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Abstract 
 

A new crystal plasticity scheme for explicit time integration codes is developed based 
on a forward Euler algorithm in the first part of this paper. The new numerical model is 
incorporated in the UMAT subroutine for implementing rate dependent crystal plasticity 
model in LS-DYNA/Explicit. The material is modeled as a Face centered cubic (FCC) 
polycrystalline aggregate, and a finite element analysis based on rate-dependent crystal 
plasticity is developed to simulate large strain behaviour. Accordingly, an element or a 
number of elements of the finite element mesh is considered to represent a single crystal 
within the polycrystal aggregate and the constitutive response at a material point is given by 
the single crystal constitutive model. The second part of this thesis presents two applications 
of the crystal plasticity scheme used in conjunction with numerical modeling of three-
dimensional (3D) real microstructures. First, finite element meshes containing both particle 
and texture data are created with solid elements. Particle size, location and orientation are 
represented by 3D ellipsoids and the elements within these ellipsoids are given rigid 
properties. Simulations of in-plane plane strain with different combinations of texture and 
particle location are performed. The effect on texture development, strain magnitudes, and 
strain localizations is investigated. Second, the three dimensional (3D) polycrystalline 
microstructure of the aluminum alloy AA5754 is modeled and subjected to three different 
strain rates for each strain path. The effect of strain paths, strain rates and thermal softening 
on the formation of localized deformation is investigated. Simulations show that strain path is 
the most dominant factor in localized deformation and texture evolution. 
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1. Introduction 
 

It is well known that the localization of plastic flow is strongly influenced by 
deformation-induced textures and anisotropy (e.g., Hutchinson and Neale [1978a,1978b], 
Asaro and Needleman [1985]).  In turn, this localization is influenced by the real 
microstructure, especially any heterogeneities as well as actual orientations of grains in three 
dimensions in a polycrystal. Polycrystal plasticity models with real microstructural input are 
required to properly simulate plastic instability and localization phenomena.  It is expected 
that such simulations can be more successful in predicting strain localization than can 
macroscopic phenomenological models, provide an improved understanding of the relation 
of localization to the microstructure of the material, and can consequently provide guidelines 
for alloy design to create desirable microstructure for specific applications. 

 
Research in micromechanics has focused on developing single crystal constitutive 

relationships, such as Asaro and Needleman [1985], Borg [2007], Li et al. [2008], and Zhang 
et al. [2009], as well as developing computationally efficient correlations based on yield 
surfaces such as Zamiri et al. [2007]. Numerous numerical simulations were performed 
where the principle deformation mechanism was considered as crystallographic slip for both 
FCC and body centered cubic [BCC] structures (e.g., Colvin et al. [2009], and Kuchnicki et 
al. [2008]). Recent work on hexagonal close packed (HCP) structures has been carried out by 
researchers such as Lévesque et al. [2009], Beausir et al. [2007], Bridier et al. [2009], Gan 
and Kysar [2007], Graff et al. [2007], Mayeur and McDowell [2007], and Zhang et al. [2007] 
where deformation twinning was also introduced as a principle deformation mechanism. 

  
In order to overcome computational limitations, various crystal plasticity models have 

been implemented into 2D codes and used to simulate plane strain or plane stress 
deformation states. These models are not capable of predicting strain patterns that are out of 
plane with the 2D model. Furthermore, it has been shown by Simha et al. [2008] that the state 
of stress during localized deformation (necking/shear banding) is triaxial, which cannot be 
modeled using a 2D approach. Due to the advances in parallel computing, the limitations 
facing the complexity of a simulation are expanding. For this reason, 3D modeling has 
started becoming more prevalent in works such as Delannay et al. [2006,2008]. The three-
dimensional implementation of rate-dependent crystal plasticity models in finite element 
codes can use explicit time integration as well as implicit time integration. The constitutive 
update for the rate-dependent crystal plasticity models can be carried out using explicit or 
implicit schemes. Codes that use implicit time integration afford large time steps and these 
are usually preferred. Constitutive update in such solvers is through a class implicit 
integration scheme. Maniatty et al. [1992], Cuitino and Ortiz [1993], Kalidindi et al. [1992], 
and Raphanel et al. [2004] are examples of implicit constitutive updates implemented in 
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codes that use implicit time integration. The implementations in an implicit code follow the 
rate tangent scheme first developed by Peirce et al. [1983]. This scheme requires the 
inversion of a square matrix whose size is the number of slip systems in the crystallite (the 
rate tangent scheme belongs to the class of forward gradient schemes, Peirce et al., [1984]). 
Though such implementations allow for large time steps (and therefore short computational 
times) they also require the derivation of the material tangent stiffness matrix (material 
Jacobian). Raphanel et al. [2004] have discussed this approach in detail and derived a second 
order Runge-Kutta scheme for the constitutive update. As discussed by Raphanel et al. 
[2004], the derivation of the material Jacobean matrix, which affects the rate of convergence 
of the global equilibrium equations, is cumbersome.  

 
An alternative approach that does not require the determination of the material 

Jacobean is the explicit time integration of the momentum equation. In such finite element 
codes, the unconditionally stable time step is governed by the Courant-Freidrichs-Lewy 
criterion (Belytschko et al. [2000]), which is governed by the element size and the speed of 
sound in the material. Consequently, to achieve large deformations in the material, long 
computational times are required. With the availability of large scale parallel computing, this 
is not a constraint. Zikry [1994] has implemented rate-dependent crystal plasticity in an FEM 
code using explicit time integration. His constitutive update uses the Runge-Kutta scheme. 
More complex schemes such as the homotopy continuation method have been used by Li et 
al. [2008]. The simplest constitutive implementation in an explicit finite element code 
appears to be from Kuchnicki et al. [2006]. Here, they use the rate-dependent power law 
suggested by Cuitino and Ortiz [1993] and an overstress approach that is simple to 
implement but does require some iteration until the overstress criterion is satisfied on all slip 
systems. A review of several implicit and explicit constitutive update schemes for rate-
dependent crystal plasticity can be found in Ling et al. [2005]. 

 
The main focus of this paper is on the numerical implementations of the crystal 

plasticity based constitutive model proposed by Asaro and Needleman [1985] (which will be 
summarized briefly later) to finite element method (FEM) applications using a new update 
scheme and on the application of this new model to simulate the effects of particles in an 3D 
fcc polycrystalline aggregate. We present a new constitutive update scheme for rate-
dependent crystal plasticity laws for use in an explicit finite element code; in particular, the 
LS-DYNA explicit finite element program (Hallquist, [1998]). It is based on a forward Euler 
integration scheme of the crystal plasticity framework due to Peirce et al. [1983] and is 
implemented in an explicit finite element code. We show that the results obtained using this 
new formulation are comparable to a second-order Runge-Kutta scheme implemented in an 
implicit finite element code; namely, the implementation due to Raphanel et al. [2004]. Our 
scheme circumvents the inversion of a matrix (rate tangent scheme), iterations (overstress 
and other schemes) or the derivation of complex formulas (Runge-Kutta schemes). Results of 
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simulations using the new scheme are validated by comparing them with published results in 
the literature. We apply the new model to simulate the effects of particles in a 3D fcc 
polycrystalline aggregate. 

 
There are multiple ways of modelling a 3D polycrystalline aggregate. Delannay et al. 

[2006] did a comparison between using 3D bricks with one or more elements per grain, and 
using 3D truncated octahedrons to represent grains. The comparison was carried out by 
predicting the texture evolution of a single phase ULC steel, then matching the simulation 
results with experimental results. The poorest prediction was achieved by using single brick 
elements to represent each grain. A second brick mesh was used where a 3x3x3 block of 
cube elements represented each grain. This mesh along with a mesh comprised of truncated 
octahedrons produced similar, and the best texture predictions. Each truncated octahedron 
comprised of 16 hexahedral elements distorted in such a way to form a volume filling 
structure. The simplicity of the 3x3x3 block of cube elements over the truncated octahedron 
proved to be very attractive. Both the 3x3x3 grid of bricks and the truncated octahedrons 
represent each grain as exactly the same size, shape, and orientation. An option not compared 
in the study is to use multiple 3D elements to represent a grain and to contour the boundary 
of the volume filled by the elements to match the size and shape of the grain. This allows 
slight variations in grain size, shape and orientation to be represented. Since each octahedron 
consists of 16 elements, it is only possible to create grains with multiples of 16 elements. 
Therefore the mesh would need to be incredibly fine in order to model slight differences in 
grain shape or size. With brick elements, it is possible to create a grain mesh with any whole 
number of elements. For the applications done in this work, brick elements were used with 
the number and configuration of those elements tailored specifically for each grain. 

 
The automotive industry is continuously seeking out ways of increasing the 

desirability of the vehicles they produce. Reducing weight is a very effective method of 
decreasing the energy required to accelerate and therefore increasing the “stop-and-go” fuel 
efficiency demanded by modern vocational commuters. Aluminum is an attractive material 
with a high strength-to-weight ratio and is readily available. With aluminum as the material 
of construction for the body of the vehicle, significant weight savings can be yielded. As 
technology advances and forming presses increase in size, huge demand exists for highly 
formable metals to allow larger and more complicated parts to be produced. By developing 
an in depth understanding of the materials, optimum alloys and processing can be identified 
to best suit the part being formed. 

 
Rolled aluminum sheets used in automotive applications are multiphase materials 

which contain second-phase particles distributed in an aluminum alloy matrix. The 
distribution, size and shape of these particles depend on the processes that the material has 
been subjected to. The matrix itself is a collection of grains with specific orientations and 
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overall texture that are also dependant on the material processing. Numerous studies, both 
computational and experimental, have examined the effect of particles on formability as well 
as the effect of voids on the material (e.g. Gan et al. [2006]). Shan et al. [2002] did a study on 
developing a representative volume element (RVE) for a ceramic matrix composite. They 
created a statistically equivalent numerical model of a material containing fibres of different 
sizes as well as fibre-rich and fibre-poor regions. They compared the results of different size 
RVE’s with experimental results and demonstrated that the effect of a heterogeneous material 
can be modelled using an RVE. Shen et al. [2002] did a comparison between modelling 
techniques for predicting stress-strain results for materials with particles. The three 
techniques studied included: single particle 3D unit cell, 3D volume with 45 randomly 
distributed particles, and 2D models obtained by taking cut sections of the 3D multiple 
particle model. Aluminum material properties were used for the matrix with ceramic 
properties used for the particles. The over all stress-strain curves were compared as well as 
the strain distribution with the simulations. They found that the 2D models predicted very 
different strain distributions than the 3D multiple particle model did on the same planes. This 
suggests that when particles are involved, plain strain assumptions are not valid. The over all 
stress-strain curves were only similar if the area fraction of particles in the 2D model 
matched the volume fraction of particles in the 3D model. The conclusions drawn were that 
unit cells and 2D models, while being computationally efficient, were not capable of 
prediction stress/strain distributions in all cases, and that 3D models were required. Borg et 
al. [2008] did a study investigated the stress carrying capability of a single crystal with voids. 
A unit cell approach was taken and the voids were modelled at the sub-micron level. A very 
thorough investigation was done adjusting void sizes as well as the orientation of the single 
crystal. The argument was that traditional crystal plasticity models that do not consider 
length scales were not capable of accurately modelling voids. What was not considered was 
how the voids reacted with a polycrystalline matrix as opposed to a single crystal. Delannay 
et al. [2007] investigated transformation induced plasticity (TRIP) steels where they 
modelled austenite and martensite inclusions in a ferritic matrix. Stress distributions as well 
as inclusion deformations were calculated using a mean field approach. The hardness of the 
matrix was varied and the accuracy of each model was tested against experimental data. The 
models did not take into account the orientation of the matrix in which the inclusions lay. 
They found a set of simulations that could be modelled accurately and obtained valuable 
knowledge regarding the TRIP steels and their internal mechanisms. These are important 
stepping-stones leading to a more complete understanding of the material, although they are 
only part of the picture. It is important to develop an understanding of how particles interact 
with the grain texture of the matrix in which they reside. By identifying the processing and 
alloying that creates the ideal microstructure for inhibiting localization during a given strain 
situation, the formability of the metal can be greatly improved. In this paper we employ the 
described numerical model to simulate the effects of particles on heterogeneous deformation 
in a 3D fcc polycrystalline matrix. Various methods have been used to model particles within 
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a matrix. Radhakrishnan et al. [2000] used coupled models to allow very small element size 
surrounding a particle, with larger elements making up the matrix. The complexity of a 
coupled model is significant. Qu et al. [2005] used cohesive models where the matrix is 
meshed separately from the particle, and a cohesive layer is used to model the interaction 
between the particle and single crystal in a unit cell. A 2D approach used by Inal et al. [2008] 
was to randomly select elements within an element grid and increase the yield strength by a 
factor of 10, thereby simulating random inclusions equal to the element size. The approach 
used in this paper is essentially a 3D version of the latter with the exception that a rigid 
material model is used for the particle elements, the selection of particle elements is 
controlled and each particle consists of multiple elements. The reason for using this method 
is that it can be built automatically from serial sectioning data, has the same element 
resolution at the particles as at the grain interfaces, and can avoid issues caused by highly 
distorted elements. 

