
A Multilevel Method for Image
Segmentation

by

Adley Au

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Applied Mathematics

Waterloo, Ontario, Canada, 2010

c© Adley Au 2010

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Image segmentation is a branch of computer vision that has received a considerable
amount of interest in recent years. Segmentation describes a process that divides or parti-
tions the pixels of a digital image into groups that correspond to the entities represented in
the image. One such segmentation method is the Segmentation by Weighted Aggregation
algorithm (SWA). Inspired by Algebraic Multigrid (AMG), the SWA algorithm provides a
fast multilevel method for image segmentation.

The SWA algorithm takes a graph-based approach to the segmentation problem. Given
an image Ω the weighted undirected graph A = (N,E) is constructed with each pixel cor-
responding to a node in N and each weighted edge connecting neighbouring nodes in E.
The edge weight between nodes is calculated as a function of the difference in intensity
between connected pixels.

To determine whether a group of pixels should be declared as a segment in the SWA
algorithm, a new scale-invariant measure to calculate the saliency of the group of pixels is
introduced. This new measure determines the saliency of a potential segment by taking
the ratio of the average similarity to its neighbours and its internal similarity. For complex
images, intensity alone is not sufficient in providing a suitable segmentation. The SWA
algorithm provides a way to improve the segmentation by incorporating other vision cues
such as texture, shape and colour.

The SWA algorithm with the new scale-invariant saliency measure was implemented
and its performance was tested on simple test images and more complex aerial-view images.

iii

Acknowledgements

I would like to thank my supervisor Hans De Sterck for his guidance throughout this
project. Also, I would like to thank Geoffrey Sanders, Josh Nolting, Tiffany Inglis and
Killian Miller for their valuable input.

Thank you to Francis Poulin and Ed Vrscay for taking the time to read this work, and
a special thanks to the applied mathematics graduate secretary Helen Warren.

iv

Dedication

This is dedicated to my family, friends and colleagues.

v

Contents

List of Figures x

1 Introduction 1

1.1 Image Segmentation . 2

1.2 Motivation . 4

1.3 Thesis Summary . 5

2 Background 7

2.1 Image Segmentation Methods . 7

2.1.1 Thresholding Methods . 9

2.1.2 Edge Detection . 9

2.1.3 Region Growing Methods . 10

2.1.4 Split and Merge . 11

2.1.5 Graph Clustering . 11

3 The Segmentation by Weighted Aggregation Algorithm 12

3.1 Algorithm Overview . 13

3.2 Coupling Matrix . 15

3.2.1 Grayscale Images . 16

3.2.2 Colour Images . 16

3.3 Multilevel Coarsening . 18

3.3.1 Coarse Node Selection . 20

vi

3.3.2 Interpolation Operator . 21

3.3.3 Coarse Coupling Matrix . 22

3.4 SWA Saliency Measure . 22

3.4.1 Scale-invariant Measure . 24

3.5 Multiscale Coupling Update . 26

3.5.1 Average Intensity . 28

3.5.2 Variance . 29

3.5.3 Elongated Shapes . 30

3.5.4 Weight update . 32

3.6 Assignment of Nodes to Segments . 33

3.7 Sharpening . 34

3.8 Determining the Final Association of Pixels 34

3.9 Pseudo Code . 35

4 Algorithm Performance 37

4.1 Parameter List . 38

4.2 Test Images . 39

4.2.1 Example 1: Grayscale Circles . 39

4.2.2 Example 2: Colour Image . 42

4.2.3 Example 3: Perturbed Images . 43

4.2.4 Example 4: Texture . 46

5 Segmentation of Aerial-view Images 51

5.1 Farm Image . 53

5.2 Road Image . 55

5.3 Airports . 57

5.3.1 High-Resolution Runway . 60

5.4 Road Network Extraction . 61

6 Conclusion and Future Work 68

6.1 Future Work . 70

vii

APPENDICES 72

A RGB conversion to CIELAB 73

B Interpretation of G and V operators 76

B.1 1-D case . 76

B.2 2-D case . 79

C Comparison of Saliency Measures 82

References 88

viii

List of Figures

3.1 A Grayscale image shown with and without the fine graph [34]. Red edges
indicate strong similarity, whereas the blue edges indicate dissimilarity. . . 13

3.2 Multigrid V-cycle . 14

3.3 A grayscale image shown with increasingly coarser graphs. [34] Red edges
indicate strong similarity, whereas the blue edges indicate dissimilarity. . . 15

3.4 Sketch for segmentation of intersecting streets using the multilevel elonga-
tion measure. Black shapes indicate the fine-level blocks and the red shapes
indicate the coarse-level blocks. 32

4.1 Grayscale image with nested circles (256x256). Intensity values from the
inside out: 151, 76, 236, 21 . 40

4.2 The five captured segments of Figure 4.1 (red). 41

4.3 RGB colour image (242x189). 42

4.4 The three captured segments of Figure 4.3 (magenta). 43

4.5 Grayscale image of nested squares (256x256). Intensity values from the
inside out: 201, 151, 101, 51. 44

4.6 The four captured segments of Figure 4.5 (red). 45

4.7 Perturbation added to Figure 4.5. The pixel intensities in (a) and (b) were
rescaled to enhance the perturbations such that they are visible in the plots. 45

4.8 Grayscale image of Figure 4.5 with noise (256x256). 47

4.9 Grayscale image of Figure 4.1 with noise (256x256). 48

4.10 Grayscale image with textured regions (128x65). 49

4.11 The four captured segments of Figure 4.10 (red) 50

5.1 RGB image of a farm (180x180). 54

ix

5.2 Seven captured segments determined (180x180). Each colour represents a
segment. 54

5.3 RGB colour image taken by Ikonos (400x300). 56

5.4 The captured segments of Figure 5.3 shown in two different ways. (a) The
segments are displayed as two distinct colours, blue and red. (b) A red line
is drawn on top of the original image to indicated the boundary between
segments. 56

5.5 RGB image of the Region of Waterloo airport taken by Ikonos (2301x1801). 58

5.6 The nine segments determined for Figure 5.5 (691x541). Each colour repre-
sents a different segment. 59

5.7 RGB image of the Region of Waterloo airport runway (501x351). 60

5.8 The nine segments found in Figure 5.7 (501x351). 61

5.9 Scaled runway image (51x36). 62

5.10 Segmented image. 4 segments found. 63

5.11 Segmented image with coarse graph overlay (level 8, µ = 1). 64

5.12 Segmented image with coarse graph overlay (level 7, µ = 1). 64

5.13 Segmented image with coarse graph overlay (level 6, µ = 1). 65

5.14 Segmented image with coarse graph overlay (level 5, µ = 1). 65

5.15 Segmented image with coarse graph overlay (level 4, µ = 1). 66

5.16 Segmented image with coarse graph overlay (level 3, µ = 1). 66

5.17 Segmented image with coarse graph overlay (level 2, µ = 1). 67

5.18 Segmented image with fine graph overlay (level 1, µ = 1). 67

C.1 Grayscale image (300x256). 83

C.2 The three captured segments of Figure C.1 (red) 84

C.3 Sorted saliency measure values for the segmentation of Figure C.1 (level 7). 85

C.4 Sorted saliency measure values for the segmentation of Figure C.1 (level 8). 85

C.5 Sorted saliency measure values for the segmentation of Figure C.1 (level 9). 86

C.6 Sorted saliency measure values for the segmentation of Figure C.1 (level 10). 86

C.7 Sorted saliency measure values for the segmentation of Figure C.1 (level 11). 87

x

Chapter 1

Introduction

Generally speaking, vision is an information processing task. Before the information can

be used, it has to be translated into a form that can be recognized by the visual processor.

In humans, this is done by the rods and cones of the retina. Light energy is reflected off

of the scenery and penetrates the cornea of the eye, and is focused by the lens onto the

retina. It is here that the light energy is transformed by an electrochemical reaction of the

rods and cones into a signal, that travels down the optic nerve and into the brain where it

can be processed. The brain then translates the signal into neurological patterns that are

perceived as an image [40]. A similar process can also be achieved with a computer. Light

enters a photosensitive device where it is converted into an electrical signal that can then be

expressed as digital values that are sent to a computer and then are displayed as an image

[41]. Although the computer is capable of capturing the image, it is unable to determine

what it has captured. This is where computer vision comes in. Computer vision is the

enterprise of automating and integrating a wide range of processes and representations

used for visual perception [4].

1

It was originally thought that it would be a simple task to create algorithms for com-

puters that mimic human vision, but early attempts by scientists failed miserably. It turns

out that vision is very complex and requires a large amount of processes that are not well

understood [4, 25, 41]. One way to view computer vision is by breaking it down into two

levels: early-level vision and high-level vision. High-level vision is concerned primarily with

the interpretation and the use of what is seen in the image rather than a direct recovery of

the detailed physical properties of the visible environment, such as object boundaries and

surface textures [3, 38]. High-level vision processes often require knowledge of the data

within the image such as scenic information and specific objects. An aspect of early-level

vision is feature analysis, which uses information about low-level vision cues such as colour,

texture, shape, and luminance [3, 4]. This feature information can be used to obtain in-

formation about the physical properties of the image described above, that can be used

for image processing tasks, such as segmentation. Early-level vision processes are not well

known and are usually carried out at a subconscious level [4].

1.1 Image Segmentation

In computer vision, segmentation describes a process that divides or partitions the pixels of

a digital image into groups that correspond to the entities represented in the image. The

goal of segmentation methods is to produce a simplified and meaningful representation

of the original image. Human vision is capable of segmenting images with a great deal

of accuracy and precision. Automated segmentation procedures are not as accurate and

general as their human counterparts, but they do have their advantages. Automated

methods use complex mathematical analysis to determine suitable partitions of an image.

2

Because the process is automated, it can be run numerous times over multiple images

with the hope of achieving consistent results. With the increasing processing power of

computers, segmentation algorithms can now be executed in a reasonable amount of time.

Interest in segmentation techniques has increased dramatically in recent years. Since

many general techniques do not discriminate as to what information the original image

may contain, these segmentation methods have been able to branch into several disciplines

and have many practical applications. In medical imaging, segmentation techniques help

doctors locate tumours, diagnose patients and plan treatments [9, 29]. Fingerprint scanning

[5, 44] and facial recognition techniques [36] also implement segmentation techniques to

assist in the identification process.

Most segmentation techniques use the pixel intensity as the primary source of contrast,

although some algorithms incorporate other low-level information such as texture and

colour. A popular approach to segmentation is the graph-based approach. An image is

regarded as a weighted undirected graph, with the nodes being associated with the pixels

and the edge weights between nearest-neighbour pixels calculated as a function of the pixel

intensities [14]. The salient regions of the image can be determined using a wide variety of

measures such as graph cuts and eigenvectors [15]. The graph-based methods described in

[15] may be relatively slow, and can be impractical.

A solution to speed up segmentation is to use a multilevel approach. Multilevel methods

speed up the computation by using coarse approximations of the original problem. The

main benefit of multilevel methods is that computational work is often linearly scalable in

the number of variables, which in this case is the number of pixels in the image. This is

valuable since the number of pixels in an image can be large.

The segmentation by weighted aggregation (SWA) method described in [33] presents a

3

fast multilevel graph-based method that incorporates multiple low-level vision cues such

as intensity, colour and texture, along with higher level cues such as shape in order to find

salient regions of an image.

In this thesis a new scale-invariant saliency measure is proposed for the SWA algorithm

to replace the original measure described in [33]. This new measure properly takes scaling

into account on the multiple levels. The goal of this thesis is to implement the improved

SWA algorithm to solve segmentation problems related to satellite imaging.

1.2 Motivation

The purpose of our research is to implement a fast unsupervised segmentation algorithm

which requires minimal human intervention during the segmentation process, at least

within a certain class of images. Segmentation is a process in computer vision that has

many applications and for these applications, there are segmentation methods that were

developed specifically for them. The motivating factor of this research was to implement

a segmentation method that can be used in a multitude of applications, without too much

variation in the parameters.

