 0.95 confidence

level all but the dejong-5 and rosenbrock-3 experiments exhibit a statistically significant difference in µ.

Also, as with the previous experiments, the σ values are lower for OSA, indicating more reliable results.

The average number of function calls to the evaluate(Guess) function is the same for both techniques.

The practical improvement over SA is determined using Cohen’s d-statistic, as is reported in the Effect

column of Table 4.3. In total 8/18 = 0.44 of the results have a small improvement favoring OSA. Therefore,

the random neighbor-based algorithm performs well for this problem, however the opposite-version still

yields many more favorable results.

49

Table 4.3: Comparing OSA vs RSA, fixed dimension=100. Bold values are more desirable. The final col-
umn reports Cohen’s d-statistic where the appended s=“small”, m=“medium” and ℓ=“large” correspond
to practical improvement effects.

RSA OSA
neigh. µ σ µ σ Effect

sphere
1 0.220 0.053 0.151 0.047 0.412,s
3 0.826 0.096 0.818 0.094 0.042
5 1.787 0.185 1.727 0.177 0.163,s

rosenbrock
1 230.556 63.818 240.794 63.877 -0.080
3 182.201 54.387 181.011 54.081 0.011
5 192.794 49.155 196.079 59.565 -0.030

rastrigin
1 843.953 78.029 806.422 76.165 0.236,s
3 864.800 71.285 832.605 79.160 0.209,s
5 934.826 77.407 899.624 73.026 0.228,s

schwefel
1 3.890 0.858 3.550 0.572 0.227,s
3 13.249 0.983 13.095 0.991 0.078
5 19.522 1.365 19.428 1.318 0.035

alpine
1 11.508 1.447 11.139 1.674 0.117
3 33.430 4.440 31.862 4.192 0.179,s
5 52.503 6.299 49.644 5.989 0.227,s

dejong
1 0.024 0.224 0.019 0.143 0.013
3 0.003 0.001 0.003 0.001 0.000
5 0.015 0.003 0.015 0.003 0.000

4.3.6 Cooling Schedule Effect

The cooling schedule can affect the behavior of the simulated annealing algorithm. In this section a

comparison between the linear and exponential schedules is provided for various values, not including the

initial temperature which is fixed to T0 = 1000. The neighborhood size is also fixed to 1. All results

presented are averaged over 250 trials, each of 5000 iterations.

Table 4.4 shows the results for various parameters of the linear cooling schedule. Common values

for this parameter are b ∈ [0.01, 0.20], hence the experiment is run for values within this range. With

exception of the Alpine function, all results obtained by OSA are more desirable than both SA and RSA.

Furthermore, nearly all experiments show a lower standard deviation for OSA obtained results.

Computing Cohen’s d-statistic on the best results for RSA and OSA from Table 4.4 reveal that the

Sphere (0.710), Schwefel (0.839) and Dejong (0.504) functions are largely improved, and the Rosenbrock

(0.255) function has a “small” improvement. The Alpine function showed a small improvement in favor of

RSA while the Rastrigin function did not have any favored result.

50

Table 4.4: Comparing results for traditional simulated annealing (SA), randomized neighbor (RSA) and opposition-based
(OSA) for various parameters of the linear cooling schedule. With exception of the Alpine function, OSA yields the most
desirable results.

Cooling Rate Parameter (b=)
0.01 0.05 0.10 0.15 0.20

Algorithm µ σ µ σ µ σ µ σ µ σ
Sphere

SA 807.86 66.35 801.80 67.89 806.47 68.69 800.15 61.18 800.86 59.90
RSA 303.16 48.47 302.80 47.01 299.41 48.19 302.46 49.41 301.25 47.18
OSA 210.71 39.44 213.03 35.73 212.09 34.98 211.46 36.95 212.62 36.86

Rosenbrock
SA 21401.13 3110.74 19870.70 2969.00 17470.39 2657.83 13050.22 2154.64 5360.22 1046.52

RSA 7623.73 1557.77 7346.94 1602.38 7028.55 1406.75 6846.97 1319.99 3756.35 623.54
OSA 5418.16 1180.82 5318.3 1135.81 5158.00 1231.53 5038.95 1167.17 3441.56 567.04

Rastrigin
SA 1631.94 73.08 1636.43 70.02 1632.86 69.98 1631.37 69.92 1552.88 83.57

RSA 1346.33 75.20 1340.22 77.59 1352.48 79.22 1339.48 78.21 1321.26 74.80
OSA 1322.89 67.47 1325.23 70.31 1321.24 72.41 1324.43 72.89 1305.03 65.39

Schwefel
SA 473.05 24.47 470.88 23.75 474.83 26.73 473.05 24.67 470.55 24.47

RSA 273.74 21.56 272.65 21.39 275.46 22.95 275.66 22.54 272.13 23.88
OSA 203.89 18.61 202.92 19.32 203.80 20.32 203.2 19.01 202.56 21.10

Alpine
SA 254.30 15.68 254.86 16.32 257.7 15.62 255.29 15.22 252.95 14.94

RSA 171.91 15.33 171.41 15.28 171.31 13.73 171.65 15.18 170.69 15.01
OSA 175.87 14.32 179.16 13.52 178.21 14.83 177.89 15.09 177.37 14.41

Dejong
SA 2236.50 319.56 2210.26 328.57 2197.88 342.39 2164.47 337.42 1873.44 283.28

RSA 448.67 137.21 456.35 154.11 448.28 152.03 447.12 133.89 455.81 138.77
OSA 323.68 126.16 337.62 124.06 305.52 117.62 321.23 114.52 313.61 123.61

5
1

A comparison between SA, RSA and OSA for different cooling parameters of the exponential cooling

schedule is presented in Table 4.5. As with results for the linear schedule, all values except those for the

Alpine function are in favor of OSA. Moreover, the reliability of the results is higher, as the standard

deviation is lower. Cohen’s d-statistic reveals large improvements in the Sphere (0.728), Rosenbrock

(0.564), Schwefel (0.858) and Dejong (0.488) functions, if comparing the best result obtained for each of

the RSA and OSA algorithms, respectively. Only the Alpine function had a small improvement of -0.198

favoring RSA (the negative value implies favoring the non-opposition-based algorithm).

52

Table 4.5: Comparing results for traditional simulated annealing (SA), randomized neighbor (RSA) and opposition-based
(OSA) for various parameters of the exponential cooling schedule. With exception of the Alpine function, OSA yields the most
desirable results.

Cooling Rate Parameter (b=)
0.80 0.85 0.90 0.95 0.99

Algorithm µ σ µ σ µ σ µ σ µ σ
Sphere

SA 796.38 70.20 811.59 64.02 809.58 65.77 812.6 74.54 810.20 65.63
RSA 301.83 48.91 305.819 52.63 300.83 48.41 302.82 45.51 301.38 47.04
OSA 212.99 37.87 211.50 37.10 215.02 37.43 213.73 39.33 216.87 36.56

Rosenbrock
SA 39631.97 5702.29 39395.24 5791.32 39228.55 5487.13 39506.02 5212.44 39068.18 5275.09

RSA 9945.66 2468.65 9929.62 2506.93 9676.62 2288.42 9861.94 2423.88 9692.72 2375.25
OSA 6855.96 1965.73 6925.56 1725.91 6785.24 1849.06 6864.85 1837.63 6922 1854.42

Rastrigin
SA 1635.90 73.36 1644.00 71.80 1640.24 75.16 1643.56 73.68 1640.8 70.84

RSA 1344.71 81.03 1338.04 78.14 1346.75 77.23 1337.45 76.26 1339.95 85.17
OSA 1325.12 66.15 1326.19 70.40 1330.28 71.24 1326.71 75.05 1330.24 69.93

Schwefel
SA 469.67 24.60 471.90 24.97 471.32 25.62 475.3 24.67 474.95 24.71

RSA 273.3 23.14 272.82 22.91 274.16 22.09 272.64 22.17 272.7 22.27
OSA 203.73 22.3 203.09 17.04 203.28 18.54 202.61 19.68 204.79 19.06

Alpine
SA 253.70 16.48 255.79 15.02 256.15 16.45 254.36 16.05 255.87 13.95

RSA 172.9 15.13 1171.25 15.52 172.38 13.99 173.4 14.86 170.99 15.56
OSA 177.15 14.93 178.94 15.59 179.63 14.64 178.02 14.02 177.64 15.15

Dejong
SA 2295.39 322.48 2339.67 331.18 2297.2 326.4 2314.56 329.45 2296.43 319.22

RSA 482.32 145.88 468.80 142.66 489.23 143.85 472.69 148.91 463.73 135.91
OSA 337.19 133.52 337.89 123.04 347.88 128.72 318.1 124.36 340.87 134.1

5
3

4.4 Image Thresholding

Image segmentation involves partitioning an image I into a set of segments with the goal of locating objects

in the image which are sufficiently similar. Thresholding is a subset problem of image segmentation, with

only 2 classes defined by whether a given pixel is above or below a specific threshold value ω. This task has

numerous applications and several general segmentation algorithms have been proposed [156]. However,

due to the variety of image types there does not exist a single algorithm for segmenting all images optimally.

Further, numerous methods for evaluating the quality of a segmentation have also been put forth [159].

In this chapter, a simple method which aims to minimize the discrepancy between the original M × N

gray-level image I and its thresholded image T [147] is used:

M
∑

i=1

N
∑

j=1

|Ii,j − Ti,j | (4.16)

where | · | represents the absolute value operation. Using different evaluations will change the outcome of

the algorithm, however, the problem of segmentation in this manner nonetheless remains computationally

expensive and decreasing the number of evaluations is thus an important task.

Figure 4.4 shows the images used to evaluate the algorithms. The first column represents the original

image, then the gold and the third column corresponds to the approximate target image given Equation

(4.16). The gold image is shown for completeness, it is not required in the experiments. Table 4.6 provides

the value-to-reach (VTR) target evaluation which corresponds to the approximate optimal target image

with respect to Equation (4.16)

Table 4.6: Value-to-reach (VTR) for comparing RSA and OSA.
Image Value-to-reach

1 19850
2 4925
3 7175
4 19850
5 19700
6 22700

4.4.1 Results

The goal of this experiment is to compare the required number of iterations needed by RSA and OSA to

reach the VTR value given in Table 4.6. To increase the problem difficulty, the original image I is split

into 4 × 4 equal sized regions and the algorithms will determine a ω for each of these 16 regions. Hence,

the problem representation will be a vector V of length 16 where each (v ∈ V) ∈ [0, 255]. The initial

temperature has been tuned to T0 = 1000 and the neighborhood function generates a random number

54

between (−17, 17), as per the same strategy used in benchmarking. The cooling schedule is exponential

with parameter b = 0.98.

Table 4.7 presents the results for the image thresholding task, averaged over 30 trials. Each iteration

required two function calls, as two candidate solutions are generated (either two random or one random

and its opposite for RSA and OSA, respectively). Although the increased problem difficulty led to high

standard deviations, there is an improvement in expected function calls to reach the respective targets.

For all six instances OSA required a lower number of iterations to achieve the desired result. The overall

expected improvement is 466 iterations. Averaged, this yields approximately 78 iterations less, per image.

This is an improvement factor of 2158/1694 = 1.27.

The final column of Table 4.7 presents Cohen’s d-statistic (nonoverlap), as described in Appendix

A. Using this measure Images 5 and 6 are found to show small practical improvements, Images 1 an 2

“medium” whereas Images 3 and 4 show large improvements. Thus, in all cases a useful advantage for

using OSA over RSA is revealed.

Table 4.7: Summary results for RSA vs. OSA with respect to the required number of iterations needed
to reach the VTR. µ and σ correspond to the mean and standard deviation of the subscripted algorithm,
respectively. Bold values are statistically significant at a 0.95 confidence level using a t-test. The final
column reports Cohen’s d-statistic.

Image µRSA σRSA µOSA σOSA Improvement Effect
1 419 134 324 112 95 0.359,m
2 415 135 304 107 111 0.416,m
3 303 85 196 60 109 0.588,ℓ
4 251 48 180 36 71 0.642,ℓ
5 348 120 299 80 49 0.234,s
6 422 108 391 88 31 0.155,s

4.5 Summary

The purpose of this chapter was to show that even a basic opposite map definition can lead to significant

improvements in the behavior of simulated annealing. The proposed approach followed directly from the

framework outlined in the previous chapters. Benchmarking the new algorithm focused on ascertaining

the sensitivity of OSA with respect to the neighborhood function and problem size. The cooling schedule

was also examined using different forms of the exponential and linear methods. After revealing various

improvements the method was employed to the practical problem of image thresholding, which further

confirmed its efficacy with respect to lowering the needed number of function calls to achieve a desired

target thresholding. An important observation was that improvements were more drastic as the problem

dimensionality increased.

55

The next chapter expands on ideas presented here to a population-based algorithm. The goal will be

to improve diversity via opposites. As a consequence, other desirable improvements are obtained.

56

Figure 4.4: The images used to benchmark the algorithms. The first column is the original gray-level
image, the second is the gold and the third colum is the target image of the optimization within the
required function calls.

57

Chapter 5

Estimation of Distribution

Algorithms

In this chapter a new probability update rule and sample generation procedure for population-based

incremental learning are presented. Given an arbitrary sample, its corresponding opposite is generated

by taking the complement of the initial binary solution. This complement is dynamic in that the entire

solution complement is not always considered, rather a subset of decreasing size based on the number

of iterations. Using opposite samples allows for diversity maintenance and aids in slowing premature

convergence and exploring the search space. As the algorithm progresses, the size difference between

opposite samples is decreased in order to allow the algorithm to converge towards good areas of the search

space. Without employing this concept the algorithm could not converge very easily, as truly opposite

samples do not lie close together in the search space. To highlight the improvements, benchmark binary

optimization problems are employed. The traveling salesman problem and image thresholding tasks are

also used to compare against a traditional version of the algorithm. The majority of this work appears in

[136, 141].

5.1 Background

Estimation of Distribution (EDA) algorithms represent a powerful class of stochastic optimization tech-

niques based on evolutionary computation and machine learning [59]. In EDAs there are no operations

of crossover and mutation which are found in traditional evolutionary-based algorithms. Furthermore,

the population is not explicitly stored between successive generations. Instead, EDAs maintain and con-

tinuously modify an estimated probability distribution over possible solutions. As a result, the joint

distribution explicitly represents the interrelations between variables which are implicitly present in evolu-

58

tionary algorithms via the linkage phenomena. While very useful, estimation of this joint distribution is a

computational bottleneck for EDAs. Furthermore, in lieu of a selection mechanism the probability model

represented by the prototype distribution is updated accordingly. The general EDA algorithm is provided

in Algorithm 7 for distribution D over M variables and x ∈ S.

Algorithm 7 The general EDA algorithm framework.

1: D0 ← randomly generate initial population,
2: for i = 1 until stopping criteria is met do
3: DSe

i−1 ← select N ≤M from Di−1.
4: pi(x) = p(x|DSe

i−1)← estimate probability distribution of selecting a given x.
5: Di ← sample M solutions from pi(x).
6: end for

The EDA used in this chapter is known as Population-based Incremental Learning (PBIL) [7]. The main

benefits of PBIL over traditional evolutionary algorithm approaches are (1) lowered memory requirements

(since the population does not needed to be stored); (2) increasing the sample size has no effect on memory

(versus increasing population size); and (3) typically a lowered computational cost (mainly because of not

employing genetic operators) [118]. It has been experimentally shown that population-based incremental

learning has the capacity to outperform traditional evolutionary algorithms [40].

PBIL’s implementation ease and robustness have allowed it to be employed for solving a variety of

real-world problems. In [154] multiple probability vectors and an adaptive updating strategy are proposed

and the resulting algorithm is tested on the geometrical design of the end region of power transformers. It

was shown to outperform other common heuristic methods.

Power system controller design under various operating conditions was examined in [33]. It was found

that PBIL designed controllers are able to adequately stabilize the system over the varying conditions. Ad-

ditionally, for large disturbances in conditions PBIL is shown to outperform a genetic algorithm approach.

An initial investigation into the use of PBIL for evolutionary robotics was given in [118]. The proposed

Floating Point PBIL is able to handle floating point results and is shown to outperform a traditional

genetic algorithm.

The telecommunications problem of radio network design (placement of antennas) was investigated in

[133]. This was a novel application area for PBIL and it yielded very good results. Another interesting

problem was that of university curriculum scheduling, where PBIL is shown to also provide usable course

schedules [51]. And, in [83] PBIL was employed to provide a measure of the uncertainty in parameters for

reservoir models which quantify the amount of risk associated with alternative production scenarios.

5.1.1 Population-Based Incremental Learning

Population-Based Incremental Learning (PBIL) is a population-based stochastic search which combines

elements from evolutionary computation (EC) and reinforcement learning (RL) [7]. After a sample is

59

generated, the best is retained and the probability model for each variable is updated to reflect the belief

regarding the structure of the best solution. This is accomplished according to a similar update rule as

used in RL. The result is a statistical approach to evolutionary computation.

An evolutionary algorithm’s population can be thought of as representing an estimated probability

distribution over the possible values for each gene. In PBIL the population is replaced by a d×c dimensional

probability matrix M := (mi,j)d×c which corresponds to a probability distribution over possible values for

each element (d is the problem dimensionality each having c variables). For example, if a binary problem is

under consideration then a solution B := (bi,j)d×c where bi,j ∈ {0, 1} and so each mi,j ∈ [0, 1] corresponds

to the probability of each bi,j = 1.

Learning in PBIL consists of utilizing the current M to generate a set G1 of k samples. These samples

are evaluated according to the objective function for the given problem and the “best” sample B∗ :=

(bi,j)d×c ∈ {0, 1} is maintained. Then, the probability distributions represented in M are updated by

increasing the probability of generating solutions similar to B∗. The update rule to accomplish this is

similar to that found in learning vector quantization [7]:

Mt = (1− α)Mt−1 + αB∗, (5.1)

where 0 < α < 1 represents a user-defined learning rate and the subscript t ≥ 1 corresponds to the current

iteration of PBIL. Without prior information (mi,j) = 0.5.

Another contrast to evolutionary computation is the lack of a crossover operator or selection mechanism,

instead the values in M are “mutated” once per iteration. During this phase a small random value is added

or subtracted from a random subset of the values in M. Furthermore, since at each iteration a new subset

of samples is generated and only the best is maintained then no selection mechanism is required.

The pseudocode for PBIL is presented in Algorithm 8. It assumes constants to control the maximum

number of iterations and samples, ω and k, respectively. Additionally, in line 13 a user-defined parameter

0 < γ < 1 controls the amount that any mi,j can be perturbed. This change is applied according to the

user provided constant 0 < β < 1 in line 12.

Initially, in line 2 let M := (mi,j) = 0.5 to reflect the lack of a priori information regarding the

probability distribution of each variable. In line 5, generate the k samples using the current probability

matrix and select the best sample (w.r.t. some user-defined criteria) in line 7. Matrix M is updated in line

9 using the best sample to guide the direction of probability update. Finally, lines 11-15 probabilistically

perform the mutation rule.

It has been shown that for a given discrete search space PBIL will converge to a local optima [48, 91, 92].

PBIL algorithms for continuous spaces have also been explored (for examples see [102, 112]), although only

the discrete binary case is considered in this chapter.

The Double Learning PBIL algorithm, based on an elitist strategy using both current best and global

best solutions for updating is studied in [160], where improvements in convergence speed and accuracy are

60

Algorithm 8 Population-Based Incremental Learning [7]

1: {Initialize probabilities}
2: M0 := (mi,j) = 0.5
3: for t = 1 to ω do
4: {Generate samples}
5: G1 = generate samples(k,Mt−1)

6: {Find best sample}
7: B∗ = select best({B∗} ∪G1)

8: {Update M}
9: Mt = (1− α)Mt−1 + αB∗

10: {Mutate probability vector}
11: for i = 0...d and j = 0...c do
12: if random(0, 1) < β then
13: mi,j = (1− γ)mi,j + γ · random(0 or 1)
14: end if
15: end for
16: end for

observed. Additionally, the usefulness of PBIL for dynamic problems has also been investigated [153].

Expanding PBIL to multi-objective problems has been examined in [13]. Two different probability

vector updating schemes were proposed and the resulting approach is compared to other population-based

methods. Using 8 bi-objective test problems it is found that multi-objective PBIL is similar in convergence

rate, but has improved diversity over the other algorithms.

While EDAs have been quite successful, they (as well as evolutionary algorithms) have a tendency

to converge to local optima [11, 113, 157]. This premature convergence is due to various algorithmic

properties, but a major reason is due to a lack of diversity in the sample. Typically, diversity is highest at

the onset of the algorithm when all solutions have been randomly generated. As the algorithm progresses

diversity normally decreases rapidly due to sample generating bias, therefore increasing the difficulty of

escaping a local optima.

5.2 Oppositional Population-Based Incremental Learning

As a basis for the proposed approach, it is proven that a higher diversity can be achieved during the

sampling stages of PBIL using opposition. A new update rule made possible because of the properties of

opposition is also presented. This rule requires a new procedure to mutate the probability matrix M.

61

5.2.1 Improved Diversity

Diversity is a measure of a sample or population, independent of the evaluation function [150]. This measure

typically represents the relative distance between samples with respect to their solution representation

(vis-à-vis the problem), where distance is determined by a user-defined function. A lack of diversity

in a population corresponds to sample solutions being very similar with respect to the distance metric.

Conversely, when samples are not very similar then the degree of diversity is high.

