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Abstract

Intrusion detection systems (IDSes) are an important security measure that network
administrators adopt to defend computer networks against malicious attacks and intru-
sions. The field of IDS research includes many challenges. However, one open problem
remains orthogonal to the others: IDS evaluation. In other words, researchers have not
yet succeeded to agree on a general systematic methodology and/or a set of metrics to
fairly evaluate different IDS algorithms. This leads to another problem: the lack of an
appropriate IDS evaluation dataset that satisfies the common research needs. One major
contribution in this area is the DARPA dataset offered by the Massachusetts Institute of
Technology Lincoln Lab (MIT/LL), which has been extensively used to evaluate a number
of IDS algorithms proposed in the literature. Despite this, the DARPA dataset received a
lot of criticism concerning the way it was designed, especially concerning its obsoleteness
and inability to incorporate new sorts of network attacks.

In this thesis, we survey previous research projects that attempted to provide a system
for IDS offline evaluation. From the survey, we identify a set of design requirements for
such a system based on the research community needs. We, then, propose Algorizmi as
an open-source configurable virtual testbed for generating datasets for offline IDS evalu-
ation. We provide an architectural overview of Algorizmi and its software and hardware
components. Algorizmi provides its users with tools that allow them to create their own
experimental testbed using the concepts of virtualization and cloud computing. Algorizmi
users can configure the virtual machine instances running in their experiments, select what
background traffic those instances will generate and what attacks will be launched against
them. At any point in time, an Algorizmi user can generate a dataset (network traffic
trace) for any of her experiments so that she can use this dataset afterwards to evaluate
an IDS the same way the DARPA dataset is used.

Our analysis shows that Algorizmi satisfies more requirements than previous research
projects that target the same research problem of generating datasets for IDS offline evalu-
ation. Finally, we prove the utility of Algorizmi by building a sample network of machines,
generate both background and attack traffic within that network. We then download a
snapshot of the dataset for that experiment and run it against Snort IDS. Snort successfully
detected the attacks we launched against the sample network. Additionally, we evaluate
the performance of Algorizmi while processing some of the common usages of a typical user
based on 5 metrics: CPU time, CPU usage, memory usage, network traffic sent/received
and the execution time.
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Chapter 1

Introduction

Today’s computer networks are subject to more attacks and intrusions than before. This
is seen through analyzing the side-effects of network attacks and the losses they cause to
companies. For example, [1] reports that network attacks caused some companies in the
United States to lose US $130 million in 2005. Moreover, Symantec notes in its Internet
Security Threat Report for 2008 [120] that new malicious code threats reported a 136%
increase in the second half of 2007 over the first half of the same year. In October 2008,
Georgia Tech Information Security Center (GTISC) hosted its annual summit to discuss
emerging security threats. At the conclusion of the event, GTISC released a white paper
[28] that ranks malware as one of the top five security threats. The same white paper men-
tions that malicious programs have increased by more than 8000 programs over the period
of one month. In April 2009, Symantec reports that the average cost per incident of a data
breach in the United States in 2008 was US $6.7 million, marking a 5% increase compared
to 2007 [54]. Such an evolving trend of threats cannot be countermeasured using firewalls
alone [1]. This fact led to investing more research efforts in the field of intrusion detection
systems (IDS) to provide adequate protection for computing/networking environments.

1.1 Intrustion Detection Systems Evaluation

Intrusion Detection Systems (IDSes) are very important in safeguarding computer systems
as the main goal of an IDS is to detect malicious/unauthorized use of resources. IDSes
can be categorized according to their nature of work into two categories: signature-based
(e.g. Snort [106]) and anomaly-based (e.g. Bro [97]). The former has obvious limitations
in detecting novel intrusions that were not previously probed by the IDS. On the other
hand, the latter serves well in detecting anomalies that deviate from the normal behaviour
of the system whether this abnormality was encountered before or not. Anomaly-based
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IDS mostly depend on using statistical modeling to define a system profile reflecting its
normal behaviour. This approach ignores the fact that the normal behavior of a system
changes over time, unless the model is frequently updated/recreated. Other anomaly-based
approaches include predicting future behaviour of the system given its history. Although
these approaches are more successful in capturing changes in the normal behavior of a
system, they require a longer training period and, in some cases, their application can be
infeasible because of the size of data sets involved.

After an IDS is developed, its perfomance needs to be evaluated. There are two ap-
proaches to evaluate an IDS: online evaluation and offline evaluation. Online evaluation
requires a real physical network to be built, where network traffic (both background and
attack) is generated by real users. The IDS is then deployed in the network so that its
capability of detecting malicious activity (i.e. intrusions) can be put under test through
measuring the rate of correct identification of events, in addition to the rate of false alarms.
On the other hand, offline evaluation only requires the existence of a network traffic trace
(i.e. a network dataset) that represents the traffic that the IDS will most probably en-
counter in the network it is supposed to protect. The dataset can be generated by simu-
lating the network the IDS will be deployed in or a publicy available trace can be used.
Publicly available traces can either be anonymized traces of real network traffic, or traffic
that has been generated in a way to resemble real network traffic. The dataset can then
be replayed against the IDS and the performance of the IDS will be measured based on
both the rate of correct identification of events and the rate of false alarms.

1.2 Challenges

While IDSes slowly evolved in the past few years, some challenges still lie ahead for the
coming generation of IDSes. Animesh Patcha and Jung-Min Park [96] summarize those
challenges as a conclusion to their survey of various anomaly-based IDS techniques. First
and foremost, next generation IDSes should adapt to the evolving networking paradigms
like wireless, mobile networks, and high speed networks. In addition, the ability of an
IDS to adequately detect future intrusions has to be enhanced. Not only should an IDS
be able to identify novel attacks, but it should also have a low rate of false alarms. A
false alarm is caused by misidentifying the nature (normal or abnormal) of the network
data under test. [32] defines the ideal minimum rate of false alarms in an IDS to be 1
false alarm per 100,000 events. However, there is currently a challenge with having a
general systematic methodology and/or a set of metrics to fairly evaluate different IDS
algorithms. This leads to the problem addressed in this thesis: the lack of an appropriate
IDS evaluation dataset that fits the common research needs. Some researchers tend to use
anonymized versions of private datasets extracted from real life environments to evaluate
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their own IDS algorithms. This raises the question of how can private entities provide the
anonymized versions of their own network traffic traces while preserving their users’ data
security and privacy without affecting the evaluation process (the detection accuracy in
specific) of the IDS algorithm under test. Modeling the normal behavior of a system in
order to correctly detect intrusions is still considered an on-going research problem as well.
Finally, an insider threat study [70] done at the Software Engineering Institute, Carnegie
Mellon found that 29% of attacks are caused by insiders. This creates another challenging
problem to be solved in the field of IDS which is detecting internal attacks.

1.3 Motivation

Despite facing many challenges in the research field of IDS, IDS evaluation (both online
and offline) remains an open research problem. No matter which problem one tries to solve
in the field of IDS or which feature one tries to add to an existing IDS, there will always
be a phase where one has to evaluate her newly devised technique, system or algorithm.
However, the main focus of previous research efforts in the field of IDS was to come up
with new ways of detecting intrusions and enhancing current techniques to achieve better
performance. This left the research community with very little support for IDS evaluation,
most of which did not satisfy most of the common research needs. This triggered us to
survey those needs and come up with a set of design requirements for a system that satisfies
as much as possible of such needs. This led us to build an open-source configurable virtual
testbed for to generate datasets for offline evaluation of IDSes, Algorizmi.

1.4 Contributions

The contributions of this thesis are twofold. First, we provide an overview of the challenges
and open problems in the field of IDSes. The challenges we face in the field mainly revolve
around devising new or improving current IDS algorithms. However, one of those open
problems remains orthogonal to all other problems. That is how we can provide the research
community with a system that will help generate network traffic traces (network datasets)
that can then be used for IDS offline evaluation.

To solve this problem, we surveyed previous efforts done by various researchers and
extracted the needs of the community in a system that will allow them to evaluate different
IDS algorithms. We then provide a list of design requirements in order to build a system
that will satisfy those research needs.

We, then, propose an open-source configurable virtual testbed (Algorizmi) that provides
its users with tools that allow them to generate datasets useful for offline evaluation of
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IDSes. Each user can have more than one experiment running on Algorizmi at any given
time. An experiment is in fact a virtual network created on the testbed. A user will
be capable of choosing and configuring the desired virtual machine instances to run on
any of her given experiments. In addition, each user has the ability to create SSH key
pairs in case they want to access an instance from outside Algorizmi. In order to facilitate
background traffic generation, we provide Algorizmi users with background script templates
that they can make use of to generate their own background scripts that will run within
their experiments. Since generating attacks is a key requirement for Algorizmi, users will
be provided with attack traffic generation tools to help them launch attacks against virtual
machine instances running within their experiments. A user can generate the dataset for
any of her experiments at any given time. Finally, she can use that dataset to evaluate her
IDS in an offline fashion the same way researchers use the DARPA dataset.

1.5 Thesis Organization

In this thesis, we present Algorizmi, an open-source configurable virtual testbed to generate
datasets for offline evaluation of IDSes. Algorizmi makes use of the advantages of previous
efforts done in IDS evaluation and avoids discovered caveats. The rest of this thesis is
organized as follows. Chapter 2 provides a review of the work done in the field of IDS
evaluation. The design requirements we extracted from the research needs per our literature
review and on which we based Algorizmi are given in Chapter 3. We also show how related
work complies to those requirements. Chapter 4 illustrates the architecture of Algorizmi,
a closer look at its system components, and some of its common use cases. Chapter 5
shows the methodology adopted to evaluate Algorizmi and the results of our evaluation.
In Chapter 6, we conclude this thesis by mentioning lessons learned from building Algorizmi
and our suggestions for future work.
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Chapter 2

Literature Review

2.1 Introduction

An important aspect of IDS research is providing evaluation mechanisms to assess IDS
techniques developed by various researchers. Previous efforts involved offering private data
traces after anonymizing sensitive user information as well as providing public data traces.
A researcher can then replay a data trace by feeding it into an IDS to collect generated
alerts. Generally, the performance of an IDS is then measured by the number of attacks it
successfully discovered and the number of missed attacks. The DARPA datasets publicly
available from MIT Lincoln Labs [57] are the most significant contribution in that area and
have been extensively used within the IDS research community. However, the process of
generating those datasets was heavily criticized [86]. Frédéric et al. present another dataset
generation tool [85] that offers a configurable testbed based on virtualization concepts.
Nevertheless, their system is limited to evaluating signature-based network IDS. Other
researchers [111, 90, 72, 37] offered anonymized data traces after removing sensitive user
information. The major disadvantage of private traces is the tradeoff between data usability
and user privacy. The higher the user privacy level is, the less usable the obtained data
trace is.

