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Abstract

We study techniques, approximation algorithms, structural properties and lower bounds
related to applications of linear programs in combinatorial optimization. The following
Steiner tree problem is central: given a graph with a distinguished subset of required
vertices, and costs for each edge, find a minimum-cost subgraph that connects the required
vertices. We also investigate the areas of network design, multicommodity flows, and
packing/covering integer programs. All of these problems are NP-complete so it is natural
to seek approximation algorithms with the best provable approximation ratio. Overall,
we show some new techniques that enhance the already-substantial corpus of LP-based
approximation methods, and we also look for limitations of these techniques.

The first half of the thesis deals with linear programming relaxations for the Steiner
tree problem. The crux of our work deals with hypergraphic relaxations obtained via
the well-known full component decomposition of Steiner trees; explicitly, in this view the
fundamental building blocks are not edges, but hyperedges containing two or more required
vertices. We introduce a new hypergraphic LP based on partitions. We show the new
LP has the same value as several previously-studied hypergraphic ones; when no Steiner
nodes are adjacent, we show that the value of the well-known bidirected cut relaxation
is also the same. A new partition uncrossing technique is used to demonstrate these
equivalences, and to show that extreme points of the new LP are well-structured. We
improve the best known integrality gap on these LPs in some special cases. We show that
several approximation algorithms from the literature on Steiner trees can be re-interpreted
through linear programs, in particular our hypergraphic relaxation yields a new view of
the Robins-Zelikovsky [178] 1.55-approximation algorithm for the Steiner tree problem.

The second half of the thesis deals with a variety of fundamental problems in combi-
natorial optimization. We show how to apply the iterated LP relaxation framework to the
problem of multicommodity integral flow in a tree, to get an approximation ratio that is
asymptotically optimal in terms of the minimum capacity. Iterated relaxation gives an in-
feasible solution, so we need to finesse it back to feasibility without losing too much value.
Iterated LP relaxation similarly gives an O(k2)-approximation algorithm for packing in-
teger programs with at most k occurrences of each variable; new LP rounding techniques
give a k-approximation algorithm for covering integer programs with at most k variable
per constraint. We study extreme points of the standard LP relaxation for the traveling
salesperson problem and show that they can be much more complex than was previously
known. The k-edge-connected spanning multi-subgraph problem has the same LP and we
prove a lower bound and conjecture an upper bound on the approximability of variants of
this problem. Finally, we show that for packing/covering integer programs with a bounded
number of constraints, for any ǫ > 0, there is an LP with integrality gap at most 1 + ǫ.
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Chapter 1

Introduction

What is the power of computers? How can mathematics help us understand the power of
computers, and how can computers help us understand mathematics? These are the sort
of theoretical questions that motivate this thesis, at a high level; we return to the interplay
between computers and mathematics later in the introduction.

The concrete problem which motivates most of this thesis is the Steiner tree problem,
which is as follows. You are given some required vertices (points) and some optional
vertices, and want to build a graph (network) to connect the required vertices. You can
purchase an edge (direct link) between any two points u and v; the cost of this edge, which
you are given as part of the problem statement, is some dollar value cuv that depends on
u and v. The Steiner tree problem is then, what is the cheapest way to purchase edges so
that between any two required vertices, there is a path of edges? Optional points can be
included or excluded from the graph as you prefer.

A

B
C

X

A

B
C

120◦

120◦
120◦

Figure 1.1: Left: an instance of the Steiner tree problem where there are three required
vertices in the plane. Right: the solution for this instance uses one optional point.

In Figure 1.1 we give an example of how an optional point helps. There are three
required points A,B,C in the two-dimensional plane, every other point in the plane is an

1



optional point, and the cost of connecting two points is the same as their distance; so the
Steiner tree problem asks the shortest total length of line segments to connect A,B,C. This
very special case was investigated by the classical mathematicians Fermat and Torricelli in
the mid-1600s; they found that the optimal network consists of three edges AX,BX,CX
where the point X satisfies ∠AXB = ∠BXC = ∠CXA = 120 ◦ (unless this X lies outside
the triangle ABC, in which case the optimal solution is just the two shorter sides of the
triangle.) We refer the reader to [174, §10.4] for these historical references.

We now skip forward a few centuries to the 1900s. Electronic computers were developed
over the course of this century and so was a formal mathematical model of computation.
Computers can be programmed to perform a variety of different tasks and can do ba-
sic mathematical operations much faster than a human. The Steiner tree problem has
applications in industry [41] (for example, the network could be for telecommunication,
transportation, or chip layout) and so one wonders: just how quickly can a computer can
solve the Steiner tree problem? The mainstream notion in theoretical computer science is
the following abstract mathematical expression of speed (i.e. one that is independent of
whether you use a Mac or a PC): we seek an algorithm (abstract computer program) with
smallest time complexity (number of basic operations performed) as a function of the input
size n.

Another mainstream notion is that a fast running time is any running time of the
form at most nD for constant D, so-called polynomial time complexity. In the 1970s, the
complexity-theoretic notion of NP-completeness was developed by Cook and Levin; then
Karp [126] showed that Steiner tree is “NP-hard,” so a fast algorithm for the Steiner tree
problem is would imply fast algorithms for all “NP-complete” problems. Moreover, there
are lots of well-known NP-complete problems and the best known algorithms for them have
running time like Cn for some constant C > 1. Since nD < Cn for large enough n, we
cannot use any known algorithms solve the Steiner tree problem this quickly — there is a
$1,000,000 conjecture [122] that in fact no such algorithm exists.

It is therefore sensible to look at approximation algorithms : find a fast algorithm which
outputs some valid answer that is nearly optimal, i.e. the output has cost within a factor α
of the best possible, for some α. Such an algorithm is called an α-approximation algorithm.
For the Steiner tree problem, a 2-approximation algorithm was known at least as early as
1968 [90] and in the 1990s other algorithms [202, 16, 203, 118, 127, 173] were discovered
with better approximation ratios, with the current best ratio equal to 1+ ln 3 ≈ 1.55 [178],
by Robins & Zelikovksy.

The PCP theorem in the early 1990s showed that there are limits to approximability:
e.g. this line established a 1 + ǫ inapproximability result for the Steiner tree problem for
a fixed tiny ǫ > 0. More recently, Chleb́ık and Chleb́ıková [45] showed the best possible
approximation ratio for Steiner tree is at least 96

95
≈ 1.01 (unless NP has fast algorithms).

Where, between 1.01 and 1.55, is the best polynomial-time approximation ratio?
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Chapter 1. Introduction

1.1 Linear Programs

Algorithmic techniques based on linear programs (LPs) have driven many modern devel-
opments in combinatorial optimization problems related to the Steiner tree problem. The
linear programming approach is to relax a discrete problem (in Steiner tree there are two
discrete choices per connection, purchase it or don’t purchase it) into a continuous variant
(we now allow each edge e to be “purchased” to any fractional extent 0 ≤ xe ≤ 1). Then
one must overcome two inter-related technical challenges: first, modeling the problem by
linear constraints; second, recovering an integral solution from the fractional relaxation
without increasing the cost too much.

It has been 10 years since the last improvement to the best-known ratio for the Steiner
tree problem. Moreover, the Steiner tree problem is an example where LP methods have
not driven innovation: none of the long list of approximation algorithms [90, 202, 16,
203, 118, 127, 173, 178] were developed by LP methods. The best LP-based result known
is that an alternative 2-approximation algorithm can be obtained using LP technology,
e.g. [93, 2, 124].1 Nonetheless, the overall breadth and depth of LP methods has developed
over time, and there is no negative result suggesting that LP methods will remain forever
ineffective in this setting. In addition, LP methods are useful in practice for solving large-
scale instances of the Steiner tree problem, by using integer programming software [193, 3].
Therefore, a large part of this thesis is devoted to developing and understanding modern
LP technology for use in the Steiner tree problem. We also successfully develop LP-based
approximation algorithms, with better approximation ratios than were previously known,
for several other problems in combinatorial optimization.

1.2 LP Preliminaries

While a substantial number of different successful techniques are known in the literature
on LP methods, there is no hard-and-fast rule telling whether a given LP is useful or not.
Some guidelines are known, including small integrality gap and uncrossability.

The integrality gap Γ of a linear program is a quantitative measure related to the
suitability of an LP for use in designing approximation algorithms. We discuss it for
minimization problems here, but analogous definitions hold for maximization problems.
The integrality gap is defined as the worst-case cost ratio between the integral optimum
cost(x∗

I) (i.e., min Steiner tree cost) and the fractional optimum L∗ (i.e., LP optimal
value). The proof method of most LP-based approximation algorithms (e.g. rounding and

1In the special case of quasibiparite instances — where no two Steiner nodes are adjacent — a 4

3
-

approximation [176, 177, 34] was developed using the bidirected cut LP, but the non-LP based algorithm
of Robins & Zelikovsky [178] still performs even better on these instances, with approximation ratio 1.29.
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1.2. LP Preliminaries

primal-dual) is to find a feasible x and prove that cost(x) ≤ αL∗, which guarantees an
α-approximation since

cost(x) ≤ αL∗ ≤ αcost(x∗
I).

But if the integrality gap satisfies Γ > α, we also have

cost(x) ≥ cost(x∗
I) ≥ ΓL∗ > αL∗,

and so cost(x) ≤ αL∗ is impossible. Conversely, approximation algorithms of this type,
which we will call LP-relative approximation algorithms2, prove that Γ ≤ α. One reason
to demarcate the property of being LP-relative is that it is specifically necessary in some
settings; in Chapter 6 we make use of a 2-approximation algorithm of Jain [124], crucially,
because it is LP-relative. The notion of an LP-relative approximation algorithm is already
ubiquitous in the literature; but we are not aware of a name for it as such.

Even if an LP has a large integrality gap, one may still find it useful in designing an
approximation algorithm. For example, Carr et al. [33] gave a 21

10
-approximation algorithm

for edge-dominating set using the natural LP. They also showed an integrality gap of 21
10

for
that LP, which precluded any better LP-relative ratio for that LP. But by strengthening
the natural LP with additional constraints, two groups [79, 166] obtained another LP
with integrality gap of 2 and also obtained a 2-approximation algorithm for the problem.
Another example is multicommodity flow in a line. The natural LP has integrality gap at
least n/2, however by reducing to structured subproblems and applying the LP to these
subproblems, Bansal et al. [9] obtained a much better O(logn)-approximation algorithm.

It is convenient to introduce some common terms before discussing uncrossing. For a
vector x, the support of x, denoted supp(x), is the set {i | xi 6= 0}. The support size of
x is | supp(x)|. For a family F of subsets of a ground set X , we call F laminar if every
A,B ∈ F satisfies either A ⊆ B,B ⊆ A, or A ∩ B = ∅. One can show that a laminar
family has at most 2|X| sets.

Uncrossability refers to several structural properties possessed by various LPs. We give
a historical survey in Section 1.5 and examples later in the thesis. One typical consequence
of uncrossing is to show that a large linear program has a small, well-structured optimal
solution (e.g., one with laminar support). There is some sense in which an LP needs to
be very “special” to be uncrossed, e.g. it typically requires that we appeal to super- or
sub-modularity of certain values.

We remark that the two LP properties mentioned above — being uncrossable, and
having a small integrality gap — are somewhat at odds with each other. On the one
hand, strengthening an LP by adding extra valid constraints can only (weakly) decrease
its integrality gap. On the other hand, uncrossability requires that all constraints relate

2For a specific LP L, the term L-relative means the output cost is at most α ·OPT(L).
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Chapter 1. Introduction

to each other in a special way, which is destroyed once we add extra constraints3. We note
that in the literature on Steiner trees, there are papers investigating successively stronger
LPs [5, 47, 48, 54, 58, 95, 168, 170, 194, 200], and yet the weakest known LP (the undirected
cut relaxation) has yielded remarkable results on bounded-degree versions of the spanning
tree and Steiner tree problems [99, 148, 182, 10], because it remained uncrossable when
adding simple degree constraints.

1.3 Contributions: Steiner Trees

The first half of the thesis, Chapters 2–5, is concerned with linear program relaxations
of the Steiner tree problem. Our work utilizes the well-known full component decompo-
sition of Steiner trees, which transforms the Steiner tree problem into a natural problem
on hypergraphs, which are a generalization of graphs. The post-1990 Steiner tree algo-
rithms [202, 16, 203, 118, 127, 173, 178] can all be seen as using this view in one way or
another. The first instance of a Steiner tree LP based on hypergraphs is due to Warme in
the late 1990s [194]; it uses subtour constraints.

We detail our results obtained for Steiner trees in Chapter 2, after introducing the
LPs themselves, but give a sketch here. We introduce a new hypergraphic LP based on
partitions. We show the new LP has the same value as several previously-studied hyper-
graphic ones (e.g. Warme’s subtour LP); when no Steiner nodes are adjacent, we show,
surprisingly, that the value of the well-known bidirected cut relaxation is also the same.
A new partition uncrossing technique is used to demonstrate these equivalences, and to
show that extreme points of the new LP are well-structured. We improve the best known
integrality gap on these LPs in some special cases. We show that several approximation al-
gorithms from the literature on Steiner trees can be re-interpreted through linear programs,
in particular our hypergraphic relaxation yields a new view of the Robins-Zelikovsky [178]
1.55-approximation algorithm for the Steiner tree problem.

1.3.1 Discussion on Computational Techniques

We hope to use mathematical techniques to advance the state of the art in computer science;
and it has turned out that computers were essential to obtain our mathematical results.
The new partition uncrossing techniques depend on a surprisingly complicated intermediate

3There is some wiggle room here, e.g. if a pointed LP has support size at most s for each extreme point,
adding any t constraints results in an LP all of whose extreme points have support size at most s(t+1) —
this follows from Carathéodory’s theorem applied to the fact that every extreme point of the strengthened
LP lies in a t-dimensional face of the original.
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result (Lemma 3.11) which we only posited to be true after computing “tightness” prop-
erties of the new partition LP. Similar computations are used to refute otherwise-sensible
seeming conjectures later in the paper — see Example 3.20 and Section 5.6.2. The proof
a polyhedral result in Section 4.6 — in terms that will be introduced later, equivalence of
hypergraphic and bidirected LPs on 5-restricted instances — depends on computational
enumeration of extreme points of certain polyhedra. Computational experiments with the
various LPs in this thesis were very valuable overall.

1.4 Contributions: Other Problems

Chapters 6–9 can be read independently of each other and of the first half of the thesis.

In Chapter 6 we consider the integral multicommodity flow in a tree problem. This
problem is known to admit a 4-approximation algorithm. We show that in a variety of
settings — edge-capacitated, arc-capacitated, and vertex-capacitated — the problem gets
easier to approximate as the minimum capacity increases. Precisely, where µ denotes the
minimum capacity, we get 1+O(1/µ)-approximation algorithms for all three problems, and
the same result for their covering analogues. These results are obtained by proving that in
all three settings, the recent technique of iterated LP relaxation [181] applies, and giving
a framework to extend known consequences of iterated LP relaxation. We also determine
the integer hull of all feasible solutions when the tree is a spider, i.e. has only one vertex
has degree greater than 2.

In Chapter 7 we consider two closely-related problems. First, we give a k-approximation
algorithm for k-row-sparse covering integer programs, correcting an erroneous claim of [32,
80] (they have a correct algorithm for unit upper bounds but erroneously claim unit upper
bounds hold without loss of generality). To obtain this result we introduce a novel LP
strengthening tool that extends well-known rounding methodology. Second, we give an
O(k2)-approximation algorithm for k-column-sparse packing integer programs, a new but
natural problem. Our approach is based on iterated LP relaxation.

In Chapter 8 we give two results. The main result is a new complex extreme point for a
well-known LP, the subtour formulation for the symmetric traveling salesperson problem.
Specifically, we find an extreme point on n vertices with maximum degree n/2 and denom-
inator exponential in n; the previous best was degree Θ(

√
n) and denominator Θ(n). Our

motivation for this problem is the k-edge-connected spanning multi-subgraph (k-ECSM)
problem, whose natural LP is essentially the same; we give a new hardness result, showing
that this problem has an inapproximability ratio bounded away from 1 even as k tends to
infinity. We conjecture that k-ECSM admits a 1 +O(1/k)-approximation algorithm.

In Chapter 9 we consider covering or packing integer programs with at most k con-
straints (plus box constraints), which are equivalent to the k-dimensional knapsack prob-
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Chapter 1. Introduction

lem. A polynomial-time approximation scheme is known for this problem; we strengthen
that result by, for any ǫ > 0, giving a new LP admitting an LP-relative (1+ǫ)-approximation
algorithm. This also serves to put a recent result of Bienstock [18] in a much more general
context.

1.5 A Partial History of Polyhedral Uncrossing

In this final section of the introduction we give a brief history of the technique known
as (set) uncrossing for polyhedra, which is intended as a historical/literature review for
readers who already have some familiarity with the field; we also do not attempt to give
a formal definition of uncrossed. We distinguish between two main types of results. In
primal uncrossing (e.g. for partition uncrossing, Theorem 3.1) one shows that every ex-
treme point solution has an uncrossed basis; more specifically in weak primal, one shows
that some uncrossed basis exists, and in strong primal, one shows that every maximal
linearly uncrossed family of tight constraints is a basis (plus possibly some linearly de-
pendent constraints). In dual uncrossing (e.g. for partition uncrossing, Theorem 3.3), one
shows that the dual LP has an optimum with uncrossed support. We distinguish between
strong and weak primal uncrossing because dual uncrossing implies weak primal uncrossing
([179, Thm. 5.35], [104, §8.4]) and strong primal uncrossing trivially implies weak primal
uncrossing, but there seems to be no direct implication between dual uncrossing or strong
primal uncrossing.

Dual uncrossing is very common in recent papers. In dual uncrossing for sets, one
repeats the following operation: lower the dual variables for two sets and raise the dual
variables for their union and intersection. This approach appears in the first published
work on polyhedral uncrossing: the work of Edmonds and Giles [60, 91] on submodular
flows, which was inspired jointly by Lovász’ simplified proof [156] of the Lucchesi-Younger
theorem [157, 158], and Edmonds’ proof [59] that the polymatroid intersection LP is totally
dual integral4. A year later, Hoffman & Schwartz used a very similar argument when they
introduced the lattice polytope [116] model and proved it is totally dual integral.

Additionally, there are a number of earlier papers which use techniques and proposi-
tions related to pairwise uncrossing, e.g. Nash-Williams [162] (who showed that the function
|δ(X)| counting edges leaving X ⊂ V is submodular, and who also showed weak super-
modularity of a function related to network design), Ford & Fulkerson [68, Ch. 1 Cor. 5.4]
(min-cuts of a graph are closed under union and intersection), Younger [201] (reduction
of a problem to the laminar case), and Lovász [153, 152, 154, 155] (coverage functions,

4Edmonds’ proof in [59] uses a single step of global uncrossing applicable by virtue of the greedy
algorithm for (poly)matroids. Note modern treatments (e.g., [179, §41.4]) often present a proof based on
pairwise uncrossing instead.
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Menger’s theorem, orientations, and 2b-matchings in a hypergraph derived from T-joins).
Frank [69] notes that Lovász used this technique on an undergraduate mathematics con-
test [151]. Aside from the developments in the mid-1970s [60, 157, 156] by Edmonds-Giles,
Lucchesi-Younger and Lovász, most of these sources do not cite one another, so it is not
clear how many times uncrossing techniques were independently discovered.

Explicit discussion of primal (i.e., basis) uncrossing results seems to have appeared first
in the mid-1980s in the context of the subtour relaxation for the traveling salesperson prob-
lem: see the work of Boyd & Pulleyblank [26, 24] and Cornuéjols, Fonlupt & Naddef [50]
(who also credit Bill Cunningham).

It appears that strong primal polyhedral uncrossing was first noted by Jain in 1998 [124]
(even though the weak version suffices for the purposes of his approximation algorithm).
This built upon earlier combinatorial uncrossing results in the 1990s [85, 94, 197, 100];
see also the note on polyhedral uncrossing for 0-1 proper functions in the survey [96]. We
remark that a good fraction of the machinery used by Jain was also used by Frank [70], who
solved a special case of Jain’s problem exactly. As an aside, we also note non-polyhedral
work on uncrossing covers of min-cuts, both in directed [71] and undirected [197, 28] graphs.

So far, all polyhedral uncrossing techniques that we are aware of (set uncrossing as
outlined above, the lattice polyhedron [116] model and relatives [179, Ch. 60]) depend on
replacing a pair with another pair. The main new technique in our partition uncrossing
results (Chapter 3 and Section 3.6) is that we replace a pair of partitions with more than
two partitions. (This technical step is encapsulated in Lemma 3.11; we give a reason in
Example 3.8 why this extra complication is truly necessary and not just an artifact of our
approach.) This general idea seems simple enough that it may have other applications.
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Chapter 2

Steiner Tree LPs: Introduction &
Summary

In the Steiner tree problem, we are given an undirected graph G = (V,E), non-negative
costs ce for all edges e ∈ E, and a set of terminal vertices R ⊆ V . The goal is to find
a minimum-cost tree T spanning R, and possibly some Steiner vertices from V \ R. The
problem takes a central place in the theory of combinatorial optimization and has numerous
practical applications (e.g., see [121, 167]). The problem is one of Karp’s [126] original 21
NP-hard problems, and Chleb́ık and Chleb́ıková show that no (96/95 − ǫ)-approximation
algorithm can exist for any positive ǫ unless P=NP [45]. The same authors also show that it
is NP-hard to obtain an approximation ratio better than 128

127
for quasi-bipartite instances of

the Steiner tree problem; these are instances in which no two Steiner vertices are adjacent
in the underlying graph G.

One of the first approximation algorithms for the Steiner tree problem is the well-known
minimum-spanning tree heuristic which is widely attributed to Moore [90]. Moore’s algo-
rithm has a performance ratio of 2 for the Steiner tree problem and this remained the best
known until the 1990s, when Zelikovsky [202] suggested computing Steiner trees with a
special structure, so called r-restricted Steiner trees based on the full component decom-
position. Nearly all of the Steiner tree algorithms developed since then use r-restricted
Steiner trees.

Given a Steiner tree T , a full component of T is a maximal subtree of T all of whose
leaves are terminals and all of whose internal nodes are Steiner nodes. The edge set of
any Steiner tree can be partitioned in a unique way into full components by splitting at
internal terminals; see Figure 2.1 for an example.

The above observation leads to the following hypergraph view of the Steiner tree prob-
lem which was first made explicit by Warme [195] and Prömel and Steger [173]. Let K be
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Figure 2.1: Black nodes are terminals and white nodes are Steiner nodes. Left: a Steiner
tree for this instance. Middle: the Steiner tree’s edges are partitioned into full compo-
nents; there are four full components. Right: the hyperedges corresponding to these full
components.

the set of all nonempty subsets of terminals (hyperedges). We associate with each K ∈ K
a fixed min-cost full component spanning the terminals in K, and let CK be its cost1. The
problem of finding a minimum-cost Steiner tree spanning R now reduces to that of finding
a minimum-cost hyper-spanning tree in the hypergraph (R,K).

The basic terminology for hypergraphs is as follows. A hyperedge (called just an edge
sometimes) is any nonempty subset of the vertex set (usually of size at least 2). Vertices
v, v′ are connected if there is a sequence v = v1 ∈ e1 ∋ v2 ∈ e2 ∋ · · · ∋ vℓ = v′ of
vertices and hyperedges in the hypergraph. A connected hypergraph is one in which all
vertices are connected. A simple cycle is a sequence of distinct vertices and hyperedges
with r1 ∈ K1 ∋ r2 ∈ K2 · · · ∋ rℓ ∈ Kℓ ∋ r1 and ℓ > 1. A hyper-spanning tree may then be
defined as a connected hypergraph with no simple cycles: see the right of Figure 2.1 for an
example.

There are technical points in the now-standard full component approach which we
must now address. It is not obvious how easy it is to compute CK , but the dynamic
programming algorithm of Dreyfus and Wagner [56] allows us to determine CK (and an
optimal full component, if one exists) for a given K in time O(exp(|K|)poly(|V |)). Even
though there exponentially many subsets of R, we will only compute CK for those K ⊂ R
with size |K| ≤ r — such K are called r-restricted full components. For fixed r there
are polynomially many r-restricted full components and each CK can be computed in
polynomial time. Therefore in polynomial time we can compute the set

Kr := {K ⊆ R : 2 ≤ |K| ≤ r and there exists a full component whose terminal set is K}

and CK for all K ∈ Kr. An instance in which all full components have size at most r is
called r-restricted. From now on, we will stop writing the ubiquitous subscript r and just
write K.

1If there is no full component spanning K, we let CK be infinity.
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Chapter 2. Steiner Tree LPs: Introduction & Summary

Notation. For ease of notation we use K to mean both a subset of R, and the min-cost
full component (tree) with leaf set K. In Sections 4.4 and 4.6 we will need to be more
precise; there we use K for the tree and R(K) for its leaves (e.g., R(K) ⊂ R).

We now introduce the notion of r-preprocessing. We talked above about transforming a
Steiner tree instance I = (V,R,E, c) into a hypergraph (K, C). We may also transform the
hypergraph back into a Steiner tree instance I ′ = (V ′, R′, E ′, c′) that is equivalent to the
hypergraph — specifically the new instance contains no full components of size greater than
r, and the feasible hypergraph solutions are essentially isomorphic to the feasible Steiner
tree solutions on the new instance. We construct I ′ starting with just the terminals R of
the original instance. Then we delete all edges and Steiner nodes of the original instance.
We set R′ = R. Then, for each K ∈ K, we take the min-cost full component with leaf set
K, clone its elements (edges and Steiner nodes) and put the clones in V ′, E ′, and attach
the clones to R′ the same as they were connected to R. The edge costs are copied from the
original instance. Reiterating, I ′ has just terminals and element-disjoint full components,
one for each K ∈ K. We say that r-preprocessing is the process which transforms I to
I ′; note that I ′ is r-restricted. This transformation, although pedantic on first sight, is
sometimes useful because it establishes that the “r-restricting full component approach”
still results in a Steiner tree instance. (Above, essentially isomorphic was a weasel word
due to the fact that a full component K in I ′ also has sub-full components (sub-trees)
K ′ ⊂ K; but we can always replace such a sub-full component by the clone corresponding
to K ′ without increasing costs.)

What is the cost of r-restricting? Consider for example a Steiner tree instance where
the graph is a star with one Steiner centre, five terminal tips, unit edge costs; now take
r = 3. The cheapest Steiner tree has cost 5 (take all edges), but the cheapest r-restricted
hyper-spanning tree has cost 6 (two full components each of size 3 and cost 3). The r-
Steiner ratio, denoted ρr, is the largest possible ratio of the min-cost r-restricted spanning
hypergaph and the min-cost Steiner tree in the original instance (so we see ρ3 ≥ 6/5).
Fortuitously, Borchers and Du [21] exactly determined the r-Steiner ratio for all r, showing
ρr = 1+Θ(1/ log r). (More precisely, for r = 2a + b with 0 ≤ b < 2a, ρr = 1+ (a+ b

2a
)−1.)

Therefore for any fixed ǫ > 0, for large enough r, focusing on r-restricted full components
only affects the optimal value by a 1 + ǫ factor.

Aside from the ρr factor loss, one should ask what is the difference by looking at the
hypergraph view. Computing min-cost spanning r-restricted hypergraphs is not computa-
tionally easy. For r = 2 it is just the minimum spanning tree problem. The case r = 3
admits a polynomial-time algorithm (by Lovász) for unit weights; for general weights a
PTAS is known [173] but the problem is neither known to be in P nor NP-complete. For
r ≥ 4 the problem is APX-hard with inapproximability ratio Ω(ln r) — see Section 4.8.
However, fortuitously again, the hypergraphs obtained from the Steiner tree problem have
special properties which are exploited algorithmically to get approximation algorithms
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better than what is possible for arbitrary hypergraphs.

In [202], Zelikovsky used 3-restricted full components to obtain an 11/6-approximation
for the Steiner tree problem. Subsequently, a series of papers (e.g., [16, 203, 118, 127, 173])
improved upon this result. These efforts culminated in a

(
1 + ln 3

2

)
≈ 1.55-approximation

algorithm of Robins and Zelikovsky [178] (subsequently referred to as RZ) for the Steiner
tree problem for r-restricted instances. They hence obtain, for each fixed r ≥ 2, a 1.55ρr
approximation algorithm for the (unrestricted) Steiner tree problem, i.e. a 1.55+ ǫ approx-
imation for every fixed ǫ > 0. We refer the reader to two surveys in [101, 174].

2.1 LP Approaches & Background on MST

Development of combinatorial algorithms has been paralleled by extensive LP-based re-
search to understand the Steiner tree problem. Such a polyhedral study often leads to
better exact and approximate algorithms (although this has not yet actually happened in
the particular case of Steiner trees). There is vast literature on various LP relaxations for
the Steiner tree problem, e.g. [5, 47, 48, 54, 58, 95, 168, 194, 200]. One offshoot of better
LP relaxations is to achieve vast improvements in the area of integer programming-based
exact algorithms (e.g., see Warme [194] and Polzin [167, 169]) for the Steiner tree problem.

Despite their apparent strength, none of the above LP relaxations has been proven to
exhibit an integrality gap smaller than 2 in general. In particular, the best LP-based ap-
proximation algorithm for the Steiner tree problem is due to Goemans and Bertsimas [93],
and has a performance guarantee of 2 − 2

|R|
. This algorithm uses the weakest among the

Steiner tree LP formulations cited above — the undirected cut relaxation [5] — whose
integrality gap is precisely 2− 2

|R|
. (Other LP-relative 2-approximation algorithms for the

Steiner tree problem were later obtained by Agarwal et al. [2] and Jain [124].)

Improved LP-based approximation algorithms have so far only been obtained for struc-
tured instances of the Steiner tree problem. Notably, Chakrabarty, Devanur, and Vazi-
rani [34] recently showed that the bidirected cut relaxation [58, 200] has an integrality
gap of at most 4/3 for quasi-bipartite instances of the problem, improving upon an earlier
bound of 3/2 [176, 177]. (Nonetheless, RZ achieves an approximation ratio better than 4

3
for

these graphs.) The worst known example is due to Goemans [1] and exhibits an integrality
gap of only 8

7
(see also a compact example due to Skutella reported in Section 4.8.4). The

bidirected cut relaxation is widely conjectured (e.g. in [191]) to have an integrality gap
smaller than 2, but a proof remains elusive.

Our work is strongly motivated by linear programming formulations for the span-
ning tree polyhedron due to Fulkerson [81] and Chopra [46]. We now introduce Chopra’s
partition-based formulation for the MST polytope, which is important for a few reasons.

12
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min
∑

e∈E

cexe (M)

s.t.
∑

e∈Eπ

xe ≥ r(π)− 1 ∀π ∈ Π,

x ≥ 0.

max
∑

π∈Π

(r(π)− 1) · yπ (MD)

s.t.
∑

π:e∈Eπ

yπ ≤ ce ∀e ∈ E, (MD.1)

y ≥ 0. (MD.2)

Figure 2.2: Chopra’s MST formulation and its dual.

First, the formulation will be generalized to get LP relaxations for the Steiner tree problem
(the Steiner partition formulation, and the hypergraph-partition formulation). Second, one
may re-interpret Kruskal’s spanning tree algorithm [147] (see Section 3.6.1) as a primal-dual
algorithm using this LP, which will be useful.

A partition of X is a family of disjoint nonempty sets (parts) whose union is X . The
rank r(π) of a partition π is the number of parts of π. Here and later, Eπ denotes the set
of edges whose ends lie in different parts of π.

To formulate the minimum-cost spanning tree (MST) problem as an LP, we associate
a variable xe with every edge e ∈ E. Each spanning tree T corresponds to its incidence
vector xT , which is defined by xT

e = 1 if T contains e and xT
e = 0 otherwise. We show

Chopra’s MST formulation (M) along with its dual (MD) in Figure 2.2.

Chopra [46] showed that the feasible region of (M) is the dominant2 of the convex hull
of all incidence vectors of spanning trees, and hence each basic optimal solution corresponds
to a minimum-cost spanning tree.

We use MST(G) to denote a minimum-spanning tree of the graph G and mst(G) to
denote its cost. Notation like MST(G, c) specifies a cost function to use. Later (using
Chopra’s result) (T, y) = MST(G) denotes a primal-dual pair where y is feasible for (MD)
and T, y have the same objective value.

2.2 A List of LPs for Steiner Trees

We now introduce several LP formulations known for the Steiner tree problem. This is not
a comprehensive list — see [95, 168, 170] for more. A shared feature of the LPs below is
that when R = V , they are integral.

2The dominant of polyhedron P is {x | ∃x′ ∈ P : x′ ≤ x}.
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min
{∑

a∈A

caxa : x ∈ RA (B)
∑

a∈δin(U)

xa ≥ 1, ∀U ∈ valid(V ) (B.1)

xa ≥ 0, ∀a ∈ A
}

(B.2)

Figure 2.3: The bidirected cut relaxation.

2.2.1 Bidirected Cut Formulation

The bidirected cut formulation, initially mentioned by Wong [200], is a generalization of
the arborescence polytope formulation of Edmonds [58]. In order to obtain this relaxation,
we introduce two arcs (u, v) and (v, u) for each edge uv ∈ E, and let both of their costs be
cuv. We then fix an arbitrary terminal r ∈ R as the root.

By orienting the edges of a Steiner tree T towards r we obtain the unique in-tree
corresponding to T in the digraph (V,A). Call a subset U ⊆ V valid if r ∈ U and at
least one terminal lies outside U (i.e., R\U 6= ∅); let valid(V ) be the family of all valid
subsets of V . Clearly, the in-tree corresponding to Steiner tree T must have at least one arc
entering each such set U ∈ valid(V ). This motivates the bidirected cut relaxation which
has a variable for each arc a ∈ A, and a constraint for every valid set U . Here and later,
δin(U) denotes the set of arcs in A whose head is in U and whose tail lies in V \ U .

The bidirected cut relaxation is one of the most well-studied relaxations for the Steiner
tree problem [95, 98, 47, 176, 191, 1, 34]. The largest lower-bound on its integrality gap is
8/7 (due to Goemans [1]). Many conjecture the actual gap to be closer to this bound than
to 2 (e.g. [176, 191]).

2.2.2 Bidirected Cut with Flow-Balance

Polzin & Vahdati Daneshmand [168] investigated (citing [132]) a family of constraints that
can be added to the bidirected cut formulation: namely for every Steiner node, constrain
the flow into that node to be less than or equal to the flow out of that node. Clearly this
is valid for every in-Steiner-tree rooted at r. They showed that there are some Steiner tree
instances in which this LP is strictly stronger than the normal bidirected cut formulation.

Chakrabarty et al. [34] introduced two embedding formulations for the Steiner tree
problem, one “on the simplex” and another “above the simplex.” They observed that the
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Chapter 2. Steiner Tree LPs: Introduction & Summary

“on the simplex” LP is exactly as strong as the bidirected cut formulation. We mention
here (but omit the straightforward details) that the “above the simplex” LP is exactly as
strong as bidirected cut with the flow-balance constraints.

2.2.3 Steiner Partition Formulation

In an instance of the Steiner tree problem, a partition π of V is defined to be a Steiner
partition when each part of π contains at least one terminal [47, 106, 196].

Recall that Eπ denotes the set of edges whose ends lie in different parts of π. Consider
the following LP. When x is the incidence vector of a Steiner tree and π is a Steiner
partition, the inequality ∑

e∈Eπ

xe ≥ r(π)− 1. (2.1)

holds. The Steiner partition formulation is defined to be the polytope in RE
+ satisfying all

Steiner partition constraints (2.1).

White et al. [196] showed that the Steiner partition formulation has an integral op-
timal value for strongly chordal unit-weight graphs, but not for all series-parallel unit-
weight graphs (explicitly, the so-called odd hole graph on 3 terminals and 4 Steiner nodes).
Grötschel et al. [105] showed that it is NP-hard to separate the Steiner partition constraints.

2.2.4 Subtour Hypergraph Formulation

Warme [194] introduced the first hypergraph-based LP formulation for the Steiner problem.
Let ρ(X) := max(0, |X|−1) be the rank of a set X of vertices. It is not hard to prove that
a collection (R,K′) forms a hyper-spanning tree iff

∑
K∈K′ ρ(K) = ρ(R) and

∑
K∈K′ ρ(K ∩

S) ≤ ρ(S) for every subset S of R. We thereby obtain the LP relaxation of the Steiner
tree problem shown in Figure 2.4, which we call the subtour formulation.

Although (S ′) has exponentially many constraints, one can separate over (S ′) using a
flow subroutine [194, Section 4.1.2.1] attributed to Maurice Queyranne, which takes time
polynomial in |K| (and the encoding length of C). (Another approach is to use a compact
formulation for (S ′) presented in Section 4.4 based on strengthening the bidirected cut
relaxation and preprocessing.)

As for the LP when we do not r-restrict but rather take all full components: it is not
known whether (S ′) can be exactly solved in this case, but it is easy to argue that OPT(S ′)
increases by at most a factor ρr if we look at the r-restricted instance, so we can solve the
LP within any 1 + ǫ factor in polynomial time.
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min
{∑

K∈K

CKxK : x ∈ RK (S ′)

∑

K∈K

xKρ(K) = ρ(R), (S ′.1)

∑

K∈K

xKρ(K ∩ S) ≤ ρ(S), ∀S ⊂ R (S ′.2)

xK ≥ 0, ∀K ∈ K
}

(S ′.3)

Figure 2.4: The subtour relaxation.

2.2.5 Directed Hypergraph Formulations

Given a full component (tree) K and i ∈ K, let Ki denote the arborescence obtained by
directing all the edges of K towards i. Think of this as directing the hyperedge K towards
i to get the directed hyperedge Ki. Vertex i is called the head of Ki while the terminals
in K \ i are the tails of K. The cost of each directed hyperedge, Ki is the cost of the
undirected hyperedge, K.

A subset U of R is valid if r ∈ U and U 6= R; valid(R) denotes all valid subsets of R.
For U ⊂ R let ∆in(U) be the set of directed full components entering U , that is all Ki

such that i ∈ U and U \K 6= ∅; define also ∆out(U) = ∆in(R\U). Given a hyper-spanning
tree, it is evident we can direct its hyperedges towards the root r (in the sense that the
tree contains a unique path from every vertex to r). For every valid set X the resulting
directed hyper-spanning tree has at least one edge in ∆in(X), which leads to the directed
hypergraphic formulation below, introduced by Polzin & Vahdati Daneshmand [170].

min
{ ∑

K∈K,i∈K

CKiZKi : (D)

∑

Ki∈∆in(U)

ZKi ≥ 1, ∀U ∈ valid(R) (D.1)

ZKi ≥ 0, ∀K ∈ K, i ∈ K
}

(D.2)

The same authors also introduced the following bounded version of the formulation:

min
{∑

Ki

CKixKi : x ∈ D; x(∆out(r)) = 0; x(∆out(v)) = 1 ∀v ∈ R\{r}
}

(D′)
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min
{∑

K∈K

CKxK : x ∈ RK (P)

∑

K∈K

xKrc
π
K ≥ r(π)− 1, ∀π ∈ ΠR (P.1)

xK ≥ 0, ∀K ∈ K
}

(P.2)

max
{∑

π

(r(π)− 1)yπ : y ∈ RΠR (PD)

∑

π∈ΠR

yπrc
π
K ≤ CK , ∀K ∈ K (PD.1)

yπ ≥ 0, ∀π ⊂ ΠR

}
(PD.2)

Figure 2.5: The unbounded partition relaxation and its dual.

2.2.6 Partition Hypergraph Formulations

In this section we give hypergrapic formulations introduced in [136, 138, 139] based on
partitions. We let ΠR be the set of all partitions of R; the LP has a constraint for every
partition in ΠR.

Given a partition π = {π1, . . . , πq} of R, any feasible hyper-spanning tree must connect
the q parts of π. In order to express this fact, we define the rank contribution rcπK of
hyperedge K ∈ K for π as the effective rank reduction of π obtained by merging the parts
of π that are touched by K; i.e.,

rcπK = |{i : K ∩ πi 6= ∅}| − 1.

The hypergraphic LP and its dual are given in Figure 2.5.

The feasible region of the partition LP is unbounded in the geometric sense, for the
following reason: if x is a feasible solution for (P) then so is any x′ > x. It is not hard to
see (or see Warme [194]) that the following constraint is valid for all hyper-spanning trees.

∑

K∈K

xK(|K| − 1) = |R| − 1. (P ′.1)

Adding this constraint to (P) we obtain the bounded partition relaxation (P ′).

min
{∑

K∈K

CKxK : x ∈ P, (P ′.1) holds for x
}

(P ′)

On 2-restricted instances (i.e., ordinary graphs), (P) is Chopra’s [46] integral partition-
based LP for min-cost spanning tree. On 3-restricted instances, (P) is essentially a special
case of the matroid matching LP introduced by Vande Vate [189] (which is totally dual
half-integral [89]).
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2.2.7 Gainless Tree Formulations

The final formulations we introduce are not linear programs, but closely related. A terminal
spanning tree is defined to be any possible (non-hypergraphic) spanning tree T of R; the
edge costs of T can be arbitrary and do not need to depend on the input instance. Given
a terminal spanning tree T with its costs denoted c′ for clarity, and any hyperedge K ⊂ R,
we define the gain of K in T to be the cost decrease when K is included in the spanning
tree,

gainT (K) := c′(T )− mst(T/K, c′)− CK ,

where mst(T/K, c′) is the minimum cost of any spanning tree in the graph T after the
terminals K are contracted into a single pseudonode. So to say that K has positive gain
means that T can be replaced by a cheaper spanning hypertree if K is included. We say
that a terminal spanning tree T is gainless if gainT (K) ≤ 0 for all K ∈ K.

We now give the gainless tree formulation; they come originally from Karpinksi and
Zelikovsky [127].

Definition 2.1. The quantity tK+ is the maximum cost of any gainless terminal spanning
tree T with arbitrary nonnegative edge weights. The quantity tK is the maximum cost of
any gainless terminal spanning tree T with arbitrary edge weights.

We will show these values are the same as those arising from the hypergraph LPs. Note
that this equates a combinatorial value with an LP bound, analogous to the theorem of
Held and Karp relating so-called 1-trees to the optimum of an LP relaxation [112] for TSP.

Here is some intuition as to why gainless trees are significant, based on the well-known
contraction lemma from the Steiner tree literature (Lemma 5.18). The contraction lemma
implies that if we take a disjoint union of a Steiner tree instance with a gainless terminal
spanning tree (T, c′), then T is an optimal Steiner tree for the union. Therefore every
Steiner tree in the original instance has cost at least c′(T ). Now considering all possible T
we deduce that tK+ is a lower bound on the cost of an optimal Steiner tree.

2.3 Summary of Known and New Results

A main result of our work is that all the hypergraphic relaxations above have the same
value. This extends work of Polzin & Vahdati Daneshmand [170] who showed equivalence
of the directed and subtour formulations. We defer the details for a moment.

Trivially, the bidirected cut relaxation is strengthened by adding flow-balance con-
straints; Polzin & Vahdati Daneshmand [170] showed that the strengthening is some-
times strict. Goemans [98] proved that the bidirected cut formulation is stronger than the
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Steiner partition formulation; it can also be shown (we will do so in Proposition 2.2) that
this strengthening is sometimes strict. Furthermore, Polzin & Vahdati Daneshmand [170]
showed that the hypergraphic formulation strengthens the flow-balance-plus-bidirected for-
mulation, again sometimes strictly. Therefore we have

hypergraphic 
 (B)+flow-balance 
 (B) 
 Steiner partition

where LP 
 LP ′ denotes that the optimal value of LP is always at least as great as the
value of LP ′, and that on some instances the values are unequal.

We show (again, deferring the details momentarily) that in all quasi-bipartite graphs,
the bidirected cut formulation has equal value to the hypergraphic formulations. We also
demonstrate that bidirected cut is not equal to the Steiner partition formulation on quasi-
bipartite instances (Proposition 2.2); so in quasi-bipartite instances we have

hypergraphic = (B)+flow-balance = (B) 
 Steiner partition.

Here is the quasi-bipartite example separating the Steiner partition and bidirected
formulations.

Proposition 2.2. There is a quasi-bipartite instance of the Steiner tree problem in which
the optimum value of the bidirected cut formulation is strictly greater than the optimum of
the Steiner partition formulation.

Proof. Consider the example in Figure 2.6. The bidirected cut relaxation has optimal value
7 on this instance — to quickly prove this, note that the graph is series-parallel, and it is
known [98] that bidirected cut is integral on series-parallel graphs. However, with a small
computation one may verify that the Steiner partition relaxation has optimal value 48/7
— we can assign fractional value 4/7 to every edge.

2.3.1 Equivalence of Formulations

In Figure 2.7, we outline the various known and new equivalences between the hypergraphic
relaxations.

• Theorem 4.1. We show that (P ′) and (S ′) are actually polyhedrally equal, i.e., that
a solution is feasible for one iff it is feasible for the other.

• Theorem 4.5. We show that OPT(P) = OPT(D) by using hypergraph orientation
results of Frank et al. [73, 72].
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Figure 2.6: A quasi-bipartite unit-cost example upon which the hypergraph/bidirected cut
relaxations are strictly stronger than the Steiner partition formulation. Dots are terminals
and squares are Steiner vertices.

• Theorem 3.16. Note (P ′) trivially strengthens (P). We show the nontrivial converse
OPT(P ′) ≤ OPT(P) by showing that some optimal solution to (P) satisfies the
constraint (P ′.1). This is done with a new technique, (primal) partition uncrossing.
We also rely on a notion we call shrinking : replace a fraction of a full component K
with another full component K ′ ⊂ K.

• Theorems 3.22 and 3.21. We equate the gainless tree formulation values with the
partition formulation values using dual partition uncrossing.

• Theorem 4.4. This is an elaboration of a sketch given in [170], using shrinking.

Note that the “equivalence graph” in Figure 2.7 is cyclic, i.e. redundant, but we include
all proofs since they are significantly different from one another.

2.3.2 Polyhedral Comparisons with Bidirected Cut

Polzin & Vahdati Daneshmand [170] observed that (D) is at least as strong as the bidirected
cut formulation. We are able to show (Section 4.5) that in quasi-bipartite graphs, the
reverse inequality OPT(D) ≤ OPT(B) is true, i.e. the bidirected formulation has value
equal to the hypergraphic formulations. This is one of the most surprising results from our
studies: first, since the LPs have both been studied heavily and this has gone un-noticed;
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(D′)

(D)

(P)

(P ′)

(S ′)

t+K

tK

[Thm. 3.16]

[Thm. 4.1]

[Thm. 3.21]

[Thm. 3.22][170]

[170], [Thm. 4.4]

[Thm. 4.5]

Figure 2.7: Results which show that various hypergraphic formulations have equal value.

second, because the LPs look quite different from one another; third, because they have
different values in general instances. We prove OPT(D) ≤ OPT(B) with a lifting argument
which takes the optimal dual solution to (D) and fractionally inserts Steiner nodes into
various dual sets to get a dual solution to (B) of the same value.

Lifting also shows (in Section 4.6) that in r-preprocessed graphs for r ≤ 5, the hyper-
graphic and bidirected formulations have the same value. Completing this proof requires
some brute-force computation and enumeration of all possible configurations of 5-restricted
full components, which we do with Maple. For 6-preprocessed graphs, we show (in Section
4.6.4) that the hypergraphic and bidirected formulations are not always equal.