A common approach is to measure the distance between all possible pairs of samples in the population.

Under this approach samples which differ in only a few variable values will contribute less to the overall

diversity than samples which differ in many values. In the case of binary problems, the Hamming distance

is commonly utilized to measure the difference between pairs of samples [66, 150].

Since the Hamming distance (dHAM) is symmetric it is only needed to compare pairs of elements once

(i.e. dHAM (p1, p2) = dHAM (p2, p1) for samples p1 and p2). Then, the all-possible-pairs diversity of a

population P of n binary samples is formulated as [150]

V (P) =
n
∑

i=1

i−1
∑

j=1

dHAM (pi, pj), (5.2)

where pi, pj ∈ P . In total this formulation will result in n(n+1)
2 Hamming distance calculations.

Some definitions and notations required for the subsequent proofs is now given. The definitions and

proofs are presented without loss of generality assuming d-dimensional problems where each dimension is

composed of c = 1 variables.

Definition 16 (Opposite Binary Sample) Given some binary sample g of length l where gi ∈ {0, 1}
and i = 0...l, the opposite binary sample ğ is defined to be the binary negation of g:

ği =







1, if gi = 0,

0, otherwise
for i = 0...l (5.3)

Definition 17 (Comparison Set) Given some universal set U and subsets A ⊂ U and B ⊂ U , define a

comparison set S as the Cartesian product A×B = {< a, b > | a ∈ A and b ∈ B}. This set is denoted as

S = A→ B, inferring set A is being compared to set B.

Definition 18 (Opposite Set) Given some universal set U and subset A ⊂ U , define the opposite set

as A◦ = {< ai, ăi > | ai ∈ A and ăi ∈ U}, where A◦ ⊂ U and the relationship between a given guess a and

its opposite ă is according to a user-defined function ξ. Note A◦ 6= A × U and |A◦| ≥ 1 since at least 1

guess pair must be made, where | · | represents the cardinality of the set.

Definition 19 (Diversity of Binary-valued Opposite set) Given some universal set U and opposite

62

set A◦ ⊂ U of size m, calculate the all-pairs-diversity of this opposite set as

V (A◦) =
m
∑

i=1

dHAM (pi, p̆i) (5.4)

where pi, p̆i ∈ A◦ represent the ith guess and opposite guess, respectively.

Using these criteria, it is now proven that the diversity in a set of k samples, where k/2 are randomly

chosen and k/2 are opposites, is greater than the case where the set was composed of k random samples.

The strategy used to prove this is based on a decomposition of the calculations of the all-pairs-diversity

into only the random guesses, only the opposite guesses and between the random and opposite guesses

(non inclusive).

Additionally, assume the samples are generated according to a probability matrix M (as is the case

with PBIL) and also make the assumption that only binary problems are being considered.

Lemma 1 (Diversity of Binary-valued Opposite set) Given a d-dimensional binary space Bd and

sets R◦, R1 ⊂ Bd where |R◦| = |R1|, then V (R◦) ≥ V (R1) and furthermore V (R◦) = constant.

Proof By definition of diversity on an opposite set,

V (R◦) =

m
∑

i=1

dHAM (pi, p̆i) (5.5)

where pi, p̆i ∈ R◦. Since dHAM (pi, p̆i) = l ∀ i then V (R◦) = constant and by definition of an opposite

guess max(dHAM (pi, p̆i)) = l.

Since R1 is composed entirely of i.i.d. samples the only instance where dHAM (ri, rj) = l is if rj = r̆i,

where ri, rj ∈ R1. It follows that V (R◦) ≥ V (R1). Furthermore, by definition of an opposite guess, this

value must be constant such that V (A◦) = m · l.

From Lemma 1, now prove that the diversity of opposite guesses is greater than that of only random

guesses if for k samples, k/2 are shared by each guessing strategy.

Theorem 5.2.1 (Diversity of Opposite Guesses) Given a d-dimensional binary space Bd, sets R1,

R2, R̆1 ⊂ Bd each of size k/2 ≥ 1 the all-pairs-diversity V (R1 → R̆1) ≥ V (R1 → R2).

Proof Begin by extracting the opposite set S◦ from R1 → R̆1, resulting in

S◦ = (R1 → R̆1) \ S2 (5.6)

where S2 is the set of non-opposites such that S◦ ∩ S2 = ∅.

63

It is also possible to write R1 → R2 as the composition of two subsets,

R1 → R2 = Ra ∪Rb (5.7)

where Ra and Rb are composed of randomly selected elements (without replacement) from R1 → R2 such

that |Ra| = |S◦| and |Rb| = |S2|.
By Lemma 1 V (S◦) is maximal and constant and if it is assumed that in general V (S2) = V (Rb) since

S2 and Rb are essentially composed of random samples, then,

V (R1 → R̆1)− V (R1 → R2) =V (S◦) + V (S2)− (V (Ra) + V (Rb))

=V (S◦)− V (Ra)

≥0

(5.8)

Now, extend Theorem 5.2.1 to the complete situation where the all-pairs-diversity of an entire set of

guesses is considered. It is proven that using opposite guesses yields a higher diversity than traditional

independent random sampling.

Theorem 5.2.2 (Diversity of the Opposite Guessing Strategy) Given a probability matrix M :=

(mi)n, d-dimensional binary space Bd and sets R1, R2, R̆1 ⊂ Bd with |R1| = |R2| = |R̆1| = k, if G1 =

R1 ∪R2 and G2 = R1 ∪ R̆1, then V (G2) ≥ V (G1).

Proof Begin by decomposing V (G1) and V (G2) into

V (G1) = V (R1) + V (R2) + V (R1 → R2), (5.9)

V (G2) = V (R1) + V (R̆1) + V (R1 → R̆1). (5.10)

These decompositions include all distance computations required for determining the all-pairs-diversity for

G1 and G2, respectively.

Since R1 and R2 are generated using M, it can be assumed that since the relationship between a guess

and its opposite guess is symmetric, then 1−M can be seen as generating R̆1. Therefore, the assumption

that in general V (R̆1) = V (R2) is made. So, by Theorem 5.2.1,

V (G2)− V (G1) = V (R1 → R̆1)− V (R1 → R2) ≥ 0 (5.11)

Also, the following property concerning the convergence of diversity between generating samples by

opposition versus solely independent random guessing can be proven.

64

Corollary 2 (Diversity Convergence) Given a probability matrix M := (mi)n, a d-dimensional binary

space Bd and sets R1, R2, R̆1 ⊂ Bd (where R1 and R2 are i.i.d. samples based on M), if the values of M

converge (i.e. mi = 0 or 1), then for k = |R1| = |R2| samples,

lim
V (R1→R2)→0

V (R1 → R̆1)− V (R1 → R2) = l · k(k + 1)

2
, (5.12)

where the notation V (R1 → R2) → 0 represents the convergence of diversity of guesses based on Mt as

t = 0, ...,∞ (i.e. as the values of M converge).

Proof Since it is assumed that the values of M converge, and since R1 and R2 are i.i.d. based on Mt it

must be that if t = 0..∞ is the current iteration of the algorithm, then

lim
t→∞

V (Rt
1 → Rt

2) = 0 (5.13)

where Rt
1 and Rt

2 represent random samples based on Mt. This is intuitive since in the limit both Rt
1 and

Rt
2 are composed of the same identical element therefore dHAM (a, b) = 0 ∀a ∈ R1and b ∈ R2.

By a similar argument and by definition of opposite guesses the sets R1 and R̆1 approach opposite

solutions. Since the calculation V (R1 → R̆1) will require k(k+1)
2 Hamming distance computations and

since the length of a solution is l it must follow that

lim
V (R1→R2)→0

V (R1 → R̆1)− V (R1 → R2) = lim
V (R1→R2)→0

V (R1 → R̆1)

= l · k(k + 1)

2
.

(5.14)

From this corollary diversity is infused into a system utilizing the opposite guessing strategy, which

can lead to improved results. However, this can also be a detriment to a search as it may cause confusion

during the searching process and lead away from quality solutions [161]. Therefore, it is imperative to

determine a correct strategy for managing this diversity such that it decreases with an increase in the

number of iterations of the algorithm.

5.2.2 Proposed Use for Opposite Guessing Strategy

Thus far, it has been shown that opposition can maintain, and indeed increase diversity over traditional

independent sampling. The problem now is that as a search algorithm converges, the need for such a

high diversity tends to decrease [161]. Thus, in order for opposition to be useful the definition of opposite

guesses must adapt to this scenario. This is due to the property of a search algorithm to discover high

65

(a) (b)

Figure 5.1: (a) If u∗ lies in the center of the search space then every point has an opposite and (b) if u∗

is translated then points p, p̆ can lie closer together. The shaded area represents elements which have no
notion of opposite, and are essentially removed from consideration. In both cases considering opposites
with respect to point p.

quality areas in the search space and therefore decreasing the probability that an opposite guess (with

respect to the entire search space) will be useful.

In general, the notion of opposition has an implied utilization of distance. For example, given some

search space U and reference point u∗ (usually in the center of U) and some initial random position p ∈ U ,

its opposite position p̆ is typically that which is located an equal distance from u∗. Moreover, if the distance

between p and u∗ is d, then the distance between p and p̆ is 2d. However, by changing the position of u∗

the magnitude of the distance between two points can be relaxed. Moving u∗ to some location other than

the center of U yields the following consequences (which are also shown in Figure 5.1):

• the new location of u∗ allows for two physically close points to be considered as opposites and

essentially redefines the search space bounds.

• this effectively decreases the search space size since some points no longer have an opposite (according

to the situation described above). In reference to a search algorithm, these points are too far from

the current focus of the search to yield a desirable evaluation and hence are ignored.

The translation of u∗ need not be explicit. In the case of a binary domain (as is the case in this chapter)

it can instead alter the allowable distance between two points to be considered opposite. By shrinking the

distance between opposite points, they become increasingly similar and u∗ is implicitly placed between the

two points. Similarly, increasing the distance between opposite points decreases their similarity. Therefore,

if a mechanism to control the distance between opposite points is given it is possible to control the amount

66

of diversity infused into the search algorithm by opposite guesses.

The decrease in distance between opposite points with a decision function ξ(t) which returns the

distance between opposite elements and decreases as the number of iterations t increases can be modeled.

For binary problems this is used to reflect the Hamming distance. While a variety of decision functions

are possible, an exponentially decaying function in the flavor of

ξ(t) = le(ct), (5.15)

is used, where l represents the maximum number of bits in a guess and c < 0 is a user defined constant.

Then, take the complement of ξ(t) by randomly selecting bits from the current solution to yield the opposite

guess.

The shape of ξ(t) directly effects the convergence of diversity of the population. This function will also

impact on the convergence of the output of the algorithm, although to a lesser extent than on diversity.

5.2.3 Alternate Probability Update Rule

The role of PBIL’s probability mutation rule is to allow for further exploration of the search space by

randomly forcing a change in one or more values of the probability matrix M. For binary problems, this is

accomplished by adding or subtracting a small random value between 0 and 1 to arbitrary elements of M

(i.e. mutate the probability). Of course, there is no guarantee that a mutation will improve the likelihood

of generating a high quality sample from M.

The proposed approach does not employ a mutation operation as PBIL does. Instead, opt for a more

advanced mutation rule which adjusts probabilities of M through decay or amplification functions, with

respect to either the current sample best or current best found solution. This contrasts with PBIL, which

employs a purely random mutation strategy. However, if the rate of decay is too high, it will result in a

lack of exploitation (moving quickly away from current best solution) and could possibly result in a lack of

convergence (decay and amplification neutralize each other) or premature convergence (amplification too

high). To stabilize this situation he following logic is employed:

• Whenever a new solution B∗ is found, values of M are always amplified towards it to guide the

search towards that region of the search space.

• As the number of iterations increases from the previous discovery of a new B∗, the sample best is

used to update (according to some probability) as if it was a new global optima. This allows the

search to exploit the current best solution, but also slowly tends away if that region of the search

space does not produce any more quality solutions.

• As the number of iterations increases, the probability of decay decreases. Too many decays will

cause divergence. This, along with the previous idea allow the search to self-control exploration and

67

exploitation.

In order to control the decay and amplification, two parameters are introduced; 0 < τ < 1 and 0 < ρ < 1,

respectively. The above three logics are implemented as described in the following.

When a new optima B∗ is discovered utilize the same update as PBIL, replacing the learning rate with

ρ,

mi,j = mi,j · (1− ρ) + B∗
i,j · ρ. (5.16)

Also apply this rule to exploit the current sample-best solution, which is increasingly important as the

difference ∆ in iterations between discovering B∗
i and B∗−1, respectively, increases. The probability

function used in this chapter that represents this situation is

pamp(∆) = 1− e−b∆ (5.17)

where b > 0 is a user defined constant. Use the sample best solution η instead of the global best B∗ (found

experimentally that b = 0.01 yields the better average results on the problems tested). Of course other

forms of this probability function are possible, but experimentation has led to the selection of this one.

No claim is made that it is the optimal choice.

If no amplification of the probabilities, then a probabilistic decay allows for exploration. This proba-

bility is controlled by (as with Equation (5.17), no claim to its optimality is made)

pdecay(∆; f(B∗), f(η)) =
1− f(B∗)−f(η)

f(B∗)√
∆ + 1

(5.18)

where f(·) is the evaluation function. Since
√

∆ + 1 → ∞ as no new global best solution is found, then

accordingly p(∆; f(B∗), f(η))→ 0. Therefore, as ∆ increases the decay portion of the algorithm becomes

less likely to occur which serves the purpose of avoiding divergence. Then, the update rule is used with

probability given by (5.18) for the case where ηi,j = B∗
i,j is:

mt+1
i,j = mt

i,j ·







1− τ · random(0, 1), if ηi,j = 1,

1 + τ · random(0, 1), otherwise
(5.19)

and when ηi,j 6= B∗
i,j use

mt+1
i,j = mt

i,j ·







1 + τ · random(0, 1), if ηi,j = 1,

1− τ · random(0, 1), otherwise
(5.20)

where the random(0,1) function returns a uniformly distributed random number between 0 and 1 and

the superscript t represents the iteration of OPBIL. To further aid in exploitation employ the global best

68

solution in lieu of η in Equation (5.19). This can also be done in a probabilistic or heuristic manner. For

simplicity the probability of Equation (5.18) is chosen here.

5.2.4 Summary of the Proposed Algorithm

In this subsection an outline the OPBIL algorithm is given. Specifically, the probability update rule and

sample generation procedure are altered from PBIL and the mutation rule is removed. The pseudocode

for OPBIL is presented in Algorithm 9.

In line 2, initialize the probability matrix to reflect the amount of prior knowledge about the solution,

mi = 0.5 reflects a total lack of prior information. The main algorithm is then listed in lines 3 - 30 and

will terminate after the predefined number of iterations, ω, has been reached.

The k/2 random samples are generated in line 5 based on the probabilities represented in M, where k

is the total number of samples desired. From this set (R1) create an opposite for each of the k/2 elements

(in line 6), represented by the set R̆1 in accordance with Section 5.2.2. In lines 8 and 9 the sample best

η and global best B∗ solutions are updated from the newly generated samples and the previous global

best solution, respectively. The function select best(·) will select the “best” solution from its arguments

with respect to the evaluation function f . Typically, this will be the min or max function. Then, the

probabilities required for update of M are computed in lines 11 and 12, respectively.

Probability updating is performed in lines 14 to 28. First, determine whether a new global best

solution was found (η = B∗) or if the sample best solution should be used to move the focus of the search

(random(0, 1) < pamp, where b = 0.01). This probability update serves both to exploit the global best

solution, and to quickly tend away from it when no new optima are found in its vicinity. The update itself

is performed in line 16.

If the first test fails, it can then perform a decay of the values of M, with probability pdecay, which

decreases as ∆ increases (line 17). This test is intended to be successful in the iterations directly following

the update in line 16. The decay in lines 21 to 27 serves to slowly tend away from the global best solution.

The update in line 23 pushes the values of M away from the local or global best (determined in line 18)

and the update in line 25 pushes those values which differ between the η and B∗. So, this part of the

algorithm is intended to prevent convergence and aide in exploration by very small updates, resulting in

smooth transitions.

5.3 Benchmarking

This section is composed of three sets of experiments. The first is concerned with testing and comparing

the results of OPBIL parameters, followed by a comparison to PBIL using standard binary optimization

benchmark functions which have characteristics of deception and multiple attraction regions. The second

set of experiments compares OPBIL and PBIL using 10 instances of the Traveling Salesman Problem

69

Algorithm 9 Pseudocode for the OPBIL algorithm

Require: Maximum iterations, ω
Require: Number of samples per iteration, k
1: {Initialize probabilities}
2: M0 = mi..l = 0.5

3: for t = 1 to ω do
4: {Generate samples}
5: R1 = generate samples(k/2,M)
6: R̆1 = generate opposites(R1)

7: {Find best sample}
8: η = select best({R1 ∪ R̆1})
9: B∗ = select best(B∗, η)

10: {Compute probabilities}
11: pamp(∆) = 1− e−b∆

12: pdecay(∆; f(B∗), f(η)) =
1− f(B∗)−f(η)

f(B∗)√
∆ + 1

13: {Update M}
14: if η = B∗ OR random(0, 1) < pamp then
15: ∆ = 0
16: Mt = (1− ρ)Mt−1 + ρη
17: else if random(0, 1) < pdecay then
18: if random(0, 1) < pdecay then
19: use B∗ in line 23 instead of η
20: end if
21: for all i, j each with probability < pdecay do
22: if ηi,j = B∗

i,j then

23: mi,j = mi,j ·
{

1− τ · random(0, 1), if ηi,j = 1,

1 + τ · random(0, 1), otherwise

24: else

25: mi,j = mi,j ·
{

1 + τ · random(0, 1), if ηi,j = 1,

1− τ · random(0, 1), otherwise

26: end if
27: end for
28: end if
29: ∆ = ∆ + 1
30: end for

70

(TSP). The ability to achieve a lower (more desirable) evaluation with higher stability is highlighted. The

final experiment uses 5 common image thresholding problems to show the ability to achieve a desired

value-to-reach accuracy with a lower number of fitness evaluations. Unless otherwise noted, the exact

same number of samples was used to compare all algorithms (i.e. no overhead for using opposition) and

the probabilities are bounded such that mi,j ∈ [1/(c× d), 1− 1/(c× d)] for both PBIL and OPBIL where

c, d are the number of dimensions and bits per dimension, respectively.

The results presented below for the benchmark functions were obtained by fixing PBIL’s learning rate

α = 0.25, mutation shift γ = 0.1 and mutation probability β = 0.1. These values were empirically decided

from the set {0.05, 0.10, 0.15, 0.25, 0.5}. Parameters for OPBIL were determined in a similar manner, set

the amplification ρ = 0.05, decay τ = 0.0005. The function used to determine the distance between

opposite guesses is

ξ(t) = max(1, e−0.01t) (5.21)

where t is the current iteration of the algorithm. The range of possible functions for ξ(t) was not ex-

plored, but of those attempted Equation (5.21) performed best. Values of the decay constant from the set

{0.005, 0.01, 0.05, 0.10, 0.25} were examined, resulting in the choice 0.05, which tended to yield the most

desirable results.

Additionally, also examined were two slightly different versions of OPBIL. The first uses ξ(t) as a hard

limit (i.e. opposites differ by exactly ξ(t) bits) which will be referred to as hard-OPBIL. The second version,

referred to as soft-OPBIL, uses ξ(t) as a soft limit whereby opposite points will differ by a maximum value

of ξ(t) > 0. The value is actually randomly selected according to a uniform distribution over [1, ξ(t)].

While the behavior and results are very similar for both approaches, both are provided as their results do

differ in some situations.

5.3.1 The Test Functions

In order to evaluate the efficacy of the OPBIL algorithms four common binary optimization problems

were utilized. Each of these functions have been widely used in the field of evolutionary computation

as benchmark tests. They were designed to examine deceptivity in searches, meaning the propensity of a

search to be led away from the globally optimal value by seemingly more desirable local optima [149]. Also,

two of the Whitley functions (described below) were designed to also consider attractors. That is, areas

of local optimality, as opposed to a single locally optimal value. These functions are important because

many difficult real world problems exhibit these characteristics. Each of these functions take the form

f : ({0, 1}m)n → Z
∗, where n is the number of dimensions of size m in a solution representation.

Goldberg’s 3-bit Deceptive Function Goldberg’s multi-modal 3-bit deceptive function [39] utilizes

3 bits per each of the n dimensions and is evaluated according to Equation (5.22). This is a multi-modal

71

function, meaning there exist more than one local optima, but only a single global optimum.

f(x) =

n
∑

i=1

h(xi) (5.22)

Each 3-bit pattern is evaluated by the h(·) function which is summarized in Table 5.1. The values

represent the corresponding evaluation for a given three bit pattern with the goal of minimizing f(x). The

global optimum for this minimization problem occurs when each dimension has a bit pattern (111), which

has an evaluation of 0.

Table 5.1: Goldberg’s 3-bit deceptive Evaluation Values.
String f(x) String f(x)

000 1 100 5
001 3 101 8
010 3 110 8
011 8 111 0

Whitley’s Functions Whitley’s 3 and 4-bit deceptive functions are similar to Goldberg’s, but are con-

sidered more difficult to solve [149]. They are also multi-modal, and were designed to examine deceptivity

and attractor basins in searching. The corresponding evaluation for dimensions composed of 3 or 4 bits are

given in Tables 5.2, 5.3 and 5.4. The former two functions contain attractive basins. As with Goldberg’s

function, the optimal values occur when the evaluation of the solution is equal to zero.