Other research efforts provided platforms that can be used for IDS evaluation. However,
such platforms are either obsolete [87, 48], not available to the community [107] or very
generic to be used for IDS evaluation [35, 93]. Despite the efforts in IDS research, evaluation
datasets that simulate realistic network environments enabling fair comparison of various
IDS techniques are still missing. There is still a critical need to build more appropriate
evaluation datasets [96].
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Figure 2.1: Four approaches of network experiments [93]

2.2 Chapter Organization

The remainder of this chapter is organized as follows. Section 2.3 provides an overview of
the different approaches of performing network experiments. Section 2.4 briefly discusses
different ways to evaluate an IDS algorithm. In this chapter, we review previous IDS
evaluation efforts that used anonymized datasets. We then offer an overview of various
IDS evaluation projects that used synthesized traffic in a controlled environment. Finally,
Section 2.5 provides a summary of the related work presented in this chapter.

2.3 Network Experiments

Generally, there are four main approaches that can be used to perform network experiments
[93]. These include mathematical models, simulation, emulation and using real systems.
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Section 2.1 compares these four approaches in terms of the tradeoff between their cost
(monetary cost and time cost) and their level of realism.

2.3.1 Mathematical Models

Mathematical models are the most theoretical choice and are usually the first step of any
research. In such models, the given system, applications, platforms and conditions are
modeled (e.g., stochastic models, non-linear models) then validated mathematically.

2.3.2 Simulation

Evaluating IDSes by simulating real network entities is a first step towards practical eval-
uation where models for key operating system mechanisms, algorithms and kernel appli-
cations, virtual platforms, networks, and synthetic conditions are developed. However, it
is difficult to build a realistic simulation of the Internet [53]. Examples of such simulators
include SimGrid [42], MicroGrid [115], Bricks [118] and NS [52].

2.3.3 Emulation

A more realistic tool used for evaluation is emulation where real operating systems, real
applications, in-lab platforms, networks and synthetic conditions are used. This allows
researchers to control the experiment conditions and to reproduce the results by applying
the same conditions in the future. However, it still lacks the practical conditions that are
present in a real network. WAN-in-Lab (WIL) [79] and Emulab [125] are good examples
of testbeds that try to emulate real systems.

2.3.4 Real System

Using a real system means using real operating systems, real applications, real platforms,
real networks and real conditions. The main problem is that researchers are unable to
control the background traffic and, more importantly, unable to reproduce the same ex-
periment conditions. In addition, the process of IDS evaluation involves running network
attacks against the machines (or the network) the IDS under test is protecting, which may
render the whole network inoperable when those attacks are successful. This will incur
more time and effort to restart the experiment when required. Therefore, emulation seems
more appropriate than using a real environment for IDS evaluation. Examples of real
experimental testbeds include Grid’5000 [41], TERAGrid [43] and PlanetLab [45].
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Figure 2.2: Examples of experimental tools corresponding to the four approaches of network
experiments [93]

2.4 Offline Evaluation of Intrusion Detection Systems

Traditional IDS research did not focus much on providing reliable evaluation datasets that
can be used for fair comparisons between various IDS techniques. Athanasiades et al.
[31] describe the process undertaken by most of the previous efforts in IDS testing and
evaluation as an ad-hoc methodology making it difficult to compare different algorithms
and approaches. However, there were many efforts done to overcome this problem. In
the literature of IDS evaluation, researchers usually used either private data traces after
anonymizing sensitive information [111, 72] or generated data traces out of synthesized
traffic in a controlled environment [57] in order to evaluate a newly devised IDS algorithm.
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2.4.1 Dataset Anonymization

Several researchers used real traffic traces after anonymizing sensitive data [111, 90, 72, 37].
However, there is always a tradeoff between the level of data privacy and the utility of the
released dataset. Moreover, there are many controversial legal issues concerning monitoring
and collecting real traffic traces [29, 112]. Besides, such datasets throw away the packet
payload since it is a very sensitive aspect of the collected traces. Therefore, it is impossible
to use such datasets for some types of IDS algorithms that need to look into the packet
payload (e.g. worm detectors, string matching-based techniques).

2.4.2 Dataset Generation

This section presents previous research efforts that used dataset generation in order to
evaluate IDSes.

UCD Platform

This platform was developed in the University of California at Davis (UCD). It is considered
the first IDS testing platform that automatically launches attacks using interactive telnet,
FTP and rlogin sessions [87]. Scripts were used to generate background traffic and attack
traffic. The ability of the IDS under test to distinguish between intrusions and normal
behavior was then evaluated [103]. Network Security Monitor (NSM) [60] was one of the
earliest IDSes to be evaluated using this platform.

IBM Zurich IDS Testing Platform

The Network Security and Cryptography group at IBM Zurich Research Laboratory devel-
oped a similar testing platform to support IDS research [48]. Both background and attack
data were generated as in [103]. However, background traffic was generated only for FTP
servers. Moreover, very few FTP attacks were simulated in the attack data.

DARPA Datasets

This is the earliest effort by Lincoln Laboratory at Massachusetts Institute of Technology
(MIT/LL) to assess the performance of various IDS techniques. The DARPA 1998 and 1999
intrusion detection evaluations [57] are the first systematic effort towards IDS evaluation
[31]. MIT/LL researchers had to overcome the problem of the non-existence of standard
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comparison metrics, attacks, background traffic or methodology [57]. Being publicly avail-
able, both datasets have been used extensively by researchers to evaluate various types of
IDS algorithms: classification-based [81], clustering-based [129, 140, 116, 131], immunity-
based [144], neural networks approaches [59, 142, 134], machine learning approaches [68]
and statistical-based [44, 67, 50]. However, the DARPA data generation techniques were
heavily criticized [86]. The main points of criticism are as follows:

1. Background Data:

• The process used to generate the background noise is only superficially described
in the reports.

• The methodology for proving that the statistics of the generated traffic match
that of the real traffic was never published.

• It is unknown how many false alarms the background traffic might generate.

• Data rates were never variable.

• Some inconsistencies concerning the network setup of the testbed were found
among various documentation reports produced by DARPA.

2. Attack Data:

• Synthetic attacks were unrealistically evenly distributed throughout the back-
ground traffic.

• Each attack type was used the same number of times reflecting an unrealistic
behavior.

• Only a subset of the systems was subject to interactive attacks.

• The unrealistic architecture of the used testbed is only implicitly acknowledged
in [73].

• The database of attacks used is now obsolete and is not extensible. Therefore,
it is impossible to add new attacks to it now or in the future.

Lincoln Adaptable Real-Time Information Assurance Testbed (LARIAT)

MIT/LL developed LARIAT to extend its previous efforts in the field of IDS evaluation.
LARIAT is a set of tools designed to assist in the evaluation and configuration of infor-
mation assurance technologies [107]. It came after the DARPA 1999 evaluation with its
first version released in 2000, followed by another extension in 2001. LARIAT offered
background traffic profiles as well as profiles for attack data. However, the traffic data
used is similar to that used by the DARPA 1999 evaluation which was already criticized
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[86]. Moreover, the system was designed to run one attack scenario at a time where a
clean up phase is run after each attack to clear any traces of the attack and restore the
environment to its previous state. This is not useful when the attack consists of multiple
phases and each is considered an attack by itself. For example, portscan/probe usually
precedes most types of attacks (denial of service, buffer overflow, worms). If the side-effects
of portscanning are cleared, the IDS might not be able to detect the attack afterwards. A
more important disadvantage of LARIAT is that it is not publicly available to the research
community.

Cyber DEfense Technology Experimental Research (DETER) Network

DETER is a collaborative work between USC Information Sciences Institute, University
of California at Berkeley and McAfee Research [35]. The DETER testbed is intended to
provide an experimental infrastructure to support the development and demonstration of
next-generation information security technologies [34]. It is implemented as an Emulab
cluster [126]. Although DETER offers a reliable testbed for experiments that involve
malicious code and for experimenting DoS and DDoS defense mechanisms, it was not
designed to be a testbed for evaluating IDS algorithms. This explains why none of the
projects hosted on DETER 1 is related to IDS evaluation.

Virtual Network-based IDS Evaluation

Frédéric et al. propose a virtual network infrastructure for IDS evaluation [85] that uses
virtual machines (through VMware) to build a controlled testbed. The system has five
main steps for traffic generation:

1. Script Generation: choose which exploit will be run against a target system.

2. Virtual Network Setup: build a different virtual network for each attack script.

3. Current Attack Script Setup: configure the current attack scenario.

4. Attack Execution: launch the attack while recording the generated traffic.

5. Tear Down: save traffic traces on a shared drive, then restore the virtual machines
to their initial states.

Although this environment offers many advantages that are not present in previous work
done on IDS evaluation, there are several problems in the proposed system:

1http://www.isi.deterlab.net/projectlist.php3
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1. The authors acknowledge that the generated dataset is specific to signature-based
network IDS. Consequently, the system is not useful for any kind of anomaly-based
IDSes which are more dominant in the research field [87].

2. No background traffic is generated which raises questions about the given false alarm
rates in their evaluation.

3. Attack scenarios are run one at a time sharing the same disadvantage with LARIAT.

4. No detailed information is given on how to obtain this system and use it.

LAAS Network Experiments (LassNetExp)

LaasNetExp [93] is a generic polymorphic platform for network emulation and experiments
developed by Laboratory for Analysis and Architecture of Systems (LAAS) in France. It is
among the most recent contributions in the field of network experimentation. The system
provides:

1. Reproducible experiments by means of controlled traffic.

2. Measurement and monitoring tools.

3. Isolation from real world.

4. Platform management and configuration.

However, LaasNetExp is not designed for IDS evaluation so there are no tools to generate
synthesized attack traffic or emulate attack machines. In addition, no details are given on
how this platform is available to the research community.