As a final result about the bidirected cut formulation, we give (in Section 4.4) a new
explanation of the precise relation between the hypergraphic formulations and the bidi-
rected cut formulation. The result applies to r-preprocessed instances for any r; recall
such instances have disjoint full components except at terminals. We start with a subtour
formulation for bidirected cut due to Goemans & Myung [95] which has variables for edges
and nodes; then we strengthen it by forcing the values of all elements in each full compo-
nent to be equal. We show that the resulting LP is polyhedrally equivalent to the subtour
formulation (S ′).
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2.3.3 Structural & Extreme Point Results

Chapter 3 is devoted to new partition uncrossing techniques. In addition to LP equiva-
lences, we use them to show structural theorems for the partition-hypergraph formulation.
This technique is an extension of well-known set uncrossing techniques from polyhedral
combinatorics to the milieu of partitions. The first natural thing one might try is to re-
place two partitions by their meet and join, well-known operations obtained when viewing
the partitions as a combinatorial lattice [186]. However, this turns not to work (as we
make precise in Chapter 3). A more careful uncrossing, from pairs of partitions into larger
families of partitions, does the trick.

As a result of primal and dual partition uncrossing, we find that every extreme primal
solution to (P) has at most |R|−1 nonzero coordinates, and that its dual (PD) always has
an optimal solution where the partitions in the support (those with nonzero dual value)
form a chain.

In Section 3.5, using these structural properties, we describe a computational result:
we enumerated all vertices of (P) when |R| ≤ 6. We use this data to refute a natural
conjecture about the fractionality of the extreme points of (P).

Finally, we mention two other structural results proved in the thesis. Section 4.9 shows
that, in contrast to the sparseness of the partition-hypergraph formulation, the bidirected
cut formulation has extreme points with support size Ω(|V |2). To give the other result
some background, we mention a result of Chopra [46]: on ordinary (2-restricted) instances,
(P) is the dominant for (P ′). This turns out to be false in general hypergraphic instances;
we show in Section 4.7 a true result that is similar but more complex.

2.3.4 LP-Relative Algorithms / Integrality Gap Bounds

We show in Section 4.8 that a greedy algorithm of Gröpl et al. [103] gives good (P)-relative
approximation guarantees, using a simple dual fitting argument.

• On uniformly quasi-bipartite instances — where all edges incident to every Steiner
node have the same cost — we get a (P)-relative ratio of 73/60. This matches the
73/60 (non-LP-relative) approximation ratio proven by the original analysis of Gröpl
et al [103].

• On 3-restricted instances of the Steiner tree problem, we get a (P)-relative ratio of
5/4. This is the best integrality gap bound known for such instances (although a
non-LP-relative PTAS exists).
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• On arbitrary hypergraphs (not derived from the Steiner tree problem) with maximum
edge size t, we show that the algorithm is a (P)-relative H(t − 1)-approximation
algorithm, where H(i) denotes the ith harmonic number. This is nearly best possible
since there is a ln t− o(ln t) hardness of approximation.

We also give an independent filtering-based argument (in Section 4.8.3) that in unit-
cost quasi-bipartite instances the integrality gap is at most 73/60. Interestingly, the 73/60
value arises a different way in the analysis.

We give (in Section 4.8.2) a new small example showing that the algorithm of Gröpl et
al. [103] does not attain approximation ratio better than 73/60.

The largest lower bound known on the integrality gap of the hypergraph formulations
is 8/7, due to an example of Skutella, which we give in Section 4.8.4.

2.3.5 LP-Based Interpretations of Other Known Algorithms

Chapter 5, the final chapter on Steiner trees, contains LP-inspired analyses of two approx-
imation algorithms from the literature on Steiner trees.

First, we give the details of one of the original results that inspired our investigation into
hypergraph-based LPs: we show that the Robins-Zelikovsky algorithm can be interpreted
using a generalization of (P). We also deduce some tighter approximation/integrality
gap results in a class of instances called b-quasi-bipartite, which means that G\R has
connected components of size at most b. This part of the thesis includes a new matroid-
based generalization of the contraction lemma, which features prominently in the analysis
of mdoern approximation algorithms for Steiner tree.

Second, in Section 5.6 we give a new LP for the Steiner tree problem derived from
the submodular set cover problem and the relative greedy algorithm for Steiner tree. The
resulting LP has an integrality gap of at most 1+ln 2, and we give an algorithm to compute
explicit certificates of this gap bound (a feasible Steiner tree and feasible dual whose costs
are within a factor 1+ln 2 of each other) in polynomial time. However, the LP is somewhat
awkward and we do not know how to solve it in polynomial time.
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Chapter 3

Partition Uncrossing

In this chapter we investigate the hypergraphic partition LP formulations for Steiner
trees and extend the technique of uncrossing, usually applied to set systems, to families
of partitions. The technique comes in two flavours, primal and dual, which lead to char-
acterizations of certain solutions to the partition-hypergraph LP (P) and its dual (PD).
Specifically, extreme point primal solutions have at most |R| − 1 nonzero coordinates, and
there is an optimal dual solution with a well-structured (“uncrossed”) support. The first
polyhedral consequence we show is that (P ′) has the same optimal value as (P).

Next, we briefly discuss how these structural results yield a more efficient procedure
to compute all extreme points of (P). We have computed all of these extreme points for
|R| ≤ 6 and we give some of their properties. Finally, we discuss the dual version of
partition uncrossing and show that the gainless spanning tree values tK and t+K equal the
values of the hypergraphic LPs (P ′) and (P), respectively.

3.1 Introduction

Uncrossing is a fundamental and ubiquitous technique in combinatorial optimization;
among its applications are the Lucchesi-Younger theorem [157], the Edmonds-Giles theo-
rem [60], Jain’s 2-approximation algorithm for survivable network design [124], and Singh
& Lau’s ±1-degree approximation algorithm for min-cost bounded-degree spanning trees
[182]. In all of the above applications, a family of sets is uncrossed by choosing a pair of
crossing sets and uncrossing them into a pair of cross-free ones. In this chapter, we define
an uncrossing operation for a family of partitions. As it turns out, the standard technique
of taking pairs at a time doesn’t work and requires replacing a pair of partitions by a a
family of possibly more than two uncrossed partitions.
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3.1. Introduction

Figure 3.1: The dashed partition refines the solid one.

The family of partitions of R, denoted ΠR, forms a partially ordered set under the
refinement relation. For any two partitions π = {π1, . . . , πq} and π′ = {π′

1, . . . , π
′
p} we say

that π refines π′ if for any part πi of π there is a part π′
j of π′ such that πi ⊆ π′

j . The
figure on the right shows partitions π (dashed lines) and π′ (solid lines), where π refines
π′. A set of partitions π1, . . . , πk ∈ ΠR is a chain if πi refines πi−1 for all 2 ≤ i ≤ k. For
notational convenience, we let π be partition of R into singletons, and we define π be the
trivial partition with the single part R.

As mentioned at the start of the chapter, we get structural results in both primal and
dual form. Here is the primal structure theorem. (In terms of Section 1.5 it is strong
primal uncrossing.)

Theorem 3.1 (Primal partition uncrossing). Let x∗ be a basic feasible solution of (P),
and let

Π∗
R = {π ∈ ΠR :

∑

K∈K

rcπKx
∗
K = r(π)− 1}

be the set of tight partitions for x∗. Let C be an inclusion-wise maximal chain in Π∗
R not

containing π. Then x∗ is uniquely defined by
∑

K∈K

rcπKx
∗
K = r(π)− 1 ∀π ∈ C. (3.1)

Any chain of distinct partitions of R that does not contain π has size at most |R|−1, and
this is an upper bound on the rank of the system in (3.1). Elementary linear programming
theory immediately yields the following corollary.

Corollary 3.2. Any basic solution x∗ of (P) has at most |R| − 1 non-zero coordinates.

The dual uncrossing structural theorem is particularly simple to state.

Theorem 3.3 (Dual partition uncrossing). (PD) always has an optimum y∗ such that
supp(y∗) is a chain.
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We remark that Theorem 3.3 also implies Corollary 3.2 (since the dual variable for π
is vacuous, and then using standard techniques as in [179, Thm. 5.35] or [104, §8.4]).

3.2 Preliminaries

In order to prove these structural results, and the consequent LP equivalences, we start
with some definitions from combinatorial lattice theory. The first was illustrated in Section
3.1.

Definition 3.4. We say that a partition π′ refines another partition π if each part of π′

is contained in some part of π. We also say π coarsens π′. Two partitions cross if neither
refines the other.

Definition 3.5. A family of partitions forms a chain if no pair of them cross. Alterna-
tively, a chain is any family π1, π2, . . . , πt such that πi refines πi−1 for each 1 < i ≤ t.

The family ΠR of all partitions of R forms a combinatorial lattice with a meet operator
∧ : Π2

R → ΠR and a join operator ∨ : Π2
R → ΠR defined below. Abstractly, π ∧ π′ is the

coarsest partition that refines both π and π′, and π ∨ π′ is the most refined partition that
coarsens both π and π′. See Figure 3.2 for an illustration.

Definition 3.6 (Meet of partitions). Let the parts of π be π1, . . . , πt and let the parts of
π′ be π′

1, . . . , π
′
u. Then the parts of the meet π ∧ π′ are the nonempty intersections of parts

of π with parts of π′,

π ∧ π′ = {πi ∩ π′
j | 1 ≤ i ≤ t, 1 ≤ j ≤ u and πi ∩ π′

j 6= ∅}.

Given a graph G and a partition π of V (G), we say that G induces π if the parts of π
are the vertex sets of the connected components of G.

Definition 3.7 (Join of partitions). Let (R,E) be a graph that induces π, and let (R,E ′)
be a graph that induces π′. Then the graph (R,E ∪ E ′) induces π ∨ π′.

It is not hard to see that meet and join are both commutative and associative, see
Stanley [186] for this and a good overview of combinatorial lattice theory in general.

Given a feasible solution x to (P), we are interested in uncrossing the following set of
tight partitions

Π∗
R = {π ∈ ΠR :

∑

K∈K

rcπKx
∗
K = r(π)− 1}
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(a): The dashed partition refines the solid one. (b): Two partitions that cross.

(c): The meet of the partitions from (b). (d): The join of the partitions from (b).

Figure 3.2: Illustrations of some partitions. The black dots are the terminal set R.

Informally, we would like to prove

If two crossing partitions π and π′ are in Π∗
R, then so are π ∧ π′ and π ∨ π′. (3.2)

Almost all results based on set-uncrossing ([60, 50, 124, 182]) prove such a theorem (with
partitions replaced by sets and meets and joins replaced by unions and intersections), and
the standard approach is the following. One considers the equalities in (P) corresponding
to π and π′ and uses the “supermodularity” of the RHS and the “submodularity” of the
coefficients in the LHS. In particular, if the following two inequalities are true,

∀π, π′ : r(π ∨ π′) + r(π ∧ π′) ≥ r(π) + r(π′) (3.3)

∀K, π, π′ : rcπK + rcπ
′

K ≥ rcπ∨π
′

K + rcπ∧π
′

K (3.4)
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then (3.2) can be proved easily by writing a string of inequalities.1

Unfortunately, although inequality (3.3) is true (see, for example, [186]), inequality
(3.4) isn’t always true as the following example shows.

Example 3.8. Let R = {1, 2, 3, 4}, π = {{1, 2}, {3, 4}} and π′ = {{1, 3}, {2, 4}}. Let K
denote the full component {1, 2, 3, 4}. Then rcπK + rcπ

′

K = 1+ 1 < 0 + 3 = rcπ∨π
′

K + rcπ∧π
′

K .

Nevertheless, the statement (3.2) is correct and we prove it in Section 3.3. The crux is
not to consider pairs of equalities of (P), but rather consider (multi)-sets of equalities and
use them instead. We give details in the next subsection. We close this section with some
remarks.

Remark 3.9. The näıve approach just described does work if all edges of the hypergraph
have size at most 3. This can be viewed in the framework of lattice polyhedra [116] (e.g.,
see [189]), but for larger hyper-edges this is no longer the case (e.g., due to Example 3.8).

If we replace rcπK in (P) by min{1, rcπK} we again are in a situation where the näıve ap-
proach works. Then (P) is an integral formulation for all partition-connected hypergraphs
(see [74, 73]), and may be viewed as a contrapolymatroid as well as a lattice polyhedron.

A sort of partition uncrossing operation, from pairs to pairs, is given by Schrijver [179,
Thms. 48.2 & 49.4], based on set uncrossing. This can be developed into alternate proofs
of some of our partition uncrossing results.

3.3 Partition Uncrossing Inequalities

In this section we develop the technology which avoids the problems with the naive ap-
proach sketched earlier. We start with the following definition.

Definition 3.10. Let π ∈ ΠR be a partition and let S ⊂ R. Define the merged partition
m(π, S) to be the most refined partition that coarsens π and contains all of S in a single
part. See Figure 3.3 for an example. Informally, m(π, S) is obtained by merging all parts
of π which intersect S. Formally, the parts of m(π, S) are {{πj}j:πj∩S=∅,

⋃
j:πj∩S 6=∅ πj}.

We will use the following straightforward fact later:

rcπK = r(π)− r(m(π,K)). (3.5)

We now state the (true) inequalities which replace the false inequality (3.4). Later, we
show how one uses these to obtain partition uncrossing, e.g. to prove (3.2).

1We get r(π)+r(π′)−2 =
∑

K xK(rcπK+rc
π′

K ) ≥∑K xK(rcπ∧π′

K +rc
π∨π′

K ) ≥ r(π∧π′)+r(π∨π′)−2 ≥
r(π) + r(π′)− 2; thus the inequalities hold with equality, and the middle one shows π ∧ π′ and π ∨ π′ are
tight.
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Figure 3.3: Illustration of merging. The left figure shows a (solid) partition π along with
a (dashed) set S. The right figure shows the merged partition m(π, S).

Lemma 3.11 (Partition Uncrossing Inequalities). Let π, π′ ∈ ΠR and let the parts of π be
π1, π2, . . . , πr(π).

r(π) [r(π′)− 1] + [r(π)− 1] = [r(π ∧ π′)− 1] +

r(π)∑

i=1

[r(m(π′, πi))− 1] (3.6)

∀K ∈ K : r(π)
[
rcπ

′

K

]
+
[
rcπK

]
≥

[
rcπ∧π

′

K

]
+

r(π)∑

i=1

[
rc

m(π′,πi)
K

]
(3.7)

Before giving the proof of the above lemma, let us first show how it can be used to prove
the statement (3.2).

Corollary 3.12. Given a feasible solution x to (P ′), if π and π′ are tight partitions, then
so are π ∧ π′, each m(π′, πi), and π ∨ π′.

Proof. Since π and π′ are tight,

r(π)[r(π′)− 1] + [r(π)− 1] = r(π)
[∑

K

xKrc
π′

K

]
+
[∑

K

xKrc
π
K

]
=
∑

K

xK

(
r(π)

[
rcπ

′

K

]
+
[
rcπK

])

≥
∑

K

xK

([
rcπ∧π

′

K

]
+

r(π)∑

i=1

[
rc

m(π′,πi)
K

])
=
∑

K

xK

[
rcπ∧π

′

K

]
+

r(π)∑

i=1

∑

K

xK

[
rc

m(π′,πi)
K

]

≥ [r(π ∧ π′)− 1] +

r(π)∑

i=1

[r(m(π′, πi))− 1] = r(π) [r(π′)− 1] + [r(π)− 1]
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where the first inequality follows from (3.7) and the second from (P.1) (as x is feasible);
the last equality is (3.6). Since the first and last terms are equal, all the inequalities are
equalities, in particular our application of (P.1) shows that π ∧ π′ and each m(π′, πi) is
tight. Iterating the latter fact, we see that m(· · ·m(m(π′, π1), π2), · · · ) = π ∨ π′ is also
tight.

To give the proof of Lemma 3.11 we need the following lemma that relates the rank of
sets and the rank contribution of partitions. Recall ρ(X) := max(0, |X| − 1).

Lemma 3.13. For a partition π = {π1, . . . , πt} of R, where t = r(π), and for any K ⊆ R,
we have

ρ(K) = rcπK +

t∑

i=1

ρ(K ∩ πi).

Proof. By definition, K ∩ πi 6= ∅ for exactly 1 + rcπK values of i. Also, ρ(K ∩ πi) = 0 for
all other i. Hence

t∑

i=1

ρ(K ∩ πi) =
∑

i:K∩πi 6=∅

(|K ∩ πi| − 1) =

(
∑

i:K∩πi 6=∅

|K ∩ πi|
)

− (rcπK + 1). (3.8)

Observe that
∑

i:K∩πi 6=∅ |K ∩ πi| = |K| = ρ(K) + 1; using this fact together with Equation
(3.8) we obtain

t∑

i=1

ρ(K ∩ πi) =

(
∑

i:K∩πi 6=∅

|K ∩ πi|
)

− (rcπK + 1) = ρ(K)− 1 + (rcπK + 1).

Rearranging, the proof of Lemma 3.13 is complete.

Proof of Lemma 3.11
First, we argue that π ∧ π′ = π holds without loss of generality. In the general case, for
each part p of π ∧ π′ with |p| ≥ 2, contract p into one pseudo-vertex and define the new K
to include the pseudo-vertex corresponding to p if and only if K ∩p 6= ∅. This contraction
does not affect the value of any of the terms in Equations (3.7) and (3.6), so is without loss
of generality. After contraction, for any part πi of π and part π′

j of π
′, we have |πi∩π′

j | ≤ 1,
so indeed π ∧ π′ = π.

Proof of Equation (3.6). Fix i. Since |πi ∩ π′
j | ≤ 1 for all j, the rank contribution rcπ

′

πi
is

equal to |πi| − 1. Then using Equation (3.5) we know that r(m(π′, πi)) = r(π′)− |πi|+ 1.
Thus adding over all i, the right-hand side of Equation (3.6) is equal to

|R| − 1 +

r(π)∑

i=1

(r(π′)− |πi|) = |R| − 1 + r(π)r(π′)− |R|
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and this is precisely the left-hand side of Equation (3.6).

Proof of Equation (3.7). Fix i. Since |πi ∩ π′
j | ≤ 1 for all j, we have

rcπ
′

K − rc
m(π′,πi)
K ≥ ρ(πi ∩K) (3.9)

because, when we merge the parts of π′ intersecting πi, we make K span at least ρ(πi ∩K)
fewer parts. Note that the inequality could be strict if both πi and K intersect a part of
π′ without having a common vertex in that part.

Adding the right-hand side of Equation (3.9) over all i gives

r(π)∑

i=1

(rcπ
′

K − rc
m(π′,πi)
K ) ≥

r(π)∑

i=1

ρ(πi ∩K) = ρ(K)− rcπK . (3.10)

where the last equality follows from Lemma 3.13. To finish the proof we observe ρ(K) =
rcπ∧π

′

K , since π ∧ π′ = π.

3.3.1 Primal Partition Uncrossing Structure Theorem

We restate the theorem first.

Theorem 3.1. Let x∗ be a basic feasible solution of (P), and let

Π∗
R = {π ∈ ΠR :

∑

K∈K

rcπKx
∗
K = r(π)− 1}

be the set of tight partitions for x∗. Let C be an inclusion-wise maximal chain in Π∗
R not

containing π. Then x∗ is uniquely defined by

∑

K∈K

rcπKx
∗
K = r(π)− 1 ∀π ∈ C.

Here and later, for a vector x, we use supp(x) := {i | xi 6= 0} to denote the support of
x, i.e. the set of indices upon which the vector is nonzero.

Proof. Let supp(x∗) be the full components K with x∗
K > 0. Consider the constraint

submatrix with rows corresponding to the tight partitions and columns corresponding to
the full components in supp(x∗). Since x∗ is a basic feasible solution, any full-rank subset
of rows uniquely defines x∗. We now show that any maximal chain C in Π∗

R corresponds to
such a subset.

32



Chapter 3. Partition Uncrossing

Let row(π) ∈ Rsupp(x∗) denote the row corresponding to partition π of this matrix, i.e.,
row(π)K = rcπK , and given a collection R of partitions (rows), let span(R) denote the
linear span of the rows in R. We now prove that for any tight partition π /∈ C, we have
row(π) ∈ span(C); this will complete the proof of the theorem.

For sake of contradiction, suppose row(π) 6∈ span(C). Choose π to be the counterex-
ample partition with smallest rank r(π). Firstly, since C is maximal, π must cross some
partition σ in C. Choose σ to be the most refined partition in C which crosses π. Let the
parts of σ be (σ1, . . . , σt). The following claim uses the partition uncrossing inequalities
to derive a linear combination between the rows corresponding to σ, π and the partitions
formed by merging parts of σ with π.

Claim 3.14. We have row(σ) + |r(σ)| · row(π) = row(π ∧ σ) +
∑t

i=1 row(m(π, σi)).

Proof. Since σ and π are both tight partitions, the proof of Corollary 3.12 shows that the
partition inequality (3.7) holds with equality for all K ∈ supp(x∗), π and σ, implying the
claim.

Let cpπ(σ) be the parts of σ which intersect at least two parts of π; i.e., merging the
parts of π that intersect σi, for any σi ∈ cpπ(σ), decreases the rank of π. Formally,

cpπ(σ) := {σi ∈ σ : m(π, σi) 6= π}

Note that one can modify Claim 3.14 by subtracting (r(σ) − |cpπ(σ)|)row(π) from both
sides to get

row(σ) + |cpπ(σ)| · row(π) = row(π ∧ σ) +
∑

σi∈cpπ(σ)

row(m(π, σi)) (3.11)

Now if row(π) /∈ span(C), we must have either row(π∧σ) is not in span(C) or row(m(π, σi))
is not in span(C) for some i. We show that either case leads to the needed contradiction,
which will prove the theorem.

Case 1: row(π∧σ) /∈ span(C). Note there is σ′ ∈ C which crosses π ∧σ, since π∧σ is not
in the maximal chain C. Since σ′, σ ∈ C and by considering the refinement order, it
is easy to see that σ′ (strictly) refines σ and σ′ crosses π. This contradicts our choice
of σ as the most refined partition in C crossing π, since σ′ was also a candidate.

Case 2: row(m(π, σi)) 6∈ span(C). Note m(π, σi) is also tight. Since σi ∈ cpπ(σ), m(π, σi)
has smaller rank than π. This contradicts our choice of π.
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3.4 Equivalence of (P) and (P ′)

In this section, we show that for Steiner tree instances, the unbounded and bounded
partition LP relaxations, (P) and (P ′), have the same optimum value. In fact, we prove
something stronger. We need the following definition.

Definition 3.15. The collection K of hyperedges is down-closed if whenever S ∈ K and
∅ 6= T ⊂ S, then T ∈ K. For down-closed K, the cost function C : K → R+ is non-
decreasing if CS ≤ CT whenever S ⊂ T .

Theorem 3.16. If the set of hyperedges is down-closed and the cost function is non-
decreasing, then (P ′) and (P) have the same optimal value.

We remark that there exist some cost functions C for which the LPs (P ′) and (P) do
not have the same optimal value (see [138, Ex. 3.1]). Thus, the feasible region of the two
LPs is not the same. However, note that the hypergraph and cost function induced by the
Steiner tree problem are down-closed and non-decreasing, respectively.

Our proof relies on the following operation which we call shrinking. Note that our
formulation includes hyperedges of size 1, which serve only as placeholders; when treating
the Steiner tree problem, they have cost 0.

Definition 3.17. Given an assignment x : K → R+ to the full components, suppose
xK > 0 for some K. The operation Shrink(x,K,K ′, δ) where K ′ ⊆ K, |K ′| = |K|−1 and
0 < δ ≤ xK changes x to x′ by decreasing x′

K := xK − δ and increasing x′
K ′ := xK ′ + δ. We

call the parameter δ the shrinkage of the shrink operation.

Note that shrinking is defined only for down-closed hypergraphs. Also note that on
performing a shrinking operation, the cost of the solution cannot increase, if the cost
function is non-decreasing. Now we are ready to prove the theorem.

Proof of Theorem 3.16. Since (P ′) is just (P) with an extra constraint, it is immediate
that OPT(P ′) ≥ OPT(P). We now prove the other direction.

Let x be an optimal solution to (P) which minimizes the sum
∑

K∈K xK |K|. We claim
that x satisfies the equation (P ′.1) implying x is feasible for (P ′) as well. This completes
the proof. To do so, we first make the following claim.

Claim 3.18. For every K with xK > 0 and for every r ∈ K, there exists a tight partition
(w.r.t. x) π such that the part of π containing r contains no other vertex of K.
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Proof. Let K ′ = K \ {r}. If the above is not true, then this implies that for every tight
partition π, we have rcπK = rcπK ′. We now claim that there is a δ > 0 such that we can
perform Shrink(x,K,K ′, δ). This is a contradiction since the shrink operation strictly
reduces

∑
K |K|xK and doesn’t increase cost. In fact, the δ is the following

δ := min{x(i)
K , min

π:rcπ
K′ 6=rcπK

∑

K

rcπKx
(i)
K − r(π) + 1}. (3.12)

and is positive since for tight partitions we have rcπK = rcπK ′.

Let Π∗
R be the set of tight partitions and π∗ :=

∧{π | π ∈ Π∗
R} the meet of all tight

partitions. By Corollary 3.12, π∗ is tight. We need to show that π∗ = π since (P ′) is just
(P) with the additional constraint (P ′.1) that π is tight. The above claim shows that for
every K with xK > 0, we have rcπ

∗

K = |K| − 1 since for every vertex r in K there is a
partition with a part containing r and no other vertex in K and the meet preserves this
property. We get

r(π∗)− 1 =
∑

K∈K

xKrc
π∗

K =
∑

K∈K

xK(|K| − 1) ≥ r(π)− 1

where the last inequality follows from the feasibility of x, constraint (P.1). This implies
π∗ = π, so π is indeed tight.

3.5 Computing Extreme Points of (P)

In investigating the hypergraphic formulations (P), (P ′) and (S ′), it was helpful to encode
them via the Maple convex package [75] to get a sense for their properties. As a natural
part of this investigation, we decided to enumerate their extreme points. For definiteness,
in this section we discuss enumerating the vertices of the unbounded partition formulation
(P). (Since (P ′) is a face of (P), its vertices are also enumerated.)

Enumerating the extreme points of (P) is non-trivial since vertex enumeration of a
polytope can take exponential time, and the number of variables and constraints in (P) is
already exponential in |R|. Nonetheless, the partition uncrossing technology of Theorem
3.1 gives us a more efficient way to find extreme points. Namely, we enumerate through
every possible chain C of partitions, we enumerate all possible sets supp ⊂ K for which
| supp | = |C|, and when the square equality subsystem of (P.1) corresponding to | supp |
and |C| is nonsingular, if its unique solution satisfies all other partition constraints, we add
it to a running list. Our implementation is given in Appendix B; for efficiency, we also
kept only a list of solutions which were unique up to isomorphism (i.e., up to all possible
relabelings of the terminal set R).
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The polytope (P) has exactly six nonisomorphic extreme points when |R| = 4, which
we list below; the notation is shorthand where, for example, 1

2
134 means that x{1,3,4} =

1
2
,

and sets not listed have value 0.

[234, 134], [23, 34, 13], [23, 34, 12], [
1

2
123,

1

2
124,

1

2
134], [234, 12], [1234]

For |R| = 5, there are 27 vertices up to isomorphism:

[
1

2
123,

1

2
1345,

1

2
2345], [

1

3
1234,

1

3
1245,

1

3
1345,

1

3
2345], [1345, 2345], [134, 2345], [145, 245, 345],

[
1

3
145,

1

3
134,

2

3
2345,

1

3
124], [34,

1

2
123,

1

2
145,

1

2
245], [

1

2
1345,

1

2
14,

1

2
234,

1

2
245], [2345, 12],

[34, 23, 45, 12], [
1

2
1345,

1

2
12,

1

2
234,

1

2
245], [12345], [

1

3
123,

1

3
145,

1

3
134,

2

3
2345],

[245, 12, 345], [23, 13, 345], [245, 14, 345], [34, 245, 12], [134, 235], [14,
1

2
234,

1

2
245,

1

2
345],

[
1

2
1245,

1

2
12,

1

2
234,

1

2
345], [

1

2
123,

1

2
235, 45,

1

2
134], [34, 45, 12, 24], [23, 12, 345],

[
1

2
123,

1

2
2345,

1

2
34,

1

2
145], [12,

1

2
234,

1

2
245,

1

2
345], [34, 45, 14, 24], [

1

2
1345,

1

2
2345,

1

2
1245]

For |R| = 6 there are 496 nonisomorphic vertices, and for |R| ≥ 7 our code would take
too long to run. We note one particular pattern of extreme point here for reference; we
omit the proof since it is lengthy but more or less standard.

Example 3.19. For any integer n, where R = {1, 2, . . . , n}, there is an extreme point
solution x∗ which assigns value 1/(n− 2) to every set of size n− 1 containing the terminal
1, and 0 to all other sets.

For example, the unique non-integral vertex when |R| = 4 is of this form.

One insight gained from our enumerative information is about the denominators of
extreme points; for a given extreme point solution x∗, its denominator is the least integer
d for which dx∗ is integral. We know (see Remark 3.9) that the hypergraphic formulation
is integral if every hyperedge has size at most 2, and half-integral if every hyperedge has
size at most 3. Hence, one might conjecture that if all hyperedges have size at most r, then
the maximum denominator is r−1 (and Example 3.19 would show this is tight). However,
the following example shows that this pattern does not hold.

Example 3.20. The extreme point

2

5
[1234] +

2

5
[1256] +

3

5
[3456] +

1

5
[246] +

1

5
[135].

shows that it is possible for the denominator to be greater than the maximum hyperedge
size.
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3.6 Dual Partition Uncrossing & Gainless Trees

Using dual partition uncrossing, we will prove the following theorems.

Theorem 3.21. The quantity tK+ is equal to the optimum value of (P).

Theorem 3.22. The quantity tK is equal to the optimum value of (P ′).

Of note is the fact that tK was used in [127] as an upper bound in one place and as a
lower bound in another; this resembles an LP optimal value already.

We develop the proof of these theorems in several steps. We note that all the results
hold for arbitrary cost functions CK , even those not derived from instances of the Steiner
tree problem. Call y ∈ RΠR chain-supported if supp(y) is a chain. First, we show our
dual uncrossing theorem for (PD), which shows that there is always a dual optimum whose
support is chain-supported. We then precisely establish a link between terminal spanning
trees and chain-supported y’s. Next, we give a dual interpretation of gain. We complete the
proofs of Theorems 3.21 and 3.22 in Section 3.6.4 by arguing that feasible chain-supported
solutions to (PD) (resp. the dual of (P ′)) correspond to gainless terminal spanning trees
with nonnegative costs (resp. arbitrary costs), which completes the proof.

Theorem 3.3 (Dual partition uncrossing). (PD) always has an optimum y∗ such that y∗

is chain-supported.

Proof. Suppose y is any feasible solution to (PD) such that two crossing partitions π, σ
have yπ, yσ 6= 0. Note that π does not cross any other partition, so we may assume that
yπ, yσ > 0. Let eπ denote the unit basis vector for partition π. Define

y′ := y − t · (r(π)eσ + eπ) + t


eπ∧σ +

r(π)∑

i=1

em(σ,πi)




where t ≥ 0 is a parameter. We would like to increase t until one of the terms y′π or y′σ
becomes zero, i.e., we claim that putting

t = min

{
yσ
r(π)

, yπ

}

produces a feasible y′ with the same objective value as y. From Equation (3.7) we deduce
that this y′ is feasible for (PD); from Equation (3.6) we deduce that y′ has the same
objective value as y. By uncrossing π and σ we mean the map y 7→ y′.
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With the uncrossing operation formally defined, we can complete the proof. Note that
(P) is feasible and bounded, whence (PD) is too. For a feasible solution y of (PD) define

vi(y) =
∑

π:r(π)=i

yπ.

Let y∗ be a optimal solution (PD) that is maximal with respect to lexicographic ordering on
the vector (vn(y

∗), vn−1(y
∗), . . . ); to see that such a y∗ exists, note that it can be computed

by solving a series of linear programs. Now if the support of y∗ were not a chain, then
it contains two crossed partitions π and σ. By uncrossing them in y∗, we increase y∗π∧σ;
furthermore since π and σ cross, it is not hard to see that

r(π ∧ σ) > max{r(π), r(σ)}.

Hence by uncrossing π and σ in y∗, the lexicographic value of (vn(y
∗), vn−1(y

∗), . . . ) strictly
increases. This contradicts the maximality of y∗. Hence no such π, σ exist, and y∗ is a
chain-supported optimum to (PD).

It is an interesting open problem to determine whether one can take an arbitrary feasible
y to a chain-supported one in a polynomial number of uncrossing operations (versus the
implicit approach given above which requires a poly-time black box for LP solving). This
is known to be possible for set uncrossing, e.g. see [120].

At this point it is prudent to look at the difference between (P ′) and (P): the equality
constraint in (P ′). This equality constraint just says that (P.1) holds with equality for
π. Hence the dual of (P ′) is the same as the dual of (P) except that the variable yπ is
unconstrained rather than negative.

Observe that the analogue of Theorem 3.3 for the dual of (P ′) holds using the same
method; this is needed to prove Theorem 3.22.

3.6.1 A Primal-Dual Interpretation of Kruskal’s MST Algorithm

Kruskal’s algorithm, which we will denote by MST, can be viewed as a continuous process
over time: we start with an empty tree at time 0 and add edges as time increases. The
algorithm terminates at time τ ∗ with a spanning tree of the input graph G. In this section
we show that Kruskal’s method can be interpreted as a primal-dual algorithm (see also
[96]). At any time 0 ≤ τ ≤ τ ∗ we keep a pair (xτ , yτ), where xτ is a (not necessarily
feasible) 0-1 primal solution for (M) and yτ is a feasible dual solution for (MD).

The initial primal and dual values x0 and y0 are the all-zero vectors. Let Gτ = (V,Eτ )
denote the forest corresponding to xτ , i.e., Eτ = {e ∈ E | xτ

e = 1}. Let π(τ) denote the
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partition induced by the connected components of Gτ . At time τ , the algorithm increases
yπ(τ) until a constraint of type (MD.1) becomes tight for some edge e ∈ Eπ(τ). (If more
than one such constraint becomes tight simultaneously, we pick any such e arbitrarily.)
Let τ ′ ≥ τ be the time at which this happens. The dual update is

yτ
′

π(τ) := τ ′ − τ.

We then include e in our solution, i.e., the primal update is xτ ′

e := 1. We terminate at
time τ ∗ such that Gτ∗ is a spanning tree. Chopra [46] showed that the final primal and
dual solutions have the same objective value (and are hence optimal), and we give a proof
of this fact for completeness.

In what follows, let G∗ be shorthand for Gτ∗ and similarly for x∗, etc.

Theorem 3.23. Algorithm MST finishes with a pair (x∗, y∗) of primal and dual feasible
solutions to (M) and (MD), respectively, such that

∑

e∈E

cex
∗
e =

∑

π∈Π

(r(π)− 1) · y∗π.

Proof. Checking feasibility is straightforward. For each edge e ∈ E∗, the constraint (MD.1)
holds with equality. Hence, rearranging, we can express the cost of the final tree as follows:

∑

e∈E

cex
∗
e =

∑

e∈E∗

∑

π:e∈Eπ

y∗π =
∑

π∈Π

|E∗ ∩ Eπ| · y∗π. (3.13)

Note that for each τ , the final tree G∗ has exactly |V | − r(π(τ)) edges not in Eπ(τ); hence
for all π with y∗π > 0, we have |E∗ ∩ Eπ| = |V | − 1 − (|V | − r(π)) = r(π) − 1. This fact,
combined with Equation (3.13), completes the proof.

Observe that the above primal-dual algorithm is indeed Kruskal’s algorithm: if the
algorithm adds an edge e at time τ , then e has cost exactly equal to τ , and e is a minimum-
cost edge connecting two connected components of Gτ .

3.6.2 MST Duals

Building on the previous section, we now show that terminal spanning trees are essentially
the same as chain-supported y’s. For any y ∈ RΠR, define c(y) :=

∑
π yπ(r(π)−1). Note in

(MD) the variable yπ is vacuous, i.e. it can have any value without affecting the feasibility
or optimality of the solution. So from now on we assume yπ = 0 for convenience.

In Algorithm 3.1 we give an alternate procedure TreeDual for constructing a dual y
to a spanning tree T . It is introduced in make explicit the sort of dual we mean when
T contains negative-cost edges. The output of TreeDual is otherwise the same as that of
MST; the type of arguments in the previous section easily give the following.
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Algorithm 3.1 The algorithm TreeDual(T ).

1: Let W := {c(e) | e ∈ T} be the set of distinct edge costs on T
2: Sort W into the increasing sequence W = (w1, . . . , wt)
3: For i = 1 to t let π[i] be the partition of R induced by the graph (R, {e ∈ T | c(e) < wi})

4: Return w1e
π[1]

+
∑t

i=2(wi − wi−1)e
π[i]

//Note π[1] = π

Claim 3.24. For a terminal spanning tree T , where y := TreeDual(T ), we have c(y) =
c(T ) and y is chain-supported. Moreover yπ ≥ 0 iff all edge costs are nonnegative; and
yπ ≥ 0 for all other partitions.

We also need to show that TreeDual is surjective. The exact technical requirement is
encapsulated in the following lemma.

Lemma 3.25. Suppose y is chain-supported with yπ ≥ 0 for all π 6= π. Then there exists
a terminal spanning tree T for which y = TreeDual(T ). If yπ ≥ 0 then all edge costs of T
are nonnegative.

Proof. Denote the chain supp(y) ∪ {π} by π[1], π[2], . . . , π[t] where π[i] refines π[i+1] for
1 ≤ i < t. For convenience let π[t+1] denote π, the coarsest partition. Denote the π[i]-
coordinate of y by y[i].

We now define a set E[i] of edges for each 1 ≤ i ≤ t. We claim such sets can be chosen so
that (R,∪i

j=1E
[j]) induces π[i] for each 0 ≤ i ≤ t. The base case i = 0 clearly holds. Then

in the induction step, since π[i] refines π[i+1], such a set E[i] can be chosen — informally,
E[i] is a spanning forest of the parts of π[i+1] when π[i] is contracted.

Now let T = ∪i
j=1E

[j], where we assign cost
∑i

j=1 y[j] to each edge in E[i]. When

TreeDual(T ) runs, π
[i]
∗ = π[i] for all i, w1 = yπ, and wi − wi−1 = y[i] for all i. Hence the

output y∗ is equal to y.

3.6.3 Dual Interpretation of Gain

Lemma 3.26. Let T be a terminal spanning tree with costs c. Let y = TreeDual(T ). Then

c(T )− mst(T/K, c) =
∑

π

yπrc
π
K .

Proof. Let us adopt the notation from the proof of Theorem 3.23, and assume that MST(T )
finishes at time τ ∗. Consider how the rank contribution of K changes with respect to
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π(τ) over time. Clearly, rc
π(0)
K = |K| − 1 and rc

π(τ∗)
K = 0. Whenever an edge is added

to Eτ in MST, the value rc
π(τ)
K either stays the same or drops by 1; hence there are edges

e1, . . . , e|K|−1 ∈ T such that, for 1 ≤ i ≤ |K| − 1, rc
π(τ)
K drops from |K| − i to |K| − i− 1

when edge ei is added. Let τ(i) denote the time at which edge ei is added, then by the
definition of the ei, ∫ τ∗

0

rc
π(τ)
K dτ =

|K|−1∑

i=1

τ(i). (3.14)

Notice that due to the definition of MST, the following two facts hold: first, τ(i) = cei for
each i; second, the left hand side of Equation (3.14) is

∑
π rc

π
Kyπ. Hence we obtain

∑

π

rcπKyπ =

|K|−1∑

i=1

cei (3.15)

Let the partition maintained by MST on input G at time τ be denoted by πG(τ). An easy
inductive argument shows that for all τ , we obtain πT/K(τ) from πT (τ) by first merging
all parts that meet K, and by subsequently identifying the vertices of K. It follows that
T\{e1, . . . , e|K|−1} is a minimum spanning tree of T/K. With Equation (3.15) this yields

∑

π

rcπKyπ = c(T )− mst(T/K)

as needed.

Then from the definition of gain, we immediately get the following corollary.

Corollary 3.27 (Dual interpretation of gain). Let y = TreeDual(T ). Then

gainT (K) =
∑

π

yπrc
π
K − CK ,

in particular K has positive gain iff (PD.1) is violated for this K.

Another interesting corollary (which will be used in Section 4.8.3) is the following; it is
analogous to an earlier result in [34] for (B) on quasi-bipartite instances. Here G[R] is the
subgraph of G induced by the terminals, so MST(G[R]) is the same as Moore’s spanning
tree heuristic for the Steiner tree problem.

Corollary 3.28. Let (T, y) = MST(G[R]) and suppose that every K has nonpositive gain
in T . Then OPT(P) = c(T ) and T is an optimal Steiner tree.
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Proof. By Corollary 3.27, y is feasible for (PD), so OPT(PD) ≥ c(y). But T is a Steiner tree
with this cost, hence OPT(P) ≤ c(T ). Now apply LP duality and the fact that c(y) = c(T )
to see OPT(P) = c(T ). Finally, T is an optimal Steiner tree since every Steiner tree has
cost at least OPT(P) = c(T ).

Another consequence of the dual interpretation of gain will appear in Lemma 5.5.

3.6.4 Gainless Tree Equivalence

We give the proof of Theorem 3.21; the proof of Theorem 3.22 is almost the same but
marginally more complicated due to negative edges.

Proof. We know that every terminal spanning tree with nonnegative costs corresponds to
a chain-supported y ≥ 0, and vice-versa (not bijectively, but this is ok). By Corollary
3.27, a terminal spanning tree is gainless if (PD.1) holds for its dual. Note that the
objective function in (P) is just c(y). Therefore, any gainless terminal spanning tree T
with nonnegative costs can be converted into a feasible y = TreeDual(T ) for (P) with
objective value equal to c(y) = c(T ), so OPT(P) ≥ t+K.

Conversely, by dual partition uncrossing (Theorem 3.3) there is an optimal dual solution
y to (P) which is chain-supported. It therefore corresponds to a spanning tree T , which is
gainless by Corollary 3.27. Hence t+K ≥ OPT(P).
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Chapter 4

Collected Proofs for Steiner Tree LPs

In this chapter we give proofs of results mentioned in Chapter 2.

4.1 LPs (S ′) and (P ′) Define the Same Polyhedron

Theorem 4.1. The set of all feasible solutions to (P ′) equals the set of all feasible solutions
to (S ′).

Note that since (S ′) and (P ′) both have the objective function min
∑

K xKCK , this
theorem implies OPT(P ′) = OPT(S ′).

Proof. Let x be any feasible solution to the LP (S ′). Note that the constraint (P ′.1) of
(P ′) is the same as the constraint (S ′.1) of (S ′). We now show that x satisfies (P.1). Fix a
partition π = {π1, . . . , πt}, so t = r(π). For each 1 ≤ i ≤ t, subtract the constraint (S ′.2)
with S = πi, from constraint (S ′.1) to obtain

∑

K∈K

xK

(
ρ(K)−

t∑

i=1

ρ(K ∩ πi)
)
≥ ρ(R)−

t∑

i=1

ρ(πi). (4.1)

From Lemma 3.13, ρ(K) −∑t
i=1 ρ(K ∩ πi) = rcπK . We also have ρ(R) −∑t

i=1 ρ(πi) =
|R| − 1− (|R| − r(π)) = r(π)− 1. Thus x is a feasible solution to the LP (P ′).

Now, let x be a feasible solution to (P ′) and it suffices to show that it satisfies con-
straint (S ′.2). Fix a set S ⊂ R. Note when S = ∅ that constraint (S ′.2) is vacu-
ously true so we may assume S 6= ∅. Let R\S = {r1, . . . , ru}. Consider the partition
π = {{r1}, . . . , {ru}, S}. Subtract (P.1) for this π from (P ′.1), to obtain
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4.2. Proof that OPT(D′) = OPT(D)

∑

K∈K

xK(ρ(K)− rcπK) ≤ ρ(R)− r(π) + 1. (4.2)

Using Lemma 3.13 and the fact that ρ(K∩{rj}) = 0 (the set is either empty or a singleton),
we get ρ(K)−rcπK = ρ(K∩S). Finally, as ρ(R)−r(π)+1 = |R|−1−(|R\S|+1)+1 = ρ(S),
the inequality (4.2) is the same as (S ′.2). Thus x is a feasible solution to (S ′), proving the
theorem.

4.2 Proof that OPT(D′) = OPT(D)

Polzin & Vahdati Daneshmand claim at the end of Section 2 in their 2003 paper [170] that
OPT(D′) = OPT(D) and sketch the details.1 We will make these details explicit below.
As mentioned in [170], these claims are analogous to Lemmas 8 and 9 from [168], which
they attribute as similar to earlier uncrossing methods of Goemans & Myung [95]. We
recall the shrinking operation defined in Section 3.3.1, which will be needed. We start
with a simple lemma about submodularity for directed hyperedges. (We remark that it
would fail in a model where directed hyperedges can have an arbitrary number of heads
and tails.)

Lemma 4.2. For any A,B ⊂ R, and a vector Z ≥ 0 indexed by directed hyperedges, we
have Z(∆out(A)) + Z(∆out(B)) ≥ Z(∆out(A ∪B)) + Z(∆out(A ∩ B)).

Proof. Let χ[E ] be the indicator function for event E , i.e. 1 if the event is true, and 0
otherwise. It clearly suffices to show for each Ki that

χ[Ki ∈ ∆out(A)] + χ[Ki ∈ ∆out(B)] ≥ χ[Ki ∈ ∆out(A ∪ B)] + χ[Ki ∈ ∆out(A ∩ B)].

If this inequality is violated, either the left-hand side is 0 or the right-hand side is 2. Recall
that Ki ∈ ∆out(S) means that K ∩ S 6= ∅ and i 6∈ S. We will show in more detail that
the inequality is never violated by considering cases.

Case 1: The right-hand side equals 2. Then i 6∈ A ∪ B and K ∩ A ∩ B 6= ∅. This clearly
implies that the left-hand side equals 2.

Case 2: The left-hand side equals 0. We break into three subcases (we skip the fourth by
symmetry).

a: i ∈ A, i ∈ B. Then the right-hand side is also 0, since i ∈ A ∪B and i ∈ A ∩ B.

1We further note that OPT(D′) = OPT(D) is reminiscent of the parsimonious property [93] except the
setting here of directed hypergraphs differs from undirected graph setting of [93].
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Chapter 4. Collected Proofs for Steiner Tree LPs

b: i ∈ A,K ∩ B = ∅. Then the right-hand side is also 0, since i ∈ A ∪ B and
K ∩ (A ∩B) = ∅.

c: K ∩ A = K ∩ B = ∅. Then the right-hand side is also 0, since K ∩ (A ∪ B) =
K ∩ (A ∩B) = ∅.

We need one more lemma before the main result.

Lemma 4.3. There is an optimal solution Z to (D) such that Z(∆out({t})) ≤ Z(∆out(T ))
for all T ⊂ R\{r} with t ∈ T .

Proof. Of all optimal solutions, take one for which
∑

Ki |K|ZKi is minimal. Note that
shrinking strictly decreases this sum, so any Z ′ obtained from shrinking Z is infeasible.

Suppose for the sake of contradiction that there is a t, T with r 6∈ T, t ∈ T and
Z(∆out(T )) < Z(∆out(t)). Take T minimal subject to this condition. Since Z(∆out(T )) <
Z(∆out(t)), there must be a Ki ∈ ∆out(t)\∆out(T ); this implies i ∈ T .

Now try shrinking the directed hyperedge Ki to (K\{t})i (i.e., decrease the Z-value
of the former by a small ǫ and increase the value of the latter by ǫ). By hypothesis, the
shrunk solution is infeasible for every ǫ > 0, which implies there is a tight inequality (D.1)
for some set U with t 6∈ U , r ∈ U , i ∈ U . Let U denote R\U , then the fact that U is tight
can be restated as Z(∆out(U)) = 1.

