
New Approaches to Protein
Structure Prediction

by

Shuai Cheng Li

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2009

c© Shuai Cheng Li 2009



I hereby declare that I am the sole author of this thesis. This is a true copy of the
thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

Protein structure prediction is concerned with the prediction of a protein’s three
dimensional structure from its amino acid sequence. Such predictions are commonly
performed by searching the possible structures and evaluating each structure by
using some scoring function. If it is assumed that the target protein structure
resembles the structure of a known protein, the search space can be significantly
reduced. Such an approach is referred to as comparative structure prediction. When
such an assumption is not made, the approach is known as ab initio structure pre-
diction. There are several difficulties in devising efficient searches or in computing
the scoring function. Many of these problems have ready solutions from known
mathematical methods. However, the problems that are yet unsolved have hin-
dered structure prediction methods from more ideal predictions.

The objective of this study is to present a complete framework for ab initio
protein structure prediction. To achieve this, a new search strategy is proposed,
and better techniques are devised for computing the known scoring functions. Some
of the remaining problems in protein structure prediction are revisited. Several of
them are shown to be intractable. In many of these cases, approximation methods
are suggested as alternative solutions. The primary issues addressed in this thesis
are concerned with local structures prediction, structure assembly or sampling, side
chain packing, model comparison, and structural alignment. For brevity, we do not
elaborate on these problems here; a concise introduction is given in the first section
of this thesis.

Results from these studies prompted the development of several programs, form-
ing a utility suite for ab initio protein structure prediction. Due to the general
usefulness of these programs, some of them are released with open source licenses
to benefit the community.

iii



Acknowledgements

This thesis would not be possible without the supervision of my advisors Prof.
Ming Li and Dr. Jinbo Xu. I am most indebted to Prof. Li for sharing with me his
wealth of knowledge, and his guidance to solve many interesting problems. I thank
Dr. Xu for sharing with me his experiences and invaluable insight into protein
structures.

This thesis is not possible without the collaboration with Dr. Dongbo Bu, with
whom I have discussed and solved many details of the problems with. I also wish
to thank Dr. Yen Kaow Ng, who has read many of my manuscripts, and provided
many substantial comments.

I thank my thesis examiners, Prof. C. Perry Chou, Prof. Jean-Claude Latombe,
Prof. Brendan J. McConkey, and Prof. Ian Munro for sparing their invaluable time
to read my thesis.

I also have to thank my friends and colleagues Babak Alipanahi, Xuefeng Cui,
Xin Gao, Xi Han, Daniel Holtby, Richard Jang, He Lin, Francis Ng, Dandan Song,
Jinsong Tan, Nan Wang, Wang Yue, and Yuzhong Zhao, for working with me and
for proofreading my thesis.

This thesis is dedicated to my parents, who have patiently listened to my com-
plaints and encouraged me.

iv



Dedication

This is dedicated to the one I love.

v



Contents

List of Tables xii

List of Figures xv

1 Introduction 1

1.1 Structural Fragment Libraries . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Computational Aspect: The Fragment Library Size . . . . . 3

1.1.2 Informatics Aspect: Peptide Subsequence Favors a Partial
Subset of Substructures . . . . . . . . . . . . . . . . . . . . 4

1.2 Sampling Structures from Building Blocks . . . . . . . . . . . . . . 4

1.3 Side Chain Packing . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Informatics Aspect: Backbone Codes Sufficient Information
for Side Chain Conformation . . . . . . . . . . . . . . . . . . 5

1.3.2 Computational Aspect: The Problem Remains NP-hard for
a Constant Number of Rotamers . . . . . . . . . . . . . . . 5

1.4 Reporting Final Decoys . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4.1 Computational Aspect: a Faster Clustering Method . . . . . 6

1.4.2 Informatics Aspect: Distance Function Favorites Native Struc-
ture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Model Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.6 Structure Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.6.1 Structure Alignments under the Proximity Requirement . . . 7

1.6.2 Crossed Contact Map . . . . . . . . . . . . . . . . . . . . . . 8

2 Preliminary Issues 9

2.1 Amino Acids and Primary Sequences . . . . . . . . . . . . . . . . . 9

2.2 Shapes of Proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

vi



2.3 Geometric Representations and Some Notations . . . . . . . . . . . 11

2.4 Secondary Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Tertiary Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 Additional Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Structural Fragment Libraries 16

3.1 Fragment Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Independent Structural Fragment Libraries . . . . . . . . . . . . . . 18

3.3.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . 18

3.3.2 Core Set of Structural Fragments . . . . . . . . . . . . . . . 19

3.3.3 Discretized Rotation Space . . . . . . . . . . . . . . . . . . . 20

3.3.4 Polynomial-time Algorithm with Ratio ((1 + ε)Dopt + c) . . . 21

3.3.5 Polynomial-time 4-approximation Algorithm . . . . . . . . . 24

3.3.6 (1 + ε) Polynomial-time Approximation Scheme . . . . . . . 26

3.4 Position Specific Fragment Libraries . . . . . . . . . . . . . . . . . . 26

3.4.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . 26

3.4.2 Generalized Linear Model . . . . . . . . . . . . . . . . . . . 27

3.4.3 Basis Functions V i,j . . . . . . . . . . . . . . . . . . . . . . 30

3.4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5.1 Theoretical Issues of Independent Fragment Library . . . . . 39

3.5.2 Is the Structural Fragment Space Continuous? . . . . . . . . 39

3.5.3 Position Specific Structural Fragment Library . . . . . . . . 40

4 Structure Sampling 41

4.1 Backbone Structure Prediction . . . . . . . . . . . . . . . . . . . . . 41

4.2 A Principle of Parsimony-based Framework . . . . . . . . . . . . . . 41

4.3 New Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4.1 Torsion Angle Pair Sequences . . . . . . . . . . . . . . . . . 46

4.4.2 Representing the Local Biases of Torsion Angle Pairs . . . . 46

4.4.3 Fragment-HMM: Position Specific Hidden Markov Model . . 47

vii



4.4.4 Sampling Protein Structure Conformation . . . . . . . . . . 49

4.4.5 Conformation Optimization . . . . . . . . . . . . . . . . . . 50

4.4.6 Iteratively Improving the Fragment-HMM . . . . . . . . . . 50

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.5.1 Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.5.2 Torsion Angle Distributions . . . . . . . . . . . . . . . . . . 51

4.5.3 Local Bias Representation: Fragment-HMM versus Struc-
tural Fragments . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.5.4 FALCON: Zero in on the Native Structure . . . . . . . . . . 54

4.6 Extending FALCON to Accept NMR Data . . . . . . . . . . . . . . 58

4.6.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.6.2 NMR Results . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.7 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Side Chain Packing 63

5.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1.1 Rotamer Database . . . . . . . . . . . . . . . . . . . . . . . 65

5.1.2 Hexagon Substructure . . . . . . . . . . . . . . . . . . . . . 65

5.1.3 Geometry Distance . . . . . . . . . . . . . . . . . . . . . . . 67

5.1.4 Sequence Comparison . . . . . . . . . . . . . . . . . . . . . . 70

5.1.5 Identify Rotamers Candidates . . . . . . . . . . . . . . . . . 71

5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2.1 Effectiveness of features . . . . . . . . . . . . . . . . . . . . 72

5.2.2 Rotamer selection . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2.3 Accuracy of Prediction . . . . . . . . . . . . . . . . . . . . . 75

5.3 Complexity Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3.1 Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.4 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 80

6 Decoy Delection 81

6.1 Decoy Selection Methods . . . . . . . . . . . . . . . . . . . . . . . . 81

6.2 Faster Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.2.1 Strategy 1: Auxiliary Grouping of Decoys . . . . . . . . . . 83

viii



6.2.2 Strategy 2: Lower and Upper Bounds of RMSD . . . . . . . 84

6.2.3 Strategy 3: Filtering Outlier Decoys . . . . . . . . . . . . . . 85

6.2.4 Overall Program Design . . . . . . . . . . . . . . . . . . . . 86

6.3 Evaluation of Calibur . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.3.1 Effectiveness of Strategies . . . . . . . . . . . . . . . . . . . 87

6.3.2 Calibur’s Performance on a Large Data Set . . . . . . . . . . 91

6.3.3 Evaluation of Calibur’s Output Decoys . . . . . . . . . . . . 91

6.4 Rationale for the Ensemble-based Methods . . . . . . . . . . . . . . 93

6.5 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.5.1 Verify the Hypothesis by Simulated Data . . . . . . . . . . . 94

6.5.2 Verifying the Hypothesis on Real Data . . . . . . . . . . . . 94

6.6 New Measure for Selecting Good Decoys . . . . . . . . . . . . . . . 96

6.7 Decoy Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.7.1 Selecting Good Decoys . . . . . . . . . . . . . . . . . . . . . 99

6.7.2 Refine Decoys from ab initio Methods . . . . . . . . . . . . . 100

6.8 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 101

7 Model Comparison 103

7.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.1.1 Notations and Preliminaries . . . . . . . . . . . . . . . . . . 104

7.1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . 105

7.1.3 Distance Approximation Algorithm for LWPS(A,B, d) . . . 106

7.1.4 Randomized Algorithm for Globular Protein Structures . . . 110

7.1.5 Approximating the Bottleneck Distance . . . . . . . . . . . . 111

7.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.2.1 Two Concrete Examples by OptGDT . . . . . . . . . . . . . 113

7.2.2 Performance of OptGDT on CASP8 Data . . . . . . . . . . 114

7.2.3 More Accurate Score Computation . . . . . . . . . . . . . . 114

7.3 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 116

ix



8 Structural Alignment 118

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

8.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 120

8.2.1 Structural Alignment . . . . . . . . . . . . . . . . . . . . . . 120

8.2.2 Contact Map Patterns . . . . . . . . . . . . . . . . . . . . . 121

8.2.3 Maximum Contact Map Pattern Problem . . . . . . . . . . . 122

8.2.4 Disjoint Contact Map Pattern Matching Problem . . . . . . 122

8.3 Results for the LCP and CMO Problem . . . . . . . . . . . . . . . 123

8.3.1 Finding the Rigid Transformation . . . . . . . . . . . . . . . 123

8.3.2 Approximation Algorithm for LCP under Bottleneck Distance 124

8.3.3 Results for the CMO Problem with Distance Constraints . . 127

8.4 Clique Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8.5 NP-hardness of CMP-DIS-{<, G} . . . . . . . . . . . . . . . . . . . 132

8.5.1 Additional Notations . . . . . . . . . . . . . . . . . . . . . . 133

8.5.2 Set of Endpoints . . . . . . . . . . . . . . . . . . . . . . . . 133

8.5.3 Construction of the Arcs . . . . . . . . . . . . . . . . . . . . 134

8.5.4 Correctness of the Construction . . . . . . . . . . . . . . . . 137

8.6 NP-hardness of the Crossing Pattern Matching Problem . . . . . . 141

8.6.1 Additional Notations and Definitions . . . . . . . . . . . . . 141

8.6.2 Target Contact Map Construction . . . . . . . . . . . . . . . 141

8.6.3 Pattern Construction . . . . . . . . . . . . . . . . . . . . . . 146

8.6.4 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

8.7 Counterexample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

8.8 Conclusion and discussion . . . . . . . . . . . . . . . . . . . . . . . 151

9 Conclusion and Future Work 153

Bibliography 155

x



List of Tables

3.1 PTAS for k-Consensus Structural Fragments. . . . . . . . . . . . . . 22

3.2 Proteins for the structure space and training set. . . . . . . . . . . 34

3.3 Position Coverage for the CBM vs. FRazor’s Score Function. . . . . 35

3.4 Position coverage for the threshold value as 1Å. . . . . . . . . . . . 36

3.5 Fragment coverage and local fit score for threshold value as 1Å. . . 36

3.6 Customized fragment lists vs. independent fragment libraries . . . 37

3.7 Decoy quality comparison between ROSETTA and FRazor . . . . . 38

4.1 Number of cosine models per residue. . . . . . . . . . . . . . . . . 52

4.2 Decoy quality of ROSETTA and FALCON. . . . . . . . . . . . . . 54

4.3 RMSD distribution over iterations for protein 2CRO. . . . . . . . . 54

4.4 Percentage of good decoys with RMSD below 6Å after each iteration. 56

4.5 Quality of the final decoys of ROSETTA and FALCON for the six
benchmark proteins. . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.6 Quality of the final decoys of ROSETTA and FALCON for eight
larger proteins from CASP7 free modeling targets. . . . . . . . . . 57

4.7 AMR final structures. . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1 Parameters the for joint probability function for 18 amino acids. . . 69

5.2 Effectiveness of different distance measures . . . . . . . . . . . . . . 72

5.3 Contact distance vs. number of subspaces. . . . . . . . . . . . . . 74

5.4 Rotamer selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.5 Predicted confidence vs. actual accuracy . . . . . . . . . . . . . . . 76

5.6 Accuracy of χ1 and χ2 angels by a simple consensus method . . . . 76

5.7 Energy values for the side chain packing reduction . . . . . . . . . . 79

6.1 CPU times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

xi



6.2 TM-scores (to native), RMSDs (to native), and CPU times (sec) for SPICKER
and Calibur. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.3 TM-scores and RMSDs to native for larger decoy sets. (cf Table 6.3.3). . . . . 93

6.4 Proposed algorithm to rank a set of decoys . . . . . . . . . . . . . . 99

6.5 Quality (RMSD) of the best decoy reported by ROSETTA clustering
tool and ONION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.6 Quality (average RMSD) of the top ten decoys reported by ROSETTA
clustering tool and ONION. . . . . . . . . . . . . . . . . . . . . . . 100

6.7 Average pairwise distance of the top 20 decoys at each iteration. . 101

6.8 Final decoys (in bold) and the quality (RMSD) of the best decoys at
each iteration step. . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.1 Distance approximation algorithm for LWPS(A,B, d) . . . . . . . 107

7.2 Traditional GDT scores and OptGDT GDT scores . . . . . . . . . 115

7.3 Number of models with scores that are increased more than a certain
constant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

8.1 Contact map pattern problem complexity for n = |D|. . . . . . . . 123

xii



List of Figures

1.1 Overview of the proposed protein structure prediction method . . . 3

2.1 Amino acid [161] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Formation of peptide [161] . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Geometry of backbone atoms . . . . . . . . . . . . . . . . . . . . . 11

2.4 Helix structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Beta strand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Two best decoys generated by ROSETTA and FRazor for the Cro
repressor protein (PDB code 2CRO). . . . . . . . . . . . . . . . . . 38

4.1 Fragment-HMM: a position specific hidden Markov model. . . . . . 48

4.2 Cosine models for residue 13 of protein 1FC2. . . . . . . . . . . . . 51

4.3 Native structure and the best decoy predicted by FALCON (The
RMSD is 0.557Å). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4 Evolution of torsion angle pair distributions for residue 41 of protein
2CRO. The x-axis is the φ angle and the y-axis is the ψ angle. . . . 55

4.5 TM1112 structure by AMR, magenta, superimposed on the NMR
structure, cyan, at 1.25Å RMSD. . . . . . . . . . . . . . . . . . . . 60

4.6 VRAR structure by AMR, magenta, superimposed on an NMR struc-
ture, cyan, at 1.48Å RMSD. . . . . . . . . . . . . . . . . . . . . . . 60

4.7 CASKIN structure by AMR, magenta, superimposed on an NMR
structure, cyan, at 1.89Å RMSD. . . . . . . . . . . . . . . . . . . . 61

4.8 HACS structure by AMR, magenta, superimposed on an NMR struc-
ture, cyan, at 1.93Å RMSD. . . . . . . . . . . . . . . . . . . . . . . 61

5.1 Hexagon substructure. . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 Similarity of χ1 angles vs. the difference between φ and ψ for the
amino acid Phenylalanine. . . . . . . . . . . . . . . . . . . . . . . . 67

xiii



5.3 Similarity of χ1 angles vs. the difference between φ and ψ for amino
acid type Aspartate. . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.4 Similarity of the χ1 angles vs. the difference between φ and ψ for
amino acid type Phenylalanine. . . . . . . . . . . . . . . . . . . . . 73

5.5 Instance of planar 3SAT. . . . . . . . . . . . . . . . . . . . . . . . . 77

5.6 Embedding planar 3SAT on a grid . . . . . . . . . . . . . . . . . . 78

5.7 Assignment of planar 3SAT . . . . . . . . . . . . . . . . . . . . . . 80

6.1 Using auxiliary grouping of decoys. . . . . . . . . . . . . . . . . . . 83

6.2 Number of RMSD computations avoided. . . . . . . . . . . . . . . 88

6.3 Same as Figure 6.2, but on the CASKIN data set. . . . . . . . . . . 89

6.4 The number of decoys filtered from the set TM1112 by using 100
randomly selected decoys at different thresholds. Each value is an
average of ten numbers from ten different trials by using the same
threshold. The error bars show the standard deviations. . . . . . . 89

6.5 Same as Figure 4, but with the CASKIN data set. . . . . . . . . . . 89

6.6 CPU times used to obtain clusters at different thresholds on the
TM1112 data set of 9,999 decoys, by (1) cluster info silent (label
“cluster info silent”), (2) Calibur without using any of the strate-
gies (label “pairwise”), (3) Calibur (label “Calibur”) (To account
for variations caused by the filtering, each point is the average of
10 trials), (4) Calibur with the filtering mechanism disabled (label
“Calibur without filtering”) . . . . . . . . . . . . . . . . . . . . . . 90

6.7 Embedding the decoys in the 2D plane. . . . . . . . . . . . . . . . . 95

6.8 Rank of distance functions according to the indicator (x-axis) and
the rank of selected decoy (y-axis). . . . . . . . . . . . . . . . . . . 96

6.9 Relationship between max(D(s, s0),D(s′, s0)) and D(s, s′) (left-hand
side), and the relationship betweenmin(D(s, s0),D(s′, s0)) andD(s, s′)
(right-hand side). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.10 Distribution of D(s, s0), when D(s, s′) is fixed at 2, 3, 4, and 5
Angstroms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.11 Final reported decoys by ONION, superimposed with the native
structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.1 Approximating Topt(bi) and Topt(bj). . . . . . . . . . . . . . . . . . . 109

7.2 Superpositions of the GDT1 by the original GDT and OptGDT for
T0490, domain 2 for BAKER-ROSETTA. . . . . . . . . . . . . . . 114

7.3 Superpositions of the GDT8 by the original GDT and OptGDT for
T0496, domain 2 for Zhang-Server . . . . . . . . . . . . . . . . . . . 115

xiv



8.1 Overall view of the construction for the clause (x1 ∨ x2 ∨ x3) . . . . 128

8.2 Chains connected by the pivot points . . . . . . . . . . . . . . . . . 129

8.3 Optimal mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

8.4 Distances between points at the pivots . . . . . . . . . . . . . . . . 129

8.5 Re-positioning chains . . . . . . . . . . . . . . . . . . . . . . . . . . 130

8.6 Construction for a variable that appears in four clauses . . . . . . . 131

8.7 View from top of Figure 8.6 . . . . . . . . . . . . . . . . . . . . . . 131

8.8 Graph G0 to Illustrate the Reduction. . . . . . . . . . . . . . . . . . 132

8.9 Arc Sets IP and PQ1 for graph G0. . . . . . . . . . . . . . . . . . . 135

8.10 Arc Set QRj for G0. QRj codes the edge information. . . . . . . . 135

8.11 Arc sets RSj−1, STj, and TUj for G0. . . . . . . . . . . . . . . . . 136

8.12 Arc Set UPj and PQj for G0. . . . . . . . . . . . . . . . . . . . . . 137

8.13 Arc propagation for A1. . . . . . . . . . . . . . . . . . . . . . . . . 138

8.14 Example demonstrating the flaw of the algorithm: (a) A {G, <}-
structured CM as the pattern, and (b) the target CM. . . . . . . . . 151

xv



Chapter 1

Introduction

Biology would not be what it is today without the laws of hereditary discovered
by Gregor Johann Mendel. However, there are many unknown laws in nature,
many of which are more elusive than Mendel’s laws, and more difficult to discover.
Computational methods have emerged as fast and elegant tools to assist in the
discovery of such laws. The development and use of computational methods in
biology are generally known as bioinformatics today. These methods can be applied
to discover the laws behind biological systems and to solve routine problems in
biology, relieving biologists from their tedious tasks. The former is considered the
informatics aspect and the latter is the computational aspect of bioinformatics. The
boundary between the two are blurred on occasions.

This thesis addresses problems from both aspects. In particular, the focus
is on ab initio protein structure prediction. Protein structure prediction is one
of the fundamental problems in bioinformatics and theoretical chemistry. It is
known that the amino acid sequence (primary sequence) of a protein folds into some
stable structures which correspond to its minimum energy states. The discovery
of these protein structures through “wet lab” techniques, such as nuclear magnetic
resonance (NMR) spectroscopy, or X-ray crystallography, is time-consuming and
costly. The use of protein structure prediction methods can reduce this time and
cost in obtaining protein structures by several orders of magnitude. The methods
have significant impact on medicine, biotechnology, and related fields.

Most of the difficulties in predicting a protein structure come from the poten-
tially enormous size of the protein structure’s conformation space, as well as our
only partial understanding of the physical basis behind protein structural stability.
These two factors determine the performance of any protein structure prediction
method. The process to search through the conformation space is called the search
strategy, and the physical basis of the structural stability is called the energy (or
score) function.

To reduce the search space, one approach in protein structure prediction is to
assume that a (near) native structure exists in a pool of known structures. The only
need is to identify the structure by using an energy function. Protein prediction

1



methods with this approach are referred to as comparative structure prediction
(also called homology modeling) or threading. For ab initio structure predictions,
the native structure is not assumed bo be in any known structure space. They
rely on a structure construction method and energy function to discover the native
structure.

The design of promising ab initio methods is a challenging task. The methods
require tremendous amounts of computational power. For this reason, most of
the present ab initio methods depend on a simplified representation of protein
structures, rather than on an atomic level representation. The use of atomic level
representation in ab initio methods seems unlikely in the near future. The design
of energy functions for this class of methods poses another challenge. In spite of
the difficulties, ab initio protein prediction is under active research today due to
the impact and potential benefits [172].

In this thesis, a fragment-based approach to ab initio protein structure predic-
tion is adopted. Such an approach involves several steps: local structure prediction,
structure assembly or sampling, side chain packing, quality assessment, structural
comparison, and alignment. The subproblems of local structure prediction, side
chain packing, structure assembly, and quality assessment are explored from both
their computational and informatics aspects. Also, the structural comparison and
alignment problems are explored from the computational aspect. In this thesis,
it is assumed that a plausible energy function is given. Consequently, the focus
is on the design of more efficient search strategies. Figure 1.1 provides an overall
view of the design. In Chapter 2, preliminary concepts are introduced for further
discussions. In Chapter 3, the structural fragment library problem is examined.
The structural fragments serve as building blocks for constructing structures. A
method for building structures from this fragment library is proposed in Chapter
4. The method results in a backbone structure of the protein. With this backbone
structure, branches, called side chains, are added to complete the structure. The
problem of adding these side chains is studied in Chapter 5. Often, this structure
generation is repeated, resulting in a very large collection of structures, called de-
coys. From these structures, a few structures which are believed to be closest to
the native structure are selected. They are either reported as the closest structures,
or used as references to obtain even more accurate structures. This decoy selection
problem is studied in Chapter 6. The next problem is to assess the quality of the
reported structures, by comparing them to the native structure (given that the na-
tive structure is known). This problem is studied in Chapter 7. Finally, in Chapter
8, various theoretical results of computational problems, related to the alignment
of two 3D structures are shown, through extending the proposed decoy comparison
techniques in Chapter 7, with other graph theoretic methods.

Now, a brief introduction to each of the problems studied in this thesis is pro-
vided.

2



Structural Alphabet
      (Chapter 3)

Structure Sampling
      (Chapter 4)

Side Chain Packing
      (Chapter 5)

Decoy Selection 
      (Chapter 6)

Structure Comparison
      (Chapter 7&8)

Structure Generation

Figure 1.1: Overview of the proposed protein structure prediction method

1.1 Structural Fragment Libraries

A possible approach to the ab initio protein structure prediction is to identify small
building blocks for a protein structure at the initial stage. These building blocks
are called structural fragment libraries.

The subproblem is approached from both its computational and informatics
aspects. From the computational aspect, the problem studied is on how to select
from a set of these building blocks, a small subset that represents the entire set.
From the informatics aspect, why a peptide sequence favors certain substructures
is examined. The details of the problems follow.

1.1.1 Computational Aspect: The Fragment Library Size

Each structure is considered as a sequence of l points in 3D space, where l is a
fixed natural number. Given a set of structures, the idea is to identify a small set
of structures (that is, a structural alphabet) that can aptly represent the set.

The problem is formulated as follows. Two structures, f1 and f2, are equivalent
if and only if there exist transformations R and T such that f1 = Rf2 + T , where
R and T are a rotation and a translation, respectively. The distance between two
structures is considered to be the sum of the squared Euclidean distance between
all their corresponding points. Given a set of n structures, the problem is to find k,
k ≤ n, structures g1, g2, ..., gk, so as to minimize the sum of the distances between

3



each of f1, f2, ..., fn to its nearest structural fragment in g1, ..., gk. In this thesis,
a polynomial-time approximation scheme (PTAS) is proposed for the problem by
using a sampling strategy.

1.1.2 Informatics Aspect: Peptide Subsequence Favors a
Partial Subset of Substructures

Reducing the size of the structural fragment library can reduce the search space
in fragment-based protein structure prediction. However, it is difficult to make a
structural fragment library succinct without losing accuracy. An alternative ap-
proach is to consider the fact that a peptide subsequence (sequence segment) does
not adopt all the structural fragments in a library with uniform probabilities; that
is, each peptide subsequence has a set of preferred structural fragments. Hence, a
reduction in the search space can be achieved by using a different set of structural
fragments for each sequence segment.

To identify the preferred subset of structural fragments for a sequence segment,
classical approaches such as ROSETTA depend on the sequence profile and sec-
ondary structure information to predict the structural fragments. In this thesis,
more structural information, such as solvent accessibility and contact capacity are
utilized for finding the structural fragments. To derive the best combination of
sequence profile and structural information items, integer linear programming is
employed.

1.2 Sampling Structures from Building Blocks

Given a set of candidate substructures for each sequence segment, the intention
is to build a structure which is similar to the native structure. By designing a
search method such that the conformation space to be searched is greatly reduced,
it might be possible to sample a native-like structure where the conformations are
compatible with the derived local biases.

A position specific hidden Markov model (HMM) based on the above idea is
applied to predict the protein structures. Inherently, the new framework repeats
itself to converge to a final target, conglomerating fragment assembly, clustering,
target selection, refinement, and consensus, all in one process.

An implementation of the method results in the FALCON system to predict
protein structures. In addition, an automatic system for determining protein struc-
tures from NMR spectra is obtained by extending the FALCON sytem.

4



1.3 Side Chain Packing

After the protein structures are predicted, a natural step is to identify the molecules,
called side chains, which are attached to the core structure. Again, the problem is
addressed from both aspects.

1.3.1 Informatics Aspect: Backbone Codes Sufficient In-
formation for Side Chain Conformation

A typical side chain packing method consists of two steps. First, side chain con-
formations, known as rotamers, are extracted from known protein structures or
rotamer libraries for each residue. Secondly, an energy function is used to elim-
inate the ambiguities of the side chain conformations. A model of substructures
called hexagon substructures is used in the search for the rotamer candidates. The
hexagon substructures code some distant contact information to implicitly capture
some subtle issues in the energy function for the side chain conformations.

The results indicate that the number of rotamer candidates can be reduced to
around three. This leads to the following study.

1.3.2 Computational Aspect: The Problem Remains NP-
hard for a Constant Number of Rotamers

It has been proven that the side chain packing problem is NP-complete [7, 125].
However, the results do not consider geometric constraints; that is, the number of
residues that a rotamer can interact with is constant. The residues can be bounded
in a convex shape of a constant volume. Using this constraint, a PTAS has been
proposed under the model of geometric neighborhood graph and an NP-complete
proof is given [167]. In the proof, each residue is assumed to have m rotamers,
for some unbounded constant m. However, this is not valid, as it is possible to
reduce the number of rotamer candidates for each residue to a small constant by
the dead end elimination preprocessor or by the hexagon structures proposed in
this thesis. It is useful to know if, in this case, the problem remains NP-hard. This
thesis gives a proof that the problem remains NP-complete under the geometric
constraint, even if each residue has at most three rotamers.

1.4 Reporting Final Decoys

Typically, ab initio prediction methods are repeated many times, with each run
producing one structure. This results in a large collection of structural candidates,
which are referred to as decoys. The task of selecting one decoy as the final an-
swer is an interesting problem, which is studied from both the computational and
informatics aspects.

5



1.4.1 Computational Aspect: a Faster Clustering Method

Within the decoy set, the decoy with the highest number of neighbors within a
threshold distance is often better than the other decoys in the set. This decoy is
sometimes reported as the best decoy within the set. Conventional methods for
such a computation are based on pairwise RMSD (Root Mean Squared Deviation)
evaluation, resulting in runtimes that are, at best, quadratic in the number of
decoys. Three heuristics are proposed to speed up the RMSD evaluation and their
effectiveness are examined through experimentation in this thesis.

1.4.2 Informatics Aspect: Distance Function Favorites Na-
tive Structure

The quality assessment of decoys is an essential and difficult step in protein struc-
ture prediction. It is possible to utilize ensemble-based methods such as clustering
techniques, or employ machine learning techniques with the alignment score entries
as features. However, these methods are based on an un-verified hypothesis that if
two decoys are close to each other, both of them should be close to the unknown
native structure. A strict verification of this hypothesis can provide not only an
explanation, but also a stochastic foundation for further applications such as model
selection and refinement.

The relationship between the distance of any pair of decoys and the distance
of these decoys to the native structure is investigated. It is observed that for any
two decoys with a fixed distance, their distance to the native structure roughly
conforms to a Gaussian distribution. Based on this observation, a novel model
selection method is designed to explain why ensemble-based methods work well in
practice.

1.5 Model Comparison

How to evaluate the quality of models is a fundamental problem in the field of
protein structure prediction. Numerous evaluation criteria have been proposed,
and one of the most intuitive criteria is to find a largest well-predicted subset, that
is, a maximum subset of the model which matches the native structure [137].

In this problem, one is given two equal length structures and the task is to
find a superposition of the two structures to maximize the overlapping residues
between the two structures. The problem is solvable in O(n7) time, albeit too slow
for practical usage. A (1 + ε)d distance approximation algorithm is proposed that
runs in time O(n3 log n/ε5) for general protein structures. In the case of globular
proteins, the result can be enhanced to a randomized O(n log2 n) time algorithm
with a probability of at least 1 − O(1/n). In addition, a (1 + ε)-approximation

6



algorithm is devised to compute the minimum distance to fit all the points of a
model to its native structure in time O(n(log log n+ log 1/ε)/ε5).

1.6 Structure Alignment

Structure alignment is a problem very similar to model comparison. In structure
alignment, one is given two structures of possibly non-equal lengths and the task
is to find out a superposition, as well as a maximum set of corresponding residues
of the two structures by the superposition. Three open questions on this topic are
answered.

1.6.1 Structure Alignments under the Proximity Require-
ment

In this version of the problem, each protein is modeled as a sequence of 3D points,
and a contact edge is placed between each pair of these points that are sufficiently
close. Given two proteins represented this way, the problem is to find a subset
of points from each protein, and a bijective matching of points between these two
subsets with the objective of maximizing either

• the size of the subsets (largest common point set, the LCP problem), or

• the number of edges that exist simultaneously in both subsets (Contact Map
Optimization, the CMO problem)

with the requirement that only the points within a specified proximity can be
matched. It is known that the general CMO problem (without the proximity re-
quirement) is hard to approximate. However, with the proximity requirement, it is
known that if a minimum inter-residue distance is imposed on the input, approxi-
mate solutions can be efficiently obtained. The two questions of the CMO problem
under these conditions were open. In this thesis the CMO problem under these
conditions is shown to be

• NP-hard, but

• allows a PTAS.

In addition, we show approximation schemes for the LCP problem which im-
prove on the time complexities of known algorithms.

7



1.6.2 Crossed Contact Map

The contact map pattern problem is to identify a largest pattern from a given
contact map with a certain property. The problem left unanswered at present is if
there is a polynomial time solution for the contact map pattern problem, when the
pattern is crossed. We present a reduction from the clique problem to show that
the problem is NP-hard.

The contact map pattern matching problem is to decide if a contact map (called
the pattern) is a substructure of another contact map (called the target). In general,
the problem is NP-hard, but when there are restrictions on the form of the pattern,
the problem can, in some cases, be solved in polynomial time. In particular, a
polynomial time algorithm has been proposed [66, 67] when the patterns are so-
called crossing contact maps. In this thesis, it is confirmed that the problem is
actually NP-hard and an error in the analysis of the previous algorithm is noted.

8



Chapter 2

Preliminary Issues

In this chapter, protein structures and some related concepts in the field of protein
structure prediction are introduced. The most important molecules in biochemistry
are proteins and many issues are related to protein structure. The review in this
chapter is brief. However, it gives a reader sufficient biological background to
continue to read this thesis.

2.1 Amino Acids and Primary Sequences

The building blocks of proteins are amino acids. Twenty types of amino acids have
been found in protein structures. A typical amino acid has an amine functional
group (-NH2) and a carboxyl functional group (-COOH). In an amino acid, these
two groups are attached to a C atom, which is referred to as Cα (see Figure 2.1).

Figure 2.1: Amino acid [161]

In addition, an R group is attached to
the Cα in the amino acid, and is re-
ferred to as the side chain of the amino
acid. The amino acids differ mainly by
the types of their side chains. An R
group can be as simple as an H atom,
or as complex as to contain aromatic
substructure. Twenty formulas for the
side chains have been found in protein
structures, resulting in twenty types of
amino acids.

Two amino acids can react to form a
peptide bond. In particular, the amine
group of one amino acid reacts with the
other amino acid’s carboxyl group to

create a new peptide bond, releasing one water molecule in the process (see Fig-
ure 2.2). One end of this new molecule is an amine group, and the other end

9



Figure 2.2: Formation of peptide [161]

is a carboxyl group. This enables the molecule to continually react with other
amino acids to form a polymerization of amino acids. A protein sequence is such a
polymerization of amino acids.

If we write each amino acid type as a single letter, the protein sequence can be
written as a string over an alphabet of size twenty. Each amino acid is also coded
with three letters according to its name. These are the two common schemes for
coding protein sequences.

2.2 Shapes of Proteins

Usually, protein sequences that occur in nature are fewer than 1,000 residues long.
Occasionally, there are protein sequences which contain more than 100,000 residues.
Often, these long proteins contain some repetitions in their amino acid sequences,
and are referred to as fibrous proteins. They are inert and play important roles in
bones, skin, hair cells, and so on.

10



Many known protein structures are classified as globular proteins. Frequently,
they have a unique compact structure which they fold into, and they are, typically,
fewer than a hundred to several hundred residues in length. Many globular proteins
are crystallisable, and the structures can be determined by X-ray. In addition, NMR
techniques have been utilized to determine the structures.

Figure 2.3: Geometry of backbone atoms

Some proteins are also classified as
membrane proteins. These proteins
are attached to or associated with the
cells. They exhibit a small tail that
is anchored or embedded in the mem-
branes. The membrane proteins with a
small tail anchored in the membranes
are often also globular. More than
half of these proteins interact with the
membranes, and can transfer materials
through the membranes they interact
with.

2.3 Geometric Repre-

sentations and Some

Notations

Typically, protein structures are speci-
fied to various levels of detail, as they
are needed. A full representation re-
quires at least all the coordinates of the
proteins’s atom, but since the positions
of the hydrogens in the protein are diffi-
cult to detect with NMR or X-ray tech-
niques, a protein structure is often spec-
ified with only the coordinates of its
heavy atoms. For the purpose of pro-
tein structure prediction and compari-
son, only the backbone heavy atoms are
commonly specified. For this reason, a
protein structure means only the back-
bone heavy atoms’s coordinates in pro-

tein structure prediction, usually. Furthermore, in some programs and methods,
only the Cαs’ coordinates for the protein structure are considered.

Another approach to fully specify a protein structure is by stating all of its
bond lengths, bond angles, and dihedral (torsional) angles. The bond lengths
and bond angles are commonly considered invariant for the purpose of protein

11



structure prediction. As a result, the structure can be recovered using only the
dihedral angles. In addition, the dihedral angles (referred to as ω) around the
peptide bonds are approximately 180◦, and occasionally, 0◦. Therefore, a backbone
is often parameterized by φ (dihedral angles around bond C-Cα) and ψ (dihedral
angle around bound Cα-N) angles.

Figure 2.4: Helix structure

In this thesis, the protein structure
and Cα’s coordinates are referred to
interchangeably, when the context is
clear. Therefore, a protein structure
is a sequence of 3D coordinates. That
is, it is possible to denote the Cα trace
of a protein structure as s1, s2, ..., sn,
si ∈ R3, 1 ≤ i ≤ n for a protein
structure of n residues. The distance
between two adjacent Cαs is approxi-
mately 3.8Å with small variances.

Each Cα atom corresponds to a
point in 3D space. For two protein
structures S1 = (s1,1, s1,2, . . . , s1,n) and
S2 = (s2,1, s2,2, . . . , s2,n), each si,j, 1 ≤
i ≤ 2, 1 ≤ j ≤ n, is a 3D point, indi-
cating a Cα atom in the backbone. The
Cα RMSD of S1 and S2 is defined as

Cα RMSD(S1, S2) = i (2.1)

min
R∈R,T∈T

√∑n
i=1 ||Rs1,i − s2,i − T ||2

n

where R is the set of all rotations, and
T , the set of all translations.

Technically speaking, the RMSD be-
tween two protein structures should be
defined on a full representation of the
protein structures. However, most of
the present ab initio methods depend
on a simplified representation of protein
structures, which consists of only the Cα atoms. For this reason, the term RMSD
is used to refer to the Cα RMSD throughout this thesis.

Torsional angles are used to parameterize the backbone structure, where the
sequence of torsional angle pairs is denoted as (φ1, ψ1), (φ2, ψ2), ..., (φn, ψn), from
the N-terminus to the C-terminus.

12



2.4 Secondary Structure

Secondary structures are the local conformations or the spatial relationships of the
amino acids that reside close to each other in the primary sequences. Three types
of secondary structures exist in globular proteins: α-helices, β-strands, and turns.

Figure 2.5: Beta strand

The most well-known secondary
structure is the right-handed α-helix.
Each turn of a regular α-helix has 3.6
residues. The values of the dihedral
angles for φ and ψ in a regular he-
lix are around −57◦ and −47◦, respec-
tively. Hydrogen bonds are formed be-
tween the carbonyl group of residue i
and the amide group of residue i + 4.
Hydrogen bonds are the dominant rea-
son that helix structures are formed.
Helices can contain four residues to 40
residues. The structure is stable at the
length of approximately ten residues.

Occasionally, helix structures are
observed, where the hydrogen bonds are
formed between residue i and residue
i + 3 (310 helix), or between residue
i and residue i + 5 (π helix). Most
software programs to predict secondary
structures do not distinguish between
one type of helices and another. Amino
acid types do not appear in helix struc-
tures with uniform probability. Amino
acid P (proline) does not form helices.
An α-helix is drawn as a helix cartoon
without the atomic details.

Typically, β-strands are the sec-
ond major secondary structures in pro-
teins and they are chains of five to ten
residues. The β-strand is a helix ar-
rangement, and a single β-strand is not
stable due to the lack of local contact.
If two strands are paired, then hydro-
gen bonds are formed, and the stabil-
ity increases significantly. When two or
more β-strands form a sheet-like structure, this structure is referred to as a β-sheet.
Hence, in a β-sheet, two adjacent strands can be either parallel or anti-parallel and
two β-strands are connected by three or more hydrogen bonds. Usually, parallel

13



β-sheets contain at least four strands, whereas anti-parallel β-sheets usually contain
only two strands. β-sheets are often extensively curved and are called β-barrels.
The typical β-barrels are formed by eight parallel strands which are linked together
by helical segments. The β-strands are seldom stretched perfectly, and are some-
what distorted. The ideal values of the dihedral angles φ and ψ are −135◦ and 135◦,
respectively. Again, residues do not occur with uniform probability in β-strands,
or even at different portions of the strands. Frequently, the β-strands are drawn
as an arrow cartoon directed from the N-terminus to the C-terminus without the
atomic details.

Turn is the third secondary structure type. In some structures, more than 30%
of the residues are turn structures. Frequently, they are not random structures.
Turns are formed to redirect the polypeptide. Analyses have indicated that there
are at least ten types of turns, each with lengths of three to four amino acids. A γ
turn contains three residues, and it is between two adjacent anti-parallel β strands.
G (Glycine) is the preferred residue type for the second residue in the turn. The
first and the third residues in the γ turn can form a hydrogen bond. A β turn
contains four residues, and it is possible for the first and forth residues to form a
hydrogen bond.

2.5 Tertiary Structure

The Protein Data Bank (PDB) [17] contains nearly 57,800 structures at this mo-
ment, and the number of structures is increasing. These structures are obtained
by NMR and X-ray techniques. Recently, Electron Microscopy (EM) has emerged
as an alternative tool for determining protein structures experimentally. There
are around 200 structures in the database found by using the EM method at this
moment. These deposited structures are tertiary structures for some protein se-
quences.

Tertiary structures are the folded polypeptide chains. The term fold and tertiary
structures are used interchangeably. A fold links together the secondary structure
elements to form a compact molecule, called a native structure. For the purpose
of protein structure prediction, it is typically assumed that the native structure is
unique for each protein.

There are several sources of interactions in the formation of a tertiary structure:
disulfide bridges, hydrophobic effects, charge-charge interactions, hydrogen bonds,
and van der Waals interactions. Disulfide bridges are the bonds formed by two
cystine animo acids at least five residues apart in the sequence. They break at high
temperatures. Some amino acid types are hydrophobic. The hydrophobic effect is
that non-polar atoms prefer non-aqueous environments. Charge-charge interactions
occur between oppositely charged side chains. Hydrogen bonds form the secondary

14



structure elements, and can occur between side chains. Van der Waals’ interactions
are crucial to protein folding, and control the interactions among atoms.

2.6 Additional Remarks

It is assumed that the protein backbone structure can be parameterized by the
dihedral angle pair sequence, (φ1, ψ), ..., (φn, ψn), based on the assumption that
the bond angles and bond lengths are invariant. However, the bond angles and
bond lengths often have small variations, and these variations can result in large
changes in the 3D structure.

This issue can be treated as follows. Given a structure S, its torsional pairs,
(φ1, ψ), ..., (φn, ψn) can be extracted. With these torsional angles and ideal bond
lengths and bond angles, a new backbone structure S ′ can be constructed. The
distance between S ′ and S is denoted d(S ′, S). If the distance d is the RMSD, on
average, d(S ′, S) can be as large as 6.5Å [78]. One possible way to overcome this
problem is to distort the torsional angles slightly to absorb the errors introduced
by the bond angles and bond lengths. By doing so, the error can be reduced to
0.5Å usually. This problem can be formalized as follows.

Structure Idealization Problem
Input: Structure S, backbone dihedral angle pairs (φ1, ψ1), ..., (φn, ψn)

and a constant θ
Output: A structure S ′ with

(1) dihedral angle pair sequence (φ′1, ψ
′
1), ..., (φ′n, ψ

′
n);

(2) ideal bond angles and bond lengths;
(3) |φi − φ′i| ≤ θ and |ψi − ψ′i| ≤ θi, 1 ≤ i ≤ n; and
(4) minimized d(S ′, S)

This idealized problem can be extended to all the dihedral angles and all the atoms
in a protein structure. Whether this problem can be solved in polynomial time is
unknown, and a related problem has been noted in [46].

15



Chapter 3

Structural Fragment Libraries

A small set of structural fragments suffices to model protein structures accurately [93].
The building of such structural fragment libraries has attracted intensive research.
A fragment-based protein structure prediction is done in two steps:

• identify the building blocks which are the fragments of known structures; and

• construct the protein structure with those building blocks by applying some
search or simulation algorithms.

The design of succinct and highly accurate structural fragment libraries is crucial to
the approach. Compact libraries enable efficient searches, while accurate libraries
result in better models. A constant factor reduction in the library size results in
an exponential reduction of the search space.

The two best automatic methods in CASP7 [120], namely ROSETTA and
TASSER, involve the use of the fragment assembly strategy. Fragment-based pro-
tein structure prediction methods can be traced back to [122], in which a protein
fold is simplified into smaller parts by using regular secondary structures. Research
intensified after the work of [86], which uses the known structures to refine the pre-
dicted structures. Various fragment based structure prediction methods have also
been developed in the literature [23,40,86,104,138,146,153,160], the most notable
being ROSETTA [24,37,141].

Studies on the problem have resulted in very compact independent libraries,
and it is difficult to reduce the sizes of these libraries further. However, it has
been noted that a sequence segment does not adopt all the structural fragments
in a library with uniform probability. Therefore, it is more reasonable to build a
customized structural candidate list for each sequence segment. This way, the size
of the structural candidate list can be even more succinct.

16



3.1 Fragment Libraries

Structural fragment libraries are also referred to as “structural alphabet” in the lit-
erature. The size of a fragment library varies from dozens to hundreds of structural
fragments, and the fragments can have fixed or variable lengths. Typically, the
fragments in these libraries have lengths of no more than nine, since the structure
database does not contain representative resemblances for longer fragments [56].

Kolodny et al. [93] have studied fragment library with k-means clustering meth-
ods, and shown that it is unnecessary to have a large fragment library to accurately
model protein structures and construct near native structures. In that study, frag-
ments with lengths of four to seven are built with library of size from four to 250.
The criteria of evaluating fragment libraries for building protein structures have
been investigated in [78]. Besides extracting the structural fragments from known
proteins, research has also been conducted on constructing structural fragments
with ab initio methods, and such methods produce longer fragments [114]. Some
recent fragment assembly algorithms [73, 82, 101] rely on longer fragments and/or
different simulation algorithms. In another related work, De Brevern et al. [4]
proposed a 16-letter alphabet to predict the local structures of a protein.

For the purpose of protein structure prediction, it is more desirable to have
a position specific structural fragment list for each sequence segment of the tar-
get. Only a limited number of structural fragments in the fragment libraries are
adopted as candidate structural fragments for a sequence segment. ROSETTA im-
plemented this idea according to two types of information: the sequence profile
and the secondary structure similarity [129,141]. Specifically, sequence profiles, for
the query sequence and each sequence in the structure database, are generated by
PSI-BLAST [11]. A profile-profile similarity between a query sequence segment and
a structural fragment is calculated using a distance function called the City Block
Metric (CBM) such that

DISTANCE =
∑̀
i=1

20∑
aa=1

|S(aa, i)−X(aa, i)| (3.1)

where ` is the fragment length, and S(aa, i) and X(aa, i) are the frequencies of
amino acid aa at position i in the sequence segment and in the structural fragment,
respectively. In addition, for a query sequence segment, its predicted secondary
structure is compared with the known secondary structure of each structural frag-
ment.

In TASSER [171] similar ideas are adopted. However, unlike ROSETTA, where
the fragments are a fixed length, TASSER extracts the structural fragments with
varying fragment lengths, from the structural models generated by threading pro-
grams.

17



3.2 Contributions

In this chapter, two problems regarding structural fragments are studied. The first
problem is concerned with finding succinct structural fragments, while the second
problem is on the construction of position specific fragment libraries.