The SWA algorithm provides a framework that can be customized quite easily. The

large list of vision cues that can be included into the segmentation process makes it quite

a versatile algorithm. The multilevel method provides a natural analogy to human vision

[21]. Most segmentation methods are of the bottom-up nature, which use only the low-

level vision cues of the image, such as colour and texture, to produce the segmentation.

Since the SWA method is multilevel, high-level vision cues can also be used during the

segmentation process. Top-down processes involve prior knowledge of the objects in the

4

image to guide the segmentation process [21]. High-level vision cues such as shape and

orientation can then be included into the segmentation process. In some sense, the SWA

algorithm combines bottom-up and top-down aspects to segment an image.

Vision is a difficult process for computers: to recreate vision, scientists must reinvent

the most basic and yet unknown processes of specialized biological visual systems [4, 26].

Segmentation is an early-level vision process that is not well understood in humans. Thus,

it can be difficult for scientists to duplicate a segmentation provided by a human expert.

Hence, a completely unsupervised method may not be found for quite some time, but the

SWA algorithm provides a strong framework for a semi-supervised segmentation method,

where limited human intervention is required.

1.3 Thesis Summary

This thesis is divided into six chapters. Chapter 2 provides a brief overview of com-

mon approaches to image segmentation. Advantages and disadvantages are described and

some specific methods are also discussed. Chapter 3 presents an in-depth overview of

the multilevel algorithm that has been implemented. Each component of the algorithm is

described in detail, including the rationale behind its inclusion into the algorithm. Chap-

ter 4 provides a set of manufactured images that were used to test the algorithm with a

new scale-invariant saliency measure, followed by a discussion of the segmentation results

obtained. Chapter 5 includes a real application of the algorithm with sample segmen-

tations. The application aims to identify airports and the different structures in airports

such as aprons and taxiways from images captured by satellites. The segmentation results

5

for each image are discussed as well. Chapter 6 summarizes the work that was conducted

and details the conclusions that were drawn as well as future research directions.

6

Chapter 2

Background

2.1 Image Segmentation Methods

Segmentation is closely related to the Gestalt Laws of Organization that were developed in

the early twentieth century to explain certain visual observations by humans [4, 10]. The

Gestalt Laws describe grouping preferences based on features such as proximity, similarity,

and continuity [4, 10]. These grouping characteristics are still used in many segmentation

methods to identify objects in an image.

Image segmentation is a well-studied subject within computer vision and knowledge in

the area has grown quickly. A wide variety of segmentation methods have become available

with the same objective: to group pixels together based on some feature or characteristic

[4]. Currently there is no unified method to solve the segmentation problem, but many

specialized techniques have become available for specific applications. With a large number

of segmentation methods available, it can be quite difficult to decide which method would

provide the best results. Image segmentation methods can be grouped based on different

7

characteristics [4, 15, 19, 20, 27]. Some of these are listed below:

• Region of Interest:

There are two approaches to partitioning an image into regions: region-based seg-

mentation and boundary estimation using edge detection. Region-based methods

group pixels that correspond to an object using some saliency criterion. Edge de-

tection methods examine the rate of change in pixel intensities [20]. Sharp changes

and discontinuities are good indications that an edge or boundary has been detected

between two regions.

• Vision level of the method:

Low-level segmentation methods use low-level vision cues to create groups and par-

tition the image. High level methods integrate information about the objects within

the image into the segmentation process.

• Locality of the method:

Local methods use local information such as connectivity and spatial locations of

pixels to guide the segmentation process. Local parts of the image are integral to the

segmentation. Global methods focus on features of the entire image.

The rest of this section provides information about a few common segmentation meth-

ods. Many of the segmentation methods available overlap with respect to their charac-

teristics, which can make it more difficult to decide which method to use in a specific

situation. The list of segmentation methods provided is only a small subset of the wide

variety of methods available. Some of the methods below can be related to the SWA al-

gorithm as described in [16, 17, 23, 32, 33, 34, 43]. Thus, there also exist hybrid methods

that incorporate different segmentation ideas to provide meaningful partitions.

8

2.1.1 Thresholding Methods

Thresholding techniques are one of the most practical ways to segment images. They

are global techniques for partitioning images. Thresholding is a method to extract an

object from its background and is normally used to partition grayscale images, but can

also be used to segment colour images. One way to use thesholding is to define a range

of intensity values (for a grayscale image) that correspond to the object of interest. Then,

reject all pixels with an intensity value that does not fall within this range [31]. Multiband

thresholding methods combine multiple original images that contain different information

of the same scene to segment the image. An example of a multiband image is an RGB colour

image. A generalized multithresholding method attempts to find n− 1 thresholding values

to partition the image into n groups. Thresholding methods are fast and are practical

for simple images with sharp jumps in intensity. For more complex images with gradual

changes in intensity, thresholding methods have a great deal of difficulty producing accurate

segmentations.

2.1.2 Edge Detection

Edge detection methods have been studied extensively in computer vision. They work es-

sentially by the operation of detecting significant local changes in an image. Edge detection

methods usually contain three steps: filtering, enhancement and detection [20]. Filtering

is commonly used to reduce the amount of noise in the image to improve the edge detec-

tor. Enhancement is used to reinforce regions in which a significant change in intensity

is detected. This is done to help the edge detection process. The actual detection step

identifies line segments where significant changes in intensity occur. It is these lines that

9

become edges of the segments. Edge detection techniques are commonly based on convolu-

tion operators. Four common edge detecting operators are the Roberts, Sobel, and Prewitt

operators and the Laplacian operator [20]. The Sobel and Prewitt operators approximate

the first derivative in a certain direction, and the Laplacian operator approximates the

second derivative of the image intensities [20]. The Roberts operator is the simplest of the

four and also approximates the first derivative in a certain direction [20]. Edges that are

determined by these methods are often disconnected, which is a problem for segmentation,

since a closed boundary is required to define each segment in the final partition.

2.1.3 Region Growing Methods

Region growing methods begin with seed points. The determination of where these seed

points should be located, and how many seed points to begin with are important technical

aspects of the algorithms. Each seed will correspond to a segment in the image. The region

is grown iteratively, as each pixel is allocated to a seed region based on some measure of

similarity [28]. Common measures include intensity and spatial proximity. This process is

continued until all pixels are allocated. A modification to this method is as follows. Begin

with a single seed in the image. For each non-seed pixel, if it is determined that it is not

to be merged with a seeded region, it becomes a seed itself, and this process is continued

until all pixels have been classified. A poor choice of the merging measure can lead to

a severely over-segmented image in this approach. A popular region growing method is

the watershed algorithm. Watershed methods simulate a flooding process by identifying

initial markers, or “water” sources [37]. Then, for each non-marker pixel, its topographical

distance to each water source is calculated, and it is grouped with the marker to which the

distance turned out to be the smallest.

10

2.1.4 Split and Merge

Split and merge techniques begin with a naive partition of the image. In some cases, the

initial partition can be the image itself. Then, the partition is split based on differences in

specified characteristics within the partition. A common method for the partition splitting

is the quadtree representation [20] which is an example of a regular decomposition method,

that splits the region into a fixed number of equally sized regions. After each splitting,

neighbouring regions are considered for merging [28]. Two regions merge to become a

single region based on a measure of similarity between them. This process continues until

no further splitting or merging occurs within the image.

2.1.5 Graph Clustering

A popular approach to segmentation is the graph-based approach. Given an image Ω,

graph clustering methods construct the undirected weighted graph A = (N,E), where

each node in N corresponds to a pixel and each edge in E has a weight that is a measure

of the similarity of the connected neighbouring pixels. Common measures of similarity are

intensity and colour. Based on this weighted graph, a grouping of pixels is determined.

A common method to group the pixels is the normalized cut method of [24, 35]. The

normalized cut method groups pixels based on graph partitioning. The normalized cut

measure that is used, computes the cost of the graph cut normalized by the edge weights

[24, 35]. At each stage of the algorithm, the normalized cut measure bipartitions the graph.

A decision is then made whether the resulting partitions are adequate or require further

division. To further partition the image, the normalized cut method is applied to the

segmented parts recursively.

11

Chapter 3

The Segmentation by Weighted

Aggregation Algorithm

The Segmentation by Weighted Aggregation (SWA) algorithm first introduced in [32] was

developed as an efficient multilevel segmentation method that in its simplest form approx-

imates the solution for the normalized cut segmentation problem described in [24, 35]. In

order to produce an efficient segmentation method, [32] was inspired by methodologies

from the Algebraic Multigrid (AMG) framework [8]. Specifically, the SWA algorithm uses

the idea of constructing coarse approximations of the original problem to accelerate the

segmentation process and to improve the segmentation quality. Early attempts at con-

structing a fast multilevel segmentation method used only pixel intensity to segment the

images.

In order to improve the segmentation of more complex images, more low and high-level

vision cues were included to create greater contrast between two regions. This was done in

later versions of the algorithm. In [16] the SWA algorithm was improved by incorporating

12

regional properties, such as pixel intensity variance and shape moments of groups of pixels.

This chapter provides a description of the SWA algorithm and its components.

3.1 Algorithm Overview

The algorithm begins with an input image Ω. A graph A is constructed from the image

with each node corresponding to a pixel. Graph edges join horizontal and vertical nearest

neighbour pixels, with a weight that is determined by some affinity measure.

Figure 3.1: A Grayscale image shown with and without the fine graph [34]. Red edges
indicate strong similarity, whereas the blue edges indicate dissimilarity.

In order to find salient regions, the graph is coarsened to subsequently coarser approxi-

mations of the original graph A. To determine the coarse graph a suitable subset of nodes

are selected as representative nodes on the coarse level. The coarse edge weights are deter-

mined from the fine edge weights. Coarse nodes can be considered as overlapping blocks

of fine nodes. At each coarse level the algorithm does a search for salient nodes. The

coarsening procedure is repeated recursively until all nodes at the current level are salient.

If a block is determined to be salient, the nodes one the finest level that comprise that

block are assigned as a salient segment.

The algorithm consists of two distinct phases. In the first phase, increasingly coarser

graphs are constructed by grouping the fine level pixels into overlapping blocks. It is in

13

Finest Level Finest Level

Coarsest Level

Figure 3.2: Multigrid V-cycle

14

this initial phase that the nodes are determined to be salient if they are distinct from their

neighbours. In the second phase of the algorithm, the goal is to produce a partition of the

original pixels. The difficulty lies in the allowance of overlapping blocks in the first phase

of the algorithm. The overlapping blocks are sharpened at each finer-level graph until all

pixels are associated with a single segment.

Figure 3.3: A grayscale image shown with increasingly coarser graphs. [34] Red edges
indicate strong similarity, whereas the blue edges indicate dissimilarity.

As is usually done with multigrid, the two phases can be illustrated as a V-cycle similar

to the illustration in Figure 3.2. The first phase of the algorithm begins at the finest level

and travels down the side of the V until it reaches the coarsest level, and the second phase

of the algorithm travels back up the other side of the V from the coarsest level to finest

level.

3.2 Coupling Matrix

Given an image Ω that contains N = m × n pixels, we construct the graph A in which

each node represents a pixel and each node is connected by an edge to its four nearest

neighbours horizontally and vertically.

Each edge has a weight wij that is a measure of the similarity between the pixels i and

j. An exponential function is chosen to ensure that the edge weights wij ∈ [0, 1]. The

15

size of the edge weight wij directly corresponds to the similarity between nodes i and j,

meaning that a higher edge weight indicates a stronger similarity between nodes.

3.2.1 Grayscale Images

In digital imaging, grayscale images refer to a class of images for which each pixel has

a single value that contains its intensity information. Grayscale intensities range from

white to black, and contain various shades of gray in between. For grayscale images, the

coupling matrix W is determined as a function of the difference between the intensity

values of adjacent pixels. Let I denote the intensity vector for the image Ω: Ii, Ij denote

the intensities of pixels i and j, respectively. The edge weight between i and j is then

determined using the following expression,

wij =


e−α|Ii−Ij | if pixels i and j are neighbours,

0 otherwise,

(3.1)

where α > 0 is a user-defined parameter. For grayscale images, Equation (3.1) is an

adequate measure of the similarity between two pixels. However, most real images are not

grayscale and contain colour information which presents additional complexity.