 
In this paper, instead of using serial sectioning data for generating the grain structure, 

the 3D microstructure is reconstructed from 2D EBSD data following the methods described 
in Brahme et al. [2007]. The basic hindrance in using the serial sectioning process is the high 
cost involved and expertise required to obtain the data. Also, from Zaefferer et al. [2008], the 
techniques are time consuming and the sample volume is limited. The 3D serial sectioning 
requires either using FIB as in Zaefferer et al. [2008] or metallographical techniques as in 
Spowart et al. [2003] to expose underlaying layers.  

 
The main advantage of the approach used here to obtain 3D microstructure is the 

relative simplicity as well as time required to generate a new structure. Using the technique 
we can generate a 3D microstructure with any given shape and size distribution given that we 
can obtain the above distributions. These distributions can be from a real experimental 
observation or can be built estimated or expected pseudo microstructure. 

 
To reduce the number of parts required to build a vehicle, the material needs to be 

capable of straining to large strains in order to contour an increased number of features per 
part. This high strain capability is where aluminum needs to be improved. Aspects of the 
forming process such as strain-rate, strain-path, and temperature can be modified and 
controlled. By gaining an understanding of how these variables can be used to maximize the 
formability of a material, costs can be minimized. 

 
The limit of formability would be when the material fails. Whether the definition of 

failure is considered to be localization or material fracture, shear is the dominant failure 
mode (Lemonds and Needleman [1986]). Experimental tests have been done by Gasperini et 
al. [2001] using a scanning electron microscope (SEM) observed the development of 
localization during shear. They found that in the rolling direction, very large shear strains 
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could be obtained. They found that shear bands propagated parallel to the applied load and 
that typical hardening behaviour took place to promote uniform deformation up to large 
strains. Physical tests have been created (such as Rauch [1997]) and used by Inal et al. 
[2002b] to validate 2D simulations which investigate the shear response when loading is at 
different angles with the rolling direction in sheets. Rauch [1997] developed a shear test that 
could be implemented in to a tensile testing machine which could use samples cut from a 
sheet of metal at any angle from rolling direction. A series of stress-strain curves could be 
developed which could characterize the anisotropy of a given sheet. Crystal plasticity codes 
developed by Inal et al. could then be used to simulate shear response at different angles 
from rolling direction and the results could be compared. The overall damage to aluminum in 
shear has been studied by Tang et al. [2003] and revealed to be significant. The effect of 
ratcheting on macroscopic deformation during shear has been studied by Hassan et al. 
[2008]. The application of modelling equal channel angular extrusion (ECAE) using shear 
simulations has been studied by Kalidindi et al. [2009]. Holmedal et al. [2008] has studied 
the macroscopic stress strain behaviour of aluminum in different combinations of tension and 
compression loading conditions.  

 
In order to expand the understanding of shear, this study compares the effect of three 

different strain paths predominantly containing shear. It has been shown by Mckinley et al. 
[2009] and Van Der Boogaard and Huetink [2006] that strain rate can affect localization and 
localization can be inhibited by increasing the strain rate. Strain rate effect has been studied 
numerically by Zikry and Nemat-Nasser [1990] for single crystal models showing a 
narrowing of the shear band at high strains. To investigate how pronounced an affect the 
strain rate has on a polycrystalline model, localization at three different strain rates are being 
compared in this study. Thermal softening has the opposite effect of strain rate hardening and 
its effect is also investigated (Lemonds and Needleman [1986]).  

 
The paper presents computational results of strain distribution, crystallographic 

rotation, temperature distribution, macroscopic stress strain curves for the strain-paths 
studied and discusses the influence of these variables on localization. 
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2.  Crystal Plasticity Theory 
 
Plastic deformation of polycrystals occurs primarily by the movement of dislocations. 

The basic concept of dislocation was explained ingeniously by Taylor [1934] as the shearings 
of different rows of atoms of a crystal. First they appear in small regions, and then they begin 
growing through the crystal. Shear stress along the gliding direction on the gliding plane of 
the dislocation, known as the resolved shear stress, supplies the force to cause dislocations to 
glide. Among the different mechanisms of plastic deformation in metals, such as slip, 
twinning, grain boundary sliding and diffusion, the translation glide (slip) is the principle one 
in FCC metals at low and intermediate temperatures. Only this crystallographic slip 
mechanism is considered in this report. 

 
Crystallographic slip is anisotropic. It implies the massive movement of dislocations 

along certain crystallographic planes (slip planes) in certain directions (slip directions). Each 
slip direction on a slip plane is called a slip system. These slip directions and planes are 
almost always those of maximum atomic density and correspond to those slip systems in 
which dislocations are most likely to move. Due to the symmetry of the crystal, there are 12 
possible slip systems, {111} <110>, for a FCC crystal. 

 
The slip deformation mechanics is governed by the critical shear stress law (Schmid 

[1924]), which is often referred to as Schmid’s law, serving as an initial microscopic yield 
criterion for single crystals. The Schmid law states that: 

 
In crystals of a given material under constant condition, extensive glide occurs when 

the resolved shear stress, )(ατ , attains a critical value, i.e., 

 
                                          )(yij)(ij)( r ααα τστ ==      (i, j = 1, 2, 3)                               (1) 

 
where ijσ  is the stress state acting on a crystal, )(y ατ  is the yield strength of system α , and 

)(ijr α  is expressed as 

 
                                                    )(j)(i)(ij msr ααα =                                                       (2) 

 
where )(is α  and )(jm α  are components of slip vector )(αs  and slip plane normal )(αm , 

respectively, of system α . 
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2.1 Single crystal deformation models 
 
It has been known that the properties of polycrystals can be derived from those of 

single crystals. With the assumption that plastic deformation is due solely to crystallographic 
slip, the description of the deformation of single crystals has several versions. The rate-
insensitive version is presented here, while the rate sensitive version is presented in Section 
3. 

2.1.1 Rate-insensitive deformation 
 
Let )(

y
ατ  represent the current value of the yield stress associated with the α  slip 

system and )(ατ  the corresponding resolved shear stress. The Schmid law yields the 

following simple flow rule for rate-insensitive plasticity: 
  
                               0=)(αγ&                   for )(ατ  < )(y ατ ,                                            (3) 

 
                               0=)(αγ&                 for )(ατ  = )(y ατ  and )(ατ&  < )(h βαβγ& ,             (4) 

 
                               0≥)(αγ&                   for )(ατ  = )(y ατ  and )(ατ&  = )(h βαβγ& ,             (5) 

 
where )(αγ&  is the shear rate on slip system α , )(ατ& is the rate of resolved shear stress, and 

αβh  are the elements of flow stress on system α  due to an increment of shear on system β . 

 
Equations (3-5) characterises the inactive, potentially active, and active systems. The 

crystal deformation theory proposed by Taylor [1938] assumes that only five independent 
active slip systems are generally required to satisfy any arbitrary prescribed strain. 

 
However, when deformations alone are prescribed, uniqueness is not guaranteed if 

more than five slip systems are potentially active. This characteristic stress and slip 
ambiguities in solutions of the Taylor-type models and the rate-sensitive deformation model 
proposed by Asaro and Needleman [1985] that resolves all these ambiguities will be 
discussed in detail in the next sections.  

2.2 Deformation textures 
 
The common metals of industrial practice are polycrystalline aggregates in which 

each grain has different orientations. In forming processes, where metals undergo medium or 
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large deformation, the grains in such metals do not have random orientations; instead, non-
random distributions called preferred orientations or textures occur.   

 
Textures are developed at all stages of such manufacturing processes. They have 

profound effects on the mechanical, thermal and electrical properties of materials, as well as 
on the subsequent fabrication and the final quality of products. For instance, rolling of 
aluminium, commercial alloys as well as high-purity materials, results in a complex mixture 
of a range of texture components of which are { } 111112  (the Cu-component), { } 241123  

(the S-component), { } 211110  (the brass-component) and a variety of other components. 

Prediction and simulation of such texture developments are very desirable, since many 
forming operations are carried out on rolled materials and the forming capability of metals 
strongly depend on their textures. Stamping a circular cup from rolled and/or annealed metal 
sheets with textures, for example, always results in undesirable waves on the sides of the cup, 
called earing.  

 
Nevertheless, textures are so important that predicting their formation and evolution 

during deformation is vital for control purposes in industrial practices.   
 

2.3 General introduction of polycrystal deformation models. 
 
Besides the general abilities of phenomenological models, a polycrystal deformation 

model must have some advantages. It should be capable of describing some phenomena 
which cannot be covered by phenomenological theories, such as the important polycrystal 
deformation characteristic – crystallographic textures. It should be able to explain the 
resulting anisotropic material responses, such as the directional dependence of the flow 
stress. In general such a model can be derived from single crystal deformation models which 
have already included microstructures, anisotropic properties of single crystals, 
micromechanism (slip and/or twinning mechanisms) and lattice rotation caused by slip. The 
point is how microstructural mechanisms of deformation operating on the single crystal level 
determine polycrystal behaviours, that is how to establish a relation (reasonable, physically-
based assumptions) between these two kinds of models. 

 
To relate phenomena on the microscopic scale to those on the macroscopic scale in 

polycrystal plasticity theories, at least something must either be known or assumed about the 
stresses or strains of the individual grains. Usually, assumptions are made about the 
distribution of stresses and strains in the polycrystal, and polycrystal response is identified 
with some appropriate average of the response of its constituent grains. Several such models 
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have been proposed which have produced much useful insight into texture development and 
polycrystal strain hardening behaviour. 
 

2.3.1 Sachs’ model 
 
Sachs’ [1928] model, one of the earliest polycrystal models, was based on Sachs’ 

original assumption that only one slip system operates in each grain. In this model, the grains 
are treated as if they were an array of free single crystals which can deform independently of 
each other. Strain and orientation changes are deduced from the stress in the same way as in 
the case of a free single crystal submitted to a known stress. Each grain is subjected to the 
same stress state which is also the macroscopic stress and is taken to be a state of uniaxial 
stressing. The model was refined by Kochendorfer [1941] who further stipulated that each 
grain was subjected to the same stretch. Then as pointed out by Bishop and Hill 
[1951a;1951b], with the assumption of identical strain hardening in all grains, common to the 
Sachs [1928] and Kochendorfer [1941] analyses, each grain fits the relation 

 
                                                      Mdd == εγτσ                                                 (6) 

 
where σ  and εd  are the axial stress in a grain and the macroscopic aggregate strain 
increment respectively and τ  and γd are the shear strength and slip system shear strain 
increment; M  depends only on geometry and in particular on the relationship between the 
loading axis and the crystal slip systems. Then, as also shown by Bishop and Hill 
[1951a;1951b], if each grain is taken to be at the same strain hardening and if  M is taken as a 
constant, independent of the strain, an aggregate stress strain relation can be defined as an 
average over all orientations, viz. 
 

                                                  ( ) ( )ετγτσ MMM ==                                              (7) 
 
The average value for M  determined by Sachs’ assuming an isotropic aggregate, i.e 

uniform coverage of all grain orientations, is 2.2. 
 
In Sachs’ model, because of the assumption that each grain is subjected to the same 

stress state equal to the macroscopic stress, the stresses arising from constraints necessary to 
satisfy an imposed strain are neglected. As a result, continuity of stress and strain across a 
grain boundary is violated (Bishop and Hill [1951a;1951b]); equilibrium of the stresses 
cannot be established across grain boundaries; there is no way to maintain compatibility 
among the grains. Also some numerical inconsistencies with experiments exist in this model 
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(Asaro and Needleman [1985]). In general, this theory was not very successful in predicting 
deformation textures. 