The first problem is as described in Section 1.1.1. It is formalized as a problem
of constructing a few consensus structures to represent a given set of structural
fragments. It will be shown here that that there is a PTAS for the problem through
a sampling strategy. More precisely, an optimal solution, obtained by sampling the
smaller subsets of the input suffices to provide an approximate solution, and the
approximation ratio improves as the size of the sampled subsets increased.

For the second problem, the following ideas are explored.

• By introducing structural information items, such as the secondary structure,
the solvent accessibility, and the contact capacity, more accurate predictions
can be achieved.

• By using integer linear programming, the best combinations of both the se-
quence and structural information items can be derived.

It is noteworthy that these strategies can significantly improve the protein struc-
ture prediction, with all the other conditions unchanged.

3.3 Independent Structural Fragment Libraries

From here onwards the discussion proceeds formally. First, the problem is formal-
ized and some relevant concepts are introduced.

3.3.1 Problem Formulation

Throughout this discussion, ` is a fixed non-zero natural number. A structural
fragment is a sequence of ` 3D-points. The mean square distance (MSD) between
two structural fragments, f = (f [1], . . . , f [`]) and g = (g[1], . . . , g[`]), is defined as

MSD(f, g) = min
R∈R,τ∈T

∑̀
i=1

‖ f [i]− (R · g[i] + τ) ‖2, (3.2)

where R is the set of all rotation matrices, T is the set of all the translation vectors,
and ‖ x− y ‖ is the Euclidean distance between x and y.

The root of the MSD measure, that is, the RMSD, has been extensively studied.
R ∈ R, τ ∈ T that minimizes

∑`
i=1 ‖ f [i] − (R · g[i] + τ) ‖2 to yield MSD(f, g)

18



also gives RMSD(f, g), and vice versa. Since, given any f and g, there are equa-
tions [13, 152] for finding R and τ that yield RMSD(f, g), MSD(f, g) can be com-
puted efficiently for any f and g.

Furthermore, it is known that to minimize
∑`

i=1 ‖ f [i] − (R · g[i] + τ) ‖2, the
centroids of f and of g must coincide [13]. Due to this, without the loss of generality,
it is assumed that all the structural fragments have centroids at the origin. Such
transformations can be accomplished in O(n`) time. After such transformations,
in computing MSD(f, g), only the parameter R ∈ R needs to be considered, that
is,

MSD(f, g) = min
R∈R

∑̀
i=1

‖ f [i]−R · g[i] ‖2 . (3.3)

In the problem, given a set of n structural fragments f1, f2, . . . , fn, the task
is to find k structural fragments, g1, . . . , gk, such that each structural fragment,
fi, is “near”, in terms of the MSD, to at least one of the structural fragments in
g1, . . . , gk. Such a problem is formulated as

k-Consensus Structural Fragments Problem under MSD

Input: n structural fragments f1, . . . fn, and a non-zero natural
number k < n.

Output: k structural fragments g1, . . . gk, minimizing the cost∑n
i=1 min1≤j≤k MSD(fi, gj).

In this chapter it is demonstrated that there is a PTAS for the problem.

The following notations are employed. The cardinality of set A is written as
|A|. For a set A and a non-zero natural number n, An denotes the set of all
length n sequences of elements of A. If the elements in set A are indexed, say
A = {f1, f2, . . . , fn}, then Am! represents the set of all the length m sequences,
fi1 , fi2 , . . . , fim , where 1 ≤ i1 ≤ i2 ≤ . . . ≤ im ≤ n. For sequence S, S(i) signifies
the i-th element in S, and |S| indicates its length.

3.3.2 Core Set of Structural Fragments

The following lemma, from [127], is central to the PTAS in this thesis.

Lemma 1 ( [127]). Given a sequence of real numbers a1, a2, . . . , an and an integer
r, 1 ≤ r ≤ n. Then, the following equation holds:

1

nr

∑
1≤i1,i2,...,ir≤n

n∑
i=1

(
1

r

r∑
k=1

aik − ai)2 =
r + 1

r

n∑
i=1

(
1

n

n∑
k=1

an − ai)2. (3.4)

19



Given a sequence of 3D points, P1 = (x1, y1, z1), P2 = (x2, y2, z2), . . . , Pn =
(xn, yn, zn), it can be derived that

1

nr

∑
1≤i1,i2,...,ir≤n

n∑
i=1

‖ Pi1 + Pi2 + · · ·+ Pir
r

− Pi ‖2

=
1

nr

∑
1≤i1,...,ir≤n

n∑
i=1

(
1

r

r∑
k=1

xik − xi)2 + (
1

r

r∑
k=1

yik − yi)2 + (
1

r

r∑
k=1

zik − zi)2

=
r + 1

r

n∑
i=1

(
x1 + . . .+ xn

n
− xi)2 + (

y1 + . . .+ zn
n

− zi)2 + (
z1 + . . .+ zn

n
− zi)2

=
r + 1

r

n∑
i=1

‖ P1 + P2 + · · ·+ Pn
n

− Pi ‖2 . (3.5)

Similarly, the equation can be extended for the structural fragments. Given n
structural fragments, f1, . . . , fn, Equation 3.5 can be rewritten as

1

nr

∑
1≤i1,...,ir≤n

n∑
i=1

‖ fi1 + · · ·+ fir
r

− fi ‖2=
r + 1

r

n∑
i=1

‖ f1 + · · ·+ fn
n

− fi ‖2 (3.6)

It can be inferred from the equation that there exists a sequence of r structural
fragments fi1 , fi2 , . . . , fir such that

n∑
i=1

‖ fi1 + · · ·+ fir
r

− fi ‖2 ≤ r + 1

r

n∑
i=1

‖ f1 + · · ·+ fn
n

− fi ‖2 . (3.7)

The new strategy relies on this fact, essentially, in the same way as in [127] to
approximate the optimal solution for the k-consensus structural fragments problem;
that is, by exhaustively sampling every combination of k sequences, each of the r
elements from the space, R′×{f1, . . . , fn}, where f1, . . . , fn is the input, and R′ is
a fixed selected set of rotations. This set of rotations is discussed next.

3.3.3 Discretized Rotation Space

Any rotation can be represented by a normalized vector, u, and a rotation angle,
θ, where u is the axis around which an object is rotated by θ. If (u, θ) is applied
to vector v, vector v̂ is obtained, and expressed as

v̂ = u(v · u) + (v − w(v · w)) cos θ + (v × w) sin θ, (3.8)

where · represents dot the product, and × represents the cross product.

By the equation, it is possible to verify that a change of ε in u results in a
change of, at most, α1ε|v| in |v̂| for some computable α1 ∈ R. Also, a change of

20



ε in θ results in a change of, at most, α2ε|v| in |v̂| for some computable α2 ∈ R.
Now, any rotation, around an axis through the origin, can be written in the form,
(θ1, θ2, θ3), where θ1, θ2, θ3 ∈ [0, 2π) are, respectively, a rotation around each of the
x, y, z axes. Similarly, a change of ε in θ1, θ2, or θ3 results in a change of, at most,
αε|v|, for some computable α ∈ R.

The values that each θi, 1 ≤ i ≤ 3 may take within the range [0, 2π) are
discretized into a series of angles at the angular difference, ϑ. Thus, there are at
most, O(1/ϑ) of such values for each θi, 1 ≤ i ≤ 3. R′ denotes the set of all possible
discretized rotations (θ1, θ2, θ3). |R′| is of the order O(1/ϑ3).

If d is the diameter of the smallest ball that is able to encapsulate each of
f1, f2, . . . , fn, any distance between two points among f1, . . . , fn is, at most, d. In
this chapter, it is assumed d is a constant with respect to the input size. For a
protein structure, d is of the order O(`) [72]. For any b ∈ R, ϑ can be chosen so
small that for any rotation, R, and any point, p ∈ R3, there exists R′ ∈ R′ such
that ‖ R · p−R′ · p ‖ ≤ αϑd ≤ b.

3.3.4 Polynomial-time Algorithm with Ratio ((1+ ε)Dopt+c)

The newly proposed algorithm for the k-consensus structural fragments problem is
summarized in Table 3.1.

The following explains the details of the algorithm. In Step ii, each combination
of m distinct subsets A1, . . . , Am from f1, . . . , fn is evaluated. Since all possible
such subsets are examined, it is clear that there is at least one combination such
that each subset is from a distinct cluster in the optimal clustering. The score
of each subset Aj is evaluated by sampling up to r structural fragments (allowing
repeats) from Aj (from Step ii(a) onwards). Such an evaluation is possible due to
Equation 3.7. The evaluation exhaustively checks every possible combination of all
the transformations in R′ on the structural fragments. This is attempted in Step
ii(b). Each of these samplings of Aj produces a consensus structural fragment, uj
for Aj in Step ii(c), the score of which is evaluated by Step ii(d). Finally, in Step
iii, the consensus patterns, u1, . . . , um, which give the best score are the output.

The time complexity of the algorithm should now be analyzed. The number of
combinations for F1, F2, . . . , Fm in Step ii(a) is O(nrk). An Fj can be represented
by a length-r string of n + 1 symbols, where n of the symbols each represents one
of f1, . . . , fn, while the remaining symbol represents “nothing”. It is clear that for

any given Aj, each Fj ∈ Ar!j , or Fj ∈ A
|Aj |!
j (where |Aj| ≤ r) can be represented

by one such string. Furthermore, any F1, F2, . . . , Fm can be entirely represented by
k such strings. That is, to represent the case where m < k, k −m strings are set
to “nothing”. From this, it is evident that there are at most (n + 1)rk = O(nrk)
possible combinations of F1, F2, . . . , Fm.

For each of these combinations, there are |R′|rk possible combinations of Θ1,
Θ2, . . . , Θm at Step ii(b), hence resulting in O((n|R′|)rk) iterations to run for Step

21



ii(c) to Step ii(e). Since Step ii(c) can be done in O(rk`), ii(d) in O(nk|R′|`), and
ii(e) in O(n) time, the algorithm completes in O(k`(r + n|R′|)(n|R′|)rk) time.

Here, it can be argued that Dmin eventually is at most (r + 1)/r of the op-
timal solution plus a factor. Let the disjoint clusters in the optimal solution be
A1,A2, . . . ,Am ⊆ {f1, . . . , fn} where m ≤ k. For each Aj, 1 ≤ j ≤ m, uj denotes
a structural fragment which minimizes

∑
f∈Aj

MSD(uj, f). Furthermore, for each
f ∈ Aj, Rf denotes a rotation where

Rf ∈ arg min
R∈R
‖ uj −R · f ‖2 (3.9)

and Dj is defined as

Dj =
∑
f∈Aj

‖ uj −Rf · f ‖2 (hence, the optimal cost, D =
∑m

j=1 Dj). (3.10)

By the property of the MSD measure, it can be shown that uj is the average of
{Rf · f | f ∈ Aj}. For each Aj where |Aj| > r, by Equation 3.6,

1

|Aj|r
∑
Fj∈Ar

j

∑
f∈Aj

‖
∑r

k=1RFj(k) · Fj(k)

r
−Rf · f ‖2 =

r + 1

r
Dj. (3.11)

Approximation Algorithm k-Consensus Structural Fragments
Input: structural fragments f1, . . . fn, natural numbers k < n and r ≥ 1.
Output: up to k structural fragments u1, . . . um, m ≤ k.

I. Let Dmin =∞, Consensus= ∅.
II. For each possible set of m ≤ k disjoint sets A1, . . . , Am ⊆ {f1, . . . , fn},
II(a). For every possible set F1, F2, . . . , Fm of sequences where

Fj ∈ Ar!j if |Aj| > r, otherwise

Fj is the (unique) sequence in A
|Aj |!
j that contains all the elements of Aj,

(Note that each distinct set of F1, . . ., Fm needs to be considered only once.)
II(b). For each possible sequence Θ1,Θ2, . . . ,Θm, where Θj ∈ R′|Fj | for 1 ≤ j ≤ m,
II(c). For j = 1 to m, find uj, the average structural fragment

for Θj(1) · Fj(1),
Θj(2) · Fj(2),

...
Θj(|Fj|) · Fj(|Fj|).

II(d). For i = 1 to n, find di = min{‖ uj −R · fi ‖2| 1 ≤ j ≤ m,R ∈ R′}.
II(e). If

∑n
i=1 di < Dmin,

set Dmin to
∑

j dj and set Consensus to {u1, . . . , um}.
III.Output Consensus.

Table 3.1: PTAS for k-Consensus Structural Fragments.

22



For each such Aj, let Fj be a member of Ar
j where∑

f∈Aj

‖
RFj(1) · Fj(1) + · · ·+RFj(r) · Fj(r)

r
−Rf · f ‖2 ≤ r + 1

r
Dj. (3.12)

Without loss of generality it is assumed that each Fj ∈ Ar!
j . Define µj as

µj =

{ RFj(1)
·Fj(1)+···+RFj(r)

·Fj(r)
r

if |Aj| > r
RFj(1)

·Fj(1)+···+RFj(|Aj |)·Fj(|Aj |)
|Aj | , otherwise.

(3.13)

Then the following can be derived,

m∑
j=1

∑
f∈Aj

‖ µj −Rf · f ‖2 ≤ r + 1

r
D. (3.14)

For each rotation Rf , Rf is the closest rotation to Rf within R′. Also, define
µj as

µj =

{ RFj(1)
·Fj(1)+···+RFj(r)

·Fj(r)
r

if |Aj| > r
RFj(1)

·Fj(1)+···+RFj(|Aj |)·Fj(|Aj |)
|Aj | , otherwise.

(3.15)

Since all possible Fj ∈ Ar!j for all possible Aj and for all R ∈ R′ are exhaustively
sampled, it is clear that

Dmin ≤
m∑
j=1

∑
f∈Aj

‖ µj −Rf · f ‖2 . (3.16)

Now the LHS (left hand side) of Equation 3.14 is related the RHS (right hand
side) of Equation 3.16. The RHS of Equation 3.16 is

m∑
j=1

∑
f∈Aj

‖ µj −Rf · f ‖2

=
m∑
j=1

∑
f∈Aj

‖ µj + (µj − µj) + (Rf · f −Rf · f)−Rf · f ‖2

≤
m∑
j=1

∑
f∈Aj

(‖ µj −Rf · f ‖ +(‖ µj − µj ‖ + ‖ Rf · f −Rf · f ‖))2

=
m∑
j=1

∑
f∈Aj

‖ µj −Rf · f ‖2 +(‖ µj − µj ‖ + ‖ Rf · f −Rf · f ‖)2

+2 ‖ µj −Rf · f ‖ (‖ µj − µj ‖ + ‖ Rf · f −Rf · f ‖)

≤
m∑
j=1

∑
f∈Aj

‖ µj −Rf · f ‖2 + 8n`b. (3.17)

23



Hence, by Equation 3.14, Dmin is, at most, (r + 1)/r = 1 + 1/r of the optimal
solution plus a factor, c = 8n`b. Define ε = 1/r,

Theorem 2. For any c, ε ∈ R, a ((1 + ε)Dopt + c)-approximation solution for the
k-consensus structural fragments problem can be computed in

O(k`(
1

ε
+ n|R′|)(n|R′|)

k
ε )

time.

The factor c in Theorem 2 is due to errors introduced by the use of discretization
in the rotations. If it is possible to estimate a lower bound of Dopt, this error can
be scaled by refining the discretization such that c is an arbitrarily small factor of
Dopt. To do so, in the next section, a lower bound to Dopt is found.

3.3.5 Polynomial-time 4-approximation Algorithm

In this section, a 4-approximation algorithm for the k-consensus structural fragment
problem is proposed. The case for k = 1 is investigated, and then is generalized for
all k ≥ 2.

The input n structural fragments be f1, f2, . . ., fn. Let fa, 1 ≤ a ≤ n be the
structural fragment such that ∑

1≤j≤n∧j 6=a

MSD(fa, fj)

is minimized. Note that fa can be found in time O(n2`), since for any 1 ≤ i, j ≤ n,
MSD(fi, fj) (more precisely, RMSD(fi, fj)) can be computed in time O(`) by using
equations from [152].

It can be argued that fa is a 4-approximation. Denote the optimal structural
fragment as fopt and the corresponding distance as Dopt. For each b, 1 ≤ b ≤ n, fb
denotes the fragment where MSD(fb, fopt) is minimized.

Firstly, the cost of using fa as the solution,
∑

i 6=a MSD(fa, fi), is no greater
than

∑
i 6=b MSD(fb, fi) for any b, 1 ≤ b ≤ n. Furthermore, the following can be

established.

Claim 1. MSD(f, f ′) ≤ 2(MSD(f, f ′′) + MSD(f ′′, f ′)).

Proof. According to [22],

RMSD(f, f ′) ≤ RMSD(f, f ′′) + RMSD(f ′′, f ′). (3.18)

By squaring both sides,

MSD(f, f ′) ≤ MSD(f, f ′′) + MSD(f ′′, f ′) + 2RMSD(f, f ′′)RMSD(f ′′, f ′). (3.19)

24



Since

2RMSD(f, f ′′)RMSD(f ′′, f ′) ≤ MSD(f, f ′′) + MSD(f ′′, f ′), (3.20)

MSD(f, f ′) ≤ 2(MSD(f, f ′′) + MSD(f ′′, f ′)).

By such a claim,∑
i 6=b

MSD(fb, fi) ≤ 2
∑
i 6=b

(MSD(fb, fopt) + MSD(fopt, fi))

= 2
∑
i 6=b

MSD(fb, fopt) + 2
∑
i 6=b

MSD(fi, fopt)

≤ 2
∑
i 6=b

MSD(fb, fopt) + 2Dopt (3.21)

≤ 2
∑
j 6=b

MSD(fj, fopt) + 2Dopt

≤ 2Dopt + 2Dopt = 4Dopt.

Therefore,
∑

i 6=a MSD(fa, fi) ≤ 4Dopt. This result can be extended to k struc-
tural fragments.

4-Approximation Algorithm k-Consensus Structural Fragments
Input: structural fragments S = {f1, . . . fn}, natural number k < n.
Output: up to k structural fragments A

i. For every set A ⊆ S of up to k structural fragments, do
ii. Compute cost(A) =

∑
f∈S−A minf ′∈A MSD(f, f ′)

iii.Output A with the least cost(A).

MSD(f, f ′) is computed for each pair of f, f ′ ∈ S, which takes time O(n2`).
Then, at Step i, there are, at most, O(nk) combinations of A, each of which takes
O(nk) time to compute as in Step ii. Consequently, the computation is performed
in O(n2` + knk+1) time. To verify that the solution has a 4-approximation factor,
let S1, S2, . . . , Sm, where m ≤ k denote an optimal clustering. Then, according
to the earlier argument, there exists fi1 ∈ S1, fi2 ∈ S2, . . ., and fim ∈ Sm such
that each fix has a 4-approximation factor for Sx. Thus, fi1 , fi2 , . . . , fim is a 4-
approximation algorithm for the k-consensus structural fragment problem. Since
the algorithm is applied to exhaustively search for each combination of up to k
fragments, the algorithm yields a solution at least as good as fi1 , fi2 . . . , fim , and
hence, is a 4-approximation algorithm.

Theorem 3. A 4-approximation solution for the k-consensus structural fragments
problem can be computed in O(n2`+ knk+1) time.

25



3.3.6 (1 + ε) Polynomial-time Approximation Scheme

The algorithm in Section 3.3.4 has cost D ≤ (1 + ε)Dopt + 8n`b, where b = αϑd.
From Section 3.3.5 there is a lower bound Dopt of Dopt. Our objective is to achieve
8n`b ≤ εDopt ≤ εDopt. To do so, it suffices to choose ϑ ≤ εDopt/(8n`αd). This
results in an |R′| of order O(1/ϑ3) = O((n`d)3). By substituting |R′| in Theorem 2,
and combining with Theorem 3, the following is attained.

Theorem 4. For any ε ∈ R, a ((1 + ε)Dopt)-approximation solution for the k-
consensus structural fragments problem can be computed in time

O(n2`+ knk+1 + k`(
2

ε
+ nλ)(nλ)

2k
ε )

, where λ = (n`d)3.

3.4 Position Specific Fragment Libraries

As mentioned in Section 3.2, to construct a fragment library, an approach based
on integer programming is proposed. This method is implemented in a program
called FRazor (“F” stands for fragment).

3.4.1 Problem Statement

The objective here is to obtain a set of structural fragments for each sequence
segment. As candidates for these structural fragments, a collection of fragments
are first generated, by parsing the known protein structure database.

Given a protein target sequence t of length n, t is parsed into a collection of
sequence segments. A sliding window of fixed length ` and step size 1 is employed
to parse t, and these segments are qe1, qe2, . . . , qep, p = n − ` + 1 (qe stands for
query sequence element), and the native structural fragments of these segments are
denoted as ns1, ns2, . . . , nsp.

Denote this collection of structural fragments as

S = {se1, se2, . . . , seq}

This collection of structural fragments is referred to as the structural space (se
stands for structural element).

The next task is to select some structural fragments for each sequence segment
such that the selections contain adequate structural fragments, close to the native
structure of the sequence segment. Intuitively, the more native-like the structural
fragments, the better are the decoys that can be constructed.

Stated formally, given qej, 1 ≤ j ≤ p, integer k and k′, k′ ≤ k, and a distance
threshold θ, it is desirable to select a set of structural fragments, denoted as Sj ⊂ S,
in accordance with the following conditions.

26



• |Sj| = k,

• ∃Fj ⊂ Sj with |Fj| ≥ k′, and

• ∀s ∈ Fj, dist(s, nsj) ≤ θ. dist is a given distance function.

Fj is referred to as a subset of near native structures for qej. If Fj is nonempty,
qej is covered by Sj. Sj is referred to as the structural candidate list, or simply, the
candidate list, of qej.

Structural Distance Criteria

To compute the distance between structural fragments, the RMSD is used. The
measure satisfies the triangle inequality for fragments of equal length. While only
the RMSD is considered here, the proposed method should be applicable to other
distance measures.

Structural Space

The structural space S used in this study is obtained by parsing the 40 proteins
listed in Table 3.2 Part (A), selected from the PDB. It is observed that the set
covers 99% of the sequence/structural segments from the CASP7 proteins.

An alternative approach to the structural space is to use an existing library
such as Kolodny’s Fragment Library [93]. However, the structural space adopted
should make little difference as long as it is ensured that any structural fragment
is represented by at least one resembling fragment in the structural space. It is
noteworthy that ROSETTA and TASSER’s approaches to structural space are also
based on direct selections from PDB [17].

3.4.2 Generalized Linear Model

It is reasonable to assume that introducing more structural information can help
structural fragment prediction. However, how to combine these information remains
a difficulty. In this section, an integer linear programming model is proposed to
integrate both the sequence and structural information items optimally.

Between each structural fragment sei in the structural space and each sequence
segment qej, a feature vector, V i,j = 〈vi,j1 , . . . , v

i,j
d 〉, of length d = 4×9, is computed

to measure the quality that sei and qej match for 1 ≤ i ≤ q and 1 ≤ j ≤ p. Each
entry in V i,j is a linear or a nonlinear scoring function. V i,j is labeled as +1 if
dist(sei, nsj) ≤ θ, and −1, otherwise.

Traditional machine learning approaches, such as Support Vector Machines
(SVM) can be readily employed to classify V i,j into two classes:

27



• class +1 contains the feature vectors labeled with +1, and

• class −1 contains the feature vectors labeled with −1.

Then, the set of all the sei where V i,j is labeled +1 is treated as the candidate list
for qej. However, such an approach is too simplistic for this investigation, since not
all the structural elements are required to be classified correctly. More precisely, it
is fine even if most of the structural elements are classified incorrectly, as long as at
least one of the structural fragments for qej are classified correctly. It is often the
case that a large number of native-like structural fragments exist for a particular
sequence segment. However, it suffices here that a candidate list of size say, k = 25,
is selected, where one of them is native-like. Furthermore, k is a constant much
smaller than the total number of native like structural fragments. Hence, most of
the structural elements do not need to be classified correctly. While it is possible to
design an SVM to classify subsets of k elements with at least one correct element,
the approach would significantly increase the learning dimension, requiring more
data. Furthermore, since the features are for individual elements, the use of SVM
would be more involved than other approaches that are more customized to the
problem.

In contrast, the classification task can be easily modeled by a linear model, since
a candidate list is separable by a hyperplane with a high probability. To see this,
the feature vectors are treated as high dimensional points. For a set of random
points, where each point is labeled with +1 or −1, a subset of the point set is to be
identified, such that the subset contains at least one point with the label +1. To
achieve this, the smallest convex hull containing all points is first formed. For each
vertex labeled with +1 of the convex hull, a hyperplane is then used to separate
the vertex from the rest. The probability that no vertex on the hull is labeled as
+1, can be estimated as 1− (1−P )|H|, where P is the probability that a point is in
class +1, and |H| is the expected number of points on the convex hull. According
to [143], P ≈ (1/1.6)9 = 0.015 for the fragments of length nine. According to [54],
it can be assumed that |H| is sufficiently large to make 1 − (1 − P )|H| close to 1.
Thus, with a high probability, a linear separator can be trivially obtained.

In this thesis, these two observations give us the insight to design a system of
linear models for solving the structural fragment selection problem.

Generalized Linear Model Formulation

A general linear model has the following form:

y(x,w) = w0 +
M∑
j=1

wkφk(x), (3.22)

where w = (w0, ..., wM)T , x is the input data, and (φ1, ..., φM)T are the basis func-
tions. Here, w is the weight vector or the parameters to be trained, and w0 is called

28



a bias parameter and used for any fixed offset in the data. Typically, the basis
functions, φks, are nonlinear, and are applied to the original data variables. In a
linear model, y(x,w) is a nonlinear function of the input variables due to the non-
linearity of the basis functions. A comprehensive treatment of the linear models
can be found in [18].

The essence of the linear model in Equation 3.22 will now be generalized, towards
an Integer Linear Program (ILP) for the problem. As mentioned previously, a
feature vector, V i,j = 〈vi,j1 , . . . , v

i,j
d 〉, is employed to measure the similarity between

structural fragment sei and sequence segment qej. Without loss of generality, it
is assumed that −1 ≤ vi,jl ≤ 1. Each structural fragment, sei, is associated with
a weight vector, W i = 〈wi1, . . . , wid〉. The distance between a structural fragment,
sei, and a sequence segment, qej, is computed by the dot product between W i and
V i,j such that

Di,j =
d∑
l=1

wilv
i,j
l . (3.23)

V i,j = 〈vi,j1 , . . . , v
i,j
d 〉 can be regarded as a set of basis functions, similar to φks in

Equation 3.22; the task is to adjust the weight vectors W i = 〈wi1, . . . , wid〉 so that
for some nj, where senj is a native-like structure for qej, Dnj ,j is ranked within
the top k among other Di,j for 1 ≤ i ≤ q. This results in a system of pq linear
models, for 1 ≤ i ≤ q and 1 ≤ j ≤ p. It is noteworthy that only one set of
W i = 〈wi1, . . . , wid〉 is trained for each structural element, sei; and eventually, only
one of the Di,j, 1 ≤ i ≤ q, which is a native-like structure for qej, is to be ranked
well.

This newly developed model is generic. Although a linear combination of the
features is assumed, any linearity about vi,jl is not, and they can contain quadratic
terms, and so on. For example, in Equation 3.1, a feature vector with length of 180
is used. Each structure or sequence segment of length nine is represented by 9× 20
frequency distribution matrices. The feature vector has a size of 180, and each
entry is the absolute value of the differences between the corresponding entries.
Here, the V i,j values are pre-calculated.

The task here is to train the weight vectors W i. Thirty protein sequences,
whose structures are known in Table 3.2 Part(B) are used as the training set.
These proteins are parsed with a sliding window of length length nine, with step
size one, to obtain the set of qej’s. The structure space, sei’s, are obtained from
the 40 proteins, also with the known structures in Table 3.2 Part (A).

For each sequence segment, qej, Qj, the set of structural fragments where the
distance to qej’s native structure is less than the distance threshold θ, is computed.
The objective here is to optimize the weight vectors, W i, of the distance function
such that there is a distance function that ranks at least k′ elements in Qj to the
top k places. In the following formulation, k′ = 1, for simplicity. It is easy to
extend the proposed model such that, in each candidate list, at least k′, 1 ≤ k′ ≤ k,
native-like structures are included.

29



For 1 ≤ i ≤ q, indexing the structural space, and 1 ≤ j ≤ p, indexing the
sequence segments, the ILP is as follows:

min

p∑
j=1

gj, (3.24)

Dnj ,j −Di,j ≤ dnj ,i,j(2 + ε)− ε, nj ∈ Qj, i /∈ Qj,∀j, (3.25)∑
1≤i≤q,i/∈Qj

dnj ,i,j ≤ k − 1 + fnj ,j(q − (k − 1)), n ∈ Qj,∀j, (3.26)

∑
nj∈Qj

fnj ,j ≤ |Qj| − 1 + gj, ∀j, (3.27)

d∑
l=1

wjl ≤ 1, ∀j, (3.28)

and dnj ,i,j, fnj ,j, gj ∈ {0, 1}, wji ∈ [0, 1]. (3.29)

The ILP formulation is summarized as follows.

• Variable gj = 1 indicates no element in Qj is included as one of the k elements
for Sj. Therefore, the objective of the ILP, Equation 3.24, is to minimize∑p

j=1 gj.

• Constant ε in Equation 3.25 is created as a gap to separate the native-like and
non-native-like structural fragments. Ideally, the parameter settings should
be

Dnj ,j + ε ≤ Di,j, (3.30)

where senj is a native-like structure for qej, and sei is a non-native-like struc-
ture for qej. Equation 3.25 is used to achieve this goal. It is clear that
−2 ≤ Dnj ,j − Di,j ≤ 2. If dnj ,i,j = 0, the native-like structure senj is ranked
higher than the non-native-like structure, sei.

• Equation 3.26 is used to check if a native-like structure, senj , is in the can-
didate list of size k. If fnj ,j = 0, the number of non-native-like structural
fragments for qej is the candidate list is less than k. When this fails, fnj ,j = 1.

• If gj = 0, Equation 3.27 ensures that at least one native-like structure in Qj
for sequence segment qej is in qej’s candidate list. The objective function,
Equation 3.24, is used to minimize the number of sequence segments whose
candidate list of size k does not contain a native-like structure. Equation 3.28
is to normalize the parameter distributions.

3.4.3 Basis Functions V i,j

The basis functions, described in this chapter, are the entries extracted from the
sequence and structural information. Specifically, 4×` entries, the vi,jl s, are created

30



for each structural fragment and sequence segment pair; that is, for each sei and
qej pair, the V i,j feature vector has d = 36 entries (i.e. the φks), with four entries,
corresponding to the four types of scores, for each position.

For simplicity, in this section, a structural fragment is denoted as se, and a
sequence segment, as qe, without superscripts. Both have length ` = 9. The i-th
positions of qe and se are signified as qe[i] and se[i], respectively. For each position
i, the following four types of score entries are created.

Mutation Scores

The mutation score here is similar to that of ROSETTA, as shown in Equation 3.1,
which computes the similarity score between profiles. The profiles for both the
template and the sequence are obtained from five-rounds of PSI-BLAST with a
cutoff of 9× 10−4. The mutation score between se and qe consists of ` entries. One
entry is calculated for each corresponding pair of positions. The value at position
i, 1 ≤ i ≤ ` is defined as

20∑
aa=1

S(aa, i)× log
X(aa, i)

S(aa, i)
, (3.31)

where, from Equation 3.1, S(aa, i) and X(aa, i) are the frequencies of amino acid
aa at position i for sequence segment and structural fragment, respectively. For
our purpose, this score appeared to be more stable than other scores such as the
City Block Metric, dot product, as well as the function in [90].

Secondary Structure Score

The secondary structure score measures the similarity between the secondary struc-
ture of sej and that of qej. The secondary structure for a structural element, sej,
is computed by DSSP [88]. Then, after the secondary structure of a sequence is
predicted by PSIPRED [85], the secondary structure sequence is parsed into qej.
The program predicts the confidences αi, βi, and li for position i to be α-helix,
β-sheet, and loop, respectively.

The secondary structure score at position i is computed as follows [166]:

• If the secondary structure type of se[i] is α-helix, αi is chosen.

• If the secondary structure type of se[i] is β-sheet, βi is used.

• If the secondary structure type is loop, li is selected.

31



Contact Capacity Score

For each structural position se[i], a contact number, ni, is calculated. There is a
contact between two residues, if the distance between their Cβ atoms is within the
given cutoff, 7Å. The contact capacity is meant to measure the capacity that a
residue has c contacts with any other of the residues in a protein.

Given a protein structure, N(aa, c) is the number of residues with type aa and c
contacts, N(c) is the total number of residues with c contacts, N(aa) is the number
of residues with type aa, and N is the total number of residues. For an amino acid
type aa, the capacity of it to have c contacts is defined as

CC(c, aa) = − log
N ×N(aa, c)

N(c)N(aa)
.

The contact capacity score for position i is computed as
∑20

aa=1 S(aa, i)×CC(ni, aa).

Environmental Fitness Score

The environment for each structural position is defined by a combination of the
secondary structure type and solvent accessibility. Three secondary structure types
are used: α-helix, β-strand, and loop; three accessibility levels are defined: buried,
intermediate, and accessible. So in total there are nine states of the structural
environment, and each structural position belongs to one of the nine environmental
states. F (Ei, aa) is the fitness score for an amino acid aa in environment state Ei.
The fitness score between se[i] and qe[i] is calculated by

∑20
aa=1 S(aa, i)×F (Ei, aa).

More details are given in [90].

3.4.4 Results

The methods described resulted in a program for generating structural fragments
called FRazor. The program is implemented in C++ on Linux. The ILP is imple-
mented with the package CPLEX. Additionally, some heuristics are built into the
program to handle the cases where ILP cannot find an optimal solution within a
reasonable amount of time.

Evaluation Criteria

Several criteria are used to evaluate the quality of the structural fragments obtained
using FRazor. These criteria are namely, fragment coverage (fc-score), local fit
approximation (lf-score), and position coverage (pc-score).

One way to evaluate the significance of the selected structural fragments for
each target is to simply count the percentage of sequence segments, covered by the

32



structural candidate lists, for a given structure distance threshold. This percentage
is referred to as the fragment coverage.

Local Fit Approximation is a criterion developed to evaluate the quality of a
fragment library [93]. For each sequence segment, the most similar structure in
terms of the RMSD from the structural candidate list is calculated. Then, the
average of the RMSD values over the entire sequence segment is taken as the local
fit score.

An evaluation more relevant to the purpose of protein structure prediction is to
count the number of positions “correctly predicted” in target t. Here, “correctly
predicting a position” means that at least one sequence segment containing the
position is covered. The percentage of the positions which are correctly predicted is
referred to as the position coverage (pc). This criterion was originally used in [141].
The positions are divided into three cases α-helix, β-sheet, and loop. The coverage
is evaluated for each type of position.

Data Set

The data set consists of three parts: (1) the structure space, (2) the training set,
and (3) the testing set. The structure space is a collection of structural fragments
from which the candidate structural fragments are selected for a sequence segment.
The training set consists of the fragments used to compute the parameters and the
testing set contains proteins for evaluating the new method.

The proteins for structure space and training set are both from a non-homologous
(less than a 30% homology) list with resolution < 2Å, dated March 26, 2006. The
list of these proteins is created by the program PISCES [158], and there are 3177
chains. The first 70 chains are used. The structure space consists of 40 protein
chains, as shown in Table 3.2, Part A. These proteins are parsed with a sliding win-
dow of size ` = 9 and step size 1. In total, there are 9,658 residues. The resulting
structural space consists of 9,338 length-9 structural fragments. The training data
comprises the other 30 chains, which are also shown in Table 3.2, Part B. They are
parsed into length-` = 9 segments with a sliding window of step size 1. In total,
there are 6,584 residues.

For the testing set, the proteins from CASP7, which were created after April,
2006 are employed. There are in total 94 proteins. Also, the testing set are parsed
into segments of length ` = 9. The CASP7 test proteins do not share a high
sequence identity with the proteins in PDB released before March 26, 2006, which
contain the proteins in the structure space and training set. Six test proteins, used
in previous studies [69,93,141] are employed to compare the quality of the decoys,
assembled from FRazor’s fragments, with that of ROSETTA’s fragments. These
six test proteins are: Protein A (PDB code 1FC2), Homeodomain (1ENH), Protein
G (2GB1), Cro repressor (2CRO), Protein L7/L12 (1CTF), and Calbindin (4ICB).

33



Table 3.2: Proteins for the structure space and training set.

A. Structure space:
1ci4a 1zm8a 1j79a 1rlja 1zhva 1wlya 2a14a 2gc9a 1lg7a 1wkoa
1jfla 1t9ha 1lm5a 1kxoa 1xfia 1rqpa 1m15a 1z96a 1mla 1ail
1yksa 1q25a 1mj5a 2erba 2bsya 1lst 1g8aa 1wzca 1y9wa 1xkpc
1v4va 1se8a 1p9ha 1r17a 1qfta 1aol 1ju3a 1rsga 1atg 1s5aa

B. Training set:
1olra 2byca 1yb5a 1pbwa 1v0ea 1orva 1jb7b 2ftra 1fj2a 1fp2a
2foma 1xtta 1suua 1xuua 1w2wb 1viaa 1r9wa 1fj2a 1dmga 2ah5a
1tc5a 2az4a 1mzwb 1ef1c 1uvqc 1ikta 1xfsa 1zava 1vk5a 1oyga

The first four letters are the PDB code, and the 5th letter is the chain id for each entry. The 5th
letter is missing if the protein only has a single chain.

FRazor vs. City Block Metric

An interesting question is whether structural information, such as secondary struc-
ture, solvent accessibility, and contact capacity, facilitate the prediction of struc-
tural fragments. In this experiment, this question is explored by comparing FRazor
with the CBM model [141], where the sequence profile is used. The experimental
results are listed in Table 3.3, where the fragment candidate list size is set to be
25, the number of templates is 40; that is, the 40 proteins in Table 3.2 Part (A),
and the fragment length is 9.

Observe Table 3.3. With the threshold value 0.5Å, the position coverage in-
creases from 10.0% to 37.6%, and from 26.6% to 38.7% for the β-sheets and loops,
respectively. With the threshold value 1Å, the position coverage increases from
56.4% to 89.6%, and 55.5% to 78.1% for β-sheets and loops, respectively. For the
threshold 1.5Å, significant improvement is observed for the β-sheets and loops as
well. Overall, the position coverage scores are 88.2% and 96.7% for the thresh-
old values 1Å and 1.5Å , respectively, and the two values for CBM are 72.2% and
89.9%, respectively. Although the improvement for the α-helix looks small, because
there is not much left to improve upon, 20% improvement is still observed over the
remaining gaps for 0.5Å and 1Å.

In Table 3.4, the threshold value is 1Å ,and the results are compared by varying
the candidate list size. The position coverage is displayed. The average percentage
of improvement for the β-sheets is more than 30% with the same candidate list
size. The average percentage of improvement for the loops is more than 20% for all
the cases. From the table, it is evident that the position coverage is increased from
56.4% to 79.1%, and from 55.5% to 67.9% for the β-sheets and loops, respectively,
whereas the fragment candidate size is reduced from 25 to 10, simultaneously. By
using five as the candidate list size, FRazor’s performance is better than that of
CBM with 40 as the fragment candidate list size for the β-sheets and loops. When

34



Table 3.3: Position Coverage for the CBM vs. FRazor’s Score Function.

α-Helix β-Sheet Loop Overall
θ (Å) CBM FRazor CBM FRazor CBM FRazor CBM FRazor

0.5 94.2 95.1 10.0 37.6 26.6 38.7 49.4 55.1
1 98.2 98.6 56.4 89.6 55.5 78.1 72.2 88.2
1.5 99.7 99.7 89.3 98.2 81.3 93.3 89.9 96.7
2 100 100 99.7 99.8 96.9 98.9 98.6 99.4
2.5 100 100 99.9 99.9 99.7 99.7 99.8 99.8
3 100 100 100 100 99.9 100 99.9 100
3.5 100 100 100 100 100 100 100 100

Position coverage(%) is displayed. CBM is the City Block Metric. The first column θ (Å) is the
native threshold. The fragment candidate list size (k) is 25. The fragment length is 9.

15 is chosen as the candidate list size, FRazor’s performance is better than CBM
with 40 as the candidate list size.

Table 3.5 depicts the results of fragment coverage and local fit criteria. In Ta-
ble 3.5, the threshold value 1Å is chosen and the results from varying the candidate
list size are compared. This table demonstrates that FRazor with a candidate list
size 10 has a higher fragment coverage than CBM with a candidate list size 40 with
scores of 43.3% and 40.8%, respectively.

For all these evaluation criteria, it is safe to draw a conclusion that FRazor
is able to identify compact candidate lists for sequence segments. In addition,
experiments are conducted where the fragment length and candidate list size are
varied. These experimental results suggest that FRazor is stable and robust, and
consistent improvement is observed.

Selecting Fragments from a Library

Sequence specific fragment candidate lists are able to model a protein more ac-
curately than an independent fragment library. In this section, it is shown that
FRazor yields more accurate fragment candidates list than an independent library
by comparing them to the fragment libraries from [93]. From another aspect that
each structural fragment can be mapped to an entry in a fragment library, FRazor
is able to select a subset of fragments from a library for a sequence segment. The
libraries from [93] with the fragment length 7 are used, and the library sizes are 50,
100, 150, 200, and 250. For a fair comparison, the performances of these libraries
on the test data are evaluated. The library size is represented by L.

Table 3.6 shows the results of the Kolodny’s fragment libraries, and FRazor’s
customized lists. By using a candidate list size of 25, the fragment coverage score

35



Table 3.4: Position coverage for the threshold value as 1Å.

α-Helix β-Sheet Loop Overall
k CBM FRazor CBM FRazor CBM FRazor CBM FRazor

5 90.5 96.6 34.2 65.6 40.3 59.8 60.7 75.1
10 97.2 97.5 42.4 79.1 46.1 67.9 65.1 81.5
15 97.8 99.3 49.5 82.1 50.6 70.5 68.6 85.0
20 98.1 98.0 53.6 85.1 53.5 73.0 70.8 86.4
25 98.2 98.6 56.4 89.6 55.5 78.1 72.2 86.4
30 98.3 98.7 59.9 90.8 57.4 79.6 73.6 88.2
35 98.5 98.8 61.5 92.0 58.5 81.1 74.5 90.0
40 98.7 99.0 63.5 92.9 59.5 82.3 75.4 90.8

Position coverage score(%) is displayed. CBM is the City Block Metric. The first column is the
fragment candidate list size. The fragment length is nine. The position coverage (%) is reported
for the three cases. The threshold value is 1Å.

Table 3.5: Fragment coverage and local fit score for threshold value as 1Å.

Fragment Coverage(%) Local Fit Score(Å)
k CBM FRazor CBM FRazor

5 29.2 37.9 1.860 1.542
10 33.1 43.3 1.592 1.338
15 35.5 46.8 1.468 1.240
20 37.0 49.6 1.393 1.176
25 38.2 51.5 1.342 1.133
30 39.3 53.2 1.301 1.097
35 40.1 54.6 1.272 1.072
40 40.8 55.6 1.247 1.050

CBM is the City Block Metric. The first column is the fragment candidate list size. Column 2
and Column 3 are the fragment coverage scores for CBM and FSS, respectively. Column 4 and
Column 5 are the local fit scores for CBM and FRazor, respectively. The fragment length is 9.
The threshold value is 1Å.

is better than that of the library with 200 fragments. The local fit score for 100
fragments is comparable with a fragment library of 250 fragments.

Application to Protein Structure Prediction

FRazor is also compared to ROSETTA’s fragment generation model. This final
test is to examine the quality of the decoys folded from the fragments generated
by FRazor. In this test, ROSETTA’s fragment generation method is replaced by
FRazor, and the resultant decoys are compared to the decoys obtained using the

36



Table 3.6: Customized fragment lists vs. independent fragment libraries

Fragment Coverage (%) Local Fit Score (Å)
L or k KFL FRazor KFL FRazor

25 – 45.3 – 0.763
50 36.2 40.5 0.754 0.667
100 40.7 55.7 0.673 0.589
150 43.3 58.6 0.633 0.554
200 44.0 60.4 0.603 0.531
250 46.3 61.8 0.585 0.515

KFL refers to for Kolodny’s fragment libraries. The first column is the fragment candidate list size
for FRazor, and is the library size for Kolodny’s Libraries. Fragment Coverage (%) of a threshold
0.5Å is shown for Kolodny’s fragment libraries in column 2 and for FRazor’s distance function in
column 3, respectively. The local fit score (Å) is shown for Kolodny’s fragment libraries in column
4 and for FRazor’s distance function in column 5, respectively.

original ROSETTA. To fairly evaluate FRazor, ROSETTA’s energy function and
its default setting are employed in FRazor. ROSETTA’s fragment generation code
is obtained from the ROSETTA package (version 2.0.1). For both FRazor and
ROSETTA’s fragment generation module, their structural fragments are selected
from the same set of 40 proteins, which is included in ROSETTA’s fragment gen-
eration module. It should be noted that these proteins are different from the 40
proteins in Table 3.2 Part (A). The same 30 proteins in Table 3.2(B) are used to
train FRazor.

The six proteins that were used in previous studies [69, 93, 141] are used to
evaluate FRazor. 1000 decoys are assembled for each protein by using the structural
fragments, generated by FRazor and ROSETTA, and then compared in terms of the
percentage of good decoys1 and the average RMSD of all the 1000 decoys. As seen
in Table 3.7, the use of FRazor in the place of ROSETTA’s fragment generation
method resulted in 1.8%-26% more good decoys. In addition, the average RMSD
of the decoys generated by FRazor is much smaller for four of the six test proteins.
For the other two test proteins, both FRazor and ROSETTA have similar average
RMSDs.

The best decoys generated when FRazor is in use also tend to have smaller
RMSDs. For example, the best decoy generated with FRazor for the Cro repressor
protein (PDB code 2CRO) has a much lower RMSD to its native structure than
that generated with ROSETTA’s original method. The first structure shown in
Figure 3.1 is the best decoy for the Cro repressor protein generated by ROSETTA
(RMSD 3.02Å to native), the second is the best decoy generated by FRazor (RMSD
2.57Å to native), and the third structure is the native. In addition to the Cro repres-
sor protein, the best decoys for respectively Homeodomain (PDB code 1ENH) and

1A decoy is good if its RMSD to the native structure is less than 6Å.

37



Table 3.7: Decoy quality comparison between ROSETTA and FRazor

Target Protein ROSETTA FRazor
PDB code L α, β <6.0Å(%) Best Avg. <6.0Å(%) Best Avg.

1FC2 43 2,0 20.5 2.59 7.3 38.6 2.60 6.4
1ENH 54 2,0 39.5 3.06 7.3 53.8 2.61 6.4
2GB1 56 1,4 89.8 1.88 4.3 90.6 2.04 4.4
2CRO 65 5,0 40.6 3.02 6.7 67.2 2.57 5.8
1CTF 68 3,3 9.2 3.42 9.1 11.0 3.14 8.4
4ICB 76 4,0 2.8 4.74 9.4 2.6 4.81 9.6

(Col. 1-3) Name and PDB code, length, and number of α-helices and β-strand of the target
proteins.
(Col. 4-6) Percentage of good decoys (RMSD<6.0Å), RMSD of the best decoys, the average
RMSDs of all decoys by ROSETTA
(Col. 7-9) Percentage of good decoys (RMSD<6.0Å), RMSD of the best decoys, the average
RMSDs of all decoys by FRazor

(a) ROSETTA (3.0Å) (b) FRazor (2.6Å). (c) Native Structure

Figure 3.1: Two best decoys generated by ROSETTA and FRazor for the Cro repressor protein
(PDB code 2CRO).