We know that Z(∆out(U ∪ T )) ≥ 1 since Z is feasible for (D), and using Lemma 4.2,

Z(∆out(U ∩ T )) ≤ −Z(∆out(U ∪ T )) + Z(∆out(U)) + Z(∆out(T ))

< −1 + 1 + Z(∆out(t)) = Z(∆out(t)).

Now U ∩ T is strictly smaller than T since it does not contain i. Also, U ∩ T contains t.
This contradicts our choice of T as the smallest set with r 6∈ T, t ∈ T and Z(∆out(T )) <
Z(∆out(t)). Therefore no such T exists and we are done.

This leads to the main result.

Theorem 4.4. OPT(D′) = OPT(D).

Proof. Clearly OPT(D′) ≥ OPT(D). Let Z be an optimal solution to (D) with the prop-
erties guaranteed by Lemma 4.3; by the proof of that lemma we may assume that any Z ′

obtained from shrinking Z is infeasible. We may clearly further assume that x(∆out(r)) = 0
since any hyperedge Ki ∈ ∆out(r) can be shrunk to (K\{r})i while contributing just as
much to all covering constraints (D.1).
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4.3. Proof that OPT(P) = OPT(D)

Now suppose for the sake of contradiction that some t ∈ R\{r} has Z(∆out(t)) > 1.
Then by Lemma 4.3, every set T ⊂ R\{r} with t ∈ T has Z(∆out(T )) > 1. Take any
Ki ∈ ∆out(t). We claim we can shrink Ki it to (K\t)i without losing feasibility, which will
complete the proof by contradiction. The only obstacle to this shrinking would be a tight
set S with Ki ∈ ∆out(S), (K\t)i 6∈ ∆out(S). But this would imply K ∩ S = {t} and thus
Z(∆out(S)) > 1, contradicting the fact that S is tight.

4.3 Proof that OPT(P) = OPT(D)

Theorem 4.5. For any graph, OPT(P) = OPT(D).

Proof. Two subsets U and W of R are called crossing if all four sets U \W , W \U , U ∩W ,
and R \ (U ∪ W ) are non-empty. A set-function p : 2R → Z is a crossing supermodular
function if

p(U) + p(W ) ≤ p(U ∩W ) + p(U ∪W )

for all crossing sets U and W . An orientation of the edges of a hypergraph is said to cover
a set-function p on V if |∆in(U) ≥ p(U)| for all subsets U of V . We use the following
theorem of [73, 72] written in our terms.

Theorem 4.6 (Theorem 2.23 of [72]). Given a hypergraph H = (R,L) and a crossing
supermodular function p, there is an orientation of the hyperedges of L covering p if and
only if the following holds: for every partition π of R,

(a)
∑

K∈Lmin{1, rcπK} ≥∑πi∈π
p(πi), and, (b)

∑
K∈L rc

π
K ≥∑πi∈π

p(R \ πi).

Now we show that given any feasible solution x to (P), we can obtain a feasible solution to
(D) of the same value. Let M be the smallest integer such that the vector Mx is integral.
Let K be a multi-set of hyperedges which contains MxK copies of each K. Define the
function p as p(U) = M if U is valid and 0 otherwise. It is easy check that this is a
crossing supermodular function. We claim that H = (R,L) satisfies conditions (a) and (b)
of the above theorem.

Note
∑

πi∈π
p(R \ πi) = M(r(π) − 1) since R\πi is valid for all parts πi of π except

the part containing the root. Thus condition (b), upon scaling by 1
M
, is a restatement of

constraint (P.1), which holds since x is feasible for (P).

For this choice of p, condition (a) follows from (b) in the following sense. Fix a partition
π, and let π1 be the part of π containing r. If π1 = R then (a) is vacuously true, so
assume π1 6= R. Let σ be the rank-2 partition {π1, R \ π1}. Then it is easy to check
that min{1, rcπK} ≥ rcσK for all K, and consequently

∑
K∈Lmin{1, rcπK} ≥∑K∈L rc

σ
K and∑

πi∈σ
p(R \ πi) = M =

∑
πi∈π

p(πi). Thus, (a) for π follows from (b) for σ.
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Chapter 4. Collected Proofs for Steiner Tree LPs

Therefore there is an orientation of the hyperedges of H such that ∆in(U) ≥ p(U) for
all U ⊆ R. Pick a hyperedge K and look at the MxK copies of this edge in H . For i ∈ K,
let nKi denote the number of these MxK copies directed towards i. So,

∑
i∈K nKi = MxK .

Define ZKi :=
n
Ki

M
. Note that

∑
K∈L,i∈K CKiZKi =

∑
K∈LCK

∑
i∈K ZKi =

∑
K∈LCKxK ,

thus the value of this solution is the same as the value of x in (P). We now claim that Z
is feasible for (D). To see this fix a valid subset U . The proof follows from the fact that
the orientation covers p, that is,

∑
Ki∈∆in(U) nKi ≥ p(U) = M .

4.4 Strengthening (B) to Get (S ′)

This proof makes precise a polyhedral relation between the bidirected cut formulation and
the hypergraph-subtour formulation. Specifically, we show that the hypergraph-subtour
formulation is equivalent to a strengthened version of the bidirected cut relaxation. It is a
polyhedral equivalence, if one projects both polyhedra on to the natural common variable
space.

First we introduce an alternate formulation of the bidirected cut relaxation, due to
Goemans and Myung [95], which we denote (GM) and show in Figure 4.1.2 It has variables
for nodes and edges, rather than variables for arcs like the more standard formulation (B).
To get some intuition for the LP, note that for any fixed 0-1 vector y, it is basically
Fulkerson’s [81] subtour formulation for the MST of supp(y).

Goemans & Myung showed that OPT(GM) = OPT(B) and more strongly that both
polyhedra are the same under the following projection into the edge space: map w ∈ RA

in the arc space to x ∈ RE via x{u,v} = w(u,v) + w(v,u); map the node+edge space to the
edge space by ignoring (projecting away) the node variables3. We use γ(S) to denote all
edges with both endpoints in S.

In this section we will show that (S ′) is polyhedrally equivalent to a strengthened
version of (GM) in preprocessed graphs (as defined in Chapter 2).

To avoid confusion, in this section we now take K only to mean the tree representing
a full component, with K still the collection of all full components, but now R(K) will be
explicitly used to denote the set of terminals belonging to a full component K. We also use
N(K) to denote the set of Steiner vertices in K, E(K) the set of edges in K, and V (K)
the set of vertices in K.

2This LP was called P ′

xy in [95]. Actually, their formulation has variables only for Steiner nodes, but it
is easy to verify that adding dummy variables yr = 1 for r ∈ R gives the formulation stated above. Also,
their formulation doesn’t force y ≥ 0, but it is not hard to see this is implied by their constraints.

3Also, one must add xuv + xvu ≤ 1 to (B) for all {u, v} ∈ E.
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4.4. Strengthening (B) to Get (S ′)

min
{∑

e∈E

xece : x ∈ RE, y ∈ RV (GM)

∑

e∈E

xe =
∑

v∈V

yv − 1 (4.3)

∑

e∈γ(S)

xe ≤
∑

v∈S\{k}

yv, ∀S ⊂ V, ∀k ∈ S (4.4)

xe ≥ 0, ∀e ∈ E (4.5)

1 ≥ yv ≥ 0, ∀v ∈ V (4.6)

yr = 1, ∀r ∈ R
}

(4.7)

Figure 4.1: An alternate formulation for the bidirected cut relaxation.

Since each full component is a tree in preprocessed graphs, and since every tree has one
more node than edges, we have the following equation, which will be needed later:

|R(K)|+ |N(K)| − |E(K)| = 1. (4.8)

Define the map ℓ : z 7→ (x, y) by xe = zK for all e ∈ E(K) and all K ∈ K, and yn = zK
for all n ∈ N(K) and all K ∈ K, and yr = 1 for all r ∈ R. Informally, ℓ(z) represents a
bidirected cut solution where we have “glued together” all elements of each full component
in the sense that we are forcing their variables to be equal.

Theorem 4.7. Suppose ℓ(z) = (x, y) with z ∈ [0, 1]K. Then z is feasible for (S ′) if and
only if (x, y) is feasible for (GM).

The objective value of z in (S ′) equals the objective value of ℓ(z) in (GM), so this
polyhedral equivalence also shows that OPT(S ′) ≥ OPT(GM). We now give the proof.

Proof. We break the proof into three claims.

Claim 4.8. z satisfies (S ′.1) if and only if (x, y) = ℓ(z) satisfies (4.3).
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Proof. Note that (4.3) holds if and only if
∑

e∈E

xe −
∑

v∈N

yv =
∑

v∈R

yv − 1

⇔
∑

K∈K

( ∑

e∈E(K)

xe −
∑

v∈N(K)

yv

)
= |R| − 1

⇔
∑

K∈K

zK(|E(K)| − |N(K)|) = |R| − 1

⇔
∑

K∈K

zK(|R(K)| − 1) = |R| − 1

where in the last step we used (4.8).

Claim 4.9. If (x, y) = ℓ(z) satisfies (4.4), then z satisfies (S ′.2).

Proof. We recall and rewrite (4.4):
∑

e∈γ(S)

xe ≤
∑

v∈S\{k}

yv (4.9)

⇔
∑

K∈K

( ∑

e∈E(K)∩γ(S)

xe −
∑

v∈N(K)∩S

yv

)
≤ |S ∩ R| − yk (4.10)

⇔
∑

K∈K

zK(|E(K) ∩ γ(S)| − |N(K) ∩ S|) ≤ |S ∩R| − yk (4.11)

⇔
∑

K∈K

zKf(K,S) ≤ |S ∩R| − yk (4.12)

where in the last step we use f(K,S) to denote |E(K) ∩ γ(S)| − |N(K) ∩ S|. Using a
counting argument we actually can equivalently define

f(K,S) := |R(K) ∩ S| − κ(K[S ∩ V (K)]) (4.13)

where κ denotes the number of connected components and [·] denotes an induced subgraph;
the counting argument follows since any induced subgraph of the tree K is a forest, and
κ = |V | − |E| holds for forests.

Finally, recall we want to show (S ′.2) holds for a given ∅ 6= S0 ⊂ R. Choose the S1

defined by
S1 := S0 ∪ {N(K) | K ∩ S0 6= ∅}

and note that f(K,S1) = 0 whenever R(K) ∩ S0 = ∅ and f(K,S1) = |R(K) ∩ S0| − 1
whenever K ∩ S0 6= ∅, so f(K,S1) = ρ(K ∩ S0) in either case.4 We know that (4.4), and

4ρ(X) = max{0, |X | − 1}
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equivalently (4.12), holds for this S1 and any k ∈ S0 = S1 ∩R, hence

∑

K∈K

zKρ(R(K) ∩ S0) ≤ |S1 ∩R| − yk = |S0 ∩ R| − 1,

giving (S ′.2) for S0 as needed.

Claim 4.10. If z satisfies (S ′.2), then (x, y) = ℓ(z) satisfies (4.4).

Proof. Rearranging as in the previous proof, it suffices to show (4.12) holds for all subsets
S of V and all k ∈ S, with f defined by Equation (4.13).

First we handle the special case that S ∩ R = ∅. Then f(K,S) = −κ(K[S ∩ V (K)])
for all K. Now k ∈ N(K∗) for some full component K∗, and κ(K∗[S ∩ V (K∗)]) ≥ 1 so

∑

K∈K

zKf(K,S) ≤ −zK∗ = |S ∩R| − yk,

so (4.12) holds as needed.

To finish we show (4.12) also holds in the case that S ∩ R 6= ∅. Define T = S ∩ R.
Then from Equation (4.13) we see that each K with R(K) ∩ T = ∅ has f(K,S) ≤ 0, and
each K with R(K) ∩ T 6= ∅ has f(K,S) ≤ |R(K) ∩ T | − 1. Therefore

∑

K∈K

zKf(K,S) ≤
∑

K∈K

zKρ(R(K) ∩ T ) ≤(S′.2) ρ(T ) ≤ |S ∩ R| − yk,

so (4.12) holds as needed.

This completes the proof of Theorem 4.7.

4.5 Bidirected/Hypergraphic Equality in Quasibipar-

tite Instances

We will prove the following theorem:

Theorem 4.11. On quasibipartite instances of the Steiner tree problem, OPT(B) ≥ OPT(D).

Since Polzin and Vahdati Daneshmand [170] proved that for any graph (not necessarily
quasibipartite graphs), OPT(S ′) ≥ OPT(B), Theorem 4.11 implies that on quasi-bipartite
instances, the hypergraphic and bidirected formulations have the same value.
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max
{∑

U

zU : z ∈ Rco-valid(R) (DD)

∑

U :K∩U 6=∅,i/∈U

zU ≤ CK , ∀K ∈ K, ∀i ∈ K (DD.1)

zU ≥ 0, ∀U ∈ co-valid(R)
}

(DD.2)

Figure 4.2: The dual of (D).

Our proof of Theorem 4.11 uses the dual of (D). In order to smooth the exposition, we
define a co-valid set to be the complement of a valid set. Explicitly, a co-valid set is one
that contains at least one terminal, but not r (whether we are talking about subsets of R
or V ). Then (D) can be expressed as requiring value at least 1 out of every co-valid set,
and its dual is given by the LP shown in Figure 4.2.

Recall that the support of a solution to (DD) is the family of sets with positive zU . A
family of sets is called laminar if for any two of its sets A,B we have A ⊆ B,B ⊆ A, or
A ∩ B = ∅. We start with the following standard uncrossing argument.

Lemma 4.12. There exists an optimal solution to (DD) whose support is a laminar family
of sets.

Proof. Choose an optimal solution z to (DD) which maximizes
∑

U zU |U |2 among all op-
timal solutions. We claim that the support of this solution is laminar. Suppose not and
there exists U and U ′ with U ∩U ′ 6= ∅ and zU > 0 and zU ′ > 0. Construct a new solution
z′ which is the same as z except z′U = zU − δ, z′U ′ = zU ′ − δ, z′U∪U ′ = zU∪U ′ + δ and
z′U∩U ′ = zU∩U ′ + δ, for a suitably small δ > 0. Note that U ∩ U ′ is not empty, U ∪ U ′

doesn’t contain r and the objective value remains unchanged. Also note that for any K
and i ∈ K, if zU∪U ′ appears in the summand of a constraint, then at least one of zU or zU ′

also appears. If both zU∪U ′ and zU∩U ′ appears, then both zU and zU ′ appear. Thus z′ is
an optimal solution and

∑
U z′U |U |2 >∑U zU |U |2, contradicting the choice of z.

We also need a dual formulation for the bidirected cut formulation. Again, it turns out
to be simpler to work with co-valid sets. In the case of (non-hyper) graphs, requiring flow
of value 1 into every valid set is essentially the same (with respect to LP value) as requiring
flow of value 1 into every co-valid set, since we can just exchange the flow of every arc with
that of its reverse. Therefore we use the dual formulation (BD) given in Figure 4.3.

Note that (DD) has variables for co-valid subsets of R, while (BD) has variables for
co-valid subsets of V . Inserting Steiner nodes arbitrarily into co-valid subsets of R gives
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max
{∑

U

βU : β ∈ Rco-valid(V ) (BD)

∑

U :a∈δin(U)

βU ≤ ca, ∀a ∈ A (BD.1)

βU ≥ 0, ∀U ∈ co-valid(V )
}

(BD.2)

Figure 4.3: The dual of (B).

co-valid subsets of V ; this observation leads us to an approach that we will call lifting. In
fact we have found two proofs along the same lines, but slightly different. The proofs in
this section use an explicit lifting procedure to transform duals. The alternate approach
is more like the one that will be given in Section 4.6, which gives a somewhat more direct
proof, but one where the lifting is not made explicit. The heart of the lifting proof in this
section is the following.

Lemma 4.13. For quasibipartite instances, given a solution of (DD) with laminar support,
we can get a feasible solution to (BD) of the same value.

From Lemmas 4.12 and 4.13, it is immediate that Theorem 4.11 holds. We now sketch
the proof of Lemma 4.13.

A feasible solution to (BD) assigns a value, βU , to every co-valid subset of V such that
for any bidirected arc of an edge (u, v), the total β faced by either end point, that is∑

U :u∈U,v/∈U βU and
∑

U :u/∈U,v∈U βU , is at most cu,v. A feasible solution, z, to (DD), on the
other hand, assigns a value only to co-valid subsets of the terminals and has a constraint
for every full component rather an edge.

We use z to construct a feasible β of the same total value. Note that for a bidirected arc
of edge (u, v) where v is a Steiner vertex, say, the total z-value faced by u,

∑
U :u∈U,v/∈U zU ,

can be much larger than cuv, while the total z-value faced by v is 0. To construct a co-valid
solution, β, for (BD), we lift the value of zU to subsets U ⊂ U ′ ⊂ U ∪ (V \R) which contain
Steiner vertices. In fact, we give an efficient algorithm to do so in a manner that the total
value doesn’t drop and in the end we get feasibility. This proves the lemma.

Quasi-bipartiteness is crucial in that we can treat every Steiner vertex independently
in the lifting procedure and do not have to bother about the feasibility of edges between
two Steiner vertices.
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4.5.1 Proof of Lemma 4.13

In (BD), we have two constraints for each bidirected arc of an edge (u, v) — one is∑
U :u∈U,v/∈U βU ≤ cuv and the other

∑
U :u/∈U,v∈U βU ≤ cuv. Given β’s, we say an edge

(u, v) is u-satisfied if the first inequality holds and v-satisfied if the second holds. We say
an edge is u-tight or v-tight if the inequalities are satisfied as equalities. We say (u, v) is
satisfied if it is both u-satisfied and v-satisfied. Note β ≥ 0 is feasible if and only if every
edge is satisfied.

Our approach starts with βU = zU for U ⊂ R and βU = 0 otherwise. Observe that
for every Steiner node v and every edge (u, v), (u, v) is v-satisfied since z is nonzero only
on subsets of R, but (u, v) is not necessarily u-satisfied. Also observe that all edges (u, v)
where u and v are both terminals are both u-satisfied and v-satisfied by this initial β; to see
this, note that constraint (DD.1) for the full component (u, v) precisely says that the edge
(u, v) is satisfied. In the rest of our proof, we iterate through each Steiner vertex v and lift β
at v. After lifting at v, all edges incident to v become satisfied. Lifting consists of repeated
application of the following transfer operation: reduce the value βU for some set U not
containing v, and increase βU∪{v} by an equal amount. Our proof depends crucially on the
laminarity of supp(z). Although supp(β) does not remain laminar during the algorithm,
we maintain that its restriction to R, {U ∩ R | U ∈ supp(β)}, remains laminar. Note this
is clearly true in the beginning since z’s support is laminar.

We now precisely define the lifting operation at a Steiner vertex v. Let Γ(v) be the
set of neighbors of v in G. We will represent {U ∈ supp(β) | U ∩ Γ(v) 6= ∅} by a forest
of rooted trees. In more detail, we start with the standard representation of the laminar
family {U ∩ Γ(v) | U ∈ supp(β)}\{∅}: the root nodes of the trees in the forest are sets
with no proper supersets, and the parent of any other set is its minimal proper superset.
Note that multiple U ∈ supp(β) could have the same intersection S with Γ(v). We expand
the node representing S ⊂ Γ(v) into a directed path with one node representing each set
{U ∈ supp(β) | U ∩ Γ(v) = S}, and with the children of S made children of the node
furthest from the root. Now we describe the procedure for transferring duals with respect
to v.

Procedure Lift(v)

1. We maintain a family A of active sets. Initially A is the set of all root sets of the
trees in the forest.

2. We decrease βU and increase βU∪{v} for all U ∈ A at a uniform rate until either

(a) all edges of the form {(u, v) : u ∈ U ∩Γ(v)} become u-satisfied for some U ∈ A,

(b) or βU becomes 0 for some set U ∈ A.
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3. In Case (a), we remove U from A and repeat Step 2.

4. In Case (b), we remove U from A and put all children of U (with respect to the
forest) into A. Go back to Step 2.

We terminate when there are no active sets; the process must terminate since supp(β)
is finite. Call two sets S, T Γ(v)-disjoint if S ∩ T ∩ Γ(v) = ∅. Note that the active sets
are always Γ(v)-disjoint, and if at some point some vertex u ∈ Γ(v) has u 6∈ ⋃A, then
u 6∈ ⋃A will continue to hold until termination.

We first make the following observations. For any S ⊂ R, lifting preserves the invariant

∑

U∈co-valid(V ):U∩R=S

βU = zS. (4.14)

This is because the drop in the value of a set U is compensated by a corresponding increase
in U ∪ v. Thus any edge between two terminals remains satisfied throughout the whole
algorithm, since it was satisfied before the liftings.

We will show next in Claims 4.14 and 4.15 that after lifting at v, all edges incident
to v become satisfied. Furthermore, when we lift at a Steiner vertex v, it does not affect∑

U :u∈U,v′ /∈U βU or
∑

U :u/∈U,v′∈U βU for any edge (u, v′) where v′ is another Steiner vertex.
Hence once we show both claims, it will follow that all edges are satisfied at termination,
and the proof of Lemma 4.13 will be complete.

Claim 4.14. When Lift(v) terminates, all edges of the form (u, v) are u-satisfied.

Proof. Consider how the active set containing u evolves over time (if any exists). If u is
not a member of any initial active set (i.e. the roots) then clearly βU = 0 for all sets U
containing u, so (u, v) is u-satisfied. If u leaves

⋃
A due to Step 3, then (u, v) is u-satisfied.

If u leaves
⋃

A due to Step 4, then we have reduced βU to 0 for all sets U containing u, so
(u, v) is u-satisfied.

Claim 4.15. When Lift(v) terminates, all edges of the form (u, v) are v-satisfied.

Proof. We first sketch the proof idea. Fix an edge (u, v) and look at the total β-value faced
by v, that is,

∑
U :u/∈U βU∪{v}. Since the increase in βU∪v is precisely the decrease in βU , we

will be done if we show that the total drop in
∑

U :u/∈U βU is at most cuv.

At a high level, in the Lift procedure, the “decrease” of βU for a set U stops when
some edge (u′, v) with in u′ ∈ U becomes u′-tight, that is, the “new” β-value faced by u′

is precisely c(u′, v). Therefore, using the laminarity of the support of β, we can charge the
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“new”
∑

U :u/∈U βU to the costs of a series of edges of the form (u1, v), (u2, v), · · · , (uk, v).

So, the total drop is the “old”
∑

U :u/∈U βU minus
∑k

i=1 c(ui, v), which equals

∑

U :u/∈U

zU −
k∑

i=1

c(ui, v)

from (4.14) Now for the full component K induced by v and (u1, · · · , uk, u), one can
show that the constraint (DD.1) with u ∈ K, implies that the first term above is at most
[c(u, v) +

∑k
i=1 c(ui, v)], which completes the proof. We now give details of this rather

technical proof.

We must show that for any vertex u ∈ Γ(v), at termination, we have
∑

U :u/∈U βU∪{v} ≤ cuv.
Let β ′

U be the value of U before v was lifted. Since βU∪{v} is precisely the decrease in βU ,
we have βU∪{v} = β ′

U − βU . Thus we need to show

∑

U :u/∈U

(β ′
U − βU) ≤ cu,v. (4.15)

Let Z denote the family of all sets U for which βU was reduced to 0. Let F denote the
family of all sets U for which βU was reduced, but remained nonzero at termination; such
sets must have left A due to Step 3. Sets in F are Γ(v)-disjoint since once Step 3 executes
on a set U , none of the vertices in U ∩ Γ(v) will belong to any active sets in any further
iterations. Furthermore, due to the condition in Step 2(a), each set F ∈ F contains a
vertex uF ∈ F ∩ Γ(v) such that the edge (uF , v) is uF -tight, i.e.

∑

U :uF∈U

βU = cuF ,v (4.16)

Let K be the set of all such uF ’s.

Now look at the left hand side of the inequality (4.15). This can be rewritten as follows:

∑

U :u/∈U

(β ′
U − βU) =

∑

U∈Z:u/∈U

(β ′
U − βU) +

∑

U∈F :u/∈U

(β ′
U − βU) +

∑

U /∈Z∪F :u/∈U

(β ′
U − βU) (4.17)

The summand in the third term of the right-hand side of Equation (4.17) is zero, but we
preserve this term for useful manipulations. Next, define the set K ′ as follows:

• If u ∈ F ∗ for some F ∗ ∈ F , define K ′ := {uF}F∈F ,F 6=F ∗;

• otherwise, if u 6∈ ⋃F , define K ′ := {uF}F∈F .
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Note that in any case, each set in Z contains at least one element of K ′, each set F ∈ F
with F 6= F ∗ contains exactly one element of K ′, F ∗ (if it exists) contains no element
of K ′, and each set in supp(β) \ (Z ∪ F) contains at most one element of K ′. Define
X := {U ∈ supp(β) \ (Z ∪ F) | U ∩K ′ 6= ∅}. Since the sets in F are disjoint, and since
each X ∈ X is a subset of some F ∈ F , each X ∈ X is a subset of F which doesn’t contain
u, and |X ∩K ′| = 1.

Recall that β ′
U − βU = 0 for all U not in Z ∪ F , so Equation (4.17) yields

∑

U :u/∈U

(β ′
U − βU) =

∑

U∈Z:u/∈U

(β ′
U − βU) +

∑

U∈F :u/∈U

(β ′
U − βU) +

∑

U∈X :u/∈U

(β ′
U − βU)

=
∑

U∈Z∪F∪X :u/∈U

β ′
U −

∑

U∈Z∪F∪X :u/∈U

βU (4.18)

Using the fact that βU = 0 for all U ∈ Z, the right summand in the RHS of Equa-
tion (4.18) is

∑

U∈Z∪F∪X :u/∈U

βU =
∑

U∈F∪X :u/∈U

βU =
∑

uF∈K ′

∑

U :uF∈U

βU =
∑

uF∈K ′

cuF ,v (4.19)

where the rightmost equality uses Equation (4.16).

To interpret the left summand in the RHS of Equation (4.18), take the setK := K ′∪{u}
and the full component/star formed by the edges {(v, w) | w ∈ K}. Then constraint (DD.1)
for K and u implies

∑

U :K∩U 6=∅,u/∈U

zU ≤ CK ≤
∑

uF∈K ′

cuF ,v + cu,v. (4.20)

Furthermore, since all sets U in Z ∪ F ∪ X with u /∈ U have non-empty intersection with
K, and using Equation (4.14), we find

∑

U⊂R:K∩U 6=∅,u 6∈U

zU =
∑

U⊂V :K∩U 6=∅,u 6∈U

β ′
U ≥

∑

U∈Z∪F∪X ,u/∈U

β ′
U . (4.21)

Combining Equations (4.18) to (4.21), we get Equation (4.15) as needed.

4.6 Bidirected/Hypergraphic Equality in 5-Preprocessed

Instances

In the previous section Section 4.5, we used a lifting approach to show that the hypergraph
and the bidirected relaxations have the same optimal value on quasi-bipartite graphs. In
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this section we use a computational variant of this approach to prove the same equality for
another class of instances. Recall (from Chapter 2) that an r-preprocessed instance consists
of element-disjoint full components on all possible sets of at most r terminals. The main
result of this section is the following.

Theorem 4.16. On all 5-preprocessed instances, OPT(P) ≤ OPT(B).

As before, since it is known that OPT(P) ≥ OPT(B) in all graphs, this actually
establishes equality. Moreover we show that Theorem 4.16 is tight in the sense that there
is a 6-preprocessed instance (Section 4.6.4) with OPT(P) > OPT(B).

We now make a remark. The notion of r-preprocessing contrasts with the notion of
b-quasi-bipartiteness introduced in Chapter 5 in the following way: the former bounds the
number of terminals per full component, while the latter bounds the number of Steiner
nodes per full component. We showed in Section 4.5 that OPT(P) = OPT(B) on 1-quasi-
bipartite instances, and the example in Section 4.6.4 is a 4-quasi-bipartite instance upon
which OPT(P) 6= OPT(B). It would be interesting to find out whether the LPs have the
same value on all 2-quasi-bipartite and 3-quasi-bipartite instances.

4.6.1 Strategy

We work along the lines of the lifting approach from Section 4.5 but with a couple of
differences. First, we use an LP (C) that is slightly stronger than (DD). Second, in
contrast to the very explicit lifting algorithm of Section 4.5, we use an indirect approach.
We write a cost-polyhedron which expresses the lifting problem in an abstract setting, and
argue that lifting can be performed for all cost functions iff lifting can be performed for
extreme points of this cost-polyhedron. Using Maple, we exhaustively find that all extreme
points of the cost-polyhedron are 0-1 for 5-preprocessed instances. Finally, we give an easy
argument showing that 0-1 vectors can be lifted, which completes the proof.

Let P(R) denote the power set of R. The new auxiliary LP (C), pictured in Fig-
ure 4.4, differs from (DD) in the following way. First, we have variables zU for sets in
P(R)\co-valid(R), but they may be thought of as dummy variables included for the sake
of symmetry, since they do not contribute to the objective function. Second, we have the
added constraint (C.2) which will be useful computationally for the purposes of normaliza-
tion.

Lemma 4.17. We have OPT(C) ≥ OPT(PD), and (C) has an optimal solution with
laminar support.
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max
{ ∑

U∈co-valid(R)

zU : z ∈ RP(R) (C)
∑

U :K∩U 6=∅,i/∈U

zU ≤ CK , ∀K ∈ K, ∀i ∈ K (C.1)
∑

U :i∈U

zU =
∑

U :j∈U

zU ∀i, j ∈ R (C.2)

zU ≥ 0, ∀U ∈ P(R)
}

(C.3)

Figure 4.4: The auxiliary LP used in our new lifting approach.

Proof. Let y∗ be an optimal solution to (PD). Define a solution z∗ to (C) as follows. For
any U ⊂ R with r /∈ U , define

z∗U :=
∑

π: U is a part of π

y∗π

We claim that this z∗ is a feasible solution to (C) of value ∑π(r(π)− 1)y∗π. This will show
that OPT(DD) ≥ OPT(PD).

First, note that
∑

U :i∈U z∗U = ‖y∗‖1 for all i, so (C.2) is satisfied. Second, to see that z∗

satisfies (C.1), note that for any full component K and any i ∈ K,

∑

U :U∩K 6=∅,i/∈U

z∗U =
∑

U :U∩K 6=∅,i/∈U

∑

π:U∈π

y∗π =
∑

π

∑

U∈π:U∩K 6=∅,i/∈U

y∗π =
∑

π

y∗πrc
π
K

where the last equality follows from the definition of rcπK . The feasibility of z∗ now follows
from the feasibility of y∗.

To see that the objective values are the same, note z∗∅ = 0 and so

∑

U co-valid

z∗U =
∑

U :r /∈U

z∗U =
∑

U :r /∈U

∑

π:U∈π

y∗π =
∑

π

∑

U∈π,r /∈U

y∗π =
∑

π

(r(π)− 1)y∗π.

To get laminarity we proceed as in the proof of Lemma 4.12; note that this set uncrossing
preserves constraint (C.2).

What we will show in the next section is the following.
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Lemma 4.18. For 5-preprocessed graphs, given a solution z to (C) with laminar support,
it can be lifted to a feasible solution β for (BD) of the same value.

Combining Lemmas 4.17 and 4.18 clearly gives a proof of Theorem 4.16, hence we
proceed to prove the latter. To be totally precise, there is a technical point which we must
address. Lifting z can produce sets not in co-valid(V ), for example since (C) has variables
for sets including the root. Therefore, in Lemma 4.18, we think of (BD) as having variables
for every subset of V , but that the objective function is

∑
U co-valid βU , i.e. non-co-valid sets

do not contribute to the objective function.

4.6.2 Local Lifting: Proof of Lemma 4.18

One of the key ingredients will be that in lifting, it is sufficient to deal with a single full
component at a time. (This is analogous to how, in Section 4.5, we were able to process
each Steiner vertex in isolation, without affecting any other Steiner vertices.) At a high
level, to lift z (indexed by subsets of R) to β (indexed by subsets of V ), we add the Steiner
vertices from each full component one at a time.

To explain our approach, it is helpful to take a more formal and general view of lifting.
(Note, our convention unless otherwise specified is that the containment symbol B ⊃ A
means weak containment, i.e. possibly B = A.)

Definition 4.19. Let A,B be finite sets with B ⊃ A, with b ∈ R
P(B)
+ and a ∈ R

P(A)
+ . We

say b is a lift (of a to B) if, for each S ⊂ A, we have

aS =
∑

T⊂B:T∩A=S

bS.

We now give a formal technical statement of how local lifts can be combined into a
global lift, which is how we deal with full components one at a time.

Lemma 4.20 (Common lift lemma). Let B,C be finite sets with with a ∈ R
P(B∩C)
+ , b ∈

R
P(B)
+ , c ∈ R

P(C)
+ . If b is a lift of a to B and c is a lift of a to C, there exists d ∈ R

P(B∪C)
+

so that d is a lift of both b and c.

To avoid confusion, we now takeK only to mean the tree representing a full component,
with K still the collection of all full components, but now R(K) will be explicitly used to
denote the set of terminals belonging to a full component K. We also use N(K) to denote
the set of Steiner vertices in K, E(K) the set of edges in K, and A(K) the arcs obtained
by orienting edges in E(K) in both ways.

The use of the lifting approach will become clear when we prove Lemma 4.18. Enu-
merate all full components as K = {K1, K2, . . . }.
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Lemma 4.21 (Local lift lemma). Let z be a laminar solution to (C) on a 5-preprocessed
instance. For every full component Ki, there is a lift zi of z from R to R ∪N(Ki) so that
zi satisfies the bidirected cut dual constraints (BD.1) for arcs in A(Ki).

We will prove both the common lift lemma and the local lift lemma later on, but for
now show how they together yield Lemma 4.18.

Proof of Lemma 4.18. We work in iterations. In the first iteration we apply Lemma 4.20
to the lifts z1 and z2 of z; thus there is a common lift ω of z1 and z2 to R∪N(K1)∪N(K2).
Crucially, since the constraints (BD.1) for A(Ki) only depend on nodes in R(Ki)∪N(Ki),
the solution ω will also satisfy (BD.1) for all arcs in A(K1)∪A(K2). We then find a common
lift of ω and z3, and so forth, until we obtain a common lift β of all the zi, which likewise
satisfies (BD.1) for all arcs in all full components.

The proof is completed by noting two technicalities. First, each terminal-terminal arc
a = uv also satisfies (BD.1) by directly considering constraint (C.1) for K = {u, v}, hence
β is feasible for (BD). Second, the objective value is preserved by lifting.

We now prove the common lifting lemma (there are also several other comparably short
proofs using alternate methods).

Proof of Lemma 4.20. For any set S ⊂ B ∩ C, we define values {dS∪T∪U | T ⊂ B\C,U ⊂
C\B} as follows. If aS = 0, we set each such dS∪T∪U to be 0. Otherwise, define dS∪T∪U =
bS∪T cS∪U/aS. Then it is easy to verify that d is a lift of b and also a lift of c. For example,
to check that d is a lift of b, note that for any subset S ∪ T of B (where S ⊂ B ∩ C and
T ⊂ B\C) if aS 6= 0 we have

∑

X⊂(B∪C):X∩B=S∪T

dX =
∑

U⊂C\B

dS∪T∪U =
bS∪T
aS

∑

U⊂C\B

cS∪U =
bS∪T
aS

aS = bS∪T

as needed, where in the second-last equality we used the fact that c is a lift of a.

4.6.3 Computational Proof of Local Lifting Lemma

We now give a proof of Lemma 4.21, which we restate, omitting the unnecessary index i.

Lemma 4.21. Let z be a laminar solution to (C) on a 5-preprocessed instance. For every
full component K, there is a lift z′ of z from R to R∪N(K) so that z′ satisfies the bidirected
cut dual constraints (BD.1) for arcs in A(K).
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Proof. First, using the common lift lemma (Lemma 4.20), we forget about all vertices not

in K. Precisely, let y ∈ R
P(R(K))
+ be the projection of z to R(K), defined for all W ⊂ R(K)

by

yW =
∑

S⊂R:S∩R(K)=W

zS. (4.22)

It is immediate that z is a lift of y from R(K) to R. The hardest part of the proof is that
we will find a lift y′ of y from R(K) to R(K) ∪ N(K), such that y′ satisfies constraints
(BD.1) for arcs in A(K). Once we do this, the common lift lemma shows there is a common
lift z′ of y′ and z to R ∪ N(K); and it is easy to see that this z′ also satisfies constraints
(BD.1) for arcs in K.

It is not hard to argue that without loss of generality, K has no Steiner vertices of degree
2. Formally, one may show that the two edges incident to such a vertex can be merged and
their costs added together, and that feasible dual bidirected solutions on the merged graph
can be converted to feasible dual bidirected solutions on the original. Alternatively, one
may use a metric assumption like that in Section 5.1.1 to argue K has no Steiner vertices
of degree 2.

Let L denote the support of y, which is easily seen to be a laminar family on R(K).
Let c be short-hand for the vector {ce | e ∈ E(K)} of costs of edges of K. For a subset W
of R(K), let K[W ] denote the subtree of full component K with terminal set W ; i.e., the
edge set of K[W ] is

⋃
i,j∈W Pij where Pij denotes the unique i-j path in the tree K. We

know by the definition of the cost function C on full components that CW ≤ c(E(K[W ]))
for all W ⊂ R(K).

Constraint (C.2) shows that
∑

S⊂R(K):i∈S yi is constant for all choices of i ∈ R(K). In

fact without loss of generality,
∑

S⊂R(K) yi = 1 for all i ∈ R(K), since we can scale all

of z, y, C, and {ce | e ∈ E(K)} by the needed factor without affecting the lifting task at
hand. This simplifies (C) considerably and guarantees that the pair (c, y) is a member of
the polyhedron

Q :=
{
(c, y) ∈ R

E(K)⊎L
+ | ∀i ∈ R(K) :

∑

U∈L:i∈U

yU = 1; (4.23)

∀W ⊂ R(K) : −1 +
∑

U :W∩U 6=∅

yU ≤ c(E(K[W ]))
}
. (4.24)

Our goal in lifting is to prove that (c, y) admits a feasible lift y′, by which we mean

y′ is a lift of y to R(K) ∪N(K), such that for each uv ∈ A(K),
∑

U :u 6∈U,v∈U

y′U ≤ cuv.

The following claim is easy to verify, since we are dealing with only linear constraints.
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Claim 4.22. If (ci, yi) admits the feasible lift y′i for i = 1, 2 and 0 ≤ λ ≤ 1, then (λc1 +
(1− λ)c2, λy1 + (1− λ)y2) admits the feasible lift λy′1 + (1− λ)y′2.

Therefore, it suffices to show that every extreme point (c, y) of Q admits a feasible lift.
This is facilitated by the following convenient fact.

Proposition 4.23. If K is a full component with at most 5 terminals and L is a laminar
family on R(K), then every extreme point of Q is 0-1.

Proof. We argued earlier that every Steiner vertex in K has degree at least 3, which means
that K has at most |R(K)| − 2 Steiner nodes. Thus there are only a finite number of
possible shapes for K. A little more strongly, we may assume |N(K)| = |R(K)| − 2, by
splitting Steiner nodes of degree ≥ 4 and inserting edges of cost 0.

We use the Maple package convex [75] to enumerate all vertices of the polytope Q for
all possible full component shapes and all possible laminar families L on R(K). The Maple
code which completes the proof of Proposition 4.23 is given in Appendix A.

Finally, to complete the proof of Lemma 4.21, it suffices to show that 0-1 points in Q
lift.

Proposition 4.24. If (c, y) is a 0-1 vector in Q, then y admits a feasible lift y′.

Proof. First, note constraint (4.23) implies that y is the indicator function for a partition
π of R(K). For each part πi of π let ℓi ⊂ V (K) be πi together with all Steiner vertices
connected to terminals in πi by zero-cost edges.

We claim that the sets ℓi are pairwise disjoint. Suppose otherwise for the sake of
contradiction that v ∈ ℓi ∩ ℓj. Then is a zero-cost path from v to ri ∈ πi and from v
to rj ∈ πj , and consequently a zero-cost path from ri to rj . But constraint (4.24) for
W = {ri, rj} ensures that the unique ri-rj path in K has cost at least 1, a contradiction.

Finally, set y′ℓi = 1 for all i, and each other y′ value to zero. Now fix any arc uv ∈ A(K),
which falls into one of two cases.

cuv = 0. Then every ℓi either contains both or neither of u, v, so
∑

U :u 6∈U,v∈U y′U = 0 ≤ cuv as
needed.

cuv = 1. There is at most one i for which v ∈ ℓi, by the disjointness of the ℓi. Hence∑
U :u 6∈U,v∈U y′U ≤ 1 = cuv as needed.

This completes the proof of Lemma 4.21.

We remark that the laminarity of supp(y) is key to our approach: if L is an arbitrary
family on R(K), then Q has non-0-1 vertices even when |R(K)| = 3. (This is demonstrated
in Appendix A.)
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4.6.4 A 6-Preprocessed Instance with OPT(P) 6= OPT(B)

Consider the graph in Figure 4.5. It is based on a well-known gadget [1] used by Goemans
to get an integrality gap of 8/7 − ǫ for the bidirected cut formulation. The minimal
Steiner tree cost is 8. This instance has OPT(B) = 15/2, and upon 6-preprocessing, this
value can only decrease since the original graph remains as a subgraph. We now argue
that OPT(P) = 8. Let π denote the partition {{t1, t2}, {t3, t4}, {t5, t6}}. It is not hard
to see that CK ≥ 4rcπK for every full component K. Thus any feasible solution x has∑

K xKCK ≥ 4
∑

K rcπK ≥ 4(r(π)− 1) = 8, since x meets constraint (P.2).

We remark that we previously conjectured [138] that OPT(P) = OPT(B) on all pre-
processed graphs, but this example refutes that conjecture.

t1

t2

t3

t4

t5

t6

0

0

0

2

2

2

2

2

2

1

11

Figure 4.5: This graph shows that OPT(P) and OPT(B) can be different on 6-preprocessed
instances. Dots are terminals and squares are Steiner vertices. Edge costs are shown.

4.7 Relating the Polyhedra Defined by (P ′) and (P)

For a polytope X , its dominant is the polytope dom(X ) := {y | ∃x ∈ X : x ≤ y}. In
ordinary graphs (i.e., with all hyperedges of size at most 2), (P) and (P ′) are related
in a very simple way: the unbounded polytope (P) is the the dominant of the bounded
polytope (P ′). (See Chopra [46].) However, this polyhedral relation is no longer true in
hypergraphs.

Example 4.25. Consider R = {1, 2, 3, 4} and the point x ∈ RK such that x1,2,3 = x1,2,4 = 1
and x is zero elsewhere. Then x lies in (P), but there is no y ≤ x with y ∈ (P ′), i.e.
x 6∈ dom(P ′).
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Nonetheless, it is possible to change the false statement “(P) = dom(P ′)” into a true one
by two relatively minor changes. Let pos(X ) := {x ∈ X | x ≥ 0} denote the nonnegative
part of X . Let (EP ′) denote an extended version of (P ′) where we remove the nonnegativity
constraint:

(EP ′) := {x ∈ RK :
∑

K∈K

xKrc
π
K ≥ r(π)− 1, ∀π ∈ ΠR;

∑

K∈K

xK(|K| − 1) = |R| − 1}.

In the rest of this section, we prove the following result.

Theorem 4.26. P = pos(dom(EP ′)).

Despite the fact that the theorem has such a succinct statement, it takes us quite a
bit of technology to prove it. Namely, we look more carefully at the structure of the
hypergraph-partition formulations. A shorter or more direct proof would be interesting.

4.7.1 Contraction

For any finite set X , we use K(X) to denote the family of all nonempty subsets of X , and
we use (P)[X ] to denote the version of (P) on terminal set R = X .

Let S be a subset of R and let R/S := (R\S) ∪ {〈S〉} where 〈S〉 is a pseudonode
corresponding to S being contracted. For a subset K of R (i.e., a hyperedge) we define the
contraction K/S by

K/S :=

{
(K\S) ∪ {〈S〉}, if K ∩ S 6= ∅;

K, otherwise.

Define contraction to be the linear map x 7→ x/S from RK(R) to RK(R/S) defined by

(x/S)K =
∑

J∈K(R):J/S=K

xJ .

By extension, we can contract a family F of sets via F/· = {f/· | f ∈ F}, and we can
contract by a family F = {f1, f2, . . . } of disjoint sets via ·/F = ·/f1/f2/ · · · . One example
of why this is natural is that rcπK = ρ(K/π).

It turns out that (P) behaves nicely under contraction. Note for π, σ ∈ Π(R), that π/σ
is a partition (of R/σ) if and only if σ refines π. The following claim is simple to prove.

Claim 4.27. If σ refines π then r(π/σ) = r(π), and rc
π/σ
K/σ = rcπK for all K.
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Now we begin a series of structural observations about the partition formulations.

Claim 4.28. If x ∈ (P)[R] and σ ∈ ΠR then x/σ ∈ (P)[R/σ].

Proof. For any partition π of R/σ, let π̂ denote the unique partition coarsening σ such
that π̂/σ = π, i.e., π̂ is the partition of R obtained by uncontracting σ. Clearly x/σ is
nonnegative and by Claim 4.27, for all π ∈ ΠR/σ,

∑

K∈K(R/σ)

rcπK(x/σ)K =
∑

K∈K(R)

rcπ̂KxK ≥ ρ(π̂)− 1 = ρ(π)− 1, (4.25)

where the middle inequality holds because x ∈ (P)[R] (specifically, constraint (P.2) for
π̂).

Corollary 4.29. If τ coarsens σ and τ is tight for x ∈ (P)[R], then τ/σ is tight for x/σ.

Proof. Clearly τ = π̂ for some π ∈ ΠR/σ; then Corollary 4.29 follows from the fact that
Equation (4.25) holds with equality for this choice of π.

For the next corollary, the most refined tight partition for x∗ is defined as the meet of
all tight partitions for x∗, which by Corollary 3.12, is itself tight.

Corollary 4.30. If x∗ is a vertex of (P)[R] and τ is the most refined tight partition for
x∗, then x∗/τ is a vertex of (P ′)[R/τ ].

Proof. By Claim 4.28, x∗/τ is feasible for (P)[R/τ ]. We now need to show it is a vertex.

By elementary LP theory, we know that there is a nonsingular square system indexed
by S = supp(x∗) and a family C of partitions,

x ∈ RS : ∀π ∈ C,
∑

K∈S

xKrc
π
K = r(π)− 1 (4.26)

for which the unique solution is x∗.

Now, consider the system

x ∈ RS/τ : ∀π ∈ C,
∑

K∈S

xK/τrc
π/τ
K/τ = r(π/τ)− 1. (4.27)

Both systems (4.26) and (4.27) use the same nonsingular square matrix of coefficients.
Moreover, it is easy to see that x∗/τ is a solution to the latter, which implies that x∗/τ is
a vertex of (P)[R/τ ].

Finally, we know that τ is tight for x∗ so Corollary 4.29 implies τ/τ is tight for x∗/τ ,
which implies that in fact x∗ is a vertex of (P ′)[R/τ ].

Note in the previous proof that | supp(x∗/τ)| = | supp(x∗)| because otherwise, ifK,K ′ ∈
supp(x∗) are such that K/τ = K ′/τ, then the columns corresponding to K and K ′ are
identical, contradicting the fact that the square matrix is non-singular.
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4.7.2 Expanding and Restricting

For succinctness, say that x is an expansion of x′ by τ if x′ ∈ (P)[R/τ ], x/τ = x′ and
| supp(x)| = | supp(x′)|. Then Corollary 4.30 says that every vertex of (P)[R] is an expan-
sion of a vertex of (P ′)[R/τ ] for some τ .