3.2.2 Colour Images

The RGB colour model is the most common way to encode colours in digital imagery. It is

an additive colour model with red, green and blue as the three primaries. Every colour in

the model is represented as a triplet (r, g, b) with each entry corresponding to the intensity

of a primary colour. A problem with this tristimulus model is that colour differences are

16

not easily quantified. A linear colour model does not correctly model hue, and the distance

between two spatial locations in the RGB color model do not correlate well with colour

differences [15].

A solution to this problem is to convert the RGB values to a uniform colour space

that maps colour differences more intuitively. A uniform colour space is one in which the

distance in spatial locations of the coordinates is a good representation of the differences

in colour. One such space is called CIELAB. The CIELAB colour space was developed by

the International Commission on Illumination (CIE) [1, 15, 39] in 1976. It was designed

to approximate human vision accurately and has become widely used. The coordinates of

CIELAB (L*, a*, b*) correspond to the lightness or intensity of a pixel (L*), its position

between red/magenta and green (a*),and its position between yellow and blue (b*). Other

more uniform colour spaces exist, but they are more complex and CIELAB was chosen for

simplicity. More information about the conversion from RGB to CIELAB can be found in

Appendix A.

Once the image Ω has been converted to the CIELAB colour space, the edge weights

between pixels can be determined. From this point there are two directions in which

one can proceed. The L* component of the colour space contains the intensity values

of the image Ω, thus one option to proceed is to let I = L* and use Equation (3.1) to

determine the coupling matrix W for the image Ω. Depending on the application this may

be a suitable option. An alternate option is to calculate the colour differences between

two pixels. Since CIELAB is a more uniform colour space, the colour difference between

two pixels can be determined by calculating the Euclidean distance between their colour

vectors. Let Ci, Cj denote the CIELAB colour vectors of pixels i and j. Then the edge

weight wij is determined by

17

wij =


e−α||Ci−Cj || if pixels i and j are neighbors,

0 otherwise,

(3.2)

where α > 0 is a user-defined parameter.

The construction of the coupling matrix W is the first step in the segmentation process.

Note that W is a sparse matrix since only the nearest neighbours of a pixel i are of interest.

3.3 Multilevel Coarsening

A key component of the SWA algorithm is the coarsening procedure, which provides a

systematic way to define the nodes of the coarse graph. The coarsening procedure used in

the SWA algorithm closely resembles the coarsening used in Algebraic Multigrid (AMG).

AMG is a fast multilevel matrix solver that was inspired by multigrid methods applied to

partial differential equation discretizations [7, 8, 13]. The benefit of AMG is that it is an

algebraic procedure that does not require the positions of the nodes to coarsen the grid.

The SWA algorithm was originally designed as an approximation to the normalized cut

method described in [35]. The normalized cut method produces segments by solving the

generalized eigenvalue problem,

Lu = λWu, λ > 0 (3.3)

where W is the coupling matrix defined in (3.1) and L is the graph Laplacian defined below

in (3.11).

AMG provides a fast method to solve (3.3), and it is intuitive that the SWA algorithm

18

below would use the same method to choose the coarse graph nodes. In particular, a

modified version of the classical Ruge-Stüben AMG coarsening routine [8, 13] is used for

the coarsening in our implementation of the SWA algorithm as explained in Subsection

3.3.1.

A candidate for a coarse level node should be one that has a large effect on many of

its neighbours. The Ruge-Stüben AMG coarsening routine is based on the strength of

connection between nodes.

Definition 1 Let θ be a given constant with 0 < θ < 1, and consider row i in the coupling

matrix W , i strongly depends on j if

wij > θmax
k 6=i
{wik}. (3.4)

Also, if i strongly depends on j, we say that j strongly influences i.

Note that θ is a user-defined parameter.

Consider two consecutive levels, and call them the fine and coarse level. The points on

the fine level are divided into two classes:

• C-points are fine-level points that become the coarse level nodes

• F-points are the fine-level points which were not chosen as C-points.

Denote the set of C-points C and F-points F .

Let Si = {j : wij > θmaxk 6=i{wik}} denote the set of points that strongly influence i,

and let Ci denote the set of C-points that are neighbors of node i and strongly influence i.

Also, let STi = {j : i ε Sj} denote the set of points that i strongly influences.

19

The coarse node selection routine partitions the fine-level nodes into C-points and F-

points. The concept of strength of connection is used to determine which fine-level nodes

become C-points and which become F-points. The set of C-points, C, should be a maximal

independent subset of points, such that no two C-points are strongly connected to each

other.

3.3.1 Coarse Node Selection

The objective of the coarse node selection is to group the fine-level nodes into C-points

and F-points. The selection process begins by assigning to each point i, a measure of its

desirability to be a C-point. The desirability of point i, denote ξi is calculated by counting

the number of points that i strongly influences. Note that these points are in fact the

members of STi , hence, the desirability of point i to become a C-point is the cardinality of

STi ,

ξi = |STi |. (3.5)

Once ξi has been determined for all fine-level points, the first C-point is one of the points k

such that ξk ≥ ξi for all fine-level points i. To avoid strong couplings between C-points, all

the neighbouring points that k strongly influences become F-points. Next, we consider the

unassigned fine-level points that strongly influence the newly defined F-points, because

they are good candidates for becoming C-points in the maximal subset. So, for each

unassigned point j that strongly influences a newly assigned F-point, increment ξj, and

then choose one of the unassigned points k, with the largest ξk as the next C-point. This

process is repeated until all points are assigned as C-points or F-points.

The classical Ruge-Stüben AMG coarsening routine in [8, 13] in addition to the above,

20

performs a second pass that creates more C-points, but this is not necessary for the SWA

algorithm.

3.3.2 Interpolation Operator

Once the coarse-graph points C have been determined, we can construct the inter-graph

operator. An inter-graph operator P is required to pass from one level to another. The

number of rows in P corresponds to the number of fine-scale nodes, and the number of

columns corresponds to the number of coarse nodes that were determined by the Ruge-

Stüben AMG coarsening algorithm. The interpolation weights that make up P are deter-

mined as follows,

pik =



wick∑K
n=1 wicn

∀i 6∈ C, ck ∈ C,

1 ∀i ∈ C, i = k,

0 otherwise,

(3.6)

where K = |C|. Note that the rows of P sum to 1.

The ith entry of column j in P , Pij, indicates how much the fine-level node i is associated

with the jth coarse-level node. Column j of P indicates how much each fine-level node

belongs to the jth overlapping aggregate of the fine-level nodes. The jth C-point is a

representative for the jth aggregate.

21

3.3.3 Coarse Coupling Matrix

Once we have determined the inter-graph operator P , the coupling matrix W can be

approximated to the coarse-graph using the Galerkin variational formula [8]:

W 2h = P TW hP. (3.7)

The superscript denotes the scale of the grid: W 2h is the coarse graph approximation of

W h, the fine-level coupling matrix.

3.4 SWA Saliency Measure

To determine whether a block is a segment, a measure is used to determine its saliency.

Saliency of a block refers to the quality of it standing out from its neighbours. Thus, an

object that is deemed to be salient, is considered a segment. To determine the saliency

of a block, a saliency measure Γ was proposed for the SWA algorithm [16, 32, 33]. For

each potential segment U define the state vector u = (u1, u2, . . . , uN)T where N is the total

number of pixels and

uk =


1 if k ∈ U,

0 if k 6∈ U,

(3.8)

The saliency of a potential segment U is defined by

Γ(U) =

∑
i>j wij(ui − uj)2∑
i>j wij(uiuj)

. (3.9)

22

For a segment U , the numerator of (3.9) sums the coupling values along the boundary of

the segment and the denominator sums the internal couplings of the segment. Thus, the

saliency Γ of a segment is the sum of the coupling weights along the boundary divided by

the sum of internal weights. In matrix notation, (3.9) can be written as

Γ(U) =
uTLu

1
2
uTWu

. (3.10)

Here W is the coupling matrix determined by (3.1), and L is the weighted graph Laplacian,

which is calculated as follows,

lij =


−wij if i 6= j,∑

k 6=iwik if i = j,

(3.11)

Note that, if we allow real nonboolean values to be assigned to u, the minimum positive

value for Γ in (3.10) is obtained by the generalized eigenvector u that gives the minimal

positive eigenvalue of (3.3), which is equivalent to the normalized cut solution proposed

in [35]. By analogy, for boolean values of u, if Γ(U) is determined to be sufficiently small

then U can be considered a salient segment. In particular, we define a tolerance parameter

γ and if Γ(U) < γ then U is a segment. Potential segments U are determined by the

coarsening procedure described in section 3.3, as explained further below.

The saliency measure Γ is calculated for each node in the multilevel hierarchy. At a

given level l, the saliency is first calculated for all nodes. Once the saliency has been

calculated for all nodes, the saliency of groups of nodes on level l should be considered. In

practice, the saliency of selected groups of nodes on level l is computed on level l+ 1 after

the coarse graph nodes have been determined. That is, the coarsening routine determines

23

which nodes at level l are to be grouped together. Thus, the multiple-node segments at

level l are represented by single nodes at level l+ 1. Hence, it is sufficient to consider only

single node partitions at a given level. Let u = (. . . , 0, ui, 0, . . .)
T where ui = 1. In terms

of calculating Γ, Equation (3.10) simplifies to

Γ =
Lii

1
2
Wii

. (3.12)

for each node i at level l > 1. Single-pixel partitions are not considered at the finest level in

this implementation to avoid division by 0, since wii = 0 on the finest level. In most cases,

single-pixel segments are not desired anyway. To avoid oversegmentation of the image,

we let σ be a user-defined parameter to determine at which level to begin searching for

segments. A larger value for σ leads to larger segments.

3.4.1 Scale-invariant Saliency Measure

In this section we propose a new scale-invariant saliency measure that is a modification

of (3.10) from [16, 32, 33]. Recall that for a boolean segment, the numerator of (3.10) is

the sum of the coupling weights along the boundary of a block and the denominator is

the sum of the internal weights. Expression (3.10) does not properly take into account the

boundary length and the number of internal connections when calculating the saliency. For

example, consider two segments with equal intensity on a uniform background. Assume

that both segments have the same area, but different boundary lengths. The segments

should be equally salient, but Expression (3.10) may give very different results for the two

segments. Hence, (3.10) is not a good indicator of the saliency of segments. As a new

measure of salience, we propose the following,

24

Γnew =
averaged coupling weight along the boundary

averaged internal weight
(3.13)

Quite simply, we would like to normalize the sum of the external couplings as well as the

sum of the internal couplings independently. To do this we define two more operators, G

and V, where

vij =


0 if wij = 0,

1 if wij 6= 0,

(3.14)

and

gij =


−vij if i 6= j,∑

k 6=i vik if i = j,

(3.15)

Thus, G is the unweighted graph Laplacian and V is a boolean matrix with the same spar-

sity structure as W , also known as the adjacency matrix. In order to improve the saliency

measure, the numerator of (3.10) is normalized by the number of boundary connections,

and the denominator of (3.10) is normalized by the number of internal connections. A

description as to why G and V can be used to determine the number of boundary and

internal connections can be found in Appendix B. In the new measure, saliency of a block

i is determined by taking the ratio of the average similarity of block i to its neighbouring

blocks and the average internal similarity in block i:

Γnew =

(
Lii

Gii

)
(
Wii

Vii

) (3.16)

A benefit of the normalization is that the scale-invariant saliency measure can be used for

segments of different length-to-area ratios.