 
In order to overcome the objections to the Sachs’ model Taylor proposed his own 

model. There are two aspects in the original Taylor theory: (a) a criterion for selecting the 
active slip systems in a deformed single crystal, for which the five components of strain rate 
are known, and the calculation of the remaining shear rates and rotations of the 
crystallographic axes; and (b) the assumptions for linking the deformation behaviour among 
all constituent grains, and between individual grains and polycrystals.  
 

2.3.2 The Taylor criterion 
 
One of Taylor’s basic assumptions is that the elastic strain is neglected and the plastic 

strain is prescribed. Since there is essentially no change of volume for a crystal during plastic 
deformation, only five components of the plastic strain rate tensor are independent. The 
deformation model for FCC polycrystals proposed by Taylor assumes that slip from at least 
five independent slip systems is generally required to accommodate five independent strains. 
For FCC crystals which have 12 slip systems, unfortunately, there exists 384 geometrically 
possible combinations of 5 slip systems out of 12. His criterion for the selection of the active 
slip system combinations was the principle of minimum shear, which hypothesizes that 
among all combinations of (five) slip systems which are capable of satisfying the imposed 
strain, the active combination is the one for which the sum of the glide shears is a minimum, 
i.e., 

                                                         min)( =∑
=

5

1α
αδγ                                                     (8) 

 
This hypothesis has no obvious a priori justification. However, Taylor based it on 

observations of single crystals subjected to uniaxial stress and on a postulated analogy with 
the dynamics of non-conservative mechanical systems.  

 
Bishop and Hill later recast the theory for polycrystals and based it on the principle of 

maximum work, a version of which they derived for a single crystal. In particular from the 
principle of maximum work, they derived inequalities between external work, computed as 
the product of macroscopic stress and strain increments, and internal work computed as the 
integral over the volumes of grains of the products of crystallographic shear strength, and 
assumed slip increments, and used these to set bounds on the critical stress state required to 
induce yield. Indeed the primary aim of the Bishop and Hill theory was the computation of 
single and polycrystal yield surfaces. They discovered that, for most orientations of a single 
crystal, the active stress states are on the corners of its yield surface. For FCC metals 
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deformed by {111} <110> slip and which harden isotropically, there are 56 corner stress 
states. More than five slip systems would be activated on these corners of the yield surface 
because they are the intersection of at least six planes. Among the 56 stress vertices (28 plus 
their opposites), 24 will activate 8 slip systems and 32 will activate 6 slip systems. Using the 
maximum external work rate criterion, therefore, the active slip systems can be determined 
rather quickly. This implies that the procedure with the Bishop and Hill theory requires 
considerably fewer computations than that using the Taylor theory. 

 
The use of a yield surface in connection with “maximum plastic work” seems a more 

valid basis as a selection criterion than Taylor’s assumption of “minimum sum of shears”. 
However Chin and Mammel [1969] proved that the two methods are strictly equivalent. 
Kocks [1970] and Renouard and Wintenberger [1976] also arrived at the same conclusion.      

 

2.3.3 The Taylor assumptions 
 
The basic idea underlying the Taylor model rests on experimental observations. By 

examining a micrograph of the cross section of a drawn wire, Taylor noticed that all the 
grains were elongated in the direction of extension, and contracted in the two perpendicular 
directions. He concluded that the strain field throughout the polycrystals is homogeneous. 
This implies that each grain deforms exactly in the same way as the polycrystal. This 
assumption has served as a tool for linking the deformation behaviors among all constituent 
grains and between individual grains and polycrystals. It is known nowadays that it is not 
exactly true, but the assumption has the advantage of assuring continuity of the strain rate 
through the grain boundaries so that no voids are created.  

 
However, with the Taylor assumption the stress state is not continuous, but varies 

abruptly from grain to grain, depending on different grain orientations. As pointed out by 
Bishop and Hill (1951a; 1951b), each grain fits the same relation as Sachs’ model (6). 

 
Taylor and Elam [1923] studied the uniaxial tension of aluminum polycrystals. By 

assuming that each grain is at the same stage of strain hardening, Taylor predicted that if yτ  

was the yield strength in shear of a single grain, the tensile yield stress of a random aggregate 
would be 3.06 yτ . Very close agreement was obtained when Taylor tested this theory by 

comparing the tensile stress-strain relation ( )εσ −.aggre  measured on an aggregate with that 

deduced from the shear stress-strain ( )γτ −  curve of single crystal, where 
 
                                              τσ M.aggre =                                                                   (9) 
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                                              Mγε =                                                                      (10) 
 
where M , the Taylor factor, may vary from one type of texture to another. Its value is 
approximately 3.06 for isotropic polycrystals. We know that in the original Taylor theory, the 
aggregate stress is taken to be the average of the stresses generated in each grain. This 
concept is used in our numerical analyses to derive the macroscopic stress of a polycrystal 
from the stresses of constituent grains. 

 
Summarising, two points are obtained from the Taylor theory regarding the relation 

between the deformation of single grains and that of polycrystals:  
1. Each grain in a polycrystal experiences the same strain as the polycrystal, i.e., 
                                                   .aggregrain εε =                                                           (11) 

2. Macroscopic stress of a polycrystal is the average of the stresses of all constituent 
single grains, i.e., 

                                                 ∑
=

=
N

grain

grain
.aggre N1

σ
σ                                                   (12) 

 

2.3.4 Relaxed constraint models 
 
In the classical Taylor-type models, five independent slip systems have to be 

activated to guarantee deformation compatibility of the whole specimen. Since the number of 
strain conditions (the “number of constraints”) is as large as five, such models are referred to 
as “full constraint (FC) models”. 

 
Recently, a modification of the Taylor model, a method of  “relaxed constraints,” has 

been suggested by Honneff and Mecking [1978] and developed by Canova et al. [1984] to 
account for material texture effects. The idea here is to assume that when grains reorient and 
take on very distorted shapes, characterised by large aspect ratios of the principal lengths, it 
is possible to partially relax the strict compatibility requirements imposed in the Taylor 
model. Nonunuiform deformations (not accounted for in the model) are envisaged to occur at 
the grain boundaries which accommodate the incompatibilities implied by the non-imposed 
strain components. When applied to certain deformation states such as axisymmetric tension 
and compression they argue that the dimensionality of the problem is reduced so that less 
than five independent slip systems are needed.  

 
The methodology of “relaxed constraints” has been used by these authors to analyse 

deformation texture following several strain histories, e.g. axisymmetric tension and 
compression along with large simple shears in FCC polycrystals. Since the imposed strain 
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increments differ from those that would be imposed in a “full constraint” (Taylor) model, the 
slip modes and lattice rotations predicted by the two approaches are different. In a few cases 
the method has been reported to lead to predicted textures that are in better agreement with 
experiment such as in the analyses of Canova et al. [1984] of texture development following 
large simple shears. 
 

2.3.5 Self-consistent schemes  
 
The self-consistent method, based on Eshelby’s [1957] model, was proposed mainly 

by Kröner [1958], Budiansky and Wu [1962], and Hill [1965]. This approach attempts to 
account for grain interaction by considering each grain to be an ellipsoidal inclusion 
embedded in an infinite homogeneous matrix whose moduli are the overall moduli of the 
polycrystal to be determined as an average over all grains. The constraint imposed by the 
matrix on a grain can be estimated with the aid of Eshelby’s solution for an elastic inclusion. 

 
This model has been argued to be the most reasonable one for simulating polycrystal 

plastic deformation. However, considering its rather complex mathematical aspect and the 
may-not-be-valid assumption of an isotropic matrix in large deformation, its limitation is 
obvious. Although it has successfully predicted overall strain and stress in some small and 
intermediate deformation cases, only few deformation textures that have been simulated by 
this method have been reported in the literature until now.  
 

2.4 Discussion and Conclusion 
 
In this section, the main deformation theories of single crystals and polycrystals have 

been reviewed. These deformation characteristics are the physical basis of the crystal models. 
They are also the physical basis of the present work. 

 
 Crystal plasticity models reviewed in this section can be classified to two groups: the 

self consistent models and the Taylor type models. The self-consistent models seem to be a 
more reasonable simulation for the plastic behaviour of polycrystals. In particular, they can 
account for the effects of grain shapes by choosing the ellipsoidal parameters. However, the 
assumption of an isotropic matrix may not be valid at large deformation. Moreover, they 
involve very lengthy and complex calculations for simulations of polycrystal deformation. 
Due to these limitations, the self-consistent models have only succeeded in being employed 
for the simulation of polycrystal deformation at low and intermediate strains. 
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Compared to the self-consistent models, the Taylor type models are simpler, and the 
corresponding calculation procedures are much shorter than the self consistent ones. 
Therefore, they have been more widely used for simulations of polycrystal deformation, 
particularly for predictions of texture development. The greatest disadvantage of the Taylor-
type models is the violation of stress equilibrium at grain boundaries. Taylor argued that this 
violation could be accommodated by elastic strains. However, elastic strains are not likely to 
accommodate the stress differences at large strains. Further more there exist the characteristic 
stress and slip ambiguities in solutions of the Taylor-type models. This is because the yield 
surface of rate-independent single crystals is a polyhedron and the prescribed strain-rate 
vector must be perpendicular to the yield surface. If the prescribed strain vector is 
perpendicular to the edge of the yield polygon, it is not possible to determine the position of 
the vector on the edge. Under such conditions the stress state cannot be obtained. On the 
other hand, if the stress vector is on the corner of the yield locus, six or eight slip systems 
could possibly be simultaneously activated according to FC models, and the corresponding 
slips cannot be deduced uniquely. Taylor resolved this ambiguity by taking the average value 
of all the possible rotations. However such an average has no physical meaning. The stress 
and slip ambiguities are also present in solutions of RC models, although some ambiguities 
present in FC models may vanish because of the introduction of stress conditions. 

 
Some postulates such as Renouard and Winterbenger [1976] and Fuh and Havner 

[1989] have been proposed to solve the stress and slip ambiguities. As these ambiguities 
cannot be resolved completely using the above two postulates, details will not be presented 
here. In 1985, Asaro and Needleman introduced the rate sensitivity of slip into Taylor-type 
crystal models to simulate the behaviour of rate-dependent polycrystals, and they thus 
resolved all the ambiguity problems. The characteristics of the rate-sensitive crystal plasticity 
model are described in Section 3 and all the simulations of crystal deformation involved in 
the present work are based on this model. 

 
The Taylor-type models reviewed here have only considered the case of isotropic 

slip-hardening. Actually, latent hardening of slip has frequently been observed in crystal 
deformation. The introduction of latent hardening of slip into crystal models not only results 
in more realistic simulations, but also resolves the characteristic stress and slip ambiguities 
because different slip systems have different shear yield stresses in this situation. In Section 
3, the implementation of latent hardening is described. 

 
Unfortunately, neither the Taylor-type models nor the self-consistent models include 

influences of interactions of neighbouring grains. The predicted behaviour of a polycrystal is 
only the average of that over all grains which are considered to deform like a single crystal in 
the Taylor-type models or like an ellipsoidal grain surrounded by a uniform matrix. In 
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Section 2.5, more recent models that can incorporate the influences of individual 
neighbouring grains, such as grain shapes and orientations will be investigated. 

 

2.5 New Developments in Crystal Plasticity Theory and Their Applications 
 
New developments in the crystal plasticity theory and their applications will be 

examined in this section.  
 

2.5.1 Models including interactions between grains 
 
As will be described in Section 3, Asaro and Needleman [1985] following the 

pioneering work of Taylor [1938] have developed an elastic-plastic, rate dependent 
polycrystalline model for low homologous temperatures in which plastic deformation within 
the individual crystals is taken to be by crystallographic slip alone. This model assumes that 
all grains have equal volume, and that the deformation gradient within each grain has a 
uniform value throughout the aggregate. As discussed before, in this model, compatibility is 
satisfied and equilibrium holds in each grain. However, the deformation producing 
mechanisms of twinning, diffusion and grain boundary sliding are not considered, and other 
sources of anisotropy due to morphological effects of grain shape, size and arrangement are 
not taken into account.   

 
If grain shape effects are not included, the predicted textures are not in good 

agreement with experimental textures. In particular, if the Taylor assumption is used to 
model the texture development of an aggregate whose grains have become flat and elongated, 
the major texture components are shifted in Euler space and the minor texture components 
are incorrect.       

 
Asaro and co-workers (i.e., Harren et al. [1988]) have conducted some novel 

experiments and simulations of shear band formation in Al-3wt% Cu FCC single and 
polycrystals under plane strain compression. In their work, they modelled each grain by a 
number of finite elements to allow for non-uniform deformations within the grains, and in 
their calculations compatibility and equilibrium within and between grains was satisfied by 
the finite element method. Their simulations of the deformation response of a multi-crystal 
comprising of 27 grains provided good insight into the underlying micromechanical 
mechanisms of localised deformation in crystalline materials. 

