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Abstract 

In the Canadian universal healthcare system, public access to care is not limited 

by monetary or social economic factors.  Rather, waiting time is the dominant factor 

limiting public access to healthcare.  Excessive waiting lowers quality of life while 

waiting, and worsening of condition during the delay, which could lower the 

effectiveness of the planned operation.  Excessive waiting has also been shown to carry 

economic cost. 

At the core of the wait time problem is a resource scheduling and management 

issue.  The scheduling of medical procedures is a complex and difficult task.  The goal of 

research in this thesis is to develop the foundation models and algorithms for a resource 

optimization system.  Such a system will help healthcare administrators intelligently 

schedule procedures to optimize resource utilization, identify bottlenecks and reduce 

patient wait times. 

This thesis develops a novel framework, the MPSP model, to model medical 

procedures.  The MPSP model is designed to be general and versatile to model a variety 

of different procedures.  The specific procedure modeled in detail in this thesis is the 

haemodialysis procedure.  Solving the MPSP model exactly to obtain guaranteed optimal 

solutions is computationally expensive and not practical for real-time scheduling.  A fast, 

high quality evolutionary heuristic, gMASH, is developed to quickly solve large 

problems.  The MPSP model and the gMASH heuristic form a foundation for an 

intelligent medical procedures scheduling and optimization system. 
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Chapter 1: Introduction 

1.1 Motivation 

The challenge to any healthcare system is providing sufficient access to services 

to those that need care.  In the Canadian universal healthcare system, public access to 

care is not limited by monetary or social economic factors.  Rather, waiting time is the 

dominant factor limiting public access to healthcare.  Waiting for care is a fact of life.  

No country could provide enough resources to its healthcare system to promptly meet all 

demand.  Even countries with significant private healthcare funding experience wait time 

problems. [1] The wait time problem is especially common among countries with 

universal healthcare as discovered in a 2003 study by the Organization for Economic 

Cooperation and Development (OECD).  In the OECD study, Canada’s wait time 

problem was found to have worsened between 1998 and 2001. [2] 

Excessive waiting has obvious adverse impact on health of the waiting patient.  

Adverse impact can include lower quality of life while waiting, and worsening of 

condition during the delay, which could lower the effectiveness of the planned operation.  

The impact of excessive waiting was even examined in an unprecedented case before the 

Supreme Court of Canada of Dr. Jacques Chaoulli and George Zeliotis v. Attorney 

General of Quebec and Attorney General of Canada.  All justices agreed that lengthy 

waits for care put patients at increased risk of suffering and death and that this violated 

the first part of Section 7 of the Canadian Charter which grants everyone the right to life, 

liberty and security of the person. [3] The Supreme Court of Canada essentially granted 

Canadians constitutional right of timely access to health services. 

Aside from the obvious adverse impact on health, excessive waiting also carries 

significant economic cost.  In 2008 the Canadian Medical Association commissioned a 

study of economic impact of excessive waiting in four priority areas: joint replacement 

surgery, cataract surgery, CABG surgery, and MRI exam.  The study estimates that in 

2007, the cumulative economic cost of excessive waiting in these four areas amounted to 

$14.8 billion.  This reduction in economic activity consequently lowered federal and 
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provincial government revenues by $4.4 billion. [4] The authours of this study claim that 

even this astonishing cost estimate was only a conservative one.   

Canadian provincial governments have policies and regulations that discourage 

private healthcare, leaving the public system as the only choice for Canadians. [5] 

Systematic inefficiency, at least in the public eye, has become the status quo.  Canadians 

can only appeal to their government for healthcare improvement.  Provincial 

governments have initiatives in place to address the wait time problem.  In Ontario for 

example, the Wait Time Strategy (WTS) initiative is aiming to set targets and reduce wait 

times in five priority areas.  Since its launch in 2004, the WTS initiative has indeed 

lowered wait times in those five key areas. [6] Unfortunately, procedures outside of the 

WTS target areas continued to see increase in waiting time. [7] 

Despite best of government efforts, excessive waiting time remains a daunting 

challenge.  

At the core of the growing waiting time problem is a resource scheduling and 

management issue.  Universal accessibility generates high demand for healthcare.  The 

supply side of care appears to lack resources to promptly meet demand.  The Wait Time 

Alliance report cites dire shortage in health human resources and gaps in infrastructure as 

challenges to improving timely access to care. [6] 

There are two approaches to dealing with supply shortage: add more resources 

and/or make better use of existing resources.  Government initiatives thus far have 

focused mainly on increasing funding in certain areas.  There is surprisingly little 

academic work being done to objectively optimize utilization of existing resources.  This 

author believes that optimizing utilization of current resources holds the greatest promise 

in improving the efficiency of the Canadian healthcare system.  Healthcare administrators 

are no doubt keen to optimize their processes and will surely benefit from intelligent tools 

to help them achieve their goals. 

The daunting waiting time challenge of the Canadian healthcare system and the 

gap in research into solutions to help healthcare administrators solve the problem 

provides motivation for this thesis.  
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1.2 Problem definition 

The healthcare system in Canada does not appear to make optimal use of its 

resources.  Some equipment and facilities are stressed beyond capacity while other 

equipment and facilities are woefully under-utilized.  In the same hospital, a few floors 

away from crowded emergency rooms are empty operating theatres, empty surgery prep 

rooms, and idle imaging devices.    This disparity suggests the problem could in part be 

caused by a poorly designed system rather than absolute scarcity of resource.  The 

capacity may already exist to better serve patients.  However, critical resources are idled 

by bottlenecks.  An analogy can be made to the line up to get into a hockey game.  The 

arena has the capacity to accommodate all ticket holders.  Everyone will get in.  The 

delay is simply caused by a bottleneck at the door. [8] 

Scheduling of medical procedures is a difficult task.  Procedures often have 

complex resource requirements.  The high dimensionality of the problem makes manual 

optimization of schedules, let alone identification of bottlenecks extremely difficult.  The 

broad and ambitious goal of this research is to design an automated, intelligent 

scheduling system to help healthcare administrators optimize resource utilization.  The 

focus is on optimizing the supply side of healthcare.  An intelligent system should 

optimize the utility of existing resources as well as identify bottlenecks so that additional 

resources can be effectively allocated to relieve bottlenecks.  Optimization of resource 

utilization will reduce cost, improve patient flow, reduce patient wait time and therefore 

will directly improve quality of healthcare.  Healthcare administrators need sophisticated 

tools to help them optimize the system. 

The design of an intelligent optimization system is a daunting task that is far 

beyond the scope of a MASc thesis.  However, the complex task can be broken into 

smaller pieces.  The first step towards designing an intelligent resource optimization 

system is the solving of the core medical procedures scheduling problem.  The next 

section defines the specific scheduling problem to be solved in this thesis. 
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1.2.1 The Medical Procedures Scheduling Problem (MPSP) 

The goal of this thesis is to solve the following Medical Procedures Scheduling 

Problem (MPSP): 

Given a hypothetical hospital department or clinic that has m resources.  These 

resources can be human, equipment, supplies, room resources etc.  n procedures, 

with different requirements of the m resources are to be scheduled at the clinic. 

A) If all procedures have the same priority, how many of each procedure can be 

scheduled into one shift (or day, or any user defined scheduling period)? 

B) Solve problem A) but given procedures with different priorities. 

C) Solve problem A) or B) but given additional constraint that some procedures 

must be scheduled. 

D) What is the schedule that maximizes the number of procedures performed? 

E) What is the schedule that minimizes the total patient wait time? 

Procedures considered in this problem are assumed to be deterministic in nature 

with known and repeatable durations.  That is, the MPSP considered in this thesis is a 

static problem.  Solving of a dynamic MPSP is reserved for future work. 

The goal in solving the static MPSP is to find the best schedule that satisfies 

certain constraints and optimizes some objectives.  The user should be given the freedom 

to set different objectives such as maximizing number of procedures to perform in one 

shift and/or minimizing patient wait time.  Maximizing the number of procedures to 

perform represents optimization of resource utilization and improvement of patient flow.  

The patient wait time referred to in problem E) is the patient wait time on the day that 

he/she is scheduled for a procedure.  Minimizing patient wait time on the day of the 

procedure should help give patients the best experience possible. 

This MPSP provides the framework for developing the core scheduling 

infrastructure of an intelligent scheduling system. 
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1.3 Literature review 

1.3.1 Classical optimization 

Classical methods of optimization use differential calculus to find optimum points 

on continuous, differentiable functions. 

In a single-variable optimization problem, the task is to find the value of x=x* in 

an interval (a,b) that minimizes or maximizes a function f(x).  The minimum or maximum 

is the point at which the derivative f’(x*) = 0. [9] This optimum, be it local or global, can 

be found analytically or iteratively using Gradient Decent or Newton’s Method 

algorithms. 

Optimum points in Multi-variable optimization problems are found in a similar 

way.  Optimum points of a multi-variable function are the points where partial derivatives 

with respect to each variable all equal zero. [9] 

Addition of constraints to multi-variable optimization problems greatly increases 

difficulty of solving such problems.  For one thing, if the number of constraints exceeds 

the number of variables, the problem becomes overdefined and typically becomes 

unsolvable.  Else, the problem can be solved using methods of direct substitution, 

constrained variation, and Lagrange multipliers. [9] Solving such problems require 

complex analytical solutions that become very difficult to solve as the dimension of the 

problem space increases. 

The scheduling problem, as with many practical, real world problems, involves 

objective functions that may not be continuous and are often not differentiable.  The 

scheduling problem is also limited by complex constraints.  In addition, the number of 

variables in a practical healthcare scheduling problem is sure to be very large.  Therefore, 

the classical optimization approach, on its own is not suitable for solving the scheduling 

problem. 

1.3.2 Intelligent scheduling: flow-shop scheduling model 

Scheduling and optimization are classical problems in the field of operations 

research and artificial intelligence.  Researchers have tackled various scheduling 



6 

 

problems with great enthusiasm and fervor.  The literature is very extensive.  However, 

surprisingly little attention has been given to the specific problem of scheduling medical 

procedures, at least not at the depth of detail proposed in this thesis. 

First introduced in 1953 by Selmer Johnson in a paper entitled: “Optimal two and 

three stage production schedules with setup times included,” the job-shop or flow-shop 

problem has become by far the most popular scheduling problem for researchers. [10] In 

the five decades since Johnson’s seminal paper, the operations research community has 

examined various aspects of this problem in more than 1200 published papers.  The 

traditional flow-shop problem is defined as follows: 

 n jobs are to be processed on m machines.  All jobs must visit all machines in the 

same order.  Each machine can only process one job at any given time.  The 

processing time of job i on machine j is pij where i=1,2…n and j=1,2…m.  Find 

the order or schedule of jobs to be processed to minimize the time (makespan) to 

complete all jobs. [11] 

The problem and solutions can be visualized thus: 

 

Figure 1.1: Visualization of the flow-shop problem and solution 

The traditional flow-shop model is a very simplified and restrictive representation 

of practical situations.  Grupta et al. describes 21 assumptions for the flow-shop 

scheduling problem. [11] [12] Those assumptions are reproduced verbatim in Table 1-1. 

Job A
Time

Job B Machine 1

Job C Machine 2

Job D

Solution 1 makespan

Solution 2 makespan

D

C D

A

A

B

B

C

D

C D A

Solution 1:

A
Solution 2:

B

B C
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Table 1-1:  Traditional job-shop scheduling assumptions 

Assumptions concerning job 

J1 Each job is released to the shop at the beginning of the scheduling period. 

J2 Each job may have its own due date which is fixed and is not subject to change. 

J3 Each job is independent of each other. 

J4 Each job consists of specified operations, each of which is performed by only one machine. 

J5 Each job has a prescribed technological order which is the same for all jobs and is fixed. 

J6 Each job (operation) requires a known and finite processing time to be processed by 
various machines. This processing time includes transportation and setup times, if any, and 
is independent of preceding and succeeding jobs. 

J7 Each job is processed no more than once on any machine. 

J8 Each job may have to wait between machines and thus in-process inventory is allowed. 

Assumptions concerning machines 

M1 Each machine center consists of only one machine; that is, the shop has only one machine 
of each type. 

M2 Each machine is initially idle at the beginning of the scheduling period. 

M3 Each machine in the shop operates independently of other machines and thus is capable of 
operating at its own maximum output rate. 

M4 Each machine can process at most one job at a time. This eliminates those machines that 
are designed to process several jobs simultaneously like multi-spindle drill. 

M5 Each machine is continuously available for processing jobs throughout the scheduling 
period and there are no interruptions due to breakdowns, maintenance or other such causes. 

Assumptions concerning operating policies 

P1 Each job is processed as early as possible. Thus, there is no intentional job waiting or 
machine idle time. 

P2 Each job is considered an indivisible entity even though it may be composed of a number 
of individual units. 

P3 Each job, once accepted, is processed to completion; that is, no cancellation of jobs is 
permitted. 

P4 Each job (operation), once started on a machine, is completed to its completion before 
another job can start on that machine, that is, no preemptive priorities are assigned. 

P5 Each job is processed on no more than one machine at a time. (This is a result of 
assumptions J5 and P2.) 

P6 Each machine is provided with adequate waiting space for allowing jobs to wait before 
starting their processing. 

P7 Each machine is fully allocated to the jobs under consideration for the entire scheduling 
period; that is, machines are not used for any other purpose throughout the scheduling 
period. 

P8 Each machine processes jobs in the same sequence. That is, no passing or overtaking of 
jobs is permitted. 

These assumptions dictate that only the simplest problems could be explicitly 

modeled as a flow-shop scheduling problem.  At the very least, practical problems had to 

be heavily simplified to fit this model. 
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Over the years since the first introduction, variations on the traditional model 

have been created through relaxation or modification of some of the assumptions listed in 

Table 1-1. [13] – [19]  

Solving flow-shop scheduling models is challenging due to the dimensionality of 

the problem.  The general flow-shop model has (n!)m possible schedules.  Even modest 

values for n and m can create an intractable problem that is too large to explicitly 

enumerate through. 

Early research proposed using mathematical programming, specifically integer 

linear programming, to solve flow-shop scheduling problems. [20] – [26] Physical 

simulation and Monte Carlo simulation were also tried. [27] Unfortunately, the size of 

problems solvable at the time (early 1960s) was very small, limited by lack of 

computational power and lack of efficient solving algorithm. [11] Through computational 

complexity analysis, many well-known flow-shop problems and models were shown to 

belong to the NP-complete or NP-hard class of problems. [28] [29] [30] 

The difficulty of the flow-shop problem and computational power limitation lead 

to development of heuristic techniques for finding good, near-optimal solutions for large 

flow-shop problems that were otherwise unsolvable at that time.  Framinan et al. and 

Jungwattanakit et al. review some such heuristics including constructive heuristics, fast 

improvement heuristics, simulated annealing, tabu search, and genetic algorithm 

heuristics. [31] – [41] Heuristic techniques are great tools for quickly finding good 

solutions but can never guarantee optimality and are therefore approximation methods.  

There are general heuristic frameworks but effective heuristic algorithms are necessarily 

very problem specific.  That is, flow-shop scheduling heuristics are only good for solving 

flow-shop problems.  Despite fervent development of high quality heuristics for the flow-

shop problem, the allure of guaranteed solution optimality is always strong.  Recent 

advances in computing power and data storage capacity has reignited interest in exact, 

mathematical programming approaches. [11] [42] – [50]  

The traditional flow-shop scheduling problem was inspired by a production line 

optimization problem.  Therefore, one would expect that since its introduction half a 

century ago, the flow-shop model has been used to solve numerous practical production 
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problems.  Unfortunately, this is not the case.  Most of the research into flow-shop 

scheduling has been theoretical in nature.  In their review of fifty years of flow-shop 

scheduling research, Gupta et al. found that researchers were motivated by theoretical 

aspects of the problem.  The practical application of the flow-shop scheduling model is 

rare. [11] Reason for this lack of practical application is that many of the flow-shop 

models studied are too simple and do not accurately model real problems in industry. [11] 

[51] Majority of the flow-shop models research focus on the schedule makespan as the 

objective function. [11]  The medical procedures scheduling problem requires more 

sophisticated objective functions to model patient wait times and resource utilization.  

The simple flow-shop model on its own is not enough to model the medical procedures 

scheduling problem.  Nevertheless, the philosophy behind the flow-shop scheduling 

model provides a promising starting point for research in this thesis. 

1.3.3 Intelligent scheduling: project planning 

The planning of large, complex projects is a daunting but increasingly common 

challenge facing modern enterprises.  Project planning typically involves scheduling a set 

of required jobs/tasks onto a timeline to accomplish an end goal.  See Figure 1.2. 

 

 

Figure 1.2: Example project timeline 

Similar to flow-shop scheduling, the optimality criteria is usually project 

makespan.  The project makespan is indirectly represented by the starting time of the 

very last job or task.  The project planning problem, at its core is a variation on the flow-

shop scheduling problem.  The difference is in the setting up of constraints.  While 

purpose of flow-shop model constraints is to enforce non-interference of jobs, project 

planning constraints primarily model precedence requirements of project tasks.  That is, 
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constraints in project planning models are mainly of the nature: task x must be completed 

before task y can begin.  Project planning problems are modeled using a binary integer 

formulation:  

The project completion period is divided into w time intervals.  The decision 

variable xi,t takes on value of 1 if task i is scheduled to start in interval t.  xi,t equals 

0 otherwise.  Constraints enforce precedence by ensuring that some tasks can only 

be scheduled in intervals after completion of other tasks. 

The most basic project planning model does not consider resource requirement of 

tasks and schedules tasks based on their durations only.  Schedules are generated by 

setting tasks to begin at their earliest possible start time.  That is, tasks are set to begin as 

soon as all its precedence requirements are met.  Conveniently, schedules generated in 

this manner can easily be modeled as finite, acyclic directed graphs.  The states of the 

project are nodes on a graph and the tasks or activities make arcs in the same graph.  

Figure 1.3 shows the graph representation of the example project shown in Figure 1.2.  

Node 1 represents the start of the project and node 7 represents project completion.  The 

nodes in between nodes 1 and 7 represent milestones in the project timeline. 

 

Figure 1.3: Graph representation of the example project in Figure 1.2 

That graph/schedule can be analyzed using techniques within graph theory. [52] – 

[60] The power of graph theory can be harnessed to model uncertainty in duration of 

project tasks.  For example, the schedule function of a project can be represented as a 

polyhedron.  If tasks of a project have random completion times with known 

distributions, the probability distribution of the project makespan can be found by 

integrating over the contours of the polyhedron schedule function. [61] 
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Two other techniques: PERT and CPM also rely on graph representation of 

project planning models.  The Program Evaluation Risk Task (PERT) technique analyzes 

a schedule by first estimating the possible slack between each pair of linked tasks in a 

project based on uncertainty of completion time of each task.  The estimated slacks then 

contribute to the probability distribution of the overall project makespan. [62] [63] [64] 

Critical Path Method (CPM) is a technique that identifies bottlenecks within a given 

schedule.  In its first, forward pass CPM schedules tasks to begin as soon as all 

precedence of each task is met.   The project makespan can then be calculated.  Then, in a 

second, backward pass, CPM schedules tasks at their latest possible start time without 

affecting the project makespan.  The difference between the earliest and latest start times 

of each task is its float.  A path from start to project completion that passes through only 

tasks with zero float is the critical path.  Tasks along this critical path represent the 

bottlenecks of the project.  CPM is a popular project planning tool in industry due to its 

ease of use and simplicity. [65] [56] [66]  

The basic project planning model and the PERT and CPM methods to analyze 

that model are overly simplistic in considering only time aspect of schedules.  In reality, 

practical problems rarely have all resources available to allow tasks to begin at their 

earliest possible start time.  Thus a more realistic and practical problem is the Resource-

constrained Project Scheduling problem.  A review of project scheduling research reveal 

that resource constrained scheduling problems can be categorized into three classes: 

time/cost trade-off, resource leveling, and resource allocation. [67] [68] [69]  

Time/cost trade-off problems consider the time aspect as the most important 

measure of success.  The objective is to minimize the project makespan by adding 

resources to accelerate completion of tasks.  This essentially makes completion times of 

tasks variable as a function of resource cost.  There are potentially many different 

combinations of task durations that could result in the same project makespan.  However, 

each of those schedules may result in different total project cost.  The time/cost trade-off 

problem is then to determine the most cost effective schedule for any given project 

makespan.  Several techniques such as linear programming and network flow algorithm 

exist to solve this problem. [70] The time/cost trade-off model, applied to intelligent high 

level management of medical resources can potentially answer questions of the following 
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nature: “What is the most cost effective use of resources to achieve a given patient flow?”  

And “How much will additional resources cost to achieve a higher level of patient flow?” 

Resource leveling problems deal with situations where resource is abundantly 

available but one tries to maintain constant resource use or consumption.  The resource 

leveling problem is difficult because it is dynamic in nature.  That is, the problem 

changes during the solving process due to the tracking of resource usage level by decision 

variables.  Dynamic scheduling problems have high dimensionality.  However, 

techniques exist for reducing dimensionality of the problem: sub project programming; 

two-level sub project concept; and approximation in policy space. [71] Resource leveling 

is significant to medical procedures scheduling.  Many resources in healthcare are human 

resources such as doctors and nurses.  It is desirable to give human resources steady, 

smooth workloads to maximize fairness among the workforce and minimize 

unpredictability and uncertainty.  In addition, many non-human resources in healthcare 

carry very high idle costs; Empty operating theatres and idle MRI scanners are immediate 

examples.  It is therefore desirable to maximize operating time of such high idle cost 

resources. 

Resource-allocation problems deal with realistic situations where resource 

availability is limited.  The objective is to allocate the scarce resources optimally to tasks 

in order to minimize project makespan.  The basic project planning model is extended to 

the resource-allocation model through the addition of resource constraints.  In the integer 

programming formulation: each time interval in the project period is given resource 

availability values.  Constraints are then added to ensure that demand for resources does 

not exceed availability of those resources in each time interval. [67] The resource-

allocation problem is perhaps most applicable to healthcare scheduling.  As previously 

discussed, a major cause for excessive wait times in the Canadian healthcare system is 

the scarcity of resources due to poor system design and/or actual shortage.   

Similar to flow-shop scheduling problems, the resource-constrained project 

scheduling problem can be modeled and solved exactly using general mathematical 

programming.  Interestingly however, research into exact solving methods resulted in 

development of algorithms specific to the resource-constrained project scheduling 
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problem.  Confusingly, those algorithms are called branch and bound (BnB) algorithms, 

exactly the same name as the algorithm to solve linear programming models.  The LP 

BnB and project scheduling BnB share the same name but are very different both in 

execution and application.  The LP BnB algorithm for solving linear programming 

models will be described in detail in section 2.2.5.  The project scheduling BnB algorithm 

is highly specific to the project scheduling problem and is basically a mathematical 

formalization of the manual scheduling process.  Each node in the solution tree represents 

a partial schedule with a list of already scheduled activities and a list of candidate 

activities still waiting to be scheduled.  Branching from a node represents different ways 

that partial schedule can change depending on the order of candidate activities to 

schedule next.  The branches and the nodes of the solution tree are essentially paths that 

partial schedules can take to become the final schedule.  The task is then to find the path 

or ordering of activities that results in the optimum schedule.  The most popular objective 

value to optimize is the project makespan. [67] [68] One way to find the optimum 

schedule is to explicitly enumerate through all the possible orderings of activities.  That 

option is crude and computationally costly.  Research into project scheduling BnB 

algorithms have produced rules, branching strategies, bounding, pruning and 

backtracking techniques to explore the solution tree efficiently while retaining the ability 

to guarantee solution optimality. [68] [72] – [77] 

A number of heuristic approaches were also developed to address the 

computational limitations of the exact, branch and bound approaches.  Similar to the 

branch and bound method, heuristics model the problem as a network or graph with each 

node representing a partial schedule.  Unlike branch and bound however, heuristics do 

not enumerate through all the possible branches from each node.  Instead, at nodes, 

heuristics choose what activities to schedule next based on sets of priority rules.  These 

rules include the Minimum Job Slack (MINSLK), Resource Scheduling Method (RSM), 

Minimum Late Finish Time (LFT), Worst Case Slack (WCS), Greatest Resource Demand 

(GRD), Greatest Resource Utilization (GRU), Shortest Imminent Operation (SIO), Most 

Jobs Possible (MJP), Most Total Successors (MTS), Greatest Rank Positional Weight 

(GRPW) and even Select Jobs Randomly (RAN). [78] – [84] 
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More advanced, meta-search heuristics were also developed to tackle the resource 

constrained project scheduling problem.  Meta-heuristics operate on the activity list: the 

location or ordering of activities in a schedule.  Meta-heuristics employ techniques from 

AI such as simulated annealing, tabu search, genetic algorithm, and swarm intelligence 

to search through combinations of activity ordering for the best schedule. [68] [85] – [94] 

Reviews of numerous heuristic procedures have found that they are highly 

specific to each problem.  Effectiveness of each heuristic depends greatly on the setup, 

logic and nuances of its respective problem. [67] [68] 

Research into project planning/scheduling provides a promising framework for 

modeling the medical procedures scheduling problem.  However, even the more 

sophisticated resource-constrained project scheduling model is still too simple to directly 

model the complex workflow and resource requirements of medical procedures.  

Nevertheless, the philosophy underlying the project planning models will be useful in the 

development of a novel model for medical procedures. 

1.3.4 Scheduling in healthcare: booking systems 

One of very few existing practical application of AI to scheduling of medical 

procedures is the development of an intelligent operating room booking system by 

Ozkarahan. [95] Ozkarahan first recognized that scheduling of medical procedures 

consists of two distinct processes: advanced scheduling, and allocation scheduling.  

Advanced scheduling is the booking of patients or procedures to a future date.  Allocation 

scheduling is the sequencing of procedures and activities on the day assuming all booked 

patients and resources are in the hospital and ready.  The system proposed by Ozkarahan 

attempts to solve the allocation scheduling aspect of the problem: 

Given n procedures (surgeries), with known completion times, to be scheduled 

into m  operating rooms (ORs), find the schedule that minimizes the total time 

taken to complete all procedures (makespan). 

The challenge is to decide which procedures to schedule into which OR and in 

what order.  The above problem is very similar to the flow-shop scheduling problem.  
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The procedures are the jobs to be scheduled onto ORs which are machines.  The main 

difference is that jobs for the OR booking problem need only to be processed once. 

Ozkarahan models the OR booking problem as an integer programming model but 

does not solve it exactly as an integer programming model.  No exact solving methods 

were studied.  Instead, the only solving method offered is a heuristic one.  The heuristic 

solves the scheduling problem in two phases: loading and sequencing.  The loading phase 

attempts to assign as many procedures, as fairly as possible to each OR.  This is 

accomplished by first sorting the list of all procedures from longest processing time 

(LPT) to shortest processing time (SPT).  In that order, each procedure is then assigned to 

an OR with the most available time.  Once procedures have been assigned to ORs, the 

sequencing phase orders the procedures within each OR to optimize a secondary 

objective such as patient wait time.  Ozkarahan’s heuristic sequences procedures using 

the SPT rule.  That is, procedures with the shortest processing times are processed first.  

This heuristic was designed based on experience of manual schedulers.  Experience 

showed that loading longer procedures into rooms earlier usually resulted in fitting more 

procedures overall because shorter procedures can easily fit into capacity gaps left by 

longer procedures.  Once procedures are loaded into rooms, experience showed that 

processing shorter procedures earlier minimizes overall patient wait time.  Ozkarahan 

realizes that this heuristic cannot guarantee optimality but claims that it consistently 

delivers good schedules.  No quantitative analysis was done to back up this claim of 

heuristic performance.  Nevertheless, the underlying logic is reasonable. 

Ozkarahan’s OR booking problem thus far bears the greatest resemblance to the 

kind of scheduling problem that this thesis is planning to tackle.  However, the OR 

booking problem is simplistic in considering only completion times of procedures.  No 

consideration to resource requirements is made.  This thesis research is interested in 

modeling resource requirements in great detail to include doctors, nurses, 

anesthesiologists, equipment, beds, etc.  Nevertheless, this work by Ozkarahan presents 

valuable insights that will aid the development of a more sophisticated, novel scheduling 

model.  Specifically, Ozkarahan recognized the high level of uncertainty in medical 

procedures and the importance of capturing experience of manual schedulers.  The 

breaking up of the scheduling problem into distinct phases or processes is a good tactic 
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for managing problem scope.  Ozkarahan also points out potential for integration with 

knowledge based artificial intelligence tools to improve usability of scheduling systems. 

Another one of very few practical application of AI to healthcare scheduling is the 

development of a patient booking system by Patrick et al. [96] Patrick’s medical imaging 

patient booking system tackles the advance scheduling aspect of the scheduling problem.  

The challenge for Patrick et al. was effective prioritization of significantly variable 

demand for CT scans.  To deal with that uncertainty and variability, Patrick et al. uses a 

Markov Decision Process (MDP) model for their scheduling problem.  This patient 

booking system will not be examined in much further detail because the advance 

scheduling aspect is outside the scope of this thesis.  However, the examination of 

uncertainty and variability presented in this paper should aid in the development of a 

realistically practical scheduling system.  For example, Patrick et al. references aspects of 

Markov Decision Process theory that can transform MDP problems with their associated 

uncertainty, into linear programming problems. [96] [97] 

1.3.5 Scheduling in healthcare: nurse rostering 

All practical healthcare scheduling problems discussed thus far have been focused 

on optimizing the demand side of healthcare, i.e. scheduling of patients.  Indeed, most 

research into healthcare scheduling focus on the demand side.  This section will review 

what little research there is into optimization of the supply side of healthcare. 

To the best knowledge of this author, the nurse rostering problem is currently the 

only supply side optimization problem that is receiving any significant amount of 

attention.  The nurse rostering problem is the task of allocating nurses to periods of work.  

Nurse rostering is a very difficult problem as it must contend with a myriad of human 

resource constraints.  Hard constraints such as labour regulations, skill level, workload 

demand, etc. must be satisfied.  Soft constraints such as personal preference, seniority, 

vacation preference, etc. while desirable, may be violated to create a feasible schedule.  