2.5 Summary

In this chapter, we gave an overview of the four approaches commonly used to do network
experiments: modeling, simulation, emulation and real systems. We also provided a review
of the projects done based on the two common methods to evaluate an IDS: anonymizing
real network traffic traces and generated synthesized network traffic traces. Table 2.1
summarizes the previous research work presented in this chapter.
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Project Nature References

Privacy-preserving Anomaly Detection for Network Traffic Dataset Anonymization [37]

SANTT Dataset Anonymization [111]

SC2D Dataset Anonymization Alternative [90]

A survey of state-of-the-art in anonymity metrics Dataset Anonymization Metrics [72]

UCD Platform IDS Testing Platform [87]

IBM Zurich IDS Testing Platform IDS Testing Platform [48]

DARPA Datasets Dataset Generation [57]

LARIAT IDS Testing Platform [107]

DETER Experimental Testbed [35]

Virtual Network-based IDS Evaluation Virtual Network Infrastructure [85]

LAASNETEXP Network Emulation Platform [93]

Table 2.1: Summary of related projects
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Chapter 3

Design Requirements

3.1 Introduction

Building a configurable virtual testbed to generate datasets for offline IDS evaluation im-
poses some design requirements on the proposed platform in order to have the maximum
benefit out of it. We surveyed all the previous systems that generated datasets for offline
IDS evaluation and identified the design requirements of such a system. We then based
the design of Algorizmi on those requirements. Each category of design requirements is
followed by a table that evaluates the systems discussed in Chapter 2 based on whether
the design requirements are satisfied or not.

3.2 Chapter Organization

The rest of this chapter is organized as follows. Section 3.3 discusses the availability re-
quirements that should be present in a configurable virtual testbed for IDS evaluation,
focusing on Algorizmi in particular. Versatility requirements are explained in Section 3.4.
Section 3.5 highlights the design requirements needed to make both the generated back-
ground traffic and attack traffic similar to real network traffic. Section 3.6 and Section 3.7
show how we can efficiently build such a system with minimum cost. Section 3.8 discusses
the functional requirements. Section 3.9 provides the design requirements for containment
and security. Section 3.10 discusses usability requirements which drive the user friendli-
ness of Algorizmi. Section 3.11 discusses the design requirements that will enable Algorizmi
users to reproduce their experiments. Following, Section 3.12 highlights the deisgn require-
ments imposed on maintaining Algorizmi. Finally, Section 3.13 concludes the chapter by
providing an overview of the design requirements discussed and how each previous research
work succeeds in/fails to satisfy those requirements.
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3.3 Availability

An IDS evaluation dataset generation tool (Algorizmi in specific) should be publicly avail-
able to the research community to achieve maximum benefit by allowing interaction among
users, and sharing the information that users would like to make public (e.g virtual ma-
chine images, background scripts, attack scripts and datasets). Moreover, the source code
itself should be open to the community for public scrutiny and to allow the community
to contribute to the code in order to enhance Algorizmi and add more features to it. As
shown in Section 3.1, only four of the previous research projects are publicly available while
none of them is open source.

Anonymized Datasets UCD IBM Zurich DARPA LARIAT DETER Frédéric et al. LaasNetExp

Publicly available 3 - - 3 - 3 3 -

Open source - - - - - - - -

Table 3.1: Compliance of previous research efforts to the Availability design requirements

3.4 Versatility

The user should have the choice of deploying virtual machines of several types and should
be able to select the configuration for memory, operating system, and instance storage that
suit the needs of her experiment. With the recent advancements in networking, the user
might want to emulate a high bandwidth network. Algorizmi should provide the user with
the appropriate tools to achieve this design. In addition, the user might want to model
various types of networks; for example, hierarchical networks, flat networks. This should
also be supported by Algorizmi. Table 3.2 shows that there is only one project that offers
a configurable environment and different network models for its users.

Anonymized Datasets UCD IBM Zurich DARPA LARIAT DETER Frédéric et al. LaasNetExp

Configurable environment - - - - 3 - 3 3

High-bandwidth network emulation - - - - - - - 3

Different network models - - - - 3 3 3 -

Table 3.2: Compliance of previous research efforts to the Versatility design requirements
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3.5 Fidelity

Although Algorizmi is an emulation environment, it should provide the users with tunable
experimental conditions, that are as close to real environment conditions as possible, in
two major aspects: background traffic generation and attack traffic generation.

3.5.1 Background Traffic

Firstly, the user should have the ability to tune and control the background traffic proper-
ties. This will allow controlling both the load of the network and host machines. Having
such control will help reproduce experimental results if the same settings are reused. Sec-
ondly, Algorizmi should offer the user with pre-set models to facilitate background traffic
generation. Thirdly, the user should be able to add her own models and apply them to
her experimental testbed. Algorizmi should also provide the user with the necessary tools
required to extract such models from her own traffic traces keeping in mind that such traf-
fic traces can be real traces. Consequently, the process of extracting the model must not
gather any kind of sensitive information from the traces. Finally, new models by the user
will be added to pre-existing ones in order to keep a rich database of background traffic
generation models that will be shared among the research community. Table 3.3 shows
that LARIAT [58] fully satisfies all the design requirements of generating background traf-
fic that is as close as possible to real-life network traffic. Other research efforts, however,
only partially satisfy the requirements or none at all.

Anonymized Datasets UCD IBM Zurich DARPA LARIAT DETER Frédéric et al. LaasNetExp

Tuning - - - - 3 3 3 3

Pre-set models - - - - 3 - - -

Add new models - - - - 3 3 - 3

Extract model from available traces - - - - 3 - 3 3

Models database - - - - 3 - 3 3

Table 3.3: Compliance of previous research efforts to the Background Traffic Fidelity design
requirements

3.5.2 Attack Traffic

Firstly, Algorizmi should allow the user to select which attacks will be launched against
victim machines such that only those attacks of interest will be present in the final dataset.
Since Algorizmi can be used to evaluate both signature-based and anomaly-based IDSes,
the user should be able to define when the attack phase will start to allow for a portion of
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the generated dataset to be free of attacks. This will be useful in training anomaly-based
algorithms. Moreover, there should be a way to frequently update the database of attack
scripts used to launch attacks against the virtual testbed. In addition, the user might
want to use her own attack scripts. In such cases, the attack scripts database should be
designed to accommodate new attack scripts if the user wants to share them with other
users. Finally, varying the characteristics of the attacking machines so that it will not
favor an anomaly-based algorithm over another should also be taken into consideration
[87]. Table 3.4 shows that none of the projects varies the attacking machines, and only
LARIAT [58] allows its users to select the attacks in their experiments from an up-to-date
database of attacks. However, as perviously mentioned LARIAT is not open for public use.

Anonymized Datasets UCD IBM Zurich DARPA LARIAT DETER Frédéric et al. LaasNetExp

Attack selection - - - - 3 3 3 -

Attack-free period - - - 3 3 - - -

Updatable database - - - - 3 - - -

Different attacking machines - - - - - - - -

Table 3.4: Compliance of previous research efforts to the Attack Traffic Fidelity design
requirements

3.6 Economy

Such a research testbed should not depend on expensive hardware or software, but rather
on commodity hardware and open source software components. This will have a direct
effect on reducing the development and maintenance costs. Table 3.5 shows that none of the
previous research projects gives exact or approximate figures for the cost of implementation.

3.7 Efficiency

Since Algorizmi will be shared among a potentially large number of users, the underlying
physical resources should be efficiently used so as to maximize resource utilization. Ta-
ble 3.5 shows that only two projects (DETER [35] and LaasNetExp [93]) provide details
on how the available resources are fully utilized by their system.
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Anonymized Datasets UCD IBM Zurich DARPA LARIAT DETER Frédéric et al. LaasNetExp

Low cost - - - - - - - -

Resource utilization - - - - - 3 - 3

Table 3.5: Compliance of previous research efforts to the Economy and Efficiency design
requirements

3.8 Functionality

A set of measurement and data collection tools should be included so that Algorizmi will
function properly as an emulation platform for IDS evaluation.

3.8.1 Measurement Tools

Measurement and monitoring tools should be incorporated into Algorizmi to collect data
traces that will build up the dataset generated from an experiment. It is important to
ensure that running any of the measurement tools should not disrupt the experiment and
should provide log files without missing any event. Table 3.6 shows that all projects
provided trace collection tools that are used to eventually generate the datasets of the
experiments.

Anonymized Datasets UCD IBM Zurich DARPA LARIAT DETER Frédéric et al. LaasNetExp

Trace collection tools 3 3 3 3 3 3 3 3

Non-disruptive running of tools 3 3 3 3 3 3 3 3

Table 3.6: Compliance of previous research efforts to the Measurement Tools design re-
quirements

3.8.2 Datasets

Firstly, sharing the generated dataset of a virtual testbed should be allowed if the testbed
owner chooses to share it so that other users of Algorizmi can later make use of the gener-
ated datasets. It is important to note that proper documentation of the generated dataset
is essential to achieve better usage. It is also important to know key information (tar-
get OS, service, attack specification) about the attacks present in a generated dataset.
Eventually, this will help automating the process of IDS evaluation. In addition, having
different output formats for the generated dataset will facilitate the process of IDS evalu-
ation for many researchers. Some IDS algorithms (e.g. statistical-based) require the data
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to be represented in formats other than raw packet format (e.g, number-based format).
Table 3.7 shows that anonymized datasets, DARPA datasets and LaasNetExp dataset are
the only datasets that are shared publicly in the community and available to use. Despite
the fact that all the generated datasets are documented, none is generated in different
output formats.

Anonymized Datasets UCD IBM Zurich DARPA LARIAT DETER Frédéric et al. LaasNetExp

Shared datasets 3 - - 3 - - - 3

Documented datasets 3 3 3 3 3 3 3 3

Different Output formats - - - - - - - -

Table 3.7: Compliance of previous research efforts to the Dataset design requirements

3.9 Containment and Security

Since Algorizmi offers a controlled environment for each experiment, it should be isolated
from the real network to protect it against attackers. In other words, the virtual machines
in a testbed are not accessible from outside Algorizmi except through an SSH key pair
provided the system. Additionally, Algorizmi users are primarily researchers who want to
make sure their algorithms or experiment results are not leaked to the public before having
them published. Therefore, the platform should protect the data of an experiment unless
the user wants to publicly share it. Although four projects isolate the testbeds used to
generate the datasets from the Internet, Table 3.8 shows that only one project (DETER
[35]) explains how it protects private user data from being exposed to other users.