Protein L7/L12 (PDB code 1CTF) generated with FRazor, also demonstrated sig-
nificantly lower RMSDs than the best decoys generated with ROSETTA’s method.
For the other three proteins: 1FC2, 2GB1 and 4ICB, the best decoys generated
with ROSETTA’s method are slightly better than those generated with FRazor.

3.5 Discussion

This chapter ends with some reflections on the results obtained.

38



3.5.1 Theoretical Issues of Independent Fragment Library

The PTAS, proposed in Section 3.3, depends on Lemma 1. For this reason, the tech-
nique can not be extended to the problem under distance measures where Lemma 1
cannot be applied, for example, the RMSD measure. However, should Lemma 1
apply to a distance measure, it should be easy to adapt the proposed PTAS to solve
the problem for that distance measure.

It is possible to formulate variations of the k-consensus structural fragments
problem, for example the following.

k-Closest Structural Fragments Problem under MSD

Input: n structural fragments f1, . . . fn, and a non-zero natural
number k < n.

Output: k structural fragments g1, . . . gk, minimizing the threshold
max1≤i≤n min1≤j≤k MSD(fi, gj).

The cost function of the k-consensus structural fragments problem resembles
that of the k-means problem, while the cost function of the k-closest structural
fragments resembles that of the (absolute) k-center problem. One interesting prob-
lem for future study is whether this problem has a PTAS or not. It is not clear how
one can generalize the technique employed in this chapter to the k-closest structural
fragment problem under the MSD distance measure.

3.5.2 Is the Structural Fragment Space Continuous?

Clustering algorithms have revealed that the number of possible structural frag-
ments is limited for a short sequence segment of three to seven residues. Take,
for example, the extreme case of a sequence segment of only two amino acids. In
this case, a library of size one would suffice, since two points can only form a line
segment. For three residues, it is not difficult to create a library of size four, based
on only avoiding steric clashes. This can be considered a discretization of the con-
formation space for three consecutive Cα atoms. If a similar discretization for more
residues can be performed, then the conformation of the small structural fragments
is continuous. This could also imply that the reason that clustering approaches
work is due to discretization, not due to the fact that the number of small struc-
ture fragments have certain favorite conformations. The problem is formulated as
follows.

39



Is Structural Fragment Conformation Space Continuous?

Input: A small integer l, 3 ≤ l ≤ 7 and a threshold θ
Output: A structural fragment library F = f1, ..., fk such that:

(1) Each fragment fi contains l 3D points,
(2) for any structural fragment f ′ of l residues in database:
∃i, such that d(f ′, fi) ≤ θ,

(3) F is obtained by protein geometric constraints only, and
(4) the objective is minimize k.

Here, the term “F is obtained by protein geometric constraints only” means
that no information from the known database is used when the structural fragment
library is constructed.

3.5.3 Position Specific Structural Fragment Library

With regard to the method for finding structural fragment library proposed in this
chapter, in spite of the favorable comparisons of the method against other methods
in our experiments, there is still much space for improvement.

The scoring function, used to map a sequence segment to a structural fragment,
currently consists of a mutation score, secondary structure score, contact capacity
score, and environment fitness score. To improve the performance, it seems reason-
able to use more scoring items. A promising way to accomplish this is to combine
the scores from other threading results, like in [171,173]. Currently all the scoring
items depend on only a single position, which implies that the residues in a protein
sequence are assumed to be independent. However, some residues are obviously
correlated, and better performance might be possible if the correlation information
is encoded into the scoring function. The challenge to do so is to deal with the spar-
sity in training data since there are many more parameters to be trained. Perhaps,
some regularization technique can be developed to resolve this issue.

Using the method, significant improvement has been observed in the accuracy
of the β-sheet and loop positions, which suggests that the loop regions could be
predicted even more accurately. To do so, the program can be modified to assign
weights to the positions of a structure automatically, an improvement which might
be useful for identifying structure motifs. Here, a position with a small weight
would imply that the position is unstable.

40



Chapter 4

Structure Sampling

4.1 Backbone Structure Prediction

The traditional algorithms for (backbone) structure prediction can be categorized
into three general classes: homology modeling, threading, and ab initio.

Homology modeling is based on the observation that evolutionarily related pro-
teins tend to share similar structures. Such methods attempt to detect evolution-
ary relationships by aligning the target protein sequence with the proteins in a
database, without using their structural information, and then derive coordinates
of each atom according to this sequence-sequence alignment. However, homology
modeling methods work only for those proteins with a high sequence identity with
some proteins in the database. This restricts their applicability.

A threading method evaluates how well the target sequence fits a known struc-
ture by a sequence-structure alignment. By using the structure information in ad-
dition to the sequence information, threading techniques can be applied to proteins
with low sequence identity.

In contrast, an ab initio method is not based on comparison with known pro-
teins. Typically, these methods work by constructing a protein structure that is
minimal with respect to some score function, which usually estimates the confor-
mational energy of the proteins. The advantage of ab initio methods is that the
possible structure spaces are not confined to the known structures in a structure
database. Theoretically, any structural conformations can be generated and tested
by an ab initio method.

4.2 A Principle of Parsimony-based Framework

Instead of considering the three methods separately, the framework proposed here
includes features from all the methods, but differs from them in basic principle.
More precisely, the objective of the new framework is not to identify easy targets

41



accurately as in PSI-BLAST (a homology modeling method), or to identify harder
targets as in RAPTOR [169] (a threading method), or to address ab initio prediction
specifically, as in ROSETTA [141]. A typical ab initio method consists of various
stages such as Monte Carlo fragment assembly, clustering, selection, and refinement,
where usually, different methods are employed. In the new framework, the use of
different methods in different stages is avoided as much as possible.

The framework is designed on the principle of parsimony, a principle which
has found uses in many areas [15, 107]. The aim is towards a structure prediction
method which takes an input and outputs the final structure in a way that is
as simple as possible. This method is to include homology modeling, threading,
fragment assembly (all its stages), loop modeling, refinement, side chain packing,
and consensus; that is, the method in mind is to be simple, robust, and effective.

This chapter presents the initial efforts towards the design of such a framework,
as well as an initial implementation of the framework called FALCON. Experimental
results are also presented to demonstrate the effectiveness of FALCON.

Some of the ideas of the proposal are derived from three lines of research: frag-
ment assembly, HMM sampling, and Ramachandran basins.

The most successful approach to ab initio structure prediction is to use short
structural fragments to model the local interactions among the amino acids of a
segment, and utilize the non-local interactions to arrange these short structural
fragments to form native-like structures [141]. Despite the importance of non-local
interactions in directing the search for native-like protein structures, the relation-
ship between the local structures and the interactions among amino acids within a
local structure remains active issues of research. An accurate prediction of the local
structural bias for a sequence segment is critically important to protein structure
prediction.

According to the Levinthal paradox [103], the number of possible conformations
of a protein chain is exponential in the protein sequence length due to the high de-
grees of freedom of the unfolded polypeptide chain. As a consequence, a brute force
enumeration of all the possible conformations for a given sequence is both compu-
tationally and physically infeasible. However, the local structural bias information
restricts the possible conformations of each sequence segment, and therefore, nar-
rows down the conformation space of the entire polypeptide chain significantly.

A structural motif is a straightforward description of a local structural bias, and
the idea can be traced back to [122]. Here, a protein fold is modeled as an assembly
of smaller building blocks from the regular secondary structure elements. In the
past years, active research [26, 27, 29, 58, 71, 108, 131] has been conducted to define
local structural motifs, and to analyze their structural characterization as well as
sequence preferences. The sequence preferences can be used to predict structural
motifs for new sequences. Another approach is to search for recurrent sequence pat-
terns first, and then study the structural motif shared by these recurrent sequence
patterns. This approach can identify new structural motifs, since the important
structural properties need not be specified in advance. HMMSTR [28], an HMM of

42



a structural motif space, is an attempt to describe the overlaps of structural motifs,
and the transition probability between motifs. HMMSTR can be considered as a
probabilistic version of the structural motif library.

Structural motifs serve as the foundation to obtain better predictions. For
example, ROSETTA [141] generates 9-mer structural fragments from known protein
structures as building blocks, whereas TASSER [171, 173] generates fragments of
various lengths from the threading results. In spite of the progress in fragment
assembly methods, these methods are handicapped by their inherently discrete
nature; that is, the structural motif library is discrete, whereas the conformation
space of a protein is continuous. Therefore, it is impossible to cover the entire
conformation space with a limited number of structural motifs. This drawback
limits the accuracy of protein structure prediction [63,78].

An alternative way to describe the local structural bias is the Ramachandran
basin [128]. It refers to a specific region of the Ramachandran plot, imposed by local
interactions among amino acids. The Ramachandran basin provides a convenient
way to present the preference of a specific torsion angle. Colubri et al. [42] have em-
ployed the Ramachandran basin technique to investigate the levels of representation
required to predict the protein structure. Specifically, the authors tested the ability
to recover the native structure from a given Ramachandran basin assignment for
each amino acid. In this method, the Ramachandran plot is divided into five previ-
ously determined Ramachandran basins. By decomposing the Ramachandran plot
into four or more basins, Shortle [135] has calculated the propensities of amino acids
mapped to each basin. Shortle has argued that these propensities are the results
of local side-chain-backbone interactions, and can restrict the denatured conforma-
tion ensemble to a relatively small subset of native-like conformations. Also, Gong
et al. [63] have investigated the protein structure reconstructing problem from a
coarse-grained estimation of the native torsion angle. The only difference in these
works lies in the definition of the Ramachandran basin. The authors have parti-
tioned both the φ and ψ angle intervals into six ranges, each of 60◦, thus partitioning
the Ramachandran map into 36 basins uniformly.

These three studies demonstrate that the knowledge of the torsion angles helps
in the construction of small-size proteins. However, these three works partition the
Ramachandran plot into basins in random manners, without statistical explanations
to describe the torsion angle distributions of each basin. Furthermore, to give each
residue a coarse Ramachandran basin assignment, the native structure should be
known in advance, which makes these frameworks infeasible for real-life protein
structure prediction.

As yet another precursor to the work in this thesis, Hamelryck et al. [69] have
applied FB5, a directional distribution, to parameterize the local structural bias.
By using the tool, they investigated the local bias in (θ, τ) space, rather than
in (φ, ψ) space. Here, in (θ, τ) space, a virtual bond with bond length 3.8Å is
created between each pair of adjacent Cαs. The θ angle is the bond angle between
three adjacent Cαs and the τ is the dihedral angle for any four adjacent Cαs.

43



In this method, the local structural bias for each amino acid is trained via an
HMM called FB5-HMM. In contrast, Xu et al. [176] proposed the CRFSampler, a
protein structure sampling framework based on another probabilistic graph model,
Conditional Random Fields [18], with improved results. The success of this method
suggests an advantage to the use of continuous torsion angle distributions over
discrete structural motifs. By using the torsion angle distribution technique, it
is possible to generate conformations with local structures not occurring in the
structural fragment library. In addition, experimental results have demonstrated
that the derived local biases can help to generate native-like conformations, and
support the view that relatively few conformations are compatible with the local
structural biases.

In spite of the sound theoretical basis, the approach adopted by FB5-HMM
suffers from several problems. First, FB5-HMM reports the optimal number of
local biases as 75 by training on a large set of representative protein structures.
In other words, the (θ, τ) map which is used to model the local bias is partitioned
into 75 basins. This partition scheme implies that a protein sequence of length
n has a conformation space of size O(75n), which is astronomically larger than
the estimation of O(1.6n) by [142]. In addition, it is challenging to select suitable
models from these 75 local biases for a particular residue. Secondly, the FB5-HMM-
derived distributions are general, while a residue might have specific preferences
of distributions, hence it is possible that none of the 75 local biases turn out to
be appropriate. Thirdly, FB5-HMM is incapable of capturing the relationships
among the residues of a local segment. As a consequence, though equipped with
an elegant statistical model, FB5-HMM displays lower prediction accuracies than
ROSETTA [70].

4.3 New Framework

Here, a simple and unified framework for protein structure prediction is proposed.
The plan is to probabilistically sample protein structure conformations compatible
with local structural biases for a given protein. The architecture of the model is as
follows.

1. For residue i, several Cosine models [116] are used to describe the local bias
of its torsion angle pair (φi, ψi).

2. A position specific (HMM) is used to capture the dependencies among the
local biases of the adjacent residues, according to selected fragments [108,141].
This HMM is referred to as the Fragment-HMM.

3. The Fragment-HMM is used to sample a sequence of torsion angle pairs for the
given protein sequence. An energy function is used to evaluate the generated
decoys, and to direct the sampling process to better decoys.

44



4. The generated decoys are fed back to produce more accurate estimations of
local structural biases, a more accurate Fragment-HMM, and thus, better
decoys. This step is executed iteratively to increase the quality of the final
decoys until convergence.

The novel model has advantages over existing works as follows.

• The Fragment-HMM model combines a very successful fragment assembly
method [141] with the elegant ideas explored in FB5-HMM [70]. Rather
than using the fragments as building blocks, the fragments are employed
to produce local bias information. The directional distribution are used to
model the local biases, and an HMM is used to explore the dependency of
the adjacent residues. Unlike FB5-HMM, the proposed Fragment-HMM is
position specific.

• The design of Fragment-HMM inherently suggests the refinement process in
Step 4. It is readily seen that this also applies to obtaining fragments from
template structures, for example, templates from threading. Thus, this natu-
rally enables homology modeling, threading, refinement (requiring more hid-
den nodes to model the side chains), loop modeling, and consensus.

• Step 4 is akin to the primal and dual optimization process in linear program-
ming. Here, the primal process aims to minimize energy by discriminating
the decoys with an energy function; the dual process is done via sampling
Fragment-HMM to improve the estimation of the torsion angles. Step 4 differs
from similar iterative methods in the traditional fragment assembly methods
that end with a population of decoys, where some decoys may be possibly
good and some possibly bad. Step 4 here would not stop at such a point, but
would iterate until convergence is achieved.

• In the new framework, the search space is narrowed step by step, which makes
it different from a Monte Carlo (MC) technique-based fragment-assembly-
based protein structure prediction. The MC-based methods tend to be ineffi-
cient, since they do not typically make use of the search space’s characteristics
to reduce its size. For example, for a protein of length n, its search space size
would be of O(200n−l), if each sequence segment consists of 200 candidate
structural motifs, and l is the fragment length. This search space remains
unchanged for the entire MC-based method’s search process. In contrast,
Fragment-HMM narrows the search space after each iteration, as the local
structural biases are estimated more and more accurately.

This framework for protein structure prediction is implemented in C++, in a
program called FALCON (Fragment-HMM Approximating Local Bias and Consensus).

45



4.4 Methods

4.4.1 Torsion Angle Pair Sequences

In this chapter, it is assumed that that torsion angle pair sequences can accurately
parameterize the 3D backbone structure.

4.4.2 Representing the Local Biases of Torsion Angle Pairs

The local structural bias for residue i is represented by the joint distribution of its
torsion angle pair (φi, ψi). The cosine model, a bivariate von Mises distribution
over angular or directional space is adopted [116, 145]. The probability density
function of cosine model is specified by five parameters κ1, κ2, κ3, µ, and ν as
follows

f(φ, ψ) = c(κ1, κ2, κ3)eκ1 cos(φ−µ)+κ2 cos(ψ−ν)+κ3 cos(φ−µ−ψ+ν),

where µ is the mean value of φ, ν is the mean value of ψ, and c(κ1, κ2, κ3) is a
normalization constant expressed as

c(κ1, κ2, κ3)−1 =

(2π)2

{
I0(κ1)I0(κ2)I0(κ3) + 2

∞∑
p=1

Ip(κ1)Ip(κ2)Ip(κ3)

}
,

in which Ir(κ) is the modified Bessel function of the first kind and order r [3].

An alternative bivariate circular distribution is the sine model [145]. Mardia
et al. [116] have argued that cosine model outperforms the sine model due to the
ability to fit more closely a larger set of distributions.

Given a set of torsion angle pairs A = {(φ, ψ)}, a set of M cosine models is
used to parameterize these data. The cosine models are combined to form a mixture
model, which is formulated as

F (φ, ψ) =
M∑
j=1

wjfj(φ, ψ), (4.1)

where fj, 1 ≤ j ≤M , denotes a cosinemodel with parameters, θj = (κj1, κ
j
2, κ

j
3, µ

j, νj),
and wj is the weight of model j with

∑
j wj = 1. An Expectation-Maximization

(EM) algorithm is employed to derive the most likely estimation of the parameters
of the mixture model [116].

The number of cosine models to fit these data is unknown in advance. It is
vital to choose a suitable M . Here, Rissanen’s minimum description length (MDL)

46



principle is applied [105, 107] to determine the best value for M ; that is, M is
chosesn to minimize the following.

MDL(A) = −2 lnL(A,M) + 5 ∗ ln(|A|), (4.2)

where L is the likelihood that the M mixture models explain A, and five is the
number of parameters in each model.

4.4.3 Fragment-HMM: Position Specific Hidden Markov Model

An HMM is used to capture the local dependencies among the adjacent residues.
Unlike FB5-HMM, the newly developed HMM is position specific; that is, each
residue is associated with a specific subset of hidden nodes, and the subset for all
the residues is mutually disjointed.

Model Topology

An HMM is a directed graph, where the vertices denote the hidden nodes, and the
directed edges are used to capture transition and emission probabilities. For each
residue i, a set of possible hidden nodes, denoted as Hi, are obtained. Given two
adjacent hidden node sets Hi and Hi+1, a directed edge 〈h, h′〉 is created for each
pair of hidden nodes h ∈ Hi and h′ ∈ Hi+1. Each possible hidden node (denoted
as h) has two types of emissions: a secondary structure type (denoted as S), and a
torsion angle pair, T = (φ, ψ).

For the i-th amino acid, the position specific HMM describes the following joint
probability:

Pr.(S,T) =
∑
h∈Hi

Pr.(T|S, h)Pr.(S|h)Pr.(h),

where S is the secondary structure type for the i-th amino acid, and T is its torsion
angle pair.

Figure 4.1 shows an example of Fragment-HMM for five residues. Each residue
is associated with a hidden node subset. As illustrated, the hidden node subset,
H1 for residue one, has two hidden nodes, whereas H2 for residue two has three
possible hidden nodes. Each hidden node is associated with its own cosine model.

Creating Hidden Nodes

The novel HMM is both position and sequence specific. There is no assumption that
the training data is available for the target sequences to be predicted. Therefore, the
classical Baum-Welch [16] method cannot be applied to estimate the parameters.
Here, the hidden nodes are built and the parameters are estimated with a position
specific fragment library, and hence, the name Fragment-HMM.

47



ts

h

ts

h

ts

h ts

h

ts

h

ts

h ts

h

ts

h

ts

h

ts

h

Figure 4.1: Fragment-HMM: a position specific hidden Markov model.

The construction process is broken down into three steps. First, the target
sequence is parsed into segments with a sliding window of length ` and step size
one. There are n−`+1 segments. These sequence segments are indexed by 1, 2, ...,
n− `+ 1. For sequence segment i, a subset of structural fragments is predicted via
ROSETTA or FRazor. A structural fragment for segment i consists of a predicted
torsion angle pair and a secondary structure type for each residue from i to i+`−1.
The set of structural fragments is denoted as F . Secondly, the predicted torsion
angle pairs for residue i are retrieved from the fragments in F , and the EM method
is used to generate a set of cosine models. Lastly, for each cosine model, a hidden
node is created.

The cosine model, specified by hidden node h as mh is identified. The density
of mh with parameters (φ, ψ) is written as fh(φ, ψ).

Estimating Transition Probabilities

Here, the parameter estimation method is described without considering the sec-
ondary structures for clarity. The secondary structure information is easily inte-
grated into the new framework.

The transition probabilities are estimated using the fragment library F . Given
a fragment q ∈ F and a hidden node h ∈ Hi, the probability that h emits the
torsion angle pair, predicted by q for residue i, is defined as follows.

1. If q contains a predicted torsion angle pair (φ, ψ) for residue i, the value of
the probability density function, fh, with parameters, (φ, ψ), is employed.

2. Otherwise, the probability is 0.

48



The aforementioned probability is denoted as gh(q).

The joint probability Pr.(h′ ∈ Hi+1, h ∈ Hi|q) for edge 〈h, h′〉, given fragment
q, is specified as follows. If a structural fragment q does not contain the predicted
torsion angles for both residue i and residue i + 1, Pr.(h ∈ Hi, h

′ ∈ Hi+1|q) = 0;
otherwise, Pr.(h ∈ Hi, h

′ ∈ Hi+1|q) is defined as

Pr.(h ∈ Hi, h
′ ∈ Hi+1|q) =

gh(q)gh′(q)∑
h∈Hi,h′∈Hi+1

gh(q)gh′(q)
.

The probability is normalized to ensure∑
h∈Hi+1,h′∈Hi

Pr.(h ∈ Hi, h
′ ∈ Hi+1|q) = 1.

Then, the joint probability Pr.(h ∈ Hi, h
′ ∈ Hi+1) is calculated by

Pr.(h ∈ Hi, h
′ ∈ Hi+1) =

∑
q∈F

Pr.(h ∈ Hi, h
′ ∈ Hi+1|q)Pr.(q),

where Pr.(q) can be estimated as the inverse of the number of fragments in F which
contain the predicted torsion angle pairs for both residue i and residue i+ 1.

Now, the transition probability Pr.(h′ ∈ Hi+1|h ∈ Hi) is computed, according
to

Pr.(h′ ∈ Hi+1, h ∈ Hi)∑
h′∈Hi+1

Pr.(h ∈ Hi, h′ ∈ Hi+1)
.

The distribution of hidden nodes h ∈ Hi, 1 ≤ i ≤ n− 1 is expressed by:

Pr.(h ∈ Hi) =
∑

h′∈Hi+1

Pr.(h ∈ Hi, h
′ ∈ Hi+1).

A Fragment-HMM of order one has been specified here for simplicity. A Fragment-
HMM with a higher order can be defined accordingly. Order-7 and order-2 Fragment-
HMMs are used in FALCON.

4.4.4 Sampling Protein Structure Conformation

The sampling of backbone conformations is performed using the derived position
specific Fragment-HMM, as follows.

• Sampling of hidden nodes: A sequence of hidden nodes is first sampled. To
do so, a hidden node h for residue 1 is first picked from the set H1 according
to the probability Pr.(h), h ∈ H1. Subsequent nodes are then sampled as
follows. Given that the hidden node h is sampled for residue i, a hidden
node h′ is sampled for residue i + 1 according to the transition probability
Pr.(h′ ∈ Hi+1|h ∈ Hi).

49



• Sampling of torsion angle pairs: A sequence of torsion angle pairs is sampled,
one pair per residue, according to the cosine model, specified by the respective
hidden node. A backbone is constructed according to these torsion angles with
ideal bond lengths and bond angles. Coupling the angle sampling process,
a sequence of secondary structure types is also sampled. These secondary
structure types are useful for the energy function to evaluate the sampled
structure.

4.4.5 Conformation Optimization

The conformation optimization process is performed as follows. In order to reduce
biases in the comparison of the new framework to ROSETTA, the energy function
of ROSETTA 2.1.0 (released Sept. 2006) is used.

Initially, an entire sequence of angle pairs is sampled, and a new 3D backbone
structure is constructed from these angles. Then, a subsequence of torsion angle
pairs are sampled again for a given backbone structure and a new 3D backbone
structure is built. If the new structure has an energy equal or better than that
of the previous structure, the new structure is accepted. Otherwise, it is accepted
with a certain probability by the Metropolis criteria. The process is repeated until
the energy is converged, or the maximum number of iterations is reached.

4.4.6 Iteratively Improving the Fragment-HMM

The above procedure eventually leads to the generation of a set of decoys, as guided
by the given energy function. Given that the energy function biases towards the
native-like structures, using these decoys as a position specific fragment library
would lead to the pruning of less feasible cosine models, as well as the forming
of better cosine models. Then, these new cosine models can be integrated to
build even more accurate Fragment-HMM with refined transition and emission
probabilities. In turn, the more accurate cosine models and HMM would result
in more native-like structures.

Hence, iteratively, more and more accurate cosine models can be obtained, given
that the energy function favors the native-like structures.

4.5 Results

4.5.1 Data Set

Again, the six proteins that were used in the previous studies [70, 93, 141] are
selected (see Table 3.7). Furthermore, FALCON is tested on eight larger proteins

50



−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

20

40

60

80

100

120

140

Figure 4.2: Cosine models for residue 13 of protein 1FC2.
The x-axis is the φ angle and the y-axis is the ψ angle.

with more than 100 residues. These proteins are selected from the CASP7 free-
modeling targets, and are listed in Table 4.6.

The position specific fragment library for each protein is obtained from the
recently released ROSETTA version 2.1.0. Its structural fragments are selected
from a set of 1,020 protein chains, which are included in ROSETTA’s fragment
generation module. Also, ROSETTA’s energy function and its default settings are
used.

Two hundred structural fragments are predicted for each 9-mer sequence seg-
ment in the query sequence. In this process, homologues of the query protein are
identified by running NCBI-Blast [11], and then removing these homologues in the
following fragment predicting step. Thus the possible overlap of the training and
testing sets are avoided.

4.5.2 Torsion Angle Distributions

The most likely torsion angle distributions are derived for each residue of the six
proteins. A typical and concrete example for residue 13 of protein 1FC2 is plot-
ted in Figure 4.2. Figure 4.2 contains two cosine models, which are centered at
(−1.39,−0.18) and (−1.90, 2.39). This indicates that this residue has two possible
local bias preferences: one corresponds to a β secondary structure type, and the
other corresponds to an α secondary structure type. This is one of the primary
differences between the Fragment-HMM and FB5-HMM. In FB5-HMM (and the
CRFSampler), the number of distributions and the corresponding parameters are
uniform for all the residues.

Table 4.1 lists the average number of cosine models per residue for the six pro-
teins generated by the fragment library. These proteins average 1.66 cosine models
per residue. Most residues have no more than two cosine models. This observation

51



Table 4.1: Number of cosine models per residue.

Target Protein # Residue

Name, PDB code 1 2 3 4 Ave.
Protein A, 1FC2 12 25 3 2 1.66

Homeodomain, 1ENH 24 24 6 0 1.21
Protein G, 2GB1 28 21 7 0 1.63

Cro repressor, 2CRO 52 12 1 0 1.22
Protein L7/L12, 1CTF 50 14 3 1 1.34

Calbidin, 4ICB 47 23 3 3 1.50

Column 2-5 are the number of residues with 1,2,3, and 4 cosine models, respectively. Column 6
is the average number of cosine models per residue.

confirms the fact that for a protein, relatively few conformations are compatible
with the local biases of all the residues. Interestingly, the number of possible confor-
mation clusters, C, is estimated to be C = 1.6n [142], which is consistent with the
estimations given in [49,149], coinciding with the study here. There are several dif-
ferent estimations: according to the Levinthal paradox [103]. The conformational
space has a size of at least C = 3n [178]; the number of possible conformation
clusters can be estimated to be C = 4n via decomposing the Ramachandran map
into 4 basins [128, 135]. Hamelryck et al. [70] assigned 75 possible states for each
amino acid by decomposing the (θ, τ) plane, which implies a conformation space of
size C = 75n. Compared with these estimations, 1.6n is drastically smaller. This
observation suggests that

• local structural biases can be accurately described and captured; and

• the conformation space to be searched is greatly reduced, and thus, it might
be possible to sample a native-like structure from a conformation space, where
the conformations are compatible with the derived local biases.

4.5.3 Local Bias Representation: Fragment-HMM versus
Structural Fragments

Using HMM to represent local structural biases, FB5-HMM failed to demonstrate
any advantage over ROSETTA, which represents local structural biases with struc-
tural fragments. It is hence interesting to investigate, if the representation of local
structural biases using Fragment-HMM with cosine models offers any advantage.
To answer this, experiments are conducted to compare FALCON (without Step
4) to ROSETTA (version 2.1.0), in terms of the percentage of good decoys (be-
low 6Å to the native structure) they obtain, as well as the RMSD values of their
reported best decoys. To remove influences due to differences in energy function,

52



(a) The native structure of protein 1CTF. (b) The predicted structure of protein
1CTF.

Figure 4.3: Native structure and the best decoy predicted by FALCON (The RMSD is 0.557Å).

ROSETTA’s energy function is used for both programs. The input fragment li-
braries are generated by ROSETTA and are identical for both programs.

In this experiment, 1,000 decoys are generated for each protein by each of
ROSETTA and FALCON. 6Å is used as the cutoff value for the good decoys, and
the same criteria is used in [70]. Since the decoys for ROSETTA and FALCON are
generated independently, the percentage of good decoys is not expected to fluctuate
too much when more decoys are generated.

In Table 4.2, FALCON generates significantly more good decoys than ROSETTA.
FALCON improves the percentage of good decoys for 1FC2, 2GB1, 2CRO, 1CTF,
and 4ICB; that is, five out of six proteins. Especially for 2GB1, 1CTF, and 4ICB,
the improvements are from 53.7%, 14.3%, 19.9% to 93.4%, 25.6%, and 46.3%, re-
spectively. The quality of the best decoys for these five proteins: 1FC2, 2GB1,
2CRO, 1CTF, and 4ICB are improved as well. A structure with RMSD of only
0.557Å to the native structure for 1CTF is displayed in Figure 4.3.

Although Fragment-HMM inherited ideas from FB5-HMM [70], it has incorpo-
rated enough improvements to become a significantly stronger model than FB5-HM.
FB5-HMM describes the local biases by using 75 basins in the (θ, τ) plane, whereas
FALCON uses an average of only 1.6 basins on average. Under admittedly different
conditions, for the same six proteins in Table 4.2 and in that order, FB5-HMM [70]
reports the best decoy accuracies as 2.6Å, 3.8Å, 5.9Å, 4.1Å, 4.1Å, and 4.5Å, respec-
tively, and good decoy percentages (<6Å): 17.1%, 12.1%, 0.001%, 1.09%, 0.35%,

53



Table 4.2: Decoy quality of ROSETTA and FALCON.

Target Protein ROSETTA FALCON

Best <6.0Å(%) Best <6.0Å(%)

Protein A, 1FC2 2.82 80.2 2.64 94.3
Homeodomain, 1ENH 1.52 94.4 1.81 92.8

Protein G, 2GB1 2.21 53.7 2.18 93.4
Cro repressor, 2CRO 2.56 70.4 2.48 75.8

Protein L7/L12, 1CTF 1.44 14.3 0.56 25.6
Calbidin, 4ICB 3.87 19.9 2.93 46.3

Column 2-3: RMSD of the best decoy (Å) and percentage of the good decoys (RMSD< 6Å) for
ROSETTA. Column 4-5: are the corresponding values for FALCON.

and 0.38%, respectively, from 100,000 decoys.

4.5.4 FALCON: Zero in on the Native Structure

In the above experiment, Step 4 has been disabled in FALCON. The effectiveness
of the iterative procedure is now investigated with the following experiment.

In this experiment, six iterations are executed for each protein. 1,000 decoys
are generated at each iteration per protein. The first iteration takes as the input
the position specific fragment libraries from ROSETTA. The (i + 1)-th iteration
takes the set of decoys generated by the i-th iteration as input.

Table 4.3: RMSD distribution over iterations for protein 2CRO.

#Iterations

RMSD (Å) 1 2 3 4 5 6
[0, 3) 0.1 0 0.1 0.1 0 0
[3, 4) 22.8 47.2 75.3 87.9 94.7 94.9
[4, 5) 41.5 45.4 24.5 12.0 5.3 5.1
[5, 6) 11.4 4.7 0.1 0 0 0
[6, 7) 8.5 0.8 0 0 0 0
[7,∞) 15.7 1.5 0 0 0 0

Col. 2-7: Percentages of decoys with the RMSD values in the corresponding intervals.

Table 4.3 displays the RMSD values of the decoys at each iteration for protein
2CRO. The RMSDs are observed to converge. After five iterations, the RMSD
values of 94.9% of the decoys converge to the range [3Å, 4Å]. Both the best and
the worst decoys disappear gradually over the iterations. However, the best decoys

54



decrease far slower than the worst decoys. The decoy RMSD distributions for the
other proteins exhibit similar trends.

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

(a) Iteration #1: Two cosine models centered
at (−1.55,−0.28) and (−1.58, 2.57).

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

0.5

1

1.5

2

(b) Iteration #2: Three cosine models cen-
tered at (−1.25,−0.52), (−1.75, 1.26), and
(−1.82,−0.07).

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

1

2

3

4

5

6

(c) Iteration #3: Two cosine models centered
at (−1.22,−0.44) and (−1.82, 0.09).

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

2

4

6

8

10

12

(d) Iterations #4 and #5: One cosine
model centered at (−1.86,−0.13), and then
to (−1.86,−0.13) in Iteration #6.

Figure 4.4: Evolution of torsion angle pair distributions for residue 41 of protein 2CRO. The
x-axis is the φ angle and the y-axis is the ψ angle.

Figure 4.4 shows the evolution of the torsion angle pair distributions for residue
41 of protein 2CRO. Initially, the torsion angle pairs, acquired from structural
fragments, display two clusters: one lies in the β-strand area; and the other lies in
the α-helix area, both initially incorrect. Interestingly, the subsequent iterations
tend to correct the torsion angle distributions step by step.

At the second iteration, the initial two clusters are diminishing, and a new
cluster, centered at (−1.82,−0.07), emerges. At the third iteration, the β-strand
distribution disappears completely, and the new cluster becomes dominant. The
α-helix distribution disappears at the fourth iteration. In the fifth and sixth itera-
tions, the new cluster becomes denser and denser. Finally, a distribution centered

55



Table 4.4: Percentage of good decoys with RMSD below 6Å after each iteration.

Target Protein # Iterations

1 2 3 4 5 6
Protein A, 1FC2 94.3 98.5 100 100 100 100

Homeodomain, 1ENH 92.8 95.0 96.9 100 100 100
Protein G, 2GB1 93.4 96.4 100 100 100 100

Cro repressor, 2CRO 75.8 97.3 100 100 100 100
Protein L7/L12, 1CTF 25.6 68.8 97.0 100 100 100

Calbidin, 4ICB 46.3 90.5 99.3 100 100 100

at (−1.86,−0.13) is obtained after six iterations. It is observed that there is a
small gap between the center of this distribution and the native torsion angle pair
(−1.44,−0.63). This gap is inevitable since the standard bond lengths and bond
angles are adopted in the proposed structure generating model [78].

Percentage of Good Decoys

Table 4.4 displays the percentages of the good decoys, that increase steadily at each
iteration. All six proteins reach 100% of the good decoys after four iterations. In
particular, the percentage of good decoys for 1CTF and 4ICB is boosted to 100%
from 25.6% and 46.3%, respectively.

Quality of the Final Decoys

In FALCON, the Fragment-HMM is not only used to sample decoys but also to
rank a given decoy. Each decoy from the fifth iteration is ranked according to the
probability that the Fragment-HMM generates the decoy, and outputs the decoy
with the highest probability as FALCON’s prediction. Table 4.5 summarizes the
comparison between FALCON and ROSETTA. ROSETTA’s results are obtained
by the clustering program of ROSETTA’s package with the default configuration.

As summarized in Table 4.5, for five of the six benchmark proteins: 1FC2,
1ENH, 2CRO, 1CTF, and 4ICB, FALCON’s final predictions are better than that
of ROSETTA’s, under the RMSD metric. For protein 2GB1, ROSETTA exhibits
a better prediction than FALCON.

Further experiments are conducted on eight larger proteins with more than 100
residues. These proteins are selected from CASP7 free modeling targets (the 7-th
Critical Assessment of Techniques for Protein Structure Prediction). As shown in
Table 4.6, for five of the eight proteins; that is, T0283, T0350, T0354, T0361, and
T0373, FALCON performs better than ROSETTA under the RMSD metric. In
CASP8, FALCON ranked third in the hard target category.

56



Table 4.5: Quality of the final decoys of ROSETTA and FALCON for the six benchmark proteins.

Target Protein ROSETTA FALCON
Protein A, 1FC2 3.660 3.652

Homeodomain, 1ENH 2.717 2.464
Protein G, 2GB1 2.755 3.323

Cro repressor, 2CRO 3.997 3.477
Protein L7/L12, 1CTF 8.327 3.035

Calbidin, 4ICB 4.866 4.770

Column 2-3: RMSD (Å) of the finally chosen decoys of ROSETTA and FALCON.

Table 4.6: Quality of the final decoys of ROSETTA and FALCON for eight larger proteins from
CASP7 free modeling targets.

Target Protein PDB Entry Length ROSETTA FALCON
T0283 2HH6 112 11.544 11.083
T0300 2H3R 102 7.557 9.282
T0307 2H5N 133 14.822 16.343
T0350 2HC5 117 10.635 7.406
T0354 2ID1 130 11.254 8.085
T0361 2HKT 169 20.009 12.225
T0373 2HR3 147 19.097 14.224

Column 4-5: RMSD (Å) of the final decoys of ROSETTA and FALCON.

57



4.6 Extending FALCON to Accept NMR Data

To make FALCON more useful, it is adapted to accept partial chemical shift in-
formation and contact information, as well as to tolerate errors. The modified
program forms part of the pipeline of an automated system for the NMR structure
determination, AMR. AMR consists of two other components: PICKY and iPass.
Here, a brief description of the system is given.

4.6.1 Methods

Each sequence segment is searched in a structural database. The structural database
is parsed from the 5,564 protein structures used by Shen et al. [134].

Three types of scores are identified between a structural fragment and a sequence
segment: the chemical shift score, homology score, and mutation score.

Chemical shifts of the structural database are predicted by a modified SPARTA
program [133], and (partial) chemical shifts of the target sequence are obtained by
iPass. Secondary chemical shifts [44] are used. Given a sequence segment and a
structural fragments, both ` amino acids, a chemical shift score is computed between
an amino acid of the structural fragment and the corresponding amino acid of the
sequence segment. At most ` chemical shift scores exist for each sequence segment
and structural fragment pair. The chemical shift score between an amino acid of a
sequence segment and an amino acid of the structural fragment is the RMSD of the
corresponding chemical shifts of the atoms in the amino acids. One of three possible
states is assigned for each pair of amino acids: match, mismatch, and unknown. If
all the chemical shifts of atoms in an amino acid for the sequence segment are
missing, the state is unknown. Otherwise, two amino acids are a match, if the
chemical shift score between them is below a certain threshold, and the secondary
chemical shift difference between each corresponding pair of atoms is below certain
threshold. The other cases are called a mismatch. Structural candidates with more
matches are preferred. If there is a tie, structural fragments with smaller chemical
shifts and homology scores are used. Given a structure and a sequence fragment,
details of the score function between them are as follows. Here, the homology score
is as given in [44], where a substitution matrix is used.

• If a sufficient number of matches between them have been founded (i.e. above
66%), the score to measure the distance between the two fragments is a com-
bination of the homology score and the chemical shift score.

• If most of the chemical shifts are missing and a substantial amount of chemical
shift states are unknown (i.e below 33%), the mutation score is used to mea-
sure the similarity between two fragments. Parameters are trained according
to the approach described in FRazor.

• If the number of matches is between 33% and 66%, a hybrid score of the
chemical shift and mutation score is employed.

58



4.6.2 NMR Results

Although using the chemical shifts alone might be sufficient for some proteins,
it is insufficient for most proteins. Previous work, first by [32, 64] and followed
by [134], have demonstrated that it is possible to reliably obtain high resolution
protein structures for some small proteins by using the chemical shift information
(obtained from a manual full sequential assignment) alone.

FALCON calls RAPTOR [169] to do the threading. If the score is high, it
starts the FALCON-NMR refinement process by using N-NOESY and chemical shift
information to select the best decoys. (This step was omitted in the experiments
for TM1112 and VRAR.)

Four proteins TM1112, CASKIN, VRAR and HACS are tested by both ap-
proaches: the ab initio approach and homologous model refinement approach.

Table 4.7: AMR final structures.

Protein Length RMSD

TM1112 89 1.25Å
CASKIN 67 1.89Å
VRAR 72 1.49Å
HACS 74 1.93Å

For TM1112 and VRAR, the ab initio approach is applied. The homologous
proteins are removed from the FALCON-NMR structural database. FALCON-
NMR generates decoys. They are selected by a combination score of the chemical
shifts and N-NOESY contact constraints. The top decoys are fed back to FALCON-
NMR for another iteration. Figure 4.5 shows the superimposed final decoy by
FALCON-NMR and the native structure for TM1112. Figure 4.6 illustrates the
superposition of the final decoy by FALCON-NMR, and the native structure for
VRAR.

CASKIN and HACS consists of many high confidence homologous models. The
direct application of RAPTOR finds the structural homologs: 2de0x, 2fpea, 1i1ja,
and 1spka. By feeding these to FALCON-NMR for a further refinement round,
and selecting using chemical shifts and contacts, the top decoys are 1.89Å RMSD
and 1.93Å RMSD away from the NMR models, provided by Donaldson’s lab, re-
spectively. The superimpositions of the top ranked models and the superimposed
structures are shown in Figure 4.7 and Figure 4.8, respectively.

4.7 Summary and Discussion

The following summarizes the results in this chapter. Based on the belief that
simple frameworks and models are better than a complicated approach, in this

59



Figure 4.5: TM1112 structure by AMR, magenta, superimposed on the NMR structure, cyan, at
1.25Å RMSD.

Figure 4.6: VRAR structure by AMR, magenta, superimposed on an NMR structure, cyan, at
1.48Å RMSD.

60



Figure 4.7: CASKIN structure by AMR, magenta, superimposed on an NMR structure, cyan, at
1.89Å RMSD.

Figure 4.8: HACS structure by AMR, magenta, superimposed on an NMR structure, cyan, at
1.93Å RMSD.

61



chapter a simple framework for structure sampling is proposed. It unifies the
features in several approaches. The more notable ideas that the framework is
based on are the fragment assembly method and HMM sampling. The proposed
Fragment-HMM overcomes the difficulties of stiff structural fragments in sequence
assembly approach, and the high dimensionality problem by the simple HMM ap-
proach. Experimentations using an implementation of the novel framework shows
it to compare favorably with ROSETTA. With an iteration technique enabled by
Fragment-HMM, the procedures of fragment assembly, clustering, and final decoy
selection are unified into the framework naturally. In addition, the framework con-
veniently embodies other approaches such as homology modeling, threading, loop
modeling, refinement, and consensus.

Finally, some remarks on the results in this chapter. In the proposed method,
ideally, the quality of the decoys should converge to its native structure over iter-
ations. However, it is noticed that, for example, the RMSD values of the decoys
for protein 2CRO converge to 3Å-4Å. This is mainly due to the lack of an accurate
energy function at the backbone level to direct the search process, and an all-atom
energy function for a refinement process. Another reason for it would be the use
of idealized bond angles and bond lengths. To solve the latter problem, it would
be beneficial for the sampling program to sample different bond angles and bond
lengths.

62



Chapter 5

Side Chain Packing

Side chain conformation prediction is important for protein structure prediction
and protein structure design. The feasibility of side chain conformation prediction
relies on the fact that the possible side chain conformations are limited, and there
are only a few frequent patterns [50, 83, 87, 118, 165]. Following this idea, frequent
side chain conformations are extracted from the known protein data bank [17] to
generate rotamer libraries [50,87,112,115,118,126,151,165]. The improvements of
these libraries, by combining the information of the backbone dihedral angles, have
resulted in backbone dependent rotamer libraries [50–52,87].

Two families of algorithms have been designed. One family consists of exact
algorithms which guarantee an optimal conformation, but at the expense of expo-
nential time complexities. The techniques frequently employed by these algorithms
include dead-end elimination [45, 47, 48, 62, 65, 89, 98, 99, 111, 124, 156], graph the-
ory [14,30,167], and mathematical programming [34,55,91]. In contrast, the tech-
niques in the other family are faster through the utilization of heuristics such as
Monte Carlo [75,109,154], cyclical search [51,165], and meta heuristics [81,100,151].

Most side chain prediction methods employ a two-step strategy:

• first, rotamer candidates are selected from a rotamer library for each residue;
and

• secondly, a searching method, along with an energy function, is used to find
the optimal combination of side chain conformations for all residues.

An energy function, either statistically or physically based, serves as a core to
guide side chain packing [36, 109, 119, 130, 147, 165]. However, there is a technical
dilemma in designing a perfect energy function: an accurate energy function is
difficult to design, and is inefficient in practice. Conversely, a simple energy function
results in significant deviations in side chain packing. Therefore, though equipped
with powerful methods to find global minimum, the solutions to side chain packing
problem till now are not satisfactory due to the energy functions.

63



Inspired by the threading approaches to protein structure prediction, substruc-
tures are applied to capture the subtle energy terms implicitly. In threading ap-
proaches, the interactions among neighboring residues are captured by structures
rather than by accurate energy functions. The focus is shifted to decide whether
the target sequence can adopt a structure, from deciding whether a given protein
sequence can be folded into some structures guided by energy functions. An al-
ternative approach to overcome the difficulty in designing an energy function is to
improve the rotamer candidate extraction. More specifically, the subtle terms of
the energy function can be implicitly embedded by rotamer candidate selection.
Thus, an accurate rotamer candidate selection approach can relieve or eliminate
the requirements of accurate energy functions.

This strategy also follows the main stream trend in previous studies on ro-
tamer libraries. Initially, backbone-independent libraries were used, along with
complicated energy functions. Later, these libraries were improved by introducing
backbone dihedral angles and simplified energy functions, giving rise to backbone-
dependent rotamer libraries [30]. At this moment, the rapid accumulation of known
structures makes it feasible to introduce more constraints to extract rotamers can-
didates. Thus, such libraries are built statistically, based on the φ/ψ dihedral angle
and amino acid type information. In summary, with the increase of known protein
structures, it is reasonable to use more constraints to build rotamer libraries and
this should benefit the accuracy of side chain packing.

The intuition of our methods can be described as follows. Given two independent
residues of the same amino acid type, if the conformations and the amino acid
types of residues surrounding these two residues are the same, then the side chain
conformations of these two residues should be similar, according to the assumption
that a protein structure is stable at the lowest energy state. The amino acid types
and conformations of the surrounding residues of residue R is referred to as R’s
neighborhood. Theoretically, given R’s neighborhood, the side chain conformation
of R can be determined. However, the intent in this chapter is not to discover how
a side chain conformation is inferred from its neighborhood; but how to simplify
neighborhood representation and retain sufficient information to code the side chain
conformation. The motivation is to design a simple but informative neighborhood
representation, such that the side chain conformation can be inferred by searching
in a known database for residues with similar neighborhoods.

Moreover, the use of hexagon substructures to describe the neighborhoods of
the residues is explored. Typically, a simple neighborhood cannot capture the
underlying factors of side chain conformations, and a complicated neighborhood
might not have matches in the known structures. As an initial attempt, hexagon
substructures are proposed to capture neighborhood information. The hexagon
structure can utilize the backbone information of the neighbors: if two residues
of the same type shares similar hexagon structure, their side chain conformations
should be similar. By using hexagon substructures, some issues in the energy
function are implicitly coded, and further elimination of the ambiguities for the
side chain conformations are possible. The initial experimental results indicate

64



that this use of hexagon substructures is reliable.