The Nurse rostering problem, much like flow-shop scheduling and project scheduling is 

first modeled using mathematical programming.  The models typically start with the 

following binary decision variable: 
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A great number of constraints then model the aforementioned human resource 

restrictions.  Differences between the approaches are in the setting up of these constraints 

and methods to solve the problem.  The models can be solved exactly using linear 

programming, goal programming, and constraint programming.  The effectiveness of 

exact solvers is limited.  Large problems must be greatly simplified to be solvable in 

reasonable amount of time.  Realistic and accurate models can only solve very small 

sized problems. [98] – [105]  

Alternatively, the nurse rostering problem can be solved approximately using 

heuristics.  Some existing heuristics take an iterative trial and error, shuffling approach 

which emulates manual scheduling.  Some other heuristics are rule based.  More 

intelligent meta-heuristics using simulated annealing, tabu search, and genetic algorithms 

also exist. [98] [99] [106] – [114] 

The core objective of the nurse rostering problem is the minimization of wasted 

effort while ensuring adequate coverage/service.  However, typical problems are 

constrained so tightly by the aforementioned human resource constraints that most 

existing solutions are concerned first and foremost with satisfying all hard constraints.  In 

reality therefore, optimization is lucky to even be considered as a secondary objective.  

Reviews of state of the art in nurse rostering research reveal that current models have 

difficulty modeling and satisfying all constraints and therefore do not accurately reflect 

real world situations. [98] [99] Research effort is still directed at clever design of 

constraints to better represent real-world restriction.  Nevertheless, the nurse rostering 

problem is a resource management problem and the philosophy behind it will be useful in 

development of a novel formulation of the medical procedures scheduling problem. 

1.3.6 Summary of literature review findings 

The state of the art in scheduling healthcare currently focuses mostly on staff 

rostering.  Some intelligent procedures scheduling models exist but are simple rule-based 

algorithms that capture manual scheduling logic and are very problem specific. 
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The flow-shop scheduling and resource constrained project scheduling problems 

hold the most promise for modeling the medical procedures scheduling problem.  

However, both are too simplistic and neither can be applied directly to the medical 

procedures scheduling problem.  The philosophy behind them will aid development of a 

novel model for the medical procedures scheduling problem. 

Most existing scheduling models follow similar paths of development and face 

similar challenges.  Nearly all scheduling problems are first modeled using mathematical 

programming, usually as an integer problem.  Therefore, integer programming is the de 

facto formal formulation of scheduling problems.  The integer models are then solved 

either exactly using branch and bound or approximately using heuristics.  An exact solver 

can guarantee a global optimum solution.  However, the solving time rises rapidly with 

increasingly larger problem size.  The size of the problem solvable depends largely upon 

the efficiency and cleverness of the problem formulation.  Numerous heuristic techniques 

were developed to solve large, otherwise unsolvable problems.  General heuristic 

frameworks exist such as simulated annealing, genetic algorithm and tabu search.  

However, effective heuristic algorithms are highly problem specific. 

Mathematical programming is the only approach that can guarantee optimality of 

solutions and therefore should be deployed for problems where optimality is desired.  The 

computational cost of mathematical programming models is high.  However, recent 

advances in computational power and data storage capability keep mathematical 

programming models practical.  Exact solving algorithms are also necessary for setting 

benchmarks for evaluating heuristic performance. 

1.4 Expected thesis contributions 

This thesis will develop a novel mathematical programming formulation of the 

static medical procedures scheduling problem (MPSP).  The model will include greater 

level of workflow and resource requirement detail than existing flow-shop scheduling 

and project scheduling models.  The new model will represent general medical 

procedures and will be customizable to represent more specific procedures.  The specific 

procedure studied in this thesis is the haemodialysis procedure. 
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This thesis will then investigate solutions to the medical procedures scheduling 

model.  Both exact and approximate solution methods will be developed and studied. 

Research in this thesis will form the core models and algorithms for more 

sophisticated, realistic and practical scheduling systems.  It is the hope of this author to 

help bridge the gap between theoretical research and practical application of resource 

scheduling techniques. 

The focus of this thesis is on medical procedures.  However, the contributions of 

this thesis will be general enough that it can be applied to any scheduling problem of 

similar nature. 

1.5 Thesis organization 

The current section outlines the motivation for work, description of problem and 

literature review of state of the art in scheduling research.  Chapter 2 will describe the 

general medical procedure model as well as the more specific haemodialysis procedure 

model.  Chapter 2 will also provide the reader with some mathematical and software 

background.  Chapter 3 will develop, in detail the novel mathematical programming 

formulation of the medical procedures scheduling problem.  Chapter 3 will then discuss 

the use of an exact solver to obtain optimum solutions to the scheduling model.  Chapter 

4 will develop a novel evolutionary heuristic to quickly solve the scheduling model.  

Chapter 5 will conclude the thesis and discuss areas for further development. 
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Chapter 2: Background 

2.1 Medical procedures 

Medical procedures are complex operations that involve interactions between 

patients, medical personnel, infrastructure, and resources.  In order to optimize the 

scheduling of medical procedures, one must first design an accurate model of procedures.  

The ideal model should be general to represent a wide variety of different procedures yet 

customizable to model nuances of more specific procedures.  This section 2.1 discusses 

the modeling of medical procedures. 

2.1.1 Simple medical procedure model 

As discussed earlier in section 1, research into medical procedures scheduling 

have largely been focused on the advanced scheduling aspect of the problem.  That is, 

most existing and theoretical scheduling systems focus on booking procedures onto 

already scheduled resources.  Each procedure has resource requirements and a scheduler 

looks for free time slots where those required resources are available.  The availability of 

resources is pre-determined by shift schedules of nurses, availability of doctors, 

availability of equipment and rooms etc. A procedure is treated as the atomic scheduling 

unit.  That is, the finest level of detail is at the procedure level.  The only characteristics 

of procedures that are modeled are resource requirements and total duration. 

Following the scheduling problem framework described in section 1.2.1, consider 

a clinic that specializes in five different procedures (PA, PB … PE) that utilize different 

levels of the clinic’s seven resources (R1, R2, … R7).  The resources model both human 

and non-human resources such as nurses, doctors, anesthesiologists, machines, equipment 

and/or rooms.  Required resources are assumed to be fully occupied throughout the entire 

procedure duration.  Example procedures in the current simple model can be visualized in 

the following time diagrams: 
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Figure 2.1: Example time diagrams of procedures under current model 

In the above example, procedures PA, PB and PE fully occupy all seven resources, 

PC uses resources R2 through R7, and PD uses all resources except resource R5.  The 

weakness of this simple model is that it does not consider detailed resource utilization 

beyond the procedure level.  As a result, procedures are treated as ‘solid’ resource 

consumption blocks.  The only viable scheduling strategy is to schedule procedure end to 

end in a cascading manner.  That is, one procedure must be completed before another 

procedure can begin.  An example schedule under the simple model looks like the 

following: 

 

Figure 2.2: Example schedule under simple procedures model 
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The makespan of a cascading schedule is simply the sum of durations of 

procedures in the schedule.  The example schedule in Figure 2.2 involves one instance of 

procedure PA, one instance of PC, and two instances of PD.  The makespan is therefore 

50+80+35+35=200 min.  This simple model is similar to one used by Ozkarahan to 

develop a booking system for scheduling procedures into operating rooms. [95] This 

simple model is also the basis for the flow-shop scheduling problem. 

This simple model and cascading scheduling strategy is representative of manual 

scheduling commonly practiced by clinic managers.  A scheduling system based on this 

simple model does nothing more than automate the manual scheduling process.  The 

potential for optimization is low because the simple model does not offer opportunities to 

implement more sophisticated scheduling strategies.  

2.1.2 Improving the simple procedure model 

In reality, resources are not always fully occupied throughout the entire procedure 

duration.  For example, a typical surgery involves many resources: surgery prep nurses, 

prep room, anesthesiologist, surgeon, specialist, assistants, operating room etc.  All those 

resources are not needed throughout the duration of the entire surgery.  The surgeon, 

specialist and operating room resources are not needed until the patient is prepped.  Once 

a patient is prepped for surgery and enters the operating room, the prep nurse and prep 

room resources become available.  Considering prep nurse as resource R1, 

anesthesiologist as R2, specialist as R3, surgeon as R4, assistant nurse as R5, surgery 

prep room as R6, and operating room as R7, the workflow time diagrams of surgery 

procedures that utilize resources only when needed may look like the following: 

 

Figure 2.3: More detailed workflow time diagram of procedure PA 

Time: ---->
R1

R2

R3

R4

R5

R6

R7

PA:



23 

 

The example procedure shown in Figure 2.3 reflects the complex resource 

requirements of real world medical procedures.  Similar level of detail is added to the 

other four procedures of the clinic in Figure 2.4.  The development of the scheduling 

system will be based on these more detailed representations of medical procedures. 

 

Figure 2.4: More detailed workflow time diagrams of procedures PB through PE 

One immediately recognizes that resources that are not occupied throughout entire 

procedure could potentially become available to serve other procedures before the current 

procedure is complete.  That is, there is potential for overlapping of procedures.  

Revisiting the simple schedule in Figure 2.2, the higher level of detail now allows the 

scheduler to overlap procedures to reduce makespan of the schedule: 
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Figure 2.5: Overlap procedures to reduce schedule makespan 

The order of procedures is the same for both schedules in Figure 2.2 and Figure 

2.5.  However, overlapping of procedures allowed by the more detailed model reduced 

the schedule makespan to 165 minutes from 200 minutes under the simple model.  In 

addition to the reduction in makespan, some interesting observations can be made from 

the example schedule in Figure 2.5: A) the order of procedures in the schedule can have a 

large impact on procedure overlap and on makespan.  Procedures PD1 and PD2 are two 

instances of the same procedure (PD) that interact with procedure PA differently 

depending on their respective position in the schedule.  PD, if scheduled ahead of PA, 

overlaps significantly with PA.  If however, PD is scheduled behind PA, it can only overlap 

slightly with PA.  B) The more detailed model provides resource utilization information 

useful for optimization.  In the above example, resource R7 is occupied 85% of the total 

schedule makespan and is quite obviously the limiting resource.  In comparison, the next 

most used resource, R2 is occupied in only 42% of the total makespan.  It stands to 

reason that one can further reduce schedule makespan by making more of resource R7 

available. 

The additional detail in the improved model immediately provides a lot of useful 

information not found in the simple model.  The procedures interaction information and 

resource utilization information form foundations from which an intelligent scheduling 

system can be built.  Such a system will go beyond simple automation of manual 

scheduling and be able to intelligently schedule procedures to minimize makespan, 

minimize wait time, and optimize resource utilization. 

Before proceeding further, an important caveat must be noted.  In reality, many 

medical procedures such as surgeries have high degrees of uncertainty.  Overlapping of 

surgery procedures minimizes flexibility to handle uncertainty and is therefore risky.  The 

Time: ---->
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realistic applicability of the deterministic model presented in this section to surgeries is 

questionable.  However, the model provides a solid starting point for the research in this 

thesis.   Designing a deterministic scheduling system will be much easier than designing 

one based on a probabilistic model.  There are also plenty of medical procedures that are 

very predictable and behave deterministically.  For example, some therapy procedures 

such as haemodialysis and chemotherapy have prescribed treatment lengths.  Also, more 

routine procedures such as x-ray imaging performed by well trained and experienced 

personnel can have very predictable completion times.  The research in this thesis can be 

applied directly to deterministic procedures and procedures with low level of uncertainty.  

Some uncertainty can be modeled indirectly by adding expected deviation to procedure 

durations.  Modifying the deterministic model to handle procedures with more 

uncertainty is reserved for future work. 

The improved, more detailed model of medical procedures discussed in this 

section will from here on in be referred to as the procedures model.  The five example 

procedures presented in this section will continue to be used to illustrate the development 

of the scheduling model. 

2.1.3 Specific medical procedure: Haemodialysis 

The general procedures model presented in the previous section is easily 

customizable to fit specific procedures such as haemodialysis. 

Haemodialysis is a well established and tightly constrained medical procedure.  

The workflow for one patient and one nurse is outlined in Figure 2.6.  The corresponding 

activity descriptions are summarized in Table 2-1.  The haemodialysis workflow data is 

collected and compiled by Dr. Amgad Eskander.  The sources of data are workflow 

studies/summaries of haemodialysis units at three hospitals: Lourdes Hospital in N.Y. 

USA, Wollongong Hospital in Australia, and Leicester NHS Trust Hospital in the UK.  

Durations of activities given in Table 2-1 are mean duration values extracted by Dr. 

Eskander from workflow studies at the three aforementioned hospitals. [115] 
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Figure 2.6: Workflow of dialysis procedure for one patient 

Table 2-1: Dialysis workflow activities description 

Activity 
Duration 
(min) 

Description 

N1 0 Nurse is notified of patient arrival 

N2 3 Nurse prepares paperwork 

N3 25 
Nurse prepares patient for dialysis treatment: measure temperature and 
bp, perform re-dialysis assessment, insert needles, secure dialysis lines, 
and starts dialysis machine 

N4 2 – 45 
Nurse administers EPO, iron IV.  Nurse provides monitoring and 
assessment services if required 

N5 30 
Nurse removes needles and disconnects patient from dialysis machine.  
Nurse takes post-dialysis bp and weight measurements 

P1 10 Patient check in with receptionist.  Patient weighs him/her self 

P2 200 - 300 
Pre-dialysis preparation: temperature, bp measurements and re-dialysis 
assessment.  Clean access and secure dialysis lines (25 min). 
Dialysis treatment period varies between different patients. 

P3 35 
Post-dialysis activities: disconnect dialysis lines, remove needles, wait 
for haemostasis, measure bp, measure weight.  Patient is discharged 

M1 5 Dialysis machine being primed and disinfected 

M2 200 – 300 Dialysis machine is occupied by patient undergoing treatment 

T1 5 Technician primes and disinfects dialysis machine 

Activities must be performed in order and must not interfere with each other.  For 

example, activity N3 must occur after N2 and may only occur if N2 is complete.  

Activities P2 and N3 must occur at the same time.  Activities P3 and N5 must occur at 

the same time.  Activity N4 is flexible and can be performed anytime during the patient’s 

dialysis treatment. 

A patient undergoing dialysis treatment does not require constant attention from 

the nurse.  Once a patient starts his/her dialysis treatment, the nurse is free to serve other 

patients.  In reality, each nurse serves multiple patients in any given shift. [115] A more 

realistic workflow is shown in Figure 2.7. 
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Figure 2.7: Realistic dialysis workflow of one nurse/patients grouping 

Figure 2.7 shows that the general procedures model can be easily adapted to a 

specific procedure such as haemodialysis.  The general procedures model is capable of 

capturing realistic details; details that would have been impossible to represent using the 

simple model. 

Even such a simple, straightforward procedure as haemodialysis illustrates the 

complex nature of medical procedures and the need for a novel model to schedule them.  

Existing scheduling models such as flow-shop scheduling, project scheduling, and nurse 

rostering are not powerful enough to model medical procedures such as haemodialysis. 

2.2 Mathematics background 

2.2.1 Linear programming 

Linear programming (LP) is a mathematical modeling tool for solving 

optimization problems. 

The easiest way to overview linear programming is through example.  Consider a 

car manufacturer Colonel Motors (CM).  CM produces two products: small cars and 

SUVs.  Each car cost $16,000 to build and can sell for $20,000.  Each car requires 30 

hours to produce parts and takes 8 hours to assemble.  Each SUV cost $23,000 to build 

and can sell for $35,000.  Each SUV require 40 hours of parts production and takes 11 

hours to assemble.  Each month, CM has available 30,000 parts production hours and 

10,000 assembly hours.  Demand for SUVs is unlimited.  However, CM must produce at 

least 300 small cars per month in order to maintain an environmentally friendly image.  

CM is interested in maximizing monthly profit. 
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This problem can be solved using linear programming model.  An LP model 

consists of decision variables, an objective function, and constraints. 

Decision variables, as the name implies, describe the decisions to be made.  In 

this case, CM must decide how many cars and SUVs to produce each month.  Therefore, 

the decision variables for this problem are defined as follows: 

� � 
����� �	 ���
 �� ������� 

� � 
����� �	 �� 
 �� ������� 

The objective function is a linear function of the decision variables to be 

optimized.  In this case, CM’s objective value is its monthly profit.  The objective 

function is defined as: 

Maximize 4000� ) 1200� 

4000 is the unit profit (selling price less production cost) of each car.  12000 is the 

unit profit of each SUV. 

Finally, CM’s production limitations are captured as constraints: 

Parts production hours (C1): 30� ) 40� ; 30,000 

Assembly hours (C2):  8� ) 11� ; 10,000 

Small cars demand (C3):  � C 300 

Non-negativity (C4):   �, � C 0 

This simple LP model is two dimensional (two decision variables).  Therefore, it 

can be represented graphically, as shown in Figure 2.8. 
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Figure 2.8: Graphical representation of LP model 

The problem constraints bind the values of decision variables to a polygonal 

feasible region.  Only in this region can a viable solution to the problem be found.  The 

maximization nature of this problem causes the objective function to move up.  The 

maximum objective value occurs at the corner of the feasible region shown in Figure 2.9. 

 

Figure 2.9: Optimal solution of LP model 

At the optimal corner of the feasible region, x=300, y=562.5, and the resulting 

objective value is $7.95 million.  This solution is easy to obtain graphically.  However, 

problems with more than three decision variables are impossible to visualize.  

Fortunately, a well established algorithm exists to quickly solve LP problems: the 

Simplex method.  The nature of linear problems guarantees that the optimal solution will 

y
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C1
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Objective
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always occur at a corner of the feasible region.  The Simplex method is simply a quick 

and intelligent way of evaluating corners. 

Linear programming can similarly be used to model minimization problems.  The 

objective function would move down in a minimization model. 

2.2.2 Sensitivity analysis 

Perhaps of even more interest than the optimal solution is how that optimal 

solution responds to changes in the problem parameters.  The study of the effect of 

changing parameters on the optimal solution is sensitivity analysis. 

Sensitivity analysis provide vital information to answer questions of managerial 

interests such as: “what is the bottleneck resource?”  “How much more resource is 

required to meet a certain demand?”  “How much should a company be willing to pay for 

additional resource?” 

Consider once again the example of Colonel Motors.  Changes in the profitability 

(coefficients in the objective function) of cars and SUVs change the slope of the objective 

function.  At some point, the optimal solution will jump to a different corner of the 

feasible region.  See Figure 2.10. 

 

Figure 2.10: Different optimal solution due to change in objective coefficients 

A sensitivity report for the CM example is show in Table 2-2.  The current value 

of the objective coefficient on x is 4 (representing the unit profit of $4000 per car).  The 

y

x
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‘allowable increase’ of that coefficient is calculated to be 5.  This means that the unit 

profit of each car must increase by at least $5000 for the optimal solution to jump to the 

corner shown in Figure 2.10. 

Table 2-2: Sensitivity report of optimal solution for CM 

 

 

This sensitivity report also reveals the parts production capacity to be the limiting 

resource.  The shadow price on the parts production constraint is the improvement in the 

objective function resulting from adding one hour of parts production capacity.  

Therefore, that shadow price is the maximum CM should be willing to pay for an 

additional hour of production capacity.  The shadow price on assembly hours is zero 

because the assembly line is not a limiting resource.  In fact, the ‘allowable decrease’ 

value of the assembly constraint shows that assembly lines are sitting idle for 1825 hours 

each month.  CM can use this information to redeploy resources. 

Sensitivity analysis is an extremely useful managerial tool.  Therefore, any 

scheduling optimization system should provide some sort of sensitivity information. 

2.2.3 Integer programming 

Integer programming (IP) models are LP models that require some or all of its 

decision variables to have integer values.  For example, a product shipping problem must 

use an IP model because one cannot ship half a car or transport half a person.  A model 

where all decision variables must be integers is a pure integer problem.  A model where 

Adjustable Cells

Final Reduced Objective Allowable Allowable

Name Value Cost Coefficient Increase Decrease

x 300 0 4 5 1E+30

y 525 0 12 1E+30 6.666666667

Constraints

Final Shadow Constraint Allowable Allowable

Name Value Price R.H. Side Increase Decrease

Parts production 30000 0.3 30000 6636.363636 21000

Assembly 8175 0 10000 1E+30 1825

Demand 300 -5 300 700 300
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only some decision variables need to be integer is a mixed integer problem (MIP).  The 

difference between LP and IP problem is illustrated graphically in Figure 2.11. 

 

Figure 2.11: Graphical representation of IP model 

Integer constraints reduce the LP feasible region to only points that have integer 

decision values.  In all likelihood, the optimal solution will be different from the optimal 

of the same problem without the integer constraints. 

A particularly useful type of IP is the binary 0-1 IP.  In a binary 0-1 IP, some 

decision variables are constrained to values 0 or 1 to represent ‘do’ or ‘don’t’ decisions.  

0-1 decisions make possible the application of integer programming to scheduling 

problems. 

2.2.4 Applying integer programming to scheduling problems 

Consider the following simple job sequencing example: a manufacturing 

department uses a single machine to process three jobs. [116] Processing time and due 

date for each job are given in Table 2-3.  Due dates are measured from the start time of 

the first scheduled job, which is considered day zero. 
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Table 2-3: Job sequencing example parameters 

Job Processing time (days) Due date (days) Late penalty $/day 

1 5 25 19 

2 20 22 12 

3 15 35 34 

Note that it is impossible to process all jobs before their due times.  The objective 

of the problem is then to schedule the jobs in a sequence that minimizes the total late 

penalty.  This is a simple example of the single processor job-shop scheduling problem. 

A solution to this sequencing problem can be obtained using integer 

programming. 

Decision variables: 

I� � ������
J ��� �	 ��� � 

K�� � �1   �	 ��� � 
����
 ��	��� ��� �0   �������
�                                 
� 

L� � M����� �	 ���
 ��� � �
 ���N� 

O� � M����� �	 ���
 ��� � �
 N��� 

Data: 

P� � P�� ���� �	 ��� � 

Q� � Q����

�
J ���� �	 ��� � 

R� � O��� ��
�N�� �	��� � 

Objective Function: 

Min ∑ R�O��  

Constraints: 

Non-interference 

C1      I� C I� ) Q� X Y1 X K��Z[           \�\� ] � 

C2      I� C I� ) Q� X[K��                        \�\� ] � 
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Link start date with due date 

C3      I� ) Q� X P� X O� ) L� � 0           \� 

Non-negativity and binary integer 

C4      I�, L� , O� C 0  

C5      K�� b (0,1)  

The binary integer variable Yij, makes this problem an integer problem.  This 

binary variable is integral to the feasibility of the model as demonstrated by its use in the 

non-interference constraints. 

The objective function seeks to minimize the total late penalty from all jobs. 

Constraint C3 links the starting date of a job with its due date through the days 

early and days late variables.  Constraints C4 and C5 are simply non-negativity and 

binary constraints standard to most binary integer problem. 

More interesting are the non-interference constraints.  They are the defining 

characteristics of a job sequencing problem. Constraints C1 and C2 use the constant M, 

which is simply a very large value.  The use of M with a binary variable effectively gives 

the model the ability to turn constraints on and off.  When K�� � 1, constraint C1 is 

binding because the term Y1 X K��Z[ becomes zero and C1 becomes I� C I� ) Q�.  This 

means if job i is processed before job j, job j cannot begin until job i is complete.  

Constraint C2 is rendered non-binding because the term 
ijMY takes on a large value and 

C2 becomes I� C c 
�J���d� d�N��, which will always be satisfied since Xi is also 

constrained to only have positive values.  Similarly, if job j starts before job i (Yij = 0), 

constraint C2 becomes binding and constraint C1 is relaxed.  In that case, job i will not be 

allowed to begin until job j is complete.  The non-interference constraints resolve 

conflicts between jobs. 

Typically, the constant M should have the smallest value required to be effective 

in relaxing constraints.  To relax either constraints C1 or C2, M must be greater than or 

equal to maximum value that Xj can take.  In this example, the maximum value for Xj, i.e. 

the latest day that job j can be scheduled is 35 (with jobs 2 and 3 scheduled ahead of it).  
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Therefore, M must be at minimum 35 to be effective.  Ideally, M should be set to 35 to 

minimize the feasibility region of the problem, which minimizes the run time of the 

algorithm. 

This job sequencing problem is small and simple enough to be solved using the 

standard Excel Solver.  Solver managed to solve this problem in approximately 1 second.  

The optimal sequencing of jobs is summarized in Table 2-4. 

Table 2-4: Optimal job sequence that minimizes late penalty 

Job sequence Starting date Days early Days late Late penalty 

2 0 2 0 $0 

1 20 0 0 $0 

3 25 0 5 $170 

This demonstration of MIP performance provides motivation for the application 

of mixed integer programming to the scheduling and optimization of medical procedures. 

2.2.5 Solving IP problems: branch and bound 

Unfortunately, the introduction of integer constraints makes IPs very difficult to 

solve.  An elegant, general solver like Simplex does not exist for IPs.  There are however, 

several proven techniques: branch and bound, heuristics, implicit enumeration, and 

cutting plane.  Branch and bound is a ‘divide and conquer’ technique that breaks the 

problem down to many smaller pieces that are easier to solve.  Variations on the branch 

and bound method exist for different types of problems.  Heuristics are search algorithms 

that are typically uniquely designed for each specific problem.  Implicit enumeration is a 

technique that can intelligently guide the branch and bound method in certain 

applications.  Cutting plane method ‘trims’ the problem by adding constraints to reduce 

the feasible region to a shape and size that is easier to solve.  The general cutting plane 

method is the Gomory cut.  However, one may be able to obtain higher quality, custom 

cuts that exploit nuances of a specific problem.  Some techniques are better suited for one 

type of problems than another.  A hybrid of cutting plane and brand and bound methods, 

called branch and cut, is the most common technique for solving IPs. 

The branch and bound method finds the optimal solution to an IP by continuously 

dividing that IP into sub problems and efficiently enumerating points within feasible 
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regions of those sub problems.  Before discussing the method further, some background 

and observations must be noted.  First of all, a key component of branch and bound 

algorithm is the solving of the LP relaxation of an IP problem.  An LP relaxation is 

identical to its respective IP except that all integer constraints on its decision variables are 

removed (relaxed).  Secondly, feasible points of an IP are a subset of the feasible region 

of its respective LP relaxation.  Therefore, the optimal solution or indeed any solution to 

the IP can only be found within the feasible region of its LP relaxation.  This means that 

the optimal objective value of an IP cannot be better than the optimal objective value of 

its LP relaxation.  In other words, the optimal solution to an IP is bounded by the optimal 

solution of its LP relaxation.  Thirdly, if an LP relaxation has a solution where all 

decision variables have integer values, then that optimal solution to the LP relaxation is 

also the optimal solution to its respective IP.  The relationship between an IP and its 

respective LP relaxation forms the foundation of the branch and bound method. [117] 

To illustrate the branch and bound (BnB) solver algorithm, consider the Colonel 

Motors (CM) example once again.  Adding integer constraints to the CM example is 

necessary since CM cannot sell fractions of cars or SUVs.  The BnB method begins by 

solving the LP relaxation of the original IP.   

 

Figure 2.12: Solving the LP relaxation of the CM example 

The optimal solution to the LP relaxation is x=300, y=562.5 with an objective 

value z=$7.950million.  The LP relaxed objective value of the original problem 
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establishes the upper bound for the optimal solution of the IP problem.  That is, the 

optimal profit for CM is guaranteed to be less than $7.95million.  The variable x has an 

integer value and therefore satisfies the integer constraint.  The value of y however, 

violates the integer constraint.  The next step in BnB method is to divide the original IP 

into sub-problems by “branching” on the non-integer variable.  That is, BnB creates two 

copies of the original problem each with new constraints (“bounds”) on the value of y.  

Sub-problem SP1 will restrict y to values greater than or equal to 563.  Sub-problem SP2 

will limit y to values less than or equal to 562.  This branching and bounding eliminates 

the portion of the feasible region that cannot possibly contain the optimal solution.  That 

is, due to the integer constraint, variable y may not take on any value between 562 and 

563.  The next step in BnB is to solve the LP relaxation of sub-problems SP1 and SP2.   

 

Figure 2.13: Solving LP relaxations of sub problems SP1 and SP2 

Sub-problem SP1 is infeasible because its values violate constraints of the 

original problem.  LP relaxed solution of sub-problem SP2 is x=300.8, y=562 and 

z=7.947million.  Branching and bounding of the original problem eliminated the original 

LP relaxed solution from the feasible region.  Consequently, the upper solution bound is 

no longer valid and must be updated with the best LP relaxed objective value of the two 

sub-problems which is $7.947 million is this case.   
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The progress of the BnB solver is tracked using a solution tree.  Sub-problems are 

nodes in the tree, the branching of variables create arcs that lead to other sub-problems 

(nodes).  The solution tree for the CM example so far looks like the following: 

 

 

Figure 2.14: BnB solution tree of CM example so far 

The branching and bounding continue until a sub-problem is found whose LP 

relaxed solution has all integer values.  That solution is called an incumbent and 

represents the best feasible solution found so far.  The incumbent establishes the lower 

bound for the original IP problem because there is no need to investigate sub-problems 

with worse objective values than the current incumbent.  Once an incumbent is found, the 

BnB solver can begin eliminating (called fathoming) nodes from the solution tree.  Those 

nodes with objective values less than the incumbent objective value are fathomed.  If a 

better integer feasible solution is found, the incumbent gets updated which tightens the 

lower solution bound on the problem.  The tightening of both the upper and lower 

solution bounds of the problem narrows the focus of the BnB solver.  BnB continues until 

all except the incumbent node are fathomed.  The remaining incumbent node is then the 

optimum solution to the original IP problem. 

The optimal solution to the CM example is x=300, y=562 and z=$7.944million.  

The complete solution tree in Figure 2.15 shows the progress of the BnB solver 

algorithm. 
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Figure 2.15: Complete solution tree for CM example 

Mixed integer programming problems are solved using branch and bound exactly 

like pure integer problems except that the solver only branches on the variables that have 

integer constraints. 

Branch and bound is an exact solving method.  That is, by enumerating through 

the entire solution tree and fathoming all nodes except the best incumbent, BnB 

guarantees the optimality of the solution that it finds. 

The CM example is very simple and can be solved easily and quickly using the 

BnB method.  However, real life problems rarely involve only two decision variables.  As 

the number of variables increase, the size of the BnB solution tree grows exponentially.  

Enumerating through exponentially growing solution trees is computationally expensive.  

This is the curse of dimensionality.  Unfortunately, the use of BnB to solve real world 

problems is typically time-consuming.  A user of BnB to solve an IP has the option of 

terminating the solving process before the optimal solution is found.  By doing so, the 

user sacrifices the optimality guarantee and takes the best incumbent as the problem 

solution.  Even though optimality is not guaranteed, the upper solution bound is known.  