   
Mathur et al. [1990] extended the mathematical formulation developed earlier by 

Mathur and Dawson [1989] to account for the effects of grain shape on the development of 
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deformation-induced crystallographic texture using the relaxed constraints approach of 
Honneff and Mecking [1978] and Kocks and coworkers (Kocks and Canova [1981], Canova 
et al. [1984], Tomé et al. [1984]). Within their framework, each grain could no longer be 
treated independently and the stresses from all grains in an aggregate simply be averaged. 
Rather, in a restricted sense the actual continuity requirements from continuum mechanics 
were enforced across flat grain boundaries while the overall deformation of an aggregate is 
constrained to match the macroscopic deformation of the material point. They simulated the 
flat rolling of polycrystalline aluminum as an application for their model and compared the 
predicted deformation textures with the predictions of an earlier study which were based on a 
Taylor model. Several detailed comparisons indicated that the texture predictions made by 
the new model which accounts for morphological effects matched the experimental 
observations more closely.  

 
Kalidindi et al. [1992] developed a finite element polycrystalline model where the 

integration point represents a material point in a single grain and the constitutive response is 
given through a single-crystal model without invoking the Taylor assumption. In their 
numerical simulations, each element represented one crystal, and sets of initially “random” 
grain orientations had been assigned to the elements. As with Taylor model simulations, the 
macroscopic stress-strain response and crystallographic texture were computed as volume 
averages over the entire aggregate. The crystallographic texture was arrived at by direct 
equal-area projection of the orientations of all grains. Their calculations satisfied (in the 
“weak” finite element sense) both compatibility and equilibrium in the aggregate. They 
analysed FCC polycrystalline oxygen-free-high-conductivity (OFHC) copper for (i) planar 
simple shear and thin-walled tubular torsion to large shear strains, and (ii) a simple plane-
strain forging operation. Their results clearly indicated that the new model nicely captured 
the major features of the evolved texture.  

 
Bronkhorst et al. [1992] used this model to simulate “nominally homogeneous” 

deformations of simple compression and tension, plane strain compression, and simple shear 
of a polycrystalline aggregate by using a multitude of single crystals. They compared their 
results against results from Taylor-type calculations and concluded that their model was in 
much better agreement with the experiments than that was the Taylor-type model, but at a 
substantially higher computational expense.   

 
Anand and Kalidindi [1994] also used this model to simulate the effects of 

crystallographic texture evolution on the process of shear band formation in plane strain 
compression of initially isotropic OFHC polycrystalline copper. They have calculated texture 
that is in very good qualitative agreement with the experimental texture after an axial 
compressive strain of  –1.0.  
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The study of a model polycrystal using finite element simulations (Sarma and 
Dawson [1996a]) showed neighbour interactions to be the main factor in determining the 
spread of the applied deformation among the crystals. Sarma and Dawson [1996b] presented 
a viscoplastic model for distributing the deformation applied to a polycrystal in a non-
uniform fashion among the constituent crystals. Their finite element model was based on the 
hybrid formulation of Beaudoin et al. [1995] in which compatibility was accomplished 
through interelement continuity of the velocity field and equilibrium was satisfied identically 
within the elements through the choice of interpolation functions and across element 
boundaries via a weighted residual. By defining a local neighbourhood for each crystal in this 
model, the effect of neighbour interactions were incorporated in this model for partitioning 
the macroscopic deformation.  They computed a compliance tensor for each crystal based on 
a viscoplastic constitutive relation for deformation by crystallographic slip. Since they used 
the Taylor model for calculating the compliance of each crystal, the new model may be 
viewed as a modification of the Taylor hypothesis, using an equilibrium based approach at 
the level of the neighbourhood of each crystal. The compliance of the crystal relative to that 
of its neighbourhood provided a means for partitioning the macroscopic deformation rate 
among the crystals. Polycrystal simulations of crystallographic texture development under 
plane strain compression and simple shear were simulated with this model and the results 
obtained were compared to the results of similar calculations using a Taylor model. They 
concluded that the model incorporating neighbour interactions improved texture predictions, 
in terms of both the intensity levels and the locations of certain texture components. 

 

2.5.2 Strain gradient plasticity   
 
Dislocation theory suggests that the plastic flow strength of a solid depends on strain 

gradients in addition to strains. Hardening is due to the combined presence of geometrically 
necessary dislocations associated with a plastic strain gradient and statistically stored 
dislocations associated with plastic strain. In general, strain gradients are inversely 
proportional to the length scale over which plastic deformation occurs. Thus, gradient effects 
become important for plastic deformations taking place at small scales. Experimental 
evidence suggests that flow strength increases with diminishing size, at length scales on the 
order of several microns or less. 

 
The most general versions of the theories proposed fit within the Toupin-Mindlin 

strain gradient framework, which involves all components of the strain gradient tensor and 
work-conjugate higher-order stresses in the form of couple stresses and double stresses. A 
specialized version deals with only a subset of the strain gradient tensor in the form of 
deformation curvatures (i.e., rotation gradients); this is the simpler couple stress framework. 
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Experimental evidence is accruing for the existence of a strong size effect in the 
plastic flow of metals and ceramics. For example, the measured indentation hardness of 
metals and ceramics increases by a factor of about two as the width of the indent is decreased 
from about 10 µm to 1 µm (Stelmashenko et al. [1993], Ma and Clarke [1995]). The well-
known Hall-Petch effect states that the yield strength of pure metals increases with 
diminishing grain size. Long-standing observations of shear bands in metals have revealed 
that micro-shear band widths appear to be consistently on the order of a micron. Simple 
dimensional arguments lead to the conclusion that any continuum theory for each of these 
phenomena based solely on strain hardening, with no strain gradient dependence, would 
necessarily predict an absence of any such size effect.   

 
Higher-order continuum theories of elasticity were promulgated in the 1960s 

culminating with the major contributions of Koiter [1964], Mindlin [1964, 1965] and Toupin 
[1962]. Efforts were made to apply the theories to predict phenomena for linear elastic solids 
such as stress concentration at holes (Mindlin [1963]), crack-tip stresses (Eringen [1968]), 
bending stiffness of thin beams (Koiter [1964]), and stresses at free surfaces (Mindlin 
[1965]). No experimental corroboration of these theories was achieved, and in due course it 
was generally accepted that the phenomena being addressed in these works should be 
expected to come into play only at scales comparable to atomic lattice spacing. Specifically, 
Koiter’s [1964] argument prevailed to the effect that there is no reason to expect gradient 
effects to alter the elastic bending stiffness of a single crystal beam until its thickness 
approaches atomic dimensions. Fleck and Hutchinson [1993] have developed a 
phenomenological theory of strain gradient plasticity based on gradients of rotation which 
fits with the framework of couple stress theory. This theory is probably the simplest 
generalization of conventional isotropic-hardening plasticity theory to include strain gradient 
effects. 

 
There have been several studies with the aim of providing higher-order strain gradient 

constitutive relations for conventional linear elastic solids with microstructures (i.e., Zuiker 
and Dvorak [1994], Drugan and Willis [1996] for materials reinforced by spherical particles, 
and Bardenhagen and Triantafyllidis [1996] for multi-phase media). Complementing this 
theoretical work are the experiments by Kakunai et al. [1985] on polycrystalline aluminum 
beams with equiaxed grains showing a small but systematic increase in the scaled elastic-
bending stiffness as the thickness of the beams is reduced from about sixty to three grain 
diameters. 

 
While gradient effects in an elastic single crystal of pure metal become significant 

only for deformation fields with wavelengths on the order of the atomic spacing, when 
plastic deformation occurs, gradient effects can become important at much larger scales.    
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Fleck and Hutchinson [1997] used the notions of statistically stored dislocations and 
geometrically necessary dislocations to provide the physical basis for continuum theory of 
single-crystal plasticity. They assumed that slip occurs on specific slip systems in a 
continuous manner and the increment in flow strength of any given slip system depends upon 
the rates of both the strain and the first spatial gradient of strain. Their crystal theory fits 
within the framework of Toupin [1962] and Mindlin [1964,1965] strain gradient theory. It 
should be mentioned that the precise details of the formulation that incorporates strain 
gradients to crystal plasticity are not yet clear but are being pursued. 
 

2.5.3 Models including backstress 
 
Polycrystalline plasticity formulations to date have neglected explicit effects of 

dislocation substructure in the constitutive relations. As a result, aphysical symptoms arise 
such as premature texture development (Harren et al. [1989]).  

 
When a metal deforms inelastically, heterogeneities arise due to mechanisms at 

several length scales. These heterogeneities can arise from single dislocation sources at the 
lattice or at a higher length scale via dislocation cell boundaries enclosing equiaxed volumes 
that contain few dislocations. Heterogeneities can also arise at higher length scales from 
geometrically necessary boundaries (GNBs) which surround groups of cells in cell blocks 
(CBs) (Kuhlmann-Wilsdorf [1989], Leffers [1992]). Heterogeneities give arise to internal 
stresses associated with local hard and soft regions; hence, macroscale hardening behaviour 
during inelastic deformation ensues from dislocations simultaneously interacting throughout 
a range of length scales. These heterogeneities not only generate short range stresses at a 
local level which induce anisotropy but also affect the polycrystalline elastic anisotropy.  

 
The crystal plasticity models that have been already discussed have been successful in 

predicting the elasto-plastic behaviour as well as the texture evolution of crystalline 
materials. However, the backstress evolution has been neglected in these models. The 
backstress is a residual stress embedded in the polycrystalline or single crystal material at the 
crystal-lattice level due to plastic deformation of crystals. 

 
Within the context of dislocation resistance, the notion of backstress was studied by 

Mughrabi [1983].  It has been used in some plasticity models to describe the Bauschinger 
effect which has been associated with sequential activation, deactivation, and dislocation 
substructures. The backstress arises as dislocation densities at the GNBs are high enough to 
induce a tensile stress state (or forward stress) such that regions between them experience a 
compressive stress state. To maintain compatibility at the interface between the boundaries 
and interiors of the subgrain, the GNBs serve as barriers to dislocation motion and give rise 
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to backstress. These backstresses influence the work-hardening rate and limit the free 
operation of dislocation sources in the softer cell interiors when the material is reloaded. 
Tensile stresses (or forward stresses) in the boundaries assist the applied stresses to operate 
on the sources with shorter dislocation segments. 

 
Horstemeyer and McDowell [1998] introduced a second rank microheterogeneity 

internal state variable (ISV) tensor into the elastoviscoplastic polycrystalline framework 
(Rashid and Nemat-Nasser [1990]) to represent effects of dislocation substructures in the 
form of geometrically necessary boundaries (GNBs). This evolving ISV was resolved onto 
the slip systems using Schmid’s Law to introduce kinematic hardening (backstress) in the 
flow rule. The microheterogeneity ISV tensor that they introduced also affected the 
intergranular constraint by using a self-consistent (relaxed constraint) method analogous to 
that of Berveiller and Zaoui [1978]. This microheterogeneity ISV relates the dislocation 
substructure evolution to the backstress for intergranular hardening and to the grain 
boundaries for intergranular hardening. By including the microheterogeneity ISV into the 
elastoviscoplastic polycrystalline framework relative to the Taylor model they improved 
trends of correlations with experimental compression and torsion stress-strain curves. Also 
the trends of their prediction of axial stresses in fixed end torsion tests were more realistically 
simulated as second order axial effects were shown to depend on both texture and dislocation 
substructure. Two other noteworthy results they presented were that the trends of intensity 
and distribution (spread) of texture evolution were more realistically predicted and that the 
trends of prediction of polycrystalline elastic moduli for deformed OFHC Cu and 304L 
stainless steel were more accurately simulated. Also their elastoviscoplastic calculations with 
the microheterogeneity ISV model showed that torsion produced a higher degree of 
anisotropy than compression since the backstress magnitude for torsion was greater than for 
compression. Their results and also other results such as presented by Voyiadjis and Huang 
[1996] and Dawson et al. [1999] suggest that residual stresses such as backstress and their 
evolutions should be considered for a physically-based polycrystalline framework.    

 
Brahme et al. [2009] integrated the approach proposed by Berveiller and Zaoui [1978] 

into a polycrystalline model to establish the amount of backstress due to cell block 
boundaries (CBBs). It was shown that the addition of backstress into the model altered the 
activity on some of the slip systems and in turn, increased the localization predicted as well 
as altered the evolved texture. 
 