Table 5.2: Whitley’s 3-bit attractor Values.

String f(x) String f(x)

000 28 100 26
001 22 101 14
010 0 110 0
011 0 111 30

5.3.2 Diversity

In this section a comparison of the amount of diversity for PBIL and the OPBIL algorithms is given.

Only a single result is shown because the diversity of OPBIL is controlled through equation (5.21) and

therefore will always appear similar for different problems. In order to compare the expected behavior of

diversity the results from Goldberg’s 3-bit deceptive function with 100 dimensions and a sample size of 4 is

arbitrarily selected. The results are the average of the best solution found over 30 trials of the algorithms.

72

Table 5.3: Whitley’s 4-bit attractor Evaluation Values.

String f(x) String f(x)

0000 10 1000 28
0001 25 1001 5
0010 26 1010 5
0011 5 1011 0
0100 27 1100 5
0101 5 1101 0
0110 5 1110 0
0111 0 1111 30

Table 5.4: Whitley’s 4-bit deceptive Evaluation Values.

String f(x) String f(x)

0000 2 1000 10
0001 4 1001 18
0010 6 1010 20
0011 12 1011 28
0100 8 1100 22
0101 14 1101 26
0110 16 1110 24
0111 30 1111 0

Figure 5.2 shows the amount of all-pairs-diversity as calculated by equation (5.2). As expected, the

hard-OPBIL diversity is greatest. Essentially the same curve is also observed for the soft-OPBIL algorithm

since they are both controlled by the same mechanism. The diversity for PBIL converges to a steady state

at an extremely early stage in the learning process and remains at that level. Both OPBIL algorithms

exhibit a much higher diversity for approximately 65% of the 2500 iterations. This allows for a greater

exploration of the search space during the first half of learning and permits the algorithms to fine-tune

their results during the latter stages.

In order to provide insight into the relationship between the diversity and the actual results yielded

by each algorithm examine Figure 5.3. It is apparent that the increased diversity results in a slower

convergence rate for the OPBIL algorithm as it explores more of the search space and in fact has not

yet converged at iteration 2500. Nevertheless, the relationship between diversity, convergence speed and

accuracy is highlighted. It should also be pointed out that in general too small a sample size may not

make effective use of the increased diversity, although not observed in these experiments.

Figure 5.4 shows the results of increasing the number of samples from 4 to 20. Comparing with the

results in figure 5.3, the rate of convergence is increased and a more desirable final result is obtained by

all the algorithms. As described above, this is a consequence of more information being provided to the

73

0 500 1000 1500 2000 2500
0

20

40

60

80

100

120

140

160

180

Iterations

D
iv

er
si

ty

hard−OPBIL

soft−OPBIL

PBIL

Figure 5.2: All-pairs-diversity for the Goldberg deceptive function with 100 dimensions and 4 samples per
iteration. As it can be seen the diversity for both versions of OPBIL maintain a much higher degree of
diversity for 1600 of the 2500 iterations.

algorithm, implying the increased diversity was more useful than previous. This behavior is also observed

in PBIL, but since the diversity is relatively much lower than for the OPBIL algorithms the impact of

these added samples on convergence rate is much lower.

5.3.3 Parameter Control

In this section the effect of the amplification (ρ) and decay (τ) parameters on the outcome of OPBIL is

examined. To accomplish this, fix the dimensionality of the problem to 100 and select Goldberg’s 3-bit

deceptive problem as a case study. Additionally, only consider the soft-OPBIL algorithm (both hard- and

soft-OPBIL behave similarly) using a total of 10 samples at each iteration. First, fix τ = 0.0005 and vary

the value for ρ = {0.01, 0.05, 0.15, 0.25, 0.50}. This experiment is aimed at examining the influence of the

reinforcement signal towards new best solutions B∗. The presented results have been averaged over 30

trials.

A plot of the behavior of the OPBIL algorithm for these experiments is presented in Figure 5.5 where

the impact of ρ is observed in terms of convergence rate and accuracy. In general, the convergence rate

increases as ρ approaches 1. For ρ = 0.01 the convergence is extremely low which results in the algorithm

not finding a very good solution by termination at iteration 2500. The other settings all achieve a similar

final result, although values of ρ = {0.15, 0.25, 0.50} converge at the higher rate. By experimentation

it was found that a setting of ρ = 0.05 has the tendancy to yield the best final result as larger values

74

0 500 1000 1500 2000 2500
100

150

200

250

300

350

400

450

Iterations

D
iv

er
si

ty

hard−OPBIL

soft−OPBIL

PBIL

Figure 5.3: The convergence curve of results obtained by each algorithm on Goldberg’s function with 100
dimensions and 4 samples.

tended to converge too rapidly (at least for the benchmark functions and TSP data used in this chapter).

Nevertheless, these experiments clearly show the effect of ρ on OPBIL.

Figure 5.6 presents the consequence of varying τ = {0.0005, 0.001, 0.01, 0.05, 0.1} while fixing ρ = 0.05

with respect to the convergence and accuracy of OPBIL. From this case study, it can be seen that larger

values of τ imply a lower degree of exploration and results in a rapid convergence to a poor local optima.

This behavior is a result of moving away from the current best solution at a high rate without fully

exploring the nearby area, and thus it is very hard to discover a quality solution. As τ is lowered the

rate of convergence is slowed and the algorithm can explore more of the search space at a more reasonable

rate. Essentially, the difference between relatively high and low values of τ is the rate of diffusion through

the search space where a larger value effectively jumps from solution to solution and lower values have

a smoother transition. Through empirical tests it was found that τ = 0.0005 usually yields the most

desirable final result.

These results have provided insight into the control of exploration/exploitation ability of the soft-

OPBIL algorithm (the hard-OPBIL behaves similarly). The tradeoff between exploration and exploitation

can easily be controlled through the τ and ρ parameters, and it is important to realize that the specific

values of τ and ρ for a given problem could differ greatly. Additionally, the shape of ξ(t) which controls

the distance between a guess and its opposite will also impact the quality of the search. As with any

parameterized algorithm, the better result will occur when the parameters complement each other to yield

the desired response.

75

0 500 1000 1500 2000 2500
50

100

150

200

250

300

350

400

Iterations

D
iv

er
si

ty

hard−OPBIL

soft−OPBIL

PBIL

Figure 5.4: The convergence curve of results obtained by each algorithm on Goldberg’s function with 100
dimensions and 20 samples.

5.3.4 Accuracy

This section will provide a comparison between PBIL, soft-OPBIL and hard-OPBIL with regards to the

final solution quality. To do this, all four benchmark problems described in the previous subsection are

utilized and the dimensionality is varied from D = {50, 100, 200}. For the Goldberg and Whitley 3-bit

functions, the algorithms run for 2000, 2500 and 3000 iterations, corresponding to each dimensionality, and

2500, 3000, 3500 iterations for the 4-bit Whitley functions, respectively. Additionally, four different sample

sizes, S = {4, 10, 20, 30} are examined during each iteration of the algorithm. All results are averaged over

30 runs where the mean µ and standard deviation σ are reported.

To examine whether the results are statistically significant, a two sample Kolmogorov-Smirnov test at

a 0.95 confidence level is employed. In the following tables, bold values represent statistically significant

results. If PBIL is bold then its value is significantly superior to both soft-OPBIL and hard-OPBIL; if the

value is italicized then it is significant with respect to max(soft-OPBIL,hard-OPBIL). When a value for

soft or hard-OPBIL is bold then it is statistically significant when compared to the result found by PBIL.

The results for the 3-bit Whitley attractor function are provided in Table 5.5. For D = 50 all except

the 4 sample experiment was found to be statistically equivalent, PBIL was found more desirable only

when compared to hard-OPBIL. In this case, increasing the amplification factor of OPBIL could yield

better results, however, the parameter values used were selected to typically yield good results. When the

dimensionality is increased to 100, the smaller sample size both OPBIL algorithm results are significantly

lower than PBIL for a sample size of 4. For sample sizes of 10 and 20, the results favor PBIL, and the

76

0 500 1000 1500 2000 2500
50

100

150

200

250

300

350

400

450

Iterations

E
va

lu
at

io
n

ρ=0.01
ρ=0.05
ρ=0.15
ρ=0.25
ρ=0.50

Figure 5.5: The effect of varying ρ on OPBIL results for the Goldberg 3-bit deceptive problem with 100
dimensions. For all experiments τ = 0.0005.

three algorithms are statistically the same for S = 30. Further increasing the dimensionality to D = 200

increases the problem difficulty significantly and PBIL is statistically outperformed in all experiments by

very wide margins.

Table 5.5 also shows the effect size results as computed by Cohen’s d-statistic (actually, it’s equivalent

nonoverlap value). These values in the final column shows that 1 result shows a “small” and 1 result has a

“medium” favoring for PBIL. Two of the values strongly favor PBIL. However, 5/12 results show a large

practical improvement for OPBIL. It is important to note that PBIL was compared to the least desirable

results found by either hard- or soft OPBIL. Therefore, these are pessimistic interpretations.

Table 5.6 presents the results for Goldberg’s 3-bit deceptive problem. When the dimension is 50, PBIL

is found to have significant results for sample sizes of 10, 20 and 30, respectively. However, when D = 100

this situation is reversed and the OPBIL algorithms result in more desirable outcomes for sample sizes of

4,10 and 20. The sample size of S = 30 is statistically equivalent. For the 200 dimensionality instances

OPBIL finds significantly better results for all sample sizes. Furthermore, for all dimensionalities the

results for OPBIL are essentially the same, within each dimension size, when S ≥ 10. To a lesser extent

this seems true for PBIL, but for dimension sizes of 100 and 200, it seems as though the results are

approaching those found by OPBIL. Also for these instances OPBIL algorithms require only 10 samples

to achieve better results than those found by PBIL at 30 samples.

The final column displays the nonoverlap results of Cohen’s d-statistic which describes the practical

difference between the results of PBIL and OPBIL. For this experiment, for D = 50 the improvements

favor PBIL. However, for larger D = 100, 200 OPBIL’s results are much more desirable as their nonoverlap

77

0 500 1000 1500 2000 2500
50

100

150

200

250

300

350

400

450

Iterations

E
va

lu
at

io
n

τ=0.0005
τ=0.001
τ=0.01
τ=0.05
τ=0.10

Figure 5.6: The effect of varying τ on OPBIL results for the Goldberg 3-bit deceptive problem with 100
dimensions. For all experiments ρ = 0.05.

percentiles are greater than 0.50 for most of these problems.

Table 5.7 exhibits the results from experiments on Whitley’s 4-bit attractor problem. In all experiments

both OPBIL algorithms achieve results which are statistically favorable compared to PBIL. Similar to the

previous results for Goldberg’s function, OPBIL is able to find results with only 10 samples that are

statistically significant at the 0.95 confidence level when compared to larger sample sizes for PBIL. In

most cases, especially those where D = 200 the margin between the PBIL and OPBIL results is relatively

large. Also, for most of the results the standard deviation of OPBIL results is relatively low compared to

PBIL. The final column of this table presents the effect size, as an overlap percentile. For these problems

all 12 results are practically in favor of OPBIL.

Figure 5.7 shows an example of the convergence of the three compared algorithms for Whitley’s 4-bit

attractor problem for D = 200 and S = 20. The PBIL algorithm rapidly converges within the first 500

iterations. On the other hand, both OPBIL algorithms converge at a comparatively slower rate. At the

1500th iteration the OPBIL results begin to improve over the already converged PBIL algorithm, and

eventually yield a much better outcome. This rapid PBIL convergence is characteristic of its behavior for

all of the experiments and the much slower convergence rate of OPBIL was also common throughout. The

two curves for the OPBIL algorithms are also very similar, which tended to be found for all experiments.

The results from the 4-bit deceptive Whitley function are given in Table 5.8. Except for the instance

where D = 50 and S = 30 all results are statistically in favor of the OPBIL algorithms. The actual

difference in results obtained by each OPBIL algorithm is relatively large compared to PBIL, as the

problem size increases this difference is many factors large, for example for D = 100, S = 30 the final

78

Table 5.5: Whitley’s 3-bit attractor results for a minimization problem. In total 5/12 results are sta-
tistically favorable for OPBIL, 3/12 for PBIL (including italicized values) and 4/12 show no statistical
significance. Bold values are statistically significant. The final column reports Cohen’s d-statistic compar-
ing PBIL with the least desirable of hard- and soft-OPBIL.

PBIL soft-OPBIL hard-OPBIL
S µ σ µ σ µ σ Effect

Dimensions = 50
4 5.867 8.303 16.333 18.043 24.667 20.594 -0.514,ℓ
10 0.4667 2.556 1.400 4.272 0.4667 2.556 -0.131
20 0.000 0.000 0.000 0.000 0.000 0.000 0.000
30 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Dimensions = 100
4 215.000 30.885 141.400 54.773 125.733 39.799 0.638,ℓ
10 15.667 8.535 24.733 19.691 18.667 16.981 -0.286,s
20 0.4667 2.556 9.333 11.819 10.733 11.441 -0.526,ℓ
30 0.000 0.000 2.800 8.544 5.600 10.136 -0.364,m

Dimensions = 200
4 1012.867 65.457 575.333 105.790 541.933 100.974 0.928,ℓ
10 463.133 45.682 145.533 47.322 132.067 40.222 0.960,ℓ
20 223.067 31.054 78.133 34.329 90.333 35.785 0.893,ℓ
30 136.333 24.495 52.733 27.435 52.667 33.800 0.849,ℓ

result of OPBIL is about 1% that of PBIL. As with the previous two experiments, OPBIL requires much

less samples to achieve much better results than those found with PBIL. The effect size calculations reveal

that all values are practically favorable for OPBIL.

5.3.5 Summary of Results

Firstly, a representative example of the increased diversity induced by opposition into the OPBIL algo-

rithms by comparing the all-pairs-diversity was provided. It was shown that OPBIL does in fact maintain

a higher degree of diversity than traditional PBIL, and that the diversity is controlled according to the

ξ(t) function. After examining the relationship between diversity and the result obtained at each iteration

it was observed that as the sample size increased, OPBIL was typically able to make a more effective use

of the diversity.

Also, a comparison of the results obtained with the hard and soft versions of the OPBIL algorithm to

those discovered by PBIL was conducted. To summarize the above results:

• 35/48 (hard and soft) OPBIL results were statistically significant.

• 6/48 PBIL results were significant.

79

Table 5.6: Goldberg’s 3-bit deceptive results: 7/12 results are statistically significant for OPBIL, 3/12 for
PBIL and the remaining 2/12 results show no significance. Bold values are statistically significant. The
final column reports Cohen’s d-statistic comparing PBIL with the least desirable of hard- and soft-OPBIL.

PBIL soft-OPBIL hard-OPBIL
S µ σ µ σ µ σ Effect

Dimensions = 50
4 53.433 4.470 56.833 7.715 56.933 7.172 -0.281,s
10 31.633 3.864 36.967 2.942 38.267 3.051 -0.690,ℓ
20 31.033 3.783 37.233 3.170 39.167 2.276 -0.793,ℓ
30 31.667 3.220 36.900 2.496 36.433 3.014 -0.673,ℓ

Dimensions = 100
4 178.133 8.307 135.233 14.301 136.933 7.983 0.923,ℓ
10 111.933 5.065 72.667 4.551 72.833 4.308 0.972,ℓ
20 81.800 5.410 74.767 4.329 73.400 4.182 0.583,ℓ
30 74.167 5.867 73.533 3.181 73.500 4.329 0.065

Dimensions = 200
4 490.633 11.775 354.167 23.343 351.567 24.605 0.965,ℓ
10 370.600 10.088 164.733 10.116 167.467 7.505 0.996,ℓ
20 301.900 7.397 145.300 6.889 147.233 6.511 0.996,ℓ
30 268.567 7.789 145.600 6.273 145.700 6.993 0.993,ℓ

• 7/48 values were statistically indistinguishable.

Additionally, for the Whitley 4-bit problems OPBIL algorithms were found to yield statistically sig-

nificant results in 23 or the 24 instances. This highlights the ability of OPBIL to successfully utilize the

diversity for quickly exploring the search space. To provide a general idea as to the improvement of OPBIL

over PBIL for all instances calculate the average percentage improvement as

Pi,j =
PBILi,j − OPBILi,j

max(PBILi,j , OPBILi,j)
(5.23)

where a substitution of the results for the soft and hard OPBIL versions into OPBILi, i = 1..3 is the

current dimension size (D = 50, 100, 200) and j = 1..4 is the current sample size (S = 4, 10, 20, 30).

Calculate this value for each of the four problems. A value of −∞ corresponds to instances where PBIL

found the optimal solution and OPBIL did not. In contrast, use ∞ to represent the opposite situation

where OPBIL discovers an optimal and PBIL does not. If Pi,j = 0 then both algorithms found the optimal.

Table 5.9 shows the average improvement of results using soft-OPBIL versus PBIL over all four test

problems (arbitrarily decided on soft-OPBIL since the results between soft- and hard-OPBIL were statis-

tically insignificant). In total 9/48 of the instances have Pi,j < 0, corresponding to PBIL finding better

results (not all significant). In three cases each of PBIL and OPBIL found optimal values (two instances

both found the same optimal), and the remaining 35/48 values OPBIL improved over PBIL. For values

80

Table 5.7: Whitley’s 4-bit attractor results. In total 12/12 results are statistically favorable for OPBIL.
Bold values are significant.The final column reports Cohen’s d-statistic comparing PBIL with the least
desirable of hard- and soft-OPBIL.

PBIL soft-OPBIL hard-OPBIL
S µ σ µ σ µ σ Effect

Dimensions = 100
4 195.533 14.908 132.000 14.574 129.533 13.903 0.907,ℓ
10 113.133 7.080 94.600 2.358 96.067 1.929 0.854,ℓ
20 90.733 3.657 86.133 1.961 85.800 3.377 0.617,ℓ
30 85.400 4.182 75.267 2.651 76.333 3.241 0.771,ℓ

Dimensions = 100
4 621.733 29.812 347.933 25.685 365.800 34.971 0.969,ℓ
10 411.000 14.429 188.333 4.901 188.600 4.461 0.995,ℓ
20 305.800 10.121 187.200 4.859 188.467 4.946 0.991,ℓ
30 263.867 10.372 187.933 4.5024 188.533 4.361 0.978,ℓ

Dimensions = 200
4 1684.533 29.905 966.333 62.288 997.667 56.256 0.992,ℓ
10 1288.200 31.759 418.133 14.799 418.800 11.775 0.998,ℓ
20 1069.800 24.849 366.667 8.294 368.333 6.604 0.999,ℓ
30 955.733 23.144 367.200 7.155 368.000 8.485 0.998,ℓ

where Pi,j > 0; the closer to 1, the larger the improvement. A value > 0.99 means that OPBIL’s final

result was only about 1% that of PBIL. Correspondingly, a value of Pi,j < 0 is shows the percentage

improvement PBIL exhibited over OPBIL. Although not all values are significant this table provides a

general idea as to the improvement OPBIL has.

It was also discovered that as D increases, the benefit of using opposition typically also increases with

respect to PBIL. That is, the accuracy of results found with OPBIL increases as the problem becomes

more difficult. Also, the rate of convergence of OPBIL as implemented here is slower than PBIL but

can be made more rapid by a different choice of ξ(t) and learning parameters ρ and τ . In many of the

instances results obtained by OPBIL required less samples to achieve (or better) the results found using

more samples and the PBIL algorithm.

Additionally, the two possible versions of the OPBIL algorithm were found to yield very similar results

in all the experiments. This behavior leads to the conclusion that there is no significant difference in

the results of soft-OPBIL and hard-OPBIL. Therefore, either version of the algorithm can be arbitrarily

selected for these problems.

81

0 500 1000 1500 2000 2500 3000 3500
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Iterations

D
iv

er
si

ty

hard−OPBIL

soft−OPBIL

PBIL

Figure 5.7: A comparison of the convergence of PBIL and the two OPBIL algorithms on Whitley’s 4-bit
attractor problem where D = 200 and S = 20.

5.4 The Traveling Salesman Problem

Benchmark functions typically do not capture the complexities of real-world situations. Ten Traveling

Salesman Problem (TSP) instances were selected from the TSPLIB [129] to further examine the ability of

OPBIL. Its performance is tested against results obtained by PBIL as well as a Genetic Algorithm (GA).

Let a graph G = (V, E) of vertices i, j ∈ V and undirected, weighted edges ei,j ∈ E which connect

vertices i and j represent cities and travel routes between cities, respectively. Further, let each ei,j have an

associated weight wi,j ≥ 0 which represents the travel cost between cities, where if wi,j = 0 then the edge

is not travelable. Then, the goal is to determine which of the (|V |−1)!
2 Hamiltonian cycles has minimum

total cost (sum of weights along chosen edges), corresponding to the shortest path from a starting city

which visits all other cities and returns back. Typically, only an approximate solution is possible due to

the large search space size for large |V | (assuming a large number of edges as well).

To encode the TSP, a binary representation is adopted [7] whereby each solution (and also probability

matrix M) is of dimensions |V |×⌈log2 |V |⌉, where |·| represents the cardinality of the set (number of cities).