Remark 4.31. It is possible that a fixed vertex of (P ′)[R/τ ] can be expanded into a vertex
of (P)[R] in more than one way. For example, let |R| = 4, τ = {{1}, {2}, {3, 4}}, and
let x∗ be the characteristic vector of K2,1 where the pseudonode 〈{3, 4}〉 has degree two.
Then the characteristic vectors of {{1, 3}, {2, 3, 4}}, {{1, 3, 4}, {2, 3, 4}}, {{1, 3, 4}, {2, 4}}
and others are extreme points of (P)[R] which are expansions of x∗ by τ .

Given τ and a vertex x′ of P(R/τ), is there a good way to characterize all of the
vertices into which x′ can be expanded? On the one hand, for each K ∈ supp(x′), writing
K = {τi1 , . . . , τik}, we need to “replace” K by a set of the form Ti1 ∪ · · · ∪ Tik where
∅ 6= Tij ⊆ τij for each j. But these choices cannot all be made independently. For
example, in Remark 4.31 {{1, 3}, {2, 4}} is not an expansion of x∗ since it is not feasible.
Next (Claim 4.32) we give a sufficient condition for the expansion x of x′ to lie in (P)[R],
which is recursive. (The condition is also necessary, but we omit the proof of this unneeded
fact.)

We define the linear restriction map x 7→ x|S from RK(R) to RK(S) by

(x|S)K =
∑

J∈K(R):J∩S=K

xJ .

(Note that for a J with J ∩ S = ∅, this xJ never appears in the right-hand side.)

Claim 4.32. Let x′ be a vertex of (P ′)[R/τ ], and let x be an expansion of x′ by τ. If
x ∈ (P)[R] then x|τi ∈ (P)[τi], ∀i.

Proof. Consider any partition π of τi. Let τ ∧ π denote the partition of R obtained from τ
by further refining τi into π. Note that r(τ ∧π) = r(τ)+ r(π)−1. Since x ∈ P(R), x meets
the partition inequality for τ ∧π. We also know that τ is tight for x. Thus, subtracting the
equality from the inequality,

∑

K

xK(rc
τ∧π
K − rcτK) ≥ r(τ ∧ π)− 1− (r(τ)− 1) = r(π)− 1.

However, it is easy to see that rcτ∧πK − rcτK = rcπK∩τi
for all K (where we take rcπ∅ = 0).

This implies that
∑

K∈K(τi)

(x|τi)KrcπK =
∑

K

xK(rc
τ∧π
K − rcτK) ≥ r(π)− 1,

so x|τi meets the inequality of (P)[τi] corresponding to partition π. Since π and i were
arbitrary, the claim is complete.
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4.7.3 Proof of Theorem 4.26

It is straightforward to see that pos(dom(EP ′)) ⊂ P because

• if x ∈ (EP ′) then x meets all partition inequalities (P.2)

• if y ≥ x, x ∈ (EP ′) then y also meets all partition inequalities

and (P) is a subset of the positive orthant.

We proceed by induction on |R|. Note that the statement remaining to be proved is

equivalent to: for x ∈ (P)[R], there is a δ ∈ R
K(R)
+ such that x − δ ∈ (EP ′)[R]. Since

(P) has the nonnegative orthant as its recession cone, it is easy to see that we only need
consider the case that x is a vertex of (P)[R].

If π is tight for x then x ∈ (EP ′)[R] and there is nothing to prove. Let τ 6= π be
the most refined tight partition for x. We may assume τ 6= π since the constraint (P.2)
is vacuous for π = π and the vertex x must therefore have some other nontrivial tight
inequality.

We know that by Claim 4.32 x is an expansion of a vertex x′ ∈ (P)[R/τ ]. Let the parts

of τ be τ1, . . . , τr. By induction and Claim 4.32, for each part τi, there is a δi ∈ R
K(τi)
+ with

(x|τi)− δi ∈ (EP ′)[τi]. We claim that the point y defined by

y := x−
∑

i

δi

lies in (EP ′)[R], which will complete the proof. To do so we will use the following alternate
formulation for (EP ′),

(EP ′) = {x ∈ RK :
∑

K∈K(R)

xKρ(K ∩ S) ≤ ρ(S), ∀S ⊂ R;
∑

K∈K(R)

xKρ(K) = ρ(R)};

the equivalence of this formulation with the original can be seen using the proof technique of
Theorem 4.1. It remains to show that

∑
K yKρ(K ∩S) ≤ ρ(S) for all S ⊂ R, with equality

for S = R. This now follows by some straightforward calculations; we will explicitly show
the inequality for all K, but a careful review shows that for S = R, the same proof goes
through with all inequalities as equalities.

For a given full component K, note that ρ(K ∩ S) =
∑

i ρ(K ∩ S ∩ τi) + rcτK∩S, and so
we may decompose

∑

K∈K(R)

yKρ(K ∩ S) =

r∑

i=1

∑

K∈K(R)

yKρ(K ∩ S ∩ τi) +
∑

K∈K(R)

yKrc
τ
K∩S. (4.28)
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For each i, the first term on the RHS of (4.28) simplifies as

∑

K∈K(R)

yKρ(K ∩ S ∩ τi) =
∑

K∈K(R)

(x|τi − δi)Kρ(τi ∩ S ∩K) ≤ ρ(τi ∩ S), (4.29)

where the last inequality holds since (x|τi) − δi ∈ (EP ′)[τi]. Now we simplify the second
term on the RHS of (4.28). Note that rcτK∩S is only positive when K spans more than one
part of τ, but supp(δi) ⊂ K(τi), so (δi)Krc

τ
K∩S = 0 for all i, K and S. It follows that

∑

K∈K(R)

yKrc
τ
K∩S =

∑

K∈K(R)

xKrc
τ
K∩S =

∑

K∈K(R)

xKρ((K ∩ S)/τ) (4.30)

≤
∑

K ′∈K(R/τ)

(x/τ)K ′ρ(K ′ ∩ (S/τ)) ≤ ρ(S/τ), (4.31)

where the first inequality uses the fact that ρ((K ∩ S)/τ) ≤ ρ((K/τ) ∩ (S/τ)) and the
second holds since x/τ ∈ (P ′)[R/τ ]. Putting together equations (4.28), (4.29), (4.31), and
Lemma 3.13 we get

∑
K yKρ(K ∩ S) ≤∑r

i=1 ρ(τi ∩ S) + ρ(S/τ) = ρ(S), as needed.

4.8 Integrality Gaps and RatioGreedy

In this section we use (P) to perform a novel dual fitting analysis of a greedy algorithm of
Gröpl et al. [103] which we call RatioGreedy. This results in new (P)-relative approxi-
mation ratios for several classes of problems, and consequently new integrality gap bounds.
Later within this section we give a new small example showing that RatioGreedy has
approximation ratio at best 73

60
on uniformly quasi-bipartite instances (Section 4.8.2), an

alternate proof of the 73
60

integrality gap upper bound for unit-cost quasibipartite instances
(Section 4.8.3), and we show a lower bound of 8/7 for the integrality gap of hypergraphic
LPs, which is the best known, due to Martin Skutella (Section 4.8.4).

We start by describing the algorithm of Gröpl et al. [103] in terms of full components.

Procedure RatioGreedy

1. Initialize the set of acyclic components L to ∅.
2. Let L∗ be a minimizer of CL

|L|−1
over all full components L such that |L| ≥ 2 and

L ∪ L is acyclic.
3. Add L∗ to L.
4. Continue until (R,L) is a hyper-spanning tree and return L.
A quasi-bipartite instance of the Steiner tree problem is uniformly quasi-bipartite if

for every Steiner node, all edges incident to that node have the same cost. This class
was introduced by Gröpl et al. [103] who showed that the algorithm RatioGreedy is a
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(non-LP-relative) 73
60
-approximation algorithm on these instances. We match this result

and show RatioGreedy is a (P)-relative 73
60
-approximation.

For 3-restricted instances of the Steiner tree problem, we show RatioGreedy is a
(P)-relative 5/4-approximation algorithm. We also outline how this approach extends to
r-restricted instances for larger r.

We may also use RatioGreedy for arbitrary hypergraphs not derived from the Steiner
tree problem. We restrict to down-closed instances with nondecreasing cost-functions (de-
fined at the start of Section 3.4) since otherwise no approximation ratio is possible. In that
case, where r denotes the maximum hyperedge size, we also get an integrality gap bound
of H(r− 1) where H(i) is the ith harmonic number. This complements the observation by
Baudis et al. [14] that RatioGreedy has approximation ratio H(r−1), which is in turn a
generalization of the submodular set cover framework of Wolsey [199]. This is nearly best
possible for r ≥ 4 since “set cover with maximum set size k” to can be reduced to “span-
ning connected hypergraph with maximum edge size k + 1” by creating a new root vertex
and adding it to all sets. This set cover problem is APX-hard for k ≥ 3 and Trevisan [188]
showed ln k −O(ln ln k) inapproximability unless P=NP.

4.8.1 Integrality Gap Upper Bounds for Special Classes

Theorem 4.33. On a uniformly quasibipartite instance, C(RatioGreedy) ≤ 73
60
OPT(P).

Proof. Let t denote the number of iterations and L := {L1, . . . , Lt} be the ordered sequence
of full components obtained. We now define a dual solution y to (PD). Let π(i) denote the
partition induced by the connected components of {L1, . . . , Li}. Let θ(i) denote CLi

/(|Li|−
1) and note that θ is nondecreasing. Define θ(0) = 0 for convenience. We define a dual
solution y with

yπ(i) = θ(i+ 1)− θ(i)

for 0 ≤ i < t, and all other coordinates of y set to zero. It is easy to see that
∑

i yπ(i)r(π(i)) =

C(L). We then show for any K ∈ K,
∑

i yπ(i)rc
π(i)
K ≤ 73/60 · CK — by scaling, this also

proves that 60
73
y is a feasible dual solution, and hence completes the proof.

Fix any K ∈ K and let |K| = k. Since the instance in question is uniformly quasi-
bipartite, the full component K is a star with a Steiner centre and edges of a fixed cost
c to each terminal in K. For 1 ≤ i < k, let τ(i) denote the last iteration j in which

rc
π(j)
K ≥ k − i. Let Ki denote any subset of K of size k − i + 1 such that Ki contains at

most one element from each part of π(τ(i)); i.e., |Ki| = k − i+ 1 and rc
π(τ(i))
Ki

= k − i.

Our analysis hinges on the fact that Ki was a valid choice when Lτ(i)+1 was chosen.
More specifically, note that {L1, . . . , Lτ(i), Ki} is acyclic, hence by the greedy nature of the
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algorithm, for any 1 ≤ i < k,

θ(τ(i) + 1) = CLτ(i)+1
/(|Lτ(i)+1| − 1) ≤ CKi

/(|Ki| − 1) ≤ c · (k − i+ 1)

k − i
.

Moreover, using the definition of τ we compute

∑

π

yπrc
π
K =

t−1∑

i=0

(θ(i+ 1)− θ(i))rc
π(i)
K

=

k−1∑

i=1

θ(τ(i) + 1) ≤
k−1∑

i=1

c · (k − i+ 1)

k − i
= c · (k − 1 +H(k − 1)).

Finally, note that (k − 1 +H(k − 1)) ≤ 73
60
k for all k ≥ 2 (achieved at k = 5). Therefore,

60
73
y is a valid solution to (PD).

To get our other results, as above, we want to prove that the load of y on any full
component K is at most a certain factor more than its cost, then we scale down the dual
to become feasible.

Proposition 4.34. On down-closed hypergraphs of maximum edge size r with non-decreasing
costs, all K satisfy ∑

i

yπ(i)rc
π(i)
K ≤ H(r − 1) · CK .

Proof. The argument is the same as in the proof of Theorem 4.33 except that we can
only use the simple bound CKi

≤ CK in place of CKi
≤ |Ki|−1

|K|−1
CK . Hence θ(τ(i) + 1) ≤

CK/(|Ki| − 1) and

∑

π

yπrc
π
K =

k−1∑

i=1

θ(τ(i) + 1) ≤ CK

k−1∑

i=1

1

k − i
= H(k − 1)CK ≤ H(r − 1)CK ,

as needed.

Proposition 4.35. On 3-restricted instances, all K satisfy

∑

i

yπ(i)rc
π(i)
K ≤ 5

4
CK .

Proof. Consider the case k = |K| = 3; the case |K| = 2 is easier. Without loss of generality
the original instance is metric and so we may assume K has just three edges; let their costs
be x ≤ y ≤ z.
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Previously, K2 denoted an arbitrary sub-full component of K such that rcK2

π(τ(2)) = 1;
this time, take timeK2 to be a minimum-cost such sub-full component. The eligible choices
for K2 depend on which two of K’s three terminals are connected by π(τ(2)), but it is easy
to see that at least one of the two sub-full components of cost x + y or x + z is eligible.
Hence CK2 ≤ x+ z, and θ(τ(2) + 1) ≤ (x+ z)/1.

Now we bound θ(τ(1) + 1) similarly. In iteration τ(1) + 1, K is an eligible choice for
the algorithm, and so is the sub-full component consisting of the edges with cost x and y.
Therefore θ(τ(1) + 1) ≤ min{(x+ y + z)/2, x+ y}.

Hence

∑

π

yπrc
π
K =

k−1∑

i=1

θ(τ(i)+1) ≤ x+z+min
{x+ y + z

2
, x+y

}
≤ x+z+

3x+ 3y + z

4
≤ 5

4
CK ,

as needed.

Here is a sketch of how Proposition 4.35 extends to r-restricted instances for larger r
— we defer the full details. We write a linear program to capture the best possible bound
that can be built out of sub-full components, just as above. In addition, we observe that
the restriction of {π(i)}i to K is a chain. Iterating over all possible shapes of full com-
ponents, and all possible chains, we get integrality gap upper bounds 5/4 = 1.25, 11/8 =
1.375, 119/82 ≈ 1.451, 3/2 = 1.5 respectively for 3-restricted, 4-restricted, 5-restricted, and
6-restricted instances. We obtain similar, better, bounds if we know the original instance
is quasi-bipartite: 5/4 = 1.25, 13/10 = 1.3, 37/28 ≈ 1.321, 127/96 ≈ 1.323, and the latter
bound holds also for 7- and 8-restricted quasi-bipartite instances. It appears for quasi-
bipartite graphs, just as in the proof of Theorem 4.33, that the worst-case full components
for this analysis have bounded size, and it would be interesting to verify this.

4.8.2 Small Example Showing 73/60 is Tight for RatioGreedy

In our studies we found a smaller (non-unit-cost) quasi-bipartite graph upon which Ra-

tioGreedy has approximation ratio 73
60
, which we show in Figure 4.6. There is an optimal

Steiner tree of cost 10, obtained by taking all edges incident to n1 and n2. However, it
is possible for RatioGreedy to pick the following full components in order for a total
cost of 3 · 5

6
+ 3 · 8

9
+ 3 + 2 + 2 = 73/6: first, all edges incident with nA, since it has

optimal cost-per-connection ratio of 5/4; second, all edges incident with nB, since then it
has optimal cost-per-connection ratio of 4/3; third, all edges incident with nC , since then
it has optimal cost-per-connection ratio of 3/2; then two edges each incident to n1 and n2.

Other examples are known where RatioGreedy selects a Steiner tree with cost 73
60

times the optimal cost — one with arbitrary costs in [101] and one with unit costs in [102]
— but both are larger graphs than the one in Figure 4.6.
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n1 : 1 n2 : 1

nA : 5/6 nB : 8/9 nC : 1

Figure 4.6: A small uniformly quasi-bipartite instance upon which the approximation
ratio of RatioGreedy is 73/60. Dots are terminals and squares are Steiner vertices. The
notation ni : ci denotes that all edges incident with Steiner node ni have cost ci.

4.8.3 Alternate 73/60 Analysis for Unit-cost Quasibipartite In-
stances

In this section we show that in quasibipartite instances of the Steiner tree problem where
all edges have unit cost, the integrality gap of the hypergraphic relaxation is at most
73
60

≈ 1.216. We do so by using the concept of filtering from [34] to analyze RatioGreedy.
We already showed a more general result, Theorem 4.33; but we include the proof of the
more specific result in this section because it obtains the bound 73

60
through totally different

means.

We actually assume that the graph is not only quasi-bipartite, but also that it has no
terminal-terminal edges. (I.e., it is bipartite with bipartition {R, V \R}.) We claim that
this is without loss of generality on unit-cost graphs, but we omit the technical details
required to prove this fact.

For unit-cost graphs, it is easy to see that RatioGreedy does the following: for each
full component K in nondecreasing order of size, if adding K to S does not create a cycle,
then we add K to S. At the end, we have a Steiner tree T . Our filtering approach also
shows there is a feasible dual solution y for (PD) such that c(y) ≥ 60

73
c(T ).

By standard metricity arguments and the fact that G is unit-cost, bipartite and con-
nected, we introduce without loss of generality a terminal spanning tree T ∗ consisting of
cost-2 edges into G.

Let the variable w denote |R| − 1. Let s6 denote the number of full components in S
on 6 or more terminals, and e6 denote the number of edges in these full components. For
i ∈ {3, 4, 5} let si denote the number of full components in S on exactly i terminals, and ei
denote the number of edges in these full components. Let T denote the final tree returned
by our algorithm.
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For each k ∈ {6, 5, 4, 3}, once no more full components of size ≥ k can be added by
RatioGreedy, let Sk be the set of full components selected so far, and let Tk be the result
of adding a spanning tree of T ∗/Sk to Sk; then Tk is a feasible hyper-spanning tree/Steiner
tree. Our use of filtering is to consider Tk under a modified cost function ck ≤ c that
assigns cost k−1

k−2
to every terminal-terminal edge and cost 1 to every Steiner-terminal edge.

Note T 3 is the output of the algorithm, and that c3 = c.

The following lemma says that Tk is locally optimal under ck.

Lemma 4.36. There is no Steiner node n for which mst(R ∪ V (Sk) ∪ {n}, ck) < mst(R ∪
V (Sk), c

k) = ck(Tk).

Proof. For a set N ′ of Steiner nodes, mst(R ∪ N ′, ck) can be computed in the following
way. Say that two terminals are related if they are both adjacent to some n ∈ N ′, and let
π(N ′) denote the transitive closure of this relation. Then any minimum spanning tree of
(R ∪ N ′, ck) has r(π(N ′)) − 1 terminal-terminal edges and |R| + |N ′| − r(π(N ′)) Steiner-
terminal edges.

Let K be the set of all neighbours of n. Let σ be short for π(V (Sk)). Note r(π(V (Sk)∪
{n})) = r(σ) − rcKσ . By definition of Tk and the greedy algorithm, rcKσ ≤ k − 2. The
counting formula in the previous paragraph gives

mst(R ∪ V (Sk) ∪ {n}, ck)− mst(R ∪ V (Sk), c
k) = −rcKσ · k − 1

k − 2
+ (1 + rcKσ ) · 1

= 1− rcKσ /(k − 2) ≥ 0

which proves the lemma.

Now Tk is a min-cost spanning tree with respect to terminal set R ∪ V (Sk) and the
previous lemma shows it is gainless. Let lk denote one edge from each full component in
Sk — this corresponds to loss of these full components [178]. If we contract lk, Tk reduces
to a tree with cost ck(Tk)− ck(lk) but becomes a gainless MST (using Lemma 4.36), so by
Corollary 3.28, the resulting contracted instance has OPT(P) = ck(Tk)− ck(lk).

Let L denote OPT(P) on the original graph. Reducing costs and contracting can only
reduce OPT(P), so the previous paragraph gives L ≥ ck(Tk)− ck(lk). We simplify

ck(Tk) =
k − 1

k − 2
(w −

∑

j≥k

(ej − sj)) +
∑

j≥k

ej =
k − 1

k − 2
(w +

∑

j≥k

sj)−
1

k − 2

∑

j≥k

ej

and so

L ≥ ck(Tk)− ck(lk) = ck(Tk)−
∑

j≥k

sj =
k − 1

k − 2
w +

1

k − 2

∑

j≥k

(sj − ej).
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By expanding the costs of the various trees, we obtain the following system of inequal-
ities in the nonnegative variables w, {sk, ek}3≤k≤6,L, w, c(T3) :

e6 ≥ 6s6 (4.32)

e5 = 5s5 (4.33)

e4 = 4s4 (4.34)

e3 = 3s3 (4.35)

c(T3) = 2(w + s6 + s5 + s4 + s3)− e6 − e5 − e4 − e3 (4.36)

L ≥ 5

4
w +

1

4
(s6 − e6) (4.37)

L ≥ 4

3
w +

1

3
(s6 + s5 − e6 − e5) (4.38)

L ≥ 3

2
w +

1

2
(s6 + s5 + s4 − e6 − e5 − e4) (4.39)

L ≥ 2w + s6 + s5 + s4 + s3 − e6 − e5 − e4 − e3 (4.40)

Now we bound {c(T3)/L} subject to these constraints. Since all inequalities are linear
homogeneous, when we relax the integral variables to be continuous, we can compute the
maximum value of this ratio by fixing L = 1 and solving an LP that maximizes c(T3). The
resulting LP has optimal value 73

60
and optimal solution set, where t > 0 is a parameter,

w = 48t,L = 60t, c(T3) = 73t, f3 = 6t, f4 = 4t, f5 = 3t, f6 = 0.

To explicitly certify this by the dual, take the linear combination of equations

73

360
(4.32)+

1

4
(4.33)+

1

3
(4.34)+

1

2
(4.35)− (4.36) +

2

15
(4.37)+

1

4
(4.38)+

1

3
(4.39)+

1

2
(4.40)

which is precisely c(T3) ≤ 73
60
L− e6

72
. In other words, this proves that RatioGreedy is an

(P)-relative 73
60
-approximation algorithm.

We remark that filtering over additional stages cannot reduce the approximation guar-
antee; Gröpl et al. [103] gave an example of a unit-cost quasi-bipartite graph where Ra-

tioGreedy has approximation ratio precisely 73
60
.

4.8.4 Lower Bound of 8/7 on Integrality Gap of Hypergraphic

LPs

As reported by Agarwal & Charikar [1], Goemans gave a family of graphs upon which,
in the limit, the integrality gap of the bidirected cut relaxation is 8

7
. Interestingly, it can
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Chapter 4. Collected Proofs for Steiner Tree LPs

Figure 4.7: Skutella’s example, which shows that the bidirected cut formulation and our
new formulation both have a gap of at least 8

7
. The shaded edges denote one of the

quasi-bipartite full components on 5 terminals.

be shown that once you preprocess these graphs, the gap completely disappears. Here we
describe another example, due to Skutella [183]. It shows not only that the gap of the
bidirected cut relaxation is at least 8

7
, but that the gap of our new formulation (including

preprocessing) is at least 8
7
. The example is quasi-bipartite.

The Fano design is a well-known finite geometry consisting of 7 points and 7 lines, such
that every point is on 3 lines, every line contains 3 points, any two lines meet in a unique
point, and any two points lie on a unique common line. We construct Skutella’s example
by creating a bipartite graph, with one side consisting of one vertex np for each point p of
the Fano design, and the other side consisting of one vertex nℓ for each line ℓ of the Fano
design. Define np and nℓ to be adjacent in our graph if and only if p does not lie on ℓ.
Then it is easy to see this graph is 4-regular, and that given any two vertices n1, n2 from
one side, there is a vertex from the other side that is adjacent to neither n1 nor n2. Let
one side be terminals, the other side be Steiner vertices, and then attach one additional
terminal to all the Steiner vertices. Assign each edge unit cost. We illustrate the resulting
graph in Figure 4.7.

Each Steiner vertex is in a unique 5-terminal quasi-bipartite full component. There are
7 such full components. Denote the family of these 7 full components by C.

Claim 4.37. Let x∗
K = 1

4
for each K ∈ C, and x∗

K = 0 otherwise. Then x∗ is feasible for
(P).

Proof. It is immediate that x∗ satisfies constraints (5.2). It remains only to show that x∗

meets constraint (5.1). Let π = (V0, V1, . . . , Vm) be an arbitrary partition such that V0

contains the extra top terminal. If we can show that
∑

K x∗
Krc

π
K ≥ m then we will be

done, since π was arbitrary. For each i = 1, . . . , m, let ti be any terminal in Vi. Note that
each ti lies in exactly 4 full components from C. Furthermore, every full component K ∈ C
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4.9. A Dense Extreme Point for Bidirected Cut

satisfies rcπK ≥ |K ∩ {t1, . . . , tm}|, as K meets V0 as well as each part Vj for which tj ∈ K.
Hence

∑

K∈C

x∗
Krc

π
K =

1

4

∑

K∈C

rcπK ≥ 1

4

∑

K∈C

|{j : tj ∈ K}| = 1

4

m∑

j=1

|{K ∈ C : tj ∈ K}| = 1

4
·m·4 = m.

The objective value of x∗ is 35
4
, but the optimal integral solution to the LP is 10, since

at least 3 Steiner vertices need to be included. Hence, the gap of our new LP is no better
than 10

35/4
= 8

7
.

4.9 A Dense Extreme Point for Bidirected Cut

The purpose of this section is to prove that there are extreme points for the bidirected cut
LP relaxation (for the Steiner tree problem) which have Ω(|V |2) nonzero variables. Likely
the existence of this example is folklore, but as it has not appeared in print before, we
explicitly describe it here. Note it is closely related to the hypergraphic extreme points
mentioned in Example 3.19.

Let k be an integer parameter. We will construct a graph with k+1 terminals, denoted
{r0, r1, . . . , rk}, and k Steiner vertices, denoted {n1, . . . , nk}. The edges of this graph are
all edges of the form {ri, nj} where i 6= j. All edges have cost 1. We depict the graph in
the figure below.

r1 r2 r3 r4 r5

n1 n2 n3 n4 n5

r0

Figure 4.8: The graph used in our construction when k = 5. Dots are terminals and
squares are Steiner vertices. Each edge has cost 1.
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Chapter 4. Collected Proofs for Steiner Tree LPs

We choose the bidirected formulation which uses r0 as the root and has one variable
for each arc a ∈ A := {(u, v) | {u, v} ∈ E}. The LP is then

min{c · x | x ≥ 0, δ−(x(S)) ≥ 1 ∀S ⊆ V \{r0} s.t. V ∩ {r1, . . . , rk} 6= ∅}
where we extend the definition of c to arcs via c(u,v) = c{u,v}.

Let x∗ denote the solution which assigns value 1/(k−1) to all arcs of the form {(r0, ni) |
1 ≤ i ≤ k} and {(ni, rj) | 1 ≤ i, j ≤ k, i 6= j}, and value 0 to all other arcs. (Informally, the
“downwards” arcs in the diagram get value 1/(k − 1), and the “upwards” ones get value
0.)

In the following claims, we will show that x∗ is an extreme feasible solution for the
bidirected cut relaxation. Notice that x∗ is nonzero on k2 arcs, and that there are 2k + 1
vertices; i.e. the support of x∗ is of size Ω(|V |2), which was what we wanted to show. Now
we give the supporting claims.

Claim 4.38. x∗ is a feasible solution to the bidirected cut relaxation.

Proof. We will show for each nonroot terminal ri, there is a flow f of value 1 from r0 to r1
such that x∗ dominates f (i.e., such that x∗ ≥ f); then standard arguments based on the
max-flow min-cut theorem complete the proof. In particular, let f take value 1/(k − 1)
on all arcs of the form (r0, nj), (nj, ri) for j 6= i, and value 0 elsewhere. It is easy to check
that f is the desired flow.

Notice that the objective value of x∗ is k2/(k − 1).

Claim 4.39. x∗ is an optimal solution to the bidirected cut relaxation.

Proof. The dual LP to the bidirected cut formulation, which has a variable yS for each set
S ⊆ V \{r0} such that V ∩ {r1, . . . , rk} 6= ∅, is

min{1 · y | y ≥ 0,
∑

S:e∈δ−(S)

yS ≤ ca∀a ∈ A}.

We will give a feasible dual solution y∗ of objective value k2/(k−1), which by weak duality
establishes that x∗ is optimal.

Namely, let y∗ take value 1/(k− 1) on every set S of the form {ri} for 1 ≤ i ≤ k, value
1/(k − 1) on every set S of the form {nj, ri} for 1 ≤ i, j ≤ k such that i 6= j, and value 0
elsewhere. To check feasibility of y∗, we observe that

∑

S:e∈δ−(S)

y∗S =





1, for e of the form r0ni where 1 ≤ i ≤ k

1, for e of the form nirj where 1 ≤ i, j ≤ k and i 6= j

(k − 2)/(k − 1), for e of the form rjni where 1 ≤ i, j ≤ k and i 6= j

0, for e of the form nir0 where 1 ≤ i ≤ k.
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4.9. A Dense Extreme Point for Bidirected Cut

Since y∗ assigns value 1/(k − 1) to each of k2 sets, its objective value is k2/(k − 1) as
claimed.

Claim 4.40. x∗ is the unique optimal solution to the bidirected cut relaxation, and hence
is an extreme point solution.

Proof. Let x′ be some optimal primal solution. By complementary slackness applied to
the solution y∗ given in the previous proof, we know that x′ assigns positive value only to
the “downwards” arcs.

Let N denote the set of all Steiner vertices. For any 1 ≤ i ≤ k, consider the constraint
for the set Si := N\{ni} ∪ {ri}. Since x′ is zero on all upwards arcs, this implies that∑

j 6=i x
′
(r0,nj)

≥ 1. We now have a case analysis:

• if x′
(r0,nj)

> 1/(k−1) for some j, then c ·x′ ≥ x′
(r0,nj)

+x′(δ−(Sj))+
∑k

i=1 x
′(δ−(ri)) >

k2/(k − 1), contradicting the optimality of x′

• given the previous point, if x′
(r0,nj)

< 1/(k− 1) for some j, then x(δ(Si)) < 1 for each

i 6= j, contradicting the feasibility of x′

• so x′
(r0,nj)

= 1/(k − 1) for all 1 ≤ j ≤ k.

Now consider any arc of the form (ni, rj) for i 6= j. Let W denote the set N\{ni, nj} ∪
{rj}. We have that x′(δ−(W )) = x′

(ni,rj)
+
∑

ℓ 6=i,j x
′
(r0,nℓ)

. Since each x′
(r0,nℓ)

= 1/(k − 1)

and x′ is feasible, we see that

x′
(ni,rj)

= x′(δ−(W ))−
∑

ℓ 6=i,j

x′
(r0,nℓ)

≥ 1− (k − 2)/(k − 1) = 1/(k − 1).

By applying this argument to all such i and j, we see that x′ dominates x∗. By the
positivity of the LP cost function c, and the fact that x∗ is feasible and x′ is optimal, it
follows that x′ = x∗.
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Chapter 5

LP Interpretations of
Robins-Zelikovsky and Relative
Greedy

The best approximation algorithm known for the Steiner tree problem is a combinatorial
algorithm due to Robins and Zelikovsky [178]; it achieves a performance guarantee of
1 + ln 3

2
≈ 1.55. The best known linear programming (LP)-based algorithms, on the other

hand, [93, 2, 124] do not obtain any constant approximation ratio less than 2.

The main focus of this chapter is a link between greedy and LP-based approaches: we
show that Robins and Zelikovsky’s algorithm can be viewed as an iterated primal-dual
algorithm with respect to generalization of the LP relaxation (P). An instance is b-quasi-
bipartite if each connected component of G\R has at most b vertices. We also show that
Robins’ and Zelikovsky’s algorithm has an approximation ratio better than 1+ ln 3

2
for such

instances, and we prove that the integrality gap of the LP (P) is between 8
7
and 2b+1

b+1
.

In the final section of the chapter (Section 5.6) we show that the relative greedy (1+ln 2)-
approximation algorithm can be viewed as LP-relative. The LP is derived from earlier
work [199] on the submodular set cover problem; it is not clear if it can be optimized in
polynomial time.

5.1 Introduction

In this chapter we provide algorithmic evidence that the primal-dual method is useful
for the Steiner tree problem. We first present a novel LP relaxation for the Steiner tree
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5.1. Introduction

problem that generalizes the LP (P) presented earlier. We then show that the algorithm
RZ of Robins and Zelikovsky can be analyzed as an iterated primal-dual algorithm using
this relaxation.

In [178], Robins and Zelikovsky showed that, for every fixed r, the performance ratio
of RZ is 1.279ρr in quasi-bipartite graphs, and 1.55ρr in general graphs. We prove an
interpolation of these results. For a Steiner vertex v, define its Steiner neighbourhood to
be the collection of vertices that are in the same connected component as v in G\R. A
graph is b-quasi-bipartite if all of its Steiner neighbourhoods have cardinality at most b.
We prove the following, where optr denotes the optimal cost after r-preprocessing:

Theorem 5.1. Given an undirected, b-quasi-bipartite graph G = (V,E), terminals R ⊆ V ,
and a fixed constant r ≥ 2, Algorithm RZ returns a feasible Steiner tree T s.t.

c(T ) ≤





1.279 · optr : b = 1
(1 + 1

e
) · optr : b ∈ {2, 3, 4}(

1 + 1
2
ln
(
3− 2

b

))
optr : b ≥ 5.

Note that b-quasi-bipartite graphs are a natural interpolation between quasi-bipartite
graphs (b = 1) and general graphs (b ≤ |V \R|), hence Theorem 5.1 interpolates the two
main results of Robins and Zelikovsky [178].

Unfortunately, Theorem 5.1 does not imply that our new relaxation has a small inte-
grality gap. Nonetheless, we obtain the following bounds, when G is b-quasi-bipartite:

Theorem 5.2. Our new relaxation has an integrality gap between 8
7
and 2b+1

b+1
.

We remark that filtering approach of Chakrabarty et al. [34], can be applied to improve
the gap upper bound to 2b−1

b
for b ≥ 2 [135].

5.1.1 A New LP Relaxation for Steiner Trees

In this chapter, we work on r-preprocessed graphs as introduced in Chapter 2 — so for
example K represents element-disjoint full components, one for every possible set of up to
r terminals.

We also use a type of metric assumption which holds without loss of generality. The
standard one is that the costs satisfy the triangle inequality andG is a complete graph. Here
we instead work under a weaker metric assumption that is also without loss of generality
for the purposes of computing optimal Steiner trees. The assumption is that, for every
triple u, v, w of nodes with v a Steiner node such that uv, vw ∈ E, we have uw ∈ E and
cuw ≤ cuv + cvw. This preserves the Steiner neighbourhoods (unlike the standard metric
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t1 t2 t3

t4

t5 t6 t7

s1 s2

t1 t2 t3

t4

t5 t6 t7

s1 s3

Figure 5.1: Left: a collection S = {{t1, t5, t6}, {t3, t4, t7}, {t2, t3}, {t3, t4}}
of 4 full components. Right: a Steiner tree with S-decomposition
({t1s1, t5s1, t6s1, t2t3}, {{t2, t6, t7}, {t4, t7}}).

assumption) and has the important property that for every K, we may assume that the
min-cost full component (tree) with leaf set K has degree at least 3 in all internal (Steiner)
nodes. Consequently, for example, every r-restricted instance is also (r−2)-quasi-bipartite.

Whenever S ⊂ K, we will abuse notation and identify the symbol S with the graph
obtained by deleting everything except the full components in S. For example, E(S)
denotes the set of all edges of the full components in K. We will always have

(
R
2

)
⊂ S,

therefore the graph S always contains the induced subgraph G[R].

Let K(T ) denote the set of all full components of a Steiner tree T . For an arbitrary sub-
family S of the full components K, our new LP uses the following canonical decomposition
of a Steiner tree into elements of E(S) and K\S.
Definition 5.3. If T is an r-restricted Steiner tree, its S-decomposition is the pair

(E(T ) ∩ E(S),K(T )\S).

Figure 5.1 illustrates the S-decomposition of a Steiner tree. Observe that after S-
decomposing a Steiner tree T we have

∑

e∈E(T )∩E(S)

ce +
∑

K∈K(T )\S

CK = c(T ).

We hence obtain a new higher-dimensional view of the Steiner tree polyhedron. Define

STSG,R := conv{x ∈ {0, 1}E(S) × {0, 1}K\S : ∃ a Steiner tree T s.t. x is the incidence

vector of the S-decomposition of T}.

The following definitions are used to generalize Steiner partition inequalities to use
full components. We use ΠS to denote the family of all partitions of V (S) ∪ R. Let
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π = {V1, . . . , Vp} ∈ ΠS be a partition of the set R ∪ V (S). The Steiner rank r̄(π) of π is
defined as

r̄(π) := {the number of parts of π that contain terminals}.

For example, where S denotes the collection of full components on the left side of
Figure 5.1, consider the partition π = {{t1, t5, s1}, {s2}, {t6, t7}, {t2, t3}, {t4}} ∈ ΠS . Its
rank is r(π) = 5 but its Steiner rank is r̄(π) = 4. The rank contribution of full component
K = {t2, t6, t7} is rcπK = 1.

We describe below a new LP relaxation (PS) of STSG,R. The relaxation has a variable
xe for each e ∈ E(S) and a variable xK for each K ∈ K\S. For a partition π ∈ ΠS ,
we define Eπ(S) to be the edges of S whose endpoints lie in different parts of π, i.e.,
Eπ(S) = E(S) ∩ Eπ.

min
∑

e∈E(S)

ce · xe +
∑

K∈K\S

CK · xK (PS)

s.t
∑

e∈Eπ(S)

xe +
∑

K∈K\S

rcπK · xK ≥ r̄(π)− 1 ∀π ∈ ΠS (5.1)

xe, xK ≥ 0 ∀e ∈ E(S), K ∈ K\S (5.2)

We remark that when S =
(
R
2

)
, the LP (PS) is the same as the LP (P) studied in earlier

chapters — to see this note that in this case E(S) corresponds to the terminal-terminal
edges which are precisely the full components of size 2, and K\S corresponds to all other
full components.

Its LP dual has a variable yπ for each partition π ∈ ΠS :

max
∑

π∈ΠS

(r̄(π)− 1) · yπ (PS
D)

s.t
∑

π∈ΠS :e∈Eπ(S)

yπ ≤ ce ∀e ∈ E(S) (5.3)

∑

π∈ΠS

rcπK · yπ ≤ CK ∀K ∈ K\S (5.4)

yπ ≥ 0 ∀π ∈ ΠS (5.5)

We conclude this section with a proof that the (primal) LP is indeed a relaxation of
the convex hull of S-decompositions for r-restricted Steiner trees. The inequalities (5.2)
are obviously valid for STSG,R.
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Lemma 5.4. The inequalities (5.1) are valid for STSG,R.

Proof. Let T be a Steiner tree with S-decomposition (E(T ) ∩ E(S),K(T )\S), and let
x ∈ STSG,R be the corresponding incidence vector. Fix an arbitrary partition π ∈ ΠS ; we
will now argue that the left-hand side of (5.1) for π is at least r̄(π)− 1.

In order to do that we successively modify the given partition π by merging some of
its parts. Initially, let π̂ = π. For each each edge uv of E(T ) ∩ E(S), merge the part
of π̂ containing u and that containing v; if both endpoints lie in the same part of π̂, the
partition remains unchanged. Subsequently, consider each K ∈ K(T )\S, and merge all
parts of π̂ meeting any terminal of K.

Initially, π̂ has Steiner rank r̄(π), and its final Steiner rank is 1 since T connects all
terminals. The Steiner rank drop of π̂ due to any edge e ∈ Eπ(S) with xe = 1 is clearly
at most 1. For any other edge e ∈ E(T ) ∩ E(S), since the endpoints of e are in the same
part of π, the Steiner rank drop of π̂ due to e is 0. Similarly, the Steiner rank drop of π̂
due to K ∈ K(T )\S is at most rcπK . This shows that x satisfies constraint (5.1). As T and
π were chosen arbitrarily, the lemma follows.

5.2 An Iterated Primal-Dual Algorithm for Steiner

Trees

As described in Section 3.6.1, MST(G, c) denotes a call to Kruskal’s minimum-spanning tree
algorithm on graph G with cost-function c. It returns a minimum-cost spanning tree T and
an optimal feasible dual solution y for (MD). Let mst(G, c) denote the cost of MST(G, c).
Since c is fixed, in the rest of the chapter we omit c where possible for brevity. Recall that
we abuse notation and identify each set

(
R
2

)
⊂ S ⊂ K of full components with the graph

(V (S), E(S)). Since S = (V (S), E(S)) is connected and spans all terminals, MST(S) is a
Steiner tree; namely, the one produced by running the MST heuristic on original instance
after modifying the Steiner nodes of S to be terminals.

The reason that MST is useful in our primal-dual framework is that we can relate the
dual (MD) on graph S to the dual (PS

D). Let y be the dual returned by a call to MST(S).
We treat y as a dual solution of (PS

D); note that constraints (MD.1) and (MD.2) of (MD)
imply that y also meets constraints (5.3) and (5.5) of (PS

D). If K is a full component such
that (5.4) does not hold for y, we say that K is violated by y.

The idea behind our presentation is to find a set
(
R
2

)
⊂ S ⊂ K of full components

such that MST(S) is a Steiner tree with small cost relative to optimal. The primal-dual
algorithm finds such a set S in an iterative fashion. Initially, S is equal to

(
R
2

)
. In each

iteration, we compute a minimum-cost spanning tree T of the graph S. The dual solution
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y corresponding to this tree is converted to a dual for (PS
D), and if y is feasible for (PS

D),
we stop. Otherwise, we add a violated full component to S and continue. The algorithm
clearly terminates (as K is finite) and at termination, it returns the final tree T as an
approximately-optimum Steiner tree.

A key property of this approach is Lemma 5.5: adding a violated full component to
S decreases mst. Hence MST, initially an infeasible dual, is decreased in value over the
iterations but eventually becomes feasible.

Lemma 5.5. If (T, y) = MST(S) and K is violated by y, then mst(S ∪ {K}) < mst(S).

Proof. First, mst(S/K)∪{K} is a spanning tree of S ∪{K}, so mst(S ∪{K}) ≤ mst(S)+
CK . Second, if K is violated by y, then Lemma 3.26 (the dual interpretation of gain) shows
that mst(S/K) + CK < mst(S). Together, this implies the lemma.

Algorithm 5.1 summarizes the above description. Many combinatorial greedy algo-
rithms for the Steiner tree problem follow this type of framework and differ only in how
K is selected in each iteration, i.e., in the selection function fi : K → R. See [101, §1.4]
for a well-written survey.

Algorithm 5.1 A general iterative primal-dual framework for Steiner trees.

1: Given: Undirected graphG = (V,E), non-negative costs ce for all edges e ∈ E, constant
r ≥ 2.

2: S0 :=
(
R
2

)
, i := 0

3: repeat
4: (T i, yi) := MST(Si)
5: if yi is not feasible for (PSi

D ) then
6: Choose a violated full component Ki ∈ K\Si such that fi(K

i) is minimized
7: Si+1 := Si ∪ {Ki}
8: end if
9: i := i+ 1
10: until yi−1 is feasible for (PSi−1

D )
11: Let p = i− 1 and return (T p, yp).

In the typical primal-dual approach [96, 190] dual feasibility is maintained and primal
feasibility happens only at the end. This is true in MST relative to (MD), however if
you consider the entirety of Algorithm 5.1 relative to our new LPs, we obtain a primal
feasible solution in each iteration but attain dual feasibility only in the final iteration;
more specifically the objective value of yi decreases as i increases (see Lemma 5.17). We
remark that the recent 4

3
-approximation algorithm of Chakrabarty et al. [34] for quasi-

bipartite instances uses a qualitatively similar approach.
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5.2.1 Cutting Losses: the RZ Selection Function

A potential weak point in Algorithm 5.1 is that once a full component is added to S, it is
never removed. On the other hand, if some cheap subgraph H connects all Steiner vertices
of S to terminals, then adding H to any Steiner tree gives us a tree that spans V (S), i.e.,
we have so far lost at most c(H) in the final answer. This leads to the concept of the loss
of a Steiner tree which was first introduced by Karpinski and Zelikovsky in [127].

Definition 5.6. Let G′ = (V ′, E ′) be a subgraph of G. The loss L(G′) is a minimum-cost
set E ′′ ⊆ E ′ such that every connected component of (V ′, E ′′) contains a terminal. Let
l(G′) denote the cost of L(G′).

See Figure 5.2 for an example of the loss of a graph. The above discussion amounts to
saying that min{mst(S ′) | S ′ ⊇ S} ≤ optr + l(S). Consequently, our selection function
fi in step 6 of the algorithm should try to keep the loss small. The following fact holds
because full components in K meet only at terminals.

Fact 5.7. If S ⊆ K, then L(S) = ∪K∈SL(K) and so l(S) =∑K∈S l(K).

For a set S of full components, where y is the dual solution returned by MST(S), define

mst(S) :=
∑

π∈ΠS

(r̄(π)− 1)yπ. (5.6)

If y is feasible for (PS
D) then by weak LP duality, mst(S) provides a lower bound on optr. If

y is infeasible for (PS
D), then which full component should we add? Robins and Zelikovsky

propose minimizing the ratio of the added loss to the change in potential lower bound
(5.6). Their selection function fi is defined by

fi(K) :=
l(K)

mst(Si)− mst(Si ∪ {K}) =
l(Si ∪ {K})− l(Si)

mst(Si)− mst(Si ∪ {K}) , (5.7)

where the equality uses Fact 5.7.

5.3 Analysis

Fix an optimum r-Steiner tree T ∗. There are several steps in proving the performance
guarantee of Robins and Zelikovsky’s algorithm, and they are encapsulated in the following
result, whose complete proof appears in Section 5.5.
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Figure 5.2: The figure shows a Steiner tree instance with costs on the edges. The loss of
the Steiner tree in this figure is shown in thick edges; the loss has cost is 8.

Lemma 5.8. The cost of the tree T p returned by Algorithm 5.1 is at most

optr + l(T ∗) · ln
(
1 +

mst(G[R], c)− optr
l(T ∗)

)
.

The main observation in the proof of the above lemma can be summarized as follows:
from the discussion in Section 2.1, we know that the tree T p returned by Algorithm 5.1
has cost

mst(Sp) =
∑

π∈ΠSp

(r(π)− 1)ypπ

and the corresponding lower-bound on optr returned by the algorithm is

mst(Sp) =
∑

π∈ΠSp

(r̄(π)− 1)ypπ.

We know that mst(Sp) ≤ optr but how large is the difference between mst(Sp) and
mst(Sp)? We show that the difference

∑

π∈ΠSp

(r(π)− r̄(π))ypπ

is exactly equal to the loss l(T p) of tree T p — this is proved in Lemma 5.14. We then
bound the loss of each selected full component Ki, and putting everything together finally
yields Lemma 5.8.

The following lemma states the performance guarantee of Moore’s minimum-spanning
tree heuristic as a function of the optimum loss and the maximum cardinality b of any
Steiner neighbourhood in G.

Lemma 5.9. Fix an arbitrary optimum r-restricted Steiner tree T ∗. Given an undirected,
b-quasi-bipartite graph G = (V,E), a set of terminals R ⊆ V , and non-negative costs ce
for all e ∈ E, we have

mst(G[R], c) ≤ 2optr −
2

b
l(T ∗)

for any b ≥ 1.
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Proof. Recall that K(T ∗) is the set of full components of tree T ∗. Now consider a full
component K ∈ K(T ∗). We will now show that there is a minimum-cost spanning tree
of G[K] whose cost is at most 2CK − 2

b
l(K). By repeating this argument for all full

components K ∈ K(T ∗), adding the resulting bounds, and applying Fact 5.7, we obtain
the lemma.