Therefore, the user can calculate, with confidence, how far the incumbent solution is 

from the potentially optimal solution.  In some applications, the reduction in solver run 

time may be worth sacrificing the guarantee of optimality. 

The use of cutting planes is one other method of minimizing solver run time.  

Cutting planes add additional constraints to sub-problems to shape the feasible region to 
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improve solvability.  For example, the common Gomory cut method adds constraints that 

‘cut’ away fractional portions of variables to shape the feasible region such that its 

corners contain feasible integer solution points.  Recall that solutions to LP relaxations of 

sub-problems are always found at the corners.  Pruning the feasible region and leaving 

integer solutions at its corners make those integer solutions easier to find by the solver.  

Therefore, the cutting plane method minimizes the solution tree and theoretically 

improves the solver performance. [117] 

A branch and bound solver that uses cutting planes to speed up its solving process 

is called a branch and cut solver.  The branch and cut solver is currently the best, the 

fastest, and most efficient exact solver for IP problems and is the method of choice for 

solving the MIP scheduling model in this thesis. 

2.2.6 Solving IP problems: heuristics 

There is a class of problems called nondeterministic polynomial (NP) problems 

for which no known, efficient, polynomial solving algorithms exist.  A subset within NP 

problems, called NP-hard problems are extremely difficult to solve.  An example of an 

NP-hard problem is the classic travelling salesman problem. [117] For such NP-hard 

problems that are too difficult to solve using exact methods such as branch and bound, 

heuristic techniques can be used to quickly find good solutions.  Heuristics are 

approximation techniques or algorithms that exploit problem structures to quickly 

produce high quality solutions.  Heuristics sacrifice the optimality guarantee in exchange 

for solving speed. 

Heuristics typically need to be designed to fit each specific application.  However, 

general frameworks or strategies exist to guide heuristic design.  The simplest framework 

uses some form of a greedy algorithm.  The OR booking example discussed in section 

1.3.4 uses a greedy heuristic algorithm.  Recall in Ozkarahan’s OR booking system, each 

operating room is first loaded with longest duration procedures to fit as many procedures 

as possible into each OR.  Then the schedule in each OR is reversed so that shortest 

procedures are carried out first to minimize wait time of patients.  A greedy heuristic can 

also be applied to the job-shop scheduling problem.  To minimize tardiness of jobs, a 

greedy heuristic schedules jobs in order of their due-date.  That is, jobs that are due early 
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are scheduled early.  Greedy heuristics are extremely efficient.  Their weakness however, 

is that for the same problem, a greedy heuristic can only produce one solution.  Greedy 

heuristics do not explore the solution space.  One way to overcome this single-solution 

weakness of greedy heuristics is to add some sort of exchange algorithm into the 

heuristic.  For example, run the greedy algorithm on the job-shop scheduling problem 

several times, each time randomly switching the order of some jobs.  This gives the 

heuristic ability to examine and choose from several solutions. 

More sophisticated frameworks are based on intelligent search techniques 

developed by the artificial intelligence (AI) community.  Three such frameworks are 

simulated annealing, genetic search, and tabu search. [117] Simulated annealing (SA) 

simulates the process by which atoms in a cooling system reach thermal equilibrium.  SA 

begins at the melting temperature with an initial solution.  The initial solution can be 

randomly generated or through a greedy heuristic.  That initial solution is then run 

through a series of changes called a cooling schedule until a set temperature is reached.  

Each change in the cooling schedule can be random or specifically designed.  The 

number of steps in the cooling schedule is typically designed to fit specific problems.  A 

new solution at each step in the cooling schedule is evaluated and accepted or rejected 

based on its objective value and a probabilistic factor determined by the temperature.  If a 

new objective value is better than the current best objective value than the new value is 

accepted.  If a new objective value is worse than the current best objective, it still has a 

chance of being accepted.  The reason for accepting inferior solutions is to encourage 

exploration of the solution space to avoid getting stuck in local optima.   The probability 

of accepting an inferior solution is a function of temperature and decreases exponentially 

as the temperature falls.  In other words, the heuristic encourages exploration of solution 

space earlier on but focuses the search towards the end of the process.  The simplicity of 

SA and its ease of implementation make SA an attractive heuristic framework. 

Genetic search is an evolutionary search technique that is inspired by the process 

of evolution through natural selection.  Genetic algorithms (GA) begin with a population 

of randomly generated chromosomes.  Chromosomes are encodings of potential 

solutions.  In the case of the job-shop scheduling problem, each chromosome could 

represent a different ordering of jobs.  A fitness function evaluates fitness of 
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chromosomes based on the objective value of the associated solution.  In the case of the 

job-shop scheduling problem, a chromosome that results in a shorter makespan is fitter 

than those that result in longer makespans.  The GA then evolves the population by 

selecting, recombining, evaluating, and replacing chromosomes.  The typical GA 

generates a new population in each generation by mating chromosomes from the previous 

generation.  The principle of ‘survival of the fittest’ is employed so that fitter 

chromosomes have higher chances of mating.  Mating or reproduction is done by 

crossing over genetic information of parent chromosomes at some random point so that 

offspring chromosomes have pieces of information from each parent and therefore 

encode different (potentially better) solutions.  See example of such a crossover in Figure 

2.16.  Chromosomes may also mutate by randomly changing bits of its genetic 

information.  The evolution process is repeated until certain termination criteria are met.  

Typically, the evolution is stopped when the population converges on a solution or if the 

average fitness of the population doesn’t improve for a number of generations.  The 

general GA framework presented here is very versatile and can be fully customized to 

suit different problems.  The user has full control over the population size, stopping 

criteria, crossover techniques, mutation probability, and the fitness function.  A major 

advantage of GA is that the fitness function need not be linear, differentiable, or even 

continuous.  This gives GA the potential to solve difficult, non-linear problems. 

 

Figure 2.16: Example crossover of chromosomes 

Tabu search is not based on natural or physical process.  Rather, it emulates the 

psychology of decision making.  Tabu search uses both short term and long term memory 

to intelligently search the solution space.  Long term memory ‘remembers’ and focuses 

the search on the most promising neighborhoods in the solution space.  Short term 

Parent 1: 1 1 1 1 0 0 0

Parent 2: 1 0 1 0 0 1 1

Crossover

Offspring 1: 1 1 1 0 0 1 1

Offspring 2: 1 0 1 1 0 0 0
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memory ‘remembers’ where it has searched and avoids getting stuck in a local optimum.  

Tabu search begins with a candidate solution chosen either randomly or is an elite (good) 

solution taken from long term memory.  A list of possible changes or moves is built for 

the candidate solution.  In the case of the job-shop scheduling problem, a candidate 

solution is the ordering of jobs.  Moves can be made by rearranging jobs to create a 

different ordering.  For a set number of iterations, the algorithm evaluates the list of 

possible moves, makes the move that result in a better solution then evaluates the list 

again.  The algorithm ‘remembers’ moves made during this evaluation process to avoid 

getting stuck cycling around a local optimum.  The algorithm is repeated for any number 

of other candidate solutions.  The best solution among the candidate solutions is chosen 

as the optimal solution.  Tabu search has strong parallel processing potential.  Candidate 

solutions can be evaluated by separate processors simultaneously.  Though simplistic at 

first glance, tabu search can be effective for solving certain NP problems. 

2.2.7 Linear programming software 

Working with linear programming problems requires two distinct types of 

software: modeling and solver software.  Solvers can only understand computer modeling 

languages such as AMPL, GAMS, and MPS among others.  Modeling software help 

users express their LP problem in those computer modeling languages.  Many 

commercial packages bundle the modeling and solving components together for ease of 

use.  Commercial packages such as Premium Solver, GAMS, and LINGO are very 

powerful.  However, they are not considered for this research due to their cost. 

Free, open-source solvers are excellent alternatives to commercial packages.  The 

drawback of open-source solvers is that they are more difficult to use than commercial 

solvers.  Open-source solvers typically do not have easy to use GUI frontends.  The user 

can only control solver parameters through console commands or by writing customized 

programs.  Most open-source packages have only the solver component and leave the 

modeling to the user.  Nevertheless, many open-source solver packages have high quality 

performance.  The open-source solvers considered for this research are CBC, CLP, 

SYMPHONY, and GLPK.  The Gnu Linear Programming Kit (GLPK) solver is the 

solver of choice for this research due to its high performance, high degree of 
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customizability, and relative ease of use.  See Appendix B for description of the GLPK 

solver package. 

No suitable open-source modeling software was found for this research.  

Therefore, a custom modeling program was written to model the medical procedures 

scheduling problem in the Mathematical Programming System (MPS).  The custom 

modeling program is called mpsWriter.  See Appendix A for a detailed description of the 

MPS modeling system.  mpsWriter simply translates the MIP model logic and parameters 

into the MPS file format. 

Integer programming scheduling models in this thesis will be presented in 

mathematical notation.  The reader is to assume that models are converted into the MPS 

format by mpsWriter then solved using the GLPK branch and cut solver.  Unless 

otherwise stated, the GLPK solver is run with all default options so that it behaves as a 

standard branch and cut solver.  The numerical solutions found by GLPK will be 

presented in graphical format for maximum clarity. 
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Chapter 3: Mixed integer programming scheduling model 

This chapter develops a novel mathematical formulation of the medical 

procedures scheduling problem (MPSP) described in section 1.2.1.  A Mixed integer 

programming (MIP) model is first developed for very simple procedures to illustrate the 

core structure and functionality.  The model is then enhanced to schedule more complex 

procedures described in section 2.1.2.  The model is then enhanced further to schedule 

the even more complex and flexible haemodialysis procedures described in section 2.1.3.  

This chapter will also discuss the scalability of the MIP scheduling model. 

3.1 Scheduling simple procedures – the simple MPSP model 

3.1.1 Mathematical representation of simple procedures model 

Before a MIP scheduling model can be developed, procedures must first be 

represented mathematically.  Consider the following five very simple procedures (Pi): 

 

Figure 3.1: Simple example procedures 

Time: ---->
R1

R2
R3
R4
R5
R6

R7

R1
R2
R3
R4
R5
R6
R7

R1

R2
R3
R4
R5
R6

R7

R1

R2
R3
R4
R5
R6

R7

R1
R2
R3
R4
R5
R6
R7

P1: Duration: 10 min

P2: Duration: 5 min

P5: Duration: 5 min

P3: Duration: 10 min

P4: Duration: 15 min
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The information needed to fully represent each procedure are the procedure 

resource requirement and the procedure duration.  Therefore, let us define a binary matrix 

Rri to store resource requirements and define vector di to store procedure durations. 

ef� � �1   �	 ��
����� � �
 ��g����� 	�� ��������� �0   �������
�                                                               
� 

�� � P������
 �	 ��������� � 

Durations of procedures are measured and captured in an arbitrary time unit.  This 

time unit can represent minutes, seconds, hours or whatever denomination of time the 

user wishes to define.  For the remainder of this thesis, the time unit will be minutes.  For 

scheduling purposes, one needs to know the due times of procedures and to specify the 

time frame into which procedures are to be scheduled.  The time frame or scheduling 

period is specified by p.  Procedure due times are stored in a vector dti. 

� � ������N�
J ������ 

��� � P�� ���� �	 ��������� � 

The scheduling period p can be any arbitrary length of time.  The user may choose 

to set p as the length of one shift, one day, or one week etc.  The value dti is measured as 

minutes from the beginning of the scheduling period p.  For example, dti=0 means 

procedure i is due at the beginning of the scheduling period. 

Priority of each procedure is captured using two vectors: bi and wi. 

�� � h�
�	�� �	 
�����N�
J ��������� � 

�� � O��� ��
�N�� �	 ��������� � 

The value bi
 captures how important it is to schedule procedure i into the current 

scheduling period.  In cases where the scheduling period is too short to accommodate all 

procedures, procedures with lower bi values should not be scheduled to make room for 

procedures with higher bi values.  The total benefit of the scheduled procedures is a 

measure of schedule quality and can be used as an objective to guide a scheduling 

system.  The value wi captures the priority of procedure i within the scheduling period.  

That is, of the procedures that are scheduled, those with higher wait time penalty wi 

should be scheduled earlier than those with lower wait time penalty.  The total lateness 
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penalty incurred by the scheduled procedures represents the impact of patient wait time 

and therefore also contributes to schedule quality.  A scheduler should seek to minimize 

lateness penalty. 

Thus far, the mathematical model of simple procedures shown in Figure 3.1 can 

be summarized in the following figure: 

 

Figure 3.2: Parameters for mathematical model of simple example procedures 

At the current stage of development, all procedures are due at the beginning of the 

scheduling period and all have the same priority.  The scheduling period is set to 30 

minutes.  Note that although overlap between procedures is possible, the scheduling 

period is still too short to accommodate all procedures.  This short scheduling period was 

set deliberately to test a scheduler’s ability to decide which procedures to schedule and 

which ones not to schedule. 

The next step is to develop a MIP model to schedule the simple example 

procedures. 

3.1.2 MIP formulation of the simple MPSP model 

A scheduling model must make two decisions for each procedure: 1) whether or 

not a procedure can fit into the scheduling period and 2) what time within the scheduling 

period should the procedure be scheduled at.  Therefore, the first two decision variables 

for the MIP model are: 

�
� � ������
J ���� �	 ��������� � 

�� � �1   �	 ��������� � can iit within the scheduling period0   �������
�                                                                              � 

Rri i=1 i=2 i=3 i=4 i=5 i=1 i=2 i=3 i=4 i=5

r=1 1 0 1 1 0 di 10 5 10 15 5 p 30

r=2 0 1 0 0 1

r=3 0 0 0 0 0 dti 0 0 0 0 0

r=4 0 1 0 0 1

r=5 1 1 0 1 1 bi 1 1 1 1 1

r=6 1 1 1 1 0

r=7 0 1 0 0 1 wi 1 1 1 1 1
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Additional decision variables are needed to track the lateness of procedures as 

well as the ordering of procedures. 

N� � O���
�

 �	 ��������� � 
��,�j � �1   �	 ��������� � �
 
�����N�� ��	��� ��������� �20   �������
�                                                                             � \i, i2 � 1, 2, 3, …n 
The MPSP problem has two competing objectives.  Recall the scheduling problem 

defined in section 1.2.1; problems A) through D) can be summarized as an objective to 

maximize the total benefit of a schedule. 

Max  ∑ �����   Equivalent to  Min ∑ X�����  
The user can adjust benefit (bi) values of individual procedures to address 

problems A) through D).  Problem E) sets an objective to minimize the patient wait time. 

Min ∑ �����  
These two objectives mimic the scheduling logic of a manual scheduler.  One 

would like to schedule as many important procedures as possible without making patients 

wait excessively.  Combining the two objectives, the objective function of the MIP 

scheduling model is: 

Min ∑ 6��N� X ����8�  
The binary decision variable xi adds non-linear behaviour to the scheduling 

problem.  In order to model the problem using linear programming, one must linearize 

the non-linear behaviour of the problem.  The first two constraints of the scheduling 

model are such linearizations.  They deal with the scheduling period limitation.  The first 

constraint dictates that if the scheduler decides to schedule procedure i within scheduling 

period p, then the scheduler must ensure that procedure i fits completely into p.  That is, 

the starting time of procedure i must be less than the latest possible start time for 

procedure i.  The latest possible start time of procedure i is length of the scheduling 

period p less the duration of procedure i.  The first constraint does not apply if the 

scheduler decides not to schedule procedure i within scheduling period p.  The logic of 

the first constraint looks quite simple: 
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�
� ; � X ��                �	     �� � 1 
However, xi is a variable.  Its value is dynamic and can change during the solving 

process.  Unfortunately, linear programming does not allow dynamic conditional 

constraints.  Therefore, one must use clever design techniques to enable and disable 

constraints when necessary.  The use of M, first introduced in section 2.2.4, is one such 

clever technique.  Using M, the first constraint is defined as: 

C1 �
� ) �� X 61 X ��8[ ; � 

Constraint C1 is relaxed and tightened depending on the value of xi.  If xi=1 then 

the 61 X ��8[ term becomes zero and constraint C1 becomes: �
� ) �� ; � which is the 

desired constraint.  If xi=0, then constraint C1 becomes: �
� ) �� X[ ; �, which will 

always be true since M is simply a large constant.  Essentially, constraint C1 is relaxed 

when xi=0. 

The  second constraint in the scheduling model dictates that if the scheduler 

decides not to fit procedure i into scheduling period p then it must ensure the starting time 

of procedure i is outside of p so as not to conflict with procedures scheduled within p: 

C2 �
� ) ��� C � 

Similar to constraint C1, constraint C2 is also relaxed and tightened depending o 

the value of xi.  If xi=0, i.e. procedure i cannot fit into p, C2 becomes �
� C �, forcing 

procedure i to be scheduled outside of the scheduling period.  If however, xi=1, i.e. 

procedure i is scheduled, C2 becomes �
� ) � C �, which will always be true.  Constraint 

C2 is essentially relaxed when xi=1. 

Procedures that cannot fit into the scheduling period are scheduled outside of the 

scheduling period and treated as if they are not part of the schedule.  Only procedures 

scheduled within the scheduling period p will be presented to the user as the problem 

solution.  This technique models non-linear behaviour but maintains the linear nature of 

the MIP scheduling model. 

The third constraint links the starting time of a procedure with its due time via its 

lateness variable. 
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C3 �
� X N� � ��� 
The next two constraints resolve resource conflicts.  The logic for resolving 

conflicts is to ensure that between any two procedures that share the same resource, one 

procedure does not start until the other procedure is complete.  For example, procedure i 

is to be scheduled ahead of procedure i2, and both share same resources.  The earliest 

possible start time of procedure i2 is the starting time of procedure i plus the duration of 

procedure i.  Starting time of procedure i2 must be later than its earliest possible start 

time. 

C4 �
�j X �
� ) Y1 X ��,�jZ[ C ��     \�, �2: 6ef� � ef�j � 1 n  � ] �28 
C5 �
� X �
�j )[��,�j C ��j               \�, �2: 6ef� � ef�j � 1 n  � ] �28 
Constraints C4 and C5 are relaxed and tightened depending on the value of yi,i2.  

If procedure i is scheduled ahead of i2, i.e. yi,i2=1, then constraint C4 is tightened and 

becomes �
�j X �
� C �� while C5 is relaxed and becomes �
� X �
�j )[ C ��j.  If, on 

the other hand yi,i2=0 then C5 is tightened and C4 is relaxed.  One must be careful in 

setting the value of M.  The value of M must be large enough to effectively relax 

constraints when needed but small enough to minimize the search space size.  For M to 

be effective, it must have a value larger than the makespan of the worst case schedule: 

one that ignores overlap opportunities and cascades procedures.  The makespan of the 

worst case cascading schedule is simply the sum of durations of all procedures, 45 

minutes in this example. 

The final two constraints in the scheduling model are the non-negativity and 

integer constraints. 

C6 �
�, N�, �� , ��,�j C 0 

C7 �� , ��,�j b o0,1p 
The MIP model developed in this section is designated the simple MPSP model.  

Its full mathematical formulation can be found in Appendix C.  The next section 

discusses solving of this simple MPSP model and how the optimal solution translates into 

a schedule. 
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3.1.3 Solving the simple MPSP model 

The simple MPSP model is first converted into the MPS file format then solved 

using GLPK’s branch and cut solver.  See Appendix A for demonstration of converting 

linear programming model into the MPS file format.  Specifically, see Table A-5 for the 

MPS file of the simple MPSP model example.  See Appendix B for demonstration of the 

solving of linear programming models using the Gnu Linear Programming Kit (GLPK). 

Solution to the simple MPSP model is the values of decision variables.  Values of 

the starting time decision variable psi are all that are required to visualize the solution 

graphically.  The optimal solution was found in less than 1 second and is shown in Figure 

3.3 

 

Figure 3.3: Optimal solution to the simple MPSP model 

Recall that the scheduling period is set at 30 minutes.  The dashed line marks the 

end of the scheduling period.  Procedure P4 (or i=4) is just outside the scheduling period 

and is considered not scheduled.  The simple MPSP model produced a conflict-free 

schedule that satisfies the scheduling objective function.  It fit as many procedures into 

the scheduling period as possible and ordered the procedures to start as soon as possible 

to minimize total patient wait time.  Procedures P3 and P5 were allowed to overlap 

because they do not share any resources. 

Time: 0 5 10 15 20 25 30 35 40
R1

R2

R3

R4

R5

R6

R7

i=1 i=2 i=3 i=4 i=5

Obj val: 51 psi 15 10 0 30 0
xi 1 1 1 0 1
li 15 10 0 30 0

dti 0 0 0 0 0
bi 1 1 1 1 1
wi 1 1 1 1 1



52 

 

The optimal solution can be manipulated by changing coefficients in the objective 

function.  The effects on optimal solutions of changing objective coefficients are 

illustrated in Figure 3.4 and Figure 3.5. 

 

Figure 3.4: Effect of increasing b4 on the simple MPSP model’s optimal solution 

The example in Figure 3.4 gives procedure P4 higher relative importance by 

increasing b4 from 1 to 5.  As a result, P4 is scheduled within the scheduling period and 

another procedure (P1) is bumped out.  Now if one also increases the lateness penalty on 

procedure P4, that procedure takes on very high priority.  The result is that procedure P4 

gets scheduled first, at the detriment of patient wait times in other procedures.  The total 

wait time (∑ N�) of scheduled procedures is 55 minutes in the example shown in Figure 

3.5, much higher than the 25 minute total wait time in the example shown in Figure 3.4.   

 

Figure 3.5: Effect of increasing b4 and w4 on the simple MPSP model’s optimal solution 

Time: 0 5 10 15 20 25 30 35 40
R1

R2

R3

R4

R5

R6

R7

i=1 i=2 i=3 i=4 i=5

Obj val: 47 psi 30 0 5 15 5
xi 0 1 1 1 1
li 30 0 5 15 5

dti 0 0 0 0 0
bi 1 1 1 5 1
wi 1 1 1 1 1

Time: 0 5 10 15 20 25 30 35 40
R1

R2

R3

R4

R5

R6

R7

i=1 i=2 i=3 i=4 i=5

Obj val: 77 psi 30 15 20 0 20
xi 0 1 1 1 1
li 30 15 20 0 20

dti 0 0 0 0 0
bi 1 1 1 5 1
wi 1 1 1 5 1
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The examples in Figure 3.4 and Figure 3.5 show that the priority of procedures 

can be adjusted to manipulate the optimal solution (schedule) of the model.    The user 

has the freedom to tweak objective coefficients bi and wi to set relative priorities of all 

procedures. 

The flexibility to manipulate procedure priorities to affect the optimal schedule 

and the ability to resolve resource conflicts are two major strengths of the simple MPSP 

model.  Each procedure has two adjustable attributes: its relative importance (bi) and its 

lateness penalty (wi).  Each attribute affects the procedure priority differently.  

Coefficient bi is on the binary variable xi and therefore has a stepwise effect on procedure 

priority.  Coefficient wi on the other hand, has a linear effect on priority proportional to 

tardiness of a procedure.  Managing multiple procedures each with these two attributes is 

a fine balancing act.  Much experience will likely be needed to fine tune the simple 

MPSP model for real world application. 

Application of the simple MPSP model is limited to scheduling procedures that 

are described under the simple procedures model discussed in section 2.1.1.  However, 

this model establishes the foundation for a more complex scheduling model.  The next 

sections will extend the simple MPSP model into a more complex, flexible and practical 

scheduling model. 

3.2 Scheduling complex procedures – the enhanced MPSP model 

3.2.1 Mathematical representation of complex procedures 

The next step in MIP model development is to add the ability to schedule complex 

procedures as discussed in section 2.1.2.  The key to scheduling complex procedures is 

the breakdown of those complex procedures into simple activities.  Recall example 

procedures presented in section 2.1.2, Figure 2.3 and Figure 2.4.  They will be used here 

to aid the development of a more complex scheduling model. 

Complex procedures can be broken down or discretized into simple activities 

separated at times during the procedure when resource requirements change.  Such a 

discretization is shown in Figure 3.6. 
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Figure 3.6: Discretizing procedure PA into simple pieces/activities 

To avoid confusion over indexing of procedures, full procedures will use alphabet 

index while activities within those full procedures will use a numerical index.  For 

example, procedure PA shown in Figure 3.6 is modeled using activities 1 through 5. 

The relationships between activities are modeled by introducing a new workflow 

parameter: zij. 

q�� � r1   �	 ����d��� � ��
� ���������N� 	�NN�� activity �              2   �	 ����d��� � �
� � ���� ��N�
J �� ��� 
��� ��������� 0   �������
�                                                                                        � 
The mathematical representation of activities of procedure PA is shown in Figure 

3.7. 

 

 

Figure 3.7: Mathematical representation of activities of procedure PA 

The zij parameter ties activities together so that activities i=1 to i=5 are always 

scheduled together as a block to represent procedure PA.  The objective coefficients bi 

and wi on activities i=2 to i=5 are set to zero because the objective coefficients on 

activity i=1 are enough to fully represent procedure PA in the scheduling model.  Any 

benefit or penalty on activities i=2 to i=5 would contribute excessively to benefit or 

penalty of procedure PA. 

Time: ---->
R1 R1 1 2

R2 R2 3 5

R3 R3 3

R4 R4 4

R5 R5 2 5

R6 R6 1 2

R7 R7 3 4 5

i=1 i=2 i=3 i=4 i=5

=>PA:

Rri i= 1 2 3 4 5 i= 1 2 3 4 5 zij j= 1 2 3 4 5

r=1 1 1 0 0 0 di 10 10 10 10 10 i=1 2 2 2 2 2

r=2 0 0 1 0 1 i=2 1 2 2 2 2

r=3 0 0 1 0 0 dti 0 0 0 0 0 i=3 2 1 2 2 2

r=4 0 0 0 1 0 i=4 2 2 1 2 2

r=5 0 1 0 0 1 bi 1 0 0 0 0 i=5 2 2 2 1 2

r=6 1 1 0 0 0

r=7 0 0 1 1 1 wi 1 0 0 0 0
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One must be careful in setting values for the parameter zij.  If for example, activity 

i=2 needs to be scheduled immediately after activity i=1, i.e. z21=1, then activity i=1 

cannot be scheduled after i=2.  That is, z12 must equal 2.  It is the responsibility of the 

user or modeler to ensure that this conflict does not arise.  Otherwise, the resulting 

scheduling model will not be feasible. 

The discretization of example procedures PB through PE is shown in Figure 3.8 

through Figure 3.15. 

 

Figure 3.8: Discretization of procedure PB 

 

Figure 3.9: Mathematical representation of activities of procedure PB 

 

Figure 3.10: Discretization of procedure PC 

 

Figure 3.11: Mathematical representation of activities of procedure PC 

Time: ---->
R1 R1 6 7 8

R2 R2 8 9 11

R3 R3 8 9 10

R4 R4 9 10

R5 R5 8 10 11

R6 R6 6 7

R7 R7 7 8 9 10

i=7 i=8 i=9 i=10 i=11i=6

PB: =>

Rri i= 6 7 8 9 10 11 i= 6 7 8 9 10 11 zij j= 6 7 8 9 10 11

r=1 1 1 1 0 0 0 di 10 10 10 10 10 10 i=6 2 2 2 2 2 2

r=2 0 0 1 1 0 1 i=7 1 2 2 2 2 2

r=3 0 0 1 1 1 0 dti 0 0 0 0 0 0 i=8 2 1 2 2 2 2

r=4 0 0 0 1 1 0 i=9 2 2 1 2 2 2

r=5 0 0 1 0 1 1 bi 1 0 0 0 0 0 i=10 2 2 2 1 2 2

r=6 1 1 0 0 0 0 i=11 2 2 2 2 1 2

r=7 0 1 1 1 1 0 wi 1 0 0 0 0 0

Time: ---->
R1 R1 12 13 14

R2 R2 18

R3 R3 15 16 17

R4 R4 14 15

R5 R5 13 18

R6 R6 12 13 14 15 16

R7 R7

i=18i=13 i=14 i=15 i=16 i=17i=12

=>PC:

Rri i= 12 13 14 15 16 17 18 i= 12 13 14 15 16 17 18 zij j= 12 13 14 15 16 17 18

r=1 1 1 1 0 0 0 0 di 10 10 10 20 10 10 10 i=12 2 2 2 2 2 2 2

r=2 0 0 0 0 0 0 1 i=13 1 2 2 2 2 2 2

r=3 0 0 0 1 1 1 0 dti 0 0 0 0 0 0 0 i=14 2 1 2 2 2 2 2

r=4 0 0 1 1 0 0 0 i=15 2 2 1 2 2 2 2

r=5 0 1 0 0 0 0 1 bi 1 0 0 0 0 0 0 i=16 2 2 2 1 2 2 2

r=6 1 1 1 1 1 0 0 i=17 2 2 2 2 1 2 2

r=7 0 0 0 0 0 0 0 wi 1 0 0 0 0 0 0 i=18 2 2 2 2 2 1 2
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Figure 3.12: Discretization of procedure PD 

 

Figure 3.13: Mathematical representation of activities of procedure PD 

 

Figure 3.14: Discretization of procedure PE 

 

Figure 3.15: Mathematical representation of activities of procedure PE 

Note that the zij matrices shown in the above figures are only those portions that 

relate to each procedure.  The full zij matrix is shown in Figure 3.16 to emphasize that zij 

values between activities that do not belong to the same procedure must be 0. 