Anonymized Datasets UCD IBM Zurich DARPA LARIAT DETER Frédéric et al. LaasNetExp

Isolation from the Internet - - - - 3 3 3 3

Data protection - - - - - 3 - -

Table 3.8: Compliance of previous research efforts to the Containment and Security design
requirements

3.10 Usability

Algorizmi should provide the user with an easy way to smoothly deploy the virtual testbed
with minimum effort. The user should also be given the option to reconfigure the testbed

19



to perform other experiments. Not only should a user have full control of the entities
constituting her experimental testbed, but she is also able to scale the testbed up/down in
a seemless way. Interaction with Algorizmi should be offered in an easy-to-use way such
that the learning curve of knowing how to use the system is adequate. Table 3.9 shows
that four projects satisfy most of the usability design requirements.

Anonymized Datasets UCD IBM Zurich DARPA LARIAT DETER Frédéric et al. LaasNetExp

Smooth deployment - - - - 3 3 3 3

Testbed reconfiguration - - - - 3 3 3 3

Full control on testbed - - - - 3 3 3 3

Scalable testbed - - - - 3 3 3 3

User friendly interface - - - - - 3 - -

Table 3.9: Compliance of previous research efforts to the Usability design requirements

3.11 Reproducibility

The user should be able to save the initial configuration of an experiment so that the
testbed can be reset whenever required. In addition, it is useful to offer the user a way to
save the configuration of an experiment if it has been modified since starting it. Various
experiment configurations can be stored on a database so that other users can make use of
them afterwards, in case the owner of the experiment wishes to share this configuration.

3.12 Maintenance

Algorizmi should be flexible enough to accommodate replacing faulty resources or adding
new ones to the physical infrastructure without disrupting any running experiment. Ta-
ble 3.10 shows that only two projects (DETER [35] and LassNetExp [93]) fully satisfy the
reproducibility and maintenance design requirements.

Anonymized Datasets UCD IBM Zurich DARPA LARIAT DETER Frédéric et al. LaasNetExp

Save experiment configuration - - - - 3 3 3 3

Resource replacement - - - - - 3 - 3

Table 3.10: Compliance of previous research efforts to the Reproducibility and Maintenance
design requirements
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3.13 Summary

In this chapter, we have presented an overview of the design requirements identified by
surveying the literature. We analyzed the compliance of each research project discussed
in Chapter 2 with each design requirement. The final result of our analysis shows that
MIT/LL LARIAT [58], DETER [35] and LassNetExp [93] satisfy the highest subset of
requirements among all the projects. Although the DARPA dataset satisfies a very small
subset of the requirements, it has been widely used by the research community ever since
it was made available in 1998. This is mainly attributed to the fact that the DARPA
dataset is a static dataset, i.e users do not have the ability to change any configuration in
the dataset. In addition, users cannot select or tune the attacks presented in the DARPA
dataset. Table 3.11 summarizes our analysis.
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Anonymized Datasets UCD IBM Zurich DARPA LARIAT DETER Frédéric et al. LaasNetExp

Availability

Publicly available 3 - - 3 - 3 3 -

Open source - - - - - - - -

Versatility

Configurable environment - - - - 3 - 3 3

High-bandwidth network emulation - - - - - - - 3

Different network models - - - - 3 3 3 -

Background Traffic Fidelity

Tuning - - - - 3 3 3 3

Pre-set models - - - - 3 - - -

Add new models - - - - 3 3 - 3

Extract model from available traces - - - - 3 - 3 3

Models database - - - - 3 - 3 3

Attack Traffic Fidelity

Attack selection - - - - 3 3 3 -

Attack-free period - - - 3 3 - - -

Updateable database - - - - 3 - - -

Different attacking machines - - - - - - - -

Economy and Efficiency

Low cost - - - - - - - -

Resource utilization - - - - - 3 - 3

Measurement Tools

Trace collection tools 3 3 3 3 3 3 3 3

Non-disruptive running of tools 3 3 3 3 3 3 3 3

Datasets

Shared datasets 3 - - 3 - - - 3

Documented datasets 3 3 3 3 3 3 3 3

Different Output formats - - - - - - - -

Containment and Security

Isolation from the Internet - - - - 3 3 3 3

Data protection - - - - - 3 - -

Usability

Smooth deployment - - - - 3 3 3 3

Testbed reconfiguration - - - - 3 3 3 3

Full control on testbed - - - - 3 3 3 3

Scalable testbed - - - - 3 3 3 3

User friendly interface - - - - - 3 - -

Reproducibility and Maintenance

Save experiment configuration - - - - 3 3 3 3

Resource replacement - - - - - 3 - 3

Table 3.11: Compliance of previous research efforts in the field of IDS evaluation to our
identified design requirements
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Chapter 4

Algorizmi

4.1 Introduction

Algorizmi is built as a tool that helps users generate network datasets (i.e. network traffic
traces) that can then be used for IDS offline evaluation. The concept of virtualization is
central to the architecture of Algorizmi. In other words, Algorizmi makes use of machine
virtualization to allow its users to build several network, each using a defined set of physical
nodes. Users can then configure the traffic (both background and attack) generated in their
networks. At any given time, a user will be able to download the dataset that represents
her experiment to use it afterwards to perform an offline evaluation of her IDS.

4.2 Chapter Organization

The remainder of this chapter is organized as follows. Section 4.3 provides an architectural
overview of Algorizmi. A detailed explanation for the components that build up the design
of our system is given in Section 4.4. Sample use cases for Algorizmi are given in Section 4.5
to show how it can be used by the research community. We conclude the chapter in
Section 4.6.

4.3 Architectural Overview

In order to satisfy the requirements detailed in Chapter 3, Algorizmi represents each ex-
periment as a virtual network hosted on physical machines. Each virtual network has its
own resources so as not to conflict with other experiments. Users of a specific experiment
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Figure 4.1: Algorizmi Abstract Architecture

will be able to configure it, select which Virtual Machine Images (VMIs) to load, configure
and save. Moreover, they will be able to tune how background traffic will be generated, as
well as which attacks will be launched against target machines. They will have the option
of running selected tools on top of their experiment; for example, to collect data traces
that will eventually contribute to generating the experiment dataset. Figure 4.1 gives an
architectural overview of Algorizmi.

4.3.1 Infrastructure Layer

The infrastructure layer represents the physical infrastructure of Algorizmi. This layer
includes two types of nodes:

1. Storage Nodes: responsible for storing the generated datasets, experiment config-
urations and other settings

2. Physical Machines: that will act as hosts for the virtual machines contributing to
the various virtual testbeds.

In addition, network resources connecting various physical host machine and storage
nodes are included in this layer. The infrastructure layer of Algorizmi is shared among all
experiments running on the platform.

4.3.2 Algorizmi Control Layer

The Algorizmi Control layer controls the operation of all the nodes in Algorizmi. It is
responsible for managing the experiment setup in two aspects: allocating physical nodes
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required for running the virtual environment of an experiment and allocating the physical
storage associated with an experiment. The functions of this layer are:

1. Ensuring the safe operation of all nodes in Algorizmi.

2. Managing the process of initiating new experiments.

3. Allocating resources for various experiments running on Algorizmi per user request.

4. Monitoring access to the platform.

5. Observing appropriate user access rights to any data present within the platform.

6. Overriding the Experiment Control layer in the case of an out-of-control experiment.

7. Maintaining various databases used within the platform: attacks database, experi-
ments configuration database, datasets database and virtual images database.

4.3.3 Experiment Control Layer

The main functionality of the Experiment Control layer is to hand the control of a specific
experiment over to its users. This includes:

1. Providing users with access to their pre-allocated resources.

2. Loading and configuring user-specified virtual machine instances.

3. Configuring experiment settings: background traffic generation, attack traffic gener-
ation and network setup.

4. Loading any other experiment-specific data and settings.

5. Saving the current state of the experiment for later uses.

6. Monitoring the operation of the virtual nodes within the experiment.

7. Compiling data traces to eventually generate the experiment dataset.

8. Restoring the experiment to its initial state if required.

9. Terminating the experiment.

25



4.3.4 Experiment Layer

This layer represents the emulated testbed of an experiment. Its scope includes all the
nodes involved in that specific experiment, allowing unlimited interactions among them.
This layer includes:

1. Normal virtual machine instances.

2. Attacking virtual machine instances.

3. Background and attack traffic scripts.

4. Virtual networks connecting the experiment’s virtual machine instances.

4.3.5 Tools Layer

The Tools layer is flexible as it includes any tool the user requests to run on her experimental
testbed. Currently Algorizmi offers two sets of tools:

1. Data Collection Tools: required to log data traces for the dataset compilation
process. An examples of a tool in this category is: tcpdump [21].

2. Attack Verification Tools: required to verify the success of attacks launched
against guest machines. Metasploit Framework (MSF) [11] is a good example of
an attack verification tool.

Other tools can be added to this layer by Algorizmi administrators or by the research
community.

4.3.6 Graphical User Interface

The Graphical User Interface layer offers an easy-to-use interface for the users of Algorizmi
to access their resources, each according to her granted rights. It is a Java-based desktop
application and hence can be used on multiple platforms without the need to change or
recompile the code.
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Figure 4.2: Components of Algorizmi

4.4 System Components

The basic components that contribute to the infrastructure of Algorizmi are illustrated in
Figure 4.2. There are four basic layers of components:

1. Infrastructure components

2. Eucalyptus

3. Algorizmi Manager

4. Various application components
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4.4.1 Infrastructure Components

The infrastructure layer that is shared among all Algorizmi users is based on two compo-
nents: a Eucalyptus-based cloud computing environment [91] and Algorizmi database.