Each index of this representation corresponds to a city, and the binary value at each index is converted to

a decimal value when constructing a tour/path. The tour begins with the city with the lowest associated

integer value and continues in this manner until all cities have been visited. In the event that two or more

cities have the same integer value, they are visited in the order of increasing index value. As pointed out

in [7] this representation is not ideal, and many others are in existence which have led to better results.

82

Table 5.8: Whitley’s 4-bit deceptive results. In total 11/12 results obtained with OPBIL are statistically
significant and 1/12 are insignificant. Bold values are statistically significant. The final column reports
Cohen’s d-statistic comparing PBIL with the least desirable of hard- and soft-OPBIL.

PBIL soft-OPBIL hard-OPBIL
S µ σ µ σ µ σ Effect

Dimensions = 50
4 77.000 8.469 47.667 14.003 56.500 19.920 0.556,ℓ
10 28.500 6.585 0.333 1.826 0.000 0.000 0.946,ℓ
20 6.167 3.395 0.333 1.269 0.000 0.000 0.751,ℓ
30 0.333 1.269 0.000 0.000 0.000 0.000 0.182,s

Dimensions = 100
4 293.333 21.600 172.233 28.333 188.633 27.521 0.904,ℓ
10 173.667 14.478 11.833 9.513 12.00 12.839 0.986,ℓ
20 118.833 11.423 2.333 4.866 1.500 3.511 0.988,ℓ
30 93.500 7.673 1.500 3.511 1.000 2.842 0.992,ℓ

Dimensions = 200
4 929.267 31.228 578.700 50.813 608.000 48.984 0.969,ℓ
10 660.033 29.100 131.167 36.547 131.333 25.049 0.995,ℓ
20 519.600 22.443 25.833 16.033 24.667 17.117 0.997,ℓ
30 459.200 22.895 12.000 9.966 16.333 15.025 0.996,ℓ

However, since the goal here is to simply compare the results to each other, the final result with respect to

the optimal or best known solution is not as important as the relative difference between these algorithms.

To widen this comparison, also included are results obtained by a standard genetic algorithm (GA).

During the reproduction phase use an n-point crossover [71] with probability 0.75. Alternatively, with

probability 0.25 mutate the representation by flipping |V |/10 bits at random. The selection mechanism

used was a 2-way tournament method with a selection pressure of 0.8 [71]. The parameter settings for

OPBIL are the same as above (τ = 0.0005, ρ = 0.05), ξ(t) is as shown in Equation (5.21), and the

remainder of the OPBIL algorithm is the same as listed in Algorithm 9. For PBIL, use a learning rate

α = 0.15, mutation probability β = 0.01 and mutation shift γ = 0.20. For all three algorithms the

population/sample size at each generation/iteration was equal to the number of cities (|V |).
The same method of generating opposites for the benchmark problems was also adopted here. Unfor-

tunately, this definition of opposite does not allow for an easy interpretation when considering the graph

structure or path being acted upon. Generally, the concept of an “opposite graph” or “opposite path”

does not seem to have an intuitive definition.

Table 5.10 shows the results for the 10 TSP problem instances averaged over 30 runs. Instances eil51

and berlin52 were run for 2000 iterations, eil76 was run for 2500 iterations and the remaining problems

were all run for 3500 iterations. According to a Kolmogorov-Smirnov test at a 0.05 significance level, it was

found that the average of all final results (µ) are statistically in favor of OPBIL. Also, for all experiments

83

Table 5.9: The average improvement in results over all test instances. Positive values are results where
OPBIL outperformed PBIL. In total 37/48 values > 0, 9/48 are < 0, 2/48 are equal to 0

D S=4 10 20 30

Whitley 3-bit Attractor
50 -0.641 -0.667 0.000 0.000
100 0.342 -0.367 -0.950 −∞
200 0.432 0.686 0.650 0.613

Goldberg 3-bit Deceptive
50 -0.060 -0.144 -0.167 -0.142
100 0.241 0.351 0.0860 0.009
200 0.278 0.556 0.519 0.458

Whitley 4-bit Deceptive
50 0.325 0.164 0.051 0.119
100 0.440 0.542 0.388 0.288
200 0.426 0.675 0.657 0.616

Whitley 4-bit Attractor
50 0.381 0.988 0.946 ∞
100 0.413 0.932 0.980 0.984
200 0.377 0.801 0.950 0.974

the standard deviation σ was lower for OPBIL than for PBIL or the GA, implying more reliable results.

Cohen’s d-statistic values show that the effect size for all problems is practically favorable for OPBIL. The

comparison is between OPBIL and PBIL, the GA results were not considered (although OPBIL is also

favorable in comparison).

In Figure 5.8 a plot of the averaged results for the kroA100 problem is presented. As with previous

experiments PBIL converges relatively quickly compared to the slower rate of OPBIL. This same behavior

is seen with the GA. However, at approximately iteration 2000 OPBIL overtakes PBIL and continues to

improve until termination (it crosses the GA at about iteration 1500). This curve is characteristic of the

setting of OPBIL parameters used in this chapter, and allows for improved exploration during early stages

of the algorithm.

5.5 Image Thresholding

The image thresholding example used in Chapter 4 is also used here to compare PBIL and OPBIL. As a

summary, the purpose of image thresholding is to classify each pixel in an M ×N image I into one of two

classes {important, unimportant} signified by a binary output image T . Each class is defined as being

above or below a specific threshold value ω, respectively. The variety of image types has led to the design

of numerous threshold quality metrics. This chapter utilizes a simple measure which aims to minimize the

84

Table 5.10: Results for the 10 TSP problem instances. Bold values are statistically significant. The final
column reports Cohen’s d-statistic comparing PBIL with the least desirable of hard- and soft-OPBIL.

PBIL GA OPBIL
Instance µ σ µ σ µ σ Effect

eil51 590.17 30.60 687.93 40.87 546.03 20.94 0.644,ℓ
berlin52 10676.56 812.60 12294.14 859.18 9792.80 548.73 0.537,ℓ

eil76 846.94 57.71 986.99 74.75 754.23 44.49 0.669,ℓ
kroA100 45871.62 3769.32 55285.64 5290.82 38726.17 2880.93 0.729,ℓ
kroB100 45775.77 4352.58 56804.89 5324.88 38300.59 2782.29 0.715,ℓ
kroC100 45758.08 3216.85 55560.71 4637.72 37351.60 2653.49 0.819,ℓ
kroD100 44964.25 3324.76 56120.53 4833.36 37229.58 2327.22 0.803,ℓ
kroE100 46057.64 3396.09 55657.73 4583.16 38876.37 2637.26 0.763,ℓ
eil101 1112.97 60.10 1323.52 77.86 960.99 59.91 0.785,ℓ
ch130 14400.64 933.67 16566.87 1573.22 11638.47 922.89 0.830,ℓ

discrepancy between the original gray-level image I and its thresholded image T [147]:

M
∑

i=1

N
∑

j=1

|Ii,j − Ti,j |. (5.24)

Each evaluation function will change the outcome of the algorithm. Table 5.11 presents the value-to-reach

targets for each of the 6 test images (see Figure 4.4 of Chapter 4 for the corresponding image).

Table 5.11: Value-to-reach (VTR) for comparing PBIL and OPBIL.
Image Value-to-reach

1 19850
2 4925
3 7175
4 19850
5 19700
6 22700

5.5.1 Parameter Settings

As stated above, OPBIL requires a binary solution representation. However, thresholding aims to discover

an integer value 0 ≤ T ≤ 255, to perform the segmentation operation of I > T . Additionally, use an

approach of splitting I into subimages I1,...,16 where each Ii is an equal sized square region of the original

image.

Encoding was determined to be a matrix R := (ri,j)16×8 which corresponds to 16 subimages having

a gray-level value < 28 = 256. Each row of R is converted to an integer which is used to segment the

85

0 500 1000 1500 2000 2500 3000 3500
2

4

6

8

10

12

14

16
x 10

4

Iterations/Generations

E
va

lu
at

io
n

GA

PBIL

OPBIL

Figure 5.8: Comparing OPBIL vs. GA vs. PBIL for the kroA100 TSP instance.

respective region of I. The extra regions increase problem difficulty as they result in more deceptive and

multimodal problems. Parameter settings for PBIL and OPBIL are as shown in Table 5.12.

5.5.2 Results

Table 5.13 shows the expected number of iterations (each iteration has 24 function calls) to attain the

value-to-reach given in Table 5.11. In all cases OPBIL reaches its goal in fewer iterations that PBIL,

where results for images 2,5,6 are found to be statistically significant using a t-test at a 0.95 confidence

level. Additionally, in all cases a lower standard deviation indicating a more reliable behavior for OPBIL

is found.

Overall, 446-347=97 saved iterations using OPBIL, which is an average of 16*24=384 function calls

per image. The approximate savings is 446/347 ≈ 1.28 which is about a 28% improvement in required

iterations. Interestingly, this is similar to the 1.28 improvement factor found for the opposition-based

simulated annealing approach described in Chapter 4. The effect size values show that Images 1 and

4 have a practical improvement, Image 2 has a medium increase and Images 5 and 6 show very large

improvements.

86

Table 5.12: Parameter settings for image thresholding experiments.
Parameter Value

Maximum iterations t = 150
Sample size k = 24

PBIL Only
Learning rate α = 0.35

Mutation probability β = 0.15
Mutation degree γ = 0.25

OPBIL Only
Update frequency control b = 0.1

Learning rate ρ = 0.25
Probability decay τ = 0.0005

Table 5.13: Summary results for PBIL vs. OPBIL with respect to required iterations calls. µ and σ
correspond to the mean and standard deviation of the subscripted algorithm, respectively. The final
column reports Cohen’s d-statistic comparing PBIL with OPBIL.

Image µPBIL σPBIL µOPBIL σOPBIL Improvement Effect
1 62 19 53 12 9 0.272, s
2 80 25 65 9 15 0.370,m
3 61 12 60 5 1 0.054
4 47 14 40 10 7 0.276,s
5 68 13 53 9 15 0.557,ℓ
6 128 21 76 14 52 0.824,ℓ

5.6 Summary

In this chapter the use of opposition-based computing concepts to improve population-based incremental

learning was proposed. The method is based on increasing diversity in the generated samples. Theoretical

evidence to support the claim of increased diversity when considering opposition as opposed to independent

random sampling was provided. This increase in diversity and altering of the sampling strategy led to a

modification of the probability update rule of PBIL, and further led to the creation of the soft and hard

versions of the OPBIL algorithm. Although, it was found that there was generally no statistical difference

between their results.

Experiments confirm that using opposition according to the OPBIL framework can lead to an improve-

ment in accuracy (at the expense of slower convergence) over traditional PBIL. Indeed, it was observed

that 35/48 = 72.9% of the results from OPBIL were statistically significant and only 6/48 = 12.5% results

from PBIL were favored. Moreover, results obtained using OPBIL for problems of high dimensionality

were found to be far superior to PBIL. It was shown experimentally that as the sample size increased

it was usually the situation that both the OPBIL algorithms made increasingly efficient use of the di-

versity induced by opposition. Additionally, when considering 4-bit benchmark functions OPBIL yielded

87

23/24 = 95.5% statistically significant results. Many real-world problems are of very high dimensionality

and therefore it seems as though OPBIL would be a relatively significant improvement over PBIL in those

instances.

A comparison of the two approaches on 10 TSP instances composed of between 50 and 130 cities. In all

situations OPBIL was able to achieve a statistically significant result over PBIL and a GA. A simple and

not very robust, yet common, problem representation and no heuristic information was used. Incorporating

more advanced options in these two areas can greatly improve the results. However, for the purpose of

this chapter the comparison between OPBIL, a GA and PBIL does not require such additions. Moreover,

an increased performance with respect to the required number of iterations to achieve a target goal was

observed for benchmark image thresholding problems.

One generally observed phenomenon was that the benefit of using the opposition-based algorithm was

more drastic as the problem dimensionality increased. This is very important because small problems can

likely be solved exactly using standard methods, which fail for very large problems.

88

Chapter 6

Gradient-Based Learning

This chapter proposes a new learning heuristic for improving gradient-based learning methods in feedfor-

ward neural networks. The essential process involves an efficient strategy for adaptive transfer functions

which allows for jumps along the error surface. The new network will represent a more desirable in-

put/output mapping as well as a possible improvement in numerical conditioning. The proposed method

is robust, in that it can easily be adjusted for various learning algorithms. In order to show the benefits of

this approach, variants of backpropagation and resilient propagation are modified. Experimental results

focus on numerical conditioning, accuracy, generalization ability and convergence rate for a variety of

benchmark problems. Theory and results of this chapter are mainly found in [134, 135, 138, 139, 142].

6.1 Background

Artificial neural networks have proven to be very useful for a wide variety of tasks. However, for complex or

high-dimensional problems the traditional first-order or gradient-based training method of backpropagation

[12, 103] often encounters difficulties. In these cases, the associated error surface is complex and may

include numerous local optima or even relatively flat areas [36]. By preprocessing the data via a whitening

or similar transformation on the data [46], jittering [10] and/or regularization [24, 77, 110] it is possible to

alleviate some difficulties. Alternatively, other first-order methods have been proposed, including resilient-

propagation (rProp) [94], quick propagation [32] and a variety of conjugate gradient techniques [18, 72]

which typically outperform backpropagation.

The rate of error surface curvature can be deduced by computing the Hessian1 matrix. By incorporating

this information, second-order learning algorithms such as Levenberg-Marquardt [46] are often capable of

yielding superior results. Unfortunately, the associated computational cost is very high, thus making

1The matrix of second derivatives of the error function w.r.t. network weights.

89

second-order methods infeasible for large networks. Hence, the focus here is on improving first-order

learning algorithms, using backpropagation as the benchmark.

6.1.1 Notations and Definitions

Consider an l-layer feedforward network N l with a set

W = {V1, . . . ,Vl−1} (6.1)

of weight matrices Vi of weights (and biases) from layer i− 1 to layer i.

Let the m, d-dimsensional input data be X := (xi,k)m×d ∈ R with associated r-dimensional target

vector T := (ti,j)m×r ∈ R. Thus, the network is presented the pair (xi, ti), corresponding to the ith

respective row. Output of the network is given by Y := (yi,j)m×r where the error at each jth output layer

neuron (which has size(V m) = r, where size(·) returns the number of nodes in the given layer) is given

by

ej = ti,j − yi,j (6.2)

and total network error is given by the mean squared error (MSE)

Er(X) =
1

m

∑

x∈X

r
∑

j=1

e2
j . (6.3)

Each hidden neuron employs a specific transfer function φ. The transfer function of each neuron in

layer Vi is denoted by Φi = 〈φj〉 for j = 1, . . . , size(Vi) and the set Θ = {Φ1, . . . , Φl−1} represents the

transfer functions of the entire network. To show the last epoch which a transfer function was changed

to/from its opposite L is used, which has all elements positive, and the set of all values for the network is

denoted

E = {L1, . . . ,Ll−1}. (6.4)

It will also prove useful to define the average input at the gth epoch for each ith neuron of layer l as

Īg
l,i =

1

m

∑

m

|V l−1|−1
∑

j=1

vl−1
j,i φl−1,j(Il−1,j) (6.5)

over all m input patterns. Similarly, it will be required to denote the average output of the neuron,

Ōg
l,i =

1

m

∑

m

φ(Il,i). (6.6)

90

6.1.2 Symmetric Structural Transformations

A neural network represents a mapping Ψ : R
d 7→ R

r. Symmetry in neural networks typically refers to

a transformation T in the network structure or free parameters which does not affect the input-output

mapping. That is, Ψ is invariant to the transformation such that T (Ψ) = Ψ. Two networks N1 and

N2 representing the same mapping are denoted as N1 ∼ N2 (≁ is used for different mappings). This

work concentrates on structural symmetry as it is concerned with transfer functions, but a more thorough

examination can be found in [8].

Structural symmetries can arise as a result of permuting neurons within a hidden layer or by a sign

inversion of a transfer function. Permutation is possible by exchanging all the input and output connections

within a set of neurons from a specific layer. This permutation transformation does not affect the output

of the network, and thus is a symmetric transformation. Given n neurons, a total of n! permutations are

possible [20].

The other coherent transformation operates directly on the transfer function and is known as a sign

transformation. Given some transfer function having odd symmetry (i.e. φ(x) = −φ(−x)), multiplying

all input and output weights by -1 will result in an invariant input/output mapping [20]. It has been

shown that this specific symmetry is valid for any infinitely differentiable function where each successively

differentiated function evaluates to zero [3].

On the other hand, if the transfer function exhibits even symmetry (i.e. φ(x) = φ(−x)) then multiplying

all input connections by -1 also leaves Ψ(N) unchanged. This symmetry is also valid for an infinitely

differentiable function [3], of which the most common is the radial-basis transfer function. For either even

or odd transfer functions, given a layer of n non-input neurons there exists 2n possible sign-symmetric

transformations. The set of all equi-output transformations on the weight space W forms a non-Abelian

group G of order #G, where

#G =

L−1
∏

l=2

(ml!)(2
ml) (6.7)

where L is the number of non-input layers and ml is the number of neurons in layer l [20].

Each of these strutural transformations defines a symmetry in weight space consisting of equivalent

parts. By taking these symmetries into consideration it is possible to reduce the size of the weight space

[3, 8, 19, 20, 52, 121]. The underlying idea behind this search space compression has been discussed in

Chapters 2 and 3.

6.1.3 Adaptive Transfer Functions

Although in general, the Universal Approximation Theorem [35] does not favor a particular transfer func-

tion, for a given data set the choice can be very influential on training time and accuracy. The output

91

range, shape and rate of curvature of the function all play an important role during learning. Furthermore,

different function combinations may fit the target function more robustly. Two main methods for employ-

ing different transfer functions exist. The first option is to determine the non-standard transfer functions

a priori, however the manner in which this decision is made is not obvious [30, 31]. Second, is to choose

functions with adaptable parameters which affect the slope, gain, etc. The tradeoff is an increased search

space.

The use of adaptive transfer functions has been previously investigated. In [15] it was hypothesized that

for a particular data set there may be a preferred transfer function. Unfortunately, the task of determining

the optimal function is very complex, especially for large real world data. Hence, they proposed that

adaptive transfer functions provide flexibility and may be better suited for the given problem. Similar

results were found by [152] and [49] who additionally observed a decrease in the number of hidden neurons

required to adequately perform the given task.

The case of adaptive sigmoid functions was investigated in [16] where they were shown to outperform

traditional backpropagation by up to an order of magnitude. A gain parameter was proposed in [58] and

the resulting algorithm yielded an increase in network performance. Fixed sigmoid functions were also

outperformed w.r.t. convergence rate and accuracy by adaptive functions in [122].

In [21], a comparison between single hidden layer networks with and without adaptive transfer functions

for static and dynamic patterns was performed. By utilizing adaptive transfer functions, the networks were

able to model the data more accurately. Improved generalization and robustness were also observed using

adaptive functions in multiresolution learning [63]. An increase in convergence rate was also observed in

[128], where they allow for the learning of transfer function amplitude. By finding better areas within the

search space (and so error surface) a better generalization ability was also shown. An extension of this

work to real-time recurrent learning exhibited similar improvements [38].

Vecci et al. investigate a special class of neural networks which are based on cubic splines [132].

The method adapts the control points of a Catmull-Rom spline. It is shown that this model has several

advantages including lower training times and reduced complexity. Higher-order adaptive transfer functions

were considered in [151]. They reported an increased flexibility, reduced network size, faster learning and

lower approximation errors.

Hoffmann [47] proposes universal basis functions (UBFs) which are parameterized to allow for a smooth

transition between different functional forms. The UBFs can be utilized for both bounded and unbounded

subspaces. Hoffmann’s experimental results show an improvement over radial basis functions for some

common benchmark data sets.

These works show that adaptive transfer functions can lead to improvements in accuracy, robustness

and generalization of neural networks. Adjusting the parameters of the neural network structure represents

a structural transformation. It is possible that some transformations do not alter the network input/output

mapping, making them irrelevant.

92

6.2 Opposite Transfer Functions

The proposed algorithm is based on the concept of an opposite transfer function (OTF). These functions

have the potential to rapidly change the input-output (IO) representation of the network with minimal

computational effort.

Definition 20 (Opposite Transfer Function) Given some odd-symmetric transfer function φ : R →
[α, β], for (α < β|α, β ∈ R), the corresponding opposite transfer function is φ̆(x) = φ(−x). The breve

notation indicates the opposite state of φ.

Consider a network employing a single neuron in the hidden layer which uses a sigmoid-shaped transfer

function, such as the hyperbolic tangent. For large enough input I the gradient of φ(I) is considered

diminished, which has the consequence of slow weight update and thus elongated convergence times or

lower accuracy. The latter occurs when the learning algorithm terminates before the weights have been

adjusted into regions of higher curvature and therefore faster weight update to more desirable locations

on the error surface.

Consider the situation where the target weights yielding optimal results exist on the opposite side of

φ(0) and I is such that the neuron is at or near saturation. In this case, a gradient-based technique could

require a significant amount of iterations before it enters a high gradient area, thus allowing it to quickly

update its weights. Likely this will occur during the onset of training. Moreover, if the network is trapped

at a local optima this strategy could additionally aid in tunneling towards a region of more desirable

optima.

In order to be useful in backpropagation-like learning algorithms the following characteristics of an

OTF should be present:

1. Both ϕ(x) and ϕ̆(x) are continuous and differentiable.

2. For derivatives, dϕ̆(x)
dx = − dϕ(x)

dx .

Since most applications require more than a single hidden neuron, OTFs must be incorporated into

the network architecture. This introduces the combinatorial problem of ascertaining the best network at

each epoch amongst the many options.