Time: ----> i=19 i=20 i=21 i=22 i=23 i=24 i=25

R1 R1 19 25

R2 R2 20 21

R3 R3 21 22 23

R4 R4 23

R5 R5

R6 R6 19 25

R7 R7 20 21 22 23 24

PD: =>

Rri i= 19 20 21 22 23 24 25 i= 19 20 21 22 23 24 25 zij j= 19 20 21 22 23 24 25

r=1 1 0 0 0 0 0 1 di 5 5 5 5 5 5 5 i=19 2 2 2 2 2 2 2

r=2 0 1 1 0 0 0 0 i=20 1 2 2 2 2 2 2

r=3 0 0 1 1 1 0 0 dti 0 0 0 0 0 0 0 i=21 2 1 2 2 2 2 2

r=4 0 0 0 0 1 0 0 i=22 2 2 1 2 2 2 2

r=5 0 0 0 0 0 0 0 bi 1 0 0 0 0 0 0 i=23 2 2 2 1 2 2 2

r=6 1 0 0 0 0 0 1 i=24 2 2 2 2 1 2 2

r=7 0 1 1 1 1 1 0 wi 1 0 0 0 0 0 0 i=25 2 2 2 2 2 1 2

Time: ----> i=27 i=28 i=33 i=34

R1 R1 26 33 34

R2 R2 27 28 29 30 31

R3 R3 30 31

R4 R4 27 28 29 30

R5 R5 26 27 28 32 33 34

R6 R6 26 27

R7 R7 27 28 29 30 31 32 33

i=26 i=29 i=30 i=31 i=32

=>PE:

Rri i= 26 27 28 29 30 31 32 33 34 i= 26 27 28 29 30 31 32 33 34 zij j= 26 27 28 29 30 31 32 33 34

r=1 1 0 0 0 0 0 0 1 1 di 10 5 5 10 10 10 10 5 5 i=26 2 2 2 2 2 2 2 2 2

r=2 0 1 1 1 1 1 0 0 0 i=27 1 2 2 2 2 2 2 2 2

r=3 0 0 0 0 1 1 0 0 0 dti 0 0 0 0 0 0 0 0 0 i=28 2 1 2 2 2 2 2 2 2

r=4 0 1 1 1 1 0 0 0 0 i=29 2 2 1 2 2 2 2 2 2

r=5 1 1 1 0 0 0 1 1 1 bi 1 0 0 0 0 0 0 0 0 i=30 2 2 2 1 2 2 2 2 2

r=6 1 1 0 0 0 0 0 0 0 i=31 2 2 2 2 1 2 2 2 2

r=7 0 1 1 1 1 1 1 1 0 wi 1 0 0 0 0 0 0 0 0 i=32 2 2 2 2 2 1 2 2 2

i=33 2 2 2 2 2 2 1 2 2

i=34 2 2 2 2 2 2 2 1 2
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Figure 3.16: Full zij matrix for activities 

The next section revises the simple MPSP model to accommodate these more 

complex procedures. 

3.2.2 MIP formulation of the enhanced MPSP model 

This section begins the real contribution of this thesis.  The complex procedures 

model presented in the previous section 3.2.1 cannot be scheduled using existing flow-

shop scheduling or project scheduling models.  This section builds on section 3.1.2 and 

continues to develop a novel mathematical formulation to model and schedule complex 

procedures. 

The discretization of procedures into activities requires additional constraints in 

the scheduling model to manage the relationships between those activities.  The 

introduction of the zij parameter makes management of those relationships possible.  Two 

additional constraints are needed. 

zij j= 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

i=1 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

i=2 1 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

i=3 2 1 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

i=4 2 2 1 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

i=5 2 2 2 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

i=6 0 0 0 0 0 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

i=7 0 0 0 0 0 1 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

i=8 0 0 0 0 0 2 1 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

i=9 0 0 0 0 0 2 2 1 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

i=10 0 0 0 0 0 2 2 2 1 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

i=11 0 0 0 0 0 2 2 2 2 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

i=12 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

i=13 0 0 0 0 0 0 0 0 0 0 0 1 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

i=14 0 0 0 0 0 0 0 0 0 0 0 2 1 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

i=15 0 0 0 0 0 0 0 0 0 0 0 2 2 1 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

i=16 0 0 0 0 0 0 0 0 0 0 0 2 2 2 1 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

i=17 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 1 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

i=18 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

i=19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0

i=20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0

i=21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 2 2 2 2 2 0 0 0 0 0 0 0 0 0

i=22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 1 2 2 2 2 0 0 0 0 0 0 0 0 0

i=23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 1 2 2 2 0 0 0 0 0 0 0 0 0

i=24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 1 2 2 0 0 0 0 0 0 0 0 0

i=25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 1 2 0 0 0 0 0 0 0 0 0

i=26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2

i=27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 2 2 2 2 2 2 2

i=28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 2 2 2 2 2 2 2

i=29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 1 2 2 2 2 2 2

i=30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 1 2 2 2 2 2

i=31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 1 2 2 2 2

i=32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 1 2 2 2

i=33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 1 2 2

i=34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 1 2
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The first new constraint ensures that activities of the same procedure are 

scheduled in the correct order.  That is, if activity i must be scheduled immediately after 

j, then the starting time of activity i must equal the starting time of activity j plus the 

duration of activity j. 

C8 �
� X �
� � ��               \�, �: 6q�� � 18 
The second new constraint ensures that activities of the same procedure are 

scheduled either all within the scheduling period or all outside of it.  This prevents the 

partial scheduling of procedures. 

C9 �� X �� � 0               \�, �: 6q�� � 18 
The addition of constraint C8 makes it impossible for activities belonging to the 

same procedure to conflict with each other.  Therefore, the resource conflict constraints 

for those activities are redundant.  New conditions are added to the resource conflict 

constraints to only enforce them if zij=0.  That is, enforce constraints C4 and C5 only for 

activities that do not belong to the same procedure and can potentially conflict. 

C4 �
�j X �
� ) Y1 X ��,�jZ[ C ��      

 \�, �2: 6ef� � ef�j � 1 n q�j,� � 0 n  � ] �28 
C5 �
� X �
�j )[��,�j C ��j       

 \�, �2: 6ef� � ef�j � 1 n q�j,� � 0 n  � ] �28 
The model developed in this section is designated the enhanced MPSP model.  A 

full summary of its mathematical formulation can be found in Appendix D.  The solving 

of the enhanced MPSP model is discussed in the next section. 

3.2.3 Solving the enhanced MPSP model 

The procedures and activities defined in section 3.2.1 will be used as the 

examples to schedule.  The sum of durations of all procedures is 295 minutes.  Therefore 

the makespan of a cascading schedule would be 295 minutes.  The scheduling period for 

this example is arbitrarily set at 200 minutes to test if the enhanced MPSP model can 

produce a better schedule with a shorter makespan than the schedule of cascading 
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procedures.  The optimal solution to the enhanced MPSP model with scheduling period 

p=200 is shown in Figure 3.17. 

Surprisingly, the enhanced MPSP model was able to overlap procedures tighter 

than expected.  As a result, all procedures were able to fit into the scheduling period.  The 

scheduling period is then tightened to 150 minutes to force the scheduling model to 

decide which procedures to schedule and which to not.  The optimal solution to the 

enhanced MPSP model with scheduling period p=150 is shown in Figure 3.18.  

Procedures PC and PE could not fit into the short scheduling period.  Consequently, PC 

and PE are placed outside of the scheduling period and not considered a part of the 

schedule. 

Figure 3.17 and Figure 3.18 demonstrate that the enhanced MPSP model is 

capable of arranging complex procedures into conflict-free schedules.  The enhanced 

MPSP model schedules as many procedures inside the scheduling period as possible 

while minimizing total patient wait time.  Similar to the simple MPSP model, the 

enhanced MPSP model allows the user to set procedure priorities to manipulate the 

optimal schedule.  For example, the benefit coefficient b12 is set to 20, representing 

higher benefit of procedure PC.  Figure 3.19 shows the resultant schedule.  Procedure PC, 

previously outside of the scheduling period is now scheduled within the scheduling 

period.  The lateness penalty can also be manipulated to change the order of procedures 

within the scheduling period.  For example, the penalty w6 was set to 2 to represent 

higher lateness penalty for procedure PB.  Figure 3.20 shows the resultant schedule.  

Procedure PB is scheduled earlier in the schedule. 

The next section discusses further development to the enhanced MPSP model to 

handle more complexity and flexibility in medical procedures. 



60 

 

 

Figure 3.17: Optimal solution (schedule) to the enhanced MPSP model with scheduling period p=200 

 

Figure 3.18: Optimal solution (schedule) to the enhanced MPSP model with short scheduling period p=150 

Time: 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205

R1 19 1 2 25 26 12 13 14 33 34 6 7 8

R2 20 21 3 5 27 28 29 30 31 18 8 9 11

R3 21 22 23 3 30 31 15 16 17 8 9 10

R4 23 4 27 28 29 30 14 15 9 10

R5 2 5 26 27 28 13 32 33 34 18 8 10 11

R6 19 1 2 25 26 27 12 13 14 15 16 6 7

R7 20 21 22 23 24 3 4 5 27 28 29 30 31 32 33 7 8 9 10

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

psi 10 20 30 40 50 140 150 160 170 180 190 80 90 100 110 130 140 150 0 5 10 15 20 25 30 60 70 75 80 90 100 110 120 125

xi 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Time: 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250

R1 19 1 2 25 6 7 8 26 12 13 14 33 34

R2 20 21 3 5 8 9 11 27 28 29 30 31 18

R3 21 22 23 3 8 9 10 30 31 15 16 17

R4 23 4 9 10 27 28 29 30 14 15

R5 2 5 8 10 11 26 27 28 13 32 33 34 18

R6 19 1 2 25 6 7 26 27 12 13 14 15 16

R7 20 21 22 23 24 3 4 5 7 8 9 10 27 28 29 30 31 32 33

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

psi 10 20 30 40 50 50 60 70 80 90 100 170 180 190 200 220 230 240 0 5 10 15 20 25 30 150 160 165 170 180 190 200 210 215

xi 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
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Figure 3.19: Increasing the benefit coefficient b12 to give priority to procedure PC 

 

Figure 3.20: Increasing lateness penalty w6 to give priority to procedure PB 

 

Time: 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210

R1 26 12 13 14 33 34 6 7 8 19 1 2 25

R2 27 28 29 30 31 18 8 9 11 20 21 3 5

R3 30 31 15 16 17 8 9 10 21 22 23 3

R4 27 28 29 30 14 15 9 10 23 4

R5 26 27 28 13 32 33 34 18 8 10 11 2 5

R6 26 27 12 13 14 15 16 6 7 19 1 2 25

R7 27 28 29 30 31 32 33 7 8 9 10 20 21 22 23 24 3 4 5

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

psi 160 170 180 190 200 80 90 100 110 120 130 20 30 40 50 70 80 90 150 155 160 165 170 175 180 0 10 15 20 30 40 50 60 65

xi 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

Time: 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250

R1 6 7 8 1 2 12 13 14 19 25 26 33 34

R2 8 9 11 3 5 18 20 21 27 28 29 30 31

R3 8 9 10 3 15 16 17 21 22 23 30 31

R4 9 10 4 14 15 23 27 28 29 30

R5 8 10 11 2 13 5 18 26 27 28 32 33 34

R6 6 7 1 2 12 13 14 15 16 19 25 26 27

R7 7 8 9 10 3 4 5 20 21 22 23 24 27 28 29 30 31 32 33

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

psi 50 60 70 80 90 0 10 20 30 40 50 70 80 90 100 120 130 140 150 155 160 165 170 175 180 185 195 200 205 215 225 235 245 250

xi 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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3.3 Scheduling flexible procedures – the final MPSP model 

Both the simple and enhanced MPSP models do not allow preemption or interruption of 

procedures.  That is, once a procedure begins, it must be completed in a fixed amount of time 

with no breaks in between.  Some medical procedures however, are more flexible.  Take 

haemodialysis for example.  Flexibility exists between the time patient begins dialysis treatment 

and the time the nurse administers IV EPO.  There is also flexibility between the end of the 

patient’s treatment and the time when the nurse disconnects the patient from the machine.  That 

is, the dialysis machine has stopped filtering at the end of the patient’s prescribed treatment 

period but the patient must wait, still hooked up, for the nurse to disconnect him/her.  An 

effective and practical scheduling model must be able to handle such flexibilities.                                                   

3.3.1 Modeling flexible gaps within procedures 

Gaps are flexibility in the workflow where a procedure can be put on hold.  Those gaps 

can themselves be modeled as activities.  These gap activities can have variable durations and 

will typically have empty resource requirements.  Gap activities can represent patient waiting 

and can therefore have wait time penalties associated with them. 

 

Figure 3.21: Using a gap activity to model delay between due time and start time 

Figure 3.21 demonstrates the use of a gap activity to model the delay between the due 

time of procedure PA (at time 0) and its scheduled time (at time 20).  Gap activity 1 has no 

resource requirements and will therefore not conflict with any other procedures.  Gap activities 

are subject to workflow constraints specified by the zij parameter just like any other activity.  

Each procedure will be modeled with a gap activity at the beginning to capture its lateness.  

These first gap activities or starting gap activities will be the only activities that are constrained 

Time: 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

R1 2 3

R2 4 6

R3 4

R4 5

R5 3 6

R6 2 3

R7 4 5 6

1PA:
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to begin at its due time.  All other related activities will be indirectly linked to the due time via 

the starting gap activity and the workflow parameter zij. 

Gap activities can also be used anywhere within a procedure to model situations where a 

procedure is put on hold and a patient waits.  See Figure 3.22.  For example, a patient is prepped 

for surgery then waits for the surgeon to be ready or for the operating room to become available. 

 

Figure 3.22: Using gap activity within a procedure 

Gap activities may also have resource requirements.  In the case of haemodialysis, a 

patient may wait to be disconnected from the dialysis machine.  While waiting, the dialysis 

machine resource is occupied.  Similar situations may arise with other resources such as rooms, 

beds, and equipment.  Gap activities with resource requirements ensure that those resources 

remain occupied while a patient waits.  See Figure 3.23. 

 

Figure 3.23: Gap activity with resource requirement 

A new parameter gi is introduced to distinguish gap activities from other activities. 

J� � r1   �	 ����d��� � �
 � 
�����
J J�� ����d���                                          2   �	 ����d��� � �
 � J�� ����d��� ��� 
�� 
�����
J J�� ����d���0   �������
�                                                                                                  � 

Time: 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105

R1 16 17 18

R2 23

R3 20 21 22

R4 18 19 20

R5 17 23

R6 16 17 18 20 21

R7

PC: 15

Time: 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105

R1 16 17 18

R2 23

R3 20 21 22

R4 18 19 20

R5 17 23

R6 16 17 18 19 20 21

R7

PC: 15
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Figure 3.24 shows the updated mathematical representation of example procedure PC as 

shown in Figure 3.23. 

 

Figure 3.24: Updated mathematical representation of procedure PC 

Note that the starting gap activity 15 does not have any resource requirements but gap 

activity 19 requires resource R6.  Also note the addition of parameter gi.  Gap activities will have 

variable durations so the parameter di does not apply and is set to zero. 

With added flexibility in the model, managing workflow within procedures becomes 

more challenging.  Activities may not need to be scheduled immediately after another but may 

still have pre-requisite activities.  For example: activity 5 must be scheduled after, but not 

necessarily immediately after activity 3.  The workflow parameter zij is modified to capture 

activity pre-requisites. 

q�� � s1   �	 ����d��� � ��
� ���������N� 	�NN�� ����d��� �           2   �	 ����d��� � �
� � ���� ��N�
J �� ��� 
��� ���������3   �	 ����d��� � �
 � ��� X ��g��
��� 	�� ����d��� �               0   �������
�                                                                                       
� 

The introduction of flexibility into the model also reveals the multiple layers or levels of 

a procedure.  The top level is the complete procedure from beginning to end.  The middle level 

consists of portions of the procedure that cannot be interrupted and are separated by gap 

activities.  The lower level consists of the atomic scheduling units of the procedure: the 

activities.  New parameters MLi and TLi are introduced to track these levels to effectively 

manage the workflow of procedures. 

[O� � [�� N�d�N �
��� �	 ����d��� � 
tO� � t�� N�d�N �
��� �	 ����d��� � 

Rri i= 15 16 17 18 19 20 21 22 23 i= 15 16 17 18 19 20 21 22 23 zij j= 15 16 17 18 19 20 21 22 23

R1 0 1 1 1 0 0 0 0 0 di 0 10 10 20 0 10 10 10 10 i=15 2 2 2 2 2 2 2 2 2

R2 0 0 0 0 0 0 0 0 1 i=16 1 2 2 2 2 2 2 2 2

R3 0 0 0 0 0 1 1 1 0 dti 0 0 0 0 0 0 0 0 0 i=17 2 1 2 2 2 2 2 2 2

R4 0 0 0 1 0 1 0 0 0 i=18 2 2 1 2 2 2 2 2 2

R5 0 0 1 0 0 0 0 0 1 bi 0 1 0 0 0 0 0 0 0 i=19 2 2 2 1 2 2 2 2 2

R6 0 1 1 1 1 1 1 0 0 i=20 2 2 2 2 1 2 2 2 2

R7 0 0 0 0 0 0 0 0 0 wi 1 0 0 0 0 0 0 0 0 i=21 2 2 2 2 2 1 2 2 2

i=22 2 2 2 2 2 2 1 2 2

gi 1 0 0 0 2 0 0 0 0 i=23 2 2 2 2 2 2 2 1 2
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The final updated mathematical representation of example procedure PC is shown in 

Figure 3.25. 

 

Figure 3.25: Final updated mathematical representation of procedure PC 

Note all activities of procedure PC belong to top level procedure 3.  However, gap activity 

19 separates the activities into two mid level procedures 5 and 6.  This means that all activities 

belonging to mid level procedure 5 must be scheduled together and activities belonging to mid 

level procedure 6 must be scheduled together.  However, there can be a gap between mid level 

procedures 5 and 6. 

The mathematical models of example procedures PA through PE are shown in Figure 3.26 

through Figure 3.30. 

 

Figure 3.26: Modeling procedure PA with starting gap procedure 

Rri i= 15 16 17 18 19 20 21 22 23 i= 15 16 17 18 19 20 21 22 23 zij j= 15 16 17 18 19 20 21 22 23

R1 0 1 1 1 0 0 0 0 0 di 0 10 10 20 0 10 10 10 10 i=15 2 2 2 2 2 2 2 2 2

R2 0 0 0 0 0 0 0 0 1 i=16 1 2 2 2 2 2 2 2 2

R3 0 0 0 0 0 1 1 1 0 dti 0 0 0 0 0 0 0 0 0 i=17 2 1 2 2 2 2 2 2 2

R4 0 0 0 1 0 1 0 0 0 i=18 2 2 1 2 2 2 2 2 2

R5 0 0 1 0 0 0 0 0 1 bi 0 1 0 0 0 0 0 0 0 i=19 2 2 2 1 2 2 2 2 2

R6 0 1 1 1 1 1 1 0 0 i=20 2 2 2 2 1 2 2 2 2

R7 0 0 0 0 0 0 0 0 0 wi 1 0 0 0 0 0 0 0 0 i=21 2 2 2 2 2 1 2 2 2

i=22 2 2 2 2 2 2 1 2 2

gi 1 0 0 0 2 0 0 0 0 i=23 2 2 2 2 2 2 2 1 2

MLi 5 5 5 5 6 6 6 6 6

TLi 3 3 3 3 3 3 3 3 3

R1 2 3

R2 4 6

R3 4

R4 5

R5 3 6

R6 2 3

R7 4 5 6

Rri i= 1 2 3 4 5 6 i= 1 2 3 4 5 6 zij j= 1 2 3 4 5 6

r=1 0 1 1 0 0 0 di 0 10 10 10 10 10 i=1 2 2 2 2 2 2

r=2 0 0 0 1 0 1 dti 0 0 0 0 0 0 i=2 1 2 2 2 2 2

r=3 0 0 0 1 0 0 bi 0 1 0 0 0 0 i=3 2 1 2 2 2 2

r=4 0 0 0 0 1 0 wi 1 0 0 0 0 0 i=4 2 2 1 2 2 2

r=5 0 0 1 0 0 1 gi 1 0 0 0 0 0 i=5 2 2 2 1 2 2

r=6 0 1 1 0 0 0 MLi 1 1 1 1 1 1 i=6 2 2 2 2 1 2

r=7 0 0 0 1 1 1 TLi 1 1 1 1 1 1

PA: 1
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Figure 3.27: Modeling procedure PB with starting gap procedure 

 

Figure 3.28: Modeling procedure PC with starting gap procedure 

 

Figure 3.29: Modeling procedure PD with starting gap procedure 

R1 8 9 10

R2 10 11 13

R3 10 11 12

R4 11 12

R5 10 12 13

R6 8 9

R7 9 10 11 12

Rri i= 7 8 9 10 11 12 13 i= 7 8 9 10 11 12 13 zij j= 7 8 9 10 11 12 13

r=1 0 1 1 1 0 0 0 di 0 10 10 10 10 10 10 i=7 2 2 2 2 2 2 2

r=2 0 0 0 1 1 0 1 dti 0 0 0 0 0 0 0 i=8 1 2 2 2 2 2 2

r=3 0 0 0 1 1 1 0 bi 0 1 0 0 0 0 0 i=9 2 1 2 2 2 2 2

r=4 0 0 0 0 1 1 0 wi 1 0 0 0 0 0 0 i=10 2 2 1 2 2 2 2

r=5 0 0 0 1 0 1 1 gi 1 0 0 0 0 0 0 i=11 2 2 2 1 2 2 2

r=6 0 1 1 0 0 0 0 MLi 2 2 2 2 2 2 2 i=12 2 2 2 2 1 2 2

r=7 0 0 1 1 1 1 0 TLi 2 2 2 2 2 2 2 i=13 2 2 2 2 2 1 2

7PB:

R1 15 16 17

R2 21

R3 18 19 20

R4 17 18

R5 16 21

R6 15 16 17 18 19

R7

Rri i= 14 15 16 17 18 19 20 21 i= 14 15 16 17 18 19 20 21 zij j= 14 15 16 17 18 19 20 21

r=1 0 1 1 1 0 0 0 0 di 0 10 10 10 20 10 10 10 i=14 2 2 2 2 2 2 2 2

r=2 0 0 0 0 0 0 0 1 dti 0 0 0 0 0 0 0 0 i=15 1 2 2 2 2 2 2 2

r=3 0 0 0 0 1 1 1 0 bi 0 1 0 0 0 0 0 0 i=16 2 1 2 2 2 2 2 2

r=4 0 0 0 1 1 0 0 0 wi 1 0 0 0 0 0 0 0 i=17 2 2 1 2 2 2 2 2

r=5 0 0 1 0 0 0 0 1 gi 1 0 0 0 0 0 0 0 i=18 2 2 2 1 2 2 2 2

r=6 0 1 1 1 1 1 0 0 MLi 3 3 3 3 3 3 3 3 i=19 2 2 2 2 1 2 2 2

r=7 0 0 0 0 0 0 0 0 TLi 3 3 3 3 3 3 3 3 i=20 2 2 2 2 2 1 2 2

i=21 2 2 2 2 2 2 1 2

14PC:

R1 23 29

R2 24 25

R3 25 26 27

R4 27

R5

R6 23 29

R7 24 25 26 27 28

Rri i= 22 23 24 25 26 27 28 29 i= 22 23 24 25 26 27 28 29 zij j= 22 23 24 25 26 27 28 29

r=1 0 1 0 0 0 0 0 1 di 0 5 5 5 5 5 5 5 i=22 2 2 2 2 2 2 2 2

r=2 0 0 1 1 0 0 0 0 dti 0 0 0 0 0 0 0 0 i=23 1 2 2 2 2 2 2 2

r=3 0 0 0 1 1 1 0 0 bi 0 1 0 0 0 0 0 0 i=24 2 1 2 2 2 2 2 2

r=4 0 0 0 0 0 1 0 0 wi 1 0 0 0 0 0 0 0 i=25 2 2 1 2 2 2 2 2

r=5 0 0 0 0 0 0 0 0 gi 1 0 0 0 0 0 0 0 i=26 2 2 2 1 2 2 2 2

r=6 0 1 0 0 0 0 0 1 MLi 4 4 4 4 4 4 4 4 i=27 2 2 2 2 1 2 2 2

r=7 0 0 1 1 1 1 1 0 TLi 4 4 4 4 4 4 4 4 i=28 2 2 2 2 2 1 2 2

i=29 2 2 2 2 2 2 1 2

22PD:
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Figure 3.30: Modeling procedure PE with starting gap procedure 

The added flexibility discussed in this section allows one to now fully model the 

haemodialysis procedure.  Consider a very small dialysis clinic with two nurses (R1 and R2), six 

dialysis machines (R3 to R8), and one technician (R9).  The entire dialysis appointment is 

modeled using two procedures.  The technician activities constitute one procedure while the 

nurse activities constitute the other procedure.  The status of machines is included in both 

procedures.  Example of a dialysis appointment for one patient involving nurse R1, machine R3, 

and technician R9 is illustrated in Figure 3.31.  A description of each activity can be found in 

Table 3-1.  The mathematical representation of those activities of a dialysis appointment is 

illustrated in Figure 3.32. 

 

 

Figure 3.31: Example dialysis appointment 

R1 31 38 39

R2 32 33 34 35 36

R3 35 36

R4 32 33 34 35

R5 31 32 33 37 38 39

R6 31 32

R7 32 33 34 35 36 37 38

Rri i= 30 31 32 33 34 35 36 37 38 39 i= 30 31 32 33 34 35 36 37 38 39 zij j= 30 31 32 33 34 35 36 37 38 39

r=1 0 1 0 0 0 0 0 0 1 1 di 0 10 5 5 10 10 10 10 5 5 i=30 2 2 2 2 2 2 2 2 2 2

r=2 0 0 1 1 1 1 1 0 0 0 dti 0 0 0 0 0 0 0 0 0 0 i=31 1 2 2 2 2 2 2 2 2 2

r=3 0 0 0 0 0 1 1 0 0 0 bi 0 1 0 0 0 0 0 0 0 0 i=32 2 1 2 2 2 2 2 2 2 2

r=4 0 0 1 1 1 1 0 0 0 0 wi 1 0 0 0 0 0 0 0 0 0 i=33 2 2 1 2 2 2 2 2 2 2

r=5 0 1 1 1 0 0 0 1 1 1 gi 1 0 0 0 0 0 0 0 0 0 i=34 2 2 2 1 2 2 2 2 2 2

r=6 0 1 1 0 0 0 0 0 0 0 MLi 5 5 5 5 5 5 5 5 5 5 i=35 2 2 2 2 1 2 2 2 2 2

r=7 0 0 1 1 1 1 1 1 1 0 TLi 5 5 5 5 5 5 5 5 5 5 i=36 2 2 2 2 2 1 2 2 2 2

i=37 2 2 2 2 2 2 1 2 2 2

i=38 2 2 2 2 2 2 2 1 2 2

i=39 2 2 2 2 2 2 2 2 1 2

PE: 30

R1 1 R1 3 4 5 9 11

R2 R2

R3 2 R3 8 11

R4 R4

R5 R5

R6 R6

R7 R7

R8 R8

R9 2 R9

6 7

7

10 12

12

13
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Table 3-1: Descriptions for activities of example dialysis appointment 

Activity Description 
Duration 
(min) 

Pre-requisite 

1 Starting gap activity for technician activities Variable  

2 
Technician (R9) primes and disinfects the machine (R3).  Machine 
is occupied 

5  

3 Starting gap activity for nurse activities Variable  

4 Nurse reviews patient paperwork 5  

5 Gap activity representing patient waiting to be called Variable  

6 Pre-dialysis procedures: measure weight, wash access 10  

7 
Pre-dialysis procedures: check temp, bp.  Nurse connects patient 
to machine.  Machine is occupied 

10 Activity 2 

8 
Dialysis treatment.  Machine is occupied, running treatment.  
Duration varies from patient to patient 

80 – 160  

9 Gap activity to link IV service with start of treatment period Variable  

10 
Nurse provides IV and assessment services.  Duration depends on 
which services patient needs 

5 – 25 Activity 7 

11 
Gap activity representing patient waiting to be disconnected after 
treatment is complete.  Machine is occupied 

Variable  

12 Nurse disconnects patient from machine.  Wait for haemostasis 10 Activity 10 

13 Post dialysis procedure: measure bp, weight etc 10  

 

Figure 3.32: Mathematical representation of example dialysis appointment 

Recall from section 2.1.3, a typical dialysis treatment lasts between 180 to 270 minutes.  

The dialysis treatment activity 8 in these examples has durations between 80 and 160 minutes.  

The model of dialysis treatment was intentionally shortened for no other reason than to fit 

graphically into pages of this thesis.  The shortened dialysis treatment is still effective in 

demonstrating the scheduling model. 

This example dialysis clinic has six machines; it can accommodate six patients (patients 

A through F) at one time.  The nurse and machine assignment for patients is listed in Table 3-2.  

The model for appointment of patient A is already illustrated in Figure 3.31 and Figure 3.32.  The 

models for appointments of patients B through F are shown in Figure 3.33 through Figure 3.37. 