25

The new scale-invariant saliency measure calculated above, normally lies between zero

and one on all levels. Conversely, the original saliency measure proposed in [16, 32, 33]

takes on a larger range of values that vary between levels. Another advantage of the scale-

invariant saliency measure is that the same tolerance parameter γ can be used on all of the

levels since the range in the Γnew values is normally between zero and one. Having prior

knowledge of the range of values that the saliency measure can take on and knowing that the

range is similar on all levels, is a significant benefit when determining the saliency tolerance

parameter γ. In Appendix C the two saliency measures are compared for segmenting a

test image. The saliency values for both the original and scale-invariant saliency measures

are shown for each level, and are then compared and discussed. Appendix C illustrates

the behaviour of the saliency measures in one experiment of several that were conducted

to draw the conclusions above.

The computation cost and memory required for this new saliency measure is higher

than the original saliency measure in (3.10). Two new matrices need to be stored, G and

V at each level. Thus, G and V must also be coarsened using Expression (3.7) at each

level that requires two matrix-matrix products and two matrix-vector products. Also, for

each calculation of Γ two more division operations are required. However, given the extra

cost of the scale-invariant measure we feel that the benefits of standardizing the saliency

measure to Γnew is worth the extra computational cost.

3.5 Multiscale Coupling Update

Early versions of the SWA algorithm used only the pixel intensity at the finest level to

produce the segmentation of the image. This is a simplified approach to segmentation

26

and vision in general. Real images are complex and cannot be segmented successfully

using the pixel intensity alone. In human vision, texture and shape are two very important

components in identifying objects. Texture is concerned with the spatial distribution of the

image intensities and discrete tonal features [19] and shape refers to the spatial descriptors

of a region, such as length and width. These characteristics are regional properties and

cannot be captured at the finest level of the image.

Regional properties are incorporated into the algorithm by modifying the coarse-graph

weights. This is carried out by using some measures to compare the characteristics of

neighboring nodes. This allows regions of similar properties to be grouped together and

nodes with different properties to not be grouped together. The modification of the coarse-

graph weights affects the grouping at coarser levels. In this algorithm it is relatively simple

to incorporate regional properties since the algorithm already considers different scales by

nature. Recall that, at a coarse level, each node represents a subset of nodes at some finer

level. The subset of nodes at the finer level is grouped together to form a block. Thus,

to incorporate regional properties it is sufficient to determine the properties of the coarse-

level nodes. Since the regional characteristics are just averages of the characteristics of the

nodes that comprise the regions, they can be calculated efficiently during the coarsening

process.

Suppose Q is a property vector for the nodes at a particular level, and Qc is the

property vector at the next coarser level. Note that Qc contains the average of the regional

properties of the nodes on the finer levels that make up the coarse-level block. Recall that

the regional properties are average values of the nodal properties. To compute the regional

properties, a modified version of the inter-graph operator P can be used. In particular, a

column-normalized version P̂ of P is needed. The columns of P̂ are normalized to one.

27

Thus, the region properties are determined by the following,

Qc = P̂ TQ (3.17)

Regional properties that are considered in this algorithm are the average intensity, intensity

variance, and the geometric shape moments. These measures are used to affect the coupling

on coarser levels through an exponential weighting (See Equation (3.30)), and hence to

affect the final segmentation of the image.

3.5.1 Average Intensity

Calculating the average intensity of a block allows us to segment regions whose boundaries

have gradual transitions in intensity [33]. The inclusion of the average intensity of a block

reduces the effect that noise has on the segmentation. The average intensity between blocks

is calculated after the first level, since at the finest level, the average intensity is just the

pixel intensity vector I. For colour images, the intensity I is determined by I = L*, where

L* is luminance matrix of the CIELAB colour space. The average intensity values of I are

calculated using the formula,

Ic = P̂ T I, (3.18)

where the superscript c denotes the next coarse level. This is done at each level of the

algorithm.

28

3.5.2 Variance

The variance of the pixel intensities is a common statistic used to measure textures in

image segmentation [19, 33]. In uniform regions of the image, the variance is very small

and it becomes larger in areas where the pixel intensity changes.

Definition 2 If a random variable X has an expected value of µ = E(X) then the variance,

V ar(X) of X is given by

V ar(X) = E
[
(X− µ)2

]
. (3.19)

With a little bit of algebra it can be shown that (3.19) is equivalent to the following:

V ar(X) = E
[
X2
]
− (E [X])2 (3.20)

To calculate the intensity variance of a block k, the intensity values and squared inten-

sity values need to be averaged. The intensity values are averaged using Equation (3.18).

The squared intensity values are first calculated at the finest level, by squaring the intensity

of each pixel. Then, the coarse versions of the intensity-squared vector I2 is accumulated

using (3.17), and we get the following,

Ic2 = P̂ T I2 (3.21)

where c represents the next coarse level.

Thus, the variance in intensity vector is determined by the following,

29

V ar = I2 − I2. (3.22)

3.5.3 Elongated Shapes

In the previous subsections, we determined two regional properties, the average intensity

and the variance of intensity. In this section we are concerned with the shape of the blocks.

In particular, we would like to differentiate regions that have an elongated shape from those

that have a more regular shape. Elongated shapes will be used in Chapter 5 to find roads

in satellite images. The second-order principal moments of the aggregate can be used to

determine how elongated an object is [11, 16]. The x and y coordinates of each node along

with their product and squared values are used to determine the length and width of the

block. The following eigenvalue problem is solved for block k:

Λke = ωe, (3.23)

where Λk is the covariance matrix of the coordinate statistics for block k,

Λk =

 (x2)k − (x)2
k (xy)k − (x)k(y)k

(xy)k − (x)k(y)k (y2)k − (y)2
k

 . (3.24)

The second order principal moments for a block k are represented by, (x)k, (y)k, (x2)k,

(y2)k, and (xy)k. The corresponding eigenvalues ω of (3.23) are used to calculate how

elongated block k is by looking at their ratio. We define

Rk =
min(ω)

max(ω)
. (3.25)

30

A value for Rk that is close to zero corresponds to a block k that is very elongated, whereas

an Rk value of close to one represents a block with a more regular shape. In experiments

we found that it is useful to modify the Rk values to accentuate the differences between

regular and elongated shapes:

R̂k =


0 if Rk < τ1,

1 if Rk > τ2,

Rk−τ1
τ2−τ1 otherwise

(3.26)

where τ1 = 0.2 and τ2 = 0.8.

To set up (3.24) at each level, the second order moments need to be averaged. Let

Z =

(
X Y X2 Y2 XY

)
(3.27)

where the kth component of X, Y , X2, Y2, and XY contain the corresponding averaged

quantities of each node k on the current fine level. Note that X2, and Y2 are vectors that

contain (x2)k and (y2)k as their kth components. Also note that XY is a single vector with

(xy)k as its kth component. Then, using (3.17), we get for the next coarse level:

Zc = P̂ TZ (3.28)

Let R̂[s,l] denote the ratio that has been calculated at level s and coarsened to level l.

This produces a multilevel shape vector for block k on level l:

R̂k = (R̂
[1,l]
k R̂

[2,l]
k . . . R̂

[l−1,l]
k R̂

[l,l]
k) (3.29)

31

where R̂
[l,l]
k is calculated as in (3.26). Note that R̂

[l,l]
k is only calculated for l > 2 so that

meaningful shapes are incorporated into the algorithm.

A multilevel shape vector is beneficial because information about a block k and all the

subblocks that comprise it are stored and used to modify the coupling at coarser scales.

Thus, a block i that is comprised of several elongated subblocks, but is not necessarily

elongated itself, has the capacity to merge with a block j that is also comprised of elongated

subblocks, and is elongated itself as shown in Figure 3.4. Without a multilevel shape vector

this may not be possible.

Figure 3.4: Sketch for segmentation of intersecting streets using the multilevel elongation
measure. Black shapes indicate the fine-level blocks and the red shapes indicate the coarse-
level blocks.

3.5.4 Weight update

In order to make these statistics useful, they need to be incorporated into the coupling

matrix. Before this can occur, the update values should be combined in such a way that

32

they are of the same scale. This is done using the exponential function similar to what

was used to determine the initial values of the coupling matrix.

wcij ← wcij · e−α̃|Ii−Ij |e−β|V ari−V arj |e−ρ||R̂i−R̂j ||, (3.30)

where α̃, β, and ρ are parameters chosen by the user and ||R̂i − R̂j|| is the Euclidean

distance between R̂j and R̂j. Note that the average intensity and intensity variance of a

block k is determined for all levels l such that l > 1. The shape measure R̂k of block k

updates the coupling matrix W for level l > 2.

3.6 Assignment of Nodes to Segments

This section describes the beginning of the second phase of the algorithm that is illustrated

in Figure 3.2. Once we have reached the coarsest level, and all salient nodes have been

detected on various levels of the algorithm, the overlapping blocks need to be sharpened

in order to provide a meaningful partition at the finest level.

In Section 3.4 it was explained that only single-node partitions are considered on a

given level when determining saliency. Suppose a node k on level l has been identified as

salient. Construct the elementary vector, u[l] = ek, where ek has a one in the kth entry

and zeroes everywhere else. Then, this vector is interpolated back to the finest level to

determine the pixels that belong to the segment. The vector u[l] is interpolated from level

l to level l − 1 using

u[l−1] = Pu[l]. (3.31)

33

Suppose that S = [U1U2 . . . Ur] is an array of state vectors for all segments that have

been interpolated to level l from coarser levels. Since node k is assigned entirely to this

new segment, the positive values in the kth row of S are changed to 0. That is, sij = 0 if

i = k. Thus, node k is removed from each segment currently in S. Then Ur+1 = u[l], and

S = [U1U2 . . . UrUr+1] is interpolated to the next finer level, where the same procedure is

repeated.

3.7 Sharpening

After each interpolation, the vector u[l−1] may have values in [0,1]. The goal here is to

bring u[l−1] closer to a binary state vector. We do this by modifying the interpolated u[l−1]

before interpolating it to the next finer level, by the following formula:

u
[l−1]
i =


1 if ui > 1− δ,

0 if ui < δ,

u
[l−1]
i otherwise,

(3.32)

with δ a user-defined parameters. The sharpening procedure occurs once all segments have

been found and are recursively interpolated back to the finest level.

3.8 Determining the Final Association of Pixels

At the finest level it is required that each pixel i be associated with a single segment q.

Suppose S = [U1U2 . . . Ur] at the finest level. After the interpolation process it may be

34

the case that a single pixel is associated to more than one segment. In order to create the

final partition, we associate the pixel with the segment in which its weight turned out the

largest. At the end of this procedure, each pixel is associated with exactly one segment

and the result is output to the user.

3.9 Pseudo Code

The modified SWA algorithm outlined in this chapter is illustrated in pseudo code below.
The algorithm was implemented recursively.

Algorithm: Determine the Segments of a colour image Ω

1. Calculate matrices W , V , L, G according to Equations (3.2), (3.14), (3.11), (3.15)
for image Ω and set level=0.

2. U ← vcycle(W,L, V,G)

(a) level = level +1.

(b) if the current level has only one node,

i. Calculate the saliency using Equation (3.16). Denote the set of salient nodes
S

ii. Let U coarse = ∅ and skip to step 2(c)ix.

(c) else

i. if level ≥ σ calculate the saliency of all nodes using (3.16). Denote the set
of salient nodes S. If all nodes are salient, let U coarse = ∅ and skip to step
2(c)ix.

ii. Select the set of coarse nodes and determine the inter-graph operator P as
outlined in Section 3.3.

iii. Coarsen W and V , W c = P TWP , and V c = P TV P .

35

iv. Update W c with regional properties using Equation (3.30).

v. Calculate Lc and Gc using Equations (3.11) and (3.15).

vi. U2h ← vcycle(W c, Lc, V c, Gc)

vii. Interpolate U2h to the current level (Uh = PU2h).

viii. Sharpen Uh → U coarse.

ix. Construct elementary vectors Ui for salient nodes i ∈ S and construct
U fine = [. . . Ui . . .]. Modify rows i of U coarse (see Section 3.6).

x. Construct U = [U fine|U coarse].

3. Determine final pixel association from U

36

Chapter 4

Algorithm Performance on test

images

In this chapter we will present some segmentation results of our implementation of the

SWA approach. To test the algorithm, simple test images were produced with clearly

identifiable segments. There are two reasons to run the algorithm on simple test images.