Definition 21 (Opposite Network) Given some minimal feedforward network N , the corresponding

set of opposite network(s) Γ(N) is defined as the associated set of all permutations of network function

states. In practice, an opposite network is any of N̆ ∈ Γ(N) \ {N}.

Assume an arbitrary initial weight configuration W∗ for network N which has a single hidden layer

with transfer function set Φ. If N is minimal then there exist 2n − 1 possible opposite networks, where

n is the number of neurons of N which can exist in an opposite state. In general, the number of possible

opposite alternative networks for L-layered architectures can be calculated as

93

L−1
∏

l=1

2size(Φl) − 1. (6.8)

It is assumed that on average it is expected that a randomly generated network will yield the average

expected error of the evaluation function,

E[ErN] ≈ E[Er]. (6.9)

As W∗ is updated by a given learning algorithm, the error also decreases, hence it becomes increasingly

unlikely that an opposite network yields a lower error than the currently best known network, i.e.

lim
g→∞

Prg (min{ErΦ|Φ ∈ Θ, Φ 6= ΦN } < ErN)→ 0 (6.10)

where g > 0 is the training epoch and ErΦ is the evaluation under consideration of transfer function set Φ.

As a corollary, the rate opposite transfer functions will remain useful diminishes with respect to the quality

of learning algorithm or initial conditioning of the network. That is, the rate at which (6.10) converges will

differ for each learning algorithm as well as the initial random weight vector. This issue makes effectively

employing OTFs a much more difficult task compared to random sampling-based methods, such as those

described in Chapters 4 and 5.

6.2.1 Network Irreducibility

Aside from symmetrical transformations, it is possible for N1 ∼ N2 if one network can be reduced to the

other [121]. For example, if there exists some neuron ηa ∈ N which has all outgoing weights equal to zero.

Then, the removal of ηa does not affect Ψ. A formal definition of minimality (or equivalently irreducibility)

has been given in [121]:

Definition 22 (Irreducibility) A feedforward neural network with d input nodes and one hidden layer

of n hidden neurons can be called irreducible if none of the following is true:

1. One of the vj,k ∈ V2 vanishes.

2. There exists two indices j1, j2 ∈ {1, ..., n} where j1 6= j2 such that the functionals Ψj1 , Ψj2 are

sign-equivalent2.

3. One of the functionals Ψj is constant.

An important consequence of minimality is that every minimal network represents a unique input-output

mapping [3, 121].

2Two functions f1(x), f2(x) are sign-equivalent if f1(x) = f2(x) or f1(x) = −f2(x) ∀x ∈ R
d where d is the dimensionality

of the space.

94

It can now proven that each γ ∈ Γ(N) represents a unique mapping if N is irreducible. The theorem

trivially follows from the following three basic lemmas.

Lemma 2 A vanishing vj,k ∈ Vj only exists in some γg ∈ Γ(N) if and only if it exists in N .

Proof Given that φ̆(Ij,k) = φ(−Ij,k) is a symmetric transformation on Ij,k then each vj,k = −vj,k for the

relevant neurons in γg. It follows trivially that the only instance where −vj,k vanishes is if vj,k = 0.

Lemma 3 Sign-equivalency can only exist in some γg ∈ Γ(N) if and only if exists in N .

Proof Following a similar argument as in Lemma 2, an OTF maps Ij,k = −Ij,k. Sign-equivalency exists

if |φj1(Ij1,k)| = |φj2 (Ij2,k)|. Substituting | − φj1(Ij1,k)| = |φj2(Ij2,k)| . However, this can only occur if φj1

and φj2 were already sign-equivalent.

Lemma 4 For γg ∈ Γ(N), the associated Ig = constant if and only if it is constant in N .

Proof This follows directly from Definition 20, which states that Ig = −Ig.

Theorem 6.2.1 (Opposite Network Irreducibility) Given an irreducible network N all γg ∈ Γ(N)

are also minimal.

Proof If every γg is minimal then it must obey the constraints outlined in Definition 22. Each of the

requirements is proven in Lemmas 2-4.

Let S = {N}∪Γ(N), then from Theorem 6.2.1 every s ∈ S represents a unique input-output mapping,

denoted Ψ(s). The following will show that each has the possibility of being the most desirable (i.e. have

the lowest error) given a random starting position on the error surface.

Theorem 6.2.2 (Equi-Probable Input-Output Mapping) Let N be a minimal neural network where

W ∈ U(−α, α) (α, such that transfer functions avoid saturation) and with opposite networks S = {N} ∪
Γ(N). Without a-priori knowledge concerning X and for some s∗ ∈ S,

P

(

s∗ = arg min
s∈S

(f(s))

)

=
1

|S|

95

where,

|S| =
∏

l∈L

2ml ,

where L corresponds to the number of layers which can utilize opposite transfer functions, each having ml

neurons.

Proof Two common assumptions are made (the second makes the proof trivial):

1. The size and underlying distribution of X is unknown but is bounded by known finite bounds, which

are scaled to [-1,1].

2. For N1 and N2 both minimal, having the same number of input, hidden and output neurons all using

the same respective transfer functions, then

P (ErN1 (X) ≤ ErN2(X)) = P (ErN2 (X) ≤ ErN1 (X)) = 0.5 (6.11)

Section 6.4.2 provides experimental evidence to further support this assumption.

From Theorem 6.2.1 and Definition 22

sa ≁ sb ∀sa 6= sb ∈ S. (6.12)

Each transfer function can be in either ϕ(·) or ϕ̆(·) state. The number of combinations is calculated by

|S| =
∏

l∈L

2k
l . (6.13)

Using Definition 20, each s ∈ S represents a unique point in weight space such that

Wa 6= Wb, ∀sa 6= sb ∈ S, (6.14)

where the superscript identifies which network the weight matrices belong to. From the assumptions each

s is equally likely to yield the lowest error on X since they each exist within the same weight space. So,

P

(

s∗ = arg min
s∈S

(f(s))

)

=
1

|S| (6.15)

This result has been experimentally confirmed (see Section 6.4). While this holds for a random location

in weight space, the rate at which this probability changes for each network during learning has not

96

be determined analytically. Experimental evidence will be shown to support an exponential increase in

probability.

6.2.2 Changes in the Jacobian and Hessian

Numerical condition is a very important and fundamental concept which affects the speed and accuracy

of neural network learning algorithms [10]. Essentially, numerical condition refers to the sensitivity of the

network output to changes in its weights and biases. If a network is ill-conditioned it may require long

training times or converge to a poor solution. Changes in the Jacobian and Hessian matrices will impact

the learning convergence rate.

The Jacobian matrix J is composed of first partial derivatives of the residual error for each pattern

with respect to W . For a network with one output neuron J is computed as

J =

[

∂e(X)

∂wi

]

i=0...,|W |

. (6.16)

Recall, that each s ∈ S represents a unique mapping (i.e. s1 ≁ s2) implying their Jacobian matrices

J(s) are different. So, for

∆J = J(s1)− J(s2) (6.17)

it follows that |δJ
i,j 6= 0| ≥ 1 for δj

i,j ∈ ∆J . Due to this property rank(∆J) > 0, where the rank of an

m× n matrix A represents the number of linearly independent rows or columns. Rank deficiency occurs

when rank(A) < min(m, n).

Rank deficiency of the Jacobian is related to the concept of ill-conditioning [104, 131]. For backpropagation-

like algorithms, a rank deficient Jacobian implies that only partial information of possible search directions

is known, which can lead to longer training times. Furthermore, many optimization algorithms such as

steepest decent, conjugate gradient, Newton, Gauss-Newton, Quasi-Newton and Levenberg-Marquardt

directly utilize the Jacobian to determine search direction [46, 104].

The Hessian matrix H represents the second derivative of Er(X) with respect W ,

H =

[

∂2Er(X)

∂wiwj

]

i,j=0...,|W |

. (6.18)

The Hessian is very important to nonlinear optimization as it reveals the nature of error surface curva-

ture. Specifically, the eigenvalues of H have a large impact on the learning dynamics of backpropagation-

like algorithms. It is also employed by second-order learning algorithms [10], and the inverse H−1 can

be used for network pruning strategies [60]. For neural networks using squared-error based functions it is

common to compute

97

H = JT J. (6.19)

As shown in Equation 6.17, utilizing some γg ∈ Γ(N) will result in a change in J. From (6.19) also

expect a change in H,

∆H = H(s1)−H(s2) (6.20)

where there exists some δH
i,j ∈ ∆ such that δH

i,j 6= 0. Depending on the number and magnitude of the

δH
i,j 6= 0, the difference between the two positions in weight space could be significant enough to warrant

moving the search to that location. This could possibly be used as either a restart method or during

learning.

The conditioning of H has a profound impact on the learning time and accuracy of the training

algorithm. The most common method to measure the condition of H is through the condition number,

κ =
λmax

λmin
(6.21)

where λmax and λmin are the largest and smallest nonzero eigenvalues of H, respectively. The larger this

ratio, the more ill-conditioned the network is.

6.3 Opposition-Based Gradient Learning

A framework is proposed which is based on opposite transfer functions. Being very general it can be easily

adapted to many existing algorithms, although experiments will be required to adjust free parameters.

6.3.1 An Exhaustive Approach

For the sake of completeness, consider an exhaustive enumerative approach to determining the most

desirable transfer function configuration in Φ by selecting

Φ∗ = arg min
ϕ∈Φ

Erϕ(X) (6.22)

at each epoch. Define a learning trajectory for k iterations as π∗ = 〈Erg
Φ∗

〉 for g = 0, . . . , k (as opposed to

the trajectory of only the original configuration π = 〈Erg
N 〉). The following cases for the naive approach

to converge to the same value as the parent learning algorithm can be distinguished:

1. There does not exist a transfer function set which yields a lower error than N at any point during

the trajectories. Hence, π = π∗.

98

2. Let 1 ≤ g1 < g2 be epochs. Assume that at g1 there exists some Φ∗ where Erg1

Φ∗

< Erg1

N and that

both solutions reside in the same attractive basin of the error surface. There may also exists some

g2 resulting in Er≥g2

Θ∗

− Er≥g2

N = 0. Hence, π(≥ g2) = π∗(≥ g2).

3. If case (2) repeats but the networks eventually settle in the same basin. That is, there exists some

gi where for 1 ≤ j < i case (2) repeats but eventually the two solutions arrive at the same error,

maintaining it until the termination criteria is arrived.

In the last two situations the convergence time for each algorithm will likely differ. The experimental

simulations will show that the probability of convergence to the same error is relatively low.

6.3.2 The Proposed Framework

The number of combinations of transfer function state grows exponentially with a linear increase in the

amount of neurons. Therefore in practice, a naive approach of searching all possible transfer function

states, as presented in Equation (6.22) becomes infeasible for networks with many hidden neurons. Even

for small networks the computational overhead associated with testing each possible network state is likely

not worth the effort. However, a possible heuristic is proposed for selecting one of these combinations in a

computationally efficient manner, resulting in a feasible learning procedure. The heuristic filters out likely

undesirable network states by examining properties of the input-output representation, output gradient

and weight update gradient.

Algorithm 10 presents the modified main loop of the new framework. The motivation behind each

of lines 5-13 will be described in detail. Line 16 provides the functionality of pattern presentation and

weight update with an appropriate learning algorithm. Hence, the method is essentially independent of

the learning method chosen.

Equation (6.10) expresses the probabilistic limits on the usefulness of opposite transfer functions, but

leaves to interpretation the specific probability decay rate. Based on experiments, it has been chosen to

let f : R→ R be a decreasing monotonic function such that

lim
g→∞

f(g,Θg) = 0 (6.23)

where Θg are parameters of f at iteration g ≥ 0. If vector P0 := (0.5)n represents the transition probability

of each transfer function at iteration g = 0. Then, Pg = f(g,Θg)Pg−1 and so

lim
g→∞

f(g,Θg)Pg = 0. (6.24)

Thus, there exists g > 1, ε > 0 such that |Pg − Pg−1| < ε. Hence, under a monotonically decreasing prob-

ability the system of transfer function transitions is stable and will converge. In practice, set f(g,Θg) = 0

99

when it falls below a small, predetermined threshold. After convergence of P the learning procedure con-

vergence behavior is governed by the original learning algorithm being employed. This probabilistic aspect

is considered in line 5.

Alternating between a transfer function and its opposite is more likely to greatly impact learning when

the input signal lies within a large gradient region than at saturation or when close to the transfer function

inflection point. This does not imply that improvements cannot be gained from considering the full output

region of the function. Relatively flat regions of the error surface have small error gradients and thus

weight update procedures using this information will be slow. Hence, the heuristic assumes the situation

where saturation is desired. The impact is geared to achieving a more desirable input-output network

representation in this case and not necessarily on numerical conditioning. Line 6 determines whether the

neuron output is far from φ(0). This is computed via the difference between the average neuron output

Ōl and the output at zero input, φ(0), i.e.

D = (|Ōl − φ(0)|) > α (6.25)

for α > 0 is a threshold which determines the minimum output difference point. It is also possible to

provide an upper bound on the output difference to avoid considering saturated regions.

In some instances alternating the transfer function state can be in opposition to the direction of weight

update. This situation is undesirable as it would impede the convergence rate. To limit this canceling-out

effect on weight updates, only consider cases where the result of the alteration is towards the same direction

as weight update. In line 7 this is accomplished by first considering the weight update direction,

Q = (V l − V l−1) < 0. (6.26)

The second consideration required is if the altered function φ̆ adheres to the weight update. The opposite

transfer function output is computed in line 8,

F = φ(0) < φ̆(Īl). (6.27)

Determining whether Equations (6.26) and (6.27) are indeed not in contradiction is computed in lines

9 and 10 for movement in the negative and positive weight direction, respectively. Since Q and F are

binary matrices, computing the Hadamard product (denoted via the ⊙ operation) will result also in a

binary matrix whose result depicts the truthfulness of the above heuristics.

To allow an altered transfer function the opportunity to be successfully integrated into the network

learning dynamics and a minimum number of epochs must pass before it can serve as a candidate again.

In line 11 compute

E = (t− Ll) > εt, (6.28)

100

where εt > 0 is the epoch threshold.

The heuristic is finally culminated in line 12 where updates in the same direction are considered, either

positive or negative (via the logical OR operation ⊕) in addition to considering E. Based on these binary

operations, update the input mask accordingly in line 13 which reflects the opposite state.

Algorithm 10 The main algorithm framework for employing OTFs.

1: g = 0
2: while termination criteria not satisfied do
3: if g > 1 then
4: for l = 1, . . . , layers do
5: U = f(t,Θ)
6: D = (|Ōl − φ(0)|) > α
7: Q = (V l − V l−1) < 0

8: F = φ(0) < φ̆(Īl)
9: C1 = F⊙Q

10: C2 = (1− F)⊙ (1−Q)
11: E = (t− Ll) > εt

12: C = (C1 ⊕ C2)⊙E⊙U
13: Ml = −2C + 1
14: end for
15: end if
16: updateWeights(N ,A)
17: end while

The computational overhead associated with algorithm 10 must be addressed. While many considera-

tions are being investigated in lines 5 - 12 and finally applied in line 13, these can be accomplished in a

single iteration over the hidden neurons. In this case, each hidden neuron is checked against each constant

time (i.e. O(1)) operation. Therefore, determining which neurons to change transfer function to an oppo-

site is at most an O(size(V)) algorithm, where size(V) returns the total number of hidden nodes. Since

line 5 only applies the procedure if it is successful, the computation time will be practically at most linear

with respect to the number of hidden neurons. Furthermore, since f(t,Θ) is a monotonically decreasing

function this overhead will be highest during early training and negligible as t increases. Moreover, the

number of weights will be larger than the number of hidden neurons and so this cost will be (much) less

than is required for a weight update.

6.4 Pre- and Early Training

In this section results for two main experiments are provided. Firstly, the Er(X), rank(J) and κ at random

points in the error surface for all combinations of transfer functions are analyzed. The second experiment

is aimed to examine the changes in the same three measures during early learning of a conjugate gradient

101

algorithm.

6.4.1 Experimental Setup

Unless otherwise noted the following experiments all use a single hidden layer feedforward architecture

with hyperbolic tangent transfer functions for the hidden and output neurons, respectively. Additionally,

initial weights and biases are uniformly generated over [−1, 1].

To evaluate the networks three common benchmark problems from the UCI-ML database [5] and two

versions of the parity problem are used. These data sets, along with the number of hidden layers in the

networks are presented in Table 6.1. To avoid errors and bias in Jacobian and Hessian calculations the input

data are standardized and normalized. For simplicity, records with missing data (very small percentage of

the entire data set) are also removed. Output values are binary and do not require adjustment.

Table 6.1: The benchmark data and the number of hidden layers used.
Dataset # Patterns Inputs Hidden Size |W |

3-bit parity 8 3 3 16
6-bit parity 64 6 6 49

Pima diabetes 768 8 5 51
Wisconsin breast cancer3 783 9 5 56

ionosphere 351 33 5 176

The first experiment begins by generating a single neural network with random weights. Then, keeping

W constant, evaluate Er(X), rank(J) and κ for each s ∈ S. The process repeats for 4000 randomly

generated networks.

The second experiment focuses on the early stages of learning. Similar to the first experiment, generate

a random network N . However, in this case train the network using Fletcher-Reeves Conjugate Gradient

[46] for 10 epochs using scale factors α = 0.001 and β = 0.01. At each epoch record the Er(X), rank(J)

and κ for each s ∈ S, although only train with respect to N . In this manner the relationship between

opposite networks, and how learning could benefit from considering opposite networks can be shown. The

use of a second order training method in this experiment is due to its generally more rapid convergence

rate than first order methods, thus achieving a pessimistic estimate for the use of OTFs in learning.

In both experiments, a minimum threshold value is employed when calculating the rank and condition

number. By doing this very small values which may skew the calculations are ignored. Only singular

values of the Jacobian greater than 0.02, and eigenvalues of the Hessian greater than 0.02 are considered.

6.4.2 Before Training

The first experiment is aimed at comparing the conditioning of every transfer function combination before

training begins in order to assess whether each transfer function combination is equally likely to yield the

102

minimum error for a given weight configuration (providing evidence for Theorem 6.2.2). For m hidden

nodes there are 2m combinations represented by an m-bit mask detailing the opposite state of the associated

transfer function. For example if m = 2, four combinations are possible C = {(00), (01), (10), (11)}, where

a 0 or a 1 indicates whether the opposite transfer function is “off” or “on”, respectively.

Figure 6.1 shows the result of random sampling using four of the benchmark data sets. As mentioned

above, 4000 random locations in weight space were generated and all 2m combinations of transfer function

were evaluated. After 4000 samples these results provide experimental evidence to support Theorem 6.2.2.

0 20 40 60
0

0.005

0.01

0.015

0.02
6−Bit Parity

Combination

P
ro

ba
bi

lit
y

0 10 20 30
0

0.01

0.02

0.03

0.04
Wisconsin Breast Cancer

Combination

P
ro

ba
bi

lit
y

0 10 20 30
0

0.01

0.02

0.03

0.04
Pima Diabetes

Combination

P
ro

ba
bi

lit
y

0 10 20 30
0

0.01

0.02

0.03

0.04
Ionosphere

Combination

P
ro

ba
bi

lit
y

Figure 6.1: Random sampling results for four benchmark problems. The probability of each combination
yielding the lowest error is approximately uniform for each problem.

Let zi=1...4000 be the ith randomly sampled location of the weight space. Then the sample mean is,

µ =
1

4000

4000
∑

i=1

min(ErSzi
(X)) (6.29)

and σ is its standard deviation. Table 6.2 presents µ and σ of these 4000 random samples. Also computed

are,

min = min(min(ErSzi
(X))) (6.30)

103

and

max = max(min(ErSzi
(X))) (6.31)

which represent the lower and upper bound defined by the best s ∈ S at each zi. Using these measures a

better understanding of how the initial Er can vary, versus simply examining the standard deviation. So,

considering every s ∈ S the Er range for each of the five benchmark problems is relatively large compared

to µ± σ. This is very representative of a network that is prone to ill-conditioning.

The final two comparison measures µdiff and σdiff represent the mean and standard deviation of

max(ErSzi
(X))−min(ErSzi

(X)). Using these values, and then computing µdiff/µ for each problem leads

to the ratios 0.28, 0.26, 2.36, 0.65 and 1.05, respectively, and reveals the spread with respect to the mean.

These results imply a large spread in random network performance, and simply examining the opposite

networks can lead to greatly improved starting positions (w.r.t. the MSE).

Table 6.2: A comparison of Er(X) for each problem.
Dataset µ σ min max µdiff σdiff µdiff/µ

3-Bit 0.25 0.02 0.20 0.31 0.07 0.04 0.28
6-Bit 0.27 0.02 0.23 0.36 0.07 0.02 0.26
cancer 0.14 0.04 0.07 0.33 0.33 0.11 2.36

diabetes 0.23 0.03 0.19 0.35 0.15 0.05 0.65
ionosphere 0.21 0.03 0.14 0.34 0.22 0.07 1.05

Using the methodology and measures described above, the rank(J) is explored in Table 6.3. Addi-

tionally, all five problems have µ within 88.0% of the respective maximum rank, and so J will tend be

rank deficient but not to a high degree. Comparing µdiff/µ for each problem yields 0.03, 0.06, 0.01, 0.01

and 0.04, respectively. Thus, given a location in weight space the difference between the network with

the highest and lowest rank(J) will be approximately 3% with respect to the mean rank for that specific

problem.