Rri i= 1 2 3 4 5 6 7 8 9 10 11 12 13 i= 1 2 3 4 5 6 7 8 9 10 11 12 13 zij j= 1 2 3 4 5 6 7 8 9 10 11 12 13

R1 0 0 0 1 0 1 1 0 0 1 0 1 1 di 0 5 0 5 0 10 10 80 0 10 0 10 10 i=1 2 2 0 0 0 0 0 0 0 0 0 0 0

R2 0 0 0 0 0 0 0 0 0 0 0 0 0 i=2 1 2 0 0 0 0 0 0 0 0 0 0 0

R3 0 1 0 0 0 0 1 1 0 0 1 1 0 dti 0 0 0 0 0 0 0 0 0 0 0 0 0 i=3 0 0 2 2 2 2 2 2 0 0 2 2 2
R4 0 0 0 0 0 0 0 0 0 0 0 0 0 i=4 0 0 1 2 2 2 2 2 0 0 2 2 2
R5 0 0 0 0 0 0 0 0 0 0 0 0 0 bi 0 1 0 0 0 0 0 0 0 0 0 0 0 i=5 0 0 2 1 2 2 2 2 0 0 2 2 2
R6 0 0 0 0 0 0 0 0 0 0 0 0 0 i=6 0 0 2 2 1 2 2 2 0 0 2 2 2
R7 0 0 0 0 0 0 0 0 0 0 0 0 0 wi 0 0 1 0 1 0 0 0 0 0 1 0 0 i=7 0 3 2 2 2 1 2 2 0 0 2 2 2
R8 0 0 0 0 0 0 0 0 0 0 0 0 0 i=8 0 0 2 2 2 2 1 2 0 0 2 2 2
R9 0 1 0 0 0 0 0 0 0 0 0 0 0 gi 1 0 1 0 2 0 0 0 2 0 2 0 0 i=9 0 0 0 0 0 0 1 0 2 2 0 0 0

i=10 0 0 0 0 0 0 3 0 1 2 0 0 0
MLi 1 1 2 2 3 3 3 3 4 4 5 5 5 i=11 0 0 2 2 2 2 2 1 0 0 2 2 2

i=12 0 0 2 2 2 2 2 2 0 3 1 2 2
TLi 1 1 1 1 1 1 1 1 1 1 1 1 1 i=13 0 0 2 2 2 2 2 2 0 0 2 1 2
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Table 3-2: Nurse and machine assignments for patients A through F 

Patient: A B C D E F 

Nurse: R1 R2 R1 R2 R1 R2 

Machine: R3 R4 R5 R6 R7 R8 

 

 

Figure 3.33: Time diagram and parameters of dialysis appointment for patient B 

 

 

Figure 3.34: Time diagram and parameters of dialysis appointment for patient C 

R1 14 R1 16 18 24

R2 R2 17 19 20 22 23 25 26

R3 R3

R4 15 R4 20 21 24 25

R5 R5

R6 R6

R7 R7

R8 R8

R9 15 R9

Rri i= 14 15 16 17 18 19 20 21 22 23 24 25 26 i= 14 15 16 17 18 19 20 21 22 23 24 25 26 zij j= 14 15 16 17 18 19 20 21 22 23 24 25 26

R1 0 0 0 0 0 0 0 0 0 0 0 0 0 di 0 5 0 5 0 10 10 100 0 20 0 10 10 i=14 2 2 0 0 0 0 0 0 0 0 0 0 0

R2 0 0 0 1 0 1 1 0 0 1 0 1 1 i=15 1 2 0 0 0 0 0 0 0 0 0 0 0

R3 0 0 0 0 0 0 0 0 0 0 0 0 0 dti 0 0 0 0 0 0 0 0 0 0 0 0 0 i=16 0 0 2 2 2 2 2 2 0 0 2 2 2
R4 0 1 0 0 0 0 1 1 0 0 1 1 0 i=17 0 0 1 2 2 2 2 2 0 0 2 2 2
R5 0 0 0 0 0 0 0 0 0 0 0 0 0 bi 0 1 0 0 0 0 0 0 0 0 0 0 0 i=18 0 0 2 1 2 2 2 2 0 0 2 2 2
R6 0 0 0 0 0 0 0 0 0 0 0 0 0 i=19 0 0 2 2 1 2 2 2 0 0 2 2 2
R7 0 0 0 0 0 0 0 0 0 0 0 0 0 wi 0 0 1 0 1 0 0 0 0 0 1 0 0 i=20 0 3 2 2 2 1 2 2 0 0 2 2 2
R8 0 0 0 0 0 0 0 0 0 0 0 0 0 i=21 0 0 2 2 2 2 1 2 0 0 2 2 2
R9 0 1 0 0 0 0 0 0 0 0 0 0 0 gi 1 0 1 0 2 0 0 0 2 0 2 0 0 i=22 0 0 0 0 0 0 1 0 2 2 0 0 0

i=23 0 0 0 0 0 0 3 0 1 2 0 0 0
MLi 6 6 7 7 8 8 8 8 9 9 10 10 10 i=24 0 0 2 2 2 2 2 1 0 0 2 2 2

i=25 0 0 2 2 2 2 2 2 0 3 1 2 2
TLi 2 2 2 2 2 2 2 2 2 2 2 2 2 i=26 0 0 2 2 2 2 2 2 0 0 2 1 2

R1 27 R1 29 30 31 32 33 35 36 37 38 39

R2 R2

R3 R3

R4 R4

R5 28 R5 33 34 37 38

R6 R6

R7 R7

R8 R8

R9 28 R9

Rri i= 27 28 29 30 31 32 33 34 35 36 37 38 39 i= 27 28 29 30 31 32 33 34 35 36 37 38 39 zij j= 27 28 29 30 31 32 33 34 35 36 37 38 39

R1 0 0 0 1 0 1 1 0 0 1 0 1 1 di 0 5 0 5 0 10 10 90 0 10 0 10 10 i=27 2 2 0 0 0 0 0 0 0 0 0 0 0

R2 0 0 0 0 0 0 0 0 0 0 0 0 0 i=28 1 2 0 0 0 0 0 0 0 0 0 0 0

R3 0 0 0 0 0 0 0 0 0 0 0 0 0 dti 0 0 0 0 0 0 0 0 0 0 0 0 0 i=29 0 0 2 2 2 2 2 2 0 0 2 2 2
R4 0 0 0 0 0 0 0 0 0 0 0 0 0 i=30 0 0 1 2 2 2 2 2 0 0 2 2 2
R5 0 1 0 0 0 0 1 1 0 0 1 1 0 bi 0 1 0 0 0 0 0 0 0 0 0 0 0 i=31 0 0 2 1 2 2 2 2 0 0 2 2 2
R6 0 0 0 0 0 0 0 0 0 0 0 0 0 i=32 0 0 2 2 1 2 2 2 0 0 2 2 2
R7 0 0 0 0 0 0 0 0 0 0 0 0 0 wi 0 0 1 0 1 0 0 0 0 0 1 0 0 i=33 0 3 2 2 2 1 2 2 0 0 2 2 2
R8 0 0 0 0 0 0 0 0 0 0 0 0 0 i=34 0 0 2 2 2 2 1 2 0 0 2 2 2
R9 0 1 0 0 0 0 0 0 0 0 0 0 0 gi 1 0 1 0 2 0 0 0 2 0 2 0 0 i=35 0 0 0 0 0 0 1 0 2 2 0 0 0

i=36 0 0 0 0 0 0 3 0 1 2 0 0 0
MLi 11 11 12 12 13 13 13 13 14 14 15 15 15 i=37 0 0 2 2 2 2 2 1 0 0 2 2 2

i=38 0 0 2 2 2 2 2 2 0 3 1 2 2
TLi 3 3 3 3 3 3 3 3 3 3 3 3 3 i=39 0 0 2 2 2 2 2 2 0 0 2 1 2
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Figure 3.35: Time diagram and parameters of dialysis appointment for patient D 

 

Figure 3.36: Time diagram and parameters of dialysis appointment for patient E 

R1 40 R1 42 44 50

R2 R2 43 45 46 48 49 51 52

R3 R3

R4 R4

R5 R5

R6 41 R6 46 47 50 51

R7 R7

R8 R8

R9 41 R9

Rri i= 40 41 42 43 44 45 46 47 48 49 50 51 52 i= 40 41 42 43 44 45 46 47 48 49 50 51 52 zij j= 40 41 42 43 44 45 46 47 48 49 50 51 52

R1 0 0 0 0 0 0 0 0 0 0 0 0 0 di 0 5 0 5 0 10 10 120 0 10 0 10 10 i=40 2 2 0 0 0 0 0 0 0 0 0 0 0

R2 0 0 0 1 0 1 1 0 0 1 0 1 1 i=41 1 2 0 0 0 0 0 0 0 0 0 0 0

R3 0 0 0 0 0 0 0 0 0 0 0 0 0 dti 0 0 0 0 0 0 0 0 0 0 0 0 0 i=42 0 0 2 2 2 2 2 2 0 0 2 2 2
R4 0 0 0 0 0 0 0 0 0 0 0 0 0 i=43 0 0 1 2 2 2 2 2 0 0 2 2 2
R5 0 0 0 0 0 0 0 0 0 0 0 0 0 bi 0 1 0 0 0 0 0 0 0 0 0 0 0 i=44 0 0 2 1 2 2 2 2 0 0 2 2 2
R6 0 1 0 0 0 0 1 1 0 0 1 1 0 i=45 0 0 2 2 1 2 2 2 0 0 2 2 2
R7 0 0 0 0 0 0 0 0 0 0 0 0 0 wi 0 0 1 0 1 0 0 0 0 0 1 0 0 i=46 0 3 2 2 2 1 2 2 0 0 2 2 2
R8 0 0 0 0 0 0 0 0 0 0 0 0 0 i=47 0 0 2 2 2 2 1 2 0 0 2 2 2
R9 0 1 0 0 0 0 0 0 0 0 0 0 0 gi 1 0 1 0 2 0 0 0 2 0 2 0 0 i=48 0 0 0 0 0 0 1 0 2 2 0 0 0

i=49 0 0 0 0 0 0 3 0 1 2 0 0 0
MLi 16 16 17 17 18 18 18 18 19 19 20 20 20 i=50 0 0 2 2 2 2 2 1 0 0 2 2 2

i=51 0 0 2 2 2 2 2 2 0 3 1 2 2
TLi 4 4 4 4 4 4 4 4 4 4 4 4 4 i=52 0 0 2 2 2 2 2 2 0 0 2 1 2

R1 53 R1 55 56 57 58 59 61 62 63 64 65

R2 R2

R3 R3

R4 R4

R5 R5

R6 R6

R7 54 R7 59 60 63 64

R8 R8

R9 54 R9

Rri i= 53 54 55 56 57 58 59 60 61 62 63 64 65 i= 53 54 55 56 57 58 59 60 61 62 63 64 65 zij j= 53 54 55 56 57 58 59 60 61 62 63 64 65

R1 0 0 0 1 0 1 1 0 0 1 0 1 1 di 0 5 0 5 0 10 10 85 0 15 0 10 10 i=53 2 2 0 0 0 0 0 0 0 0 0 0 0

R2 0 0 0 0 0 0 0 0 0 0 0 0 0 i=54 1 2 0 0 0 0 0 0 0 0 0 0 0

R3 0 0 0 0 0 0 0 0 0 0 0 0 0 dti 0 0 0 0 0 0 0 0 0 0 0 0 0 i=55 0 0 2 2 2 2 2 2 0 0 2 2 2
R4 0 0 0 0 0 0 0 0 0 0 0 0 0 i=56 0 0 1 2 2 2 2 2 0 0 2 2 2
R5 0 0 0 0 0 0 0 0 0 0 0 0 0 bi 0 1 0 0 0 0 0 0 0 0 0 0 0 i=57 0 0 2 1 2 2 2 2 0 0 2 2 2
R6 0 0 0 0 0 0 0 0 0 0 0 0 0 i=58 0 0 2 2 1 2 2 2 0 0 2 2 2
R7 0 1 0 0 0 0 1 1 0 0 1 1 0 wi 0 0 1 0 1 0 0 0 0 0 1 0 0 i=59 0 3 2 2 2 1 2 2 0 0 2 2 2
R8 0 0 0 0 0 0 0 0 0 0 0 0 0 i=60 0 0 2 2 2 2 1 2 0 0 2 2 2
R9 0 1 0 0 0 0 0 0 0 0 0 0 0 gi 1 0 1 0 2 0 0 0 2 0 2 0 0 i=61 0 0 0 0 0 0 1 0 2 2 0 0 0

i=62 0 0 0 0 0 0 3 0 1 2 0 0 0
MLi 21 21 22 22 23 23 23 23 24 24 25 25 25 i=63 0 0 2 2 2 2 2 1 0 0 2 2 2

i=64 0 0 2 2 2 2 2 2 0 3 1 2 2
TLi 5 5 5 5 5 5 5 5 5 5 5 5 5 i=65 0 0 2 2 2 2 2 2 0 0 2 1 2
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Figure 3.37: Time diagram and parameters of dialysis appointment for patient F 

The next section discusses modification to the scheduling model to schedule flexibility 

introduced with the gap activities. 

3.3.2 MIP formulation of the final MPSP model 

The lateness variable in the enhanced MPSP model is now redundant because lateness is 

now represented by the duration of starting gap activities.  Therefore, the first modification is to 

reuse variable li to model the variable duration of gap activities.   

N� �  �����N� �������
 �	 J�� ����d��� �          \�: 6J� ] 08 
Reusing variable li is convenient because the objective function need not be modified.  

However, many constraints need to be modified to accommodate the added flexibility of gap 

activities.  Constraints C1 and C2 should only be enforced for activities that are not starting gap 

activities.  Constraint C3 ensures that starting gap activities are always scheduled at their 

respective due times. 

C1 �
� ) �� X 61 X ��8[ ; �             \�: 6J� ] 18 
C2 �
� ) ��� C �                            \�: 6J� ] 18 
C3 �
� � ���                        \�: 6J� � 18 
The conflict resolution constraints C4 and C5 are each separated into two versions (a and 

b) to accommodate both the regular activities and the special gap activities. 

R1 66 R1 68 70 76

R2 R2 69 71 72 74 75 77 78

R3 R3

R4 R4

R5 R5

R6 R6

R7 R7

R8 67 R8 72 73 76 77

R9 67 R9

Rri i= 66 67 68 69 70 71 72 73 74 75 76 77 78 i= 66 67 68 69 70 71 72 73 74 75 76 77 78 zij j= 66 67 68 69 70 71 72 73 74 75 76 77 78

R1 0 0 0 0 0 0 0 0 0 0 0 0 0 di 0 5 0 5 0 10 10 130 0 25 0 10 10 i=66 2 2 0 0 0 0 0 0 0 0 0 0 0

R2 0 0 0 1 0 1 1 0 0 1 0 1 1 i=67 1 2 0 0 0 0 0 0 0 0 0 0 0

R3 0 0 0 0 0 0 0 0 0 0 0 0 0 dti 0 0 0 0 0 0 0 0 0 0 0 0 0 i=68 0 0 2 2 2 2 2 2 0 0 2 2 2
R4 0 0 0 0 0 0 0 0 0 0 0 0 0 i=69 0 0 1 2 2 2 2 2 0 0 2 2 2
R5 0 0 0 0 0 0 0 0 0 0 0 0 0 bi 0 1 0 0 0 0 0 0 0 0 0 0 0 i=70 0 0 2 1 2 2 2 2 0 0 2 2 2
R6 0 0 0 0 0 0 0 0 0 0 0 0 0 i=71 0 0 2 2 1 2 2 2 0 0 2 2 2
R7 0 0 0 0 0 0 0 0 0 0 0 0 0 wi 0 0 1 0 1 0 0 0 0 0 1 0 0 i=72 0 3 2 2 2 1 2 2 0 0 2 2 2
R8 0 1 0 0 0 0 1 1 0 0 1 1 0 i=73 0 0 2 2 2 2 1 2 0 0 2 2 2
R9 0 1 0 0 0 0 0 0 0 0 0 0 0 gi 1 0 1 0 2 0 0 0 2 0 2 0 0 i=74 0 0 0 0 0 0 1 0 2 2 0 0 0

i=75 0 0 0 0 0 0 3 0 1 2 0 0 0
MLi 26 26 27 27 28 28 28 28 29 29 30 30 30 i=76 0 0 2 2 2 2 2 1 0 0 2 2 2

i=77 0 0 2 2 2 2 2 2 0 3 1 2 2
TLi 6 6 6 6 6 6 6 6 6 6 6 6 6 i=78 0 0 2 2 2 2 2 2 0 0 2 1 2
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C4a �
�j X �
� ) Y1 X ��,�jZ[ C ��       

 \�, �2: Yef� � ef�j � 1 n  q�j,� � 0 n  J� � 0 n  � ] �2Z 
C4b �
�j X �
� ) Y1 X ��,�jZ[ C N�     

 \�, �2: Yef� � ef�j � 1 n q�j,� � 0 n J� ] 0 n � ] �2Z 
C5a �
� X �
�j )[��,�j C ��j        

 \�, �2: 6ef� � ef�j � 1 n q�j,� � 0 n J�j � 0 n  � ] �28 
C5b �
� X �
�j )[��,�j C N�j        

 \�, �2: 6ef� � ef�j � 1 n q�j,� � 0 n J�j ] 0 n  � ] �28 
Version a of both constraints C4 and C5 deal with regular activities that have fixed 

durations di, version b deal with gap activities with variable durations li. 

The non-negativity (C6) and integer (C7) remain unchanged.  The workflow constraint 

C8, similar to the conflict resolution constraints, is also separated into two versions. 

C8a �
� X �
� � ��               \�, �: Yq�� � 1 n J� � 0Z 
C8b �
� X �
� � N�              \�, �: 6q�� � 1 n J� ] 08 
Once again, version a deals with activities with fixed durations di and version b deals 

with gap activities with variable durations li. 

The zij workflow parameter is no longer sufficient for modeling the relationship between 

activities for constraint C9.  The enforcement criterion for constraint C9 is modified to use the 

TPi parameter to group activities together. 

C9 �� X �� � 0               \�, �: 6tQ� � tQ�  n � ] �8 
Finally, a new constraint is added to enforce activity pre-requisites. 

C10 ��,�j � 0                \�, �: 6q�� � 38 
Constraint C10 dictates that if activity j is a pre-requisite for activity i, then activity j 

must be scheduled before activity i. 
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This model is designated the final MPSP model, or MPSP model for short.  A full 

summary of its mathematical formulation can be found in Appendix E.  The MPSP model is this 

thesis’ contribution of a novel scheduling model.  The next section will discuss the solving of the 

MPSP model. 

3.3.3 Solving the MPSP model 

The optimal solution of the MPSP model for general procedures is shown in Figure 3.38.  

Despite using a different technique to model procedure flexibility, the MPSP model produces 

conflict-free schedules just like those produced by the enhanced MPSP model.  That is, the 

conflict resolution capability is preserved.  The strength of the MPSP model in handling 

complexity and flexibility is demonstrated in scheduling of dialysis procedures.  Figure 3.39 

shows the optimal schedule of dialysis treatment that involves 2 nurses and 6 patients.  The 

MPSP model is able to manipulate flexibilities in the dialysis procedures to optimize the 

objective function. 

The MPSP model retains the same objective function as the simple and enhanced MPSP 

models.  Therefore, its behaviour can be manipulated by adjusting the benefit and lateness 

penalty coefficients. 

The next section will discuss the scalability of the final MPSP model to schedule larger 

problems. 
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Figure 3.38: Optimal solution (schedule) to general MPSP model with p=150 

 

Figure 3.39: Optimal solution (schedule) of dialysis procedures with 2 nurses and 6 patients 

Time: 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250

R1 23 2 3 29 8 9 10 31 15 16 17 38 39

R2 24 25 4 6 10 11 13 32 33 34 35 36 21

R3 25 26 27 4 10 11 12 35 36 18 19 20

R4 27 5 11 12 32 33 34 35 17 18

R5 3 6 10 12 13 31 32 33 16 37 38 39 21

R6 23 2 3 29 8 9 31 32 15 16 17 18 19

R7 24 25 26 27 28 4 5 6 9 10 11 12 32 33 34 35 36 37 38

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

psi 0 10 20 30 40 50 0 50 60 70 80 90 100 0 170 180 190 200 220 230 240 0 0 5 10 15 20 25 30 0 150 160 165 170 180 190 200 210 215

xi 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

Time: 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230

R1 4 6 7 56 58 59 30 32 33 62 10 12 13 64 65 36 38 39

R2 17 19 20 43 45 46 69 71 72 49 23 25 26 75 51 52 77 78

R3 2 7 8 12

R4 15 20 21 25

R5 28 33 34 38

R6 41 46 47 51

R7 54 59 60 64

R8 67 72 73 77

R9 2 15 41 67 54 28
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3.4 Scalability of the MPSP model 

This section will discuss the robustness of the MPSP model in handling problems of 

different sizes.  There are two dimensions into which the MPSP model can be scaled.  One can 

change the number of procedures to schedule and/or change the number of resources to model.  

The MPSP model was designed to be general and flexible to be able to model a variety of 

scheduling problems.  The MPSP model can theoretically model any number of procedures.  

This gives the model freedom in scope.  That is, the user can theoretically model scheduling 

problems of any time frame, be it one hour, one shift, one day, one week etc.  The MPSP model 

can also model any number of resources thus allowing the user to theoretically model clinics of 

any size.  The modeling capability of the MPSP model is infinitely scalable.  Modeling 

additional procedures and/or resources simply requires adding more variables and constraints to 

the model.  However, additional variables and constraints introduce more dimensions to a 

problem, increasing the order and size of its solution space.  As a result, more effort is required 

to solve the problem.  Therefore, though the modeling capability of the MPSP model is infinitely 

scalable, the solvability is most certainly not. 

3.4.1 Scaling the MPSP model for general procedures 

We continue with the example clinic with 7 resources.  Let us see how the problem scales 

relative to the number of procedures to schedule.  Table 3-3 together with Figure 3.40 and Figure 

3.41 show the number of variables and constraints needed to model increasing number of 

procedures.  Note that activities are the atomic scheduling units of the MPSP model.  The model 

is scaled up by increasing the number of activities.  However, the number of activities is 

increased by denominations that result in integer numbers of full procedures.  For example, 21 

activities are required to model procedures PA, PB, and PC.  29 activities are required to model 

procedures PA through PD and so on.  Additional instances of procedures PA through PE are 

modeled to further increase the problem scale.  For example, 45 activities model 2 instances of 

PA and 1 instance each of PB through PE; 52 activities model 2 instances each of PA, PB and 1 

instance each of PC through PE and so on. 
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Table 3-3: Model growth as number of activities increase 

 

 

Figure 3.40: Number of variables vs. number of activities 

 

Figure 3.41: Number of constraints vs. number of activities 

The data in Table 3-3 and graphs in Figure 3.40 and Figure 3.41 show that the number of 

variables and constraints grow almost linearly with respect to the number of activities.  There is 

theoretically no limit to the number of procedure that is possible to model.  However, the 

difficulty of solving increasing model size is made apparent by the data and graphs in Table 3-4, 

Figure 3.42 and Figure 3.43.  Models are solved on a Dell Optiplex workstation with Intel Core2 

Duo processor running at 2.13GHz with 2 GB memory. 

Procedures Activities Variables Constraints

3 21 113 247

4 29 198 428

5 39 379 814

6 45 499 1056

7 52 690 1444
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Table 3-4: Effort required for solving problems of increasing size 

 

 

Figure 3.42: Solver run-time vs. number of activities 

 

Figure 3.43: Solver memory consumption vs. number of activities 

Unfortunately, the effort required to solve problems of increasing size grows 

exponentially. The time to solve a model with 39 activities was a reasonable 40 seconds.  

However, a mere 6 more activities in the model required nearly 9 minutes to solve.  7 more 

activities pushed the solve time to 3 hours.  The memory consumption data represent the relative 

size of the search space of each problem.  Clearly, the added dimensions of additional variables 

inflate the search space exponentially. 

Procedures Activities Run-time (s) Memory Used (mb)

3 21 0.2 0.4

4 29 1.1 0.9

5 39 39.5 4.3

6 45 532 31.5

7 52 10936.7 198.3
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An exponential growth in solver effort was expected but not to the degree presented here.  

The example problems in Table 3-4 are relatively small sized problems, much smaller than real 

world scheduling problems.  Yet solving these small problems exactly already requires 

impractical computational cost.  Performance of the branch and cut solver must be improved for 

the MPSP model to be practical. 

3.4.2 Scaling the MPSP model for dialysis procedures 

Scaling the MPSP model to schedule dialysis procedures is an interesting exercise.  A 

dialysis clinic is really made up of smaller groups of patients and nurses.  During a typical shift, 

each nurse is usually assigned 3 or 4 patients under her care.  Each patient is assigned his/her 

own machine to use throughout the treatment procedure.  These patient/nurse groupings do not 

interfere with other groupings.  Table 3-5 summarizes attempts at scaling the MPSP model for 

dialysis procedures.  Figure 3.44 and Figure 3.45 show the growth of computational effort with 

growing problem size. 

Table 3-5: Scaling the dialysis scheduling model 

 

 

Nurses Patients Resources Activities Variables Constraints Run-time (s) Memory Used (mb)

1 2 4 26 111 294 0.1 0.4

1 3 5 39 222 551 4.5 1.6

1 4 6 52 370 882 53587.5 329.8

2 4 7 48 214 538 0.6 0.9

2 6 9 78 453 1118 78386.1 373.3

3 6 10 78 345 902 119.5 12.1

3 9 14 117 675 1667 >247038.1 >1963.2
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Figure 3.44: Solver run-time vs. number of activities 

 

Figure 3.45: Solver memory consumption vs. number of activities 

First observation is that the exponential growth in computational cost severely limits the 

scalability of the MPSP model for dialysis.  The last example problem with 3 nurses and 9 

patients was run for nearly 3 days without finding the optimal solution.  In fact, the solver 

consumed all memory on the test computer and crashed.  For all intents and purposes, the 

example problem with 3 nurses and 9 patients is intractable.  In addition, Figure 3.44 and Figure 

3.45 clearly show that the dialysis scheduling problem scales much differently than the general 

procedures scheduling problem.  The sudden peaks and valleys in Figure 3.44 is behaviour 

caused by the distinct patient/nurse groupings.  The characteristic with seemingly the most 

impact on computational effort is the number of patient per nurse.  2 patients per nurse problems 
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are much easier to solve than 3 patients per nurse problems.  For example, 2 nurses and 6 

patients case (case A) requires the same number of activities to model as the 3 nurses and 6 

patients case (case B) yet case A took over 21 hours to solve compared to a brisk 2 minutes to 

solve case B.  Case A, being a 3 patients per nurse problem is clearly much more difficult to 

solve than case B which is a 2 patients per nurse problem. 

The dialysis scheduling problem is interesting in that the problem of scheduling an entire 

dialysis clinic can be decomposed into problems of scheduling multiple groupings of 1 nurse, 3 

patients, and 3 machines.  However, there is a link between the groupings formed by the machine 

technician.  A clinic typically employs only 1 or 2 technicians to help operate and maintain all 

the machines.  Technicians do not fit nicely into the neat patient/nurse groupings.  If the dialysis 

scheduling problem is to be decomposed into multiple problems of scheduling patient/nurse 

groupings, the technicians must be scheduled using a different model.  This thesis does not 

pursue any separate technician scheduling models.   

This section points out that different sized dialysis scheduling problems can be solved by 

decomposing the problem into smaller patient/nurse groupings rather than continuously scaling 

up one model of the entire clinic.  Unfortunately, real world dialysis scheduling problems 

typically involve patient/nurse groupings of 3 or 4 patients per nurse.  While the 1 nurse, 3 

patients problem is easily solved in 4.5 seconds, the 1 nurse, 4 patients case takes an 

impractically long 14.9 hours to solve.  Despite the option of decomposing the dialysis 

scheduling problem into smaller problems, the performance of the MIP model still needs 

improvement. 

3.5 MPSP model summary 

To summarize this chapter: a novel scheduling model called the MPSP model has been 

developed for the medical procedures scheduling problem.  The MPSP model is formulated as a 

linear programming problem, specifically, a mixed-integer programming problem.  It is designed 

to be general and flexible to model a wide variety of procedures.  Its flexibility has been 

demonstrated in modeling procedures at a haemodialysis clinic.  Please see Appendix F for a 

brief example application of the MPSP model in scheduling a different medical procedure: PET-

CT scan.   
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The MPSP model can be solved exactly using the branch and cut (BnC) method which 

guarantees solution optimality.  Unfortunately, the computational cost of solving the MPSP 

model exactly is impractically high even for small size problems.  A high quality heuristic 

algorithm is needed to quickly produce good solutions.  A good heuristic solution can be fed into 

the BnC solver to reduce the solution space of the MPSP model which will lower the 

computational cost. 

The next chapter continues the contribution of this thesis by developing a novel heuristic 

algorithm to quickly find high quality solutions. 

  



82 

 

Chapter 4: Heuristic scheduling algorithm 

The previous section pointed out that a heuristic algorithm is needed for generating good 

initial solutions to feed to the branch and cut solver to improve performance and practicality of 

the MPSP model.  This chapter develops and evaluates such a heuristic algorithm.  Work in this 

chapter represents a major thesis contribution. 

4.1 Exploiting the scheduling problem structure 

Good heuristic algorithms typically exploit the structure or nuances of their respective 

problems.  For example, a simple, effective heuristic to solve the traveling salesman problem is 

the nearest neighbor (NN) algorithm.  NN is a greedy algorithm that simply tells the “salesman” 

to go to the next closest city to his/her current location. 

Development of a scheduling heuristic begins with analysis of the scheduling problem 

structure.  At the core of the medical procedures scheduling problem is really an advanced bin 

packing problem.  Procedures are analogous to items of different shapes and sizes.  The 

scheduling period can be considered the “bin” to pack in procedures.  The deterministic 

procedures model presented in Figure 3.26 through Figure 3.30 in section 3.3 are items with well 

defined shapes and sizes.  The packing of those items/procedures into the scheduling period 

“bin” is analogous to building a conflict-free schedule and is actually quite easy to do.  The next 

section presents a simple algorithm to “pack the schedule bin.” 

4.2 Matrix shift heuristic (MASH) 

Consider two bins: A and B.  Bin A represents the schedule and therefore has its size 

defined by length of the scheduling period.  Bin B has infinite size and will capture procedures 

that do not fit into bin A.  The steps to building a conflict-free schedule are as follows: 

Step 1: Begin with one procedure in the schedule either at time 0 or at its due time. 
Step 2: Select another procedure from a procedures queue and attempt to place that next procedure at the beginning of the schedule or at its due time. 
Step 3: Check for resource conflicts.  If conflicts exist, go to Step 4.  If resources are not in conflict, go to Step 5. 
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Step 4: Attempt to place the next procedure one time slot later.  Go to Step 3. 
Step 5: Slot the next procedure into the schedule.  Go to Step 3. 
This scheduling loop repeats until all procedures in the queue have been scheduled.  The 

time slot can be arbitrary in length but is set at 5 minutes for examples in this thesis.  The 

procedures queue is an arbitrary order of procedures.  This algorithm schedules procedures in a 

serial fashion.  That is, procedures are slotted into a schedule one after another.  This schedule 

building algorithm is illustrated graphically in the following Figure 4.1 through Figure 4.4. 

 

Figure 4.1: Attempt to place next procedure at the beginning of the schedule 

 

Figure 4.2: Shift next procedure one timeslot later 

Figure 4.1 shows the attempt to first schedule the next procedure at time 0.  There are 

however, resource conflicts.  Shifting the next procedure by one time slot as illustrated in Figure 

4.2 still does not resolve all resource conflicts. 
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Figure 4.3: Continue shifting until next procedure does not cause resource conflicts 

The next procedure is shifted later in the schedule time slot by time slot until there are no 

resource conflicts as shown in Figure 4.3.  At which point, the next procedure is slotted into the 

schedule as shown in Figure 4.4.  The algorithm then moves on and attempts to schedule other 

procedures in the queue. 

 

Figure 4.4: Slot next procedure into schedule and attempt to schedule other procedures 

If at any time a procedure is not able to fit completely into bin A, it is immediately 

moved to bin B and the shifting and slotting algorithm continues in bin B.  For example, the next 

procedure shown in Figure 4.5 has been shifted to its latest possible start time within the 

scheduling period but still causes resource conflicts.  As a result, the algorithm immediately 

shifts the next procedure to the beginning of bin B as shown in Figure 4.6.  Shifting a procedure 

into bin B signifies that it cannot fit into the scheduling period and is therefore not scheduled. 
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Figure 4.5: Next procedure cannot fit completely into scheduling period 

 

Figure 4.6: Next procedure cannot fit into bin A and is therefore scheduled in bin B
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This algorithm of shifting and slotting procedures is easy to implement using binary 

matrices to represent the schedule and procedures.  That is, procedures are modeled using a 

matrix: 

Q�fy � �1   �	 ��������� � ��g����
 ��
����� � �� ���� 
N�� �0   �������
�                                                                              � 
For example, the Pirt matrix for procedure PA is shown in Figure 4.7. 