The side chain packing problem is NP-hard in the general case [7, 125], and
remains NP-hard even under geometric constraints [167]. By using the hexagon
substructures, the number of rotamer candidates for each residue is reduced to
a small constant. However, the problem remains NP-complete even if a residue
assumes, at most, three rotamer conformations.

5.1 Method

The development of the proposed method can be summarized as follows. For each
residue in the given backbone structure, a hexagon substructure is built to describe
its neighborhood information. Then, this hexagon structure is searched in a pre-
defined hexagon structure database. The side chain conformations of the top K
hexagon substructures from the database are extracted as predictions. The details
are presented in the subsequent subsections.

5.1.1 Rotamer Database

The novel rotamer (or hexagon) database is preprocessed using a similar procedure
as that in [30]. In particular, PDB20 with a resolution < 1.7Å is used. There are
3,428 chains. Suspicious residues are filtered out by previously established tools
from [162,163].

5.1.2 Hexagon Substructure

Hexagon substructures are designed to provide a concise way to describe the neigh-
borhood information of a residue, including its nearest neighbors, and the number
of residues within a given threshold distance.

The hexagon substructures are designed as follows. First, a reference system is
specified by the N, Cα, and Cβ atoms of each residue. It is assumed that N is on
the x-y-plane (on the half plane, where x is positive), Cα is the origin, and Cβ is
along the y-axis in the positive direction. The entire 3D space is partitioned along
the y-axis into six equal sub-spaces by three planes, and the angle between any two
planes is 120◦. Note that the first subspace ranges from −30◦ to 30◦ with respect
to the positive half of the x-y-plane, and the N atom is not on any of the subspaces’
boundaries.

With this definition, it is easy to describe the relative position of the residue’s
neighbors in a simple but informative way. It should be noted that the reference
systems are directly comparable across residues, since the coordinates of N, Cα, and
Cβ can be aligned approximately. In addition, the coordinates in various reference

65



N

CA

CBC

Figure 5.1: Hexagon substructure.

systems of the same amino types are directly comparable, regardless of the rotation
and translation.

In each subspace, the nearest neighbors and contact number are computed as
follows.

• Nearest Neighbors: In each subspace of residue R, the nearest nonlocal Cα

to Cβ of R is located. Here, a residue is nonlocal to R, if and only if it is
separated by three residues from R in the target sequence. These six residues
are spatial neighbors of residue R, denoted as H1

R, H2
R, ..., H6

R. Also, H i
R is

used as the Cα coordinate of residue H i
R, when the context is clear.

• Contact Vector: In each subspace of residue R, the contact number, that is,
the number of Cα atoms within a certain distance, 10Å in this chapter, is
calculated. The six contact numbers, C1

R, C2
R, ..., C6

R, form a contact vector
for residue R.

The idea behind the hexagon substructures is to describe how many contacts a
residue has in each subspace, and what kinds of amino acids are nearest neighbors.
In addition, a hexagon substructure captures some distant contact information. By
doing so, a substructure can implicitly capture long distance contact energy terms.

Additional notations are defined before describing the usage of hexagon sub-
structures. Given a residue R, its hexagon structure is HR. The φ and ψ angles of
R are represented as φR and ψR, respectively. Two angles are said to be similar, if

66



and only if the difference between them is below a certain threshold. The subse-
quent residues of R in sequence are denoted as R+1, R+2, and so on. Similarly, the
preceding residues of R are R−1, R−2, and so on. R is written as R0 for notation
simplicity. R−2, R−1, R1 and R2 are the sequential neighbors of R.

The objective is to investigate whether two residues with similar hexagon sub-
structures share similar side chain conformations. The similarity between two
hexagon substructures is measured by two types of distances: geometry distance
and sequence distance.

5.1.3 Geometry Distance

The geometry similarity between two hexagon substructures consists of three com-
ponents: the torsion angle difference, contact vector difference, and contact dis-
tance.

Dihedral Angle Difference

It has been reported that side chain conformations are highly related to backbone
dihedral angles [51]. The typical example in Figure 5.2 portrays the statistical data
for amino acid Phenylalanine from the training data set. In particular, given two
occurrences of amino acid Phenylalanine, the backbone dihedral angle difference
is measured on the plane formed by the x-axis and z-axis, while their χ1 angles
are measured with respect to the y-axis. It is observed in Figure 5.2 that the more
similar the two residues’ backbone dihedral angles are, the more similar their side
chain conformations are. However, it should be noted that it is not necessary for
two residues of identical dihedral angles to have the same side chain conformation.
Also, that side chain conformation is more sensitive with respect to the changes of
the φ angles than that of the ψ angles. The curves for the other types of amino
acids are similar.

0.35
0.4
0.45
0.5
0.55
0.6
0.65
0.7

0
5

10
15

20
25

30

0 5 10 15 20 25 30

0.35
0.4

0.45
0.5

0.55
0.6

0.65
0.7

Probablity curve vs. ∆φ and ∆ψ

∆φ

∆ψ

Figure 5.2: Similarity of χ1 angles vs. the difference between φ and ψ for the amino acid Pheny-
lalanine.

67



To quantitatively describe the relationship between χ1 and the backbone dihe-
dral angles, a 2D elliptical Gaussian function, shown in Equation 5.1, is applied to
parameterize the curves, where λ is the normalization factor,

N(∆φ,∆ψ) = λ expa∆φ2+b∆ψ2+c∆φ∆ψ+d∆φ+e∆ψ . (5.1)

The parameters are determined by using the regression techniques on a training
data set.

GT (R1, R2) = N(|φR1 − φR2|, |ψR1 − ψR2|) describes the similarity χ1 angles for
two given residues.

Besides the backbone dihedral angles of R itself, the dihedral angles informa-
tion of the sequential neighbors of R is also utilized. The reason for this is that
the sequential neighbors’ backbone dihedral angles also affect the side chain con-
formation of R. The similarity of sequential neighbors’ backbone dihedral an-
gles are represented as follow. Given two residues and their sequential neighbors:
R−2

1 , R−1
1 , R1, R

+1
1 , R+2

1 and R−2
2 , R−1

2 , R2, R
+1
2 , R+2

2 , the sum of the dihedral angles
difference, between the 5-mers is used as a score, and is defined as follows:

GL(∆φ,∆ψ) =
∑

i∈−2,−1,1,2

(φRi1 − φRi2)
2 + (ψRi1 − ψRi2)

2. (5.2)

The amino acid types of R1 and R2 are assumed to be the same.

Contact Number Difference

The contact number difference between two residues R1 and R2 is expressed as

GC(R1, R2) =
6∑
i=1

|Ci
R1
− Ci

R2
|. (5.3)

Two residues of the same amino acid type are compared only if both of the
dihedral angle differences are within 10◦. Otherwise, a large constant is assigned.

Spatial Neighbor Distance

As we pointed out in Section 5.1.2, the coordinates of the spatial neighbors of two
residues are directly comparable. Therefore, RMSD is used as the metric here. The
neighborhood distance between the two residues, R1 and R2 is computed by

GS(R1, R2) =

√
1

6

∑6

i=1
(H i

R1
−H i

R2
)2. (5.4)

68



Table 5.1: Parameters the for joint probability function for 18 amino acids.

AA λ a× 104 b× 104 c× 104 d× 104 e× 104

CYS 0.648 -20.6 -116 -2.25 -2.47 2.61
ASP 0.667 -2.77 -40.5 0.411 -3.07 0.519
GLU 0.523 0.495 -131 -0.943 -1.66 6.05
PHE 0.687 -50.8 -270 -0.773 2.21 3.33
HIS 0.571 -9.75 -216 -2.06 -0.44 5.84
ILE 0.908 50 -103 -2.61 -11.8 5.37
LYS 0.525 41.8 -160 -1.23 0.0195 4.07
LEU 0.565 54.2 -63.2 -0.0727 0.984 -0.932
MET 0.574 0.437 -83 -0.913 0.774 1.65
ASN 0.678 -71.9 -73.1 0.317 -2 2.73
PRO 0.829 -331 -17.3 -3.24 0.305 -0.989
GLN 0.522 4.5 -81.8 -0.437 -1.12 3.84
ARG 0.527 0.724 -134 -0.506 0.204 2.81
SER 0.519 91.8 -134 -4.15 -6.33 6.53
THR 0.871 -14.5 -165 -0.808 -10.4 2.39
VAL 0.907 7.49 -94.3 -1.11 -12.9 4.2
TRP 0.571 51.9 -318 -2.14 0.822 5.39
TYR 0.687 -48.7 -304 -1.05 2.82 3.7

69



5.1.4 Sequence Comparison

In addition to the geometry comparison, the sequence similarities are also cal-
culated. The sequence similarity consists of two components: a local sequence
similarity and a spatial sequence similarity.

Local Sequence Similarity

The local sequence substitution matrices are built for the sequential neighbors of
the residues. The substitution matrices are built in the same way as BLOSUM [74]
matrices except for the way to “align” the sequence fragment. Specifically, a matrix
is computed for each amino acid type at positions i = −2,−1,+1,+2, and there
are 4× 18 local mutation matrices, M i

A, −2 ≤ i ≤ 2, i 6= 0.

To compute the local mutation matrices, sequences need to be aligned. Two
5-mers R−2

1 , ..., R+2
1 and R−2

2 ,... ,R+2
2 , are aligned if the following conditions are

satisfied

• R1 and R2 are amino acids of the same type,

• d(φR1
i , φR2

i) ≤ θi and d(ψR1
i , ψR2

i) ≤ θi, −2 ≤ i ≤ 2.

In this chapter, θ0 = 15◦ and θi = 60◦ for i 6= 0. Two aligned 5-mers are
matched, if d(χR1 , χR2) ≤ θχ.

Probability piA,j,k indicates the number of normalized mutations from amino
acid j to k at position i, when R1 and R2 are matched for amino acid type A.
Similarly, piA,j is the frequency of amino acid type j at position i, when R1 and R2

are matched for amino acid type A. The entry of the mutation matrix, M i
A[j, k], is

M i
A[j, k] = log

piA,j,k
piA,j × piA,k

. (5.5)

Given the matrices, the similarity of the local sequence is computed as follows:

SL(R1, R2) =
∑

−2≤i≤2,i 6=0

M i
A[AiR1

, AiR2
]. (5.6)

Spatial Neighborhood Sequence Similarity

Besides the local sequence similarity, the neighborhood sequence similarity is com-
puted. By using similar methods, one matrix is computed for each amino acid type
in each of the six subspaces. In total, there are 6× 18 matrices, Liaa, 1 ≤ i ≤ 6, aa
is any amino acid except for Gly and Ala.

To compute the neighborhood mutation matrices, it is necessary to align two
residues and their neighborhoods. As discussed in Section 5.1.2, a reference system
is defined for each residue, R, according to its backbone atoms N, Cα, and Cβ.

Two residues R1 and R2, along with their neighbors are aligned, if

70



• the amino acid types of R1 and R2 are the same,

• d(H i
R1
, H i

R2
) ≤ θN , 1 ≤ i ≤ 6,

• d(φR1 , φR2) ≤ θ0 and d(ψR1 , ψR2) ≤ θ0.

Here, θ0 = 15◦ and θN = 2Å are chosen. Two aligned residues and their
neighbors are matched, if d(χR1 , χR2) ≤ θχ.

Probability piA,j,k is the frequency of mutations from j to k in subspace i when
R1 and R2 are matched for amino acid type A, 1 ≤ i ≤ 6. Probability piA,j denotes
the frequency of amino acid type j at subspace i if R1 and R2 are matched for
amino acid type A. The entry of mutation matrix LiA[j, k] is defined as

LiA[j, k] = log
piA,j,k

piA,j × piA,k
. (5.7)

Given the matrices, the spatial sequence similarity is computed as follows.

SN(R1, R2) =
∑

1≤i≤6

LiA[AHi
R1
, AHi

R1
] (5.8)

5.1.5 Identify Rotamers Candidates

Given two residues R1 and R2, the similarity score is computed as follows.

f(R1, R2) =
∑

i∈{T,N,C}

wiGi(R1, R2) +
∑

i∈{L,N}

wiSi(R1, R2). (5.9)

Given a backbone structure, the neighborhood information and local informa-
tion are extracted for each residue; and the rotamer database is searched by using
the scoring function in Equation 5.9. The top 25 residues are returned as can-
didates for the side chain conformation. Finally, the 25 rotamers of each residue
are clustered, and the presentative rotamer from each cluster is reported as final
solutions.

5.2 Results

The same testing data set as in [30] is used. A prediction of the χ angle is considered
correct, if the predicted value is within 40◦ of the actual angle. If not mentioned
explicitly, the accuracy of the χ1 angles is used.

71



Table 5.2: Effectiveness of different distance measures

Geo. Dist Seq. Dist
AA None GT GC GS GL SN SL

CYS 71.1 72.0 72.8 73.3 76.0 77.2 75.7
ASP 74.7 74.9 76.0 76.8 80.0 78.8 80.0
GLU 62.7 63.3 64.6 65.3 66.0 67.9 64.9
PHE 75.2 72.3 77.2 78.5 78.5 82.5 78.8
HIS 67.6 68.9 70.8 71.3 73.2 74.9 72.4
ILE 90.1 90.3 90.9 90.8 91.5 91.5 90.8
LYS 68.0 67.1 70.5 70.5 71.0 72.7 70.0
LEU 72.7 73.2 76.6 77.8 75.0 81.8 76.4
MET 67.6 69.0 68.9 70.2 71.7 72.6 69.6
ASN 70.2 70.9 71.8 72.6 76.5 74.9 76.0
PRO 94.9 95.4 96.0 95.6 96.8 96.1 96.5
GLN 64.5 65.2 66.9 67.6 69.1 71.8 68.4
ARG 65.7 66.8 67.5 68.4 69.2 71.2 68.3
SER 64.4 65.2 66.5 66.0 68.8 69.0 69.4
THR 87.3 88.5 88.9 88.8 90.1 89.9 89.2
VAL 89.2 90.0 90.2 90.0 90.6 90.8 90.0
TRP 69.8 68.9 73.0 73.1 75.1 76.5 74.2
TYR 74.9 75.3 76.3 77.9 78.1 80.5 78.0
ALL 72.9 74.3 75.8 76.3 77.1 78.6 76.9

5.2.1 Effectiveness of features

Table 5.2 displays the effectiveness of the proposed features. Both φ/ψ differences
are restricted to within 10◦ when two residues are compared. As a control, the
accuracy of majority voting technique is listed in the second column. The remaining
columns display the accuracies for each feature independently. As seen in the
table, all the features are effective with the local sequence similarity being the most
effective feature.

Figure 5.3 displays the relationship between the χ1 angles and contact vector of
the subspaces for residue type Aspartate. In this example, the backbone dihedral
angle variations are within, at most, 3◦. This figure conveys that as the contact dis-
tance increases, the similarity of χ1 decreases. The χ1 angles are similar for most of
the residues with the same backbone dihedral angles and contact distances. In ad-
dition, the accuracy increases, when more subspaces are adopted. It is noteworthy
that similar trends can be observed for the other amino acid types.

In addition, the interest is in whether or not employing more subspaces improves
side chain conformation prediction. The relationship between χ1 and the number

72



0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95

246810
048121620

0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.95

Similarity curve vs. ∆GC and N

N
∆GC

Figure 5.3: Similarity of χ1 angles vs. the difference between φ and ψ for amino acid type
Aspartate.

of subspaces is illustrated in Figure 5.3. It is evident that when more subspaces
are used, the accuracy of the χ1 prediction is improved. However, with the increas-
ing number of subspaces, the number of residues with the same contact vectors
decreases as well.

Figure 5.4 plots the relationship between the χ1 angle accuracy with the spatial
distance and the number of subspaces. This figure portrays that the χ1 accuracy
increases as the number of subspaces and the spatial distance increase.

0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95
1

246810
01234567

0.6
0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

Similarity curve vs. ∆GS and N

N
∆GS

Figure 5.4: Similarity of the χ1 angles vs. the difference between φ and ψ for amino acid type
Phenylalanine.

5.2.2 Rotamer selection

Figure 5.4 displays the accuracy of the χ1 angles and the average number of the
rotamer candidates for each residue type. Interestingly, the accuracies of χ1 angles

73



Table 5.3: Contact distance vs. number of subspaces.

Number of Subspaces
AA 2 3 4 5 6 7 8 9
CYS 86.0 96.7 99.1 99.8 99.8 99.8 100 99.9
ASP 76.1 82.6 86.6 88.3 89.6 91.5 91.5 94.2
GLU 56.0 62.1 68.4 70.3 71.9 75.1 74.4 82.3
PHE 77.6 90.7 96.5 98.8 99.3 99.5 99.7 99.8
HIS 85.2 97.0 98.8 99.6 99.7 99.8 99.8 99.9
ILE 95.6 97.4 98.8 99.6 99.8 99.9 99.9 99.9
LYS 59.1 66.9 71.3 76.2 74.1 78.6 81.1 80.6
LEU 62.0 74.3 84.6 93.4 92.9 95.6 95.9 97.7
MET 73.7 90.2 96.2 98.7 98.6 99.2 99.2 99.2
ASN 84.5 93.0 95.6 97.3 97.4 97.9 98.1 98.8
PRO 81.2 86.1 88.9 91.3 91.8 93.1 92.7 93.6
GLN 63.5 77.0 82.9 88.2 86.8 90.9 91.5 92.9
ARG 61.1 73.1 78.7 83.5 83.0 87.1 89.2 88.8
SER 68.3 82.4 88.2 91.3 92.1 93.4 94.0 96.4
THR 91.8 96.2 98.0 98.8 99.3 99.4 99.3 99.6
VAL 93.6 96.3 98.4 99.3 99.7 99.8 99.8 99.9
TRP 82.1 95.1 98.0 99.3 99.5 99.8 99.8 99.8
TYR 80.2 92.7 97.0 98.8 99.1 99.3 99.5 99.4

74



Table 5.4: Rotamer selection.

Residue χ1 Accuracy Average #
Type BBDEP SCWQL3.0 HEXAGON of Rotamers
CYS 80.5 88.2 86.7 2.15
ASP 71.7 80.8 83.9 2.08
GLU 61.7 71.3 70.8 2.33
PHE 75.4 93.7 89.6 1.93
HIS 67.7 85.3 86.4 2.14
ILE 87.7 91.8 93.5 1.58
LYS 66.5 74.0 75.4 2.20
LEU 72.9 89.9 84.8 1.86
MET 64.9 80.4 78.9 2.24
ASN 68.1 78.7 80.2 2.20
PRO 82.6 84.4 97.9 1.39
GLN 66.1 74.6 76.2 2.26
ARG 62.6 76.9 77.6 2.27
SER 62.6 66.4 73.3 2.42
THR 85.0 88.0 90.4 1.76
VAL 85.9 89.9 90.2 1.68
TRP 68.4 88.4 90.3 2.08
TYR 74.1 92.3 87.2 2.01
ALL 73.0 82.6 83.8 2.00

are even higher than the commonly used tool SCWQL3.0. The number of average
rotamers for each residue is two.

Table 5.5 displays the predicted confidence in relation to the actual accuracies.
Column one and four display the predicted confidence; column two and five dis-
play the actual accuracy above the predicted confidence; and column three and six
display the percentage of residues which are predicted above the confidence. Ap-
proximately half of the residues have accuracies 93.8%, with a claimed confidence
above 0.85 from the program.

5.2.3 Accuracy of Prediction

The previous experimental results suggest that it is plausible to use hexagon sub-
structures for side chain prediction. A simple consensus is performed for rotamers
reported from HEXAGON and rotamers from SCWRL for the native structural
side chains. For the non-native case, rotamers from hexagon substructure strategy
are used. The comparisons are listed in Table 5.6. The hexagon strategy has a
higher accuracy for all the cases, and this suggests that capturing the energy terms
implicitly facilitates better predictions of the side chain conformations.

75



Table 5.5: Predicted confidence vs. actual accuracy

≥ real % ≥ real %
0.95 97.5 23.2 0.45 84.2 93.6
0.9 96.4 34.6 0.40 83.8 95.1
0.85 93.8 50.5 0.35 83.8 95.1
0.8 92.4 57.4 0.30 83.8 95.3
0.75 90.9 64.3 0.25 83.8 95.4
0.7 90.9 64.3 0.20 83.7 95.6
0.65 89.4 70.7 0.15 83.7 96.1
0.6 86.2 84.2 0.10 83.6 97.0
0.55 84.8 90.7 0.05 83.6 1
0.50 84.2 93.6 0 83.6 1

Table 5.6: Accuracy of χ1 and χ2 angels by a simple consensus method

Residue Native Non-Native

χ1 χ1+2 χ1 χ1+2

SCWRL3.0 82.6 73.7 53.0 33.4
HEXAGON 84.8 74.1 53.8 37.3

76



5.3 Complexity Results

It has been proven that the side chain packing problem is NP-complete [7, 125].
However, the proof does not reflect any geometric constraints, that is, constraints
which imply that there are limits to the number of rotamers that any residue can
be in contact with. When geometric constraints are imposed, a PTAS exists for the
problem [167] and a new NP-complete proof is given. However, the proof placed a
limit of m as the number of residues that a residue can be in contact with, without
any bound on m.

It would be useful to know if the problem is efficiently solvable when m is a
very small number, because it is possible to reduce the number of rotamer candi-
dates for each residue to a very small constant, either by the dead end elimination
preprocessor, or by the hexagon structures proposed in this thesis. But, the case
remains NP-hard, even when each residue has, at most, three rotamers.

5.3.1 Reduction

The one-in-three planar 3SAT problem is reduced to this problem. An instance
of planar 3SAT is shown in Figure 5.5. Given a three conjunction norm form (3-
CNF) of a formula Φ, a bipartite graph, GΦ(VC , VX , E), is established. Vertex vx
is defined for variable x, and vertex vc is defined for each clause c. An edge is
created between two vertices vx and vc, vx ∈ VX , vc ∈ VC if and only if x appears
in the clause c. The set of edges is represented by E. Φ is planar, if and only if
GΦ is planar. Planar 3SAT is NP-complete [110]. Knuth and Raghunathan [92]
suggested an NP-complete case where GΦ is further restricted, as demonstrated in
Figure 5.5: all the variables reside on a straight line, and the three-legged clauses
are arranged below and above them. The legs are in a rectilinear fashion. In [121], it
has been shown that PLANAR 1-in-3 SAT is NP-complete even for the embedding
in Figure 5.5.

v1 v2 v3 v4 v5

C1 = (v1∨v4∨v̄5)

C2 = (v1∨v̄2∨v4)

C3 = (v̄2∨v3∨v̄4)

C4 = (v̄1∨v2∨v3) C5 = (v̄3∨v4∨v̄5)

C6 = (v1∨v3∨v̄5)

Figure 5.5: Instance of planar 3SAT.

It is clear that a planar 3SAT can be embedded on a grid. The planar 3SAT
drawing is modified, as shown in Fig. 5.6. Two consecutive literals of the same

77



variable are two units apart. Any two horizonal lines of any two legs are at least
two units apart.

v1 v2 v3 v4 v5

C1 = (v1∨v4∨v̄5)

C2 = (v1∨v̄2∨v4)

C3 = (v̄2∨v3∨v̄4)

C4 = (v̄1∨v2∨v3) C5 = (v̄3∨v4∨v̄5)

C6 = (v1∨v3∨v̄5)

Figure 5.6: Embedding planar 3SAT on a grid

The intersection point of the three legs is called a pivot.

A residue is created for each grid point, which resides on the legs and on the line
segments for the variables. In the construction, three types of residues {Al, Ac, Av}
are used. All the residues on a leg, except those for the pivots are of type Al; and
all the residues for pivots are of type Ap. All the residues on the line segment of
variables, except those for leg terminals, are of type Av.

Two types of rotamers {tlt, tlf} are defined for residue type Al. Three types of
rotamers {tc1, tc2, tc3} are associated with residue type Ac. Two types of rotamers
{tvt , tvf} are defined for residue type Av.

An interaction edge is created between any two residues, if the distance between
them is no more than one. It is assumed that there are N residues r1, ..., rN .

An assignment of side chain is denoted asA. To reduce the 3SAT problem to the
side chain packing problem, an energy function with all the possible assignments
as the domain is designed. The energy score evaluates to zero on any optimal
assignment, and positive values on all other assignments.

If two residues do not share an interaction edge, the score between them is
zero. For two residues ri and rj that share an interaction edge, the scores are
summarized in Table 5.7. For two residues within the same leg which interact,
the score between them is zero if they adopt the same type of rotamers, and one
otherwise. Ideally, if variable x is assigned to a true value, all the residues in the
legs, corresponding to non-negated literals x, adopt rotamers Alt, and all the residues
in the legs, corresponding to negated literals x̄, adopt rotamers Alf . Similarly, if
variable x is false, all the residues in the legs, corresponding to non-negated literals
x, adopt rotamers Alf , and all the residues in the legs, corresponding to negated

literals, x̄ adopt rotamers Alt.

A pivot has three rotamers. If the left leg is for a true value, and the other two
legs are for false values, then the pivot residue has a rotamer, tp1. Similarly, the
scores are defined for the other two cases: where the middle leg is true, and where

78



Table 5.7: Energy values for the side chain packing reduction

A(ri), ri of type Al

ri Non-negated Leg Negated Leg

Ac

Rotamer tlt tlf tlt tlf

left
tc1 0 1 0 1

tc2 or tc3 1 0 1 0

middle
tc2 0 1 0 1

tc1 or tc3 1 0 1 0

right
tc3 0 1 0 1

tc1 or tc2 1 0 1 0

Al
tlt 0 1 1 0
tlf 1 0 0 1

Av
tvt 1 0 0 1
tvf 0 1 1 0

the right leg is true. The details are given in Table 5.7. This ensures that when
the score is zero, only one of the literals, x and x̄, can be true.

Two residues ri and rj of types Al and Av interact only at the line segments of
the same variable. If variable x adopts a true value, the residues of type Av for x
adopts rotamer tvt . If variable x adopts a false value, the residues of type Av for x
adopts rotamer tvf , ideally. The scores are defined accordingly.

The energy function is designed to restrict all the residues on the same leg
to adopt the same type of rotamer, by taking on non-zero values when this is not
fulfilled. The rotamers of the pivots ensure that only one of the legs adopts rotamer
type Alt, and the other two legs adopt rotamer type Alf , to ensure the total energy
is zero.

If the total energy is zero, all the residues for the same variable of type Av

on the line segment must adopt the same type of rotamer. If not, there exists a
residue on a leg’s terminal, whose two neighbor residues on the line segment have
different types of rotamers, and the total energy would be non-zero. If the residue
variable adopts rotamers of type tvt , the corresponding variable is assigned a true
value; otherwise, a false value.

An example of such assignments is provided in Figure 5.7. The arrow which
points to the pivot indicates that the residue adopts rotamer Alf and the arrow

which points away from the pivot indicates that the literal adopts rotamer Alf . If
the arrows on a leg point to the pivot, it indicates that the corresponding literal is
assigned a true value. Otherwise, the literal is assigned a false value. The leg that
the arrow of a pivot points to indicates that the corresponding literal of this leg is
true, and the corresponding two literals are false. If the arrow of the line segments
points to the left, the variable is assigned true. Otherwise, the arrows indicate that

79



the variable is assigned false.

v1 v2 v3 v4 v5

C1 = (v1∨v4∨v̄5)

C2 = (v1∨v̄2∨v4)

C3 = (v̄2∨v3∨v̄4)

C4 = (v̄1∨v2∨v3) C5 = (v̄3∨v4∨v̄5)

C6 = (v1∨v3∨v̄5)

Figure 5.7: Assignment of planar 3SAT

The formal proof of the correctness of the reduction is clear. Details are omitted
here.

Theorem 5. Geometric side chain packing problem is NP-complete, even for the
case that the energy items are binary and each residue have at most three rotamer
candidates.

5.4 Summary and Discussion

In this chapter it is found that hexagon substructures are useful for rotamer can-
didate extraction. It is possible to reduce the number of rotamer candidates to a
small constant with such substructures. Moreover, they are useful for both native
and non-native cases.

In the current definition of hexagon substructure, the side chain conformation
of neighbors are not considered. For about 50% of the side chain conformations,
their accuracy is over 93%. This information can be utilized for further side chain
packing.

The accuracy for the non-native structures is even lower than the accuracy of
directly applying a backbone rotamer library to the native structures. This implies
that the side chain conformations are very sensitive to the backbone dihedral angles.
In other words, a small change in the backbone dihedral angles can introduce a
large change in side chain conformation. This drawback can undermine the usage
of rotamer libraries for protein structure predictions, but side chain conformation
prediction methods should be able tolerate such changes in the backbone.

In contrast, in the near-native structures, although the backbone dihedral angles
are modified, the hexagon substructures are still similar. Therefore, by using the
hexagon substructures to capture the rotamer conformations, higher accuracies
should be achievable for near-native backbone substructures.

80



Chapter 6

Decoy Delection

The FALCON system in Chapter 4 rebuilds the HMM model using the decoys gen-
erated in the previous iteration. Given that very numerous decoys are outputted
in an iteration, it is necessary to select only a subset of decoys with better quali-
ties. The decoy selection problem has been intensively studied, and the common
approach is to select decoys that have more similar decoys in the set. In this chap-
ter, this common approach to decoy selection is improved in two aspects: a faster
implementation and a justification for its use.

6.1 Decoy Selection Methods

Most methods for ab initio protein structure prediction methods adopt a “generating-
selecting” paradigm. More precisely, by using a fragment-assembly [141] or other
techniques, a set of decoys are generated for the given protein. Then, a selection
procedure is employed to select the most native-like structure from these decoys.
A reliable discrimination of native-like structures from a set of candidate decoys is
crucial to protein structure prediction.

A variety of methods have been developed to perform decoy selection. These
methods can be grouped roughly into two families: single-model methods, and
model-ensemble methods.

Typically, a single-model method calculates the scores for each model, indepen-
dently, by using physics-based energy functions [25,76,93,177] or knowledge-based
scoring functions [68, 84, 117, 132, 141, 148, 166]. Usually, a physics-based function
uses features such as electrostatic, van der Waals force, hydrogen bond, solvation ac-
cessibility, contact potential, and hydrophobic folding energy. Unlike physics-based
functions, a knowledge-based function takes into account the statistics on the inter-
actions between the residues or atoms from known protein structures. Compared
with physics-based functions, knowledge-based functions are generally simpler and
easier to use, and their performances are comparable to those of physics-based
functions, according to an examination of CASP results. To assign optimal weights

81



for the adopted features, both of these two types of functions employ machine
learning techniques, say, support vector regression [123, 166]. Other methods uti-
lize residue environmental information [113], non-bonded atomic interaction pat-
terns [41], intra-molecular pairwise interactions [146], atom-atom contacts [157],
torsion angle potential [150], and stereo-chemistry information [79,97]. One weak-
ness of the single-model approach is that a slight change in the backbone can result
in a significant change in the scores.

In contrast, the ensemble-based methods rely heavily on the hypothesis that if a
structure sampling method generates two protein structures that are close to each
other, both of these structures are likely to be native-like. Such ensemble-based
methods [21,136,139,159] take advantage of the relationships among decoys, rather
than measuring each decoy individually.

One ensemble-based method is to assume that the decoys consist of a dominating
cluster with a native-like structure inside, and the native-like structure has more
neighbors than other decoys. Based on this assumption, it is reasonable to treat
the decoy with the largest number of neighbors as the most native-like decoy in the
decoy set. These techniques are referred to as maximum neighbor methods. Thus,
after the clustering techniques are employed to identify the largest single cluster,
the cluster center is reported as the best decoy. An alternative technique is to
calculate the density around each decoy in the decoy set [159]; that is, the sum of
RMSDs between a decoy and all the other decoys, and to output the decoy with
the highest density as a solution.

The work in this chapter is concerned with the maximum neighbor method. It
is improved in two aspects: new strategies to speed up a common implementation,
and an attempt at giving a rationale for its use.

At present, there are a few tools to implement the maximum neighbor method [106,
141,175]. In the popular protein structure prediction systems I-TASSER [164,175]
and ROSETTA [140], the decoys are selected by the following procedure: Starting
with the set of generated decoys, a threshold d is decided. Then, from the set, the
decoy with the maximum number of neighboring decoys within RMSD d is found,
and is reported as the highest ranking decoy. (The ties are broken arbitrarily.)
This decoy and all of its neighbors (the first cluster) are then removed from the
set, after which the decoy, with the most neighbors within RMSD d, is again found.
This decoy is reported as the second highest ranking decoy, and together with all
its neighbors (the second cluster) are removed from the set. Similarly, the third
highest ranking decoy is then found, and so on.

All the implementations of this procedure, at present, evaluate the pairwise
RMSD (or approximate values) of the decoys, resulting in runtimes which are, at
best, quadratic in the number of decoys. As the number of decoys grows to tens of
thousands, this method becomes infeasible, necessitating the development of faster
methods.

82



6.2 Faster Clustering

Three strategies are developed to speed up the clustering. In the first strategy,
auxiliary groups of proximate decoys are created. This facilitates the decision of
whether a group of decoys is (or is not) within the threshold distance from a given
decoy, through the use of triangular inequality. The second strategy is to use
efficiently computable lower and upper bounds of the RMSD to preliminary screen
out unlikely candidates. Thirdly, outlier decoys can be detected and removed prior
to the clustering. These strategies are implemented in an open source tool called
Calibur.

6.2.1 Strategy 1: Auxiliary Grouping of Decoys

Figure 6.1: Using auxiliary grouping of decoys.

To avoid the pairwise RMSD computation, proximate decoys can be considered
collectively; that is, decoys in close proximity can be grouped and represented with
a single decoy C, such that if C is within a certain distance from a decoy X, the
entire group is within threshold distance d from X. Similarly, no decoys in the
group are within distance d from X if X is further than some distance from C.

The desired grouping is one where each decoy belongs to exactly one group,
and each decoy is at most RMSD r from the group’s center (i.e., the representative
decoy). This can be accomplished as follows. First, a distance r less than d is
decided, and an arbitrary decoy is set as the center. (For the purpose of Case 1
below, r ≤ d

2
is used.) Repeatedly for each unclassified decoy, a search is performed

83



on all current centers, for one which the decoy is within distance r from. If and
when such a center C is found, the decoy is grouped with C and its distance to C
is recorded. Otherwise, the decoy is declared as a new center.

To locate the decoys in a group that are within distance d from decoy A, the
following five cases are examine (C denotes the group’s center and X denotes an
arbitrary decoy in the group).

Case 1: A is in the group of C (including where A is the group’s center), given
that r ≤ d

2
.

Case 2: RMSD(A,C) + r ≤ d.

Case 3: RMSD(A,C) > d+ r.

Case 4: RMSD(A,C) + RMSD(C,X) ≤ d

Case 5: |RMSD(A,C)− RMSD(C,X)| > d

These cases are depicted in Figure 6.1. Since RMSD is a metric [22], triangular
inequality applies. Hence, in Cases 1 and 2, all the decoys grouped with C must
be within distance d from A. In Case 3, the converse is true.

In Cases 4 and 5, the distances from the group’s center to each member of the
group has already been computed during the auxiliary grouping. Again, triangular
inequality implies that in Case 4, decoy X is within distance d from A, whereas
in Case 5, the converse is true. The RMSD between X and A is computed, if and
only if none of the cases apply.

6.2.2 Strategy 2: Lower and Upper Bounds of RMSD

Given decoys X and Y , a lower bound of RMSD(X, Y ) can be used to detect if
RMSD(X, Y ) is larger than the given threshold d. Likewise, an upper bound can
be used to detect the case where RMSD(X, Y ) is smaller than d. The strategy is
to use multiple such efficiently computable bounds as preliminary checks to reduce
the much more expensive RMSD computations. These checks can be applied to the
conditions in Cases 2 and 3 of Strategy 1, as well.

First, given three decoys O, X, and Y , by triangular inequality, the following
holds.

RMSD(X,O) + RMSD(Y,O) > RMSD(X, Y ) and
|RMSD(X,O)− RMSD(Y,O)| ≤ RMSD(X, Y ).

Consequently, an upper and a lower bound of RMSD(X,Y) can be efficiently
computed, through an arbitrarily chosen reference decoy O and pre-computed
RMSD(X,O) values for each decoy X. In practice, one can use c reference de-
coys O1, O2, . . ., Oc to obtain c upper bounds and c lower bounds. c = 6 is used in
this thesis.

84



The Euclidean distance between two decoys, after they are re-orientated to
minimize their RMSDs to a fixed arbitrary decoy, yields another upper bound to
their RMSD [106]. This upper bound distance is referred to as rRMSD.

Another lower bound is obtained as follows. Denote the centroid of a protein
structure Sx as cx. The signature Sigx for a protein structure, Sx = (sx,1, sx,2, ..., sx,n),
is defined as

Sigx = 〈vx,1, vx,2, . . . , vx,n〉, (6.1)

where vx,i = ||sx,i − cx||, 1 ≤ i ≤ n. The distance between the two signatures, Sig1

and Sig2, called the signature distance, is defined as:

dist(Sig1, Sig2) =
1√
n

√√√√ n∑
j=1

(v1,j − v2,j)2. (6.2)

The signature distance between two protein structures is a lower bound of their
RMSD, expressed as follows:

Lemma 6. RMSD(S1, S2) ≥ dist(Sig1, Sig2)

Proof. The optimal rotation and translation found in computing the RMSD of two
structures, S1 and S2, are denoted as R and T . The distance between s1,k and s2,k

in the optimal superposition is rk = ||Rs1,k − s2,k − T ||2. The line segments u1,k

and u2,k are defined as u1,k = 〈s1,k, c1〉 and u2,k = 〈s2,k, c2〉, 1 ≤ k ≤ n. The lengths
of u1,k and u2,k are denoted as v1,k and v2,k, respectively.

It is known that the superposition in computing the RMSD of any two structures
results in the centroids of the structures to coincide [13].

The angle between u1,k and u2,k is denoted as θ. By trigonometry, rk = v2
1,k +

v2
2,k− 2v1,kv2,k cos θ ≥ (v1,k− v2,k)

2. Hence, RMSD(S1, S2) = 1√
n

√
(r1 + . . .+ rn) ≥

1√
n

√
((v1,1 − v2,1)2 + . . .+ (v1,n − v2,n)2) ≥ dist(Sig1, Sig2).

6.2.3 Strategy 3: Filtering Outlier Decoys

Another possible enhancement of the performance is to discard decoys with low
similarity to the other decoys in the set, prior to the clustering. Here, an efficient
technique is proposed to quickly identify such decoys. The aim is to retain all of
the high ranking decoys, and the decoys which are within distance d from them.
These are the “good” decoys. It is reasonably to assume that every high ranking
decoy is within distance d from 10% of all the decoys. For a random sample of n
decoys, the probability for a good decoy to be within distance 2d from, at least,
one of the sampled decoys is 1 − 0.9n, which is > 0.9999, when n = 100. Hence,
decoys, which are not within 2d from any one of 100 randomly sampled decoys, are
likely bad, and are removed from the set.

85



6.2.4 Overall Program Design

A program based on the three strategies is designed. On a given set S of n input
decoys, the program does the following.

Step 1: Discover a suitable threshold distance d for clustering S.

Step 2: Filter the outlier decoys by using 100 randomly selected decoys, as in
Strategy 3.

Step 3: Create auxiliary groups for the decoys as required by Strategy 1. Com-
pute the signature (Sigx), and the distances (RMSD(X,O) for each
decoy X and reference decoy O; rRMSD(X, Y ) for each decoy X, Y ) as
required by Strategy 2.

Step 4: Find, for each decoy A, a neighbor set NA which contains all the decoys
in S within distance d from A (A inclusive), by using Strategy 1 and 2.

Step 5: Start with an empty sequence Output. Repeatedly find A ∈ S with the
largest NA, appending A to Output while removing NA from S and all
the neighbor sets.

Step 6: Output the decoys in Output. (For brevity the program is set to output
only the first three decoys.)

The threshold selection in Step 1 is addressed in the next subsection.

Steps 2 and 3 are performed straightforwardly.

Step 4 is implemented with the use of Strategy 1 and 2; that is, for each auxiliary
group, the elements’ membership in NX is decided for each decoy, X ∈ S with the
aid of the strategies.

Step 5 is performed by repeating the following until S is empty: Find the decoy
X ∈ S with the largest NX (breaking ties arbitrarily), and append the decoy to
Output. Then, remove NX from S, and for each Y ∈ NX , remove Y from NZ for
each Z ∈ NY .

Selection of a Suitable Threshold

Two decoys are considered to be significantly related, if and only if their RMSD
is relatively small among all pairwise RMSDs of the decoys. Hence, the strategy
adopted here for threshold finding is to identify the value d such that only x percent
of pairwise RMSD distances are below d, for some suitable x. Given x, a straight-
forward way to determine such a d exactly is to compute all n×n RMSDs, and find
the d(0.01xn2)e-th shortest distance. Alternatively, a reasonable approximation to

86



the x-percentile value can be obtained efficiently by using only a relatively small
random sample of the decoys. In the tests, approximately ten samplings, each of
100 decoys, sufficed to determine this value quickly and consistently. The new pro-
gram uses this method by default with x set to 100n−1/4. The expression 100n−1/4

is heuristic. It’s aim is to reduce the percentile when more decoys are available,
in order to speed up the clustering (e.g., x = 10 when n = 10000, x = 5 when
n = 160000).

A similar strategy is to use the most frequently occurring RMSD among decoys,
say f , as a reference to decide threshold distance d. (If the pairwise distances are
distributed normally, f should correspond to the 50th percentile.) As a selectable
option, the program includes a simple method, based on this, in which d = cf + b,
where c is set to 2

3
, and b is set to the minimum pairwise distance, discovered

through random sampling.

Memory Usage

In Steps 1, 2, 3, and 5, the memory required is linear in n. For Step 4, in the
theoretical worst case, |NX | = n for each X, results in an O(n2) memory usage.
However, such a case is unlikely to occur in the program’s intended use. In practical
use, |NX | is seldom above 0.2n, and is small for most Xs. In the case that the
number of neighbor sets falls off geometrically with the size, the memory required
to store all the neighbor sets would be linear in n. In the tests, the actual growth
in memory usage is closer to O(n) than O(n2).

If one is interested in only the highest ranked decoy from the clustering, it is
unnecessary to construct the neighbor sets, since the sizes of the neighbor sets
suffice to determine such a decoy. In this case, the total memory usage is linear to
n. This mode of operation is an included option.

6.3 Evaluation of Calibur

The program is implemented in C++ and called Calibur. Calibur accepts, as in-
put, a list of names of PDB files (each for a decoy) and an optional threshold d.
No pre-processing is required of the PDB files. If no threshold is given, Calibur
automatically finds a suitable threshold for the input decoys. The method which
Calibur uses for threshold discovery can be altered through command-line argu-
ments. A list of all the implemented methods is shown, when Calibur is called
without any input arguments.

6.3.1 Effectiveness of Strategies

The effectiveness of each strategy is evaluated with decoys predicted by FALCON
on the proteins TM1112 from the Arrowsmith Lab at University of Toronto (herein

87



the set is referred to as TM1112) and SH3 from Donaldson’s Lab at York University
(herein referred to as CASKIN). Each of these two sets contains 9,999 decoys.

Auxiliary Grouping, Lower and Upper Bounds

Each case contributed in reducing the runtime, although the amounts differed at
different thresholds (see Figures 6.2 and 6.3). At low thresholds, the chances of
decoys being further than the threshold distance are high. Hence, Case 3 and the
lower bounds are more effective. For a similar reason, the effects of Case 1 and the
upper bounds become elevated at larger thresholds.

In Calibur, the order in which the cases are performed, as well as the range of
thresholds is optimized according to these observations.

 0

 20

 40

 60

 80

 100

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 2 2.5 3 3.5 4 4.5 5 6 7

m
at

ch
es

 (
%

 o
f t

ot
al

 d
ec

oy
 p

ai
rs

)

threshold

Missed
Reject decoy, Ref_L
Accept decoy, rRMSD_U
Case 5
Case 4
Case 3
Case 3 Ref_L or Sig_L
Case 3 Sig_L only
Case 3 Ref_L only
Case 2 rRMSD_U
Case 1

Figure 6.2: Number of RMSD computations avoided.

The number of RMSD computations avoided (percentage over 9999×9998 computations) due to
each of the cases considered, at different threshold values. For Case 2, the upperbounds are used
for condition evaluation prior to the actual RMSD. The contribution from the upperbounds via
the reference decoys can be completely accounted for by rRMSD, and the RMSD evaluations
contributed insignificantly. Only the contribution from rRMSD (label “Case 2 rRMSD U”) is
shown. For Case 3, the lowerbounds are used for condition evaluation prior to the actual RMSD.
Although the contributions from both kinds of lowerbounds overlap (label “Case 3 Ref L or
Sig L”), there were contributions, entirely due to the signatures (label “Case 3 Sig L only”), as
well as the reference decoys (label “Case 3 Ref L only”). The contribution from evaluating the
actual RMSD are highly significant as well (label “Case 3”). In evaluating individual decoys, the
upperbound obtained from rRMSD was highly effective at high thresholds (label “Accept decoy,
rRMSD U”). The lowerbounds from the reference decoys demonstrated noticeable effects (label
“Reject decoy, Ref L”). Other contributions are insignificant.

88



 0

 20

 40

 60

 80

 100

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.252.52.75 3

m
at

ch
es

 (
%

 o
f t

ot
al

 d
ec

oy
 p

ai
rs

)

threshold

Missed
Reject decoy, Ref_L
Accept decoy, rRMSD_U
Case 5
Case 4
Case 3
Case 3 Ref_L or Sig_L
Case 3 Sig_L only
Case 3 Ref_L only
Case 2 rRMSD_U
Case 1

Figure 6.3: Same as Figure 6.2, but on the CASKIN data set.

Filtering

On the data sets, TM1112 and CASKIN, filtering does not affect the clusters formed
by the highest ranking decoys. Their rankings remain the same. This is true even
in the cases where more than 70% of decoys are filtered prior to the clustering.
Figure 6.4 and 6.5 show, for TM1112 and CASKIN respectively, the number of
decoys filtered (for a total of 9999 decoys) at various threshold values.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 1  2  3  4  5  6  7

nu
m

be
r 

of
 d

ec
oy

s 
fil

te
re

d

threshold

Figure 6.4: The number of decoys filtered from
the set TM1112 by using 100 randomly se-
lected decoys at different thresholds. Each
value is an average of ten numbers from ten
different trials by using the same threshold.
The error bars show the standard deviations.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0.5  1  1.5  2  2.5  3

nu
m

be
r 

of
 d

ec
oy

s 
fil

te
re

d

threshold

Figure 6.5: Same as Figure 4, but with the
CASKIN data set.

89



Strategies’ Effects on Calibur’s Performance

To evaluate the strategies’ effects on Calibur at various thresholds, the runtimes,
when the strategies are used (“Calibur”) and when they are not used (“pairwise”)
are compared. For reference purposes, the runtime for ROSETTA’s pairwise evalu-
ation, based on the clustering program (“cluster info silent”) is also shown. All the
tests are run on a 3GHz Intel Core 2 Duo PC with 2.98GB RAM running CentOS
5.3. All three tools are compiled by using GCC 4.1.2 with the optimization -O. The
same codes is used for computing RMSD.