Eucalyptus-based Cloud Computing Environment

Eucalyptus is an open-source software framework for cloud computing that implements
what is commonly referred to as Infrastructure as a Service (IaaS). IaaS are systems that
give users the ability to run and control entire virtual machine instances deployed across a
variety of physical resources [91]. Using Eucalyptus adds to the openness of Algorizmi and
enables the research community to inspect not only the code of Algorizmi but also that
of Eucalyptus. Therefore, public scrutiny is achievable. Eucalyptus uses computational
and storage infrastructure commonly available to academic research groups to provide a
platform that is modular and open to experimental instrumentation and study. Algorizmi’s
Eucalyptus cloud has multiple physical nodes capable of hosting various virtual machine
instances created by the users for their experiments. The goal is to depend on commodity
hardware to reduce the cost of implementation and maintenance. The more nodes added
to Algorizmi’s Eucalyptus cloud, the more experiments Algorizmi can host. Due to all
the previous reasons, Eucalyptus is the most suitable choice that will serve the purpose of
Algorizmi the best.

In addition to serving as a cloud infrastructure, Algorizmi’s Eucalyptus cloud will store
user accounts information for all Algorizmi users. A user will only be able to access and/or
edit her own account information. When a user requests a new Algorizmi account, she will
be provided with a set of credentials:

1. X.509 certificate [62] : used to interact with Algorizmi’s Eucalyptus cloud through
tools that require X.509 certificates, such as Amazon’s EC2 command-line tools [5].

2. Query ID and Secret key: used with tools that utilize the query interface of
Eucalyptus in which requests and parameters are encoded in the URL.

In addition to user account handling, Algorizmi’s Eucalyptus cloud offers a data storage
service called Walrus that is interface compatible with Amazon Simple Storage Service (S3)
[6]. Walrus acts as a storage service for virtual machine images (VMIs) used by various
users to create virtual machine instances to build their experiments. Root file system as
well as kernel and ramdisk images used to instantiate VMIs on nodes can be uploaded to
Walrus and accessed from nodes. Algorizmi offers an initial set of VMIs to start populating
the database, then users are able to manage (add/delete/control visibility) VMIs they have
access to.
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Due to some problems that we faced during the implemention of Algorizmi (see Ap-
pendix A) we chose our Eucalyptus-based cloud to be the Eucalyptus Public Cloud (EPC)
[7]. However, Algorizmi is compatible with any cloud infrastructure that is compatible with
Amazon EC2 [5]. Using the EPC imposed some limitations on Algorizmi’s Eucalyptus-
based cloud infrastructure due to EPC’s Service Level Agreement (SLA):

1. VMIs are time-limited to 6 hours (they are terminated after that without any warn-
ing).

2. No more than 4 VMIs from one user are allowed at any time.

3. VMIs are assigned public IP addresses, but only incoming network connections and
inter-instance network connections are allowed.

4. A user can have a maximum of 5GB of permanent storage on EPC.

Those limitations affected the way users can create large scale experiments on Algorizmi
and having different network topologies for their experiments. More effects are discussed
in Chapter 6.

Algorizmi Database

Since Eucalyptus only stores data that is related to the proper functioning of the cloud
environment it is responsible for, Algorizmi has to manage a database that stores all other
data related to its own functionalities. We host this database on the same machine that
hosts the Eucalyptus cloud controller. The Algorizmi database repository maintains the
following entities:

1. Experiments: responsible for storing any experiment-related configuration, settings
and the initial state of the experiment to allow results reproducibility.

2. Datasets: stores any generated dataset so that all users of Algorizmi are able to
re-use it.

3. Tools: responsible for storing executables for a plethora of tools used by the system;
e.g, sniffing tools, data trace collection tools, etc.

4. Attacks: holds attack scripts used to launch attacks against host machines in an
experiment. Algorizmi users are able to add their own attack scripts to this database
and make them available for other users to maintain an up-to-date state of attacks
and offer different types of attacks to match user needs.
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Figure 4.3: A Typical Eucalyptus Installation

4.4.2 Eucalyptus

Algorizmi interacts with its Eucalyptus-based cloud environment through a Eucalyptus
installation that manages all the underlying resources and data. A typical Eucalyptus
installation allows users to start, control, access, and terminate entire virtual machine
instances using an emulation of Amazon EC2s SOAP [4] and Query [3] interfaces. That
is, users of Eucalyptus interact with the system using the exact same tools and interfaces
that they use to interact with Amazon EC2 [5]. Algorizmi uses the Query interface to
interact with its Eucalyptus cloud since this is the option supported by the Java library
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for Amazon EC2 [10] used to implement Algorizmi. Figure 4.3 shows that the hierarchy
of a typical Eucalyptus installation is comprised of four main components:

1. Node Controller: controls the execution, inspection, and termination of VMIs on
the host where they run.

2. Cluster Controller: gathers information about and schedules VMI execution on
specific node controllers, as well as manages virtual instance network.

3. Storage Controller (Walrus): is a put/get storage service that implements Ama-
zons S3 interface, providing a mechanism for storing and accessing virtual machine
images and user data.

4. Cloud Controller: is the entry-point into the cloud for users and administrators. It
queries node managers for information about resources, makes high-level scheduling
decisions, and implements them by making requests to cluster controllers.

4.4.3 Algorizmi Manager

This is a major component in Algorizmi since it is the part of the system that orches-
trates the work of other components and manages the physical resources made available
by Algorizmi’s Eucalyptus cloud. Algorizmi Manager will be responsible for the following
tasks:

1. Instantiate an Experiment Control for each experiment upon its launch.

2. Receive various configuration data (e.g., attack traffic configuration) and respond to
them accordingly.

3. Ensure the correct application of user access rights to data.

4. Terminate any out-of-control experiment.

5. Offer a proper Application Programming Interface (API) to interact with a Euca-
lyptus cloud. This facilitates the process of building a GUI for Algorizmi as an
independent application that is built on top of this API. Such a feature allows other
members of the research community to build other versions for this GUI if desired.

6. Interface with Metasploit to generate attack traffic for an experiment. More details
about generating attack traffic from MSF is given in the following subsection.
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4.4.4 Application Components

This layer includes all application components running on top of the Algorizmi Manager.
It has several functionalities including:

Resources Monitoring

Figure 4.4: A snapshot of Algorizmi Dashboard Tab
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This component is responsible for providing each Algorizmi user with an up-to-date
report of the resources available to her. The resources include the following:

1. Available clusters in Algorizmi’s Eucalyptus cloud.

2. Virtual machine images the user can access and that can be used to instantiate VMIs
for a given experiment.

3. VMIs currently run by the user.

4. SSH key pairs owned by the user.

5. Experiments created by the user.

6. Background script templates available in Algorizmi to help generate background traf-
fic.

Figure 4.4 is a snapshot of the Dashboard Tab of Algorizmi Desktop Application. The
Algorizmi Dashboard consists of three panels:

1. Service Health Panel: shows the status of all clusters in the Eucalyptus-based
cloud infrastructure of Algorizmi and details about each cluster.

2. My Resources Panel: reports to the user the resources she currently has control
on, and the current resources available through Algorizmi.

3. Useful Links Panel: provides Algorizmi users with a set of useful links in a case a
user wants to get more details about tools used to develop Algorizmi.

SSH Key Pairs Management

Algorizmi users are provided with tools to create SSH key pairs in case they would like to
have access to the VMIs running within their experiments from outside Algorizmi. Each
user can create a new SSH key pair or delete any of her existing SSH key pairs.

Figure 4.5 is a snapshot of the Key Pairs Management Tab of the Algorizmi Desktop
Application. The snapshot shows that the Key Pairs Management Tab consists of one
table that shows all the keypairs of the current user. Each key pair is represented as a
row in the table, with one column displaying the SSH key pair name and the other column
displaying the fingerprint of the SSH key pair. In addition, there is a toolbar that allows
the user to create a new SSH key pair or delete the selected SSH key pairs from the table,
and consequently from the system.
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Figure 4.5: A snapshot of Algorizmi Key Pairs Management Tab

Virtual Machine Images Management

Virtual machine images play an important role in Algorizmi since they are the means
of instantiating VMIs to build an Algorizmi experiment. A virtual machine image is
a software implementation of a machine (i.e. a computer) that executes programs like a
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Figure 4.6: A snapshot of Algorizmi Virtual Machine Images Management Tab

physical machine. Algorizmi provides its users with an initial set of virtual machine images
to help them build basic experiments. If this initial set is not sufficient, a user can bundle
and upload her virtual machine image (with her choice of kernel and ramdisk) to Algorizmi.
She can also make it available to other users to benefit from if she desires. A user can also
unbundle (delete) any of her existing virtual machine images.
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Figure 4.6 shows the Virtual Machine Images Tab of the Algorizmi Desktop Application.
The Virtual Machine Images tab consists of a table that lists all the available virtual
machine images in Algorizmi. Each row provides the following details of a virtual machine
image:

1. Image ID: a unique identification for the virtual machine image.

2. Name: the name given to the virtual machine image by its owner.

3. Kernel: the kernel image associated with the virtual machine image.

4. Ramdisk: the ramdisk image associated with the virtual machine image.

5. State: the visibility of the virtual machine image (public/private).

6. Architecture: the system architecture that the virtual machine image is compatible
with.

7. Owner: the owner of the virtual machine image.

The Virtual Machine Images tab also has a toolbar to allow Alorizmi users to add/remove
virtual machine images. However, the toolbar is disabled in the current version of Algo-
rizmi Desktop Application due to some limitations in the EPC. Despite not being able to
add new virtual machine images to the current installation of Algorizmi, the users can use
the images currently offered by the administrators of Eucalyptus.

Background Traffic Management

In order to help simulate background traffic (i.e normal traffic that contain no attacks),
Algorizmi provides its users with background script templates which can be used as initial
models for the background scripts they would like to run in their own experiments. A
user can create new templates if she wants or delete any of her exising templates as well.
Each background script template is, in fact, a shell script giving the users a multitude
of options when developing a background script template. In other words, a background
script template can be any script that requires an interpreter, e.g. unix shell script [9],
php script [16], perl script [15], python script [18], Expect script [8], etc.

Figure 4.7 is a snapshot of the Background Script Templates tab of the Algorizmi
Desktop Application. This tab consists of three components:

1. Background Script Templates Toolbar: allows the user to add/remove back-
ground script templates.
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2. Background Script Templates Panel: consists of a table that lists the currently
available background script templates in Algorizmi. Each row provides the numeric
identifier and the name of a background script template.

3. Selected Background Script Template Panel: displays the details of the se-
lected background script template including the background script template numeric
identifier, its name and the script itself.