2.5.4 Discrete dislocation plasticity 
 

It has already been discussed that conventional plasticity theories are length-scale 
independent and are based on the concept of a homogeneously deformed material element. 



22 
 

However based on crystal plasticity, Van Der Giessen and Needleman [1995] have presented 
a method for solving small-strain plasticity problems with plastic flow represented by the 
collective motion of a large number of discrete dislocations.  
 

Their formulation assumed that the ensuing deformation process was quasi-static and 
involved small strains only. The process lead to the motion of dislocations, mutual 
annihilation, the generation of new dislocations and their pinning at point obstacles. The 
analysis of the deformation process was performed in an incremental manner in time, where 
the incremental step at any instant t involves three main computational stages. First, for the 
current dislocation arrangement, the current stress and strain state of the problem was 
determined. Secondly, from that state, the so-called Peach-Koehler force, i.e., the driving 
force for changes in the dislocation structure, was determined. Finally, the instantaneous rate 
of that dislocation structure was computed on the basis of a set of constitutive equations for 
motion, annihilation and generation of dislocations. 
  

They have presented results for monophase and composite materials with periodic 
microstructures subjected to simple shear loading. Even though they were only for a single 
slip system and use assumptions for sources and obstacles, the results showed a number of 
noteworthy features; especially in problems of plastic flow near crack tips, around micro-
indentors and in composite materials, at a scale where the collective motion of large numbers 
of dislocations and discrete dislocation effects play a role. Their results indicated that for the 
aforementioned microscale problems, continuum plasticity may not give the desired 
resolution of stress and strain fields on that scale, and that the discrete nature of dislocations 
may need to be accounted for.   
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3. Constitutive Model 
 

The polycrystal plasticity model formulated by Asaro and Needleman [1985] and 
used by Inal et al. [2002a] is employed in this analysis.  The total deformation of a crystallite 
is taken to be the result of two distinct physical mechanisms: crystallographic slip due to 
dislocation motion on the active slip systems, and elastic lattice distortion. Within an FCC 
crystal, plastic deformation occurs by crystallographic slip on the twelve { }110111  slip 

systems where the slip planes are the { }111 crystallographic planes with normals m , and the 

110  directions are the shear directions with slip vectors s . Plastic deformation is envisaged 

to occur as a set of plastic simple shears along the various slip systems, leaving the lattice 
and the slip system vectors ( )()( , αα ms ) not only essentially undistorted, but also unrotated.  

(The brackets for the subscripts α  indicate that α  is not a tensor index and ranges from one 
to the total number of slip systems.)  Next, the material and lattice are considered to deform 
elastically and rotate rigidly from the plastically deformed state to the current configuration 
(Figure 1). 

 

 

Figure 1: Decomposition of the deformation gradient F. 

 
Accordingly, the deformation gradient tensor F is written as: 

 
                                                           p* FFF = ,                                                                (13) 
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where pF consists solely of crystallographic slip along the specific slip systems, while the 
elastic deformation and any rigid body rotation are embodied in *F . From (13), the spatial 
gradient of velocity L can be written as  
 
                                                  p* LLFFL +== −1& ,                                                          (14) 
 
where 
 
                                          1−= *FFL ** & , 11 −−= *)( FFFFL pp*p &                                       (15) 
 
Taking symmetric and antisymmetric parts of the above relations leads to the elastic and 
plastic strain-rates *D and pD , the so-called plastic spin pW , and the spin *W associated 
with the rigid lattice rotation 
 
                                              p* DDD += , p* WWW +=                                                (16) 
 
The vectors )(αs  and )(αm  are regarded as lattice vectors so that they stretch and rotate by 

    
                                         )(

*
)( sFs αα =* , 1-*

)()( Fmm αα =*                                                  (17) 

 
By introducing the following symmetric and skew-symmetric tensors for each slip system α , 
 

                                    [ ]*
)(

*
)(

*
)(

*
)()( smmsP ααααα ⊗+⊗=

2
1                                                 (18) 

 

                                    [ ]*
)(

*
)(

*
)(

*
)()( smmsW ααααα ⊗−⊗=

2
1  ,                                             (19) 

 
the plastic strain-rate and spin for the crystal can be respectively written as 
 
                                   ∑=

α
αα γ )(&)(

p PD ,  ∑=
α

αα γ )(&)(
p WW                                              (20) 

 
where )(αγ&  is the shear rate on the slip system α .  

 
The elastic constitutive equation for a crystal is specified by 

 

                                                   =+−=
∇

** WW * ττττ & L *D                                               (21) 
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where 
∇
*τ is the Jaumann rate of the Kirchhoff stress tensor τ  based on the lattice 

rotations, and L is the tensor of the elastic moduli.  These moduli are based on the anisotropic 
elastic constants of the FCC crystals and thus exhibit the appropriate cubic symmetry. 

 

 In order to express the constitutive equation (21) in terms of the Jaumann rate 
∇

σ  of 
the Cauchy stress τσ 1)det( −= F  based on the continuum slip W, we introduce a second-
order tensor )(R α for each slip system as follows 

  
                                                           =)(R α L )()()( WWP ααα σσ −+                                            (22) 

   
Using (16) – (20) and (22), the constitutive equation (21) can be rewritten in the form 
 

                                                               =
∇
σ L DtrD σσ −− 0&                                                  (23) 

    

where 0σ& is a viscoplastic type stress-rate defined by 
 

                                                    ∑=
α

ασ )(
0 R& )(αγ&                                                  (24) 

 

The slip rates to be substituted into equation (24) are assumed to be governed by the 
following power-law expression 

 

                                          
m

)(

)(
)()(

.

)(

.

g
sgn

1

0
α

α
αα

τ
τγγ =                                              (25) 

 

Here )0(

.
γ  is a reference shear rate taken to be the same for all the slip systems, )()( αατ P= :σ  

is the resolved shear stress on slip system α , )(g α  is its hardness and m  is the strain-rate 

sensitivity index. The functions )(g α  characterize the current strain-hardened state of all slip 

systems.  The rate of increase of the function )(g α&  is defined by the hardening law: 
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                                                          ∑=
β

βαβα γ
.

)()()( hg&                                                      (26) 

 

where )(g α (0) is the initial hardness, taken to be a constant 0τ  for each slip system, and )(h αβ  

are the hardening moduli.  The form of these moduli is 
   

                                             )()()( hqh βαβαβ =  (no sum on β )                                              (27) 

 

where )(h β  is a single slip hardening rate, and )(q αβ  is the matrix describing the latent 

hardening behaviour of the crystallite. For FCC crystals with 12 slip systems, we take )(q αβ , 
as in Asaro and Needleman [1985], to be given by 
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⎦

⎤

⎢
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⎣

⎡
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q )(αβ                                                (28) 

 
where q  is the ratio of the latent hardening rate to self hardening rate, and A  is a 3 x 

3 matrix fully populated by ones. In the above, slip systems {1,2,3} are coplanar, as are 
systems {4,5,6}, {7,8,9} and {10,11,12}. Thus the ratio of the latent hardening rate to the self 
hardening rate for coplanar systems are taken as unity. 

 
Asaro and Needleman [1985], among others, simply take each )(g α  to depend on the 

accumulated sum aγ  of the slips; i.e.,  

                                        )(gg a)()( γαα = ,  ∫∑=
t

a dt
0

)(
α

αγγ &                                               (29)

  
Peirce et al. [1982] take the slip hardening to be a function of aγ , the total slip on all of the 
systems: 

 

                                               
)1(

0

0
0)( 1

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

n

a

n
hhh
τ
γ

β                                                          (30) 



27 
 

 
where 0h  is a hardening constant, n is the hardening exponent, and 0τ  is the critical resolved 
shear stress.  
 

It has been discussed in Section 2 that neither the Taylor model nor the self consistent 
models can resolve the problem of nonuniqueness in the choice of active slip systems. In a 
rate dependent formulation, such as what has just been described in Section 3, there is no 
division of slip systems into “active” or “inactive” sets. Instead all slip systems always slip at 
a rate which depends on the current stress and hardness properties. In equations (25) and 
(26), we use a simple power law relation between the slipping rate on a slip system and the 
ratio of resolved shear stress to a hardness parameter. The hardening parameter evolves with 
strain (equation (26)) according to a law which describes both self hardening and latent 
hardening of the slip systems. Thus once the stress state is known, which it is in the context 
of the model, slipping rates on all possible slip systems and the resulting lattice rotations are 
uniquely determined.   
 

3.1 Orientation Update 
 

For each time step, once *W  is known, the orientation of the crystal is updated by 
updating the orientation matrix. The orientation matrix, Q, rotates the crystal axis into the lab 
system, and is updated using the method of Raphanel et al. [2004]. 
 

                                                              Q n+1 = e W*Dt Q n                                                           (31) 

 

exp (W*Dt) is obtained through the Euler-Rodrigues formula 
 
                 

                             e W*Dt = I + *

*sin
w

tw Δ *W + 2

1
)w(

twcos
*

*Δ−  *W *W                                (32) 

where ( ) 2*
ij

*
ij

* WWw = . 

 
From the updated orientation matrix, the Euler angles ( 21 φφφ ,, ) in Bunge’s notation 

are computed and stored. These Euler angles are used to track the evolution of the texture of 
the material in polycrystal calculations (Kocks et al., [2001]). 
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4. Numerical Implementation 
 

In this section, the implementation of the crystal plasticity code into the explicit FE 
solver is discussed. A forward euler time integration is proposed and compared with a rate 
tangent method. The construction of the microstructure model and the finite element mesh is 
also discussed.  

4.1 Time Integration methods 

4.1.1 Rate tangent modulus method 
 

 Here, we briefly summarize the semi-implicit, forward-gradient time-integration 
procedure developed by Peirce et al. [1983,1984] which we use in our simulation. 
Considering the slip-rate law expressed in equation (25), the slip increment on system α  at 
time t is given by 
 

                                                )t()tt( )()()( ααα γΔγγΔ −+=                                              (33) 

 
A linear interpolation is employed within the time increment to give 
 

                                          ( )[ ] t)t( )(
)tt(

)()( Δ+−=Δ Δ+
ααα γθγθγ &&1                                          (34) 

 
where tΔ  is the time increment. Finally, the slip increments, according to equation (34), can 
be expressed in terms of the quantities at time t as 
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Here, αβM  is the inverse of matrix αβN defined by 
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4.1.2 Forward Euler Algorithm 
 

In this section, the proposed forward Euler algorithm in the subroutine is presented. 
The basic idea behind this algorithm is to use the slip rates per slip system at time )n(t  to 

compute quantities for time )n(t 1+ . In step 4 below, for example, )n(
αγ&  is used to compute 

plastic spin, plastic part of the plastic strain rate and the R  tensor. Likewise, in steps 5 and 6, 
we use plastic slip rates from )n(t  to compute slip plasticity related quantities for time )n(t 1+ . 

 
The steps in the computation are as follows: 

(1) Subroutine entry with known values of )n(F 1+ , )n(F , )n(Pα , )n(Wα , )n(σ , and Dt  

(2) Compute deformation and spin variables for )n(t 1+  

 

tΔ
−

= +
+
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)n(

FF
F 1

1
&  

1
111

−
+++ = )n()n()n( FFL &  

)LD )n()n( 11 ++ = sym(  

)LW )n()n( 11 ++ = skew(  

 
(3) Approximate the slip shear rates for )n(t 1+  using the stress state and )n(Pα at time )n(t . 

 
)n()n( Pαατ = : )n(σ  
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(4) Use slip shear rates to compute plastic strain rate and plastic spin. 
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(5) Compute visco-plastic stress rate, Jaumann rate of Cauchy stress for )n(t 1+  and update 

Cauchy stress. 
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(6) Compute the plastic portion of the deformation gradient, *F and *W . 
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(7) Compute exp ( tΔ*

)n(W 1+ )Q(n) using the Euler-Rodrigues formula and update the 

orientation matrix using Q(n+1) = ( tΔ*
)n(W 1+ )Q(n). 

(8) Compute Euler angles; rotate the crystallite modulus and lattice vectors and compute  

)(αP  and )(αW  tensors. 
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(9) Compute total slip, hardening and update the shear strengths of the slip systems. 
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(10) Exit subroutine. 
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4.1.3 Validation of the Forward Euler Algorithm 
 
First we validate our forward Euler algorithm by carrying out single element (which 

represents a single crystal) computations. Single element calculations carried out by 
Raphanel et al. [2004] were repeated using the forward Euler scheme and the results are 
compared with those obtained by them. Model parameters used in this crystal plasticity 
simulation are taken from the preceding reference and are shown in Table 1. The rate of 
loading was 0.001/s for all runs. 