Table 6.3: A comparison of rank(J) for each problem.
Dataset µ σ min max µdiff σdiff µdiff/µ

3-Bit 7.6 0.57 4.00 8.00 0.24 0.43 0.03
6-Bit 41.71 2.93 21.00 47.00 2.56 1.23 0.06
cancer 54.25 3.36 34.00 56.00 0.49 1.00 0.01

diabetes 50.04 2.37 33.00 51.00 0.23 0.64 0.01
ionosphere 157.80 13.21 79.00 176.00 6.05 3.64 0.04

Table 6.4 presents the results when comparing the impact of OTFs on the condition κ of H. The key

comparison is the ratio µdiff/µ for each of the five problems, resulting in values: 1.24, 0.85, 1.24, 0.97 and

104

0.88, respectively. These values represent significant differences between the conditions of each s ∈ S at a

given weight configuration and further highlight the impact of OTFs before learning begins.

Table 6.4: A comparison of κ for each problem.
Dataset µ σ min max µdiff σdiff µdiff/µ

3-Bit 9.0 4.5 2.1 27.5 11.2 7.2 1.24
6-Bit 146.9 21.6 46.3 264.9 125.0 32.8 0.85
cancer 3061.5 1030.1 869.9 8568.1 3798.0 1346.9 1.24

diabetes 1753.1 441.0 527.7 3979.0 1695.6 631.0 0.97
ionosphere 2284.3 687.2 846.6 6047.4 2004.1 978.4 0.88

6.4.3 During Early Training

This subsection provides insight into the impact of a learning algorithm on the usefulness of OTFs during

the first 10 epochs of learning. The focus on early learning is based on the fact that the usefulness of OTFs

will decay as learning progresses.

In Figure 6.2 the probability a specific opposite network will yield the lowest Er(X) assuming only

training occurs on the original network structure is examined. For this comparison, only the 3-bit parity

problem is considered because |S| is small and the resulting plot is more readable. After the second

epoch, 3 of the 8 networks show a non-zero probability of yielding the lowest error. By the fourth epoch

the probability the original network N has the lowest error is 1.0, keeping in mind the simplicity of the

problem. The main purpose of this graph is to show an example of the behavior for each opposite network

during training.

Figure 6.3 presents the probability that N with transfer function combination (00...0) yields the lowest

error when compared to Γ(N). Except for the 3-bit parity problem, all probabilities are between 0.80 and

0.95 by the tenth epoch, where the behavior of probability increase is similar for each problem. Therefore,

considering opposite networks even while training has the potential to yield a lower performance measure.

Furthermore, a learning algorithm which selects one of these network at each epoch, and continues training

with it could potentially result in a lower final training error and/or a possible increase in convergence

rate.

Next, compute the difference ∆err = ErN − min(ErΓ(N)), and plot the results in Figure 6.4. The

3-bit parity problem shows a substantial difference between N and its opposite networks and the 6-bit

version of the problem shows a smaller, yet increasing difference. However, the remaining three problems

show very little difference between the network being trained and its opposites. For these latter three

problems an opposite network is likely of about equal quality to the trained network. However, the error

surface characteristics (especially local curvature) may be more desirable and thus switching away from

the current network to the opposite will be beneficial. An appropriate method must be incorporated into

105

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Epochs

P
ro

ba
bi

lit
y

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Figure 6.2: A comparison of the probability a transfer function combination will yield the minimum error
at the given epoch, if the network is trained only on combination (000) for the 3-bit parity problem.

the framework in order to determine this.

and it may be beneficial to consider switching the network being trained to the relevant opposite.

To examine the effect of training on the difference in rank of J, calculate

∆rank =
rank(J(N)) −min(rank(J(Γ(N))))

min(|Z|, |X|) (6.32)

where min(|Z|, |X|) represents the maximum4 possible rank of the Jacobian matrix for each problem,

respectively. The results are presented in Figure 6.5. The 6-bit parity and the Wisconsin breast cancer

problems show a more rapid increase in the difference between the trained network, and the best opposite

network with respect to rank. By the 10th epoch the other three problems show only a 2.0% difference in

rank. So, for these latter three problems considering an opposite network (using only a rank criterion) is

less likely to show an improvement than the former two problems.

The final experiment will compare the difference in the mean condition κ of H over the 30 trials. To

determine this compute,

∆κ = κ(N)−min(κ(Γ(N))), (6.33)

where Figure 6.6 plots these results. The Pima Diabetes and Ionosphere problems show a similar behavior,

but the curve for the Pima data has most of its values > 0 which means that the trained network is not

the best conditioned network. Since the Ionosphere results are mainly < 0 it is better conditioned than its

4See Table 6.1 for the respective values.

106

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Epochs

P
ro

ba
bi

lit
y

3−Bit Parity
6−Bit Parity
Breast Cancer
Pima Diabetes
Ionosphere

Figure 6.3: Comparing the probability of transfer function combination (00...0) of yielding the lowest error
for the five benchmark problems.

opposite networks. The 6-bit parity and Wisconsin breast cancer data are both relatively close to having

no difference between their trained and opposite networks, respectively. The 3-bit parity problem shows

nearly no change in ∆κ. These results show that even during training there are cases when it may be

desirable to consider training an opposite network, especially if the training error shows little improvement.

6.5 Comparing Variants of Backpropagation

There exists various adaptations of the standard backpropagation algorithm. To show that the proposed

framework can be widely applied it is employed to gradient descent with momentum (GDM) and with

momentum and adaptive learning rates (GDX). A subsequent section will also provide an extension to

resilient propagation. Improving variants of conjugate gradient were also attempted, however due to the

implications of the restart procedure these were unsuccessful. Nevertheless, it is still very possible that a

successful opposition-based conjugate gradient method could be developed.

6.5.1 Experimental Setup

For these experiments, each network architecture and learning parameters (i.e. momentum or learning

rate value) has been tuned to yield the best results. Unless stated otherwise all outcomes represent the

averaged results over 30 trials, each of 100 epochs with parameter settings as follows:

• GDM: Learning rate = 0.15, momentum = 0.90.

107

1 2 3 4 5 6 7 8 9 10
−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

Epochs

E
rr

or
 D

iff
er

en
ce

3−Bit Parity
6−Bit Parity
Breast Cancer
Pima Diabetes
Ionosphere

Figure 6.4: Comparing the difference in error between the trained network and the opposite network with
minimum error.

• GDX: Initial learning rate = 0.01, momentum = 0.90.

The probability function used in Line 5 of Algorithm 10 is:

f(t, C) = max(0.05, e−t/C) (6.34)

where for GDX, C = 25 and for GDM, C = 50. All experiments use a single hidden layer with the

hyperbolic tangent transfer function.

The 10 data sets used in these experiments were attained from the UCI machine learning repository

and are shown in Table 6.5. Unless testing data is given with the data set, 80% of the training data is

randomly selected per trial for testing purposes (the arcene and madelon data sets used the validation set

for testing). These problems were selected because they provide variety in the number of training patterns,

features and classes.

6.5.2 Training

Table 6.6 presents a summary of the results comparing GDM and its opposite counterpart OGDM.

Firsly, observe that 5 of the 10 problems yield a statistically significant result according to a two sample

Kolmogorov-Smirnov significance test with 0.95 confidence. Other values are not significant at this level,

however OGDM consistently yields a lower mean training error µ and standard deviation σ.

The column E[acc] shows the average number of epochs where a transfer function change was accepted.

With the exception of the madelon data set, it is seen that only a few (1 to 6) transfer changes can have an

108

1 2 3 4 5 6 7 8 9 10
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Epoch

P
er

ce
nt

ag
e

D
iff

er
en

ce

3−Bit Parity
6−Bit Parity
Breast Cancer
Pima Diabetes
Ionosphere

Figure 6.5: Comparing the difference in rank between the trained network and opposite networks.

important impact on the outcome of training. Although, the results for the madelon data set were among

those found to be statistically significant.

The second last column compares the final results of GDM and OGDM, given as a triple < OGDM <

GDM, OGDM > GDM, OGDM = GDM >. In all cases OGDM finds more results with a lower train-

ing error than GDM. Only 23 of the 300 trials (7.6%) of the results are found to be equal. In total,

179/300 ≈ 0.61 of the results for OGDM are more desirable than those with OGDM. The remaining 31%

of experiments represent GDM outperforming OGDM. The final column computes the effect size via Co-

hen’s d-statistic. As is observed three instances have a “small” improvement and two and four instances

show a medium and large improvement, respectively. In 9/10 instances there is an improvement when

using the opposition-based algorithm.

A comparison of training results for GDX versus OGDX is given in Table 6.7. Of these results 4 of 10 are

statistically significant. But, an improvement in accuracy and reliability is observed in all problems. The

average number of transfer function changes that were accepted as improving the network is between 2 and

8, which highlights the impact of OTFs. Further, 190/300 ≈ 0.63 of experiments showed an improvement

when using OTFs, whereas only 33% of the results favored GDM. The remaining 3% of experiments yielded

equal outcomes. Comparing the effect size of GDX versus OGDX shows an improvement in 9/10 instances;

2 are “small”, 3 are “medium” and 4 are “large”.

Figures 6.7 and 6.8 show the characteristic behavior of the application of the OTF framework to GDM

and GDX learning, respectively. In both instances a more rapid convergence is observed, especially during

the early training stages of learning. These results represent the average convergence over the 30 trials.

109

1 2 3 4 5 6 7 8 9 10
−600

−400

−200

0

200

400

600

800

Epochs

D
iff

er
en

ce
 in

 κ

3−Bit Parity
6−Bit Parity
Breast Cancer
Pima Diabetes
Ionosphere

Figure 6.6: A comparison of the difference in condition between the trained network and its opposite
networks.

6.5.3 Generalization Ability

Tables 6.8 and 6.9 show the generalization results for GDM versus OGDM and GDX versus OGDX,

respectively. In both cases 5 of the 10 data sets show a statistically significant improvement when using

opposite transfer functions. As with the training results, an improvement is observed with all problem

sets. Even a small improvement in generalization can have drastic effects on the application. For example,

in a large population where medical diagnosis of a condition is costly, a small improvement in accuracy or

a lowering of false results could potentially save a significant amount of resources.

Table 6.8 shows a small improvement for the thyroid problem by using OTFs and a moderate im-

provement for the digits problem. The iris, lp4, madelon and arcene instances all show large bias towards

OGDM. Similar results are shown in Table 6.9 where 1 small, 2 moderate and 4 large improvements are

attained.

6.6 Training Over-Sized Networks

In this section results of experiments to test the behavior of the proposed method on over-sized networks, as

well as compare it to two variants of backpropagation are presented. The network hidden layer architecture

for all experiments is Inputs-50-25-25-Outputs, except for experiments examining the effects of hidden

layer size. These over-sized networks will give insight into the ability of the proposed method to determine

weights when the target concept is very simple but the network has many free parameters which can lead

to local optima or very slow convergence.

110

Figure 6.7: Example convergence curves for GDM and OGDM for the cancer problem.

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

epochs

M
S

E

Figure 6.8: Example convergence curve for GDX and OGDX for the iris problem.

0 50 100 150
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

epochs

M
S

E

OGDM

GDM

111

Table 6.5: The data used for comparing variants of backpropagation. The input and output sizes, in
addition to the number of patterns is presented.

Data Set # Training Patterns # Features # Hidden Neurons # Classes
cancer 559 9 10 2
thyroid 5760 21 10 3
wine 142 13 10 3
iris 120 4 20 3

glass 171 9 15 2
digits 3823 62 25 10
lp4 93 90 25 3

ionosphere 280 33 25 2
madelon 2000 500 35 2
arcene 100 9920 50 2

Five common benchmark problems from the UCI Machine Learning Repository [5] were selected. For

all experiments inputs are standardized and normalized and the results are averaged over 30 trials and

network performance is measured using the mean-squared error measure (MSE). In total, the number of

weights to optimize is shown in Table 6.10, unless otherwise noted.

6.6.1 Function Call Overhead Analysis

Here, the behavior of the method with respect to function calls is analyzed. A hidden network architecture

of 50-25-25 hidden neurons using ϕ(·) = tanh(·) being trained for 250 epochs using backpropagation with

momentum and an adaptive learning rate was used.

The probabilistic component of the decision rule for each neuron (i.e. line 5 of Algorithm 10) will have

a large impact on the number of function calls which decide whether to attempt to use an OTF. The

U(i) used in these experiments dominate the behavior of the algorithm, therefore the results are presented

without loss of generality for one benchmark problem, unless otherwise noted.

Figure 6.9 shows the average number of neurons which undergo the opposite transformation per epoch

for the cancer dataset. As described above, the behavior is essentially governed by line 5 of the proposed

approach. As such, a similar behavior was seen for all datasets. The initial iterations allow for more

neurons to undergo the transformation and as the epochs progress only few neurons will change.

Table 6.11 presents the average number of attempted opposite transformations and the number trans-

formation attempts which did not improve the network error. The corresponding probability of a successful

transformation is also given. Due to U(i) there is a high rate of attempted transformations, although the

acceptance rate is around 0.04. The decision to perform a transformation was designed for computational

efficiency based on fast heuristic and stochasticity and therefore a large number of non-accepted trans-

formation is expected. As more complex decision function is developed this rate is expected to greatly

increase.

112

Table 6.6: Comparing GDM with and without opposite transfer functions (OGDM) using the mean (µ),
standard deviation (σ), expected number of accepted transformations (E[acc]) and the number of times
(OGDM < GDM, OGDM > GDM, OGDM = GDM). Bold values are statistically significant at 0.95
confidence using a Kolmogorov-Smirnov test. The final column reports Cohen’s d-statistic to determine
the effect size.

GDM OGDM
Data Set µ σ µ σ E[acc] (<, >, =) Effect

cancer 0.034 0.006 0.030 0.003 3.8 (19,10,1) 0.389,m
thyroid 0.068 0.008 0.055 0.007 3.8 (18,11,1) 0.654,ℓ
wine 0.047 0.008 0.042 0.009 1.4 (18,3,9) 0.282,s
iris 0.104 0.036 0.091 0.012 2.6 (18,12,0) 0.235,s

digits 0.089 0.015 0.071 0.007 2.8 (24,6,0) 0.610,ℓ
glass 0.046 0.008 0.035 0.007 2.8 (19,10,1) 0.591,ℓ
lp4 0.102 0.010 0.094 0.008 3.2 (17,13,0) 0.404,m

ionosphere 0.072 0.010 0.072 0.009 2.3 (10,9,11) 0.000
madelon 0.126 0.009 0.094 0.005 16.7 (17,13,0) 0.910,ℓ
arcene 0.013 0.023 0.005 0.005 6.4 (24,6,0) 0.234,s

6.6.2 Expected Improvements

Although the probability of using a proposed set of transformations is approximately 0.04, the average

improvement and impact on learning is well worth the overhead. It has already been shown above that

before learning commences the probability a given transfer function combination has the lowest error, for

a given weight configuration, is approximately uniformly distributed. This experiment is to examine the

improvement with respect to error during learning. More specifically,

rel error =
evalt−1 − evalt

evalt−1
. (6.35)

where eval is computed according to the MSE and t > 0 is the epoch, also evalt−1 > evalt (as a consequence

of MATLAB training only the best network with respect to training error over the learning period is

retained).

Figure 6.10 plots the relative improvement in cases where a transfer function transformation has taken

place and the transformation yielded an improvement over the current error. As hypothesized, rela-

tively large improvements tend to be found during early stages (first 100 epochs) of training due to

ill-conditioning. Changing the transfer function has a relatively large impact and often improves the error

by more than 15% at a given epoch. The largest observed average improvement was above 60% (epoch 50

of the cancer data set). Improvements are also observed at epochs > 100, however due to the relatively

rapid convergence rate the expected improvement is usually < 0.05.

113

Table 6.7: Comparing GDX with and without opposite transfer functions (OGDX) using the mean (µ),
standard deviation (σ), expected number of accepted transformations (E[acc]) and the number of times
(OGDX < GDX, OGDX > GDX, OGDX = GDX). Bold values are statistically significant at 0.95
confidence using a Kolmogorov-Smirnov test. The final column reports Cohen’s d-statistic to determine
the effect size.

GDX OGDX
Data Set µ σ µ σ E[acc] (<, >, =) Effect

cancer 0.021 0.003 0.019 0.003 7.7 (21,8,1) 0.316,s
thyroid 0.031 0.002 0.028 0.001 3.6 (17,13,1) 0.688,ℓ
wine 0.003 0.001 0.003 0.001 3.3 (16,14,0) 0.000
iris 0.018 0.004 0.015 0.002 3.4 (22,8,0) 0.429,m

digits 0.019 0.001 0.010 0.001 1.6 (20,10,0) 0.976,ℓ
glass 0.012 0.005 0.009 0.003 3.1 (20,10,0) 0.342,m
lp4 0.055 0.012 0.048 0.007 3.2 (23,7,0) 0.336,m

ionosphere 0.074 0.015 0.070 0.008 2.6 (11,11,8) 0.164,s
madelon 0.019 0.010 0.007 0.004 6.2 (19,11,0) 0.619,ℓ
arcene 0.010 0.003 0.003 0.002 7.7 (21,8,1) 0.808,ℓ

Table 6.8: Comparing the generalization ability of GDM without and with opposite transfer functions
(OGDM) using the mean (µ) and standard deviation (σ) on test data. Bold values are statistically
significant at 0.95 confidence using a Kolmogorov-Smirnov test. The final column reports Cohen’s d-
statistic to determine the effect size.

GDM OGDM
Data Set µ σ µ σ Effect

cancer 0.036 0.012 0.034 0.009 0.094
thyroid 0.070 0.009 0.065 0.009 0.268,s
wine 0.058 0.016 0.055 0.012 0.105
iris 0.117 0.022 0.085 0.018 0.623,ℓ

digits 0.089 0.014 0.080 0.006 0.386,m
glass 0.062 0.021 0.057 0.012 0.145
lp4 0.154 0.039 0.101 0.030 0.606,ℓ

ionosphere 0.099 0.016 0.095 0.023 0.100
madelon 0.301 0.013 0.283 0.012 0.584,ℓ
arcene 0.237 0.036 0.182 0.032 0.628,ℓ

114

Table 6.9: Comparing the generalization ability of GDX without and with opposite transfer functions
(OGDX) using the mean (µ) and standard deviation (σ) on test data. Bold values are statistically signifi-
cant at 0.95 confidence using a Kolmogorov-Smirnov test. The final column reports Cohen’s d-statistic to
determine the effect size.

Data Set GDX OGDX
µ σ µ σ Effect

cancer 0.024 0.013 0.023 0.012 0.040
thyroid 0.032 0.003 0.021 0.001 0.926,ℓ
wine 0.012 0.008 0.012 0.007 0.000
iris 0.028 0.015 0.021 0.009 0.272,s

digits 0.022 0.001 0.022 0.001 0.000
glass 0.053 0.024 0.037 0.016 0.365,m
lp4 0.154 0.039 0.101 0.030 0.606,ℓ

ionosphere 0.113 0.034 0.109 0.027 0.065
madelon 0.331 0.012 0.267 0.010 0.945,ℓ
arcene 0.212 0.045 0.165 0.032 0.516,ℓ

Table 6.10: Comparing data sets and network sizes.
Data Set Inputs Outputs Patterns Weights + Biases
cancer 9 2 699 2475
wine 13 3 178 2700

thyroid 21 3 7200 3100
iris 4 3 150 2250

glass 9 2 214 2475

Table 6.11: The average number of attempted opposite transformations (Trans), average extra epochs and
probability a flip led to an improvement in network error.

Data set avg(Trans) avg(Extra evaluations) P(improvement)
cancer 235 222 0.055
wine 236 226 0.042

thyroid 237 224 0.055
iris 236 230 0.025

glass 237 228 0.038

115

50 100 150 200 250
0

5

10

15

20

25

30

35

40

Epochs

A
ve

ra
ge

 N
um

be
r

of
 T

ra
ns

fo
rm

ed
 N

eu
ro

ns

Figure 6.9: The average number of neurons which undergo the opposite transformation per epoch for the
cancer dataset. Similar behavior was observed for all data sets.

116

50 100 150 200 250
0

0.2

0.4

0.6

0.8

epochs

re
l.

im
pr

ov
em

en
t

cancer

50 100 150 200 250
0

0.1

0.2

0.3

0.4

epochs

re
l.

im
pr

ov
em

en
t

wine

50 100 150 200 250
0

0.1

0.2

0.3

0.4

epochs

re
l.

im
pr

ov
em

en
t

thyroid

50 100 150 200 250
0

0.1

0.2

0.3

0.4

epochs

re
l.

im
pr

ov
em

en
t

iris

50 100 150 200 250
0

0.1

0.2

0.3

0.4

epochs

re
l.

im
pr

ov
em

en
t

glass

Figure 6.10: The average relative improvement over the previous network performance (MSE). Only cases where a transfer flip
was successful are considered.

1
1
7

6.6.3 Layer Size and Number

In this section the impact of layer size and the number of layers on the performance of the proposed

method is examined. For all experiments the cancer data set is used, but similar behavior was observed on

all problems. Opposite networks are trained for 250 epochs, original/normal networks are trained for 500

epochs to accommodate the function call overhead. Although, a weight update is much more expensive

than determining whether a neuron should switch to its opposite. Hence, this is also a pessimistic estimate

of OTF performance.