Figure 4.7: A snapshot of Algorizmi Background Script Templates Management Tab
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Attack Traffic Management

In order to properly evaluate an IDS algorithm, it has to be tested against a dataset that
contains network attacks. We chose Metasploit [11] to provide Algorizmi users with this
functionality. Metasploit is an open-source project that provides useful information to
people who perform penetration testing, IDS signature development, and exploit research.
The tools and information Metasploit offers are provided for legal security research and
testing purposes only. Metasploit is now run by Rapid7 [26], but is still an open-source
project. Algorizmi users are able to select and configure the attacks they would like to
launch in their experiments from a wide variety of exploits offered by Metasploit that cover
almost all network attack types. If a user is not content with the set of exploit modules
Metasploit provides, she can write her own Metasploit attack module and use it instead.
She can also suggest her newly built exploit module to be added to future releases of
Metasploit.

Figure 4.8: A snapshot of Metasploit GUI
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Figure 4.8 is a snapshot of the Metasploit Framework desktop GUI. The desktop GUI
provides users with the ability to select an exploit module from all the available exploits.
A user can then configure this module to satisfy her requirements. The GUI also has an
output panel that shows the output of the running attack modules. In addition, a user can
monitor her various attack sessions through the Sessions panel. Finally, a user can keep
track of her attack jobs through the Jobs panel.

Experiment Management

Figure 4.9: A snapshot of Algorizmi Experiments Management Tab
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An Algorizmi user can manage her experiments in various ways. She can create a new
experiment with a unique name and a short description for the experiment. She can delete
any number of her exisiting experiments at any time she wishes. Figure 4.9 is a snapshot
of the Experiments tab of the Algorizmi Desktop Application. The figure shows that this
tab consists of three major components:

1. Experiments Tab Toolbar: allows the users to create new Algorizmi experiments,
delete any of their existing experiments and download the dataset of a given experi-
ment.

2. My Algorizmi Experiments Panel: consists of a table that shows all the exper-
iments owned by the current Algorizmi user. Each row in the table represents the
details of an experiment, namely the experiment name and description.

3. Selected Experiment Panel: provides the user with detailed information of the
selected experiment. This includes: the security group the experiment belongs to;
allowed connections to/from the experiment with means to grant new rules or revoke
existing rules; details of background scripts running in the experiment with means
to add new background scripts or remove existing ones; detailed information about
the VMIs building up the experiment network with means to instantiate new VMIs
or terminate existing ones.

Figure 4.10: Authorizing a new network ingress rule

An Algorizmi user can alter the network ingress rules for an experiment of hers (affecting
all VMIs running within that experiment) to authorize/revoke certain network connections.
Figure 4.10 shows the dialog that is presented to the user when she requests to authorize
a new network ingress rule (i.e. a new security group rule). The user is required to specify
the following security group rule attributes:
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1. Protocol: the protocol that will be subject to this rule (tcp/udp/icmp).

2. From Port: the beginning of the port range that this rule will be applied to.

3. To Port: the end of the port range that this rule will be applied to.

4. Source IP Range: the source from which this type of connection will be allowed.
The source can be either a range of IP addresses or the name of another experiment
in Algorizmi.

Figure 4.11: Adding a new background script to an experiment

41



An Algorizmi user can also add/delete background scripts from any of her experiment.
If a user wants to add a new background script to run on her experiment, she will be
presented with the dialog shown in Figure 4.11 where she has to specify four attributes:

1. Instance Id: the identifier of the running VMI in the experiment that will run the
background script augmented with the instance IP address.

2. Background Script Template: the template this script is based on (to facilitate
the writing of the script).

3. Scheduling Pattern: the scheduling pattern of the script which will eventually
allow Algorizmi to generate the appropriate crontab entry [71] for the script on the
selected VMI.

4. Script: the background script itself.

Figure 4.12: Adding a VMI to an experiment

Finally, an Algorizmi user can instantiate/terminate VMIs on any of her experiments
given that there are some available resources. In order to instantiate one or more VMIs, a
user will be presented with the dialog shown in Figure 4.12 and will have to specify four
attributes:

1. Image: the virtual machine image she wants to instantiate.

2. Key Pair: the SSH key pair she would like to associate with the instantiated VMIs.
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3. Type: the type of the instantiated VMIs (Normal or Attacking).

4. No. of Instances: the number of instances she wants to instantiate of the selected
virtual machine image.

The type of the VMI will affect the way Algorizmi configures it. For both types, Algo-
rizmi will install tshark [24] and run it as a system service to gather all incoming/outgoing
network traffic. This will eventually contribute to the dataset generated for the experiment.
If the selected type is Normal, Algorizmi will create the appropriate directories required
for running background scripts on the instance and install any required software packages
(e.g openssh, expect, php) to allow the instance to function properly. On the other hand,
if the selected type is Attacking, Algorizmi will create appropriate directories for attack
scripts and install the Metasploit Framework.

Finally, a user can generate the dataset of an experiment at any point in time (given
that the experiment has some running VMIs). An experiment dataset is a compilation of
the network traffic traces gathered from all the VMIs within the experiment. The dataset
can be downloaded by the user in more than 20 different output formats (basically all the
formats supported by Wireshark [27]). Figure 4.13 shows the dialog that will be presented
to the user wishing to generate the dataset of an experiment. In order to generate (and
download) the dataset the user should specify the output format of the dataset.

Graphical User Interface

The GUI is the one component in Algorizmi that has direct interaction with the users.
To make it as user friendly, we built a portable GUI for Algorizmi as a Java desktop
application. Java allows the GUI of Algorizmi to be executed on various platforms without
the need to recompile its code into a different binary for each platform. This increases the
spectrum of potential users in the research community. The GUI consists of the following
major components:

1. Menu Bar: provides the user with access to user settings, help dialog and can be
expanded to include more features in the future (e.g quick links to create a new
experiment, a new SSH key pair, etc).

2. Main Panel: is a tabbed panel where each tab is specified for managing a major
component in Algorizmi: VMIs, experiments, key pairs, background script templates
and attacks.

3. Progress Bar: adds to the user friendliness of the Algorizmi Desktop Application
since this bar allows the user to keep track of the progress of the task(s) currently
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Figure 4.13: Downloading the dataset of an experiment

running. This allows the user to perform more than one task at the same time wihout
one task blocking the application from responding to other user requests.

All figures shown in this section are snapshots taken while running Algorizmi Desktop
Application, the GUI we built for Algorizmi.
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4.5 Using Algorizmi to Generate a Dataset

This section illustrates how a researcher can use Algorizmi in order to generate a dataset
that can be used to perform an offline evaluation for an IDS.

4.5.1 Create New User Account

Figure 4.14 represents Step 1 where a user creates a new user account. First, a user
should go to Algorizmi’s Eucalyptus-based cloud front-end website and apply for a new user
account. The user then has to fill out the application form with her username, password,
full name and email address. If the user wishes, she can fill out some other optional fields:
telephone number, project leader, affiliation and project description. Once the user submits
her application form, she will be sent an account activation email within a couple of days
to start using her account.

Figure 4.14: Create a new user account
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4.5.2 Modify User Settings

Figure 4.15 represents Step 2 where a user modifies her user settings in the Algorizmi
Desktop Application. After the user creates her account, she should keep a note of her
Query ID and Access Key. She can then plug those values in their corresponding fields in
the Algorizmi settings dialog in the Algorizmi Desktop Application. Finally, she applies
her changes to be able to start using Algorizmi.

Figure 4.15: Modify user settings
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4.5.3 Create New Experiment

Figure 4.16 represents Step 3 where a user creates a new experiment. First, the user
selects the Experiments tab in the Algorizmi Desktop Application. The user will then find
a button in the tab’s toolbar that allows her to create a new experiment. Afterwards, the
user will be presented with a dialog allowing her to set the name and the description of
the new experiment she wants to create. Finally, the new experiment will be created once
the user clicks on the OK button.

Figure 4.16: Create a new experiment

47



4.5.4 Add a VMI to an Experiment

Figure 4.17 represents Step 4 where a user adds a VMI to one of her existing experiments.
First, the user selects one of her existing experiments. She then finds an Add button
above the VMIs table in the Selected Experiment Panel that when clicked will present her
with a dialog box. In the latter, she can specify the image she wants to instantiate, key
pair associated with the VMIs, the type of the VMIs and how many VMIs she wants to
instantiate. Finally, once the user clicks the OK button, the VMIs will be instantiated,
configured, and ready for use.

Figure 4.17: Add a VMI to an existing experiment
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4.5.5 Add a Background Script to an Experiment

Figure 4.18 represents Step 5 where a user adds a background script to one of her existing
experiments. First, the user selects one of her existing experiments. She then finds an Add
button above the Background Scripts table in the Selected Experiment Panel that when
clicked will present her with a dialog box. In the latter, she can specify the instance on
which this background script will be installed, the template this background script is based
on, the scheduling pattern of the background script and the script itself. Finally, once the
user clicks on the OK button, the background script will be created and installed on the
VMI the user selected.

Figure 4.18: Add a Background Script to an existing experiment
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4.5.6 Generate Attack Traffic

Figure 4.19 represents Step 6 where a user configures Metasploit to launch attacks against
her experiment. First, the user selects one of the attack modules in Metasploit. She then
will be presented with a series of configuration parameters that she needs to modify to fit
her desired settings. Figure 4.20 shows that once the user is done configuring the attack
module, she will be presented with a summary of the attack module configuration with the
ability to save that configuration for later use.

Figure 4.19: Generate attack traffic from Metasploit
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Figure 4.20: Metasploit attack summary
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4.5.7 Download Dataset

Once a user is satisfied with the current configuration of her experiment and for the period
of time network traffic (both background and attack) has been generated, she can ask
Algorizmi to generate the dataset of her experiment. Figure 4.21 represents Step 7 where
the user can select the output format of her generated dataset, then the dataset will be
downloaded to her home directory. The user can then use the generated dataset to perform
an offline evaluation of her IDS.