For terminals r, s ∈ K, let Prs denote the unique r, s-path inK. Pick u, v ∈ K such that
c(Puv) is maximal. Define the diameter ∆(K) := c(Puv). Do a depth-first search traversal
of K starting in u and ending in v. The resulting walk in K traverses each edge not on
Puv twice while each edge on Puv is traversed once. Hence the walk has cost 2CK −∆(K).
Using standard short-cutting arguments it follows that the minimum-cost spanning tree of
G[K] has cost at most

2CK −∆(K) (5.8)

as well.

Each Steiner vertex s ∈ V (K)\R can connect to some terminal v ∈ K at cost at most
∆(K)

2
. Hence, the cost l(K) of the loss of K is at most b∆(K)

2
. In other words we have

∆(K) ≥ 2
b
l(K). Plugging this into (5.8) yields the lemma.

For small values of b we can obtain additional improvements via case analysis.

Lemma 5.10. Suppose b ∈ {3, 4}. Fix an arbitrary optimum r-restricted Steiner tree T ∗.
Given an undirected, b-quasi-bipartite graph G = (V,E), a set of terminals R ⊆ V , and
non-negative costs ce for all e ∈ E, we have

mst(G[R], c) ≤ 2optr − l(T ∗).

Proof. As in the proof of Lemma 5.9 it suffices to prove that, for each full component K ∈
K(T ∗), there is a minimum-cost spanning tree of G[K] whose cost is at most 2CK − l(K),
for then we can add the bound over all such K to get the desired result. For terminals
r, s ∈ K, let Prs again denote the unique r, s-path in K.

Notice that the Steiner vertices (there are at most b of them) in the full component K
either form a path, or else there are 4 of them and they form a star.

Case 1: the Steiner vertices in K form a path. Let x and y be the Steiner vertices on
the ends of this path. Let u (resp. v) be any terminal neighbour of x (resp. y);
see Figure 5.3(i) for an example. Perform a depth-first search in K starting from
u and ending at v; the cost of this search is 2CK − c(Puv). By standard short-
cutting arguments it follows that 2CK − c(Puv) is an upper bound on mst(G[K]).
On the other hand, since Puv\{ux} is a candidate for the loss of K, we know that
l(K) ≤ c(Puv\{ux}) ≤ c(Puv). Therefore we obtain

mst(G[K]) ≤ 2CK − c(Puv) ≤ 2CK − l(K). (5.9)
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Figure 5.3: The figure shows the two types of full components when b ≤ 4. On the left is a
full component where the Steiner vertices form a path, and on the right is a full component
where the Steiner vertices form a star with 3 tips.

Case 2: the Steiner vertices in K form a star. Let the tips of the star be x, y, z and
let t, u, v be any terminal neighbours of x, y, z respectively; see Figure 5.3(ii) for an
example. Without loss of generality, we may assume that cxt ≤ cyu ≤ czv. As before,
a depth-first search in K starting from u and ending at v has cost 2CK − c(Puv)
and this is an upper bound on mst(G[K]). On the other hand, Puv\{yu} ∪ {xt} is
a candidate for the loss of K and so l(K) ≤ c(Puv) − cyu + cxt ≤ c(Puv). We hence
obtain Equation (5.9) as in the previous case.

We are ready to prove our main theorem. We restate it using the notation introduced
in the last two sections.

Theorem 5.1. Given an undirected, b-quasi-bipartite graph G = (V,E), terminals R ⊆ V ,
and a fixed constant r ≥ 2, Algorithm 5.1 returns a feasible Steiner tree T p with

c(T p) ≤





1.279 · optr : b = 1
(1 + 1/e) · optr : b ∈ {2, 3, 4}(
1 + 1

2
ln
(
3− 2

b

))
optr : b ≥ 5.

Proof. Using Lemma 5.8 we see that

c(T p) ≤ optr + l(T ∗) · ln
(
1 +

mst(G[R], c)− optr
l(T ∗)

)

= optr + l(T ∗) · ln
(
1 +

mst(G[R], c)− optr
l(T ∗)

)
. (5.10)
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The second equality above holds because G[R] has no Steiner vertices. Applying the bound
on mst(G[R], c) from Lemma 5.9 yields

c(T p) ≤ optr ·
[
1 +

l(T ∗)

optr
· ln
(
1− 2

b
+

optr
l(T ∗)

)]
. (5.11)

Karpinski and Zelikovsky [127] show that l(T ∗) ≤ 1
2
optr. We can therefore obtain an

upper-bound on the right-hand side of (5.11) by bounding the maximum value of function
x ln(1− 2/b+ 1/x) for x ∈ [0, 1/2]. We branch into cases:

b = 1: The maximum of x ln(1/x − 1) for x ∈ [0, 1/2] is attained for x ≈ 0.2178. Hence,
x ln(1/x− 1) ≤ 0.279 for x ∈ [0, 1/2].

b = 2: The maximum of x ln(1/x) is attained for x = 1/e and hence x ln(1/x) ≤ 1/e for
x ∈ [0, 1/2].

b ∈ {3, 4}: We use Equation (5.10) together with Lemma 5.10 in place of Lemma 5.9; the
subsequent analysis and result are the same as in the previous case.

b ≥ 5: The function x ln(1− 2/b+1/x) is increasing in x and its maximum is attained for
x = 1/2. Thus, x ln(1− 2/b+ 1/x) ≤ 1

2
ln(3− 2/b) for x ∈ [0, 1/2].

The four cases above conclude the proof of the theorem.

We remark that under the original analysis of Robins and Zelikovsky, for RZ to achieve
an approximation ratio better than the MST heuristic requires (1 + 1

2
ln(3))ρr < 2 which

occurs for r ≥ 12. Note the graph resulting from preprocessing under a given choice of
r is (r − 2)-quasi-bipartite; hence, Theorem 5.1 shows that for r = 5, RZ achieves ratio
ρ5 · (1 + 1

e
) = 13

9
· (1 + 1

e
) < 2 and does better than the MST heuristic.

5.4 Properties of (PS)

We prove in this section that the linear program (PS) is gradually weakened as the algo-
rithm progresses (i.e., as more full components are added to S).

Lemma 5.11. If S ⊂ S ′, then the integrality gap of (PS) is at most the integrality gap of
(PS′

).
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Proof. We consider only the case where S ′ = S ∪ {J} for some full component J ; the
general case then follows by induction on |S ′\S|.

Let x be any feasible primal point for (PS) and define the extension x′ of x to be a
primal point of (PS′

), with x′
e = xJ for all e ∈ E(J) and x′

Z = xZ for all Z ∈ (K\S ′)∪E(S).
We claim that x′ is feasible for (PS′

). Since x and x′ have the same objective value, this
will prove Lemma 5.11.

It is clear that x′ satisfies constraints (5.2), so now let us show that x′ satisfies the
partition inequality (5.1) in (PS′

). Fix an arbitrary partition π′ of V (S ′), and let π be the
restriction of π′ to V (S). We get

∑

e∈Eπ′(S′)

x′
e +

∑

K∈K\S′

rcπ
′

Kx
′
K =


 ∑

e∈Eπ(S)

xe +
∑

K∈K\S

rcπKxK


 + |Eπ′ ∩ E(J)|xJ − rcπJxJ .

(5.12)
Now J spans at least rcπJ + 1 parts of π′, and it follows that |Eπ′ ∩ E(J)| ≥ rcπJ . Hence,
using Equation (5.12), the fact that x satisfies constraint (5.1) for π, and the fact that
r̄(π) = r̄(π′), we have

∑

e∈Eπ′(S′)

x′
e +

∑

K∈K\S′

rcπ
′

Kx
′
K ≥

∑

e∈Eπ(S)

xe +
∑

K∈K\S

rcπKxK ≥ r̄(π)− 1 = r̄(π′)− 1.

So x′ satisfies (5.1) for π′.

5.4.1 Integrality Gap Upper Bound for b-Quasi-Bipartite Instances

In [176] Rajagopalan and Vazirani show that the bidirected cut relaxation has a gap of at

most 3
2
if the graph is quasi-bipartite. Since (P

(
R
2

)
) is the same as (P) which is stronger

than the bidirected cut relaxation, its gap is also at most 3
2
for such graphs. We are able

to generalize this result as follows.

Theorem 5.2. On b-quasi-bipartite graphs, (P
(
R
2

)
) has an integrality gap between 8

7
and

2b+1
b+1

in the worst case.

Proof. The lower bound comes from Section 4.8.4. We assume G is b-quasi-bipartite, we
let T ∗ be an optimal Steiner tree, which by our metric assumption, has degree at least 3
at all internal nodes.

Let S∗ be its set of full components, together with
(
R
2

)
. Since T ∗ is a minimum spanning

tree for S∗, there is a corresponding feasible dual y for (MD). When we convert y to a dual
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for (PS∗

D ), we claim that y is feasible: indeed, by Corollary 3.27 a violated full component
could be used to improve the solution, but T ∗ is already optimal. The next lemma is the
cornerstone of our proof.

Lemma 5.12. Let π be a partition of V (S∗) with yπ > 0. Then (r̄(π)−1) ≥ b+1
2b+1

(r(π)−1).

Proof. For each part Vi of π, let us identify all of the vertices of Vi into a single pseudo-
vertex vi. We may assume by Theorem 3.23 that each induced subgraph T ∗[Vi] is connected,
hence this identification process yields a tree T ′. Let us say that vi is Steiner if and only
if all vertices of Vi are Steiner. Note that T ′ has r(π) pseudo-vertices and r(π) − r̄(π) of
these pseudo-vertices are Steiner. The full components of T ′ are defined analogously to the
full components of a Steiner tree.

Consider any full component K ′ of T ′ and let K ′ contain exactly s Steiner pseudo-
vertices. It is straightforward to see that s ≤ b. Each Steiner pseudo-vertex in K ′ has
degree at least 3 by our metric assumption, and at most s − 1 edges of K ′ join Steiner
vertices to other Steiner vertices. Hence K ′ has at least 3s− (s−1) = 2s+1 edges, and so

|E(K ′)| ≥ 2s+ 1

s
· s ≥ 2b+ 1

b
· s.

Now summing over all full components K ′, we obtain

|E(T ′)| ≥ 2b+ 1

b
·#{Steiner pseudo-vertices of T ′}.

But |E(T ′)| = r(π)− 1 and T ′ has r(π)− r̄(π) Steiner pseudo-vertices, therefore

r(π)− 1 ≥ 2b+ 1

b
((r(π)− 1)− (r̄(π)− 1)) ⇒ 2b+ 1

b
(r̄(π)− 1) ≥ b+ 1

b
(r(π)− 1).

This proves what we wanted to show.

It follows that the objective value of y in (PS∗

D ) is

∑

π∈ΠS

(r̄(π)− 1)yπ ≥
∑

π∈ΠS

b+ 1

2b+ 1
(r(π)− 1)yπ =

b+ 1

2b+ 1
c(T ∗)

and since T ∗ is an optimum integer solution of (PS∗

), it follows that the integrality gap

of (PS∗

) is at most 2b+1
b+1

. Then, finally, by applying Lemma 5.11 to (P
(
R
2

)
) and (PS∗

) we
obtain Theorem 5.2.
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5.5 Proof of Lemma 5.8

In this section we present a proof of Lemma 5.8. The methodology follows that proposed by
Gröpl et al. [101]; see also the presentation of Korte & Vygen [141, Ch. 20] which corrects
a small bug. The essential novelty of our approach is an integral-based interpretation of
mst, mst and loss, which leads to the cornerstone mst = mst+ l (Lemma 5.14). This also
results in a new, short proof of the ubiquitous contraction lemma (Lemma 5.18).

When G is a graph and τ is a real number, let G≤τ denote the subgraph of G obtained
by deleting all edges with weight greater than τ . For a graph G, let κ(G) denote the
number of connected components of G.

Lemma 5.13. mst(G) =
∫∞

τ=0
(κ(G≤τ )− 1)dτ.

Proof. We re-use the notation from Section 3.6.1. At time τ , Kruskal’s primal-dual algo-
rithm raises the objective function of (MD) at a rate of r(π(τ)) − 1 per unit time. By
Theorem 3.23,

mst(G) = c(T ) =
∑

π

y∗π(r(π)− 1) =

∫ τ∗

τ=0

(r(π(τ))− 1)dτ.

Now, since π(τ) is the same as the partition induced by the connected components of G≤τ ,
and since κ(G≤τ ) = 1 for τ ≥ τ ∗, we are done.

We first relate the cost of a minimum-cost spanning tree of S for some set S of full
components to the (potential) lower-bound mst(S) on optr that it provides.

Lemma 5.14. For any graph G and terminal set R ⊂ V (G),

mst(G) = mst(G) + l(G).

Proof. Run MST on input G, obtaining output (T, y) Let us adopt the notation from the
proof of Theorem 3.23. The difference mst(G)− mst(G) satisfies

mst(G)− mst(G) =
∑

π

yπr(π)−
∑

π

yπr̄(π) =

∫ τ∗

0

(r(π(τ))− r̄(π(τ)))dτ. (5.13)

Let a Steiner part of a partition be a part which contains only Steiner vertices. The quantity
r(π(τ))− r̄(π(τ)) counts the number of Steiner parts of π(τ). Recall from Section 3.6.1 that
Gτ denotes the forest maintained by Kruskal’s algorithm at time τ ≥ 0. We then obtain
Gτ/R from Gτ by identifying the set of all terminals; Gτ/R has one connected component
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for each Steiner part of π(τ), and one additional connected component containing all other
vertices. Therefore, the right-hand side of (5.13) is equal to

∫ τ∗

0

(κ(Gτ/R)− 1)dτ =

∫ ∞

0

(κ((G/R)≤τ )− 1)dτ = mst(G/R),

where the last equality uses Lemma 5.13.

Finally, note that l(G) = mst(G/R), since the loss is the minimum-cost set of edges to
connect every Steiner vertex to some terminal, which is the same as the minimum-cost set
of edges to connect every Steiner vertex to the pseudo-vertex corresponding to R in G/R,
which is in turn the minimum spanning tree of G/R.

We obtain the following immediate corollary:

Corollary 5.15. In iteration i of Algorithm 5.1, adding full component K ∈ K to S
reduces the cost of mst(S) if and only if fi(K) < 1.

Proof. By applying Lemma 5.14 we see that

mst(Si)− mst(Si ∪ {K}) = mst(Si) + l(Si)− mst(Si ∪ {K})− l(Si ∪ {K}).

Whereas the left-hand side is positive iff adding K to Si causes a reduction in mst, the
right-hand side is positive iff fi(K) < 1, due to the definition of fi (equation (5.7)).

Using Corollaries 3.27 and 5.15, we obtain the following.

Corollary 5.16. For all 1 ≤ i ≤ p, fi(K
i) < 1.

Fix an optimum r-Steiner tree T ∗. The next two lemmas give bounds that are needed
to analyze RZ’s greedy strategy. Informally, the first says that mst is non-increasing, while
the second says that mst is supermodular.

Lemma 5.17. If
(
R
2

)
⊆ S ⊆ S ′ ⊆ K, then mst(S ′) ≤ mst(S).

Proof. Using Lemma 5.14 and Fact 5.7 we see

mst(S)− mst(S ′) = mst(S) + l(S ′\S)− mst(S ′).

However, the right hand side of the above equation is non-negative, as MST(S) ∪ L(S ′\S)
is a spanning tree of S ′. Lemma 5.17 then follows.
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Lemma 5.18 (Contraction Lemma). Let S,S ′,S ′′ ⊂ K be disjoint collections of full com-
ponents with

(
R
2

)
⊆ S. Then

mst(S)− mst(S ∪ S ′′) ≥ mst(S ∪ S ′)− mst(S ∪ S ′ ∪ S ′′).

Proof. The statement to be proved is equivalent to

mst(S)− mst(S ∪ S ′′) ≥ mst(S ∪ S ′)− mst(S ∪ S ′ ∪ S ′′), (5.14)

due to Lemma 5.14 and Fact 5.7. Our proof is centred around proving that for all τ ≥ 0,

κ(S≤τ )− κ(S≤τ ∪ S ′′
≤τ ) ≥ κ(S≤τ ∪ S ′

≤τ )− κ(S≤τ ∪ S ′
≤τ ∪ S ′′

≤τ ). (5.15)

If we prove Equation (5.15), then by adding −1 + 1 to each side, integrating along τ , and
using Lemma 5.13, we obtain Equation (5.14) as needed.

Define a function µ on graphs by µ(G) = |V (G)| − κ(G). Note µ doesn’t depend on
isolated vertices and thus can be viewed as a function of edge sets. The crux is that µ
is the rank function for graphic matroids, and is hence submodular over full components.
The function |V (S)| for S ⊃

(
R
2

)
is modular with respect to full components, and so

κ(S) = |V (S)| − µ(S) is supermodular with respect to full components, which proves
Equation (5.15).

Note that the proof of Lemma 5.18 easily generalizes to other matroids. This seems
not to have been noticed before, and is not evident from early proofs of the Contraction
Lemma (e.g. [16, Lemma 3.9], [101], [177, Lemma 2]) — although the presentation of Korte
& Vygen [141] leads this way.

Remark 5.19. Let β(M) denote the minimum cost of any basis of the matroid M on
ground set E, which equals

∫
R
(σ(t)r(M)− r({e ∈ E | ce ≤ t}))dt for the unit step function

σ, and let A,B be disjoint subsets of E. If either c ≥ 0 or r(A) + r(B) = r(A ∪ B)
we have that β(M/A) + β(M/B) ≤ β(M) + β(M/A/B). If either c ≤ 0 or r(M\A) +
r(M\B) = r(M) + r(M\A\B), we have that β(M\A) + β(M\B) ≤ β(M) + β(M\A\B).
Unconditionally, we have β(M/A) + β(M\B) ≥ β(M/A\B) + β(M).

We are finally near the end of the analysis, where the Contraction Lemma comes into
play. We can now bound the value fi(K

i) for all 0 ≤ i ≤ p− 1 in terms of the cost of T ∗’s
loss. In the remainder of the section, let l∗ denote l(T ∗), let msti denote mst(Si) and let
mst

∗ denote mst(T ∗).

Lemma 5.20. For all 0 ≤ i ≤ p− 1, if msti − mst
∗ > 0, then fi(K

i) ≤ l∗/(msti − mst
∗).
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Proof. Let the full components of T ∗ be K∗,1, . . . , K∗,q. By the choice of Ki in Algorithm
5.1, we have fi(K

i) ≤ minj fi(K
∗,j). A standard fraction averaging argument implies that

fi(K
i) ≤

∑q
j=1 l(K

∗,j)
∑q

j=1

(
mst(Si)− mst(Si ∪ {K∗,j})

)

≤ l∗∑q
j=1

(
mst(Si ∪ {K∗,1, . . . , K∗,j−1})− mst(Si ∪ {K∗,1, . . . , K∗,j})

) (5.16)

where the last inequality uses Fact 5.7 and Lemma 5.18. The denominator of the right-
hand side of Equation (5.16) is a telescoping sum. Canceling like terms, and using Lemma
5.17 to replace mst(Si ∪ {K∗,1, . . . , K∗,q}) with mst

∗, we are done.

We can now bound the cost of T p.

Proof of Lemma 5.8. We first bound the loss l(T p) of tree T p. Using Fact 5.7,

l(T p) =

p−1∑

i=0

l(Ki) =

p−1∑

i=0

fi(K
i) · (msti − mst

i+1) (5.17)

where the last equality uses the definition of fi from (5.7). Using Corollary 5.16 and Lemma
5.20, the right hand side of Equation (5.17) is bounded as follows:

p−1∑

i=0

fi(K
i) · (msti − mst

i+1) ≤
p−1∑

i=0

l∗

max{l∗, msti − mst
∗}

· (msti − mst
i+1). (5.18)

The right hand side of Equation (5.18) can in turn be bounded from above by the following
integral:

p−1∑

i=0

l∗ · (msti − mst
i+1)

max{l∗, msti − mst
∗}

≤
∫ mst

0

mst
p

l∗

max{l∗, x− mst
∗}dx =

∫ mst
0−mst

∗

mst
p−mst

∗

l∗

max{l∗, x}dx.

(5.19)
Notice that mst

0 = mst(G[R], c) ≥ optr = l∗ + mst
∗. The termination condition in

Algorithm 5.1 and Lemma 5.4 imply that mstp ≤ optr. Hence the result of evaluating the
integral in the right-hand side of Equation (5.19) is

l∗ − (mstp − mst
∗) + l∗ ·

∫ mst
0−mst

∗

l∗

1

x
dx = optr − mst

p + l∗ · ln
(
mst

0 − mst
∗

l∗

)
(5.20)
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where the equality uses Lemma 5.14. Applying Lemma 5.14 two more times, and combining
Equations (5.17)–(5.20), we obtain

c(T p) = mst
p + l(T p) ≤ optr + l∗ · ln

(
mst

0 − mst
∗

l∗

)

= optr + l∗ · ln
(
1 +

mst
0 − (mst∗ + l∗)

l∗

)

= optr + l∗ · ln
(
1 +

mst
0 − optr
l∗

)

as wanted.

5.6 A Steiner Tree LP with Integrality Gap 1 + ln 2

In this section we show a new LP formulation for the Steiner tree problem. It is based
on using the contraction lemma (Lemma 5.18) to view the Steiner tree as an instance of
the submodular set cover [199] problem. Then we show that the relative greedy algorithm
of Zelikovsky [203], which he showed was a (1 + ln 2)-approximation algorithm, is an LP-
relative (1 + ln 2)-approximation algorithm. We are motivated by the LP-based work of
Wolsey [199]; in fact the relative greedy algorithm and the greedy algorithm of Wolsey are
the same in our setting.

It has been an open problem for quite some time to find an LP relaxation for Steiner
tree with integrality gap less than 2. Nonetheless, we feel that this problem is essentially
still open because the LP we describe lacks certain essential properties. We discuss these
problems in Section 5.6.2.

Let K denote the set of all full components as usual. We view the Steiner tree problem
as one of picking the minimum-cost connected spanning subhypergraph from K. Also let
G denote the original underlying graph, and mst(G) denote the minimum-cost spanning
tree of G[R], assuming as usual that G is a complete graph with c metric. For a collection
S of full components, let mst(G/S) denote the cost of a minimum spanning tree in the
graph G[R]/S.

First, we make explicit the relation to submodular set cover. Let z(S) = mst(G) −
mst(G/S) for any S ⊂ K. Then z is nondecreasing and the Contraction Lemma im-
plies that z is submodular. The problem of finding a minimum-cost connected spanning
subhypegraph is the same as finding finding a min-cost S such that z(S) = z(K).

We give two proofs of the (1+ ln 2) integrality gap but both rely on similar ingredients.
The first proof follows the line of Zelikovsky [203] and is non-constructive. The second
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follows the line of Wolsey [199, Thm. 1.ii], using dual fitting, and gives in polynomial-time
an explicit dual (lower bound).

We first state the algorithm, which we denote by RG. It is straightforward to observe
that it outputs a feasible solution.

Procedure RG

1: Let S0 := ∅ and i = 1.
2: Let f i := minK CK/(mst(G/Si−1)−mst(G/Si−1/K)) over allK ∈ K with nonzero

denominator, and let Ki be a full component which achieves this minimum.
3: Let Si := Si−1 ∪ {Ki}
4: If S is not a connected spanning hypergraph, increment i and goto line 2.

The LP is based on the following observation.

Claim 5.21. If S is a spanning subhypergraph and J is an arbitrary subset of K, then

∑

K∈S

mst(G/J )− mst(G/J /K) ≥ mst(G/J ).

Proof. We know that mst(G/S) = 0. Enumerate S = {S1, . . . , St}. By the Contraction
Lemma we get

t∑

i=1

mst(G/J )− mst(G/J /Si) ≥
t∑

i=1

mst(G/J /{Sj | j < i})− mst(G/J /{Sj | j ≤ i})

= mst(G/J )− mst(G/J /S) = mst(G/J ),

as needed.

For a subset S ⊂ K and K ∈ K, define

ρ(S, K) = mst(G/S)− mst(G/S/K).

Then Claim 5.21 shows the LP (W) (with dual (WD)) given in Figure 5.4 is a relaxation
for the Steiner tree problem.

Let t denote the number of iterations performed by RG, i.e. St is the output. We defer
the proofs of the following supporting claims, which are used in both approaches.

Claim 5.22. f i ≤ 1 for all i.

Claim 5.23. f 1 ≥ 1/2 and mst(G) ≤ 2OPT(W).
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min
{∑

K∈K

CKxK : x ∈ RK (W)

∑

K

xKρ(J , K) ≥ mst(G/J ), ∀J ⊂ K (5.21)

xK ≥ 0, ∀K ∈ K
}

(5.22)

max
{∑

U

mst(G/J )yJ : y ∈ RP(K) (WD)

∑

J

yJ ρ(J , K) ≤ CK , ∀K ∈ K (5.23)

yJ ≥ 0, ∀J ⊂ K
}

(5.24)

Figure 5.4: The submodular set cover relaxation and its dual.

We need the following lemma to give our variant of Zelikovsky’s proof.

Lemma 5.24. f i ≤ OPT(W)/mst(G/Si−1).

Proof. By the algorithm’s greedy choice, f i ≤ CK/(mst(G/Si−1) − mst(G/Si−1/K)) for
each K. Let x∗ be an optimal solution to (W), then we have

f i ≤
∑

K

x∗
KCK

x∗
K(mst(G/Si−1)− mst(G/Si−1/K))

≤ OPT(W)

mst(G/Si−1)

where the first inequality holds by a standard averaging argument, and the second holds
since x∗ satisfies (5.21).

Here is our nonconstructive variant of Zelikovsky’s proof.

Theorem 5.25. The integrality gap of (W) is at most 1 + ln 2.

Proof. For conciseness, let OPT stand for OPT(W). We know by Claim 5.22 and Lemma
5.24 that C(St) equals

t∑

i=1

f i(mst(G/Si−1)−mst(G/Si)) ≤
t∑

i=1

(mst(G/Si−1)−mst(G/Si))min

{
1,

OPT

mst(G/Si−1)

}
.
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A standard integral bound, plus mst ≥ OPT ≥ mst/2 (Claim 5.23) gives

C(St) ≤
∫ mst(G)

u=0

dumin{1,OPT/u} = OPT+OPT ln
mst(G)

OPT
≤ (1 + ln 2)OPT,

as needed.

Next we give a constructive proof following Wolsey’s approach. It relies on the following
lemma.

Lemma 5.26. The sequence {f i} is nondecreasing in i.

Proof. Use the greedy definition of f i and note by the Contraction Lemma that (mst(G/Si−1)−
mst(G/Si−1/K)) is decreasing in i.

Define f 0 = 0 for convenience. Define the dual solution y to (WD) by

ySi−1 = f i − f i−1,

for 1 ≤ 1 ≤ t, and y zero on all other sets.

Theorem 5.27. The objective value of y equals C(St), and y/(1 + ln 2) is feasible for
(WD).

Proof. First, using the fact that f 0 = 0 and mst(G/St) = 0, we get that the objective
value of y is

t∑

i=1

(f i − f i−1)mst(G/Si−1) =
t∑

i=1

f i(mst(G/Si−1)− mst(G/Si)) =
t∑

i=1

CKi,

as needed.

Second, to show that y/(1 + ln 2) is feasible, we need to show that for all K,

t∑

i=1

(f i − f i−1)ρ(Si−1, K) ≤ (1 + ln 2)CK . (5.25)

Due to the greedy choices of the algorithm we know that ρ(Si−1, K) ≤ CK/f
i. Therefore

t∑

i=1

(f i − f i−1)ρ(Si−1, K) ≤ CK

t∑

i=1

(f i − f i−1)/f i = CK(1 +
t∑

i=2

(f i − f i−1)/f i) (5.26)

Since the f i are increasing, a standard integral estimate shows that
t∑

i=2

(f i − f i−1)/f i ≤
∫ f t

u=f1

du

u
= ln

(
f t

f 1

)
. (5.27)

Combining Equations (5.26) and (5.27) with Claims 5.22 and 5.23 gives Equation (5.25),
as needed.
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5.6.1 Proofs of Supporting Claims

Proof of Claim 5.22, f i ≤ 1 for all i. This is equivalent to saying that some K satisfies

CK ≤ mst(G/Si−1)− mst(G/Si−1/K),

note that any full component K of size 2 (i.e., terminal-terminal edge) in the minimum
spanning tree of G[R]/Si−1 meets this inequality with equality.

Proof of Claim 5.23, f 1 ≥ 1/2 and mst(G) ≤ 2OPT(W). Considering the definition of f 1,
the statement f 1 ≥ 1/2 is equivalent to

mst(G) ≤ mst(G/K) + 2CK (5.28)

for all K ∈ K. Consider an Eulerian tour of the tree representing the full component K:
since the edge costs are metric, we can shortcut which establishes that in G[R], there is a
tree spanning K with cost at most 2CK . Taking the union of this tree with a minimum
spanning tree of G/K gives a spanning tree of G, hence Equation (5.28) holds.

Now to see that mst(G) ≤ 2OPT(W), take any optimal solution x∗ to (W). Constraint
(5.21) for J = ∅, together with f 1 ≥ 1/2, implies

OPT(W) =
∑

K

xKCK ≥
∑

K

xKρ(∅, K)/2 ≥ mst(G)/2.

Note that in r-restricted graphs, the above analysis can be slightly improved, giving an
integrality gap bound of 1 + ln(2− 2/r).

5.6.2 Difficulties with the LP

We are, unfortunately, unaware of a polynomial-time algorithm to optimize over (W) in our
case. (A closely related separation problem [192, §3.7.2] is NP-hard, even to approximate.)
We present a more precise negative structural result momentarily. We also remark that
all relaxations studied before for the Steiner tree problem (undirected cut, bidirected cut,
hypergraphic) are combinatorial relaxations in the sense that the LP feasible region is
independent of the edge costs; the submodular cover relaxation (W) is not combinatorial
in this sense.

We also remark that, while a critic of (W) may point out that there is a trivial LP
for the Steiner tree problem with integrality gap 1 which also is not polynomial-time
solvable, the property Theorem 5.27 of having an explicit poly-time primal-dual certificate
of approximate optimality is non-trivial.
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Because our negative results are somewhat vague and this LP is esoteric to begin with,
it is helpful to keep in mind a sample potential application of the LP, the bounded-degree
Steiner tree problem [148]. For this problem, there is no bicriteria approximation algorithm
with cost factor smaller than 2, so one would hope to use (W) to get a bicriteria algorithm
with cost factor 1 + ln 2.

We are not aware of any structure for basic solutions of (W). It is easy to verify that
the usual set uncrossing (e.g., see Section 3.2) of J ,J ′ into J ∩ J ′,J ∪ J ′ fails. A nice
observation is that we can reformulate (W) in terms of partitions. Namely, we can replace
the only nontrivial constraint (5.21) with

∑

K

xKρ(π,K) ≥ mst(G/π), ∀π ∈ ΠR

where ρ(π,K) denotes mst(G/π)− mst(G/π/K).

Remark 5.28. The integral-based formulation of mst (see Section 5.5) permits us to re-
formulate the new LP, since

mst(G/π) =

∫ ∞

0

(r(π ∨ τ(t))− 1)dt and similarly ρ(π,K) =

∫ ∞

0

rc
π∨τ(t)
K dt

where τ(t) is the partition induced by the connected components of (R, {e ∈ E | c(e) ≤ t}).
Also, in the special case that G[R] has a min-cost spanning tree consisting of unit-cost
edges, the new LP is the same as (P).

In general, the partition-based formulation cannot be uncrossed in the sense of (3.2).

Example 5.29. Consider the Steiner tree instance with R = {1, 2, 3} and costs C12 =
1, C13 = C23 = 2, C123 = 3. The constraint for π is vacuous and the other constraints
(labeled by their corresponding partitions) are

x12 +2x23 +2x13 +3x123 ≥ 3 (1, 2, 3)
2x23 +2x13 +2x123 ≥ 2 (12, 3)

x12 +x13 +x123 ≥ 1 (1, 23)
x12 +x23 +x123 ≥ 1 (13, 2)

and the extreme point solution [0, 1, 1, 0] is tight for (13, 2) and (1, 23) but not their meet
(1, 2, 3).

The main negative facts about this LP — that it is non-combinatorial and not known
to be separable in polynomial time — do not alone preclude that (W) could be useful.
For example, the knapsack cover inequalities [32], have also these two properties, and still
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were useful in developing a variety of good polynomial-time approximation algorithms, e.g.
[32, 134] and Section 7.2.1. But note this is due to the following special property of the
knapsack-cover formulation: given an x, we can either round it up to a feasible integral
solution with cost at most α · c(x), or find an equality which x violates. The new LP
(W) does not seem to have this special property; one might blame this on the fact that
(W)’s integrality gap bound comes from dual fitting, in contrast to how knapsack-cover
was engineered for rounding.
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Chapter 6

Integral Multicommodity Flow in
Trees: Using Covers to Pack

We consider the max-weight integral multicommodity flow problem in trees. In this
problem we are given an edge-, arc-, or vertex-capacitated tree and weighted pairs of
terminals, and the objective is to find a max-weight integral flow between terminal pairs
subject to the capacities. This problem is APX-hard [87], and a 4-approximation for the
edge- and arc-capacitated versions is known [39]. Some special cases are known to be
exactly solvable in polynomial time, including when the graph is a path or a star.

We show that all three versions of this problems fit in a common framework. The two
ingredients are that iterated LP relaxation applies to each and that an LP-relative approx-
imation algorithm exists for their covering analogues. The result of the framework is a
1 +O(1/µ)-approximation algorithm where µ denotes the minimum capacity, for all three
versions. We give a complementary hardness result which shows that this is asymptoti-
cally best possible. We also get a similar algorithmic result for the covering analogue of
multicommodity flow.

We extend the range of edge-capacitated instances for which exact solutions can be
found efficiently. When the tree is a spider (i.e. if only one vertex has degree greater than
2) we give a polynomial-time algorithm to find an optimal solution, as well as a polyhedral
description of the convex hull of all integral feasible solutions.
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6.1 Introduction

In the max-weight integral multicommodity flow problem (WMF), we are given an undi-
rected supply graph G = (V,E), terminal pairs (s1, t1), . . . , (sk, tk) where si, ti ∈ V , non-
negative weights w1, . . . , wk and non-negative integral capacities. We distinguish between
three versions of the problem: in edge-WMF each edge e ∈ E has a capacity ce; in arc-WMF
each of the 2|E| directed arcs (u, v) with {u, v} ∈ E has a capacity cuv; in vertex-WMF
each vertex v ∈ V has a capacity cv. The goal is to simultaneously route integral si-ti
flows of value yi, subject to the capacities, so as to maximize the weight

∑
wiyi. Note that

edge-WMF can be reduced to vertex-WMF by subdividing each edge, moving that edge’s
capacity onto the new vertex, and setting all other vertex capacities to be infinite. When
we make statements that apply to all three versions, we simply say WMF.

The single-commodity version (k = 1) of WMF is well-known to be solvable in polyno-
mial time. If we drop the integrality restriction the problem can be solved in polynomial
time via linear programming for any k. However, when integrality is required, even the 2-
commodity unit-capacity, unit-weight arc- and edge-versions are NP-complete — see Even,
Itai, and Shamir [64]. Let n := |V |. Recent results [4, 107] on the edge-disjoint paths prob-

lem show more strongly that arc-WMF is NP-hard to |E| 12−ǫ-approximate, and edge-WMF

cannot be approximated better than log
1
2
−ǫ(n) unless NP ⊂ ZPTIME(npolylog(n)). Random-

ized rounding gives a (1+ ǫ)-approximation algorithm for WMF when all capacities are at
least log n/ǫ2, for suitably small ǫ [62, 175].

An easier and significant special case of WMF is where the supply graph G is a tree,
which we denote by WMFT. Garg, Vazirani and Yannakakis [87] considered the unit-
weight case of edge-WMFT and showed APX-hardness even if G’s height is at most 3 and
all capacities are 1 or 2; but on the positive side, they gave a 2-approximate polynomial-
time primal-dual algorithm. Techniques of Garg et al. show that WMFT can be solved in
polynomial time when G has unit capacity (using dynamic programming and matching)
or is a star (this problem is essentially equivalent to b-matching). The case where G is
a path (so-called interval packing) is also polynomial-time solvable [29, 39, 109], e.g. by
linear programming since the natural LP has a totally unimodular constraint matrix. Arc-
WMF on unit-capacity bidirected trees admits a (5

3
+ ǫ)-approximation algorithm [63].

In general, the best result for edge- and arc-WMFT is a 4-approximation of Chekuri,
Mydlarz and Shepherd [39]. Vertex-WMFT has not been explicitly studied as far as we
are aware, although we observe later (Proposition 6.11) that techniques of [39] yield a
5-approximation.

Results. Throughout the chapter, we use µ to denote the minimum capacity in the
WMFT instance. Our first important technical contribution is to show that iterated relax-
ation yields an integral solution with optimal value or better but exceeding edge capacities
additively — by 2 for edge-WMFT and by 6 for arc-WMFT and vertex-WMFT. This re-
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solves a conjecture stated in Chekuri et al. [39] — that the “c-relaxed integrality gap” is 1
for some constant c — which we show for c = 2.1 We feel we give a fairly clean illustration
of the iterated relaxation paradigm since we do not require uncrossing as in the original
applications [182, 148].

When the minimum capacity µ is Ω(log |V |), randomized rounding gives a 1+O(log |V |/µ)-
approximation for WMFT. This suggests that it is easier to approximate as the minimum
capacity increases. This was anticipated by Chekuri et al. [39], and indeed, by plugging
our iterated rounding results into [39, Cor. 3.5] we get a 1+O(1/

√
µ)-approximation when

µ is suitably large. In this chapter, our first main result is an improvement on the best
ratio known for edge-WMFT when µ ≥ 2.

Theorem 6.1. For edge-WMFT, there are polynomial-time algorithms achieving (a) ap-
proximation ratio 3 for µ ≥ 2, and (b) approximation ratio (1 + 4/µ + 6/(µ2 − µ)) for
general µ.

A slight modification of Garg et al.’s hardness proof shows that for some ǫ > 0, for all
µ ≥ 2, there are instances with minimum capacity µ which are NP-hard to approximate
within a ratio of 1 + ǫ/µ; we detail this modification in Section 6.2.4. Thus (if P 6= NP)
the ratio in Theorem 6.1(b) is tight up to the constant in the 1

µ
term.

Our methodology for Theorem 6.1 is to decrease the additively-violating solution to-
wards feasibility, without losing too much weight. Part (a) uses an argument of Cheriyan,
Jordán and Ravi [42]. Part (b) relies on an auxiliary covering problem; every feasible
cover, when subtracted from the +2-violating edge-WMFT solution, results in a feasible
edge-WMFT solution. An approach due to Jain [124] shows that iterated LP rounding,
applied to the auxiliary problem, leads to a provably low-weight integral solution for the
covering problem. One particular property of the iterated rounding framework is crucial in
obtaining Theorem 6.1(b). For a combinatorial optimization problem P with linear relax-
ation L, we say that an α-approximation algorithm for P is L-relative if it has the stronger
property that its output is within a factor α of OPT(L). The crucial property is that the
iterated rounding algorithm’s guarantee is LP-relative, for the natural LP relaxation.

Second, using the same technology and variants of earlier techniques we obtain the
following result.

Theorem 6.2. For arc-WMFT and vertex-WMFT, there are polynomial-time 1+O(1/µ)-
approximation algorithms.

The most novel technical contribution to obtain these results is a counting lemma for
these variants of WMFT.

1To say that the c-relaxed integrality gap of the maximization LP L is 1 means there is an integral
solution of value at least OPT(L) but violating each constraint by up to +c.

105



6.1. Introduction

Using the same framework we also derive results for multicommodity covering, which
is the problem of finding integral si-ti flows of value yi so as to minimize

∑
iwiyi and so

that the amount of flow through each item (edge, arc, or vertex) is at least its capacity. In
Section 6.3.1 we show the following.

Theorem 6.3. For multicommodity integral covering in a tree, with either edge, arc, or
vertex capacities, there is a polynomial-time 1 +O(1/µ)-approximation algorithms.

Our final result maps out more of the landscape of tractable edge-WMFT instances.
An all-ror instance is one in which, for some choice of root vertex, each commodity path
either goes through the root or is radial, defined to be a path with one of its endpoints an
ancestor of the other with respect to the root. For example, every instance of WMFT in
which G is a spider is an all-ror instance.

Theorem 6.4. All-ror edge-WMFT instances can be solved in strongly polynomial time.

One way to view this result is as an efficient solution for a common generalization of b-
matching and interval packing. Our proof of Theorem 6.4 is via a combinatorial reduction
to bidirected flow [61]. This reduction also yields a polyhedral characterization of the
feasible solutions for all-ror instances.

Related Work. Edge-WMFT appears in the literature under a variety of names
including cross-free-cut matching [87] in the unit-capacity case and packing of a laminar
family [42]. One generalization is the demand version [39] in which each commodity i is
given a requirement ri and we require yi ∈ {0, ri} for each feasible solution.

Arc- and edge-WMFT with unit capacities are equivalent to the weighted edge-disjoint
paths (EDP) problem on trees. The hardness results [4, 107] apply to EDP; however for
fixed k, edge-EDP with at most k commodities is polynomial-time solvable by results of
the graph minors project. See e.g. [179, §70.5] for further discussion.

The extreme points of the natural LP for edge-WMFT arise frequently in the literature
of LP-based network design [39, 42, 63, 83, 84, 99, 124, 148, 182]. From this perspec-
tive, edge-WMFT is a natural starting point for an investigation of how large capaci-
ties/requirements affect the difficulty of weighted network design problems. We remark
that the min-cardinality k-edge-connected spanning subgraph problem has a similar his-
tory to WMFT: a 1 + 2/(k + 1)-approximation was given by Cheriyan & Thurimella [43],
(1+ ǫ/k)-hardness of approximation was shown by Gabow et al. [84], and the best current
algorithm for the problem, due to Gabow & Gallagher [83], uses iterated rounding.

Organization of the Chapter. Section 6.1.1 contains some basic definitions and
notation. In Section 6.2 we prove Theorem 6.1 and the complementary hardness result.
In Section 6.3 we prove Theorem 6.2. In Section 6.4 we prove Theorem 6.4. In Section
6.4.1, we state our polyhedral results. Finally, we suggest some directions for future work
in Section 6.5.
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6.1.1 WMFT Formulation

In this section we formulate edge-WMFT; we will also use the analogous formulations
for arc-WMFT and vertex-WMFT. We define the commodities by a set of demand edges
D = {{s1, t1}, . . . , {sk, tk}} on vertex set V with a weight wd assigned to each demand
edge d ∈ D; this is without loss of generality since the supply graph and demand edges are
undirected. (In the arc-capacitated case, D is a set of arcs.) Since we discuss WMF only
on trees, each commodity has a unique path along which flow is sent. For each demand
edge d, let its demand path pd be the unique path in G joining the endpoints of d. We
thus may represent a multicommodity flow by a vector {yd}d∈D where yd is the amount
of commodity d that is routed (along pd). Then a flow y is feasible for edge-WMFT if it
meets the two conditions

∀d ∈ D : yd ≥ 0 (6.1)

∀e ∈ E :
∑

d:e∈pd

yd ≤ ce (6.2)

The objective of edge-WMFT is to find a feasible integral y that maximizes w · y.

6.2 Improved Approximation for Edge-WMFT

In this section we obtain a min{3, 1+4/µ+6/(µ2−µ)}-approximation algorithm for edge-
WMFT, assuming ce ≥ µ ≥ 2 for each edge e. The algorithm uses the iterated rounding
paradigm, which was used first by Jain [124] and more recently by Lau et al. [148] and
others [10, 83, 182] for network design. The idea is that in each iteration, we use an
extreme fractional optimum y∗ of the natural LP to develop an integral solution. If some
demand edge d has value 1 or greater in y∗, we route the integer part and decrease the
capacity of edges on pd accordingly. If 0 < y < 1 we perform a relaxation step; a counting
argument (Section 6.2.3) guarantees that a particular relaxation can always be performed.
At the end, we obtain an integral solution which exceeds the capacity of each edge by at
most 2, and which has weight at least as large as that of an optimal feasible solution. In
Sections 6.2.1 and 6.2.2 we show how to compute high-weight feasible solutions from this
+2-violating solution. In Section 6.2.4 we show it is NP-hard to (1 + ǫ/µ)-approximate
edge-WMFT, fox any fixed µ ≥ 2, and for some ǫ independent of µ.

The natural LP relaxation of edge-WMFT, which we denote by (F), is as follows:

maximize w · y subject to (6.1) and (6.2). (F)

This program has a linear number of variables and constraints, and thus can be solved in
polynomial time. Any integral vector y is feasible for (F) iff it is feasible for the edge-
WMFT instance. However, the linear program has fractional extreme points in general,
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and thus solving the LP does not give us the type of solution we seek. Nonetheless, optimal
solutions to the LP have certain properties that permit an iterated rounding approach, such
as the following.

Lemma 6.5. Let y∗ be an optimal solution to (F), define OPT = w · y∗, and suppose
y∗d ≥ t for some d ∈ D and some integer t ≥ 1. Reduce the capacity of each edge e ∈ pd by
t and let OPT′ denote the new optimal value of (F). Then OPT′ = OPT− twd.

Proof. Let z denote the vector such that zd = t and zd′ = 0 for each d′ 6= d. Then it is easy
to see that y∗ − z is feasible for the new LP, and hence OPT′ ≥ w · (y∗ − z) = OPT− twd.
On the other hand, where y′ denotes the optimal solution to the new LP, it is easy to
see that y′ + z is feasible for the original LP; so OPT ≥ OPT′ + twd. Combining these
inequalities, we are done.

From now on, let OPT denote the optimal value to (F).

In general terms, our iterated rounding approach works on the following principles.
Define the following restricted version of (F):

maximize w · y subject to (6.1) and (6.2) and ∀d ∈ D : yd ≤ 1. (F1)

Assume for the moment that (F1) also has optimal value OPT. We iteratively build an
integral solution to (F1) with value at least equal to OPT. The first step in each iteration
is to solve (F1), obtaining solution y∗. If y∗d = 0 for some demand edge d, then we can
discard d without affecting the optimal value of (F1). If y∗d = 1 for some d, then we can
route one unit of flow along pd and update capacities accordingly. Similar to Lemma 6.5,
the optimal LP value will drop by an amount equal to the weight of the flow that was
routed. If neither of these cases applies, we use the following lemma, whose proof appears
in Section 6.2.3.

Lemma 6.6. Suppose that y∗ is an extreme point solution to (F), and that 0 < y∗d < 1 for
each demand edge d ∈ D. Then there is an edge e ∈ E so that |{d ∈ D : e ∈ pd}| ≤ 3.

Our algorithm discards the capacity constraint (6.2) for e from our LP. We call this con-
tracting e because the effect is the same as if we had merged the two endpoints of e in the
tree G. Pseudocode for our algorithm is given in Figure 6.1.

To justify our assumption that (F) and (F1) have the same optimal value, we preprocess
the problem as follows. First, we compute any optimal solution y∗ to (F). Then we route
the integer part ⌊y∗⌋ of the solution (i.e., we initialize ŷ = ⌊y∗⌋) and reduce each capacity
ce by

∑
d:e∈pd

⌊y∗d⌋. The residual problem has 〈y∗〉 := y∗ − ⌊y∗⌋ as an optimal solution, and
since 0 ≤ 〈y∗〉 ≤ 1, our assumption is justified.
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IteratedFlowSolver

1. Set ŷ = 0

2. If D = ∅ terminate and return ŷ

3. Let y∗ be an optimal extreme point solution to (F1)

4. For each d such that y∗d = 0, discard d

5. For each d such that y∗d = 1, increase ŷd by 1, decrease ce by 1
for each e ∈ pd, and discard d

6. If neither step 4 nor 5 applied, find e as specified by Lemma 6.6
and contract e

7. Go to step 2

Figure 6.1: The iterated rounding algorithm.