All the tools are given input such that the output is exactly the same. As a
result, only their runtimes are compared. For pairwise and cluster info silent, the
CPU time is taken to be the total time needed for finding neighbors, and the re-
cursive search for the largest clusters. For Calibur, the CPU time is the sum of the
times taken for the signature computation, decoys re-orientation, filtering, auxil-
iary grouping, finding neighbors, and the recursive search for the largest clusters.
Figure 6.6 illustrates the results on the data set, TM1112. The largest sizes of the
clusters at the thresholds 1, 2, 3, 4, 5, 6, and 7 are respectively 1,796, 6,017, 7,744,
8,186, 8,671, 9,120, and 9,368.

 0

 100

 200

 300

 400

 500

 1  2  3  4  5  6  7

C
P

U
 ti

m
e 

(s
)

Threshold

cluster_info_silent
pairwise
Calibur

Calibur without filtering

Figure 6.6: CPU times used to obtain clusters at different thresholds on the TM1112 data set of
9,999 decoys, by (1) cluster info silent (label “cluster info silent”), (2) Calibur without using any
of the strategies (label “pairwise”), (3) Calibur (label “Calibur”) (To account for variations caused
by the filtering, each point is the average of 10 trials), (4) Calibur with the filtering mechanism
disabled (label “Calibur without filtering”)

90



6.3.2 Calibur’s Performance on a Large Data Set

Calibur’s performance in handling large numbers of decoys is evaluated using a set
of 29,770 decoys for the TM1112 protein generated by FALCON. For each threshold
in 0.5, 1, 1.5, 2, 3, 4, and 5, ten trial runs are performed over a UNIX cluster. (More
precisely, an HP XC cluster with 378 nodes, each with 8×Xeon 3.0 GHz CPUs and
16GB memory, running RHEL 5.1.) All the runs result in the same decoy clusters.
Table 1 lists the average CPU times (in sec).

Table 6.1: CPU times.

Threshold 0.5 1.0 1.5 2.0 3.0 4.0 5.0
(27) (1966) (5531) (8560) (14397) (17915) (19905)

Calibur 74 ± 7 506 ± 14 1047 ± 27 1482 ± 42 2369 ± 154 3109 ± 266 3616 ± 290
no filtering 225 ± 11 717 ± 22 1250 ± 35 1629 ± 42 2495 ± 180 3166 ± 233 3501 ± 272
pairwise 2628 ± 72 2624 ± 69 2651 ± 66 2741 ± 83 3293 ± 205 4014 ± 130 4425 ± 324

Numbers in brackets are the sizes of the largest clusters at the corresponding threshold.
CPU times of (1) Calibur, (2) Calibur with the filtering mechanism disabled (“no filtering”), and (3) pairwise, on
a set of 29,770 decoys for the TM1112 protein, shown with ± standard deviation.

In practice, the largest clusters contain around 10% of the decoys. In the present
case, the largest clusters found at 1.5 threshold distance already contain more than
18% of all the decoys. At this point, the corresponding CPU time, required by
Calibur is about one third of the time required when the strategies are not used.

As a further reference on Calibur’s performance in high load use, Calibur com-
pleted within 15, 000 seconds CPU time for 100,000 decoys under its default settings.

6.3.3 Evaluation of Calibur’s Output Decoys

To evaluate the decoys produced by Calibur, they are compared with those by using
SPICKER [175], the clustering tool used in the leading ab initio protein structure
prediction system I-TASSER [164]. The decoy sets, natives, and SPICKER’s results
found on I-TASSER’s website [2] (downloaded on the July 24, 2009) are used. The
data consists of decoys for 56 targets.

In order to compare Calibur with SPICKER in terms of both output and speed,
Calibur is run under the same conditions as SPICKER. Both programs are compiled
with optimization -O3, and up to 13,000 decoys are sampled from each decoy set
(using the same selection procedure as in SPICKER’s source codes). All the tests
are performed on the same UNIX cluster. Calibur is set to use its default method
for automatic threshold distance discovery. Table 6.2 indicates the TM-scores and
RMSDs (to native) for the first decoys reported in each case.

The decoys of both tools are comparable. The total TM-score for SPICKER’s
decoys is 32.936, while that for Calibur’s is 33.191. In 20 cases, SPICKER’s decoys
have better TM-scores. In contrast, Calibur’s decoys have better TM-score in 33
cases. With respect to RMSD, SPICKER’s decoys have smaller values in 23 cases,

91



Table 6.2: TM-scores (to native), RMSDs (to native), and CPU times (sec) for SPICKER and
Calibur.

Target
Sample TM-score RMSD CPU Time Calibur

size SPICKER Calibur SPICKER Calibur SPICKER Calibur reported decoy
1abv 12,500 0.2903 0.2868 13.941 13.05 321.61 55.23 d12468.pdb
1af7 12,499 0.4654 0.5125 4.728 4.117 242.64 67.82 d11483.pdb
1ah9 13,000 0.5082 0.6313 4.701 3.341 346.17 199.14 d23158.pdb
1aoy 13,000 0.6598 0.6598 4.761 4.761 365.77 295.87 d16717.pdb
1b4bA 12,500 0.4099 0.484 6.578 5.571 326.79 121.13 d808.pdb
1b72A 12,499 0.6651 0.6722 3.195 3.233 285.41 83.01 d1842.pdb
1bm8 13,000 0.4317 0.3627 7.384 6.842 344.02 330.32 d16762.pdb
1bq9A 13,000 0.3781 0.3696 7.838 8.14 238.26 124.5 d6185.pdb
1cewI 13,000 0.7167 0.7336 3.874 3.809 449.38 304.34 d13869.pdb
1cqkA 13,000 0.821 0.8523 1.946 1.687 446.8 349.79 d14302.pdb
1csp 12,500 0.7269 0.719 2.369 2.384 353.13 251.95 d1430.pdb
1cy5A 13,000 0.8739 0.8779 1.573 1.66 440.48 336.39 d23161.pdb
1dcjA 13,000 0.3542 0.3751 10.798 12.145 335.77 143.65 d12374.pdb
1di2A 13,000 0.7989 0.7683 2.336 2.62 374.5 223.57 d12120.pdb
1dtjA 13,000 0.7821 0.796 2.18 2.115 389.66 335.89 d6451.pdb
1egxA 13,000 0.774 0.7731 2.598 2.617 471.79 398.52 d3845.pdb
1fadA 12599 0.5784 0.58 3.611 3.62 406.35 318.15 d1888.pdb
1fo5A 13,000 0.5197 0.5442 3.97 3.879 324.25 339.78 d279.pdb
1g1cA 13,000 0.7794 0.7812 2.648 2.499 375.03 412.5 d19130.pdb
1gjxA 12,500 0.4338 0.3926 7.372 8.226 220.33 81.27 d5311.pdb
1gnuA 13,000 0.5202 0.5446 8.82 9 414.94 181.74 d17004.pdb
1gpt 13,000 0.5207 0.4979 5.467 6.324 327.16 170.6 d9347.pdb
1gyvA 11,508 0.7609 0.7678 3.444 3.435 375.84 305.36 d6819.pdb
1hbkA 13,000 0.6633 0.6633 3.482 3.482 356.79 216.9 d13973.pdb
1itpA 12,500 0.3268 0.3076 11.699 10.809 204.5 79.74 d7727.pdb
1jnuA 13,000 0.7242 0.7506 2.83 2.681 386.13 322.46 d7000.pdb
1kjs 13,000 0.3789 0.383 8.466 8.436 390.63 133.71 d14800.pdb
1kviA 13,000 0.7059 0.7067 2.153 2.1 371.62 234.93 d16371.pdb
1mkyA3 6,119 0.4307 0.4139 5.095 5.175 86.93 60.31 d4435.pdb
1mla 2 12,500 0.6219 0.6349 3.036 2.824 338.14 221.02 d11922.pdb
1mn8A 12,500 0.3579 0.348 7.096 7.452 243.34 145.14 d5490.pdb
1n0uA4 12,499 0.4645 0.456 4.46 4.622 324.49 216.03 d8172.pdb
1ne3A 12,500 0.4899 0.4315 4.542 5.915 208.35 195.67 d8859.pdb
1no5A 12,500 0.4456 0.4251 10.832 10.695 389.69 153.34 d6145.pdb
1npsA 13,000 0.7686 0.7671 2.287 2.233 345.46 245.05 d6340.pdb
1o2fB 12,500 0.3738 0.3932 8.345 6.098 219.45 78.71 d1553.pdb
1of9A 13,000 0.5391 0.5422 3.616 3.635 341.31 297.09 d1791.pdb
1ogwA 13,000 0.6606 0.7011 2.867 2.672 366.24 273.2 d7796.pdb
1orgA 13,000 0.7666 0.7566 2.583 2.659 412.02 379.68 d6724.pdb
1pgx 13,000 0.5043 0.5295 3.506 3.26 338.33 143.1 d10731.pdb
1r69 13,000 0.7381 0.7538 2.027 1.971 271.85 197.38 d16473.pdb
1sfp 13,000 0.7462 0.7281 5.312 5.326 412.33 425.41 d334.pdb
1shfA 13,000 0.8123 0.8255 1.471 1.476 283.79 143.59 d14354.pdb
1sro 13,000 0.6616 0.6258 3.571 3.756 364.43 291.37 d10853.pdb
1ten 13,000 0.7927 0.8233 1.93 1.837 363.24 336.27 d473.pdb
1tfi 13,000 0.4889 0.4991 4.746 5.136 273.66 245.07 d680.pdb
1thx 13,000 0.7944 0.7966 2.422 2.262 396.21 374.17 d16965.pdb
1tif 12,500 0.3222 0.3339 7.584 7.574 261.39 79.01 d310.pdb
1tig 12,500 0.4685 0.5609 9.69 3.58 277.55 98.05 d1417.pdb
1vcc 13,000 0.4026 0.376 6.507 8.128 244.25 142.76 d2437.pdb
256bA 13,000 0.76 0.76 3.448 3.448 418.19 404 d15667.pdb
2a0b 13,000 0.792 0.8034 2.617 2.467 441.06 365.23 d10915.pdb
2cr7A 12,500 0.4879 0.3699 3.605 8.239 223.83 69.35 d9843.pdb
2f3nA 13,000 0.721 0.7263 1.946 1.938 295.13 235.45 d13274.pdb
2pcy 13,000 0.6273 0.6402 4.71 4.658 373.94 302.21 d9770.pdb
2reb 2 12,500 0.3285 0.3372 7.003 5.928 259.69 76.22 d6304.pdb

CPU time is as reported by the UNIX server, and hence includes file processing time.

while Calibur’s decoys have smaller values in 30 cases. The total time taken by

92



SPICKER to cluster all 56 sets of the decoys is 18660.04 seconds CPU time, and
for Calibur 12612.14 seconds CPU time.

Using the entire set of data did not result in significant improvement in the
decoys obtained. Table 3 shows Calibur’s results on the seven larger data sets in
the 56 test cases when the full data sets are used. Here, the TM-score for the
decoys obtained is 4.756, slightly lower than the score 4.766 obtained when decoys
are sampled. This lack of improvement is likely because the sampling size is more
than a third of the full data and the sampled data sets are sufficiently representative.

Table 6.3: TM-scores and RMSDs to native for larger decoy sets. (cf Table 6.3.3).

Target Size TM-score RMSD CPU Time Reported decoy
1ah9 27498 0.645 (0.6313) 3.314 (4.701) 1125.38 (199.14) d23165.pdb
1aoy 32000 0.6598 (0.6598) 4.761 (4.761) 3144.66 (295.87) d16717.pdb
1cy5A 32000 0.8701 (0.8779) 1.62 (1.573) 3585.62 (336.39) d30926.pdb
1gpt 32000 0.5113 (0.4979) 6.292 (5.467) 1384.36 (170.6) d13341.pdb
1tfi 32000 0.4983 (0.4991) 5.077 (4.746) 2111.49 (245.07) d679.pdb
1thx 32000 0.7966 (0.7966) 2.262 (2.422) 3939.86 (374.17) d16965.pdb
2a0b 32000 0.7745 (0.8034) 2.782 (2.617) 3804.93 (365.23) d9949.pdb

The numbers in brackets are the values obtained from using the sampled sets of 13,000 decoys each.

6.4 Rationale for the Ensemble-based Methods

The Ensemble-based methods rely heavily on the hypothesis that if a structure
sampling method generates two protein structures that are close to each other, both
are likely to be native-like. Here, this hypothesis is investigated. A probabilistic
foundation is given, and applied to develop a new method for decoy selection.

6.5 Hypothesis

Most MC based methods for ab initio protein structure prediction consist of two
major components:

• a scoring or an energy function E to evaluate the current structural confor-
mation, and

• a searching strategy to direct the search process to move from one conforma-
tion to subsequent conformations.

After making a series of searches directed by the energy function, the decoy with
the lowest energy is ultimately generated as the predicted structure for the given
protein sequence. A set of decoy structures S can be obtained by repeating the
process.

93



In the following discussion, the native structure is denoted as s0, and the number
of residues in s0 is denoted `. D(s, s′) is a distance function that measures the
distance between two decoys s and s′. Ideally, D(s, s′) quantifies the number of
movements from s to s′ in the search process. In particular, D(s, s0) measures the
distance between a decoy s and its corresponding native structure s0; that is, the
quality of decoy s. The assumption that most ensemble-based selection methods
rely on can be stated as the following hypothesis.

Hypothesis: D(s, s0) < D(s, s′) holds with a high probability for any s, s′ ∈ S,
where S refers to a set of decoys, randomly generated by an MC search method.

In most Monte Carlo-based protein structure prediction methods, it is assumed
that the energy functions favor near-native decoys during search. In the process of
this search, each decoy can be treated as the result of a random trial in a sample
space with 3` dimensions. Specifically, each protein structure can be considered as a
3` dimensional point. It is unlikely for two randomly drawn high-dimensional points
to be close; that is, the distance between two decoys s and s′ tends to be random
due to the property of high dimensional space. In contrast, if the energy function,
used to direct the search, favors near-native movements, a reasonable conclusion is
that s tends to be close to s0 although the distance between s and s′ is large. This
hypothesis is in general true; that is, it ought to hold under reasonable distance
functions and energy functions.

Given that the hypothesis holds for a given set of decoys and a given distance
function, it is very likely that the native structure would be at the centroid of this
set. If so, this would rationalize both the density score function technique and the
maximum neighbor method. First, this is demonstrated by using simulation.

6.5.1 Verify the Hypothesis by Simulated Data

Simulations are employed to verify our assertion that when the hypothesis holds,
the decoys would have the native as their centroid. In each simulation, 500 points
are generated, where each point represents one decoy. Given native structure s0 and
point s′, a new point, s is generated with the probability Pr(D(s, s0) < D(s, s′)). In
these simulations, the probability is set to be 1, 0.9, 0.8, and 0.7, respectively. The
results are as shown in Fig 6.7. All the points are optimally mapped onto a 2D plane
for an intuitive observation. The four experiments display similar results; that is,
the point which represents the native structure consistently lies at the centroid of
the cluster.

6.5.2 Verifying the Hypothesis on Real Data

The premise of the hypothesis is that the energy function favors decoys that are
close to the native by the distance function. Given this, one would expect a function
that is more favored by the energy function to perform better in decoy selection.

94



-14

-12

-10

-8

-6

-4

-2

 0

 2

-8 -6 -4 -2  0  2  4  6

random decoy
native structure

(a) Pr(D(s, s0) < D(s, s′)) = 1
-4

-2

 0

 2

 4

 6

 8

 10

-14 -12 -10 -8 -6 -4 -2  0  2  4

random decoy
native structure

(b) Pr(D(s, s0) < D(s, s′)) = 0.9

-2

 0

 2

 4

 6

 8

 10

 12

-10 -8 -6 -4 -2  0  2

random decoy
native structure

(c) Pr(D(s, s0) < D(s, s′)) = 0.8
-10

-8

-6

-4

-2

 0

 2

 4

 6

-6 -4 -2  0  2  4  6  8  10

random decoy
native structure

(d) Pr(D(s, s0) < D(s, s′)) = 0.7

Figure 6.7: Embedding the decoys in the 2D plane.
The decoys are colored in green, and the native structure are colored in red.

This conjecture is new verified, using actual output from two MC protein prediction
methods based on different energy functions.

Given a set S of decoys and a distance function d, we first compute d(s), the
average distance between decoy s and the other decoys in S. The distance between
a decoy s and the native structure is denoted d(s, s0). 1

|S|
∑

s∈S
d(s,s0)

d(s)
is used as an

indicator of how close the decoys are to the native by the measure d. This gives an
idea of how well d is favored by the energy function which is used to produce the
decoys.

Four distance functions: RMSD, GDT, TMScore [174], and MaxSub [137] are
employed. (These measures are originally proposed to measure the quality of pre-
dicted structures.) As data the 56 targets from SPICKER’s website [175] and 11
data sets generated by FALCON are used as the data. For each of the data sets, we
do the following. An indicator value is computed for each distance function. The
functions are then ranked by their indicator values. For each of the function the
maximum neighbor based method on the function is used to obtain a decoy. This
gives a decoy from each function, which then are ranked by some distance measure
Q. Xi,j is to denote the number of times that the rank i function obtained a decoy

95



0

10

20

30

40

50

60

Rank of Decoy vs. Rank of Distance Function

0 1 2 3 4 5

Rank of Decoy

0

1

2

3

4

5

R
a
n
k

o
f
D

is
t
a
n
c
e

F
u
n
c
t
io

n

Figure 6.8: Rank of distance functions according to the indicator (x-axis) and the rank of selected
decoy (y-axis).

of rank j.

In Figure 6.8, the values for Xi,j, 1 ≤ i, j ≤ 4, using the GDT measure for Q is
shown. The intensity of each grid i, j corresponds to the value of Xi,j. The ordering
of the points along a diagonal line lends evidence to the conjecture. Similar results
are obtained for other measures of Q.

6.6 New Measure for Selecting Good Decoys

In this section, direct evidence for the hypothesis on the RMSD is first demon-
strated, by observing the relationship between D(s, s0) and D(s, s′) where D is the
RMSD. Then, it is observed that for a collection of decoy pairs of a fixed distance,
the distances of the decoys to the native structure roughly conform to a Gaussian
distribution. This observation allows us to devise a new measure for ranking decoys.

For native, the six widely used benchmark proteins (see Table 6.7) are used.
For each protein, 10,000 decoys at various accuracy levels, are generated with the
program FALCON; their RMSDs to the corresponding native structure are from 1
to 10 Angstroms.

Given two decoys, their distance and their respective distances to the native
structure are computed. The smaller of the two distances to the native is referred
to as the lower distance, the larger is referred to as the upper distance. The distance
between decoys is plotted against the distance to the native structure. For clarity,
two separate plots are plotted: one of the lower distance versus the distance to
native, and one of the upper distance versus the distance to native.

Figure 6.9 shows the relationship between max(D(s, s0),D(s′, s0)) and D(s, s′),
and the relationship between min(D(s, s0),D(s′, s0)) and D(s, s′). This figure re-
veals that: (i) the probability that min(D(s, s0),D(s′, s0)) is greater than D(s, s′) is

96



(a) 1FC2. (b) 1ENH.

Figure 6.9: Relationship between max(D(s, s0),D(s′, s0)) and D(s, s′) (left-hand side), and the
relationship between min(D(s, s0),D(s′, s0)) and D(s, s′) (right-hand side).

very low; (ii) max(D(s, s0),D(s′, s0)) is symmetric. Thus, we know that D(s, s0) <
D(s, s′) holds for high probability if the RMSD is used as an distance function for
the decoys generated by FALCON.

Secondly, the distribution of D(s, s0), when D(s, s′) is fixed, is described. Fig-
ure 6.10 suggests that the conditional distribution Pr(D(s, s0)|D(s, s′) = dij) can
be approximated by a Gaussian distribution; that is,

Pr(D(s, s0) = d|D(s, s′) = dij) = C
1√

2πσ2
e−

(d−dij)
2

2σ2

where C is the scale factor for normalization, and σ is the standard variation.
Accordingly, the parameters are estimated.

Based on the aforementioned discussion, the conditional probability, Pr(D(s, s0) =
d|D(s, s′) = dij), is computed; that is, the probability that D(s, s0) = d for a pair
of decoys s and s′ with a distance of dij. Then the probability that a decoy has
quality q is expressed as:

Pr(D(s, s0) = q) ∝
∑

s′∈S,s′ 6=s

Pr(D(s, s0) = q|D(s, s′) = d)× Pr(D(s, s′) = d).

Consequently, the decoy which maximizes the above equation can be identified,
by assigning a set of values to q iteratively. However, things are more complicated
in practice: the collection of decoys may contain some totally random structures
due to imperfection in the energy function. These decoys are “random noises”,
which should be removed prior to the decoys selection process. To achieve this
goal, decoys are extracted layer by layer until a core set remains. Only the decoys
in the core set are ranked. This is the reason for the name ONION.

The ONION algorithm is described in Figure 6.4. In the algorithm, the neigh-
borhood of s is defined as N (s, θ) = {s′|D(s, s′) ≤ θ, s′ ∈ S}, where S denotes

97



(a) 1FC2. (b) 1ENH.

(c) 2GB1. (d) 2CRO.

Figure 6.10: Distribution of D(s, s0), when D(s, s′) is fixed at 2, 3, 4, and 5 Angstroms.
The Gaussian distributions approximating these distributions are also shown with σ estimated to
be 0.15.

the given decoy set, and θ is a threshold. The neighborhood size is defined as
r(s, θ) = |N (s,θ)|

|S| . ε and ε′ are two small constants, and 0 < α < 1 and 0 < β < 1
represent two parameters.

The idea of ONION follows. Given a set of decoys S, the decoys that do not
have enough neighbors by tuning the parameter β are removed. The reason is that,
according to the analysis in the previous subsections, a decoy with few neighbors is
most likely a bad (or random) decoy. The threshold indicating the neighborhood
size is tuned down, if the portion of decoys removed from S is greater than α. This
removing operation is repeated, until no further decoys extraction is possible. In
addition, the decoys that are too similar (controlled by a small constant ε′) are
considered as a single decoy and only one copy of them is retained. Finally, the
remaining decoys are ranked according to the discussion from the last subsection.

98



Onion Algorithm

Input: A set of decoys: S
Output: Rank of of decoys

1. S ′ ← ∅, θ′ ← θ
2. while |S| − |S ′| > α|S|

S ← S ′
foreach d ∈ S

if r(S, d, θ′) < β then
S ′ ← S ′ − {d}

θ′ ← θ′ − ε
3. S ′′ ← ∅.
4. foreach d ∈ S

if ∀d′ ∈ S ′′ such that F(d, d′) ≥ ε′ then
S ′′ ← S ′′ ∪ {d}.

5. Rank decoys in S ′′

Table 6.4: Proposed algorithm to rank a set of decoys

Table 6.5: Quality (RMSD) of the best decoy reported by ROSETTA clustering tool and ONION.

Target Protein ROSETTA ONION
Protein A, 1FC2 3.590 3.734

Homeodomain, 1ENH 1.989 2.020
Protein G, 2GB1 3.348 2.068

Cro repressor, 2CRO 3.577 3.490
Protein L7/L12, 1CTF 0.933 0.797

Calbidin, 4ICB 2.785 2.785

6.7 Decoy Selection

6.7.1 Selecting Good Decoys

To evaluate the Onion algorithm its output is compare to the clustering tool in
ROSETTA. As input, 2,000 decoys are generated for each of the six benchmark
proteins, used in earlier sections, with ROSETTA. Then, ROSETTA’s selection
and ONION are employed to select the best decoy from the decoys. The results are
displayed in Table 6.5. Onion’s performance is similar to ROSETTA’s.

The top ten decoys reported by ROSETTA’s selection program and ONION are
compared. The average RMSDs are summarized in Table 6.6. For all six cases,
ONION yields better decoys than ROSETTA.

99



Table 6.6: Quality (average RMSD) of the top ten decoys reported by ROSETTA clustering tool
and ONION.

Target Protein ROSETTA ONION
Protein A, 1FC2 3.671 3.649

Homeodomain, 1ENH 2.217 2.101
Protein G, 2GB1 3.373 2.030

Cro repressor, 2CRO 3.711 3.660
Protein L7/L12, 1CTF 1.078 0.876

Calbidin, 4ICB 3.315 3.151

6.7.2 Refine Decoys from ab initio Methods

It is interesting to investigate how Onion may be integrated into the actual usage of
ab initio protein structure prediction. Here, an integration of Onion with FALCON
is attempted.

FALCON typically generates 1000 decoys at each iteration. Instead of using all
the decoys as input for the next iteration, ONION is employed to select the top
20 decoys, and only these 20 decoys are used. In this experiment, the full atom
energy function of ROSETTA is adopted in FALCON, and the HMM is extended
to handle the side chains. In so doing, the experiment is set up to examine the
validity of the hypothesis on ROSETTA’s energy function.

The average pairwise distance among the 20 decoys is used to determine whether
further iterations are necessary. Specifically, the iteration process is ceased if the
gap between the average pairwise distances of two consecutive iterations is small
(0.15 is used in the present study), or the average of pairwise distances between two
consecutive iterations increases. Table 6.7 displays the average pairwise distance
between the input decoys, demonstrating that the distances among top decoys are
smaller and smaller as the iteration proceeds.

In the case of 1FC2, only two iterations are performed, since the distance at
the second iteration is very close to that of the first iteration. Similarly, only three
iterations are performed for 1ENH and four iterations for 2GB1. For 1CTF, the
distance is increasing at the second iteration, hence the iteration ceased at that
iteration. The third iterations for 2CRO and 4ICB are terminated similarly.

Table 6.8 displays the final reported decoys (in bold) and the selected decoys
at each iteration. The quality of the decoys are shown to be optimized at the final
iteration.

Figure 6.11 shows the superposition of the final decoy and its corresponding
native structures. It is evident that, in all cases, good quality structures are pro-
duced, validating the effectiveness of the integrated system, as well as showing
ROSETTA’s energy function to conform to the hypothesis.

100



Table 6.7: Average pairwise distance of the top 20 decoys at each iteration.

Target Protein # Iterations
1 2 3 4

Protein A, 1FC2 0.269 0.189 - -
Homeodomain, 1ENH 0.632 0.303 0.174 -

Protein G, 2GB1 0.578 0.355 0.284 0.283
Cro repressor, 2CRO 1.398 0.463 0.590 -

Protein L7/L12, 1CTF 1.471 4.096 - -
Calbidin, 4ICB 1.936 1.393 1.785 -

The value is the average pairwise distance in the top 20 decoys.

Table 6.8: Final decoys (in bold) and the quality (RMSD) of the best decoys at each iteration
step.

Target Protein # Iterations
1 2 3 4

Protein A, 1FC2 3.796 3.705(1.75) - -
Homeodomain, 1ENH 2.156 1.907 2.028(0.82) -

Protein G, 2GB1 1.696 1.463 1.315 1.330
Cro repressor, 2CRO 3.115 2.497 - -

Protein L7/L12, 1CTF 0.937 - - -
Calbidin, 4ICB 3.005 2.588 - -

The number in bracket indicates the decoy quality, if the heading loops are excluded.

6.8 Summary and Discussion

The following remarks are made to conclude this chapter.

The decoy clustering program, Calibur, presented in the first half of this chap-
ter, has the ability to cluster very large number of decoys. As methods in ab initio
protein structure prediction advances, the number of decoys to be analyzed is ex-
pected to increase, and the disability to cluster decoys efficiently will, eventually,
pose a hindrance to the analyses of various problems and subproblems in the pre-
diction of protein structures. Hence Calibur will come in useful when this situation
arises.

In the second half of this chapter, an underlying assumption in ensemble-based
selecting methods is investigated. A probabilistic foundation is given for this as-
sumption. Based on this foundation, a method is devised for decoy selection and
structure refinement, with promising results. Even though it is assumed that there
is only one cluster in the generated decoys, it is not difficult to extend the hypothesis
to multiple clusters.

An MC method depends on two components: a search method and an energy

101



(a) 1FC2 (b) 1ENH (c) 2GB1

(d) 2CRO (e) 1CTF (f) 4ICB

Figure 6.11: Final reported decoys by ONION, superimposed with the native structures.

function. The FALCON-ONION iterative strategy provides a framework for the
search process. To complement the framework with a good energy function is
where future work should be conducted.

102



Chapter 7

Model Comparison

Each protein structure prediction method generates numerous models of the target
structure. The quantitative evaluation of these models; that is, the measuring of a
model’s similarity to the native structure, is a difficult and fundamental question
which has been intensively studied in structural bioinformatics, and is still under
active research [137].

RMSD is popular as a measure for evaluating models [13]. However, it is prone to
a few drawbacks. Such a measure is likely to underestimate the quality of a model,
where most of the structure is accurately predicted, but the incorrectly predicted
parts are far from their correct positions. The RMSD was initially proposed to
handle data with a relatively small error due to noise, and cannot be appropriately
employed to evaluate structures which differ by large distances. The interpretation
of an RMSD value also differs for targets of different lengths. For example, the
quality of a model of 10 residues with an RMSD of 3Å is considered bad, whereas
the quality of a model of 100 residues with an RMSD of 3Å is considered accurate.

To eliminate these issues, measurements such as MaxSub [137], the Global Dis-
tance Test (GDT), Local/Global Alignment (LGA) [170] and TM-score [174] are
proposed. A comprehensive review is given in the literature [96]. These meth-
ods are heuristic and employ RMSD minimization as a subroutine. The common
schema can be summarized as follows. A set of residue pairs are taken as the
starting point. Each residue pair contains a residue from the predicted model and
the corresponding residue in the native structure. Then, the transformation that
minimizes the RMSD between these residue pairs is calculated. By applying this
transformation to the entire model, the matched residue pairs are computed as the
residue pairs matched under the given threshold. This process is iterated, until
no change of matched residue pairs is observed. Various resultant transformations
are generated by using different starting points, and the one which maximizes the
number of matched residue pairs is viewed as the final solution.

The RMSD minimization, which is employed to identify the candidate trans-
formations, might not yield the optimal transformation for the defined measures.
Two concrete examples are given in later sections, where the RMSD minimization

103



technique results in a wide gap to the optimal scores. This calls for the develop-
ment of techniques to improve the computation of these RMSD-based measures. In
particular, the GDT measure is addressed in this chapter.

In GDT, the average of the percentages of the matched residue pairs between
the model and the native structure under the thresholds 1Å, 2Å, 4Å and 8Å is used
as the score of the model. The step where the percentage at a given threshold is
calculated is abstracted as the largest “well-predicted” subset (LWPS) problem; that
is, to find the maximum matched residue pairs under a given distance threshold.
The problem was conjectured to be NP-hard [96, 137]. The LWPS problem is
actually polynomially solvable by using a computational geometry technique for
solving d-LCP, the largest common point sets under approximate congruence with a
distance threshold d. However, the high ordered polynomial runtime of the method
limits its practical usage. In this chapter aO(n3 log n/ε5) time algorithm is proposed
to obtain d/(1+ε) distance approximation solutions to the LWPS problem, in order
to compute GDT for general protein structures. For globular proteins, this result
can be enhanced to a randomized O(n log2 n) time algorithm with a probability of
at least 1− O(1/n). In addition, a 1/(1 + ε)-approximation algorithm is proposed
to compute the minimum distance to fit all the corresponding points of a model
and its native structure in time O(n(log log n+ log 1/ε)/ε5).

7.1 Methods

7.1.1 Notations and Preliminaries

A protein structure, A, consists of an ordered set of n points in 3D space; that is,
A = (a1, a2, . . . , an), ai ∈ R3, where point ai represents the Cα atom coordinate
of residue i. Similarly, the predicted model, B, of the protein also consists of
an ordered set of n points; that is, B = {b1, b2, . . . , bn}, where bi represents the
predicted Cα atom coordinate of residue i. In this study, the θ-ball of a point p
is used to denote the ball of radius θ centered at p. Similarly, the θ-sphere of a
point p can be defined. Given an index set, I, and a point set, P = {p1, . . . , pn},
P [I] denotes the subset, {pi|i ∈ I}. Given threshold d and rigid transformation T
(including a rotation and a translation), if |ai−T (bi)| ≤ d, ai is said to match bi, or
bi fits into ai under T . MT = {i||ai − T (bi)| ≤ d} is a matching set under distance
threshold d, and d is referred to as the bottleneck distance.

The chemical characteristics of proteins supply some specific properties for pro-
tein structures. The properties in this chapter are listed as follows.

104



Property 1. A protein structure, A, is bounded within a ball with radius
RA. RA = O(n) for general proteins, and RA = cn1/3 for glob-
ular proteins (c is a constant) [94]. For notation simplicity, the
leading constant of RA is omitted for a globular protein struc-
ture.

Property 2. The distance between any two points (Cα atoms) in a protein
structure cannot be too small due to steric clashes. More exactly,
the distance between any two non-consecutive points is no less
than 4Å and the distance between any two consecutive points is
about 3.8Å.

Due to these distance constraints, the maximum number of points which can be
encapsulated in a given ball with radius r is proportional to the volume of the ball.
When the context is clear, r3 and the number of points that can be encapsulated
in the ball are used exchangeably.

7.1.2 Problem Statement

The following formalizes the problems studied in this chapter

Largest Well-predicted Subset (LWPS) Problem Given protein struc-
ture A, model B and threshold d, the largest well-predicted subset problem, or
LWPS(A,B, d), is to identify a maximum match set, Md

opt ⊆ {1, 2, . . . , n}, and a
corresponding rigid transformation, Iopt, (a rotation and translation) [96,137]. d is
called the bottleneck distance. Denote Aopt = A[Md

opt] and Bopt = B[Md
opt].

Minimum Bottleneck Distance (MBD) Problem Given protein structure A
and model B, find the smallest distance dopt and a corresponding rigid transforma-
tion Iopt such that ∀i, 1 ≤ i ≤ n, |ai − Iopt(bi)| ≤ dopt.

With a careful examination of the algorithm for the d-LCP problem [12, 38], it
is obvious that the LWPS problem has a polynomial time solution in O(n7), which
contradicts a previous claim in [137] that the LWPS problem is NP-complete.

Theorem 7. [38] The largest well-predicted subset problem can be solved in O(n7)
time under general transformations.

This theorem has only theoretical significance due to the high ordered run-
ning time. It is still demanding to develop practical algorithms. One approach
to NP-complete problems or problems with high time complexities is to utilize
approximation algorithms. Such algorithms give approximate solutions with the-
oretically guaranteed accuracy, instead of exact solutions. Interestingly, for the
LWPS problem, a small relaxation of the bottleneck distance threshold yields an
efficient algorithm. Consequently, an algorithm is proposed which guarantees to
identify at least `′ match pairs, where `′ is the maximum number of matched pairs

105



under the distance threshold, d/(1 + ε). The relaxed version of the problems are
formally described as follows.

Distance Approximation for LWPS(A,B, d). Identify a rigid transforma-
tion T ′ and a matching set M ′ ⊆ {1, 2, . . . , n} such that ∀i ∈M ′, ||ai−T ′(bi)|| ≤ d

and |M ′| ≥ |Md/(1+ε)
opt |, ε is some small constant, and ε > 0.

Bottleneck Distance Approximation. Discover a transformation, T ,
such that ∀bi ∈ A, ||ai − T (bi)|| ≤ (1 + ε)dopt, ε is some constant, ε > 0.

7.1.3 Distance Approximation Algorithm for LWPS(A,B, d)

The crucial concept of the newly developed algorithm is the radial axis. Given
point p and point set P , p′ is a radial point in P with respect to p, iff p′ is the
furthest point in P from p. Points p, p′ ∈ P are called a radial axis of P , iff p′ is a
radial point with respect to p. Note that 〈p, p′〉 is a radial axis of P does not imply
that 〈p′, p〉 is a radial axis of P .

The traditional way to represent a rigid transformation by a translation and a
rotation is not adopted here. Instead, transformation T for model B is represented
by a radial axis alignment and a rotation around the axis.

• Radial axis alignment: A radial axis alignment is a rigid transformation T
that transforms a given radial axis 〈bi, bj〉 in B to 〈bi, bj〉 positions under T ;
that is T (b1) = T (b1) and T (b2) = T (b2). It is clear that the radial axis
alignment is not unique.

• Rotation around a radial axis: A rotation R around the radial axis
−−−−−−−→
T (b1)T (b2)

ensures that ∀b ∈ B, R(T (b)) = T (b).

The property of the radial axis is applied to exhaustively search the nearly-
optimal transformations.

The overview of the novel algorithm is now discussed. Each ordered pair 〈bi, bj〉
of B is used as a radial axis candidate of Bopt. The transformation space is dis-
cretized to match 〈bi, bj〉 to 〈ai, aj〉. For each of such transformations, the model B
is rotated around this axis, and the maximum match set is identified. The algorithm
is shown in Figure 7.1.

In the following paragraphs, the three components of the new algorithm are
described; that is,

• the existence of a nearly optimal transformation, given a radial axis alignment
of Bopt,

• the identification of a nearly optimal radial axis alignment, and

• the computation of the optimal rotation, given a radial axis alignment.

106



Table 7.1: Distance approximation algorithm for LWPS(A,B, d)

Input: Structure A, Model B, threshold d, and constant ε
Output: a transformation T , and matching set M

1. foreach index i ∈ {1, 2, ..., n}
/* using 〈bi, bj〉 as radial axis candidate of Bopt */

2. discretize the d-ball C of ai with a grid of side length 1/3εd;
foreach grid point b′i of C

discretize the sphere cap D with grids of side length c2εd.
D is defined by the portion of the ||bj − bi||-sphere of b′i

encapsulated inside the d-ball of aj.
foreach grid b′j point of D

calculate a transformation T to map 〈bi, bj〉 to 〈b′i, b′j〉
3. apply T to B;

/* using 〈bi, bj〉 as rotation axis */
foreach k ∈ {1, 2, ..., n}

determine the angle interval Rk that brings bk into
the d-ball of ak;

endfor
use plane-sweep algorithm to find a angle γ

covered by the maximum number of intervals
endfor

endfor
endfor
return the largest γ, the corresponding radial axis

transformation, rotation angle and matching set.

107



Nearly Optimal Transformation Given a Nearly Optimal Radial Axis
Alignment.

T denotes an optimal transformation of protein structure B, and 〈b1, b2〉 denotes
the radial axis in B. If an approximation T ′ for T can be found such that T ′(b1) ≈
T (b1) and T ′(b2) ≈ T (b2), then there exists a rotation R around the axis along
−−−−−−−−→
T ′(b1)T ′(b2), which transforms each point b ∈ T ′(B) to some point near T (b). The
proof is as follows.

Lemma 8. Given point set B, rigid transformations T and T ′, let 〈b1, b2〉 be a radial
axis of B. If |T (b1)−T ′(b1)| ≤ ε and |T (b2)−T ′(b2)| ≤ ε, then there exists a rotation

R around the axis along
−−−−−−−−→
T ′(b1)T ′(b2), such that ∀p ∈ B, ||R(T ′(b))− T (b)|| ≤ 3ε.

Proof. Denote b′1 = T ′(b1) and b′2 = T ′(b2). With two points fixed, the only degree of
freedom for a rigid transformation T ′ on B are the rotations around the axis along−−→
b′1b
′
2. Therefore, it suffices to show that there exists a transformation T ′′ which

transforms T (B), such that T ′′(T (b1)) coincides with b′1, T ′′(T (b2)) coincides with
b′2, and ∀b ∈ B, ||T ′′(T (b))− T (b)|| ≤ 3ε.

T ′′ is divided into two steps. First, T (B) is translated with translation t such
that T (b1) coincides with T ′(b1). Second, T (B)− t is rotated with rotation axis as
the line which passes though b′1, and is orthogonal to the plane defined by points
b′1, T (b2) − t and b′2, with the rotation angle as the angle formed by T (b2) − t, b′1
and b′2, where b′1 is the vertex. Denote this rotation as R′′ and the rotation angle
as α. It is verified that b′1 = T ′′(T (b1)) and b′2 = T ′′(T (b2)). With rotation R′′,
T (b2)− t is moved to coincide with b′2.

By translation t, ∀b ∈ B, ||T (b)− (T (b)− t)|| = ||t|| = ||T (b1)− b′1|| ≤ ε. Since
||T (b2)−T ′(b2)|| ≤ ε, ||(T (b2)− t)− b′2|| ≤ 2ε. It can verified that the angle formed
by points b′1, T (b)− t and R(T (b)− t) with b′1 as the vertex is at most α, and that
||b1 − b|| ≤ ||b1 − b2||. With these two properties, ||(T (b) − t) − R(T (b) − t)|| ≤
||(T (b2) − t) − b′2|| ≤ 2ε. Therefore, by triangle inequality, ||T ′′(b) − T (b)|| ≤ 3ε.
The statement holds.

Finding a Nearly Optimal Radial Axis Alignment.

If a radial axis 〈bi, bj〉 of Bopt matches the pair 〈ai, aj〉 of A, then ||ai−Topt(bi)|| ≤ d
and ||aj − Topt(bj)|| ≤ d.

As portrayed in Figure 7.1, the d-ball of ai is partitioned with 3D grids of side
length 1/3εd. The number of grid points to partition the d-ball of ai is bounded by
O(d3/(1/3εd)) = O(1/ε3). Here all the grid positions are tried for bi.

Once bi is fixed at a grid point, all the possible positions for bj fitting into the
d-ball aj, form a sphere cap that is centered at bi with radius ||bj − bi|| and is
contained in the d-ball of aj. The spherical cap has an area of O(d2), and this
area is to be roughly partitioned with grids of resolution size 1/ε. This is done by

108



Figure 7.1: Approximating Topt(bi) and Topt(bj).

First, a radial axis is matched to the approximated positions (the grid points), and then rotate
B is rotated around this radial axis to find a maximum match. Each of A and B consists of four
points in this example. bi is matched to ai approximately. Then, the possible directions for 〈bi, bj〉
are discretized. Last, B is rotated around 〈bi, bj〉 to find a maximum match.

creating the smallest cube which encapsulates the sphere (the one the sphere cap
belongs to) and create grids of side length of O(1/ε) on the six faces of the cube.
Then, the grid on the cube is used to partition the sphere cap. This is a common
trick used in computation geometry to round directions [5]. Note that there is no
need to create the grid explicitly. It is easy to show that only O(1/ε2) grid points
are necessary to partition the sphere cap.

Combining the discretization with Lemma 10, to be shown later, the following
results are produced.

Lemma 9. If the radial axis 〈bi, bj〉 of Bopt is matched to a pair 〈ai, aj〉 of A,
there are O(1/ε5) possible choices to transform 〈bi, bj〉, such that at least one of the
transformations results in an error at most εd for each b ∈ B from their optimal
positions.

Optimal Rotation Given a Radial Axis Alignment.

Among all the rotations of the points of B around a given axis, a rotation angle θ ∈
[0, 2π) is to be identified such that the number of matched pairs is maximized. This
problem can be efficiently solved as follows. First, the interval [0, 2π) is represented
by a unit circle. The angle that moves bi into the d-ball of ai, and the angle that
moves bi out of the the d-ball of ai, together forms an arc on the circle. This results
in O(n) arcs which divide the circle into O(n) circular intervals. To find a rotation
angle which maximizes the number of matched pairs, it suffices to find a point

109



along the circle, which is covered by the most number of arcs. This can be solved
efficiently using a plane-sweep approach [10,39].

Lemma 10. The LWPS(A, B, d) problem can be solved in time O(n log n), when
the rotations are allowed only on a given rotation axis.

Since it is not known which pair is a radial axis of Bopt, all the possible pairs of
points are enumerated. There are O(n2) possible pairs. For any pair 〈bi, bj〉, there
are O(1/ε5) ways to match them to 〈ai, aj〉. For each of these matches, O(n log n)
time is required to find the rotation angle which gives the optimal number of residue
matches, according to Lemma 10. Therefore, the following result is obtained.

Theorem 11. The LWPS(A,B, d) can be solved in time O(n3 log n/ε5) with a
d/(1 + ε) distance approximation algorithm.

7.1.4 Randomized Algorithm for Globular Protein Struc-
tures

The distance approximation algorithm, proposed by Theorem 11, has a time com-
plexity of O(n3 log n), which is still inefficient. If a radial axis 〈bi, bj〉 of Bopt is
known, then the problem can be solved in time O(n log n/ε5). This observation is
the impetus to improve the algorithm by identifying a radial axis 〈bi, bj〉 or some
pair good enough to approximate a radial pair. This section presents an efficient
method to identify such a pair with a high probability for meaningful models of
globular proteins.

A model is meaningful if the TM-score is greater than 0.4 [174]. Here, the
TM-score is defined as

TM(A,B) =
1

n

∑
1≤i≤n

1

1 + (di
d

)2
(7.1)

where di is the Euclidean distance between ai and bi under some optimized transfor-
mation, and d has a similar meaning as in the present chapter, which is a predefined
threshold.

The following assumption can be readily deduced for the meaning models.

Assupmption 1. A meaningful prediction B of structure A has |LWPS(A,B, d)| ≥
αn, for some constant α.

A pair of points bi and bj is called a pseudo radial pair if |bi− bj| ≥ (1/2αn)1/3.
Grids of side length 1/3(1/2α)1/3εd are created, and recall that in Section 7.1.1 for
globular proteins, RB = n1/3. If pseudo radial axes are used as radial axes, the
error introduced at each point in the matching set is less than:

3
n1/3

(1/2αn)1/3
× 1

3
(1/2α)1/3εd = εd.

110



Therefore, the following statement can be made.

Lemma 12. Given a globular protein P , rigid transformations T and T ′, and a
pseudo radial axis of P , 〈p1, p2〉, if |T (p1) − T ′(p1)| ≤ ε and |T (p2) − T ′(p2)| ≤ ε,

then there exists a rotation R around the axis along
−−−−−−−−→
T ′(p1)T ′(p2) such that ∀p ∈ P ,

||R(T ′(p))− T (p)|| ≤ 3cε, where c is some constant.

The proof is omitted. Thus, any pseudo radial axis provides a (1 + ε) distance
approximation algorithm.

Theorem 13. There exists a probabilistic d/(1 + ε) distance approximation algo-
rithm for LWPS for globular proteins of meaningful models with a probability at
least 1−O(1/n) in time O(n log2 n/ε5).

It remains to be shown that enough radial axes exist.

Lemma 14. Bopt contains at least 1/2|Bopt|2 pairs, bi and bj, such that |bi − bj| ≥
(1/2αn)1/3.

Proof. The number of points, confined in the ball centered at p with radius (1/2αn)1/3,
p ∈ P is bounded by 1/2αn. This implies that there are at least |Bopt| − 1/2αn
points in Bopt with a distance of at least (1/2αn)1/3. Thus, the statement holds.

Since there are at least 1/2(αn)2 pseudo radial axes, randomly sampling d1/α2 log ne
pairs from B yields a randomized distance approximate algorithm. Note that each

pair has a probability 1/2(α/n)2

1/2n(n−1)
= O(1) of being a pseudo radial axis. Given that

there are d1/α2 log ne pairs, the probability that none of them is a pseudo radial
axis is O(1/n). In addition, the calculation for each pair needs O(n log n/ε5) time.
Thus, the total time complexity is O(n log2 n/ε5).

7.1.5 Approximating the Bottleneck Distance

In some applications, it is necessary to compute the minimum distance d∗ such that
each point bi in B can fit into the corresponding d∗-ball of ai, ai ∈ A. Akutsu’s
techniques [10] are to address this problem. However, these techniques exhibit high
time complexities. This section presents an efficient method.

First, if there is some d′ such that d′ ≤ dopt ≤ 2d′, then the following holds.

Lemma 15. If d′ ≤ dopt < 2d′, dopt can be approximated with ratio (1 + ε) in time

O(n log 1/ε
ε5

).