 
Table 1: Material Parameters Used in the Simulations. 

Property 
.
γ  00 τ/h  m  q  ν 0τ  E 

Value 0.001 1/s 8.9 0.02 1 or 1.4 0.3 1 MPa 1 
 
Figure 2 presents results of single element computations where loading directions 

were uniaxial and in the [100] and [ 111 ] directions. The results from the forward Euler 
algorithm are shown as solid lines and these results are compared with those of Raphanel et 
al. [2004] for the same loading directions, shown as dashed lines. It can be seen that the 
explicit forward Euler scheme used in an explicit code gives results that are identical to those 
obtained with the second order Runge-Kutta scheme used in an implicit code. Onset of 
yielding for the [100] direction is when 0τσ = 6  and this is in accord with the rigid plastic 

theory of Taylor, Bishop and Hill (Hosford, [1993]). In the case of the results of the [ 111 ] 
loading, yielding occurs at 233 / , which is also in accord with theory. It is worth noting 
that in these calculations q  = 1 and latent hardening does not play a role for these loading 
directions. 

 

 

Figure 2: Stress strain curves for uniaxial loading in [001], and [-111] directions. 

⎯   New model 

- - - Raphanel et al. 2004 
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Figure 3 presents single element computations for uniaxial loading in the [-123] 

direction where the transverse and normal directions were [54-1] and [1-11], respectively. 
Here, the effect of slip system rotation and therefore the effects of latent hardening are 
examined. Note that parameter q  controls the magnitude of latent hardening; q  = 1 
corresponds to isotropic hardening while q  = 1.4 corresponds to latent hardening. 
Irrespective of the hardening case, the loading direction considered here is inherently 
unstable and the slip systems rotate to take the crystal to a stable orientation. The stress-strain 
curves for this direction for both q  = 1 and q  = 1.4 are shown in Figure 3, showing that 
latent hardening plays a significant role in deciding the shape of the stress-strain curve.  

 

 

Figure 3: Stress strain curves for uniaxial loading in [-123] direction for q=1, and q=1.4.  

 
The strain on the slip systems (111) [-101] and (-1-11) [011] versus the global strain 

of the crystallite and the rotation of the loading axis in the form an inverse pole figure are 
presented in Figure 4. For the case of q  = 1, slip is activated on the primary system (111) [-
101] and the stress-strain response is stable until a global strain of 15%. At this level of 
deformation, slip on the secondary or conjugate system (-1-11) [011] is activated, and the 
loading axis is at the boundary of the primary triangle along the tie line [001]-[-111] in 
Figure 4b. The rate of accumulation of slip on the former system decreases as can be seen in 
the plot of slip strains in Figure 4a. This rate is also lower when compared to the rate of slip 
on the primary system. With further accumulation of slip, the loading direction tends towards 
the stable [-111] orientation. 

 

⎯   New model 

- - - Raphanel et al. 2004 
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Figure 4: (a) Accumulated plastic slip on active slip systems, (b) Rotation of slip planes 
showing latent hardening overshoot for q  = 1.4. 

 
In the case of latent hardening, q  = 1.4, the stress-strain curve is markedly different. 

Slip on the primary system is activated as before, but the activation of slip on the secondary 
system is delayed as a consequence of latent hardening. This causes the loading direction to 
overshoot the tie line (a discussion of the latent hardening overshoot phenomenon was 
presented by Anand and Kothari [1996] and is not discussed here). At this level of 
deformation, slip on the secondary system is activated and the orientation of loading 
direction is roughly parallel to the tie line, tending toward the stable orientation. For both q  
= 1 and q  = 1.4, the stress-strain curves from our forward Euler scheme are in excellent 
agreement with those of Raphanel et al. [2004]. For the plots shown in Figure 4a, in the 
interest of clarity, we do not show curves from the above reference, but the agreement is, 
again excellent.  

 
The stress-strain curves for single element computations of simple shearing along [1-

11] initially aligned with the X1 axis and with the X2 as the normal to the shearing direction 
are shown in Figure 5. Here, rotation of the slip systems is the main result and comparison of 
our results with those of Raphanel et al. [2004] show excellent agreement. 
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Figure 5: Stress Strain of Single Element Simple Shear 

 

4.1.4 Comparisons of CPU Times: The Rate Tangent versus the Forward Euler 
Methods  

  
Numerical simulations with identical input files for both the rate tangent method and 

the forward Euler method were performed. In these simulations, unit cubes were modeled 
with 8, 27, 64, 125 and 216 elements. The run times for these simulations are presented in 
Table 2. As expected, an increase in the number of elements corresponded to nearly linear 
increases in run times with both models (Figure 6). However, the slope of the run 
time/number of elements curve is much steeper for the rate tangent scheme compared to the 
forward Euler scheme. This indicates that the efficiency of the new Euler scheme compared 
to the rate tangent scheme increases with increasing number of elements. This is an expected 
result since the new model avoids time consuming mathematical operations such as matrix 
inversions and/or iteration loops which become troublesome with increasing element 
numbers. 

  
Table 2: Run Times for Both Rate Tangent and Forward Euler Schemes. 
Number of Elements Rate Tangent Run Time (sec) Forward Euler Run Time (sec) 
8 21.399 19.268 
27 63.652 42.938 
64 171.541 85.128 
125 383.925 179.700 
216 756.215 331.250 

⎯   New model 

- - - Raphanel et al. 2004 
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Figure 6: Run Time vs Number of Elements 

 

4.2 Construction of Finite Element Model 
 

The microstructure considered for the first application is representative of wrought 
5xxx sheets that consist of FCC aluminum grains and hard intermetallic particles. The three 
dimensional (3D) polycrystalline microstructure of the aluminum alloy AA5754 is modeled 
for the second application. The first step in building a model is developing the methods that 
will produce the sample microstructure and create a complete mesh with texture and particles 
(if particles are present). Current three-dimensional (3D) data regarding grain structure and 
orientation can be obtained in voxelized form through serial sectioning as in Schaffer et al. 
[2007]. A statistically equivalent data set of the voxelized grain data has been created for 
each application and is explained in Section 4.2.1. Particle data has been obtained from the 
GM Bangalore lab and is in the form of representative ellipsoids with the locations, 
dimensions, and orientations of the ellipsoid axes obtained as explain in Tewari et al. [2009]. 
3D meshes have been created for each application and is explained in Section 4.2.2. 
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4.2.1 Construction of Microstructure 
 

The microstructure is generated by using experimental observations from 2 
dimensional electron backscatter diffraction (EBSD) maps. Both the grain size-shape 
distribution as well as the crystallographic orientation (texture) is obtained from EBSD maps. 
Using the grain geometry and texture data as inputs, a 3 dimensional microstructure is 
generated. The microstructure is built using a microstructure builder (Brahme et al. [2007]) 
by the following two steps; 

 
(i) Geometry generation based on experimental observations: The basic assumption in 

generating a microstructure, which is statistically similar to the observed experimental 
microstructure, is that all the grains can be approximated as ellipsoids. An ellipsoid is 
completely described by its semiaxes (a, b, c). From the EBSD maps one can extract the 
distribution of these a, b and c's. This distribution forms the input to the microstructure 
builder. Using these, the space is then populated with a set of ellipsoids belonging to the 
above distribution. The number of ellipsoids generated is far greater than the target number 
of grains in the microstructure (by about a factor of 2 to 5). Out of these ellipsoids a subset 
having minimum overlap and filling maximum space is retained.  

 
The next step is to sample the space with randomly distributed points. Each of the 

points is assigned to one and only one ellipsoid (to which it belongs)1. Using this set of 
points as input, Voronoi tessellation is done. The resultant Voronoi cells are assigned to 
ellipses which contain the original points. Thus we generate a grain structure which is space 
filling and has no overlap. The resultant microstructure is then sampled on a regular grid to 
get the voxelized microstructure. 
 

(ii) Adding Texture to the generated microstructure: The EBSD maps are used to 
calculate the orientation distribution function (ODF) as well as a misorientation distribution 
function (MDF). The ODF describes the volume fraction of each orientation in the 
experimental microstructure. The MDF describes the short range ordering of the texture.  

 
The first step of adding texture to the geometry generated in the previous step is to 

bin both the ODF and MDF data. The next step is to start with a random assignment of 
texture to the grains. Each grain is assumed to have uniform texture i.e. there is no variation 
of orientation within the grain. The resultant ODF and MDF of this assignment is calculated. 
The algorithm proceeds to either swap two orientations or replace the orientation of a grain in 
the microstructure to minimize the error between the target, experimentally measured ODF 
and MDF and the calculated ODF and MDF. 

 
                                                            
1 If a point is enclosed in more than one ellipsoids it is assigned to the ellipsoid whose centre it is closer too. 
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Figure 7 shows the resultant microstructure generated using the above procedure for 
the first application. The microstructure has 50 grains and is sampled on a grid of 10X10X10 
voxels in each direction. The grain colors are assigned at random and do not reflect the grain 
orientations. The assigned texture corresponding to the microstructure is shown in Figure 8.  

 

 

Figure 7: Showing the microstructure generated for the first application using the procedure 
described in section 4.2.1 

 

Figure 8: Pole figure showing the fitted texture for the first application using the procedure 
outlined in section 4.2.1 

 
Figure 9 shows the resultant microstructure generated using the above procedure for 

the second application. The microstructure has 275 grains and is sampled on a grid of 
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123X28X3 voxels in X, Y and Z directions respectively. The generated microstructure is 
three layered. Top and bottom layer are similar because of the periodic boundary conditions. 
The center layer varies from the outer layers. Figure 10 shows the center layer. The grain 
colors represent the crystallographic orientation according to the SST color triangle (also 
shown in the figure). The assigned texture to the microstructure is shown in Figure 11a and 
the created microstructure is shown in Figure 11b. 

 

Figure 9: Showing the microstructure generated for the second application using the 
procedure described in section 4.2.1 (top layer). 

 

Figure 10: Showing the microstructure generated for the second application using the 
procedure described in section 4.2.1 (center layer, dimensions in µm). 

 

 

Figure 11: Initial pole figure (a) employed in the procedure outlined in section 4.2.1 and 
created (b) microstructure used in the second application 
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In using bulk texture data, one loses information about nearest neighbours 

interactions. During the reconstruction of the 3D microstructure, matching of ODF and MDF 
ensures that we capture the nearest neighbouring grain orientations. 
 

4.2.2 Construction of Mesh 
 

Since the texture data is in voxelized form, the generated mesh consists of a 3 
dimensional grid of prismatic rectangles with the same dimensions as the texture data 
resolution. Each rectangle consists of a whole number of hexahedral elements. First the 
texture data is read to record the number of voxels along each of the axes and their 
dimensions. A grid of nodes is created that represents the corners of each element with the 
assigned node number uniquely identifying the node’s relative location within the grid. The 
texture data is then read again to build the list of nodes surrounding the elements within a 
voxel, and to establish whether or not each element is a part of a particle or grain. 
Differentiating between a particle or grain element is done by comparing the corner of the 
element closest to the origin with a set of equations derived for each particle. The element 
connectivity is generated with a separate part number for grain element versus particle 
element. The texture file is also created during this pass; it matches the element numbers of 
each voxel with the euler angles of that voxel. Since the elements within particles do not 
need texture information, the euler angles for these elements are ignored.  

 
The set of equations in the second pass that establish whether or not the element lies 

within a particle were created as follows. A local to global transformation matrix is formed 
which transforms a unit sphere located at the origin into an ellipsoid based on any given axis 
dimensions a, b, c. Then the ellipsoid is rotated to the same orientation as a given particle 
using the angles available in the particle data. Then the ellipsoid is translated to the location 
of the given particle. The equations obtained from the local to global transformations are then 
inverted to get the global to local transformation. By transforming the location of each 
element to the local coordinate system of each particle, and checking to see if the element 
lies within the volume of a unit sphere, the element can be identified as a particle element, or 
grain element. By assigning a different material model to the two different part numbers, the 
effects of having an embedded particle in a matrix can be simulated. A rigid material model 
is chosen to represent the particles while the single crystal constitutive model described in 
Section 3 is used for the matrix. A model can be created without particles by passing an 
empty particle data file to the executable. 