Assuming Lemma 6.6, we now prove the main properties of our iterated rounding
algorithm: it runs in polynomial time, it exceeds each capacity by at most 2, and it
produces a solution of value at least OPT.

Property 1. IteratedFlowSolver runs in polynomial time.

Proof. Recall that (F) and (F1) can be solved in polynomial time. In each iteration we
decrease |D|+ |E|, so polynomially many iterations occur, and the result follows.

Property 2. The integral solution computed by IteratedFlowSolver violates each
capacity constraint (6.2) by at most 2.

Proof. Consider what happens to any given edge e during the execution of the algorithm.
In the preprocessing and in each iteration, the flow routed through e equals the decrease in
its residual capacity. If in some iteration, e’s residual capacity is decreased to 0, all demand
paths through e will be discarded in the following iteration. Thus if e is not contracted,
its capacity constraint (6.2) will be satisfied by the final solution.

The other case is that we contract e in step 6 of some iteration because e lies on at
most 3 demand paths. The residual capacity of e is at least 1, and at most one unit of flow
will be routed along each of these 3 demand paths in future iterations. Hence the final
solution violates (6.2) for e by at most +2.
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Property 3. The integral solution computed by IteratedFlowSolver has objective
value at least equal to OPT.

Proof. When we contract an edge e we just remove a constraint from (F1), which cannot
decrease the optimal value of (F1) since it is a maximization LP. In every other iteration
and in preprocessing, Lemma 6.5 implies that the LP optimal value drops by an amount
equal to the increase in w · ŷ. When termination occurs, the optimal value of (F1) is 0.
Thus the overall weight of flow routed must be at least as large as the initial value of
OPT.

6.2.1 Minimum Capacity µ = 2

As per Property 2, our iterated solver may exceed some of the edge capacities. When
ce ≥ µ ≥ 2 for each edge e we can invoke the following theorem, which appears as Thm. 6
in [42], to produce a high-weight feasible solution.

Theorem 6.7 (Cheriyan, Jordán, Ravi). Suppose that ŷ is a nonnegative integral vector
so that for each edge e, the constraint (6.2) is violated by at most a multiplicative factor of
2 by ŷ. Then in polynomial time, we can find an integral vector y′ with w · y′ ≥ (w · ŷ)/3,
and 0 ≤ y′ ≤ ŷ, and such that y′ satisfies all constraints (6.2).

The algorithm as literally described in [42] is actually pseudo-polynomial, but it is
straightforward to modify it to have polynomial running time; we defer the proof for a
moment. Assuming this fact, we now prove part (a) of Theorem 6.1.

Proof of Theorem 6.1(a). Let ŷ be the output of IteratedFlowSolver. Since ce ≥ 2
for each edge e, and since by Property 2 each edge’s capacity is additively violated by at
most +2, Theorem 6.7 applies. Thus y′ is a feasible solution to the edge-WMFT instance
with objective value w · y′ ≥ w · ŷ/3 ≥ OPT/3, using Property 3. Finally, since (F)
is an LP-relaxation of the edge-WMFT problem, OPT is at least equal to the optimal
edge-WMFT value, and so y′ is a 3-approximate feasible integral solution.

Now we detail the polynomial-time implementation of Cheriyan et al.’s algorithm. It ap-
plies to a multiset P of demand edges, and has running time polynomial in |P|. Directly ap-
plying their algorithm to the multiset containing yd copies of each demand edge d would give
us a correct answer y′, but the running time would be pseudo-polynomial in the length of the
edge-WMFT instance’s description, i.e., it would run in poly(

∑
d yd) = poly(|E|maxe ce)

time, whereas we can only allow polylogarithmic dependence on maxe ce.

To modify this for our purposes, define ỹd = ⌊yd/2⌋ for each demand edge d and let
y = y−2ỹ, so y is a 0-1 vector. Define, for each edge e, c′e := ce−

∑
d:e∈pd

ỹd and notice that
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y violates the capacities c′ by at most a factor of 2. Apply the algorithm of Theorem 6.7
to y, producing a solution y′ which is feasible for c′ with w · y′ ≥ w · y/3. This application
is polynomial-time since

∑
d yd ≤ |D|. Define y′ = y′ + ỹ; then it is immediate that y′ is

feasible for capacities c. Furthermore,

w · y′ = w · (y′ + ỹ) ≥ 1

3
w · y + w · ỹ ≥ 1

3
w · (y + 2ỹ) = (w · y)/3,

as needed.

6.2.2 Arbitrary Minimum Capacity

Given the infeasible solution ŷ produced by IteratedFlowSolver, we want to re-
duce ŷ in a minimum-weight way so as to attain feasibility. For each edge e let fe =
max{0,∑d:e∈pd

ŷd − ce}, i.e. fe is the amount by which ŷ violates the capacity of e. Note
now that a reduction z with 0 ≤ z ≤ ŷ makes ŷ − z a feasible (integral) edge-WMFT
solution if and only if z is a feasible (integral) solution to the following linear program.

minimize w · z subject to 0 ≤ z ≤ ŷ and ∀e ∈ E :
∑

d:e∈pd

zd ≥ fe. (Fc)

Notice that (Fc) is a covering analogue of (F) (with added upper bounds). Furthermore,
Jain’s iterated rounding framework [124] gives an (Fc)-relative 2-approximation algorithm
to find an optimal integral solution.

Theorem 6.8. There is a polynomial-time algorithm which returns an integral feasible
solution ẑ for (Fc) such that w · ẑ ≤ 2OPT(Fc).

Proof. The idea is very similar to the main result of [124] but simpler in that no uncrossing
is needed (in [124] this simplifies an arbitrary LP basis into one having a tree-like laminar
structure), because we already have a tree structure. Hence we only sketch the details.
In each iteration, we obtain an extreme point optimal solution z∗ to the linear program
(Fc). We increase ẑ by the integer part of z∗ and accordingly decrease the requirements
f . If z∗d = 0, d is discarded. Finally if 0 < z∗ < 1 a token redistribution argument of Jain
shows that some d∗ ∈ D has z∗d∗ ≥ 1/2. In this case we increase ẑd∗ by 1 and update the
requirements accordingly. Standard arguments then give the claimed bound on the cost of
ẑ and polynomial running time.

Here is how we use Theorem 6.8 to approximate edge-WMFT instances on trees.
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Proof of Theorem 6.1(b). Notice that z = 2
µ+2

ŷ is a feasible fractional solution to (Fc) by

the definition of f . Hence, the optimal value of (Fc) is at most 2
µ+2

ŷ ·w. Thus the solution
ẑ produced by Theorem 6.8 satisfies ẑ · w ≤ 4

µ+2
ŷ · w, so ŷ − ẑ is a feasible solution to the

edge-WMFT problem, with w · (ŷ − ẑ) ≥ (1− 4
µ+2

)ŷ · w ≥ (1− 4
µ+2

)OPT. This gives us a

1/(1− 4
µ+2

) = 1 + 4/µ+O(1/µ2) approximation algorithm for edge-WMFT.

To obtain the exact bound claimed in Theorem 6.1(b), we refine this slightly by taking
a two-round approach. In the first round we set fe to be the characteristic vector of
those edges which ŷ violates by +2, obtaining ŷ′ := ŷ − ẑ. Then ŷ′ has only +1 additive
violation, and the same reasoning as before shows ŷ′ · w ≥ (1 − 2

µ+2
)OPT. The second

round analogously extracts from ŷ′ a solution with +0 violation, i.e. a feasible solution,
with weight at least (1− 2

µ+1
)ŷ′ ·w. This gives approximation ratio 1/(1− 2

µ+2
)(1− 2

µ+1
) =

1 + 4/µ+ 6/(µ2 − µ), as desired.

6.2.3 Proof of Lemma 6.6

First, we need the following simple counting argument.

Lemma 6.9. Let T be a tree with n vertices and let ni denote the number of its vertices
that have degree i. Then n1 > (n− n2)/2.

Proof. Using the handshake lemma and the fact that T has n − 1 edges, we have 2(n −
1) =

∑
i i · ni. But

∑
i i · ni ≥ n1 + 2n2 + 3(n − n1 − n2) = 3n − 2n1 − n2 and hence

2n− 2 ≥ 3n− 2n1 − n2. Solving for n1 gives n1 ≥ (n− n2 + 2)/2 as needed.

Proof of Lemma 6.6. Using basic facts from polyhedral combinatorics, it follows that there
exists a set E∗ ⊂ E of edges with |E∗| = |D| such that y∗ is the unique solution to

∑

d∈D:e∈pd

yd = ce ∀e ∈ E∗. (6.3)

In particular, the characteristic vectors of the sets {d : e ∈ pd} for e ∈ E∗ are linearly
independent.

Contract each edge of E\E∗ in (V,E), resulting in the tree T ′ = (V ′, E∗); call elements
of V ′ nodes. We now use a counting argument to establish the existence of the desired
edge e within E∗. We call the two ends of each d ∈ D endpoints and say that node v′ ∈ V ′

owns k endpoints when the degree of v′ in (V ′, D) is k.

First, consider any node v′ ∈ V ′ that has degree 2 in T ′; let e1, e2 be its incident edges
in T ′. If v′ owns no endpoints then {d : e1 ∈ pd} = {d : e2 ∈ pd}, contradicting linear
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independence. If v′ owns exactly one endpoint, the symmetric difference {d : e1 ∈ pd}△{d :
e2 ∈ pd} consists of a single demand edge; but since y∗ satisfies (6.3), 0 < y∗ < 1, and c is
integral, this is a contradiction. Hence v′ owns two or more endpoints.

If there exists a leaf node v′ of T ′ that owns at most 3 endpoints then we are done, since
this implies that the edge of E∗ incident to v′, viewed in the original graph, lies on a most
3 demand paths. Otherwise, we apply a counting argument to T ′, seeking a contradiction.
Let ni denote the number of nodes of T ′ of degree i. Then our previous arguments establish
that the total number of endpoints is at least 4n1 + 2n2. Lemma 6.9 then shows that the
total number of endpoints is more than 2(|V ′| − n2) + 2n2 = 2|V ′| > 2|E∗| = 2|D|. This is
the desired contradiction, since there are only 2|D| endpoints in total.

We remark that Lemma 6.6 is tight in the following sense: if we replace the bound
|{d ∈ D : e ∈ pd}| ≤ 3 with |{d ∈ D : e ∈ pd}| ≤ 2, the resulting statement is false. An
example of an extreme point solution for which the modified version fails, due to Cheriyan
et al. [42], is given in Figure 6.2.

Figure 6.2: An extreme point solution to (F). There are 9 edges in the supply graph,
shown as thick lines; each has capacity 1. There are 9 demand edges, shown as thin lines;
the solid ones have value 1/2, and the dashed ones have value 1/4. This is a tight example
for Lemma 6.6 because each edge lies on at least three demand paths.

6.2.4 Hardness of MFT with Constant Lower Bounds

We use MFT to stand for the special case of WMFT where all costs are 1.

Theorem 6.10. For some ǫ > 0, for all integers µ ≥ 2, it is NP-hard to approximate
edge-MFT to a factor of less than 1 + ǫ/µ, even when restricted to instances where all
capacities are at least µ.

We remark that this directly implies similar hardness for vertex-MFT, and that the
proof can be modified to give similar hardness for arc-MFT.
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Proof. We extend Garg et al.’s original proof [87, Thm. 4.2] that edge-MFT is APX-
complete. Their reduction is from 3-bounded maximum three-dimensional matching (MAX
3DM–3); an instance consists of three disjoint sets X, Y, Z of size n and a family of triples
S ⊂ X × Y × Z such that each element is in at most 3 triples. The objective is to find a
maximum-size disjoint set of triples from S. If |S| < n, elements appearing in no triples
can be discarded, so WOLOG |S| ≥ n.

Kann [125] showed that MAX 3DM–3 is MAXSNP-complete, hence by the PCP the-
orem, for some δ > 0 it is NP-hard to approximate it within a ratio of 1 + δ. A greedy
argument easily shows the optimal value of MAX 3DM–3 is always at least |S|/7. Hence
it is NP-hard to additively approximate MAX 3DM–3 within |S|δ/7.

The construction given in [87] is an instance of MFT which has optimal value t + |S|
where t is the maximum number of disjoint triples in S. Let (V,E) denote the tree obtained
from this construction; it satisfies |E| = 3(|S|+n). To obtain a lower bound µ on capacity,
we perform the following for each edge uv ∈ E: (1) add a new leaf u′ and a new edge uu′

to the tree; (2) add a new unit-weight demand edge u′v to D; (3) increase the capacity
of uv by µ and set the capacity of uu′ to be µ. We illustrate the overall modification in
Figure 6.3.

An easy alteration argument shows that there exists an optimal solution y to the mod-
ified MFT problem such that yd = µ for each new demand edge d. It then follows that its
optimal value is t+|S|+µ|E|. Furthermore, since t+|S|+µ|E| ≤ (6µ+2)|S|, approximating

the MFT instance to a ratio less than 1 + |S|δ/7
(6µ+2)|S|

= 1 + Θ(1/µ) is NP-hard.

6.3 Vertex-WMFT and Arc-WMFT

The natural LP relaxation for edge-WMFT, given in Section 6.1.1, admits straightforward
analogues for vertex- and arc-WMFT; we replace constraint (6.2) with a vertex- or arc-
capacity constraint. Let us denote these LPs by vertex-(F) and arc-(F). Analogously to
the methods of Section 6.2, the crux of our work can be performed under the assumption
that yd ≤ 1 for each d, so we similarly define vertex-(F1) and arc-(F1). As a preliminary
step, we show that the framework of Chekuri et al. [39] for edge- and arc-WMFT extends
to vertex-WMFT.

Proposition 6.11. There is a 5-approximation algorithm for vertex-WMFT.

Proof. Since the whole proof for edge-WMFT is lengthy and we modify it only slightly, our
presentation assumes the reader is already familiar with the approach in [39]. We define
Binned Tree Colouring the same way except that nv ≤ cv for each leaf vertex v, and we
respect vertex capacities.
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Figure 6.3: Left: a portion of the capacitated tree used in the hardness construction of
[87]. Demand edges are not shown. Right: the modified capacitated tree (thick) used in
the proof of Theorem 6.10, and the new demand edges (thin). The old demand edges are
still not shown, but present.

Now we claim that an analogue of [39, Thm. 2.2] holds with 5k colours instead of 4k.
The main thing to check is that we can complete the partial colouring returned by the
recursive call — checking these details pertains to the last paragraph of their proof. An
edge e joining vi and vj cannot use

• any colour already assigned within e’s bin at vi, of which there are less than 2k

• any colour already assigned within e’s bin at vj, of which there are less than 2k

• any colour which is already assigned to cv edges passing through v, of which there
are less than k, since at most k · cv edges pass through v

Hence one of the 5k colours is still available.

The key in our approaches to arc-WMFT and vertex-WMFT are analogues of Lemma
6.6; here is the latter.

Lemma 6.12. (Counting Lemma, Vertex Version) Suppose that y∗ is an extreme point
solution to vertex-(F1), and that 0 < y∗d < 1 for each demand edge d ∈ D. Then there is a
vertex v ∈ V so that |{d ∈ D : v ∈ pd}| ≤ 7.
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Proof. Using basic facts from polyhedral combinatorics, it follows that there exists a set
V ∗ ⊂ V of tight vertices with |V ∗| = |D| such that y∗ is the unique solution to

∑

d∈D:v∈pd

yd = cv ∀v ∈ V ∗. (6.4)

In particular, the characteristic vectors of the sets {d : v ∈ pd} for v ∈ V ∗ are linearly
independent.

We now introduce several properties that hold without loss of generality (that is to
say, without affecting the fact that y∗ is the unique solution to Equation (6.4)). First, for
each demand edge d = yz, we may assume both y and z are tight, since otherwise we can
replace d by y′z′ where y′ is the closest tight vertex to y on pd and z′ is defined similarly
(note, possibly y′ = z′). Second, every degree-1 vertex is tight, since we can iteratively
delete degree-1 vertices that are non-tight. If v is a degree-2 vertex with neighbours u and
w, define contracting the vertex v to mean removing v from the graph and making u, w
adjacent. Third, every degree-2 vertex is tight, since we can iteratively contract degree-2
vertices that are non-tight.

Now we will apply a counting argument. Let ti denote the number of tight vertices of
degree i, and ui denote the number of non-tight vertices of degree i. So u1 = u2 = 0 and all
other values are non-negative. We give the high-level argument and then fill in the details.
Say an edge uv of the supply graph is special if both u and v are degree-2 (tight) vertices,
and let s be the total number of special edges. We re-use the notion from the proof of
Lemma 6.6 that each demand edge d = yz has two endpoints, one owned by y and the
other owned by z. (I.e. the number of endpoints owned by v is equal to its degree in (V,D)
where a loop counts twice to the degree.) Let t≥3 =

∑
i≥3 ti and define u≥3 similarly.

Claim 6.13. The degree-2 tight vertices own at least 2s endpoints.

Claim 6.14. s ≥ t2 − (u≥3 + t1 + t≥3 − 1).

Claim 6.15. 4t1 ≥ 4t≥3 + 4u≥3.

Given these claims, we combine them as follows. Count the number w of endpoints
owned by degree-1 (tight) vertices; this value satisfies

w ≤ 2|V ∗| − 2s by Claim 6.13 and since |D| = |V ∗|
= 2(t1 + t2 + t≥3)− 2s

≤ 2(t1 + t2 + t≥3)− 2(t2 − (u≥3 + t1 + t≥3 − 1)) by Claim 6.14

= −2 + 4t1 + 4t≥3 + 2u≥3

≤ 8t1 − 2. by Claim 6.15

116



Chapter 6. Integral Multicommodity Flow in Trees

So w < 8t1, in particular there is some degree-1 tight vertex v which owns at most 7
endpoints. Clearly |{d ∈ D : v ∈ pd}| ≤ 7, which completes the proof of Lemma 6.12. We
now move on to the supporting claims.

Proof of Claim 6.13. By definition of “special edge,” note that the special edges can be
partitioned into (maximal) paths. Let v0, v1, . . . , vk be one such path, i.e. suppose the edges
vi−1vi are special for 1 ≤ i ≤ k, so each vi is a degree-2 tight vertex. We will show that
the vertices of the path own at least 2k endpoints; then by adding over all paths it follows
that the set of all degree-2 vertices own at least 2s endpoints.

Define v−1 to be the neighbour of v0 which is not equal to v1 and define vk+1 similarly.
For 1 ≤ i ≤ k, say that a demand edge d = yz has a “left endpoint at vi” if one of y, z
is equal to vi and vi−1 6∈ pd; define right endpoints similarly. Notice that the number of
endpoints owned by {vi | 0 ≤ i ≤ k} equals the total number of left and right endpoints
therein.

For each 1 ≤ i ≤ k, since the constraints (6.4) for tight vertices vi−1 and vi are linearly
independent, there is at least one demand path pd containing exactly one of vi−1 and vi.
Since the vertex capacities are integral and both are tight, in fact there are at least 2
demand paths containing exactly one of vi−1 or vi. Thus the number of right endpoints
at vi−1 plus the number of left endpoints at vi is at least 2. Adding over all k, we are
done.

Proof of Claim 6.14. Define T ′ to be the tree obtained from T by contracting all degree-2
tight vertices; viewing this process in reverse, T can be obtained from T ′ by subdividing
its edges. For each edge of T ′, if it is subdivided x ≥ 1 times, that corresponds to a path
of x− 1 special edges in T . Note T ′ has u≥3 + t1 + t≥3 vertices and thus u≥3 + t1 + t≥3 − 1
edges. Hence the number of special edges is at least

s ≥ t2 − (u≥3 + t1 + t≥3 − 1).

Proof of Claim 6.15. Using the handshake lemma (as in the proof of Lemma 6.9) we know
that t1 = 2 +

∑
i≥3(i− 2)(ti + ui), and the desired result follows.

(End of proof of Lemma 6.12.)

Now we give the analogous result for arc-WMFT.

Lemma 6.16. (Counting Lemma, Arc Version) Suppose that y∗ is an extreme point solu-
tion to arc-(F1), and that 0 < y∗d < 1 for each demand edge d ∈ D. Then there is an arc
a ∈ A so that |{d ∈ D : a ∈ pd}| ≤ 7.
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Proof. Let |A∗| denote a maximum size linearly independent set of tight arcs, so |D∗| =
|A∗|. Whenever both uv and vu are non-tight, we contract {u, v}. Furthermore, for each
edge {u, v} such that both uv and vu are tight, subdivide uv with a new vertex w so that
cuw = cuv, cvw = cvu, and consider uw and vw as tight instead of uv and vu. What results
is a directed tree where every edge is tight in exactly one direction. Its vertex set V ∗

satisfies |V ∗| = |A∗|+ 1.

In (V ∗, A∗) let n1 be the number of degree-1 vertices, n2 the number of degree-2 vertices,
and n≥3 the number of vertices of degree at least 3. Define an edge to be special if both
endpoints have degree-2, as in the proof of Lemma 6.12. Analogously to Claim 6.14, we
have s ≥ n2 − n1 − n≥3 + 1. Analogously to Claim 6.13, we have n1 ≥ n≥3. We will show
moreover that the degree-2 vertices own at most 2s endpoints; then we will be done since
the number of endpoints owned by degree-1 vertices is at most

2|A∗| − 2s = 2(n1 + n2 + n≥3 − 1)− 2s ≤ 4n1 + 4n≥3 − 4 < 8n1.

To show that the degree-2 vertices own at least 2s endpoints, we proceed along the
lines of the proof of Claim 6.13. Let P := v0, v1, . . . , vk+1 be a sequence of arcs in (V ∗, A∗)
such that δ(vi) = 2 iff 1 ≤ i ≤ k. (P is a path when ignoring directions, but P is not in
general a dipath since the orientations of arcs on P is arbitrary.) This path P contains
k − 1 special edges, and k + 1 edges in total. We will show that the vertices {v1, . . . , vk}
own at least 2k − 2 endpoints; then by adding over all such paths P we will have shown
that the degree-2 vertices own at least 2s endpoints.

For convenience we call arcs in P of the form vivi−1 leftwards, and other arcs rightwards.
Similarly, for any demand arc d ∈ D∗ such that pd ∩ P 6= ∅, either pd intersects only
leftwards arcs or rightwards arcs; we think of pd as leftwards or rightwards correspondingly.
Let there be r rightwards arcs and k+1− r leftwards arcs on this path. We will show that
{v1, . . . , vk} own at least 2r − 2 endpoints of rightward demand arcs and at least 2k − 2r
endpoints of leftward demand arcs, which gives the desired result.

Let vivi+1 and vjvj+1 with k ≥ j > i ≥ 0 be rightwards arcs of P such that all interme-
diate arcs of P are leftwards (i.e., “consecutive” rightwards arcs). By linear independence
there is at least one rightwards demand path using exactly one of vivi+1 or vjvj+1; in fact
since both arcs are tight with integral capacities and y∗ is fractional, there are at least two
such rightwards demand paths. This implies that the vertices {vu}ju=i+1 own at least 2
endpoints of rightwards demand paths. By considering all possible choices of i, j it follows
that {v1, . . . , vk} own at least 2r− 2 endpoints of rightwards demand paths; an analogous
argument works for leftwards demand paths.

We get two algorithmic corollaries from Lemma 6.12. The first one says that we can
efficiently compute super-optimal +6-violating solutions.
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Corollary 6.17. There is a polynomial-time algorithm which, when given a vertex-WMFT
or arc-WMFT instance, produces y such that w · y is at least as large as the optimum for
the instance, and such that the y is feasible when each capacity is increased by 6.

Proof. We use IteratedFlowSolver but instead of discarding the capacity constraint
for an edge, we discard the capacity constraint for the vertex/arc specified by Lemma 6.12.
(Alternatively, we set the capacity to be +∞.) Analogously to the proof of Property 2, we
get a +6-violating solution.

The second corollary to Lemma 6.12 deals with vertex-(Fc) and arc-(Fc), i.e. multicom-
modity covering problems. We prove only the vertex version; the arc version is analogous.

Corollary 6.18. There is an algorithm which computes an integral solution z to vertex-(Fc)
such that w · z ≤ 7OPT(vertex-(Fc)).

Proof. This follows almost immediately from the iterated rounding framework [124]. It
suffices to show any nonzero extreme point solution z∗ to vertex-(Fc) has z∗d ≥ 1/7 for
some d.

We need only consider the case that 0 < z∗d < 1 for all d; then z∗ is the unique solution
to Equation (6.4) (with c replaced by f), for some set V ∗ with |V ∗| = | supp(z∗)|. So using
iterated rounding as in Lemma 6.12, there is a tight vertex v on at most 7 demand paths.
Since that vertex is tight,

∑
d:v∈pd

z∗d = fv ≥ 1. Thus some d with v ∈ pd has z∗d ≥ 1/7, as
needed.

This gives us the main result.

Theorem 6.2. There are 1+O(1/µ)-approximation algorithms for arc-WMFT and vertex-
WMFT.

Proof. We prove the vertex-WMFT version; the arc version is analogous. We do not
attempt to optimize the constants. As in the proof of Theorem 6.1, it is no loss of generality
to assume the additional constraints yd ≤ 1, hence we work with vertex-(F1) instead of
vertex-(F ).

Corollary 6.17 gives us a solution y to vertex-(F1) with w · y ≥ OPT and such that
y violates each vertex capacity by at most +6. Let fv equal the amount by which the
capacity for v is violated, or 0 if the capacity is not violated. Apply Corollary 6.18 to
vertex-(Fc) for this choice of f and ŷ = y; we get a z such that w · z ≤ 7OPT(vertex-(Fc)).
Moreover, y − z is feasible for vertex-(F1).
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Just as before, it is easy to verify that 6
µ+6

y is a feasible solution to vertex-(Fc). Hence
we have

w·(y−z) ≥ w·y−7OPT(vertex-(Fc)) ≥ w·y−7
6

µ+ 6
w·y ≥

(
1− 42

µ+ 6

)
OPT(vertex-(F1)).

For large µ, this implies that y is an 1 + O(1/µ)-approximately optimal solution to the
vertex-WMFT instance. For small µ, we know there is a 5-approximation algorithm due
to Proposition 6.11. Combining these facts, we are done.

Remark 6.19. A sensible generalization of the problems we have considered is {arc,vertex}-
WMFT, where there are capacities on both arcs and vertices. The method of Chekuri et al.
[39] gives a constant-factor approximation for this problem, however it is not clear if the
analogue of the counting lemma (Lemma 6.6) is true in this case.

6.3.1 Multicommodity Covering

Our framework also shows that covering analogues of WMFT can be approximated within
ratio 1+O(1/µ), provided that there are no upper bounds on variables. We use the specific
example of edge-WMFT but the same result holds for the arc- and vertex-versions. We
use the following natural LP relaxation for multicommodity covering in a tree:

minimize w · z subject to 0 ≤ z and ∀e ∈ E :
∑

d:e∈pd

zd ≥ fe. (F ′
c)

We use µ to denote mine fe. Then the main result is as follows.

Theorem 6.3. There is a (P ′
c)-relative (1 + 2/µ)-approximation algorithm for multicom-

modity integer covering in a tree.

Proof. First, we need the following algorithmic result on additive violation for the covering
problem under consideration.

Corollary 6.20. There is a polynomial-time algorithm which produces z ≥ 0 such that
w · z ≤ OPT(F ′

c) and ∀e ∈ E :
∑

d:e∈pd
zd ≥ fe − 2.

Proof. We use an analogue of IteratedFlowSolver. In each iteration, if some yd = 0
or some yd ≥ 1, we reduce the problem. If 0 < yd < 1 for every d, then the counting
argument (Lemma 6.6) shows that some tight edge lies on at most 3 demand paths. Since
yd < 1 for each d, fe ≤ 2. We reset fe = 0 (i.e., discard the constraint) and continue
iterating. The usual analysis completes the proof.
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To obtain Theorem 6.3, define f ′
v := fv + 2 for each vertex v and run the modified

algorithm on f ′. The output z is a feasible solution to the original instance. Moreover, if
z∗ is an optimal solution to the original (F ′

c), then (1 + 2/µ)z∗ is a feasible solution to the
new LP. Hence w · z, which is at most the optimum of the new (F ′

c), is at most (1 + 2/µ)
times the optimum of the original (F ′

c).

6.4 Exact Solution for Spiders

In this section we show that edge-WMFT can be exactly solved in polynomial time when
the supply graph is a spider. (A spider is a tree with exactly one vertex of degree greater
than 2.) Call the vertex of degree ≥ 3 the root of the spider. Call each maximal path
having the root as an endpoint a leg of the spider. Observe that in edge-WMFT when
(V,E) is a spider, each demand path pd either goes through the root, or else lies within a
single leg. We generalize this observation into the following definition.

Definition 6.21. Consider an instance of edge-WMFT on graph (V,E). With respect to
a chosen root vertex r ∈ V , a demand edge d is said to be

root-using, if r is an internal vertex of pd;

radial, if one endpoint of d is a descendant of the other, with respect to the orientation of
(V,E) induced by the root r.

The instance is all-ror (short for “all root-using or radial”) if there exists a choice of r ∈ V
for which every demand edge is either root-using or radial.

Instances with only radial demand paths can be exactly solved via the LP (F) since
the constraint matrix is unimodular. Instances with only root-using demand paths can
be solved using a matching approach, see e.g. the work of Nguyen [163]. To solve all-
ror instances in general we use bidirected flows, which were introduced by Edmonds and
Johnson [61]. Bidirected flow problems can be solved via a combinatorial reduction to
b-matching (e.g., see [179]) which increases the instance size by a constant factor. We
present in this section a reduction from all-ror edge-WMFT to bidirected flow.

A bidirected graph is an undirected graph together with, for each edge e and each of
its endpoints v ∈ e, a sign σv,e ∈ {−1,+1}. Thus an edge can have two negative ends, two
positive ends, or one end of each type; these are respectively called negative edges, positive
edges, and directed edges. We will speak of directed edges as having the +1 end as their
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head and −1 end as their tail. An instance of capacitated max-weight bidirected flow is
an integer program of the following form.

maximize
∑

e∈E

πexe (6.5)

∀v ∈ V : av ≤
∑

e∋v

σv,exe ≤ bv (6.6)

∀e ∈ E : ℓe ≤ xe ≤ ue (6.7)

x integral (6.8)

When a = b = 0 and all edges are directed, (6.5)–(6.8) becomes a max-weight circulation
problem; when all edges are positive and a = 0, (6.5)–(6.8) becomes a b-matching problem.
We now describe the reduction.

Proof of Theorem 6.4. Let r denote the root vertex, i.e., assume every demand edge is
either radial or root-using with respect to r. We construct a bidirected graph whose
underlying undirected graph is (V,E ∪ D). Make each edge e ∈ E directed, with head
pointing towards r in the tree (V,E). We make each root-using d ∈ D a positive edge; we
make each radial d ∈ D a directed edge, with head pointing away from r. See Figure 6.4
for an illustration.

r

Figure 6.4: An all-ror multicommodity flow instance. The tree graph (V,E) is depicted
using thick lines, and the demand edges D are thin. Radial demand edges are dashed and
root-using demand edges are solid. The root is r. An arrowhead denotes a positive end-
point, while the remaining endpoints are negative; these signs correspond to the reduction
in the proof of Theorem 6.4.

Set ar = −∞, br = +∞ and av = bv = 0 for each v ∈ V \{r} in the bidirected flow
problem (6.5)–(6.8). For each demand edge d ∈ D, call C(d) := {d}∪ pd the demand cycle
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of d. For a set F let χF denote the characteristic vector of F . Our choices of signs for
the endpoints ensure that for each demand cycle C(d), its characteristic vector x = χC(d)

satisfies constraint (6.6). Moreover, any linear combination of these vectors is easily seen
to satisfy (6.6), and the following converse holds.

Claim 6.22. Any x satisfying (6.6) is a linear combination of characteristic vectors of
demand cycles.

Proof. Let x′ = x −∑d xdχ
C(d), and observe that x′ also satisfies (6.6). Moreover, as

each particular demand edge d∗ occurs only in one demand cycle, namely C(d∗), we have

x′
d∗ = xd∗ −

∑
d xdχ

C(d)
d∗ = xd∗ −xd∗ = 0 for each d∗ ∈ D. In other words, x′ vanishes on D.

Now consider any leaf v 6= r of G and its incident edge uv ∈ E. Since x′ satisfies (6.6)
at v and x′ is zero on every edge incident to v except possibly uv, we deduce that xuv = 0.
By induction we can repeat this argument to show that x′ also vanishes on all of E, so
x′ = 0. Then x = x′ +

∑
d xdχ

C(d) =
∑

d xdχ
C(d), which proves Claim 6.22.

By Claim 6.22, we may change the variables in the optimization problem from x to in-
stead have one variable yd for each d ∈ D; the variables are thus related by x =

∑
d ydχ

C(d).
In the bidirected optimization problem, set ℓe = 0, ue = ce for each e ∈ E, and ℓd = 0, ud =
+∞ for each d ∈ D. Rewriting (6.7) in terms of the new variables gives precisely the con-
straints (6.1) and (6.2). In other words, feasible integral flows x correspond bijectively to
feasible integral solutions y for the edge-WMFT instance. Setting πd = wd for d ∈ D and
πe = 0 for e ∈ E, the objective function of (6.5) represents the weight for y, completing
the reduction.

As mentioned earlier, this bidirected flow problem can in turn be reduced to a b-
matching problem with a constant factor increase in the size of the problem. Using the
strongly polynomial b-matching algorithm of Anstee [6], the proof of Theorem 6.4 is com-
plete.

6.4.1 Polyhedral Results

The reduction used in the proof of Theorem 6.4 can also be used to derive the following
polyhedral characterization; note that it is independent of which vertex is the root.

Theorem 6.23. The convex hull of all integral feasible solutions in an all-ror edge-WMFT
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problem has the following description:

yd ≥ 0, ∀d ∈ D (6.9)
∑

e∈pd

yd ≤ ce, ∀e ∈ E (6.10)

∑

d∈D

yd⌊|pd ∩ F |/2⌋ ≤ ⌊c(F )/2⌋, ∀F ⊂ E with c(F ) odd (6.11)

Proof. It is obvious that constraints (6.9) and (6.10) are valid. To see that the constraint
(6.11) is valid, notice that it can be obtained as a Chvátal-Gomory cut: give coefficient 1/2
to each constraint (6.10) for e ∈ F . This establishes necessity, and the rest of the proof
will establish sufficiency of the constraints (6.9)–(6.11).

Our starting point is the following polyhedral characterization, which appears as Cor.
36.3a in Schrijver [179], and deals with the special case of bidirected flow when a = b and
ℓ = ~0.

Proposition 6.24. Let σ denote the signs of a bidirected graph. The convex hull of the
integer solutions to

∀e ∈ E : 0 ≤ xe ≤ ue ∀v ∈ V :
∑

e∋v

σv,exe = bv (6.12)

(i.e. the convex hull of all feasible integral bidirected flows) is determined by Equation (6.12)
together with the constraints

x(δ(U)\F )− x(F ) ≥ 1− u(F ) (6.13)

where U ⊆ V and F ⊆ δ(U) with b(U) + u(F ) odd.

In order to apply Proposition 6.24 to the construction in the proof of Theorem 6.4, we
set ar = br = 0 and add a loop at r with both of its endpoints negative. Further, we change
the definition of C(d) to include this loop whenever d is a radial demand edge; then it is
not hard to show that, just as before, feasible bidirected flows x correspond bijectively to
feasible multicommodity flows y.

Now apply Proposition 6.24 to the construction. Recall that the edge set of the bidi-
rected graph is D ∪ E. Since ud = +∞ for d ∈ D, the constraint (6.13) is vacuously true
unless F ⊂ E. Furthermore, recall that b is the all-zero vector and ue = ce for e ∈ E.
Rearranging, we obtain the following description of the convex hull of all integral feasible
bidirected flows:

∀e ∈ E : 0 ≤ xe ≤ ce ∀d ∈ D : 0 ≤ xd ∀v ∈ V :
∑

e∋v

σv,exe = 0 and
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x(F )− x(δ(U))/2 ≤ (c(F )− 1)/2 for U ⊆ V, F ⊆ E ∩ δ(U), c(F ) odd

Rewriting in terms of the y variables, and collecting like terms, yields

∀d ∈ D : 0 ≤ yd ∀e ∈ E :
∑

e∈pd

yd ≤ ce and (6.14)

∑

d

yd(|pd ∩ F | − |C(d) ∩ δ(U)|/2) ≤ (c(F )− 1)/2 for U ⊆ V, F ⊆ E ∩ δ(U), c(F ) odd

(6.15)
For any fixed choice of F ⊆ E, let U∗

F ⊆ V be the unique set such that δ(U∗
F )∩E = F and

r 6∈ U∗
F . We claim that for this F , constraint (6.15) is tightest for U = U∗

F . To see this,
note first that |C(d)∩ δ(U)| is always even (since in traversing the cycle C(d), we enter U
as many times as we leave); second, that |C(d) ∩ δ(U∗

F )|/2 = ⌈|pd ∩ F |/2⌉; third, that for
any other U ′ such that F ⊆ δ(U ′), |C(d) ∩ δ(U ′)|/2 is an integer greater than or equal to
|pd ∩ F |/2.

Hence, there is no loss of generality in assuming U = U∗
F in constraint (6.15). Rewriting,

it becomes
∑

d

yd(|pd ∩ F | − ⌈|pd ∩ F |/2⌉) ≤ (c(F )− 1)/2 for c(F ) odd;

finally, since t = ⌊t/2⌋+ ⌈t/2⌉ for all integers t, the theorem follows.

Interestingly, results of Garg et al. [87, preliminary version] show that (6.9)–(6.11) is
also integral in unit-capacity edge-WMFT. (In fact they show that an intermediate LP
between the naive one and (6.9)–(6.11) is integral — specifically they only require (6.11)
for subsets of edges forming a star of odd size. They don’t give a full proof; the detailed
proof is obtained by observing that the LP is locally (around each vertex) just the matching
LP for edges around that vertex, and one needs to observe that you can paste together
convex combinations around various vertices.) Tangentially, we observe their results imply
a good approximation for another special case of edge-WMFT.

Proposition 6.25. There is a 3/2-approximation algorithm for edge-WMFT when all
edges have the same capacity.

Proof. (Sketch.) Let µ be the common capacity. Let x be an optimal integral solution;
x
µ
is a feasible fractional flow for unit capacities; then 2

3
x
µ
is a feasible fractional solution

to (6.9)–(6.11) (for unit capacities). By the algorithmic result of [87] one may find the
optimal integral solution y for unit capacities; by the polyhedral result of [87] its value is
at least 2

3
cx
µ
. Then µy is a feasible integral solution (for the original capacities) with value

at least 2
3
cx, i.e. at least 2/3 optimal.
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A similar argument establishes that the integrality gap of the LP (6.9)–(6.11) is at most
3/2, when all capacities are unit.

It is possible to synthesize our Theorems 6.4 and 6.23 with corresponding results of
[87] for the unit-capacity case, by “gluing” all-ror instances at capacity-1 edges. For this
more general class of problems we find that (6.9)–(6.11) is integral (and hence the optimal
integral flow can be found in polynomial time) although we omit full details of this rather
esoteric result.

6.5 Closing Remarks

Caprara and Fischetti [30] gave a strongly polynomial-time algorithm to separate over the
family (6.11) of inequalities. Is the polyhedral formulation (6.9)–(6.11) useful in designing a
better approximation algorithm for edge-WMFT? One roadblock is that normal uncrossing
techniques seem to fail on that LP.

There is a close relation between WMFT and its “demand” version where every flow
variable is restricted according to yd ∈ {0, rd} for some constants {rd}d∈D. E.g., combining
IteratedFlowSolver and Cor. 3.5 of [39], we obtain a 1+O(

√
rmax/µ) approximation

for demand WMFT where rmax is the maximum demand. Shepherd and Vetta [180] showed
that when the tree is a star, the O(rmax)-relaxed integrality gap of the demand analogue of
(F) is 1, and we can develop this result to get a 1+O(rmax/µ)-approximation algorithm for
demand WMFT on stars (this follows from Theorem 7.14 in the next chapter). It would
be interesting to demonstrate the same results on arbitrary trees.

When every edge has capacity 1, edge-WMFT is exactly solvable [87], and Theo-
rem 6.1(a) gives a 3-approximation when there are no capacity-1 edges. Can we com-
bine these results to improve upon the 4-approximation by Chekuri et al. [39] for general
instances?
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Chapter 7

Approximability of Sparse Integer
Programs

The main focus of this chapter is a pair of new approximation algorithms for sparse
integer programs. First, for covering integer programs {min cx : Ax ≥ b, 0 ≤ x ≤ d}
where A has at most k nonzeroes per row, we give a k-approximation algorithm. (We
assume A, b, c, d are nonnegative.) For any k ≥ 2 and ǫ > 0, if P 6= NP this ratio cannot
be improved to k − 1 − ǫ, and under the unique games conjecture this ratio cannot be
improved to k − ǫ. One key idea is to replace individual constraints by others that have
better rounding properties but the same nonnegative integral solutions; another critical
ingredient is knapsack-cover inequalities. Second, for packing integer programs {max cx :
Ax ≤ b, 0 ≤ x ≤ d} where A has at most k nonzeroes per column, we give a (2k2 + 2)-
approximation algorithm. Our approach builds on the iterated LP relaxation framework.

7.1 Introduction and Prior Work

In this chapter we investigate the following problem: what is the best possible approxi-
mation ratio for integer programs where the constraint matrix is sparse? To put this in
context we recall a famous result of Lenstra [150]: integer programs with a constant num-
ber of variables or a constant number of constraints can be solved in polynomial time. Our
investigations analogously ask what is possible if the constraints each involve at most k
variables, or if the variables each appear in at most k constraints.

Rather than consider the full class of all integer programs, we consider only packing
and covering problems. One sensible reason for this is that every integer program can be
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rewritten (possibly with additional variables) in such a way that each constraint contains
at most 3 variables and each variable appears in at most 3 constraints, if mixed positive
and negative coefficients are allowed. Aside from this, packing programs and covering
programs represent a substantial portion of the literature on integer programs; and sparse
programs of this type are interesting in their own right as “multiple-knapsack” problems
where each item affects a bounded number of knapsacks, or each knapsack is affected by a
bounded number of items.

We use CIP (resp. PIP) as short for covering (resp. packing) integer program, which
is any integer program of the form {min cx : Ax ≥ b, 0 ≤ x ≤ d} (resp. {max cx : Ax ≤
b, 0 ≤ x ≤ d}) with A, b, c, d nonnegative and rational. Note that CIPs are sometimes
called multiset multicover when A and b are integral. We call constraints x ≤ d multiplicity
constraints (also known as capacity constraints). We allow for entries of d to be infinite,
and without loss of generality, all finite entries of d are integral. An integer program with
constraint matrix A is k-row-sparse, or k-RS, if each row of A has at most k entries; we
define k-column-sparse (k-CS) similarly. As a rule of thumb we ignore the case k = 1, since
such problems trivially admit fully polynomial-time approximation schemes (FPTAS’s) or
poly-time algorithms. The symbol 0 denotes the all-zero vector, and similarly for 1. For
covering problems an α-approximation algorithm is one that always returns a solution with
objective value at most α times optimal; for packing, the objective value is at least 1/α
times optimal. We use n to denote the number of variables andm the number of constraints
(i.e. the number of rows of A).

7.1.1 k-Row-Sparse Covering IPs: Previous and New Results

The special case of 2-RS CIP where A, b, c, d are 0-1 is the same as Min Vertex Cover,
which is APX-hard. More generally, 0-1 k-RS CIP is the same as k-Bounded Hypergraph
Min Vertex Cover (a.k.a. Set Cover with maximum frequency k) which is not approximable
to k− 1− ǫ for any fixed ǫ > 0 unless P=NP [55] (k− ǫ under the unique games conjecture
[130]). This special case is known to admit a matching positive result: set cover with
maximum frequency k can be k-approximated by direct rounding of the naive LP [113] or
local ratio/primal-dual methods [12].

The following results are known for other special cases of k-RS CIP with multiplic-
ity constraints: Hochbaum [108] gave a k-approximation in the special case that A is
0-1; Hochbaum et al. [115] and Bar-Yehuda & Rawitz [13] gave pseudopolynomial 2-
approximation algorithms for the case that k = 2 and d is finite. For the special case
d = 1, Carr et al. [32, §2.6] gave a k-approximation, and Fujito & Yabuta [80] gave a
primal-dual k-approximation. Moreover [32, 80] claim a k-approximation for general d,
but there seems to have been some oversights as the papers do not provide full proofs and
their methods alone seem to be insufficient for general d. Briefly, [32] claims d = 1 holds
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without loss of generality, which is true for some of the applications in [32], but seems false
for k-RS CIPs; [80] sketches a reduction that seems faulty, and omits many crucial details
for lack of space. Our first main result, given in Section 7.2, is a simple and correct proof
of the same claim.

Theorem 7.1. There is a polynomial time k-approximation algorithm for k-RS CIPs with
multiplicity constraints.

Our approach is to first consider the special case that there are no multiplicity con-
straints (i.e. dj = +∞ for all j); we then extend to the case of finite d via knapsack-cover
inequalities, using linear programming (LP) techniques from Carr et al. [32]. A (k + 1)-
approximation algorithm is relatively easy to obtain using LP rounding; in order to get
the tighter ratio k, we replace constraints by other “Z+-equivalent” constraints (see Defini-
tion 7.7) with better rounding properties. The algorithm requires a polynomial-time linear
programming subroutine.

Independently of our work, recent work of Koufogiannakis & Young [143, 146, 144, 145]
also gives a full and correct proof of Theorem 7.1. Their primal-iterative approach works
for a broad generalization of k-RS CIPs and runs in low-degree strongly polynomial time.
Our approach has the generic advantage of giving new ideas that can be used in conjunction
with other LP-based methods, and the specific advantage of giving integrality gap bounds.
See Section 7.2.2 for more details.

7.1.2 k-Column-Sparse Packing IPs: Previous and New Results

Before 2009, no constant-factor approximation was known for k-CS PIPs, except in special
cases. If every entry of b is Ω(logm) then randomized rounding provides a constant-factor
approximation. Demand matching is the special case of 2-CS PIP where (i) in each column
of A all nonzero values in that column are equal to one another and (ii) no two columns have
their nonzeroes in the same two rows. Shepherd & Vetta [180] showed demand matching
is APX-hard but admits a (11

2
−
√
5)-approximation algorithm when d = 1; their approach

also gives a 7
2
-approximation for 2-CS PIP instances satisfying (i). Results of Chekuri et

al. [39] yield a 11.542k-approximation algorithm for k-CS PIP instances satisfying (i) and
such that the maximum entry of A is less than the minimum entry of b.

The special case of k-CS PIP where A, b are 0-1 is the same as min-weight k-set packing,
hypergraph matching with edges of size ≤ k, and strong independent sets in hypergraphs
with degree at most k. The best approximation ratio known for this problem is (k+1)/2+ǫ
[17] for general weights, and k/2+ ǫ when c = 1 [119]. For k = 3 a 2-approximation in the
weighted case is known due to Lau and Chan [37]. The best lower bound is due to Hazan
et al. [111], who showed Ω(k/ ln k)-inapproximability unless P=NP, even for c = 1.

Our second main result, given in Section 7.3, is the following result.
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Theorem 7.2. There is a polynomial time (2k2 + 2)-approximation algorithm for k-CS
PIPs with multiplicity constraints.

Our methodology begins by using iterated LP relaxation [181] to find an integral solution
with super-optimal value, but violating some constraints in an additively-bounded way.
Then we use a colouring argument to decompose the violating solution into O(k2) feasible
solutions.