Table 6.12 shows the results of varying the hidden layer size and number. In all cases the average (µ)

and standard deviation (σ) values are more favorable for the proposed method. A Kolmogorov-Smirnov

significance test at 0.99 confidence level was conducted and all mean values are indeed significant.

Additionally, calculate the improvement factor,

µorig

µotf
(6.36)

where the subscripts otf and orig correspond to the proposed and original methods, respectively. The

minimum improvement in error is 154% and the maximum observed average improvement is 337%. When

the number of hidden layers is fixed and only its size varies the improvement factor also increases. This

is a very significant result, showing that the proposed method is particularly well suited to training large

networks. Furthermore, this improvement is more prominent as the network complexity increases.

The final column of Table 6.12 measures the effect size using Cohen’s d-statistic’s equivalent, the

nonoverlap percentile. All cases have a measurable improvement when using OTFs; 1 is of the small

variety, 3 and 5 are moderate and large, respectively.

Table 6.12: Summary of final error results when varying layer size. Bold values are statistically significant
at a 0.95 confidence level using a t-test. The final column reports Cohen’s d-statistic (nonoverlap percentile)
to determine the effect size.

Size µorig σorig µotf σotf Improvement Effect
25 0.075 0.033 0.045 0.016 1.671 0.501,ℓ
50 0.092 0.102 0.031 0.005 2.938 0.389,m
100 0.093 0.106 0.027 0.004 3.371 0.403,m
25-25 0.060 0.011 0.037 0.009 1.602 0.753,ℓ
50-50 0.059 0.012 0.031 0.004 1.895 0.843,ℓ
100-100 0.081 0.078 0.031 0.004 2.592 0.412,m
50-25-25 0.057 0.010 0.037 0.009 1.541 0.725,ℓ
100-50-25 0.060 0.011 0.037 0.008 1.602 0.767,ℓ
100-100-100 0.073 0.074 0.039 0.006 1.852 0.308,s

118

6.6.4 Backpropagation Variants

Here, variants of backpropagation are used to train the networks. The two variants chosen are; BP with

adaptive learning rate [42] (GDA) and BP with adaptive learning rate and momentum (GDX).

Figure 6.11 compares the performances of GDA and GDX as the training method being improved. The

proposed method only trains for 250 epochs, and remains constant for the remaining 250 epochs of training

for the original algorithms. In all cases the proposed method has a much quicker rate of convergence relative

to the original training procedure. Furthermore, the final result achieved is also found to be statistically

significant at a confidence level of 0.99 using a Kolmogorov-Smirnov test.

Focusing on the first 50 epochs of training, poorly initialized networks are quickly be improved via the

proposed transfer function transformation. This is evident due to the very quick drop in MSE measure.

In fact, the MSE of the proposed method is statistically significant using the same test as above for all

epochs > 3.

6.6.5 Generalization Ability

To show an avoidance of the over-fitting phenomena, re-train the networks above with a randomly chosen

80% of the data, leaving the other 20% as the test set. The training and testing data were reselected at

each of the 30 runs in order to give a better estimate on the performance. A comparison to GDA training

and GDX results were very similar.

Table 6.13 summarizes the testing and training results for the 5 problems. The Training column presents

final mean training error and standard deviation. The confusion matrix column gives results for gda/otf

for the problems, respectively. Note the class labels are not shown but assumed to be 0,1 horizontal and

vertical. The otf based algorithm shows more desirable results for all problems.

6.7 Resilient Propagation

Resilient propagation [94] (RP) is a popular alternative method to training feedforward neural networks.

Since only the sign of the gradient is used many consider it a first order training method. The underlying

motivation for rProp is to eliminate the harmful influence of the size of the partial error derivative on the

weight update step of learning. Its popularity is due to both its simplicity, fast learning rate and quality

results.

Weight update is performed in two stages. First, for each weight there is a parameter γij between

neurons i, j which is updated according to

119

Table 6.13: Confusion matrix results (nrm/otf). The training error is given in parentheses beside the data
set name.

Training Confusion matrix (0,1)
Cancer

gda: 0.041 ± 0.009 86.9/87.7 3.9/3.1
otf: 0.028 ± 0.005 4.2/2.6 44.9/46.6

Wine
gda: 0.036 ± 0.011 10.9/10.8 1.1/1.2
otf: 0.028 ± 0.010 3.1/2.1 21.0/21.9

Thyroid
gda: 0.043 ± 0.018 9.7/11.9 23.4/21.1
otf: 0.026 ± 0.009 52.3/23.8 1354.7/1383.2

Iris
gda: 0.010 ± 0.010 10.5/10.5 0.1/0.0
otf: 0.002 ± 0.002 0.5/0.1 19.0/19.4

Glass
gda: 0.054 ± 0.014 8.1/8.6 2.9/2.4
otf: 0.042 ± 0.009 2.2/1.7 29.8/30.2

γt+1
ij =



















min(γt
ijη

+, γmax), if ∇ijErt∇ijErt−1 > 0,

max(γt
ijη

−, γmin), if ∇ijErt∇ijErt−1 < 0,

γt
ij , otherwise.

(6.37)

where Er is the network error, t is the iteration and η+, η− are step sizes and γmin, γmax determine

boundaries. Commonly, 0 < η+ < η− < 10 and γmin is very close to 0 and γmax is between 25 and 75.

The second step performs the actual weight update according to

wt+1
ij = wt

ij − γt
ijsgn(∇ijErt). (6.38)

This section will compare the training of rProp with and without opposite transfer functions, under

the proposed heuristic. Specific settings for learning parameters are η− = 0.5, η+ = 1.2, γmin = 0.07 and

γmax = 50.0. These values were experimentally determined to yield good results on all problems. Unless

noted otherwise all networks are trained for 100 epochs, and the presented results represent the average

over 30 trials. The data presented in Table 6.5 is also employed for these experiments.

6.7.1 Training

Table 6.14 presents the results of the training phase for resilient propagation with and without opposite

transfer functions (ORP and RP, respectively). Resilient propagation often yields more desirable results

120

than standard backpropagation learning. These findings show that only 2 of the 10 test problems resulted

in statistically significant differences between RP and ORP. However, there is still an improvement over

RP in all data sets. Importantly, the results for the larger madelon and arcene problems were statistically

significant at a 0.95 confidence level.

The expected number of accepted transfer function changes is between 3 and 7 for all problems,

further supporting the potential of OTFs. The number of instances where ORP outperformed RP is

196/300 ≈ 0.65, whereas RP yielded more desirable outcomes in only 96/300 ≈ 0.32 meaning 2.6% of the

results are equal. Of these, one is small, three are moderate and three are large, as shown by the effect

size column.

Table 6.14: Comparing RP with and without opposite transfer functions (ORP) using the mean (µ),
standard deviation (σ), expected number of accepted transformations (E[acc]) and the number of times
(ORP < RP, ORP > RP, ORP = RP). Bold values are statistically significant at 0.95 confidence
using a Kolmogorov-Smirnov test. The final column reports Cohen’s d-statistic (nonoverlap percentile) to
determine the effect size.

RP ORP
Data Set µ σ µ σ E[acc] (<, >, =) Effect

cancer 0.004 0.002 0.004 0.002 3.6 (18,12,0) 0.000
thyroid 0.004 0.001 0.003 0.000 7.1 (15,10,5) 0.577,ℓ
wine 0.003 0.001 0.003 0.001 3.3 (16,14,0) 0.000
iris 0.007 0.003 0.005 0.002 3.2 (20,8,2) 0.365,m

digits 0.002 ≪ 0.001 0.001 ≪ 0.001 3.1 (20,10,0) 0.447,m
glass 0.002 0.002 0.001 0.001 4.9 (18,12,0) 0.302,s
lp4 0.002 0.013 ≪ 0.001 0.001 4.1 (20,10,0) 0.054

ionosphere 0.006 0.003 0.004 0.001 3.7 (20,9,1) 0.408,m
madelon 0.012 0.007 0.004 0.004 6.2 (26,4,0) 0.574,ℓ
arcene 0.113 0.031 0.042 0.011 3.3 (23,7,0) 0.836,ℓ

Figure 6.12 presents an example convergence curve between RP and ORP for the arcene problem. The

rate of convergence is similar between the two algorithms, however the opposite transfer function version

is able to discover a lower error rate, making it much more desirable. It can be interpreted that the

convergence rate for ORP is improved since RP is not able to converge to the same value within the same

number of epochs. Other problems exhibit a similar convergence graph.

6.7.2 Generalization Ability

The results focusing on generalization ability (with respect to the MSE on the testing data) are presented

in Table 6.15. Only 2 of the 10 results are statistically significant, although an improvement with respect

to both µ and σ are observed in all instances. Even a small improvement in generalization ability can have

a deep impact on the application requesting the results. Being said, the effect size reveals that the iris and

121

lp4 problems show a small practical improvement whereas the arcene and madelon outcomes represent

somewhat large improvements.

Table 6.15: Comparing the generalization ability of RP without and with opposite transfer functions (ORP)
using the mean (µ) and standard deviation (σ) on test data. Bold values are statistically significant at 0.95
confidence using a Kolmogorov-Smirnov test. The final column reports Cohen’s d-statistic to determine
the effect size.

Data Set RP ORP
µ σ µ σ Effect

cancer 0.036 0.012 0.034 0.009 0.094
thyroid 0.007 0.001 0.007 0.001 0.000
wine ≪ 0.001 0.000 ≪ 0.001 0.000 0.000
iris 0.025 0.014 0.020 0.010 0.201,s

digits 0.010 0.001 0.010 0.001 0.000
glass 0.057 0.034 0.051 0.029 0.095
lp4 0.123 0.036 0.101 0.040 0.278,s

ionosphere 0.086 0.035 0.083 0.022 0.051
madelon 0.373 0.015 0.355 0.013 0.540,ℓ
arcene 0.222 0.045 0.157 0.040 0.607,ℓ

6.8 Summary

This chapter explored the symmetry of neural networks and concentrated on adaptive transfer functions.

Specifically, the opposite transfer function and opposite neural network concepts were introduced. Prop-

erties of irreducibility and numerical conditioning were discussed and some basic theorems were proven.

Using these results a proposed heuristic was presented which efficiently selects a single network from the

set of opposite networks.

Experimental results focused on the potential of opposite networks to improve the initial conditioning of

the neural networks. Further, the early stages of training were examined as they are the most likely to see

opposite transfer functions yielding an improved input-output mapping. Ten benchmark data sets were

also used to compare different gradient-based learning methods for reasonably-sized networks. Finally,

very large networks were used to test whether the proposed method scales to complex networks. In all

cases opposite transfer functions were shown to have much potential for improving accuracy, reliability,

generalization and convergence rate. An application of OTFs to resilient propagation also revealed desirable

benefits. As with opposition-based simulated annealing and oppositional population-based incremental

learning observed improvements were more drastic for larger, more complex problems.

122

Figure 6.11: Comparing the proposed method performance for networks trained with gradient descent
using adaptive learning rate (GDA) and adaptive learning rate with momentum (GDX). The dotted line
refers to the original training procedure, solid line is the proposed method.

123

0 50 100 150
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

epochs

M
S

E

ORP

RP

Figure 6.12: Comparing the convergence of RP and ORP for the arcene problem.

124

Chapter 7

Conclusions

Symmetry is a fundamental aspect of nature that has been exploited in various scientific fields. This thesis

has explored a possible framework for inducing symmetry on a search space with respect to the evaluation

function. The framework was applied to simulated annealing, population-based incremental learning and

gradient-based learning in neural networks with very promising results in all domains.

The main contributions of this thesis can be summarized as follows:

1. Mathematical Motivation: Providing a mathematical description of the concept of opposition

within the context of optimization. Opposition is described as a symmetry inducing transformation

which yields a more desirable evaluation function, with respect to the problem at hand. Initially,

symmetry was discussed within the context of group theory and the conditions which a given search

space may have symmetry induced on it, with respect to its representation were discussed. While

computational group theory concepts were not directly employed, the fundamental basis for the

proposed approach are rooted in this field of abstract mathematics. Using this as a basis, the

neighborhood structure was discussed as a means by which symmetry may be imposed and described.

2. Symmetry and Opposition: Expanding on the concept of the neighborhood structure, the oppo-

sition map was introduced as a means to induce symmetry over the evaluation function. In this way

it becomes possible to define a symmetric search space without regard to its actual structure. As a

consequence, a general framework whereby an existing optimization algorithm can employ opposition

was derived and forms the basis for the example applications. Concepts related to opposition-based

computing were also presented and discussed.

3. Opposition-Based Simulated Annealing: The concept of an opposite neighbor was proposed as

a simple means to improve the simulated annealing algorithm. Benchmarking results using standard

real optimization functions found improvements in accuracy and reliability for the proposed method.

125

The influence of various parameter settings were also tested. Using the real-world problem of image

thresholding, the OSA algorithm was also shown to have potential in decreasing the required number

of function calls to attain a desired target image, i.e. an improvement in convergence rate.

4. Oppositional Population-Based Incremental Learning: Expanding on the idea of an op-

posite neighbor, an opposite set was proposed as a possible concept to improve population-based

searches, particularly population-based incremental learning. The improvement in sample diversity

over random sampling was first proven and a new probability update method was then given. The

resulting algorithm was compared to its predecessor using common, but difficult, binary optimiza-

tion benchmark problems. The results yielded improvements in diversity, expected result, reliability

and convergence rate. The traveling salesman and image thresholding problems were employed to

provide further support to its abilities.

5. Opposition-Based Gradient Learning: The third example application focused on gradient-based

learning in feedforward neural networks. The simple concept of an opposite transfer function was

proposed as a means to jump within the search space during learning. These functions were shown

to yield unique networks under a minimality assumption, which had consequences on the numerical

conditioning. Experimental results confirmed an influence before and during early training stages.

An efficient heuristic method for selecting an opposite network was provided as a means to improve

backpropagation variants. Experimental results confirm the improvement in accuracy, reliability,

convergence rate and often in generalization ability. The heuristic was also employed to resilient

propagation, where valuable improvements were also observed.

An important finding generally observed for all three proposed algorithms was an increased benefit over

the traditional method as the problem complexity increased. Deeper insight in this direction is another

very exciting research direction, as is the sensitivity to noisy and missing data.

While this thesis has given theoretical motivation and experimental evidence supporting the use of

opposition-based computing, much work must still be done. From a theoretical standpoint further statis-

tical evidence and deeper insight through group theory may lead to a more advanced understanding of

the subject and lead to improved heuristics, or exact approaches. More abstract mathematics could be

investigated as a means to comprehending opposition in a more general form.

The methods presented in this thesis considered basic forms of simulated annealing, population-based

incremental learning and gradient-based learning. However, there exists more advanced versions of these

approaches and further experimentation using opposition on these is required. Additionally, there exists

a wide number of algorithms in machine learning and computational intelligence that remain unexamined

through the lense of opposition. Investigations in these areas are an exciting direction of future work as

well.

126

Appendix A

Computing Effect Size

Statistical significance tests determine whether observed differences between sample populations are due

to randomness. However, these measures do not quantify the strength of the relationship between the

samples. Effect-size measures accomplish this goal, thus allowing the possibility to distinguish whether

observed differences are practically “small”, “medium” or “large”. A popular method of calculating this

is via Cohen’s d-statistic [22]:

d =
µ1 − µ2

σ∗
(A.1)

where µ1 and µ2 are the means of sample 1 and 2, respectively. The s∗ value is the pooled standard

deviation:

σ∗ =

√

σ2
1 + σ2

2

2
(A.2)

where σ1 and σ2 are the standard deviations for samples 1 and 2, respectively. Note, the sample size is

irrelevant. Different interpretations for the d statistic can be found, however the traditional interpretation

is “small”>0.2, “medium”>0.5 and “large”>0.8.

A common equivalent (and interchangeable) measure is to report the percent of nonoverlap. This

measure quantifies the percentage of nonoverlap between the two samples. An overlap of 0.0 indicates the

samples completely overlap. The equivalent interpretations are 0.147 < “small” < 0.330 < “medium” <

0.474 < “large”. This thesis utilizes this measure as it is bounded between 0 and 1, whereas the d-statistic

can take larger values. It should be reinforced that the two measures are equivalent [22].

127

Bibliography

[1] The American Heritage Dictionary of the English Language. Houghton Mifflin, 2000.

[2] J. Abonyi and B. Feil. Computational intelligence in data mining. Informatica, 29:2–12, 2005.

[3] F. Albertini and E. Sontag. For neural networks, function determines form. Neural Networks,

6:975–990, 1993.

[4] B. Apolloni, C. Caravalho, and D. De Falco. Quantum stochastic optimization. Stochastic Processes

and Their Applications, 33:233–244, 1989.

[5] A. Asuncion and D. J. Newman. UCI machine learning repository, 2007.

[6] N. Balcan, A. Blum, and N. Srebro. A theory of learning with similarity functions. Machine Learning

Journal, 72(1-2):89–112, 2008.

[7] S. Baluja. Population based incremental learning - a method for integrating genetic search based

function optimization and competitive learning. Technical report, Carnegie Mellon University, 1994.

CMU-CS-94-163.

[8] E. I. Barakova and L. Spaanenburg. Symmetry: Between indecision and equality of choice. Biological

and Artificial Computation: From Neuroscience to Technology, 1997.

[9] J. Barnes, B. Colletti, and D. Neuway. Using group theory and transition matrices to study a class

of metaheuristic neighborhoods. European Journal of Operational Research, 138(3):531–544, 2001.

[10] C. Bishop. Pattern Recognition and Machine Learning. Springer, 2007.

[11] J. Branke, C. Lode, and J. L. Shapiro. Addressing sampling errors and diversity loss in UMDA. In

Proc. of the 9th annual Genetic and Evolutionary Computation Conference, pages 508–515, 2007.

[12] A. Bryson and Y. Ho. Applied Optimal Control: Optimization, Estimation, and Control. Blaisdell

Publishing Company, 1969.

128

[13] S. Bureeret and K. Sriworamas. Soft Computing in Industrial Applications, volume 39/2007 of

Advances in Soft Computing, chapter Population-Based Incremental Learning for Multiobjective

Optimisation, pages 223–232. Springer, 2007.

[14] V. Cerney. A thermodynamical approach to the travelling salesman problem: An efficient simulation

algorithm. Journal of Optimization Theory and Applications, 45:41–51, 1985.

[15] P. Chandra and Y. Singh. An activation function adapting training algorithm for sigmoidal feedfor-

ward networks. Neurocomputing, 61, 2004.

[16] P. Chandra and Y. Singh. A case for the self-adaptation of activation functions in FFANNs. Neuro-

computing, 56:447–545, 2004.

[17] O. Chapelle, B. Schlopf, and A. Zien. Semi-Supervised Learning. MIT Press, 2006.

[18] C. Charalambous. Conjugate gradient algorithm for efficient training of artificial neural network. In

Proc. IEEE Circuits, Devices and Systems, volume 139, pages 301–310, 1992.

[19] A. Chen and R. Hecht-Nielsen. On the geometry of feedforward neural network weight spaces. In

Proc. Second International Conference on Artificial Neural Networks, pages 1–4, 1991.

[20] A. M. Chen, H. Lu, , and R. Hecht-Nielsen. On the geometry of feedforward neural networks error

surfaces. Neural Computation, 5(6):910–927, 1993.

[21] C. T. Chen and W. D Chang. A feedforward neural network with function shape autotuning. Neural

Networks, 9, 1996.

[22] J. Cohen. Statistical Power Analysis for the Behavioral Sciences. Lawrence Earlbaum Associates,

1988.

[23] B. Colletti and J. Barnes. Using group theory to construct and characterize metaheuristic search

neighborhoods. In C. Rego and B. Alidaee, editors, Metaheuristic Optimization via Memory and

Evolution Tabu Search and Scatter Search, pages 303–328. 2005.

[24] V. Corradi and H. White. Regularized neural networks: Some convergence rate results. Neural

Computation, 7(6):1225–1244, 1995.

[25] P. Darga, K. Sakallah, and I. Markov. Faster symmetry discovery using sparsity of symmetries. In

Proc. Annual ACM IEEE Design Automation Conference, pages 149–154, 2008.

[26] A. Das and B. K. Chakrabarti, editors. Quantum Annealing and Related Optimization Methods,

volume 679 of Lecture Note in Physics. Springer, 2005.

129

[27] K. A. De Jong. An Analysis of the Behavior of a Class of Genetic Adaptive Systems. PhD thesis,

University of Michigan, 1975.

[28] A. Donaldson and A. Miller. A computational group theoretic symmetry reduction package for the

spin model checker. In Proc. Algebraic Methodology and Software Technology, pages 374–380, 2006.

[29] A. Donaldson and A. Miller. Exact and approximate strategies for symmetry reduction in model

checking. In Proc. Formal Methods, pages 541–556, 2006.

[30] W. Duch and N. Jankowski. Optimal transfer function neural networks. In Proc. 9th European

Symposium on Artificial Neural Networks, pages 101–106, 2001.

[31] W. Duch and N. Jankowski. Transfer functions: Hidden possibilities for better neural networks. In

Proc. 9th European Symposium on Artificial Neural Networks, pages 81–94, 2001.

[32] S. E. Fahlman. Faster-learning variations on backpropagation: An empirical study. Morgan Kauf-

mann, 1988.

[33] K. A. Folly. Robust controller design based on a combination of genetic algorithms and competitive

learning. In Proc. International Joint Conference on Neural Networks, pages 3045–3050, 2007.