Figure 4.21: Generate and download the dataset for an Algorizmi experiment

4.6 Summary

In this chapter, we showed that the architecture of Algorizmi is composed of five layers:
infrastructure layer, Algorizmi control layer, experiment control layer, experiment layer,
tools layer and the graphical user interface that provides Algorizmi users with a convenient
way to interact with Algorizmi. We explained the responsibilities of each layer and its
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software components. Finally, we presented a scenario where a user creates an experiment
on Algorizmi in order to generate a dataset than can be then used for offline evaluation of
an IDS.
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Chapter 5

Evaluation

5.1 Introduction

Our evaluation process involves two parts. First, we validate one of the datasets generated
from an experiment running on Algorizmi by running it against Snort and analyzing the
results. We then compare Algorizmi to previous research works based on the compliance
of each project to the design requirements presented in Chapter 3. In this perspective, we
compare Algorizmi to the most recent projects, in addition to the DARPA dataset and
using anonymized datasets. Finally, we assess the performance of Algorizmi when handling
the common tasks requested by a typical user of the system.

5.2 Chapter Organization

The remainder of this chapter is organized as follows. Section 5.3 validates the dataset
generation process from one of the experiments build using Algorizmi. Section 5.4 com-
pares Algorizmi with previous research projects based on the research needs each projects
satisfies. We assess the performance of Algorizmi in Section 5.5. We conclude the chapter
in Section 5.6.

5.3 Dataset Validation

In this section, we validate the structure of the generated datasets. We do this by selecting
one of our experiments built using Algorizmi and taking its dataset and running it against
Snort [106] and checking whether Snort will be able to detect the attacks generated in the
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Figure 5.1: Sample Algorizmi Experiment

dataset or not. If the traffic was not generated correctly, Snort will not be able to parse
the network traffic traces in the dataset.

The experiment consists of four VMIs, each has Debian 4.0 (code-named Etch) installed
as the operating system. The VMIs are fully connected in a flat network topology as
Figure 5.1 shows. All VMIs have OpenSSH installed on them to allow the user to access
the VMIs from outside Algorizmi to perform further configuration if needed. Algorizmi
installs Tshark [24] (by default) as a packet sniffer on all of the four VMIs so that it will
be the tool responsible for capturing the traffic trace on each VMI. Three of the VMIs
were configured as Normal machines (i.e. machines that do not generate attacks) and
only one machine was configured to act as an Attacking machine. After the VMIs were
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instantiated and configured to be used, we were able to configure and run some background
traffic. We emulated a user who is trying to access the machines within the network and
use the services offered by those machines. We sent 10 ping requests from the user machine
to each of the VMIs in our network. We established 2 SSH sessions with each of the VMIs
using the SSH key pair associated with each VMI when it was first created. Each VMI
was scanned using Nessus [12] which also generated other background traffic. In addition,
Nessus reported the vulnerabilities found on each VMI. The full Nessus vulnerability report
for the four VMIs is available for download [13].

We configured the attacking machine in the network to target its attacks against Nor-
mal Machine 3 with four types of network attacks:

1. UDP Port Scan: is a type of scan that probes the target machine looking for open
UDP ports [25]

2. Teardrop Attack: involves sending mangled IP fragments with overlapping, over-
sized payloads to the target machine. This can crash various operating systems due
to a bug in their TCP/IP fragmentation re-assembly code [22]

3. Trin00 Attack: is a set of computer programs to conduct a Distributed Denial of
Service (DDoS) attack [23]

4. Nmap Xmas Port Scan: sends malformatted TCP packets by setting the FIN,
PSH, and URG flags, lighting the packet up like a Christmas tree [14]

After launching the attacks and giving some time for the background traffic to be
generated for a reasonable period of time (around two hours), we downloaded a snapshot
of the dataset of our experiment. The dataset snapshot is also available for download
[19]. In order to validate that the dataset Algorizmi generated was not malformatted,
we ran the dataset against Snort. We then analyzed the alert files Snort generated that
contain information about any malicious activity that Snort found while mining our sample
dataset for possible intrusions. Snort was able to detect all four attacks successfully and
generated alerts in the alert file for all of the generated attacks. Figure 5.2 shows the alerts
for the Xmas Scan, while Figure 5.3 shows the alerts for the Teardrop attack, Trin00
attack and the UDP Port Scan attack. We also noticed that the Nessus scan that we
performed for all the VMIs in our network generated some traffic that was marked by
Snort as malicious since we performed the most aggressive scan that Nessus can do against
a machine by enabling all its plugins to be used during the scan. Figure 5.4 shows some of
the alerts our Nessus scan generated. All Snort alert files are available for download [20].
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Figure 5.2: Snort alerts for the Xmas scan
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Figure 5.3: Snort alerts for Teardrop, Trin00 and UPD port scan attacks
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Figure 5.4: Snort alerts generated by the traffic of our Nessus scan
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Requirement Is Satisfied ?

Availability

Publicly available 3

Open-source 3

Versatility

Configurable environment 3

High-bandwidth network emulation -

Different network models 3

Background Traffic Fidelity

Tuning 3

Pre-set models 3

Add new models 3

Extract model from available traces -

Models database 3

Attack Traffic Fidelity

Attack selection 3

Attack-free period 3

Updateable database 3

Different attacking machines 3

Economy and Efficiency

Low cost 3

Resource utilization 3

Requirement Is Satisfied ?

Measurement Tools

Trace collection tools 3

Non-disruptive running of tools 3

Datasets

Shared datasets 3

Documented datasets 3

Different Output formats 3

Containment and Security

Isolation from the Internet 3

Data protection 3

Usability

Smooth deployment 3

Testbed reconfiguration 3

Full control on testbed 3

Scalable testbed 3

User friendly interface 3

Reproducibility and Maintenance

Save experiment configuration 3

Resource replacement 3

Table 5.1: Compliance of Algorizmi to the typical research requirements

5.4 Design Requirements Satisfaction

Algorizmi is an open-source project and is publicly available for use by the research com-
munity [2]. Thus, it satisfies the availability requirements. For the versatility requirement,
Algorizmi offers a configurable environment for its users. In addition, users can have dif-
ferent network models in their experiments. This is true in the case that we are not using
EPC or Amazon EC2 as the cloud infrastructure for Algorizmi as this option needs to mod-
ify the default settings of Algorizmi’s Eucalyptus-based cloud to allow the user to modify
the IP settings of the VMIs she instantiates. However, current physical resources do not
allow Algorizmi to emulate high-bandwidth (> 1Gbs) networks. That is the reason why
Algorizmi does fully satisfy the design requirements of offering a configurable environment
and providing Algorizmi users with the ability to build various network models.

LARIAT [107] is equipped with tools that can extract background traffic models from
a given network traffic trace. On the other hand, Algorizmi lacks such tools, but has the
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ability to generate attack traffic from multiple machines to avoid favoring a specific IDS
algorithm that is being evaluated using the generated dataset.

None of the studied research works estimate how the cost of implementing their systems
can be, or how they are trying to achieve maximum utilization of their resources except
for DETER [35] and LassNetExp [93]. Algorizmi depends in its physical infrastructure
on commodity hardware to host its cloud infrastructure and its database. In addition,
all the libraries used by Algorizmi are open-source software packages that are free to use.
The cloud infrastructure of Algorizmi can be any Amazon EC2 interface-compatible cloud,
but we opted for Eucalyptus since it is the open-source option we found. Having a cloud
infrastrucure that consists of multiple clusters will achieve the maximum utilization of the
given resources as opposed to running Algorizmi on one physical node.

Algorizmi supports multiple output formats (more than 20 different formats) for the
generated dataset, all of which are readable by the widely used network protocol analyzer
Wireshark [27]. This feature puts Algorizmi ahead of other research projects since none of
them supports different output formats for the generated dataset. Table 5.1 summarizes
the compliance of Algorizmi to each of the design requirements presented in Chapter 3,
compared to other research projects.

5.5 Performance Assessment

5.5.1 Environment Settings

We deployed the Algorizmi Desktop Application on a Macbook laptop that has 4 GB of
RAM, with a 2.4 GHz Intel Core 2 Duo processor, and running Mac OS X 10.5.8. Algorizmi
Desktop Application is a Java-based desktop application built as a GUI for Algorizmi to
allow its users to interact with the system.

5.5.2 Performance Metrics

We evaluate the performance of Algorizmi based on five metrics:

1. CPU Usage: how much of the CPU power (as a percentage of the total CPU power)
of the client Algorizmi Desktop Application is deployed on, is consumed on average.

2. CPU Time: the average CPU time (in seconds) Algorizmi Desktop Application
takes to perform a task.
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3. Memory Usage: the averge amount of KBs of RAM used by the Algorizmi Desktop
Application to perform a certain task.

4. Bytes Sent/Received: the average amount of network traffic sent/received by the
client running the Algorizmi Desktop Application measured in KBs.

5. Execution Time: the average time taken by the Algorizmi Desktop Application to
serve a request initiated by the user.

5.5.3 Results

For each of the most common tasks a user can perform using Algorizmi, we execute this
task multiple times (ranging from 8 to 15 times for each task, depending on how time-
consuming the task is) and we record the average values of the parameters we chose to
evaluate Algorizmi upon. Table 5.2 shows that the Algorizmi Desktop uses at most 0.31%
of the CPU to execute a given task. Results drawn from Table 5.2 and represented in
Figure 5.5 also show that the relation between the number of VMIs created at once and
the time taken to execute such task is almost linear. On the other hand, some other
results seems to be bizzare. For example, adding one VMI to an experiments consume
more bytes (sent and received) than adding two VMIs. This is weird since both requests
sent to Algorizmi are exactly the same with one difference in the number of requested
VMIs. Firstly, we attributed this behavior to a traffic congestion that took place while
sending the first request that led to re-sending the request several times until it reached
Algorizmi. However, this behavior was repeatable whenever we performed this task even
on different times of the day.

5.6 Summary

In this chapter, we compared Algorizmi to previous research projects that tried to solve
the problem of IDS evaluation. Algorizmi was found to satisfy more research needs and
requirements than the other projects. We also assessed the performance of Algorizmi while
executing some of the most common tasks that a typical user can do using the Algorizmi
Desktop Application.

62



Figure 5.5: Response time to user request for instantiating a set of VMIs
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Chapter 6

Conclusion

6.1 Summary of Contributions

This thesis has two major contributions: surveying previous research work done in the field
of IDS evaluation, and proposing an open-source configurable virtual testbed for dataset
generation for offline evaluation of IDSes.