Proof. The interval [d′, 2d′] is subdivided into intervals of length 0.5εd′ (assume
1 is divisible by 0.5ε). There are 2/ε such intervals in total. For each interval
λi = [d′(1 + 0.5iε), d′(1 + 0.5(i+ 1)ε)] (0 ≤ i ≤ 2/ε− 1), grids of side length 1/3εd′

are built for (1 + 0.5(i + 1)ε)d′-ball of ai, 1 ≤ i ≤ n. Then, whether there is
a transformation specified by such grids to fit all the points is verified. For two

111



consecutive intervals λi and λi+1, if there is a feasible solution for interval i+1, and
it is infeasible for interval i+ 1, then d′(1 + 0.5iε) ≤ dopt ≤ d′(1 + 0.5(i+ 2)ε) + εd′.
This yields a (1 + ε)dopt algorithm readily. A binary search is conducted to find
such an i, which needs O(log 1/ε) search operations.

In addition, for each search operation, it is expensive if the enumerating tech-
niques, proposed in the previous sections, are employed. Instead, any radial axis
of B can be used as a radial axis candidate. In total, there are O(1/ε5) possible
choices for a given radial axis. Given a rotation axis, the angle to fit bi into ai can
be modeled as an arc of a circle as discussed earlier, and reduced to a problem of
checking if there is a point on the circle that is covered by n arcs. This can be done
in O(n) time.

Thus each search operation can be performed in O(n/ε5) time.

The remaining task is to find d′ which meets the requirement of d′ ≤ dopt < 2d′.
The RMSD is used to achieve this goal. RMSD can be computed in linear time [13].
Recall that RMSD is defined as the minimal root mean square deviation over all
the possible transformation I, i.e.,

RMSD(A,B) = min
I

√∑n
i=1 ||ai − I(bi)||2

n
.

Let D = RMSD(A,B), according to the definition of RMSD, the following can be
proved.

Lemma 16. D ≤ dopt ≤
√
nD

Proof. First, D ≤ dopt is shown. Suppose D > dopt, I
′ is the transformation to

obtain dopt, then,
√Pn

i=1 ||ai−I′(bi)||2
n

<

√Pn
i=1 d

2
opt

n
= dopt. This contradicts the defi-

nition of RMSD.

Secondly, dopt ≤
√
nD is shown. If I∗ is the transformation to obtain the RMSD

distance, then

d2
opt ≤

n
max
i=1
{||ai − I∗(bi)||2} ≤

n∑
i=1

||ai − I∗(bi)||2 = nD2

Subdivide interval [D, n1/2D] into intervals [2i×D, 2i+1×D], 0 ≤ i ≤ 1/2 log n−1
(assume 1/2 log n is an integer, WLOG). For each interval, grids of side length
1
3
2i × Dε and balls of radius 2i+1 × D + 2i × Dε are built. If there is a feasible

solution under such grids, then dopt ≤ 2i+1 ×D + 2i ×Dε. A binary search similar
to the previous one can be used to find such i.

Thus, the following result can be obtained.

Theorem 17. The bottleneck distance can be approximated with ratio (1 + ε)dopt
in time O(n(log log n+ log 1/ε)/ε5).

112



7.2 Results

The algorithm in Theorem 11 is implemented, resulting in a program called Opt-
GDT. The implementation has been done carefully to avoid redundant computa-
tions. First, given pairs 〈bi, bj〉 and 〈ai, aj〉, di,j is defined to be di,j = |bj − bi| −
|aj, ai|. If |di,j| < 2d or |di,j| > 2d, 〈bi, bj〉 is precluded as a radial axis candidate,
as it is impossible for bi to match ai and bj to match aj simultaneously. Secondly,
given a radial axis candidate 〈bi, bj〉, an upper bound for all the O(ε5) axes under
the pair 〈bi, bj〉 is computed by employing the approximation algorithm in [39]. If
the bound is smaller than the best solution so far, there is no need to evaluate
the pair 〈bi, bj〉 any further. Thirdly, the pairs which are more likely to be the
best solution are first examined. Additional rules are employed to accelerate the
program.

The results consist of two parts. In the first, the superposition yielded by
OptGDT for two concrete examples are shown, and compared to the results from
the original GDT computation. In the second, OptGDT is used to compute the
GDT scores for the models predicted by the top ten servers in [1]. For each server,
only the first model reported is tested. There are 172 domains. Most of the servers
have predicted results for each domain, resulting in a total of 1,714 models reported
for all the domains. In all the computations, ε = 0.1.

7.2.1 Two Concrete Examples by OptGDT

Two concrete instances which demonstrate better superpositions from OptGDT are
described here.

Figure 7.2 presents the superpositions from GDT1 by using the original GDT
computation and OptGDT, respectively. The model is reported by BAKER-ROSETTA
for target T0490, domain 2. There are 56 residues, and the residue numbers range
from 88 to 143. The GDT1 score that is obtained by the original method is 0.3393,
and that obtained by OptGDT is 0.4464. The increment is more than 0.1. The
matched residues by the original method are the residues, numbered 90, 95, 108,
110, 114-115, 117, 122-129, 131, 135-136, and 140. The matched pairs by OptGDT
are the residues numbered 90-96, 104-105 107-108, 115, 117, 121-130, and 137-140.
For clarity, the superpositions are color-coded. The green parts correspond to the
matched pairs, common to the superpositions from both methods. The yellow
parts are the pairs matched only in the original method’s superpositions, and the
red parts are the pairs matched only in OptGDT’s superpositions.

Figure 7.3 depicts the superpositions by the original GDT method and OptGDT
based on their computations for GDT8. The model is by the Zhang-Server for the
target T0496, domain 2. There are 74 residues with residue numbers from 105
to 178. The GDT8 score from the original method is 0.6351, and the score from
OptGDT is 0.7838. The increment is more than 0.145. The residues matched by
the original method have residue numbers 130-131 and 134-178, and the residues,

113



(a) Superposition by Orig. GDT (b) Superposition by OptGDT

Figure 7.2: Superpositions of the GDT1 by the original GDT and OptGDT for T0490, domain 2
for BAKER-ROSETTA.

matched by OptGDT, have numbers 105-115, 130-142 144-146, 148-165, and 167-
178. The increase in the score is due to the additional matching of the residues
105-115.

7.2.2 Performance of OptGDT on CASP8 Data

In this section, the original total GDT scores of each server in CASP8 are com-
pared with the total GDT scores computed by OptGDT. The original scores are
computed using the program TM-score. The TM-score program is able to compute
the MaxSub Score, RMSD, and GDT score.

The scores are listed in Table 7.2. The servers are sorted according to the
GDT scores obtained by OptGDT. The total score of each server is increased by
at least two. Therefore, the GDT’s average score for each domain is increased
by at least 0.011. The ranks of some servers are altered due to the more accu-
rate GDT score computation. The reordered servers are MULTICOM-REFINE,
MULTICOM-CLUSTER, and Phyre de novo.

7.2.3 More Accurate Score Computation

OptGDT improves many of the original GDT scores computed for the predicted
models. Table 7.3 shows the number of models with changes in the score that exceed
a specified value. Among 1,714 models, 1,497 models have their scores increased,
which are more than 87.3%. The rest remains unchanged. Larger changes are
observed for GDT1 and GDT8 than for GDT2 and GDT4.

114



(a) Superposition by Orig. GDT. (b) Superposition by OptGDT.

Figure 7.3: Superpositions of the GDT8 by the original GDT and OptGDT for T0496, domain 2
for Zhang-Server

Table 7.2: Traditional GDT scores and OptGDT GDT scores

Orig. GDT New GDT
Serves GDT Rank OptGDT Rank

Zhang-Server 114.58 1 116.79 1
RAPTOR 110.70 2 112.71 2

pro-sp3-TASSER 109.83 3 112.38 3
BAKER-ROSETTA 109.23 4 111.60 4

MULTICOM-REFINE 108.46 7 110.79 5
MULTICOM-CLUSTER 108.56 6 110.77 6

Phyre de novo 108.56 5 110.72 7
MUProt 108.32 8 110.65 8

MULTICOM-RANK 107.03 9 109.22 9
PS2-server 104.30 10 106.62 10

(Column 1) Server name.
(Column 2) Sum of original GDT scores for CASP8 data.
(Column 3) Rank according to the original GDT scores.
(Columns 4 and 5) GDT scores and rank by OptGDT, respectively.

115



Table 7.3: Number of models with scores that are increased more than a certain constant.

GDT1 GDT2 GDT4 GDT8 GDT
>0.08 4 0 0 22 0
>0.07 20 0 2 46 0
>0.06 34 1 6 58 0
>0.05 90 20 26 93 4
>0.04 184 66 73 139 9
>0.03 441 202 219 227 54
>0.02 862 510 497 371 376
>0.01 1284 1011 979 678 1085
>0 1383 1183 1151 825 1497
=0 731 931 963 1289 217

(Column 2-6) Number of models with score changes exceeding the value specified in the first
column.

7.3 Summary and Discussion

In this chapter, approximation algorithms are proposed with accuracy guarantees
for computing GDT, a popular measure for evaluating predicted protein models.
One of these algorithms is implemented into an efficient and practical software
package called OptGDT. The software package can be used to verify the GDT
values computed by using other heuristic methods, as well as to identify better
superpositions in the GDT computation.

Experiments on the models predicted in CASP8 indicate that the GDT scores
were underestimated previously, and better superpositions are possible for most of
the models. In some cases, the scores are increased by more than 10%. The ranks
of a few servers are altered due to the more accurate GDT scores. This shows
that impartial tools to assess the predicted models are necessary, and that more
accurate superpositions can give us better insights on the structural prediction
methods being studied.

The newly developed techniques can also be applied to other problems in protein
structure alignment, which is addressed in the next chapter. However, the results
are less interesting practically due to their high time complexities.

A few questions remain unanswered at this point. The proposed algorithm is a
distance approximation algorithm for structural fitting. It would be interesting to
know if size approximation, as follows, can also be obtained efficiently.

116



Size approximation for GDT score

Input: Structure A, Model B, threshold θ and constant ε
Output: Transformation T and matching set M under threshold ε,

such that |M | ≥ (1− ε)|Mopt|,
where Mopt is obtained under threshold d.

Another question is to extend the results to other scores. The current algorithm
computes the GDT scores. For globular structures with meaningful models, a sim-
ple modification of the algorithm can result in a PTAS for the TM-scores. However,
it is unclear whether an efficient PTAS exists for general proteins. Consider where
the optimal transformation for TM-score consists of only a translation along one
dimension. The problem to find the optimal translation becomes one of finding the
roots for high ordered polynomials. Exact solutions for high ordered polynomials
cannot be obtained. Therefore, such a method to exactly compute TM-score is not
feasible. Let TM(A,B, T ) be the TM-score for structure A and model T (B), where
T is a rigid transformation. Then this problem can be stated as follows.

FPTAS for TM-scores

Input: Structure A, model B, and constant ε
Output: Transformation T satisfies TM(A,B, T ) ≥ (1− ε)TM(A,B, Topt).

Another less important but still interesting open problem is to find the maximum
matching set under the RMSD threshold. Given threshold d, the objective is to
find a maximum matching set, such that the RMSD value for this matching set is
below threshold d. This problem can be stated as follows.

Maximum matching under the RMSD distance

Input: Structure A, model B, and threshold d.
Output: Transformation T to maximize |M |

under RMSD(A[M ], B[M ]) ≤ d, where M ⊂ {1, 2, ..., n}.

117



Chapter 8

Structural Alignment

8.1 Introduction

Typically, the molecular shape of a protein determines the protein’s biological mech-
anism. Hence, proteins with similar 3D structures are expected to have similar
functions. This allows one to predict the functions of a protein based on its struc-
tural resemblance to proteins of known functions. The incentive of such predictions
has resulted in substantial development of approaches, algorithms, and software
tools for comparing 3D protein structures under the name of Protein Structure
Alignment [96, 102]. As a fundamental problem in bioinformatics, many heuristic
algorithms have been proposed for this problem [8,9,31,43,59,60,77,95,144]. These
systems perform effectively in practice. However, relatively few theoretical studies,
specific to the problem, have been conducted [6, 33,61,94,168].

Due to the differences in approaching the problem, proteins have been modeled
in many ways. In this chapter, both the cases of treating proteins as sequences of
3D points and as contact maps are considered.

In modeling a protein as a sequence of 3D points, each point represents the
(relative) coordinate of a residue in the protein. In this approach, the task is to
superimpose two proteins in a way such that there is a good positional correspon-
dence between the residues of the two proteins. The quality of this positional
correspondence, evaluated by some scoring function, is typically given as the sim-
ilarity between the two proteins. Therefore, comparing two proteins under such
a model usually translates into a task of finding a rigid transformation. Here the
transformation is to superimpose the two sequences of points to fulfill some ob-
jective, such as to minimize some distance measure (e.g., the LCP problem under
the Hausdorff distance); or to maximize the number of (disjoint) pairs of points,
each from one of the two proteins, that are within a given proximity ε of each
other. The latter problem is referred to as the largest common point set (LCP)
problem under bottleneck distance. This problem is known to be exactly solvable in
O(n32.5) time [12], where n is the length of the protein sequence. Akutsu [6] has

118



shown that there is an approximation algorithm of O(n8.5) runtime which returns
a solution that optimizes the target parameter, but does not fulfill the proximity
requirement ε strictly. More precisely, a pair of points in that solution can be as
much as 8ε apart. Chakraborty and Biswas [33] demonstrated an improved algo-
rithm for each pair of points to be at most 2ε apart, with the same time complexity.
The present work improves this runtime to O(n8). When two properties of protein
structures (namely minimum inter-residue distance and globular shape) are taken
into account, the runtime is shown to be O(n6.5).

In modeling a protein as a contact map, each residue is taken to be a vertex in a
graph, where an edge (called a contact edge) exists between two vertices, if and only
if the vertices are no further than the allowed distance (e.g., 5Å). If two proteins are
similar, their contact maps tend to be similar. Consequently, a typical approach to
compare two proteins under such a model, is to find the largest common subgraphs
of the contact maps of the two proteins. The residues’ positions are not considered
in such a model except for the purpose of creating edges. Nevertheless, a more
realistic model where the matched vertices are no further than a threshold distance
apart in the protein molecules has been suggested [168]. The resultant problem is
known as a CMO problem with distance constraint. The threshold distance makes
a difference when there is a requirement for any two residues in a protein to be
at least some fixed distance apart. This restricts each residue to be matchable
to only a constant number of residues in a relatively small bounded space. An
interesting consequence of this is that, while the CMO problem is NP-hard and hard
to approximate in the general case [61], approximation solutions can be obtained
in polynomial time with the distance constraint [168]. In this thesis, it is proven
that with the distance constraint: (1) a PTAS exists for the problem, but (2) it
remains NP-hard to solve the problem exactly.

By indexing the points in each input 3D structure, “sequential” versions of
the aforementioned problems can be defined, where no two pairs of corresponding
points in the solution are to conflict with the sequential order of their indices; that
is, if points i and j in one structure, where i < j, are respectively matched to points
i′ and j′ in the other structure, then i′ < j′. These versions of the two problems
are studied in this chapter.

In addition, an entirely different class of problems is considered for regarding the
contact map, where, instead of geometric constraint, certain relationships between
the contact edges are to be preserved. A set of such relationships is called a model,
and the contact edges are referred to as arcs in the context of such a problem. The
model describes whether two arcs can be in precedence order (<), be allowed to
nest (<), be allowed to cross (G), or any combination of these three orders. Given
the contact map of a protein and model R, the contact map pattern problem is to
identify one of the largest subsets of contact arcs under the model.

The complexity of the contact map pattern problem under different models was
first investigated by Vialette [155], and then by Blin et al. [19, 35]. Due to these
studies, this problem is known to be NP-complete in the most general case, and

119



are solvable in polynomial time in some sub-cases of the problem, where some re-
strictions are placed on the models. However, whether the contact map pattern
problem has a polynomial time algorithm in the sub-case of {<, G}-structured pat-
terns, remains unknown. In this chapter, it is discovered that the contact map
pattern problem, in this case, is NP-hard.

This problem is closely related to the second question, an open problem, known
as the contact map pattern matching problem. As with the contact map pattern
problem, the complexity of this problem was first investigated by Vialette [155], and
then by Blin et al. [19]. The problem of whether the contact map pattern matching
problem has a polynomial-time algorithm with {<, G}-structured patterns is left
unanswered in these works. Gramm [66,67] proposed a polynomial-time algorithm
to solve this problem. However, there appears to be an invalid assumption in the
construction of the algorithm. In this chapter, the problem is shown to be NP-hard.

8.2 Problem Formulation

8.2.1 Structural Alignment

As in the previous chapter, a protein structure is modeled as a finite, ordered
sequence of 3D points, written as (p1, p2, . . . , pn), where each pi ∈ R3.

The formal statement of our problems are now given.

LCP Problem under Bottleneck Distance

Input: sequences P = (p1, . . . , pn), Q = (q1, . . . , qm) and distance threshold
Dc ∈ R. Without loss of generality assume m ≥ n.

Output: (i) subsets P ′ ⊆ P , Q′ ⊆ Q, |P ′| = |Q′|,
(ii) bijection f : P ′ 7→ Q′, and
(iii) rigid transformation (rotation and translation) t,
fulfilling the following conditions:
(A) maxp∈P ′ ||t(p)− f(p)|| ≤ Dc,
(B) the score S = |P ′| is maximized.

f is called an alignment. An alignment can be sequential or non-sequential. An
alignment is sequential, if and only if for any two points pi1 , pi2 ∈ P ′, where the
corresponding f(pi1) = qj1 and f(pi2) = qj2 , i1 < i2 iff j1 < j2. Otherwise, the
alignment is non-sequential. The LCP problem which requires alignments to be
sequential is said to be sequential, otherwise it is non-sequential. Throughout this
chapter, P , Q , f , T , S represent an optimal P ′, Q′, f , t, S, respectively.

Also, a protein can be modeled as a contact map graph. A contact is a pair
of points in a protein that are no more than a given distance apart. Throughout
this chapter, Du denotes this distance. In order to form contact edges, Du ≥ Dl.
The contact map graph of a protein consists of the residues (i.e., vertices) and their

120



contacts (i.e., edges). Each vertex v is associated with a 3D point pos(v), indicating
the residue’s relative position from other points in the protein. In this chapter, the
following problem concerning contact maps is examined.

CMO Problem with Distance Constraints

Input: contact maps G1 = (V1, E1), G2 = (V2, E2) and distance threshold
Dc ∈ R. Without loss of generality assume |V2| ≥ |V1|.

Output: (i) subsets V ′1 ⊆ V1, V ′2 ⊆ V2, |V ′1 | = |V ′2 |,
(ii) bijection M : V ′1 7→ V ′2 , and
(iii) rigid transformation (rotation and translation) t,
fulfilling the following conditions:
(A) maxv∈V ′1 ||t(pos(v))− pos(M(v))|| ≤ Dc,
(B) S = |{(v, u) ∈ E ′1 | (M(v),M(u)) ∈ E ′2}| is maximized.

M is called an alignment. The vertices in V1, V2 are considered to be or-
dered. Using the orderings, an alignment M is defined as either sequential or non-
sequential, in a similar way to the definitions of the sequential and non-sequential
for the alignments in the LCP problem. (In some literature, a sequential alignment
is referred to as non-crossing.) Throughout this chapter V1, V2, M , T , S denote
an optimal V1, V2, M , t, S, respectively.

Approximate Solutions For the above problems, the solutions aimed for are
to

(1) fulfill Condition (A) for a slightly larger distance threshold; that is, (1 + ε)Dc

for some ε ∈ R,

(2) have a score at or above rS for some r ∈ R.

Such a solution is called an (ε, r)-approximation herein. The algorithms have
polynomial runtime w.r.t. both 1/ε and r; that is, discrepancy from the optimal
due to both (1) and (2) can be made arbitrarily small at the expense of runtime.

Other Notations Due to Property 2 in Section 7.1.1, it can be shown that
each residue in P can be matched to at most (1 + 2(1+ε)Dc

Dl
)3 residues in Q. ∆ε is

used to denote (1 + 2(1+ε)Dc
Dl

)3 herein. For any point p and transformation t, t(p)

denotes the point obtained by transforming p with t. For a set of points, P , t(P )
signifies the set {t(p) | p ∈ P}. For r ∈ R, the r-sphere of a point p is the sphere
of radius r centered at p.

8.2.2 Contact Map Patterns

A contact arc consists of two points (residues). There is a sequential order between
these points of a protein. Only the sequential order (rather than the 3D coordinates)

121



of protein structures are of concern in the study of contact map patterns. Hence,
the representation of contact maps are simplified to a sequence integers.

A disjoint Contact map Pattern (DIS-CMP) consists of a pair, (S,D), where S is
a set of integers, andD consists of a set of ordered pairs, that is, D = {(sl, sr)|sl, sr ∈
S, sl < sr}. A pair (sl, sr) is referred to as an arc. For an arc (sl, sr), sl and sr
are referred to as the left endpoint and right endpoint of the arc, respectively.
L((sl, sr)) = sl and R((sl, sr)) = sr and the integers in S are also referred to as
points.

Three kinds of relations between two given arcs: a = (sl, sr) and a′ = (s′l, s
′
r)

are defined:

• a < a′ (a is less than a′) iff sr < s′l

• a < a′ (a is nested in a′) iff s′l < sl < sr < s′r

• a G a′ (a crosses a′) iff sl < s′l < sr < s′r

The relations do not include all the possible relations between any two arcs such
as two arcs sharing an endpoint. The DIS-CMP is equivalent to a contact map.

8.2.3 Maximum Contact Map Pattern Problem

The maximum Contact Map Pattern (CMP) problem under model R is to find a
largest subset of contact map which is R-comparable. The problem is expressed as
follows.

Disjoint CMP pattern (DIS-CMP) Problem

Input: A set of arcs D, and a model R
Output: An R-comparable subset of D with the largest cardinality.

The disjoint CMP under model R is DIS-CMP-R. The DIS-CMP problem for all
the possible models, except DIS-CMP-{<, G}, has been shown to be polynomially
solvable [155]. These results are summarized in Table 8.1. In this chapter, the
NP-hardness for the DIS-CMP-{<, G} problem is presented.

8.2.4 Disjoint Contact Map Pattern Matching Problem

Since DIS-CMPs are equivalent to contact maps, CM is used to denote a disjoint
contact map pattern. A DIS-CMP (S,D) is called a Crossing Contact Map (CCM),
iff it is {<, G}-structured.

The Disjoint Contact Map Pattern Matching (DCMPM) problem is formalized
as follows. Given two disjoint contact map patterns CM(Sp,Dp) (called the pattern)
and CM(S,D) (called the target), where |Sp| ≤ |S|, discover a subset S ′ of S with

122



Table 8.1: Contact map pattern problem complexity for n = |D|.
Contact map Pattern Problem

{<,<, G} O(n
√
n)

{<, G} O(n2) [35]
{<,<} O(n2)
{<, G} NP-complete?
{<} O(n log n)
{<} O(n log n)
{G} O(n2) [35]

When it is not specified, the results are from [19,155]. ? denotes the contributions of this thesis.

|S ′| = |Sp| such that there is a one-to-one mapping,M, from the elements of Sp to
the elements of S ′ that satisfies the following two conditions

• if s1, s2 ∈ Sp and s1 < s2, then M(s1),M(s2) ∈ S ′ and M(s1) <M(s2);

• if (s1, s2) ∈ Dp, then (M(s1),M(s2)) ∈ D.

If such a mapping exists, we say that CM(Sp,Dp) occurs in CM(S,D). Gen-
erally, the contact map pattern matching problem is NP-hard [61, 155]. However,
some cases with restrictions on the patterns have been shown to be solvable in
polynomial time.

The DCMPM problem with {<}, {<}, {G}, or {<,<}-structured patterns
can be solved in polynomial time, but is NP-hard for the {<, G} and {<,<, G}-
structured patterns [155]. In this chapter, the interest is in the remaining case,
where the patterns are CCMs. The following formally states the problem

Crossing Contact Map Pattern Matching (CCMPM) Problem [67]

Input: Dis-CMP CM(Sp,Dp) and CM(S,D) with CM(Sp,Dp) as a CCM
Output: Does CM(Sp,Dp) occur in CM(S,D)?

8.3 Results for the LCP and CMO Problem

The results for the two problems, LCP under the bottleneck distance and CMO
with the distance constraint, are presented first. The algorithms are similar for
these two problems.

8.3.1 Finding the Rigid Transformation

The algorithms in for these problems follow the strategy used in the previous chap-
ter. A suitable rigid transformation to superimpose the two protein structures is
found through the use of radial axes.

123



The method assumes that a radial axis, p1, p2 ∈ P , is known for the case of
LCP under the bottleneck distance (similarly, v1, v2 ∈ V1 for CMO with distance
constraint). Given the radial axis, a rotation angle, θ ∈ [0, 2π), along the radial axis
which maximizes the score S, is required. If the interval [0, 2π) is represented by a
unit circle, then the angle that moves a point p ∈ P into, and then out of the ((1 +
ε)Dc)-sphere of some q ∈ Q forms an arc on the circle. These entry/exit points can
be discovered in O(mn) time, and they divide the unit circle into O(mn) intervals.
Each of these rotation intervals consists of a set of equivalent rotation angles. This
property is utilized to construct the approximation algorithms. Without the loss
of generality, no two entry/exit points are assumed to be the same.

The number of rotation intervals is less for globular proteins. Property 2 from
Section 7.1.1 implies that each point p ∈ P , rotated through [0, 2π), can come into
the (2(1 + ε)Dc)-sphere of at most O(m1/3) points in Q. This results in a total of
O(nm1/3), instead of O(mn) rotation intervals.

Lemma 18. Given that T , p1, p2 in Lemma 8 is known, there are at most O(mn)
rotations to evaluate to find R of Lemma 8 in the general case, and at most
O(nm1/3) rotations to evaluate in the case of globular proteins. These rotations
can be discovered in O(mn) time.

8.3.2 Approximation Algorithm for LCP under Bottleneck
Distance

Here, how to evaluate a rotation in Lemma 18 for the LCP problem with the
bottleneck distance is discussed. Given that the points are fixed in position, this
evaluation can be achieved by constructing a bipartite graph G(P ∪ Q,E), where
(u, v) ∈ E iff u ∈ P , v ∈ Q and ||u−v|| ≤ (1+ε)Dc, and find the maximum bipartite
matching of G. Constructing a bipartite matching in general takes O(nm) time.
However, for a globular protein, this construction can be carried out in O(n∆ε)
time, since, by arranging the points in Q into cells of size Dc × Dc × Dc, all the
points in Q within distance (1+ε)Dc of any point in P can be found in O(∆ε) time.

It is clear that the same bipartite graph is constructed for each rotation within
the same rotation interval. Furthermore, the bipartite graph for one rotation in-
terval can be constructed in O(1) time from that of an earlier rotation interval,
since it differs by only a single edge from the previous bipartite graph. In order
to know which edge is added or removed in a subsequent rotation intervals, the
O(mn) (resp. O(mn1/3)) entry/exit points are sorted.

The maximum bipartite matching differs by, at most, an edge for any two con-
secutive intervals. An algorithm for bipartite matching, which can be employed to
reuse results obtained for an interval in the matching to the next interval.

Lemma 19 ( [20]). The bipartite matching problem can be solved with time com-
plexity O((|M | − |M0|)|E|), where M is a maximum matching, and M0 is some
initial matching.

124



By the algorithm, a maximum matching M can be computed in O(|E|) time
from a matching M0 from the earlier rotation interval; that is, O(nm) in general,
and O(n∆ε) for globular proteins. In summary,

1. Discovering the entry/exit points of the intervals takes O(nm) time, and
sorting them takes O(nm log nm) time, or O(nm1/3 log nm1/3) time for globular
proteins.

2. Constructing the bipartite graph for the first rotation interval takes O(nm)
time, or O(n∆ε) time for the proteins.

3. Initial matching for the first rotation interval requires O(m2.5) time [80].

4. The remaining O(nm) rotation intervals each takes O(1) time for an input
modification, and O(|E|) = O(nm) time for finding a new matching. For globular
proteins, there are O(nm1/3) rotation intervals, each which takes O(1) time for an
input modification and O(n∆ε) time for a new matching.

Lemma 20. If a rotation axis is specified, the non-sequential LCP problem with
bottleneck distance can be solved in O(m2.5+n2m2) time in general, and in O(m2.5+
n2m1/3∆ε) time for globular proteins.

It is unknown which pair is a radial axis of P , nor their matching points in Q.
For this reason all the possible m2n2 combinations of pairs of points in P and Q are
exhaustively searched. By Lemma 9, each combination results in O(1/ε5) possible
matches. By Lemma 20, the following holds.

Theorem 21. There is an algorithm of time complexity O((n2m4.5 + n4m4)/ε5) in
the general case, or O((n2m4.5 +n4m2.3̄∆ε)/ε

5) in the case of globular proteins, that
outputs an (ε, 1)-approximate solution to the non-sequential LCP problem under the
bottleneck distance.

This improves the previously known best result of O(n8.5) to O(n8) (letting
n = m and ε = 1) for the general case [33]. When Dc/Dl is reasonably small,
the runtime dependency on m, n for globular proteins can be further improved to
O(n3m2.3̄). The following shows how this is achieved.

The strategy for approximation as in Section 3.2 of [168] is employed. The
strategy divides the points spatially, forming smaller, mutually independent sub
cases, where each is solved with bipartite matching exactly, and then merged to
form the solution. Wx, Wy, Rj, and k, are defined as in Section 3.2 of [168]. D is
defined as D = 2Dc (i.e. instead of D = max{2Dc, Du} as in [168], since there is
no Du for the LCP problem).

However, instead of partitioning along one axis and obtaining blocks of size
Wx ×Wy × D, the proteins are partitioned along all three axes to obtain blocks
of size D3. A different k is used along each of the three axes. They are denoted
as kx, ky, kz, respectively. The definition of partition Rj is revised to adapt to
such a partitioning. Instead of k, now there are kxkykz partitioning schemes. Since
there are now (kx − 1)(ky − 1)(kz − 1) blocks in each partition Rj, the number of

125



residues in each partition Rj, |Rj| = O(kxkykz(
D
Dl

)3) (since each block contains at

most ( D
Dl

)3 residues). Consequently, there are #Rj = O(n/|Rj|) partitions under
each partitioning scheme. Bipartite matching for the initial rotation interval takes
O((|Rj|∆ε)

2.5) time for each Rj [80], hence, the bipartite matching for the initial ro-
tation of each partitioning scheme takes time O(#Rj(|Rj|∆ε)

2.5) =O(n|Rj|(∆ε)
2.5)

time. To compute the bipartite matchings for the initial rotations of all kxkykz par-
titioning schemes takes O(kxkykzn|Rj|(∆ε)

2.5) = O(n(kxkykz)
2.5( D

Dl
)4.5∆ε

2.5) time.

The remaining O(nm1/3) rotation intervals under a partitioning scheme each re-
quires recomputation for matching, at most, a single Rj to Q. For all kxkykz
partitioning schemes, this takes O(nm1/3kxkykz|E|) = O(nm1/3kxkykz|Rj|∆ε) =
O(nm1/3(kxkykz)

2( D
Dl

)3∆ε) time with the algorithm in Lemma 19. An analysis,

similar to the one in Section 3.2 of [168], shows that the method leads to a
(1− 4

kx
)(1− 4

ky
)(1− 4

kz
) approximation.

Theorem 22. In the case of globular proteins, there is an algorithm of

O(n3(m2(kxkykz)
2.5(2Dc

Dl
)4.5∆ε

2.5 +m2.3̄(kxkykz)
2(2Dc

Dl
)3∆ε)/ε

5)

time complexity that outputs an (ε, 1− 4( 1
kx

+ 1
ky

+ 1
kz

))-approximate solution to the

non-sequential LCP problem under bottleneck distance.

For the sequential LCP problem under bottleneck distance, instead of bipartite
matching, straight-forward dynamic programming is used to find the maximum
number of matches. f(η, µ), where 1 ≤ η ≤ n and 1 ≤ µ ≤ m, is used to
denote the optimal number of matches for the subsequences (pη, pη+1, . . . , pn) and
(qµ, qµ+1, . . . , qm). It can be shown that

f(η, µ) =

max



f(η + 1, µ) ||pη+1 − qµ|| ≤ (1 + ε)Dc

(pη is not matched in this case)
f(η, µ+ 1) ||pη − qµ+1|| ≤ (1 + ε)Dc

(qµ is not matched in this case)
f(η + 1, µ+ x+ 1) + 1 µ ≤ µ+ x ≤ m ∧ ||pη − qµ+x|| ≤ (1 + ε)Dc

f(η + y + 1, µ+ 1) + 1 η ≤ η + y ≤ n ∧ ||pη+y − qµ|| ≤ (1 + ε)Dc


The number of f(η, µ) values to be computed in this dynamic programming

is O(nm) in the general case, and O(n|∆ε|) for globular proteins. Note that by
using the bipartite graphs, it is easy to search for points within distance (1 + ε)Dc

apart. For each f(η, µ), there are O(m) values from which to find a maximum
in the general case, and O(∆ε) values in the case of globular proteins. Thus, the
runtime complexity for a single rotation interval is O(nm2) in the general case, and
O(n∆ε

2) for globular proteins. Therefore, the total time complexity is O(n4m5/ε5)
for the general case, and O(n4m2.33̄∆ε

2/ε5) for globular proteins.

Theorem 23. There is an algorithm of time complexity O(n4m5/ε5) for the general
case, and O(n4 m2.33̄∆ε

2/ε5) for globular proteins, that outputs an (ε, 1)-approximate
solution to the sequential LCP problem under bottleneck distance.

126



8.3.3 Results for the CMO Problem with Distance Con-
straints

Combining the rotation interval technique in Section 8.3.1 with the partitioning
technique from Xu et al. [168] a PTAS is now to be demonstrated for the non-
sequential CMO problem with distance constraints under reasonable Dl, Du and
Dc parameters.

In the proposed method, a radial axis of V1 is matched to a pair in V2 by using
some transformation T . Then, for each rotation R ∈ [0, 2π) along the radial axis,
a contact map, (V ′1 , E1), is attained from (V1, E1) with the position of each v ∈ V1

replaced by R(T (pos(v))). Now with the positions of both (V ′1 , E1), (V2, E2) fixed,
An alignment f which maximizes S is to be found. Since the result is equivalent
for rotations within the same rotation interval, only one representative R is used
for each rotation interval.

The partitioning strategy in Section 3.2 of [168] is used on (V ′1 , E1). The parti-
tioning scheme is modified so that it is along all three axes, as in Section 8.3.2. Here,
D = max{2Dc, Du} is used. For each partition Rj at the initial rotation interval,
all the ∆ε

|Rj | possible matchings of the residues in Rj to (V2, E2) are enumerated.
By reusing the computation for one matching on the matchings with only a single

change, an optimal solution for Rj is possible in O(∆ε
|Rj |) = O(∆ε

O(kxkykz( D
Dl

)3)
)

time. The total time needed for all #Rj partitions and for all kxkykz partitioning

schemes is O(#Rjkxkykz∆ε
O(kxkykz( D

Dl
)3)

).

For the subsequent rotation intervals, first note that the difference between the
contact maps of any two consecutive rotation intervals is contained in a single block,
and note that any block is shared by, at most, O(kxkykz) partitions. Hence, for
each subsequent rotation interval, the only need is to recompute for these partitions.
This is carried out for all kxkykz partitioning schemes and for all rotation intervals.

Thus, O(nm(kxkykz)
2∆ε

O(kxkykz( D
Dl

)3)
) time is required for a general protein, and

O(nm1/3(kxkykz)
2∆ε

O(kxkykz( D
Dl

)3)
) time for the globular proteins. Since #Rj ≤ n,

the final runtime is O(nm1/3(kxkykz)
2∆ε

O(kxkykz( D
Dl

)3)
)

Theorem 24. There is an algorithm of time complexity O(n3m3(kxkykz)
2∆ε

O(kxkykz(
max{2Dc,Du}

Dl
)3)
/ε5)

for general proteins, and O(n3m2.33̄(kxkykz)
2∆ε

O(kxkykz(
max{2Dc,Du}

Dl
)3)
/ε5) for globu-

lar proteins that outputs an (ε, 1 − 4( 1
kx

+ 1
ky

+ 1
kz

))-approximate solution to the

non-sequential CMO problem with distance constraint.

Although this runtime is not as good as that in Theorem 4 in [168], it shows
that the non-sequential CMO problem with distance constraint allows a PTAS when
max{2Dc,Du}

Dl
is bounded below a constant. However, even under such a condition,

no exact solution to the non-sequential CMO problem with distance constraint can
be obtained in polynomial time.

Theorem 25. The non-sequential CMO problem with distance constraint is NP-
hard, even when max{2Dc,Du}

Dl
is bounded below a constant.

127



Proof. A reduction from the planar 1-in-3-SAT problem [53] is employed. The
planarity of the problem allows us to construct a geometrical representation of the
1-in-3-SAT problem where none of the legs cross, to be used as input to the CMO
problem. It is assumed that Dc > Du throughout this proof. As stated earlier,
Du ≥ Dl. No other assumption is made regarding Dc, Du, and Dl. That is,
max{2Dc,Du}

Dl
can be set to a small constant.

Given an input formula, two sequences of 3D points P and Q are constructed
as input to the CMO problem. It is assumed that the optimal solution will have
the points in exactly the positions as they assume in the construction. For each
clause some points are constructed for both P and Q, where the contact edges form
chain-like structures, called chains. The points constructed for different clauses are
separated by more than Dc, forming no contact edges except for a few end-points,
which are explained later in this section using Figure 8.6. Each point in a chain
forms contact edges only with its two (one in the case of end-points) immediate
neighbors. For each clause, six such chains are constructed for Q, and three such
chains are constructed for P . Each chain of the same clause has the same number of
points, say, η. A cyclic structure, formed using three additional points (called pivot
points), connects the six chains for Q through their end-points. One additional
pivot point connects the end-points of the three chains of P .

c.f. Figure 8.2

Between chain
points

radius = Dc

c.f. Figure 8.6

c.f. Figure 8.5

Between pivot
and chain points

Q's contact edges

Between chain
points
Between pivot
and chain points

P's contact edges

 x1= true x2 x2x1 x3 x3= true = true= false = false = false

A

B

C

Figure 8.1: Overall view of the construction for the clause (x1 ∨ x2 ∨ x3)

Figure 8.1 shows an overall construction for the clause (x1∨x2∨x3). Note that
in the points constructed for a single clause, no contact edge exists besides those
that form the chains, and the connections between the end-points of the chains

128



to the pivot points. The details at the pivot points (P ’s elements are not drawn
accurately to avoid obstructing the view of Q’s elements) are shown in Figure 8.2.
They will be explained in detail later.

Figure 8.2: Chains connected by the pivot
points Figure 8.3: Optimal mapping

In the construction of a clause, each literal is represented by using two chains
for Q and one chain for P . The CMO problem asks for a mapping between P and
Q which maximizes the number of corresponding contact edges in P and Q. To
achieve this maximization, the chain for P must be completely mapped to only one
of the two chains for Q (i.e., giving η− 1 corresponding contact edges). The literal
is assigned to be true or false, depending on which of the two chains for Q, P ’s
chain is found to mapped to in a CMO output. A Q chain for true assignment is
called a true chain, and a Q chain for false assignment is called a false chain.

The purpose of the the pivot structure is to ensure that exactly one literal in
the clause can be assigned to be true. All the contact edges near the structure are
illustrated in Figure 8.2. Each false chain is in contact with two pivot points, and
each true chain is in contact with one. The end-points of the chains for P need
to be more than distance Du from each other, but each within distance Dc from
the points in Q that they may be mapped to in the optimal mappings. Figure 8.4
shows a possible arrangement.

There are exactly three mappings between P and Q which maximizes the num-

Figure 8.4: Distances between points at the pivots

129



Figure 8.5: Re-positioning chains

ber of corresponding contact edges. Each maps the single pivot point of P to one of
the three pivot points of Q. Each mapping gives a total of 3(1 + η) corresponding
contact edges. One such mapping is reflected in Figure 8.3. In all three optimal
mappings, only one literal in the clause is assigned as true.

The points at the other end of the chains (i.e., the end not connected to a
pivot point) are collected along two lines: one for all the chains representing true
assignment to a variable and the other for false assignment. (A true chain does
not imply a true assignment to a variable due to negation; that is, a literal of
a negated variable should have its true assignment chains along the line for false
assignment, and vice versa.) Such positioning might require the two Q chains for a
literal to swap positions to connect properly to the pivot. Such swappings can be
done through arrangements as show in Figure 8.5.

Chains for the same variable from different clauses are placed at close proximity
to each other with a distance of Du between their consecutive end-points. This is
shown in Figure 8.6. The planarity of the problem allows such a construction of
the chains, where only the end-points form contact edges. Figure 8.7 shows the
arrangement. Note that under this arrangement, the points in P can be mapped
to their respective points in Q.

For any variable, an optimal mapping has either all its corresponding chains
in P mapped to their corresponding chains in Q which represent true, or to their
corresponding chains in Q which represent false. This occurs because such a map-
ping increases the number of corresponding contact edges through the additional
edges at the bottom-most layer; that is, by exactly the number of occurrences of
the variable (in the 1-in-3-SAT formula) minus one.

At this point, it is clear that an optimal solution for the CMO problem with
distance constraints results in a specific number of corresponding contact edges,
which can be calculated from the number of clauses and variable occurrences in
the 1-in-3-SAT formula. A solution with this optimal score for the CMO problem
corresponds to whether there is a set of variable assignments that fulfills the 1-in-
3-SAT formula.

130



Figure 8.6: Construction for a variable that
appears in four clauses

Figure 8.7: View from top of Figure 8.6

It remains to be seen if the number of points needed for constructing P and
Q is polynomial with respect to the input size. If α is the minimal number of
points needed to construct a single clause, then that the number of points needed
to construct an input of n clauses is of order O(n2α).

Finally, in order to make the positions of the points immutable in an optimal
solution in the CMO problem, additional points are added on P and Q (the ad-
ditional points have only one optimal mapping, and this mapping produces more
corresponding edges than the total number of edges in the construction). This can
be achieved with, for example, points that form a “grid” on the X-Y plane. These
points can be placed sufficiently far away from the points in the construction to
avoid forming contact edges with the construction. It is clear that O(n2α) points
suffice to construct these “grid” points.

This polynomial reduction hence witnesses the NP-hardness of the CMO prob-
lem with distance constraints.

Using a slightly different construction, the sequential variant of the problem can
be shown to be NP-hard.

Theorem 26. The sequential CMO problem with distance constraint is NP-hard,
even when max{2Dc,Du}

Dl
is bounded below a constant.

8.4 Clique Problem

The clique problem, a known NP-hard problem [57] is used in the proofs of the
next two subsections. Let an instance of the clique problem be given by a directed
graph G(V,E) and by a positive integer `. Without loss of generality, assume
V = {1, . . . , n}. For an edge (u, v) ∈ E, u < v. In general, the clique problem is
defined for undirected graphs. For ease of notation, a linear order is assigned to
the vertices, and the edge is assumed to be directed from u to v if u < v, where u
is referred to as the source vertex of edge (u, v), and v is referred to as the target

131



1

2

3

4

Figure 8.8: Graph G0 to Illustrate the Reduction.

vertex. An `-clique of a directed graph consists of ` vertices: ui ∈ V , 1 ≤ i ≤ `
such that u1 < u2 < ... < u`, and ∀ 1 ≤ i < j ≤ `, (ui, uj) ∈ E.

8.5 NP-hardness of CMP-DIS-{<, G}

Since the construction is rather complicated, an overview is presented before the
details are given. In the construction, a set of contact maps D is built, then D is
proven to have a DIS-CMP-{<, G} of size (2`−1)n2+(`−1)n+` iff G(V,E) contains
an `-clique. In the reduction, subsets of arcs are constructed to represent edge set
E, and these arc sets are denoted QR1, . . ., QR`. For a maximum DIS-CMP-{<, G}
pattern,

• ` arcs, which correspond to `− 1 edges in E, from QR1 are selected,

• `− 1 arcs from QR2 (corresponding to `− 2 edges in E) are selected,

• . . . ,

• and only one arc is chosen from QR`

The edges corresponding to the arcs, selected from QR1, are denoted (u1, u2),
(u1, u3), . . ., (u1, u`), and the edges corresponding to the arcs selected from QRj,
are denoted (uj, uj+1), (uj, uj+2), . . ., (uj, u`), for some u1, u2 . . ., u`. If the selection
of these arcs are successful, u1, u2 . . ., u` form an `-clique.

Graph G0 in Figure 8.8 illustrates the construction.

In the following subsections, some additional notations are defined first, then
the endpoints and the orders between the points are specified, followed by the
construction of the arcs, and finally the correctness of the construction is shown.

132



8.5.1 Additional Notations

A set D of k distinct arcs, where ∀a, a′ ∈ D, either a G a′ or a′ G a, is called a
k-arc crossing cluster. Given two disjoint sets of arcs, D1, D2, D1 is nested in D2

(D1 < D2), iff ∀a1 ∈ D1, ∀a2 ∈ D2, a1 < a2.

Arc a is propagated to arc a′ if for a maximum DIS-CMP-{<, G} pattern, the
selection of a′ ensures the selection of a for this DIS-CMP-{<, G}. Arc set D is
propagated to arc set D′, |D| ≥ |D′|, if the selection of D′ ensures the selection of
D for a maximum DIS-CMP-{<, G}. For k DIS-CMP-{<, G} arc sets D1, . . ., Dk

with |D1| ≥ . . . ≥ |Dk|, the k arc sets are propagated, if the selection of D1 ensures
the selections of D2, . . ., Dk for a maximum DIS-CMP-{<, G}.

Given two point sets, S1 and S2, S1 < S2 iff ∀s1 ∈ S1 and ∀s2 ∈ S2, s1 < s2.

8.5.2 Set of Endpoints

The following sets of endpoint are constructed: (1) I; (2) Pj, Qj andRj, 1 ≤ j ≤ `;
and (3) Sj, T j and U j, 2 ≤ j ≤ `.

The details of the construction are as follows.

• I contains ` points, they are ordered according to their subscripts in an
increasing order. I = {Ij|1 ≤ j ≤ `}, I1 < . . . < I`.

• Pj = {P j
u,v|1 ≤ u ≤ n, 1 ≤ v ≤ n}, 1 ≤ j ≤ `. Pj contains n2 points, and

those points are ordered, according to their first subscripts, increasingly, and
then, according to the second subscripts increasingly: (1) if u1 < u2, then
P j
u1,v1

< P j
u2,v2

or (2) if u1 = u2 and v1 < v2 then P j
u1,v1

< P j
u2,v2

.

• Qj = {Qj
u,v|1 ≤ u ≤ n, 1 ≤ v ≤ p}, 1 ≤ j ≤ `. Qj contains n2 points. The

order relation is similar to that for the case of Pj; that is Qj
u1,v1

< Qj
u2,v2

(1)
if u1 < u2 or (2) if u1 = u2 and v1 < v2.

• Rj = {Rj
u,v|1 ≤ u ≤ n, 0 ≤ v ≤ n}, 1 ≤ j ≤ `. Rj has n2 + n elements.

The elements are ordered, according to the first subscripts, decreasingly, and
then, according to the second subscripts, increasingly; that is, Rj

u1,v1
< Rj

u2,v2

if (1) u1 > u2 or (2) u1 = u2 and v1 < v2. Note that case (1) is different from
the case (1) of Pj and Qj.