 

Figure 4.7: Matrix representation of procedure PA 

The schedule is represented using a matrix: 

�fy � z1   �	 ��
����� � �
 �������� �
 ���� 
N�� �                               2   �	��
����� ��
	N��� ���
� 	�� ��
����� � �� ���� 
N�� �0   �	 ���� 
N�� � �
 	���                                                                    � 
The checking of resource conflicts is done by summing elements of the schedule matrix 

Srt with elements of the next procedure matrix Pirt.  Matrix representation of the situation shown 

in Figure 4.1 is shown in Figure 4.8. 

 

Figure 4.8: Matrix representations of schedule, procedure and resource conflicts 

Time: 0 5 10 15 20 25 30 35 40 45 t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10

R1 r=1 1 1 1 1 0 0 0 0 0 0

R2 r=2 0 0 0 0 1 1 0 0 1 1

R3 r=3 0 0 0 0 1 1 0 0 0 0

R4 r=4 0 0 0 0 0 0 1 1 0 0

R5 r=5 0 0 1 1 0 0 0 0 1 1

R6 r=6 1 1 1 1 0 0 0 0 0 0

R7 r=7 0 0 0 0 1 1 1 1 1 1

-> P 1rt =

Time: 0 5 10 15 20 25 30 35 40 45 t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10

R1 X r=1 2 0 0 0 0 0 1 0 0 0

R2 r=2 0 1 1 0 0 0 0 0 0 0

R3 X r=3 0 0 1 1 2 0 0 0 0 0
R4 r=4 0 0 0 0 1 0 0 0 0 0

R5 r=5 0 0 0 0 0 0 0 0 0 0

R6 X r=6 2 0 0 0 0 0 1 0 0 0

R7 X X r=7 0 1 1 1 2 2 0 0 0 0

r=1 1 1 1 1 0 0 0 0 0 0

r=2 0 0 0 0 1 1 0 0 1 1

r=3 0 0 0 0 1 1 0 0 0 0

r=4 0 0 0 0 0 0 1 1 0 0
r=5 0 0 1 1 0 0 0 0 1 1

r=6 1 1 1 1 0 0 0 0 0 0

r=7 0 0 0 0 1 1 1 1 1 1

X Resource conflict

Schedule S rt =

Next 

Procedure
P 1rt =



87 

 

This algorithm of shifting and slotting matrices is given the name Matrix Shift heuristic, 

MASH for short.  MASH produces schedules that look exactly like those produced by the MPSP 

model.  That is, solutions from MASH can easily be translated into values of decision variables 

for the MPSP model.  However, MASH can only produce conflict free schedules without 

optimization considerations.  The next section will discuss adding intelligence to the heuristic 

algorithm to search for the optimal ordering of procedures for a schedule. 

4.3 Genetic matrix shift heuristic (gMASH) 

The MASH heuristic provides a simple but unintelligent algorithm for building conflict 

free schedules.  MASH is a serial scheduler.  It schedules one procedure at a time.  Its starting 

point is the procedures queue or the order of procedures to slot into a schedule.  Intelligence is 

needed to build a good procedures queue that will lead to a good if not optimal schedule.  This 

section uses genetic algorithm to build a good procedures queue.  This combination of genetic 

algorithm with matrix shift heuristic is given the name gMASH, short for genetic matrix shift. 

Genetic algorithm is a flexible and powerful search tool.  Its fitness or objective function 

need not be linear or differentiable.  It is especially suited for the inherently non-linear and non-

differentiable problem of scheduling.  Figure 4.9 outlines the basic structure of the genetic 

heuristic algorithm gMASH. 

 

Figure 4.9: Basic structure of the gMASH heuristic 

Actually, Figure 4.9 shows a general genetic algorithm structure.  The only thing that 

makes gMASH unique from the general GA structure is the use of MASH as its fitness function.  

gMASH first interprets the procedures model, captures the number of procedures, their benefit 
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coefficients and lateness penalties, and builds the matrix representations of procedures.  gMASH 

then initializes a random population of chromosomes or solutions.  That population is then 

evolved through crossover, recombination and replacement.  The strongest chromosome or the 

best solution at the end of the evolutionary loop is the heuristic solution.  

4.3.1 Encoding solutions into chromosomes 

Solutions to gMASH are encoded in chromosomes.  An example of a chromosome for a 7 

procedures problem is shown in Figure 4.10.  The chromosome has two parts.  Part A encodes 

the ordering of procedures using priority values.  Allele 1 of part A contains the priority value of 

procedure PA, allele 2 contains priority of procedure PB and so on for each procedure.  

Procedures with higher priority values are placed earlier in the procedures queue and will 

therefore be scheduled earlier.  The scheduling order in the Figure 4.10 example is: PF, PB, PD, 

PC, PA, PE, PG.  Alleles in part B encode the xi values of procedures.  In the Figure 4.10 example, 

procedures PA, PB, PC, and PD will be scheduled within the scheduling period while procedures 

PE, PF and PG will be placed outside of the scheduling period.  The length or the number of 

alleles in each chromosome is twice the number of procedures. 

 

Figure 4.10: Example chromosome for a 7 procedures problem 

The initial population is simply N randomly generated chromosomes.  N is the population 

size and remains constant throughout the course of evolution.  The population size is a 

customizable parameter that can have tremendous impact on the performance of a genetic 

algorithm.  Its effect will be studied in a later section.  Initially, gMASH will use a population 

multiplier of 10 as suggested by experts in the genetic algorithms field. [118] That is, the 

population will be set at 10 times the dimensionality of the problem.  Dimensionality of the 

MPSP model is the number of procedures to schedule.  So for example, a problem of scheduling 

7 procedures will use a population size of 70 chromosomes. 

Chromosome: Part A Part B

Procedure: PA PB PC PD PE PF PG PA PB PC PD PE PF PG

Chromosome: 62 90 66 74 57 96 48 1 1 1 1 0 0 0
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4.3.2 Fitness function 

The fitness of a chromosome is the quality of the schedule resulting from the procedures 

queue encoded in that chromosome.  The fitness function is simply the matrix shift heuristic 

MASH.  The fitness value is the schedule quality calculated by MASH.  The quality of a 

schedule is judged using the same objective function as the MPSP model.  A fit chromosome is 

one which results in a schedule that minimizes lateness penalty and maximizes benefit. 

4.3.3 Chromosome repair function 

Recall that the flexible procedures model presented in section 3.3.1 includes precedence 

relationships between procedures.  gMASH maintains precedence relations with a chromosome 

repair function.  A repair function was designed specifically for gMASH.  The repair function 

checks the workflow matrix zij for precedence relations and swaps priority values between 

procedures to enforce precedence.  The repair function also synchronizes parts A and B of each 

chromosome.  That is, if the fitness function finds that the procedures queue encoded in part A 

does not agree with xi values encoded in part B, part B will be repaired accordingly.  The 

chromosome repair function ensures that the population contains only feasible solutions. 

4.3.4 Recombination / replacement 

In each iteration or generation of the evolutionary loop, two parent chromosomes are 

recombined to produce offspring chromosomes.  One parent is the strongest chromosome of the 

population; the other parent is a randomly chosen chromosome.  The recombination is done 

through a simple random crossover.  That is, the two parent chromosomes exchange genetic 

information between two randomly chosen crossover points.  Figure 4.11 shows an example 

recombination of two parent chromosomes. 

 

Figure 4.11: Crossover / recombination of parent chromosomes 

Parent 1: 62 90 66 74 57 96 48 1 1 1 1 0 0 0

Parent 2: 3 45 22 69 22 9 14 1 0 1 0 0 1 1

Crossover

Offspring 1: 62 90 66 69 22 9 14 1 0 1 1 0 0 0

Offspring 2: 3 45 22 74 57 96 48 1 1 1 0 0 1 1
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gMASH uses a survival of the fittest replacement strategy.  That is, the fitness values of 

the resulting offspring chromosomes are compared to those of the weakest chromosomes.  If an 

offspring chromosome is stronger than the weakest chromosome, it replaces that weakest 

chromosome in the population. 

4.3.5 Convergence 

gMASH tracks the average fitness of the population through the evolutionary loop.  If the 

average population fitness stays constant for 10 generations, it is assumed that the population has 

converged on a solution and the evolutionary loop is stopped.  A converged population is 

typically homogenous where every member in the population encodes the same solution. 

4.4 Performance of gMASH 

4.4.1 Heuristic solution vs. exact solution for general procedures 

The performance of gMASH is compared to performance of the BnC method in solving 

the same MPSP model problems presented in section 3.4.1.  Table 4-1 summarizes the results of 

that comparison.  Figure 4.12 compares speeds of gMASH and the exact BnC method. 

Table 4-1: gMASH performance vs. BnC method in scheduling general procedures 

 

 

Figure 4.12: gMASH run-time compared to BnC solver run-time 

Problem Activities Exact solution Solver Run-time (s) Population Size Heuristic solution Run-time (s)

A 21 97 0.2 30 97 0.000

B 29 156 1.1 40 156 0.031

C 39 285 39.5 50 285 0.110

D 45 444 532.0 60 444 0.203

E 52 653 10936.7 70 673 0.469
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One immediately notices that the gMASH heuristic is significantly faster than the BnC 

solver in solving the same MPSP models.  Problem E that took the BnC solver 3 hours to solve 

was solved by gMASH in half a second.  The growth of gMASH run-time with increasing 

problem size is also much more manageable than the BnC solver’s nth degree exponential 

growth.  The second observation is that the gMASH heuristic solutions are very good.  In fact, 

for problems A through D, gMASH actually produced the optimal solution.  gMASH failed to 

produce the optimal solution to problem E.  Instead, the gMASH solution has a 3% error from 

optimal.  Repeat iterations of the gMASH heuristic for problem E resulted in different solutions, 

all iterations produced solutions within 4.5% error of the exact, optimal solution and some 

iterations did arrive at the optimal solution.  This variability in solution reveals a weakness of 

genetic algorithms in that they can sometimes converge prematurely on local optima.  As a 

result, the optimality of gMASH solutions cannot be guaranteed. 

4.4.2 Heuristic solution vs. exact solution for dialysis procedures 

Performance of gMASH is compared to the BnC solver for scheduling the same dialysis 

procedures described in section 3.4.2.   

Table 4-2: gMASH performance vs. BnC method in scheduling dialysis procedures 

 

 

Problem Nurses Patients Activities Exact solution Run-time (s) Population Size Heuristic solution Run-time (s)

F 1 2 26 21 0.1 100 21 0.015

G 1 3 39 69 4.5 150 69 0.109

H 1 4 52 162 53587.5 200 197 0.547

I 2 4 48 42 0.6 200 42 0.125

J 2 6 78 138 78386.1 300 153 0.844

K 3 6 78 63 119.5 300 68 0.735

L 3 9 117 212 (best incumbent) >247038.1 450 232 3.969

BnC solver gMASH
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Figure 4.13: gMASH run time compared with BnC solver run time 

Once again, gMASH is orders of magnitude faster than the exact, BnC solver.  The 

MPSP model for dialysis quickly becomes impractical to solve exactly.  Problem L with 3 nurses 

and 9 patients became intractable for the BnC solver and crashed the test computer.  gMASH, on 

the other hand solved that same problem L within 4 seconds.  Similar to general procedures, 

gMASH cannot guarantee optimality but its solutions can be very good.  For the easy problems 

F, G, and I, gMASH converged on the optimum solution.  The error in gMASH solution was 

21.6% for problem H, 10.9% for problem J, and 7.9% for problem K.  The exact solution to 

problem L was never found.  The best incumbent (potential solution) found by the BnC solver at 

the time of crash has an objective value of 212.  gMASH converged to a solution that is 9.4% 

from that best incumbent.    Dialysis procedures are noticeably more difficult to schedule than 

general procedures.  That difficulty highlights gMASH’s weakness in not being able to guarantee 

optimality.  However, the accuracy of gMASH can be improved by manipulating its population 

size.  Increasing the population size is akin to casting a finer net over the solution space.  A more 

thorough search increases the probability of gMASH converging on the optimal solution.  

Manipulation of population size to improve gMASH performance will be studied in a later 

section.  But before that, let us first compare the quality of gMASH solutions to manually 

generated schedules. 

4.4.3 gMASH heuristic solutions vs. manual scheduling of dialysis procedures 

The ideal baseline measure of scheduler performance for this thesis is the manually 

generated schedule.  The question is: can an intelligent scheduler produce a better schedule than 
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a human scheduler?  It was not necessary to compare the performance of the BnC solver with a 

human scheduler because the MPSP model when solved exactly guarantees the optimality of its 

solutions.  However, the evolutionary heuristic gMASH presented in this chapter cannot 

guarantee the optimality of its solutions.  Therefore, the worthiness of gMASH should ideally be 

judged based on its performance compared to a human scheduler. 

The general MPSP model in this thesis was designed to be very flexible in order to model 

a wide variety of procedures.  In the real world, different procedures are scheduled using 

different strategies.  For example, surgical procedures that share resources are minimally 

overlapped to accommodate the high degree of uncertainty in those procedures.  In contrast, 

more deterministic procedures such as some medical imaging procedures can benefit from as 

much overlap as possible to maximize patient flow.  The scheduling model and gMASH can be 

adapted to mimic different scheduling strategies.  Therefore, it is difficult to make general 

conclusions about the performance of gMASH.  Its performance is different in each unique 

application. 

The specific application studied in this thesis is the scheduling of haemodialysis 

procedures.  As discussed in section 3.4, the dialysis scheduling problem can really be broken 

down into smaller nurse/patient groupings.  Realistically, the maximum number of patients 

assigned to 1 nurse does not exceed 4. [115] Therefore, the 4 patients per nurse grouping 

represents a very difficult problem to solve and will serve as the testing ground of gMASH’s 

performance.  The problem is defined in the following Figure 4.14 through Figure 4.17 and 

Table 4-3. 
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Figure 4.14: Dialysis procedure workflow of patient A 

 

Figure 4.15: Dialysis procedure workflow of patient B 

 

Figure 4.16: Dialysis procedure workflow of patient C 

 

Figure 4.17: Dialysis procedure workflow of patient D 

R1 1 R1 3 4 5 6 7 9 10 11 12 13

R2 2 R2 7 8 11 12

R3 R3

R4 R4

R5 R5

R6 2 R6

Patient A

R1 14 R1 16 17 18 19 20 22 23 24 25 26

R2 R2

R3 15 R3 20 21 24 25

R4 R4

R5 R5

R6 15 R6

Patient B

R1 27 R1 29 30 31 32 33 35 36 37 38 39

R2 R2

R3 R3

R4 28 R4 33 34 37 38

R5 R5

R6 28 R6

Patient C

R1 40 R1 42 43 44 45 46 48 49 50 51 52

R2 R2

R3 R3

R4 R4

R5 41 R5 46 47 50 51

R6 41 R6

Patient D
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Table 4-3: Descriptions of dialysis procedure workflow 

 

Procedures with dashed outlines are gap activities and represent flexibilities in the 

dialysis workflow.  Procedures between gap activities must be scheduled together as a block. 

The first baseline schedule (Baseline 1) is generated based on an unintelligent, cascading 

strategy.  The nurse will serve each patient sequentially, performing one block of activities for 

one patient then moving on to perform one activities block for another patient.  For example, the 

nurse prepares paperwork for patient A then for patient B, patient C, then patient D.  At which 

time, the nurse returns to patient A and perform the next block of activities: the pre-dialysis 

activities and so on for all patients.  Baseline 1 is illustrated in Figure 4.18. 

Patient Activity Description

2 Technician prepares dialysis machine R2

4 Nurse prepares paperwork

6 Pre-dialysis activities

7 Patient A is connected to machine R2

8 Machine R2 administers dialysis treatment

10 Nurse administers IV EPO and assessment services

12 Patient A is disconnected from machine R2

13 Post-dialysis activities

15 Technician prepares dialysis machine R3

17 Nurse prepares paperwork

19 Pre-dialysis activities

20 Patient B is connected to machine R3

21 Machine R3 administers dialysis treatment

23 Nurse administers IV EPO and assessment services

25 Patient B is disconnected from machine R3

26 Post-dialysis activities

28 Technician prepares dialysis machine R4

30 Nurse prepares paperwork

32 Pre-dialysis activities

33 Patient C is connected to machine R4

34 Machine R4 administers dialysis treatment

36 Nurse administers IV EPO and assessment services

38 Patient C is disconnected from machine R4

39 Post-dialysis activities

41 Technician prepares dialysis machine R5

43 Nurse prepares paperwork

45 Pre-dialysis activities

46 Patient D is connected to machine R5

47 Machine R5 administers dialysis treatment

49 Nurse administers IV EPO and assessment services

51 Patient D is disconnected from machine R5

52 Post-dialysis activities

A

B

C

D
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Figure 4.18: Manually generated schedule Baseline 1 

 

Figure 4.19: Manually generated schedule Baseline 2 

 

Figure 4.20: Heuristic gMASH solution with small population (multiplier = 10) 

 

Figure 4.21: Heuristic gMASH solution with larger population (multiplier = 50)

Time: 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250

R1 4 17 30 43 6 7 19 20 32 33 45 46 10 23 36 49 12 13 25 26 38 39 51 52

R2 2 7 8 11 12

R3 15 20 21 24 25

R4 28 33 34 37 38

R5 41 46 47 51

R6 2 15 28 41

Objective Value = 277

Time: 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250

R1 43 45 46 4 17 30 6 7 19 20 32 33 10 23 49 12 13 51 52 25 26 36 38 39

R2 2 7 8 11 12

R3 15 20 21 24 25

R4 28 33 34 37 38

R5 41 46 47 50 51

R6 41 2 15 28

Objective Value = 222

Time: 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250

R1 17 43 19 20 45 46 4 6 7 23 30 10 32 33 25 26 49 12 13 51 52 36 38 39

R2 2 7 8 11 12

R3 15 20 21 25

R4 28 33 34 37 38

R5 41 46 47 50 51

R6 15 2 41 28

Objective Value = 197

Time: 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250

R1 4 30 6 7 17 43 32 33 19 20 45 46 10 12 13 36 38 39 23 25 26 49 51 52

R2 2 7 8 12

R3 15 20 21 24 25

R4 28 33 34 38

R5 41 46 47 51

R6 2 15 28 41

Objective Value = 167
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Baseline 1 is a typical starting point for the manual scheduling process.  A manual 

scheduler can then rearrange activities within that baseline schedule to try to improve it either 

through trial and error or through experience.  For example, the second baseline schedule 

(Baseline 2) improves upon Baseline 1 by adding intelligence and logic into the schedule.  One 

notices that patient D has a relatively long dialysis treatment period (activity 47).  Baseline 2 

schedules patient D to begin treatment first.  The reason is that the shorter treatment periods of 

other patients are likely able to fit into the long treatment period of patient D and the total wait 

time of all patients will likely be less.  Baseline 2 is illustrated in Figure 4.19.  The simple 

injection of logic into Baseline 2 improved upon Baseline 1’s objective value by 55.  In this case, 

that improvement in objective value represents a 55-minute reduction in total patient wait time. 

Scheduling patients with longer treatment periods earlier is not guaranteed to improve the 

schedule.  One was simply lucky that this particular intuition worked to one’s advantage.  The 

hidden rules for improving schedules are no doubt very complex and problem specific.  A 

manual scheduler or clinic manager may be able to infer some of those rules through experience.  

Unfortunately, that experience is very difficult to capture.  An experienced scheduler of dialysis 

procedures was not available for this thesis.  As a result, Baseline 2 is the best attempt at a 

manual schedule. 

With baseline manual schedules established, the performance of gMASH can be 

evaluated.  Figure 4.20 presents a schedule produced by gMASH.  gMASH improved upon 

Baseline 2 by reducing total patient wait time by 15 minutes.  Not a spectacular improvement but 

note that this solution was obtained using a relatively small population (population multiplier of 

10).  A wonderful feature of gMASH and indeed all genetic algorithms is that the quality of its 

solutions is related to its population size.  Increasing the size of population increases the 

probability of converging on the optimal solution.  Figure 4.21 presents a schedule produced by 

gMASH using a larger population (population multiplier of 50).  The total patient wait time is 

reduced a further 40 minutes resulting in an objective value of 167.  That is a 15% improvement 

over gMASH with a small population and a 25% improvement over the manual, Baseline 2 

schedule.  Also note that this solution is within approximately 3% of the exact solution which 

has an objective value of 162.  In this case, that 3% error from the exact, optimal solution 

translates to mere 5 more minutes of total patient wait time. 
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In this example, gMASH absolutely outperforms manual scheduling.  However, manual 

scheduling is a fine art and is highly subjective.  An experienced scheduler can likely produce a 

schedule that is better than Baseline 2.  He/she may, through experience or trial and error, even 

produce the optimal schedule.  Manual scheduling is ideally the benchmark for testing the 

gMASH heuristic.  Unfortunately, it is nearly impossible to objectively test gMASH against 

manual scheduling due to the subjective nature of manual scheduling.  The only objective test of 

gMASH performance is a study of its repeatability and solution quality. 

The next section will discuss the effect of population size on gMASH performance and 

quality of its solutions. 

4.4.4 gMASH performance and solution quality 

The stochastic search element inherent in genetic algorithms means gMASH can 

potentially produce a different solution every time it runs.  Despite being a directed search 

algorithm, an element of randomness will always be present.  Since gMASH cannot guarantee 

solution optimality, the user must be convinced of gMASH’s reliability in other ways.  One way 

is to compare gMASH solutions to known optimal solutions.  We have already seen this 

comparison in sections 4.4.1 and 4.4.2.  Unfortunately, problems to which exact optimal 

solutions are known are relatively simple and not large enough for practical application to 

medical procedures scheduling.  An efficient exact solver for larger MPSP models does not exist.  

Therefore, exact optimal solutions for larger MPSP models are not available for comparison with 

heuristic solutions. 

Another way to evaluate the reliability of gMASH is to study its repeatability and the 

distribution and quality of its solutions.  The gMASH parameter with the greatest effect on 

solution quality is the population size.  This section studies that effect.  The study will be carried 

out on general problems A through E presented in Table 4-1 of section 4.4.1 and dialysis 

problems F through L presented in Table 4-2 of section 4.4.2.  In addition, larger general 

problems involving 10 and 20 procedures will be studied.  A larger dialysis problem involving 5 

nurses, 20 patients, and 2 technicians will also be studied.  The parameters of the population size 

study are outlined in the following Table 4-4 and Table 4-5. 
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Table 4-4: Population size study parameters for general procedure problems 

 

Table 4-5: Population size study parameters for dialysis procedure problems 

 

Recall that the dimensionality of a problem is the number of procedures to schedule.  The 

population size is proportional to the problem dimensionality via the population size multiplier.  

Population sizes studied range from the small (multiplier value of 10) to the very large 

(multiplier value of 200).   

gMASH is run through 1,000 iterations for each problem at each multiplier value except 

problem L2.  Problem L2 is the largest and most difficult problem to solve in this thesis.  

Although gMASH is relatively fast, solving problem L2 1,000 times at each population 

multiplier value for a total of 4,000 iterations is still impractical.  Therefore, problem L2 is 

solved only 100 times at each population multiplier value. 

The immediate effect of increasing the population size is higher computational cost.  

Figure 4.22 shows that for the general procedures problem, the computational cost increases 

linearly with increasing population size.  The slope of that linear relationship also increases as 

the number of procedures to schedule increase, indicating that the problem is becoming more 

difficult to solve.  Figure 4.23 and Figure 4.24 show the growth of computational cost for solving 

larger problems E2 and E3 with very large population multipliers up to 200.  Again, a linear 

Problem Procedures Multiplier values tested Iterations

A 3 10, 30, 50 1000

B 4 10, 30, 50 1000

C 5 10, 30, 50 1000

D 6 10, 30, 50 1000

E 7 10, 30, 50 1000

E2 10 10, 30, 50, 100, 200 1000

E3 20 10, 30, 50, 100, 200 1000

Problem Nurses Patients Procedures Multiplier values tested Iterations

F 1 2 10 10, 30, 50, 100, 200 1000

G 1 3 15 10, 30, 50, 100, 200 1000

H 1 4 20 10, 30, 50, 100, 200 1000

I 2 4 20 10, 30, 50, 100, 200 1000

J 2 6 30 10, 30, 50, 100, 200 1000

K 3 6 30 10, 30, 50, 100, 200 1000

L 3 9 45 10, 30, 50, 100, 200 1000

L2 5 20 100 30, 50, 100, 200 100
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relationship is observed.  This means that the computational cost of using gMASH to schedule 

general procedures is predictable and does not grow exponentially. 

 

Figure 4.22: Increased computational cost due to larger population size for problems A through E 

 

Figure 4.23: Increased computational cost due to larger population size for problem E2 

 

Figure 4.24: Increased computational cost due to larger population size for problem E3 
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A similarly linear growth in computational cost as population increase is experienced by 

gMASH in solving dialysis problems.  Figure 4.25 shows computational effort growth for 

solving problems F through K.  Figure 4.26 and Figure 4.27 show computational effort growth 

for solving problems L and L2 respectively. 

 

Figure 4.25: Increased computational cost due to larger population size for problems F through K 

 

Figure 4.26: Increased computational cost due to larger population size for problems L 
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Figure 4.27: Increased computational cost due to larger population size for problems L2 

With increased computational cost of using larger populations, one would expect the 

solution quality to improve.  The solution quality is a difficult metric to define.  For the small, 

easy problems A through K where the exact optimal solution is known, quality of the heuristic 

solution can be defined as expected error from optimal solution.  The expected error from 

optimal is the average heuristic error from optimal solution over 1,000 iterations.  Table 4-6 and 

Figure 4.28 show the average error from optimal of problems A through E.  gMASH produces 

very high quality solutions for these small, easy problems A through E.  Even with a small 

population multiplier of 10, gMASH produced solutions that are expected to be very close to 

optimal.  gMASH is very fast and produces high quality solutions and is therefore far superior to 

the exact BnC method for solving the easy problems A through E.   

Table 4-6: Average % error of problems A through E with different population sizes 

 

 

0.0

2,000.0

4,000.0

6,000.0

8,000.0

10,000.0

0 20 40 60 80 100 120 140 160 180 200

A
v

e
ra

g
e

 r
u

n
 t

im
e

 (
s)

Population size multiplier
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Problem A 3 0.06% 0.00% 0.00%

Problem B 4 0.71% 0.01% 0.00%

Problem C 5 4.79% 0.29% 0.03%

Problem D 6 2.60% 0.45% 0.14%

Problem E 7 3.50% 1.38% 0.86%

Procedures
Average % error at multiplier value:
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Figure 4.28: Reduction of average % error of problems A through E as population size increase 

Similar behaviour is observed for dialysis scheduling problems.  The expected error or 

average % error from optimal in solving problems F through K decreases with larger population 

sizes.  See Table 4-7 and Figure 4.29. 

Table 4-7: Average % error of problems F through K with different population sizes 
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10 30 50 100 200
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Problem G 1 3 15 3.80% 1.46% 0.61% 0.17% 0.03%

Problem H 1 4 20 21.78% 17.13% 15.28% 12.96% 10.89%

Problem I 2 4 20 0.05% 0.00% 0.00% 0.00% 0.00%

Problem J 2 6 30 9.21% 5.83% 4.71% 3.45% 2.33%

Problem K 3 6 30 6.43% 3.40% 2.45% 1.43% 0.94%

Nurses Patients Procedures
Average % error at multiplier value:



104 

 

 

 

Figure 4.29: Reduction of average % error of problems F through K as population size increase 

For larger problems E2, E3 L, and L2, the exact optimal solutions are not available.  The 

solution quality in those cases may be defined as % error from best solution found.  The 

assumption is that the best solution found in thousands of iterations is the optimal solution.  

Although it must be emphasized that optimality cannot be guaranteed.  Table 4-8 and Figure 4.30 

show the decrease of expected error in solving problems E2 and E3 using different population 

sizes. 

Table 4-8: Average % error of problems E2 and E3 with different population sizes 
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Figure 4.30: Reduction of average % error of problems E2 and E3 as population size increase 

Table 4-9 and Figure 4.31 show a similar decrease in expected error in solving problems 

L and L2. 

Table 4-9: Average % error of problems L and L2 with different population sizes 

 

 

Figure 4.31: Reduction of average % error of problems L and L2 as population size increase 

It has been shown that increasing the population size of gMASH decreases the expected 

error of its solutions but at increased computational cost.  The user has freedom to decide the 

tradeoff between accuracy and speed. 
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This study of gMASH solution quality thus far also shows once again that the dialysis 

procedures scheduling problem can be more difficult than the general procedures scheduling 

problem.  Each dialysis appointment for one patient requires 5 procedures to model.  30 

procedures are needed to model one shift of a clinic serving 6 patients simultaneously.  Therefore 

the dimensionality of the dialysis scheduling problem can be high.  In addition, the dialysis 

workflow contains many precedence requirements.  The chromosome repair function of gMASH 

ensures that precedence is enforced.  However, some diversity in the population is lost as many 

originally different chromosomes are necessarily repaired to encode the same solution.  As a 

result, a large population is needed to produce high quality solutions.  The added computational 

cost associated with large populations contributes to the difficulty of scheduling dialysis 

procedures.   

gMASH reliably produces high quality solutions for easy problems.  Average gMASH 

solution error to problems A through E are close to zero even using a modest population size 

multiplier of 30.  In other words, gMASH has a very high probability of producing the optimal 

solution in those easy problems.  In larger problems E2, E3, L, and L2 however, the expected 

error of gMASH solutions is higher.  It is worth investigating the repeatability of gMASH and 

distribution of its solutions for those problems. 

We begin with problem E2 of scheduling 10 procedures.  Table 4-10 shows the frequency 

of gMASH solutions out of 1,000 iterations at each population size multiplier value that fell 

within certain % error ranges.  Recall that exact optimal solution is not available for problem E2.  