6.1.1 Survey of IDS Evaluation Systems

Our survey of the previous research efforts done in the field of IDS offers an overview
of the challenges and problems faced. We, then, provide a better understanding of those
challenges to help us determine what problems are more crucial than others. Consequently,
we found that one of the most important open research problems is how to satisfy the
research community requirements regarding an IDS evaluation system. In specific, the
need for a configurable tool to generate datasets that can be used for offline evaluation
of IDSes. Finally, we surveyed various research projects that tried to solve this problem
and based on which we compiled and categorized the design requirements that we believe
should be present in a system used for generating datasets for IDS offline evaluation.

6.1.2 Algorizmi

We designed Algorizmi based on the specified design requirements. An architecture of
Algorizmi and its detailed system components are proposed in this thesis. In addition,
we compared Algorizmi with previous research work regarding the compliance of each
project to the design requirements. The result shows that Algorizmi satisfies almost all
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the requirements (28 out of 30) which is far more than any other project did. Algorizmi
allows users to configure their experiments to include different network models, generate
various background traffic, launch a wide variety of attacks against their networks. In
addition, a user can download the dataset of her experiment in various output formats.
Not only is Algorizmi publicy available for use, its source code is also publicly shared [2]
so that the whole community can contribute to. We showed how Algorizmi was able to
generate a dataset that was fed to Snort which successfully detected the attacks represented
in the dataset. Finally, we evaluated the performance of Algorizmi while responding to the
most common tasks a user can do while using the system.

6.2 Limitations

6.2.1 Using EPC

Using the Eucalyptus Public Cloud (EPC) [7] imposed some limitations on Algorizmi’s
Eucalyptus-based cloud infrastructure due to EPC’s Service Level Agreement (SLA):

1. VMIs are time-limited to 6 hours (they are terminated without any warning).

2. No more than 4 VMIs from one user are allowed at any time.

3. VMIs are assigned public IP addresses, but only incoming network connections and
inter-instance network connections are allowed.

4. A user can have a maximum of 5GB of permanent storage on EPC.

Additional limitations are inherently imposed on Algorizmi due to using EPC. Since
we are not the administrators of this public cloud, we could not configure the cloud so
that we can expand the range of requirements Algorizmi could satisfy. In other words,
a Eucalyptus-based cloud (including the EPC) can operate in four different networking
modes depending on the desired level of functionality. Each VMI in any of those modes
gets assigned by the cloud controller two IP addresses:

1. a private IP address: used within the private network of the cluster (i.e availability
zone) this instance belongs to.

2. a public IP address: used by the owner of the VMI to interact with it from outside
the cloud.
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The EPC does not allow its users to manipulate those assigned IP addresses which pre-
vents an Algorizmi user from creating a network topology of her choice for her experiment.
This limitation can be overcome by building our own Eucalyptus-based cloud with our own
physical resources. As admins, we can then configure the cloud to allow users to set the
private addresses of their VMIs which basically gives them unlimited choices of network
topolgies they can use for their experiments.

6.2.2 Metasploit Integration

Although Metasploit serves its purpose of being an up-to-date customizable source of
attacks scripts, it does not have an API. Therefore, we were not able to fully integrate
Metasploit within Algorizmi. This causes a user of Algorizmi to run the attacks against
her experimental testbeds using Metasploit independently. Had we managed to integrate
Metasploit with Algorizmi, the overall process could have been more smooth and user-
friendly. However, we can extend the design of Algorizmi to include an API for Metasploit
programmability, whether we develop this API or Metasploit releases one.

6.3 Future Work

Algorizmi can be extended in various ways in order to provide its users with a richer
experience and increase the set of features it provides to them. Firstly, we can build our
own Eucalyptus-based cloud infrastructure so that we relieve Algorizmi from the limitations
imposed on it due to using the EPC. Secondly, we can develop an API for Metasploit so
that we can fully integrate it with the design of Algorizmi to offer the users a simpler
way to generate network attacks against their experimental testbeds. Thirdly, we can
extend the notion of templates in Algorizmi to include experiment templates (in addition
to the existing background script templates). We can offer, and users can create and
share if they want to, some already-made designs for experiments that can be used by
Algorizmi users. This way, the process of building an experiment (i.e virtual testbed) will
be much easier. Fourthly, Algorizmi can offer the users tools that facilitate the process
of configuring, and building virtual machines, each with its own service and application
stacks. Finally, Algorizmi can turn into an environment used for online IDS evaluation
rather than a system that generates datasets of virtual networks that are eventually used
to evaluate IDS algorithms offline. Such an environment should allow a user to deploy her
own IDS on her experiment and evaluate it under synthetic conditions that she configures.
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6.4 Concluding Note

We presented in this thesis Algorizmi, an open-source configurable virtual testbed to gen-
erate datasets for offline evaluation of IDSes. Although there are still some issues that
need to be addressed, Algorizmi satisfies more research needs than previous similar re-
search projects. We believe that there is a high potential that motivates the work on
Algorizmi and its development. As a result, we anticipate that researchers will have the
option of evaluating their IDS algorithms without any worries about how they will be able
to configure their testbed, reproduce their results if desired or share their results with other
researchers.
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Appendix A

Algorizmi Implementation
Experience

This appendix gives an overview of some lessons learned during the implementation process.
These can serve as a guide to other researchers if they design a similar system or build
on Algorizmi. At first, our goal was to build our own Eucalyptus-based cloud so that we
would be able to adjust the networking mode of the cloud to allow users to assign private
IP addresses to the VMIs allowing them to have different network topologies within their
experiments. We made multiple trials to achieve that goal. Firstly, we tried to install the
Eucalyptus-based cloud on the laptop machine we had since it has more resources than
the desktop machine we own. We tried to find a binary package for Eucalyptus for Mac
OS X (the OS running on the laptop) to install, but we could not. Therefore, we had to
resort to installation from source.

Afterwards, we searched for many dependencies for Eucalyptus and install from source
as well because all of the dependencies did not have a binary file for Mac OS X. We faced
many problems due to the 32-bit/64-bit compatibility issues. After installing most of the
dependencies of Eucalyptus, we got stuck at one specific package that had no support for
Mac OS X. After mailing the development team, they confirmed that they do not support
Mac OS X so we tried to seek help from the development team of Eucalyptus and they
suggested that we install Eucalyptus from its source on a Ubuntu virtual machine on our
laptop machine.

We used Sun Virtualbox (an open-source virtualization tool) to create the Ubuntu
virtual machine on our laptop machine. Installing Eucalyptus on any machine (even a
virtual one) requires that this machine support either Xen or KVM (Kernel-based Virtual
Machine) so that Eucalyptus will be able to instantiate virtual machine instances within
the cloud infrastructure. We opted for using KVM since it was the recommended setting for
installing Eucalyptus Ubuntu. It took us quite a while until we figured out that although
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our laptop supports working with KVM, somehow Virtualbox was not able to emulate such
capability and pass it to the VM we installed as it is supposed to.

Our second option was to abandon KVM and install a xen-enabled kernel on the Ubuntu
VM so that we can successfully install Eucalyptus. This step alone took us some time before
we found a xen-enabled kernel that is compatible with Ubuntu 9.04 (the latest version of
Ubuntu then). The problem is that Ubuntu stopped shipping xen-enabled kernels (in favor
of the new KVM technology) since Ubuntu 8.10. Finally, we managed to install the xen-
enabled kernel on my Ubuntu VM, however the VM was not able to boot from it. This
behavior was attributed to the impracticality of nested virtualization when dealing with
hypervisors. However, this is not a problem when one is using front-end virtualization
(e.g. installing Virtualbox on a VM that is hosted by a Virtualbox installation). Since
all our attempts to install Eucalyptus on our laptop machine failed. Finally, we opted for
installing it on our desktop machine.

Our experience with installing Eucalyptus on our desktop machine was as difficult as
installing it on our laptop. We spent quite some time debugging an error that was raised
by Eucalyptus to reach its root cause. The root cause turned out to be that the CPU of
our desktop machine does not support KVM so we had to install Xen and go through the
same process that we did with our laptop machine.

A major difficulty that we faced was that for Eucalyptus to give access to the VMIs from
outside the Eucalyptus cloud (i.e. any connection to the instances from outside the cloud),
it should assign public IPs to those VMs. This required that our Eucalyptus controller
node to be able to contact a DHCP server and lease IP addresses to those VMs. This is
not possible to achieve in the small setup I had in the office (only one machine working)
since we do not have access to any DHCP server that will allow this kind of behavior.
Moreover, we cannot use the DHCP server of the CS servers (for example) since they have
to know the MAC address that will be associated with the leased IP which is impractical
since VMIs are initialized with randomly generated MAC addresses. A workaround was
to use NATing but we were not quite sure about the legality of such issue so we opted for
using the Eucalyptus Public Cloud (EPC) instead of our own Eucalyptus cloud although
this incurred some limitations as discussed earlier.

At this point, we used to run our application by running Eucalyptus command lines
from within the application. Therefore, we had to start searching for a Java API to be used
with Eucalyptus to have more flexibility dealing with the cloud platform. Searching many
resources on the Internet, we found a Java API for Amazon EC2 developed by Amazon
and since Eucalyptus is interface-compatible with Amazon EC2, we were able to use this
library to interact with EPC.

We were left with another challenge: integrating Metasploit with Algorizmi. Metasploit
was written in Ruby and it does not have any kind of APIs (even a Ruby API) so we had
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to write some ruby scripts to be able to do some of the functionalities of Metasploit from
within our Java application (namely enumerating attacking modules, fetching info about
each module). However, this method was not flexible enough to allow me to develop scripts
(runnable from Algorizmi) to run the attacks from Metasploit because this means that we
should develop scripts for all the modules in Metasploit which is not a practical solution.
Therefore, Metasploit is not integrated within Algorizmi and the user has to run Metasploit
by itself in order to launch attacks from it against her experimental testbed.

Finally, after successfully running multiple experiments that had nodes generating both
background traffic and attack traffic, we found out that the EPC admins blocked our
account. We checked with them and explained that we were doing research work (the work
contributing to this Master’s thesis) and they allowed us to install and use the required
tools to generate the background traffic. However, they blocked us from generating any
attack traffic or even downloading Metasploit on the VMIs. Their reply was:

“We do not open up port for individual projects. The EPC is there to drive
test a cloud and check what it can do and opening up extra port would require
us to start monitoring what is running inside the EPC (something we don’t
want to do).”
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