• Sj = {Sju,v|1 ≤ u ≤ n, 1 ≤ v ≤ n}, 2 ≤ j ≤ `. S has n2 elements. Its
order relation is similar to that for the case of Rj; that is, (1) if u1 < u2,
Sju1,v1

> Sju2,v2
or (2) if u1 = u2 and v1 < v2, Sju1,v1

< Sju2,v2
.

• T j = {T ju |1 ≤ u ≤ n}, 2 ≤ j ≤ `. T j contains n points, and the elements
are ordered according to the subscripts, increasingly; that is, T ju1

< T ju2
if

u1 < u2.

133



• U j = {U i
u|1 ≤ u ≤ n}, 2 ≤ j ≤ `. U j contains n points, and the elements are

ordered the same way as those in T j; that is, U j
u1
< U j

u2
if u1 < u2.

Furthermore, the following order is specified,

P1 < Q1 < R1

Sj < Tj < Uj < Pj < Qj < Rj, 2 ≤ j ≤ `.

Wjs, 2 ≤ j ≤ `, is defined as W1 = P1 ∪Q1 ∪R1 and Wj = Sj ∪ Tj ∪ Uj ∪Pj ∪
Qj ∪Rj for 2 ≤ j ≤ `.

The following order is introduced,

I <W1 <W2 < . . . <W`.

Hence a total order of all the points has been specified. S denotes the set of points
that have been created. S = I ∪

⋃`
j=1Wj.

8.5.3 Construction of the Arcs

In this subsection, the arcs construction is described.

Arc Set IP

One arc is created between each pair of points, one point from I, and the other
from P1 as in Figure 8.9.

IP = {(Ij, P 1
u,v)|1 ≤ j ≤ `, 1 ≤ u, v ≤ n}.

This construction ensures that at most ` arcs of IP can occur in a DIS-CMP-
{<, G} pattern, since I contains ` points, and no arcs in a DIS-CMP-{<, G} pattern
can share an endpoint.

Arc Set PQj, 1 ≤ j ≤ `

There are n2 arcs in PQj. Each arc is created between a pair of points, one from
P j
u,v and one from Qj

u,v, that shares the same subscript; that is,

PQj = {(P j
u,v, Q

j
u,v)|1 ≤ u ≤ n, 1 ≤ v ≤ n}.

All the arcs in PQj cross each other as depicted in Figure 8.9 and Figure 8.12. Any
combination of the arcs in PQj can occur in a DIS-CMP-{<, G}.

134



Figure 8.9: Arc Sets IP and PQ1 for graph G0.
IP is a full bipartite connection between I and Pj . PQj is an n2-arc crossing cluster.

Figure 8.10: Arc Set QRj for G0. QRj codes the edge information.
QR` contains only the anchor arcs.

Arc Set QRj, 1 ≤ j ≤ `

QRj is the place to code the edge information. QRj, 1 ≤ j ≤ ` − 1, contains
|E| + n arcs, and QR` contains n arcs. For 1 ≤ j ≤ ` and 1 ≤ u ≤ n, an arc is
created between Qj

u,u and Rj
u,0, and for 1 ≤ j ≤ `− 1, there is an arc between Qj

u,v

and Rj
u,v, if and only if (u, v) is an edge of G, u < v; that is

QRj = {(Qj
u,v, R

j
u,v)|(u, v) ∈ E} ∪ {(Qj

u,u, R
j
u,0)|1 ≤ u ≤ n}, 1 ≤ j ≤ `− 1

QR` = {(Q`
u,u, R

`
u,0)|1 ≤ u ≤ n}.

QRj
u is a subset of QRj, QRj

u = {(Qj
u,v, R

j
u,v)|(Qj

u,v, R
j
u,v) ∈ QRj, 0 ≤ v ≤ n}.

QRj
u is a crossing cluster. As the elements in Qj are ordered increasingly

according to the second subscripts, and the elements inRj are ordered decreasingly,
according to the second subscripts, QRj

u1
is nested in QRj

u2
,1 ≤ u2 < u1 ≤ n

(Figure 8.10), stated in the following:

Lemma 27. QRj
u1

< QRj
u2
, 1 ≤ u2 < u1 ≤ n.

This property ensures that only those arcs in QRj, whose endpoints share the
same first subscripts can occur in a DIS-CMP-{<, G}. This implies that only the
edges with the same source node (denoted by the first subscripts) can have their
corresponding arcs occurring in a DIS-CMP-{<, G}.

The arc (Qj
u,u, R

j
u,0) is called the anchor of QRj

u. The anchor (Qj
u,u, R

j
u,0)

crosses the rest of the arcs in QRj
u. The anchor arcs in QRj are nested with each

other, and at most one anchor arc can occur in a DIS-CMP-{<, G}.
In Section 8.5.4, it will be proven that to attain a maximum DIS-CMP-{<, G},

one of the anchor arcs must be selected for each QRj
u, 1 ≤ j ≤ `.

135



Figure 8.11: Arc sets RSj−1, STj , and TUj for G0.
RSj−1 is an n2-arc crossing cluster. Every n arcs in STj share one endpoint in T j . TUj is an
n-arc crossing cluster.

By the proposed construction, at most one arc from QR` can be selected for a
maximum DIS-CMP-{<, G}.

Lemma 28. At most one arc from QR` can be selected for a maximum DIS-CMP-
{<, G}.

Arc Set RSj, 2 ≤ j ≤ `

RSj contains n2 arcs, whose construction is similar to that of PQj, as in Figure
8.11,

RSj = {(Rj
u,v, S

j+1
u,v ) | 1 ≤ u ≤ n, 1 ≤ v ≤ n}.

RSj is an n2-arc crossing cluster, and any combination of the arcs can occur in
a DIS-CMP-{<, G}.

Arc Set STj, 2 ≤ j ≤ `

STj contains n2 arcs, and every n arcs in STj share one endpoint in T j as in Figure
8.11; namely,

STj = {(Sju,v, T jv )|1 ≤ u ≤ n, 1 ≤ v ≤ n}

At most n arcs in STj can occur in a DIS-CMP-{<, G}.

Arc Set TUj, 2 ≤ j ≤ `

TUj is an n-arc crossing cluster as in Figure 8.11. An arc is created between
two points of the same subscripts with one point in T j and the other point in U j.
Therefore,

TUj = {(T jv , U j
v )|1 ≤ v ≤ n}.

136



Figure 8.12: Arc Set UPj and PQj for G0.
Each n arcs, UPj , share point U j . PQj is a n2-arc crossing cluster.

Arc Set UPj, 2 ≤ j ≤ `

Each n arcs in UPj share one endpoint in U j (Figure 8.12), expressed as

UPj = {(U j
v , P

j
u,v)|1 ≤ u ≤ n, 1 ≤ v ≤ n}.

At most n arcs of UPj can appear in a DIS-CMP-{<, G}.
Ajs, 1 ≤ j ≤ `, are defined as A1 = IP∪PQ1∪QR1 and Aj = QRj−1∪RSj ∪

STj ∪TUj ∪UPj ∪PQj ∪QRj, 2 ≤ j ≤ `. The set of all the arcs constructed is
represented by D.

8.5.4 Correctness of the Construction

Define L = (2` − 1)(n2 + 1) + (` − 1)n + `. First, the task is to prove that to
obtain a maximum DIS-CMP-{<, G} P of size L in D, the only way is to select `
arcs from IP, and `− j + 1 arcs from QRj, 1 ≤ j ≤ `. Secondly, by using the edge
information coded in QRj, it is proven that the edges corresponding to the arcs
selected from QRj, 1 ≤ j ≤ `, form a clique.

Theorem 29. There is a maximum DIS-CMP-{<, G} P in D of size L, if and only
if P contains ` arcs from IP, and `− j + 1 arcs from QRj, 1 ≤ j ≤ `.

Furthermore, the arcs of P contain arcs from IP, which are (I1, P
1
u1,u1

),(I2, P
1
u1,u2

),

. . ., (I`, P
1
u1,u`

), and contain arcs from QRj, which are (Qj
uj ,uj

, Rj
uf j,0

), (Qj
uj ,u2

, Rj
uj ,u2

),

. . ., (Qj
uj ,u`

, Rj
uj ,u`

), for some u1, u2, . . . , u` with 1 ≤ u1 < u2 < . . . < u` ≤ n.

The proof consists of three steps. First, in A1, the arcs selected from IP are
propagated to the arcs selected from QR1. Secondly, in Aj, the arcs selected from
QRj−1 are propagated to the arcs from QRj. Thirdly, by combining the first two
steps, the arcs selected from IP and QRj, 1 ≤ j ≤ `, are all propagated.

First, the arcs, selected from IP and from QR1, are propagated. An example
is given in Figure 8.13.

Lemma 30. If k0 arcs are selected from IP and k1 arcs are selected from QR1 for
P, then n2 + min{k0, k1} arcs are selected from A1 for P.

Furthermore, if k0 = k1 and the number of arcs selected from A1 is n2 + k0,
then the arcs selected from QR1 have endpoints in Q1 as Q1

u,u1
, . . . , Q1

u,uk0
and the

137



Figure 8.13: Arc propagation for A1.

arcs selected from IP have their endpoints in P1 as P 1
u,u1

, . . . , P 1
u,uk0

for some u,
u1, . . ., uk0, 1 ≤ u1 < . . . < uk0 ≤ n.

Proof. k0 arcs from IP imply that at most n2− k0 points in P1 can be used for the
arcs from PQ1. k1 arcs from QR1 imply that at most n2 − k1 points in Q1 can be
applied for the arcs selected from PQ1. PQ1 is an n2 crossing cluster and at least
max{k0, k1} arcs in PQ1 share endpoints with arcs from IP or QR1. Therefore,
the number of arcs that are selected from A1 is, at most, k0 +k1 +n2−max{k0, k1},
or equivalently, n2 + min{k0, k1}.

If k0 = k1 and the number of arcs selected from A1 is n2 + k0, the maximum
possible number of arcs that can be selected from A1 is achieved. This maximum
value is achievable, if and only if the following two statement are valid,

• the number of arcs from PQ1 is n2 − k0, and

• the subscripts for the right endpoints of the k0 arcs from IP have a one-to-one
correspondence with the subscripts for the left endpoints of the k0 arcs from
QR1.

According to Lemma 27, the first subscripts for the endpoints of the arcs from QR1

are the same. As a result, the statement holds.

The arcs selected from QRj−1 and QRj are propagated, as shown by the fol-
lowing lemma.

Lemma 31. If kj−1 arcs are selected from QRj−1 and kj arcs are selected from
QRj for P, then 2n2 + n+ min{kj−1, kj + 1} arcs are selected from Aj for P.

Furthermore, if kj−1 = kj + 1 and the number of arcs from Aj is 2n2 + n +
kj−1,then arcs selected from QRj−1, have endpoints in Rj−1, as Rj−1

u,0 , Rj−1
u,u1

, Rj−1
u,u2

. . ., Rj−1
u,ukj

and the arcs, selected from QRj, have their endpoints in Qj as Qj
u′,u1

,

Qj
u′,u2

, . . ., Qj
u′,ukj

for some u, u′, u1, u2, . . ., ukj with 1 ≤ u1 < u2 < . . . < ukj ≤ n.

Proof. The arc set QRj−1 ∪RSj ∪ STj is considered. If s arcs are selected from
STj, and t arcs are selected from UPj, then like in the argument in Lemma 30,
the number of arcs selected from RSj is n2−max{kj−1− 1, s}. This is due to that
at most one of the anchor arcs in QRj−1 is selected and the anchor arc does not

138



share the endpoints with the arcs in RSj. Similarly, the numbers of arcs that can
be selected from TUj and PQj are n−max{s, t} and n2−max{t, kj}, respectively.
Thus the number of arcs can be selected from Aj is

2n2 + n+ kj−1 + kj + s+ t−max{kj−1 − 1, s} −max{s, t} −max{t, kj}. (8.1)

Equation 8.1 is rearranged as

2n2 + n+ kj−1 + min{s− kj−1 + 1, 0}+ min{s− t, 0}+ min{kj − t, 0}
≤ 2n2 + n+ kj−1

The maximum 2n2 + n + kj−1 is achievable, only if (1) s + 1 ≥ kj−1; (2) s ≥ t;
and (3) kj ≥ t.

Similarly, Equation 8.1 is written as

2n2 + n+ kj + 1 + min{0, kj−1 − s− 1}+ min{s− t, 0}+ min{0, t− kj}
≤ 2n2 + n+ kj + 1.

The maximum 2n2 +n+ kj + 1 is achievable, only if (4) kj−1 ≥ s+ 1; (5) s ≥ t;
and (6) t ≥ kj.

It can be verified that 2n2 + n+ min{kj−1, kj + 1} arcs are selected from Al for
P.

If kj−1 − 1 = kj, to maximize Equation 8.1, by combining condition (1)-(6),
s = t = kj. It is known that one anchor arc in QRj−1 is selected. Let the endpoints
of the arcs from QRj−1 in Rj−1 be Rj−1

u,0 , Rj−1
u,u1

, Rj−1
u,u2

. . ., Rj−1
u,ukj

, for some u, u1,

u2, . . ., ukj , with 1 ≤ u1 < u2 < . . . < ukj ≤ n. Given arc set QRj−1 ∪RSj ∪ STj,

the s arcs from STj have their endpoints in T j as T ju1
, T ju2

. . ., T jukj
. Since the left

endpoints of the arcs from QRj have the same first subscripts by Lemma 28, the t
arcs from UPj have their endpoints in Pj as P j

u′,u1
, P j

u′,u2
. . ., P j

u′,ukj
for some u′,

1 ≤ u′ ≤ n. This implies that the arcs, selected from QRj, have their endpoints in
Qj as Qj

u′,u1
, Qj

u′,u2
, . . ., Qj

u′,ukj
.

To achieve a maximum pattern, it will be proved that one anchor arc must be
selected for each arc set QRj, 1 ≤ j ≤ `, and this implies that u′ = u1 in Lemma 31.

By combining the results from Lemma 30 and Lemma 31, the arcs selected,
from IP, and QRj, 1 ≤ j ≤ `, are propagated, which results in Theorem 29.

Proof. (of Theorem 29) If k0 arcs are selected from IP, and kj arcs are selected
from QRj for P. Lemma 31 implies that at most 2n2 +n+ min{kj−1, kj + 1}−kj−1

139



arcs can be selected from Aj − QRj−1. This DIS-CMP-{<, G} has the following
size,

n2 + min{k0, k1}+
∑̀
j=2

(2n2 + n+ min{kj−1, kj + 1})−
∑̀
j=2

kj−1

= (2`− 1)n2 + (`− 1)n+ min{k0, k1}+
∑̀
j=2

min{kj + 1− kj−1, 0}

≤ (2`− 1)n2 + (`− 1)n+ k0

≤ L.

The value is maximized, only if (1) k0 ≤ `; (2) k1 ≥ `, and kj−1 ≤ kj + 1 for
j ≥ 2.

By Lemma 28, it is known that the maximum value for k` is 1. So, k0 = `, and
kj = `− j + 1 for 1 ≤ j ≤ `.

If the arcs from IP are (I1, P
1
u1,u1

),(I2, P
1
u1,u2

), . . ., (I`, P
1
u1,u`

) for some u1, u2, . . . , u`
with 1 ≤ u1 < u2 < . . . < u` ≤ n. It is known that one anchor arc is selected from
QR1 to achieve the maximum value. Also, the two subscripts of the left end-
point for an anchor arc are equal. According to Lemma 30, the arcs from QR1

are (Q1
u1,u1

, R1
u1,0

), (Q1
u1,u2

, R1
u1,u2

), . . ., (Q1
u1,u`

, R1
u1,u`

). By similar arguments, the

arcs from QRj are (Qj
uj ,uj

, Rj
uj ,0

), (Qj
uj ,u2

, Rj
uj ,u2

), . . ., (Qj
uj ,u`

, Rj
uj ,u`

) (2 ≤ j ≤ `),
according to Lemma 31.

Lastly, according to the edge information coded in the arcs, selected from QRj,
1 ≤ j ≤ `, it is demonstrated that a clique of size ` exists, if there is a DIS-CMP-
{<, G} size L in D.

Lemma 32. If there is a DIS-CMP-{<, G} P of size L in D, then there is an
`-clique in G.

Proof. From Theorem 29, to establish a size L DIS-CMP-{<, G} , the arcs se-
lected from QRj, 1 ≤ j ≤ `, must be (Qj

uj ,uj
, Rj

uj ,0
), (Qj

uj ,uj+1
, Rj

uj ,uj+1
), . . .,

(Qj
uj ,u`

, Rj
uj ,u`

). Then, the j arcs selected from QRj imply that E contains edges
(uj, uj+1), . . . (uj, u`). This implies that all the edges (v1, v2), v1 < v2, v1, v2 ∈
{u1, u2, . . . , u`} are in E. Therefore, u1, . . . , u` form a clique of size `.

It is easy to prove that if G contains an `-clique, then a maximum DIS-CMP-
{<, G} in D has size L. It is obvious that this reduction is polynomial. Inherently,
the following is established.

Theorem 33. D has a size L DIS-CMP-{<, G}, if and only if G has a clique of
size `; hence, the DIS-CMP-{<, G} problem is NP-hard.

140



8.6 NP-hardness of the Crossing Pattern Match-

ing Problem

In the following, some terms are defined to facilitate the presentation of the reduc-
tion. Given a graph G(V , E), we construct

• a target map CM(SG,DG), and

• a pattern CM(Sn,`,Dn,`) with parameters ` and n.

Lastly, the reduction is analyzed and its correctness is shown.

8.6.1 Additional Notations and Definitions

A set D of k distinct arcs, where ∀a, a′ ∈ D, either a G a′ or a′ G a, is called a
k-arc crossing cluster. Let D1 and D2 denote two arc sets. D1 crosses D2, or D2 is
crossed by D1 (written D1 G D2), if either (1) ∀a1 ∈ D1, ∀a2 ∈ D2, a1 G a2, or (2) if
one of D1 or D2 is an empty set. D1 < D2 (D1 is less than D2, or D2 is greater than
D1), and D1 < D2 (D1 is nested in D2) can be defined similarly. Also, an arc a
crosses a set of arcs D if {a} G D (the cases for < and < can be defined similarly).

For any three sets of arcs, D1, D2, and D3, the following terms are defined.

• D3 is from D1 to D2, iff D1 < D2 and D1 G D3, D3 G D2, and

• D3 is anchored by D1 and D2, iff D1 < D3 and D2 G D3.

Given two point sets, S1 and S2, S1 < S2 iff ∀s1 ∈ S1 and ∀s2 ∈ S2, s1 < s2.
For an arc set D, L(D) =

⋃
a∈D{L(a)}, and R(D) =

⋃
a∈D{R(a)}.

The subscript, ‘∗’, is a special symbol which matches each defined subscript;
that is, A∗,j refers to the set {Aij|Ai,j is defined, and j is fixed}, and A∗,∗ refers to
the set of all Ai,j that have been defined.

If CM(Sn,`,Dn,`) occurs in CM(SG,DG), a one-to-one mapping M exists be-
tween the elements in Dn,` and some elements in DG. Here, the definition of the
mapping is extended to any set D′p ⊆ Dn,` such that M(D′p) =

⋃
a∈D′p
{M(a)}.

8.6.2 Target Contact Map Construction

In this section, a target contact map CM(SG,DG) is built for a given graph G(V , E).
Some large crossing clusters are built first, the arcs which connect these clusters
are then constructed.

141



Large Crossing Clusters

2n + 2 crossing clusters are constructed, which are H, Zu (1 ≤ u ≤ n), T , and Vu
(1 ≤ u ≤ n). H is a 28n4-arc crossing cluster, Zu is a 5n3-arc crossing cluster, T is
a 9n4-arc crossing cluster, and Vu is a 5n3-arc crossing cluster. Z and V are defined
as Z =

⋃n
u=1 Zu and V =

⋃n
i=1 Vu. Furthermore, the following order is defined for

these large clusters,

H < Z1 < . . . < Zn < T < V1 < . . . < Vn. (8.2)

Arcs from H to Zu

There is a 2-arc crossing cluster from H to Zu for each u, 1 ≤ u ≤ n. Signify the
two arcs as Au,1, and Au,2, Au,1 G Au,2. Let Au = {Au,1, Au,2}. Furthermore, the
following orders are defined,

H G Au, Au G Zu 1 ≤ u ≤ n (8.3)

Au1 < Au2 , 1 ≤ u1 < u2 ≤ n. (8.4)

Equation 8.3 ensures that Au is from H to Zu and Equation 8.4 ensures that at
most one pair of arcs in A∗,∗ can be included in a CCM.

If A =
⋃n
u=1 Au, it is clear that |A| = 2n.

Arcs from Zu to Zv

There are two kinds of arcs from Zu to Zv (1 ≤ u < v ≤ n): Eu,v and Cu,v. Eu,v
consists of u crossing clusters, Eu,v,w, 1 ≤ w ≤ u. Each cluster Eu,v,w contains three
arcs, respectively, Eu,v,w,1, Eu,v,w,2 and Eu,v,w,3 with Eu,v,w,1 G Eu,v,w,2, Eu,v,w,1 G
Eu,v,w,3 and Eu,v,w,2 G Eu,v,w,3. Each Cu,v is a single arc. The orders among the arcs
E∗,∗,∗,∗ and C∗,∗ which are needed for our proof are now defined.

The following orders ensure that Eu,∗,∗,∗ and Cu,∗ are crossed by Zu, while E∗,v,∗,∗
and C∗,v crosses Zv.

Zu G Eu,∗,∗,∗, Zu G Cu,∗, 1 ≤ u ≤ n− 1 (8.5)

E∗,v,∗,∗ G Zv, C∗,v G Zv, 2 ≤ v ≤ n (8.6)

The arcs which crosses Zv (2 ≤ v ≤ n) are ordered by,

R(E∗,v,1,∗) < R(E∗,v,2,∗) < . . . < R(E∗,v,v−1,∗) < R(C∗,v) (8.7)

R(E∗,v,w,1) < R(E∗,v,w,2) < R(E∗,v,w,3), 1 ≤ w < v (8.8)

Ev−1,v,w,i < Ev−2,v,w,i < . . . < Ew,v,w,i, 1 ≤ w < v, 1 ≤ i ≤ 3 (8.9)

Cv−1,v < Cv−2,v < . . . < C1,v (8.10)

E∗,v,∗,∗ < Av, C∗,v < Av (8.11)

142



Equation 8.7 ensures that for the arcs crossing Zv, the right endpoints are ordered
according to the third subscripts. Also the right endpoints for C∗,v should be greater
than the right endpoints of E∗,v,∗,∗. Furthermore, Equation 8.8 orders (the right
endpoints of) E∗,v,w,∗ according to the fourth subscripts for any given v and w, and
then Equation 8.9 orders them by their first subscripts. Equation 8.10 defines the
order between the arcs of C∗,∗, and at most one arc in C∗,v can be selected for a
CCM. Equation 8.11 expresses the relations between the arcs of C∗,v, E∗,v,∗,∗, and
Av,∗. If Av,∗ is selected for a CCM, none of the arcs in E∗,v,∗,∗ and C∗,v can be used.

Thirdly, the arcs which are crossed by Zu (1 ≤ u ≤ n− 1) are ordered by

Eu,u+1,w,∗ < Eu,u+2,w,∗ < . . . < Eu,n,w,∗, 1 ≤ w ≤ u (8.12)

Cu,u+1 < Cu,u+2 < . . . < Cu,n (8.13)

Equation 8.12 implies that for any given u and w, at most one 3-arc crossing
cluster can be chosen for a CCM; namely, Eu,v,w,∗ for some v. Similarly, Equation
8.13 means that for a given u, at most one arc in Cu,∗ appears in a CCM.

Lastly, the arcs crossed by Zz and crossing Zz (1 ≤ z ≤ n) are ordered by,

E∗,z,w,1 < Ez,∗,w,∗, E∗,z,w,2 G Ez,∗,w,∗, 1 ≤ w < z < n (8.14)

Az,1 < Ez,∗,z,∗, Az,2 G Ez,∗,z,∗, 1 ≤ z < n (8.15)

Az,2 < Cz,∗, 1 ≤ z < n (8.16)

Equation 8.14 guarantees that the arcs from Zu, for a given w, are anchored by
E∗,z,w,1 and E∗,z,w,2. For w = z, the set E∗,z,z,∗ is not defined. The arcs Ez,∗,z,∗
are anchored by arcs Az,1 and Az,2, according to Equation 8.15. Equation 8.5 and
Equation 8.16 together assert that arc Cz,∗ is anchored by arc Az,2 and arc set Zz.

Define C = C∗,∗. It is known that |C| = 1/2(n2 − n). If E = E∗,∗,∗,∗, then
|E| = 1/2(n3 − n).

Arcs from Zu to T

Arcs from Zu to T are referred to as Fu. Fu consists of u 2-arc crossing clusters,
and the clusters are denoted as Fu,w, 1 ≤ w ≤ u. Fu,w contains two arcs: Fu,w,1 and
Fu,w,2, where Fu,w,1 G Fu,w,2. First, Fu is ensured to be from Zu to T (1 ≤ u ≤ n);
that is,

Zu G Fu,∗,∗, Fu,∗,∗ G T.

Furthermore, the following orders are defined,

E∗,u,w,1 < Fu,w,∗, E∗,u,w,2 G Fu,w,∗, 1 ≤ w < u ≤ n (8.17)

Au,1 < Fu,u,∗, Au,2 G Fu,u,∗, 1 ≤ u ≤ n (8.18)

Eu,∗,w,∗ < Fu,w,∗, 1 ≤ w ≤ u < n (8.19)

R(F∗,1,∗) < R(F∗,2,∗) < . . . < R(F∗,n,∗) (8.20)

R(F∗,w,1) < R(F∗,w,2), 1 ≤ w ≤ n (8.21)

Fn,w,i < Fn−1,w,i < . . . < Fw,w,i, 1 ≤ w ≤ n, 1 ≤ i ≤ 2 (8.22)

143



Equation 8.17 and 8.18 ensure that Fu,w,∗ are anchored by E∗,u,w,1 and E∗,u,w,2 or
by Au,1 and Au,2, respectively. Equation 8.19 guarantees that if some arcs of Fu,w,∗
appear in a CCM, then none of the arcs of Eu,∗,w,∗ can appear in a CCM. The right
endpoints of F∗,∗,∗ are ordered, according to their second subscripts by Equation
8.20, and then by the third subscript (by Equation 8.21). Furthermore, Equation
8.22 means that only one arc is possible for a CCM in set F∗,w,i for any given w
and i.

If F = F∗,∗,∗, |F | = n2 + n.

Arcs from T to Vv and from Vu to Vv

Two kinds of arcs, Iu,v and Pu,v, are involved. Iu,v and Pu,v are induced from
the edges of G(V , E). Iu,v can be either a 3-arc crossing cluster or an empty set. If
Iu,v 6= ∅, the three arcs in it are Iu,v,1, Iu,v,2 and Iu,v,3 with Iu,v,1 G Iu,v,2, Iu,v,1 G Iu,v,3,
and Iu,v,2 G Iu,v,3. Pu,v contains (n − v) crossing clusters. Each cluster, Pu,v,w
(v < w ≤ n) is empty or has two crossing arcs. If Pu,v,w 6= ∅, the two arcs are
Pu,v,w,1 and Pu,v,w,2, Pu,v,w,1 G Pu,v,w,2.

The arcs from T to Vv are partitioned into two sets: P0,v,w and I0,v. P0,v,w is a
2-arc crossing cluster and I0,v is a 3-arc crossing cluster. Are all nonempty sets.

The edge information of G(V , E) is used to construct the arcs from Vu to Vv.
For Iu,v, 1 ≤ u < v ≤ n, if (u, v) /∈ EG Iu,v = ∅; otherwise, (u, v) ∈ EG, Iu,v is a 3-arc
crossing cluster.

For Pu,v,w, 1 ≤ u < v < w ≤ n, if (u,w) /∈ EG, Pu,v,w = ∅; otherwise, (u,w) ∈ EG,
Pu,v,w is a 2-arc crossing cluster.

The construction is to ensure that I0,∗,∗ and P0,∗,∗,∗ are crossed by T ; Iu,∗,∗ and
Pu,∗,∗,∗ are crossed by Vu (1 ≤ u ≤ n− 1), and I∗,v and P∗,v,∗,∗ are crossing Vv; that
is,

T G I0,∗,∗, T G P0,∗,∗,∗ (8.23)

Vu G Iu,∗,∗, 1 ≤ u < n Vu G Pu,∗,∗,∗, 1 ≤ u < n− 1 (8.24)

I∗,v,∗ G Vv, 1 ≤ v ≤ n P∗,v,∗,∗ G Vv, 1 ≤ v < n (8.25)

For the arcs which are crossing Vv, the following orders are specified,

R(I∗,v,∗) < R(P∗,v,v+1,∗) 1 ≤ v ≤ n− 1 (8.26)

R(P∗,v,v+1,∗) < R(P∗,v,v+2,∗) < . . . < R(P∗,v,n,∗), 1 ≤ v ≤ n− 1 (8.27)

R(P∗,v,w,1) < R(P∗,v,w,2), 1 ≤ v < w ≤ n (8.28)

Pv−1,v,w,i < Pv−2,v,w,i < . . . < P0,v,w,i, 1 ≤ v < w ≤ n, 1 ≤ i ≤ 2 (8.29)

Iv−1,v,∗ < Iv−2,v,∗ < . . . < I0,v,∗, 1 ≤ v ≤ n (8.30)

For a given v, Equation 8.27 enforces the right endpoints of P∗,v,∗,∗ to be sorted
according to the third subscript. Then Equation 8.28 guarantees that for any given

144



v and w, the right endpoints for P∗,v,w,∗ are sorted according to the fourth subscript.
Furthermore, for any given v, w, and i, Equation 8.29 asserts that, at most, one
arc in P∗,v,w,i can be selected for a CCM.

Next, the orders for the arcs which are crossed by T , and those arcs which are
crossed by Vu are introduced as follows.

Pu,u+1,w,∗ < Pu,u+2,w,∗ < . . . < Pu,n,w,∗, 0 ≤ u, u+ 1 < w ≤ n (8.31)

Iu,w,∗ < Pu,∗,w,∗, 0 ≤ u, u+ 1 < w ≤ n (8.32)

Equation 8.31 and 8.32 mean that either (1) one 2-arc crossing cluster Pu,v,w,∗ can
be selected for a CCM, or (2) the 3-arc crossing cluster Iu,w,∗ is selected for a CCM,
or (3) none of them is selected.

Furthermore, for the arcs which are crossed by T , the following orders are spec-
ified,

F∗,w,1 < I0,w, F∗,w,2 G I0,w, 1 ≤ w ≤ ` (8.33)

F∗,w,1 < P0,∗,w,∗, F∗,w,2 G P0,∗,w,∗, 2 ≤ w ≤ ` (8.34)

Equation 8.33 implies that I0,w is anchored by F∗,w,1 and F∗,w,2, and Equation 8.34
implies that P0,∗,w,∗ is anchored by F∗,w,1 and F∗,w,2.

Lastly, those arcs crossed by Vz and the arcs which cross Vz are ordered by,

P∗,z,w,1 < Iz,w, P∗,z,w,2 G Iz,w, 1 ≤ z, z + 1 ≤ w ≤ n (8.35)

P∗,z,w,1 < Pz,∗,w,∗, P∗,z,w,2 G Pz,∗,w,∗, 1 ≤ z, z + 1 < w ≤ n (8.36)

Equation 8.35 ensures that Iz,w is anchored by P∗,z,w,1 and P∗,z,w,2, and Equation
8.36 guarantees that Pz,∗,w,∗ is anchored by P∗,z,w,1 and P∗,z,w,2.

If P = P∗,∗,∗,∗ and I = I∗,∗, |P | ≤ 1/3(n3 − n) · |I| ≤ 3/2(n2 + n).

Denote DG = H∪A∪C∪Z∪E∪F ∪I∪P ∪V . SG is the set of those endpoints
of the arcs in DG. The target contact map CM(SG,DG) is fully specified. The
following results can be shown for CM(SG,DG):

Lemma 34. (i) An arc a ∈ E crosses no more than 9n3 arcs.
(ii) An arc a ∈ F crosses no more than 17n4 arcs.
(iii) An arc a ∈ I crosses no more than 9n3 arcs.
(iv) |DG −H| < |H|.

Proof. Since |A|+ |C|+ |E|+ |F | ≤ 2n+1/2(n2−n)+1/2(n3−n)+(n2 +n) ≤ 4n3,
the only possible arcs an arc a ∈ E can cross are from A,C,E, F , and Zu for some
u with 1 ≤ u ≤ n.

With the exception of A,C,E, F , an arc a ∈ F can cross some arcs in P , I, and
T . Hence, |P |+ |I| < 4n3 and |T | = 9n4. The arc a ∈ I crosses those arcs from P, I,
and one Vu for some u with 1 ≤ u ≤ n. It is easy to verify that |DG−H| < |H|.

145



8.6.3 Pattern Construction

Large Crossing Clusters

Like for the target, first, 2`+ 2 crossing clusters are constructed, which are H ′, Z ′u
(1 ≤ u ≤ `), T ′, and V ′u (1 ≤ u ≤ `). H ′ is a 28n4-arc crossing cluster. Here, Z ′u
is a 5n3-arc crossing cluster, T ′ is a 9n4-arc crossing cluster, and V ′u (1 ≤ u ≤ `) is
a 5n3-arc crossing cluster. Denote Z ′ =

⋃`
u=1 Z

′
u and V ′ =

⋃`
i=1 V

′
u. Furthermore,

these large clusters are ordered by,

H ′ < Z ′1 < . . . < Z ′` < T ′ < V ′1 < . . . < V ′` .

Arcs from H ′ to Z ′1

A 2-arc crossing cluster from H ′ to Z ′1 exists, and is denoted A′. The two arcs are
denoted as A′1 and A′2, A′1 G A′2. Furthermore, A′ is from H ′ to Z ′1.

H ′ G A′, A′ G Z ′1 (8.37)

Arcs from Z ′u to Z ′u+1

There are two types of arcs from Z ′u to Z ′u+1: E ′u and C ′u. C
′
u is a single arc. E ′u

contains u 3-arc crossing clusters, E ′u,w, 1 ≤ w ≤ u. For each cluster, E ′u,w, its
three arcs are E ′u,w,1, E ′u,w,2 and E ′u,w,3 with E ′u,w,1 G E ′u,w,2, E ′u,w,1 G E ′u,w,3, and
E ′u,w,2 G E ′u,w,3

E ′u,∗,∗ and C ′u are ensured to be from Z ′u and to Z ′u+1; that is,

Z ′u G E ′u,∗,∗, E ′u,∗,∗ G Z ′u+1, 1 ≤ u ≤ `− 1 (8.38)

Z ′u G C ′u, C ′u G Z ′u+1, 1 ≤ u ≤ `− 1 (8.39)

Furthermore, the following orders are defined.

A′1 < E ′1,∗,∗, A
′
2 G E ′1,∗,∗ (8.40)

E ′u,w1,∗ G E ′u,w2,∗, 1 ≤ w1 < w2 ≤ u ≤ `− 1 (8.41)

E ′u,w,1 < E ′u+1,w,∗, E
′
u,w,2 G E ′u+1,w,∗, 1 ≤ w ≤ u < `− 1 (8.42)

E ′u,∗,∗ G C ′u, 1 ≤ u ≤ `− 1 (8.43)

C ′u−1 < E ′u,u,∗ 2 ≤ u ≤ `− 1 (8.44)

E ′1,∗,∗ (a 3-arc crossing cluster) is anchored by A′1 and A′2 (Equation 8.40). Equation
8.41 ensures that arcs in Eu,∗,∗ form a crossing cluster. Furthermore, Equation 8.42
ensures that the 3-arc crossing cluster E ′u+1,w,∗, is anchored by E ′u,w,1 and E ′u,w,2.
Equation 8.43 ensures that the crossing cluster, E ′u,∗,∗, crosses arc C ′u. Together
with the requirement in Equation 8.38 and Equation 8.44, the arc set, E ′u,u,∗, is
anchored by C ′u−1 and Z ′u.

C ′ = C ′∗ and E ′ = E ′∗,∗,∗ are introduced for notation simplicity.

146



Arcs from Z ′` to T ′

The arcs from Z ′` to T ′ are called F ′. F ′ has ` crossing clusters, where each contains
two arcs. The crossing clusters are signified as F ′w (1 ≤ w ≤ `) and the two arcs in
F ′w are represented as F ′w,1 and F ′w,2, F ′w,1 G F ′w,2. Furthermore, the following orders
are placed.

V ′` G F ′∗,∗, F
′
∗,∗ G T ′ (8.45)

E ′`−1,w,1 < F ′w,∗, E
′
`−1,w,2 G F ′w,∗, 1 ≤ w ≤ `− 1 (8.46)

C ′`−1 < F ′` (8.47)

F ′w1,∗ G F ′w2,∗, 1 ≤ w1 < w2 ≤ ` (8.48)

Equation 8.45 ensures that F ′∗,∗ is from V ′` to T ′. F ′w,∗ is anchored by E ′`−1,w,1

and E ′`−1,w,2 by Equation 8.46; F ′` is anchored by C ′`−1 and V ′` by Equation 8.47.
Furthermore, arcs in F ′∗,∗ form a crossing cluster according to Equation 8.48.

Arcs from T ′ to V ′1 and from V ′u to V ′u+1

There are two kinds of arcs: I ′u, (0 ≤ u < `), and P ′u. I
′
u (0 ≤ u < `− 1) is a 3-arc

crossing cluster: I ′u,1, I ′u,2, and I ′u,3, where I ′u,1 G I ′u,2, I ′u,1 G I ′u,3 and I ′u,2 G I ′u,3. P ′u
contains (`−u−1) (0 ≤ u ≤ n−2) 2-arc crossing clusters. Each cluster is identified
as P ′u,w (u+ 1 < w ≤ `). The two arcs of P ′u,w are P ′u,w,1 and P ′u,w,2, P ′u,w,1 G P ′u,w,2.

First, to enforce that I ′0 and P ′0,∗,∗ are crossed by T ′, Iu and Pu,∗,∗ are crossed by
V ′u (1 ≤ u ≤ `− 1), and I ′u and P ′u,∗,∗ crosses V ′u+1, the following orders are defined.

T ′ G I ′0, T
′ G P ′0,∗,∗ (8.49)

V ′u G I ′u, 1 ≤ u < ` (8.50)

V ′u G P ′u,∗,∗, 1 ≤ u < `− 1 (8.51)

I ′u,∗ G V ′u+1, 0 ≤ u < ` (8.52)

P ′u,∗,∗ G V ′u+1, 0 ≤ u < `− 1 (8.53)

Furthermore, the arcs in I ′u and P ′u,∗ form a crossing cluster; that is,

I ′u G P ′u,∗, 0 ≤ u < `− 1 (8.54)

P ′u,w1
G P ′u,w2

, 0 ≤ u, u+ 1 < w1 < w2 ≤ ` (8.55)

In addition, the following orders are introduced.

F ′1,1 < I ′0, F
′
1,2 G I ′0 (8.56)

F ′w,1 < P ′0,w, F
′
w,2 G P ′0,w, 2 ≤ w ≤ ` (8.57)

P ′u,u+2,1 < I ′u+1, P
′
u,u+2,2 G I ′u+1, 1 ≤ u < `− 1 (8.58)

P ′u,w,1 < P ′u+1,w,∗, P
′
u,w,2 G< P ′u+1,w,∗, 1 ≤ u, u+ 2 < w ≤ ` (8.59)

147



Equation 8.56 ensures that I ′0 is anchored by F ′1,1 and F ′1,2; Equation 8.57 ensures
that P ′0,w is anchored by F ′w,1 and F ′w,2. I ′u+1 is anchored by P ′u,u+2,1 and P ′u,u+2,2;
P ′u+1,w,∗ is anchored by P ′u,w,1 and P ′u,w,2.

P ′ and I ′ are defined as P ′ = P ′∗,∗,∗ and I ′ = I ′∗, for notation simplicity.

D′n,` = H ′∪A′∪C ′∪Z ′∪E ′∪F ′∪I ′∪P ′∪V ′ and S ′n,` are the endpoints of those
arcs in D′n,`. It is not difficult to verify the following result by the constructions.

Lemma 35. CM(Sn,`,Dn,`) is a {<, G}-structured contact map, and CM(SG,DG)
is a {<,<, G}-structured contact map.

8.6.4 Correctness

According to the construction, the following results hold.

Lemma 36. If CM(Sn,`,Dn,`) occurs in CM(SG,DG), then ∀M, M(H ′) = H
and M(A′) = Au1,∗ for some u1, with 1 ≤ u1 ≤ n.

Proof. H ′ is a 28n4-arc crossing cluster, and the number of arcs AG−H is less than
28n4. Thus for a mappingM, there exists h1 ∈ H ′ such thatM(h1) ∈ H. The arc
set M(h1) crosses and is crossed by H ∪ A. Thus, M(H ′) ⊂ (H ∪ A).

In contrast, there are 28n4 arcs crossing A′. Similarly, it is argued that there
exists h2 ∈ H ′ such that M(h2) ∈ H, and h2 crosses A′. M(A′) ⊂ (H ∪ A) since
M(h2) crosses M(A′). Now, it is known that M(H ′ ∪ A′) ⊂ (H ∪ A).

Since Au < Av, for 1 ≤ u < v ≤ n, Au and Av cannot occur simultaneously in a
CCM. Thus, to form a 28n4 + 2-arc crossing cluster, all the arcs in H and one pair
of arcs in A, say Au1,∗ for some u1 (1 ≤ u1 ≤ n), are to be chosen. Therefore, the
statement holds.

Lemma 37. If CM(Sn,`,Dn,`) occurs in CM(SG,DG), then ∀M, M(E ′1,1,∗) =
Eu1,u2,u1,∗, and M(C ′1) = Cu1,u2 for some u1, u2 with 1 ≤ u1 < u2 ≤ n.

Proof. From Lemma 36, if CM(Sn,`,An,`) occurs in CM(SG,AG), then M(A′) =
Au1 for some u1. It is specified that A′1 < E ′1,1,∗ and A′2 G E ′1,1,∗. M(E ′1,1,∗) ⊂
Eu1,∗,u1,∗ ∪ Fu1,u1,∗ since Eu1,∗,u1,∗ ∪ Fu1,u1,∗ contains all the arcs which are greater
than Au1,1 and are crossed by Au1,2. Since Eu1,v1,u1,∗ < Eu1,v2,u1,∗, for v1 < v2,
and Eu1,∗,u1,∗ < Fu1,u1,∗, it follows that M(E ′1,1,∗) = Eu1,u2,u1,∗ for some u2, or
M(E ′1,1,∗) = Fu1,u1,∗. However, Fu1,u1,∗ contains only two arcs, thus, M(E ′1,1,∗) =
Eu1,u2,u1,∗ for some u2.

E ′1,1,∗ is crossed by a Z ′1 which is a 5n3-arc crossing cluster. Therefore, there
exists z1 ∈M(Z ′1) withM(z1) ∈ Zu1 , since Eu1,u2,u1 is crossed by fewer than 2×5n3

arcs. Also, E ′1,1,∗ crosses Z ′2, and Z ′2 is a 5n3 arc-crossing cluster. By a similar
argument, there exists z2 ∈ M(Z ′2) with M(z2) ∈ Zu2 . In CM(VG, AG), the only
arc that satisfies the following three conditions is Cu1,u2 : (1) is greater than Au1,2;
(2) is crossed by M(z1), and (3) is crossing M(z2). Thus, M(C ′1) = Cu1,u2 .

148



Lemma 38. If CM(Sn,`,Dn,`) occurs in CM(SG,DG) andM(E ′1,1,∗) = Eu1,u2,u1,∗,
then M(E ′2,v,∗) = Eu2,u3,uv ,∗ and M(C ′v) = Cuv ,uv+1 (v = 1, 2) for some u3 with
u2 < u3 ≤ n.

Proof. For E ′2,1,∗. E
′
1,1,1 < E ′2,1,∗, and E ′1,1,2 G E ′2,1,∗. Also, Eu2,v1,u1,∗ < Eu2,v2,u1,∗ for

u2 < v1 < v2 ≤ n, and Fu2,1,∗ contains only two arcs. Consequently, M(E ′2,1,∗) =
Eu2,u3,u1,∗ for some u3.

Now it is necessary to prove that M(E ′2,2,∗) = Eu2,u3,u2,∗. E ′1,1,∗ crosses Z ′2,
and Z ′2 is a 5n3-arc crossing cluster. Thus, ∃z2 ∈ Z ′2 with M(z2) ∈ Z2. By a
similar argument for the arc set, E ′2,1,∗, ∃z3 ∈ Z ′3 withM(z3) ∈ Z3. By Lemma 37,
M(C ′1) = Cu1,u2 . In CM(SG,AG), there are four crossing arcs which are greater
than Cu1,u2 , are crossed byM(z2), and are crossingM(z3). These arcs are {Cu2,u3}∪
Eu2,u2,u3,∗. In CM(Sn,`,An,`), there are four crossing arcs which are greater than
C ′1, are crossed by z2, and are crossing z3. These arcs are {C ′2} ∪E ′2,2,∗. Therefore,
M(C ′2) = Cu2,u3 and M(E ′2,2,∗) = Eu2,u3,u2,∗.

Lemma 39. If CM(Sn,`,Dn,`) occurs in CM(SG,DG),M(E ′k,v1,∗) = Euk,uk+1,uv1 ,∗,
andM(C ′v1) = Cuv1 ,uv1+1, (v1 = 1, . . . , k) for u1 < . . . < uk+1 ≤ n, thenM(E ′k+1,v2,∗) =
Euk+1,uk+2,uv2 ,∗, and M(C ′v2) = Cuv2 ,uv2+1 (v2 = 1, . . . , k + 1) for some uk+2 with
uk+1 < uk+2 ≤ n.

Lemma 39 can be illustrated by using arguments similar to those in Lemma 37
and 38.

Lemma 40. If CM(Sn,`,Dn,`) occurs in CM(SG,DG), then ∀M, M(E ′`−1,v,∗) =
Eu`−1,u`,uv ,∗ and M(C ′`−1) = Cu`−1,u`, with v = 1, . . . , `− 1 and for some u1, . . . , u`,
1 ≤ u1 < . . . < u` ≤ n.

Lemma 40 can be shown by induction, using Lemma 36-39.

Lemma 41. If CM(Sn,`,Dn,`) occurs in CM(SG,DG), and if M(E ′`−1,v,∗) =
Eu`−1,u`,uv ,∗, and M(C ′`−1) = Cu`−1,u` for u1, ..., u`, with 1 ≤ u1 < . . . < u` ≤ n,
then M(F ′v,∗) = Fu`,uv ,∗ (1 ≤ v ≤ `).

Proof. Since the arc set F ′1,∗ is greater than E ′`−1,1,1 and is crossed by E ′`−1,1,2,
M(F ′1) ⊂ (Fu`,u1,∗ ∪ Eu`,∗u1,∗) (if Eu`,∗u1,∗ is not defined, treat it as an empty set).
As F ′1 crosses no fewer than 9n4 arcs in CM(Sn,`,An,`) and Eu`−1,u1,w crosses fewer
than 9n4 arcs, then the only possible choice is M(F ′1) = F ′u`,u1

. The argument is
similar to that for F ′v,i with 2 ≤ v < `. F ′` is greater than C ′`−1, and crosses a
9n4-arc crossing cluster, so that the only choice is M(F ′`) = Fu`,u` .