 
The inherent properties of a mesh formulated in this way include a “welded” interface 

between the particles and the matrix as well as between grains. Elements on either side of the 
interface share the same nodes and therefore are incapable of separating or sliding. A 
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consequence of this mesh is a “staircase” boundary between the particle and the matrix and at 
the grain interfaces. Since the elements are prismatic rectangles, it is impossible to have a 
smooth contour along any interface. The jagged shape of the particle to matrix interface can 
cause stress concentrations, however, since the matrix elements located at the interface are 
“welded” to rigid elements, the strain in those elements are low. In other words, there is a 
stress concentration, but it is in a low activity area. This has been confirmed during the 
simulations. Since we do not have grain boundary sliding due to the welded elements, we do 
not need to worry about the rough interface’s influence on interface slip. 
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5. Applications 
 

In the first application, we employ the numerical model described above to simulate 
two- phase microstructures for FCC materials. This work has been submitted as a paper to 
the International Journal of Plasticity, (Rossiter et al. [2009b]). 

 
In the second application, we investigate the effects of strain paths, strain rates and 

thermal softening on the formation of localized deformation. This work has been submitted 
as a paper to the International Journal of Plasticity, (Rossiter et al. [2009a]). 
 

5.1 Two-Phase Microstructures 
 

A 10 µm cube sample microstructure with a 1 µm resolution was created as outlined 
in Section 4.2.1. The microstructure contained 51 grains and is shown in Figure 7. The mesh 
was created with 3 particles located in positions shown in Figure 12. Since the particles 
average 3 µm’s in length, each voxel was sub divided into 5 elements along each axis (125 
elements). This allowed the elements to more accurately represent the particle surface. Three 
simulations were performed, one with no particles, one with the three particles as seen in 
Figure 12, and a final simulation with the large particle shifted into a high strain region of the 
second simulation (Figure 13). The mesh for the second simulation can be seen if Figure 14. 
The overall unit convention for the simulations can be seen in Table 3. The boundary 
conditions and loading for the simulations are as follows. The x=0 axis, the y=0 axis and the 
y=10 µm are constrained, while the x=10 µm axis is pulled at a constant velocity (Figure 7). 
The imposed boundary conditions simulate in-plane plane strain which is the common 
deformation mode for failure during metal forming operations. 

 

 

Figure 12: Particle Locations for Second Simulation 
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Figure 13: Particle Locations for Third Simulation 

 

Figure 14: Mesh for Second Simulation 

Table 3: Unit Convention. 
Measurement Time Length Mass Force Stress 
Unit µs µm ng µN MPa 
 

5.1.1 Results and Discussions 
 

The results presented in this section are contour plots of maximum principal strain 
obtained after a macroscopic strain of 7%. While the overall strain is small, it can be seen 
that heterogeneous deformation has clearly formed as represented by elements with strain 
more than 28%. Figure 15 presents the contour plots of maximum principle strain for the first 
simulation (no particles). It can be seen that there is a diagonal plane of high strain, roughly 
45º from the plane of loading, which most likely is a shear band in the material. Figure 16 
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shows the maximum principal strain for the second run with the same texture as first run, but 
with some of the grain elements replaced by particle elements. The model excludes particle 
de-cohesion with the matrix and particle fracture. The same shear band can be seen, while, 
the elements within a parallel band that crosses through the particle are all of lower strain, 
and the elements within a parallel band that lies next to the particle is of higher strain. It 
appears as if the particle acts as a barrier for the shear band. The strain that was originally 
located along the band where the particle now resides appears to have been shifted up and 
concentrated the strain in the rest of the original band. For the final simulation, the particle 
that resided on the edge of the original (no particles) band was shifted so that it now lies 
directly in the original band. The principal strain results for this third run can be seen in 
Figure 17. The band is almost completely absent. The particle seems to have inhibited the 
band from forming in the simulations. Inal et al. [2008] also reported a change in location of 
localization when particles are added to texture. 

 

 

Figure 15: Maximum Principle Strain with No Particles (First Simulation). 
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Figure 16: Maximum Principle Strain with Particles (Second Simulation). 

 

Figure 17: Maximum Principle Strain with Moved Particle (Third Simulation). 
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We next present contour plots of maximum principle strain from sections cut at 

various depths from the front face (Figure 18). Figure 18 and Figure 19 present contour plots 
for sections cut at 4 µm and 3µm from the front face respectively. Note that, for the second 
and third set of simulations, only the large particle was moved; the two small particles were 
kept at constant positions. Our simulations clearly indicate that, changing the place of a 
particle not only affects the strain distribution in the very close vicinity but also affects the 
strain distribution throughout the three dimensional material.  

 

 

       (a)         (b)        (c)  

Figure 18: Max. Prin. Strain For (a) No Particles, (b) Particles, and (c) Moved Particle (4 μm 
in). 

 

(a)         (b)        (c)  

 

Figure 19: Max. Prin. Strain For (a) No Particles, (b) Particles, and (c) Moved Particle (3 μm 
in). 

 
Finally, we compare the stress concentrations in the above three runs (in the form of 

the highest value regardless of its location). Incorporating particles in the matrix increases the 
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maximum predicted stress by 380% compared to the run without particles. Furthermore, 
simulations show that the particle locations are important; there is a difference of 15% in the 
predicted maximum stress between the second and the third runs.  
 
 

5.2 Shear loading of Al5754 
 

A 532.6 µm x 140 µm x 13 µm (x,y,z-dimensions) sample microstructure with 
approximately a 4.5 µm resolution was created as outlined in Section 4.2.1. The 
microstructure contained 275 grains and the center layer can be seen in Figure 10. The 
material properties used in the simulation can be seen in Table 4. Three items were varied 
during the simulations: strain path, strain rate, and whether or not thermal softening was 
included. Three different strain paths were tested: simple shear up to 60%, 12% tension 
followed by 60% simple shear, and 12% tension with 60% simple shear applied 
simultaneously. Three different strain rates were chosen: 300/s, 1000/s and 3000/s. 300/s is in 
the range of strain rates seen in an automotive crash, while the remaining strain rates were 
chosen to observe the strain rate effects (Bleck et al. [2004]). In order to observe the effect of 
thermal softening on the simulations, two cases were set up for each simulation: no thermal 
softening, and 100% of plastic work converted to thermal softening. A total of 18 separate 
simulations were completed for this study. The simulations use the explicit version of LS-
Dyna. No time scaling or mass scaling was used. The overall unit convention for the 
simulation is listed in Table 3.  

 
Table 4: Material Properties 

Property 
.
γ  0h  m  0τ  n  

Value 0.001 1/s 6900 MPa 0.02 23 MPa 0.21 
Property q  ρ  pC  Tini Tmelt 
Value 1 2.64 g/cm3 900 J/Kg⋅K 300 K 934 K 

 
The boundary conditions and loading for the simulations are as follows. The z=0 

plane is constrained in the z-direction to prevent buckling of the model. All the nodes on the 
x=0 plane are paired with their respective node on the opposite surface, and zero relative 
displacement is allowed. This enforces a periodic boundary condition and allows elements on 
either side of the boundary to contribute to the location of the nodes. The y=0 plane is 
constrained in the y-direction and x-direction. Finally, all the nodes on the upper y=140 µm 
surface are given an imposed displacement dependant on the strain path and strain rate of the 
simulation. 
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The thermal softening is achieved by first calculating the plastic work for each 
element. 
 

                                                        )n()n(W εσ=                                                      (38) 
The total energy of the element is then updated using a fraction ( f ) of plastic work 
converted to energy. In our simulations involving thermal softening, f  = 1 in order to 
maximise the temperature rise. 

                                                                fWEE )n()n( +=+ 1                                                        (39) 

The new temperature is then calculated using density ( ρ ) and specific heat ( pC ). 

                                                         initialp)n()n( T)C/(ET += ++ ρ11                                             (40) 

The softened yield strength for each element is then calculated based on the yield strength 
without thermal softening, and the temperature relative to the melting point. 
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Since no heat transfer is used in this model, the temperature rise is non-reversible and 
maximised. This would promote more local irregularities than if the effects of temperature 
rise were more evenly distributed amongst neighbouring elements. It should be noted that 
dynamic re-crystallization was not considered during these simulations. 
 
 

5.2.1 Results and Discussion 
 

The results of the simulations, outlined in section 5.2, are reported as contour plots. 
Figure 20, Figure 21, and Figure 22 show the contour plots of xy shear strain for each strain 
path at 300/s and with no thermal softening. The distribution of strain changes with the strain 
paths, the strain path with simultaneous tension and shear shows a higher strain band in the 
lower section of the sample, while the other two strain paths show an upper and lower band 
in the sample. The simulation with initial tension, and then shear shows higher strain in the 
upper band while simple shear shows higher strain in the lower band. As strain rate is 
increased and thermal softening is added, the strain distributions for the three different strain 
paths do not change indicating that when texture is constant, strain distribution is only 
dependant on strain path. 
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Figure 20: Contour Plot of xy strain at 300/s with No Thermal Softening for Simple Shear. 

 

Figure 21: Contour Plot of xy strain at 300/s with No Thermal Softening for Tension 
Followed by Shear. 

 

Figure 22: Contour Plot of xy strain at 300/s with No Thermal Softening for Simultaneous 
Tension and Shear. 
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The effective stress versus applied shear strain curves for all the simulations are 
presented in Figure 23, Figure 24, and Figure 25. The curves are grouped by strain path. As 
expected, the average stress increases as strain rate increases. Thermal softening reduces the 
averaged stress for each scenario. Thermal softening appears to have more of an effect on the 
tension followed by shear simulations and the simple shear simulations. The simultaneous 
tension and shear simulations do show a lower average stress with thermal softening, 
however the drop is not as pronounced.  

 

 

Figure 23: Simple Shear Average Stress Strain Curves. 
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Figure 24: Simultaneous Tension and Shear Average Stress Strain Curves. 

 

Figure 25: Tension Followed by Shear Average Stress Strain Curves. 

 
The average xy shear strain for the three different strain paths without thermal 

softening are as follows: pure shear is 0.27, simultaneous tension and shear is 0.267, and 
tension followed by shear is 0.275. These average strains do not change with strain rate, 
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however they all drop by 0.001 when thermal softening is added. Table 5 shows the standard 
deviation of xy strain for all the simulations. It can be seen that as strain rate increases when 
thermal softening is excluded, the standard deviation decreases indicating that the material 
acts more homogeneously. However when thermal softening is added, the standard deviation 
becomes unpredictable. When thermal softening is added, standard deviation consistently 
increases from the no thermal softening case indicating that thermal softening increases the 
non-uniformity of xy strain. The isothermal data supports the findings that increased strain 
rates reduce localization. The adiabatic data indicates that when thermal softening is at its 
highest (100% plastic work converted to heat and no heat dissipation), the effect of strain rate 
increase is removed in the simulation. 

 
Table 5: Standard Deviation (SD) of xy strain 
Thermal 
Softening 

Strain Path 
Average xy 
Shear Strain 

300/s 
SD 

1000/s 
SD 

3000/s 
SD 

No Shear 0.27 0.09168 0.09135 0.09081 
No Simultaneous 0.267 0.09551 0.09538 0.09494 
No Tension First 0.275 0.10649 0.10572 0.10531 
Yes Shear 0.269 0.09557 0.09652 0.09638 
Yes Simultaneous 0.266 0.10121 0.10259 0.10235 
Yes Tension First 0.274 0.11408 0.11452 0.11680 

 
Figure 26 shows the increase in strain when thermal softening is added versus the 

strain magnitude without thermal softening for the tension followed by shear at 3000/s 
simulation. The line of best fit is drawn to act as an aide to see the trend in the data. It can be 
seen that the areas with higher strain tend to increase in strain when thermal softening is 
added, however areas with low strain tend to decrease. Figure 27 shows a contour plot of the 
same strain increase and it can be seen that the bands of high shear in Figure 28 are seen 
again as bands of strain rise. Every simulation displayed the same trend and the slopes of the 
trend lines can be seen in Table 6. The slopes consistently rise as strain rate increases 
indicating a more pronounced difference when thermal softening is added. This supports the 
conclusion that the addition of thermal softening increases the localization in the simulations 
and that increasing the strain rate increases that effect. 
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Figure 26: Strain Rise with Thermal Softening vs. Strain without Thermal Softening for 
Tension Followed by Shear at 3000/s. 

 

Figure 27: Contour Plot of the Difference in Effective Strain when Thermal Softening is 
Added to Tension Followed by Shear at 3000/s. 
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Figure 28: Contour Plot of Effective Strain for Tension Followed by Shear at 3000/s with No 
Thermal Softening. 