[34] P. Frasconi, M. Gori, M. Maggini, and G. Soda. Unified integration of explicit knowledge and

learning by example in recurrent networks. IEEE Transactions on Knowledge and Data Engineering,

7(2):340–346, 1995.

[35] K. Funahashi. On the approximate realization of continuous mappings by neural networks. Neural

Networks, 2(3):183–193, 1989.

[36] M. Gallagher. Multi-Layer Perceptron Error Surfaces: Visualization, Structure and Modelling. PhD

thesis, University of Queensland, 2000.

[37] F. Glover and M. Laguna. Tabu Search. Kluwer, 1997.

[38] S. L. Goh and D. Mandic. Recurrent neural networks with trainable amplitude of activation functions.

Neural Networks, 16, 2003.

[39] D. Goldberg, B. Korb, and K. Deb. Messy genetic algorithms: Motivation, analysis, and first results.

Complex Systems, 3:493–530, 1989.

[40] T. Gosling, J. Nanlin, and E. Tsang. Population based incremental learning versus genetic algorithms:

Iterated prisoners dilemma. Technical report, University of Essex, 2004.

[41] Niederreiter H. Random Number Generation and Quasi-Monte Carlo Methods. Society for Industrial

and Applied Mathematics, 1992.

130

[42] M. T. Hagan, H. B. Demuth, and M. H. Beale. Neural Network Design. PWS Publishing, 1996.

[43] W. Hahn. Symmetry As A Developmental Principle In Nature And Art. World Scientific, 1998.

[44] B. Hajek. Cooling schedules for optimal annealing. Mathematics of Operations Research, 13(2):311–

329, 1988.

[45] B. Hall. Lie Groups, Lie Algebras, and Representations: An Elementary Introduction. Springer,

2004.

[46] S. Haykin. Neural Networks: A Comprehensive Foundation (2nd Edition). Prentice Hall, 1998.

[47] G. A. Hoffmann. Adaptive transfer functions in radial basis function (RBF) networks. In Lecture

Notes in Computer Science, volume 3037, pages 682–686. 2004.

[48] M. Hohfeld and G. Rudolph. Towards a theory of population-based incremental learning. In Proc.

IEEE Conference on Evolutionary Computation, pages 1–5, 1997.

[49] Z. Hu and H. Shao. The study of neural network adaptive control systems. Control and Decision,

7, 1992.

[50] L. Ingber. Adaptive simulated annealing (ASA): Lessons learned. Control and Cybernetics, 25(1):33–

54, 1996.

[51] Q. Jiang, Y. Ou, and D. Shi-Du. Optimizing curriculum scheduling problem using population based

incremental learning algorithm. In Proc. Second Workshop on Digital Media and its Application in

Museum and Heritages, pages 448–453, 2007.

[52] F. Jordan and G. Clement. Using the symmetries of multilayered network to reduce the weight space.

In Proc. IEEE Second International Joint Conference on Neural Networks, pages 391–396, 1991.

[53] J. A. S. Kelso. Uncertainty and Surprise, volume 3 of Springer Series in Understanding Complex

Systems, chapter The Complementary Nature of Coordination Dynamics: Toward a Science of the

in-Between. Springer-Verlag, 2005.

[54] J. A. S. Kelso and D. A. Engstrm. The Complementary Nature. MIT Press, 2006.

[55] G. W. Kinney Jr. A Group Theoretic Approach to Metaheuristic Local Search for Partitioning

Problems. PhD thesis, Univerity of Texas at Austin, 2005.

[56] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science,

220(4598):671–680, 1983.

131

[57] R. Kondor. Group Theoretical Methods in Machine Learning. PhD thesis, Columbia University,

2008.

[58] N. Lagaros and M. Papadrakakis. Learning improvement of neural networks used in structural

optimization. Advances in Engineering Software, 35(1):9–25, 2004.

[59] P. Larranaga and J. Lozano, editors. Estimation of Distribution Algorithms: A New Tool for Evo-

lutionary Computation. Springer, 2002.

[60] Y. Le Cun, J. S. Denker, and S. A. Solla. Optimal brain damage. In Proc. Advances in Neural

Information Processing Systems, pages 598–605, 1990.

[61] C. Lemieux. Monte Carlo and Quasi-Monte Carlo Sampling. Springer, 2009.

[62] Y. Li, D. de Ritter, R. Duin, and M. Reinders. Integration of prior knowledge of measurement noise

in kernel density classification. Pattern Recognition, 41(1):320–330, 2008.

[63] Y. Liang. Adaptive neural activation functions in multiresolution learning. In Proc. IEEE Interna-

tional Conference on Systems, Man, and Cybernetics, volume 4, pages 2601–2606, 2000.

[64] Y. Liu. Computational symmetry. In Proc. of Symmetry, pages 231 – 245, 2002.

[65] S. Lohr. Sampling: Design and Analysis. Duxbury, 1999.

[66] S. J. Louis and G. J. E. Rawlins. Syntactic analysis of convergence in genetic algorithms. In L. D.

Whitley, editor, Foundations of Genetic Algorithms 2, pages 141–151. Morgan Kaufmann, 1993.

[67] H. Maaranen, K. Miettinen, and A. Penttinen. On intitial populations of genetic algorithms for

continuous optimization problems. Journal of Global Optimization, 37(3):405–436, 2007.

[68] M. Mahootchi, Tizhoosh H. R., and K. Ponnambalam. Opposition-based reinforcement learning in

the management of water resources. In Proc. IEEE Symposium on Approximate Dynamic Program-

ming and Reinforcement Learning, pages 217–224, 2007.

[69] K. Mainzer. Symmetries of Nature: A Handbook for Philosophy of Nature and Science. Walter De

Gruyter Inc, 1996.

[70] J. Mingjun and T. Huanwen. Application of chaos in simulated annealing. Chaos, Solitons and

Fractals, 21(4):933–941, 2003.

[71] M. Mitchell. An Introduction to Genetic Algorithms. The MIT Press, 1998.

[72] M. F. Moller. A scaled conjugate gradient algorithm for fast supervised learning. 6:525–533, 1993.

132

[73] D. Muhlenbein, H. Schomisch, and J. Born. The parallel genetic algorithm as function optimizer.

Parallel Computing, pages 619–632, 1991.

[74] J. Munkres. Topology. Prentice Hall, 2000.

[75] K. Murrary. Learning as knowledge integration. Technical report, University of Texas at Austin,

1995.

[76] S. R. Narayanamurthy and B. Ravindran. Efficiently exploiting symmetries in real time dynamic

programming. In Proc. International Joint Conference on Artificial Intelligence, pages 2556–2561,

2007.

[77] D. Nguyen and B. Widrow. Improving the learning speed of 2-layer neural networks by choosing

initial values of the adaptive weights. In Proc. IEEE International Joint Conference on Neural

Netowrks, volume 3, pages 21–26, 1990.

[78] Y. Nourani and B. Andresen. A comparison of simulated annealing cooling strategies. Journal of

Physics A: Mathematical and General, 31(41):8373–8385, 1998.

[79] W. D. Obal, M. G. McQuinn, and W. H. Sanders. Detecting and exploiting symmetry in discrete-

state markov models. IEEE Transactions on Reliability, 56(4):643–654, 2007.

[80] M. Pelikan, D. E. Goldberg, and E. Cantu-Paz. Linkage problem, distribution estimation, and

bayesian networks. Evolutionary Computation, 8(3):311–341, 2002.

[81] M. Petitjean. Chirality and symmetry measures: A transdisciplinary review. Entropy, 5(3):271–312,

2003.

[82] M. Petitjean. A definition of symmetry. Symmetry: Culture and Science, 18(2):99–119, 2007.

[83] I. Petrovska and J. N. Carter. Using population-based incremental learning algorithm to quantify

the uncertainty in model parameters. In Proc. 69th EAGE Conference and Exhibition Incorporating

SPE EUROPEC, 2007.

[84] Tizhoosh H. R. Reinforcement learning based on actions and opposite actions. In Proc. International

Conference on Artificial Intelligence and Machine Learning, 2005.

[85] S. Rahnamayan, H. R. Tizhoosh, and M. Salama. Opposition-based differential evolution for opti-

mization of noisy problems. In Proc. IEEE Congress on Evolutionary Computation, 2006.

[86] S. Rahnamayan, H. R. Tizhoosh, and M. Salama. A novel population initialization method for

accelerating evolutionary algorithms. Computers and Mathematics with Applications, 53(10):1605–

1614, 2007.

133

[87] S. Rahnamayan, H. R. Tizhoosh, and M. M. A. Salama. Opposition-based differential evolution.

IEEE Transactions on Evolutionary Computation, 12(1):64–79.

[88] S. Rahnamayan, H. R. Tizhoosh, and M. Salamaa. Opposition versus randomness in soft computing

techniques. Applied Soft Computing, 8(2):906–918, 2008.

[89] D. Ram, T. Sreenivas, and K. Subramaniam. Parallel simulated annealing algorithms. Journal of

Parallel and Distributed Computing, 37:207–212, 1996.

[90] G. Ramakrishna and W. Mow. A new search for optimal binary arrays with minimum peak sidelobe

levels. In Proc. Sequences and Their Applications, pages 355–360, 2005.

[91] R. Rastegar and A. Hariri. The population-based incremental learning algorithm converges to local

optima. Neurocomputing, 69(13–15):1772–1775, 2006.

[92] R. Rastegar, A. Hariri, and M. Mazoochi. A convergence proof for the population-based incremental

learning algorithm. In Proc. IEEE International Conference on Tools with Artificial Intelligence,

pages 387–391, 2005.

[93] S. Reckow and V. Tresp. Proc. integrating ontological prior knowledge into relational learning. In

Neural Information Prosessing Systems Workshop: Structured Input-Structured Output, 2008.

[94] M. Riedmiller and H. Braun. A direct adaptive method for faster backpropagation learning: The

RPROP algorithm. In Proc. IEEE Conference on Neural Networks, pages 586–591, 1993.

[95] J. Rose. A Course on Group Theory. Dover Publications, 1994.

[96] J. Rosen. Symmetry in Science: An Introduction to the General Theory. Springer-Verlag, 1995.

[97] J. Rosen. Symmetry Rules. Springer-Verlag, 2008.

[98] J. Rowe, M. Vose, and A. Wright. Structural search spaces and genetic operators. Evolutionary

Computation, 12(4):461–493.

[99] J. Rowe, M. Vose, and A. Wright. Group properties of crossover and mutation. Evolutionary

Computation, 10(2):151–184, 2002.

[100] J. Rowe, M. Vose, and A. Wright. Neighborhood graphs and symmetric genetic operators. In Proc.

Foundations of Genetic Algorithms, pages 110–122, 2007.

[101] R. Rubinstein. Monte Carlo Optimization, Simulation and Sensitivity of Queueing Networks. Wiley,

1986.

134

[102] S. Rudlof and M. Koppen. Stochastic hill climbing with learning by vectors of normal distributions.

In Proc. First Online Workshop on Soft Computing, 1996.

[103] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-propagating

errors. Nature, 323:533–536, 1986.

[104] S. Saarinen, R. Bramley, and G. Cybenko. Ill-conditioning in neural network training problems.

SIAM Journal on Scientific Computing, 14(3):693–714, 1993.

[105] F. Sahba, Tizhoosh H. R., and M. A. Salama. Application of opposition-based reinforcement learning

in image segmentation. In Proc. IEEE Symposium on Approximate Dynamic Programming and

Reinforcement Learning, pages 246–251, 2007.

[106] R. Schapire, M. Rochery, M. Rahim, and N. Gupta. Incorporating prior knowledge into boosting.

In Proc. International Conference on Machine Learning, pages 538–545, 2002.

[107] J. Schmidhuber. Developmental robotics, optimal artificial curiosity, creativity, music, and the fine

arts. Connection Science, 18(2):173–187, 2006.

[108] J. Schmidhuber. Driven by compression progress: A simple principle explains essential aspects

of subjective beauty, novelty, surprise, interestingness, attention, curiosity, creativity, art, science,

music, jokes. In Proc. Anticipatory Behavior in Adaptive Learning Systems, from Sensorimotor to

Higher-level Cognitive Capabilities, page to appear, 2009.

[109] J. J. Schneider and S. Kirkpatrick. Stochastic Optimization. Springer, 2006.

[110] N. Schraudolph. Centering neural network gradient factors. In G. Orr and K. R. Muller, editors,

Neural Networks: Tricks of the Trade, pages 207–226. Springer-Verlag, 1998.

[111] J. P. Schwefel. Evolution and Optimum Seeking. John Wiley & Sons, 1995.

[112] M. Sebag and A. Ducoulombier. Extending population-based incremental learning to continuous

search spaces. Lecture Notes in Computer Science, 1498:418–427, 1998.

[113] J. L. Shapiro. Diversity loss in general estimation of distribution algorithms. In Proc. Parallel

Problem Solving from Nature IX, pages 92–101, 2006.

[114] M. Shokri, Tizhoosh H. R., and M. Kamel. Opposition-based q(lambda) algorithm. In Proc. IEEE

International Joint Conference on Neural Networks, pages 254–261, 2006.

[115] M. Shokri, Tizhoosh H. R., and M. Kamel. Oppositional target domain estimation using grid-based

simulation. Applied Soft Computing, 9(1):423–430, 2009.

135

[116] M. Shokri, Tizhoosh H. R., and M. S. Kamel. Opposition-based q(lambda) with non-markovian up-

date. In Proc. IEEE Symposium on Approximate Dynamic Programming and Reinforcement Learn-

ing, pages 288–295, 2007.

[117] P. Sinha. Symmetry sensing through computer vision and a facial image recognition system. Forensic

Science International, 77(2):27–36, 1995.

[118] F. Southey and F. Karray. Approaching evolutionary robotics through population-based incremental

learning. In Proc. IEEE International Conference on Systems, Man, and Cybernetics, volume 2,

pages 710–715, 1999.

[119] F. Strocchi. Symmetry Breaking. Springer, 2007.

[120] Z. Sun, Z. Zhang, and H. Wang. Incorporating prior knowledge into kernel based regression. Acta

Automatica Sinica, 34:1515–1521, 2008.

[121] H. J. Sussmann. Uniqueness of the weights for minimal feedforward nets with a given input-output

map. Neural Networks, 5(4):589–593, 1992.

[122] G. Tezel and Y. Özbay. A new neural network with adaptive activation function for classification of

ECG arrhythmias. In Lecture Notes in Computer Science, volume 4692, pages 1–8. 2007.

[123] D. Thompson and G. Bilbro. Sample-sort simulated annealing. IEEE Transactions on Systems, Man

and Cybernetics B, 35(3):625–632, 2005.

[124] S. Thrun and B. Wegbreit. Shape from symmetry. In Proc. Tenth IEEE International Conference

on Computer Vision, pages 1824–1831, 2005.

[125] H. R. Tizhoosh. Opposition-based learning: A new scheme for machine intelligence. In Proc. Inter-

national Conference on Computational Intelligence for Modelling, Control and Automation, pages

695–701, 2005.

[126] H. R. Tizhoosh. Opposition-based reinforcement learning. Journal of Advanced Computational

Intelligence and Intelligent Informatics, 10(5):578–585, 2006.

[127] H. R. Tizhoosh and M. Ventresca, editors. Oppositional Concepts in Computational Intelligence.

Studies in Computational Intelligence. Springer-Verlag, 2008.

[128] E. Trentin. Networks with trainable amplitude of activation functions. Neural Networks, 14(4):471–

493, 2001.

[129] TSPLIB. http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsplib.html.

136

[130] V. Valsalam and R. Miikkulainen. Evolving symmetric and modular neural networks for distributed

control. In Proc. of the Genetic and Evolutionary Computation Conference, pages 731–738, 2009.

[131] P. van der Smagt and G. Hirzinger. Solving the ill-conditioning in neural network learning. In G. Orr

and K. R. Muller, editors, Neural Networks: Tricks of the Trade, pages 193–206. Springer-Verlag,

1998.

[132] L. Vecci, F. Piazza, and A. Uncini. Learning and approximation capabilities of adaptive spline

activation function neural networks. Neural Networks, 11:259–270, 1998.

[133] M. Vega-Rodriguez, D. Vega-Perez, J. Gomez-Pulido, and J. Sanchez-Perez. Radio network design

using population-based incremental learning and grid computing with boinc. In Applications of

Evolutinary Computing, volume 4448/2007 of Lecture Notes in Computer Science, pages 91–100.

2007.

[134] M. Ventresca and Tizhoosh H. R. Numerical condition of feedforward networks with opposite transfer

functions. In Proc. IEEE International Joint Conference on Neural Networks, pages 3232–3239, 2008.

[135] M. Ventresca and Tizhoosh H. R. Improving gradient-based learning algorithms for large scale neural

networks. In Proc. IEEE International Joint Conference on Neural Networks, page to appear, 2009.

[136] M. Ventresca, S. Rahnamayan, and H. R. Tizhoosh. Computational Intelligence in Optimization-

Applications and Implementations, chapter The Use of Opposition for Decreasing Function Evalua-

tions in Population-Based Search. Springer-Verlag.

[137] M. Ventresca, S. Rahnamayan, and H. R. Tizhoosh. A note on opposition versus randomness in soft

computing techniques. Applied Soft Computing, 8(2), 2009.

[138] M. Ventresca and H. R. Tizhoosh. Improving the convergence of backpropagation by opposite transfer

functions. In Proc. IEEE International Joint Conference on Neural Networks, pages 9527–9534, 2006.

[139] M. Ventresca and H. R. Tizhoosh. Opposite Transfer Functions and Backpropagation Through Time.

In Proc. IEEE Symposium on Foundations of Computational Intelligence, pages 570–577, 2007.

[140] M. Ventresca and H. R. Tizhoosh. Simulated annealing with opposite neighbors. In Proc. IEEE

Symposium on Foundations of Computational Intelligence, pages 186–192, 2007.

[141] M. Ventresca and H. R. Tizhoosh. A diversity maintaining population-based incremental learning

algorithm. Information Sciences, 178(21):4038–4056, 2008.

[142] M. Ventresca and H. R. Tizhoosh. Oppositional Concepts in Computational Intellligence, chapter

Two Frameworks for Improving Gradient-Based Learning Algorithms. Springer-Verlag, 2008.

137

[143] T. Vetter, T. Poggio, and H. Bulthoff. The importance of symmetry and virtual views in three-

dimensional object recognition. Current Biology, 4:18 – 23, 1994.

[144] L. Wang, M. Sugiyama, C. Yang, K. Hatano, and J. Feng. Theory and algorithm for learning with

dissimilarity functions. Neural Computation, 21(5):1459–1484, 2009.

[145] L. Wang, C. Yang, and J. Feng. On learning with dissimilarity functions. In Proc. 24th International

Conference on Machine Learning, pages 991–998, 2007.

[146] W. Wenzel and K. Hamacher. A stochastic tunneling approach for global minimization. Physical

Review Letters, 82(15):3003–3007, 1999.

[147] J. Weszka and A. Rosenfeld. Threshold evaluation techniques. IEEE Transactions on Systems, Man

and Cybernetics, 8(8):622–629, 1978.

[148] H Weyl. Symmetry. Princeton University Press, 1983.

[149] D. Whitley. Fundamental principles of deception in genetic search. In G. Rawlins, editor, Foundations

of Genetic Algorithms, pages 221–241. Morgan Kaufmann, 1991.

[150] M. Wineberg and F. Oppacher. Metrics for population comparisons in evolutionary computation

systems. In Proc. Intelligent Systems and Control, 2003.

[151] S. Xu and M. Zhang. Adaptive higher-order feedforward neural networks. In Proc. IEEE Interna-

tional Joint Conference on Neural Networks, volume 1, pages 328–332, 1999.

[152] S. Xu and M. Zhang. Justification of a neuron-adaptive activation function. In Proc. IEEE Inter-

national Joint Conference on Neural Networks, volume 3, pages 465–470, 2000.

[153] S. Yang and X. Yao. Experimental study on population-based incremental learning algorithms for

dynamic optimization problems. Soft Computing - A Fusion of Foundations, Methodologies and

Applications, 9(11):815–834, 2005.

[154] S. Y. Yang, S. L. Ho, G. Z. Ni, J. M. Machado, and K. F. Wong. A new implementation of population

based incremental learning method for optimizations in electromagnetics. IEEE Transactions on

Magnetics, 43(4):1601–1604, 2007.

[155] X. Yao. Simulated annealing with extended neighbourhood. International Journal of Computer

Mathematics, 40:169–189, 1991.

[156] T. Yoo, editor. Insight into Images: Principles and Practice for Segmentation, Registration, and

Image Analysis. AK Peters, 2004.

138

[157] B. Yuan and M. Gallagher. On the importance of diversity maintenance in estimation of distribution

algorithms. In Proc. of the Genetic and Evolutionary Computation Conference, pages 719–726, 2005.

[158] H. Zassenhaus. The Theory of Groups. Dover Publications, 1999.

[159] H. Zhang, J. Fritts, and S. Goldman. Image segmentation evaluation: A survey of unsupervised

methods. Computer Vision and Image Understanding, 110:260–280, 2008.

[160] Q. Zhang, T. Wu, and Liu B. A population-based incremental learning algorithm with elitist strategy.

In Proc. Third International Conference on Natural Computation, pages 583–587, 2007.

[161] K. Zhu and Z. Liu. Empirical study of population diversity in permutation-based genetic algorithm.

Lecture Notes in Computer Science, 3201:537–547, 2004.

139