The error referred to in Table 4-10 is the error from best solution found.  Although optimality 

cannot be guaranteed, one can be confident that the best solution found in 5,000 iterations of 

gMASH is very likely optimal.  Figure 4.32 through Figure 4.34 are visualizations of the 

gMASH solution distribution shown in Table 4-10.   
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Table 4-10: Distribution of gMASH solutions for problem E2 at different multiplier values 

 

 

 

Figure 4.32: gMASH solution distribution for problem E2 at multiplier values of 10 and 30 

 

Figure 4.33: gMASH solution distribution for problem E2 at multiplier values of 50 and 100 
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Figure 4.34: gMASH solution distribution for problem E2 at multiplier value of 200 

The gMASH solution distributions in Figure 4.32 through Figure 4.34 show that as 

population size increase, the probability of obtaining a high quality solution increases.  With a 

small population (multiplier of 10) 350 out of 1,000 iterations produced solutions with less than 

5% error.  In other words: a small population has 35.0% chance of producing a very high quality 

solution with less than 5% error.  That probability of obtaining very high quality solutions 

increased to 71.5% with a population size multiplier of 30, 86.1% with multiplier of 50, and 

93.6% with multiplier of 100.  Finally, gMASH with a very large population size (multiplier of 

200) has 98.7% chance of producing very high quality solutions.  This improvement in solution 

quality is illustrated in Figure 4.35 along with average gMASH run-time.  The reader is 

reminded of the rising computational cost associated with higher solution quality. 

 

Figure 4.35: Rising problem E2 solution quality and computational cost with larger population 
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Similar behaviour is observed when solving problem E3 with different population sizes.  

Table 4-11 and Figure 4.36 through Figure 4.38 summarize and visualize the distribution of 

gMASH solutions for problem E3. 

Table 4-11: Distribution of gMASH solutions for problem E3 at different multiplier values 

  

 

Figure 4.36: gMASH solution distribution for problem E3 at multiplier values of 10 and 30 

 

Figure 4.37: gMASH solution distribution for problem E3 at multiplier values of 50 and 100 
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Figure 4.38: gMASH solution distribution for problem E3 at multiplier value of 200 

Figure 4.36 shows that when solving the difficult problem E3, a small population size 

produces poor quality solutions.  At a multiplier value of 10, gMASH has a 40.5% chance of 

producing a solution with between 10 and 15% error, but only 2.9% chance of producing high 

quality solutions with less than 5% error.  With increasing population size however, the solution 

quality gradually improves to the point a very large population with multiplier value of 200 has 

74.0% chance of producing a very high quality solution.  Figure 4.36 through Figure 4.38 show 

the shifting of gMASH solution quality towards lower error.  Figure 4.39 shows the increase in 

solution quality with larger population size and once again reminds the reader of the associated 

rise in computational cost. 

 

Figure 4.39: Rising problem E3 solution quality and computational cost with larger population 
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The same relationship between population size and solution quality extends into the 

larger and more difficult to solve dialysis problems L and L2.  Although as discussed earlier, 

gMASH population for dialysis problems are not as diverse as in the general procedures 

problems; as a result, the improvement in solution quality with increasing population size will 

not be as impressive as with general procedures problems. 

Table 4-12 and Figure 4.40 through Figure 4.42 summarize and illustrate the distribution 

of gMASH solutions for problem L at different population size multiplier values.   

 

Table 4-12: Distribution of gMASH solutions for problem L at different multiplier values 

 

 

Figure 4.40: gMASH solution distribution for problem L at multiplier values of 10 and 30 
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Figure 4.41: gMASH solution distribution for problem L at multiplier values of 50 and 100 

 

Figure 4.42: gMASH solution distribution for problem L at multiplier value of 200 

 

Figure 4.43: Rising problem L solution quality and computational cost with larger population 
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Figure 4.43 shows the improvement in solution quality and increase in computational 

cost with increasing population size.  The difficulty of solving problem L is obvious as a very 

large population is required to achieve 69.4% chance of obtaining a very high quality solution 

with less than 5% error.  Note however, that gMASH still far exceeds the performance of the 

exact BnC solver.  Recall that the BnC solver ran for nearly three days, consumed all memory on 

the test computer, and crashed without finding the optimal solution.  The best solution BnC 

found at the time of crash had an objective value of 212.  The best solution found by gMASH in 

this study had an objective value of 207, which is 2.4% better than the BnC solution.  Even using 

a very large population size, gMASH’s average run-time is 86.6 seconds, orders of magnitude 

lower than the exact BnC solver.  A little bit of uncertainty in solution quality is a small sacrifice 

for that low computational cost.  The reader is reminded that freedom to decide the tradeoff 

between solution quality and computational cost rests with the user.  The uncertainty in solution 

quality can also easily be covered by iterating gMASH multiple times for the same problem to 

increase the probability of obtaining a high quality solution.  The low computational cost makes 

repeat iterations of gMASH practical. 

Finally, the largest, most difficult dialysis scheduling problem L2 involves 5 nurses, 20 

patients, 2 technicians and requires 100 procedures to model.  Table 4-13, Figure 4.44 and Figure 

4.45 summarize and illustrate the distribution of gMASH solutions for problem L2 at different 

population size multiplier values. 
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Table 4-13: Distribution of gMASH solutions for problem L2 at different multiplier values 

 

 

  

Figure 4.44: gMASH solution distribution for problem L2 at multiplier values of 30 and 50 

  

Figure 4.45: gMASH solution distribution for problem L2 at multiplier values of 100 and 200 
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Figure 4.46: Rising problem L2 solution quality and computational cost with larger population 

Figure 4.46 shows the improvement in solution quality and increase in computational 

cost with increasing population size.  Note that the computational cost is starting to become 

significant.  Solving problem L2 with a very large population (multiplier value of 200) takes on 

average 8,000 seconds which is approximately three and quarter hours.  The user’s decision on 

trade-off between solution quality and computational cost becomes more difficult to make in 

larger problems. 

In summary, although gMASH cannot guarantee solution optimality, its solution quality 

can be reliable and predictable.  gMASH is capable of producing very high quality solutions if  

large population size is used.  The computational cost of gMASH is orders of magnitude lower 

than the exact BnC solver and therefore much more practical.  The user has freedom to decide 

the trade-off between solution quality and computational cost.  gMASH is a competent algorithm 

for solving the medical procedures scheduling problem. 

4.5 Why is gMASH fast? 

The fast performance of gMASH is attributed to its exploitation of the problem structure.  

The true decision variables in a scheduling problem are the starting times of individual 

procedures.  However, procedure starting times are subject to resource conflict constraints.  As a 

result, the continuous solution space of starting times of procedures includes mostly infeasible 

solutions.  gMASH decomposes the scheduling problem variables into simply the ordering of 

procedures.  In doing so, gMASH created a solution space that not only is smaller but is 
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populated entirely by feasible solutions.  That is, any ordering of procedures results in a feasible 

solution.  All gMASH has to do is then to find the optimal ordering of procedures. 

Genetic algorithms maintain multiple strings or solutions in its population.  That is, 

genetic algorithms can evaluate multiple solutions simultaneously.  gMASH takes advantage of 

GA’s powerful parallel processing feature to efficiently search through the solution space.  

gMASH is also a directed search algorithm that guides the search toward optimal solutions 

without having to iterate through the entire solution space. 

The exploitation of problem structure combined with genetic algorithms’ powerful 

parallel processing feature are responsible for gMASH’s high performance. 

4.6 Scalability of gMASH 

Similar to the MPSP model, gMASH has infinite modeling capabilities.  That is, 

procedures are modeled as simple 0-1 matrices and therefore gMASH can be used to model any 

number of procedures and clinics of any size.  The usefulness of gMASH, like the MPSP model 

is limited by the solvability of larger sized models.  The speed of gMASH is linearly 

proportional to the size of the population.  Larger problems require larger population size to 

solve.  Unfortunately, the population size required to achieve a certain level of solution quality 

grows exponentially with increasing problem size.  As a result, the computational effort required 

to obtain high quality solutions grows exponentially with increasing problem size.  The 

relationship between computational effort and problem size depends on the difficulty level of the 

particular problem.  However, the growth is much more manageable than the nth degree 

exponential growth in computational cost of solving the MPSP model exactly.  In addition, the 

computational cost of gMASH is orders of magnitude less than the computational cost of the 

exact BnC solver in solving the same problem.  Therefore, gMASH can be scaled to solve much 

larger problems than can be solved using BnC.  For example, using population multiplier of 50, 

gMASH was able to schedule 50 general procedures in approximately 34 minutes.  Recall that 

the MPSP model became intractable for problems with more than 7 procedures.  Again using 

population multiplier of 50, gMASH scheduled 5 nurses, 20 patients, and 2 technicians also in 

approximately 34 minutes.  gMASH is a much more practical algorithm for solving the MPSP 

model than the exact BnC method. 
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4.7 gMASH improves branch and cut solver performance 

The original purpose of the gMASH heuristic was to generate a good solution to feed into 

the BnC solver to improve scalability of the exact MPSP model.   gMASH has since emerged as 

a competent scheduler on its own but nevertheless, let us see if it can help improve the BnC 

solver performance. 

In addition to finding a good initial solution, gMASH can also estimate a tight initial 

solution bound.  This is done by iterating gMASH for the same problem multiple times but 

ignoring conflicts in a different resource at each iteration.  For the example clinic with 7 

resources, gMASH is iterated 8 times (iterations 0 to 7).  The first iteration, iteration 0 is a 

regular run of gMASH to obtain the good initial solution.  The next iteration, iteration 1 runs 

gMASH again but ignores conflicts in resource R1.  This simulates unlimited availability of 

resource R1.  The next iteration, iteration 2 ignores resource R2 and so on through to iteration 7 

which ignores resource R7.  These iterations reveal the bottleneck resource of the problem.  For 

example, let’s say in ignoring resource R4, iteration 4 produced a schedule that is much better 

than any other iteration; we then know that resource R4 is the limiting resource.  The objective 

value of that best schedule represents a boundary for the objective value of the current problem.  

That is, the current problem cannot possibly have a better solution than the same problem with 

its limiting resource relaxed.  In providing both a good initial solution and a tight solution bound, 

gMASH focuses the branch and cut solver onto a narrow band in the MPSP model solution 

space.  This is best illustrated with an example.  Consider problem E in Table 4-1.  The exact 

solution of 653 took the BnC solver 3 hours to find.  For the same problem E, gMASH found a 

sub-optimal but good initial solution with objective value of 673 and a solution bound of 593.  

Feeding that initial solution and solution bound to the BnC solver, the run-time was reduced to 

44 minutes.  The 76% reduction in computational cost is significant but not as dramatic as hoped. 

Even in the best case scenario where the initial solution is the optimal solution with 

objective value of 653 and a very tight solution bound of 603 is enforced, the BnC solver still ran 

for 36 minutes to confirm optimality of that initial solution. 

Previously intractable problems can now be solved.  The BnC solver worked on the 

problem of scheduling 8 procedures with 60 activities for over 24 hours without finding the 

optimal solution.  With help of initial solution and bound from gMASH, that problem was solved 
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in 6 hours.  This means that gMASH is able to help the BnC solver scale up to solve slightly 

larger MPSP models.  However, 6 hours is still an unacceptable solve-time for the simple 

problem of scheduling 8 procedures.  Also, the problem of scheduling 9 procedures, even with 

help from gMASH, ran for over 24 hours without finding the optimal solution.  Solving the 9 

procedures scheduling problem exactly, for all intents and purposes, is considered intractable. 

Feeding the BnC solver with a good initial solution and tight solution bound from 

gMASH does indeed improve its performance.  However, that improvement does not break the 

nth degree exponential growth of the computational cost for solving the MPSP model exactly.  

The MPSP model still becomes intractable too quickly.  Unfortunately, even with help from 

gMASH, solving the MPSP model exactly is not practical for real-time scheduling.  The focus of 

future work should be on improving performance of the gMASH heuristic as a standalone 

scheduler in its own right. 

However, there is merit in pursuing exact, guaranteed optimal solutions.  The general 

procedures model was designed to be very flexible to model a variety of different procedures.  

Different procedures require different scheduling strategies.  Different scheduling strategies 

change the nature of the scheduling problem which affects the performance of gMASH.  For 

each different scheduling problem, the BnC solver should be used to find exact, optimal solution 

for small problems.  Those solutions become reliable benchmarks to help customize genetic 

algorithm parameters to optimize gMASH performance for larger problems. 
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Chapter 5: Conclusion 

5.1 Exact or good enough? 

The MPSP model developed in this thesis is flexible enough to model a variety of 

problems.  It can be solved exactly using branch and cut (BnC) method to guarantee optimality 

of its solutions.  The healthcare industry is relatively resistant to computerization of some of its 

processes not out of old fashion but out of liability concern.  Therefore, if software is to succeed 

in the healthcare industry, it must be proven superior to established techniques.  The promise of 

exact, optimal solutions is very enticing.  Healthcare administrators will have little reservation in 

accepting help from software tools that guarantees to improve their processes.  Unfortunately, 

that guarantee carries enormous computational cost.  Each new variable in the MPSP model adds 

a new dimension to the problem.  Additional dimensions inflate the solution space exponentially 

which makes the optimal solution much more difficult to find.  Scheduling is a deceptively 

complex problem.  Each additional procedure to schedule requires many variables to model.  As 

a result, scaling the MPSP model up to schedule more procedures rapidly inflates the 

dimensionality of the problem.  Solving the MPSP model exactly takes impractically long time 

even for small scheduling problems involving only 5 or 6 procedures.  The MPSP model 

becomes intractable for problems involving 7 or 8 procedures.  With help of good initial solution 

and tight solution bound from gMASH, the BnC solver can solve slightly larger MPSP models; 

unfortunately, not enough to solve practical sized real world problems.  The guarantee of 

optimality is not worth the impractical computational cost.  Therefore, solving the MPSP model 

exactly using BnC method is not practical for real time scheduling.  However, small MPSP 

models should be solved exactly using BnC method to set performance benchmarks that help 

optimize parameters of the evolutionary heuristic gMASH. 

The gMASH evolutionary heuristic was originally intended as an assistant tool to find 

good initial solutions to improve performance of the BnC solver in solving MPSP model; which 

it does, quite well.  However, the performance of gMASH turned out to be so good and 

customizable that it emerged as a strong, competent scheduler on its own.  gMASH, due to its 

genetic algorithm nature cannot guarantee optimality but its solutions can be very good.  The size 

of the population can be adjusted to increase probability of finding the exact optimal solution and 
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to decrease the expected error of the heuristic solution.  gMASH’s ability to produce near 

optimal solutions give users confidence that its solutions are better than manually generated 

schedules.  Most importantly, gMASH produces high quality solutions very quickly with much 

less effort than manual scheduling.  gMASH does not experience nth degree exponential growth 

in computational cost required to solve the MPSP model exactly.  The run time of gMASH is 

orders of magnitude lower than that of the BnC solver.  Therefore, gMASH can solve much 

larger and more practical MPSP models than the BnC solver. 

gMASH produces very good solutions very quickly.  Its performance is predictable and 

customizable.  Its computational cost growth is manageable.  It can be scaled up to solve 

practically sized problems.  The user is given freedom to decide trade-off between solution 

quality and computational cost.  In conclusion: the evolutionary heuristic gMASH developed in 

this thesis is a practical and highly competent algorithm for solving the MPSP model. 

5.2 Future work 

The contribution of this thesis should be expanded further in three areas: core algorithm, 

modeling scope, and business intelligence. 

5.2.1 Improve core algorithm 

gMASH, at its core, is a basic genetic algorithm.  Its effectiveness is proven but there 

should be room for improvement.  Future work should investigate different GA parameters such 

as initial population generation strategy, chromosome selection strategy, mutation rate, crossover 

strategy, replacement strategy, and convergence criteria.  For example, the initial population can 

be seeded with good solutions found using simple priority rule based heuristics like in project 

scheduling problems.  That should result in an initial population of very good solutions.  The GA 

will start off closer to the optimal solution and therefore should converge very quickly.  More 

advanced evolutionary techniques such as adaptive niching [119] should also be investigated. 

gMASH can be further enhanced with other search techniques.  For example, the genetic 

algorithm search aspect of gMASH quickly explores as much of the solution space as possible to 

identify neighborhoods that the optimal solution potentially resides in.  A local search such as 

tabu search or simulated annealing can then be used to thoroughly explore those neighborhoods 

to pin-point the optimal solution. 
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5.2.2 Expand modeling scope 

The modeling capability of the MPSP model has been demonstrated for general 

procedures and one specific procedure: haemodialysis.  Future work should study workflows of 

other medical procedures for the MPSP model to model.  For example: medical imaging, 

surgery, neonatal care etc.  The true flexibility of the MPSP model capability should be tested on 

a wide variety of different procedures.  The modeling capability and versatility of the MPSP 

model should be continuously improved. 

Research effort should be directed at studying uncertainty in scheduling of medical 

procedures.  The MPSP model should be improved to handle uncertainty to become a truly 

realistic and effective medical procedures model.  For example, dynamic scheduling capability 

should be implemented to handle unexpected delays, emergency procedures, or unexpected loss 

of resources.  gMASH should then be enhanced to solve the more realistic MPSP model. 

5.2.3 Develop business intelligence 

The MPSP model, in its current form, is nothing more than an automated scheduler.  

More work is required to develop a resource management tool to intelligently use the MPSP 

model and gMASH.  Such a tool should be able to identify bottleneck resources and inform the 

user how much more of that resource is required to relieve the bottleneck.  Conversely, the tool 

should also identify overabundant resources so that an administrator can redistribute and make 

better use of those resources.  The tool should be able to simulate scenarios to help 

administrators plan for unexpected change.  The tool should have database memory and take 

feedback so that learning functions can be implemented.  Adding business intelligence to the 

MPSP model and gMASH is of less academic interest but will result in a valuable management 

tool that can help healthcare administrators optimize resource utilization and reduce patient wait 

times in the system. 
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Appendix A. Mathematical Programming System (MPS) 

The MPS format is the de facto file format for presenting linear programming and mixed 

integer programming models.  It is column oriented so systems of equations typical of linear 

programming models must be translated into the following format: 

 

Figure A.1: System of equations in column oriented format 

ROWS capture the objective function and constraints of an LP model.  COLUMNS 

capture the decisions variables.  a11 to amn are the coefficients of variables in each equation.  RHS 

capture the right hand side values of the equations. 

Translation of a linear programming (LP) model into the mps format is best illustrated 

through example.  Recall the Colonel Motors (CM) production planning problem presented in 

section 2.2.1: 

Maximize 4000� ) 1200� 

Parts production hours (C1): 30� ) 40� ; 30,000 

Assembly hours (C2):  8� ) 11� ; 10,000 

Small cars demand (C3): � C 300 

Non-negativity (C4):  �, � C 0 

Translated into column oriented format, the CM problem looks like the following: 

X1 X2 X3 X4 ... Xn

Equation1 a11 a12 a13 a14 a1n S1

Equation2 a21 a22 a23 a24 a2n S2

Equation3 a31 a32 a33 a34 a3n S3

... ...

Equationm am1 am2 am3 am4 amn Sm

ROWS

(Equations)

COLUMNS (Variables)
RHS
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Figure A.2: The CM production planning model in column oriented format 

The MPS file format has 5 main sections: NAME, ROWS, COLUMNS, RHS, and 

BOUNDS.  The NAME section is used to specify a name for the model or problem;   

“PRODUCTION” for example. 

Table A-1: NAME section of MPS file format 

 

NAME  PRODUCTION 

 

The ROWS section defines names for the rows or equations of the model.  The letter 

preceding the name is a flag that defines the nature of the equation.  N indicates that the row is 

the objective function to be maximized or minimized.  L indicates that the row is a less-than-or-

equal-to relation.  G specifies greater-than-or-equal-to.  E specifies equality. 

Table A-2: ROWS section of MPS file format 

 

ROWS 

 N  OBJECTIVE 

 L  C1 

 L  C2 

 G  C3 

 

The COLUMNS section defines names for columns and the values of their coefficients in 

applicable rows.  The following example means the variable X appears in OBJECTIVE with a 

coefficient of 4,000, in C1 with coefficient of 30, in C2 with coefficient of 8 and in C3 with 

coefficient of 1.  The variable Y appears in OBJECTIVE with coefficient of 1,200, in C1 with 

coefficient of 40 and in C2 with coefficient of 11. 

X Y

Objective 4000 1200

C1 30 40 30000

C2 8 11 10000

C3 1 0 300

RHS
COLUMNS

ROWS
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Table A-3: COLUMNS section of MPS file format 

 

COLUMNS 

    X     OBJECTIVE    4000 

    X     C1           30 

    X     C2           8 

    X     C3           1 

    Y     OBJECTIVE    1200 

    Y     C1           40 

    Y     C2           11 

 

The RHS section defines the right hand side values of the rows or equations. 

Table A-4: RHS section of MPS file format 

 

RHS 

    RHS1   C1    30000 

    RHS1   C2    10000 

    RHS1   C3    300 

 

The BOUNDS section can be used to define range of allowable values for columns or 

variables.  This section is usually used to specify integer or binary constraints on variables. 

The following is an example MPS file for the simple procedures presented in section 

3.1.1 and simple MPSP model presented in section 3.1.2. 

Table A-5: MPS file for the example simple MPSP model problem 

 

NAME           SIMPLE_MPSP 

ROWS 

 N  OBJECTIVE 

 L  C1(1) 

 L  C1(2) 

 L  C1(3) 

 L  C1(4) 

 L  C1(5) 

 G  C2(1) 

 G  C2(2) 

 G  C2(3) 

 G  C2(4) 

 G  C2(5) 

 E  C3(1) 

 E  C3(2) 

 E  C3(3) 

 E  C3(4) 
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 E  C3(5) 

 G  C4(1,1,3) 

 G  C4(1,1,4) 

 G  C4(1,3,4) 

 G  C4(2,2,5) 

 G  C4(4,2,5) 

 G  C4(5,1,2) 

 G  C4(5,1,4) 

 G  C4(5,1,5) 

 G  C4(5,2,4) 

 G  C4(5,2,5) 

 G  C4(5,4,5) 

 G  C4(6,1,2) 

 G  C4(6,1,3) 

 G  C4(6,1,4) 

 G  C4(6,2,3) 

 G  C4(6,2,4) 

 G  C4(6,3,4) 

 G  C4(7,2,5) 

 G  C5(1,1,3) 

 G  C5(1,1,4) 

 G  C5(1,3,4) 

 G  C5(2,2,5) 

 G  C5(4,2,5) 

 G  C5(5,1,2) 

 G  C5(5,1,4) 

 G  C5(5,1,5) 

 G  C5(5,2,4) 

 G  C5(5,2,5) 

 G  C5(5,4,5) 

 G  C5(6,1,2) 

 G  C5(6,1,3) 

 G  C5(6,1,4) 

 G  C5(6,2,3) 

 G  C5(6,2,4) 

 G  C5(6,3,4) 

 G  C5(7,2,5) 

COLUMNS 

    PS(1)     C1(1)     1 

    PS(1)     C2(1)     1 

    PS(1)     C3(1)     1 

    PS(1)     C4(1,1,3) -1 

    PS(1)     C5(1,1,3) 1 

    PS(1)     C4(6,1,2) -1 

    PS(1)     C5(6,1,2) 1 

    PS(1)     C4(6,1,3) -1 

    PS(1)     C5(6,1,3) 1 

    PS(1)     C4(6,1,4) -1 

    PS(1)     C5(6,1,4) 1 

    PS(2)     C1(2)     1 

    PS(2)     C2(2)     1 
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    PS(2)     C3(3)     1 

    PS(2)     C4(2,2,5) -1 

    PS(2)     C5(2,2,5) 1 

    PS(2)     C4(4,2,5) -1 

    PS(2)     C5(4,2,5) 1 

    PS(2)     C4(5,2,4) -1 

    PS(2)     C5(5,2,4) 1 

    PS(2)     C4(5,2,5) -1 

    PS(2)     C5(5,2,5) 1 

    PS(2)     C4(6,2,3) -1 

    PS(2)     C5(6,2,3) 1 

    PS(2)     C4(6,2,4) -1 

    PS(2)     C5(6,2,4) 1 

    PS(2)     C4(7,2,5) -1 

    PS(2)     C5(7,2,5) 1 

    PS(2)     C4(5,1,2) 1 

    PS(2)     C5(5,1,2) -1 

    PS(2)     C4(6,1,2) 1 

    PS(2)     C5(6,1,2) -1 

    PS(3)     C1(3)     1 

    PS(3)     C2(3)     1 

    PS(3)     C3(3)     1 

    PS(3)     C4(1,3,4) -1 

    PS(3)     C5(1,3,4) 1 

    PS(3)     C4(6,3,4) -1 

    PS(3)     C5(6,3,4) 1 

    PS(3)     C4(1,1,3) 1 

    PS(3)     C5(1,1,3) -1 

    PS(3)     C4(6,1,3) 1 

    PS(3)     C5(6,1,3) -1 

    PS(3)     C4(6,2,3) 1 

    PS(3)     C5(6,2,3) -1 

    PS(4)     C1(4)     1 

    PS(4)     C2(4)     1 

    PS(4)     C3(4)     1 

    PS(4)     C4(5,4,5) -1 

    PS(4)     C5(5,4,5) 1 

    PS(4)     C4(1,1,4) 1 

    PS(4)     C5(1,1,4) -1 

    PS(4)     C4(1,3,4) 1 

    PS(4)     C5(1,3,4) -1 

    PS(4)     C4(5,1,4) 1 

    PS(4)     C5(5,1,4) -1 

    PS(4)     C4(5,2,4) 1 

    PS(4)     C5(5,2,4) -1 

    PS(4)     C4(6,1,4) 1 

    PS(4)     C5(6,1,4) -1 

    PS(4)     C4(6,2,4) 1 

    PS(4)     C5(6,2,4) -1 

    PS(4)     C4(6,3,4) 1 

    PS(4)     C5(6,3,4) -1 
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    PS(5)     C1(5)     1 

    PS(5)     C2(5)     1 

    PS(5)     C3(5)     1 

    PS(5)     C4(2,2,5) 1 

    PS(5)     C5(2,2,5) -1 

    PS(5)     C4(4,2,5) 1 

    PS(5)     C5(4,2,5) -1 

    PS(5)     C4(5,1,5) 1 

    PS(5)     C5(5,1,5) -1 

    PS(5)     C4(5,2,5) 1 

    PS(5)     C5(5,2,5) -1 

    PS(5)     C4(5,4,5) 1 

    PS(5)     C5(5,4,5) -1 

    PS(5)     C4(7,2,5) 1 

    PS(5)     C5(7,2,5) -1 

    L(1)      C3(1)     -1 

    L(2)      C3(2)     -1 

    L(3)      C3(3)     -1 

    L(4)      C3(4)     -1 

    L(5)      C3(5)     -1 

    X(1)      C1(1)     45 

    X(1)      C2(1)     30 

    X(2)      C1(2)     45 

    X(2)      C2(2)     30 

    X(3)      C1(3)     45 

    X(3)      C2(3)     30 

    X(4)      C1(4)     45 

    X(4)      C2(4)     30 

    X(5)      C1(5)     45 

    X(5)      C2(5)     30 

    Y(1,3)    C4(1,1,3) -45 

    Y(1,3)    C5(1,1,3) 45 

    Y(1,3)    C4(6,1,3) -45 

    Y(1,3)    C5(6,1,3) 45 

    Y(1,4)    C4(1,1,4) -45 

    Y(1,4)    C5(1,1,4) 45 

    Y(1,4)    C4(5,1,4) -45 

    Y(1,4)    C5(5,1,4) 45 

    Y(1,4)    C4(6,1,4) -45 

    Y(1,4)    C5(6,1,4) 45 

    Y(1,5)    C4(5,1,5) -45 

    Y(1,5)    C5(5,1,5) 45 

    Y(2,3)    C4(6,2,3) -45 

    Y(2,3)    C5(6,2,3) 45 

    Y(2,4)    C4(6,2,4) -45 

    Y(2,4)    C5(6,2,4) 45 

    Y(2,5)    C4(2,2,5) -45 

    Y(2,5)    C5(2,2,5) 45 

    Y(2,5)    C4(4,2,5) -45 

    Y(2,5)    C5(4,2,5) 45 

    Y(2,5)    C4(5,2,5) -45 
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    Y(2,5)    C5(5,2,5) 45 

    Y(2,5)    C4(7,2,5) -45 

    Y(2,5)    C5(7,2,5) 45 

    Y(3,4)    C4(1,3,4) -45 

    Y(3,4)    C5(1,3,4) 45 

    Y(3,4)    C4(6,3,4) -45 

    Y(3,4)    C5(6,3,4) 45 

    Y(4,5)    C4(5,4,5) -45 

    Y(4,5)    C5(5,4,5) 45 

RHS 

    RHS1      C1(1)     65 

    RHS1      C1(2)     70 

    RHS1      C1(3)     65 

    RHS1      C1(4)     60 

    RHS1      C1(5)     70 

    RHS1      C2(1)     30 

    RHS1      C2(2)     30 

    RHS1      C2(3)     30 

    RHS1      C2(4)     30 

    RHS1      C2(5)     30 

    RHS1      C3(1)     0 

    RHS1      C3(2)     0 

    RHS1      C3(3)     0 

    RHS1      C3(4)     0 

    RHS1      C3(5)     0 

    RHS1      C4(1,1,3) -35 

    RHS1      C4(1,1,4) -35 

    RHS1      C4(1,3,4) -35 

    RHS1      C4(2,2,5) -40 

    RHS1      C4(4,2,5) -40 

    RHS1      C4(5,1,2) -35 

    RHS1      C4(5,1,4) -35 

    RHS1      C4(5,1,5) -35 

    RHS1      C4(5,2,4) -40 

    RHS1      C4(5,2,5) -40 

    RHS1      C4(5,4,5) -30 

    RHS1      C4(6,1,2) -35 

    RHS1      C4(6,1,3) -35 

    RHS1      C4(6,1,4) -35 

    RHS1      C4(6,2,3) -40 

    RHS1      C4(6,2,4) -40 

    RHS1      C4(6,3,4) -35 

    RHS1      C4(7,2,5) -40 

    RHS1      C5(1,1,3) 10 

    RHS1      C5(1,1,4) 15 

    RHS1      C5(1,3,4) 15 

    RHS1      C5(2,2,5) 5 

    RHS1      C5(4,2,5) 5 

    RHS1      C5(5,1,2) 5 

    RHS1      C5(5,1,4) 15 

    RHS1      C5(5,1,5) 5 
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    RHS1      C5(5,2,4) 15 

    RHS1      C5(5,2,5) 5 

    RHS1      C5(5,4,5) 5 

    RHS1      C5(6,1,2) 5 

    RHS1      C5(6,1,3) 10 

    RHS1      C5(6,1,4) 15 

    RHS1      C5(6,2,3) 10 

    RHS1      C5(6,2,4) 15 

    RHS1      C5(6,3,4) 15 

    RHS1      C5(7,2,5) 5 

BOUNDS 

 BV BND1      X(1) 

 BV BND1      X(2) 

 BV BND1      X(3) 

 BV BND1      X(4) 

 BV BND1      X(5) 

 BV BND1      Y(1,3) 

 BV BND1      Y(1,4) 

 BV BND1      Y(1,5) 

 BV BND1      Y(2,3) 

 BV BND1      Y(2,4) 

 BV BND1      Y(2,5) 

 BV BND1      Y(3,4) 

 BV BND1      Y(4,5) 

ENDATA 
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Appendix B. Gnu Linear Programming Kit (GLPK) 

GLPK is a powerful, highly customizable, open-source large scale linear programming 

solver package.  It is a callable library of routines written in the ANSI C programming language. 