Table 6: Slope of Strain Rise vs Strain with Thermal Softening 
Strain Path 300/s 1000/s 3000/s 
Shear 0.0484 0.0639 0.0696 
Simultaneous 0.0705 0.0887 0.0911 
Tension First 0.0703 0.0794 0.1044 

 
The difference in strain magnitudes between simulations which exclude thermal 

softening and their respective simulations which include thermal softening is very small 
when compared to the difference between the high strain and low strain regions within the 
simulations excluding thermal softening. Figure 28 and Figure 29 show this trend for tension 
followed by shear at 3000/s and this trend is seen throughout the simulations. This would 
indicate that when strain rates are in the range of 300/s to 3000/s, the geometrical softening 
dominates over the thermal softening when the effects of dynamic re-crystallization are 
excluded. 

 

 

Figure 29: Contour Plot of Effective Strain for Tension Followed by Shear at 3000/s with 
Thermal Softening. 
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When observing Figure 30 and Figure 31 we can clearly see a good match between 

the areas that have rotation and the outlines of the grains for both layers. Since the two layers 
are quite different from one another, the material along the through thickness does not all 
contain the same orientation. That would indicate that the rotation of a grain is highly 
dependant on the initial orientation of that grain regardless of what the neighbouring grains 
are doing. When observing the xy strain figures for the same loading, Figure 32 and Figure 
33, we see that the overall distribution of strain between the two layers are very similar 
indicating that the strain distribution through the thickness must be compatible regardless of 
whether one of the orientations does not initially favour strain. Figure 34, Figure 35 and 
Figure 36 show the onset of effective strain for the Simple Shear strain path at 300/s without 
thermal softening for z=0, z=6.5 and z=13 layers respectively. The macroscopic strain is at 
1.5% and it can be seen that the concentrations are at grain boundaries. Each layer has a 
unique set of hot spots shown in red indicating that the initial strain on a layer is independent 
of the other layers. Since the final strains at the end of the simulations were uniform through 
all the layers, this would indicate that at some point regions of localized strain on one layer 
spread over the other layers and vice-versa. 

 

 

Figure 30: Contour Plot of Misorientation Change for Simultaneous Tension and Shear at 
300/s Without Thermal Softening (center layer). 



55 
 

 

Figure 31: Contour Plot of Misorientation Change for Simultaneous Tension and Shear at 
300/s Without Thermal Softening (top layer). 

 

Figure 32: Contour Plot of xy Strain for Simultaneous Tension and Shear at 300/s Without 
Thermal Softening (center layer). 

 

Figure 33: Contour Plot of xy Strain for Simultaneous Tension and Shear at 300/s Without 
Thermal Softening (top layer). 
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Figure 34: Contour Plot of Effective Strain at 1.5% Simple Shear at 300/s without Thermal 
Softening (bottom layer). 

 

Figure 35: Contour Plot of Effective Strain at 1.5% Simple Shear at 300/s without Thermal 
Softening (center layer). 

 

Figure 36: Contour Plot of Effective Strain at 1.5% Simple Shear at 300/s without Thermal 
Softening (top layer). 
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The simulated texture evolutions are presented in Figure 37, Figure 38 and Figure 39. 
It can be seen that, for the strain path of simple shear, the typical shear texture is predicted 
where increasing the strain rate resulted with slightly sharper textures (Figure 37a-c). 
Simulations show that while the predicted textures for the strain path of tension followed by 
shear (Figure 39) is very similar with the textures predicted for simple shear, the textures 
predicted by the strain path of simultaneous tension and shear differ significantly (Figure 39). 
Furthermore, for the latter two strain paths, simulations predict that the strain rate has very 
little effect on the evolved textures (Figure 38 and Figure 39).   

 

 

Figure 37: Pole Figures of Final Texture for Simple Shear with Thermal Softening for (left to 
right) a) 300/s, b) 1000/s, c) 3000/s. 

 

Figure 38: Pole Figures of Final Texture for Simultaneous Tension and Shear with Thermal 
Softening for (left to right) a) 300/s, b) 1000/s, c) 3000/s. 
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Figure 39: Pole Figures of Final Texture for Tension Followed by Shear with Thermal 
Softening for (left to right) a) 300/s, b) 1000/s, c) 3000/s. 

 
Figure 40 shows disorientation of each element plotted on the undeformed grid. 

Figure 41 is a comparison between xy strain for the two strain paths also plotted on the 
undeformed grid for better comparison. As noted earlier, different strain paths show different 
shear bands developing. Both strain paths show that Cube, or near Cube, orientations have 
low values for disorientation angles while Goss orientations have high values for 
disorientation angles. This indicates that “Near Cube” orientations are stable orientations. 
The Cube oriented grains near the top right edge of the microstructure, marked as region 1 in 
the figure, show small rotations ~10º while the Goss grains marked as region 3 show large 
rotations up to a maximum of 32º. The amount of grain rotation seems to depend only on the 
original grain texture. The amount of local strain seems to have minimal effect on it. 
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Figure 40: Showing the local lattice rotation for (a) simultaneous tension and shear and, (b) 
for tension followed by shear. Comparison shows cube orientation (ND rotated) is more 

stable than Goss. 

 

Figure 41: Showing the comparison between the xystrain for the two different strain paths. 
(a) Simultaneous tension and shear and (b) tension followed by shear 

 
The cube grains in region 1 as well as the Goss grain in region 2 have a shear band 

passing through them for the case of tension followed by shear. While in the case of 
simultaneous tension and shear these regions have low local strain values as they are farther 
from the shear band. Irrespective of the local strain the cube grains show minimal rotation 
when the strain is low, as in the case of simultaneous tension and shear, or when it is high, as 
in the case for tension followed by shear. In contrast the Goss grains consistently show high 
rotations. The most notable exception is the cube grain located in region 2 which shows 
average amount of rotation ~16º for simultaneous tension and shear and has high rotation for 
the tension followed by shear case. In both cases it has significantly higher rotation than the 
cube grain in region 1.  

 
Figure 42 shows the orientations of Cube-Near Cube grains in the center layers in 

regions 1 and 2 with 100 pole figure alongside. As noted earlier the grains in region 1 show 
minimal grain rotation while region 2 grain shows high rotation. The grains in region 1 show 
a rotated Cube orientation (ND rotated) as against the region 2 grain which shows exact Cube 
orientation. Figure 43 shows the orientation before and after deformation. The orientation of 
the grain after deformation shows ND rotated Cube orientation, which is a stable orientation. 
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Figure 42: Showing the exact orientations of some of the near Cube grains 

 

Figure 43: Orientation of grain in region 2 (a) before and (b) after deformation. 

 
As can be seen in Table 5, the strain path with the highest average xy shear strain is 

when tension is followed by shear. Not only is the average shear strain highest, but this strain 
path has the highest standard deviation. This would indicate that the tension followed by 
shear strain path has more pronounced localization than the simultaneous tension and shear 
with the same final macroscopic deformation. To confirm this, Figure 21 shows more visible 
banding than Figure 22. This would indicate that, based on the assumptions made in this 
model, to improve formability of a material with a similar microstructure for a given process, 
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the process should be devised so that any areas subjected to both shear and tension are 
formed with simultaneous tension and shear as opposed to tension followed by shear. 

 
These 3D simulations have allowed observations to be made on the distribution of 

strain and disorientation through the thickness of our sample. It was shown that the shear 
strain through the thickness of the sample does not vary greatly after large deformation. 
Therefore the strain at a given point is dependant on the orientations of all the grains in the 
through thickness at that point.  

 
It should be noted that there is very little literature available on high strain rate shear 

experiments with which to compare these findings. 
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6. Conclusions  
 

Significant decreases have been achieved in the run times since the new scheme 
avoids complex and time demanding mathematical operations such as the inversion of 
matrices and/or iterations. The new formulation can be considered very similar to the 
classical rate tangent formulation for the case 0=θ (equation 21). However, with the new 
formulation, any inversion operation (e.g. equation 24) is avoided. Note that inversions of 
relatively large matrices are very costly in terms of CPU time. Furthermore, the size of the 
matrix to be inverted in equation 24 depends directly on the total number of slip systems 
considered in the crystal plasticity analysis. Thus the larger the number of slip systems (e.g. 
BCC and HCP crystals) the larger the size of the matrix to be inverted and the more CPU 
time. However, the new proposed method does not have this direct dependency of total 
number of slip systems on the CPU time.  

 
The proposed model was employed in two 3D simulations to investigate the effects of 

particles in FCC polycrystals, and the effects of strain path, strain rate, and thermal softening 
in Al5754. The particle and grain models were built using 3D grids of equal sized brick 
elements. Voxelized 3D grain data was used to assign orientations to all of the elements. The 
elements that lay within the volume of a particle were represented with a rigid material 
model while the remaining elements used the in house crystal plasticity model described. It 
should be noted that the following conclusions are based on the assumption that there is no 
grain boundary sliding, no de-cohesion between the matrix and the particle, and no fracturing 
of the particle. 

 
The first application shows that particle locations are crucial in identifying the 

formation of a localized deformation. The texture initially favoured a band to form in the 
material. The results showed that when a particle was placed near the band, the strain 
increased in the band while a parallel band that intersected the particle contained nearly no 
strain. When a particle was placed directly in the band, the localization in the simulation was 
inhibited. The strain concentration caused by a particle is a function of the strain on the 
matrix if the particle were not there, which in and of itself is a function of the remaining 
particles. The peak strain in the material was located around a particle that was not moved in 
the last two simulations. The strain in that area increased significantly with the third 
simulation. The overall strain outside of the band increased to accommodate the lower strain 
around the moved particle. 

 
Our simulations clearly indicate that to improve localized deformation predictions, it 

is critical to incorporate not only the accurate placement of particles in the microstructure but 
also the accurate spacing and distribution of particles with respect to each other. 
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Recently, Inal et al. (2002b) have concluded that neither the plane strain nor plane 

stress assumptions for modelling simple shear are capable of accurately predicting the 
initiation of localized deformation. The new model presented in this paper can incorporate 
the three dimensional aspects of grain morphologies and their interactions, and thus, can 
account for the full richness of heterogeneous deformation in the form of localized bands.  

 
The results from the second application show that with the same texture, strain 

distribution was only dependant on the strain path. It should be noted that the second 
simulation was based on the assumption that there is no grain boundary sliding. The strain 
rate of the simulations did not alter the location of any bands nor did the addition of thermal 
softening. As the strain rate increased, the material acted more uniformly when thermal 
softening was excluded. The distribution of strain did not change, but the range in 
magnitudes decreased with the standard deviation while the average strain did not change. 
The average rotation decreased with higher strain rate. The texture also showed a stronger 
dependency with strain path than strain rate. Higher strain rates only succeeded in sharpening 
the pole figures. When thermal softening was included, the effect of strain rate increase could 
be correlated with a larger temperature rise. The decrease in average rotation when strain rate 
increased became more pronounced when thermal softening was included. 

 
By comparing the simulated crystallographic rotation with and without thermal 

softening, for the strain paths considered, it appears as if geometrical softening dominates 
over thermal softening when strain rates are in the range of 300/s to 3000/s and dynamic re-
crystallization is excluded. Local geometrical differences such as grain orientation produced 
greater rotation heterogeneities than including or excluding thermal softening. 

 
The concentrations in effective strain begin at grain boundaries in the simulations. 

When viewing the strain distribution at 1.5% macroscopic shear, the hot spots are focussed at 
the grain boundaries. The hot spots are different on each layer of the specimen at the 
beginning. As strain progresses, the strain distribution results become more uniform across 
the layers.  

 
Initial orientation has the biggest impact on the amount of rotation seen within a grain 

regardless of the activity of the neighbouring grains. Strain distribution requires compatibility 
across through thicknesses causing grains to strain due to neighbouring grains when 
otherwise they would have not. Rotated Cube is a stable orientation and shows minimum 
grain reorientation while grains with initially Goss orientation show maximum grain rotation. 
Exact Cube orientation also rotates to a ND rotated Cube orientation. The Texture evolution 
is dominant and local rotation is independent of the local strain values as is evident from the 
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low rotation of the rotated Cube grains in region 1 and Goss grains in region 2 of Figure 40 
and Figure 41. 

 
Finally, the results from the second application show that texture evolution can not be 

accurately modelled by simple additive simulations; two completely different texture 
evolutions were predicted by two different strain paths even though both simulated the same 
effective macroscopic strain.  
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