The first is that we would like to illustrate the performance of the segmentation algorithm

on simple images before applying it to more complicated ones. The particular images in

this chapter were chosen to display the usefulness of the properties that were included in

the algorithm, namely, the intensity, intensity variance and shape moments. The second

reason is to experiment with the extensive list of user-defined parameters that are available

in this algorithm. The number of parameters is quite large and each has an impact on

the segmentation results. Thus, the choice of parameters are a significant step in the

segmentation process.

The segmentation algorithm used to obtain the results in Chapters 4 and 5 was im-

37

plemented in MATLAB except the coarsening routine described in Section 3.3 which was

coded in C. The segmentation results were obtained on a 32-bit Windows XP machine

with an Intel T2250 CPU and 3 gigabytes of DDR2 ram.

4.1 Parameter List

An extensive list of user-defined parameters are used for the SWA algorithm, with each

having a significant role in the segmentation process. With many degrees of freedom, it

can be a difficult task to fine-tune the parameters to produce a meaningful segmentation.

A short summary of the parameters included in our implementation of the algorithm is

provided along with a general description of their usage.

1. α > 0 is used to scale the contrast between pixels when determining the initial edge

weights for colour and grayscale images in Equations (3.1) and (3.2).

2. 0 < θ < 1 is the coarsening strength threshold that determines whether nodes are

strongly connected or not for the coarsening. Its usage is shown in Equation (3.4).

3. α̃ ≥ 0 rescales the coupling values at coarser levels according to the difference in

average intensities of two neighboring blocks after the first level. This is described in

Equation (3.30).

4. β ≥ 0 rescales the coarse-level coupling values to incorporate the differences in the

intensity variance of neighboring blocks after the first level. This is shown in equation

(3.30).

38

5. ρ ≥ 0 rescales the differences in elongation between blocks. Elongated shapes are

differentiated from more regular shapes. This is not incorporated until the third level

of the algorithm. The coupling weights of neighbouring are modified according to

Equation (3.30).

6. 0 < δ < 1 is the sharpening parameter for the segments determined by the algorithm.

The sharpening is done according to expression (3.32).

7. σ is a parameter used to prevent over-segmenting the image. It indicates at which

level in the algorithm to begin searching for salient segments.

8. γ is the saliency tolerance parameter. If the saliency value of a node is below this

tolerance γ, then is it considered a segment. That is, if Γ(U) < γ then U is a segment.

Note that the elongation parameter was not used for any segmentations in this chapter

(ρ = 0).

4.2 Test Images

4.2.1 Example 1: Grayscale Circles

The first example is a grayscale image with regions that are identifiable strictly by intensity.

The regions have uniform intensities with abrupt changes in contrast at the boundaries

between regions. The first image that was used to test the algorithm is shown in Figure

4.1. It shows three nested circles of different intensities on a black background. The

different regions in this image have uniform intensities. Thus, the main change in intensity

39

occur at the boundaries between regions. Figure 4.2 displays the segmentation of the

original image.

Figure 4.1: Grayscale image with nested circles (256x256). Intensity values from the inside
out: 151, 76, 236, 21

The red regions denote the segments that were found by the segmentation algorithm.

Figure 4.2 shows that the algorithm was successful in segmenting the simple image into its

constituents. The parameters that were used to determine this partition were: θ = 0.25,

α = 100, α̃ = 0, β = 0, ρ = 0, δ = 0.15, σ = 6, and γ = 0.1. The runtime to

conduct the segmentation was 89.53 seconds. Since the regions in the image have uniform

intensities, it was unnecessary to include variance over the blocks as it would not influence

the segmentation. The average intensity of blocks was also left out since the fine pixel

contrast was sufficient to segment Figure 4.1 as the regions have uniform intensities. The

large value of α emphasizes the jumps in intensity along the region borders and thus

40

(a) (b) (c)

(d) (e)

Figure 4.2: The five captured segments of Figure 4.1 (red).

increases the contrast between nodes in the initial calculation of the edge weights. This

essentially gives pixels connected across the boundary a coupling weight of nearly zero.

For this image, all five segments were found at the 10th level of the algorithm. Each region

of Figure 4.1 was identified, but that does not mean that the algorithm finds the partition

that is required by the user. One user may require a total of four segments, in which all

pixel with similar intensities are grouped together, thus it can be argued that Figure 4.2

is an over-segmentation of the original image in Figure 4.1. The segments of Figure 4.2a

and Figure 4.2e were declared as two different segments by the SWA algorithm, yet in

the original image they have the same intensity. Ultimately, the desired segmentation of

this image would be based on the user’s requirements. For the purposes of this thesis, the

results in Figure 4.2 are considered successful.

41

4.2.2 Example 2: Colour Image

In this subsection a colour image is segmented. The RGB values of Figure 4.3 are first

converted to the CIELAB colour space, which is more accurate in determining colour

differences to construct the coupling matrix using (3.2). The parameters that were used to

determine the segmentation are identical to the ones used to segment Figure 4.1, θ = 0.25,

α = 100, α̃ = 0, β = 0, ρ = 0, δ = 0.15, σ = 6, and γ = 0.1. The resulting segmentation is

displayed in Figure 4.4, with the magenta regions representing the segments. It took 56.97

seconds to segment Figure 4.3.

Figure 4.3: RGB colour image (242x189).

The segmentation in Figure 4.4 shows that the colour image was accurately segmented.

The correct segmentation illustrates that colour images can also be successfully segmented

using the SWA algorithm. Being able to take advantage of colour within an image is

beneficial as more information about the image can be utilized. It is the uniformity of

the CIELAB colour space that allows the SWA algorithm to segment colours properly, by

accurately modelling colour differences.

42

(a) (b) (c)

Figure 4.4: The three captured segments of Figure 4.3 (magenta).

4.2.3 Example 3: Perturbed Images

In this next example, we would like to illustrate the advantage of the average intensity

block coupling update. Figure 4.5 is a grayscale image of nested squares with regions

differentiated by intensity alone. Figure 4.6 displays the segmentation obtained using the

following parameters θ = 0.25, α = 100, α̃ = 0, β = 0, ρ = 0, δ = 0.15, σ = 6, and γ = 0.1.

Note that these are the same parameters that were used to segment the image in Figure

4.1.

We now modify Figure 4.5 to make the regions less uniform. Perturbations are added to

the image in two ways. First, we add a random number uniformly distributed between

zero and seven to the intensity of each pixel. The random noise is shown in Figure 4.7a.

Second, we sample f(x) = 3 sinx for x ∈ [0, 4π] and add it to the intensity of each pixel.

The added perturbation is shown in Figure 4.7b.

Figure 4.8 shows the image of Figure 4.5 with the added perturbation. Let Iold be the

intensity values of Figure 4.5, and Irandom, Isine the intensity values of Figure 4.7a and

Figure 4.7b, respectively. Then the intensity values of Figure 4.8 is given by

Inew = Iold + Irandom + Isine. (4.1)

43

Figure 4.5: Grayscale image of nested squares (256x256). Intensity values from the inside
out: 201, 151, 101, 51.

44

(a) (b)

(c) (d)

Figure 4.6: The four captured segments of Figure 4.5 (red).

(a) Random noise. (b) Pertubation (sin(x)).

Figure 4.7: Perturbation added to Figure 4.5. The pixel intensities in (a) and (b) were
rescaled to enhance the perturbations such that they are visible in the plots.

45

Visually it is clear that the different regions still exist and the resulting partition should

resemble the segmentation that was determined in Figure 4.6. If the parameters used to

segment Figure 4.5 are used to segment Figure 4.8, we obtain a severely over-segmented

result. The large value for α magnifies the contrast between neighboring pixels within a

region at the finest level. Due to the inclusion of the random noise, nodes did not group

together on the coarser levels. In fact, all 7891 nodes at the 9th level were determined to

be segments. Clearly, this is not a good result. A solution to this problem is to decrease

α and increase α̃, which scales the average intensity differences between regions at coarse

levels. Averaging the intensities within a region reduces the effect that the manufactured

noise has on the affinity between nodes. Using the parameters: θ = 0.25, α = 1, α̃ = 30,

β = 0, ρ = 0, δ = 0.15, σ = 9, and γ = 10−5, we were able to obtain the segmentation

results in Figure 4.6. Also, if we add the perturbation generated in Figure 4.7 to Figure

4.1 we obtain the image in Figure 4.9. Using the same parameters to segment Figure 4.9

as Figure 4.8, we obtain the segmentation that was presented in Figure 4.2.

In image processing, random perturbations are normally modeled using Gaussian noise.

Gaussian noise is generated using a Gaussian probability distribution function (pdf) with

mean µg and variance σ2
g . A special case of a Gaussian pdf is the normal distribution,

which has a mean of 0 and variance of 1. Gaussian noise was not used in this example,

but we expect that the algorithm would obtain similar results if Gaussian noise is added

to the image.

4.2.4 Example 4: Texture

Figure 4.10 is used to illustrate how intensity variance is an important block property for

identifying textures in the segmentation process. Figure 4.10 shows four distinct regions.

46

Figure 4.8: Grayscale image of Figure 4.5 with noise (256x256).

47

Figure 4.9: Grayscale image of Figure 4.1 with noise (256x256).

48

There are two distinct checkerboard regions separated by two uniform regions. The average

intensity over each of the four regions is the same. The uniform regions have a pixel

intensity of 20 and the checkerboard region alternates between 0 and 40. Since the average

intensities over the regions are the same, the algorithm requires a different measure to

distinguish the regions. Over the checkerboard region there is a lot of variation between

the pixel intensities, whereas the uniform regions by construction have none. The concept

of intensity variance is able to capture these differences and is used in our implementation

as a measure of texture.

Figure 4.10: Grayscale image with textured regions (128x65).

In Figure 4.11 the red regions denote the salient blocks. The parameters used to

determine this partition were θ = 0.25, α = 4.2, α̃ = 1, β = 5, ρ = 0, δ = 0.15, σ = 8, and

γ = 10−30. The segmentation of Figure 4.10 obtained in Figure 4.11 is very promising and

it took 6.17 seconds to segment. Overall, the segmentation algorithm was able to capture

the regions with a high variance in pixel intensity. In Figure 4.11 we observe that a few

49

(a) (b)

(c) (d)

Figure 4.11: The four captured segments of Figure 4.10 (red)

boundary pixels were not properly segmented. This anomaly could have been avoided by

decreasing the α parameter and increasing β. At the uniform and checkerboard region

boundary, the white pixels in the checkerboard region are closer in intensity to those of the

uniform gray region than to the dark pixels in the checkerboard region. This alteration

of the parameters would decrease the affinity of the mislabeled pixels with respect to the

difference in intensity, and increase the affinity of the pixels to differences in intensity

variance. This example illustrates the difficulty of fine-tuning the parameters to obtain the

desired segmentation results. Once a reasonable partition of the image has been obtained,

additional human intervention may be required to guide the algorithm into producing an

optimal result.

50

Chapter 5

Segmentation of Aerial-view Images

Evidence from the previous chapter has shown that our implementation of the SWA ap-

proach is capable of segmenting relatively simple images. The next step is to observe if the

algorithm is capable of producing a correct segmentation for more complex images. The

purpose of this chapter is to apply the segmentation algorithm to real images and observe

the resulting partitions. The focus of the input data will be on aerial-view images taken

from nadir. That is, the images used in our research are taken directly below the device

that captures it.

In recent years, satellite imagery and, more broadly, aerial imagery has become widely

available due to affordable and easy to use software used for viewing and editing, with

access to large image databases such as Google Earth [6]. Aerial-view images have become

a significant source of information in industrial applications. For example, geologists have

been successfully using satellite imagery for a number of years for mineral exploration as a

cost-effective method for identification of possible future excavation sites [12]. Aerial-view

images can also be used for road extraction for road related services, such as navigation

51

software and location-based services [42]. Segmentation techniques can be applied to aerial-

view images to update land-use databases [22]. Segmentation methods have also been

used to assist researchers to create geo-specific road databases for the updating of driving

simulators [18]. Aerial-view images are also an important source of information for the

forestry industry, city planning and the military.