The original arXiv eprint and conference version [172] of this work gave a O(k22k)-
approximation for k-CS PIP using iterated relaxation plus a randomized decomposition
approach; that was the first approximation algorithm for this problem with ratio that de-
pends only on k. The O(k22k)-approximation does not appear in this version. Subsequent
to the initial arXiv version [172] in April 2009, several better approximations to k-CS PIP
were discovered. C. Chekuri, A. Ene and N. Korula (personal communication) obtained an
O(k2k) algorithm using randomized rounding, and an O(k2)-approximation in May. The
latter was independently matched by the author and D. Chakrabarty, as it turns out using
the same simple approach, which appears in this version. Finally, Bansal, Korula, and
Nagarajan [11] gave in August 2009 a simple and elegant O(k)-approximation algorithm
based on randomized rounding with a careful alteration argument.

7.1.3 Other Related Work

Srinivasan [184, 185] showed that k-CS CIPs admit a O(log k)-approximation. Kolliopoulos
and Young [134] extended this result to handle multiplicity constraints. There is a matching
hardness result: it is NP-hard to approximate k-Set Cover, which is the special case where
A, b, c are 0-1, better than ln k − O(ln ln k) for any k ≥ 3 [188]. Hence for k-CS CIP
the best possible approximation ratio is Θ(log k). A (k + ǫ)-approximation algorithm can
be obtained by separately applying an approximation scheme to the knapsack problem
corresponding to each constraint. Hochbaum [114] showed 2-CS CIPs are NP-hard to
optimize and gave a bicriteria approximation algorithm. Although 0-1 2-CS CIP is Edge
Cover which lies in P, 2-CS CIP in general is NP-hard to (17/16− ǫ)-approximate, due to
methods from [35], even if A has 2 equal nonzeroes per column and d is 0-1 or d is all-+∞.
See Appendix 7.5 for details.

The special case of 2-RS PIP where A, b, c are 0-1 is the same as Max Independent Set,
which is not approximable within n/2log

3/4+ǫ n unless NP ⊂ BPTIME(2log
O(1) n) [129]. On

the other hand, n-approximation of any packing problem is easy to accomplish by looking
at the best singleton-support solution. A slightly better n/t-approximation, for any fixed t,
can be accomplished by exhaustively guessing the t most profitable variables in the optimal
solution, and then solving the resulting t-dimensional integer program to optimality via
Lenstra’s result [150].
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A closely related problem is k-Dimensional Knapsack, which are PIPs or CIPs with
at most k constraints (in addition to nonnegativity constraints). See Chapter 9 for more
background on this problem.

Semimodular Optimization

The recent results mentioned here all assume d = 1.

For minimizing a submodular objective subject to k-row sparse covering constraints,
three k-approximations were recently published, one in the framework of Koufogiannakis
& Young [143, 146, 144, 145], one by Iwata and Nagano [123], and one by Goel et al. [92]
for the case k = 2.

For maximizing a monotone submodular function subject to k-column sparse packing
constraints, Bansal et al. [11] gave a O(k)-approximation algorithm.

It is not clear whether anyone has considered the problem of submodular k-CS CIPs.
Some work has been done already on submodular set cover, for example see Wolsey [199].
One might hope to use results of Kolliopoulos & Young [134] (see also the references therein
including work by Srinivasan) to get an O(ln k) approximation for this problem.

7.1.4 Summary

We summarize the existing and new results in Table 7.1. Note that in all four cases, the
strongest known lower bounds are obtained even in the special case that A, b, c, d are 0-1.

k-Column-Sparse k-Row-Sparse
lower bound upper bound lower bound upper bound

Packing Ω(k/ ln k) 2k2 + 2 n1−o(1) ǫn
Covering ln k − O(ln ln k) O(ln k) k − ǫ k

Table 7.1: The landscape of approximability of sparse integer programs. Our main results
are in boldface.

7.2 k-Approximation for k-Row-Sparse CIPs

By scaling rows and clipping coefficients that are too high (i.e. setting Aij = min{1, Aij}),
there is no loss of generality in the following definition.

131



7.2. k-Approximation for k-Row-Sparse CIPs

Definition 7.3. A k-RS CIP is an integer program {min cx : Ax ≥ 1, 0 ≤ x ≤ d} where
A is k-RS and all entries of A are at most 1.

To begin with, we focus on the case dj = +∞ for all j, which we will call unbounded
k-RS CIP, since it already illustrates the essence of our new technique. Motivated by LP
rounding methods, we make the following definition, in which x is a vector-valued variable
and α is a vector of real coefficients. Throughout, we assume coefficients are nonnegative.
When we apply ⌊·⌋ to vectors we mean the component-wise floor.

Definition 7.4. A constraint αx ≥ 1 is ρ-roundable for some ρ > 1 if for all nonnegative
real x, (αx ≥ 1) implies (α⌊ρx⌋ ≥ 1).

Note that ρ-roundability implies ρ′-roundability for ρ′ > ρ. The relevance of this
property is explained by the following proposition.

Proposition 7.5. If every constraint in an unbounded covering integer program is ρ-
roundable, then there is a ρ-approximation algorithm for the program.

Proof. Let x∗ be an optimal solution to the program’s linear relaxation. Then cx∗ is a
lower bound on the cost of any optimal solution. Thus, ⌊ρx∗⌋ is a feasible solution with
cost at most ρ times optimal.

Another simple observation helps us get started.

Proposition 7.6. The constraint αx ≥ 1 is (1 +
∑

i αi)-roundable.

Proof. Let ρ = (1+
∑

i αi). Since ⌊t⌋ > t− 1 for any t, if αx ≥ 1 for a nonnegative x, then

α⌊ρx⌋ ≥
∑

i

αi(ρxi − 1) = ρ
∑

i

αixi −
∑

i

αi ≥ ρ · 1− (ρ− 1) = 1,

as needed.

Now consider an unbounded k-RS CIP. Since each constraint has at most k coefficients,
each less than 1, it follows from Proposition 7.6 that every constraint in these programs
is (k + 1)-roundable, and so such programs admit a (k + 1)-approximation algorithm by
Proposition 7.5. It is also clear that we can tighten the approximation ratio to k for
programs where the sum of the coefficients in every constraint (row) is at most k − 1.
What we will now do is show that rows with sum in (k − 1, k] can be replaced by other
rows which are k-roundable.

Definition 7.7. Two constraints αx ≥ 1 and α′x ≥ 1 are Z+-equivalent if for all nonneg-
ative integral x, (αx ≥ 1) ⇔ (α′x ≥ 1).
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In other words, αx ≥ 1 and α′x ≥ 1 are Z+-equivalent if αx ≥ 1 is valid for {x : x ≥
0, α′x ≥ 1} and α′x ≥ 1 is valid for {x : x ≥ 0, αx ≥ 1}.

Proposition 7.8. Every constraint αx ≥ 1 with at most k nonzero coefficients is Z+-
equivalent to a k-roundable constraint.

Before proving Proposition 7.8, let us illustrate its use.

Theorem 7.9. There is a polynomial time k-approximation algorithm for unbounded k-RS
CIPs.

Proof. Using Proposition 7.8 we replace each constraint with a Z+-equivalent k-roundable
one. The resulting IP has the same set of feasible solutions and the same objective function.
Therefore, Proposition 7.5 yields a k-approximately optimal solution.

With the framework set up, we begin the technical part: a lemma, then the proof of
Proposition 7.8.

Lemma 7.10. For any positive integers k and v, the constraint
∑k−1

i=1 xi +
1
v
xk ≥ 1 is

k-roundable.

Proof. Let αx ≥ 1 denote the constraint. If x satisfies the constraint, then the maximum
of x1, x2, . . . , xk−1 and

1
v
xk must be at least 1/k. If xi ≥ 1/k for some i 6= k then ⌊kxi⌋ ≥ 1

and so α⌊kx⌋ ≥ 1 as needed. Otherwise xk must be at least v/k and so ⌊kxk⌋ ≥ v which
implies α⌊kx⌋ ≥ 1 as needed.

Proof of Proposition 7.8. If the sum of coefficients in the constraint is k− 1 or less, we are
done by Proposition 7.6, hence we assume the sum is at greater than k − 1. Without loss
of generality (by renaming) such a constraint is of the form

k∑

i=1

xiαi ≥ 1 (7.1)

where 0 < α ≤ 1, k − 1 <
∑

i αi ≤ k, and the αi’s are nonincreasing in i.

Define the support of x to be supp(x) := {i | xi > 0}. Now αk−1 + αk > 1 since
k − 1 <

∑
i<k−1 αi + αk−1 + αk ≤ αk−1 + αk + (k − 2). Since the αi are nonincreasing,

αi+αj > 1 for any i < k, j ≤ k; more generally, any integral x ≥ 0 with | supp(x)| ≥ 2 must
satisfy αx ≥ 1. To express the set of all feasible integral solutions, let t be the maximum
i for which αi = 1 (or t = 0 if no such i exists), let ei denote the ith unit basis vector, and
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7.2. k-Approximation for k-Row-Sparse CIPs

let v = ⌈1/αk⌉. Then it is not hard to see that the nonnegative integral solution set to
constraint (7.1) is the disjoint union

{x | x ≥ 0, | supp(x)| ≥ 2} ⊎ {zei | 1 ≤ i ≤ t, z ≥ 1}
⊎{zei | t < i < k, z ≥ 2} ⊎ {zek | z ≥ v}. (7.2)

The special case t = k (i.e. α1 = α2 = · · · = αk = 1) is already k-roundable by Lemma
7.10, so assume t < k. Consider the constraint

t∑

i=1

xi +
k−1∑

i=t+1

v − 1

v
xi +

1

v
xk ≥ 1. (7.3)

Every integral x ≥ 0 with | supp(x)| ≥ 2 satisfies constraint (7.3). By also considering the
cases | supp(x)| ∈ {0, 1}, it is easy to check that constraint (7.3) has precisely Equation (7.2)
as its set of feasible solutions, i.e. constraint (7.3) is Z+-equivalent to αx ≥ 1. If t < k− 1,
the sum of the coefficients of constraint (7.3) is k − 1 or less, so it is k-roundable by
Proposition 7.6. If t = k − 1, constraint (7.3) is k-roundable by Lemma 7.10. Thus in
either case we have what we wanted.

7.2.1 Multiplicity Constraints

We next obtain approximation guarantee k even with multiplicity constraints x ≤ d. For
this we use knapsack-cover inequalities. These inequalities represent residual covering prob-
lems when a set of variables is taken at maximum multiplicity. Wolsey [199] studied
inequalities like this for 0-1 problems to get a primal-dual approximation algorithm for
submodular set cover. The LP we use is most like what appears in Carr et al. [32] and
Kolliopoulos & Young [134], but we first replace each row with a k-roundable one.

Specifically, given a CIP {min cx | Ax ≥ 1, 0 ≤ x ≤ d} with A, d nonnegative, we now
define the knapsack cover LP. Note that we allow d to contain some entries equal to +∞. For
a subset F of supp(Ai) such that

∑
j∈F Aijdj < 1, define A

(F )
ij = min{Aij, 1−

∑
j∈F Aijdj}.

Following [32, 134] we define the knapsack cover LP for our problem to be

KC-LP =
{
min cx : 0 ≤ x ≤ d;

∀i, ∀F ⊂ supp(Ai) s.t.
∑

j∈F

Aijdj < 1 :
∑

j 6∈F

A
(F )
ij xj ≥ 1−

∑

j∈F

Aijdj

}
.

Theorem 7.1. There is a polynomial time k-approximation algorithm for k-RS CIPs.
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Proof. Using Proposition 7.8, we assume all rows of A are k-roundable. Let x∗ be the
optimal solution to KC-LP. Define x̂ = min{d, ⌊kx∗⌋}, where min denotes the component-
wise minimum. We claim that x̂ is a feasible solution to the CIP, which will complete the
proof. In other words, we want to show for each row i that Aix̂ ≥ 1.

Fix any row i and define F = {j ∈ supp(Ai) | x∗
j ≥ dj/k}, i.e. F is those variables in

the constraint that were rounded to their maximum multiplicity. If F = ∅ then, by the
k-roundability of Aix ≥ 1, we have that Aix̂ = Ai⌊kx∗⌋ ≥ 1 as needed. So assume F 6= ∅.

If
∑

j∈F Aijdj ≥ 1 then the constraint Aix̂ ≥ 1 is satisfied; consider otherwise. Since
⌊kx∗

j⌋ > kx∗
j − 1 for j 6∈ F , since x∗ satisfies the knapsack cover constraint for i and F ,

and since A
(F )
ij ≤ 1−∑j∈F Aijdj for each j, we have

∑

j 6∈F

A
(F )
ij x̂j ≥ k

∑

j 6∈F

A
(F )
ij x∗

j −
∑

j 6∈F

A
(F )
ij

≥ k
(
1−

∑

j∈F

Aijdj

)
−
∣∣∣{j : j ∈ supp(Ai)\F}

∣∣∣
(
1−

∑

j∈F

Aijdj

)
.

Since F 6= ∅ and | supp(Ai)| ≤ k, this gives
∑

j 6∈F A
(F )
ij x̂j ≥ 1−∑j∈F Aijdj . Rearranging,

and using the facts (∀j : Aij ≥ A
(F )
ij ) and (∀j ∈ F : dj = x̂j), we deduce Aix̂ ≥ 1, as

needed.

For fixed k, we may solve KC-LP explicitly, since it has polynomially many constraints.
For general k, we follow the ellipsoid algorithm-based approach of [32, 134]: rather than
solve KC-LP in polynomial time, we obtain a solution x∗ which is optimal for a modified
KC-LP having not all knapsack-cover constraints, but at least all those for the them specific
(i, F ) pairs (depending on x∗) used in our proof; thus we still get a k-approximation in
polynomial time.

7.2.2 Integrality Gap Bounds

Recall the discussion of integrality gaps and LP-relativity from Section 1.2 to motivate
this section. In discussing integrality gaps for k-RS CIP problems, we say that the naive
LP relaxation of {min cx | x integral, Ax ≥ b, 0 ≤ x ≤ d} is the LP obtained by removing
the restriction of integrality. Earlier, we made the assumption that Aij ≤ bi for all i, j; let
us call this the clipping assumption. The clipping assumption is without loss of generality
for the purposes of approximation guarantees, however, it affects the integrality gap of the
naive LP for unbounded k-RS CIP, as we now illustrate. Without the clipping assumption,
the integrality gap of k-RS CIP problems can be unbounded as a function of k; indeed
for any integer M ≥ 1 the simple covering problem {min x1 | [M ]x1 ≥ 1, 0 ≤ x} has
integrality gap M . With the clipping assumption, our discussion of roundability shows
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in unbounded instances the integrality gap of the naive LP is at most k + 1, since the
roundability framework gives an LP-relative approximation algorithm.

Even under the clipping assumption, k-RS CIPs with multiplicity constraints can have
large integrality gaps — e.g. {min x2 | [MM ]x ≥ M+1, 0 ≤ x, x1 ≤ 1} has integrality gapM .
For bounded instances, the knapsack-cover inequalities represent a natural generalization
of the clipping assumption, namely, we perform a sort of clipping even considering that any
subset of the variables are chosen to their maximum extent. (Note also that if di = +∞
for all i, then KC-LP is just the naive LP with the clipping assumption.)

The methods in Section 7.2 show that KC-LP has integrality gap at most k + 1 on
k-RS CIP instances (since our algorithms are LP-relative). Our methods also show that if
we replace each row with a k-roundable one (Proposition 7.8), then the resulting KC-LP
has integrality gap at most k. We are actually unaware of any k-RS CIP instance with
k > 1 where the integrality gap of KC-LP (without applying Proposition 7.8) is greater
than k; resolving whether such an instance exists would be interesting. Some special cases
are understood, e.g. Koufogiannakis and Young [145] give a primal-dual k-approximation
for k-CS PIP in the case A is 0-1, also known as hypergraph b-matching.

7.3 Column-Sparse Packing Integer Programs

In this section we give an approximation algorithm for k-column-sparse packing integer pro-
grams with approximation ratio 2k2+2, and better results for k = 2. The results hold even
in the presence of multiplicity constraints x ≤ d. Broadly speaking, our approach is rooted
in the demand matching algorithm of Shepherd & Vetta [180]; their path-augmenting al-
gorithm can be viewed as a restricted form of iterated relaxation, which is the main tool in
our new approach. Iterated relaxation yields a superoptimal solution that violates some
constraints, and with a colouring/decomposition approach we are able to obtain a feasible
solution while retaining at least a constant fraction of the weight.

For a k-CS PIP P let L(P) denote its linear relaxation {max cx | Ax ≤ b, 0 ≤ x ≤ d}.
We use the set I to index the constraints and J to index the variables in our program. We
note a simple assumption that is without loss of generality for the purposes of obtaining
an approximation algorithm: Aij ≤ bi for all i, j. To see this, note that if Aij > bi, then
every feasible solution has xj = 0 and we can simply delete xj from the instance.

Now we give the iterated rounding method which is key for our approach. Let the
term entry mean a pair (i, j) ∈ I × J such that Aij > 0. Our iterated rounding algorithm
computes a set S of special entries; for such a set we let AS→0 denote the matrix obtained
from A by zeroing out the special entries.
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Lemma 7.11. Given a k-CS PIP P, we can in polynomial time find S and nonnegative
integral vectors x0, x1 with x0 + x1 ≤ d and x1 ≤ 1 such that

(a) c(x0 + x1) ≥ OPT(L(P))

(b) ∀i ∈ I, we have |{j : (i, j) ∈ S}| ≤ k

(c) Ax0 + AS→0x
1 ≤ b.

In particular, since x1 is 0-1, x0+x1 is a solution with super-optimal objective value, and
it violates each constraint in an additively bounded way (i.e., Ai(x

0+x1) ≤ bi+kmaxj Aij

for all i). We now give the proof.

Proof of Lemma 7.11. First, we give a sketch. Let supp(Aj) := {i ∈ I | Aij > 0}, which
has size at most k, and similarly supp(Ai) := {j ∈ J | Aij > 0}. Let x∗ be an extreme
optimal solution to L(P). The crux of our approach deals with the case that x∗ has no
integral values: then x∗ is a basic feasible solution, and there is a set of supp(x∗) = |J |
linearly independent tight constraints for x∗, so |I| ≥ |J |. By double-counting there is
some i with | supp(Ai)| ≤ k, which is what permits iterated relaxation: we discard the
constraint for i and go back to the start.

Figure 7.1 contains pseudocode for our iterated rounding algorithm, IteratedSolver.

IteratedSolver(A, b, c, d)

1: Let x∗ be an extreme optimum of {max cx | x ∈ RJ ; 0 ≤ x ≤ d;Ax ≤ b}
2: Let x0 = ⌊x∗⌋, x1 = 0, J ′ = {j ∈ J | x∗

j 6∈ Z}, I ′ = I
3: loop
4: Let x∗ be an extreme optimum of {max cx | x ∈ [0, 1]J

′

;Ax0+AS→0(x+ x1) ≤ b}
5: For each j ∈ J ′ with x∗

j = 0, delete j from J ′

6: For each j ∈ J ′ with x∗
j = 1, set x1

j = 1 and delete j from J ′

7: If J ′ = ∅, terminate and return S, x0, x1

8: for each i ∈ I ′ with | supp(Ai) ∩ J ′| ≤ k do
9: Mark each entry {(i, j) | j ∈ supp(Ai) ∩ J ′} special and delete i from I ′

10: end for
11: end loop

Figure 7.1: Algorithm for k-CS PIP.

Now we explain the pseudocode. The x0 term can be thought of as a preprocessing
step which effectively reduces the general case to the special case that d = 1. The term

137



7.3. Column-Sparse Packing Integer Programs

x1 ∈ {0, 1}J grows over time. The set J ′ represents all j that could be added to x1 in the
future, but have not been added yet. The set I\I ′ keeps track of constraints that have
been dropped from the linear program so far.

Since x∗ is a basic feasible solution we have |I ′| ≥ |J ′| in Step 8. Each set | supp(Aj)∩I ′|
for j ∈ J ′ has size at most k. By double-counting

∑
i∈I′ | supp(Ai) ∩ J ′| ≤ k|J ′| ≤ k|I ′|

and so some i ∈ I ′ has | supp(Ai) ∩ J ′| ≤ k. Thus |I ′| decreases in each iteration, and the
algorithm has polynomial running time. (In fact, it is not hard to show that there are at
most O(k log |I|) iterations.)

The algorithm has the property that c(x0+x1+x∗) does not decrease from one iteration
to the next, which implies property (a). Properties (b) and (c) can be seen immediately
from the definition of the algorithm.

Now we give the proof of the main result in this section. Here and later we abuse
notation and identify vectors in {0, 1}J with subsets of J , for notational convenience.

Theorem 7.2. There is a polynomial time (2k2 + 2)-approximation algorithm for k-CS
PIPs with multiplicity constraints.

Proof. The main idea in the proof is to partition the set x1 into 2k2 + 1 sets which are

all feasible (i.e., we get x1 =
∑2k2+1

j=1 yj for 0-1 vectors yj each with Ayj ≤ b). If we can
establish the existence of such a partition, then we are done as follows: the total profit of
the 2k2 +2 feasible solutions x0, y1, . . . , y2k

2+1 is c(x0 + x1) ≥ OPT, so the most profitable
is a (2k2 + 2)-approximately optimal solution.

Call j, j′ ∈ x1 in conflict at i if Aij > 0, Aij′ > 0 and at least one of (i, j) or (i, j′)
is special. We claim that if y ⊂ x1 and no two elements of y are in conflict, then y is
feasible; this follows from Lemma 7.11(c) together with the fact that Aij ≤ bi for all i, j.
(Explicitly, for each constraint we either just load it with a single special entry, or all
non-special entries, both of which are feasible.) In the remainder of the proof, we find a
(2k2 + 1)-colouring of the set x1 such that similarly-coloured items are never in conflict;
then the colour classes give the needed sets yj and we are done.

To find our desired colouring, we create a conflict digraph which has node set x1 and
an arc (directed edge) from j to j′ whenever j, j′ are in conflict at i and (i, j) is special.
Rewording, there is an arc (j, j′) iff some (i, j) ∈ S and Aij′ > 0. (If (i, j′) is also special,
this also implies an arc (j′, j).) The key observation is that each node j ∈ x1 has indegree
bounded by k2, i.e. there are at most k2 choices of j such that (j, j′) is an arc: to see this
note #{i | Aij′ > 0} ≤ k, and each i in this set has #{j | (i, j) ∈ S} ≤ k. Now we use the
following lemma, which completes the proof.

Lemma 7.12. A digraph with maximum indegree d has a 2d+ 1-colouring.
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Proof. We use induction on the number of nodes in the graph, with the base case being the
empty graph Now suppose the graph is nonempty. The average indegree is at most d, and
the average indegree equals the average outdegree. Hence some node n has outdegree at
most the average, which is d. In total, this node has at most 2d neighbours. By induction
there is a (2d+1)-colouring when we delete n, then we can extend it to the whole digraph
by assigning n any colour not used by its neighbours.

(We remark that Lemma 7.12 is tight, e.g. arrange 2d+1 vertices on a circle and include
an arc from each vertex to its d clockwise-next neighbours; this directed K2d+1 cannot be
2d-coloured.) This ends the proof of Theorem 7.2.

Finally, we give some small improvements for the case k = 2, using some insights due
to Shepherd & Vetta [180]. A 2-CS PIP is non-simple if there exist distinct j, j′ with
supp(Aj) = supp(Aj′) and |Aj| = 2. Otherwise, it is simple.

Theorem 7.13. There is a deterministic 4-approximation algorithm for 2-CS PIPs. There
is also a randomized 6 −

√
5 ≈ 3.764-approximation algorithm for simple 2-CS PIPs with

d = 1.

(Sketch). Since we are dealing with a 2-CS PIP, each supp(Aj) is an edge or a loop on
vertex set I; we abuse notation and directly associate j with an edge/loop. Consider
the initial value of J ′, i.e. after executing Step 2. Then we claim that the graph (I, J ′)
has at most one cycle per connected component; to see this, note that any connected
component with two cycles would have more edges than vertices, which contradicts the
linear independence of the tight constraints for the initial basic solution x∗.

We modify IteratedSolver slightly. Immediately after Step 2, let M ⊂ J ′ consist
of one edge from each cycle in (I, J ′), and set J ′ := J ′\M . Then M is a matching (hence
a feasible 0-1 solution) and the new J ′ is acyclic. Modify the cardinality condition in Step
8 to | supp(Ai) ∩ J ′| ≤ 1 (instead of ≤ 2); since J ′ is acyclic, it is not hard to show the
algorithm will still terminate, and ∀i ∈ I, we have |{j : (i, j) ∈ S}| ≤ 1.

To get the first result, we use a colouring argument from [180, Thm. 4.1] which shows
that x1 can be decomposed into two feasible solutions x1 = y1+ y2. We find that the most
profitable of x0,M, y1, y2 is a 4-approximately optimal solution.

For the second result, we instead apply a probabilistic technique from [180, §4.3].
They define a distribution over subsets of the forest x1; let z be the random variable
indicating the subset. Let p = 1

20
(5 +

√
5). Say that an edge ii′ is compatible with z

if z neither contains an edge with a special endpoint at i, nor at i′. The distribution
has the properties that z is always feasible for the PIP, Pr[j ∈ z] = p for all j ∈ x1,
and Pr[supp(Aj) compatible with z] ≥ p for all j ∈ x0. (Simplicity implies that x0 and
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x1 have no edge in common, except possibly loops, which is needed here.) Finally, let
w denote the subset of x0 compatible with z. Then z + w is a feasible solution, and
E[c(z+w)] ≥ pc(x1+x0). Hence the better solution of z+w and M is a 1+1/p = (6−

√
5)-

approximately optimal solution.

7.3.1 Improvements For High Width

The width W of an integer program is minij bi/Aij, taking the inner term to be +∞ when
Aij = 0. Note that without loss of generality, W ≥ 1. From now on let us normalize each
constraint so that bi = 1; then a program has width ≥ W iff every entry of A is at most
1/W .

In many settings better approximation can be obtained as W increases. For exam-
ple in k-RS CIPs with b = 1, the sum of each row of A is at most k/W , so Proposi-
tions 7.5 and 7.6 give a (1 + k/W )-approximation algorithm. Srinivasan [184, 185] gave
a (1 + ln(1 + k)/W )-approximation algorithm for unbounded k-CS CIPs. Using group-
ing and scaling techniques introduced by Kolliopoulos and Stein [133], Chekuri et al. [39]
showed that no-bottleneck demand multicommodity flow in a tree admits a (1+O(1/

√
W ))-

approximation algorithm, and gave general sufficient conditions for a problem to admit a
(1 + O(1/

√
W ))-approximation algorithm. Along the same vein, using iterated rounding,

in the previous chapter (Chapter 6) we obtained a (1+O(1/W ))-approximation algorithm
for multicommodity flow and covering in a tree.

Whereas Theorem 7.2 gives an approximation which is quadratic in k, the following
result gives a significant improvement for high width. It treats a somewhat specialized case,
but its main technique — using an LP to guide the reduction of an additively-violating
solution to a feasible solution — is interesting and may have other applications.

Theorem 7.14. There is a polynomial time (1+k/W )/(1−k/W )-approximation algorithm
to solve k-column-sparse PIPs with k/W < 1.

To make Theorem 7.14 more concrete, notice this implies a 1+O(k/W )-approximation
forW > 1.01k. This is tight in the sense that for any fixed k ≥ 4, 1+o(1/W )-approximation
is NP-hard, by results from [87, 137] on approximating multicommodity flows in trees (see
Section 6.2.4).

We remark that after the initial publication of this work [172], Bansal et al. [11] gave
for each fixed integer t ≥ 2 a O(k1/t) approximation for k-CS PIPs with W ≥ t, which is
superior in many cases.

Proof of Theorem 7.14. Run IteratedSolver. From Lemma 7.11 we see that c(x0 +
x1) ≥ OPT and, using the width bound,

A(x0 + x1) ≤ (1 + k/W )1. (7.4)
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Define V(x) by V(x) := {i ∈ I | Aix > 1}, e.g. the set of violated constraints in Ax ≤ 1.

We want to reduce (x0 + x1) so that no constraints are violated. In order to do this we
employ a linear program. Let χ(·) denote the characteristic vector. Our LP, which takes a
parameter x̂, is

R(x̂) : max{cx | 0 ≤ x ≤ x̂, Ax ≤ 1− k

W
χ(V(x̂))}.

We can utilize this LP in an iterated rounding approach, described by the following pseu-
docode.

IteratedReducer

1: Let x̂ := x0 + x1

2: while V(x̂) 6= ∅ do
3: Let x∗ be an extreme optimum of R(x̂)
4: Let x̂ = ⌈x∗⌉
5: end while

We claim that this algorithm terminates, and that the value of cx̂ upon termination is
at least

1− k/W

1 + k/W
c(x0 + x1) ≥ 1− k/W

1 + k/W
OPT.

Once we show these facts, we are done, since the for the final x̂, V(x̂) = ∅ implies x̂ is fea-
sible. As an initial remark, note that each coordinate of x̂ is monotonically nonincreasing,
and so V(x̂) is also monotonically nonincreasing.

Observe that R in the first iteration has 1−k/W
1+k/W

(x0 + x1) as a feasible solution, by

Equation (7.4). Next, note that x which is feasible for R in one iteration is also feasible
for R in the next iteration since V(x̂) is monotonically nonincreasing; hence the value of
cx∗ does not decrease between iterations.

To show the algorithm terminates, we will show that V(x̂) becomes strictly smaller in
each iteration. Note first that if i 6∈ V(x̂), the constraint Aix ≤ 1 is already implied by the
constraint x ≤ x̂. Hence R(x̂) may be viewed as having only |V(x̂)| many constraints other
than the box constraints 0 ≤ x ≤ x̂. Then x, a basic feasible solution to R(x̂), must have at
most |V(x̂)| non-integral variables. In particular, using the fact that the program is k-CS,
by double counting, there exists some i ∈ V(x̂) such that #{j | x∗

j 6∈ Z, Aij > 0} ≤ k. Thus
(using the fact that all entries of A are at most 1/W ) we have Ai⌈x∗⌉ < Aix

∗+k(1/W ) ≤ 1
— so i 6∈ V(⌈x∗⌉), and V(x̂) is strictly smaller in the next iteration, as needed.
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7.4 Open Problems

There remain a few gaps in the types of problems we studied:

• It would be natural to determine whether submodular k-CS CIPs have an O(ln k)
approximation (see Section 7.1.3).

• The approximability of k-CS CIPs is known so far only to be between Ω(k/ ln k) and
O(k); improving this would be significant, since even for the 0-1 case (hypergraph
matching) no o(k) approximation is known.

• Is there any general reason why the special 0-1 cases are essentially as hard as the
general cases?

Although 2-RS IPs are very hard to optimize (at least as hard as Max Independent Set),
the problem of finding a feasible solution to a 2-RS IP is still interesting. Hochbaum et al.
[115] gave a pseudopolynomial-time 2-SAT-based feasibility algorithm for 2-RS IPs with
finite upper and lower bounds on variables. They asked if there is a pseudopolynomial-time
feasibility algorithm when the bounds are replaced by just the requirement of nonnegativity,
which is still open as far as we know. It is strongly NP-hard to determine if IPs of the form
{x ≥ 0 | Ax = b} are feasible when A is 2-CS [114], e.g. by a reduction from 3-Partition;
but for IPs where each variable appears at most twice including in upper/lower bounds,
it appears all that is known is NP-completeness (for example, via the unbounded knapsack
problem [159]).
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7.5 Hardness of Column-Restricted 2-CS CIP

Theorem 7.15. It is NP-hard to approximate 2-CS CIPs of the form {min cx | Ax ≥
b, x is 0-1} and {min cx | Ax ≥ b, x ≥ 0, x integral} within ratio 17/16 − ǫ even if the
nonzeroes of every column of A are equal and A is of the block form

[
A1
A2

]
where each Ai

is 1-CS.
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Proof. Our proof is a modification of a hardness proof from [35] for a budgeted allocation
problem — we thank Deeparnab Chakrabarty for mentioning this to us. We focus on the
version where x is 0-1; for the other version, no major modifications to the proof are needed.
The specific problem described in the statement of the theorem is easily seen equivalent to
the following problem, which we call demand edge cover in bipartite multigraphs : given a
bipartite multigraph (V,E) where each vertex v has a demand bv and each edge e has a cost
ce and value de, find a minimum-cost set E ′ of edges so that for each vertex v its demand
is satisfied, meaning that

∑
e∈E′∩δ(v) de ≥ bv. Our construction also has the property that

ce = de for each edge — so from now on we denote both by the variable de.

The proof uses a reduction from Max-3-Lin(2), which is the following optimization
problem: given a collection {xi}i of 0-1 variables and a family of three-variable modulo-
2 equalities called clauses (for example, x1 + x2 + x3 ≡ 1 (mod 2)), find an assignment
of values to the variables which satisfies the maximum number of clauses. H̊astad [110]
showed that for any ǫ > 0, it is NP-hard to distinguish between the two cases that (1) a
(1 − ǫ) fraction of clauses can be satisfied and (2) at most a (1/2 + ǫ) fraction of clauses
can be satisfied.

Given an instance of Max-3-Lin(2) we construct an instance of demand edge cover as
follows. For each variable xi there are three vertices “xi”, “xi = 0” and “xi = 1”; these
vertices have b-value 4 deg(xi) where deg(xi) denotes the number of clauses containing xi.
For each clause there are four vertices labelled by the four assignments to its variables that
do not satisfy it; for example for the clause x1 + x2 + x3 ≡ 1 (mod 2) we would introduce
four vertices, one of which would be named “x1 = 0, x2 = 0, x3 = 0.” These vertices have
b-value equal to 3. Each vertex “xi = C” is connected to “xi” by an edge with d-value
4 deg(xi); each vertex v of the form “xi1 = C1, xi2 = C2, xi3 = C3” is incident to a total of
nine edges each with d-value 1: three of these edges go to “xij = Cj” for each j = 1, 2, 3.
The construction is illustrated in Figure 7.2.

Let m denote the total number of clauses; so
∑

i deg(xi) = 3m. We claim that the
optimal solution to this demand edge cover instance has cost 24m+3t where t is the least
possible number of unsatisfied clauses for the underlying Max-3-Lin(2) instance. If we can
show this then we are done since H̊astad’s result shows we cannot distinguish whether the
optimal cost is ≥ 24m + 3m(1/2 − ǫ) or ≤ 24m + 3(ǫm); this gives an inapproximability

ratio of 24+3/2−3ǫ
24+3ǫ

→ 17/16 as ǫ → 0, since no approximation ratio could produce a result
within this range of indistinguishability on instances of value ≤ (24 + 3ǫ)m.

Let x∗ denote a solution to the Max-3-Lin(2) instance with t unsatisfied clauses; we
show how to obtain a demand edge cover E ′ of cost 24m + 3t. We include in E ′ the
edge between “xi” and “xi = x∗

i ” for each i; this has total cost
∑

i 4 deg(xi) = 12m. For
each satisfied clause xi + xj + xk ≡ C (mod 2), we include in E ′ all three edges between
“xi = 1 − x∗

i ” and “xi = 1 − x∗
i , xj = x∗

j , xk = x∗
k” and similarly for j, k, and one of

each of the parallel triples between “xi = 1 − x∗
i , xj = 1 − x∗

j , xk = 1 − x∗
k” and its

143



7.5. Hardness of Column-Restricted 2-CS CIP

xi

xi = 0

xi = 1

xi = 0

xi = 1

xj = 0

xj = 1

xk = 0

xk = 1

xi = 1, xj = 1, xk = 1

xi = 1, xj = 0, xk = 0

xi = 0, xj = 1, xk = 0

xi = 0, xj = 0, xk = 1

Figure 7.2: Left: the gadget constructed for each variable xi. The vertices shown as
rectangles have b-value 4 deg(xi); the thick edges have d-value and cost 4 deg(xi). Right:
the gadget constructed for the clause xi + xj + xk ≡ 0 (mod 2). The vertices shown as
rounded boxes have b-value 3; the thin edges each have unit d-value and cost.

neighbours; this has cost 12 for that clause. For each unsatisfied clause xi + xj + xk ≡ C
(mod 2), we include in E ′ any three edges incident to “xi = x∗

i , xj = x∗
j , xk = x∗

k,” as
well as the following twelve edges: the nodes “xi = 1 − x∗

i ” (symmetrically for j, k) and
“xi = 1 − x∗

i , xj = 1 − x∗
j , xk = x∗

k” (symmetrically for j, k) induce a 6-cycle of parallel
triples, and we take two edges out of each triple; this has cost 15 for that clause. It is not
hard to see that this solution is feasible — perhaps the trickiest vertices to check are those
of the form “xi = 1 − x∗

i ,” which are covered by 4 edges for each clause containing them.
The total cost is c(E ′) = 12m+ 12(m− t) + 15t = 24m+ 3t.

To finish the proof we show the following.

Claim 7.16. Given a feasible edge cover E ′, we can find a solution x∗ such that t, the
number of unsatisfied clauses for x∗, satisfies 24m+ 3t ≤ c(E ′).
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Proof. First we claim it is without loss of generality that for each i, E ′ contains exactly
one of the edges incident to “xi”. Clearly at least one of these two edges lies in E ′; if both
do, then remove one (say, the edge between “xi” and “xi = 0”) and add to E ′ any subset
of the other 6 deg(xi) edges incident to “xi = 0” so that the total number of edges incident
on “xi = 0” in E ′ becomes at least 4 deg(xi). The removed edge has d-value 4 deg(xi) and
all other incident edges have d-value 1, so clearly the solution is still feasible and the cost
has not increased.

Define x∗ so that for each i, E ′ contains the edge between “xi” and “xi = x∗
i .” Let

E ′′ denote the edges of E ′ incident on clause vertices (i.e. the edges of E ′ with unit d-
value). For F ⊂ E ′′ their left-contribution, denoted ℓ(F ), is the number of them incident
on vertices of the form “xi = 1 − x∗

i .” Note that ℓ(F ) ≤ |F | for any F . Furthermore for
each unsatisfied clause, all edges incident on its vertex “xi = x∗

i , xj = x∗
j , xk = x∗

k” have
zero left-contribution, but E ′ contains at least three of these edges. Thus the edges of E ′′

incident on that clause’s vertices have ℓ(F ) ≤ |F | − 3. Finally, consider ℓ(E ′′). Each edge
of E ′′ is in the gadget for a particular clause, and it follows that ℓ(E ′′) ≤ |E ′′| − 3t where
t is the number of unsatisfied clauses for x∗. However, E ′′ needs to have 4 deg(xi) edges
incident on each “xi = 1− x∗

i ” so ℓ(E ′′) ≥∑i 4 deg(xi) = 12m. Thus |E ′′| ≥ 12m+3t and
considering the edges incident on the vertices “xi” we see that c(E ′) ≥ 24m+ 3t.

This completes the proof of the reduction.
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Chapter 8

Extreme Points for Traveling
Salesperson LP, and k-ECSS

In this chapter we describe a new family of extreme point solutions for a ubiquitous LP
in network design. Up to scaling, the LP is the simplest relaxation for the traveling
salesperson problem, the Steiner tree problem, and the k-edge connected spanning multi-
subgraph problem. We find an extreme point on n vertices with minimum nonzero value
exponentially small in n and whose support graph has maximum degree n/2. We also
discuss approximability of the k-edge connected spanning subgraph problem; we show it
is NP-hard to (1 + ǫ)-approximate for some fixed ǫ > 0 independent of k, but conjecture
some constant c exists such that there is a (1 + c/k)-approximation algorithm for the
multi-subgraph version.

8.1 Introduction

In this section we study two closely related problems. In the k-edge-connected spanning
subgraph problem (k-ECSS), we are given an input graph G with edge costs, and wish to
select a minimum-cost subset of edges so that the resulting graph has edge-connectivity k
between all vertices. The k-edge-connected spanning multi-subgraph problem (k-ECSM)
differs only in that we seek a multi-subset of E, i.e. we are allowed to purchase each edge
as many times as we want instead of just once.

The natural LP relaxation for k-ECSM, denoted (Nk) and shown in Figure 8.1, is
closely related to other network design problems, as we now explain. The objective cost
function on edges is metric if cuw ≤ cuv+ cvw holds for all triples u, v, w of distinct vertices.
In k-ECSM, we may assume without loss of generality that the cost function is metric,
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min
{∑

e∈E

cexe : x ∈ RE (Nk)

∑

e∈δ(S)

xe ≥ k, ∀∅ 6= S ( V (8.1)

xe ≥ 0, ∀e ∈ E
}

(8.2)

min
{∑

e∈E

cexe : x ∈ RE (N ′
k)

∑

e∈δ(v)

xe = k, ∀v ∈ V (8.3)

∑

e∈δ(S)

xe ≥ k, ∀∅ 6= S ( V (8.4)

xe ≥ 0, ∀e ∈ E
}

(8.5)

Figure 8.1: The undirected relaxation for k-edge connected spanning multi-subgraph. The
unbounded version (Nk) is on the left, the bounded version (N ′

k) is on the right.

since at least one of the two edges uv, vw crosses every cut that the edge uw crosses.
Further, Goemans & Bertsimas [93] proved that for metric cost functions, the constraint
∀v ∈ V : x(δ(v)) = 2 can be added to (Nk) without affecting the value of the LP; this is a
consequence of what they called the parsimonious property, proved using the splitting-off
operation of Mader and Lovász. We denote the resulting strengthened LP by (N ′

k). We
also remark that by the parsimonious property, any (N ′

k)-relative approximation ratio for
k-ECSM implies the same for subset k-ECSM, in which the vertices are partitioned into
terminal and Steiner nodes, and we require edge-connectivity k only between each pair of
terminals.

It is not too hard to show that in (N ′
k), the family (8.4) of constraints can be replaced

by the family ∑

{u,v}⊂S

xuv ≤
k

2
(|S| − 1), ∀∅ 6= S ( V (8.6)

without affecting the feasible region. This shows that (N ′
2) is the same polyhedron as the

subtour relaxation for the traveling salesperson problem [53] (TSP), which also equals the
so-called 1-tree bound [112].

There are many network design problems which rely on structural properties of LPs
derived from (N ′

k) and (Nk): Jain [124] for skew-submodular network design, Gabow,
Goemans, Tardos & Williamson [84] for unweighted k-edge connected spanning subgraph,
Goemans [99] and Lau & Singh [182] for bounded-degree min-cost spanning tree, and
extensions [148, 10]. For example, Jain’s algorithm [124] relies on the fact that for every
extreme point x of a certain LP, some edge has xe ≥ 1/2. Motivated by these results, we ask
what other structural properties these LPs have, with an eye to designing approximation
algorithms. We give a new lower bound for k-ECSS and conjecture for k-ECSM in Section
8.3. Then we give the construction of complex extreme points for (N ′

2) in Section 8.4,
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followed by some discussion.

8.2 Literature Review

8.2.1 k-ECSS and k-ECSM

We assume for the rest of the chapter, in k-ECSM, that costs are metric since this is
without loss of generality. When discussing k-ECSS we do not assume costs are metric.
We conflate k-ECSS with its more general capacitated version where there is an upper
limit de on the number of times each edge could be purchased, i.e. xe ≤ de for all e, since
this is similar to k-ECSS on a multigraph.

The case k = 1. A 1-ECSS or 1-ECSM is just an spanning connected subgraph,
hence the 1-ECSS problem is essentially just the spanning tree problem. The quality of
the relaxations is relatively poor; the worst-case integrality gap of (Nk) is 2(1− 1/n) [93].

The case k = 2. The 2-ECSS problem is closely related to its vertex-connectivity
variant which we denote 2-VCSS, and the TSP problem. Frederickson & Jájá [76] gave
2-approximation algorithms for 2-VCSS and 2-ECSS — by Jain [124] we can also obtain
an (N2)-relative 2-approximation. (Fleischer [67] gives a similar result for 2-VCSS.)

Using a simple version of splitting-off, Frederickson & Jájá [77] observed that the op-
timal values of 2-ECSS and 2-VCSS are the same for metric cost functions. Frederickson
& Jájá [77] gave 3/2-approximation algorithms for metric min-cost 2-VCSS and 2-ECSS.
Wolsey [198] showed that the integrality gap of (N ′

2) is at most 3/2 for metric costs by
providing an LP-relative analysis of the Christofides heuristic [49]; there is a long-standing
open conjecture that the integrality gap is at most 4/3, and this conjecture is supported by
recent exhaustive computational experiments on graphs with at most 12 vertices [15, 23].

Fernandes [66] showed that 2-ECSS is APX-hard for unit costs. Czumaj & Lingas [52]
extended this to 2-VCSS.

The problem of 2-ECSM is APX-hard and admits a 3/2-approximation algorithm. The
approximation result was first given in [22]. To see hardness, first we note that splitting
off parallel edges implies that 2-ECSM and 2-ECSS have the same optimal value on metric
costs.1 Hence, we need only to show that metric 2-ECSS is APX-hard. Now by [165],
TSP is APX-hard even on complete graphs with costs 1 and 2, and an observation of [20]
shows that a 2-ECSS can be transformed to a Hamiltonian cycle (TSP tour) by repeatedly
replacing two edges with one edge, which does not incerase the overall cost if edge costs

1This gives a simpler proof of a 3/2-approximation for 2-ECSM, which is metric WOLOG, by using the
3/2-approximation algorithm of [77] for 2-ECSS.
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are 1 and 2. Therefore, on these same (metric) instances, finding the min-cost 2-ECSM is
APX-hard.

General k. Khuller & Vishkin [131] gave a 2-approximation for k-ECSS, and later
results of Jain [124] imply more strongly that (Nk) has an integrality gap of at most 2.
Goemans & Bertsimas [97, 93] give a (Nk)-relative approximation algorithm for (subset)
k-ECSM with ratio 3

2
when k is even, and (3

2
+ 1

2k
) when k is odd. For unit costs on

simple graphs with unit upper bounds, Cheriyan & Thurimella [43] gave a (1+ 2/(k+1))-
approximation algorithm for k-ECSS; for unit costs in general there is a simple (Nk)-
relative (1 + 2/k)-approximation algorithm for k-ECSS by Goemans et al. [84]. The latter
two bounds were improved by Gabow & Gallagher [83] to 1 + 1

2k
+ O( 1

k2
) and 1 + 21

11k
,

respectively.

Hardness Results, k > 2. Kortsarz et al. [142] showed that there is a fixed ǫ > 0 so
that for all k > 1, it is NP-hard to approximate k-VCSS better than 1+ ǫ. This is obtained
by taking hard instances of 2-VCSS [52] and adding (k − 2) new vertices, connected to all
other vertices by 0-cost edges. As an aside, we mention that the best approximation ratio
known for k-VCSS is currently O(log k log n

n−k
) [164].

Gabow et al. [84] show that for some fixed ǫ > 0, k-ECSS with unit costs is (1 + ǫ/k)-
hard to approximate.

We remark that neither the construction of [142] nor that of [84] is useful to get a
hardness result for k-ECSM, k > 2; indeed, no such hardness seems to be known.

8.2.2 Extreme Points

Existing work on extreme points of (Nk) and (N ′
k) deals mostly with TSP and the case

k = 2. The min-norm of an extreme point solution x is the minimum of its nonzero values.
The denominator of x is the least integer d for which dx is integral. The support graph
of a solution x is the graph (V, supp(x)) obtained by retaining only edges e with xe > 0;
we abuse notation and identify the maximum degree and number of edges of the support
graph as belonging to x.