[120] GLPK can solve linear programming problems in a variety of mathematical programming 

languages including the MPS file format.  GLPK comes packaged with a stand-alone executable 

glpsol.exe that combines the routines together into a standard, easy to use solver. 

For example, the simple MPSP model example (simple_MPSP.mps) presented in 

Appendix A is solved using the following console command. 

Table B-1: Calling glpsol.exe to solve model defined in simple_MPSP.mps 

 

glpsol –-freemps simple_MPSP.mps –o solution.txt 

 

The above commands calls the glpsol.exe executable to read and solve the model defined 

in the file simple_MPSP.mps and output the solution into the file solution.txt.  The solver 

progress is output onto the screen.  The user also has the option of logging the progress in a text 

file by adding the command “--log progress.txt” to the glpsol.exe call.  The progress of solving 

the example problem defined in simple_MPSP.mps is shown in Table B-2.  The solution to 

simple_MPSP.mps is presented in Table B-3.   

Table B-2: Solver progress for the problem defined in simple_MPSP.mps 

 

C:\temp\GLPK>glpsol --freemps simple_MPSP.mps -o solution.txt 

glp_read_mps: reading problem data from `alpha.mps'... 

glp_read_mps: problem GENERAL 

glp_read_mps: 106 rows, 50 columns, 300 non-zeros 

glp_read_mps: 23 integer columns, all of which are binary 

glp_read_mps: 540 records were read 

ipp_basic_tech:  1 row(s) and 0 column(s) removed 

ipp_reduce_bnds: 2 pass(es) made, 27 bound(s) reduced 

ipp_basic_tech:  0 row(s) and 0 column(s) removed 

ipp_reduce_coef: 1 pass(es) made, 0 coefficient(s) reduced 

glp_intopt: presolved MIP has 105 rows, 50 columns, 290 non-zeros 

glp_intopt: 23 integer columns, all of which are binary 

Scaling... 

 A: min|aij| = 1.000e+000  max|aij| = 6.000e+001  ratio = 6.000e+001 

GM: min|aij| = 5.027e-001  max|aij| = 1.989e+000  ratio = 3.957e+000 
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EQ: min|aij| = 2.527e-001  max|aij| = 1.000e+000  ratio = 3.957e+000 

2N: min|aij| = 2.500e-001  max|aij| = 1.000e+000  ratio = 4.000e+000 

Crashing... 

Size of triangular part = 105 

Solving LP relaxation... 

      0: obj =  0.000000000e+000  infeas = 1.000e+002 (0) 

*    40: obj =  1.666666667e-001  infeas = 0.000e+000 (0) 

*    41: obj =  0.000000000e+000  infeas = 0.000e+000 (0) 

OPTIMAL SOLUTION FOUND 

Integer optimization begins... 

+    41: mip =     not found yet >=              -inf        (1; 0) 

+    81: >>>>>  5.100000000e+001 >=  0.000000000e+000 100.0% (10; 0) 

+   186: mip =  5.100000000e+001 >=     tree is empty   0.0% (0; 57) 

INTEGER OPTIMAL SOLUTION FOUND 

Time used:   0.1 secs 

Memory used: 0.2 Mb (225598 bytes) 

lpx_print_mip: writing MIP problem solution to `solution.txt'... 

 

C:\temp\GLPK> 

 

Table B-3: Solution to simple_MPSP.mps 

Problem:    GENERAL 

Rows:       106 

Columns:    50 (23 integer, 23 binary) 

Non-zeros:  300 

Status:     INTEGER OPTIMAL 

Objective:  OBJECTIVE = 51 (MINimum) 

 

   No.   Row name        Activity     Lower bound   Upper bound 

------ ------------    ------------- ------------- ------------- 

     1 OBJECTIVE                  51 

     2 C1(1)                      75                          80 

     3 C1(2)                      70                          85 

     4 C1(3)                      60                          80 

     5 C1(4)                      30                          75 

     6 C1(5)                      60                          85 

     7 C2(1)                      45            30 

     8 C2(2)                      40            30 

     9 C2(3)                      30            30 

    10 C2(4)                      30            30 

    11 C2(5)                      30            30 

    12 C3(1,1)                     0             0             = 

    13 C3(1,3)                     0             0             = 

    14 C3(1,4)                     0             0             = 

    15 C3(2,2)                     0             0             = 

    16 C3(2,5)                     0             0             = 

    17 C3(4,2)                     0             0             = 

    18 C3(4,5)                     0             0             = 
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    19 C3(5,1)                     0             0             = 

    20 C3(5,2)                     0             0             = 

    21 C3(5,4)                     0             0             = 

    22 C3(5,5)                     0             0             = 

    23 C3(6,1)                     0             0             = 

    24 C3(6,2)                     0             0             = 

    25 C3(6,3)                     0             0             = 

    26 C3(6,4)                     0             0             = 

    27 C3(7,2)                     0             0             = 

    28 C3(7,5)                     0             0             = 

    29 C4(1)                       0             0             = 

    30 C4(2)                       0             0             = 

    31 C4(3)                       0             0             = 

    32 C4(4)                       0             0             = 

    33 C4(5)                       0             0             = 

    34 C5(1,1,3)                 -15           -50 

    35 C5(1,1,4)                 -45           -50 

    36 C5(1,3,1)                 -45           -50 

    37 C5(1,3,4)                 -30           -50 

    38 C5(1,4,1)                 -15           -45 

    39 C5(1,4,3)                 -30           -45 

    40 C5(2,2,5)                 -10           -55 

    41 C5(2,5,2)                 -50           -55 

    42 C5(4,2,5)                 -10           -55 

    43 C5(4,5,2)                 -50           -55 

    44 C5(5,1,2)                  -5           -50 

    45 C5(5,1,4)                 -45           -50 

    46 C5(5,1,5)                 -15           -50 

    47 C5(5,2,1)                 -55           -55 

    48 C5(5,2,4)                 -40           -55 

    49 C5(5,2,5)                 -10           -55 

    50 C5(5,4,1)                 -15           -45 

    51 C5(5,4,2)                 -20           -45 

    52 C5(5,4,5)                 -30           -45 

    53 C5(5,5,1)                 -45           -55 

    54 C5(5,5,2)                 -50           -55 

    55 C5(5,5,4)                 -30           -55 

    56 C5(6,1,2)                  -5           -50 

    57 C5(6,1,3)                 -15           -50 

    58 C5(6,1,4)                 -45           -50 

    59 C5(6,2,1)                 -55           -55 

    60 C5(6,2,3)                 -10           -55 

    61 C5(6,2,4)                 -40           -55 

    62 C5(6,3,1)                 -45           -50 

    63 C5(6,3,2)                 -50           -50 

    64 C5(6,3,4)                 -30           -50 

    65 C5(6,4,1)                 -15           -45 

    66 C5(6,4,2)                 -20           -45 

    67 C5(6,4,3)                 -30           -45 

    68 C5(7,2,5)                 -10           -55 

    69 C5(7,5,2)                 -50           -55 
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    70 C6(1,1,3)                  15            10 

    71 C6(1,1,4)                  45            15 

    72 C6(1,3,1)                  45            10 

    73 C6(1,3,4)                  30            15 

    74 C6(1,4,1)                  15            10 

    75 C6(1,4,3)                  30            10 

    76 C6(2,2,5)                  10             5 

    77 C6(2,5,2)                  50             5 

    78 C6(4,2,5)                  10             5 

    79 C6(4,5,2)                  50             5 

    80 C6(5,1,2)                   5             5 

    81 C6(5,1,4)                  45            15 

    82 C6(5,1,5)                  15             5 

    83 C6(5,2,1)                  55            10 

    84 C6(5,2,4)                  40            15 

    85 C6(5,2,5)                  10             5 

    86 C6(5,4,1)                  15            10 

    87 C6(5,4,2)                  20             5 

    88 C6(5,4,5)                  30             5 

    89 C6(5,5,1)                  45            10 

    90 C6(5,5,2)                  50             5 

    91 C6(5,5,4)                  30            15 

    92 C6(6,1,2)                   5             5 

    93 C6(6,1,3)                  15            10 

    94 C6(6,1,4)                  45            15 

    95 C6(6,2,1)                  55            10 

    96 C6(6,2,3)                  10            10 

    97 C6(6,2,4)                  40            15 

    98 C6(6,3,1)                  45            10 

    99 C6(6,3,2)                  50             5 

   100 C6(6,3,4)                  30            15 

   101 C6(6,4,1)                  15            10 

   102 C6(6,4,2)                  20             5 

   103 C6(6,4,3)                  30            10 

   104 C6(7,2,5)                  10             5 

   105 C6(7,5,2)                  50             5 

   106 C9                         51             0 

 

   No. Column name       Activity     Lower bound   Upper bound 

------ ------------    ------------- ------------- ------------- 

     1 PS(1)                      15             0 

     2 PS(2)                      10             0 

     3 PS(3)                       0             0 

     4 PS(4)                      30             0 

     5 PS(5)                       0             0 

     6 RS(1,1)                    15             0 

     7 RS(1,3)                     0             0 

     8 RS(1,4)                    30             0 

     9 RS(2,2)                    10             0 

    10 RS(2,5)                     0             0 

    11 RS(4,2)                    10             0 
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    12 RS(4,5)                     0             0 

    13 RS(5,1)                    15             0 

    14 RS(5,2)                    10             0 

    15 RS(5,4)                    30             0 

    16 RS(5,5)                     0             0 

    17 RS(6,1)                    15             0 

    18 RS(6,2)                    10             0 

    19 RS(6,3)                     0             0 

    20 RS(6,4)                    30             0 

    21 RS(7,2)                    10             0 

    22 RS(7,5)                     0             0 

    23 L(1)                       15             0 

    24 L(2)                       10             0 

    25 L(3)                        0             0 

    26 L(4)                       30             0 

    27 L(5)                        0             0 

    28 X(1)         *              1             0             1 

    29 X(2)         *              1             0             1 

    30 X(3)         *              1             0             1 

    31 X(4)         *              0             0             1 

    32 X(5)         *              1             0             1 

    33 Y(1,2)       *              0             0             1 

    34 Y(1,3)       *              0             0             1 

    35 Y(1,4)       *              1             0             1 

    36 Y(1,5)       *              0             0             1 

    37 Y(2,1)       *              1             0             1 

    38 Y(2,3)       *              0             0             1 

    39 Y(2,4)       *              1             0             1 

    40 Y(2,5)       *              0             0             1 

    41 Y(3,1)       *              1             0             1 

    42 Y(3,2)       *              1             0             1 

    43 Y(3,4)       *              1             0             1 

    44 Y(4,1)       *              0             0             1 

    45 Y(4,2)       *              0             0             1 

    46 Y(4,3)       *              0             0             1 

    47 Y(4,5)       *              0             0             1 

    48 Y(5,1)       *              1             0             1 

    49 Y(5,2)       *              1             0             1 

    50 Y(5,4)       *              1             0             1 

 

Integer feasibility conditions: 

 

INT.PE: max.abs.err. = 0.00e+000 on row 0 

        max.rel.err. = 0.00e+000 on row 0 

        High quality 

 

INT.PB: max.abs.err. = 0.00e+000 on row 0 

        max.rel.err. = 0.00e+000 on row 0 

        High quality 

 

End of output 



135 

 

The solution file contains a lot of information about the problem solution.  However, we 

only need values of the variable (or column) psi to visualize the solution.  The values of psi and 

the resulting schedule are shown in Figure B.1. 

 

Figure B.1: Visualizing the solution to alpha.mps 

All MIP models discussed in this thesis are solved using GLPK’s glpsol.exe stand-alone 

solver except those models that are helped along with good initial solutions and tight solution 

bounds.  The stand-alone glpsol.exe cannot be warm started with an initial solution.  However, 

the underlying solver routine can accommodate initial solutions.  A custom program was 

developed to read in initial solutions and to pass them into the GLPK solver routine.  Aside from 

warm starting with an initial solution, the custom program behaves exactly like glpsol.exe. 

 

  

Time: 0 5 10 15 20 25 30 35 40
R1

R2

R3

R4

R5

R6

R7

i=1 i=2 i=3 i=4 i=5
psi 15 10 0 30 0
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Appendix C. The simple MPSP model 

Decision Variables 

�
� � ������
J ���� �	 ��������� � 

�� � �1   �	 ��������� � can iit within the scheduling period0   �������
�                                                                              � N� � O���
�

 �	 ��������� � 
��,�j � �1   �	 ��������� � �
 
�����N�� ��	��� ��������� �20   �������
�                                                                             � \�, �2 � 1, 2, 3, … 
 

Data ef� � �1   �	 ��
����� � �
 ��g����� 	�� ��������� �0   �������
�                                                               � �� � P������
 �	 ��������� � 
� � ������N�
J ������ 
��� � P�� ���� �	 ��������� � 
�� � h�
�	�� �	 
�����N�
J ��������� � 
�� � O��� ��
�N�� �	 ��������� � 

Objective Function Min ∑ 6��N� X ����8�  
Constraints 

C1 �
� ) �� X 61 X ��8[ ; � 

C2 �
� ) ��� C � 

C3 �
� X N� � ��� 
C4 �
�j X �
� ) Y1 X ��,�jZ[ C ��     \�, �2: 6ef� � ef�j � 1 n  � ] �28 
C5 �
� X �
�j )[��,�j C ��j               \�, �2: 6ef� � ef�j � 1 n  � ] �28 
C6 �
�, N�, �� , ��,�j C 0 

C7 �� , ��,�j b o0,1p 
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Appendix D. The enhanced MPSP model 

Decision Variables �
� � ������
J ���� �	 ����d��� � 
�� � �1   �	 ����d��� � can iit within the scheduling period0   �������
�                                                                         � N� � O���
�

 �	 ����d��� � 
��,�j � �1   �	 ����d��� � �
 
�����N�� ��	��� ����d��� �20   �������
�                                                                   � \�, �2 � 1, 2, 3, … 
 

Data ef� � �1   �	 ��
����� � �
 ��g����� 	�� ����d��� �0   �������
�                                                          � �� � P������
 �	 ����d��� � 
� � ������N�
J ������ 
��� � P�� ���� �	 ����d��� � 
�� � h�
�	�� �	 
�����N�
J ����d��� � 
�� � O��� ��
�N�� �	 ����d��� � 
q�� � r1   �	 ����d��� � ��
� ���������N� 	�NN�� activity �              2   �	 ����d��� � �
� � ���� ��N�
J �� ��� 
��� ��������� 0   �������
�                                                                                        � 

Objective Function Min ∑ 6��N� X ����8�  
Constraints 

C1 �
� ) �� X 61 X ��8[ ; � 

C2 �
� ) ��� C � 

C3 �
� X N� � ��� 
C4 �
�j X �
� ) Y1 X ��,�jZ[ C ��      

 \�, �2: 6ef� � ef�j � 1 n q�j,� � 0 n  � ] �28 
C5 �
� X �
�j )[��,�j C ��j       

 \�, �2: 6ef� � ef�j � 1 n q�j,� � 0 n  � ] �28 



138 

 

C6 �
�, N�, �� , ��,�j C 0 

C7 �� , ��,�j b o0,1p 
C8 �
� X �
� � ��               \�, �: 6q�� � 18 
C9 �� X �� � 0               \�, �: 6q�� � 18 
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Appendix E. The final MPSP model 

Decision Variables �
� � ������
J ���� �	 ����d��� � 
�� � �1   �	 ����d��� � can iit within the scheduling period0   �������
�                                                                         � N� �  �����N� �������
 �	 J�� ����d��� �          \�: 6J� ] 08 
��,�j � �1   �	 ����d��� � �
 
�����N�� ��	��� ����d��� �20   �������
�                                                                   � \�, �2 � 1, 2, 3, … 
 

Data ef� � �1   �	 ��
����� � �
 ��g����� 	�� ����d��� �0   �������
�                                                          � �� � P������
 �	 ����d��� � 
� � ������N�
J ������ 
��� � P�� ���� �	 ����d��� � 
�� � h�
�	�� �	 
�����N�
J ����d��� � 
�� � O��� ��
�N�� �	 ����d��� � 
q�� � s1   �	 ����d��� � ��
� ���������N� 	�NN�� ����d��� �           2   �	 ����d��� � �
� � ���� ��N�
J �� ��� 
��� ���������3   �	 ����d��� � �
 � ��� X ��g��
��� 	�� ����d��� �               0   �������
�                                                                                       

� 
J� � r1   �	 ����d��� � �
 � 
�����
J J�� ����d���                                          2   �	 ����d��� � �
 � J�� ����d��� ��� 
�� 
�����
J J�� ����d���0   �������
�                                                                                                  � [O� � [�� N�d�N �
��� �	 ����d��� � 
tO� � t�� N�d�N �
��� �	 ����d��� � 

Objective Function Min ∑ 6��N� X ����8�  
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Constraints 

C1 �
� ) �� X 61 X ��8[ ; �             \�: 6J� ] 18 
C2 �
� ) ��� C �                            \�: 6J� ] 18 
C3 �
� � ���                        \�: 6J� � 18 
C4a �
�j X �
� ) Y1 X ��,�jZ[ C ��       

 \�, �2: Yef� � ef�j � 1 n  q�j,� � 0 n  J� � 0 n  � ] �2Z 
C4b �
�j X �
� ) Y1 X ��,�jZ[ C N�     

 \�, �2: Yef� � ef�j � 1 n q�j,� � 0 n J� ] 0 n � ] �2Z  
C5a �
� X �
�j )[��,�j C ��j        

 \�, �2: 6ef� � ef�j � 1 n q�j,� � 0 n J�j � 0 n  � ] �28 
C5b �
� X �
�j )[��,�j C N�j        

 \�, �2: 6ef� � ef�j � 1 n q�j,� � 0 n J�j ] 0 n  � ] �28 
C6 �
�, N�, �� , ��,�j C 0 

C7 �� , ��,�j b o0,1p 
C8a �
� X �
� � ��               \�, �: Yq�� � 1 n J� � 0Z 
C8b �
� X �
� � N�              \�, �: 6q�� � 1 n J� ] 08 
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Appendix F. Applying the MPSP model to PET-CT procedure 

The positron emission tomography – computed tomographic (PET-CT) scan is a complex 

medical imaging procedure.  This section will demonstrate the versatility of the MPSP model by 

modeling one shift at a small PET-CT clinic. 

This example clinic has at its disposal 1 scanner, 2 nurses/technicians and 4 private 

uptake rooms.  A patient’s typical appointment workflow is outlined in Table F-1. [121] 

Table F-1: PET-CT appointment description 

 

The duration values given in Table F-1 are average expected values but in reality they are 

variable depending on individual patient needs.  The MPSP model is currently a deterministic 

model and can only model known activity durations so the average expected durations will be 

used.  The variability in the FDG uptake phase (activity B) however, is significant and must be 

modeled.  FDG, short for fluorodeoxyglucose, is a radioactive tracer isotope that is injected into 

the patient and absorbed by tissue.  That absorption or uptake takes time.  The minimum uptake 

time is 60 minutes; however, longer uptake time up to 120 minutes can improve picture contrast.  

Some clinics prefer longer uptake phase. [121] This example will model the uptake phase as an 

activity with flexible duration so that the uptake phase may be extended as desired.  Flexibility in 

activities should also ease scheduling of shared resources. 

The resources of the clinic are modeled as shown in Table F-2.  Figure F.1 through 

Figure F.4 show the modeling of PET-CT appointment workflow for patients A through D.  

Descriptions of the modeled activities are found in Table F-3. 

Activity Description Duration (min)

A

Extensive interview with nurse/technician.  Review medical history, learn more about 

the scanning procedure, resolve any misunderstandings about the procedure, and 

review any other important information.  Place catheter for serum glucose assay and 

begin FDG infusion.

40

B FDG uptake phase and oral contrast ingestion.  Very little to no interaction with staff. 60 - 120

C Escorted to scan room and positioned. 15

D PET-CT scan. 35

E
Return to uptake room or waiting area (not necessarily the same room in the uptake 

phase) for post scan assessment, interview and catheter removal.  Patient departs.
25
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Table F-2: Modeling clinic resources 

 

 

Table F-3: MPSP model of PET-CT workflow description 

 

Resource

R1 Nurse/technician 1

R2 Nurse/technician 2

R3 Uptake room 1

R4 Uptake room 2

R5 Uptake room 3

R6 Uptake room 4

R7 CT scanner

Patient Activity Description Duration (min)

1 Starting gap activity representing the patient waiting to be called. Variable

2 Pre-scan interview with nurse/technician 1.  Occupies uptake room 1. 40

3 Uptake phase.  Minimum uptake time requirement.  Occupies uptake room 1. 60

4
Gap activity.  Uptake phase continued.  Additional uptake time as desired.  Occupies 

uptake room 1.
Variable

5
Patient escorted to scan room and positioned on the scanner.  Scan process.  Occupies 

CT scanner.
50

6 Post scan assessment, interview, and catheter removal.  Patient departs. 25

7 Starting gap activity representing the patient waiting to be called. Variable

8 Pre-scan interview with nurse/technician 2.  Occupies uptake room 2. 40

9 Uptake phase.  Minimum uptake time requirement.  Occupies uptake room 2. 60

10
Gap activity.  Uptake phase continued.  Additional uptake time as desired.  Occupies 

uptake room 2.
Variable

11
Patient escorted to scan room and positioned on the scanner.  Scan process.  Occupies 

CT scanner.
50

12 Post scan assessment, interview, and catheter removal.  Patient departs. 25

13 Starting gap activity representing the patient waiting to be called. Variable

14 Pre-scan interview with nurse/technician 1.  Occupies uptake room 3. 40

15 Uptake phase.  Minimum uptake time requirement.  Occupies uptake room 3. 60

16
Gap activity.  Uptake phase continued.  Additional uptake time as desired.  Occupies 

uptake room 3.
Variable

17
Patient escorted to scan room and positioned on the scanner.  Scan process.  Occupies 

CT scanner.
50

18 Post scan assessment, interview, and catheter removal.  Patient departs. 25

19 Starting gap activity representing the patient waiting to be called. Variable

20 Pre-scan interview with nurse/technician 2.  Occupies uptake room 4. 40

21 Uptake phase.  Minimum uptake time requirement.  Occupies uptake room 4. 60

22
Gap activity.  Uptake phase continued.  Additional uptake time as desired.  Occupies 

uptake room 4.
Variable

23
Patient escorted to scan room and positioned on the scanner.  Scan process.  Occupies 

CT scanner.
50

24 Post scan assessment, interview, and catheter removal.  Patient departs. 25

A

B

C

D
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Figure F.1: PET-CT Workflow for patient A 

 

Figure F.2: PET-CT Workflow for patient B 

R1 1 2 4 5 6

R2

R3 2 3

R4

R5

R6

R7 5

Rri i= 1 2 3 4 5 6 i= 1 2 3 4 5 6 zij j= 1 2 3 4 5 6

R1 0 1 0 0 1 1 di 0 40 60 0 50 25 i=1 2 2 2 0 0 0
R2 0 0 0 0 0 0 dti 0 0 0 0 0 0 i=2 1 2 2 0 0 0
R3 0 1 1 1 0 0 bi 0 1 0 0 0 0 i=3 2 1 2 0 0 0
R4 0 0 0 0 0 0 wi 1 0 0 0 0 0 i=4 0 0 3 2 2 2
R5 0 0 0 0 0 0 gi 1 0 0 2 0 0 i=5 0 0 0 1 2 2
R6 0 0 0 0 0 0 MLi 1 1 1 2 2 2 i=6 0 0 0 2 1 2
R7 0 0 0 0 1 0 TLi 1 1 1 1 1 1

Patient A

R1 7 10

R2 8 11 12

R3

R4 8 9

R5

R6

R7 11

Rri i= 7 8 9 10 11 12 i= 7 8 9 10 11 12 zij j= 7 8 9 10 11 12

R1 0 0 0 0 0 0 di 0 40 60 0 50 25 i=7 2 2 2 0 0 0
R2 0 1 0 0 1 1 dti 0 0 0 0 0 0 i=8 1 2 2 0 0 0
R3 0 0 0 0 0 0 bi 0 1 0 0 0 0 i=9 2 1 2 0 0 0
R4 0 1 1 1 0 0 wi 1 0 0 0 0 0 i=10 0 0 3 2 2 2
R5 0 0 0 0 0 0 gi 1 0 0 2 0 0 i=11 0 0 0 1 2 2
R6 0 0 0 0 0 0 MLi 3 3 3 4 4 4 i=12 0 0 0 2 1 2
R7 0 0 0 0 1 0 TLi 2 2 2 2 2 2

Patient B
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Figure F.3: PET-CT Workflow for patient C 

 

Figure F.4: PET-CT Workflow for patient D 

R1 13 14 16 17 18

R2

R3

R4

R5 14 15

R6

R7 17

Rri i= 13 14 15 16 17 18 i= 13 14 15 16 17 18 zij j= 13 14 15 16 17 18

R1 0 1 0 0 1 1 di 0 40 60 0 50 25 i=13 2 2 2 0 0 0
R2 0 0 0 0 0 0 dti 0 0 0 0 0 0 i=14 1 2 2 0 0 0
R3 0 0 0 0 0 0 bi 0 1 0 0 0 0 i=15 2 1 2 0 0 0
R4 0 0 0 0 0 0 wi 1 0 0 0 0 0 i=16 0 0 3 2 2 2
R5 0 1 1 1 0 0 gi 1 0 0 2 0 0 i=17 0 0 0 1 2 2
R6 0 0 0 0 0 0 MLi 5 5 5 6 6 6 i=18 0 0 0 2 1 2
R7 0 0 0 0 1 0 TLi 3 3 3 3 3 3

Patient C

R1 19 22

R2 20 23 24

R3

R4

R5

R6 20 21

R7 23

Rri i= 19 20 21 22 23 24 i= 19 20 21 22 23 24 zij j= 19 20 21 22 23 24

R1 0 0 0 0 0 0 di 0 40 60 0 50 25 i=19 2 2 2 0 0 0
R2 0 1 0 0 1 1 dti 0 0 0 0 0 0 i=20 1 2 2 0 0 0
R3 0 0 0 0 0 0 bi 0 1 0 0 0 0 i=21 2 1 2 0 0 0
R4 0 0 0 0 0 0 wi 1 0 0 0 0 0 i=22 0 0 3 2 2 2
R5 0 0 0 0 0 0 gi 1 0 0 2 0 0 i=23 0 0 0 1 2 2
R6 0 1 1 1 0 0 MLi 7 7 7 8 8 8 i=24 0 0 0 2 1 2
R7 0 0 0 0 1 0 TLi 4 4 4 4 4 4

Patient D



145 

 

Additional patients can be modeled by repeating the models for patients A through D. 

The model was set up to guarantee satisfaction of the minimum uptake time of 60 

minutes but allows flexible uptake time.  That is, for patient A, activity 3 has a fixed 60-minute 

duration.  The next activity, activity 4 has variable duration to allow a prolonged uptake phase.  

At this point, the user has several options to handle that flexible uptake phase.  One may add 

hard constraints to the MIP formulation to enforce that the additional uptake time (i.e. duration 

of activity 4) does not exceed 60 minutes.  Like so: 

N{ ; 60 

If the MIP formulation is modified, gMASH’s fitness function and chromosome repair 

function would need to be modified as well to enforce the additional constraints. 

Another option is to manipulate the flexible uptake time with coefficients in the objective 

function.  Allowing longer uptake phase improves scan quality at the cost of patient throughput.  

In some circumstances, a clinic administrator may favour patient throughput over higher picture 

quality.  In that case, the user may attach a wait time penalty to activity 4.  The model will then 

try to minimize the duration of activity 4 like any other gap activity.  This approach does not 

require modification to the MIP formulation or to the gMASH heuristic. 

The MPSP model for the PET-CT procedure presented so far can easily be converted into 

the MIP model presented in Appendix E and solved exactly using GLPK’s branch and cut solver 

or solved approximately using gMASH.  The following figures show attempts of scheduling 6 

PET-CT appointments into an 8-hour shift.  Figure F.5 shows the exact solution obtained by the 

BnC solver.  Figure F.6 shows gMASH’s heuristic solution.  Both solutions are conflict-free 

schedules that minimize patient wait time thus demonstrating the MPSP model’s versatility in 

modeling medical procedures.   

An important caveat must now be noted here.  Medical procedures are complex, each 

have properties and nuances that are unique to that procedure.  The MPSP model was designed 

to be general to model a variety of procedure but it should be used only as a starting point for 

building more sophisticated, realistic and practical systems.  Extensive research and study is 

needed to understand the unique properties of each medical procedure.  Only then can the MPSP 

model be adapted to accurately model and schedule those procedures.   



146 

 

 

Figure F.5: Scheduling 6 PET-CT appointments, solving exactly using BnC 

 

Figure F.6: Scheduling 6 PET-CT appointments, solving approximately using gMASH 

 

Time: 0 1 hr 2 hr 3 hr 4 hr 5 hr 6 hr 7 hr 8hr

R1 2 14 5 6 26 17 18 29 30

R2 8 20 11 12 32 23 24 35 36

R3 2 3 26 27 28

R4 8 9 10 32 33 34

R5 14 15 16

R6 20 21 22

R7 5 11 17 23 29 35

Time: 0 1 hr 2 hr 3 hr 4 hr 5 hr 6 hr 7 hr 8hr

R1 2 14 5 6 26 17 18 29 30

R2 8 20 11 12 32 23 24 35 36

R3 2 3 4 26 27 28

R4 8 9 32 33 34

R5 14 15 16

R6 20 21

R7 11 5 23 17 35 29
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