The goal of this chapter is to segment airports and different structures in airports. The

American Federal Aviation Administration (FAA) and other government bodies would like

to keep an updated and accurate database of airports and their runways. For airport safety,

they would like to be aware of new runways and runways that are no longer operational.

Keeping an up-to-date database can be very time-consuming as there is currently no au-

tomated method to update it. Satellite images can be used to update these databases in

time by analyzing temporal sequences of images, but with the high resolution of the images

and the large areas of interest, processing this raw data can be computationally expensive.

Automatic segmentation methods are a natural choice to address this problem, since the

goal of these methods is to simplify the input image into a meaningful partition.

The data used for our research was derived from images from Google maps and and

gathered by the Geoeye satellite Ikonos [2]. The sample images that were derived from

Google maps were captured using a screenshot tool on a Windows Vista machine. This

is not the ideal way to receive satellite imagery because there is limited information with

respect to the spatial resolution of the images and how they were captured. Also, since RGB

colour spaces are device-dependent [15, 39], the image data may not be the same depending

on the computer that captures it. The high-resolution images that were provided by Geoeye

were captured by the satellite Ikonos that was put into orbit in 1999. The Ikonos satellite

is capable of collecting panchromatic (black and white) images with 82-cm resolution and

52

multispectral imagery with 4-m resolution [2]. The panchromatic and multispectral images

can be combined to produce high-resolution colour images with a spatial resolution of 1-m

per pixel. This process of combining images is called pansharpening. The Ikonos cannot

capture features that are under one meter in size for colour images and a resolution of

82-cm for panchromatic images.

The images that were used for segmentation in this chapter have a colour depth of 24

bits. The satellite images provided by Geoeye were down-sampled from 48-bit to 24-bit to

reduce to amount of time required to test the segmentation algorithm.

5.1 Farm Image

Figure 5.1 contains an RGB colour image of a farm in the Waterloo region that was captured

using a cropped screenshot obtained from the Google maps application. The goal of this

example is to show that the algorithm is able to divide the original image into meaningful

segments. In order to begin the segmentation, the RGB values of the image in Figure

5.1 were first converted to the CIELAB colour space. This colour space was then used to

construct the coupling matrix using Equation (3.2).

The results from the segmentation are shown in Figure 5.2. Each solid colour represents

a single segment. The parameters used for the segmentation were: θ = 0.3, α = 3.5, α̃ = 3,

β = 3, ρ = 2, δ = 0.15, σ = 9 and γ = 10−70 and it took 58.33 seconds to segment. Note

that the coarse-level elongation measure was used (ρ = 2).

The segmentation in Figure 5.2 appears to be a relatively good partition of the input

image. The crop areas were identified and successfully partitioned. The small service road

in the bottom right of Figure 5.1 was also detected. The region near the farm property

53

Figure 5.1: RGB image of a farm (180x180).

Figure 5.2: Seven captured segments determined (180x180). Each colour represents a
segment.

54

had some difficulty in the segmentation, but it appears that the road leading up to it was

captured. The false identification of some points near the farm property may be attibuted

to the low spatial resolution of the image.

5.2 Road Image

The next image to be discussed is an image that was taken by the Ikonos satellite. Due

to the high spatial resolution of the image, only a small window was taken, but at the full

resolution of the original satellite image. Figure 5.3 displays the image that the algorithm

was applied to. The contrast and brightness of the image in Figure 5.3 was changed for

better presentation. The goal for this image is more specific: the region of interest is

the road running from top-to-bottom on Figure 5.3. There are several reasons to want

to segment roads. One reason is for roadmaps and navigation systems. An automated

method would be able to update a database on the construction of new roads. A successful

segmentation would require the road to be identified accurately.

The parameters used to determine the segmentation of Figure 5.3 were: θ = 0.3,

α = 5.2, α̃ = 2.5, β = 2.5, ρ = 2, δ = 0.15, σ = 12, and γ = 10−12. The segmentation of

Figure 5.3 took 362.68 seconds and the results are displayed in Figure 5.4a.

In Figure 5.4a two segments were found. The top-to-bottom road segment was identified

by the algorithm, along with a background segment. At the bottom of Figure 5.4a there

is a small blue region that is surrounded by red. This appears to be an area where the

segmentation algorithm incorrectly labeled the pixels. By observing the image in Figure

5.4b we can see that the red segment from Figure 5.4a was able to capture the road in

its entirety. However, several pixels along the boundary were mislabeled and grouped

55

Figure 5.3: RGB colour image taken by Ikonos (400x300).

(a) Two segments of Figure 5.3 (400x300). (b) Road segment of Figure 5.3 (400x300).

Figure 5.4: The captured segments of Figure 5.3 shown in two different ways. (a) The
segments are displayed as two distinct colours, blue and red. (b) A red line is drawn on
top of the original image to indicated the boundary between segments.

56

along with the road. A solution to this problem may be to fine-tune the parameters until

the mislabeled area is correctly grouped with the road segment. For the purposes of this

research, it demonstrates a good result: the largest part of the road was identified, but

some fine-tuning of the parameters may be required to properly segment the mislabeled

region.

In Sections 5.1 and 5.2 we demonstrated that the algorithm is customizable by the user.

Depending on the features of interest, the algorithm can be trained to the application by

changing the user-defined parameters. In the first example the goal was to provide a

meaningful partition of the entire farm input image shown in Figure 5.1, and in the second

example, the goal was to identify the road in Figure 5.3. The algorithm was able to satisfy

both objectives, but with different parameters.

The cost of having several user-defined parameters is felt in the amount of time required

to fine-tune them. The amount of human supervision for this algorithm can be costly as

there are a large number of user-defined parameters. This is especially evident when

supervision is required in the parameter selection phase to segment an image that is of a

considerable size.

5.3 Airports

The segmentation of airport taxiways and aprons is an important application for the al-

gorithm. Several institutions would like to use an algorithm capable to segmenting these

areas. The shape moments measure described in Chapter 3 is useful for segmenting the

elongated paved areas because the taxiways and aprons are elongated in nature. In the

next example we take a look at a high-resolution image of the Region of Waterloo airport

57

provided by Geoeye and taken by the Ikonos satellite. The original high-resolution satellite

image was quite large, and for testing the algorithm a reduction in its size was conducted

due to memory and time concerns. It should be noted that due to its linear work and mem-

ory complexity, the SWA algorithm is in principle, able to segment high-resolution images

on computers with sufficient computing power and with an efficient implementation. For

our test implementation, the high-resolution satellite image was scaled down to 30% of

the original size using imresize.m, a built-in Matlab function that scales the image using

a nearest neighbour interpolation. The resolution of the scaled-down image was 691x541.

Figure 5.5 displays the high-resolution image that was provided by Geoeye. To compute

the coupling matrix of the scaled-down version of the image in Figure 5.5, the RGB values

of Figure 5.5 were first converted to the CIELAB colour space and Equation (3.2) was

used.

Figure 5.5: RGB image of the Region of Waterloo airport taken by Ikonos (2301x1801).

Figure 5.6 displays the segmentation of the scaled-down version of Figure 5.5 with each

colour representing a single segment. In this image, nine segments were determined. The

58

parameters used to produce the segments were: θ = 0.3, α = 4.2, α̃ = 2.5, β = 2, ρ = 1,

δ = 0.15, σ = 11 and γ = 10−40. The algorithm runtime to determine the segments of the

scaled-down version of Figure 5.5 was 3546.43 seconds.

Figure 5.6: The nine segments determined for Figure 5.5 (691x541). Each colour represents
a different segment.

The results shown in Figure 5.6 are promising. The algorithm was able to identify the

runway, and essentially all paved areas. There appears to be some under-segmentation

as a few of the airport buildings were segmented together with the runways and a paved

service area next to the main runway was also missed. With some fine-tuning of the

user-defined parameters this may be improved. The under-segmentation of Figure 5.5 can

also be attributed to scaling the input image down by 70% of the original satellite image

resolution. To test this hypothesis, the segmentation algorithm would have to be run on

the original high-resolution image.

59

5.3.1 High-Resolution Runway

In the next example, a small sample of the airport runway shown in Figure 5.7 is taken

at full resolution and the algorithm is applied to it with the results illustrated in Figure

5.8. To incorporate colour into the segmentation process, the RGB values were converted

to the CIELAB colour space, as before.

Figure 5.7: RGB image of the Region of Waterloo airport runway (501x351).

Figure 5.8 displays the resulting segmentation. Each colour represents a single seg-

ment. In this image, nine segments were determined. The parameters used to produce the

segments were: θ = 0.3, α = 4.2, α̃ = 2.5, β = 2, ρ = 1, δ = 0.15, σ = 11 and γ = 10−40.

The algorithm runtime to segment Figure 5.7 was 833.94 seconds. Note that these are the

same parameters that were used to segment Figure 5.5.

The algorithm was able to segment Figure 5.7 with success. The intersecting runways

were found as one segment, which is a strong result. At the higher resolution more fine

details from the image are represented in the segmentation. The two painted lines on the

60

Figure 5.8: The nine segments found in Figure 5.7 (501x351).

runway were declared as segments, which is an over-segmentation of the image for our

purposes. Also, because of the high resolution of the image there are noticeable gaps in

the runway appearing in the segmentation in Figure 5.8. The segmentation of Figure 5.7

was an overall success, but depending on the desired outcome, some fine tuning of the

parameters may be required.

5.4 Road Network Extraction

Roads are an important aspect of everyday life and with the rapid growth of road-related

services such as navigation systems, it has become an important task to keep up-to-date

road databases. Current methods for updating road information rely heavily on manual

work and can become expensive and time-consuming [42]. In this section we discuss a

possible method for the extraction of road connectivity information using the segmentation

obtained by the SWA algorithm. At the end of the SWA algorithm, the pixels in an image

61

are partitioned into segments. Recall that the SWA algorithm detects the saliency of groups

of pixels as they emerge as single nodes on progressively coarser graphs on incremental

levels. By tracking the interpolation of the salient node back to the finest level of the

algorithm from the coarse level at which it was detected, the coarse sub-graphs of the

segment can be identified at each level.

Figure 5.9 illustrates the image of Figure 5.7 scaled to 10% of the spatial resolution

for simplicity. The image in Figure 5.9 was segmented using the following parameters:

θ = 0.3, α = 6, α̃ = 5, β = 2, ρ = 2, δ = 0.15, σ = 7 and γ = 10−12. The segmented image

is illustrated in Figure 5.10, with the segment of interest in orange.

Figure 5.9: Scaled runway image (51x36).

Figures 5.11 to 5.18 illustrate the coarse graphs of the orange segment from level eight

to the finest level. The red dots indicate the centres of mass of each block on the indicated

level. The black lines between the red dots indicate a graph edge. Edges between connected

nodes that are far apart are not displayed: edges between nodes that are further apart than

62

Figure 5.10: Segmented image. 4 segments found.

a scalar multiple of the sums of the maximum eigenvalue of (3.23) for each node are not

shown. In particular, for nodes i and j, if ||(x, y)i− (x, y)j|| < µ|max(ωi)−max(ωj)| with

ωi the eigenvalues of Λi described in (3.24) (and µ a user-defined parameter), then the edge

is shown.

Using the coarse-graph hierarchy from Figures 5.11 to 5.18, we are able to extract some

information about the road connectivity networks from the links between sub-blocks. In

Figures 5.13, 5.12 and 5.11 (levels 6,7 and 8) there are not enough nodes in the coarse

graph to extract sufficient information about the road connectivity. In Figures 5.15 and

5.14 (levels 4 and 5) there are several undesirable edges in the graph that cannot be easily

removed. In Figures 5.17 and 5.16 (levels 2 and 3) the local connectivity of the nodes

provides a nice representation of the network of nodes that comprise the road segment.

However, to produce this representation, a large amount of nodes and a significant amount

of parameter tuning is required.

63

Figure 5.11: Segmented image with coarse graph overlay (level 8, µ = 1).