Boyd and Pulleyblank [26, 24] showed that for any t ≥ 3, there is an extreme point of
(N ′

2) on 2t+4 vertices with denominator t and values in {1/t, 2/t, 1−2/t, 1−1/t, 1}, hence
min-norm 1/t. In unpublished work, Cunningham & Zhang [51] observed that in (N2), any
two extreme points with supports G1, G2 can be glued together by identifying one vertex
of G1 with one vertex of G2; thereby it is easy to get an extreme point of (N2) on 2t + 1
vertices with maximum degree t, and using the Boyd-Pulleyblank construction, an extreme
point on n vertices with denominator Ω(

√
n!). However, this gluing construction fails for

(N ′
2). Also, from our approximation-algorithmic perspective, the non-2-vertex-connected

extreme point solution obtained from gluing is not a serious obstacle to a good ratio for
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k-ECSS since the algorithm could reduce to 2-vertex-connected components. We further
suggest that any algorithm for arbitrary metric costs which uses the relaxation (N2) may
as well use the relaxation (N ′

2); to support this claim, we note that taking the metric
closure and adding ǫ to every edge cost makes it strictly metric at which point splitting-off
& parsimony imply that every optimal extreme point of (N2) is an extreme point of (N ′

2).
(Observe also every extreme point of (N ′

2) is an extreme point of (N2).) Hence, we suggest
that the central LP for studying bad extreme points should be (N ′

2).

Cheung [44] showed that extreme points of (N ′
2) can have arbitrarily high maximum

degree. He gave a family of extreme points on Θ(t2) vertices with maximum degree 4t+ 2
and entries in {1/(2t+ 1), 1− 1/(2t+ 1), 1}, for every integer t ≥ 1.

There is substantial literature on the structure of extreme points for various super-
modular network design problems, especially the max-norm since this relates to iterated
LP rounding (e.g., see [82]). We mention one classical result on the max-norm of extreme
points for (N ′

2) due to Boyd and Pulleyblank [24]: any extreme point has at least three
edges e with xe = 1.

8.3 Approximability of k-ECSM and k-ECSS

We now focus on qualitative properties of the approximability of k-ECSS. One of the
striking features of the unit-cost version of k-ECSS is that it gets easier to approximate
as k increases [84]. It is natural, therefore, to ask which other versions share this property.
We provide a new lower bound and conjecture a new upper bound that will help to resolve
this question. First, we introduce the lower bound, whose proof we defer to Section 8.3.1.

Theorem 8.1. There is a fixed ǫ > 0 so that for all k ≥ 2, it is NP-hard to approximate
k-ECSS within ratio 1 + ǫ.

The actual value of ǫ is quite minuscule, as is typical in APX-hardness proofs. Our
conjectured positive result is the following:

Conjecture 8.2. There is an (Nk)-relative (1 + O(1/k))-approximation algorithm for k-
ECSM, i.e. one which produces a solution of value at most (1 + C1/k)OPT(Nk) for some
constant C1.

Note that for k ∈ {1, 2} the conjecture holds with C1 = 1. As remarked earlier, a
positive answer to this conjecture would also imply a (1 +C1/k)-approximation algorithm
for subset k-ECSM.

With these results in mind, we now summarize known approximability results.
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Unit Costs Arbitrary Costs
lower bound upper bound lower bound upper bound

k-ECSM 1 + ǫ for k = 2 1 +O(1/k) 1 + ǫ for k = 2 3
2
{+ 1

2k
}odd k & Conj. 8.2

k-ECSS 1 + ǫ/k 1 +O(1/k) 1 + ǫ (Thm. 8.1) 2

Table 8.1: Approximability of k-ECSS and k-ECSM. Note that all the upper bounds can
be obtained by (Nk)-relative approximation algorithms. Each ǫ represents a small fixed
constant independent of k.

8.3.1 Proof of Hardness of k-ECSS (Theorem 8.1)

Our hardness reduction uses the following problem. (Here ⊎ denotes disjoint union.)

Path-Cover-of-Tree

Input: A tree T = (V,E) and a set X ⊂
(
V
2

)
of pairs.

Output: A subset of Y of X so that (V,E⊎Y) is 2-edge-connected.
Objective: Minimize |Y|.

We call the problemPath-Cover-of-Tree for the following reason; forX = {x1, x2} ∈
X let PX denote the unique path in T from x1 to x2.

Proposition 8.3. Y is feasible for Path-Cover-of-Tree if and only if
⋃

X∈Y PX = E.

Proof. For every edge e or T , a fundamental cut of e and T means the vertex set of either
connected component of T\e.

First, Y is feasible if |δ(V,E⊎Y)(U)| ≥ 2 for every set U with ∅ 6= U ( V . But |δ(V,E)(U)|
is 1 when U is a fundamental cut and at least 2 otherwise; hence Y is feasible iff |δ(V,Y)(U)| ≥
1 for every fundamental cut U .

Second, when U is a fundamental cut for e, |δ(V,Y)(U)| ≥ 1 iff
⋃

X∈Y PX contains e.
Taking this together with the previous paragraph, we are done.

Consider the problem of augmenting a connected graph to become 2-edge-connected,
using a minimum number of additional edges from a given set X . It can be reduced to
Path-Cover-of-Tree with T the tree of cut-edges/bridges (obtained by contracting ev-
ery 2-edge-connected component). This problem is NP-hard by [76]; APX-hardness follows
from [66]. (More strongly, one can adapt the hardness construction in [87] to show Path-

Cover-of-Tree is APX-hard even for trees of depth 2; note depth 1 is poly-time since it
is equivalent to the edge cover problem.)
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Now we give our reduction. Let T = (V,E),X denote an instance of Path-Cover-

of-Tree. We construct a k-ECSS instance on vertex set V . For each e ∈ E, our k-ECSS
instance includes the edge e with multiplicity limit de = k − 1 and cost ce = 0. For each
x = {x1, x2} ∈ X , our k-ECSS instance includes the edge {x1, x2} with multiplicity limit
dx = 1 and cost cx = 1.

Clearly, there is an optimal solution for the k-ECSS instance which includes k − 1
copies of each e ∈ E, which we denote by (k − 1)E. Logic as above shows that Y is a
feasible solution for the Path-Cover-of-Tree instance if and only if (k − 1)E ⊎ Y is a
feasible solution for the k-ECSS instance. It immediately follows that an α-approximation
algorithm for k-ECSS would also give an α-approximation algorithm for Path-Cover-

of-Tree, and we are done.

Finally, we remark that it is possible to obtain a reduction in which the k-ECSS instance
is simple with unit upper bounds (and still 0-1 costs). To do this, we replace every vertex
V of the tree by a clique on k + 1 vertices connected by 0-cost edges; we replace every
edge uv ∈ E of the tree by any k − 1 0-cost edges between members of the two cliques
corresponding to u and v; each pair {u, v} ∈ X maps to a unit-cost edge between the
cliques for u and v.

8.4 Complex Extreme Points for (N ′
2)

Now we give our construction of a new family of extreme points for the TSP subtour
relaxation (N ′

2). Let Fi denote the ith Fibonacci number, where F1 = F2 = 1. For a
parameter t ≥ 3, we denote the extreme point by x∗; the support graph of x∗ has 2t
vertices and 4t− 3 edges with denominator Ft and maximum degree t.

The edges of the graph and x∗ are given in the list below; it is pictured in Figure 8.2.
(Note x∗ has min-norm 1/Ft.)

• For i from 1 to t, an edge (2i− 1, 2i) of x∗-value 1

• For i from 2 to t− 1, an edge (1, 2i) of x∗-value Ft−i/Ft

• An edge (1, 2t) of x∗-value 1/Ft

• For i from 3 to t, an edge (2i− 3, 2i− 1) of x∗-value Ft−i+1/Ft

• For i from 3 to t, an edge (2i− 4, 2i− 1) of x∗-value 1− Ft−i+2/Ft

• An edge (2, 3) of x∗-value Ft−1/Ft

• An edge (2t− 2, 2t) of x∗-value 1− 1/Ft
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Figure 8.2: Our new construction of a complex extreme point x∗ for the subtour TSP
polytope (N ′

2), illustrated for t = 15. Scaled edge values are shown: the label Fi on an
edge e indicates that x∗

e = Fi/Ft. The symbol Gi denotes Ft − Fi, i.e. an edge e with
x∗
e = 1− (Fi/Ft).
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Theorem 8.4. The solution x∗ described above is an extreme point solution for (N ′
2).

Proof. With foresight, we write down the following family of 4t− 3 sets:

L := {{i}2ti=1, {2i− 1, 2i}ti=1, {1, . . . , 2i}t−2
i=2}.

The plan of our proof is to first show that x∗ is the unique solution to {x(δ(T )) = 2 |
T ∈ L}. It is easy to verify that x∗ indeed satisfies all these conditions, so let us focus on
the harder task of showing that x∗ is the only solution. (Note, we are not assuming that x∗

is feasible, so possibly x∗(δ(S)) < 2 for some other sets, but we will deal with this later.)

Consider any solution which is tight for all sets in the given family. We first need a
simple lemma, where for disjoint sets S, T , the symbol δ(S : T ) denotes the set of edges
with one end in S and the other in T .

Lemma 8.5. If for some solution x, S, T are disjoint tight sets and S ∪ T is also tight,
then x(δ(S : T )) = 1.

Proof. We have δ(S) = δ(S : T )⊎δ(S : V \S\T ) and δ(T ) = δ(S : T )⊎δ(T : V \S\T ). Also,
δ(S ∪ T ) = δ(S : V \S\T ) ⊎ δ(T : V \S\T ). Thus 2 = x(δ(S)) + x(δ(T )) − x(δ(S ∪ T )) =
2x(δ(S : T )).

Consider a hypothetical solution x with x(δ(S)) = 2, ∀x ∈ L. The lemma shows all
edges {2i − 1, 2i}ti=1 have x-value 1 (take S = {2i − 1}, T = {2i}). Define yi to denote
be x(2i+1,2i+3) for i from 1 to t − 2. The degree constraint at 3 (i.e., x(δ(3)) = 1) forces
x(2,3) = 1 − y1. The degree constraint at 2 forces x(5,2) = y1. Note {1, . . . , 2t− 2} is tight
since this set has the same constraint as {2t−1, 2t}. For i from 1 to t−2, note that the sets
δ({1, . . . , 2i} : {2i+1, 2i+2}) and δ(2i+1) differ only in that the former contains the edge
(2i+ 2, 1) and the latter contains the edges {(2i+ 1, 2i+ 2), (2i+ 1, 2i+ 3)}. Thus, using
the lemma and degree constraint at 2i + 1, we see x(2i+2,1) + x(2i+1,2i+3) = yi. The degree
constraint at 2i+2 then forces x(2i+2,2i+5) = 1− yi for 1 ≤ i ≤ t−3. The degree constraint
at 2t − 2 forces x(1,2t−2) = 1 − yt−2; the degree constraint at 2t forces x(1,2t) = yt−2. The
degree constraint at 2t − 1 forces yt−2 = yt−3, and the degree constraint at 2i + 5 forces
yi = yi+1 + yi+2 for i from 1 to t− 4; together this shows yi = Ft−1−i · yt−2 for i from t− 4
to 1 by induction. The degree constraint at 5 forces 2y1+y2 = 1, so (2Ft−2+Ft−3)yt−2 = 1
and consequently yt−2 = 1/Ft. Thus it is true that x = x∗.

Now, we show x∗ is feasible using standard uncrossing arguments, plus the fact that
|L| = 4t − 3. For (N ′

2), it is not hard to show that the constraints (8.2) for S and V \S
are equivalent, in the sense that they can be obtained from one another by adding or
subtracting multiples of equality constraints. We fix any root vertex r ∈ V and keep only
the constraints for sets S not containing r, which does not change the LP. Correspondingly,
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we change L by complementing the sets that contain r, and it is easy to see L is a laminar
family on V \{r}. (This is along the lines of the standard argument by Cornuéjols et
al. [50].) In fact L is a maximal laminar family, since any laminar family of nonempty
subsets of X contains at most 2|X| − 1 elements, for any set X .

Finally, suppose for the sake of contradiction that x∗ is not feasible, so there is a set
S, with r 6∈ S, having x∗(δ(S)) < 2. Clearly S 6∈ L. Two sets S, T , neither containing r,
cross if all three of S\T , T\S, and T ∩ S are non-empty. Take S that crosses a minimal
number of sets in L. If S crosses zero sets in L, then L ∪ {S} is laminar, but this is a
contradiction since S 6∈ L and, crucially, L was maximal. Otherwise, set S crosses some
tight set T ∈ L, then since

2 + 2 > x∗(δ(S)) + x∗(δ(T )) ≥ x∗(δ(S ∪ T )) + x∗(δ(S ∩ T )),

either x∗(δ(S ∪T )) < 2 or x∗(δ(S ∩T )) < 2. It is easy to verify that both S ∪T and S ∩T
cross fewer sets of L than S, contradicting our choice of S.

8.4.1 Methodology

To investigate extreme points of (N ′
2), we first used computational methods to try to find

the most “interesting” small examples. There are a number of properties that the support
graph must have, e.g. no more than 2n−3 edges, 3-vertex-connected (or else it is essentially
a 2-sum of smaller solutions), and our method was to compute all extreme points on all such
graphs. See Boyd [15, 23] for more discussion of how these steps can be implemented. We
used nauty [161] to generate the graphs, and the Maple package convex [75] to enumerate
extreme points. The Maple package available at the time did not have a good interface for
laying out graphs, so we created a procedure [171] to export the graphs to GeoGebra [117],
which is well-suited for layout (and exporting for diagrams in this document). We found
the following interesting examples, which are pictured in Figure 8.3. Note “unique” means
unique up to graph isomorphism.

(a) for n ≤ 6, there is a unique extreme point with denominator ≥ 2

(b) for n ≤ 7, there is a unique extreme point with maximum degree ≥ 4

(c) for n ≤ 8, there is a unique extreme point with denominator ≥ 3

(d) for n ≤ 9, there is a unique extreme point with maximum degree ≥ 5

(e) for n ≤ 9, there is a unique extreme point with denominator ≥ 4

(f) for n ≤ 10, the maximum degree that occurs is 5 and the maximum denominator is
5; there is a unique solution on 10 vertices that attains both simultaneously
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We found that there was some primal structure and dual structure to the 10-vertex example
which was shared with the smaller examples (a) and (c); these observations led to the family
described in Section 8.4. We remark that the extreme points pictured, and more generally
our new construction, do not coincide with the families of Boyd and Pulleyblank [24] or
Cheung [44] for any choice of parameters.

8.4.2 Discussion

The construction given shows that extreme points on n vertices of the Held-Karp relaxation
may have maximum support degree as big as n/2 and min-norm as small as 1/Fn/2, for
even n. A natural question is whether these bounds are maximal. Boyd, with Benoit [15]
and Elliott-Magwood [23], has computed and posted online [25] a list of all vertices of the
subtour elimination polytope for up to 12 vertices. Filtering through that data, we find
the following facts.

Remark 8.6. For 11-vertex solutions, the largest maximum degree is 6, the largest denom-
inator is 8, and of 11-vertex solutions with maximum degree 6, the maximum denominator
is 5 which is uniquely attained. For 12-vertex solutions, the largest maximum degree is
6, the largest denominator is 9, and of 12-vertex solutions with maximum degree 6, the
maximum denominator is 8 which is uniquely attained.

Hence for even n, Fn/2 is not the maximum possible denominator. Based on the available
data, we conjecture the following.

Conjecture 8.7. The maximum degree of extreme points on n vertices is exactly ⌈n/2⌉.

The best upper bound we are aware of is n− 3, which follows from the fact that each
basic solution has at most 2n − 3 edges, plus an easy argument to eliminate degree-2
vertices.

Asymmetric TSP. Asymmetric TSP is the analogue of TSP for directed graphs: we
are given a metric directed cost function on the complete digraph (V,A), and seek a min-
cost directed Hamiltonian cycle. Recently Asadpour et al. [7] obtained a breakthrough
O(logn/ log log n) approximation for this problem; its analysis uses crucially the fact that
extreme points of the natural LP relaxation

{y ∈ RA
+ : ∀∅ 6= U ( V, y(δout(U)) ≥ 1} (8.7)

have denominator bounded by 2O(n lnn). Our construction for (symmetric) TSP implies
that for asymmetric TSP, the extreme points attain denominator exponential in n, as we
now show.
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Figure 8.3: Six extreme points for the subtour TSP polytope (N ′
2) with extremal properties.
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Proposition 8.8. For every even n ≥ 6 there are extreme points for (8.7) on n vertices
with denominator at least Fn/2.

Proof. The key is to note that (N2) equals the projection of (8.7) to RE
+ obtained by

setting x{u,v} = y(u,v) + y(v,u) for all {u, v} ∈
(
V
2

)
(call this map dropping directions). One

direction is evident: given y, it has value at least 1 both coming into and coming out of
every nontrivial cut set U , hence its undirected image x has value at least 2 spanning the
cut it defines, i.e. x(δ(U)) ≥ 2. Conversely, to show that for every x ∈ (N2), there is a y ∈
(8.7) of this type, just assign y(u,v) = y(v,u) = x{u,v}/2 for all {u, v} ∈

(
V
2

)
.

Now we prove Proposition 8.8. Consider x∗ given by the construction in this chapter,
and consider the set of all y in (8.7) such that y becomes x∗ when dropping directions.
The argument in the previous paragraph establishes that this set is nonempty, and it is
not hard to see this set is a face of (8.7). Finally, let y∗ be any extreme point of this face.
Our construction includes an edge e with x∗

e = 1/Fn/2, hence at least one of the two arcs
corresponding to e has y∗-value in (0, 1/Fn/2], giving the claimed result.

An interesting future project is to check whether the extreme points for (8.7) obtained
by the above construction have strictly larger denominator than Fn/2.

Integrality gap. Several papers of Boyd and coauthors investigate TSP LP extreme
points with the goal of lower-bounding the integrality gap, therefore it is natural to ask
what integrality gap is implied by the construction given in this paper. It does not appear
that our construction gives a good integrality gap lower bound; for 6, 8, 10, 12 vertices we
have computed that the integrality gap obtained is only 9

8
, 23
21
, 22
20
, 35
32
. (Specifically, this value

is the least t ≥ 0 such the extreme point is dominated by t times a convex combination of
indicator vectors of Hamiltonian cycles.)
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Chapter 9

LP-Relative Approximation Scheme
for k-Dimensional Knapsack

In this chapter we give a new LP construction for packing (or covering) nonnegative integer
programs with at most k constraints. Specifically, for any fixed integer k and any ǫ > 0,
we get a polynomial-size linear program admitting an LP-relative (1 + ǫ)-approximation
algorithm, and hence integrality gap at most 1 + ǫ. The framework handles 0-1 vari-
ables, unbounded variables, or arbitrary upper bounds. This generalizes a recent result of
Bienstock [18] for packing with k = 1, i.e., the knapsack problem.

9.1 Introduction

The classical knapsack problem is the following: given a collection of items each with a
value and a weight, and given a weight limit, find a subset of items whose total weight is
at most the weight limit, and whose value is maximized. If n denotes the number of items,
this can be formulated as the integer program {max

∑n
i=1 xivi | x ∈ {0, 1}n,∑n

i=1 xiwi ≤ ℓ}
where n denotes the number of items, vi denotes the value of item i, wi denotes the weight
of item i, and ℓ denotes the weight limit.

In the more general k-dimensional knapsack (or k-constrained knapsack) problem, there
are k different kinds of “weight” and a limit for each kind. An example for k = 3 would be
a robber who is separately constrained by the weight, volume, and mercury content of the
items he is stealing. An orthogonal generalization is that the robber could take multiple
items of each item i, up to di copies. We therefore model the k-dimensional knapsack
problem as

{max cx | x ∈ Zn, 0 ≤ x ≤ d, Ax ≤ b} (9.1)
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where A is a k-by-n matrix, b is a vector of length k, and d is a vector of length n, all
non-negative. If d = 1 we call it the 0-1 knapsack problem. If d = +∞, we call it the
unbounded knapsack problem; otherwise we call it the bounded knapsack problem.

Another natural generalization is the k-dimensional knapsack-cover problem,

{min cx | x ∈ Zn, 0 ≤ x ≤ d, Ax ≥ b}
which has analogous bounded, unbounded, and 0-1 variants.

On the positive side, for any fixed k, all above variants admit a simple pseudo-polynomial-
time dynamic programming solution. Chandra et al. [38] gave the first PTAS for k-
dimensional knapsack in 1976, and later an LP-based scheme was given by Frieze and
Clarke [78]. See the book by Kellerer et al. [128, §9.4.2] for a more comprehensive literature
review. Also, for any fixed k, all above variants admit a polynomial-time approximation
scheme (PTAS). But whereas the case k = 1 also admits a fully polynomial-time approxi-
mation scheme (FPTAS), for k ≥ 2 there is no FPTAS unless P=NP. This was originally
shown for 0-1 k-dimensional knapsack by Gens & Levner [88] and Korte & Schrader [140]
(see also [128]) and subsequently for arbitrary d by Magazine & Chern [160]. For any
optimization problem with a polynomially bounded objective the following is known: if it
is strongly NP-hard, it has no FPTAS unless P=NP [86]. We remark that the converse is
false, as shown by k-dimensional knapsack.

We recall for comparison a result of Lenstra [150]: for any fixed integer k, integer
programs with k constraints can be solved in polynomial time. Compare this with the
unbounded k-dimensional knapsack problem {max cx | x ∈ Zn, x ≥ 0, Ax ≤ b} which has
k constraints in addition to nonnegativity constraints. Lueker [159] showed this is NP-
complete even for k = 1; so the nonnegativity constraints make an important difference.

This chapter draws on a recent paper of Bienstock [18] which gives an LP-relative ap-
proximation scheme for the standard (1-dimensional) knapsack problem, using disjunctive
programming. This chapter also draws on the earlier LP-based approximation schemes for
k-dimensional knapsack and knapsack-cover. A key technique in both is to exhaustively
guess the g max-cost items in the knapsack for some constant g, which we extend. Bien-
stock & McClosky [19] extend this line of work to covering problems and other settings,
and also give an LP of size O((1/ǫ)1/ǫn2) with integrality gap 1 + ǫ for 1-dimensional, 0-1
knapsack. In this chapter we give a much more general result, but with size O(nO(k/ǫ)).
There is some current work [31] on obtaining primal-dual algorithms (that is, not need-
ing the ellipsoid method or interior-point subroutines) for knapsack-type covering problems
with good approximation ratio and [19] reports that the methods of [31] extend to a combi-
natorial LP-relative approximation scheme for 1-dimensional covering knapsack. It would
be interesting to see if these methods also apply to the work stated in this chapter.

We give two other recent developments in this field. There is a line of work in counting
the number of feasible solutions to a given k-dimensional knapsack problem (in which case
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there is no objective function c) and Dyer [57] recently gave a simple dynamic programming-
based FPRAS (fully-polynomial time randomized approximation scheme) to count the
number of feasible solutions for k-dimensional bounded packing knapsack. Separate from
this, there is a line of work on maximizing constrained submodular functions. For non-
monotone submodular maximization subject to k linear packing constraints, the state of
the art is by Lee et al. [149] who give a (5 + ǫ)-approximation algorithm. For monotone
submodular maximization the state of the art is by Chekuri & Vondrák [40] who give a
(e/(e− 1) + ǫ)-approximation subject to k knapsack constraints and a matroid constraint.
We note it is NP-hard to obtain any factor better than e/(e−1) for monotone submodular
maximization over a matroid [65], so as in the original knapsack problems, the knapsack
constraints only affect the best possible approximation ratio by ǫ.

9.2 Rounding

We follow the exposition of [128] and generalize the construction of [18]. Each knapsack
instance (9.1) is determined by the parameters (A, b, c, d). The natural LP relaxation of
the knapsack problem is

{max cx | 0 ≤ x ≤ d, Ax ≤ b}. K(A, b, c, d)

In the following, fractional means non-integral. We omit the easy proof of the following
lemma.

Lemma 9.1. Let x∗ be an extreme point solution to the linear program (K(A, b, c, d)).
Then x∗ is fractional in at most k coordinates.

Therefore, we obtain the following primitive guarantee on a rounding strategy. Let
cmax := maxi ci.

Corollary 9.2. Let x∗ be an extreme point solution to the linear program (K(A, b, c, d)).
Then c⌊x∗⌋ ≥ cx∗ − kcmax.

Now the idea is to take x∗ to be an optimal solution, and use a standard exhaustive
guessing step to turn the additive guarantee into a multiplicative factor of 1 + ǫ. Let γ
denote a parameter, which represents the size of a multi-set we will guess. For a non-
negative vector z let the notation ‖z‖1 mean

∑
i zi. A guess is an integral vector g with

0 ≤ g ≤ d, Ag ≤ b and ‖g‖1 ≤ γ. It is easy to see there are no more than (n + 1)γ

possible guesses, so for constant γ we can iterate through all guesses in polynomial time.
First, we can therefore determine the guess with best objective value in polynomial time.
Second, this simplifies the task of determining an approximately-optimal solution, as we
now explain.
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From now on we assume without loss of generality (by reordering items if necessary)
that c1 ≤ c2 ≤ · · · ≤ cn. For a guess g with ‖g‖1 = γ we now define the residual knapsack
problem for g; under the restriction that the γ most profitable1 items chosen (counting
multiplicity) are g, the residual problem models how to optimally select the remaining
objects. Let µ(g) denote min{i | gi > 0}. Define dg to be the first µ(g) coordinates of
d− g followed by n−µ(g) zeroes, and bg = b−Ag. The residual knapsack problem for g is
(A, bg, c, dg). The residual problem for g only permits taking items with index at most µ(g)
and so essentially has its cmax value bounded by cµ(g), which is at most c · g/‖g‖1 = c · g/γ.

If a guess g has ‖g‖1 < γ, define bg and dg to be all-zero. Then Corollary 9.2 gives the
following.

Corollary 9.3. Let OPT be an optimal integral knapsack solution for (A, b, c, d). Let g be
the γ most profitable items in OPT (or all, if there are less than γ). Let x∗ be an optimal
extreme point solution to K(A, bg, c, dg). Then g + ⌊x∗⌋ is a feasible knapsack solution for
(A, b, c, d) with value at least 1− k/γ times optimal.

By taking γ = k/ǫ and solving K(A, bg, c, dg) for all possible g we get the previously
known PTAS for k-dimensional knapsack; we now refine the approach to get a single LP
with small integrality gap.

9.3 Disjunctive Programming

In this section we give a brief introduction to disjunctive programming, e.g. see early work
of Balas [8]. For our purposes we will only derive one central result, that it is possible to
write a compact LP for the convex hull of the union of several polytopes, provided that we
we have compact LPs for each one.

Suppose we have polyhedra P 1 = {x ∈ Rn | A1x ≤ b1} and P 2 = {x ∈ Rn | A2x ≤ b2}.
Both of these sets are convex and it is therefore easy to see that the convex hull of their
union is the set

conv.hull(P 1 ∪ P 2) = {x ∈ Rn | x = λx1 + (1− λ)x2, 0 ≤ λ ≤ 1, A1x1 ≤ b1, A1x2 ≤ b2}.

However, this is not a linear program, e.g. since we multiply the variable λ by the variables
x1. Nonetheless, it is not hard to see that the following is a linear formulation of the same
set:

conv.hull(P 1 ∪ P 2) = {x ∈ Rn | x = x1 + x2, 0 ≤ λ ≤ 1, A1x1 ≤ λb1, A1x2 ≤ (1− λ)b2}.
1To simplify the description, even if ci+1 = ci we think of item i+ 1 as more profitable than item i.
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A similar construction gives the convex hull of the union of any number of polyhedra; we
now apply this to the knapsack setting.

It is convenient to “shift” the LP K(A, bg, c, dg) of each residual problem by taking
the Minkowski sum with g; feasible integral solutions of the shifted version correspond
to knapsack solutions in which the γ most profitable items are g. The shifted LP is
{y = x+ g | x ∈ Rn, 0 ≤ x ≤ dg, Ax ≤ bg} (in which g is a constant).

Let G denote the set of all possible guesses g. Then the convex hull of the union of the
shifted polyhedra is
{
y | y =

∑

g∈G

yg;
∑

g∈G

λg = 1;λ ≥ 0; ∀g : yg = xg + λgg, 0 ≤ xg ≤ λgdg, Ayg ≤ λgbg
}
. (K̃)

We also think of (K̃) as a linear program by giving it the objective function max c · y.
Finally, we complete our analysis.

Theorem 9.4. If γ = k/ǫ, there is a polynomial-time (K̃)-relative 1/(1−ǫ)-approximation
algorithm for the (0-1, unbounded, or bounded) k-dimensional knapsack problem.

Proof. Let y be an optimal extreme point solution for (K̃). It is easy to argue that any
extreme point solution has λg∗ = 1 for some particular g∗, and λg = 0 for all other g. Hence
y = xg∗ + g∗ where xg∗ is an optimal extreme point solution to K(A, bg

∗

, c, dg
∗

). We now
show that ⌊y⌋ is a (1−ǫ)-approximately optimal solution, re-using the previous arguments.

If ‖g∗‖1 < γ, then xg∗ = 0 so y is integral, hence y is an optimal knapsack solution.
Otherwise, if ‖g∗‖1 = γ, then Corollary 9.2 shows that

c · ⌊y⌋ = c · ⌊xg∗⌋+ c · g∗ ≥ c · xg∗ − k
c · g∗
γ

+ c · g∗ = c · y − k
c · g∗
γ

≥ (1− ǫ)c · y,

which completes the proof.

A proof along the similar lines gives an LP-relative approximation scheme for the
knapsack-cover problem. Let g be an integral vector with 0 ≤ g ≤ d, ‖g‖1 ≤ γ; we
define µ(g), dg as before and call g a guess if A(g + dg) ≥ b, in which case we set bg to be
the component-wise maximum of 0 and b−Ag. Informally, this excludes g’s for which the
residual problem would be infeasible. Then the approach goes through as before, except
we round up instead of down.

Somewhat imaginatively, we see it possible that the LPs constructed in this section
could have applications; for example, we have seen before (the use of Jain’s algorithm
in Theorem 6.1(b)) that LP-relativity can be a crucial property when using an LP as a
building block in a larger scheme. However, we do not see a concrete application, and the
large size nO(k/ǫ) of the LPs makes them seem mostly of theoretical interest.
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Open Problems/Future Work

In this final section we collect the most pressing open questions mentioned in the thesis.

Steiner Tree LPs (Chapters 2–5)

The first and foremost question would be to improve the best known approximation ratio
for the Steiner tree problem, as well as integrality gaps for the hypergraphic and bidirected
LPs. After this thesis was submitted to its examiners, a preprint of Byrka et al. [27] was
circulated to the author with new progress on these issues: a novel analysis of RZ giving a
(D)-relative 1.55-approximation, and a non-LP-relative (3

2
+ ǫ)-approximation using (D).

(Other than this paragraph, the rest of the thesis has not been updated to reflect these
developments.) Improving the hardness result of [45] would also be important progress
towards the ideal of finding matching approximation and hardness bounds.

We noted that the hypergraphic relaxations can be solved in polynomial time on r-
restricted instances, and approximately solved in general, but it is open whether we can
solve them exactly in general.

One of our results is that the bidirected and hypergraphic LPs have the same value on
quasi-bipartite instances. We give a 4-quasi-bipartite example in Section 4.6.4 where they
have different values. Are the LPs equal on 2- and 3-quasi-bipartite instances?

We give in Section 5.6 an LP (W) for the Steiner tree problem whose integrality gap
is at most 1 + ln 2. Can we solve (W) in polynomial time? Is there any relation between
(W) and the hypergraphic ones like (P) — for example, does one strengthen the other?

Are there any interesting applications of the contraction lemma (Lemma 5.18) in its
generalization to matroids?
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Multicommodity Flow in Trees (Chapter 6)

Can we get (1 + ǫ/µ)-hardness of approximation for multicommodity covering in trees
(where µ denotes the minimum capacity and ǫ > 0 is a constant independent of µ)? Unlike
multicommodity flow in trees, the problem is APX-hard even when all capacities are unit
— see Section 8.3.1.

Can we make algorithmic use of the LP (6.9)–(6.11) for multicommodity flow in trees?
Recall that it has several nice properties: integrality in unit-cost instances, integrality in
spiders, and polynomial-time solvability.

For demand multicommodity flow in a tree (possibly with the no-bottleneck assump-
tion [39]) can we get an approximation algorithm of the form 1+O(1/W ) where W denotes
the width?

Sparse Integer Programs (Chapter 7)

The follow-up work of Bansal et al. [11] — an O(k)-approximation algorithm for k-column
sparse packing integer problems — answers the most important open question from Chap-
ter 7. Further directions in sparse integer programming research are to map out the
approximability of versions with semimodular objectives (Section 7.1.3) and/or high width
(Section 7.3.1).

k-Edge Connectivity Problems (Chapter 8)

It would be interesting to obtain any hardness result for the k-edge connected spanning
multi-subgraph problem when k > 3.

Is Conjecture 8.2 true? More weakly, can we find a non-LP-based 1+O(1/k)-approximation
algorithm for the k-edge connected spanning multi-subgraph problem?

Multidimensional Knapsack LPs (Chapter 9)

For k-dimensional knapsack problems, we gave a new LP admitting an LP-relative (1 + ǫ)
approximation algorithm. Can we get a parallel result in which the algorithm is combina-
torial (e.g., primal-dual, along the lines of [31])?

168



Appendix A

Integrality of Cost-Polytope from
Section 4.6.3

restart: with(convex): with(combinat): with(networks):

# compute all maximal laminar families on a ground set S

LF := proc(S) local mg, rep, result:

if nops(S)=1 then return {{S}}: end:

rep := rand();

result := NULL;

for mg in choose(S, 2) do

result := result, op(map(e->e union {{mg[1]}, {mg[2]}},

subs(rep=(op(mg)), LF(S minus mg union {rep}))));

end:

return {result}:

end:

# convert list of vertices in a path to list of edges in a path

PathHelper := L -> seq({L[i], L[i+1]}, i=1..nops(L)-1):

# find all edges on the unique s-t path in tree G

Path := (G, s, t) -> PathHelper(path([s, t], shortpathtree(G, s))):

# find all edges on subfullcomponent for terminal set S in full component G

FullComp := (G, S) -> {seq(Path(G, st[1], st[2]), st in choose(S, 2))}:
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# check whether the polyhedron for terminals {1,...,k}, laminar family Q,

# Steiner node set N, and edge set e is integral

# It prints out any non-integral vertices found, and is silent otherwise.

is01 := proc(k, Q, N, e)

local result, E, R, A, P, G, S, fc, P1, i, ineq, V;

R := {seq(i,i=1..k)};

A := [op(e), op(map(x->[x[2], x[1]], e))];

E := map(x->{op(x)}, e);

P := [op(Q)];

G := graph(N union R, E):

ineq := NULL:

for i from 1 to k do ineq := ineq, [seq(0, i=1..nops(E)),

seq(‘if‘(i in P[j], 1, 0), j=1..nops(P))] = 1; end:

for S in combinat[powerset](R) do

fc := FullComp(G, S):

ineq := ineq, ([seq(‘if‘(E[i] in fc, 1, 0), i=1..nops(E)),

seq(‘if‘((nops(P[j] intersect S)>0), -1, 0), j=1..nops(P))] >= -1);

end:

P1 := intersection(ineq, convert(posorthant(nops(E)+nops(P)), affine));

result := true:

for V in convex[vertices](P1) do

if (nops({op(V)} minus {0, 1})>0) then

print(Q, N, e, V):

result := false:

end:

end:

return result:

end:

# check all possible laminar families for terminals {1,...,k},

# Steiner node set N, and each edge set e in E

Test := proc(k, N, E) local W, R, i, e, result:

R := {seq(i,i=1..k)};

W := LF(R):

result := true;

for i from 1 to nops(W) do for e in E do

result := result and is01(k, W[i], N, e):

end: end:

if (result) then return "Testing Complete, all 0-1"
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else return "Testing Complete, not all 0-1": end:

end:

### end of preliminary procedures, start of main session

# this fails to be integral and demonstrates laminarity is needed

is01(3, [{1, 2}, {1, 3}, {2, 3}], {a}, [[1, a], [2, a], [3, a]]);

[{1, 2}, {1, 3}, {2, 3}], {a}, [[1, a], [2, a], [3, a]], [0, 1
2
,
1

2
,
1

2
,
1

2
,
1

2
]

[{1, 2}, {1, 3}, {2, 3}], {a}, [[1, a], [2, a], [3, a]], [1
2
,
1

2
, 0,

1

2
,
1

2
,
1

2
]

[{1, 2}, {1, 3}, {2, 3}], {a}, [[1, a], [2, a], [3, a]], [1
2
, 0,

1

2
,
1

2
,
1

2
,
1

2
]

[{1, 2}, {1, 3}, {2, 3}], {a}, [[1, a], [2, a], [3, a]], [1
4
,
1

4
,
1

4
,
1

2
,
1

2
,
1

2
]

false

# now try with a laminar family

is01(3, [{1}, {2}, {3}, {1, 2}, {1, 2, 3}], {a}, [[1, a], [2, a], [3, a]]);

true

Test(3, {a}, [[[1, a], [2, a], [3, a]]]);

“Testing Complete, all 0-1”

Test(4, {a, b}, [[[1, a], [2, a], [a, b], [b, 3], [b, 4]]]);

“Testing Complete, all 0-1”

Test(5, {a, b, c}, [[[1, a], [2, a], [a, b], [b, 3], [b, c], [c, 4], [c, 5]]]);

“Testing Complete, all 0-1”

# this laminar family on 6 terminals fails to be integral

# it is taken from Figure 4.2 in the thesis

is01(6, [{1, 6}, {2, 3}, {4, 5}], {a, b, c, d},

[[1, a], [2, a], [a, b], [b, c], [c, 3], [c, 4], [b, d], [d, 5], [d, 6]]);

[{1, 6}, {2, 3}, {4, 5}], {a, b, c, d},
[[1, a], [2, a], [a, b], [b, c], [c, 3], [c, 4], [b, d], [d, 5], [d, 6]],

[
1

2
,
1

2
,
1

4
,
1

4
,
1

2
,
1

2
,
1

4
,
1

2
,
1

2
, 1, 1, 1]

false
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Appendix B

Enumerating Vertices of (P)

# helper to compute partitions

allAugs := proc(list_of_sets, elt) local res, i, j, tmp;

res := NULL;

for j from 1 to nops(list_of_sets) do

tmp := NULL;

for i from 1 to nops(list_of_sets) do

if (i=j) then tmp := tmp, (list_of_sets[i] union {elt});

else tmp := tmp, list_of_sets[i]; end;

end;

res := res, {tmp};

end;

return res;

end:

# compute all partitions of set S

partitionsOf := proc(S) local elt, rec, Sprime, i, res;

if (nops(S)=1) then return [{S}]; end;

elt := S[1];

Sprime := S minus {elt};

rec := partitionsOf(Sprime);

res := NULL;

for i from 1 to nops(rec) do res := res, ({{elt}} union rec[i]),

allAugs(rec[i], elt); end;

return {res};
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end:

# lexicographic & length-graded lexicographic sorting

grlex := (X,Y)->(‘if‘(nops(X)<nops(Y), true, ‘if‘(nops(Y)<nops(X),

false, lex(X, Y)))):

lexi := proc(X, Y, C);

if (C in X and not (C in Y)) then return true;

elif (C in Y and not (C in X)) then return false;

else return lexi(X, Y, C+1); end;

end: lex := (X, Y) -> lexi(X, Y, 1):

# convert partition to a list

P2L := proc(p) local n, i, j, r, q;

q := [op(p)];

n := ‘+‘(op(map(nops, q)));

r := NULL;

for i from 1 to n do

for j from 1 to nops(q) do

if evalb(i in q[j]) then r := r, j;

end;

end;

end;

return [r];

end:

# convert list to a partition

L2P := proc(l) local p, r, u, n, i, j;

n := nops(l);

u := {};

r := NULL;

for i from 1 to n do

if not evalb(l[i] in u) then

p := {i};

for j from 1 to n do if l[j]=l[i] then

p := p union {j};

u := u union {j} end; end;

r := r, p;

end;

end;

return {r};
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end:

# join of two partitions

wedge := (p, q) -> L2P(ListTools[Transpose]([P2L(p), P2L(q)])):

# meet of two partitions

vee := proc(p1, p2) local m, n, s, i, j, k, r, p;

n := ‘+‘(op(map(nops, [op(p1)])));

m := Matrix(n, n);

for r in {p1, p2} do

for s in r do

p := [op(s)];

for i from 1 to nops(p)-1 do

m[p[i], p[i+1]] := 1;

m[p[i+1], p[i]] := 1;

end;

end;

end;

for k from 1 to n do for i from 1 to n do for j from 1 to n do

if m[i, k]=1 and m[k, j]=1 then m[i, j]:=1; end;

end; end; end;

r := NULL;

for i from 1 to n do

p := i;

for j from 1 to n do if m[i, j]=1 then p := p, j; end; end;

r := r, {p};

end;

return {r};

end:

with(LinearAlgebra):

# rank of a set, denoted rho in the thesis

rank := x -> max(0, nops(x)-1):

# rank-contribution of pi and k

rc := proc(pi, k) local i, res;

res := 0;

for i from 1 to nops(pi) do

if (nops(pi[i] intersect k) > 0) then res := res + 1; end;
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end;

return res-1;

end:

sc := (S, T) -> rank(S intersect T):

# all maximal chains of partitions on items {1, 2, ..., i}

PC := proc(i) option memo; local res, j, k, l, t, u, T, U, sq, krange;

if (i=1) then return [[{{1}}]]; end;

res := NULL;

for j from 1 to i/2 do

for T in PC(j) do

for U in shift(PC(i-j), j) do

krange := map(x->{op(x)}, combinat[choose](i-2, j-1));

if (j*2 = i and i>2) then krange := select(elt->(1 in elt), krange); end;

for k in krange do

t := 1;

u := 1;

sq := {{seq(x, x=1..i)}}, (T[t] union U[u]);

for l from 1 to i-2 do

if l in {op(k)} then t:=t+1; else u:=u+1; end;

sq := sq, T[t] union U[u];

end;

res := res, [sq];

end;

end;

end;

end;

return [res];

end:

shift := (exp, sh) -> ‘if‘(type(exp, numeric), exp+sh, map(shift, exp, sh)):

# used to eliminate multiple isomorphic items

containsSimilar := proc(set, item) local p;

for p in combinat[permute](nops(R)) do

if subs({seq(r[i]=r[p[i]], i=1..nops(R))}, item) in set then return true; end;

end;

return false;

end:

# terminal set
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R := {1, 2, 3, 4}:

# nonempty subsets of R

S := sort([op(combinat[powerset](R) minus ({{}, op(map(x->{x}, R))}))], grlex):

K := S:

# partitions of R

PI := [op(partitionsOf(R) minus {{R}})]:

# pre-compute rank-contribution and partition rank

RC := Matrix(nops(PI), nops(K), (i, j)->rc(PI[i], K[j])):

PR := Vector(nops(PI), i->(rank(PI[i]))):

# iterator for non-singular square submatrices

nextBasis := proc(L, supp) local m, n, res, pos, i, j;

m := op(1, L)[2];

n := op(1, L)[1];

if (supp = 0) then

res := [seq(0, i=1..n)];

pos := 1;

else

res := supp;

pos := n;

end;

while (true) do

if (pos = 0) then return 0; end;

res[pos] := res[pos]+1;

if (res[pos] > m+pos-n) then pos := pos-1;

else

if Rank(SubMatrix(L, [1..n], res[1..pos])) >= pos then

if (pos = n) then return res; end;

res[pos+1] := res[pos];

pos := pos+1;

end;

end;

end;

end:

# pretty-printing routines

pr := x->printf("%a\n", x):

foo := e -> ‘if‘(type(e, numeric), e, ‘if‘(type(e, set),

{cat(op(e))}, map(foo, e))):

bar := pt -> foo([op(subs({seq(r[i]=i, i=1..nops(R))}, [op(pt)]))]):
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### end of preliminary procedures, start of main session

foundpoints := {}:

usedchains := {}:

count := 0:

printf("%d chains to check\n", nops(PC(nops(R)))*(2^(nops(R)-1)-1)):

for ch0 in PC(nops(R)) do

for chain in {op(combinat[powerset](ch0[2..nops(ch0)]))} minus {[]} do

count := count+1;

printf("checking chain number %d\n", count);

if (not containsSimilar(usedchains, chain)) then

usedchains := usedchains union {chain};

n := nops(chain);

Kco := Matrix(n, nops(K), (j, i)->rc(chain[j], K[i]));

supp := nextBasis(Kco, 0);

while supp <> 0 do

x := LinearSolve(SubMatrix(Kco, [1..n], supp),

Vector([seq(nops(chain[i])-1, i=1..n)]));

valid := true;

for i from 1 to n do

valid := valid and x[i]>0 and x[i]<=1;

end;

pt := {seq(x[i]*map(e->r[e], K[supp[i]]), i=1..n)};

valid := valid and not containsSimilar(foundpoints, pt);

for i from 1 to nops(PI) do

tmp := ‘+‘(seq(x[j]*RC[i, supp[j]], j=1..n)) - PR[i];

valid := valid and tmp >= 0;

end;

if valid then

printf("foundpoints = %d\n", nops(foundpoints)+1);

pr(bar(pt));

pr(subsop(seq(supp[j]=x[j], j=1..n), [seq(0, j=1..nops(K))]));

foundpoints := foundpoints union {pt};

end;

supp := nextBasis(Kco, supp);

end;

end;

end;

end;

pr(map(bar, foundpoints));
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[72] András Frank and Tamás Király. A survey on covering supermodular functions.
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[77] G. N. Frederickson and J. JáJá. On the relationship between biconnectivity augmen-
tation and the traveling salesman problem. Theoretical Computer Science, 19:189–
201, 1982. 149

[78] A. M. Frieze and M. R. B. Clarke. Approximation algorithms for the m-dimensional
0-1 knapsack problem: Worst-case and probabilistic analyses. European Journal of
Operational Research, 15(1):100–109, January 1984. 162

[79] Toshihiro Fujito and Hiroshi Nagamochi. A 2-approximation algorithm for the min-
imum weight edge dominating set problem. Discrete Appl. Math., 118(3):199–207,
2002. 4

[80] Toshihiro Fujito and Takatoshi Yabuta. Submodular integer cover and its application
to production planning. In Proc. 2nd WAOA, pages 154–166, 2004. 6, 128, 129

[81] D. R. Fulkerson. Blocking and anti-blocking pairs of polyhedra. Math. Programming,
1:168–194, 1971. 12, 47

185

http://www.math.uwo.ca/~mfranz/convex/


[82] Harold N. Gabow. On the L∞-norm of extreme points for crossing supermodular
directed network LPs. Mathematical Programming, 110:111–144, 2007. Preliminary
version appeared in Proc. 11th IPCO, pages 392–406, 2005. 151

[83] Harold N. Gabow and Suzanne Gallagher. Iterated rounding algorithms for the
smallest k-edge-connected spanning subgraph. In Proc. 19th SODA, pages 550–559,
2008. 106, 107, 150

[84] Harold N. Gabow, Michel X. Goemans, Éva Tardos, and David P. Williamson. Ap-
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mation algorithms for the Steiner tree problem. In Proc. 26th Workshop on Graph-
Theoretic Concepts in Computer Science, 2001. 71
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[118] S. Hougardy and H. J. Prömel. A 1.598 approximation algorithm for the Steiner
problem in graphs. In Proc. 10th SODA, pages 448–453, 1999. 2, 3, 5, 12

[119] C. A. J. Hurkens and A. Schrijver. On the size of systems of sets every t of which
have an SDR, with an application to the worst-case ratio of heuristics for packing
problems. SIAM J. Discret. Math., 2(1):68–72, 1989. 129

[120] C.A.J. Hurkens, L. Lovász, A. Schrijver, and É. Tardos. How to tidy up your set-
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