Lemma 42. If CM(Sn,`,Dn,`) occurs in CM(SG,DG), then ∀M,M(I ′0,∗) = I0,u1,∗,
and M(P ′0,v,∗) = P0,u1,uv ,∗,(2 ≤ v ≤ `) for some u1, ..., u` with 1 ≤ u1 < . . . < u` ≤
n.

149



Proof. By Lemma 41, given a mappingM,M(F ′v) = Fu`,uv , for some u1, ..., u` with
1 ≤ u1 < . . . < u` ≤ n. The arc set I ′0,∗ is greater than F ′1,1 and it is crossed by F ′1,2.
Therefore, M(I ′0,∗) ∈ (I0,u1,∗ ∪ P0,∗,u1,∗), where I ′0,∗ is a 3-arc crossing cluster. The
only 3-arc crossing cluster in I0,u1,∗∪P0,∗,u1,∗ is I0,u1,∗. Thereafter,M(I ′0,∗) = I0,u1,∗.

For the arc set P ′0,2,∗, F
′
2,1 < P ′0,2,∗ and F ′2,2 G P ′0,2,∗. To satisfy these relations

after applying the mapping M, M(P ′0,2,∗) ∈ (I0,u2,∗ ∪ P0,∗,u2,∗). In contrast, I ′0
crosses V ′1 , which is a crossing arc cluster with 5n3 arcs. I0,u1 crosses fewer than
2 × 5n3 arcs, and there exists z1 ∈ V ′1 with M(v1) ∈ Vu1 . Then, M(P ′0,2) must
crossM(v1), the only possible pair of arcs in (I0,u2 ∪ P0,u2) which crossesM(v1) is
P0,u1,u2 . The same can be shown for 3 ≤ v ≤ `.

Similarly, the following can be shown.

Lemma 43. If CM(Sn,`,Dn,`) occurs in CM(SG,DG), then ∀M, M(I ′w,∗) =
Iuw,uw+1,∗, and M(P ′w,v,∗) = Puw,uw+1,uv ,∗( 1 ≤ w < `, 1 ≤ w + 1 < v ≤ `) for some
u1, ..., u` with 1 ≤ u1 < . . . < u` ≤ n.

By the construction of CM(SG,DG), the following holds.

Lemma 44. If CM(Sn,`,Dn,`) occurs in CM(SG,DG), G has a size ` clique.

Proof. By Lemma 43, if CM(Sn,`,An,`) occurs in CM(SG,AG),M(I ′w,∗) = Iuw,uw+1,∗
and M(P ′w,v,∗) = Puw,uw+1,uv ,∗ (1 ≤ w ≤ `, 1 ≤ w + 1 < v ≤ `) for some u1, ..., u`
with 1 ≤ u1 < . . . < u` ≤ n.

By the construction of CM(SG,AG), Puw,uw+1,uv ∈ AG, Puw,uw+1,uv is not empty
iff (uw, uv) ∈ EG, and Iuw,uw+1 is not empty iff (uw, uw+1) ∈ EG. Therefore, u1, . . . , u`
forms a size ` clique and the statement holds.

Finally, the following theorem can be shown:

Theorem 45. CM(V`,n, D`,n) occurs in CM(VG, DG) if and only if G contains a
clique with size `, and hence, the CCMPM problem is NP-hard.

Proof. The only if direction has already been shown. For the if direction, sup-
pose there is a clique u1, . . . u`, a mappingM can be constructed straightforwardly
between CM(Sn,`,An,`) and a subset of arcs in CM(SG,AG). The reduction is
polynomial, and thus, the statement holds.

Actually, a stronger result is implied. That is, the problem is NP-hard, even
for the case where the target is a {<,<, G}-structured contact map (in general, the
arcs in target can share endpoints).

This also settles another problem, namely, the CMO problem with {<, G}-
structured patterns, where a maximized common CCM between two given contact
maps is to be found. The complexity of this problem has been open [66].

Theorem 46. The CMO problem is NP-hard.

150



Proof. Given a CCMPM problem instance: CM(Sp,Dp) and CM(S,D), find the
maximized common CCM CM(S ′p,D′p) between CM(Sp,Dp) and CM(S,D), and
then verify whether CM(S ′p,D′p) is identical to CM(Sp,Dp).

Clearly this reduction is polynomial. Thus, the theorem holds.

8.7 Counterexample

In this section, a counterexample is given for the algorithm in [66,67]. The example
is displayed in Figure 8.14. The arcs are labeled with letters instead of numbers
for ease of illustration. The pattern is a CCM with 24 arcs. The target contains
42 arcs, and is {<,<, G}-structured. The arcs are labeled in a way, for mapping an
arc of a pattern to an arc of the target which is labeled with the same letter in a
different case.

Figure 8.14: Example demonstrating the flaw of the algorithm: (a) A {G, <}-structured CM as
the pattern, and (b) the target CM.

It can be verified that the pattern does not occur in the target, but the algorithm
in [66,67] produces a “yes” answer.

8.8 Conclusion and discussion

This section offers some remarks on the results on the LCP problem under bottleneck
distance and CMO problem under the distance constraint.

The PTASs for both problems have high runtime complexities, rendering them im-
practical. However, it is possible to reduce the runtime complexity further. First, a large
part of the runtime complexity of the current method is due to an O(m2n2) term, from
the exhaustive search for an appropriate rotation axis. Since two similar structures can
share quite a number of well-aligned local structural fragments, it is conceivable that

151



these fragments be used to anchor the rotation axis, and this can reduce the time needed
to find the rotation axis. The random sampling and other techniques, as mentioned in
Chapter 7, can also be adopted to reduce this time complexity to O(n2 log3m), but with
some compromise in the solution’s accuracy.

152



Chapter 9

Conclusion and Future Work

In this thesis, protein structure prediction is explored in various steps: structural frag-
ments, sampling structures, side chain packing, decoy selection, structural comparison,
and structural alignment. The problems can be divided into two categories: computa-
tional based and informatics based.

Some problems are solved from the computational aspect. A PTAS was presented for
clustering structural fragments. It is proven that the side chain packing problem remains
NP-complete, even if each residue contains, at most, three rotamer candidates. Effective
speed-up techniques for clustering very large decoy sets are proposed and tested success-
fully on cases of 105 decoys. Also, a distance approximation algorithm is proposed to find
nearly optimal GDT scores. Based on the method, a new approach to the structural align-
ment problem is developed. Lastly, three open questions from the area of structural align-
ment are answered, confirming that the three problems from the area are NP-complete.

Five programs for problems from the informatics aspect are developed. A program,
called FRazor, is created to predict the structural candidates for the sequence fragments.
A program, called FALCON, is developed to sample the structures candidate for an en-
tire sequence. The HEXAGON program utilizes neighborhood information to predict the
side chain conformations. In addition, a hypothesis is proposed to explain why cluster-
ing approaches work for selecting decoys from ab initio structure prediction methods,
and this results in a program named ONION. FALCON and ONION together allows the
structures to be refined.

Typically, there are two main components in the protein structure prediction problem:
the energy function and search method. From the studies on the ONION program, the
FALCON-ONION approach is promising as a search strategy. Consequently, the future
focus should be on the design of energy function. However, it is unlikely that a univer-
sal energy function exists for all structures. Using existing structures as a skeleton is a
solution; that is, threading can be considered an initial step of this approach. In most of
the present threading methods, the backbone is assumed to be rigid and adopts existing
structures, which hinders the search for exploring new structures. To use the existing
structures as a soft (rather than rigid) skeleton might be a better solution.

The most successful methods for protein structures prediction assume a hidden Markov
model or an identically independent distribution model explicitly or implicitly. A direct

153



extension of this is to employ long range contact information. However, to factor such
considerations into the problem involves very high time complexities. Furthermore, one
concern is that the current training data may not be sufficient for such an extension.
Generally speaking, there are two technicalities involved: one on the kinds of information
to add, and the other on how to combine the new information. We are of the belief that
long range information is very important, and the present problem is to have a systematic
way to adopt them. Perhaps a better question to ask is: to what extent can meaningful
information be derived from the current database of structures? Our conjecture is that
the skeleton information and long range contact information can reveal most of the results
that can be achieved for the task of protein structure predictions, based on the database
at this moment.

There are quite a number of computational problems in the field of protein struc-
tures. Some of these problems are well formulated, and are well-known open questions.
This thesis offers answers to several such problems in various degrees of satisfaction. In
some cases, the solutions are only partial, or are heuristic, for example, our solution for
structural comparison. As a result, it would certainly be beneficial if these solutions can
be re-examined, and extended upon.

Another problem where further work is needed is with regard to the speed perfor-
mance of the FALCON-ONION program. This is due to the current implementation by
the Monte-Carlo search, as well as the redundancy in the movements. A torsional angle
dynamic approach might work better to improve the method, since it can couple the pre-
diction methods and structure determination methods more tightly. However, to derive
the formulas would be non-trivial.

Although a number of problems are solved in this thesis, it also raises more questions.
Further research is being carried out, even as this thesis is being completed, and more
results can be expected from these efforts in the near future.

154



Bibliography

[1] 8th community wide experiment on the critical assessment of techniques for protein
structure prediction. http://www.predictioncenter.org/casp8/.

[2] I-TASSER protein structure decoys. http://zhang.bioinformatics.ku.edu/I-
TASSER/decoys/.

[3] M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables . New York: Dover , 1972.

[4] A. De Brevern and C. Benros and R. Gautier and H. Valadi and S. Hazout and
C. Etchebest. Local backbone structure prediction of proteins. In Silico Biol.,
4(3):381–386, 2004.

[5] P. K. Agarwal, J. Matoušek, and S. Suri. Farthest neighbors, maximum spanning
trees and related problems in higher dimensions. Comput. Geom. Theory Appl.,
1(4):189–201, 1992.

[6] T. Akutsu. Protein structure alignment using dynamic programming and iterative
improvement. IEICE Trans. Information and Systems, E79-D(12):1629–1636,
1996.

[7] T. Akutsu. Np-hardness results for protein side-chain packing. Genome Information
Series, 8:180–186, 1997.

[8] T. Akutsu and H. Tashimo. Protein structure comparison using representation by
line segment sequences. In Pac Symp Biocomput, pages 25–40, 1996.

[9] N. N. Alexandrov. SARFing the PDB. Protein Eng., 9(9):727–732, 1996.

[10] H. Alt, K. Mehlhorn, H. Wagener, and E. Welzl. Congruence, similarity, and
symmetries of geometric objects. In SCG ’87: Proceedings of the third annual
symposium on Computational geometry, pages 308–315, New York, NY, (USA),
1987. ACM Press.

[11] S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and
D. J. Lipman. Gapped BLAST and PSI-BLAST: a new generation of protein
database search programs. Nucl. Acids Res., 25(17):3389–3402, 1997.

[12] C. Ambühl, S. Chakraborty, and B. Gärtner. Computing largest common point sets
under approximate congruence. In ESA ’00: Proceedings of the 8th Annual Euro-
pean Symposium on Algorithms, pages 52–63, London, UK, 2000. Springer-Verlag.

155



[13] K. S. Arun, T. S. Huang, and S. D. Blostein. Least-squares fitting of two 3-d point
sets. IEEE Trans. Pattern Anal. Mach. Intell., 9(5):698–700, 1987.

[14] K. C. D. Bahadur, T. Akutsu, E. Tomita, and T. Seki. Protein side-chain
packing problem: a maximum edge-weight clique algorithmic approach. In APBC
’04: Proceedings of the second conference on Asia-Pacific bioinformatics, pages
191–200, Darlinghurst, Australia, 2004. Australian Computer Society, Inc.

[15] D. Baker. A surprising simplicity to protein folding. Nature, 405:39–42, 2000.

[16] L.E. Baum, T. Petrie, G. Soules, and N. Weiss. A maximization technique
occurring in the statistical analysis of probabilistic functions of markov chains.
The Annals of Mathematical Statistics, 41(1):164–171, 1970.

[17] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig,
I. N. Shindyalov, and P. E. Bourne. The protein data bank. Nucl. Acids Res.,
28(1):235–242, 2000.

[18] C. M. Bishop. Pattern Recognition and Machine Learning (Information Science
and Statistics). Springer, August 2006.

[19] G. Blin, G. Fertin, and S. Vialette. New results for the 2-interval problem. In Proc.
Fifteenth Annual Combinatorial Pattern Matching Symposium (CPM 2004), vol-
ume 3109 of Lecture Notes in Computer Science, pages 311–322. Springer-Verlag,
2004.

[20] John Adrian Bondy. Graph Theory with Applications. Elsevier Science Ltd, 1976.

[21] R. Bonneau, J. Tsai, I. Ruczinski, D. Chivian, C. Rohl, C. E. Strauss, and
D. Baker. Rosetta in casp4: progress in ab initio protein structure prediction.
Proteins, Suppl 5:119–126, 2001.

[22] S. Boris. A revised proof of the metric properties of optimally superimposed vector
sets. Acta Crystallographica Section A, 58(5):506, 2002.

[23] J. U. Bowie and D. Eisenberg. An evolutionary approach to folding small α-helical
proteins that uses sequence information and an empirical guiding fitness function.
Proceedings of the Academy of Sciences, (USA), 91(10):4436–4440, 1994.

[24] P. Bradley, D. Chivian, J. Meiler, K. M. S. Misura, C. A. Rohl, W. R. Schief, W. J.
Wedemeyer, O. Schueler-Furman, P. Murphy, J. Schonbrun, C. E. M. Strauss, and
D. Baker. Rosetta predictions in CASP5: Successes, failures, and prospects for
complete automation. Proteins: Struct. Funct. Genet., 53(S6):457–468, 2003.

[25] B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and
M. Karplus. CHARMM: a program for macromolecular energy minimization and
dynamics calculations. J. Comput. Chem., 41(4):187–217, 1983.

[26] C. Bystroff and D. Baker. Prediction of local structure in proteins using a library
of sequence-structure motifs. Journal of Molecular Biology, 281(3):565–577, 1998.

[27] C. Bystroff, K.T. Simons, K.F. Han, and D. Baker. Local sequence-structure
correlations in proteins. Current Opinion in Biotechnology, 7(4):417–21, 1996.

156



[28] C. Bystroff, V. Thorsson, and D. Baker. HMMSTR: a hidden markov model for local
sequence-structure correlations in proteins. J. of Mol. Biol., 301(1):173–190, 2000.

[29] A.C. Camproux, P. Tuffery, J.P. Chevrolat, J.F. Boisvieux, and S. Hazout. Hidden
Markov model approach for identifying the modular framework of the protein
backbone. Protein Eng., 12(12):1063–1073, 1999.

[30] A. A. Canutescu, A. A. Shelenkov, and R. L. Dunbrack. A graph-theory algorithm
for rapid protein side-chain prediction. Protein Science, 12(9):2001–2014, 2003.

[31] A. Caprara and G. Lancia. Structural alignment of large-size proteins via lagrangian
relaxation. In RECOMB ’02: Proceedings of the sixth annual international confer-
ence on Computational biology, pages 100–108, New York, NY, (USA), 2002. ACM.

[32] A. Cavalli, X. Salvatella, C. M.Dobson, and M. Vendruscolo. Protein structure
determination from nmr chemical shift. Proceedings of the National Academy of
Sciences, 104:9615–9620, 2007.

[33] S. Chakraborty and S. Biswas. Approximation algorithms for 3-d commom sub-
structure identification in drug and protein molecules. In WADS, pages 253–264,
1999.

[34] B. Chazelle, C. Kingsford, and M. Singh. A Semidefinite Programming Approach
to Side Chain Positioning with New Rounding Strategies. INFORMS JOURNAL
ON COMPUTING, 16(4):380–392, 2004.

[35] E. Chen, L. Yang, and H. Yuan. Improved algorithms for largest cardinality
2-interval pattern problem. Journal of Combinatorial Optimization, 13:263–275,
April 2007.

[36] Y. Chen, S. Ora, and W. Yair. Minimizing and learning energy functions for
side-chain prediction. Journal of Computational Biology, 15(7):899–911, 2008.

[37] D. Chivian, D. E. Kim, L. Malmstrom, J. Schonbrun, C. A. Rohl, and D. Baker.
Rosetta predictions in CASP5: Successes, failures, and prospects for complete
automation. Proteins: Struct. Funct. Genet, 61(S7):157–166, 2005.

[38] V. Choi and N. Goyal. A combinatorial shape matching algorithm for rigid protein
docking. In CPM, pages 285–296, 2004.

[39] V. Choi and N. Goyal. An efficient approximation algorithm for point pattern
matching under noise. In LATIN 2006: Theoretical Informatics, 7th Latin
American Symposium, Valdivia, Chile, March 20-24, 2006, Proceedings., volume
3887 of Lecture Notes in Computer Science, pages 298–310. Springer-Verlag, 2006.

[40] M. Claessens, E. van Cutsem, I. Lasters, and S. Wodak. Modelling the polypep-
tide backbone with ‘spare parts’ from known protein structures. Protein Eng.,
2(5):335–345, 1989.

[41] C. Colovos and T. O. Yeates. Verification of protein structures: patterns of
nonbonded atomic interactions. Protein Science, 2:1511–1519, 1993.

157



[42] A. Colubri, A. K. Jha, M. Y. Shen, A. Sali, R. S. Berry, T. R. Sosnick, and K. F.
Freed. Minimalist representations and the importance of nearest neighbor effects
in protein folding simulations. Journal of Molecular Biology, 363(4):835–857,
November 2006.

[43] M. Comin, C. Guerra, and G. Zanotti. Proust: a comparison method of
three-dimensional structure of proteins using indexing techniques. Journal of
Computational Biology, 11:1061–1072, 2004.

[44] G. Cornilescu, F. Delaglio, and A. Bax. Protein backbone angle restraints from
searching a database for chemical shift and sequence homology. Journal of
Biomolecular NMR, 13:289–302, 1999.

[45] M. De Maeyer, J. Desmet, and I. Lasters. The dead-end elimination theo-
rem: mathematical aspects, implementation, optimizations, evaluation, and
performance. Methods in Molecular Biology (Clifton, N.J.), 143:265–304, 2000.

[46] E. D. Demaine, S. Langerman, and J. O’Rourke. Geometric restrictions on
producible polygonal protein chains. Algorithmica, 44(2):167–181, 2006.

[47] J. Desmet, M. D. Maeyer, B. Hazes, and I. Lasters. The dead-end elimination
theorem and its use in protein side-chain positioning. Nature, 356(6369):539–542,
April 1992.

[48] J. Desmet, M. De Maeyer, and I. Lasters. Theoretical and algorithmical optimiza-
tion of the dead-end elimination theorem. In Pacific Symposium in Biocomputing,
pages 122–133. World Scientific, 1997.

[49] K.A. Dill. Theory for the folding and stability of globular proteins. Biochemistry,
24(6):1501–9, December 1985.

[50] R. L. Dunbrack and F. E. Cohen. Bayesian statistical analysis of protein side-chain
rotamer preferences. Protein Science, 6(8):1661–1681, August 1997.

[51] R. L. Dunbrack and M. Karplus. Backbone-dependent rotamer library for proteins
application to side-chain prediction. Journal of Molecular Biology, 230(2):543 –
574, 1993.

[52] R. L. Dunbrack and M. Karplus. Conformational analysis of the backbone-
dependent rotamer preferences of protein sidechains. Nature Structural Biology,
1(5):334–340, May 1994.

[53] M. E. Dyer and A. M. Frieze. Planar 3dm is np-complete. J. of Algorithms,
7(2):174–184, 1986.

[54] B. Efron. The convex hull of a random set of points. Biometrika, 52(3-4):331–343,
1965.

[55] O. Eriksson, Y. Zhou, and A. Elofsson. Side chain-positioning as an integer
programming problem. In WABI ’01: Proceedings of the First International
Workshop on Algorithms in Bioinformatics, pages 128–141, London, UK, 2001.
Springer-Verlag.

158



[56] K. Fidelis, P. S. Stern, D. Bacon, and J. Moult. Comparison of systematic search
and database methods for constructing segments of protein structure. Protein
Eng., 7(8):953–960, 1994.

[57] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman & Company, 1979.

[58] J.K. Gerard. Recognition of spatial motifs in protein structures. Journal of
Molecular Biology, 285(4):1887–1897, 1999.

[59] M. Gerstein and M. Levitt. Using iterative dynamic programming to obtain
accurate pairwise and multiple alignments of protein structures. In Proceedings of
the Fourth International Conference on Intelligent Systems for Molecular Biology,
pages 59–67. AAAI Press, 1996.

[60] J. F. Gibrat, T. Madej, and S. H. Bryant. Surprising similarities in structure
comparison. Current Opinion in Structural Biology, 6(3):377–385, 1996.

[61] Deborah Goldman, Christos H. Papadimitriou, and Sorin Istrail. Algorithmic
aspects of protein structure similarity. In FOCS ’99: Proceedings of the 40th
Annual Symposium on Foundations of Computer Science, page 512, Washington,
DC, (USA), 1999. IEEE Computer Society.

[62] R. F. Goldstein. Efficient rotamer elimination applied to protein side-chains and
related spin glasses. Biophysical Journal, 66(5):1335 – 1340, 1994.

[63] H. Gong, P.J. Fleming, and G.D. Rose. Building native protein conformation from
highly approximate backbone torsion angles. Proceedings of the National Academy
of Sciences, 102(45):16227–16232, 2005.

[64] H. P. Gong, Y. Shen, and G. D. Rose. Building native protein conformation
from nmr backbone chemical shifts using monte carlo fragment assembly. Protein
Science, 16:1515–1521, 2007.

[65] D. B. Gordon and S. L. Mayo. Branch-and-terminate: a combinatorial optimization
algorithm for protein design. Structure, 7(9):1089 – 1098, 1999.

[66] J. Gramm. A polynomial-time algorithm for the matching of crossing contact-map
patterns. In WABI, pages 38–49, 2004.

[67] J. Gramm. A polynomial-time algorithm for the matching of crossing contact-map
patterns. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 1(4):171–180, 2004.

[68] J. Skolnick H. Lu. A distance-dependent atomic knowledge-based potential for
improved protein structure selection. Proteins, 44:223–232, 2001.

[69] T. Hamelryck, J.T. Kent, and K. Anders. Sampling realistic protein conformations
using local structural bias. PLoS Computational Biology, 2(9):e131, 2006.

[70] T. Hamelryck, J.T. Kent, and A. Krogh. Sampling realistic protein conformations
using local structural bias. PLoS Comput Biol, 2(9), 2006.

159



[71] K.F. Han, C. Bystroff, and D. Baker. Three-dimensional structures and con-
texts associated with recurrent amino acid sequence patterns. Protein Science,
6(7):1587–1590, 1997.

[72] M. Hao, S. Rackovsky, A. Liwo, M.R. Pincus, and H.A. Scheraga. Effects of
compact volume and chain stiffness on the conformations of native proteins.
Proceedings of the Academy of Sciences, (USA), 89:6614–6618, 1992.

[73] N. Haspel, C. Tsai, H. Wolfson, and R. Nussinov. Reducing the computational
complexity of protein folding via fragment folding and assembly. Protein Science,
12(6):1177–1187, 2003.

[74] S. Henikoff and J. G. Henikoff. Amino acid substitution matrices from protein
blocks. Proceedings of the Academy of Sciences, (USA), 89(22):10915–10919, 1992.

[75] L. Holm and C. Sander. Database algorithm for generating protein backbone and
side-chain co-ordinates from a c[alpha] trace : Application to model building and de-
tection of co-ordinate errors. Journal of Molecular Biology, 218(1):183 – 194, 1991.

[76] L. Holm and C. Sander. Evaluation of protein models by atomic solvation
preference. Journal of Molecular Biology, 225:93–105, 1992.

[77] L. Holm and C. Sander. Protein structure comparison by alignment of distance
matrices. Journal of Molecular Biology, 233(1):123–138, September 1993.

[78] J. B. Holmes and J. Tsai. Some fundamental aspects of building protein structures
from fragment libraries. Protein Science, 13(6):1636–1650, 2004.

[79] R. W. W. Hooft, G. Vriend, C. Sander, and E. E. Abola. Errors in protein
structures. Nature, 381:272, 1996.

[80] J. E. Hopcroft and R. M. Karp. An n5/2 algorithm for maximum matchings in
bipartite graphs. SIAM Journal on Computing, 2(4):225–231, 1973.

[81] J. Hwang and W. Liao. Side-chain prediction by neural networks and simulated
annealing optimization. Protein Eng., 8(4):363–370, 1995.

[82] Y. Inbar, H. Benyamini, R. Nussinov, and H. J. Wolfson. Protein structure
prediction via combinatorial assembly of sub-structural units. Bioinformatics,
19(S1):158–168, 2003.

[83] J. Janin, S. Wodak, M. Levitt, and B. Maigret. The conformation of amino acid
side-chains in proteins. Journal of Molecular Biology, 125(3):357–386, 1978.

[84] M. S. Johnson, N. Srinivasan, R. Sowdhamini, and T. L. Blundell. Knowledge-
based protein modeling. Critical Reviews in Biochemistry and Molecular Biology,
29(1):1–68, 1994.

[85] D. T. Jones. Protein secondary structure prediction based on position-specific
scoring matrices. Journal of Molecular Biology, 292(2):195–202, September 1999.

[86] T. A. Jones and S. Thirup. Using known substructures in protein model building
and crystallography. EMBO Journal, 5:819–823, 1986.

160



[87] R. L. Dunbrack Jr. Rotamer libraries in the 21st century. Current Opinion in
Structural Biology, 12(4):431–440, August 2002.

[88] W. Kabsch and C. Sander. Dictionary of protein secondary structure: pat-
tern recognition of hydrogen-bonded and geometrical features. Biopolymers,
22(12):2577–2637, December 1983.

[89] D. A. Keller, M. Shibata, E. Marcus, R. L. Ornstein, and R. Rein. Finding the
global minimum: a fuzzy end elimination implementation. Protein Engineering,
8(9):893–904, 1995.

[90] D. Kim, D. Xu, J. Guo, K. Ellrott, and Y. Xu. PROSPECT II: protein structure
prediction program for genome-scale applications. Protein Eng., 16(9):641–650,
2003.

[91] C. L. Kingsford, B. Chazelle, and M. Singh. Solving and analyzing side-chain
positioning problems using linear and integer programming. Bioinformatics,
21(7):1028–1039, 2005.

[92] D. E. Knuth and A. Raghunathan. The problem of compatible representatives.
SIAM J. Discret. Math., 5(3):422–427, 1992.

[93] R. Kolodny, P. Koehl, L. Guibas, and M. Levitt. Small libraries of protein
fragments model native protein structures accurately. Journal of Molecular
Biology, 323:297–307, 2002.

[94] R. Kolodny and N. Linial. Approximate protein structural alignment in polynomial
time. Proceedings of the Academy of Sciences, (USA), 101:12201 – 12206, 2004.

[95] G. Lancia, R. Carr, B. Walenz, and S. Istrail. 101 optimal pdb structure
alignments: a branch-and-cut algorithm for the maximum contact map overlap
problem. In RECOMB ’01: Proceedings of the fifth annual international conference
on Computational biology, pages 193–202, New York, NY, (USA), 2001. ACM.

[96] G. Lancia and S. Istrail. Protein structure comparison: Algorithms and applica-
tions. In Mathematical Methods for Protein Structure Analysis and Design, pages
1–33, 2003.

[97] R. A. Laskowski, M. W. Macarthur, D. S. Moss, and J. M. Thornton. PROCHECK:
a program to check the steroechemical quality of protein structures . Journal of
Applied Crystallography., 26:283–291, 1993.

[98] I. Lasters, M. De Maeyer, and J. Desmet. Enhanced dead-end elimination in the
search for the global minimum energy conformation of a collection of protein side
chains. Protein Eng., 8(8):815–822, 1995.

[99] I. Lasters and J. Desmet. The fuzzy-end elimination theorem: correctly imple-
menting the side chain placement algorithm based on the dead-end elimination
theorem. Protein Eng., 6(7):717–722, 1993.

[100] C. Lee and S. Subbiah. Prediction of protein side-chain conformation by packing
optimization. Journal of Molecular Biology, 217(2):373 – 388, 1991.

161



[101] J. Lee, S. Kim, and J. Lee. Protein structure prediction based on fragment assem-
bly and parameter optimization, Biophysical Chemistry. Biophysical Chemistry,
115(2-3):209–214, 2005.

[102] C. Lemmen and T. Lengauer. Computational methods for the structural alignment
of molecules. Journal of Computer Aided Molecular Design, 14(3):215–232, March
2000.

[103] C. Levinthal. Are there pathways for protein folding? Extrait du Journal de
Chimie Physique, 65(1), 1968.

[104] M. Levitt. Accurate modeling of protein conformation by automatic segment
matching. Journal of Molecular Biology, 226(2):507–533, 1992.

[105] H. Li, K. Zhang, and T. Jiang. The regularized em algorithm. In AAAI, pages
807–812, 2005.

[106] H. Li and Y. Zhou. Scud: Fast structure clustering of decoys using reference state
to remove overall rotation. Journal of Computational Chemistry, 26(11):1189–92,
2005.

[107] M. Li and P. Vitanyi. An introduction to Kolmogorov complexity and its
applications. Springer, 1997.

[108] S. C. Li, J. Xu, X. Gao, D. Bu, and M. Li. Designing Succinct Structural
Alphabets. ISMB’08, 2008.

[109] S. Liang and N. V. Grishin. Side chain modeling with an optimized scoring
function. Protein Science, 11(2):322 – 331, February 2002.

[110] D. Lichtenstein. Planar formulae and their uses. SIAM Journal on Computing,
11(2):329–343, 1982.

[111] L. L. Looger and H. W. Hellinga. Generalized dead-end elimination algorithms
make large-scale protein side-chain structure prediction tractable: implications
for protein design and structural genomics. Journal of Molecular Biology,
307(1):429–445, March 2001.

[112] S. C. Lovell, J. M. Word, J. S. Richardson, and D. C. Richardson. The penultimate
rotamer library. Proteins, 40(3):389–408, August 2000.

[113] R. Luthy, J. U. Bowie, and D. Eisenberg. Assessment of protein models with
three-dimensional profiles. Nature, 356(6364):83–85, 1992.

[114] S. C. Lovell M. A. DePristo, P. I. de Bakker and T. L. Blundell. Ab initio con-
struction of polypeptide fragments: efficient generation of accurate, representative
ensembles. Proteins, 51(1):41–55, April 2003.

[115] M. D. Maeyer, J. Desmet, and I. Lasters. All in one: a highly detailed rotamer
library improves both accuracy and speed in the modelling of sidechains by
dead-end elimination. Folding and Design, 2(1):53 – 66, 1997.

162



[116] K.V. Mardia, C.C. Taylor, and G.K. Subramaniam. Protein bioinformatics
and mixtures of bivariate von Mises distributions for angular data. Biometrics,
63(2):505–512, June 2007.

[117] B. J. McConkey, V. Sobolev, and M. Edelman. Discrimination of native pro-
tein structures using atom-atom contact scoring. Proc Natl Acad Sci (USA),
100:3215–3220, 2003.

[118] M. J. McGregor, S. A. Islam, and M. J. E. Sternberg. Analysis of the relationship
between side-chain conformation and secondary structure in globular proteins.
Journal of Molecular Biology, 198(2):295 – 310, 1987.

[119] J. Mendes, A. M. Baptista, M. A. Carrondo, and C. M. Soares. Improved modeling
of side-chains in proteins with rotamer-based methods: A flexible rotamer model.
Proteins: Structure, Function, and Genetics, 37(4):530–543, 1999.

[120] J. Moult, K. Fidelis, B. Rost, T. Hubbard, and A. Tramontano. Critical assessment
of methods of protein structure prediction (casp):round 6. Proteins: Struct. Funct.
Genet., 61:3–7, 2005.

[121] W. Mulzer and G. Rote. Minimum-weight triangulation is np-hard. J. ACM,
55(2):1–29, 2008.

[122] L. Pauling and R. B. Corey. The pleated sheet, a new layer configuration of polypep-
tide chains. Proceedings of the Academy of Sciences, (USA), 37(5):251–256, 1951.

[123] J. Peng and J. Xu. Boosting protein threading accuracy. Proceedings of RECOMB
2009, 2009.

[124] N. A. Pierce, J. A. Spriet, J. Desmet, and S. L. Mayo. Conformational splitting:
A more powerful criterion for dead-end elimination. Journal of Computational
Chemistry, 21(11):999–1009, 2000.

[125] N. A. Pierce and E. Winfree. Protein Design is NP-hard. Protein Eng.,
15(10):779–782, 2002.

[126] J. W. Ponder and F. M. Richards. Tertiary templates for proteins : Use of packing
criteria in the enumeration of allowed sequences for different structural classes.
Journal of Molecular Biology, 193(4):775 – 791, 1987.

[127] J. Qian, S. C. Li, D. Bu, M. Li, and J. Xu. Finding compact structural mo-
tifs. In Combinatorial Pattern Matching, 18th Annual Symposium, CPM 2007,
Proceedings, volume 4580, pages 142–149. Springer, 2007.

[128] G.N. Ramachandran and V. Sasisekharan. Conformation of polypeptides and
proteins. Advances in Protein Chemistry, 23:283–438, 1968.

[129] C. A. Rohl, C. E. Strauss, K. M. Misura, and D. Baker. Protein structure
prediction using Rosetta. Methods Enzymol, 383:66–93, 2004.

[130] A. Roitberg and R. Elber. Modeling side chains in peptides and proteins:
Application of the locally enhanced sampling and the simulated annealing methods
to find minimum energy conformations. The Journal of Chemical Physics,
95(12):9277–9287, 1991.

163



[131] M.J. Rooman, J. Rodriguez, and S.J. Wodak. Automatic definition of recurrent
local structure motifs in proteins. Journal of Molecular Biology, 213(2):327–336,
1990.

[132] R. Samudrala and J. Moult. An all-atom distance-dependent conditional probabil-
ity discriminatory function for protein structure prediction. Journal of Molecular
Biology, 275:895–916, 1998.

[133] Y. Shen and A. Bax. Protein backbone chemical shifts predicted from searching a
database for torsion angle and sequence homology. Journal of Biomolecular NMR,
38(4):289–302, 2007.

[134] Y. Shen, O. Lange, F. Delaglio, P. Rossi, G. Liu J. M. Aramini, A. Eletsky, B. Wu,
K. K. Singarapu, A. Lemak, A. Ignatchenko, C. Arrowsmith, T. Szyperski, G. T.
Montelione, D. Baker, and A. Bax. Consistent blind protein structure generation
from nmr chemical shift data. Proceedings of the National Academy of Sciences,
105:4685–4690, 2008.

[135] D. Shortle. Composites of local structure propensities: Evidence for local encoding
of long-range structure. Protein Science, 11(1):18–26, 2002.

[136] D. Shortle, K. T. Simons, and D. Baker. Clustering of low-energy conforma-
tions near the native structures of small proteins. Proc Natl Acad Sci (USA),
95:11158–11162, 1998.

[137] N. Siew, A. Elofsson, L. Rychlewski, and D. Fischer. Maxsub: an automated
measure for the assessment of protein structure prediction quality. Bioinformatics,
16(9):776–785, 2000.

[138] I. Simon, L. Glasser, and H. A. Scheraga. Calculation of protein conformation as an
assembly of stable overlapping segments: application to Bovine pancreatic trypsin
inhibitor. Proceedings of the Academy of Sciences, (USA), 88(9):3661–3665, 1991.

[139] K. T. Simons, R. Bonneau, I. Ruczinski, and D. Baker. Ab initio protein structure
prediction of casp iii targets using rosetta. Proteins, Suppl 3:171–176, 1999.

[140] K. T. Simons, C. Kooperberg, E. Huang, and D. Baker. Assembly of protein
tertiary structures from fragments with similar local sequences using simu-
lated annealing and bayesian scoring functions. Journal of Molecular Biology,
268(1):209–25, Apr 1997.

[141] K.T. Simons, C. Kooperberg, E. Huang, and D. Baker. Assembly of Protein Tertiary
Structures from Fragments with Similar Local Sequences using Simulated Anneal-
ing and Bayesian Scoring Functions. Journal of Molecular Biology, 268, 1997.

[142] G. E. Sims and S. Kim. A method for evaluating the structural quality of protein
models by using higher-order varphi-psi pairs scoring. Proceedings of the National
Academy of Sciences, 103(12):4428–4432, 2006.

[143] G. E. Sims and S. H. Kim. A method for evaluating the structural quality of
protein models by using higher-order varphi-psi pairs scoring. Proceedings of the
National Academy of Sciences, 103(12):4428–4432, 2006.

164



[144] A. P. Singh and D. L. Brutlag. Hierarchical protein structure superposition using
both secondary structure and atomic representations. In Proceedings of the 5th
International Conference on Intelligent Systems for Molecular Biology, pages
284–293. AAAI Press, 1997.

[145] Harshinder Singh, Vladimir Hnizdo, and Eugene Demchuk. Probabilistic model
for two dependent circular variables. Biometrika, 89(3):719–723, 2002.

[146] M. J. Sippl. Recognition of errors in three-dimensional structures of proteins.
Proteins: Struct. Funct. Genetics, 17:355–362, 1993.

[147] A. G. Street and S. L. Mayo. Intrinsic beta-sheet propensities result from van
der waals interactions between side chains and the local backbone. Proceedings of
Nattional Academy of Science (USA), 96(16):9074–9076, August 1999.

[148] S. Subramaniam, D. K. Tcheng, and J. M. Fenton. A knowledge-based method
for protein structure refinement and prediction. Proceedings of International
Conference Intelligent Systems for Moleculur Biology, 4:218–229, 1996.

[149] A. V. Tendulkar, M. A. Sohoni, B. Ogunnaike, and P. P. Wangikar. A geometric
invariant-based framework for the analysis of protein conformational space.
Bioinformatics, Advance Access, August 2005.

[150] S. C. E. Tosatto. The victor/frst function for model quality esitmation. J.
Computational Biology, 12(10), 2005.

[151] P. Tuffery, C. Etchebest, S. Hazout, and R. Lavery. A new approach to the
rapid determination of protein side chain conformations. J Biomol Struct Dyn,
8(6):1267–1289, 1991.

[152] S. Umeyama. Least-squares estimation of transformation parameters between two
point patterns. IEEE Trans. Pattern Anal. Mach. Intell., 13(4):376–380, 1991.

[153] R. Unger, D. Harel, S. Wherland, and J. L. Sussman. A 3D building blocks
approach to analyzing and predicting structure of proteins. Proteins: Struct.
Funct. Genet., 5(4):355–373, 1989.

[154] M. Vásquez. An evaluvation of discrete and continuum search techniques for con-
formational analysis of side chains in proteins. SO: Biopolymers, 36(1):53–70, 1995.

[155] Stéphane Vialette. On the computational complexity of 2-interval pattern matching
problems. Theor. Comput. Sci., 312(2-3):223–249, 2004.

[156] C. A. Voigt, D. B. Gordon, and S. L. Mayo. Trading accuracy for speed: A
quantitative comparison of search algorithms in protein sequence design. Journal
of Molecular Biololgy, 299(3):789–803, June 2000.

[157] B. Wallner and A. Elofsson. Can correct protein models be identified? Protein
Science, 12(5):1073–1086, 2003.

[158] G. Wang and R. L. Dunbrack Jr. PISCES: a protein sequence culling server.
Bioinformatics, 19(12):1589–1591, 2003.

165



[159] K. Wang, B. Fain, M. Levitt, and R. Samudrala. Improved protein structure
selection using decoy-dependent discriminatory functions. BMC Structural Biology,
4(1):8, 2004.

[160] J. J. Wendoloski and F. R. Salemme. Probit: a statistical approach to modeling
proteins from partial coordinate data using substructure libraries. J. Mol. Graph.,
10(2):124–126, 1992.

[161] Wikipedia. Amino acid and peptite bond.
http://en.wikipedia.org/wiki/Amino acid.

[162] J. M. Word, S. C. Lovell, T. H. LaBean, H. C. Taylor, M. E. Zalis, B. K. Presley,
J. S. Richardson, and D. C. Richardson. Visualizing and quantifying molecular
goodness-of-fit: small-probe contact dots with explicit hydrogen atoms. Journal of
Molecular Biology, 285(4):1711 – 1733, 1999.

[163] J.Michael Word, Simon C. Lovell, Jane S. Richardson, and David C. Richardson.
Asparagine and glutamine: using hydrogen atom contacts in the choice of side-chain
amide orientation. Journal of Molecular Biology, 285(4):1735 – 1747, 1999.

[164] S. Wu, J. Skolnick, and Y. Zhang. Ab initio modeling of small proteins by iterative
tasser simulations. BMC Biology, 5(17), 2007.

[165] Z. Xiang and B. Honig. Extending the accuracy limits of prediction for side-chain
conformations. Journal of Molecular Biology, 311(2):421 – 430, 2001.

[166] J. Xu. Protein fold recognition by predicted alignment accuracy. ACM/IEEE
Transactions on Computational Biology and Bioinformatics, 2(2):157–165, 2005.

[167] J. Xu and B. Berger. Fast and accurate algorithms for protein side-chain packing.
Journal of ACM, 53(4):533–557, 2006.

[168] J. Xu, F. Jiao, and B. Berger. A parameterized algorithm for protein structure
alignment. Journal of Computational Biology, 14(5):564–577, 2007.

[169] J. Xu and M. Li. Assessment of RAPTORs linear programming approach in
CAFASP3. Proteins, 53(S6):579–584, 2003.

[170] A. Zemla. LGA: a method for finding 3D similarities in protein structures. Nucl.
Acids Res., 31(13):3370–3374, 2003.

[171] Y. Zhang. Template-based modeling and free modeling by I-TASSER in CASP7.
Proteins, Suppl 8:108–117, 2007.

[172] Y. Zhang. Progress and challenges in protein structure prediction. Current
Opinion in Structural Biology, 18(3):342–348, June 2008.

[173] Y. Zhang, A. Arakaki, and J. Skolnick. TASSER: An automated method for
the prediction of protein tertiary structures in CASP6. Proteins, 61(S7):91–98,
September 2005.

[174] Y. Zhang and J. Skolnick. Scoring function for automated assessment of protein
structure template quality. Proteins: Structure, Function, and Bioinformatics,
57(4):702–710, 2004.

166



[175] Y. Zhang and J. Skolnick. Spicker: Approach to clustering protein structures for
near-native model selection. Journal of Computational Chemistry, 25:865–871,
2004.

[176] F. Zhao, S. C. Li, B. W. Sterner, and J. Xu. CRFSampler: Discriminative learning
for protein conformation sampling. Proteins, 73(1):228–240, 2008.

[177] H. Zhou and Y. Zhou. SPARKS 2 and SP3 servers in CASP6. Proteins: Structure,
Function, and Bioinformatics, 61(S7):152–156, 2005.

[178] R Zwanzig, A Szabo, and B Bagchi. Levinthal’s Paradox. Proceedings of the
National Academy of Sciences, 89(1):20–22, 1992.

167


	List of Tables
	List of Figures
	Introduction
	Structural Fragment Libraries
	Computational Aspect: The Fragment Library Size
	Informatics Aspect: Peptide Subsequence Favors a Partial Subset of Substructures

	Sampling Structures from Building Blocks
	Side Chain Packing
	Informatics Aspect: Backbone Codes Sufficient Information for Side Chain Conformation
	Computational Aspect: The Problem Remains NP-hard for a Constant Number of Rotamers

	Reporting Final Decoys
	Computational Aspect: a Faster Clustering Method
	Informatics Aspect: Distance Function Favorites Native Structure

	Model Comparison
	Structure Alignment
	Structure Alignments under the Proximity Requirement
	Crossed Contact Map


	Preliminary Issues
	Amino Acids and Primary Sequences
	Shapes of Proteins
	Geometric Representations and Some Notations
	Secondary Structure
	Tertiary Structure
	Additional Remarks 

	Structural Fragment Libraries
	Fragment Libraries
	Contributions
	Independent Structural Fragment Libraries
	Problem Formulation
	Core Set of Structural Fragments
	Discretized Rotation Space
	Polynomial-time Algorithm with Ratio ((1+)Dopt+c)
	Polynomial-time 4-approximation Algorithm
	(1+) Polynomial-time Approximation Scheme

	Position Specific Fragment Libraries
	Problem Statement
	Generalized Linear Model
	Basis Functions Vi,j
	Results

	Discussion
	Theoretical Issues of Independent Fragment Library
	Is the Structural Fragment Space Continuous?
	Position Specific Structural Fragment Library


	Structure Sampling
	Backbone Structure Prediction
	A Principle of Parsimony-based Framework
	New Framework
	Methods
	Torsion Angle Pair Sequences
	Representing the Local Biases of Torsion Angle Pairs
	Fragment-HMM: Position Specific Hidden Markov Model
	Sampling Protein Structure Conformation
	Conformation Optimization
	Iteratively Improving the Fragment-HMM

	Results
	Data Set
	Torsion Angle Distributions
	Local Bias Representation: Fragment-HMM versus Structural Fragments
	FALCON: Zero in on the Native Structure

	Extending FALCON to Accept NMR Data
	Methods
	NMR Results

	Summary and Discussion

	Side Chain Packing
	Method
	Rotamer Database
	Hexagon Substructure
	Geometry Distance
	Sequence Comparison
	Identify Rotamers Candidates

	Results
	Effectiveness of features
	Rotamer selection
	Accuracy of Prediction

	Complexity Results
	Reduction

	Summary and Discussion

	Decoy Delection
	Decoy Selection Methods
	Faster Clustering
	Strategy 1: Auxiliary Grouping of Decoys
	Strategy 2: Lower and Upper Bounds of RMSD
	Strategy 3: Filtering Outlier Decoys
	Overall Program Design

	Evaluation of Calibur
	Effectiveness of Strategies
	Calibur's Performance on a Large Data Set
	Evaluation of Calibur's Output Decoys

	Rationale for the Ensemble-based Methods
	Hypothesis
	Verify the Hypothesis by Simulated Data
	Verifying the Hypothesis on Real Data

	New Measure for Selecting Good Decoys
	Decoy Selection
	Selecting Good Decoys
	Refine Decoys from ab initio Methods

	Summary and Discussion

	Model Comparison
	Methods
	Notations and Preliminaries
	Problem Statement
	Distance Approximation Algorithm for LWPS(A, B, d)
	Randomized Algorithm for Globular Protein Structures
	Approximating the Bottleneck Distance

	Results
	Two Concrete Examples by OptGDT
	Performance of OptGDT on CASP8 Data 
	More Accurate Score Computation

	Summary and Discussion

	Structural Alignment
	Introduction
	Problem Formulation
	Structural Alignment
	Contact Map Patterns
	Maximum Contact Map Pattern Problem
	Disjoint Contact Map Pattern Matching Problem

	Results for the LCP and CMO Problem
	Finding the Rigid Transformation
	Approximation Algorithm for LCP under Bottleneck Distance
	Results for the CMO Problem with Distance Constraints

	Clique Problem
	NP-hardness of CMP-DIS-{<,}
	Additional Notations
	Set of Endpoints
	Construction of the Arcs
	Correctness of the Construction

	NP-hardness of the Crossing Pattern Matching Problem
	Additional Notations and Definitions
	Target Contact Map Construction
	Pattern Construction
	Correctness

	Counterexample
	Conclusion and discussion

	Conclusion and Future Work
	Bibliography