Figure 5.12: Segmented image with coarse graph overlay (level 7, µ = 1).

64

Figure 5.13: Segmented image with coarse graph overlay (level 6, µ = 1).

Figure 5.14: Segmented image with coarse graph overlay (level 5, µ = 1).

65

Figure 5.15: Segmented image with coarse graph overlay (level 4, µ = 1).

Figure 5.16: Segmented image with coarse graph overlay (level 3, µ = 1).

66

Figure 5.17: Segmented image with coarse graph overlay (level 2, µ = 1).

Figure 5.18: Segmented image with fine graph overlay (level 1, µ = 1).

67

Chapter 6

Conclusion and Future Work

In this thesis the Segmentation by Weighted Aggregation algorithm for image segmentation

was studied and improved. A detailed description of the algorithm and its components was

given, including a new scale-invariant saliency measure. The new scale-invariant saliency

measure was introduced to replace the original SWA saliency measure and was found

to provide more consistent segmentation results. The scale-invariant measure simplifies

the user-defined saliency threshold determination since the saliency of a block is no longer

dependent on the scale at which it was calculated . The SWA algorithm was implemented in

Matlab and several types of images were investigated to test the segmentation performance

of the algorithm. The images that were segmented ranged from simple grayscale images

with uniform regions to high-resolution images taken by a commercial satellite. Vision is

generally a very difficult problem for computers, since complex vision processes in humans

are still not well known, but the SWA algorithm has provides a strong framework for

continued research.

The modified SWA algorithm was tested on several different types of images. It was

68

found that the SWA algorithm performed well in the segmentation of the simple test images.

Without much fine-tuning of the parameters a proper segmentation was found in a short

period of time. For real images, the SWA algorithm required more human intervention in

terms of the parameter selection, but eventually a favourable segmentation was obtained

in most cases.

The SWA algorithm is a powerful tool for image segmentation, and more generally com-

puter vision. The SWA algorithm provides a fast segmentation method that can be used

to segment a broad variety of images. One of the most significant aspects of the algorithm,

is its ability to be extended without much difficulty. The SWA algorithm originally only

used the pixel intensity information to segment images, with other image features included

in later versions. Due to the multilevel nature of the algorithm, it is capable of incorpo-

rating high-level vision cues such as shape and orientation easily. The SWA algorithm is

not confined to using only low-level vision in its determination of segments. In that sense,

it is more like human vision than most segmentation methods available at the time this

research took place. Another benefit of the method is that it can be trained to the applica-

tion which the user is interested in by adding relevant high-level cues and fine-tuning the

user-defined parameters. Although the number of parameters available allows for a great

deal of customization, it also presents a great difficulty in fine-tuning the segmentation.

Each parameter affects the segmentation in a different way, thus, determining the desired

segmentation can take a lot of time.

A modified version of the SWA method was implemented in this research and it was

able to provide accurate segmentation results for each image that was tested. In particular,

we saw that the results from satellite imagery showed significant promise in terms of the

segmentation and in identifying certain specific regions and road connectivity.

69

6.1 Future Work

Several future directions are available in this research. First, it would be beneficial to

optimize the implementation to realize the benefits of a multilevel method. Multilevel

methods can achieve linear complexity as a function of the number of pixels in terms of

computation work and storage.

Another direction would be to improve the measures that are used to calculate the sim-

ilarity between blocks, such as introducing a multiscale measure for the intensity variance

regional property. A multiscale measure for the intensity variance retains more information

about the block during the coarsening process, and the additional information about the

sub-blocks can improve the characterization of the texture within the block. The addition

of more high-level cues such as the orientation of the shape moments to provide more infor-

mation about texture and orientation is another way to improve the segmentation process.

The SWA framework is constructed such that including new high-level cues to update the

similarity between blocks or improving the measures that are currently being used, can be

done quite easily. The characteristics of a block can be accumulated and used to update

the coupling between blocks similar to the process described in Section 3.5.

Significant future work would be to find a more automated segmentation method, that

is to decrease the amount of supervision in the algorithm. A trade off takes place at this

point, since it is usually the case that human intervention improves the segmentation. A

future study would have to decide which parameters can be hidden from the user and which

the user should retain control of. The general philosophy behind the SWA approach is to

increase the number of high-level cues and hence the parameters up to a point where, for

a given class of images, there is no longer a need to change the parameters. Thus, a fully

70

automated method is achieved, for that class of images. Further study is required to see

up to which degree this goal is attainable.

71

APPENDICES

72

Appendix A

RGB conversion to CIELAB

The conversion from RGB coordinates to CIELAB is used to provide a better estimation of

colour differences. The conversion is not straightforward and it involves several steps. The

RGB coordinates need to be mapped to the device-independent CIEXYZ colour space [1,

15], which is the original 1931 CIE colour space specification, before they can be converted

to the CIELAB colour space. The conversion to the CIEXYZ colour space is required

because RGB colour spaces are device-dependent. The first step in the conversion is to

normalize the RGB values (R,G,B). For 8-bit images, divide by 255:

R =
R

255
, (A.1)

G =
G

255
, (A.2)

B =
B

255
. (A.3)

To reduce the amount of quantization error, the RGB coordinates must first be γ-encoded

73

[30]. The γ-encoding function is a nonlinear transformation of the RGB values to reduce

the quantization errors. In general, we get that,


R1

G1

B1

 =


f(R)

f(G)

f(B)

 , (A.4)

where f(·) is the γ-encoding function. For the standard sRGB colour space developed by

Hewlett-Packard and Microsoft,

f(C) =


C

12.92
if C ≤ 0.04045,(

C+0.055
1.055

)2.4
if C > 0.04045,

(A.5)

where C is a particular colour coordinate of the sRGB colour space. Then, each component

is transformed using the following linear system,


X

Y

Z

 =


0.4124 0.3576 0.1805

0.2126 0.7152 0.0722

0.0193 0.1192 0.9505




R1

G1

B1

 . (A.6)

The device independent CIEXYZ coordinates are transformed using the following nonlinear

relationship,

L∗ = 116

(
Y

Yn

) 1
3

, (A.7)

a∗ = 500

[(
X

Xn

) 1
3

−
(
Y

Yn

) 1
3

]
, (A.8)

74

b∗ = 200

[(
Y

Yn

) 1
3

−
(
Z

Zn

) 1
3

]
. (A.9)

Here Xn, Yn and Zn refer to the X, Y , Z coordinates of a reference white patch in the

CIEXYZ colour space. The CIE standard illuminant D65 is often used [30]. The coordi-

nates for the D65 point are: Xn = 95.04, Yn = 100.00, Zn = 108.88. Then (L*, a*, b*) is

the coordinate vector of the colour in the CIELAB colour space.

75

Appendix B

Interpretation of G and V operators

The following examples illustrate the reasoning behind the construction of the scale-

invariant saliency measure described in (3.16). First, a one-dimensional case is shown,

followed by a two-dimensional explained in stencil form. To simplify notation, let P (:, k)

denote the kth column of P .

B.1 1-D case

Let the one-dimensional stencil for the (3.15) operator be given by

G =

(
−1 2 −1

)
(B.1)

and the one-dimension stencil for (3.14) by

V =

(
1 0 1

)
. (B.2)

76

Consider a non-overlapping aggregate k with three elements. Then the column k of P is

given by

P (:, k) =

(
. . . 0 1 1 1 0 . . .

)T
. (B.3)

The coarse operator (3.7) satisfies

Gc
kk = P (:, k)TGP (:, k) (B.4)

=

(
. . . 0 1 1 1 0 . . .

)
G



...

0

1

1

1

0

...



(B.5)

=

(
. . . 0 1 1 1 0 . . .

)



...

−1

1

0

1

−1

...



(B.6)

= 2. (B.7)

77

Thus, Gc
kk = 2 which gives the boundary length of the segment k. For the operator V , we

get the following:

V c
kk = P (:, k)TV P (:, k) (B.8)

=

(
. . . 0 1 1 1 0 . . .

)
V



...

0

1

1

1

0

...



(B.9)

=

(
. . . 0 1 1 1 0 . . .

)



...

1

1

2

1

1

...



(B.10)

= 4 (B.11)

We get that P (:, k)TV P (:, k) = 4, which is twice the number of internal undirected edges

in the aggregate k.

78

B.2 2-D case

Let the stencil for the unweighted graph Laplacian G be given by

G =


−1

−1 4 −1

−1

 , (B.12)

and the stencil for V be given by

V =


1

1 1

1

 . (B.13)

Consider a square non-overlapping aggregate k with nine elements, then the kth column of

P in stencil form gives

P (:, k) =



0 0 0 0 0

0 1 1 1 0

0 1 1 1 0

0 1 1 1 0

0 0 0 0 0


. (B.14)

The coarsening procedure gives

79

Gc
kk = P (:, k)TGP (:, k) (B.15)

=



0 0 0 0 0

0 1 1 1 0

0 1 1 1 0

0 1 1 1 0

0 0 0 0 0


G



0 0 0 0 0

0 1 1 1 0

0 1 1 1 0

0 1 1 1 0

0 0 0 0 0


(B.16)

=



0 −1 −1 −1 0

−1 2 1 2 −1

−1 1 0 1 −1

−1 2 1 2 −1

0 −1 −1 −1 0





0 0 0 0 0

0 1 1 1 0

0 1 1 1 0

0 1 1 1 0

0 0 0 0 0


(B.17)

= 12, (B.18)

80

which is the boundary length of block k. For V we get

V c
kk = P (:, k)TV P (:, k) (B.19)

=



0 0 0 0 0

0 1 1 1 0

0 1 1 1 0

0 1 1 1 0

0 0 0 0 0


V



0 0 0 0 0

0 1 1 1 0

0 1 1 1 0

0 1 1 1 0

0 0 0 0 0


(B.20)

=



0 1 1 1 0

1 2 3 2 1

1 3 4 3 1

1 2 1 2 1

0 1 1 1 0





0 0 0 0 0

0 1 1 1 0

0 1 1 1 0

0 1 1 1 0

0 0 0 0 0


(B.21)

= 24, (B.22)

which is twice the number of internal undirected edges in block k. This means that the

diagonal elements of Gc give the boundary lengths of the blocks, and the diagonal elements

of V c give twice the number of internal connections of the blocks. This can also be seen

from (3.9) with wij = 1 for all neighboring pixels.

81

Appendix C

Comparison of the Original and

Scale-invariant Saliency Measures

We would like to compare the behaviour of the original saliency measure Γ that is calculated

using Equation (3.12) and the new scale-invariant saliency measure Γnew that is defined

by Equation (3.16). A simple image is shown in Figure C.1. It is segmented using both

saliency measures. The parameters used to segment the image with both the original

saliency measure and the scale-invariant measure were: θ = 0.3, α = 1, α̃ = 0, β = 0,

ρ = 0, δ = 0.15, σ = 7, and γ = 0.1. The segments for Figure C.1 are shown in Figure C.2.

Both saliency measures were able to capture the segments accurately. For each measure,

Figure C.2a was detected at the 9th level and the segments in Figures C.2b and Figure

C.2c were both detected at the 11th level. For more analysis, plots of the original saliency

measure and scale-invariant saliency measure values for each node and at each level are

shown in Figures C.3 to C.7. Each plot contains the saliency corresponding to each node

on the indicated level. The saliency values were sorted to illustrate the behaviour of the

82

Figure C.1: Grayscale image (300x256).

two measures more clearly. The values were sorted to better illustrate the behaviour of the

saliency measures.

The most immediate feature of the plots in Figures C.3 to C.7 is that the scale-invariant

measure used to segment Figure C.1 obtain values that are consistently between zero and

one for each node on each level. On the other hand, the original saliency measure takes on

a larger range of values which varies between different levels of the SWA algorithm. Thus,

for the scale-invariant measure, we should be able to use the same γ on all levels, but it is

not clear that this is the best course of action for the original measure. This feature of the

scale-invariant method can be beneficial in determining the saliency threshold parameter

γ.

The scale-invariant measure does a better job distinguishing salient and non-salient

83

(a) (b)

(c)

Figure C.2: The three captured segments of Figure C.1 (red)

84

0 10 20 30 40 50 60 70 80 90 100
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

node

Γ ne
w

(a) Scale-invariant Measure

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

Γ
node

(b) Original Saliency Measure

Figure C.3: Sorted saliency measure values for the segmentation of Figure C.1 (level 7).

0 5 10 15 20 25 30 35
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

node

Γ ne
w

(a) Scale-invariant Measure

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

node

Γ

(b) Original Saliency Measure

Figure C.4: Sorted saliency measure values for the segmentation of Figure C.1 (level 8).

85

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Γ ne
w

node

(a) Scale-invariant Measure

0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Γ
node

(b) Original Saliency Measure

Figure C.5: Sorted saliency measure values for the segmentation of Figure C.1 (level 9).

1 1.5 2 2.5 3 3.5 4 4.5 5

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

node

Γ ne
w

(a) Scale-invariant Measure

1 1.5 2 2.5 3 3.5 4 4.5 5
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

node

Γ

(b) Original Saliency Measure

Figure C.6: Sorted saliency measure values for the segmentation of Figure C.1 (level 10).

86

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
1.018

1.019

1.02

1.021

1.022

1.023

1.024
x 10

−50

node

Γ ne
w

(a) Scale-invariant Measure

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

−51

node

Γ

(b) Original Saliency Measure

Figure C.7: Sorted saliency measure values for the segmentation of Figure C.1 (level 11).

nodes. From Figures C.3 to C.7, we observe that the Γ values exhibit more gradual

changes between nodes, which can become an issue when determining the saliency tolerance

parameter γ. The Γnew values for the scale-invariant measure display more abrupt changes

between nodes, especially between salient and non-salient nodes. This is clearly evident in

Figure C.5.

For the scale-invariant saliency measure, the non salient values are more consistent

than the original measure, in fact we could have used a saliency tolerance γ = 0.6 for

the scale-invariant measure and we would have still been able to segment the image. For

the original measure, there is no clear saliency tolerance threshold by simply observing

the plots in Figures C.3 to C.7. Although we were able to eventually find a tolerance

that worked, it was not a trivial task. With some prior knowledge of the range in values

that the saliency measure takes on, experimentation becomes much easier and determining

a sufficient saliency tolerance parameter γ is simplified. This is just one experiment of

many that were conducted to observe the behaviour of the saliency measures, and for each

87

instance the same behaviour was exhibited.

88

References

[1] Commission internationale de l’eclairage. http://www.cie.co.at/. 17, 73

[2] Geoeye. http://www.geoeye.com/. 52, 53

[3] Giovanni Adorni, Alberto Broggi, Gianni Conte, V. D’Andrea, and Claudio Sansoè.
High-level and low-level computer vision: Towards an integrated approach. In AI*IA:
Proceedings of the 2nd Congress of the Italian Association for Artificial Intelligence
on Trends in Artificial Intelligence, pages 322–331, 1991. 2

[4] D. Ballard and C. Brown. Computer Vision. Prentice-Hall, 1982. 1, 2, 5, 7, 8

[5] Asker Bazf, Asker M. Bazen, and Sabih H. Gerez. Segmentation of fingerprint images.
In ProRISC 2001 Workshop on Circuits, Systems and Signal Processing, pages 276–
280, 2001. 3

[6] Maged K. Boulos and Larry Robinson. Web GIS in practice vii: stereoscopic 3-d solu-
tions for online maps and virtual globes. International Journal of Health Geographics,
8(1):59, 2009. 51

[7] Achi Brandt. Algebraic multigrid theory: The symmetric case. Appl. Math. Comput.,
19(1-4):23–56, 1986. 18

[8] William L. Briggs, Van Emden Henson, and Steve F. McCormick. A multigrid tutorial
(2nd ed.). Society for Industrial and Applied Mathematics, Philadelphia, PA, USA,
2000. 12, 18, 19, 20, 22

[9] J. J. Corso, E. Sharon, S. Dube, S. El-Saden, U. Sinha, and A. Yuille. Efficient
Multilevel Brain Tumor Segmentation with Integrated Bayesian Model Classification.
IEEE Transactions on Medical Imaging, 27(5):629–640, 2008. 3

[10] Agns Desolneux, Lionel Moisan, and Jean-Michel Morel. From Gestalt Theory to
Image Analysis: A Probabilistic Approach. Springer, 2007. 7

89

http://www.cie.co.at/
http://www.geoeye.com/

[11] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification (2nd
Edition). Wiley-Interscience, 2000. 30

[12] Perry Durning, Stephen R. Polis, Eric G. Frost, and John V. Kaiser. Integrated
use of remote sensing and gis for mineral exploration. Technical report, La Cuesta
International, Inc., SDSU, NASA, 1998. 51

[13] Robert D. Falgout. An introduction to algebraic multigrid. Computing in Science and
Engg., 8(6):24–33, 2006. 18, 19, 20

[14] Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Efficient graph-based image seg-
mentation. Int. J. Comput. Vision, 59(2):167–181, 2004. 3

[15] David A. Forsyth and Jean Ponce. Computer Vision: A Modern Approach. Prentice
Hall Professional Technical Reference, 2002. 3, 8, 17, 52, 73

[16] Meirav Galun, Eitan Sharon, Ronen Basri, and Achi Brandt. Texture segmentation
by multiscale aggregation of filter responses and shape elements. IEEE International
Conference on Computer Vision, 1:716, 2003. 8, 12, 22, 24, 26, 30

[17] Ya’ara Goldschmidt. Fast Multiscale Methodsfor data mining. PhD thesis, Weizmann
Institute of science, 2007. 8

[18] Dahai Guo, Arthur Weeks, Harold Klee, and Xuedong Yan. A framework for high-
resolution geo-specific road database creation based on image processing techniques
for driving simulation. Adv. Eng. Softw., 40(9):820–829, 2009. 52

[19] Robert M. Haralick and Linda G. Shapiro. Computer and Robot Vision. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1992. 8, 27, 29

[20] Ramesh Jain, Rangachar Kasturi, and Brian G. Schunck. Machine vision. McGraw-
Hill, Inc., New York, NY, USA, 1995. 8, 9, 10, 11

[21] Jean-Michel Jolion and Azriel Rosenfeld. A Pyramid Framework for Early Vision:
Multiresolutional Computer Vision. Kluwer Academic Publishers, Norwell, MA, USA,
1994. 4, 5

[22] F.P. Kressler, M. Franzen, and K. Steinnocher. Segmentation based classification of
aerial images and its potential to support the update of existing land use data bases.
In International Society for Photogrammetry and Remote Sensing (ISPRS) Hannover
Workshop, 2005. 52

[23] Dan Kushnir, Meirav Galun, and Achi Brandt. Fast multiscale clustering and manifold
identification. Pattern Recogn., 39(10):1876–1891, 2006. 8

90

[24] Jitendra Malik, Jianbo Shi, Serge Belongie, and Thomas K. Leung. Grouping in the
normalized cut framework. In Shape, Contour and Grouping in Computer Vision,
pages 155–164, 1999. 11, 12

[25] David Marr. Vision. W.H. Freeman and Company, 1982. 2

[26] Ian Overington. Computer Vision: A Unified, Biologically-Inspired Approach. Elsevier
Science Inc., New York, NY, USA, 1992. 5

[27] Nikhil R. Pal and Sankar K. Pal. A review on image segmentation techniques. Pattern
Recognition, 26(9):1277–1294, 1993. 8

[28] J. R. Parker. Practical computer vision using C. John Wiley & Sons, Inc., New York,
NY, USA, 1993. 10, 11

[29] Dzung L. Pham, Chenyang Xu, and Jerry L. Prince. Current methods in medical
image segmentation. Annual Review of Biomedical Engineering, 2:315–337, 2000. 3

[30] Erik Reinhard, Erum Arif Khan, Ahmet Oguz Akyz, and Garrett M. Johnson. Color
Imaging: Fundamentals and Applications. A. K. Peters, Ltd., Natick, MA, USA, 2008.
74, 75

[31] John C. Russ. Image Processing Handbook, Second Edition. CRC Press, Inc., Boca
Raton, FL, USA, 1995. 9

[32] Eitan Sharon, Achi Brandt, and Ronen Basri. Fast multiscale image segmentation. In
Computer Vision and Pattern Recognition, pages 1070–1077, 2000. 8, 12, 22, 24, 26

[33] Eitan Sharon, Achi Brandt, and Ronen Basri. Segmentation and boundary detection
using multiscale intensity measurements. In Computer Vision and Pattern Recogni-
tion. Volume I., pages 469–476, 2001. 3, 4, 8, 22, 24, 26, 28, 29

[34] Eitan Sharon, Meirav Galun, Dahlia Sharon, Ronen Basri, and Achi Brandt. Hierarchy
and adaptivity in segmenting visual scenes. Nature, 442(7104):810–813, August 2006.
ix, 8, 13, 15

[35] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 22(8):888–905, 2000. 11,
12, 18, 23

[36] K. Sobottka and I. Pitas. Looking for faces and facial features in color images. In
PRIA: Advances in Mathematical Theory and Applications, 1996. 3

91

[37] Shutong Tse, Laura Bradbury, Justin W.L. Wan, Haig Djambazian, Robert Sladek,
and Thomas Hudson. A combined watershed and level set method for segmentation
of brightfield cell images. In Proceedings of SPIE Symposium on Medical Imaging:
Image Processing, 2009. 10

[38] Shimon Ullman. High-Level Vision: Object Recognition and Visual Cognition. The
MIT Press, 1996. 2

[39] Steven H. Ullman. Visual Perception: A clinical orientation. Appleton and Lange,
1994. 17, 52

[40] Scott E. Umbaugh. Computer Vision and Image Processing: A Practical Approach
Using CVIPtools. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1997. 1

[41] Deborah Walters. Computer vision analysis of boundary images. In K.N Leibovic,
editor, Science of vision. 1990. 1, 2

[42] Yiting Wang, Xinliang Li, Liqiang Zhang, and Wuming Zhang. Automatic road ex-
traction of urban area from high spatial resolution remotely sensed imagery. In Inter-
national Society for Photogrammetry and Remote Sensing (ISPRS) Congress Beijing,
2008. 52, 61

[43] E. Sharon R. Basri A. Brandt Y. Goldschmidt, M. Galun. Fast multilevel clustering.
Technical report mcs05-09, Department of Computer Science and Applied Mathemat-
ics, The Weizmann Institute of Science, 2005. 8

[44] Xiaolong Zheng, Yangsheng Wang, and Xuying Zhao. Fingerprint image segmentation
using active contour model. In ICIG ’07: Proceedings of the Fourth International
Conference on Image and Graphics, pages 437–441, 2007. 3

92

	List of Figures
	Introduction
	Image Segmentation
	Motivation
	Thesis Summary

	Background
	Image Segmentation Methods
	Thresholding Methods
	Edge Detection
	Region Growing Methods
	Split and Merge
	Graph Clustering

	The Segmentation by Weighted Aggregation Algorithm
	Algorithm Overview
	Coupling Matrix
	Grayscale Images
	Colour Images

	Multilevel Coarsening
	Coarse Node Selection
	Interpolation Operator
	Coarse Coupling Matrix

	SWA Saliency Measure
	Scale-invariant Measure

	Multiscale Coupling Update
	Average Intensity
	Variance
	Elongated Shapes
	Weight update

	Assignment of Nodes to Segments
	Sharpening
	Determining the Final Association of Pixels
	Pseudo Code

	Algorithm Performance
	Parameter List
	Test Images
	Example 1: Grayscale Circles
	Example 2: Colour Image
	Example 3: Perturbed Images
	Example 4: Texture

	Segmentation of Aerial-view Images
	Farm Image
	Road Image
	Airports
	High-Resolution Runway

	Road Network Extraction

	Conclusion and Future Work
	Future Work

	APPENDICES
	RGB conversion to CIELAB
	Interpretation of G and V operators
	1-D case
	2-D case

	Comparison of Saliency Measures
	References

